
PhD Dissertation

International Doctorate School in Information and

Communication Technologies

University of Trento

Advanced methods for the analysis of

multispectral and multitemporal remote sensing

images

Massimo Zanetti

Advisor:

Prof. Lorenzo Bruzzone

Università degli Studi di Trento

April 2017





Abstract

The increasing availability of new generation remote sensing satellite multispectral images

provides an unprecedented source of information for Earth observation and monitoring.

Multispectral images can be now collected at high resolution covering (almost) all land sur-

faces with extremely short revisit time (up to a few days), making it possible the mapping

of global changes. Extracting useful information from such huge amount of data requires

a systematic use of automatic techiques in almost all applicative contexts. In some cases,

the strict application requirements force the pratictioner to develop strongly data-driven

approaches in the development of the processing chain. As a consequence, the exact rela-

tionship between the theoretical models adopted and the physical meaning of the solutions

is sometimes hidden in the data analysis techniques, or not clear at all. Altough this is not

a limitation for the success of the application itself, it makes however difficult to trans-

fer the knowledge learned from one specific problem to another. In this thesis we mainly

focus on this aspect and we propose a general mathematical framework for the represen-

tation and analysis of multispectral images. The proposed models are then used in the

applicative context of change detection. Here, the generality of the proposed models allows

us to both: (1) provide a mathematical explanation of already existing methodologies for

change detection, and (2) extend them to more general cases for addressing problems of

increasing complexity. Typical spatial/spectral properties of last generation multispectral

images emphasize the need of having more flexible models to image representation. In

fact, classical methods to change detection that have worked well on previous generations

of multispectral images provide sub-optimal results due to their poor capability of modeling

all the complex spectral/spatial detail available in last generation products. The theoretical

models presented in this thesis are aimed at giving more degrees of freedom in the repre-

sentation of the images. The effectiveness of the proposed novel approaches and related

techniques is demonstrated on several experiments involving both synthetic datasets and

real multispectral images. Here, the improved flexibility of the models adopted allows for

a better representation of the data and is always followed by a substantial improvement of

the change detection performance.

Keywords. Remote sensing, multispectral images, multitemporal images, free disconti-

nuity models, change detection, Mumford-Shah, Blake-Zisserman, Rician distributions.
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Chapter 1

Introduction

This chapter gives an overview of the role played by multispectral imagery in remote

sensing with its applications, it describes the main motivations and the objectives of

the thesis and presents the whole structure and organization of the document. This

dissertation is divided into two main parts; the content of each part is described more in

detail in each corresponding introductive section.

1.1 Background on optical imagery in remote sensing

Remote Sensing (RS) encompasses a variety of technologies and techniques to continu-

ously observe the Earth surface by means of sensors mounted on aircraft or spacecraft

platforms. The peculiarity of RS is that certain properties of real objects can be measured

remotely without relying on physical contact. This makes RS an essential tool for the

study of ours planet evolution. Indeed, it is already widely employed in different appli-

cation domains such as forestry, agriculture, urban management, oceanography, natural

disaster monitoring, etc.

RS sensors can be divided into two main groups: active and passive systems. In ac-

tive systems (e.g., Synthetic Aperture Radar (SAR) and Light Detection and Ranging

(LiDAR)) a signal is emitted from the sensor and its multiple returns scattered by the

objects are then recorded. In passive systems, the sensor (e.g., scanner, radiometer) is

able to measure the portion of sunlight radiation reflected (or emitted) by the objects

in a specific spectral interval. The larger is the spectral interval, the higher is the geo-

metric resolution. According to this principle, satellite RS optical images can be divided

into four categories: panchromatic (PAN), multispectral at very high resolution (VHR),

multispectral at moderate resolution (MS) and hyperspectral (HS) images. Panchromatic

sensors record the total intensity of radiation falling on each pixel, therefore they can

achieve the highest geometrical resolution (up to tens of centimeters). The multispectral
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at VHR typically records the radiation in the red, green and blue (RGB) regions of the

visible range (from 390 to 700 nm), in the near-infrared (NIR) region (from 700 to 900

nm) and possibly in the short-wave infrared (SWIR) region (from 1100 to 3000 nm). Geo-

metrical resolution of satellite VHR images ranges between 2 and 5 meters. Multispectral

sensors at moderate resolution (from 10 to hundreds of meters) are able to record the

radiation in the visible and NIR ranges (in shorter intervals) but they can also measure

farther portions of the spectrum covering the middle-infrared (MIR) and far-infrared (FIR

or thermal) regions. Hyperspectral sensors sample over several (from tens to hundreds)

narrow contiguous portions of the spectrum. These four types of optical images present

complementary features, they have their own advantages and disadvantages and they can

serve at different purposes in various applicative contexts. One particular feature that

makes MS imagery very attractive for global studies is that MS sensors typically have

large swaths (up to two or three hundreds of kilometers). Therefore, images can be col-

lected at global scale with shorter revisit time, if compared to the others. We report in

Table 1.1 specifications of some of the more relevant satellite missions that have been

launched with MS sensors mounted on board since the early eighties.

Since the inception of the Landsat program, mid-resolution spaceborne sensors have

provided the vast majority of multispectral datasets to image analysts studying land

use/land cover change, vegetation and agricultural production trends and cycles, water

and environmental quality, soils, geology, and other earth resource and science problems.

Starting from Landsat 7, data were distributed for free and the same policy has been

extended to all Landsat data. The French SPOT satellites have been another important

source of high-quality, high-resolution multispectral data (SPOT can also collect stereo

pairs). The brand new Sentinel-2 mission has been designed as a dependable multispec-

tral EO system that will ensure the continuity of Landsat and SPOT observations and

improve the availability of data for users. In comparison with the SPOT and Landsat pre-

cursor series of satellites, the Sentinel-2 mission offers an unprecedented combination of

systematic global coverage of land surfaces, high revisit frequency, high spatial resolution

(up to 10 m) and the largest swath. Spectral and spatial properties of Landsat, SPOT and

Sentinel-2 imagery are compared in Figure 1.1. Optical imagery at very high spatial reso-

lution (meter or submeter geometric resolution) such as QuickBird, WorldView, IKONOS,

GeoEye and OrbView, is sold commercially. The trade-off for high spatial resolution is

the limited geographic coverage. For vast areas, it is difficult to obtain seamless, cloud-

free, high-resolution multispectral imagery within the single season or at the particular

moment of the phenological cycle of interest to the researcher. In this thesis, we focus our

attention on the study of MS images at moderate resolution. At moderate resolution, the

passive response of objects over large spectral intervals allows natural classes in the image
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4 Introduction

Figure 1.1: Spectral and spatial properties of Landsat, SPOT and Sentinel-2 multispectral

imagery, [2].

to be essentially described in statistical terms. Indeed, they show spatial homogeneity and

they can be accurately characterized by spectral vectors. In the sequel, these properties

are investigated in greater detail. Novel results in the mathematical modeling of multi-

spectral images are proposed and applied in the context of change detection. However,

the character of the proposed theory is general and can be applied to other contexts as

well.

1.2 Motivation of the thesis

For decades, the large number of launched EO satellites have provided a unique way to

observe our living planet from space. Thanks to the revisiting properties of EO satellites, a

huge amount of multitemporal images is now available in archives. The increasing demand

coming from the different application domains has promoted new advances in technology

and processing capability to guarantee operational continuity and provide observations
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(a) (b)

Figure 1.2: A fire occurred in Sardinia Island (Italy) between August 7-9, 2013 (the total

extention of the event is approximately 2400 hectars): (a) environmental image of the event,

the village on the left is Laconi; (b) false color image of the area affected by the fire composed

by three spectral bands of a Landsat 8 image of the scene, spatial resolution is 30 m.

for the next generation of operational products such as land-cover maps, land-use change

detection maps and geophysical variables. This allows for an accurate monitoring of

the land surface changes in wide geographical areas according to both long term (e.g.,

yearly) and short term (e.g., daily) observations. The detection and understanding of

changes occurred at the ground level is essential for studying the global change, the

environmental evolution and the anthropic phenomena. For this reason, the development

of change-detection techniques for the analysis of multitemporal remotely sensed images

is now becoming one of the most important research topics in remote sensing.

Change Detection (CD) is the process of identifying changes occurred on the same ge-

ographical area between different observation times. According to the final applications

there are different approaches of analysis and related methodological procedures. Fast

analysis of changes occurring at the ground level is widely exploited in different applica-

tions, in particular in those activities for the monitoring of natural disasters. The new

generation of satellite sensors has increased the availability of MS images and now pro-

vides data also with a significantly short revisiting time (e.g. up to daily observations).

For example, in case of a natural disaster such as a fire, an earthquake or a tsunami, this

allows for giving an almost real-time estimation of the area involved by the event (see e.g.

Figure 1.2). Such estimations can greatly help the authorities in the planning of the first

aid and related maneuvers. As a consequence, the development of effective methods for

change detection is needed and the accuracy of the final results must be improved in order

to guarantee a well balanced dislocation of resources. Moreover, CD is becoming one of

the main tools to manage and monitor land usage and natural resources. For example, for
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the purpose of environmental monitoring it is possible to detect changes in snow coverage,

extention or reduction of thematic areas (e.g. forests, deserts, urban areas); in vegetation

monitoring and agriculture surveys it is possible to detect vegetation indexes fluctuations,

changes in vegetation life conditions, soil moisture variations.

Thanks to the spatial/spectral level of detail available in MS images, it is possible to

specifically identify the spectral signature of certain classes and then perform detecting

steps aimed at identifying variations in their spectral behaviour. Given its well-recognized

importance in terms of applications, CD is a widely covered topic in literature. A huge

vastity of models and methods have been proposed to solve as many different problems.

However, in most of the cases the methodological development of CD procedures is driven

by the problem and often the literature lacks in general models. This fact limits the

possiblity of passing and adapting the knowledge learned from certain problems to even

slightly different applicative contexts and makes the general understanding of the under-

lying physical mechanism more difficult. Another limitation of current state-of-the-art

methods is that, many empirical models that has worked well for the first generation of

MS imagery show to be inefficient for addressing the new challenges introduced with the

last generation products.

1.3 Objectives of the thesis

The aim of this thesis is to propose a general mathematical framework for the repre-

sentation and analysis of RS images. If transposed to the applicative context of CD,

the proposed models are able to provide both (1) a mathematical explanation of already

existing methodologies, and (2) a framework to extend them to more general cases for

addressing problems of increasing complexity. In our presentation, the mathematical

representation of images as functions plays a central role. Certain assumptions can be

made on the function models to let them accurately describe image properties that are of

particular interest for the application. We will focus in particular on the description of

geometrical and statistical properties of the images. It is a matter of fact that, the full

information content present in an image can be completely modeled only in ideal cases.

Rather, simplified models of the images are always (explicitly or implicilty) used as a basis

for the rationale of most of the image processing techinques. Unfortunately, when these

ideal models are not clear to the pratictioner, it is difficult to interpret in a meaningful

and reasonable way the results obtained after processing.

In this thesis we introduce and we take advantage of some novel image models to solve

some typical probelms of remote sensing image processing. We mainly focus our attention

on: (1) variational approaches to image approximation (Part I of this thesis), and, (2)
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statistical models for change detection in multispectal images (Part II of this thesis).

In the following, we describe how the thesis presentation is structured, by focusing in

particular on the main challenges and the innovative contributions introduced in the PhD

activity.

1.3.1 Part I

The first part of the thesis is mainly concerned with image approximation based on vari-

ational methods. The variational approach provides a way to return an approximation of

an image which is a composition of several pieces on which the image values are homo-

geneous in terms of derivatives. According to the derivative order that is penalized, we

have first-order and second-order variational models to image approximation. Two well-

known variational models to image approximation from computer vision due to Mumford

and Shah [3] and Blake and Zisserman [5] are investigated. Given the large (almost in-

explored) potential of variational methods to the processing of MS images, we have put

a lot of effort in the study and the application of image approximation models in the

remote sensing context. The RS highlights some well-known drawbacks of mathematical

methods to image processing: the difficult scalability to large sized data and the extension

of already existing models from their native scalar version (in which they are originally

formulated) to the vector-valued case. An extensive study in this direction is proposed.

Chapter 2. In this chapter mathematical methods to image approximation are pre-

sented, with particular emphasis on variational methods and their applications. The

chapter also introduces to the content of the first part of the thesis and describes

the novel contributions.

Chapter 3. In this chapter we propose a novel approach to the numerical minimization

of variational functionals with free-discontinuities that relies on a compact matricial

formulation and an efficient iterative solver. In our exposition we take advantage

of an extended formulation of the Mumford-Shah variational functional depending

also on second-order derivatives due to Blake and Zisserman. Several experiments on

both synthetic and real images are presented to demonstrate the various capabilities

of variational models to provide simplified approximations of images.

Chapter 4. Applying free-discontiuity models to MS images is a non-trivial problem.

Multispectral images are vector-valued and no available methods to address the

minimization of variational functionals such as Mumford-Shah and Blake-Zisserman

in the vector-valued case have chances to be successfully applied in a RS context

due to their intrinsic computational complexity. In this chapter, our convenient
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numerical approach to minimization is extended to the case of vector-valued inputs.

The proposed method is then applied to difficult problems of image restoration and

boundary approximation.

1.3.2 Part II

In the second part of this thesis we mainly investigate the statistical properties of mul-

tispectral images with special focus on the analysis of multitemporal images for CD.

Very often RS images are modeled as realizations of a set of random variables following

a specific statistical distribution. However, in some cases the statistical models associ-

ated to the images are not flexible enough to allow a precise description of them. As a

consequence, some methodologies that rely on too simple statistical models may give in-

accurate results. In the thesis we introduce some new statistical models to the description

of the distribution of spectral difference-vectors and we derive from them novel methods

to change detection based on image differencing. Differently to what is typically done in

the literature, we do not rely on a-priori assumptions on the difference image. Instead,

we weaken this constraint and propose a theoretical study by showing that the statistical

description of the difference image can be derived from general assumptions on the single

time images. By taking advantage of these general models, we further study the statis-

tical distribution of the change vectors when coordinates are changed to magnitude and

we devise efficient numerical algorithms for the binary detection of changes in bitemporal

MS images that overcome the performance of typical empirical approaches.

Chapter 5. This chapter presents an overview of the change detection problem in remote

sensing and the methods proposed in literature to address it on multispectral images.

The chapter also includes a more detailed description of the contributions of this

thesis with respect to the state-of-the-art.

Chapter 6. In this chapter, the standard two-class unchange/change model for binary

CD is derived starting from the hypothesis of Gaussian distribution of natural classes

in the difference image. When coordinates are changed to magnitude, we show

that the two-class model can be described by a Rayleigh-Rice mixture. Parameter

estimation of this mixture is a non-trivial task as this model is non-conventional

(a typical conventional model which is often used for binary decision is based on a

Gaussian mixture). Therefore, we devise a version of the Expectation-Maximization

(EM) algorithm which is specifically tailored for the Rayleigh-Rice mixture.

Chapter 7. Further developments of the previous results are presented. Indeed, the typ-

ical two-class unchange/change model is sometimes not flexible enough to well model
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the spectral behaviour of the difference image. Therefore, the intrinsic nature of the

unchange/change macro classes is expected to be more complex. This is even more

evident in last generation MS images, where the radiometric resolution is sensibly

improved and more classes can be represented via their spectral characteristics. To

have more chances to better represent last generation data, in this chapter we pro-

pose a new compound multiclass model for the CD problem that both extends what

is previusly done and also provides a general framework for many CD approaches.

Chapter 8. The study of large scenes poses some criticalities in the utilization of statisti-

cal models for MS image analysis due the larger statistical variability of data. In this

chapter we investigate the possiblity of reducing the statistical variability of images

by exploiting an approximating approach based on variational methods. In order to

do that, we first define a novel spatially related statistical model for MS images that

localizes the multiclass distribution over homogeneous spatial regions of the image.

The approximating framework allows us to reduce the statistical variability of class

members by still preserving their spatial homogeneity. The proposed novel approach

is then successfully applied to the purpose of change detection on MS images. Here,

it shown that the discriminative capability of the statistical-based CD algorithms

increases and large datasets can be addressed via a parallelizable tiling approach.
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Chapter 2

Background

This chapter introduces to the content of Part I. Firstly, a mathematical optical image

model and the theory of mathematical methods to image approximation are briefly re-

viewed and variational models are introduced. In particular, some important properties

of free discontinuity models are recalled. Then, the main challenges addressed in this part

of the thesis and a description of related contributions are presented.

2.1 An optical image model

The typical function representation of an optical image can be explained in terms of the

basic optical acquisition system [3]. The optical device is located in point P in the 3-D real

world and it is pointed towards the subject of the scene, see Figure 2.1. The sensor is able

to record the intensity of the light (restricted to a specific interval of the spectrum) coming

from the reflective source in radial direction (with center P ). This direction intersects the

focal plane in one point, therefore a set of two-dimensional coordinates can be associated

to the record of the light intensity. Thus, let us define x ∈ Ω0 ⊂ R2 the spatial coordinate

(for convenience restricted to a bounded rectangular region Ω0 of the plane) and g(x)

the recorded light intensity at point x. The value g(x) can be either a scalar or a B-

dimensional vector depending on the capability of the sensor of recording the spectral

response of objects in different intervals of the spectrum (e.g., this is the typical case of

multispectral scanners). The function g(x) : Ω0 → RB is called an image (this is a general

notation that also includes the scalar case for B = 1). To better understand what kind of

function is g like, one can consider the simple, yet effective, model depicted in Figure 2.1.

Objects Oi that are homogenous in terms of the reflected light intensity and that can be

seen from point P would be imaged to spatially homogenous regions Ωi ⊂ Ω0. Relative

position of objects Oi (front, back, partial occlusion) would cause imaged edge boundaries

to appear as image discontinuities. Therefore, at a first approximation the function g is
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Figure 2.1: A typical optical imaging system, [3].

expected to be piecewise smooth, i.e., well modeled by a set of smooth functions gi defined

over disjoint sets Ωi. Of course, this model is ideal as what is observed in real images

is typically more complex: often objects are characterized by textured of fragmented

patterns instead of homogeneous patches, shadows would typically result in shallow edges,

etc. Noise measurement is another source of deviation from the ideal model. This process

of contamination of the ideal image can be formalized by incorporating the physics of the

vision mechanism, noise measurement, etc., in a functional transformation Λ that relates

the ideal image u to the real recorded g as

g = Λ(u). (2.1)

In general, the trasformation Λ is not explicit, thus the problem of recovering u from g is

an inverse ill-posed problem. The aim of mathematical methods to image approximation

is that of recovering a regular approximation u of a real image g.

2.2 Mathematical methods to image approximation

According to the assumptions that are made on u (and on Λ), there are different ap-

proximation approaches. Mathematical methods to image approximation can be mainly

divided into two groups: partial differential equation (PDE) methods and variational

methods. In the following these two approaches are briefly reviewed.

2.2.1 Partial differential equation methods

In the early 80s Witkin [6] proposed a noise-reduction scale-space coarsing of signals

via convolution with Gaussian kernels. Following a well-established axiomatization of
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formal requirements the image processing transforms must satisfy [7], this model reflects

causality, linearity and isometry invariance which are characterizing properties of the heat

semi-group. Images at every scale form a family that depend on a temporal parameter t.

Each image u(t, .) of the family satisfyies the partial differential equation (PDE):

∂tu = div [∇u] in R× Ω0, with u(0, .) = g, (2.2)

where g is the input image, a non-negative real-valued function defined over the (rectangu-

lar) domain Ω0 ⊂ R2. Here the concept of scale-space is strictly related to the parameter

t that determines the width of the Gaussian kernel, i.e. to the amount of noise reduc-

tion. Anyway, the model is fully isotropic and does not take into account any structural

information of the input image. It blurs out both noise and interesting features of the

image such as edges or points of gradient discontinuity. For recovering at this drawback,

some modifications of the previous formulation have been proposed. Perona and Malik [8]

introduced in formulation (2.2) a term that makes the diffusion anisotropic. More specifi-

cally, the diffusion is inhibited according to local properties of the image that are detected

by a function c = c(|∇u|) that depends on the gradient. The result is a slighlty changed

concept of scale-space that can be formalized by the differential problem

∂tu = div [c(|∇u|)∇u] in R× Ω0, with u(0, .) = g. (2.3)

Altough this formulation is general, particularly effective results in enhancing edges have

been obtained by using c(s) = (1 + s2/λ2)−1. Here the positive parameter λ ensures that

the diffusion is low when high gradients are detected. A variation on this model have been

proposed independently by Rudin and Osher [9]. In particular in their formulation, which

is equivalent to the Perona-Malik case where the function c = −1/|∇u|, the resulting

PDE represents the flow generated by the minimization of the Total Variation, i.e. the

quantity ∫
Ω0

|∇u| dx, (2.4)

with some constraints on u to be fullfilled. In this different view, the variational nature

of the denoise-recovering problem becomes more evident.

2.2.2 Variational methods

Probably, the major limitation of the previous approaches is the limited flexibility in

modeling all the components that play a relevant role in the recovering process. On the

one hand, the action of the different components of the models is not even fully understood

and only some effects are known, cfr. e.g., [10, 11]. As a consequence, the progressive
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modification of the PDEs to obtain more and more meaningful solutions becomes a critical

step. On the other hand, the real edge-detection step that locates the object boundaries

at different scales is still considered as a subsequent and independent step. Diffusion-

based methods only enhance edges and do not explicitly provide their detection. In this

perspective, the variational approach seems to be more flexible and allows for having

a proper and explicit modelization of all the components: smoothing, edge-detection,

scale-space representation.

A first-order model: the Mumford-Shah functional

By fully exploiting a variational framework, Mumford and Shah [3] proposed a model for

image approximation based on the minimization of the following functional

E(u,K) =

∫
Ω0\K

|∇u|2 dx+ αH1(K) + µ

∫
Ω0

|u− g|2 dx (2.5)

among all the functions continuously differentiable outside K, i.e. u ∈ C1(Ω0 \K), where

K ⊂ Ω is compact. Here, H1 is the 1-dimensional Hausdorff measure, and α, µ are positive

parameters. This functional model has several interpetations and specializations that can

be formulated depending on specific assumptions/constraints that can be made on u and

the other parameters. Hereafter are some examples.

Piecewise smooth approximation. This is the most general case, as defined above.

The minimization of the first term in (3.1) forces u to be smooth outside K, which

has to be a one-dimensional set with finite length because of the term H1(K). The

last distance term forces u to be close to (i.e., an approximation of) the original

image g. The unknown set K can be easily understood as the set of the disconti-

nuities of u, indeed the minimization of (3.1) is a prototype of free discontinuities

problem, [12]. A solution of this formulation would explicitly provide: the set K of

the edges, and, u a piecewise smooth version of the original image g. By changing

the values of the parameters in (3.1) to augment the noise-reduction effect, different

scales are reachable. This fact is enforced in [13], where a strict relationship be-

tween the Mumford-Shah and Perona-Malik approaches to segmentation is found.

In particular, it is shown how the parameters of the Mumford-Shah functional can

be interpreted as parameters regulating an anisotropic diffusion process applied to

the image g. An example is shown in Figure 2.2.

Piecewise constant approximation. This formulation is obtained by restricting the

minimization of (3.1) to the class of piecewise contant functions over partitions of

Ω0. Let us define Ω := {Ωi : i = 1, . . . , nΩ} a regular partition of Ω0 as:
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• Ωi are open connected sets with smooth boundary ∂Ωi

• let K = ∪nΩ
i=1∂Ωi be the total partition boundary, then ∪nΩ

i=1Ωi = Ω0 ∪K;

• Ωi ∩ Ωj = ∅ for i 6= j.

We define the space of piecewise constant functions over the partition Ω to be

PC(Ω) := {u : u(x) = ui ∈ R for all x ∈ Ωi}. The functional (3.1) restricted

to this class of functions is

E(u,K) =

nΩ∑
i=1

∫
Ωi

|ui − g|2 dx+ ν0H1(K) (2.6)

as the gradient term vanishes. Fixed Ω, it can be proved that the unique minimizer

u∗ of (2.6) is the piecewise function whose values are the integral means of g over

the sets Ωi, i.e., u∗i = gΩi
:= 1

|Ωi|

∫
Ωi
g dx. Therefore, the minimization of (2.6) is

equivalent to the minimization of

E0(K) =

nΩ∑
i=1

∫
Ωi

|g − gΩi
|2 dx+ ν0H1(K) (2.7)

which depends on the only variable K. It can be shown that the minimization of

E0 is a well-posed problem. If g is continuous there exists a minimizing K made up

of a finite number of singular points joined by a finite set of C2-arcs. The resulting

piecewise constant function u∗ obtained by minimizing (2.7) is often called a cartoon

of g, see Figure 2.3.

Markov Random Fields. By changing the representation of the image model from con-

tinuous to discrete, it can be shown that the piecewise constant approximation can

be derived as a specialization of a Markov Random Field (MRF) model. Con-

sider G = (V,E) to be an undirected graph with nodes V = {1, . . . , n} and edges

E = {(i, j) ∈ V × V : if i, j are connected}. To each node i we assign a ran-

dom variable vi that takes values on a discrete set A = {a1, . . . , ak} and we call

(G, A) a random field. We denote a possible configuration of the random field by

v = (v1, . . . , vn) where each vi ∈ A. If we measure the energy of a configuration v as

U(v) =
∑
i∈V

G(vi) + ν1

∑
i∈V

∑
j∈N (i)

F (vi, vj), (2.8)

where N (i) is the set of i neighbors, then the Hammersley-Clifford theorem tells us

that the random field has the Markov property and its configuration probabilty can

be given in terms of Gibbs distribution as P (v) = Z−1e−1/TU(v) where Z is a normal-

izing constant and T is a positive parameter. In (2.8), the function G encodes the
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sensitivity of the random field to external forces (it is often called external interaction

function), whereas F describes the energy generated by local inner interactions (it is

often called internal interaction function). If the edges of the graph form a reticular

structure, the random variables vi can be associated to pixels values of an image u

via the simple assignment vi = u(xi), where xi is a spatial discrete coordinate. Given

an image g, by defining G(vi) := [u(xi)− g(xi)]
2 and F (vi, vj) := δ(|u(xi)− u(xi)|),

where δ is the kronecker function, we get that (2.8) is exactly the discrete version of

(2.6) for a suitable choice of the parameter ν1. Notice that, via the kronecker func-

tion, the double summation in (2.8) returns a multiple of the length of the interface

that separates pixels with different values, i.e., a multiple of the length of K in a

discrete setting.

A second-order model: the Blake-Zisserman functional

The Mumford-Shah model assumes the ideal image u approximating g to be essentially

piecewise contant. Indeed, the gradient term in the energy penalizes variations of intensity

outside a set of finite one-dimensional length, i.e., the set of image discontinuities. This

gradient penalization is often called 1st-order penalization as it affects 1st-order deriva-

tives of the solution. In some cases, 1st-order penalization is a too strong assumption as

some gradients of light intensity are proper characteristics of the image and the piecewise

nearly-flat approximation of them might result too coarse. In order to give more flexibility

to the approximation model, Blake and Zisserman [5] proposed a 2nd-order penalization

variational model to image approximation with the aim of providing a piecewise linear

approximation of the image. The model depends on 2nd-order derivatives and allows free

discontinuities and free gradient discontinuities and it is based on the minimization of

E(u,K0, K1) =

∫
Ω0\(K0∪K1)

|Hu|2 dx + µ

∫
Ω0

|u− g|2 dx

+ αH1(K0) + βH1(K1 \K0), (2.9)

among all functions u that are twice differentiable outside K0 ∪ K1 and at least differ-

entiable outside K0. K0 and K1 vary among all the compact sets such that K0 ∪ K1 is

closed in Ω0. µ, α, β are positive parameters. Here Hu denotes the Hessian operator, i.e.,

the 2 × 2 square matrix containing all the second-order derivatives of u. It is important

to note that, for an admissible solution u discontinuities are allowed on K0 ∪K1, whereas

discontinuities of the gradient are allowed only on K1. α and β are contrast parameters

regulating the total length of the discontinuity sets.
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(a) (b)

(c)

Figure 2.2: An example of scale-space representation via the Mumford-Shah piecewise smooth

approximation. (a) The original image g is a portion of QuickBird image representing an urban

area in Reggio Emilia, Italy. (b) Piecewise smooth approximation u of the image. Functional

parameters are selected to represent the image at scale in which textural details are eliminated

but basic shapes of the buildings are preserved. (c) map of the detected edges K.
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(a) (b)

(c)

Figure 2.3: Example of a cartooned image. (a) is the original image g, (b) is the approximation

u (the cartoon) obtained via Mumford-Shah piecewise constant approximation. (c) is the set of

edges K.

2.3 Challenges and novel contributions

This part of the thesis presents novel results for the numerical minimization of variational

functionals for image approximation due to Mumford-Shah and Blake-Zisserman. We pro-

pose in the following chapters an extensive and detailed presentation of the application of

variational methods in different applicative contexts both in the remote sensing (statis-

tical reduction of multispectral images, piecewise linear approximation of urban Digital

Surface Models) and the image processing (image restoration, polygonal boundary recov-

ering) domains. Our main requirements for the implementation of these methods were:

(1) obtaining high computational efficiency, (2) dealing with vector-valued images, and,

(3) developing highly parallelizable code.

Free discontinuity problems are difficult to implement because the unknown set vari-

ables (the discontinuity sets) introduce adverse conditions to the minimization problem.

Among the solutions that have been proposed in literature to circumvent this problem,
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the variational approximation by Ambrosio, Faina and March (AFM) [14] has some ad-

vantages: it is particularly suited for numerical implementation and it allows the explicit

detection of image discontinuities. Chapter 3 is entirely devoted to the derivation of a

novel numerical algorithm to the minimization of the AFM variational approximation

of the Blake-Zisserman functional. The approximation model is general enough to in-

clude the Mumford-Shah model as a particular case. The numerical approach we propose

exploits a compact matricial representation of the functional and a specifically tailored

version of a block coordinate descent algorithm which is proved to converge to a stationary

point of the objective energy.

Extending variational models to multispectral image analysis requires dealing with

vector-valued inputs. Altough in literature some approaches have been proposed to ad-

dress the numerical minimization of the Mumford-Shah functional in the case of vector-

valued inputs, most of them are not capable of explicitly detecting image discontinuities

and also, they cannot deal with large size images (as typical in remote sensing). There-

fore, in Chapter 4 we propose an extension of the proposed algorithm to the minimization

of the functional model in Chapter 3 to the case of vector-valued inputs. Our applica-

tion emphasizes the capability of the Blake-Zisserman model to provide piecewise linear

approximation of the input both in the case of images and curves.
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Chapter 3

Numerical minimization of a

variational functional to image

approximation

In this chapter1 we address the numerical minimization of a variational approximation

of the Blake-Zisserman functional given by Ambrosio, Faina and March. Our approach

exploits a compact matricial formulation of the objective functional and its decomposition

into quadratic sparse convex sub-problems. This structure is well suited for using a block-

coordinate descent method that cyclically determines a descent direction with respect to

a block of variables by few iterations of a preconditioned conjugate gradient algorithm.

We prove that the computed search directions are gradient related and, with convenient

step-sizes, we obtain that any limit point of the generated sequence is a stationary point

of the objective functional. An extensive experimentation on different datasets including

real and synthetic images and digital surface models, enables us to conclude that: (1)

the numerical method has satisfying performance in terms of accuracy and computational

time; (2) a minimizer of the proposed discrete functional preserves the expected good

geometrical properties of the Blake-Zisserman functional, i.e., it is able to detect first and

second order edge-boundaries in images; (3) the method allows the segmentation of large

images.

3.1 Introduction

Image approximaiton is a typical and widely investigated topic in image processing. It

can be essentially defined as the process of finding a simplified version u of an image g

1parts of this chapter appear in [4]
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that, under certain conditions, it represents its ideal content prior to contamination due

to acquisition mechanism, noise, etc (cfr. Section 2). By fully exploiting a variational

framework, Mumford and Shah [3] proposed a model for image approximation based on

the minimization of the following functional

MS(u,K) =

∫
Ω0\K

|∇u|2 dx+ αH1(K) + µ

∫
Ω0

|u− g|2 dx. (3.1)

Here Ω0 ⊂ R2 and g ∈ L∞(Ω0) is the input image. The minimization is among all the

functions continuously differentiable outside K, i.e. u ∈ C1(Ω0 \ K), where K ⊂ Ω0 is

compact. H1 is the 1-dimensional Hausdorff measure, and α, µ are positive parameters.

The minimization of the first term forces u to be smooth (a piecewise constant behavior

is expected) outside K. Because of the term H1(K), K is a one-dimensional set with

finite length. The last integral term is a distance term that forces u to be close to the

original image g. The set K can be easily understood as the set of the discontinuities

of u, indeed this is a typical problem belonging to a general class of problems called free

discontinuities problems, [12].

From a practical point of view, the minimization of the MS functional (3.1) cannot be

addressed because the measure term H1(K) is not semi-continuous with respect to any

reasonable topology. As suggested in [12], by relaxing the problem into the weaker space of

Special Functions of Bounded Variation SBV (Ω0), the methods of Calculus of Variations

can be used to prove the existence of minima [15]. The advantage of this approach is that

for every u ∈ SBV (Ω0), the discontinuity set Su is uniquely determined by geometrical

properties of the function. This results in a functional formulation of the MS problem

that uniquely depends on the function u:

G(u) =

∫
Ω0

(
µ|u− g|2 + |∇u|2

)
dx+ αH1(Su), (3.2)

where u ∈ SBV (Ω0) and Su is the complement set of Lebesgue points of u. Using com-

pactness and lower semi-continuity theorems [16] it is showed that under mild conditions,

there exists a solution such that H1(Su) < ∞. Moreover, by regularity results one has

that H1(Su \ Su) = 0 and the couple (u, Su) can be identified with a minimizer of the

strong formulation.

Based on this relaxed formulation, many techniques have been proposed to tackle

the problem of numerically computing a minimizer. The free discontinuity term poses a

serious problem. Ambrosio and Tortorelli [17], by exploiting a nice result of Modica and

Mortola [18], proposed a Γ-convergence approximation via integral functionals defined on

proper Sobolev spaces. In their approximation the discontinuity set is replaced by an

auxiliary function that plays the role of indicator function. Numerical solutions based



Introduction 25

on the Ambrosio-Tortorelli approximation are given in the framework of Finite Element

Method (FEM) in [19], and via finite-difference discretization of Euler-Lagrange equations

in [20]. In [21], a Γ-convergence approximation using local integral functionals defined on

a discrete space is given. Numerical implementation of the method is presented in [22].

Another minimization technique is based on a convex relaxation of the functional [23]. A

level set approach to minimization is presented in [24]. With no intent of being exhaustive,

we refer the interested reader to the overview on the numerical approaches for solving the

MS functional given in [25].

3.1.1 The Blake-Zisserman model for image segmentation

Being a first-order model, the MS variational segmentation suffers of some side effects

[5, 26]. The minimization of the gradient norm forces the solution to be locally constant

(zero gradient). In those regions where the gradient of g is too steep, this local approx-

imation results in a step-wise function characterized by many fictitious discontinuities.

This phenomenon is well-known as over-segmentation of steep gradients. Moreover, the

minimization of the length term results in an approximation of complex edge junctions by

triple-junctions where edges meet at 2/3π wide angles. This may lead to a degradation

of the real geometry of boundaries. Lastly, properly because of its first-order nature, the

MS model is unable to detect second-order geometrical features such as points of gradient

discontinuity, see Figure 3.1. Since very often such points correspond to object bound-

aries, the MS model has the limitation that is not capable of detecting them.

With the specific intent to overcome such problems, Blake and Zisserman proposed a

variational model based on second order derivatives, free discontinuities and free gradient

discontinuities [5]. In their original formulation one has to minimize

BZ(u,K0, K1) =

∫
Ω0\(K0∪K1)

|Hu|2 dx + µ

∫
Ω0

|u− g|2 dx

+ αH1(K0) + βH1(K1 \K0), (3.3)

among all functions u that are twice differentiable outside K0 ∪ K1 and at least differ-

entiable outside K0. K0 and K1 vary among all the compact sets such that K0 ∪ K1 is

closed in Ω0. µ, α, β are positive parameters. Here Hu denotes the Hessian matrix of u.

Notice that, for an admissible solution u, discontinuities are allowed on K0 ∪K1, whereas

discontinuities of the gradient are allowed only on K1. α and β are contrast parameters

regulating the total length of the discontinuity sets.

As in the MS case, also for the BZ functional minima existence and numerical issues can

be addressed by considering a relaxation of the functional. Following [27], a relaxation in

the space of Generalized Special Functions of Bounded Variation GSBV (Ω0), is given by
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(a) (b)

(c) (d)

Figure 3.1: Limitation of the MS model of detecting second-order geometrical features. (a,b)

Gray-scale image with second-order edges. (c) Edge-detection via Mumford-Shah functional

compared to (d) a full theoretical exact detection of 2nd-order features.

the functional

F(u) =

∫
Ω0

(
µ|u− g|2 + |Hu|2

)
dx+ (α− β)H1(Su) + βH1(S∇u ∪ Su), (3.4)

where u ∈ GSBV 2(Ω0) := {w ∈ GSBV (Ω0) : ∇w ∈ [GSBV (Ω0)]2}. In this weaker space,

a proper definition of Hu and S∇u (the theoretic discontinuity set of ∇u) as geometrical

property of the function u, is possible. By regularity arguments it can be proved [28] that

a minimizer of (4.2) can be identified with a minimizing couple of the strong formulation,

provided β ≤ α ≤ 2β. Thus, the optimal set K0 ∪K1 is recovered via the discontinuity

set Su and the gradient discontinuity set S∇u.

A vivid research interest is devoted to the Blake-Zisserman functional as it represents

the generalization of the well-known and widely used Mumford-Shah. From a theoretical

point of view it is a challenging topic, well-posedness of the problem and uniqueness

of the solution [29] as well as regularity properties of minimizers [30–32] are still under

investigation. Recently, a concise survey of the main results about the functional have

been presented [33].

Segmentation based on the Blake-Zisserman model, because of its second-order nature,

is specifically suitable for addressing problems such as: (1) image inpainting [34], where

the functional minimization allows for predicting partially occluded regions in an image

and their contours continuation, and (2) 3D data segmentation [35], where the unique

capability of the functional of tracing second-order edges (creases) allows for precisely
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locating planar objects (such as roof planes) in remote sensing 3D models of urban areas.

3.1.2 Variational approximation of the Blake-Zisserman relaxed functional

Implementing gradient descent of (3.3) with respect to the unknown free discontinuity sets

is extremely difficult. Γ-convergence has shown to be fundamental to solve the problem of

numerically computing a minimizer. This notion of convergence, suitable for functionals,

has been introduced by [36]. For a deep treatment of this topic we refer to [37, 38].

The key point in Γ-convergence is that a specific functional, which may not have good

properties for minimization, can be approximated by a sequence of regular functionals all

admitting minimizers. The sequence of these approximate minimizers converges (in the

classical sense) to a minimizer of the original objective functional. Besides its importance

as mathematical tool, Γ-convergence is very attractive also from a numerical point of view

as it allows for the solution of several difficult numerical problems in Computer Vision,

Physics, and many other fields. See for instance [38,39].

Following the idea of Ambrosio and Tortorelli, in [40] a Γ-convergence result is proved

for the BZ functional in dimension 1. A full proof in dimension 2 and a partial result for

any dimension n is given by Ambrosio, Faina and March [14]. The authors, by properly

adapting the techniques of [40] and [17], have introduced two auxiliary functions s, z :

Ω0 → [0, 1] (aimed at approximating the indicator functions of the discontinuity sets) to

the model and proposed a Γ-convergence approximation of F via the family of uniformly

elliptic functionals

Fε(s, z, u) = δ

∫
Ω0

z2|Hu|2 dx+ ξε

∫
Ω0

(s2 + oε)|∇u|2 dx

+ (α− β)

∫
Ω0

ε|∇s|2 +
1

4ε
(s− 1)2 dx

+ β

∫
Ω0

ε|∇z|2 +
1

4ε
(z − 1)2 dx

+ µ

∫
Ω0

|u− g|2 dx, (3.5)

where (s, z, u) ∈ [W 1,2(Ω0, [0, 1])]2 ×W 2,2(Ω0) =: D(Ω0). Here ε is the convergence con-

tinuous parameter, ξε, oε are infinitesimals and the convergence is intended for ε→ 0. To

prove Γ-convergence, one has to show that for any u ∈ GSBV 2(Ω0), s ≡ 1, z ≡ 1 the two

following properties are verified:

Liminf inequality: for any sequence {(sε, zε, uε)}ε>0 ⊂ D(Ω0) that [L1(Ω0)]3-converges

to (s, z, u) it holds that F(u) ≤ lim infε→0Fε(sε, zε, uε).
Limsup inequality: there exists a sequence {(sε, zε, uε)}ε>0 ⊂ D(Ω0) that [L1(Ω0)]3-

converges to (s, z, u) such that lim supε→0Fε(sε, zε, uε) ≤ F(u).
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Figure 3.2: Slice section of the discontinuity set S and its approximation via the recovering

function σε realizing the Γ-convergence.

By standard arguments of functional analysis it is possible to prove that for any ε > 0

the functional Fε always admits a minimizing triplet. Let us denote it by (sε, zε, uε). By

sending ε→ 0, thanks to the compactness properties of the Γ-convergence, the sequence

{(sε, zε, uε)}ε>0 converges in the [L1(Ω0)]3-norm to a triplet (s, z, u) where u is a minimizer

of the limit functional F and s, z ≡ 1 almost everywhere over Ω0.2

The constructive part of the Γ-convergence (Limsup inequality) provides us the tremen-

dous advantage of keeping trace of the discontinuity sets Su and Su∪S∇u via their regular

function approximations. For a fixed ε > 0, the two discontinuity sets, enjoying the reg-

ularity properties of GSBV 2(Ω0) functions, are approximated by sε and zε (respectively)

using a slicing argument and Coarea-formula for Lipschitz functions [14]. Let S be either

Su or Su ∪ S∇u and let us consider a 2-dimensional orthogonal slice of S (see Figure 3.2).

The idea is to build a function σε that is 0 in a tubular neighborhood of radius bε of the set

S and that tends to 1 smoothly elsewhere. The tubular neighborhood shrinks as ε → 0.

Formally the function σε is defined as:

σε :=


0, (S)bε

1− ηε, Ω0 \ (S)bε+aε

hε ◦ τ, elsewhere

(3.6)

where aε, bε, ηε are infinitesimals as ε → 0, τ(y) := dist (y, S) and (S)r := {y ∈ R2 :

dist (y, S) < r}. The function hε (the blue piece of function in Figure 3.2) is obtained as

the solution of the differential problem h′ = (1−h)/2ε, h(bε) = 0, where h(bε+aε) = 1−ηε.
Exploiting the Schwartz inequality a2 + b2 ≥ 2ab it is possible to prove that such hε is

energetically optimal in the class of the admissible functions (a general result is given

in [18] and used for the approximation of discontinuity sets in [14, 17]). Because of the

2In practice it is assumed that H2({σ = 0}) = 0 and 0 ≤ H1({σ = 0}) <∞, for either σ = s and σ = z.
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global minimization of Fε, the distance term µ|uε − g|2 keeps the function uε close to

g. High values of |∇uε| (associated to discontinuities of g) and high values of |Huε|
(associated to crease points of g) force the transition of the functions sε and zε from 1

to 0. Elsewhere, the minimization of the two terms containing the differential operators

causes the smoothing of g. We remark here the importance of the parameters δ, µ, α, β,

that control the ratio at which the whole mechanism described before takes place.

From the discussion above it follows that, for small values of ε, the computation

of a minimizing triplet of (4.3) provides uε, an approximation of a real minimizer u of

F , and sε, zε, the functions that map the tubular neighborhoods of the discontinuity

sets Su and S∇u ∪ Su, respectively. The price to pay for having such nice outputs is

computational complexity. In the remainder of the chapter we will show how the explicit

minimization of (4.3) can be addressed in an efficient way by exploiting the nice properties

of the functional and a compact formulation via finite-difference schemes enjoying good

properties of convergence.

3.2 Numerical minimization of the Blake-Zisserman functional

In this section the numerical minimization of (4.3) is addressed. Firstly the functional is

discretized and written in matricial form. Because of nice properties of the functional, the

finite-difference discretization of the functional leads to a quadratic function with respect

to each block variable when the others two are left fixed.

3.2.1 Discretization

A simple discretization technique, commonly used for computer vision problems (see for

example [41, 42]), can be applied to the functional (4.3) in a straightforward way. The

rectangular domain Ω0 ⊂ R2 is discretized by a lattice of points Λ = {(itx, jty); i =

1, . . . , N, j = 1, . . . ,M} with step sizes tx and ty on the x and y directions respectively,

giving rise to a point grid Λ of size n := NM . Using the standard representation of

grey-scale images as matrices, the values of the image g on the grid points (itx, jty) are

denoted gij. Similarly, the approximate values of the functions s, z, u on the grid points

are denoted sij, zij, uij. Furthermore, for any function v ∈ {g, s, z, u}, we denote by v

the column vector of dimension n obtained from the corresponding matrix rearranging

the elements vij by a column-wise vectorization. The function w(i, j) := (j − 1)N + i

makes a bijective correspondence between the entry vij and its position in the vector v.

Shortly, [v]w(i,j) = vij. Given a vector v, let us denote Rv the diagonal matrix with

diagonal entries equal to the elements of v. Furthermore, we also denote v2 the vector
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of the squared coefficients of v, i.e., [v2]i = ([v]i)
2 and e := (1, 1, . . . , 1)T . The maximum

value of the entries of a vector is denoted by ‖v‖∞ := maxi [v]i.

The first and second order differential operators appearing in the functional can be

approximated via finite difference-schemes as follows

∂xvij :=
vi+1,j − vi,j

tx
= [Dxv]w(i,j)

∂yvij :=
vi,j+1 − vi,j

ty
= [Dyv]w(i,j)

∂xxvij :=
vi+1,j − 2vi,j + vi−1,j

t2x
= [Dxxv]w(i,j)

∂yyvij :=
vi,j+1 − 2vi,j + vi,j−1

t2y
= [Dyyv]w(i,j)

∂xyvij :=
1

ty

(
vi+1,j+1 − vi,j+1

tx
− vi+1,j − vi,j

tx

)
= [Dxyv]w(i,j)

(3.7)

for i = 1, . . . , N and j = 1, . . . ,M . By assuming zero boundary conditions (v0,j =

vN+1,j = vi,0 = vi,M+1 = 0) as in [14], the above matrices Dx, Dy, Dxx, Dyy are given by

Dx :=
1

tx
IM ⊗A1

N Dy :=
1

ty
A1
M ⊗ IN

Dxx :=
1

t2x
IM ⊗A2

N Dyy :=
1

t2y
A2
M ⊗ IN

Dxy := DyDx = DxDy

where ⊗ is the Kronecker product. Here IK denotes the identity matrix of dimension

K and A1
K , A2

K are square matrices of order K > 0, representing a forward-scheme

approximating first-derivative and a central-scheme approximating second-derivative re-

spectively3:

A1
K :=


−1 1

−1 1
. . . . . .

−1 1

−1

 , A2
K :=


−2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2

 . (3.8)

By using the following approximations over each grid point

|Hvij|2 = ([Dxxv]w(i,j))
2 + ([Dyyv]w(i,j))

2 + 2([Dxyv]w(i,j))
2,

3The implementation of homogenoeus Neumann boundary conditions follows straightforwardly by replacing

the entries: [A1
K ]K,K = 0 and [A2

K ]1,1 = [A2
K ]K,K = −1.
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|∇vij|2 = ([Dxv]w(i,j))
2 + ([Dyv]w(i,j))

2,

we can approximate the integral over Ω0 with a simple 2-D composite rectangular rule,

obtaining the following discrete form of the functional (4.3):

Fε(s, z,u) := txty

{
δ [uTDT

xxRz2Dxxu + uTDT
yyRz2Dyyu + 2uTDT

xyRz2Dxyu] +

+ ξε [uTDT
xRs2Dxu + uTDT

y Rs2Dyu] +

+ (α− β) [ε (sTDT
xDxs + sTDT

y Dys) +
1

4ε
(s− e)T (s− e)] +

+ β [ε (zTDT
xDxz + zTDT

y Dyz) +
1

4ε
(z− e)T (z− e)] +

+ µ (u− g)T (u− g)
}
. (3.9)

Here, with abuse of notation, Rs2 is the diagonal matrix composed by the elements of the

vector s2 + oε (instead of s2).

Globally this functional is not convex, but it is quadratic with respect to each block of

variables s, z,u. The terms of Fε containing s or z depend only on u. On the other hand,

the terms containing u depend on s and z. Indeed, by fixing the variable u or the other

two variables s and z, we can write

Fε(s, z,u) = txty

{
1

2

(
sT zT

)( As 0

0 Az

)(
s

z

)
−
(
sT zT

)( bs
bz

)
+ csz

}

Fε(s, z,u) = txty

{
1

2
uTAu u− uTbu + cu

} (3.10)

where As = As(u), Az = Az(u), Au = Au(s, z) and bs,bz,bu are given by

As = 2ξεR|∇u|2 + 2ε(α− β)(DT
xDx + DT

y Dy) +
α− β

2ε
I

bs =
α− β

2ε
e

Az = 2δR|∇2u|2 + 2εβ(DT
xDx + DT

y Dy) +
β

2ε
I

bz =
β

2ε
e

Au = 2δ(DT
xxRz2Dxx + DT

yyRz2Dyy + 2DT
xyRz2Dxy) + 2ξε(D

T
xRs2Dx + DT

y Rs2Dy) + 2µI

bu = 2µg

(3.11)

with |∇u|2 := (Dxu)2 + (Dyu)2 and |Hu|2 := (Dxxu)2 + (Dyyu)2 + 2(Dxyu)2. Vectors

csz and cu are constant, thus irrelevant for the minimization. In view of the terms α−β
2ε

I,
β
2ε

I and 2µI, with ε, µ, β, α − β > 0, the matrices As,Az,Au are symmetric and positive



32 Numerical minimization of a variational functional to image approximation

definite. Furthermore, these matrices are very sparse and structured: As and Az are

block tridiagonal matrices where the diagonal blocks are tridiagonal and the off-diagonal

blocks are diagonal. Au is a block five matrix, with at most 13 nonzero entries for each

row.

In the following, for notation convenience, a generic point in R3n is represented by

either y or (s, z,u). This makes a simple correspondence of the type: y1 = s, y2 = z

and y3 = u. Accordingly, throughout the chapter a similar correspondence is used for

denoting operators/vectors related to a specific block of variables. For example: As = A1,

Az = A2, Au = A3, and bs = b1, bz = b2, bu = b3 etc. Furthermore, we denote

the gradient of Fε with respect to the generic block of variables yi, computed at y, by

∇iFε(y) = Aiyi − bi.

3.2.2 Minimization method

We address here the minimization of the function Fε(s, z,u). Firstly we can observe that

the objective function is continuously differentiable, and in view of the positive definiteness

of matrices Ai, i = 1, 2, 3, it is strictly convex with respect to each block component yi,

when the others are left fixed. Let us prove that Fε is also coercive.

Lemma 1. The function Fε(s, z,u) is coercive in R3n.

Proof. Given a sequence yk = (sk, zk,uk) ⊂ R3n such that limk→∞ ‖yk‖ = +∞ the lemma

is proved if we show that limk→∞ Fε(y
k) = +∞. The hypothesis on yk implies that there

exists a coordinate index j ∈ {1, 2, . . . , 3n} such that limk→∞ |ykj | = +∞. If 1 ≤ j ≤ n,

then j corresponds to an index i in the s block and we have that limk→∞ |ski | = +∞. In

particular limk→∞(ski −1)2 = +∞ and since (ski −1)2 ≤ (sk−e)T (sk−e) we also have that

limk→∞ Fε(y
k) = +∞. A similar argument works in the case of n + 1 ≤ j ≤ 2n, where

j corresponds to an index in the z block. If 2n + 1 ≤ j ≤ 3n then j corresponds to an

index i in the u block. From limk→∞ |uki | = +∞ we have that limk→∞(uki − gi)
2 = +∞

and, since (uki − gi)
2 ≤ (uk − g)T (uk − g), then we have again limk→∞ Fε(y

k) = +∞.

By using a truncation argument we have that the functions s and z that minimize the

objective functional Fε belong to a specific compact subset of R3n. In fact, given τ(v) :=

0 ∨ v ∧ 1, i.e., the function that truncates v at 0 and 1, one can see that for any triplet

(s, z,u) ∈ R3n

Fε(s, z,u) ≥ Fε(τ(s), τ(z),u) (3.12)

holds (in fact, the truncation of s and z does not increase their gradients). It follows that

for a minimizer (s, z,u) the functions s, z ∈ [0, 1]n. A similar argument is used for the
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Mumford-Shah functional in [17] to prove that the optimal u is such that ‖u‖∞ ≤ ‖g‖∞
(maximum principle). Unfortunately, the Hessian component of the Blake-Zisserman

functional does not allow us to exploit the maximum principle and an explicit bound for

the function u cannot be calculated, [33].

The structure of the function Fε(s, z,u) justifies the use of a block decomposition

method, such as the block non-linear Gauss-Seidel (GS) method. Starting from

(s0, z0,u0), in view of (3.10), the method has the following form:
sk+1 = arg mins Fε(s, z

k,uk)

zk+1 = arg minz Fε(s
k+1, z,uk)

uk+1 = arg minu Fε(s
k+1, zk+1,u)

. (3.13)

Because of the the block diagonal structure of the matrix related to the quadratic func-

tional obtained by fixing u in the first subproblem in (3.10), sk+1 and zk+1 can be obtained

by further subdividing this subproblem into two independent tasks.

Theorem 6.2 in [43] assures that the algorithm generates a sequence {sk, zk,uk} such

that every limit point is a stationary point of Fε. Because of coercivity, the level sets

Lα = {(s, z,u) : Fε(s, z,u) ≤ α} are compact for every α > 0. Since in particular Lα0 is

compact, where α0 = Fε(s
0, z0,u0), the theorem also guarantees that ∇Fε(sk, zk,uk)→ 0

as k →∞ and there exists at least a limit point that is a stationary point of Fε.

Nevertheless, any step of the non-linear Gauss-Seidel method requires the solution of

three large and sparse systems. Although such systems can be efficiently solved by the

Preconditioned Conjugate Gradient (PCG) algorithm, the whole method could be too

expensive, above all for large images.

Therefore, we propose to solve our minimization problem with a block coordinate de-

scent algorithm (BCDA), based on the line search technique described in [43]. The

basic idea of the method is to cyclically determine for each block variable a descent di-

rection di by few iterations of an iterative solver; then by an Armijo–type procedure a

suitable step size is devised to assure a sufficient decrease of the objective function along

this direction with respect to the i–th block variable, when the remaining variables are

fixed.

In view of the special structure of Fε(s, z,u), for each subproblem in (3.10) we can cycli-

cally obtain a descent direction by few iterations of the PCG method applied to the

linear system Ak
idi = bi − Ak

i y
k
i . In the first subproblem, dks and dkz can be inde-

pendently obtained. Furthermore, in view of the quadratic structure of the objective

function with respect to each block of variables when the others are fixed, the step–

lengths along the computed descent directions can be determined without having to use
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Algorithm 1 BCDA

Step 0: Given s0, z0, u0, ρsz > 0, ρu > 0, γs ∈ (0, 2), γz ∈ (0, 2), γu ∈ (0, 2);

Step 1: k = 0;

Step 2: Inexact minimization with respect to s and z:

• compute the search directions dks and dkz ;

• compute αks = γs
−(Akss

k−bs)Tdks
dks

TAksd
k
s

, αkz = γz
−(Akzz

k−bz)Tdkz
dkz

TAkzd
k
z

• update sk+1 = sk + αksd
k
s ; zk+1 = zk + αkzd

k
z .

Step 3: Inexact minimization with respect to u:

• compute the search directions dku;

• compute αku = γu
−(Akuu

k−bu)Tdku
dku

TAkud
k
u

• update uk+1 = uk + αkud
k
u.

Step 4: Set k = k + 1 and go to Step 2;

an Armijo–type procedure. Indeed, it is well known that, for a symmetric positive def-

inite quadratic function, a sufficient decrease is assured when the step size αki is chosen

as γi
−(Aki y

k
i −bi)Tdki

dki
T
Aki d

k
i

= γi
−∇iFε(yk)Tdki

dki
T
Aki d

k
i

, with 0 < γi < 2; in particular, for γi = 1, we obtain

the exact one-dimensional minimizer of the quadratic function along the direction dki . As

consequence, we can devise a specialized version of the block-coordinate descent algorithm

for Fε(s, z,u); such scheme is outlined in Algorithm 1.

Gradient related search directions

In order to obtain convergence results for BCDA, the vectors dki , i = 1, 2, 3, have to

be chosen so that they are gradient related search directions. Equivalently, they have to

satisfy the following assumption:

(a) dki = 0 if and only if ∇iFε(y
k) = 0,

(b) there exists a forcing function σi : R+ → R+ such that:

∇iFε(y
k)Tdki

‖dki ‖
≤ −σi(‖∇iFε(y

k)‖) (3.14)

for all k satisfying ∇iFε(y
k) 6= 0.
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In order to determine a gradient related search direction when Ak
i y

k
i − bi 6= 0, we can

execute several iterations of PCG method for the symmetric positive linear system Ak
idi =

bi − Ak
i y

k
i by stopping the algorithm when the residual r` = bi − Ak

i y
k
i − Ak

id
`
i of the

system at the ¯̀-th iteration satisfies the rule

‖r`‖ ≤ ηi‖Ak
i y

k
i − bi‖ ηi ≤

c√
K((Ak

i )
−1)

, (3.15)

where K((Ak
i )
−1) is the spectral condition number of (Ak

i )
−1 and c < 1. We observe that

K((Aki )
−1) = K(Aki ) is bounded by a positive constant L in Lα0 . Then, we set d

¯̀
i = dki .

We can prove that dki satisfies the assumption (3.14). Indeed, recalling that ‖ · ‖A−1

denotes the A−1–norm (that is ‖x‖A−1 =
√

xTA−1x), for d
¯̀
i = dki we have

∇iFε(y
k)Tdki

‖dki ‖
≤ (Ak

i y
k
i − bi)

T (Aki )
−1Akid

¯̀
i

‖d¯̀
i‖

+

1

2‖d¯̀
i‖

(‖r¯̀
+∇iFε(y

k)‖2
(Aki )−1 + ‖∇iFε(y

k)‖2
(Aki )−1 − ‖∇iFε(y

k)‖2
(Aki )−1)

=
1

2‖d¯̀
i‖

(
‖r¯̀‖2

(Aki )−1 − ‖∇iFε(y
k)‖2

(Aki )−1

)
≤ 1

2‖d¯̀
i‖

(
λmax((A

k
i )
−1)‖r ¯̀‖2 − λmin((Aki )

−1)‖∇iFε(y
k)‖2

)
(3.16)

≤ 1

2‖d¯̀
i‖
(
λmax((A

k
i )
−1)η2

i − λmin((Aki )
−1)
)
‖∇iFε(y

k)‖2 (3.17)

where (3.16) follows from the well-known inequalities

λmin((Aki )
−1)‖x‖2 ≤ xT (Aki )

−1xT ≤ λmax((A
k
i )
−1)‖x‖2

for any x, and the inequality (3.17) follows from (3.15). Furthermore, the bound on ηi

implies (λmax((A
k
i )
−1)η2

i − λmin((Aki )
−1)) < 0; then, since d

¯̀
i = (Ak

i )
−1(−∇iFε(y

k) − r
¯̀
),

we have

‖d¯̀

i‖ ≤ ‖(Ak
i )
−1‖(‖∇iFε(y

k)‖+ ‖r¯̀‖)
≤ λmax((A

k
i )
−1)(1 + ηi)‖∇iFε(y

k)‖

Using this inequality in (3.17), we can conclude that

∇iFε(y
k)Tdki

‖dki ‖
≤ 1

2(1 + ηi)

(
η2
i −

1

K((Ak
i )
−1)

)
‖∇iFε(y

k)‖

≤ c2 − 1

2L
‖∇iFε(y

k)‖, (3.18)
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where c2 − 1 < 0. Consequently, in the level set Lα0 , the search directions dks , dkz and dku
generated by a PCG method with stopping rule (3.15) are gradient related search direc-

tions. Therefore, by Theorem 7.1 in [43], we can affirm that for BCDA the same conver-

gence results hold as for block non–linear Gauss Seidel method, that is∇Fε(uk, zk, zk)→ 0

as k →∞ and there exists at least a limit point in Lα0 that is a stationary point of Fε.

Algorithm parameters and preconditioning

We observe that from the practical point of view the computation of the condition number

of (Ak
i )
−1 (which equals that of Ak

i ), can be avoided. Indeed, in view of the condition

(3.15) on ηi, it is sufficient to have an upper bound for K(Ak
i ). Then, using the inequalities

between the matrix norms, we have λmax(A
k
i ) ≤ ‖Ak

i ‖∞. Since As and Az are strictly

diagonally dominant, the first Gerschgorin’s theorem [44] enables us to determine as lower

bound for the minimum eigenvalue the intersection between the union of the Gerschgorin

circles and the x-axis of R2, given by λ̃ki = mint((A
k
i )tt −

∑
v 6=t |(Ak

i )vt|) for i = 1, 2. For

the matrix A3, a lower bound for the minimum eigenvalue is the value λ̃k3 = 2µ. Therefore,

we have

K(Ak
i ) =

λmax(A
k
i )

λmin(Ak
i )
≤ ‖A

k
i ‖∞
λ̃ki

, (3.19)

consequently, we can set

ηi =

√
λ̃ki

‖Ak
i ‖∞

. (3.20)

From the computational point of view, the quadratic structure of Fε restricted to any

block variable yi implies that the condition related to the Armijo rule that has to be

verified to accept the step size αki = maxj≥0{δji∆k
i } can be

αki ≤ 2(γi − 1)
(Aki y

k
i − bi)

Tdki
(dki )

TAkid
k
i

. (3.21)

Furthermore, since As and Az are block tridiagonal matrices, an inexpensive diagonal

preconditioner enable us to satisfy the stopping rule (3.15) with a very few iterations, as

shown by numerical experiments in the Section 3.3.

For the linear system related to matrix Au we can use a diagonal preconditioner or a block

diagonal preconditioner. In this last case, each diagonal block is a tridiagonal matrix

that can be easily factorized by the Cholesky algorithm. Although the factorization can

be calculated in advance, PCG requires the factorization of the preconditioner and, at

each iteration, the solution of bidiagonal lower and upper systems; thus PCG coupled
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with block preconditioner becomes effective with respect to the version with diagonal

preconditioner for large order of the system and only when high accuracy is required.

Furthermore, unless for the first outer iteration, we use as starting vector of the PCG

algorithm in Step 2 and 3 of BCDA the direction computed at the previous outer iteration.

For the first iteration, the starting vector is the null vector.

In the numerical experiments, standard values equal to 1 are set for γs and γz; we set

γu = 1.5, since for this value we obtain a slightly better performance.

Initialization and stopping criteria

The objective functional to minimize is non-convex; thus, the significance of the solution

returned by the iterative method (a stationary point) strongly depends on the choice of

the first iterates. Using prior knowledge on the properties of the theoretical solution,

an effective choice of the initial values can be made [14]. Being the functions s, z ≡ 1

almost everywhere over Ω0 (in the limit case), we set the corresponding variables to

s0, z0 ≡ e. Since the function u is an approximation of the input image g, we assume that

an energetically convenient initialization of the corresponding variable is u0 = g.

In the experiments described in the next section, the algorithms are stopped at the

iteration k such that the relative variation of the energy satisfies the condition∣∣∣∣Fε(uk, sk, zk)− Fε(uk−1, sk−1, zk−1)

Fε(uk, sk, zk)

∣∣∣∣ < TOLF , (3.22)

where TOLF is a fixed tolerance.

3.3 Numerical results

In this section we present the results of an extensive numerical experimentation aimed at

assessing different properties of the proposed block-coordinate descent method applied to

(3.9). In Section 3.3.1 the proposed BCDA is compared with the GS in order to evaluate

its performance both in terms of efficiency and accuracy. In Section 3.3.2, by focusing the

attention on the noise reduction properties of the model, we compare the performance of

the BCDA when a Point-Diagonal and a Block-Diagonal preconditioner is used for the

solution of the PCG related to the linear systems involving Au. In Section 3.3.3 we make

a discussion on the choice of the Γ-convergence parameter ε, which may critically affect

the quality of the detection of first and second order discontinuities.

Very different datasets are considered in the tests, including both real and synthetic

images and also Digital Surface Models (DSMs) obtained from remote sensing LiDAR

(Light Detection and Ranging) data [45]. DSMs are obtained from airborne LiDAR point
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clouds by interpolation over a regular planimetric grid. The value of the DSM on each

pixel (grid point) corresponds to the height of the object hit by the laser pulse. In

particular DSMs are very attractive as they represent the real geometry of the objects

instead of the light geometry provided by gray-scale images.

All tests are performed using MATLAB R© on a standard workstation. Hardware is

Intel(R) Core(TM) i5-4750 CPU @ 3.20 GHz, 8.00 GB Ram. For all numerical tests that

follow, some common parameters to control convergence of outer/inner iterations are

used. The algorithms are always stopped at the iteration k such that the corresponding

relative variation of the energy (3.22) is less than TOLF = 10−3. A maximum number

of outer iterations is also fixed as stopping criterion to 30. It is worth noting that in

all computations this bound has never been reached. Regarding the solution of internal

PCGs, we fixed a maximum number of iterations to 1000. It has been observed in a very

large number of tests that, the linear systems involving As,Az are solved within an inner

tolerance TOLPCG in no more than 3 iterations in the case of GS, and in only 1 iteration

in the case of BCDA. Other parameters and tolerances are explicitly specified in the tests.

3.3.1 Comparison of GS and BCDA performance

In this section we show how the proposed BCDA produces accurate solutions by also

significantly reducing computational time if compared with a GS method. In order to

compare the effectiveness of the two methods, we compute an ideal solution s∗, z∗,u∗

by performing a lot of iterations of the GS method, i.e., by running GS until it reaches

stagnation since all PCGs (with a very strong relative tolerance TOLPCG = 10−10) do

not make any progress.

For the inner PCGs in the GS method, a strong relative tolerance TOLPCG = 10−8 is

required; smaller tolerances have never resulted in lower minimizers. Tolerances for the

solution of inner iterations of the PCGs in the BCDA are theoretically defined by (3.15)

and (3.20). Furthermore, we propose also an hybrid version of the BCDA, to which we

will refer to as BCDAc, where the number of iterations for solving the inner PCGs is

capped at 10 (in view of a previous remark this affects only the solution of the system

involving Au). The main idea behind this choice it to show that actually just few steps

of the inner solvers are needed to reach satisfying results at lower computational cost,

even though a small (negligible) amount of accuracy is payed. Since the performance of

the method when a block-diagonal preconditioner is used is analyzed in detail in Section

3.3.2, in all tests conducted in this section a diagonal preconditioner is used for the PCGs.

We consider as test problems the four datasets represented in Figure 3.3. The first

image is a 600× 600 portion of the oil painting “Girl with a Pearl Earring” by Johannes
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(a) pearl (600× 600) (b) aerial (512× 512)

(c) airport (1024× 1024) (d) barracks (600× 600)

(e) barracks (3D rendering)

Figure 3.3: Datasets of the experiment including three gray-scale images and a digital surface

model obtained from airborne LiDAR points acquired over Trento, Italy.
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van der Meer. We refer this dataset to as pearl. Then, two aerial gray-scale images4 are

considered. The first image is called aerial and it has size of 512× 512 pixels. The second

image is called airport and it has size of 1024 × 1024 pixels. The last dataset is a subset

of a DSM of Trento5, in Trentino Alto-Adige, Italy. The considered scene presents some

old barracks and surrounding area. The size of the grid is 600 × 600, spatial resolution

is 1mt. We refer this dataset to as barracks. In Figure 3.3e a 3D rendering of the surface

model is shown. Functional parameters for the minimization on these datasets are set as

follows:

• pearl: ε = 0.01, δ = 3, α = 2, β = 1, µ = 0.07, t = 1;

• aerial: ε = 0.01, δ = 1, α = 2, β = 1, µ = 0.05, t = 1;

• airport: ε = 0.01, δ = 1, α = 2, β = 1, µ = 0.05, t = 1;

• barracks: ε = 0.01, δ = 30, α = 2, β = 1, µ = 1, t = 1.

In Table 3.1 we report the total number of outer (k) and inner (totiter) iterations of

GS, BCDA and BCDAc together with the total time in seconds (the mean of ten runs)

required to compute an approximate solution, with TOLF = 10−3 in (3.22). Computa-

tional performance of GS, BCDA, and BCDAc is better illustrated in Figure 3.4, where

the value of the objective function at each outer iteration is plotted against the cumulative

execution time.

The solutions obtained with all the proposed methods are very similar each other,

in such a way that they cannot be distinguished only visually. The accuracy (and the

similarity) of the solutions obtained with GS, BCDA and BCDAc can be measured in

terms of their distance to the ideal solutions. To this aim we defined a normalized distance

based on the L1 norm as follows. In view of (3.12), the solutions of the algorithms are

such that s, z ∈ [0, 1]n. Given H := [0, h]n, with h > 0, we easily have that

d(h) := max
x,y∈H

‖x− y‖1 = hn. (3.23)

Therefore, we can define a normalized distance function dh : H × H → [0, 1] by setting

dh(x,y) := 1
d(h)
‖x−y‖1. As a consequence, the maximum possible distance in H := [0, 1]n

is 1, and the value 100 · dh(x,y) can be interpreted as the percentage of image content

which is changed between x and y. Thus, the distances for the functions s and z are

given in terms of d1. As already mentioned in Section 3.2.2, it is not possible to define

an explicit bound for the values of the function u. Although our method produces a

4Images are downloadable at http://sipi.usc.edu/database/database.php?volume=misc#top
5DSMs are downloadable at http://www.territorio.provincia.tn.it/portal/server.pt/community/

lidar/847/lidar/23954

http://sipi.usc.edu/database/database.php?volume=misc#top
http://www.territorio.provincia.tn.it/portal/server.pt/community/lidar/847/lidar/23954
http://www.territorio.provincia.tn.it/portal/server.pt/community/lidar/847/lidar/23954
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Table 3.1: Outer/inner iterations and execution time (seconds) observed in the run of the

proposed algorithms.

dataset method k totiter (s-z-u) time

pearl

600× 600

GS 18 43-49-6435 190.3

BCDA 14 14-14-690 38.9

BCDAc 14 14-14-106 25.0

aerial

512× 512

GS 19 49-55-4592 105.9

BCDA 15 15-15-492 25.8

BCDAc 11 11-11-62 14.4

airport

1024 ×
1024

GS 20 51-55-4937 460.1

BCDA 16 16-16-493 107.9

BCDAc 12 12-12-72 62.1

barracks

600× 600

GS 14 31-39-3906 119.1

BCDA 12 12-12-463 29.3

BCDAc 10 10-10-69 17.3

sequence of iterates (sk, zk,uk) ∈ Lα0 , the inequality Fε(s
k, zk,uk) ≤ Fε(e, e,g) does not

necessarily imply that ‖uk‖∞ ≤ ‖g‖∞. However, in all numerical experiments presented

in this chapter (and in many other experiments performed by the authors) it is observed

that the optimal u satisfies ‖uk‖∞ ≤ ‖g‖∞, thus it is meaningful to compute the distances

of the solutions u by means of dG, where G := ‖g‖∞.

The distances between the solutions of GS, BCDA, BCDAc with respect to the ideal

solutions are given in Table 3.2. By analyzing the results we see that the BCDA algorithm,

if compared to GS, significantly decreases the time of computation of approximately 75%

and returns solutions that do not differ more than 1% with respect to the ideal solution.

BCDA and GS always resulted in the same accuracy. In the case of BCDAc, the time

of computation further decreases of 10% and the difference of the solutions with respect

to the ideal solution are never greater than 1%. Notice that the obtained solutions have

a lower accuracy as the normalized distances are about 10 times those obtained by the

other two methods. In Figure 3.5, for each dataset we plot the smooth approximation u,

the edge-map s and the edge/crease- map z obtained by the BCDA.

Second-order segmentation provides a piecewise linear approximation of the input

image. Therefore, if compared to first order models, it avoids the problem of over-

segmentation and the real geometry of objects is followed properly. For instance, in the
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(a) pearl (b) aerial

(c) airport (d) barracks

Figure 3.4: Energy-versus-time at every outer iteration for all three datasets with GS, BCDA

and BCDAc. Algorithms are stopped by criterion (3.22) with tolerance TOLF = 10−3.

pearl image both the noise and the craquelure are removed while the geometry of shadows

is preserved. By taking a look at the particular showed in Figure 3.6, we see that around

the nostril the variation of grey level in the shadowed area is over-segmented by the s

function (shadow-like trait in the s map) but it is correctly outlined by the z function. In

fact, boundaries of shadows are characterized by a transient zone of luminance variation

which is a ramp and not as sharp as a jump. The aerial image is smoothed out and the

contrast between the ground and human-made objects is more evident in the segmented

image. A similar behavior is observed for airport, where the smoothing removes the noise

but is able to keep the geometry of cars in the parking area. By looking at the particular

in Figure 3.7 we see that almost every trait in s seems to be doubled in z. Again, this

happens because in luminance images the transition of intensity between two areas with

different values is usually not purely a jump. The doubled trait is due to the fact that

the z function is able to detect both sides of the transition ramp.

In the barracks dataset, the capability of the model of detecting second-order edge
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Table 3.2: Accuracy in the approximations given by the GS, BCDA and BCDAc with respect

to the ideal solution for the considered datasets.
dataset method d1(s, s∗) d1(z, z∗) dG(u,u∗)

pearl

GS 3.40e− 03 6.45e− 03 4.02e− 04

BCDA 4.00e− 03 7.59e− 03 4.93e− 04

BCDAc 1.38e− 02 1.84e− 02 4.78e− 03

aerial

GS 9.76e− 03 1.27e− 02 1.13e− 03

BCDA 9.44e− 03 1.22e− 02 1.14e− 03

BCDAc 3.33e− 02 3.18e− 02 8.35e− 03

airport

GS 5.41e− 03 7.46e− 03 6.59e− 04

BCDA 5.74e− 03 7.80e− 03 7.43e− 04

BCDAc 1.86e− 02 1.83e− 02 6.88e− 03

barracks

GS 2.47e− 03 1.65e− 02 3.57e− 05

BCDA 2.47e− 03 1.62e− 02 3.63e− 05

BCDAc 6.48e− 03 2.62e− 02 1.80e− 04

boundaries is clear. In the surface models the geometry is real and the structure of many

man-made objects is linear (buildings for instance). By looking at the particulars in

Figure 3.8 we see that the noise is removed and the edges that define the roof planes are

preserved and correctly detected by the z function. Notice also the substantial difference

between the functions s and z. This difference is not so evident in the images as variations

of gradient of luminance are usually as not as sharp as variations of gradient of height in

surface models of urban areas. This means that discontinuities that are purely of second-

order are difficult to find in images, but not in DSMs. Lastly, we remark here that in a

discrete setting a jump is also a crease. In view of the second-order differential operators

used in (3.8) a jump is traced along 1-pixel wide curve in s, whereas it is traced along a

2-pixel wide curve by z (cfr. Section 3.3.3).
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Figure 3.5: Results of the BCDA method for the considered datasets. First column is the smooth

approximation u, second column is the edge-map s and third column is the edge/crease-map z.
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(a) g (b) u

(c) s (d) z

Figure 3.6: Particulars of the segmentation for the dataset pearl.
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(a) g (b) u

(c) s (d) z

Figure 3.7: Particulars of the segmentation for the dataset airport.
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(a) g

(b) u

(c) s (d) z

Figure 3.8: Particulars of the segmentation for the dataset barracks. Above, there are the 3D

renderings of the surface model g and its smooth approximation u. In the bottom, there are

the edge map s and the edge+crease map z.
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3.3.2 Noise reduction and effect of Block-Preconditioner for the BCDA

The Step 3 in Algorithm 1 attempts to minimize the objective function Fε(s, z,u) with

respect to the variable block u. The performance of this step depends on both the size

and the noise level of the image. The inverse of the parameter µ of the objective function

represents the scale at which variations in g are considered as noise. At each outer

iteration k, variations that are in order to be smoothed out are signaled by the points

where sk, zk are close to 1. Smoothing takes place when the system involving Au is solved

and returns uk. The computational burden related to this step is determined by the

scale of the noise in the image: the greater the variations are related to the noise, the

more effort is required to smooth out such variations. Assuming that interesting features

(edge-boundaries) and noise are at different scales in the image, the parameter µ must

be chosen at an intermediate level in such a way that the former ones are preserved by

the model whereas the latter ones are smoothed out. However, from (3.11) one can see

that small values of µ reduce the definite positiveness of matrix Au. Thus, µ should be

optimal, i.e., as greater as possible but not such that noise is preserved.

The first test we present concerns with the relationship between the choice of µ, the

noise reduction and the performance of the minimization performed by the proposed

BCDA. The basic element of the datasets considered in the following is a synthetic

100 × 100 grey-scale image presenting geometrical features of first and second order

consisting in a truncated pyramid. Images of greater dimensions are obtained by as-

sembling several basic elements of the same type. Test images are corrupted by arti-

ficial additive Gaussian noise with 0 mean and varying standard deviation σ (top-left

image in Figure 3.9 represents one pyramidal element, in the same row other elements

with added noise). Along the experiments, functional parameters except µ are fixed to

α = 2, β = 1, δ = 30, ε = 0.01, t = 1. After running the algorithm several times, we

observed that that for values µ < 0.05 the smoothing also affected the interesting features

of the image (pyramid edges), whereas for µ > 0.15 no smoothing at all was observed.

Therefore, the results given in the following relate to 0.05 ≤ µ ≤ 0.15. Performance of

the BCDA with respect to noise and µ is evaluated in two experiments.

• In the first experiment the minimization is performed on one pyramidal element

for different levels of noise σ = 0, 0.5, 1, 2 (σ = 0 means that no noise is added)

and for µ = 0.15. In Figure 3.9, the input image g, the difference between g and

its smooth approximation u, the edge-detection function s and the edge/crease-

detection function z are showed. Notice from the plots of g − u how the noise is

uniformly detected and removed by the model in all cases. The detection of first

and second order features of the image is sufficiently accurate, and only for σ = 2
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σ = 0 σ = 0.5 σ = 1.0 σ = 2.0

Figure 3.9: Smoothing on synthetic images with different noise levels, image size is 100 × 100.

Row 1: input noisy images g. Row 2: difference g−u. Row 3: edge-detection functions s. Row

4: edge/crease-detection functions z.

the scale of the noise slightly affects the detection of pyramid edges. Let us denote

gσ and uσ the input image and its smooth approximation for different values of

σ. Quantitatively, the capability of the model of removing the noise is given in

terms of the distance between the smooth approximations uσ and the original noise-

free image g0. We obtained dG(g0,u0) = 2.90e − 03, dG(g0,u0.5) = 2.81e − 03,

dG(g0,u1) = 2.88e− 03, dG(g0,u2) = 3.13e− 03, where we used G = ‖g0‖∞.
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(a) (b)

(c)

Figure 3.10: Performance details of BCDA by varying µ and for different variances of the noise.

Test images are 1000×1000 pixels compositions of the pyramidal elements showed in Figure 3.9.

For each value of µ we plot (a) the execution time, (b) the total number, and (c) the average

number of iterations of the PCG solver related to u.

• In the second experiment, the effect of varying µ on the performance of the mini-

mization method is tested with respect to different levels of noise. Test images have

size of 1000× 1000 pixels. Times of computation and average number of iterations

of the PCG related to u are given in Figure 3.10. As we can see, for a fixed value

of µ the time required for smoothing the data increases with σ. Moreover, since the

average number of PCG iterations for u does not significantly change with σ, we

conclude that more outer iterations are needed to smooth out the noise. Notice also

that, as expected, increasing values of µ resulted in less computational time due to

the fact that the definite positiveness of matrix Au increases.

As we have seen in the previous experiments, the noise removal task can be very

expensive. Moreover, the execution time also depends on the size of the input image. The

second test we present aims at showing that the general performance of BCDA can be

enhanced if a block-diagonal preconditioner, instead of a point–diagonal one, is used. In
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(a) (b)

(c)

Figure 3.11: Performance of BCDA with Diagonal (D) and Block-Diagonal (BD) preconditioners

for the PCG solver related to u, versus the size of g. We plot (a) the execution time, (b) the

total number, and (c) the average number of iterations of the PCG solver related to u.

the experiments, the algorithm is run on synthetic images composed by several pyramidal

elements corrupted with noise with different variances. Analyzed images have a number

of pixels ranging from 2 · 105 to 4 · 106. From Figure 3.11 we see that the execution time

linearly increases with the size of the image. Moreover, the use of a block-preconditioner

reduces the time of approximately 14% regardless the noise variance. It is also confirmed

from the graphs of total and average number of PGC iterations that, for increasing sizes

of the image the number of iterations does not significantly change. The computational

burden is instead in the time for completing each iteration.
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3.3.3 Parameter ε, grid resolution and sensitivity of the discontinuity func-

tions

The explicit construction of a recovery sequence in the Γ-convergence proof of [14] allows

for having an essential prediction of geometrical properties of the discontinuity functions

sε, zε approximating the discontinuity sets Su, S∇u, for ε > 0 (see Figure 3.2 and related

discussion). The geometrical behavior of sε, zε is theoretically determined by the conver-

gence parameter ε and geometrical features of the input image g. However, no analytical

expression of the functions in proximity of the discontinuities is given. These facts give

rise to some numerical problems that must be taken into account when the functional Fε
is minimized and the numerical approximations of sε, zε (given by s, z, respectively) are

computed. On the one hand, the discrete sampling of the domain Ω0 with steps tx, ty
must resolve the tubular neighborhoods of the discontinuity sets, which shrink as ε→ 0.

On the other hand, increasing values of |∇g| and |Hg| will force sharper transitions of

the discontinuity functions from 1 to 0, whereas decreasing values will result in softer

transitions, therefore limiting the capability of detecting edge boundaries.

In order to have a clear understanding of the geometrical behavior of functions s, z, in the

following the sensitivity of the model with respect to the parameter ε and the variations

of |∇g| and |Hg| is tested. In the tests the two synthetic images showed in Figure 3.12 are

used. The first image contains a uniform jump (discontinuity) of grey value with variable

height h. The second image contains a crease (gradient discontinuity) between a flat area

and a uniform slope with variable angle θ.

Let us discuss the results obtained on the test image with a jump (Figure 3.12a), firstly

by varying parameter ε, then by varying h. In the first experiment all the functional and

discretization parameters, except ε, are fixed to δ = 30, α = 2, β = 1, µ = 1, tx = ty = 1,

the step height is h = 90. A sufficiently wide range of behaviors of the discontinuity

functions can be depicted by minimizing the functional Fε for values of ε ranging from

10−5 to 5. In Figures 3.13a and 3.13b the plots of slices of the minimizing functions s

and z in correspondence of the jump, are given. As we can see, the width of the tubular

neighborhoods of the discontinuity sets increases with ε. For ε = 10−5 the grid is too

coarse for detecting the transition phase of both s and z, which are uniformly 1. The

optimal choice of the Γ-convergence parameter is ε = 10−2, as it corresponds to a detection

of the jump which is 1 grid-point wide in the case of s, and two grid-point wide in case of

z (detection is optimal in view of the differential discrete operators described in Section

3.2.1). For greater values of ε the detection of the jump is increasingly over-estimated. In

particular, notice the difference in the rate at which s and z become flat in the neighbors

of the jump.

In the second experiment, the same parameters as before are used and ε is fixed at the
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(a) (b)

Figure 3.12: Test images. (a) Image with jump of variable height h. (b) Image with a crease

of variable slope θ. The slices of functions s, z plotted in Figures 3.13 and 3.14 are located in

correspondence of the red dashed lines.

optimal value ε = 0.01. Slices of discontinuity functions are plotted in Figures 3.13c and

3.13d for values of h ranging from 1 to 90. In the case of h = 90 the gradient ∇g is very

high, therefore functions s and z are forced to inhibit the costly gradient contribution

to the energy by taking the 0 value in correspondence of the jump. By decreasing h,

the discontinuity functions become less sensitive to the jump and their values approach

1 gradually. In the limit case, h = 1, the step is not detected at all. Since here we are

studying the behavior of minimizers as ∇g changes, we have to remark that a similar

behavior is observed if h is fixed and the discretization parameters tx and ty are changed;

this corresponds to a re-scaling of the image that only changes derivatives.

Now, we present the results obtained on the test image with a gradient discontinuity

(Figure 3.12b), again by varying parameter ε, and then by varying the inclination angle θ.

Functional parameters are the same as in the previous tests, expert that δ = 300 (crease

detection is enforced).

In the first experiment the range of values of ε is the same as in the previous one, and

tan(θ) = 1 is fixed. In Figures 3.14a and 3.14b the plots of slices of the minimizing

functions s and z in correspondence of the crease, are given. For ε > 10−2 the ramp

is over-segmented by s and z. In particular, the larger is ε, the softer is the transition

of z from 1 to 0. The value ε = 10−2 is again optimal as s is uniformly 1 (no over-
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segmentation) and the crease is correctly detected with sharp variation of z from 1 to

0. Again, for smaller values of ε the tubular neighborhood of the discontinuity of the

gradient is too thin for being resolved by the grid.

In the second experiment we tested the sensitivity of the discontinuity functions with

respect to the slope of the ramp. Parameters are the same as in the previous experiment.

Results are are plotted in Figures 3.14c and 3.14d for values of tan(θ) ranging from 0.2 to

5. The steepest is the ramp, the better is the detection of the gradient discontinuity given

by z. Notice that for tan(θ) = 5, the function s tends to over-segment the ramp. This

fact can be explained by noticing that for such θ, the difference of grey value from one

pixel to an adjacent one in the ramp is in the order of a detectable jump. Since tx = 1,

the jump in this case is 5. Compare the value of function s with the value of s in Figure

3.13c corresponding to a jump of height 6: they are both close to 0.8. As a last remark

we point out that, as in the previous example, a change in the step widths tx, ty has the

only obvious effect of re-scaling the derivatives in the image, thus the behavior of s and

z is similar to the one presented here with variable θ.

These tests described the relationship between the geometry of the discontinuity

functions returned by the minimization of Fε, the geometry of the image g and the

Γ-convergence parameter ε. By increasing the parameter ε the width of the tubular

neighborhood of the discontinuity sets increases, until reaching a full over-segmentation

of the image. Conversely, for small values of ε, the tubular neighborhood is narrower

and narrower, until it is not resolved by the grid. A correct value of the Γ-convergence

parameter should be chosen accordingly. The parameters that affect gradient and Hessian

are the height of the jumps, crease angles, and also the grid steps tx, ty. By varying such

quantities the width of the tubular neighborhoods does not change. However, functions

s and z are sensitive to their variations and they approach 0 and 1 at different rates. We

conclude that the width of the tubular neighborhood of the discontinuity sets depends

only on ε, whereas other geometrical properties of the image affect the rate at witch these

functions approach 0 and 1.

3.4 Conclusions

In this chapter we proposed an efficient block-coordinate descent method for the numeri-

cal minimization of a variational approximation of the Blake-Zisserman functional given

by Ambrosio, Faina and March. The Blake-Zisserman variational model for segmentation

is a second-order model based on free discontinuities and free gradient discontinuities that

is able to both detect first and second order edge-boundaries in images and produce a

piecewise linear approximation of the input image. Therefore, the model presents several
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advantages if compared with other methods for image approximation. The proposed al-

gorithm exploits the structure of the minimization problem, allowing the segmentation

of large images, with a satisfying performance in terms of accuracy and computational

time. In particular, it outperforms a standard Gauss-Seidel of 75%. Moreover, the use of

a block-diagonal preconditioner always increases performance of about 14%. Numerical

experiments presented in the chapter involve very different types of datasets. We consider

also the segmentation of Digital Surface Models (DSMs), showing that the application of

the Blake-Zisserman functional allows to reconstruct, and locate the boundary, of planar

objects. In the experimental part we also focused the attention on the geometrical param-

eter of the functional related to noise reduction and the behaviour of the discontinuity

functions with respect to the Γ-convergence parameter ε and geometrical properties of

the input image. Preliminary tests showed that the proposed method can be combined

with a domain decomposition technique, enabling the segmentation of huge images by a

tiling strategy. Further studies will concern the deepening of this attractive feature in the

framework of the multiprocessing computing with the aim to design a code for modern

parallel architectures.
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Chapter 4

Variational approximation of

vector-valued images and curves

Variational models are known to work well for addressing image restoration/regularization

problems. However, most of the methods proposed in literature are defined for scalar

inputs and are used on multiband images (such as RGB or multispectral imagery) by

the composition of a simple bandwise processing. This involves suboptimal results and

may introduce artifacts. Only in a few cases variational models are extended to the

case of vector-valued inputs. However, the known implementations are restricted to 1st-

order models, while 2nd-order models are never considered. Thus, typical problems of

1st-order models such as the staircasing effect cannot be overtaken. In this chapter we

a 2nd-order functional model to function approximation with free discontinuities given

by Blake-Zisserman and we propose an efficient minimization algorithm in the case of

vector-valued inputs. In the BZ model, the Hessian of the solution is penalized outside a

set of finite length, therefore the solution is forced to be piecewise linear. Moreover, the

model allows the formation of free discontinuities and free gradient disconinuities. The

proposed algorithm is applied to difficult color image restoration/regularization problems

and to piecewise linear approximation of curves in space.

4.1 Introduction

Typical approaches to image restoration/regularization assume the image g recorded by

an optical sensor to be a noisy variation of a regular signal u. Mathematical methods to

image approximation aim at recovering such u by either solving an associated Partial Dif-

ferential Equation (PDE) or by minimizing a specific variational energy, both depending

on g. In particular, edge-driven methods recognize the portions of the image contoured
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by sharp variations of intensity (discontinuities) and associate them to different objects

constituting the image subject. Therefore, meaningful approximations are obtained from

edge-based methods when they are able to: (1) discriminate between intensity variations

due to noise and those due to the presence of object edges, and, (2) return regular approx-

imations where smoothing only reduces noise contaminations without affecting relevant

edges. PDE methods are mainly based on diffusion equations. In the Total Variation

(TV) [46] model diffusion is fully isotropic, therefore smoothing affects all image features

indiscriminately. This drawback is avoided in anisotrpic diffusion (AD) [8] models, where

diffusion is inhibited according to local features of the image. In general, PDE methods

do not allow the solutions to have free discontinuities and the physical meaning of the

equations parameters are not fully understood [10, 11]. As a consequence, the progres-

sive modification of PDEs to obtain more meaningful solutions moved towards variational

representations. Indeed, in most of the cases PDEs can be seen as flows generated by

variational energies.

To address these issues, Mumford and Shah [3] proposed a flexible variational model

to image approximation based on free discontinuities, see Section 2 for details. From a

numerical viewpoint, the explicit computation of a solution is a difficult problem. Among

many strategies that have been proposed in literature to solve this problem (see for

instance [22–24]), we recall the Ambrosio-Tortorelli (AT) elliptic approximation via Γ-

convergence [17], which is numerically tractable [20]. Being a 1st-order model, the MS

has some drawbacks. In particular, the staircasing effect [26, 47] is of major relevance,

as it often limits the applicability of this model in practical situations. Briefly, this phe-

nomenon can be explained as follows. The minimization of the gradient energy forces

the solution to have a piecewise constant behaviour. Therefore, steep gradients are ap-

proximated by step-wise functions with many fictitious discontinuities, as the solution is

not allowed to have 1st-order variations of high magnitude. This problem can be solved

by replacing the gradient term of the energy by a 2nd-order operator. Indeed, this is

the solution introduced by Blake and Zisserman [5], who proposed to penalize the Hes-

sian (instead of the gradient) and the size of K0, K1, the discontinuity and the gradient

discontinuity sets of u, respectively. The BZ approximation can be found by minimizing

BZ(K0, K1, u) =

∫
Ω0\(K0∪K1)

(
|Hu|2 + µ|u− g|2

)
dx

+ αH1(K0) + βH1(K1) (4.1)

where µ, α, β are positive parameters. Hessian penalization allows the solution to have

1st-order variations outside K0 ∪K1, yelding to a piecewise linear approaximation of the

input image. A recent survey presents a summary and future perspectives about the study
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of the Blake-Zisserman (BZ) variational model for segmentation, including theoretical re-

sults for existence and regularity of solutions [33]. To address numerical minimization,

elliptic approximations of the functional exploiting the AT technique (used in the MS case)

were given by Bellettini and Coscia [40] and Ambrosio, Faina and March (AFM) [14]. The

first numerical implementations are given in dimension one [19] to piecewise linear approx-

imation of signals and in dimension two [14] to segmentation of stereo images. Recently,

the problem of numerically minimizing the AFM approximation of the BZ functional on

large images has been addressed in [4], where the objective functional is written in a

compact matricial form and optimization is performed by means of a special version of

the block-coordinate descent algorithm (BCDA) [43] that exploits the partial convexity

of the functional.

The PDE approaches to image approximation mentioned before have been successfully

generalized to the case of vector-valued inputs. In [48], a vector-valued version of image

restoration based on TV norm has been proposed for color images. A general framework

for AD to vector-valued image restoration/enhancement has been proposed in [49], which

is applicable to both color images and to other vector-valued image representations (e.g.,

stacks of image features like texture, motion, etc.). Curvature-preserving tensor-driven

PDEs have been also designed to enhance regularity of edge boundaries [50]. Regarding

variational methods, large attention has been devoted to the study of the MS model in the

vector-valued case. By generalizing the AT approach, fundamental theoretical results have

been proven for the MS problem in the vector-valued case [51,52], allowing also for explicit

computations [47, 53]. Other approaches have been also developed for the vector-valued

MS by exploiting convex representation [54], by extending the active contour algorithm

[55] or by combinatorial optimization [56]. In [57] the local AT approximation of the

MS is extended to non-local formulation accounting for texture information. Numerical

experiments in the cited works confirmed for the improved capability of approximation of

variational models w.r.t. to PDE approaches such as TV and AD.

On the counterpart, the current limitation of the literature is the absence of methods

for addressing the approximation of vector-valued inputs based on 2nd-order models. In

particular, the minimization of the BZ functional for vector-valued functions is not consid-

ered at all. In 1st-order models such as MS, the gradient penalization forces the solution to

be piecewise constant. If this has useful implications to segmentation purposes, it makes

image regularization/restoration unfeasible as a locally flat approximation is generally too

coarse. In this chapter, we propose a numerical approach to solve the image approximation

problem based on the 2nd-order Blake-Zisserman functional for vector-valued functions.

From a theoretical viewpoint, we prove that the discrete version of the objective functional
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involving tensor differential operators retains partial convexity with respect to the new

variable blocks associated to co-domain dimensions. To demonstrate its effectiveness, the

proposed method is applied to difficult color image denoising/restoration problems and

to the recovery of polygonal boundaries from discrete noisy sampling.

The plan for this chapter is as follows. In Section 4.2, we firstly introduce the elliptical

AFM approximation of the BZ functional and then we porpose two numerical approaches

to address minimization in the case of vector-valued images and curves. Numerical exper-

iments are presented in the next two sections. In Section 4.3, the proposed algorithm to

piecewise linear approximation of vector-valued images is applied to denoising/restoration

of color images and compared with the well-known MS model. In Section 4.4, the pro-

posed method is applied to the recovery of polygonal shapes from discrete noisy sampling.

In Section 4.5 we draw the conclusions.

4.2 The Blake-Zisserman model for the approximation of vector-

valued images and curves

The numerical handling of the 2nd-order variational model to segmentation proposed by

Blake and Zisserman is unfeasible in its original strong formulation as in (4.1) [5]. As in

the MS case, the strong formulation does not allow to prove existence of solutions: because

of the set unknowns K0, K1, the functional lacks in lower semicontinuity. Therefore, the

functional has been rewritten in the weaker space of Generalized Special Functions of

Bounded Variation [27]

F(u) =

∫
Ω0

(
µ|u− g|2 + |Hu|2

)
dx

+ (α− β)H1(Su) + βH1(S∇u ∪ Su)
(4.2)

where it loses its explicit dependency on the discontnuity sets, which can be regarded

as geometrical properties of the only variable function u being Su, S∇u the discontinuity

and gradient discontinuity set of u, respectively. Also in the weak form the numerical

minimization is still a hard issue. For this reason, elliptic approximations of the functional

have been proven via Γ-convergence by exploiting the seminal idea of Ambrosio-Tortorelli

for the approximation of the MS functional. This is done in dimension one by Bellettini

and Coscia [40], and in dimension two (with partial results in any finite dimension) by

Ambrosio, Faina and March [14].

Let Ω0 ⊂ Rk be an open set, k = 1, 2 and g ∈ L∞(Ω0) the function to be approxi-

mated (either a signal or an image). The authors of [14] and [40] have introduced two
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auxiliary functions s, z : Ω0 → [0, 1] aimed at approximating the indicator functions of

the discontinuity sets K0, K1 and proposed a Γ-convergence approximation of the weak

functional via the family of uniformly elliptic functionals

Fε(s, z, u) = δ

∫
Ω0

z2|Hu|2 dx+ ξε

∫
Ω0

(s2 + oε)|∇u|2 dx

+ (α− β)AT ε(s) + βAT ε(z) + µ

∫
Ω0

|u− g|2 dx, (4.3)

where s, z, u are in proper Sobolev spaces and AT is the Ambrosio-Tortorelli component

AT ε(v) =

∫
Ω0

ε|∇v|2 +
1

4ε
(v − 1)2 dx. (4.4)

Here ε is the convergence continuous parameter, ξε, oε are infinitesimals and the con-

vergence is intended for ε → 0. For each ε > 0 the functional Fε admits a minimiz-

ing triplet (sε, zε, uε). Γ-convergence properties ensure that the sequence of minimizers

{(sε, zε, uε)}ε→0 strongly converges to a minimizer of the weak functional (4.2). Fixed

ε > 0, the geometrical behaviour of a minimizing triplet (sε, zε, uε) is as follows. Due to

the presence of the distance term |u−g|2 the function uε is forced to be close to the input

and smoothing constraints are given by the integral terms containing |∇u|2 and |Hu|2. For

0 < ε << 1 we have 1/4ε >> 1, thus sε and zε must be 1 almost everywhere. Transitions

from 1 to 0 are only energetically convenient to suppress high values of |∇u|2 and |Hu|2.

Functional parameters δ, µ, α, β regulate the penalization of each term individually.

In the following, the AFM approximation of the BZ functional is considered in the gen-

eral case of vector valued inputs, both for k = 2 (the case of vector-valued images) and for

k = 1 (the case of curves in general space). The functionals are then discretized, written

in matricial compact formulation and an efficient numerical algorithm to minimization is

proposed.

4.2.1 Approximation of vector-velued images

Let Ω0 ⊂ R2 be a rectangular domain and g : Ω0 → RB, with B ≥ 1, a vector-valued

image (such as RGB or multi-spectral image). Our aim is to derive a discretization and

minimization approach to find u : Ω0 → RB and s, z : Ω0 → [0, 1] that minimize the

functional (4.3). Of course, differential operators appearing in the functional must be

intended as for vector valued functions. Thus, for a (sufficiently) differentiable function

v : x 7→ (v1(x), . . . , vB(x)), the symbols ∇v and Hv refer to the vector-valued gradient

(Jacobian matrix) and Hessian tensor of the function v, respectively. More specifically,

[∇v]bk = ∂kvb

[Hv]bkh = ∂khvb
(4.5)



64 Variational approximation of vector-valued images and curves

where k, h = 1, 2 represent derivative order and b = 1, . . . , B is the coordinate component

of the variable v. The squared Euclidean norm of ∇u and Hu is the sum of each squared

tensor element

|∇v|2 =
B∑
b=1

2∑
k=1

(∂kvb)
2,

|Hv|2 =
B∑
b=1

2∑
k,h=1

(∂khvb)
2.

(4.6)

Discretization

We use the same notation as in Section 3.2.1. We can obtain a convenient discrete version

of the objective functional by a 2-D composite rectangular rule. Indeed, by virtue of

expressions (4.5), the decomposition of the vector-valued variables g = (g1, . . . ,gB) and

u = (u1, . . . ,uB) can be conveniently split over image bands, so that we can write the

discrete functional generalizing (4.3) to the vector-valued case as

Fε(s, z,u) =

B∑
b=1

{
δ uTb

[
DT
xxRz2Dxx + DT

yyRz2Dyy + 2DT
xyRz2Dxy

]
ub

+ ξε u
T
b

[
DT
xRs2Dx + DT

y Rs2Dy

]
ub + µ (ub − g)T (ub − g)

}
+ (α− β)

[
ε sT (DT

xDx + DT
y Dy)s +

1

4ε
(s− e)T (s− e)

]
+ β

[
ε zT (DT

xDx + DT
y Dy)z +

1

4ε
(z− e)T (z− e)

]
.

(4.7)

The functional presents an evident partially quadratic structure as it can be written in

the following way

Fε(s, z,u)

=
1

2

(
sT zT

)( As 0

0 Az

)(
s

z

)
−
(
sT zT

)( bs
bz

)

=
1

2

(
uT1 , . . . ,u

T
B

) Au 0 0

0
. . . 0

0 0 Au


 u1

...

uB



−
(
uT1 , . . . ,u

T
B

) b1

...

bB



(4.8)
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where As = As(u), Az = Az(u), Au = Au(s, z) and bs,bz,bb for b = 1, . . . , B, are given

by

As = 2ξε

B∑
b=1

R|∇ub|2 + 2ε(α− β)(DT
xDx + DT

y Dy) +
α− β

2ε
I

bs =
α− β

2ε
e

Az = 2δ
B∑
b=1

R|Hub|2 + 2εβ(DT
xDx + DT

y Dy) +
β

2ε
I

bz =
β

2ε
e

Au = 2δ(DT
xxRz2Dxx + DT

yyRz2Dyy + 2DT
xyRz2Dxy)+

2ξε(D
T
xRs2Dx + DT

y Rs2Dy) + 2µI

bb = 2µgb

(4.9)

It is woth mentioning here two facts. First, it is well recognized that, when dealing with

vector-valued images the composition of separate processing on image components (i.e.,

bands) introduces artifacts [58]. Due to the tensor nature of the differential operators

used in our model, we can avoid this phenomenon (see also [59,60]). In fact, we have that

matrices As,Az incorporate information from all image bands as Hessian and gradient

norms from all bands are summed up. Thus, functions s, z are able to detect discontinuity

and gradient disconitnuity points gathering information from all bands of the input image.

Second, the discrete functional retains quadratic structure with respect to each variable

block ub, for b = 1, . . . , B. Moreover, each partially quadratic slice of the functional

depends on the same matrix Au and only the constant terms bb vary among them. This

fact has some relevance when numerical minimization is performed, as eigenvalue analysis

to determine convergence parameters can be performed only once for each outer iteration.

Minimization strategy

The partially quadratic structure expressed in (4.8) allows us to address the functional

minimization by following a Gauss-Seidel (GS) approach
sk+1 = arg mins Fε(s, z

k,uk)

zk+1 = arg minz Fε(s
k+1, z,uk)

uk+1
b = arg minub

Fε(s
k+1, zk+1, . . . ,ub, . . .)

(4.10)

where b = 1, . . . , B. Indeed, partial descent can be implemented along each variable

block with respect to which the functional is quadratic. In order to enhance computing

performance, an inexact approach based on Block-Coordinate Descent Algorithm (BCDA)
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Algorithm 2 BCDA

Input: s0, z0, u0, γs = γz = 1, γu = 1.5;

Step 1: k = 0;

Step 2: Inexact minimization with respect to s and z:

• compute the search directions dks and dkz ;

• compute αks = γs
−(Ak

ss
k−bs)Tdks

dks
TAk

sd
k
s

;

• update sk+1 = sk + αksd
k
s ;

• compute αkz = γz
−(Ak

zz
k−bz)Tdkz

dkz
TAk

zd
k
z

;

• update zk+1 = zk + αkzd
k
z .

Step 3: Inexact minimization with respect to u1, . . . ,uB. For each b = 1, . . . , B:

• compute the search direction dkub ;

• compute αkub = γu
−(Ak

uu
k
b−bb)

Tdkub
dkub

TAk
ud

k
ub

• update uk+1
b = ukb + αkubd

k
ub

.

Step 4: Set k = k + 1 and go to Step 2, until convergence;

[43] can be used with a modification accounting for the separable B problems involving

the u variable. The proposed modified scheme is outlined in Algorithm 2.

In order to find suitable gradient related search directions dks , dkz and dkub , a few

iterations of a PCG solver can be applied to the linear systems Ak
sds = bs − Ak

ss
k,

Ak
zdz = bz −Ak

zz
k and Ak

udub = bb −Ak
uu

k
b , where b = 1, . . . , B. The inexact solution of

these systems can be stopped according to tolerance values that guarantee the convergence

of the overall algorithm to a stationary point of the objective energy (4.7). The calculation

of such tolerance values can be easily done by following the approach proposed in [4]

(see also Section 3.2.2), which is based on bound estimates of eigenvalues of matrices

As,Az,Au. As previously mentioned, all B problems related to the u variable depend

on the same matrix Au, thus one single tolerance value can be used to solve all B partial

minimization steps based on PCG in the u variable. Moreover, being each one of these

B sub-problems independent from the others, the computational burden of Step 3 in

Algorithm 2 can be split over multiple cores (if available) in a parallel way. Being the

global energy non-convex, the initialization step is crucial as it has strong impact on

the significance of the final results. A valid strategy for initialization is presented in
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Section 3.2.2 (see also [4, 14]).

4.2.2 Approximation of vector-valued curves

The capability of the BZ model to recover piecewise linear approximation of data can be

exploited also to approximate curves in N -space. As possible interesting applications we

mention here: (1) curve (or signal) rectification, and, (2) recovering of polygonal shapes

from noisy sampling. Theoretical results and a first implementation about the Blake-

Zisserman model in dimension one have only been given for scalar functions (i.e., signals)

in [19, 40]. In this section we propose a more general framwork for vector-valued curves

and an efficient numerical algorithm that exploits the results in Section 4.2.1. Therefore,

we consider here vector fields where domain dimension is one, that is functions of the

type g : Π → RN , with Π ⊂ R a closed connected interval on the real line and N > 0

integer. Let us utilize the more usual notation for derivatives in dimension one. Given a

(sufficiently) derivable function v : Π→ RN , v : t 7→ (v1(t), . . . , vN(t)), let us denote first

and second order derivatives by

[v′(t)]n = dtvn(t)

[v′′(t)]n = dttvn(t)
(4.11)

with n = 1, . . . , N . The functional model that we consider in the following is a reduced

version of (4.3), that does not include the gradient term and the s variable. This reduced

model proved to be very useful in the specific task of recovering polygonal closed curves

as it is not affected by the slight staircasing effect induced by the gradient term (cfr.

with the discussion in Section 4.3.2 and analysis of numerical experiments in Section

4.4). However, for the sake of generality we remark here that all the arguments presented

in the following can be easily generalized by taking into account the full version of the

functional. Given a curve g : Π → RN in N -space, we attempt to find a piecewise linear

approximation of g by looking for u : Π→ RN and z : Π→ [0, 1] that minimize

Fε(z, u) =

∫
Π

z2|u′′|2 dt+ λ

∫
Π

|u− g|2 dt

+ η

∫
Π

{
ε|z′|2 +

1

4ε
(z − 1)2

}
dt

(4.12)

where λ, η are positive parameters regualting the penalization of the corresponding terms.

Discretization and minimization strategy

The discretization of the functional (4.12) follows the same principles as in Section 4.2.1,

with the slight semplification that no Kronecker product is needed when defining the
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matricial differential operators.1 In a discrete setting, the function domain is a set of

points t1, . . . , tP ∈ Π with tp < tp+1 for all p = 1, . . . , P − 1. The discrete variables

representing the curves (or signals in case of N = 1) are denoted by v = (v1, . . . ,vN)

with v = g,u, and their values at each coordinate n over a point tp are notated as [vn]p.

Let W be the diagonal matrix with diagonal entries [W]p,p = tp+1 − tp, for p =

1, . . . , P − 1, and [W]P,P = −tP . By considering the difference schemes of size P × P

as in (3.8), the discrete operators implementing first and second order derivatives can

be defined as Dt = W−1A1
P and Dtt = W−2A2

P . Simple modifications to account for

different types of boundary conditions are possible. Some useful examples are:

Null-Dirichlet: no modification.

Null-Neumann: [Dt]P,P = 0, [Dtt]1,1 = [Dtt]P,P = −1.

Periodic: [Dt]P,1 = 1, [Dtt]1,P = [Dtt]P,1 = 1.

We are now able to write the discrete version of the BZ functional for vector-valued

curves as

Fε(z,u) =

N∑
n=1

{
uTnDT

ttRz2Dttun + λ(un − gn)T (un − gn)
}

+

η
{
ε
[
zTDT

t Dtz
]

+
1

4ε
(z− e)T (z− e)

}
.

(4.13)

Similarly to the case of vector-valued images, this functional is quadratic with respect to

the variables z and un, in fact it can be written as

Fε(z,u)

=
1

2
zTAzz− zTbz

=
1

2

(
uT1 , . . . ,u

T
N

) Au 0 0

0
. . . 0

0 0 Au


 u1

...

uN



−
(
uT1 , . . . ,u

T
N

) b1

...

bN


(4.14)

1Kronecker product is used in Section 4.2.1 to exploit one dimensional difference schemes to work as partial

derivatives on (column-wise or row-wise) vectorized images.
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where Az = Az(u), Au = Au(z), and bz,bn for n = 1, . . . , N are given by

Az = 2
N∑
n=1

R|u′′n|2 + 2εηDT
t Dt +

η

2ε
I

bz =
η

2ε
e

Au = 2DT
ttRz2Dtt + 2λI

bn = 2λgn

(4.15)

and |u′′n|2 := (Dttun)2. To minimize this functional the same approach proposed in the

previous section can be used, with obvious adaptations. For the sake of completeness,

we remind here that the general minimization approach is based on a sequential partial

minimization of the type{
zk+1 = arg minz Fε(z,u

k)

uk+1
n = arg minun Fε(z

k+1, . . . ,un, . . .)
(4.16)

for n = 1, . . . , N , in either an exact or inexact fashion. For technicalities we refer the

reader to the previous section.

4.3 Experimental results: piecewise linear approximation of vector-

valued images

We propose in this section a comparative analysis between the MS and the proposed BZ

approaches to vector-valued image approximation. In particular, test cases are focused

on difficult color image restoration/regularization tasks highlighting limitations of the MS

model such as the staircasing effect and the crack-tip problem and demonstrating how

the BZ model overcomes these issues. Computations are performed using MATLAB R©
R2015b, hardware is Intel R© CoreTM i5-4750 CPU @3.20 GHz, 16.00 GB Ram.

4.3.1 Functional models considered for comparison

Let us recall, for the sake of clarity, the functional model given by Ambrosio-Faina-March

as in (4.3) (to which we will refer in the following as AFM-BZap):

Fε(s, z, u) = δ

∫
Ω0

z2|Hu|2 dx+ ξε

∫
Ω0

(s2 + oε)|∇u|2 dx

+ (α− β)AT ε(s) + βAT ε(z) + µ

∫
Ω0

|u− g|2 dx. (4.17)
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From a numerical point of view, the presence of the gradient term in the AFM-BZap

functional model introduces a slight staircasing effect in the solution. Altough its influence

vanishes asymptotically for ε→ 0 due to the presence of the infinitesimal ξε, in numerical

applications ε cannot be 0. To account for this, a reduced version of the AFM-BZap

functional is considered in the numerical experiments that does not present the staircasing

effect. More specifically, the reduced functional (to which we will refer in the following as

AFM-BZ) is

Fε(z, u) =

∫
Ω0

z2|Hu|2 dx+ βAT ε(z) + µ

∫
Ω0

|u− g|2 dx. (4.18)

In this reduced version, the functional does not depend anymore on the gradient of u and

the function s. Therefore, the solution is allowed to have 1st-order variations without

gradient penalization. We recall that also for the reduced functional a full Γ-convergence

result to the weak BZ functional holds true [14]. It is worth noting that, the reduced

functional AFM-BZ can be directly compared with the well-known Ambrosio-Tortorelli

approximation of the Mumford-Shah functional (to which we will refer in the following as

AT-MS)

Fε(s, u) =

∫
Ω0

s2|∇u|2 dx+ αAT ε(s) + µ

∫
Ω0

|u− g|2 dx (4.19)

as it corresponds to the same functional where the Hessian term is replaced by the gra-

dient. Notice that both the functional models AFM-BZ and AT-MS can be obtained

from AFM-BZap by setting functional parameters to

AFM-BZ : ξε = 0, α = β, δ = 1

AT-MS : ξε = 1, oε = 0, β = 0, δ = 0.

An important consequence of this, is that numerical methods to solve the minimization

problems associated to the two functional models AFM-BZ and AT-MS can be derived

with straightforward modifications from the method proposed in Section 4.2.1.

4.3.2 Restoration of color images

The study dataset is a color image representing a portion of the oil painting Girl with

a pearl earring, by Johannes van der Meer, see Figure 4.1a. The image has size 600 ×
600 pixels and depth 8-bits. As we can see, the painting is severely affected by the

craquelure.2 In the numerical experiments that follow, we compare the results obtained

2Craquelure is the fine pattern of dense ”cracking” formed on the surface of the oil as part of the process of

ageing.
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by using the three functional models to image approximation presented in Section 4.3.1

where parameters are specifically selected to remove the craquelure effect.

In order to simplify the comparison among the three considered functional models

(AT-MS, AFM-BZap and AFM-BZ), we will set some parameters to common values.

First, the discretization parameters common to all the three models are the grid sizes

tx, ty and the Γ-convergence parameter ε. They can be set to standard values tx = ty = 1

and ε = 0.01 (see [4] for details). The remaining ones are the functional parameters:

(AT-MS) µ, α, (AFM-BZap) µ, δ, α, β, and (AFM-BZ) µ, β. To keep the maximum

similarity among the three functional models, we set the remaining parameters as:

AT-MS : α = 1

AFM-BZap : δ = 1, α = 2, β = 1

AFM-BZ : β = 1

The smoothing parameter µ is set with respect to the chosen application. By tuning the

parameter µ, we forced the smoothing of the image until the approximating image was not

showing any craquelure feature. By decreasing the value of this parameter the smoothing

effect is increased. We started with µ = 1 and we decreased it by negative powers of 10,

i.e., µ = 1, 0.1, 0.01, 0.001, . . .. The first value at which no craquelure was observable in

all the three approximation results was µ = 0.01, so results are showed according to this

parameter value.

Comparative analysis of the approximations

The major challenge in the given image is to both remove the craquelure and still preserve

the smooth color variations between shadowed and lightened regions of the girl’s face.

In the AT-MS case the staircasing effect is very evident. Many coarse patches of

constant color are clearly visible and the gradients of color are abruptly approximated by

the edges of such patches, see Figure 4.1b. The map of these edges is given in the plot of

the function s, in Figure 4.2a. In the solution of AFM-BZap the over-segmentation is

much less evident, as the gradient component is weighted by the infinitesimal ξε. However,

we can see mainly two problems in the computed solution u, as displayed in Figure 4.1c.

First, sharp edges are still visible in some portions of the image. See for example both

sides of the nose ridge and the lips boundaries. These unnatural gradients of color are

mapped by the edge function s of AFM-BZ, as shown in Figures 4.2b and 4.2c. Second,

many complex transitions between shadow and light (that are more evident on the girl’s

left cheek) are lost. As we can see from the plot of the edge function s, this bad effect

happens in correspondence of the gray shaded regions of the s map. Here, the functional

has penalized the gradient all over these wide regions instead of only along 1-dimensional
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(a) orignal image (g) (b) AT-MS (u)

(c) AFM-BZap (u) (d) AFM-BZ (u)

Figure 4.1: Craquelure removal via MS and BZ approaches. (a) The input color image represents

a portion of the oil painting Girl with a pearl earring. Its approximations are obtained by the

three different models: (b) AT-MS, (c) AFM-BZap, (d) AFM-BZ.

edges. As a consequence, the image is badly approximated by a too smooth function and

the complex shadow geometry is destroyed. All these problems do not show up in the

solution of the AFM-BZ model, see Figure 4.1d. Here, only 2nd-order information is

penalized and the solution is allowed to have first order variations. As a result, the image

is better approximated and no unwanted artifacts such as unnatural edges and too coarse
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(a) AT-MS edges (s) (b) AFM-BZap edges (s)

(c) AFM-BZap creases (z) (d) AFM-BZ creases (z)

Figure 4.2: Discontinuity functions computed for the three functional models. (a) AT-MS,

(b,c) AFM-BZap, (d) AFM-BZ. White corresponds to 1 and black to 0, gray values are in

between.

shadowed areas are present. As an example, we can see from the map of detected gradient

discontinuities z in Figure 4.2d that the girl’s nose is not contoured by any sharp edge,

neither the left cheek is over-segmented.

In order to better illustrate the geometrical behaviour of these solutions and to em-

phasize the piecewise linear approximation, we will show the plots of a particular of the
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(a) orignal image (g) (b) AT-MS (u)

(c) AFM-BZap (u) (d) AFM-BZ (u)

Figure 4.3: Particular of the approximations by zooming the area in the red square in Figure

4.1. (a) Original image, and the results for: (b) AT-MS, (c) AFM-BZap, (d) AFM-BZ.

Notice the over-segmentation effect in (b,c).

images as embedded surfaces in the RGB space. This image portion corresponds to the

red square of size 60 × 60 pixels in Figure 4.1a. Magnifications of this part in the orig-

inal image and in the three computed solutions are showed in Figure 4.3. The scatter

plots of the embedded surfaces are illustrated in Figure 4.4. The high level of noise of

the original image results in a scatter plot where points are almost uniformly distributed



Experimental results: piecewise linear approximation of vector-valued images 75

(a) orignal image (g) (b) AT-MS (u)

(c) AFM-BZap (u) (d) AFM-BZ (u)

Figure 4.4: Pixel scatterplots of the image portions represented in Figure 4.3. (a) Original

image, (b) AT-MS, (c) AFM-BZap, (d) AFM-BZ.

all around the RGB space’s main diagonal, with two regions where points are slightly

denser (corresponding to the dark brown and the light pink regions of the image). In

the AT-MS case, as a result of the severe over-segmentation effect, pixels are clustered

in different almost isolated portions of the RGB space. In the AFM-BZap case these
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Table 4.1: Outer(k)/inner(iter) iterations and execution time observed in the minimization of

the three functional models.
iter time

model k s z u1 u2 u3 (secs)

AT-MS 21 22 – 526 300 385 38.45

AFM-BZap 16 17 17 1280 742 889 98.75

AFM-BZ 21 – 22 1630 877 1110 121.24

clusters are slightly enlarged, however they are still distinuishable and sharply separated

from background pixels. Much more regular is the scatter plot in the AFM-BZ case.

Here, the dense clusters are visible but they are more displaced in space and surrounding

pixels are uniformly and regularly distributed.

Numerical minimization performance

Let us analyze the details about the iterations in the minimization of the three functional

models and compare them. In Table 4.1 are recorded the number of outer (k) and inner

(totiter) iterations and the execution time. Inner iterations relate to the PCG solvers

(triggered with diagonal preconditioner) applied to find (for each outer iteration) the

gradient related search directions w.r.t. the variable blocks. As discussed in Section 4.2.1,

the minimization w.r.t. the u variable can be separated into three convex sub-problems.

Therefore, the search of a global gradient related descent direction can be split along

the three sub-directions u1, u2, u3 (the target image is color image, the three directions

correspond to the R,G,B bands), independently. As we can see, in the case of the s and

z variable blocks PCGs stopped in one iteration, whereas the ui variable blocks required

more iterations. This can be explained in terms of positive definitness of the matrix Au.

It follows from the numerical expression of Au in (4.9) that the positive definitness of

this matrix decreases with the parameter µ. As a consequence, for small values of µ the

convexity of the quadratic form associated to Au reduces in magnitude, thus, the descent

requires more iterations.

Another important aspect of the minimization is the competition among the functional

terms induced by the parameters choice. The dynamics of this competition can be better

understood by looking at the plots in Figure 4.5. The main fact that can be observed

is that all the terms are decreasing except for the distance term. In particular, the AT

components have higher decreasing rates in the first iterations, meaning that the contrast

of the corresponding solutions is heavily decreasing.3 The behaviour of the distance term

3By premature stopping of the algorithms we could notice many discontinuities that are not present in the
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(a) AT-MS (b) AFM-BZap

(c) AFM-BZ

Figure 4.5: Energy-versus-time at each outer iteration for the three functional minimization

cases: (a) AT-MS, (b) AFM-BZap, (c) AFM-BZ. The plots illustrate the descent of each

additive term in the functional models. The black dashed line is the total energy. Blue is the

Hessian component and Cyan is the AT component associated to the Hessian (present only in

AFM-BZap and AFM-BZ). Red is the gradient component and Magenta is the AT component

associated to the gradient (present only in AT-MS and AFM-BZap). Green is the distance

term.

is as expected: due to the strong noise removal level induced by the parameters, the

solution becomes more and more distant (in the Eucliedean sense) with respect to the

input image.

4.3.3 Reduction of white Gaussian additive noise

Recovering an image degraded by additive noise is a well-known inverse problem in image

processing. Variational methods have been justified in this framework as the MS model

can be properly derived by following a Bayesian rationale as an additive noise reduction

model [61]. However, as we have seen also in Section 4.3.2, the MS approximation can

final results.
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irremediably deteriorate some important features of the image because of the staircasing

effect. In this esperimental section, we aim at showing that the proposed AFM-BZ

model actually outperforms the AT-MS also in terms of noise reduction.

In order to do this, we consider here a synthetic color image corrupted by different levels

of noise. The image is reconstructed by using the AT-MS and the AFM-BZ models

and in both cases the variance of the removed noise is estimated from the difference

image. The synthetic 8-bits (per channel) color image is 300 × 300 pixels and contains

two challenges: (1) a crack-tip (with circular gradient) in the red band, and (2) two

very smooth creases in the green and blue bands with vertical and horizontal directions,

respectively. Functional parameters are the same as in the previous section. The only

difference is that the smoothing parameter has been set to a smaller value µ = 0.001,

as the additive noise added in the experiments resulted to be more difficult to suppress.

Given that the image is at 8-bits, we added additive 3-dimensional 0-mean Gaussian noise

with covariance matrix given by Σ = σI3, where I3 is the identity matrix of size 3 × 3,

and in three different trials we set σ = 50, 100, 200.

The results of noise variance estimation are reported in Table 4.2. We can easily

see that in all the three cases the AT-MS model returned very bad approximations of

the noise variance, while the reconstruction given by AFM-BZ allowed for very precise

estimates. This happened because the color geometry of the test image is highly non-

constant, thus, the MS fails in approximating both the crack-tip and the orthogonal

smooth creases. This fact can be clearly seen by looking at the images of the final

approximations obtained via the two functional models, showed in Figure 4.6 (the images

show the results obtained for σ = 200, being this the most critical case). Notice in

particular the behaviour of the MS approximation at the end of the crack-tip (Figure 4.6e),

showing the well-known phenomenon of the triple-points. In principle this phenomenon

is due to the penalization of the discontinuity set, that induces the discontiuity edges to

displace in optimal configurations with minimum length. This happens when they meet

at 2/3π wide angles. Mumford and Shah conjectured in their seminal work [3] that the

disconinuity set of a MS minimizer is the union of C1 arcs that can only end at interior

points (pure crack-tips) or meet with equal angles. It has been proven in [62] by using the

calibration technique that a function with a triple-point discontinuity is a local minimizer

of the homogeneous MS functional. It is worth noting that triple-points do not show

up in the BZ approximation, where the solution properly follows the complex crack-tip

geometry with surrounding circular gradient (Figure 4.6f).



Experimental results: piecewise linear approximation of vector-valued images 79

(a) clean image (b) noisy image (g)

(c) AT-MS (u) (d) AFM-BZ (u)

(e) AT-MS (u) (f) AFM-BZ (u)

Figure 4.6: Estimation of Gaussian additive noise in color image containg challenging geomteries.

(a) Synthetic noise-free generated image, (b) noisy image. Reconstructions of the noisy image are

obtained by the (c) AT-MS model, (d) AFM-BZ model. Particulars zoomed at the crack-tip

end for the (e) AT-MS solution (white traits emphasize the main directions of the discontinuity

edges) and the (f) AFM-BZ solution.
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Table 4.2: Estimation of additive Gaussian noise variance in color images using the MS and the

BZred models.
estimated σ from time

σ model u1 u2 u3 k (secs)

50
AT-MS 74.25 216.33 217.09 18 19.82

AFM-BZ 53.69 49.84 50.30 17 49.63

100
AT-MS 121.98 265.68 266.17 10 8.97

AFM-BZ 103.69 99.59 99.96 16 48.05

200
AT-MS 215.97 360.38 362.43 13 10.87

AFM-BZ 200.83 197.48 199.80 21 49.31

4.4 Experimental results: polygonal approximation of planar

closed curves

In this section, we show how the feature of the BZ model that allows the formation of

free gradient discontinuities is fundamental in the task of recovering the shape of closed

curves from discrete noisy sampling. Like other models such as cubic smoothing splines

(CSSPs), the BZ model is able to provide a smooth approximation of the curve. However,

as additional feature and unlikely other methods can do, the BZ model allows also to

retrieve polygonal shapes (i.e., curves with gradient discontinuities).

As a specific application, in the following we recover the polygonal shape of building

footprints from discrete noisy approximations obtained in the processing of low resolution

Digital Surface Models (DSMs). DSMs are 2-dimensional scalar-valued rasters and they

are obtained by interpolating raw LiDAR (Light Detection and Ranging) unstructured

point clouds into regualr grids [45]. The value of the DSM at each grid point corresponds

to the height of the object hit by the laser pulse in the location of the grid point. It

is common in the remote sensing literature to extract building edges in DSMs in order

to recover a discrete approximation of the building footprints. However, if the DSM

resolution is low (e.g., 1m), the discrete points forming the detected edges can be far from

a polygonal shape (Figure 4.7b) and post-processing is required to recover the building

footprint. An example of edge detection in urban DSM is given in [4, 35], where the BZ

model for gray-scale images is applied to the DSM and discrete approximations of the

building footprints are mapped by the edge-detection function s. We can see in Figure

4.7 a 3-D rendering of the DSM of an old barrack and the mapping function of its detected

edges. The DSM is at spatial resolution of 1m and the shape is not oriented parallel to

the x, y-axis, therefore the discrete representation of the boundary is broken into many
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(a) DSM (g)

(b) edge map (s)

Figure 4.7: Extraction of building edges from DSM. (a) 3d rendering of a DSM representing an

old barrack. (b) Edge map of the main (U-shaped) building obtained by segmenting the DSM

using the BZ model for gray-scale images [4]. The points correspond to the pixels where the

function s (the edge detection function) is 0.

segments oriented parallel to the x, y-axis.

To recover the polygonal shape approximating these points we exploit the framework

proposed in Section 4.2.2. Input data is the set of P two-dimensional points {(xp, yp)}Pp=1

representing the discrete noisy sampling of the unknown polygonal shape (the black points

in Figure 4.7b). We set N = 2 and we construct the discrete variable g ∈ RP×2 repre-

senting the discrete planar curve by simply assigning [g1]p = xp and [g2]p = yp, for all

p = 1, . . . , P . To recover a closed curve, we minimize the functional (4.13) with peri-

odic boundary conditions (cfr. Section 4.2.2). The BZ model (for brevity BZ), is tested

against the typical approach to curve approximation of Cubic Smoothing Splines (for



82 Variational approximation of vector-valued images and curves

brevity CSSP). We recall that for CSSP, the solution that approximates the points g is

the piecewise cubic function v that minimizes the functional expression

G(v) = q
P∑
p=1

|v(tp)− gp|2 + (1− q)
∫ tP

t1

v′′(t) dt (4.20)

where t is a parameteric variable and q ∈ [0, 1] is a parameter that penalizes data fitting

(q near 1) or data smoothness (q near 0). For brevity we omit details on CSSP imple-

mentation, we only recall that the solution can be found in a closed form. For details we

refer the rader to [63,64].

The BZ model depends on the two parameters λ and ν, penalizing the distance of the

solution to the original data g and the size of the gradient discontinuity set, respectively.

The CSSP model only depends on the parameter q and the solution is not allowed to

have gradient discontinuities. In order to better understand the behaviour of the proposed

models for a large variety of parameter selections, we defined a grid of values for λ, ν and

q. The whole range of possible behaviours of the resulting approximating curves (from

over- to under- fitting) has been obtained for λ = 10−4, 10−5, 10−6 and ν = 10−k, with

k = 1, . . . , 5, and for several values of q between 0 and 1.

The results of curve approximation is illustrated for both CSSP and BZ models in

Figures 4.8 and 4.9, respectively. Note from the results of CSSP that, by variation of the

parameter q from 1 to 0, the behaviour of the solution is from complete over-fitting to very

smooth (and poor) approximation of the points. Notice that the smoothing effect of the

splines does not allow to well represent the right angles of the main corners of the shape.

Instead, by varying the parameters of the BZ we still obtain different behaviours from

over- to under-fitting, but for some parameter choices we have polygonal solutions. In

fact, by decreasing the contrast parameter ν we allow the size of the gradient discontinuity

set to be larger, thus allowing the formation of free gradient discontinuities. Polygon

corners correspond to the points where the gradient of the solution is discontinuous. On

the counter part, if we fix the value of ν the solutions from the top row to the bottom

row show increasing under-fitting. Indeed, by decreasing the parameter λ the solution

is allowed to be distant from the original curve, thus the minimization penalizes the

discontinuity set and produces very smooth curves. Among all the solutions, we can say

that the best polygonal approximation is obtained for λ = 10−5 and ν = 10−4 as the curve

segments are straight segments forming right angles. It follows from the globality of the

geometrical parameters in (4.12), that polygonal shapes at the same scale and corrupted

by the same level of noise can be recovered by using identical paramter selections.

The computational burden to obtain all the approximations can be considered as

negligible, as in all the cases algorithms converged in less than one second. Hardware and



Conclusions 83

(a) q = 1 (b) q = 0.7 (c) q = 0.5 (d) q = 0.3 (e) q = 10−1

(f) q = 10−2 (g) q = 10−3 (h) q = 10−4 (i) q = 10−5 (j) q = 10−6

Figure 4.8: Curve approximation results obtained for different parameter choices of the CSSP

model. The range of values used in the experiments allowed us to explore the behaviour of the

solution from over- to under- fitting. No gradient discontinuity is allowed by the model.

software used is the same as in Section 4.3.

4.5 Conclusions

In the framework of variational methods to image approximation, the 1st-order model by

Mumford-Shah is very popular. However, some intrinsic problems due to its 1st-order

nature (such as the staircasing effect and the triple point cracks) limit its applicability

to solve complex problems such as image denoising and restoration. To solve for this,

2nd-order methods can be used, but no attempts to implement vector-valued versions of

2nd-order models can be found in literature. This is critical when color or multispectral

images need to be analyzed. In this chapter we considered a 2nd-order variational model

to the approximation of vector-fields in dimension two (e.g., multiband images) and one

(e.g., curves in space) and we proposed efficient numerical implementations of the associ-

ated minimization problems. Specifically, we focused on the numerical minimization of the

Ambrosio-Faina-March (AFM) elliptic approximation of the Blake-Zisserman (BZ) func-

tional as it is particularly prone to numerical implementation. In the proposed numerical

formuation the objective functional is written in a compact matricial form an the mini-

mization is decomposed into quadratic sparse convex sub-problems. We proved that the

minimization sup-problem associated to the vector-valued variable (u) can be spilt into

B further quadratic sub-problems (where B is the vector size) all depending on the same
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(a) λ =

10−4, ν = 10−1

(b) λ =

10−4, ν = 10−2

(c) λ = 10−4, ν =

10−3

(d) λ =

10−4, ν = 10−4

(e) λ = 10−4, ν =

10−5

(f) λ = 10−5, ν =

10−1

(g) λ =

10−5, ν = 10−2

(h) λ =

10−5, ν = 10−3

(i) λ = 10−5, ν =

10−4

(j) λ = 10−5, ν =

10−5

(k) λ =

10−6, ν = 10−1

(l) λ = 10−6, ν =

10−2

(m) λ =

10−6, ν = 10−3

(n) λ =

10−6, ν = 10−4

(o) λ =

10−6, ν = 10−5

Figure 4.9: Curve approximation results obtained for different parameter choices of the BZ

model. The range of values used in the experiments allowed us to explore the behaviour of

the solution from under- to over- fitting passing also through polygonal solutions. The best

polygonal approximation is (i), i.e., for parameters λ = 10−5 and ν = 10−4.

matrix. Different types of experiental studies have been done to assess the effectiveness of

the proposed numerical formulation. In the first experimental part, we proposed a com-

parative analysis of the BZ model against the MS on difficult image restoration/denoising

problems. The results show that the capability of the BZ model to approximate the input

image in a piecewise linear manner produces more natural (in terms of visual interpre-

tation) and precise (in terms of noise reduction/estimation) reconstructions of corrupted

color images. In the second experimental part, we applied the BZ model to the approxi-

mation of closed curves from discrete noisy sampling. Differently from other typical curve

approximation models such as Cubic Smoothing Splines, the BZ model allows the forma-

tion of free gradient discontinuities. Thus, polygonal approximation can be obtained for
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suitable choices of the parameters.
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Part II

Novel statistical models for change

detection in multispectral images





Chapter 5

Background

This chapter introduces to the content of Part II. First, a review of the change detection

problem and the techinques proposed in the literature to solve it are proposed. The

discussion mainly concerns with change detection methods that apply to multispectral

images at moderate/high spatial resolution, as these are the main focus of the thesis.

However, the change detection problem on very high resolution multispectral images and

main related issues is also presented. The last section of this chapter presents a detailed

explanation of the novel contributions presented in the following chapters of the thesis.

5.1 Overview of the change detection problem

The modern society organization strongly relies on the cyclic monitoring-planning paradigm

for an efficient control and management of natural resources and human infrastructure

development. The remote sensing community assists this fundamental process by steadily

providing up-to-date technologies to collect data over the globe and the know-how to ex-

tract the useful information from it. A comprehensive and systematic understanding of

the global change is possible thanks to one of the leading remote sensing applications: the

change detection [65], which substantially embodies the main principles of this paradigm.

Indeed, CD is gaining more and more attention due to its strong impact in ours daily life

and many efforts and resources have been, and are going to be, made at the purpose of

providing accurate, up-to-date and reliable operational products such as land-cover maps,

land-use change detection maps and geophysical variables variations [66].

Technically, CD is the process that identifies changes occurred between two (or more)

dates in a specific geographical location by analysis of RS images acquired over the inves-

tigated area [67]. It is worth noting that change detection is a comprehensive procedure

that requires a set of analysis and processing phases [68], see Figure 5.1. Given the in-

trinsic non-objective nature of the change meaning [69,70], the CD procedure often starts
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(a)

Figure 5.1: General high-level scheme for the design and the implementation of a change detec-

tion procedure.

with a problem understanding phase that includes the change definition. This first stage

always includes a selection step where suitable RS data types are chosen with the aim of

emphasizing the change characteristcs by increasing their discriminability. The design of

the CD algorithm is generally driven by the application. Typically, the pratictioner aims

at finding, and exploiting, a strong correlation between the variation of image properties

(e.g., pixel radiance value, texture, and shape) and the land-cover material changes on

the ground. However, other changes may be also detected caused by some factors like

variation in atmospheric conditions, sensor conditions, illumination differences and sea-

sonal effects. The detection of these specific kinds of changes, which are ofter considered

sources of noise, strictly depends on the the real applications requirements and goals. The

final outcome of the CD algorithm is usually a map, superimposable to the image raster,

in which changed pixels are labeled. A successful CD procedure should present high CD

accuracy. The dectection accuracy is calculated by intersection of the output change map

with available ground truth information and/or by qualitative assessment by comparison

with alternative, auxiliary data available.
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5.2 Change detection methods for multispectral images

In the literature many approaches have been developed to detect changes in multitemporal

images. Extensive overviews are available both from the image processing [71] and the

remote sensing [65,72] viewpoints.

A common way to group the majority of the CD methods proposed in literature is

based upon the availability of reference information (labeled data) for the considered

scene. According to this principle there are supervised and unsupervised approaches to

change detection. The former group includes methods that are based on the use of su-

pervised classifiers, see for instance [73–75]. Supervised methods require ground reference

information for the training phase. Such information may be required for all available

acquisitions, or only for one of them (e.g., when semisupervised and domain adaptation

methods are considered [76, 77]) and is typically obtained from highly expensive in-situ

campaigns or by dedicated photo-intepretation procedures. In light of the unprecedented

huge amount of data now available in archives and the given rate at which data are nowa-

days collected, the cost of obtaining ground truth information cannot be afforded. By

means of automatic techniques one can gradually reduce the need for conventional field

investigations with drastical reduction of the operational cost. As a consequence, the most

attractive CD techniques are the ones that aim at automatically detecting the changes.

This is the case of the unsupervised methods [78–84], to which we only focus on in the

remainder of this thesis.

5.2.1 Mid/high spatial resolution images

Generally speaking, unsupervised methods to CD are mainly able to detect the pres-

ence/absence of changes [82, 84, 85]. In some cases they can distinguish among different

changes [86], but given the unavailability of reference data they usually cannot associate

semantic information (e.g., a specific land cover transition) to them. Many unsupervised

methods are based on pixelwise comparison [67,80,87]. The comparison phase, which usu-

ally consists in applying a mathematical operation to each pixel value, returns a change

index. The most common change index is the spectral difference of a bitemporal image

pair. Inference about the presence or absence of changes based on the change index is

typically done via thresholding or clustering approaches.

Threshold-based methods differ among each other based on how the threshold value

is assigned. In some cases the threshold is empirical and can be obtained by application

of well-known image processing algorithms such as the Kittler-Illingworth algorithm [88],

the Otsu algorithm [89] or maximum entropy algorithm [90]. In some other cases, a

more change-detection oriented formulation of the problem is given and some theoretical
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models have been proposed for the definition of the threshold. A prominent approach

in this direction is based on the maximum-a-posteriori (MAP) assignment, which follows

from a statistical modeling of the unchange and change classes [78, 80, 82]. What is

typically observed after image differencing is that unchanged pixels have pixel intensity

which is approximately null. On the contrary, changed pixels intensity is likely non-

null. In [82], two Gaussian distributions are associated to the unchange and the change

classes, respectively. The threshold value that separates between unchanged and changed

pixels is then defined in a MAP Bayesian framework to produce the minimum overall

error of decision. In the case one wants to assign different weights to commission and

omission errors, a minimum cost approach also applies [80]. The statistical study of the

binary detection of changes can be further refined by analyzing the magnitude of the

spectral difference. In [78], a theoretical model based on the Rayleigh-Rice mixture has

been proposed to represent the typical bi-modal shape of the magnitude of the difference

image. An adaptive multiple-threshold approach is used in [85], where the CD problem

is seen as an hypothesis test. Here, the unchange/change state of each pixel is decided

adaptively on the basis of a significance test.

Differently to threshold-based approaches, clustering algorithms try to separate be-

tween unchanged and changed pixels according to some homogeneity principle that char-

acterize these two classes. We can find in literature methodological approaches based on:

k-means and kernel k-means clustering [91], fuzzy c-means and Gustafson-Kessel cluster-

ing [92], non linear support vector clustering [93], fuzzy clustering [94], and many others.

The detection of changes can be carried on in the original spectral domain (this is the

case of all the methods mentioned above) or in a transformed domain. In the latter case,

the transformation is meant to enhance the change representation and in many cases it is

driven by the data. Well-known transformation techinques successfully applied to change

detection are canonical correlation [95], Principal Component Analysis (PCA) [96,97] and

Independent Component Analysis (ICA) [98]. In [99] PCA is applied to the difference

image and changes are recognized as the first few principal components. In [100], an

orthogonal representation of the changes based on the Gram-Schmidt procedure was used.

In [101], the tasselled cap transformation was applied to detect the vegetation change

from Landsat images. It is worth mentioning also the Multivariate Alteration Detection

(MAD) technique [102], which is based on the canonical correlation analysis [95]. An

improved version named Iterative Reweighted MAD (IR-MAD) was proposed in [103] to

provide more reliable output components thus emphasizing changes. However, the main

disadvantage of the above mentioned transformation-based CD approaches is that they

require a strong interaction with the end-users to select the most informative components

emphasizing the specific changes of interest, which is usually time consuming. On the
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other hand, the transformation-based methods do not provide a clear number of changes.

The number of detected changes highly depends on the selected number of components

and the change information represented in those components. Some changes might be

still mixed and unidentified in a given component. Therefore, the transformation-based

approaches are good at extracting features for enhancing the detection of specific kinds

of changes in CD, but in general they are not suitable for detecting all the possible

change classes. Among pixel-based approaches to change detection we also find methods

based on fuzzy set theory [99,104] and similarity measures [105]. All the aforementioned

methods demonstrated their effectiveness on moderate and high geometrical resolution

images (from tens to hundreds meter spatial resolution) and in several applications.

5.2.2 Very high spatial resolution images

A major drawback of pixel-based methods to CD is that they only consider the change/unchange

information within a single pixel, even if its neighbors contain significant information. Im-

plicitly, these methods consider the pixels to be spatially independent. Altough this is an

acceptable assumption for moderate/high spatial resolution images, it is not for images

that exhibit very high spatial resolution (VHR). Indeed, when the geometrical resolution

of images increases up to less than one meter, spatial correlation among pixels becomes

non-negligible and the straightforward application of the above mentioned methods may

easily fail to give acceptable results. To account for geometrical additional information,

many change detection methods have been adapted to a spatial-contextual framework.

Spatial-context information can be modeled by applying: fixed-shape neighborhood sys-

tems for texture information extraction [106–108], Markov Random Fields [82, 109] and

morphological filters [83,110]. More advanced methods perform a context-sensitive analy-

sis by considering adaptive neighborhoods modeled by multitemporal parcels [81,111,112]

and object properties [113–117]. They better capture the spatial correlation information

present in the scene and become particularly promising for VHR images showing complex

objects (e.g., buildings and other man-made structures). In order to effectively model

objects in the images at different scales, some of the concepts employed in the previously

mentioned papers such as morphological filters, multitemporal parcels, and even Markov

Random Fields can be adapted and used in multiscale/multilevel analysis [83,109,111,118]

together with specific multiscale/multilevel representation tools such as Wavelet trans-

form [119–121]. When dealing with unsupervised change detection, pre-processing of

multitemporal images becomes highly important because most of the approaches suffer

of differences in image radiometry and/or geometry. In the literature, studies exist on

the effects of residual misregistration on the change detection results [122–124], and tech-

niques devoted to mitigate these effects (and thus change detection errors associated to
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them) have been proposed [125–127]. Other papers are devoted to the analysis of effects

of pansharpening algorithms [128] and radiometric differences [129, 130] on the change

detection performance.

5.3 Challenges and novel contributions

Many studies of the change detection problem based on the analysis of the spectral vector

difference can be grouped as specializations derived from a general framework well-known

as Change Vector Analysis (CVA) [131]. CVA was introduced in [132] and it gives a

theoretical foundation for the representation of change vectors both in cartesian [133] or

polar coordinates [78]. In the remote sensing application, depending on which representa-

tion system is used, specific properties of the change vectors are put in relationship with

the change class on the ground and methodologies are developed to identify and extract

(mostly in an automatic way) difference vectors belonging to the same class. Very typical

is the application of CVA to binary change detection, which has been applied both in the

cartesian [82] and the polar [78] coordinate systems. In particular, in the latter case the

magnitude representation of the change vectors allows to implement a simple, intuitive

but yet effective concept: change vectors having small magnitude most-likely represent

unchanged pixles, whereas those ones having high magnitude values can be considered

as changed pixels. From a statistical point of view, one can assume the unchange and

the change classes to follow specific distributions, estimate distribution parameters from

data and then perform decision according to a Bayes decision rule. In [82] the bi-modal

distribution of the magnitude is empirically approximated by a mixture of Gaussians.

In [78], by assuming that the unchange and the change classes are Gaussian distributed

in the difference image, a theoretical model based on the Rayleigh-Rice mixture has been

proposed to better fit the real distribution of the magnitude. It has been conjectured

that this approach could have improved the binary detection of changes in multispectral

images. However, no actual implementation was possible due to the complexity related

to the derivation of a parameter estimation algorithm involving the Rayleigh and Rician

distributions.

Following this direction, in Chapter 6 we propose a theoretical derivation of a param-

eter estimation method based on the EM algorithm which is specifically tailored for the

Rayleigh-Rice mixture. The numerical method is computationally convenient as it does

not require any complex optimization routine because it is only based on an iterative

updating of the parameters. Along with this, also the equation for the calculation of the

Bayesian optimal threshold for minimum overall error is derived. In the experimental

part, the binary detection method based on the Rayleigh-Rice model has been applied to
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both synthetic and real multispectral data. The result shows that the proposed method

outperforms the classical change detection approaches based on Gaussian mixtures.

In Chapter 7, a novel compound multiclass model to the representation of the dif-

ference image is proposed with the intent of improving both: the fitting capabilities of

the statistical representation of the unchanged and changed pixels and the change detec-

tion performance. In fact, a careful analysis of the change detection results obtained by

modeling the unchange and change classes as single classes shows that in some cases the

estimated distributions do not fit very well the histogram of the magnitude and the com-

puted threshold values are not always close to the optimal ones, especially when images

acquired by last generation sensors are considered. This suggests that the real nature

of the unchange/change classes is intrinsically more complex. The proposed multiclass

model is aimed at better capturing and modeling the real statistical behaviour of the

unchange/change classes. In particular, these two are seen as macro classes including

different subclasses that represent on their turn different statistical behaviours for both

unchanged and changed pixels. It is worth noting that, the proposed multiclass model

is not imposed a-priori on the difference image, instead, it is derived from very general

assumptions on the bi-temporal images. To demonstrate its effectiveness, the proposed

model is applied in the context of binary detection based on the magnitude information.

Numerical experiments on a large variety of datasests (including mostly images acquired

by last generation sensors) show how the capability of modeling the unchange and the

change classes as multiple can significantly improve the fitting and the detection perfor-

mance.

We introduce in Chapter 8 a class-wise context-based model to multispectral image

simplification that is based on 1st-order variational approximation. The model provides a

new interpretation of the solution of the Mumford-Shah problem as the expected image (in

a maximum-likelihood sense) under the given statistical formulation. Having at disposal

the processing capability of computing piecewise smooth approximations of multispectral

images devloped in the previous chapters, the model is then applied to change detection

in multispectral images. Here, the approximation phase greatly helps in reducing the sta-

tistical variability of classes by at the same time preserving their spatial distribution. As

a result, the decision phase of the change detection becomes more easy and the detection

performance sensibly increases. To enforce the remote sensing application, the method is

coupled with a tiling approach that allows the processing of large images by exploiting a

parallel implementation.
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Chapter 6

The Rayleigh-Rice mixture model

for binary change detection

The problem of estimating the parameters of a Rayleigh-Rice mixture density is often en-

countered in image analysis (e.g., remote sensing and medical image processing). In this

chapter1 we address this general problem in the framework of change detection (CD) in

multitemporal and multispectral images. One widely used approach to change detection

in multispectral images is based on Change Vector Analysis (CVA). Here, the distribution

of the magnitude of the difference image can be theoretically modeled by a Rayleigh-Rice

mixture density. However, given the complexity of this model, in applications a Gaussian-

mixture approximation is often considered, which may affect the change detection results.

Hereafter we present a novel technique for parameter estimation of the Rayleigh-Rice

density that is based on a specific definition of the Expectation-Maximization (EM) al-

gorithm. The proposed technique, which is characterized by good theoretical properties,

iteratively updates the parameters and does not depend on specific optimization routines.

Several numerical experiments on synthetic data demonstrate the effectiveness of the

method which is general and can be applied to any image processing problem involving

the Rayleigh-Rice mixture density. In the change detection context, the Rayleigh-Rice

model (which is theoretically derived) outperforms other empirical models. Experiments

on real multitemporal and multispectral remote sensing images confirm the validity of the

model by returning significantly higher change detection accuracies than those obtained

by using state-of-the-art approaches.

1parts of this chapter appear in [1]
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6.1 Introduction

In this chapter, the attention is focused on the CVA technique (and its derivations) [131]

and the use of automatic statistical modeling and thresholding within the CVA frame-

work. CVA demonstrated to be a valuable and flexible tool for the detection of changes

in several contexts (e.g., Remote Sensing [133], Medical Diagnosis and Treatment [134]).

This technique is based on the representation in polar coordinates of the difference image

(which is obtained by subtracting two images representing the same scene at different

times). In the polar feature space, pixels having high magnitude values are likely to be

changed and their separation into different kinds of change can be performed by means of

their direction values [78, 135]. As mentioned, the magnitude of the multispectral differ-

ence image carries information about presence/absence of changes. Thus, the magnitude

variable can be employed to separate changed from unchanged samples, eliminate the

latter and perform further analysis only on the former ones [135]. Usually, the informa-

tion in the magnitude variable is extracted by means of thresholding procedures [97,112].

In [82, 136], the statistical distribution of the magnitude as a mixture model represent-

ing the classes of unchanged and changed pixels is approximated by a Gaussian mixture,

then decision is made using a Bayesian rule. However, recent studies [78] showed that the

precise model of this distribution can be theoretically derived, thus opening the way to

a theoretical well-founded method instead of an empirical one. The model relies mainly

on two hypotheses: (1) natural classes are Gaussian distributed within each band of

the multispectral images (a reasonable assumption for images obtained from passive sen-

sors) and, (2) pixels are spatially independent (this assumption is usually done for remote

sensing images at medium resolution). Under these hypotheses, the magnitude of the

difference image can be theoretically described by a Rayleigh-Rice mixture density. For

this reason we address the problem of defining an EM-type algorithm to the estimation of

shape and mixture parameters of the Rayleigh-Rice density in order to accurately solve

the binary CD problem on multispectral multitemporal images.

Problems involving the Rician distribution often arise in engineering applications, in

particular in Remote Sensing [78] and Magnetic Resonance Imaging (MRI) [136–140].

Since when the Rician distribution was introduced for the modeling of the magnitude of

Gaussian densities [141], many efforts have been made for developing algorithms for the

estimation of its parameters. Important results have been achieved by using the method

of moments (MOM) [139, 142], and Maximum-Likelihood (ML) approaches [142, 143].

Unfortunately, the MOM is shown to be inefficient at low signal-to-noise ratios (SNRs)

[138, 140], while ML equations do not have in general a unique solution [144]. Because

of the latter property, the solution of the ML problem becomes an optimization problem.
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Some papers propose adaptive techniques for selecting the initial starting values [138,140],

while in other cases slightly different Bayesian estimators are proposed in order to stabilize

the problem [145].

In spite of these results, the problem of parameter estimation in the case of mixture

densities including the Rician distribution is still poorly investigated. When the non-

centrality of the signal is high, the Rician density is often approximated with a Gaussian

one [136]. Other papers directly address the approximation of the parameters of a mixture

model involving one (optional) Rayleigh and J Rician distributions all of them having a

common scale parameter σ. In [146], the authors proposed a fitting procedure followed

by an approximated Expectation-Maximization (EM) estimation of σ. In [147] an addi-

tional parameter is included in the model as missing information, leading to a substantial

simplification in the maximization step. In practice, in [146] and [147] the parameter σ

describes a common characteristic of the noise, which is supposed to appear with dif-

ferent non-centralities and same scale parameter. Therefore the estimation of σ from J

Rician components makes the model robust. Other methods are based on local noise

estimation [148] and wavelet-based noise estimation [149]. In many application problems,

forcing the components of the Rayleigh-Rice mixture to have the same scale parameters is

a strong assumption. In particular, in CD on remote sensing real images such similarity is

rarely observed, and neither it has a theoretical justification. Therefore, an empirical use

of the algorithms in [146], [147] to fit the distribution of the magnitude of the difference

image, and therefore to solve the binary CD problem, is expected to present limitations.

In the following we develop an EM-type novel method for the estimation of all shape and

mixture parameters of a Rayleigh-Rice mixture density. Asymptotic properties of the

considered statistical model enable us to define an iterative method based on subsequent

updates of the parameters. By providing a variational interpretation of the EM algorithm

as a problem related to a fixed point equation we both: (1) derive explicit formulas for

implementing the updates, and (2) establish a lower bound on the speed of convergence

of the iterations for reaching a maximum of the expectation. The algorithm is robust and

it can be initialized using standard techniques of preliminary thresholding.

On the one hand, if compared to already existing methods, in our model all the statis-

tical parameters of the mixture density are free (we let the two mixture components to

have different scale parameters). As a result, a large variety of practical problems can

be addressed. On the other hand, we emphasize that the algorithm does not need any

optimization routine (differently from [146], [147]), thus many issues related to the choice

of optimal maximization strategies and their impact on the solution are avoided.

The chapter is structured as follows. Section 6.2 introduces the Bayesian framework for

binary change detection based on the Rayleigh-Rice mixture density as a model describing
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the magnitude of the difference image. In Section 6.3 we first present an overview of the

EM algorithm and then we provide explicit formulas for the approximation of mixture

and shape parameters of the Rayleigh-Rice mixture density. Convergence analysis is also

provided. The experimental results are given in Section 6.4 where the proposed method is

applied to synthetic and real change detection problems on multispectral images. Section

6.5 draws the conclusions. An Appendix including mathematical notions and technical

results is also provided.

6.2 A problem of binary change detection

In this section, following [78], we recall how under reasonable assumptions the statistical

distribution of the magnitude of a bi-temporal difference image acquired by passive sensors

is described by a Rayleigh-Rice mixture density. The magnitude of the unchanged pixels

follows a Rayleigh distribution, while the magnitude of the changed pixels follows a Rician

distribution. Then, a framework for the classification of the pixels according to their class

is given in terms of Bayesian decision theory.

6.2.1 The Rayleigh-Rice mixture model for the magnitude of the difference

image

Let us consider two multispectral images y1,y2 acquired by passive remote sensing sensors

at different times t1, t2, respectively, and representing the same geographical area. Let us

assume that the two images are co-registered and radiometrically corrected, and that there

has been (only) one relevant change in the scene between the two dates. Therefore, the

pixels can be divided into two classes only: ωn (unchanged pixels) and ωc (changed pixels).

The aim is to discriminate between changed and unchanged pixels in an unsupervised way.

The detection of the changes occurred between t1 and t2 is based on the study of the so-

called difference image

d := y2 − y1. (6.1)

When images acquired by passive sensors are considered, the statistical distribution of

natural classes within each spectral band can be reasonably modeled by Gaussian densities

[150]. From now on, our analysis will be restricted to considering two bands among all the

available ones.2 The following theoretical analysis holds for any multi-band image where

classes can be modeled as Gaussian densities, both in the case where they are independent

2This is just to simplify the notation and the exposition and it is not a technical restriction. The generalization

of the proposed theory to the case where an arbitray number of bands n is considered can be found in Appendix

6.A.5.
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or jointly-distributed as Gaussian. In these cases we have that also the classes ωn, ωc in

the difference image are Gaussian distributed, thus let us assume they are modeled by

N (µb,n, σb,n) and N (µb,c, σb,c), for each band b = 1, 2.

In polar coordinates, the magnitude of pixels can be exploited for discriminating be-

tween unchanged and changed pixels, so we are interested in describing how this model

can be represented when the difference image is transformed. Since we are considering

two-band images, we have that every pixel d(i, j) is a two-dimensional vector. Hence, it is

uniquely determined by its magnitude ρρρ(i, j) and direction θθθ(i, j) with respect to a fixed

reference direction. Given the pixel in spatial position (i, j), if no change has occurred on

the ground between the two dates t1 and t2, then the magnitude ρρρ(i, j) is expected to be

close to zero. Conversely, whenever a change has occurred, the magnitude is expected to

be significantly different from zero.

We are now interested in modeling the theoretical distribution of the magnitude. To

this aim, let us denote the random variable that describes this feature by ρ. Because of the

above-mentioned assumption of normality of classes within bands, the distribution of ρ is

theoretically given by the distribution of the magnitude of a two-dimensional point whose

coordinates are Gaussian distributed random variables. The obtained model is quite

complex, but with some additional reasonable assumption it can be greatly simplified

[141]. A first crucial assumption is spatial independence of pixels. From the application

viewpoint, this assumption is reasonable and widely supported in literature if optical

images at medium spatial resolution (e.g., 30 mt) are considered [82], [67]. Then, since

the two images are co-registered and radiometrically corrected, we can assume that in

those areas where pixels are not changed the distributions are not significantly different,

therefore
µ1,n = µ2,n = 0

σ1,n = σ2,n =: σn
(6.2)

and we have that the magnitude of unchanged pixels is modeled by a Rayleigh distribution

p (ρ|ωn) =
ρ

b2
n

exp

(
− ρ2

2b2
n

)
ρ ≥ 0, (6.3)

where the parameter bn = σn. In the case of changed pixels, we still assume that the

distributions have the same variance, but they can have different non-zero means. Hence,

µ1,c 6= µ2,c µ1,c, µ2,c 6= 0

σ1,c = σ2,c =: σc.
(6.4)

and the magnitude of changed pixels follows the more general Rician distribution, [141]

p (ρ|ωc) =
ρ

σ2
c

exp

(
−ρ

2 + ν2
c

2σ2
c

)
I0

(
ρνc
σ2
c

)
ρ ≥ 0. (6.5)
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Here νc =
√
µ2

1,c + µ2
2,c is the so called non-centrality parameter, and I0(.) is the 0-th

order modified Bessel function of first kind [151]. In conclusion, the theoretical mixture

density that models the distribution of the magnitude of pixels is given by

p (ρ) = p (ωn) p (ρ|ωn) + p (ωc) p (ρ|ωc) (6.6)

where p (ωh), h = n, c, are the prior probabilities of classes. According to the given

assumptions, the magnitude image ρρρ := {ρρρ(i, j) : i, j} can be considered as a set of

i.i.d. samples drawn from the theoretical distribution (6.6). For images where the i.i.d.

assumption is not reasonable, further modelization of the spatial-contextual dependence

of pixels is required. For example this can be done using Markov Random Fields (MRFs)

[82], [112].

6.2.2 A framework for automatic binary change detection

The theoretical formulation of the distribution of the pixel magnitude as a mixture model

allows for a formal characterization of a threshold that separates pixels into two classes

according to their magnitude, by means of the Bayesian decision theory. The two prob-

ability models involved in the mixture model, the Rayleigh and the Rician distributions,

have got a non-empty intersection. Accordingly, it is not possible to exactly decide which

class a pixel with a given magnitude belongs to. This means that, for every possible clas-

sification, there is always a classification error with probability en, ec (as shown in Table

6.1). It is well known that the overall error en + ec can be minimized by selecting the

separating threshold as the solution ρ = T (solving for ρ) of the equation

p (ωc)

p (ωn)
=

p (ρ|ωn)

p (ρ|ωc)
ρ ≥ 0 (6.7)

that corresponds to the intersection of the two curves p (ωn) p (ρ|ωn) and p (ωc) p (ρ|ωc)
which lies between the two modes (it is worth noting that this equation generally has

more than one solution). This equation can be equivalently written as(
1

2b2
n

− 1

2σ2
c

)
ρ2 + log I0

(
ρνc
σ2
c

)
=

νc
2b2
n

+ log
σ2
c p (ωn)

b2
n p (ωc)

. (6.8)

The classification that corresponds to the minimum overall error is given by

Wn = {(i, j) : ρρρ(i, j) ≤ T}
Wc = {(i, j) : ρρρ(i, j) > T},

(6.9)

where Wn,Wc are the sets of predicted unchanged/changed pixels, respectively.
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Table 6.1: Classification error in a two-class decision problem. ωn unchanged pixels, ωc changed

pixels

Predicted classes

ωn ωc

Actual

classes

ωn − en

ωc ec −

In Section 6.3 we provide an EM-type algorithm for finding an accurate estimation of

the parameters bn, νc, σc and the prior probabilities p (ωn), p (ωc), in such a way that the

change detection can be performed by thresholding the magnitude of the difference image

at T , which is obtained by solving (6.8).

6.3 The EM algorithm for parameter estimation of the Rayleigh-

Rice mixture density

Here we consider the problem of estimating the parameters describing the probability

density function of a continuous non-negative random variable ρ. In the considered model,

the population represented by ρ is a mixture of two components following a Rayleigh and a

Rician distribution, respectively. Given a set of i.i.d. samples drawn from this distribution,

the estimation problem is solved by following the principles of the EM algorithm (see

[152,153], for a comprehensive overview of the theory).

Firstly, an overview of the EM theory is given. Then, by exploiting the asymptotic

properties of the considered model, an explicit iterative method for solving the estimation

problem is presented. Being iterative and explicit, the proposed method does not require

any optimization strategy. Detailed discussion on the convergence of the method is given.

6.3.1 EM approach to parameter estimation

Let us consider the family of density functions depending on the set of parameters Ψ =

(α,Θ), where Θ = (θ1, θ2) with θ1 = b and θ2 = (ν, σ) , given by

p (ρ|Ψ) = α1 p (ρ|ω1, θ1) + α2 p (ρ|ω2, θ2), (6.10)
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where α1 = α, α2 = 1− α with 0 < α < 1, and

p (ρ|ω1, θ1) =
ρ

b2
exp

(
− ρ2

2b2

)
(6.11)

p (ρ|ω2, θ2) =
ρ

σ2
exp

(
−ρ

2 + ν2

2σ2

)
I0

(ρν
σ2

)
. (6.12)

Let x be a set of N i.i.d. samples drawn from the distribution (6.10) determined by

the set of parameters Ψ̄, i.e., p (ρ|Ψ̄). The aim of the EM algorithm is to estimate the

real values Ψ̄ using the samples x. In particular, here we consider the case where each

sample x ∈ x is unlabeled, thus the sampling is incomplete. We recall that a complete

sample would be of the form y = (x, ω) where ω ∈ {ω1, ω2} is the label of the sample x

(i.e., the index representing the population from which the observed value x comes from).

The EM algorithm gives, under certain hypotheses, an estimation of Ψ̄ as a local maxi-

mizer Ψ̂ of the so-called log-likelihood of the samples x

L(Ψ) =
∑
x∈x

log p (x|Ψ). (6.13)

The key point of the EM algorithm is [152]: given Ψ′, then L(Ψ) ≥ L(Ψ′) if Ψ maximizes

the conditional log-expectation

Q(Ψ|Ψ′) =
∑
x∈x

∑
h=1,2

p (ωh|x,Ψ′) log (αh p (x|ωh, θh)) , (6.14)

where for h = 1, 2 and for each x ∈ x, the weight

p (ωh|x,Ψ′) :=
α′h p (x|ωh, θ′h)

p (x|Ψ′)
(6.15)

is the posterior probability that x originated in the h-th component of the population,

given Ψ′ (see Figure 6.1). In its more general fashion, the EM algorithm is implemented

as follows: an approximation Ψ0 is firstly chosen, then for k = 0, 1, . . . the conditional

log-expectation Q(Ψ|Ψk) is evaluated (E-step) and the next iterate is found (M-step) as

Ψk+1 := arg maxΨQ(Ψ|Ψk). A recursive formula for updating the mixing proportions can

be formally derived and the M-step can be also formulated as3

αk+1 := N−1
∑
x∈x

p (ω1|x,Ψk)

Θk+1 := arg max
Θ

Q((αk,Θ)|Ψk).
(6.16)

3We present also this formulation of the EM algorithm since it helps us in making a clear distinction between

our approach and the one in [146].
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α1 p (ρ|ω1, θ
′
1)

α2 p (ρ|ω2, θ
′
2)

ρ

x
C2

C1

Figure 6.1: Geometrical interpretation of the posterior probability that x originated in the h-th

component given Ψ′, as p (ωh|x,Ψ′) = Ch/(C1 + C2) for h = 1, 2.

Exploiting information theory, the EM algorithm to the parameter estimation of (6.10)

can be further simplified. In the considered statistical model all parameters b, ν, σ are

mutually independent (see Appendix 6.A.3). Thus, following [153] the EM algorithm can

be split into separated maximization steps

αk+1 := N−1
∑
x∈x

p (ω1|x,Ψk)

bk+1 := arg max
b
Q((αk, b, νk, σk)|Ψk)

νk+1 := arg max
ν

Q((αk, bk, ν, σk)|Ψk)

σk+1 := arg max
σ

Q((αk, bk, νk, σ)|Ψk).

(6.17)

Note that the difference between (6.16) and (6.17) is substantial. Without the param-

eter independence assumption, the iterative search of maximizers cannot be separated

and the implementation must rely on ad-hoc optimization techniques. For example this

is the case of [146] with J = 2, where θ1 = (ν1, σ) and θ2 = (ν2, σ), the parameters of two

Rician distributions, are obviously not independent. In the sequel, we take advantage of

(6.17) and we show that each partial maximization step can be performed by updating

the corresponding variable according to an iterative rule.

6.3.2 Iterative equations for the EM algorithm

In this section the problem of numerically implementing (6.17) is addressed. By defining

`(Ψ) := Q(Ψ|Ψ), the iterative procedure (6.17) can be instantiated by an iterative method

attempting to solve

∇`(Ψ) = 0. (6.18)
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By writing gradient equations and performing math (see Appendix 6.A.2 for details) we

get

∂`

∂α
=
∑
x∈x

1

α
p (ω1|x,Ψ)− 1

1− α
p (ω2|x,Ψ)

∂`

∂b
=
∑
x∈x

p (ω1|x,Ψ)

[
x2

b3
− 2

b

]
∂`

∂ν
=
∑
x∈x

p (ω2|x,Ψ)

[
x

σ2

I1

(
xν
σ2

)
I0

(
xν
σ2

) − ν

σ2

]
∂`

∂σ
=
∑
x∈x

p (ω2|x,Ψ)

[
x2 + ν2

σ3
− 2

σ
− 2xν

σ3

I1

(
xν
σ2

)
I0

(
xν
σ2

)]
(6.19)

where I1 (.) is the 1-st order modified Bessel function of first kind [151]. As we can see,

gradient equations are highly non-linear. Formally, we derive a set of iterative equations

for approximating the solution of (6.18) according to the method of subsequent approxi-

mations (see Appendix 6.A.4 for details). After some analytical manipulations we get the

following iterative rules

αk+1 = N−1
∑
x∈x

p (ω1|x,Ψk)

(b2)k+1 =

∑
x∈x

p (ω1|x,Ψk)x2

2
∑
x∈x

p (ω1|x,Ψk)

νk+1 =

∑
x∈x

p (ω2|x,Ψk)
I1
(
xνk

(σk)2

)
I0
(
xνk

(σk)2

)x∑
x∈x

p (ω2|x,Ψk)

(σ2)k+1 =

∑
x∈x

p (ω2|x,Ψk)

[
x2 + (νk)2 − 2xνk

I1
(
xνk

(σk)2

)
I0
(
xνk

(σk)2

)
]

2
∑
x∈x

p (ω2|x,Ψk)
.

(6.20)

The above formulas fully determine our algorithm. In general, the method of subse-

quent approximations converges at least with linear speed provided the spectral radius of

the Jacobian matrix of the iterative function, computed at the exact solution, is strictly

less than one. Of course, convergence properties of the algorithm strongly depend on the

choice of the first iterate.
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6.3.3 Initialization of the algorithm

In order to increase the probability to converge to an optimal stationary point of the

objective energy `(Ψ), an adequate initial approximation Ψ0 must be found. A standard

approach to this aim is based on a first raw classification of the data followed by maximum

likelihood (ML) estimates of the parameters. Let us assume that the samples drawn from

the mixture are divided into the two approximate classes W1 and W2, in such a way

that x = W1 ∪ W2. ML estimates of shape parameters (in the following denoted by

the ML superscript) are derived as the solutions of the so-called log-likelihood equations.

Samples in W1 are used to approximate b, whereas samples in W2 are used to approximate

ν, σ. For an explicit computation of their values we refer the reader to the existing

literature [138, 140, 142, 145]. Once the ML estimates bML, νML, σML are computed, we

use their values as the initial set of parameters Θ0 for triggering the EM algorithm:

Θ0 = (bML, (νML, σML)). (6.21)

As initial value for the mixing proportion we use the ratio (# denotes the number of

samples)

α0 =
#W1

#X
. (6.22)

According to the method that is used to populate the approximate classes W1,W2,

we have different initializations of the EM algorithm. The more these classes are good

representatives of the true classes ω1, ω2, the more the ML parameter estimates of the

two distributions p (ρ|ωh, θh), h = 1, 2 will be close to the real values. A simple yet

effective way to populate such approximate classes is given by thresholding the values of

the samples x (in [82] a similar approach is used in the case of a mixture of Gaussian

densities). Let us define, for any fixed value T ≥ 0, the approximate classes W1,W2 as

follows
W1 := {x ∈ X : x ≤ T},
W2 := {x ∈ X : x > T}.

(6.23)

In terms of Bayes decision theory, the choice of the threshold T can be interpreted as

an attempt of approximating a solution of (6.7). In this context, the problem of defining

the approximate classes W1,W2 is turned into the problem of choosing the separating

threshold T . At this stage, proper knowledge on the specific dataset should be used in

order to simplify the task of computing T . On the one hand, such T should be able to

give at least a coarse discrimination of the data, e.g., by properly exploiting the bi-modal

behavior of the histogram. On the other hand, the computational complexity of this

step, being itself a preliminary step, should be kept low. A choice often encountered in
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applications that meets the two above mentioned important requirements [82], is that of

using

T = Tmid :=
maxX −minX

2
. (6.24)

Whenever the two modes of the mixture described by (6.10) are well separated by Tmid, we

expect to have sufficiently accurate preliminary ML estimates of the mixture parameters

for triggering the EM algorithm. Of course, other strategies can be used.

6.3.4 Convergence analysis

In this section we analyze convergence properties of the parameter estimation algorithm

defined by (6.20). For a better understanding of the quantitative analysis of the results,

we specify that computations are performed using MATLAB R© on a standard workstation.

Hardware is Intel(R) Core(TM) i5-4750 CPU @3.20 GHz, 8.00 GB Ram.

According to [153], we aim at showing that the performance of the proposed EM-type

iterative algorithm strongly depends on the separability of the two mixture components.

The proposed iterative algorithm is run several times on synthetic samples x generated by

the inverse transform sampling method applied to mixture densities of the type p (ρ|Ψ),

where Ψ = (α, b, ν, σ) are fixed sets of parameters. The size of each sample is N = 104.

In order to parameterize the separability of the mixture components, in the tests all pa-

rameters are fixed except ν. Significance of the resulting estimates is ensured by stopping

the algorithm at the iteration k such that the maximum relative error in approximating

all the parameters is

max
i=1,...,4

∣∣∣Ψi −Ψk
i

Ψi

∣∣∣ < 0.05.

For each test, we recorded the number of iterations k, the relative variation of the objective

energy |`(Ψk) − `(Ψk−1)|/|`(Ψk−1)|, the spectral radius of the Jacobian of the iterative

function calculated at Ψ and the time of computation. The components of the Jacobian

matrix are calculated by implementing (6.34).

The results relate to two sets of parameters Ψ. In the first case the fixed values

are α = 0.4, b = 1, σ = 1, in the second case the Rician scale parameter is increased

to σ = 2. In both cases the Rician non-centrality parameter ranges from ν = 2.0 to

ν = 10.0. Results of computations (the mean of ten runs) are shown in Tables 6.2 and

6.3. Histograms of the corresponding samples are given in Figures 6.2 and 6.3. Results

are in agreement with the expected performance of the EM algorithm. Let us discuss

more in detail the outcome of the experiments.

• An analysis of Figures 6.2 and 6.3 enables us to discriminate the separability of the

corresponding mixtures. In the case of σ = 1, being also b = 1, the separation
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Table 6.2: Iteration details of the proposed EM algorithm on Rayleigh-Rice mixtures with

parameters α = 0.4, b = 1, σ = 1 and for different values of ν.

ν k |`(Ψk)−`(Ψk−1)|
|`(Ψk−1)| rad(Jϕ(Ψ)) time(secs)

2.0 3694 1.07 · 10−5 0.7728 35.93

2.2 2969 2.26 · 10−6 0.7419 30.13

2.4 1217 1.14 · 10−5 0.7034 13.65

2.6 800 1.33 · 10−5 0.6723 8.44

2.8 427 9.14 · 10−6 0.6521 4.84

3.0 266 1.10 · 10−5 0.6282 3.12

3.5 75 2.03 · 10−5 0.5963 1.07

4.0 22 4.90 · 10−4 0.5701 0.69

5.0 8 1.29 · 10−3 0.5426 0.55

10.0 1 7.36 · 10−5 0.5133 0.47

Table 6.3: Iterations details of the proposed EM algorithm on Rayleigh-Rice mixtures with

parameters α = 0.4, b = 1, σ = 2 and for different values of ν.

ν k |`(Ψk)−`(Ψk−1)|
|`(Ψk−1)| rad(Jϕ(Ψ)) time(secs)

2.0 352 4.37 · 10−6 0.8250 3.28

2.2 408 5.90 · 10−6 0.8424 2.99

2.4 304 1.03 · 10−5 0.8766 2.86

2.6 229 2.34 · 10−5 0.8827 2.21

2.8 186 4.23 · 10−5 0.8796 2.29

3.0 130 9.09 · 10−5 0.8625 1.72

3.5 91 1.57 · 10−4 0.8232 1.20

4.0 74 1.06 · 10−4 0.7781 1.13

5.0 28 5.49 · 10−4 0.6874 0.74

10.0 4 5.41 · 10−4 0.5447 0.54

becomes more evident only for ν ≥ 2.8. In the case of σ = 2, the difference in the

scale parameters allows for a better discrimination for any ν ≥ 2.0.

• As expected, the number of iterations for reaching sufficient approximations of the

target parameters sensibly decreases as ν increases. In particular, in Table 6.2 the

order of k moves from 103 (ν = 2.0) to 100 (ν = 5.0, 10.0), whereas in Table 6.3

this number is one order of magnitude less. This substantial difference is due to the
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(a) 2.0 (b) 2.2 (c) 2.4 (d) 2.6 (e) 2.8

(f) 3.0 (g) 3.5 (h) 4.0 (i) 5.0 (j) 10.0

Figure 6.2: Histograms of samples x generated from p (ρ|Ψ) with α = 0.4, b = 1, σ = 1 and for

different values of ν.

(a) 2.0 (b) 2.2 (c) 2.4 (d) 2.6 (e) 2.8

(f) 3.0 (g) 3.5 (h) 4.0 (i) 5.0 (j) 10.0

Figure 6.3: Histograms of samples x generated from p (ρ|Ψ) with α = 0.4, b = 1, σ = 2 and for

different values of ν.

fact that, in the second case, the separation between the two mixture components

is possible because of the difference in the scale parameters.

• In all tests the spectral radius of the Jacobian of the iterative function is less than one,

thus the algorithm enjoys at least linear convergence. Notice that for increasing ν,

the spectral radius (which provides a quantitative estimation of the factor by which

errors are reduced from one iteration to the next) decreases.

• Results from the tables suggest that a reasonable threshold value on the relative

variation of the objective energy `(Ψ) for stopping the algorithm is tol = 10−6.

6.4 Experimental results on multispectral images

In this section, after presenting the datasets and the details of the experimental setup, we

analyze the performance of the proposed method. Firstly, we give a quantitative measure-
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ment of data fitting by means of two divergence measures between the data and different

statistical models estimated from the data. Then, the change detection performance is

analyzed. A comparison in terms of change detection errors between the proposed method

and the state-of-the-art one based on Gaussian mixtures is given.

6.4.1 Datasets description

The datasets considered in the experiments are both synthetic and real multispectral

images. Real datasets (consisting of couples of multitemporal multispectral images) are

accompanied by reference maps4 of the changes, i.e., binary maps representing the classes

ωn, ωc. Notice that minor changes (i.e., mapped changes that do not belong to the main

change class of interest) are depicted in the reference maps in red (Figures 6.5c and 6.6c).

Dataset A (synthetic)

This first dataset is a synthetically generated two-band difference image with statistical

properties as defined in Section 6.2.1, see Figure 6.4. Classes ωn, ωc are Gaussian dis-

tributed within each band with parameters: µ1,n = µ2,n = 0, σn = 2.5, µ1,c = −50.0,

µ2,c = −20.0, σc = 25. The size of the image is 700×600 pixels. The proportions between

the number of pixels in simulated classes and the total number of pixels (class priors) are

p (ωn) =
336000

420000
= 0.8, p (ωc) =

84000

420000
= 0.2.

Simulated changed pixels are located in the bottom-right corner of the image.

Dataset B

The dataset is made up of two multispectral images acquired by the Thematic Mapper

(TM) multispectral sensor of the Landsat 5 satellite, see Figure 6.5. The images are

co-registered and radiometrically corrected. The scene represents an area including Lake

Mulargia (Sardinia Island, Italy), at a resolution of 30 m. The image consists of 300×412

pixels (a total of 123600 pixels). The dates of acquisition are September 1995 (t1) and

July 1996 (t2). Between the two dates one most relevant change, which is related to

the extension of the lake surface, occurred in the study area. The scene presents 116120

unchanged and 7480 changed pixels. It follows that the prior probabilities of class are

given by

p (ωn) =
116120

123600
= 0.94, p (ωc) =

7480

123600
= 0.06.

4Reference maps are obtained via photo-interpretation and they are used only for validation/comparison

purposes.
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(a) (b)

Figure 6.4: Dataset A. Synthetic two-band difference image. (a) Magnitude of the difference

image, (b) map of simulated changed pixels (black).

The two most representative bands of the changes are 4 and 7, the near infrared (NIR)

and the middle infrared (MIR) (see [78] for details on the band selection). The ML

parameter estimations of the normal distributions of classes ωn, ωc within each band of

the difference image are µ1,n = 3.57, σ1,n = 10.26, µ1,c = −55.37, σ1,c = 8.90, and

µ2,n = 2.63, σ2,n = 8.73, µ2,c = −40.84, σ2,c = 10.67. The numbers show that the initial

assumptions (6.2) and (6.4) are approximately satisfied. The means µ1,n and µ2,n are

both close to 0, σ1,n and σ2,n are very close each other and their mean can be used as an

approximation of the variance of the unchanged pixels, i.e., σn = 9.49. A similar argument

holds for the variance of the changed pixels, which can be approximated by σc = 9.79,

the mean value of σ1,c and σ2,c.

Dataset C

The dataset consists of a couple of multispectral images acquired by the Operational

Land Imager (OLI) multispectral sensor of the Landsat 8 satellite, see Figure 6.6. The

investigated area includes Lake Omodeo and a portion of Tirso River (Sardinia Island,

Italy). The image consists of 700× 650 pixels (a total of 455000 pixels) at a resolution of

30 m. The dates of acquisition are 25th July 2013 (t1) and 10th August 2013 (t2). The

change we are interested to estimate is a fire occurred between August 7th and 9th in

the south of Ghilarza village. The post-event image is acquired just one day after the fire

was extinguished. The area affected by the fire is mostly agricultural, with an extension

of approximately 100 ha. The images are co-registered and radiometrically corrected.

According to the reference map, the scene presents 420227 unchanged and 34773 changed
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(a) (b) (c)

Figure 6.5: Dataset B: images of Lake Mulargia (Italy) acquired by the Thematic Mapper sensor

of the Landsat 5 satellite: (a) channel 4 of the image acquired in September 1995; (b) channel 4

of the image acquired in July 1996; (c) change reference map indicating the enlargement of the

lake (black) and an open quarry (red).

pixels, 1636 of them are related to small clouds and variations of the lake surface. The

class prior probabilities are given by

p (ωn) =
420227

455000
= 0.92, p (ωc) =

34773

455000
= 0.08.

The two bands selected as most representative of the changes are bands 5 and 6, the

near infrared (NIR) and the first short wavelength infrared (SWIR1). The choice is made

by considering the band-pair that produced the smallest amount of overall errors in the

change detection.

6.4.2 Experimental setup

Given two multispectral two-band images y1,y2, by following the framework given in

Section 6.2 the magnitude ρρρ of the difference image d = y2 − y1 is modeled by the

mixture density (6.6). The parameters of this density are estimated via EM algorithm.

Then, a threshold for binary decision is calculated by following a Bayes rule and change

detection is performed accordingly.

In the experiments presented in Section 6.4.3, the fitting of the proposed Rayleigh-Rice

mixture model is tested against two empirical models for parameter estimation already

present in literature: the first one is based on a Gaussian mixture, the second one is based

on a mixture of Rician distributions with common scale parameter. It is worth noting

that, the former represents the state-of-the-art in binary change detection based on the

statistical modeling of the magnitude information, whereas the latter has been proposed

by Maitra and Faden for the estimation of noise variance in MR images [146]. For clarity

of notation, let us summarize the parameter notation used in the following:
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(a) (b) (c)

Figure 6.6: Dataset C: images of Lake Omodeo and surrounding area (Italy) acquired by the

Operational Land Imager sensor of the Landsat 8 satellite: (a) channel 5 of the image acquired

in July 2013; (b) channel 5 of the image acquired in August 2013; (c) change reference map

indicating the burned area extension (black) and other minor changes related to clouds and

water (red).

Rayleigh-Rice mixture (RR):

p (ρ|ωn) = Rayl(b), p (ρ|ωc) = Rice(ν, σ).

Gaussian mixture (GG):

p (ρ|ωn) = N (µ1, σ1), p (ρ|ωc) = N (µ2, σ2).

Rician mixture with common scale parameter (MF):

p (ρ|ωn) = Rice(ν1, β), p (ρ|ωc) = Rice(ν2, β).

Iterative formulas for implementing parameter estimation in the GG model can be found

in [86]. Implementation for parameter estimation in the MF case is presented in [146].

Initialization follows the principles outlined in Section 6.3.3. Data fitting is measured

in terms of the χ2
P (χ2–Pearson) divergence and the Kolmogorov-Smirnov (KS) distance

between the data and the estimated densities.

In Section 6.4.4 the binary change detection problem is solved using the framework

described in Section 6.2. The final parameter estimates of RR and GG are used to

compute the magnitude thresholds TRR and TGG that correspond to the Bayes Deci-

sion Rule (BDR) of minimum overall error of classification, then change detection is

performed by thresholding the difference image. By using a standard trial-and-error se-

lection based on the reference map it has been possible to compute for all datasets the
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optimal threshold value TMOE of minimum overall error (MOE). The results of change de-

tection are compared to such optimal values. In order to make the results on the different

datasets comparable, the detection errors are also given in terms of percentage according

to em := missed
changed

· 100%, ef := false
unchanged

· 100% and eo := overall
total

· 100%. The steps of the

whole procedure are summarized:

1. Populate the approximate classes W1,W2 and initialize the EM algorithm (in the

MF case the algorithm is initialized as described in [146]).

2. Apply EM algorithm and assess fitting properties of the estimated mixture densities.

3. Calculate the threshold values according to both the BDR of minimum overall error

and the optimal choice of MOE obtained via the reference map.

4. Populate the change detection classes Wn,Wc by thresholding the magnitude image.

5. Assess change detection performance in terms of false and missed alarms by com-

paring the estimated classes Wn,Wc with the true classes ωn, ωc.

6.4.3 Data fitting results

Let us present and discuss the results of EM parameter estimation and data fitting in

the considered datasets. Numerical values of the estimated parameters and fitting per-

formance in terms of statistical divergences χ2
P and KS are showed in Table 6.4. For a

qualitative understanding of the fitting of the estimated models, a plot of the histograms

of the magnitude images with superimposed estimated densities is given in Figure 6.7.

In general, the real prior probability of the unchange class p (ωn) is always well approx-

imated by α as no significant differences are observed among the trials. As expected, the

fitting of RR is very precise in the case of Dataset A, as this dataset represents the ideal

case of a difference image having the properties described in Section 6.2. Nonetheless,

the RR model results in the best fitting also in the real remote sensing datasets B and C,

confirming that this model is much more suitable for representing the real distribution of

the magnitude. The GG model is flexible enough to follow the bimodal behavior of the

histogram, but it is never as precise as the RR. The limitations in using the MF model

are evident. From the EM estimates of the RR model we can see that the scale param-

eters of the mixture components are significantly different in all datasets. This strongly

affects the fitting of the MF model, which assumes the same scale parameter for both the

mixture components. Data fitting measurements obtained with this model show that this

strong assumption leads to very poor approximations of the real distributions (this can be
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Table 6.4: Parameter estimation via EM algorithm and data fitting evaluation for the three

considered mixture densities.

mix estimated parameters χ2
P KS

Dataset A

RR
α b ν σ

0.0002 0.0004
0.80 2.50 53.89 25.04

GG
α µ1 σ1 µ2 σ2

0.0184 0.0561
0.80 3.11 1.61 59.34 23.95

MF
α ν1 ν2 β

0.9045 0.5142
0.83 ≈0 66.32 7.20

Dataset B

RR
α b ν σ

0.0136 0.0362
0.92 9.36 60.24 17.37

GG
α µ1 σ1 µ2 σ2

0.0420 0.0836
0.90 11.10 5.97 52.73 22.57

MF
α ν1 ν2 β

0.0239 0.0590
0.93 0.06 66.91 9.78

Dataset C

RR
α b ν σ

0.0215 0.0400
0.90 2.67 23.84 14.90

GG
α µ1 σ1 µ2 σ2

0.0500 0.0778
0.89 3.25 1.70 26.35 14.13

MF
α ν1 ν2 β

0.1414 0.1880
0.93 ≈0 34.82 3.41

seen very clearly from Figure 6.7). Thus, the model is inadequate to address the change

detection problem. Notice also that the non-centrality parameter ν1 converged approxi-

mately to 0 in all cases, confirming that the first component of the mixture (related to

the distribution of unchanged pixels) is Rayleigh in real data.

Let us now check the consistency of the RR parameter estimates with the theoreti-

cal properties described in Section 6.2.1 that express the relationships between bn, νc, σc

(approximated by b, ν, σ) and the parameters of the normal distribution of classes within

bands: σn, σc and µb,c, for b = 1, 2. The values related to Dataset A matches perfectly as
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(a) Dataset A (b) Dataset B

(c) Dataset C

Figure 6.7: Histograms of the magnitude of the difference image and plot of the estimated

densities.

the hypotheses are fulfilled by definition: we have σn = b = 2.5, σc = 25, σ = 25.04, and

ν = 53.89,
√
µ2

1,c + µ2
2,c = 53.85. In case of Dataset B, the Rayleigh parameter b = 9.33

matches with the variance σn = 9.44. The Rice parameters are slightly unmatched,

compare σ = 17.37 with the variance σc = 9.79 and ν = 60.24 with the non-centrality

measurement
√
µ2

1,c + µ2
2,c = 68.75. A similar behavior is observed for Dataset C. The

observed differences in real datasets are due to the Gaussian approximation of the distri-

bution of classes within bands.

6.4.4 Change detection results

In this section the change detection results on the considered datasets are presented. The

outcome of the experiments is detailed in Table 6.5, where the CD performance is evalu-

ated in terms of false and missed alarms and overall errors. It follows from the analysis

in Section 6.4.3 that the mixture component representing ωn is better approximated by a

Rayleigh density. The high non-symmetry of the Rayleigh component forces its Gaussian
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approximation to be slightly overestimated on the right side, thus, its right descending

slope is steeper than the Rayleigh version. It follows that the decision threshold TGG is

smaller than TRR in general. A first consequence of this is that the overall error of RR

is always smaller than the error of GG. Moreover, the change detection by using the GG

mixture presents less missed alarms, but many more false alarms with respect to the RR

case. This is confirmed by looking at the results related to Dataset A (synthetic). It is not

surprising that in this case the BDR threshold related to the RR model is almost identical

to the optimal choice of minimum overall error: TRR = 10.12 and TMOE = 10.40. As

expected, the threshold returned by the GG model, TGG = 8.82, is smaller than TRR

and corresponds to an increasing overall error that moves from 0.19% (optimal case) to

0.29%. Notice that in this case the total number of wrongly detected pixels increases of

approximately 1/3 (from 791 to 1211).

In the case of real datasets error percentages slightly increase, accounting for the

approximation in assuming the Gaussian distribution of the classes within bands. Note

that, though in some cases the BDR thresholds are not very close to the optimal values, the

RR model always returned a better approximation of the optimal threshold with respect

to the standard GG model. In Dataset B, the optimal threshold in terms of overall error

corresponds to 770 overall errors, and the RR and the GG models returned 1820 and 3982

overall errors, respectively. Therefore, the overall error is more than halved. A similar

result is obtained in the case of Dataset C, where again the RR model performed much

better than GG. The number of overall errors is 4621 in the optimal case, whereas it

is 8761 in case of RR and 13583 in the case of GG. Again we observe that the overall

error is more than halved by using the proposed RR model. Figure 6.8 shows the change

detection maps obtained by thresholding the magnitude of the difference image in the

three datasets. Notice that in general the smaller number of missed alarms given by

TRR results in a much less noisy change map compared to the one given by TGG. In the

optimal case the change maps are very clean. Since in these cases the number of missed

alarms is the highest one, some details of the changes are lost (e.g., the thin boundaries

of the lake in Dataset B and a portion of the fire in Dataset C). A possible improvement

of the change detection maps could be obtained by using the distributions of the classes

obtained by the proposed technique within a context-sensitive approach (e.g., based on

MRFs [82]).

6.5 Conclusions

In this chapter we addressed the problem often encountered in image analysis of the es-

timation of the parameters of a Rayleigh-Rice mixture density. The problem has been
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Table 6.5: Performance of change detection based on the thresholding of the magnitude image

for different values of the threshold.

Threshold missed (em) false (ef ) overall (eo)

Dataset A

TRR = 10.12 699 (0.83%) 99 (0.03%) 798 (0.19%)

TGG = 8.82 530 (0.63%) 681 (0.20%) 1211 (0.29%)

TMOE = 10.40 735 (0.88%) 56 (0.02%) 791 (0.19%)

Dataset B

TRR = 33.95 36 (0.48%) 1784 (1.54%) 1820 (1.47%)

TGG = 28.02 9 (0.12%) 3973 (3.42%) 3982 (3.22%)

TMOE = 47.11 356 (4.76%) 414 (0.36%) 770 (0.62%)

Dataset C

TRR = 9.92 956 (2.75%) 7805 (1.86%) 8761 (1.93%)

TGG = 8.63 727 (2.09%) 12856 (3.06%) 13583 (2.99%)

TMOE = 15.23 1964 (5.65%) 2657 (0.63%) 4621 (1.02%)

studied in the framework of Change Vector Analysis (CVA) for binary change detection in

multitemporal and multispectral images. Here, under proper hypotheses, the distribution

of the magnitude of the difference image can be theoretically modeled by a Rayleigh-Rice

mixture density. The Rayleigh density describes the distribution of unchanged pixels,

whereas the Rice density describes the distribution of the changed pixels. Parameter es-

timates are used to solve the binary change detection problem in a Bayesian context.

The chapter presents a general implementation of an EM-type algorithm for the estima-

tion of mixture and shape parameters of a Rayleigh-Rice mixture density. The proposed

method enjoys good theoretical properties. First, statistical independence of parameters

allowed us to define the algorithm in an iterative way, which results fast, easy to imple-

ment and not depending on specific optimization routines. Detailed analysis of accuracy

and convergence properties of the algorithm is given. Second, in the considered model

all the statistical parameters are free. We remark here that, because of its flexibility, the

proposed method can be used for addressing a large variety of practical problems involv-

ing the Rayleigh-Rice density.

In the experimental part of the chapter, the effectiveness of the Rayleigh-Rice model in

solving the binary CD problem is demonstrated. Tests have been conducted on both

synthetic and real datasets consisting of bi-temporal pairs of multispectral remote sensing
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.8: Change detection maps obtained by thresholding the magnitude image using TRR

(a,d,g), TGG (b,e,h) and TMOE (c,f,i). In black are the estimated changed pixels Wc, in white

the estimated unchanged pixels Wn.

images. Among other statistical models proposed in literature, the Rayleigh-Rice proved

to be the one that better fits the distribution of the magnitude difference image in CVA.

The change detection is significantly improved when compared to state-of-the-art method
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based on Gaussian modeling. In particular, the overall error of detection is always ap-

proximately halved. Moreover, even though the theoretical model is given for one single

change class, the algorithm is robust to the presence of minor additional changes.
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6.A Appendices

6.A.1 Basic notions about modified Bessel functions

We recall here some facts about modified Bessel functions which are crucial for the de-

velopment of the method that is presented in this chapter. Let Im(x) be the m-th order

modified Bessel function of first kind [151]. Derivatives of Im(x) satisfy (among many

other) the following recurrence rules:

d

dx
I0(x) = I1(x), (6.25)

d

dx
(xmIm(x)) = xmIm−1(x). (6.26)

In order to simplify the presentation of the results of next sections, we define two functions

that appear frequently in the computations:

J1 :=
I1

I0

and J2 := J1
2 − 1. (6.27)

6.A.2 Derivation of the conditional log-expectation

Let us derive the energy `(Ψ) with respect to its parameters to obtain (6.39). Computa-

tions for ∂/∂b are the same to that of ∂/∂σ if σ is replaced by b and ν = 0. It is a trivial

fact that by deriving `(Ψ) with respect to the Rice parameters the terms related to the

Rayleigh distribution vanish. Therefore, without loss of generality we can consider

`(Ψ) =
∑
x∈x

p (ω2|x,Ψ) log ((1− α) p (x|ω2, θ2)) . (6.28)

Because of summation over x and the log, we can write

`(Ψ) =
∑
x∈x

p (ω2|x,Ψ)(logA+ logB), (6.29)



122 The Rayleigh-Rice mixture model for binary change detection

where A := x
σ2 exp

(
−x2+ν2

2σ2

)
and B := I0

(
xν
σ2

)
. Derivations involving A and B can be

computed by using (6.25) and by applying the chain rule. We get

∂ logA

∂ν
= − ν

σ2
,

∂ logA

∂σ
=
x2 + ν2

σ3
− 2

σ
,

∂ logB

∂ν
=

x

σ2
J1

(xν
σ2

)
,

∂ logB

∂σ
= −2xν

σ3
J1

(xν
σ2

)
.

Final derivatives are obtained by putting together the results.

6.A.3 Asymptotic analysis of the maximum-likelihood estimation

The Rayleigh-Rice mixture density p (ρ|Ψ) is twice differentiable with respect to its pa-

rameters and enjoys some regularity properties that allow us to write its information

matrix (see Lemma 5.3 of [154] and its generalization to the multi-parameter case, p.125)

as

I(Ψ)i,j = −E
[

∂2

∂ψi∂ψj
log p (ρ|Ψ)

∣∣∣Ψ] i, j = 1, . . . , 4 (6.30)

where we recall that Ψ = (α, b, ν, σ). Since the information matrix of the Rician distribu-

tion is diagonal [137], also I(Ψ) is diagonal. Thus, the parameters of the mixture density

are mutually orthogonal.

Orthogonality brings some nice statistical properties [155]: (1) asymptotic estimates

of the parameters are independent; (2) the asymptotic standard error for estimating one

parameter does not depend on the knowledge of the others; (3) the maximum likelihood

estimate of ψi given ψj varies only slowly with ψj. All these properties are fundamental

for the formalization of an algorithm that iteratively updates the ML estimates of the

mixture parameters.

6.A.4 Iterative method for the solution of the non linear gradient system

Iterative formulas for approximating the solution of the gradient system (6.18) are given

according to the method of subsequent approximations applied to a fixed point equation

[156]. After some analytical manipulations of equations (6.39) we can see that a point

Ψ∗ satisfying ∇`(Ψ∗) = 0 also satisfies Ψ∗ = ϕ(Ψ∗), where ϕ(Ψ), the so-called iterative
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function, is made up of four components:

ϕ1(Ψ) =

∑
x∈x

p (ω1|x,Ψ)∑
x∈x

1

ϕ2(Ψ) =

√√√√√
∑
x∈x

p (ω1|x,Ψ)x2

2
∑
x∈x

p (ω1|x,Ψ)

ϕ3(Ψ) =

∑
x∈x

p (ω2|x,Ψ)J1

(
xν
σ2

)
x∑

x∈x
p (ω2|x,Ψ)

ϕ4(Ψ) =

√√√√√
∑
x∈x

p (ω2|x,Θ)
[
x2 + ν2 − 2xνJ1

(
xν
σ2

)]
2
∑
x∈x

p (ω2|x,Θ)
.

(6.31)

A small remark is needed here. Since 0 < I1(y)/I0(y) < 1 for every y > 0, the argument

of the square root in (6.31) is always non-negative, hence ϕ4 is well defined.

Given an initial point Ψ0, the iterative method for solving the fixed point equation Ψ =

ϕ(Ψ) consists in applying the iterative rule

Ψk+1 = ϕ(Ψk). (6.32)

The method of subsequent approximations is shown to be convergent with at least

linear speed whenever the spectral radius of the Jacobian matrix Jϕ, which in our case

reduces to

Jϕ =


0 0 0 0

0 0 0 0

0 0
∂ϕ3

∂ν

∂ϕ3

∂σ

0 0
∂ϕ4

∂ν

∂ϕ4

∂σ

 , (6.33)

computed at the exact solution Ψ∗, is less than one. The computation of these non-zero
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derivatives can be performed by applying (6.26). We have

∂ϕ3

∂ν
(Ψ) =

∑
x∈x

p (ω2|x,Ψ)
{
−x2

σ2 J2

(
xν
σ2

)
− x

ν
J1

(
xν
σ2

)}
∑
x∈x

p (ω2|x,Ψ)

∂ϕ3

∂σ
(Ψ) =

∑
x∈x

p (ω2|x,Ψ)
{

2x2ν
σ3 J2

(
xν
σ2

)
+ 2x

σ
J1

(
xν
σ2

)}
∑
x∈x

p (ω2|x,Ψ)

∂ϕ4

∂ν
(Ψ) =

∑
x∈x

p (ω2|x,Ψ)
{
x2ν
σ2 J2

(
xν
σ2

)
+ 1
}

ϕ4(Ψ)
∑
x∈x

p (ω2|x,Ψ)

∂ϕ4

∂σ
(Ψ) =

∑
x∈x

p (ω2|x,Ψ)
{
x2ν2

σ3 J2

(
xν
σ2

)
+ xν

σ
J1

(
xν
σ2

)}
ϕ4(Ψ)

∑
x∈x

p (ω2|x,Ψ)

(6.34)

The spectral radius rad(Jϕ(Ψ)) is defined as the maximum absolute value of the eigen-

values of Jϕ(Ψ). The spectral radius is a measure of the rate at which the error in

approximating the fixed point reduces between two consecutive iterations.

The fixed point iteration can be accelerated to quadratic convergence by using the

more general Newton’s method (or one of its many derivations)

Ψk+1 = Ψk −H`(Ψk)
−1
`(Ψk), (6.35)

where H(.) is the Hessian operator. However, a low number of iterations is at the cost

of one matrix inversion for each iteration, which may not be desirable in applications. In

particular, for CD in multispectral images the simple iteration (6.32) performed excellently

without the need of accelerators.

6.A.5 The EM algorithm for a mixture of generalized Rayleigh and Rician

distributions

Let y = (y1, . . . , yn) a random normal vector y ∼ N (µ,Σ) with scalar covariance matrix

Σ = σ2In. The distribution of the non-negative random variable x = |y| is derived in [157]

and presents two analytical forms depending on whether the mean µ is null or not. If

µ = 0, the distribution of x is generalized Rayleigh

p (x) =
2xn−1

(2σ2)mΓ(m)
exp

(
− x2

2σ2

)
, (6.36)

whereas it is generalized Rician if µ 6= 0

p (x) =
xm

σ2νm−1
exp

(
−x

2 + ν2

2σ2

)
Im−1

(xν
σ2

)
(6.37)
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where m = n/2, ν = |µ| and Ik (.) is the k-th order modified Bessel function of first

kind. One can also obtain (6.37) from the analytical expressions given in [158] Page 12,

and using the result in [151] Page 80 formula (10) to simplify them. Some studies are

proposed in literature to the estimation of the parameters of the generalized Rayleigh

and Rician distribtions, see for instance [159]. However, the case of a mixture of them is

never considered. Therefore, we propose hereafter an extension of the method derived in

Section 6.3 to the case of the generalized forms of the ditributions.

Let us consider a mixture distribution where classes ω1, ω2 are generalized Rayleigh

and Rician distributed, respectively. Then

p (x) = α p (x|ω1) + (1− α) p (x|ω2) (6.38)

where 0 < α < 1 is the mixing parameter. Given a set of N samples x drawn from

the distribution (6.38), one can estimate distribution parameters Ψ = (α, b, ν, σ) (where

b is the scale parameter of the generalized Rayleigh) by solving the non linear gradient

equations associated the log-likelihood of the samples

`(Ψ) := Q(Ψ|Ψ).

Using useful properties of Bessel functions derivatives [151], after some math gradient

equations will result as

∂`

∂α
=
∑
x∈x

1

α
p (ω1|x,Ψ)− 1

1− α
p (ω2|x,Ψ)

∂`

∂b
=
∑
x∈x

p (ω1|x,Ψ)

[
x2

b3
− n

b

]
∂`

∂ν
=
∑
x∈x

p (ω2|x,Ψ)

[
x

σ2

Im

(
xν
σ2

)
Im−1

(
xν
σ2

) − ν

σ2

]
∂`

∂σ
=
∑
x∈x

p (ω2|x,Ψ)

[
x2 + ν2

σ3
− n

σ
− 2xν

σ3

Im

(
xν
σ2

)
Im−1

(
xν
σ2

)]
(6.39)

where Ik (.) is the k-th order modified Bessel function of first kind. Formally, we derive a

set of iterative equations for approximating the solution of ∇`(Ψ) = 0 according to the

method of subsequent approximations. After some analytical manipulations we get the
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following iterative rules

αk+1 = N−1
∑
x∈x

p (ω1|x,Ψk)

(b2)k+1 =

∑
x∈x

p (ω1|x,Ψk)x2

n
∑
x∈x

p (ω1|x,Ψk)

νk+1 =

∑
x∈x

p (ω2|x,Ψk)
Im

(
xνk

(σk)2

)
Im−1

(
xνk

(σk)2

)x∑
x∈x

p (ω2|x,Ψk)

(σ2)k+1 =

∑
x∈x

p (ω2|x,Ψk)

[
x2 + (νk)2 − 2xνk

Im
(
xνk

(σk)2

)
Im−1

(
xνk

(σk)2

)
]

n
∑
x∈x

p (ω2|x,Ψk)
.

(6.40)

The above formulas fully determine our algorithm. In general, the method of subse-

quent approximations converges at least with linear speed provided the spectral radius of

the Jacobian matrix of the iterative function, computed at the exact solution, is strictly

less than one. Of course, convergence properties of the algorithm strongly depend on the

choice of the first iterate.



Chapter 7

A compound multi-class mixture

model for change detection

The advent of new generation multispectral sensors with high radiometric resolution has

given rise to new challenges in the development of automatic unsupervised change detec-

tion (CD) techniques. In particular, typical approaches to CD are not able to well model

and properly exploit the effects of the increased radiometric resolution that characterizes

new data, which results in a larger number of natural classes visible in the distribution of

each single spectral band. This chapter1 addresses this issue by defining a general model

for change detection in multitemporal multispectral images. Specifically, a multiclass

model of the difference image based on a compound representation of the multitemporal

data is derived, which provides both a general description of the classes that populate the

difference image and an analytical representation of their statistical distributions. The

model is exploited in the context of binary CD based on the magnitude of the difference

image derived by the change vector analysis (CVA) technique. In this framework, un-

der some simplifying assumptions, a multiclass distribution of the magnitude is derived

and a numerical method based on the Expectation-Maximization (EM) algorithm and

Bayes decision is defined. The effectiveness of the proposed method is demonstrated on

a large variety of datasets from different multispectral sensors, including those having

high radiometric resolution. Numerical tests confirm that: 1. the fitting of the magni-

tude distribution significantly improves if compared to already existing models, 2. the

change detection overall error is smaller than that obtained by traditional models and is

comparable to optimal performance.

1parts of this chapter appear in [160]
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7.1 Introduction

Multispectral (MS) images provide information about the observed scene both in the spa-

tial and the spectral domains. Given two coregistered multitemporal images acquired over

the same geographical area, classical CD techniques assign to each pixel a label of type

unchanged or changed [161]. In the context of multiple CD, changed pixels are further

divided into categories representing different kinds of changes [86, 103]. Being CD essen-

tially a classification problem, it can be addressed by both supervised and unsupervised

approaches. In MS images natural classes can be described in statistical terms. Indeed,

radiance values show evident statistical accordance given their originating natural classes

(not necessarily semantic classes). Post-classification methods first classify the two images

separately and then perform CD by comparing the two classification maps [162]. The main

issue is that accuracy is not very high, as this simple approach does not take into account

the temporal dependence of the image pair. Therefore, compound-classification methods

are introduced, that incorporate temporal dependency in the statistical formulation of

the classification problem [74, 163]. Further improvements can be obtained by applying

active-learning techniques for the training phase [77], or domain-transfer techniques if

reference information is available only for one date [164].

The above-mentioned methods do not exploit a direct comparison of the single time

images. In particular, the spectral difference at the pixel level is not explicitly consid-

ered. Nevertheless, the difference image carries useful information for the solution of

the CD problem, especially in the context of unsupervised methods. In change vector

analysis (CVA), changes are associated to spectral variations of pixels after image differ-

encing [131,133]. The orientation of the spectral difference vectors can be used to separate

between different kinds of changes [86]. However, much attention is devoted to CVA for

the specific purpose of unsupervised binary change detection, i.e., discriminating between

unchanged and changed pixels in a bitemporal image pair. Former change detection ap-

proaches assume the difference image as populated by two general classes representing the

unchanged and changed pixels. Decision can be performed by using different techniques,

including: 1) a-posteriori inference based on the Expectation-Maximization (EM) algo-

rithm [82], 2) significance test [85], or, 3) local gradual descent [165]. In the context of

CVA, the two-class model is used for the representation of the magnitude of the differ-

ence image [1,78,112]. Driven by the general intuition that in the difference image pixels

having small magnitude are likely to be unchanged and pixels with high magnitude are

changed, the magnitude information shows to be very informative. Indeed, many studies

about binary change detection involve such feature, and the classical bi-modal behaviour

of the histogram of the magnitude of the difference image is usually interpreted as follows:
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the left mode (low magnitude) represents the population of unchanged pixels, whereas the

right mode (high magnitude) represents the changed pixels. In [112], the distribution of

the magnitude is empirically approximated by a mixture of two Gaussians, and inference

is justified by means of Bayes decision. The binary decision is perfomed by thresholding

the magnitude at the value that produces the minimum overall error of classification based

on the Gaussian mixture (GG) model. Recently, it has been shown [78] that by assuming

the Gaussian distribution of natural classes in the original images, the magnitude distri-

bution can be approximated as Rayleigh for the unchange class and Rice for the change

class. Such model is deeply investigated in [1], where a numerical method based on the

EM algorithm for estimating the parameters of a Rayleigh-Rice (RR) mixture is devel-

oped. The parameter estimates are then used to compute a threshold by following a Bayes

decision rule. Experiments on both real and synthetic datasets show that the RR model

outperforms the classical GG. However, it is also observed that estimated densities do not

fit accurately the magnitude distribution and the computed thresholds for binary decision

are still different from the optimal ones. In this perspective, it seems that the two-class

unchange/change model has some limitations due to the non-negligible effects caused by

some subtle components that actually populate the mixture. Indeed, new generation sen-

sors like those mounted on Landsat 8 and Sentinel 2 satellites, are characterized by a

sensibly increased radiometric resolution compared to the old ones. As a consequence,

multispectral data provided by modern satellite missions present greater statistical vari-

ability and the typical symplifying two-class model [1, 78, 82, 112, 165] for the difference

image may no longer be valid to well describe the CD problem in last generation data.

At the best of our knowledge, there is no study that extends the statistical interpretation

of CVA to the multi-class case. In the sequel we address this specific problem.

In the first part of this chapter, we present a statistical study of the difference image

and we propose a general definition of the change detection problem in the framework

of CVA. In the proposed model, both the unchange and the change classes are multiple,

and their statistical distributions are explicitly derived starting from a well-known joint

distribution model. On the one hand, the proposed model has strong connections with

the compound-classification approach to CD [74, 163], and allows for a formal extension

of this method for the study of the difference image. On the other hand, being a gener-

alization of the statistical description of CVA, our model can be used to generalize the

already existing methods based on CVA to the multiclass case. In the second part of this

work, we propose an extention of the binary change detection based on the magnitude

of the difference image. Under some simplifying assumptions, we derive the theoreti-

cal distribution of the magnitude of the difference image in the general multiclass case.

Then, we develop a framework for binary decision based on Bayes theory. Lastly, we
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present a numerical method for parameter estimation and magnitude thresholding that

is a generalization of the one presented in [1]. It is worth noting that, we do not make

any a-priori assumption directly on the difference image. Instead, our model is derived

from the proposed theoretical study of the difference image, which has more chances to

fit with real data and does not constraint unchanged pixels to have the same statistical

behaviour. Numerical experiments involve both synthetic and real multispectral images

from Landsat 5, Landsat 7, Landsat 8 and Sentinel 2 satellites. Results show that, the

proposed method better fits the real data and improves the detection performance of the

method based on the RR mixture. Moreover, in all experiments it is observed that the

computed threshold is very close to the optimal one.

The chapter is structured as follows. In Section 7.2 the statistical model describing

the difference image is proposed and analyzed in detail. In Section 7.3, firstly we derive

the statistical distribution of the magnitude difference image in the multi-class case, and

then, we propose a numerical method based on the EM algorithm and Bayes decision to

perform binary change detection. Numerical results are presented in Section 7.4. Finally,

Section 7.5 draws the conclusions of the work.

7.2 Statistical study of the difference image

In this section, we provide a theoretical derivation of the statistical distribution of the

difference image starting from the hypothesis of Gaussian distribution of natural classes

in the single time images. Based on this model, we give a formal definition of the multiple

unchange and change classes. On the one hand, the proposed model allows for formally

describing some approaches already present in literature. On the other hand, it also

provides a framework for extending the statistical interpretation of change detection to a

larger set of cases.

7.2.1 A general mixture model for the difference image

Let yt, with t = 1, 2, be two multispectral images acquired over the same area at two

different times. Each image has B bands, therefore each pixel value at location (i, j) is a

B-dimensional vector yt(i, j) ∈ RB, where t = 1, 2. In a general statistical interpretation,

the multispectral image formation is modeled as joint realization of certain B-dimensional

random variables. To each pixel location (i, j) is assigned a random variable (yt,Φt)

where yt ∈ RB is associated to the observed spectral values of the pixel at time t, and

Φt ∈ {φ1, . . . , φC} is associated to its class label at time t. Hereafter, we will assume that

these random variables are i.i.d., thus, the statistical distribution of the images can be fully

described by defining one random variable (yt,Φt) for each single time t. Two remarks
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about the notation used hereafter. First, probability density functions are denoted by

p (.) for convenience. Second, given t = 1, 2 and h = 1, . . . , C, the probabilistic event

Φt = φh is written in a more compact way as φth.

A typical and commonly used [74, 77, 163, 164] joint probabilistic model for y1, y2

assumes that the couple (y1, y2) depends on (Φ1,Φ2). By marginalizing w.r.t. the class

variables, this leads to the following distribution

p (y1, y2) =
C∑

h,k=1

p (φ1
h, φ

2
k) p (y1, y2|φ1

h, φ
2
k). (7.1)

It is reasonable to assume that the realization of the variable yt only depends on its

associated class label Φt, for each t = 1, 2. Therefore, we slightly simplify our joint model

by assuming the following conditional independencies2 [163]:

y1 ⊥ y2 | (Φ1,Φ2)

y1 ⊥ Φ2 |Φ1

y2 ⊥ Φ1 |Φ2

(7.2)

With these assumptions we can split the joint conditional distribution appearing in (7.1)

to obtain

p (y1, y2) =
C∑

h,k=1

p (φ1
h, φ

2
k) p (y1|φ1

h) p (y2|φ2
k). (7.3)

In the most general case, the two images might not present the same set of observable

classes: we assume that {φ1, . . . , φC} is the joint set of class labels which are observable

in both images, where C ≥ 1 is the total number of classes. The fact that some classes

might not be observed in one of the single time images is formalized by setting to zero

the corresponding class prior probabilities. For instance, if class φh is not observable at

time t = 1, then p (φ1
h, φ

2
k) = 0 for all k = 1, . . . , C. A similar argument works for a class

that is not obeservable at time t = 2. Therefore, we let 0 ≤ p (φ1
h, φ

2
k) ≤ 1 and

C∑
h,k=1

p (φ1
h, φ

2
k) = 1 (7.4)

in order for (7.3) to be consistent as a probability model. Now, let us assume that

natural classes are distributed as multidimensional Gaussians in the two images. This

is a common and reasonable assumption in the literature when multispectral images are

2Following a standard notation, for A ⊥ B |C we say that A and B are conditionally indepenent given C. In

words, the knowledge of C makes A and B independent.
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considered [150]. A natural class that is observed at both times might be described

by different statistical parameters in the two images due to seasonal effects, different

radiometric conditions, co-registration errors, etc. Therefore, we model them as

yt|φth ∼ N (yt;µth,Σ
t
h) (7.5)

where µth,Σ
t
h are the mean vectors and the covariance matrices of the class φh observed

at time t = 1, 2.

Under the hypothesis of a joint model as in (7.3)–(7.5), the distribution of the difference

d := y1− y2 can be written as a mixture of (at most) C2 Gaussian components (technical

details are given in Appendix 7.A.1). The density function of the difference turns out to

be

p (d) =
C∑

h,k=1

p (φ1
h, φ

2
k)N (d;µ1

h − µ2
k,Σ

1
h + Σ2

k) (7.6)

where the mixture terms are the class prior probabilities p (φ1
h, φ

2
k).

7.2.2 Physical interpretation of the difference mixture model

The distribution (7.6) formalizes the intuitive concept that the difference image is popu-

lated by a set of classes, each one representing a possible class-by-class matching among

the classes that populate the single time images. As mentioned above, we allow the same

class φh to have different parameters µth and Σt
h in correspondence of the two acquisitions

at times t = 1, 2. Every pixel that can be considered as drawn from the distribution

N (µ1
h,Σ

1
h) in y1 and from the distribution N (µ2

h,Σ
2
h) in y2 is an unchanged pixel, as it

belongs to the same natural class φh. It follows that each class φh has its own unchange

behaviour if and only if the class is observed in both images. Conversely, a pixel that can

be considered as drawn from the distribution N (µ1
h,Σ

1
h) in y1 and from the distribution

N (µ2
k,Σ

2
k) in y2, with h 6= k, is a changed pixel that changed its class from φh to φk. As

a consequence, each class may have at most C − 1 different change behaviours.

In order to better understand which classes are changed and which ones are not

changed, we can reason about priors. Each mixing term p (φ1
h, φ

2
k) is exactly the joint

probability that class φh is observed at time t = 1 and class φk is observed at time t = 2.

These propbabilities can be arranged in a useful way into a square matrix

Q =


p (φ1

1, φ
2
1) p (φ1

1, φ
2
2) . . . p (φ1

1, φ
2
C)

p (φ1
2, φ

2
1) p (φ1

2, φ
2
2) . . . p (φ1

2, φ
2
C)

...
...

. . .
...

p (φ1
C , φ

2
1) p (φ1

C , φ
2
2) . . . p (φ1

C , φ
2
C)

 . (7.7)
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If all the entries of the matrix Q are non-null, the distribution function p (d) has exactly

C2 mixture class components. If class φh is not observable at time t = 1, then the h-th

row of the matrix is null. Similarly, if class φk is not observable at time t = 2, then the

k-th column of matrix Q is null. Other simplifications of matrix Q can be done (i.e.,

setting to zero some of its entries) if prior knowledge about the studied scene is available.

Just as an example, if we know that in the considered image pair it is impossible to

find a change from class φh to class φk, then its corresponding prior probability can be

set to zero, i.e., p (φ1
h, φ

2
k) = 0. All the non-null entries of the matrix Q define the prior

probabilities of the mixture components that populate the difference image. Each of these

mixture components describe the statistical distribution of the pixels that belong to class

φh at time t = 1 and to class φk at time t = 2. It follows that, if h = k, then these pixels

are not changed, whereas if h 6= k, then the pixels have changed their class from φh to

φk. In both cases, their distributions are given explicitly. This interpretation allows us to

give a formal definition of the unchange and change classes. in the difference image, as

multiple classes.

Definition 1 (Unchange class). Each pixel that belongs to class φh both at times t = 1 and

t = 2 is said to belong to the unchange class ωh, where h ∈ {1, . . . , C}. The distribution

of the unchange class ωh in the difference image is Gaussian with parameters

d|ωh ∼ N (d;µ1
h − µ2

h,Σ
1
h + Σ2

h).

The set of all unchange classes is denoted by Ωn, and it contains all classes that are

associated to non-null diagonal entries of the matrix Q:

Ωn := {ωh : p (φ1
h, φ

2
h) 6= 0}.

Definition 2 (Change class). Each pixel that belongs to class φh at time t = 1 and to

class φk at time t = 2 is said to belong to the change class ωhk, where h, k ∈ {1, . . . , C}
and h 6= k. The distribution of the change class ωhk in the difference image is Gaussian

with parameters

d|ωhk ∼ N (d;µ1
h − µ2

k,Σ
1
h + Σ2

k).

The set of all change classes is denoted by Ωc, and it contains all classes that are associated

to non-null off-diagonal entries of the matrix Q:

Ωc := {ωhk : p (φ1
h, φ

2
k) 6= 0, h 6= k}.

As a simple consequence of the two definitions above, we have that the distribuiton of

the difference image can be splitted into two parts as

p (d) = p (d|Ωn) + p (d|Ωc), (7.8)



134 A compound multi-class mixture model for change detection

(a)

(b)

Figure 7.1: Example of statistical dependency of the difference image with respect to the input

pair when the number of natural classes is C = 2. (a) The natural class φ2 is only observable

in image y2, thus the resulting difference image has only one unchange behaviour ω1 and one

change behaviour ω12 (from class φ1 to φ2). (b) Both natural classes φ1, φ2 are observable in the

two images. Therefore, they have their own unchange statistical behaviours ω1, ω2, and mutual

change behaviours ω12 (from class φ1 to φ2), and ω21 (from class φ2 to φ1).

where the first term describes the statistical distribution of the multiple unchange class:

p (d|Ωn) :=
C∑
h=1

p (φ1
h, φ

2
h)N (d;µ1

h − µ2
h,Σ

1
h + Σ2

h), (7.9)

and the second term describes the statistical distribution of the multiple change class:

p (d|Ωc) :=
C∑

h,k=1
h6=k

p (φ1
h, φ

2
k)N (d;µ1

h − µ2
k,Σ

1
h + Σ2

k). (7.10)

Some important remarks are needed here. It is common practice in literature to model

the change class as a mixture of different components [166]. However, the underlying
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assumption is always that the principal changes (the more statistically evident) are a small

subset of all the ones that can be formulated theoretically. In particular this affects also

the modelization of the unchange class, which is commonly reduced to be a single class.

The increased radiometric resolution of last generation multispectral sensors typically

results in more natural classes than the ones typically observed in older images. Thus,

the mentioned approaches may not be appropriate anymore (a simple example about this

distinction when C = 2, i.e., when images can be represented by two natural classes, is

depicted in Figure 7.1). At the best of our knowledge, there is no attempt in literature to

address the change detection problem by explicitly keeping into consideration the potential

statistical variablity of last generation multispectral data. In this work, we propose a

general model that takes into account all the complexities arising by considering that both

the unchange and change classes are multiple classes (it is worth noting that the proposed

model also incudes as particular cases some of the typical approaches to change detection

already given in literature). With respect to the existent literature, the statistical model

in (7.6) (and the discussion in this section), provide us additional quantitative information

about:

1. the physical meaning of the classes that populate the difference image, and,

2. an explicit analytical description of their statistical distribution.

7.3 Derivation of a method for binary decision based on the

difference mixture model

As an application of the framework presented in Section 7.2, here we present the derivation

of a fully automatic numerical method for the calculation of the optimal decision threshold

of the magnitude (binary change detection) that takes into account the complex multi-

class nature of its distribution. Firstly, with some simplifying assumptions, the theoretical

distribution of the magnitude of the difference image is derived from the density (7.6).

Then, a framework for binary change detection is developed by following a multi-class

maximum a-posteriori (MAP) approach. Lastly, a numerical method based on the EM

algorithm [153] for parameter estimation of the derived mixture density is presented.

Parameter estimates are finally used to compute the optimal value for thresholding the

magnitude image and perform the binary change detection.

7.3.1 The magnitude distribution in the multi-class case

The framework presented in Section 7.2 is general and flexible enough to fit many pos-

sible real scenarios of change detection. On the counterpart, the model has several free
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parameters to be estimated from data, thus the development of unsupervised methods

exploiting this model (e.g., multivariate Gaussian fitting) could present critical issues

(e.g., initialization criteria, convergence of parameter estimation methods, decision rules,

limited robustness, etc.) and may result too numerically expensive to apply in reasonable

time. Nevertheless, when a problem such as binary CD is considered, the number of

parameters can be drastically reduced. The theoretical setting given in the previous sec-

tion allows us to derive precise relationships between the parameters of the model in the

original feature space and those modeling the reduced space. Here, we aim at defining an

unsupervised method for binary decision based on a multiclass model for the magnitude

distribution. In order to do this, some simplifying assumptions on the proposed general

model proposed in Section 7.2 are made. Firstly we assume similar radiometric conditions

and no seasonal differences in the two images y1,y2. Therefore we expect the parameters

of the same class to not vary between the two acquisitons, in such a way that

µ1
h = µ2

h =: µh

Σ1
h = Σ2

h =: Σh

(7.11)

for all h = 1, . . . , C. Secondly, since our purpose is to exploit the magnitude information

in the decision process, some regularity assumptions on the structure of the covariance

matrices Σh are needed in order to derive the theoretical distribution of the magnitude as

a Rice-like mixture type [141]. In practice, we assume that covariances are scalar matrices

of the type

Σh = σ2
hIB (7.12)

where IB is the identity matrix of size B ×B and σh are positive scalars representing the

standard deviation of each class. It is common practice in change detection to select a

few bands (the most representatives of the changes of interest) that correspond to distant

frequencies in the spectrum. Being them highly uncorrelated, we see that the assumption

of diagonality of the matrices Σh is not very strict. For simplicity, in the sequel only two

bands are considered (i.e., B = 2) in order to get the well-known Rician distributions

associated to the magnitude variable. However, all the arguments presented can be gen-

eralized to any finite dimension by keeping into account that Rician distributions have

more complex analytical expressions when B > 2. This technical extension is considered

in Appendix 6.A.5. Lastly, we recall again (following from the discussion in Section 7.2),

that spatial independence of pixels is assumed here. Therefore, each pixel value of the

difference image is considered to be drawn from the distribution (7.6) independently from

the others.

By taking into account (7.11), the difference image distribution p (d) can be written
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in the simpler form

p (d) =
C∑

h,k=1

qhkN (d;µh − µk,Σh + Σk). (7.13)

where the mixture terms qhk are the entries of matrix Q given in (7.7), i.e., qhk :=

p (φ1
h, φ

2
k). Notice that each class component of the multiple unchange class is 0-mean

and its covariance matrix is proportional (by factor 2) to the covariance matrix of the

associated (unchanged) natural class

p (d|Ωn) =
C∑
h=1

qhhN (d; 0, 2Σh). (7.14)

Regarding the class components of the multiple change class, they are mutually simmetric

with respect to the origin

p (d|Ωc) =
C∑

h,k=1
h6=k

qhkN (d;µh − µk,Σh + Σk). (7.15)

Indeed, we have that µh − µk = −(µk − µh) and, obviously, Σh + Σk = Σk + Σh.

These considerations enable us to describe the distribution p (d) when coordinates are

changed to magnitude. Indeed, given the previous assumptions, the theoretical derivation

of the distribution of the random variable ρ := |d| = |y1 − y2| is possible (the operator |.|
denotes the Euclidean norm). It follows that the magnitude image ρρρ := {|d(i, j)| : (i, j)}
can be considered as a sample drawn from this distribution. Let us recall the general form

of the Rician distribution that is given by

R(ρ; ν, δ) =
ρ

δ2
exp

(
−ρ

2 + ν2

2δ2

)
I0

(ρν
δ2

)
ρ ≥ 0 (7.16)

where I0 (.) is the 0-th order modified Bessel function of first kind [151]. By defining the

magnitude variable as ρ := |d|, we have that the distribution of ρ follows

p (ρ) =
C∑

h,k=1

qhkR(ρ; νhk, δhk) (7.17)

where νhk = |µh − µk| and δhk =
√
σ2
h + σ2

k. Let us point out some important remarks

here. Since νhh = 0 for every h = 1, . . . , C, we easily have that any component related to

the unchange class is actually Rayleigh. Moreover, the scale parameters of these Rayleigh

distributions only depend on the variances of the associated unchanged classes. More
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specifically, δhh = σh
√

2 for each h. The unchange class in the magnitude space is therefore

described by

p (ρ|Ωn) =
C∑
h=1

qhhR(ρ; 0, σh
√

2). (7.18)

All the other cross terms in (7.17) are mutually equal as νhk = νkh and δhk = δkh for

each couple (h, k) such that h 6= k. Moreover, each non-centrality term is in general

νhk 6= 0, thus all components related to the change class are Rician. It follows that all

the components of the multiple change class group together two-by-two and their mixture

parameters are summed up

p (ρ|Ωc) =
C∑

h,k=1
h<k

(qhk + qkh)R(ρ; νhk, δhk). (7.19)

This means that, in the magnitude space the change from class φh to φk (class ωhk) and the

opposite change (class ωkh) are statistically equivalent. Therefore, the number (and the

meaning) of change classes in the magnitude space is different from that in the difference

space. In light of this, we change the notation for the unchange and change classes in the

magnitude space by adding a superscript ρ, namely Ωρ
n and Ωρ

c .

Once the structure of the matrix Q is known, i.e., when the indeces of its non-null

entries (and not necessarily their values) are known, the number of unchange and change

class members in (7.17) can be easily obtained. Let us denote C ′ := #(Ωρ
n) the number of

members of the unchange class and C ′′ := #(Ωρ
c) the number of members of the change

class. On the one side, only classes that are observable in both images can have their

unchange behaviour, therefore we have in general

0 ≤ C ′ ≤ C. (7.20)

On the other side, each natural class can have at most C − 1 different change behaviours.

Thus, in view of the above mentioned statistical equivalence of change classes ωhk and

ωkh, we have that

0 ≤ C ′′ ≤ C(C − 1)

2
. (7.21)

For ease of notation, in the following the mixture indeces are re-ordered and mixture

and shape parameters are re-named accordingly. We now write the distribution of the

magnitude as

p (ρ) =
H∑
h=1

αhR(ρ; νh, δh) (7.22)
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where H = C ′ + C ′′ and, of course,
∑H

h=1 αh = 1. In the same manner we denote class

labels as ωh ∈ Ωρ
n for h = 1, . . . , C ′, and ωh ∈ Ωρ

c for h = C ′ + 1, . . . , H.

7.3.2 A Bayesian multi-class approach to binary decision

The theoretical model (7.22) describes the distribution of the magnitude of the difference

image in the multi-class case and enables us to define a Bayesian framework for binary

decision based on the maximum a-posteriori principle (MAP) and the thresholding of

the magnitude variable. By following the MAP approach, for any given value of the

target variable, one selects as the most likely originating class the one that maximizes the

posterior probability of observing that value among all classes. It is well-known that this

procedure minimizes the overall probability of committing classification errors. Therefore,

given the mixture model (7.22) we define the MAP classification function

W [ρ] := arg max
ωh∈Ωρ

αh p (ρ|ωh) (7.23)

where Ωρ := Ωρ
n ∪ Ωρ

c = {ω1, . . . , ωH} is the set of all classes. It is worth noting that,

being each competing class either ωh ∈ Ωρ
n or ωh ∈ Ωρ

c , this approach has an intrisic binary

interpretation. Indeed, each value W [ρ] identifies (and associates to ρ) one member of

the two multiple unchange or change classes. Thus, the binary classification based on the

thresholding of the magnitude of the difference image can be defined by

Wn = {(i, j) : W [ρρρ(i, j)] ∈ Ωρ
n}

Wc = {(i, j) : W [ρρρ(i, j)] ∈ Ωρ
c},

(7.24)

where Wn,Wc are the sets of predicted unchanged/changed pixels, respectively.

The Bayes decision method presented here generalizes the two-class approach for bi-

nary change detection presented in [1], as this last one can be derived from (7.23) and

(7.24) when two natural classes are considered (i.e., C = 2), with the additional assump-

tion that one class is observable only in one of the two input images (i.e., C ′ = C ′′ = 1).

An example of this situation is illustrated in Figure 7.1a, whereas in Figure 7.1b a more

general case inolving all possible class unchange and change behaviours is illustrated.

7.3.3 Basic assumptions for the binary change detection problem

The binary change detection problem is usually addressed in literature by assuming the

unchange class to be a single class [1, 78, 82, 112, 165]. Sometimes, such assumption is

extended also to the change class [1,78], while in other cases, the change class is modeled

as multiple [86]. By a careful analysis of matrix Q and its relationship with the mixture

components in (7.22), we see that:
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• A model that assumes both the unchange and change classes to be single, is repre-

sented (in the simplest case) by a matrix of size 2×2. More specifically, the possible

cases are:

Q =

(
q11 q12

0 0

)
,

(
q11 0

q21 0

)
,

(
q11 q12

q21 0

)
,

where we recall that the changes ω12 and ω21 are statistically equivalent in the

magnitude space, thus the last case relates to a single change.

• The assumption of having more than one change in the magnitude space puts a

constraint on the number of natural classes in the model, which must be C ≥ 3. The

description of all possible cases becomes more and more complex when C increases.

As we can see, the modelization of the problem can be arbitrarily complex if we do

not have any prior knowledge about the classes involved. Some information about the

structure of the matrix Q can be recovered in a supervised or semi-supervised way, by

separately analyzing the single time images y1,y2 and their difference d. However, this

kind of approach may result too articulated for the specific purpose of binary change

detection, whereas it seems more appropriate to be developed in the context of multiple

change detection. On the counter part, a model can also be fixed a priori, and a change

detection method can be derived accordingly. In formulating the a priori assumptions for

the development of our method, we mainly consider that: 1) simple models proved to

be effective for addressing the specific binary change detection problem; 2) typically, the

solution of the EM algorithm is sub-optimal (local max), thus the introduction of several

additional parameters will decrease the significance of the solution itself. In view of these

points, let us consider the case where only one relevant change can be identified in the

image pair, so that we can focus the attention on the multiple unchange class. Therefore,

the matrix Q can be assumed of the form

Q =



q11

. . . qhk
. . .

qkh
. . .

qCC


, (7.25)

where h, k ∈ {1, . . . , C} are fixed. We stress the fact that for the derivation of the

statistical model in (7.22), some regularity assumptions on the natural classes are made,

see (7.11) and (7.12). In addition to allowing the derivation of a precise model for the

magnitude distribution, such assumtpions have the remarkably positive effect of collapsing
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many subtle natural classes into a few dominant ones. Indeed, according to (7.14), all

natural classes that are described by the same covariance matrix can be grouped into

one single unchange class in the difference space as their distributions coincide. More

specifically, let us assume that for a fixed p ∈ {1, . . . , C} there is a set of classes Bp ⊂
{1, . . . , C} such that Σh = Σp, for all h ∈ Bp. Then,∑

h∈Bp

qhhN (d; 0, 2Σh) = N (d; 0, 2Σp)
∑
h∈Bp

qhh. (7.26)

This simple mathematical fact proves that the complexity of the unchange class (in terms

of number of distinguishable class members) does not depend on the real number of natural

classes, but only on those that have different covariance matrices. Notice in particular

that, under the considered assumptions, the mean vector of each class (i.e., the feature

vector that mainly characterizes the spectral signature of each class) does not play any

role in the definition of the unchange class members.

Accordingly, we devise a distribution model that is able to represent the unchange

multiple class in terms of dominant classes, while it does not increase too much the

overall complexity of the associated estimation problem. Without putting a constraint on

the actual number C of natural classes that populate the images, we just assume that two

main groups Bp and Bq, with p, q ∈ {1, . . . , C}, can be formed out of all classes, which

are homogeneous in terms of covariance matrices. Thus, we can write

p (d|Ωn) = N (d; 0, 2Σp)
∑
h∈Bp

qhh +N (d; 0, 2Σq)
∑
h∈Bq

qhh. (7.27)

In principle, this simplification could be extended to any number of groups. Nonetheless,

we will show in the experimental part of this chapter how the simple choice of assuming

two dominant classes proved to be sufficiently general to provide a change detection

performance which is nearly optimal.

7.3.4 A numerical method for binary change detection based on the EM

algorithm

The magnitude of the difference image ρρρ is considered to be a set of samples indepen-

dently drawn from distribution (7.22). In order to apply the MAP approach for decision,

parameters of this distribution must be numerically estimated. In the theoretical model

presented in Section 7.3.1, the parameters are constrained by their dependency on the

natural class parametrization. In order to partially recover some flexibility that we lost

in imposing conditions such as in (7.11) and (7.12), we implement a version of the EM

algorithm without parameter constraints. In addition to greater flexibility, this also gives
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the advantage of implementing an unconstrained optimization. Given this, from the a

priori model (7.25) coupled with (7.27) and applied to the distribution (7.22), we can

write the probability distribution of the magnitude of the difference image as

p (ρ) = α1R(ρ; 0, δ1) + α2R(ρ; 0, δ2) + α3R(ρ; ν, δ) (7.28)

where α3 = 1−α1−α2. For notation simplicity we omitted the subscripts of the parameters

of the Rician component (the third term in the summation). Let Ψ = (α1, α2, δ1, δ2, ν, δ)

be the vector of shape and mixture parameters involved in (7.28), then the dependency of

this probability distribution with respect to the parameters can be expressed by writing

p (ρ|Ψ). For any r ∈ ρρρ we define

p (ωh|r,Ψ′) :=
α′h p (r|ωh,Ψ′)

p (r|Ψ′)
(7.29)

to be the posterior probability that the sample r originated in the h-th component of the

population, given Ψ′.

Iterative formulas

By the same arguments developed in [1], it is possible to define an iterative version of the

EM algorithm for the estimation of the parameters of (7.28) as follows

αk+1
i = N−1

∑
r∈ρρρ

p (ωi|r,Ψk)

(δ2
i )
k+1 =

∑
r∈ρρρ

p (ωi|r,Ψk)r2

2
∑
r∈ρρρ

p (ωi|r,Ψk)

νk+1 =

∑
r∈ρρρ

p (ω3|r,Ψk)
I1
(
rνk

(δk)2

)
I0
(
rνk

(δk)2

)r∑
r∈ρρρ

p (ω3|r,Ψk)

(δ2)k+1 =

∑
r∈ρρρ

p (ω3|r,Ψk)

[
r2 + (νk)2 − 2rνk

I1
(
rνk

(δk)2

)
I0
(
rνk

(δk)2

)
]

2
∑
r∈ρρρ

p (ω3|r,Ψk)
.

(7.30)

for i = 1, 2, where I1 (.) is the 1-th order modified Bessel function of first kind [151].

Initialization

Iterative versions of the EM algorithm are known to be typically slow [153]. Moreover, the

proposed algorithm iteratively updates the parameters of three different mixture compo-

nents, for a total of two mixture and four shape parameters. This makes the initialization
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of the algorithm a very crucial point, as a bad strategy may easily result in a stagna-

tion of the parameters updates. In particular, after many numerical experiments (both

on synthetic and real data) we observed that the typical approach of median threshold-

ing [1,82] cannot be used for the preliminary Maximum Likelihood (ML) estimate of the

parameters.

For a correct intialization, we found that the typical local minimum that separates the

two main modes of the histogram of the magnitude must be precisely identified in order

to have a first separation of the samples into two approximate classes: W 0
n (unchanged

samples) and W 0
c (changed samples). Under the hypothesis that this local minimum is

the stationary point of the underlying pdf with less curvature, it can be found as the point

of lower variation of the corresponding cdf. A more stable numerical computation can be

done by calculating the maximum point of the derivative of the quantile function. More

specifically, let Q : [0, 1]→ [0, 1] be the quantile function of the magnitude histogram and

let t0 := arg maxt∈[0,1]Q
′(t). Then, the two approximate classes are defined as

W 0
n = {(i, j) : ρρρ(i, j) ≤ t0}

W 0
c = {(i, j) : ρρρ(i, j) > t0},

(7.31)

Since in the target mixture the components that represent unchanged pixels are two,

the samples in W 0
n are further divided into two sets W 0

n,1, W 0
n,2 by median thresholding.

Finally, shape and mixture parameters of the mixture are estimated via ML approach

(refer to [142]) using the samples in the approximate classes. The shape parameters δi
are estimated using the samples in W 0

n,i, with i = 1, 2, and ν, δ are estimated using the

samples in W 0
c . The mixture parameters αi are approximated by their corresponding

proportions #(W 0
n,i)/#(R), for i = 1, 2.

Convergence

The iterative algorithm defined by (7.30) is gradient-based, thus it can be stopped when

slow variations of the objective energy (the ML function of the given set of magnitude

samples) are observed. More specifically, the algorithm is stopped at the first iteration k

such that the relative variation of the energy is less than 10−6 [1].

7.4 Experimental results

In this section we present an extensive experimentatal analysis of the proposed technique

for binary change detection based on the EM algorithm. Firstly, we desctribe the ex-

perimental setup, which is designed for comparing the proposed technique against the

one recently proposed in [1], which represents a reliable reference in statistical methods
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for binary change detection. Secondly, a brief description of the datasets analyzed in

the tests (including image pairs from different multispectral sensors) is given. Then, the

performance of the EM algorithm for parameter estimation is analyzed in detail, together

with the fitting capability of the models. Lastly, the change detection is performed and

the results are compared in order to assess the effectiveness of the proposed method with

respect to the state-of-the-art techniques.

7.4.1 Experimental setup

The proposed algorithm is designed with the specific intent of improving the change

detection performance of the method proposed in [1] (which is denoted in the following

by rR) in particular in the case where images from last generation multispectral sensors

are considered. In the sequel, parameter notation related to this method is the same as

in the cited reference. The proposed algorithm is denoted by rrR and its parameters are

named according to Section 7.3.4.

Let us present the outline of the experimental setup. Firstly, the image pair is dif-

ferenced and the magnitude image is calculated. Then, the magnitude values are used

to estimate in an unsupervised way the parameters of both the rR and rrR statistical

models via EM algorithm. Iteration details are given and the fitting performance of the

estimated densities are analyzed. Lastly, the estimated parameters are used to perform

Bayes decision according to the MAP approach. In particular, the binary change de-

tection is performed by thresholding the magnitude image using the threshold value T

resulting in the of minimum estimated overall error calculated for both the rR and rrR

cases. The change detection performance is evaluated in terms of missed/false alarms and

overall errors.

7.4.2 Datasets description

The datasets considered hereafter consist of bitemporal image pairs from different multi-

spectral sensors. The images are co-registered and radiometrically corrected. Images are

followed by reference maps of the changes obtained by photo-interpretation. The datasets

are illustrated in Figure 7.2 and briefly described in the following.

Dataset A

Two multispectral images acquired by the Thematic Mapper (TM) multispectral sensor

of the Landsat 5 satellite. The scene represents an area including Lake Mulargia (Sardinia

Island, Italy), at a resolution of 30 m. The images consist of 300× 412 pixels. The dates

of acquisition are September 1995 (t1) and July 1996 (t2). Between the two dates one
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most relevant change, which is related to the extension of the lake surface, occurred in

the study area. The two bands that better represents the change of interest are TM4 and

TM7 (channels 4 and 7), the near infrared (NIR) and the middle infrared (MIR) [78],

respectively.

Dataset B

Two multispectral images acquired by the Enhanced Thematic Mapper Plus (ETM+)

multispectral sensor of the Landsat 7 satellite. The scene represents the same subject of

Dataset A (Lake Mulargia, Sardinia). Spatial resolution is 30 m. The images consist of

310 × 449 pixels. The dates of acquisition are May 2001 (t1) and May 2003 (t2). As for

dataset A, bands ETM+4 (NIR) and ETM+7 (MIR) are selected as most representative

of the change (lake enlargement).

Dataset C

Two multispectral images acquired by the Operational Land Imager (OLI) multispectral

sensor of the Landsat 8 satellite. The investigated area includes Lake Omodeo and a

portion of Tirso River (Sardinia Island, Italy). The images consist of 700× 650 pixels at

a resolution of 30 m. The dates of acquisition are 25th July 2013 (t1) and 10th August

2013 (t2). The main change is a fire occurred between August 7th and 9th in the south of

Ghilarza village. The two bands selected as most representative of the changes are bands

5 and 6, the near infrared (NIR) and the first short wavelength infrared (SWIR1) [1],

respectively.

Dataset D

Two multispectral images acquired by the Multispectral Instrument (MSI) of the Sentinel

2a satellite. The images consist of 300 × 400 pixels at a resolution of 10 m. The dates

of acquisition are 31st December 2015 (t1) and 20th January 2016 (t2). The investigated

area includes the surrounding of Tesis village (Pordenone, Italy). The main changes are

all related to variations in soil conditions due to human activities on crops. The two

bands selected as most representative of the changes are bands 3 and 4, the red and the

NIR channels, respectively.

7.4.3 EM algorithm and fitting performance

In the run of the iterative algorithm for parameter estimation of the rR mixture, the

classical median thresholding technique for the intialization worked well. However, it
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(a) channel 4 at time t1 (b) channel 4 at time t2 (c) change reference map

(d) channel 4 at time t1 (e) channel 4 at time t2 (f) change reference map

(g) channel 5 at time t1 (h) channel 5 at time t2 (i) change reference map

(j) channel 4 at time t1 (k) channel 4 at time t2 (l) change reference map

Figure 7.2: Illustration of the datasets analyzed in the experiments. Thep pictures show pre

and post images in one band and a reference map of the changes (red pixels are minor changes

with respect to the main changes that are respresented by black pixels) for (a,b,c) dataset A,

(d,e,f) dataset B, (g,h,i) dataset C, and (j,k,l) dataset D.
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(a) Dataset A (b) Dataset B

(c) Dataset C (d) Dataset D

Figure 7.3: Fitting capability of the considered methods. Estimated densities are superimposed

to the histograms of the magnitude samples. In the legends also the distance metrics between

the estimated densities and the histograms are given.

resulted in never-ending iterations (the relative variation of the objective energy has never

reached values below tolerance) in the rrR case, for all the three datasets. Therefore,

the more appropriate intialization strategy based on the quantile function (described in

Section 7.3.4) has been used. The intial approximate threshold values obtained in the

calculations are t0 = 0.1477, 0.1091, 0.0559, 0.0100 for Dataset A,B,C and D, respectively.

These values are placed in the central portion of the histograms (cfr. with histograms

in Figure 7.3) between the two principal modes. Notice that this does not hold true

in the case of the median thresholding, indeed the corresponding values obtained in the

computations are tmid = 0.2105, 0.1833, 0.2511, 0.0216. As we can see, such values are

significanlty shifted on the right in the corresponding histograms. This proved to be a

limitation for the initial estimation of the two Rayleigh components in the rrR mixture

as the unchange class is sensibly over-estimated.

Iteration details and the initial and final values of the estimated parameters are shown

in Table 7.1. As expected, the number of iterations and the time of computation increases

in the case of rrR, as there are two additional parameters to be estimated in the model.
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Table 7.1: EM algorithm iteration details and parameter estimations for both the cosidered

mixtures.

mix k estimated parameters secs

Dataset A

rR

α - b - ν σ

4.00 0.93 - 0.04 - 0.25 0.06

60 0.92 - 0.04 - 0.23 0.07

rrR

α1 α2 δ1 δ2 ν δ

73.20 0.79 0.14 0.03 0.07 0.25 0.06

1258 0.71 0.23 0.03 0.05 0.26 0.05

Dataset B

rR

α - b - ν σ

3.50 0.96 - 0.02 - 0.20 0.06

66 0.91 - 0.02 - 0.03 0.10

rrR

α1 α2 δ1 δ2 ν δ

13.90 0.90 0.06 0.02 0.05 0.20 0.06

270 0.62 0.34 0.01 0.03 0.18 0.07

Dataset C

rR

α - b - ν σ

10.60 0.92 - 0.01 - 0.12 0.04

57 0.90 - 0.01 - 0.09 0.06

rrR

α1 α2 δ1 δ2 ν δ

65.40 0.87 0.06 0.01 0.02 0.12 0.04

400 0.79 0.13 0.01 0.02 0.12 0.04

Dataset D

rR

α - b - ν σ

2.150 0.98 - 0.002 - 0.013 0.004

51 0.75 - 0.001 - 0.001 0.004

rrR

α1 α2 δ1 δ2 ν δ

6.010 0.90 0.08 0.002 0.005 0.013 0.004

400 0.55 0.38 0.001 0.002 0.002 0.007

Notice that, between the first an the last iteration, the parameters that are more signif-

icanlty changed are the prior probabilities of classes, i.e., α in the rR case and α1, α2 in

the rrR case.
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Let us now study the fitting properties of the two methods. A qualitative analysis of

the fitting performance can be done by looking at the plots of the estimated densities rR

and rrR, which are superimposed to the histogram of the magnitude in Figure 7.3. The

figure also provides quantitative evaluation of the fitting in terms of χ2-Pearson divergence

and Kolmogorov-Smirnov (KS) distance between data and estimated densities. From the

results we can see that the proposed rrR model fits the data in a satisfying way, and

much better than rR.

7.4.4 Change detection results

The whole theoretical framework presented has been developed with the aim of better

representing the typical distributions that characterize multispectal data acquired by new

generation sensors. Following the expected (and confirmed) increased fitting performance

of the resulting model, it was also expected an improvement in the change detection

performance due to the increased capability of the model of representing the specific

unchange and change multiple classes. Indeed, this has been confirmed in the binary

change detection phase of our tests. Table 7.2 reports the computed threshold value T

and the change detection performance in terms of missed/false alarms and overall errors

for each dataset and each considered mixture model. The results can be compared with

optimal performance based on a usual trial-and-error procedure applied to the reference

maps of the changes.

As we can see, the proposed rrR mixture model for binary change detection proved

to be sufficiently flexible to well model the unchange and change classes in the datasets

as it is able to return the same thresholds (with precision at the second decimal digit)

that are obtained in the optimal case. A qualitative understanding of the performance is

possible by looking at the change detection maps illustrated in Figure 7.4. With respect

to the rR case, the proposed model presents much less false alarms at the expense of very

few additional missed alarms. Notice that, the change maps obtained in the optimal case

are not illustrated in the picture as their differences w.r.t. to the maps obtained with the

rrR model cannot be seen just visually.

7.5 Discussion and conclusion

The new generation of multispectral sensors mounted on satellite missions such as Land-

sat 8 and Sentinel 2 offers a unique oppurtunity of studying and monitoring the Earth

surface by providing images at very short revisit time. Moreover, the new technologies

allow to represent the spectral signature of the observed objects with higher radiometric

resolutions. This augments the statistical variability of the multispectral data and typical
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Table 7.2: Comparison of the change detection performance of the method in [1] and the pro-

posed method with respect to optimal performance.

mix T MA (%) FA (%) OE (%)

Dataset A

rR 0.1332 139 (1.81) 1672 (1.44) 1811 (1.47)

rrR 0.1741 402 (5.22) 498 (0.43) 900 (0.73)

opt 0.1825 491 (6.38) 392 (0.34) 883 (0.71)

Dataset B

rR 0.0624 451 (7.57) 5421 (4.07) 5872 (4.22)

rrR 0.1028 975 (16.36) 801 (0.60) 1776 (1.28)

opt 0.1119 1115 (18.71) 567 (0.43) 1682 (1.21)

Dataset C

rR 0.0390 1104 (3.03) 6309 (1.51) 7413 (1.63)

rrR 0.0548 2029 (5.57) 1789 (0.43) 3818 (0.84)

opt 0.0570 2140 (5.88) 1617 (0.39) 3757 (0.83)

Dataset D

rR 0.0033 841 (11.79) 18963 (16.80) 19804 (16.50)

rrR 0.0071 2563 (35.94) 1074 (0.95) 3637 (3.03)

opt 0.0072 2626 (36.82) 1002 (0.89) 3628 (3.02)

approaches to change detection presented in literature that worked well on data acquired

by older satellite missions are no more able to address the new challenges arising in this

important field of remote sensing.

In order to fill this gap, in the first part of this chapter we presented a theoretical study

of the change detection problem in a full multiclass framework. In particular, a statistical

model of the difference image is derived starting from a few basic assumptions that are

usually made in multispectral image analysis. The aim of the proposed study is that

of defining a model with sufficent degerees of freedom for well representing the intrinsic

multiclass nature of multispectral data also in the CD problem. It is worth noting that,

in the proposed model no a-priori assumptions are made directly on the difference image.

Instead, it explicity describes the dependency between the distributions of natural classes

in the bitemporal image pair and the statistical model of the difference image. Being a

generalization of the statistical description of CVA, our model can be used to generalize

the already existent methods based on CVA to the multiclass case.

Following this direction, in the second part of the chapter our complete model of the

difference image has been exploited in order to describe the statistical distribution of the



Discussion and conclusion 151

(a) rR (b) rrR

(c) rR (d) rrR

(e) rR (f) rrR

(g) rR (h) rrR

Figure 7.4: Change detection map obtained on (a,b) dataset A, (c,d) dataset B, (e,f) dataset

C, and (g,h) dataset D. Blue pixels are missed alarms, red ones are false alarms and green ones

are correctly detected changes.

magnitude of the difference image in a more general fashion. In the experimental part

of this work, the parameters of this statistical model are estimated from data by using
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an iterative version of the EM algorithm specifically devised for dealing with problems

where the unchange class is multiple. Then, inference is done by using a standard MAP

approach. Numerical results on a large variety of datasets demonstrated the effectiveness

of the proposed method with a remarkable improvement with respect to state-of-the-art

approaches. On the one hand, the fitting capability of the proposed model is increased, as

expected. On the other hand, in all considered datasets the change detection performance

is nearly optimal, as confirmed by a comparison with the performance that can be obtained

by exploiting the reference change maps.

7.A Appendices

7.A.1 Statistical distribution of the difference of Gaussian mixtures

An explicit derivation of the statistical distribution of the difference of two random vari-

ables y1, y2 ∈ RB jointly distributed as

p (y1, y2) =
C∑

h,k=1

p (φ1
h, φ

2
k) p (y1|φ1

h) p (y2|φ2
k) (7.32)

where p (y1|φ1
h) = N (y1;µ1

h,Σ
1
h) and p (y2|φ2

h) = N (y2;µ2
h,Σ

2
h) is possible by exploiting

the characteristic function of linear combinations of random variables. For a random

variable y admitting density function p (y), the characteristic function (CF) of y is the

inverse Fourier transform of its density function:

ϕy(t) := E
[
eit

T y
]

=

∫
RB
eit

T y p (y) dy. (7.33)

The CF completely defines the probability distribution of the variable y. For a Gaussian

distributed random variable y, its characteristic function can be described analytically in a

closed form. Let us assume y ∼ N (µ,Σ), then we have that ϕy(t) = exp {itTµ− 1
2
tTΣt},

where i is the imaginary constant: i2 = −1.

Let us now consider the above mentioned random variables y1, y2, and let v := a1y
1 +

a2y
2 be a linear combination of them with coefficients a1, a2 ∈ R. By plugging (7.32) into

(7.33) with y = (y1, y2) and using the properties of the exponentials, the CF of v can be
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calculated as

ϕv(t) = ϕa1y1+a2y2(t)

= E
[
exp

{
a1t

Ty1
}

exp
{
a2t

Ty2
}]

=

∫ ∫
exp
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Ty1
}

exp
{
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Ty2
}

p (y) dy
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2
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ht
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=
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k) exp
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2
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− 1

2
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1Σ1
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}
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(7.34)

This analytical expression uniquely identifies the distribution of v as a mixture of Gaus-

sians

p (v) =
C∑

h,k=1

p (φ1
h, φ

2
k)N (v; a1µ

1
h − a2µ

2
k, a

2
1Σ1

h + a2
2Σ2

k) (7.35)

having C2 mixture components. The distribution of the difference y1 − y2 can be easily

obtained from (7.35) with a1 = 1 and a2 = −1.
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Chapter 8

A class-wise spatial-contextual

approach based on a free

discontinuity model for change

detection in multispectral images

The increased radiometric resolution of last generation multispectral sensors results in

large statistical variability of classes represented in the image. However, classes present

high spatial homogeneity. To preserve classes identity while simplifying their representa-

tion, in this chapter we propose a class-wise spatial-contextual method based on a vari-

ational model with free discontinuities that reduces the statistical variability of classes

by emphasizing their spatial countours. To prove its effectiveness, the proposed method

is applied in the context of change detection in multispectral images. Here, it is able to

augment the discrimination between the unchange and the change classes and to improve

the detection performance.

8.1 Introduction

Statistical minimum effort approaches have been successfully applied to change detection

on multispectral (MS) images [1]. The study of large scenes poses some criticalities in

the utilization of statistical models for MS image analysis, especially for the purpose of

change detection [160]: 1) members of the same semantic class may present different

statistical parametrizations in a whole large scene due to the large swath, especially in

images acquired by optical sensors of last generation. 2) images acquired in different

seasons or under different climatic-atmospheric conditions present a potential high vari-
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ability in the data that may lead to erroneous discrimination of very similar classes or

to difficult discrimination of theoretically distinguishable classes. A complete statistical

representation of a whole scene would inevitably cause overfitting problems due to the

many parameters needed to describe all the classes involved. This typically leads to cum-

bersome computations when parameters must be estimated from data. For example, the

Expectation-Maximization (EM) optimization algorithm can easily get stuck into shallow

critical points and fail to converge. In order to mitigate for this variability by at the

same time avoiding the overfitting problem, we propose an effective image approximation

framework that enjoys both relevant spatial and statistical simplification features. The

proposed framework is based on a well-know variational model for image approximation

in computer vision, to which we give a completely new statistical interpretation.

8.2 A spatial-contextual framework for class-wise statistical re-

duction of multispectral images

In order to introduce our statistical reduction method, we first need to define a novel

spatially related statistical model for MS images which localizes a general multiclass

distribution over homogeneous spatial regions of the image. For convenience we use a

continuous (instead of discrete) model to the representation of the image. Thus, let us

assume a d-band multispectral image to be a function of the type y(x) : Ω0 → Rd, where

Ω0 ⊂ R2 is a rectangular domain and x ∈ Ω0 is the spatial coordinate. We assume the

image formation to be a spatially localized statistical process of the form

p (y, x|Ω,Θ) =
1

|Ω0|

nΩ∑
i=1

χΩi(x) p (y|θi) (8.1)

where:

(i) |Ω0| is the area of Ω0.

(i) nΩ is the number of classes in the image.

(i) Ω := {Ωi : i = 1, . . . , nΩ} is a regular partition of Ω0, i.e., Ωi are open connected sets,

Ω0 = K ∪ (∪nΩ
i=1Ωi) and Ωi ∩Ωj = ∅ for i 6= j. The set K is the total boundary of the

partition. The function χΩi(x) is the indicator of Ωi.

(i) Θ := {θi : i = 1, . . . , nΩ} is a parametric set such that each θi = (µi,Σi) and p (y, θi) =

N (y;µi,Σi) is d-variate Gaussian with mean µi ∈ Rd and covariance matrix Σi ∈ Rd×d.

With sufficent regularity assumptions on the boundary of the regions Ωi, this model is

aimed at concentrating pixels having similar statistical properties (under the Gaussian
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assumption) inside them. This fact can be formally stated in a maximum-likelihood

(ML) framework. Let Y,X be the random variables associated to the values y, x, then a

simple computation shows that the conditional expectation E[Y |X] is given by

E[Y |X] =

nΩ∑
i=1

µiχΩi(x). (8.2)

Therefore, under the statistical distribution p (y, x|Ω,Θ), i.e., given the knowledge of

Ω,Θ, the expected image is a piecewise constant function which takes the means µi as

representative values for the corresponding classes.

8.2.1 A free-discontinuity variational model for boundary and parameter es-

timation

Given an image y drawn from the distribution p (y, x|Ω,Θ), we turn into the problem of

estimating the more likely partition Ω and the parametric set Θ that originated the data.

In order to do that, we firstly show that if Ω is known, the means µi can be estimated

from data by solving the following variational problem

min
u∈PC(Ω)

E0(u) :=

∫
Ω0

|u− y|2 dx (8.3)

where PC(Ω) is the space of piecewise constant functions over the partition Ω. One

can prove (we omit the mathematical proof) that the (unique) solution of (8.3) is u∗ =

E[Y |X] =
∑nΩ

i=1 µiχΩi(x), where µi is the integral mean of y over Ωi. Therefore, the

solution is a piecewise constant function whose values are the class mean ML predictions

estimated from data at each region of the image.

To explictly estimate the location of the class boundaries, we introduce the partition

Ω as a variable in the variational problem. In order to avoid meaningless solutions, we

penalize the total length of the partition boundary H1(K). In this way we come up with a

problem similar to (8.3) with objective functional E0(u,K) :=
∫

Ω0
|u− y|2 dx+ νH1(K),

where ν is a positive parameter. This is the piecewise constant Mumford-Shah func-

tional [3]. In literature there are numerical methods from computer vision and image pro-

cessing to the minimization of functionals of this kind. We notice that convex relaxation

methods [54] and primal-dual approaches [167] (faster than convex relaxation methods)

cannot explictly detect image discontinuities (class boundaries). Among methods that

are able to detect image discontinuities we have the multiphase level set method [168] and

the Ambrosio-Tortorelli approximation [17]. However, the multiphase level set method

requires cumbersome computations and cannot be extended to more than four phases.
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8.2.2 Numerical minimization approach

An effective matricial approach to address the numerical minimization of Ambrosio-

Tortorelli approximaitons of free-discontinuity variational problems on large images has

been proposed in Part I of this thesis. In the following this approach is used for numeri-

cally computing image approximations with low statistically variability and for explicitly

detecting class boundaries, as described in Section 8.2.1. To do so, we need to relax the

piecewise constant assumption by embedding the problem in a weaker space of (differ-

entiable) functions and by adding a gradient penalization term to the objective energy.

Therefore, we aim at minimizing

E(u,K) :=

∫
Ω0\K

|∇u|2 + λ|u− y|2 dx+ νH1(K), (8.4)

the piecewise smooth Mumford-Shah functional [3]. It is worth noting that here u is

not necessarily piecewise constant, but the gradient penalization forces it to be very

smooth (nearly constant) outside the 1-dimensional set K, which is meant to be the set

of discontinuities of u.

The numerical minimization of (8.4) can be addressed by following the approach pro-

posed in Section 4 (see also [4]), which relies on a compact matricial formulation of the

functional and an efficient iterative solver. This approach deals with an extended for-

mulation of the variational problem depending also on second-order derivatives due to

Blake and Zisserman, which includes as a particular case the Mumford-Shah functional.

Straightforward modifications are in order to adapt the solver to the Mumford-Shah case.

An interesting property of the proposed method is that it can be implemented in a parallel

way by means of a simple interconnection rule, thus allowing the segmentation of large

images in competitive time [169].

8.2.3 A parallel tiling approach

The segmentation of large images is typically addressed in the following manner: the input

image is splitted into several tiles, a specific segmentation algorithm is run separately on

each tile and the partial results are merged together. However, the global dependency of

data of typical segmentation approaches produces undesired incompatibility of segments

in the tile sides and some specific post-processing is often needed to remove artifacts even

when some overlap between tiles is applied [170]. In variational models the solution is

theoretically formulated as a minimizer of a global energy, see Section 2.2.2. However,

being these energies non-convex, numerical methods for their solution always return local

minimizers. In particular, the solutions are very dependent on initialization and they are

energetically close to the initial data. This inherently weakens the constraint of global
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Figure 8.1: The proposed tiling scheme with related size parameters.

minimality of the solutions, and at the same time it causes local features of the intial

datum to prevail. As a consequence, descent methods applied to variational problems such

as MS and BZ are expected to have good locality properties in general. One particular

property of this kind seems to be that local minimizers weakly depend on boundary

conditions. So far, we only have experimental evidence of this, but theoretical studies

are on going to formalize this concept. Therefore, the minimization can be (at least

heuristically) addressed on separated tiles that are sufficiently large to let the effect of

boundary conditions vanish far away from the boundary. We exploit this fact to show that

a typical tiling procedure with partially overlapping tiles can be applied to a numerical

method for the minimization of the BZ functional without any need of further processing

on tiles junctions.

The functional is implemented with null boundary conditions, i.e., v0,j = vN+1,j =

vi,0 = vi,M+1 = 0. Formally, the use of Dirichlet conditions corresponds to adding an

artificial discontinuity all along the boundary of the image. During the functional mini-

mization, the artificial discontinuity is detected and its influence vanish elsewhere because

of the localization of the functional (when s, z = 1, the discontinuity does not contribute

to the energy but only the smoothing terms of the functional do). This justify the use

of a tiling approach for addressing the segmentation of large images, as long as we do

not consider some pixels around the boundary. Indeed, if N and M are very large, the

application of the method in [4] to the whole image might be too expensive. Firstly, the
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domain Ω is splitted into partially overlapping tiles of size (n+2p)×(m+2p), with n < N

and m < M and p is the number of overlapping pixels, see Figure 8.1. Straighforward

modifications hold for boundary tiles. Then, the BCDA algorithm with Dirichlet (null)

boundary conditions is run on each tile. Lastly, in the computed solutions, the stripes

corresponding to overlapped pixels (that have width p) are cutted out of the tiles, and

the resulting n ×m pieces are merged. The use of Dirichlet boundary conditions makes

the tiles independent of each other, as no boundary values must be stored for solving

adjacent tiles. Therefore, very efficient implementation is possible on modern parallel

architectures.

8.3 Binary change detection based on class-wise statistical re-

duction

Here we show how the proposed statistical reduction model based on the Mumford-Shah

functional can be applied to the purpose of change detection on MS images. The nearly-

piecewise constant approximation of MS images allows us to obtain a simpified version

of the image with reduced statistical variability. As a consequence, the discriminative

capability of statistical-based CD algorithms increases.

Let y1, y2 : Ω0 → Rd two coregistered MS images acquired over the same area at

different times. By similar arguments to those presented in [160], we can assume their

difference d = y2 − y1 to follow a distribution of the type (8.1). In particular, if only one

significant change occurred between the two observations, we have

p (d, x|Ω,Θ) =
1

|Ω0|

2∑
i=1

χΩi(x) p (d|θi) (8.5)

where: θ1 = (µ1,Σ1), with µ1 = 0, parametrizes the unchange class and θ2 = (µ2,Σ1)

with µ2 6= 0, parametrizes the change class. The binary dection of changes can be done

by changing the coordinates to magnitude and performing the decion in a bayesian frame-

work. The resulting statistical model describing the magnitude of the difference image

is a Rayleigh-Rice mixture distribution [1]. However, the discrimination of the changes

can be challenging if µ2 ≈ µ1 (with possibly µ1 6= 0) and Σ1,Σ2 have large norm. By

reducing the statistical variability of the difference image using the approach proposed

in Section 8.2 we can get a nearly piecewise constant image d, where classes are highly

distinguishable as covariance matrices have signicantly reduced norm. This is confirmed

by numerical experiments that follows.
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8.4 Experimental results

In this section we present the experimental results we obtained for both: validating the

tiling approach proposed in Section 8.2.3, and demonstrating the effectivenes of the change

detection method based on class-wise spatial-contextual approach proposed in Section 8.3.

8.4.1 Experimental validation of the tiling approach

The proposed algorithm has been successfully tested on many different datasets including

medium and very-high resolution images and also Digital Surface Models (DSMs) [35].

Here we present a validation on one of them. The study dataset is a DSM1 of Trento

(Italy) with size 2020× 2020 and spatial resolution of 1 mt (see also [4,35]). We test the

validity of the proposed tessellation scheme by considering as ground truth the solutions

obtained by segmenting the whole dataset, as in [170]. Let g be the input DSM. We

call u, s, z the solutions obtained on the whole dataset (ground truth), and ut, st, zt the

solutions obtained by the tiling procedure described in Section 8.2.3. We set n,m = 505,

therefore the tile grid is 4× 4, for a total of 16 tiles. The number of overlapping pixels is

set to p = 10. The differences between the two solutions are analyzed both globally and

locally, and an evaluation of the tiling approach can be given in terms of their closeness.

Global error analysis. The values of g range between min g = 183.7700 and max g =

971.9160 (meters), and the difference between u and the tiled solution ut is only confined

between minu− ut = −0.5719 and maxu− ut = 0.6179. Moreover, more than 99, 99% of

the difference pixels ranges between −0.04 and 0.04 (thus, between -4 and 4 centimeters),

and their distribution is given in Figure 8.2.2 Similarly, we can also study the differences

between discontinuity and gradient discontinuity mapping functions. Since the values of

these functions range between 0 and 1, their difference is bounded in the interval [−1, 1].

From the histogram of s − st and z − zt in Figure 8.2, we see that more than 99, 99%

of the difference pixels range between −0.025 and 0.025 (in case of s − st), and between

−0.04 and 0.04 (in case of z − zt). Thus, errors are not greater than the 5% of the pixel

values, in all cases. Lastly, as global statistic, we report the mean of the difference images:

3.8414e− 05 for u− ut, −1.1379e− 07 for s− st, and −1.7163e− 04 for z − zt.
Local error analysis. Dirichlet boundary conditions weakly affect the solutions of

the minimization. In Figure 8.3, we plotted a portion of the difference u− ut and of the

function zt (gradient discontinuity map) in correspondence of the tile junctions. As we

can see, the spatial distribution of peaks (high difference values) is not related with tile

1Dataset details and download: http://www.territorio.provincia.tn.it/portal/server.pt/community/

lidar/847/lidar/23954
2Since altimetric precision of input data is estimated at σ = 30 cm, the proposed tiling procedure does not

alter the precision of data measurements.

http://www.territorio.provincia.tn.it/portal/server.pt/community/lidar/847/lidar/23954
http://www.territorio.provincia.tn.it/portal/server.pt/community/lidar/847/lidar/23954
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(a) u− ut (b) s− st (c) z − zt

Figure 8.2: Hitograms of the differences between the solutions. x-axis (binned difference values)

is restricted to a portion where more than 99, 99% of pixels are counted. The central bars are

cutted at the top.

(a) u− ut (b) zt

Figure 8.3: A portion of the difference u − ut and of the function zt in correspondence of a

cross tile junction (indicated by the red traits). The scene represents some old barracks and

sourrounding area.

junctions, neither are discontiuity boundaries. For giving a quantitative measurement of

this, let D ⊂ Λ be the set of pixels (i, j) that surround all the tiles (i.e. for all j and fixed

i = 1, 505, 506, 1010, ..., 2020, and for all i with fixed 1, 505, 506, 1010, ..., 2020). For each

variable v ∈ {u, s, z} and for a given threshold value h, we define the quantity

P h
v :=

#{(i, j) ∈ D : |uij − utij| > h}
#{(i, j) ∈ Λ : |uij − utij| > h}

that returns the ratio of the difference values greater that h that lie in D. We obtained

P 0.01
u = 0.0084, P 0.005

s = 0.0074, and P 0.01
z = 0.0069. Thus, less than 1% of difference

values greater than h are in proximity of tiles junctions. This shows the effectiveness of

the proposed tiling strategy.

Time performance. We run computations with MATLAB R© 2015b, on a standard

workstation. Hardware is Intel(R) Core(TM) i5-4750 CPU @3.20 GHz, 8.00 GB Ram.
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The BCDA algortihm converged in 261 seconds on the whole dataset, whereas it converged

on average in 18 second on each tile. We see that the algorithm can benefit of ad-hoc

parallel implementation, that would significantly enhance the performance in terms of

execution time.

8.4.2 Change detection results

In this section we compare the results of binary change detection obtained in [1] with the

results that can be obtained by prior application of class-wise statistical reduction to the

difference image. The considered dataset is Dataset C from [1] and it consists of a couple

of multispectral images acquired by the Operational Land Imager (OLI) multispectral

sensor of the Landsat 8 satellite. The investigated area includes Lake Omodeo and a

portion of Tirso River (Sardinia, Italy). The image size is 700 × 650 pixels (a total of

455000 pixels) at a spatial resolution of 30 m. The dates of acquisition are 25th July 2013

(pre) and 10th August 2013 (post). The change we are interested to estimate is a fire

occurred between August 7th and 9th in the south of Ghilarza village. The post-event

image is acquired just one day after the fire was extinguished. The area affected by the

fire is mostly agricultural, with an extension of approximately 100 ha. The images are

co-registered and radiometrically corrected. In Figure 8.4a,b the difference image and the

reference map of the changes are shown.

The experiment is carried on as follows: the difference image d is calculated by pixel-

wise subtraction, then the statistically reduced difference image d is obtained by minimiz-

ing the functional (8.4) with d as input data (in place of y). Lastly, the binary detection is

performed in the same manner as in [1]: the magnitude of d is computed, the parameters

of the Rayleigh-Rice mixture are estimated via EM algorithm and decision is performed

according to a Bayes rule of minimum overall error. The minimization of the Mumford-

Shah functional to approximate the difference image has been driven by a selection of the

λ, µ parameters able to reduce the high variability of the two classes involved, i.e., the

background (unchanged pixels) and the fire (changed pixels) and by enhancing their sep-

arability. In Figure 8.4c the difference image after class-wise spatial-contextual statistical

reduction is illustrated. Notice how the smoothing effect that results from the minimiza-

tion of the Mumford-Shah functional resembles a complex anisotropic application of the

Gaussian filtering that affects only the spatial interior of the classes in the image, while

it enhances their boundaries. Moreover, these boundaries are explicitly detected. We can

see in Figure 8.4d that they accurately delineate the transition between the unchange and

the change classes. As quantitative measurement of the reduction of class variability we

report in Table 8.1 the variance of the pixel values (channels 5 and 6) for the change and

the unchange classes in both the original and the reduced difference images.
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(a) (b)

(c) (d)

Figure 8.4: Landsat 8 dataset used in the experiments. (a) Original difference image (false color

composition), see [1]. (b) Reference map of the changes. Black pixels belong to the fire, the

red ones are minor changes unrelated to the fire. (c) Difference image after statistical reduction

(false color composition), this image is used for computations in the experiments. (d) Map of the

class boundaries extracted from the reduced image. The false color compositions are obtained

by putting channels 3,5,6 of the Landsat image into R,G,B.

Table 8.1: Class variance calculated on both the original (d) and the reduced (d) difference

images using channels 5 and 6. The change class contains the fire, the unchange class all the

rest.

change unchange

channel d d d d

5 8.30e−4 3.88e−4 1.15e−4 5.02e−5

6 1.60e−3 5.47e−4 1.10e−4 4.98e−5
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Figure 8.5: Histogram of the magnitude of the statistically reduced difference image and esti-

mated density. Notice that the two classes are well separated.

Then, the magnitude of the reduced difference image d is computed and the EM

algorithm to parameter estimation of the Rayleigh-Rice mixture is run. Figure 8.6a shows

the histogram of the magnitude of the reduced difference image with superimposed the

estimated distribution. Notice that, the unchange (Rayleigh) and the change (Rice) classes

are well separated by a large flat zone in the histogram. They are very distinguishable.

Indeed, the EM algorithm converged in only one iteration. The computed threshold value

for minimum error of classification associated to the Rayleigh-Rice (rR) model is 0.05.

It is very close to the optimal one 0.07, which is calculated by trial and error procedure.

As we can see from Table 8.2, both the calculated and the optimal threshold computed

on the basis of the statistically reduced image d return smaller overall percentage errors

if compared to the same error measurements obtained in [1] (which are computed on the

basis of the original difference image d). Without statistical reduction, the number of

false alarms is much higher. This can be clearly seen also by looking at the change maps

depicted in Figure 8.6, where we can notice that much less false alarms are present, if

compared to [1] and the methods proposed in Chapters 6 and 7, where no reduction is

applied.

8.5 Conclusion

In this chapter we proposed a novel approach to reduce the statistical variability of classes

in multispectral images by means of a class-adaptive spatial-contextual approach. To

prove its effectivenes, the class-wise statistical reduction approach is applied to change
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(a) (b)

(c) (d)

Figure 8.6: Results of the change detection. (a) CD map obtained with the Rayeligh-Rice binay

detector (rR) applied to the reduced image, (b) CD map related to the optimal threshold (opt)

applied to the reduced image. For comparison with the methods proposed in the two previous

chapters: (c) CD map obtained with the rR binary detector (Chapter 6) applied to the image

before reduction, and (d) CD map obtained with the rrR binary detector (Chapter 7) applied

to the image before reduction. In all CD maps red, blue and green are false alarms, missed

alarms and hits, respectively.

detection in multispectral images. After statistical reduction, the difference image presents

two well distinguishable classes that are easily recognized by the binary detection algo-

rithm. Thus, the change detection performance is significantly improved if reduction is

applied.
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Table 8.2: Change detection performance of the Rayleigh-Rice binary detector (rR) and optimal

(opt) performance in the case of the original difference image d (see [1]) and the statistically

reduced difference image d. MA, FA and OE are missed alarms, false alarms and overall errors,

respectively.

MA (%) FA (%) OE (%)

d
rR 956 (2.75) 7805 (1.86) 8761 (1.93)

opt 1964 (5.65) 2657 (0.63) 4621 (1.02)

d
rR 1304 (3.75) 1600 (0.38) 2904 (0.64)

opt 1331 (3.83) 1437 (0.34) 2768 (0.61)
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Chapter 9

Conclusions and future developments

This chapter draws the conclusions of the research carried out in the PhD activity. It

summaries and discusses the results presented in this thesis and proposes some future

research directions to follow for further development of the subjects proposed.

9.1 Conclusions

This thesis introduced novel mathematical models for the representation and analysis of

remote sensing optical images, by focusing in particular on multispectral images. Multi-

spectral images represent a precious source of information for global studies as they are

collected with high frequency all over the globe by modern Earth observation satellites.

This makes it possible to study the global change by analysis and comparison of mul-

titemporal acquisitions. The ever increasing level of spatial/spectral detail available in

last generation images requires novel and more flexible models for their representation.

This is clearly seen in many applicative contexts. This thesis has proposed novel contri-

butions to two important image processing domains: (1) mathematical methods to image

approximation, and, (2) statistical methods to change detection in multispectral images.

In the first part of the thesis, the image model is presented in a mathematical way

as a functional mechanism that maps the spectral response of the observed objects over

a two-dimensional domain. Then, the concept of image approximation is introduced in

a geometrical sense as the process that returns an ideal (simplified) representation of

the image where the objects are clearly distinguishable. Being able to compute an ap-

proximation of an image is fundamental in many applicative areas. In this thesis we

have investigated in great detail two variational models to image approximation due to

Mumford-Shah and Blake-Zisserman. In the variational approach, the image is modeled

as a composition of several pieces on which the image values are homogeneous in terms

of derivatives and the boundary of image objects are identified as image discontinuities.
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The solution of Mumford-Shah and Blake-Zisserman models involves the minimization

of a variational functional depending on both function and set unknowns. Numerically,

computing a solution is a difficult problem. In the thesis a numerical approach to the

minimization of the two mentioned vatiational approaches to image approximation is pro-

posed, with particular attention to the remote sensing application. Indeed, remote sensing

highlights some well-known drawbacks of mathematical methods to image processing: the

difficult scalability to large sized data and the extension of already existing models from

their native scalar version to the vector-valued case. We addressed these important issues

by proposing an efficient highly parallelizable numerical approach based on a compact ma-

tricial formulation of the problem and a specifically tailored version of a block coordinate

descent algorithm that guarantees convergence in competitive time. Several successful

applications of variational methods have been proposed both in the remote sensing and

the image processing domains.

In the second part of the thesis, we studied the change detection problem in multi-

spectral images from a statistical viewpoint. In remote sensing, many change detection

methods are based on the assumption that images can be modeled as realizations of a set

of random variables following specific statistical distributions. Following the progresses

in the development of modern multispectral sensors, more flexible models are needed to

represent images as the statistical variability of last generation images is sensibly higher.

Accordingly, it is observed that change detection methods that have worked well for pre-

vious generations of multispectral images do not provide the same quality of results if

applied to more recent images. The theoretical models presented in the second part of

this thesis are aimed at: (1) giving more degrees of freedom in the representation of mul-

tispectral images, (2) better exploiting the temporal correlation of the image pair for the

pysical interpretation of the changes, and, (3) extend the statistical model to a spatially

related context. From these models, we derived some novel methods to change detec-

tion based on the study of the magnitude of the difference image. Firstly, an algorithm

for binary change detection is derived based on a standard two-class (unchange/change)

model. When coordinates are changed to magnitude unchanged and changed vectors are

assumed to follow a Rayleigh and a Rician distribution, respectively. To perform change

detection, parameter estimation of a mixture involving these distributions is crucial. Since

no method was available in literature, in this thesis we proposed a theoretical derivation

of a parameter estimation method based on the EM algorithm that is specifically tailored

for the Rayleigh-Rice mixture. The experimental results presented in the thesis show that

the binary detection of changes in multispectral images based on the Rayleigh-Rice mix-

ture outperforms the classical change detection approaches based on Gaussian mixtures

and other empirical thresholding approaches. Then, the two-class model is generalized
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to a multiclass model. More specifically, we proposed a compound multiclass statistical

model that, under certain assumptions, describes the relationship between the distribu-

tion of the classes populating the difference image and the distribution of natural classes

in the image pair by taking into account the temporal correlation between the images.

By taking advantage of the proposed compound multiclass approach the fitting and the

dectection performance are further improved. In particular, in several experimental tests

on different image pairs a better modelization of the unchange class as a multiple class

has returned an improved fitting of the magnitude histogram and a nearly optimal change

detection accuracy. To account for the difficult application of statistical models for change

detection on large images, we proposed an approach to image semplification aimed at re-

ducing the statistical variability of classes while still preserving their spatial distribution.

The proposed method relies on an extention of the multiclass image model to a spatially

related context. This formulation allowed us to propose a new statistical interpretation

of the piecewise smooth Mumford-Shah model, which becomes relevant in the solution of

the change detection problem using statistical methods on large datasets. To enforce the

remote sensing application, the method is coupled with a tiling approach that allows the

processing of large images by exploiting a parallel implementation.

9.2 Future developments

The subjects proposed in this thesis lay the groundwork for several investigations. In

the following, some planned research directions are proposed to deepen the proposed

theoretical arguments and extend their applications.

Variational methods to image approximation demonstrated to be a valid tool in many

different applications, e.g., statistical reduction of multispectral images, piecewise linear

approximation of urban Digital Surface Models (DSMs), polygonal boundary approxi-

mation, scale space representation of VHR images, etc. In particular, the second-order

model due to Blake-Zisserman has shown promising results if applied to DSMs for the

detection of planar surfaces (e.g., building rooves) [35]. The automatic detection of geo-

metric features, such as edges and creases, from objects represented by 3D point clouds is

a very important issue in different application domains including urban monitoring and

building reconstruction. A limitation of many methods in the literature is that they rely

on rasterization or interpolation of the original grid, with consequent potential loss of

detail. Currently, we are investigating the possibility of implementing a finite element

algorithm (FEM) to variational approximation and edge detection on unstructred point

clouds (e.g., LiDAR measurements, Tomographic SAR). Difficulties arise because the Hes-

sian (2nd order operator) cannot be discretized by standard linearization techniques and
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specific workarounds must be found. Preliminary results have been encouraging [171].

In Appendix 6.A.5 we derived a general version of the EM algorithm to parameter

estimation of the mixture between generalized Rayleigh and Rician distributions to fit

the distribution of the magnitude of a random variable described by a mixture of two B-

variate Gaussians. In the change detection application, this allows us to exploit exactly

B bands of the multispectral difference image to discriminate between unchanged and

changed pixels. However, it is observed in some preliminary tests that, even by fixing all

shape parameters, for increasing values of B the discriminative capability of the mixture

decreases. In mathematical terms, we conjecture that the probability of misclassification

error associated to the mixture tends to 1 as B →∞ (the course of dimensionality due to

the change of coordinates from cartesian (B-dimensional) to magnitude (1-dimensional)).

In practical terms, a proof of the conjecture would imply the existence of an optimal

selection of B (possibly depending on the data) such that the discriminative capability of

the mixture is maximized.

The framework for class-wise spatial-contextual approximation of multispectral im-

ages based on the Mumford-Shah piecewise smooth approximation proposed in Chapter 8

allows us to extend the statistical approach to change detection on large images and gives

us some advantages. On the one hand, the significant reduction of class variability (lower

variances) augments the typical performance of parameter estimation algorithms as classes

are more easily distinguishable. Therefore, many different classes have more chances to be

discriminated and the statistical approach to change detection can be extended to the de-

tection of different kinds of changes. On the other hand, the proposed approach represents

a generalization of the statistical multiclass model for the difference image to a spatially

related context. As we have seen in the thesis, the Mumford-Shah functional is in strict

relationship with Gibbs ditributions. Therefore, the proposed approach represents a valid

alternative to change detection methods based on Markov Random Fields (MRFs) [82],

or Spatially Variant Finite Mixtures (SVFM) [172]. A comparison of these approaches

could clarify advantages and disadvantages of using these different approaches. Lastly,

we are planning an integration of the proposed analysis of the difference image with the

compound-classification approach to change detection [163], where the additional infor-

mation about the physical meaning of the classes that originate after image differencing

can be used to enforce the capability of the classifier to model temporal correlation in the

data.
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