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Recent experimental results have suggested important direct implications of viscoelastic-
ity of human cells and cell cytoskeleton dynamics on some relevant collective and at 
single-cell behaviors such as migration, adhesion, and morphogenesis. Other experi-
mental studies have been performed on individual cancer and healthy cells of different 
types, demonstrating that the former were about 70% softer than the latter. In this thesis 
with the aim of characterizing — and gaining insights into — the frequency response of 
single-cell systems to mechanical stimuli (typically LITUS), a generalized viscoelastic 
paradigm which combines classical and spring-pot based (fractional derivative) models is 
presented. Than  the modelling has been enriched considering the non-linear effect of the 
prestress, induced in protein filaments during cell adhesion and in the cell membrane 
(with a simple multiscale scheme that incorporates finite elasticity and a 3-D circus 
tent-like model), on the overall cell stiffness and finally determining its influence on the 
in-frequency response of the cell. The theoretical results have shown that the differences 
in stiffness — at least in principle — allow us to mechanically discriminate between tumor 
and normal cells: the critical frequencies associated with oscillation magnitude peaks 
(from tens to hundreds of kilohertz) could be helpfully utilized for targeting or ad hoc 
altering the functions of cancer cells. An experimental validation of the theoretical results 
is an ongoing work and the preparation of the experimental setup is also presented.
In this thesis some first models have been presented to replicate in-vivo collective behav-
ior of cells. Coherent angular rotation of epithelial cells has been reproduced by a 
cell-centered based mechanical model in which units are polarized, motile, and interact 
with the neighboring cells via harmonic forces. Starting from this model a continuum 
non-linear viscoelastic model incorporating the dynamics of liquid crystals has been 
studied and some preliminary numerical simulations have been performed.
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S U M M A RY

Cells are fundamental units of any biological material. Their single
and collective behaviors and the way in which they grow and aggregate
interacting with the extracellular matrix to form tissues and organs in the
human being are at the basis of most of the current resarch efforts in biol-
ogy, medicine and bioengineering. Despite this great interest, many cell
processes and related mechanobiological phenomena are still obscure or
only partially understood.
Recent experimental results have suggested important direct implications
of viscoelasticity of human cells and cell cytoskeleton dynamics on some
relevant collective and at single-cell behaviors such as migration, adhe-
sion, and morphogenesis. As a consequence, the mechanical properties
of single cells and how cells respond to mechanical stimuli have gained
increasing interest and to date are at the center of a vivid debate in the
scientific community.
It has been observed, for example, that the effect of UltraSound (US)
upon single cells is significantly influenced by the sonication protocol
tratment in terms of the frequency and the energy density applied [56].
In fact, cell membrane damage has been induced by US in human blood
cells and leukaemic cell lines [38] and it has been also seen that malig-
nant cells are sometimes much more susceptible and prone to be killed
than normal cells when subjected to ultrasound exposure [79, 80]. Fur-
ther studies have shown that Low Intensity UltraSound (LITUS) decreases
cell growth and induces cell death (apoptosis), inhibits cell proliferation
in different kind of cell cancer lines as well as increases and stimulates
wound healing [16, 62, 118] although the same investigators admit that
"the molecular mechanism has not yet been clearly understood". The bio-
logically relevant motion of intracellular particles, induced by ultrasonic
waves, has been hypothesized to play a key role in the mechanism under-
lying the relative displacement between cell organelles and cytoplasm
as an effect of the different inertias of the media. Although the question
of how the mechanical vibrations act on the biological cell behaviour
remains substantially an open issue, a study by Or & Kimmel [103] the-
oretically explores the possibility of resonance-like phenomena and sug-
gests that mechanically induced oscillations —larger than maximal ther-
mal fluctuations— might kindle high-frequency (compatible with low-
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intensity therapeutic ultrasound (LITUS) ranges) strain regimes, poten-
tially able to determine fatigue-like phenomena in cells. In particular,
the frequency resonance hypothesis assumes that the absorption of ultra-
sound by proteins and protein complexes may directly alter signalling
mechanisms within the cell, determining conformational shift or disrupt-
ing multimolecular complexes at critical frequencies around both 45 kHz
and 1 MHz [66].
On the other hand, very recently, experimental studies have been per-
formed on individual cancer and healthy cells of different types, demon-
strating that the former were about 70% softer than the latter [1, 22, 23,
41, 70, 81–83, 85, 100, 104, 113, 115]. It seems that the increase in cell
deformability is directly related to cancer progression, as observed by
Ketene et al. [70] in the case of a transformed phenotype from a benign
(non-tumorigenic) cell to a malignant (tumorigenic) one. Ploidinec et
al. [111], by resolving the nanomechanical signatures of defined stages
of tumour progression, also confirm that cancer evolution is associated
with a significant softening of tumour epithelial cells in comparison with
normal mammary epithelium, including metastasis, hypothesizing that
metastatic cells gain their migration capabilities by acquiring a certain
degree of flexibility and deformability to escape their original niche. Very
recently, some studies have in detail modeled single-cell response to me-
chanical stimuli [44, 45, 59, 60].
Here, by recalling the above-mentioned experimental evidences related
to the discrepancies in deformability between tumour and normal cells,
with the aim of characterizing — and gaining insights into — the fre-
quency response of single-cell systems to mechanical stimuli (typically
LITUS), a generalized viscoelastic paradigm which combines classical
(say Voigt, Maxwell and standard linear Kelvin (SLK)) and spring-pot-
based (fractional derivative) models is presented in Chapter 2, in Chap-
ter 1 preliminary introducing the fundamentals of nonlinear mechanics
and classical and fractional viscoelasticity used in the PhD dissertation.
To this first purpose, any detail on the complex structural organization of
the cells in which the nucleus, cytoskeleton, elastic membrane and gel-
like cytosol govern and interact with the cascade of events at the basis
of the mechanobiology of the system has necessarily been neglected. Af-
ter preliminary sensitivity analyses aimed to catch both qualitative and
quantitative remarks on mechanically stimulated single-cell systems, the
viscoelastic modelling was thus confined to cell lines whose mechani-
cal properties have been experimentally measured in the literature with
reference to healthy cells and their cancer counterparts. The theoretical
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results will show that the differences in stiffness — at least in princi-
ple — allow us to mechanically discriminate between tumour and nor-
mal cells, the critical frequencies associated with oscillation magnitude
peaks (from tens to hundreds of kilohertz) confirming that mechanical
resonance-like phenomena can prevail with respect to thermal fluctua-
tions and thus could be helpfully used for targeting or ad hoc altering
the functions of tumour cells. Furthermore, by making reference to ex-
perimental studies which evaluated the stiffness of single cells by means
of Atomic Force Microscopy, Optical Tweezers and other techniques, it
emerges that, when dealing with living systems, these measures of stiff-
ness can be significantly affected by intrinsic structural changes of the
biological matter, for example by the reorganization dynamics guided
by polymerization-depolymerization processes, which change the inter-
nal configuration of the cytoskeleton in this way regulating adhesion and
migration cell capabilities and in turn provoking nonhomogeneous cell
deformations and changes in stiffness ([3, 9, 116]), with Young’s moduli
also oscillating from approximately 100 Pa to 10kPa ([11, 22, 23, 41, 70,
81–83, 85, 100, 113, 115]).
However, the vast majority of the experimental data somewhat consider
stiffness of “round” (suspended) cells and not much effort has been de-
voted, from the modeling standpoint, to mechanically relate the overall
change of cell stiffness to its stretched configuration and to the average
number of active/assembled cytoskeletal filaments. Therefore, with the
aim to enrich the modeling of single-cell systems, in Chapter 2 has also
been considered the effect of the prestress (for instance, induced in pro-
tein filaments during cell adhesion) on the overall cell stiffness, finally
determining its influence on the in-frequency response of the cell. To
this end, a simple multiscale scheme that incorporates finite elasticity
has been first proposed to include, by using a bottom-up homogeniza-
tion procedure, suitable prestress-modified stiffness values into the vis-
coelastic single-cell models. Once the analytical expression of the overall
elastic stiffness of an adherent cell has been obtained, some key model
parameters (i.e., prestretch and number of “active” filaments) are then
identified and determined to fit the realistic stiffness moduli experimen-
tally measured in the literature for several cell types. Finally, considering
the generalized spring-pot based (fractional derivative based) viscoelas-
tic models above mentioned, the role played by the stretched state of the
cytoskeletal elements on the cell vibration is studied in detail through
sensitivity analyses in order to catch the variation on the resonance-like
frequencies of the vibrational displacement of the nucleus with respect
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to its environment.
Successively, an enhanced 3-D circus tent-like model, which includes
finite elasticity and involves prestretched filaments in the membrane as
well as the deformation of the nucleus, has been introduced to better cap-
ture the actual effects of the cell configuration states on the overall out
of plane stiffness. For modeling the nonlinear mechanical behavior of
the cell membrane, by considering some recent analytic and experimen-
tal results regarding the stiffness tuning effect of Dielectric Elastomer
followed by the application of a Electrical Field [27, 107–109], it has
been constructed an analytical approach to find a solution of memebrane-
nucleus coupled problem. The model proposed could be helpfully uti-
lized in AFM experimental measurements when determining stiffness
maps for example to give formulas for obtaining how actual prestress
level in the cell membrane influence the overall cell elasticity.
To replicate more faithfully in-vivo behavior of cells, in Chapter 3, pre-
liminary results and some first models have been presented to investi-
gate the role that mechanics plays in collective cell behaviors, relevant in
wound healing and embrogenesis processes (gastrulation). In fact, Wol-
gemuth et al. [78] suggest that wound healing is predominantly a me-
chanical process that is modified, but not produced, by cell-cell signaling.
Coherent angular rotation of epithelial cells, occuring during many vital
physiological processes including tissue morphogenesis and glandular
formation, has been replicated by Mandar et al [122] by a cell-centered
based mechanical model in which units are polarized, motile, and interact
with the neighboring cells via harmonic forces. Starting from the above
mentioned literature, a continuum non-linear viscoelastic model (upper
convected Maxwell model) incorporating the dynamics of liquid crystals
has been studied and some numerical simulations have been performed
in order to reproduce recent experimental biological evidences for col-
lective behavior of cells such as gastrulation.
Some in-progress experimental activities in act in the laboratory of the
Institute of the Applied Sciences and Intelligent Systems "ISASI- Ed-
uardo Caianiello" of the National Research Council (CNR) have been
illustrated in Chapter 4. The activities have been to date limited to asses
the experimental procedure and calibrate the setup. Subsequently analyz-
ing cancer and healthy cell lines, ultrasounds will be applied at selected
frequencies to prove the theoretical principle described in Chapter 2.
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1
M E AC H A N I C A L F R A M E W O R K

In this chapter, the fundamentals of continuum mechanics are recalled,
with specific attention to the formulas and methods nedded to follow the
PhD Thesis issues. Additionally, essential concepts of classical and frac-
tional viscoelasticity have been also introduced. The interested reader
will find more details obout continuum mechanics in the work by Gurtin,
Ogden, Holzapfel, Bigoni, Cowin. [6, 20, 54, 55, 61]. Viscoelasticity
can be instead deepened in books by Tschoegl, Samko, Cottone [18, 117,
127].
About the notation, vectors in the Euclidean R3 are indicated by bold-
face lower-case letters (a,b, ...) and second order tensors with upper bold-
face letters (A,B, ...). The classical continuum hypothesis for which the
body B occupies densely the space R3 is used, hence the existence of
a strictely positive continuous density function ρ(x), for any x ∈Ω, has
been postulated.

1.1 K I N E M AT I C S

Let us consider a body B that occupies densely a subset of the Eu-
clidean space. An arbitrary configuration is chosen as a reference con-
figuration, denoted by Ω0, for which the body is considered in a unde-
formed state. During the motion a change in configuration could occur
and so a new region of the space Ω, the so-called current configuration,
is occupied.
Two different coordinates systems (COOS), that is the reference frame
with fixed origin O and orthonormal basis vector EI (I = 1,2,3), and the
current frame with basis ei (i = 1,2,3) and origin o are introduced. As
well-known, problems in continuum mechanics may be formulated either
using the so-called Lagrangian (or material) description, i. e. referring
everything w.r.t. the reference frame and so using the reference position
X as independent variable, or using the so-called Euelerian (or spatial)
description, i. e. referring everything w.r.t. the current frame and consid-
ering the current position x as independent variable. Capitol and lower
letters notation are used referring to the material and spatial description,

1
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respectively. The Einstein summation convention of the repeated indexes
is used.
The change in configuration is due by the motion (u) defined as follows

u = x−X, (1.1)

being X the material (or Lagrangian) description for the position of a
point in the reference configuration and x the corresponding current (Eu-
lerian) position of the same point in the current configuration.
The current position is mapped by a bijective so-called deformation func-
tion (χ : Ω0 → Ω) x = χ(X), assumed to be sufficiently regular; X =

χ−1(x) describes the inverse mapping.
In order to analyze the deformation locally, i.e. in a neighborhood of a
material particle, it is possible to consider the differential of the defor-
mation mapping dxi =

∂ χi
∂XJ

dXJ which is possible to write as follows in a
compact way

dx = FdX (1.2)

where the second order tensor F is the deformation gradient or the gra-
dient of the deformation mapping with respect the material coordinates,
i.e.

F = Gradχ(X) ≡ ∇X ⊗χ(X) = I+∇X ⊗u(X). (1.3)

The gradient of the inverse motion χ−1(x) corresponds to the inverse of
the deformation gradient F−1 defined as follows

F−1 = gradχ
−1(x) ≡ ∇x⊗χ

−1(x) (1.4)

In the equations (1.3) and (1.4) Grad and ∇X symbols denote gradient
operation with respect the reference frame and to distinguish from grad
or ∇x symbols that are gradients taken with respect the current reference
frame. u(X) and u(x) are the two different descriptions of the displace-
ment field.
F and F−1 are two-point tensors that map the material fiber (dX) in spa-
tial fiber (dx) and vice versa respectively. The representations of F and
F−1 with respect to the bases previously introduced are the following

F = FiJei⊗EJ and F−1 = F−1
I j EI⊗ e j (1.5)

where the mixed nature of FiJei = ∂xi/∂XJ and F−1
I j = ∂XI/∂x j is high-

lighted.
For the physical meaning associated with the relationship (1.2) J = detF >
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0. In particular J assumes the physical meaning of the changing in vol-
ume of the neighborhood of X during the deformation, being J the deter-
minant of the Jacobian matrix, i.e.

dv = JdV (1.6)

being dV and dv the elementary volume in the reference and current
configuration. J = 1 means that the transformation is isochoric and if it
happens for all the possible deformations implies that the material is in-
compressible.
Furthermore, considering the infinitesimal vector area dA = NdA with
normal N and centered in the reference position X in Ω0, it will be trans-
formed in the current infinitesimal vector area da = nda with normal n
and centered in the current position x in Ω by means the deformation
gradient F following the so-called Nanson’s formula

nda = JF−TNdA (1.7)

It is worth to highlight that the deformation gradient incorporates both
the change in orientation (rotation) and in elongation (stretch) that the
material fibers dX undergo during the deformation. To uncouple this two
different effects the polar decomposition theorem is used. In fact, given
a second order tensor F there exist two symmetric and positive definite
tensors, U and V, and a unique orthogonal rotational tensor R (RRT =

I = RTR, detR = +1) such that

F = RU = VR (1.8)

being R a two-point tensor, while U and V are the right and left stretch
tensors respectively given by

U = (FTF)1/2
, V = (FFT)

1/2
(1.9)

Using the spectral decomposition it is possible to explicit in a diagonal
form the stretch tensors as follows

U = λIĒI⊗ ĒI, and V = λiēi⊗ ēi (1.10)

where ĒI and ēi are the eigenvectors, the principal directions, in the refer-
ence and current frames respectively; instead λI = λi are the eigenvalues
or principal stretches, which assume the physical meaning of changes
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in length of the material or spatial fiber in the principal directions. As
shown by eqn. (1.10) U lives and acts in the reference frame, namely
maps a vector living in the reference frame Ω0 into itself, V doing the
same in Ω.
In this framework the deformation gradient, through the polar decom-
position, can be seen as acting on a generic vector in two different sub-
steps. Considering the right decomposition a stretching in the reference
frame is followed by the rotation which causes the changing from refer-
ence frame to current frame, while considering the left decomposition,
a change of reference frame is followed by a stretching in the current
frame.
Polar decomposition of F and the spectral decomposition of U and V
give J = detF = detU = detV (since detR = 1) in terms of the principal
stretches

J = λ1λ2λ3. (1.11)

Furthermore, the second order tensors

C = FTF = U2 and B = FFT = V2 (1.12)

are the right (C) and left (B) Cauchy stretch tensors following the same
properties of U and V respectively, except for the fact that in the spec-
tral decomposition the eigenvalues appear squared. The stretch tensors
C and B provide local measures of the deformation since, as above high-
lighted ( eqns. 1.10 and 1.12) their principal components represent the
stretch of three orthogonal fibers, aligned with the eigenvectors. There-
fore, all the tensors C,B,U and V can be chosen to quantify the strain.
Worthily a strain measure must exclude rigid rotation and translations
because does not produce actual deformations. In this perspective there
are infinite possibilities of choices, collected in Lagrangian and Eulerian
strain measures as follows

E(m) =

U(m)−I
m form 6= 0

logU form = 0
, G(m) =

V(m)−I
m form 6= 0

logV form = 0
(1.13)

being m an integer. For the special case of m = 0, the Hencky strain mea-
sure, the logarithm of a tensor is defined for symmetric positive definite
tensors taking the logarithm of the eigenvalues (εi = logλi) in its spectral
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decomposition or the so-called true strain. When m = 2, E(2) and G(2)

are the Green Lagrange strains that from eqn. (1.12) and (1.3) one has

E(2) =
1
2

[
∇X u+(∇X u)T +∇X u (∇X u)T

]
and

G(2) =
1
2

[
∇xu+(∇xu)T +∇xu (∇xu)T

] (1.14)

When the displacement field is infinitesimal, the material description
U coincides with the spatial description u and the second-order terms
in (1.14) can be neglected and so E(2) ' G(2) ' E, being E = 1

2 (∇u+

(∇u)T the infinitesimal strain.

Rigid-body rotation in reference and current configuration: transforma-
tion of the kinematic tensors

It will be considered, here, the effect of rigid-body rotations, repre-
sented by a tensor Q ∈ Orth+ applied in the reference configuration or
in the current configuration to the kinematic tensors.
If the rotation is applied in the reference configuration as reference frame
can be chosen Ω0 or Ω∗0 in which the difference is a rigid-body rotation.
A vector w living in the current configuration can be seen, following
Equation (1.2), either as result of

w = Fw0 or w = F∗w∗0, (1.15)

being F and F∗ the two deformation gradients relative to the two ref-
erence configurations Ω0 and Ω∗0 respectively, w0 and w∗0 = Qw0 the
vector w seen in the two reference frames. Thus one has the deformation
gradient relative the rotated configuration as follows

F∗ = FQT (1.16)

Considering now a rigid body rotation in the spatial configuration, one
can consider two different current frames Ω and Ω∗. The Eulerian vec-
tor w differs from its representation in the rotated frame (w∗ = Qw) and
since Equation (1.15) holds true, between the two deformation gradients
when a rotation is applied in the current configuration the following rela-
tionship is found

F∗ = QF (1.17)

From Equations (1.16) and (1.17), when a rigid-body transformation is
applied in the reference or current frame the relationship between the
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"Rotated" tensor
Rigid-body rotation

in the reference frame

(Ω0→Ω∗0)

Rigid-body rotation

in the current frame

(Ω→Ω∗)

F∗ FQT QF
R∗ RQT QF
U∗ QUQT U
V∗ V QVQT

C∗ QCQT C
B∗ B QBQT

E(m)∗ QE(m)∗QT E(m)∗

G(m)∗ G(m)∗ QG(m)∗QT

Table 1: Transformation for Kinematic tensors for rigid-body rotations in refer-
ence and current frames

tensor C∗, U∗, E(m)∗, B∗, V∗, and G(m)∗ and their unrotated counter-
parts are reported in the Table 1, where is possible to better recognize
the Lagrangian, Eulerian or two-point nature of the kinematic tensors. In
fact, a purely material tensor (C,U and E(m)) is not affected by the trans-
formations in the spatial configuration; on the contrary, a purely spatial
tensor (B,V and G(m)) is not affected by the transformations in the mate-
rial configuration. A two-point tensor (F,R), finally, is always influenced
by both material and spatial rotation.

The dependence on time and some time derivations

For sake of simplicity up to here it has not been considered the depen-
dence on time of the mapping x = χ(X, t), namely the current config-
uration Ωt is actually dependent from the instant t. Since the mapping
is invertible as above highlighted is possible to use indifferently both
the material and spatial description of the motion. It is, thus, possible to
introduce the material description of the velocity, as follows

v(X, t) ,
∂ χ(X, t)

∂ t
. (1.18)

In a similar way, it is possible to introduce the spatial description of the
velocity, as follows

v(x, t) ,
∂ χ(χ−1(x, t), t)

∂ t
. (1.19)

More generally, for a generic field f the time derivative depends on the
description used. In fact the Material time derivative, here indicated by
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D�
Dt or �̇ of a materially described field f (X, t) is the time derivative with

the position X held fixed, namely

ḟ (X, t) =
D f (X, t)

Dt
=

∂ f (X, t)
∂ t

holding X fixed. (1.20)

The Spatial time derivative, here indicated by d�
dt or �′ of a spatially

described field f (X, t) is the time derivative with the position x held
fixed, namely

f ′(x, t) =
d f (x, t)

dt
=

∂ f (x, t)
∂ t

holding x fixed (1.21)

Finally, to compute the material time derivative of a spatially described
field f (x, t), one must first convert its description to material X= χ−1(x, t),
take its (material) time derivative using the chain rule, and then convert
the result back to spatial, obtaining

ḟ (x, t) =
D f (x, t)

Dt
= grad f (x, t) ·v(x, t)+

∂ f (x, t)
∂ t

. (1.22)

Note that in the Equation (1.22) the "essence" (scalar, vector, second or-
der tensor, etc) of the field f must to be taken into account, when the
gradient and the associated meaning of the inner product (grad f (x, t) ·
v(x, t)) are considered.
Considering, for example, the material time derivative of the spatial de-
scription of the velocity field v(x, t); one obtains

v̇ = Lv+
∂v
∂ t

(1.23)

where
L = gradv (1.24)

is the spatial tensor velocity gradient that maps spatial vector in spatial
vector and the meaning of the operation Lv has to be considered as the
action of the tensor field L to the vector field v. An additive decompo-
sition in its symmetric and skew-symmetric part allows to introduce the
stretching (D) and the spin (W) tensors as follows

D =
L+LT

2
W =

L−LT

2
(1.25)

Considering the chain-rule the material time derivative of the (material
field) gradient of the deformation is thus

Ḟ(X, t) = Gradχ̇(X, t) = LmF (1.26)
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being Lm = L
∣∣
x=χ(X,t) the material description of the spatial tensor ve-

locity gradient. The Equation (1.26) is the evolution rule for the defor-
mation gradient that can be inverted providing an alternative way to find
the material description of the velocity gradient, i. e.

Lm = ḞF−1 (1.27)

1.2 C O N C E P T O F S T R E S S A N D B A L A N C E O F L I N E A R A N D

A N G U L A R M O M E N TA

In this section the balance laws governing the dynamical equilibrium
are introduced. Considering a body Ω in the current configuration, two
possible actions can occur: traction t or contact forces, namely force
per unit surface, and body forces b or mass forces, namely force per
unit volume. If the equilibrium holds the balance of linear and angular
momentum laws must be satisfied for any portion P of the body Ω,
i. e.respectively ∫

P
bdv+

∫
∂P

tnds =
∫

P
ρ v̇dv, (1.28)∫

P
(x−o)×bdv+

∫
∂P

(x−o)× tnds =
∫

P
ρ(x−o)× v̇dv (1.29)

If Ω is in equilibrium when a cut is performed in the body though a
plane π at the point x with unit normal n, the two parts of the body
are not in equilibrium anymore if one does not consider, following the
action-reaction principle, the interactions t transmitted between the two
surfaces. Following the so-called Cauchy theorem the interaction is a
linear function of the unit normal n to the surface π at x through a second
order (spatial)tensor taken as measure of the actual stress in the current
configuration, the Cauchy stress tensor T(x) , namely,

t(x,n) = T(x)n (1.30)

The components Ti j(x) of the Cauchy stress tensor are the actual mea-
sure of the stresses at the point x lying in the surface with normal i and
directed along j.
Substituting eqn. (1.30) into Equations (1.28) and (1.29) considered for
any portion P of Ω by means the Cauchy divergence theorem one can
obtain the indefinite equations of (local)equilibrium

divT+b = ρv (1.31)
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T = TT (1.32)

The equilibrium in current configuration can be ensured by means of Equa-
tions (1.28) and (1.29) or locally by Equations (1.31) and (1.32), re-
gardless the deformations (the kinematics) experienced by the body as
a consequence of the application of the external action; to consider the
balance law in the reference frame a so-called Pull-Back operation is
needed according to the kinematic for which it is possible to map from
P ∈ Ω→P0 ∈ Ω0 and thus, making a change in variables and also
considering Equations (1.6), (1.7) and (1.30), the balance of linear mo-
mentum becomes∫

P0

bJ dV +
∫

∂P0

JTF−TNdS =
∫

P0

ρ ˙v(X)J dV . (1.33)

Applying the divergence theorem, since the Equation (1.33) must to be
satisfied ∀P0 ∈Ω0, the equations of equilibrium in the reference frame
become

DivP+b0 = ρ0V̇ (1.34)

where b0 = Jb is the body forces evaluated in the reference frame and
ρ0 is the density in the reference configuration, while

P = JTF−T (1.35)

is the Nominal Stress or first Piola-Kirchhoff stress tensor. As F is a two-
point tensor, considering the local (spatial)load df on the element surface
nda can be obtained also considering the reference frame as follows

df = Tnda = PNdA (1.36)

so it transforms element area in the reference frame NdA in the infinites-
imal load df in the current configuration. With the position (1.35) the
reference version of the Cauchy theorem takes the form

PN = t0, (1.37)

being t0 the nominal traction (traction in the reference configuration).
Note that, by introducing the so-called Kirchhoff stress,

K =JT (1.38)

one has that T = J−1PFT; the Piola stress tensor is thus in general not
symmetric because F is non symmetric, but from Equation (1.32) the
following relationship holds true

PFT = FPT. (1.39)
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1.3 W O R K C O N J U G AT E

In this section the balance of the mechanical energy principle is pre-
sented. A consequence of this principle is the concept of work conjugate
for which is possible to establish a conjugation among stress and stain
measures.
The balance of mechanical energy formulated in terms of power is

Pint +
dK(t)

dt
= Pext (1.40)

being Pint the internal stress power, K(t) the kinetic energy and Pext the
power provided by the external loading. The Equation (1.40) can be ex-
pressed either in Eulerian or Lagrangian forms. With reference the spa-
tial description the three terms are derived taking the scalar product of
Equation (1.28) with the spatial velocity v(x) and thus take the form

K(t) =
1
2

∫
Ω

ρ |v|2 dv (1.41)

Pint(t) =
∫

Ω
T ·Ldv =

∫
Ω

T ·Ddv (1.42)

Pext(t) =
∫

Ω
b ·vdv+

∫
∂ Ω

t ·vds (1.43)

Considering the internal power one infers that the Cauchy stress tensor
T, since is symmetric, is conjugated with the stretching tensor D. For
sake of clarity here one can consider quasi- static problem for which the
internal Energy Ψ confirms that the Cauchy stress tensor is conjugated,
with the symmetric part of the gradient of the Eulerian displacement u(x)

Ψ = T ·∇x⊗u (1.44)

Focusing the attention to the internal power, it can be expressed also
in the reference configuration, making a change of domain and of vari-
ables, taking into account the property of three second order tensors
(A,B,C) that is A ·BC = ACT ·B, the Equations (1.27) and (1.35), Equa-
tion (1.42) becomes∫

Ω
T ·Ddv =

∫
Ω0

K0 ·D0 dV
∫

Ω0

P · ḞdV (1.45)

being K0 and D0 the Lagrangian description of the Kirchhoff stress and
the stretching respectively.
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From Equation (1.45) one deduces that the first Piola-Kirchhoff stress is
conjugate to the time derivative of the gradient of the deformation, the
material description of the Kirchhoff stress is conjugate with the material
description of the stretching and also the following equality arises

K0 ·D0 = P · Ḟ (1.46)

The quasi static version of Equation (1.46) shows that the K0 is conjugate
with the ∇X⊗u and the P stress with F, i. e.

Ψ = K0 ·∇X⊗u (1.47)

In this framework, it is possible to define several tensor pairs that have the
property that their dot product gives the rate of internal mechanical work
per unit reference volume. In particular, choosing a suitable strain mea-
sure, the conjugate stress can be obtained through the definition (1.46).
For instance, a family of symmetric Lagrangian and Eulerian stress ten-
sors T(h) and Z(h) can be defined as the conjugates of the strain tensors
E(h) and G(h) in Equation (1.13), respectively by

Z(h) · DG
Dt

(h)
= K0 ·D0 = P · Ḟ = P · DF

Dt
= T(h) · DE

Dt

(h)
(1.48)

A special case is the Second Piola-Kirchhoff stress tensor T(2) that is
conjugated with the Green-Lagrange strain; from Equation (1.48) one
has

T(2) = F−1K0F−T = F−1P (1.49)

Rigid-body rotation in reference and current configuration: transforma-
tion of the stress tensors

To better understand the material or spatial nature of the stress mea-
sures above introduced, let us consider the effects of a rigid-body rota-
tion, by means (as mentioned in the case of transformation of the kine-
matic tensor Section 1.1) a rotation tensor Q ∈ Orth+, applied in the
reference or current frame.
If the rotation is applied in the current configuration Ω∗ the unit normal
n∗ to a generic point x∗ and stress vector t∗ can be obtained from the
corresponding unrotated vector via

n∗ = Qn, t∗ = Qt (1.50)
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By means the Cauchy theorem (Equation (1.30)) one can obtain the rela-
tionship between the true stress in the rotated frame and the correspond-
ing in Ω showing the Eulerian nature of the Cauchy stress measure

T∗ = QTQT (1.51)

Moreover with reference to the relationship between P and T (Equa-
tion (1.35)) and the transformation rules summarized in Table 1, one
deduces the two-point nature, as F, of the first Piola-Kirchhoff stress
measure; in fact, the rigid-body rotation in the current frame acts as fol-
lows

P∗ = QP (1.52)

Similarly, with reference to Equation (1.49) one can obtain the transfor-
mation rule for the Lagrangian second Piola-Kirchhoff stress measure
and generalize it for each Lagrangian and Eulerian stress measure de-
fined by Equation (1.48) as follows

T(2)∗ = T(2), T(m)∗ = T(m) (1.53)

Z(m)∗ = QZ(m)QT (1.54)

With respect to a rigid rotation in reference configuration one can obtain
the transformation rules verifying that the stress power, Equation (1.48),
is independent from rigid-body rotations of the reference and current con-
figuration (some time it is called objective). The relationship between
transformed strain tensors and their corresponding stress tensors are sum-
marized in Table 2 for both rigid-body rotation in reference and current
frames, where it is possible to better recognize the Lagrangian, Eulerian
or two-point nature of the various stress measures.

"Rotated" tensor
Rigid-body rotation

in the reference frame

(Ω0→Ω∗0)

Rigid-body rotation

in the current frame

(Ω→Ω∗)

P∗ PQT QP
T∗ T QTQT

T(m)∗ QT(m)∗QT T(m)∗

Z(m)∗ Z(m)∗ QZ(m)∗QT

Table 2: Transformation rule for Stress measures tensors for rigid-body rota-
tions in reference and current frames
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1.4 C O N S T I T U T I V E E Q UAT I O N : I S OT RO P I C N O N - L I N E A R H Y-
P E R E L A S T I C I T Y

In the previous sections the fundamental equations to characterize the
kinematics, stresses and balance equations have been introduced. These
equations hold for any continuum body, but are not sufficient to close
the problem of the mechanical equilibrium, consisting in the finding of
the components of the displacement field (u) and the components of the
stress field (for example T) for each point of the body. Constitutive laws,
must be established to specialize the problem of the mechanical equilib-
rium for the body at hand, that in general enables to express the stress in
terms of the other field functions such as strain measure and vice-versa.
In this section the isotropic homogeneous (in which the distribution of
the internal constituents are assumed to be uniform) hyperelasticity of
continuum (solid) media has been considered within non linear regime.
A solid is called hyperelastic if a scalar strain energy density function
Ψ - the so-called Helmholtz free-energy function- there exists, depend-
ing solely on the state of the deformation identified by the deformation
gradient F such that one obtains the first Piola-Kirchhoff stress tensor P
(the stress conjugate to deformation gradient) as follows

P =
∂ Ψ(F)

∂F
, (1.55)

and using the Equation (1.35) the symmetric Cauchy (true)stress can be
obtained from the Equation (1.55) as follows

T = J−1 ∂ Ψ(F)
∂F

FT = J−1F
(

∂ Ψ(F)
∂F

)T

. (1.56)

The strain energy density function has the property to be poly-convex,
in fact the global existence theory of the solution of the problem of me-
chanical equilibrium is based on this property. Moreover, the function Ψ
represents physically the stored energy during the deformation and for
this reason a normalization condition must exist, namely when no defor-
mation occurs (F ≡ I) the density function vanishes (Ψ(I) = 0) being
actually the global minimum since it is also non negative (Ψ(F) ≥ 0)).
Furthermore, for the behavior at finite strain the scalar-valued function
Ψ must satisfy also the so-called growth condition, i.e. it tends to +∞

either when J approaches to 0 or +∞, namely a compression of the body
to a point or an infinite expansion requires an infinite amount of energy.
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Another important property is that the function Ψ is objective in the sense
that a superimposed rigid translation and rotation (Q ∈ orth+) of the cur-
rent deformation χ does not modify the energy stored. Hence,

Ψ(F) = Ψ(F∗) = Ψ(QF) (1.57)

being F∗ = QF the deformation gradient after the imposing of the rigid-
body roto-translation. In this perspective, taking as rotation tensor the
proper rotation tensor defined in Equation (1.8) RT (or R), one has that
Ψ(F) = Ψ(RTF) = Ψ(RTRU) and so one has

Ψ(F) = Ψ(U) = Ψ(V) (1.58)

Since from Equations (1.12) to (1.14) hold, one deduces that Ψ may be
also expressed in terms of the right (left) Cauchy-Green C (B) or equiva-
lently of the Green Lagrange strain tensor E(2) (G(2)), or more in general
in terms of a specific strain measure E(m) (G(m)), namely

Ψ(F) = Ψ(C) = Ψ(B) = Ψ(E(2)) = Ψ(G(2)) = Ψ(E(m)) = Ψ(G(m))

(1.59)

By means of the chain rule (
(

∂ Ψ(F)
∂F

)T
= 2 ∂ Ψ(C)

∂C FT ), since C is symmet-

ric and thus the gradient of Ψ(C) with respect to C is also symmetric,
the Equations (1.55) and (1.56) can be expressed also in terms of C, i. e.

P = F
∂ Ψ(C)

∂C
(1.60)

T = 2J−1F
∂ Ψ(C)

∂C
FT (1.61)

Note that the choice of the strain measure used to define the strain en-
ergy density function specializes the constitutive law for the conjugated
stress measure (Equation (1.48)); in fact, for a hyperelastic material, the
constitutive law can be expressed also as follows

T(m) =
∂ Ψ(E(m))

∂E(m)
(1.62)

Isotropic Hyperelasticity

A material is isotropic when possesses the property that its response
does not change with respect changing in any direction of the solicita-
tion. In the context of hyperelasticity this implies an invariance of Ψ to
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any rotations in the sense that, considering a strain density function ex-
pressed in term of C and the transformation rules to rigid-body rotation
in Section 1.1 one has

Ψ(C) = Ψ(C∗) = Ψ(QCQT). (1.63)

Recalling the Representation Theorem for isotropic scalar function, the
isotropic scalar-value tensor functions Ψ(C) can be expressed in terms
of any invariants of C. Taking as invariant the principal invariant of C
(I1(C), I2(C) and I3(C)), by means of the chain rule and the definition
of the invariant one, can obtain:

P = 2F
[(

∂ Ψ
∂ I1

+ I1
∂ Ψ
∂ I2

)
I− ∂ Ψ

∂ I2
C+ I3

∂ Ψ
∂ I3

C−1
]

(1.64)

Instead, considering as invariant the principal stretches λi, the eigenval-
ues of C, one can obtain, as consequence of Equation (1.55), the principal
Piola-Kirchhoff stresses Pi as follows

Pi =
∂ Ψ
∂λi

, (1.65)

and thus, inverting Equation (1.35), one can express the principal Cauchy
stresses Ti as follows

Ti = J−1
λi

∂ Ψ
∂λi

, (1.66)

Incompressible material

If a material maintains constant the volume during any deformation,
this implies that, by Equation (1.6),

J−1 = 0 with J = I3(C) (1.67)

representing an internal constraint, the incompressibility constraint. As
usual in physics when dealing with constrains, the strain energy density
function is enhanced by a Lagrange multiplier in order to include the
constraint into the constitutive law, and thus the function Ψ may be pos-
tulated as follows

Ψ = Ψ(F)− p(J−1) (1.68)

p being the scalar the multiplier that can identified by an hydrostatic
pressure. As usual when dealing with Lagrangian multiplier in bound-
ary value problems one can obtain p imposing the boundary conditions,
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namely the equilibrium at the boundary.
The stress tensor P, thus becomes

P = −pF−T +
∂ Ψ(F)

∂F
(1.69)

Inverting Equation (1.35) in the incompressibility framework (J = 1) and
thus multiplying in Equation (1.69) both sides for FT , one obtains the
Cauchy stress tensor for incompressible hyperelastic materials, i. e.

T = −pI+F
∂ Ψ(F)

∂F
(1.70)

Note that in the case of incompressible isotropic material the invariants
will be reduced to I1 and I2, in the case one use the principal invariants,
or two of the principal stretches (λi), since the third one is dependent
from the other two stretches (I3 = J = λ1λ2λ3 = 1).
In the framework of incompressible hyperelastic materials there are sev-
eral phenomenological models, most of which can be expressed as spe-
cial cases of the Ogden model for which Ψ(F) is given by:

Ψ(λ1,λ2,λ3) =
N

∑
p=1

µp

αp

(
λ

αp
1 +λ

αp
2 +λ

αp
3 −3

)
(1.71)

being the parameters µp and αp specific phenomenological coefficients
which characterizing the material at hand. To be consistent with the linear
elastic theory, namely λi→ 1 for i = 1,2,3, the parameter must respect
the following condition

2G =
N

∑
p=1

µpαp with µpαp ∀p = 1,2, ..,N (1.72)

with G = E
2(1+ν)

is the first Lamé constant, the shear Modulus, being a
third of the Young Modulus E as the material is incompressible (Poisson
ration ν → 0.5).
It is worth to introduce some special cases of the Ogden model that is
the Neo-Hookean model and the Mooney-Rivlin model. The former is
obtained by setting N = 1 and α1 = 2, namely

ΨNH =
µ1

2
(λ 2

1 +λ
2
2 +λ

2
3 −3) =

µ1

2
(I1(C)−3) with µ1 =G, (1.73)

while, the latter is obtained by setting N = 2, α1 = 2 and α2 = −2,
namely

ΨMR =
µ1

2
(λ 2

1 +λ
2
2 +λ

2
3 −3)− µ2

2
(λ−2

1 +λ
−2
2 +λ

−2
3 −3)

=
µ1

2
(I1(C)−3)− µ2

2
(I2(C)−3) with µ1−µ2 = G

(1.74)
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Compressible materials

There are several approaches in literature to model the phenomenolog-
ical behavior of compressible materials. For example the response can
be decoupled in a purely isochoric and purely volumetric contribution,
since some materials behave quite differently in bulk in comparison with
shear tests. With respect to the following applications, let us introduce
here the Neo-Hookean model for compressible material. It is a coupled
approach in which the isochoric and the volumetric contribution are not
singularly detectable. The strain energy density function is given by

ΨCNH(I1,J) = +
G
2
(I1−3)+

G
2β

(
J−2β −1

)
(1.75)

being G the "tangent" shear modulus and β = ν

1−2ν
a parameter depend-

ing on the "tangent" Poisson ratio ν .

1.5 C O N S T I T U T I V E E Q UAT I O N : F U N DA M E N TA L S O F L I N E A R

C L A S S I C A L A N D " F R AC T I O N A L " V I S C O E L A S T I C I T Y

In the context of linear deformation the materials behave as elastic
solids, viscous fluids and with a behavior in between these two families
that is the viscoelastic material.

Figure 1.1: Elstic Solid

Elastic solids, as previously mentioned, have the characteristic to as-
sume a own shape (solid) and the deformation due to external loading
is completely recovered when the loading is removed (elastic). Consider-
ing, for sake of simplicity a 1-D experiment, the constitutive law in the
context of linear elasticity is the Hooke law, namely the true stress T in
the direction of the deformation ε is linearly dependent by means of a
parameter depending on the specific material that is the Young Modulus
E, following the relationship

TE(t) = Eε(t) (1.76)
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ε being the only component of linerized version of the Green-Lagrange
strain measure in Equation (1.14). The Equation (1.76) highlights that
the tension in a specific instant T (t) depends on the deformation at the
same time ε(t) and vice-versa. Thus, if the solicitation is removed an
instantaneous recovery occurs, instead if it holds, there is no further in-
crement in the deformation. Usually, as shown in Figure 1.5, to represent
elastic solids a spring is used.

Figure 1.2: Viscous fluid

Viscous fluids unable to have an own shape, assume the one of the
receptacle containing them and in the ideal behavior -Newtonian fluids
- the stress due to a deformation depends on its rate, following the so-
called Newton-Petroff law as follows

Tµ(t) = µε̇(t) (1.77)

µ being constant parameter related to the viscosity of the fluid. The Equa-
tion (1.77) highlights that if the solicitation holds the deformation con-
tinues to increase and there is no recovering of the deformation after the
removal of the external solicitation and no energy is stored, and thus re-
covered, but all is generally transformed in heat. Commonly the symbol
used to represent viscous fluid is the dash-pot (see Figure 1.2)

Viscoelastic materials as mentioned, have an intermediate behavior.
In fact, the stress at a certain time t depends on history of deformation
(purely viscous) and a certain amount of energy - and thus deformation-
is recovered (purely elastic). Considering the Boltzmann superposition
principle the behavior of a viscoelastic material is completely described
knowing either the creep (ψ(t)) or the relaxation (φ (t)) functions, in fact
is possible to describe the deformation ε and the stress T respectively, at
a certain instant t following the subsequent relationships

ε(t) =
∫ t

0
Ṫ (τ)ψ(t− τ)dτ +T0ψ(t), and (1.78)
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T (t) =
∫ t

0
ε̇(τ)φ (t− τ)dτ + ε0φ (t) (1.79)

where the the function ψ(t) by definition is the deformation response
of the material to a constant in time unit stress solicitation and T0 is the
stress at the initial instant, while the function φ (t) is the stress response
of the material to a constant in time unit deformation applied and ε0 is
the deformation at the initial instant t = 0.
Historically the viscoelastic materials have been modeled by means clas-
sical paradigms such as the Maxwell, Voigt and Standard Linear Kelvin
ones made by specific combinations of parallel and/or series of springs
and dash-pots.

Figure 1.3: Voigt model

The Voigt (viscoelastic solid) idealization assumes that viscous and elas-
tic elements are placed in parallel each other (see Equation (1.81)). In
this way, the resulting overall stress can be determined by the simple
sum of the stress due to the single constituting elements as follows

T (t) = TE(t)+Tµ(t) (1.80)

where TE and Tµ are the stresses due to the elastic contribution and vis-
cous one respectively defined in Equations (1.76) and (1.77). Consider-
ing that a isodisplacement condition holds, namely the deformation in
the dash-pot is the same of the one in the spring εE(t) = εµ(t) = εV (t)
one has the following constitutive relationship

TV (t) = Eε(t)+ µε̇V (t) (1.81)

The relaxation function for the Voigt, when a constant unit deformation
is applied at instant t = 0 will be

φ (t) = E + µδ (t) (1.82)

being δ (t) a Dirac impulse and so behaving essentially as a viscous fluid
instantaneously for t = 0, and as an elastic solid for t → ∞. Instead the
creep function is an exponential function as follows

ψ(t) =
1
E

(
1− e−

E
µ

t
)

(1.83)
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being the viscosity parameter ν = µ

E .
The Maxwell (viscoelastic fluid) paradigm is the in-series combination

Figure 1.4: Maxwell Model

of a spring and a dash-pot (see Figure 1.4). In this case the the isostress
condition holds and so the resulting deformation is the sum of the elastic
εE and of the viscous εµ contribution

εM(t) = εM(t)+ εµ(t), (1.84)

while the stress is shared TM(t) = TE(t) = Tµ(t) in the single elements.
In this perspective the constitutive equation for the Maxwell model is
thus

ε̇M = µTM(t)+EṪM(t) (1.85)

Thus, the relaxation function is an exponential function as follows

φ (t) = Ee−
E
µ

t (1.86)

and the creep function is a linear function of the time as

ψ(t) = µt +
1
E

(1.87)

behaving instantaneously as an elastic solid but for t → ∞ as a viscous
fluid. It is worth to highlight that Voigt and Maxwell represent an ide-
alization of the actual behavior of the viscoelastic materials. It is very
uncommon, for example, dealing with materials with relaxation function
in agreement with Voigt model, although it is possible to find an appropri-
ate time constant τ = µ/E to approximate well the relaxation behavior
of an actual viscoelastic material. Ually for the Maxwell model its creep
function is in very good agreement with experiments but the relaxation
behavior is not easily comparable with physical materials. In any case
these paradigms have been widely utilized in the classical theory of vis-
coelasticity for their computational simplicity and because is possible to
increase the accuracy combining multiple Voigt and Maxwell elements
with other elastic and viscous models forming the so called Zenner or
Standard Linear Solid (SLS) viscoelastic models. The general equation
for the SLS is given by the following relationship

n

∑
k=0

ak
dk

dtk T (t) =
m

∑
k=0

bk
dk

dtk ε(t) (1.88)



1.5 C L A S S I C A L A N D F R AC T I O N A L L I N E A R V I S C O E L A S T I C I T Y 21

where n and m depend on the complexity of the model adopted, i. e.the
number of elastic and viscous elements in parallel/series combination,
and ak and bk on the Young modulus and viscosity of each element.
Worthily, increasing the number of the elements it is possible to increase
the accuracy of the models but also their complexity since a greater num-
ber of parameters have to be found by means of best fitting analyses
arising the possibility to deal with critical negative values for the stiff-
ness, for expample.
Furthermore, since the response equations are ordinary differential equa-
tions, the kernel of the solution and thus of the relaxation/creep functions
have exponential dependence on time. This is in contrast with numerous
experimental study ([73, 101, 119]) that have shown a power law trend in
time on the tension/deformation response. To model this kind of behavior
and reduce the parameters needed to catch a qualitative acceptable ana-
lytic response, the fractional calculus or fractional derivative has to date
been considered in order to overcome the limitation of the ordinary dif-
ferential equation. The concept of the fractional derivative can be dated
back to 1695 during correspondence between de L’Hospital and Leibniz.
Their purpose was to give an answer to the famous question: ‘What does
the derivative dn f (x)/dxn mean if n = 1/2?’. From that time, a branch
of mathematics named fractional calculus has been developed and it is
to date considered a generalization of the commonly used integer-order
differentiation and integration. The basic idea is to look at a fractional
derivative as the inverse operation of a fractional integral, as suggested
by Riemann–Liouville. Caputo developed a concept of the fractional α

derivative between the integer (ordinary) orders n− 1 ≤ α ≤ n, com-
monly indicated by C

a Da
t , which could be used in the "real world", defined

as follows

C
a Dα

t f (t) =
1

Γ(n−a)

∫ t

a
(t− s)n−α−1 f (n)(s)ds (1.89)

where f (t) is an integrable function in [a, t] and Γ is the Euler Gamma
function.
The idea to use fractional derivatives in viscoelasticity can be traced back
to the work by Nutting [101]. He noted that, from the best fitting of exper-
imental curves, the relationship between deformation and time could be
described by a power law, i.e. ε(t)∝ tnT (t)m. In 1949, Blair & Caffyn [7]
justified analytically this experimental law through fractional derivatives,
introducing a new paradigm in viscoelasticity the so-called spring-pot
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model for which the relationship between stress and deformation holds
as follows

T (t) =Cα
C
0 Dα

t ε(t) (1.90)

where C
0 Dα

t is the fractional derivative with 0 ≤ α ≤ 1 and Cα is a coef-
ficient that, following Koeller [73] for the uni-axial stress/stretching test,
takes the following form

Cα = E
(

µ

E

)α

. (1.91)

It is worth to highlight that is possible to catch an infinite possible vis-

Figure 1.5: Spring Pot

coelastic behaviors with the spring-pot model, varying with continuity
the parameter α , between the limit purely elastic (α = 0) and viscous
(α = 1) case. Although the spring pot seems to be the best analytic model
to simulate the viscoelastic behavior of any material it does not have a
complete physical interpretation, in fact is not possible to distinguish the
single viscous or elastic contribution.
In this perspective the relaxation φ (t) and the creep ψ(t) functions fol-
lows a power law in time as follows

φ =
Cα

Γ(1−α)
tα (1.92)

ψ =
1

Cα Γ(1+α)
tα (1.93)

It is finally opportune to observe that with only one spring-pot model
with just two parameters (α and Cα ), to find by a best fitting procedure,
one can obtain a very good approximation of a generic viscoelastic exper-
imental behavior of material. This is an enhancement with respect to use
a consistent number of "classical" elements (ordinary time derivative)-
i. e.SLS model- involving a grater number of parameters despite having
not a similar good approximation since an exponential time dependence
of the creep/relaxation functions is implicated.



2
S I N G L E C E L L M E C H A N I C S

I N T RO D U C T I O N

In the human body there are trillions of (10 ∼ 100 microns in size)
cells: they have all the same structure and all originate from a single
fertilized egg, the zygote, that differentiates in specialized cells. The
structure of the human cell is a complex factory that makes proteins,
including tissue materials [20]. It is constituted by three mechanically
relevant systems: the cell membrane - the wall of the factory - an about
10-nm thick very deformable (0.1∼ 1 kPa) lipid bilayer, the membrane-
confined visco-elastic gel-like cytosol and the cytoskeleton - the bearing
structure of the cell - an elastic network of protein filaments, embed-
ded in the cytosol and anchored to the membrane, that maintains the
cell shape, protects the cell, enables cell motion (migration and adhe-
sion), mediating inner and outer loads. The main kinds of cytoskeletal
filaments are microtubules (25-nm diameter tubes made up of spiraling
tubulin in two-part subunits), actin filaments (7-nm diameter twisted dou-
ble strands of the protein actin) and intermediate filaments (10-nm diam-
eter interwoven, rope-strands), cell spreading and motility being driven
by the assembly (polymerization) and disassembly (depolymerization)
of branched actin filaments [3, 9].
Overall, the cell behaves as a viscoelastic system [30, 33, 56, 127]. How-
ever, differently from inorganic materials, biological soft matter is in-
homogeneous and generally hierarchically organized [15, 43, 46, 63,
114] and thus reacts to mechanical stimuli by simultaneously involv-
ing several cell districts and processes, as well as protein filaments and
supra-molecular and molecular structures present at different scale lev-
els. The cell hierarchical organization works as a complex transducer
device that converts macro-mechanical signals (pressure gradients, os-
cillation of organelles, etc) in a way to activate a biomechanical orches-
tra that steer a cascade of biochemical and physical coordinated events
which govern the mechanobiology and the mechanosensing of the whole
cell, regulating differentiation, growth, morphogenesis, and - through
polymerization/depolymerization-based cytoskeleton structural rearrange-
ments - migration and adhesion phenomena affecting both single-cell dy-

23
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namics and macroscopic behaviors of tissue and tumor masses [31, 36,
53, 105].
Several scientific papers have been in the last two decades devoted to
the study of the effects of mechanical stimuli on human cells, leading to
observe a number of biological behaviors whose essential processes are
often still obscure or only partially understood. It has been for example
observed that the effect of ultrasound upon single cells is significantly
influenced by the frequency and the energy density applied [118]. Cell
membrane damages were observed after ultrasound treatment in human
blood cells and leukemic cell lines [38], experimental studies demonstrat-
ing that malignant cells are sometimes much more susceptible and prone
to be killed than normal cells when subjected to ultrasound exposure [79,
80]. Depending on cell type and sonication protocol, ultrasounds seem
to be able - if adequately modulated - to decrease cancer cell growth
as well as to increase and stimulate wound healing [118]. In particular,
increases of the proliferation rate for hcMEC and MDCK healthy cells
after application of ultrasound at various energy density levels and pre-
scribed frequencies have been experimentally observed and, after ultra-
sonic exposure, HT29 monitored cancer cells have exhibited cell death
(apoptosis) [118]. Additionally, it has been seen that ultrasounds inhibit
cell proliferation of human myelomonocytic lymphoma U937 cells and
stimulate MCF-7 breast cancer cells to undergo apoptosis [16, 62], al-
though the same investigators admit that "the molecular mechanism of
ultrasound induced apoptosis has not yet been clearly understood". Re-
cently, however, Mizrahi et al [99] have experimentally observed signif-
icant cytoskeleton reversible remodeling dynamics when human airway
smooth muscle cells were exposed to low intensity ultrasounds, these
physical changes being caused by very small strains (10−5) at ultrasonic
frequencies (106 Hz), close to those caused by relatively large strains
(10−1) administered at physiological frequencies (100 Hz).
Biologically relevant motion of intracellular particles, induced by ultra-
sonic waves, has been hypothesized to play a key role in the mechanism
at the basis of relative displacement between cell organelles and cyto-
plasm as effect of the different inertia of the media. Although the ques-
tion on how the mechanical vibrations act on the biological cell behav-
ior substantially still remains an open issue, a study by Or and Kimmel
[103] theoretically explores the possibility of resonance-like phenom-
ena and suggests that mechanically-induced oscillations - larger than
maximal thermal fluctuations - might kindle high-frequency (compati-
ble with Low Intensity Therapeutic Ultrasounds ranges) strain regimes,
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potentially able to determine fatigue-like phenomena in cells. In partic-
ular, the frequency resonance hypothesis assumes that the absorption of
ultrasound by proteins and protein complexes may directly alter signal-
ing mechanisms within the cell, determining conformational shift or dis-
rupting of multimolecular complexes at critical frequencies found both
around 45 kHz and 1 MHz [66].
On the other hand, very recently experimental studies have been per-
formed on individual cancer and healthy cells of different types, demon-
strating that the first ones were about 70% softer than the latter ([22,
23, 41, 70, 81–83, 85, 100, 113, 115] - see Table 4 for details). As a
matter of fact, it seems that the increase in cell deformability is directly
related to the cancer progression, as observed by Ketene et al [70] in the
cases of a transformed phenotype from a benign (nontumorigenic) cell
to a malignant (tumorigenic) one. Ploidinec et al [111], by resolving the
nanomechanical signatures of defined stages of tumor progression, also
highlight that cancer evolution is associated with a significant softening
of tumor epithelial cells in comparison to normal mammary epithelium,
including metastasis, hypothesizing that metastatic cells gain their mi-
gration capabilities by acquiring a certain degree of flexibility and de-
formability to escape their original niche. As assumed by Pachenari et al
[104], metastatic cells could be spurred to become mechanically softer
than healthy cells to pass through rigid capillaries whose diameters are
smaller than tumor cells, deformability in this way playing a crucial role
in the potency of tumor cells to form neoplastic foci. This seems to be
also corroborated by experiments, as found by Abdolahad et al [1] who
show that the fraction of entrapment of higher metastatic cancer cells (in
carbon nanotubes) is significantly more than lower metastatic grades.
These results, which seem to be confirmed regardless of the cell lines
examined and independently from the specific measurement technique
used for determining the mechanical properties (Atomic Force Microscopy,
Optical tweezers, etc.), lead to envisage possible new scenarios for biome-
chanical applications in medicine [67]. At least in principle, the above
mentioned differences in cell stiffness might be in fact ad hoc exploited
to build up mechanical-based targeting strategies for discriminating neo-
plastic transformations within human cell populations, in this manner
paving the way for designing innovative complementary tools to cell-
specific molecular tumor markers and, hopefully in a future, for possible
applications in diagnoses and therapies of cancer diseases [50, 59, 60].
In this perspective, by recalling the above mentioned experimental evi-
dences about the discrepancies in deformability between tumor and nor-
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mal cells, with the aim of at early stage characterizing - and gaining in-
sights into - the frequency response of single-cell systems to mechanical
stimuli (typically Low Intensity Therapeutic Ultrasounds), a generalized
viscoelastic paradigm which combines classical (say Voigt, Maxwell and
standard linear Kelvin) and spring-pot based models is introduced for
modeling the problem at hand (Section 2.1), by starting from the work
by Or and Kimmel [103]. To this purpose, it has been necessarily ne-
glected any detail related to the complex structural organization of the
cells in which nucleus, cytoskeleton, elastic membrane and gel-like cy-
tosol govern and interact with the cascade of events at the basis of the
mechanobiology of the system.
Therefore, motivated by the above mentioned literature findings and with
the aim of including the effect of the prestress –for instance induced in
protein filaments during cell adhesion– on the overall cell stiffness and
determining its influence on the in-frequency response of the cell, a sim-
ple multiscale scheme incorporating finite elasticity is first proposed to
consider, by means of a bottom-up homogenization procedure, suitable
prestress-modified stiffness values into the viscoelastic single-cell mod-
els. Successively, once the analytical expression of the overall elastic
stiffness of an adherent cell has been obtained, the identification of some
key model parameters (i.e. prestretch and number of "active" filaments)
has been determined to fit the realistic stiffness moduli experimentally
measured in the literature for several cell types. Finally, after a short
presentation of new generalized spring-pot (fractional derivative-based)
viscoelastic models, a preliminary wide campaign of sensitivity analyses
aimed to catch both qualitative and quantitative remarks on mechanically
stimulated single-cell systems (see Section 2.4), the viscoelastic model-
ing is finally specialized to cell lines whose mechanical properties have
been experimentally measured in the literature with reference to healthy
cells and their cancer counterparts. The theoretical results, illustrated in
Section 2.3, will show that the differences in stiffness - at least in princi-
ple - allow to mechanically discriminate between tumor and normal cells,
the critical frequencies associated to oscillation magnitude peaks (found
from tens kHz to hundreds kHz) confirming that mechanical resonance-
like phenomena can be prevailing with respect to thermal fluctuations
and could thus be helpfully utilized for targeting or ad hoc altering the
functions of tumor cells.
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2.1 F R E Q U E N C Y R E S P O N S E O F O N E - D I M E N S I O N A L S I N G L E -
C E L L V I S C O E L A S T I C S Y S T E M S

By starting from an approach recently proposed by Or and Kimmel
[103] to analyze the case of vibrating cell nucleus in a viscoelastic envi-
ronment excited by Low Intensity Therapeutic Ultra-Sound (LITUS), let
us consider the single cell dynamics through an oscillating mass embed-
ded in a viscoelastic medium (see Figure 2.1). A spherical rigid object
with radius R is therefore considered to represent the nucleus, in which
it is ideally assumed to be concentrated the whole mass of the cell, the
environment being instead idealized to behave as a homogeneous and
isotropic viscoelastic medium: in this way the system will be character-
ized by one degree of freedom activated by a prescribed time-varying
LITUS-induced velocity law in the form

vm(t) = vm0e−iω0t (2.1)

where vm is the velocity assigned to the medium, vm0 represents the com-
plex velocity phasor, and ω0 = 2π f is the angular frequency of the oscil-
lations, f being the frequency measured in Hz. By essentially following
the strategy suggested in the above mentioned work, the equation of mo-
tion can be written as

fm = mobaob =
4
3

πR3
ρob

d2uob

dt2 = fac− fres (2.2)

In eq. (2.2) t is the time, fm represents the inertial force, mob is the nu-
cleus mass whose density is ρob, and uob is the associated displacement.
Furthermore, fac is the basic driving force in the system, due to the acous-
tic pressure gradients that are induced by the ultrasound transducer. In the
present case, where the object is very small compared with the acoustic
wavelength, the acoustic force can be assumed with the simple form of a
force which would act on a sphere of the same size in the absence of the
object [90]; this permits to write

fac =
4
3

πρmR3 Dvm

Dt
≡ 4

3
πρmR3 dvm

dt
(2.3)

where ρm is the density of the medium. Dimensional analyses suggest
that the convective term is small and therefore, in eq. (2.3), the absence
of spatial variability leads to use regular time-differentiation d/dt in-
stead of the substantial derivative D/Dt [103].
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Figure 2.1: Cartoon of the idealized single-cell system: (top-right) healthy and
tumor cells agglomerate; (top-left) typical cell unit, with nucleus and cytoskele-
ton structure embedded in the cytosol and confined by the lipid bilayer cell
membrane; (bottom-left) idealized single-cell system with cell nucleus oscil-
lating in a viscoelastic environment under the action of radiating ultrasound
source; (bottom-right) adopted viscoelastic schemes (Voigt, Maxwell and gen-
eralized Spring-Pot based Standard Linear Kelvin models).



2.1 F R E Q U E N C Y R E S P O N S E O F O N E - D I M E N S I O N A L S I N G L E - C E L L V I S C O E L A S T I C S Y S T E M S 29

Finally, fres is the response force which is applied on the object by its
surrounding as a result of their relative motion; as a consequence, the re-
sponse force depends upon the rheological properties of the medium in
which the object is embedded. In particular, in order to catch fundamen-
tal insights on different - and more complex - behaviors of single-cell
systems, this force will be written as parametrically depending on sev-
eral geometrical and mechanical features of interest. The analyses will
be conducted by adopting two quasi-standard viscoelastic models, the
classical Voigt and Maxwell ones, and finally considering a generalized
standard linear Kelvin model, where dashpot and springs are substituted
by so-called Spring-Pot systems, widely adopted in several recently ap-
peared research works to interpret peculiar responses of biological struc-
tures [34].
Additionally, differently from the strategy utilized by Or and Kimmel
[103] to solve the differential problem at hand, the Laplace transform
will be here utilized by exploiting the well-known classical relationship
between Laplace and Fourier transforms, that is F [·] = L [·]

∣∣
s=iω , in

this way gaining the possibility of directly obtaining the response of the
systems in terms of frequency.
With reference to the initial conditions, in all the cases the object is ini-
tially at rest, that is

uob
∣∣
t=0 = 0 ,

duob

dt

∣∣
t=0 = 0 (2.4)

Then, by Laplace transforming the eq. (2.2), one obtains

fm =
4
3

πR3
ρobs2Uob = Fac−Fres (2.5)

where all the transformed terms are denoted with capital letters and s is
the Laplace variable. As a consequence, in eq. (2.5) Fac is the Laplace
transforming of the acoustic force fac in the eq. (2.3), so obtaining

Fac =
4
3

πρmR3sVm =
4
3

πρmR3s2Um (2.6)

2.1.1 Cells behaving as quasi-standard Voigt model

As above introduced in section 1.5, in the Voigt idealization, viscous
and elastic elements are connected to each other in parallel (see Figure
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2.1). Differently from section 1.5 the constitutive relationship is here pre-
sented in terms of response force that is then obtained by simply sum-
ming up the contributions of the two elements as follows

fres = fµ + fG (2.7)

where fµ is the viscous force response and fG represents the elastic con-
tribution. By following the Or and Kimmel [103] suggestion, with the
aim include the effects of rapid (high frequency) vibrations the classical
contituvive relationships are here enhanced including spurious frequency
dependent terms generally so-called added mass and virtual friction. In
fact the viscous term is here modeled following Basset [5] and Landau
and Lifshitz [77] for which the response force can be thus written as

fµ = 6πRµ

1+

√
ωR2

2ν

 (vob− vm)+
2

3p
πR3

ρm

(
1+

9p
2

√
2ν

ωR2

)
(v̇ob− v̇m)

(2.8)
with µ and ν the dynamic and the kinematic viscosities of the medium,
respectively, and v= u̇cthe velocity. It is worth to highlight how the struc-
ture of the viscous response force assumed here differs from the classical
Stokes force (eq. (1.77)) because in eq. (2.8) appears a spurious inertial

contribution that Brennen [8] termed added mass, that is 3πR3ρm

√
2ν

ωR2 .

p (p = 2 in the present case) is the number of elements in parallel, here
utilized to solve the ambiguous situation raised by [103], so avoiding
the duplication of added mass contribution in the viscoelastic system at
hand1.
With reference to the elastic force, fG, as proposed by Ilinskii et al. [65],
is explicitly written as follows

fG = 6πGR (uob−um)+6πR2
√

Gρm (u̇ob− u̇m)+
2

3p
πR3

ρm (üob− üm)

(2.9)

1 By separately inserting virtual friction and added mass in both the purely viscous and
purely elastic models, Or and Kimmel [103] have that in the viscoelastic Voigt model
"the response force is obtained by summing up the contributions of the two elements
(dashpot and spring)..." and thus they have to successively detract "the excessive added-
mass term" that erroneously twice appears. In the present thesis, to avoid of a fortiori
neglecting the "excessive added-mass term", it has been solved this ambiguous situa-
tion by setting ab origine the viscoelastic forces so that any simple scheme as well as
any combined viscoelastic construct (including the general fractional-based SLK model)
contains the sole added-mass and virtual friction contributions to be considered.
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Analogously to the previous case, the elastic response differs from the
classical Hooke law (eq. (1.76)): in fact, rigorously speaking it does not
represent a pure elastic contribution and - again to take into account the
effects of rapid fluctuations determined by the dynamic interaction of
the system with the environment which drive the response towards the
actual physical behavior - additional terms appear in (2.9). In particular,
these contributions are here constituted by the so-called virtual friction
(a dissipative term represented by 6πR2√Gρm) and, again, the added
mass (an inertial term), as suggested by Ilinskii et al [65]. In eq. (2.9), G
is the elastic shear modulus of the medium, assumed to be about a third
of the corresponding Young modulus as a consequence of the hypothesis
of incompressibility, while um represents the vibrational displacement
of the medium. Hereinafter, the following parameters are conveniently
introduced

c0G = 6πGR, c1G = 6πR2
√

Gρm, c2G =
2

3p
πR3

ρm (2.10)

c1µ = 6πRµ

1+

√
ωR2

2ν

 , c2µ =
2

3p
πR3

ρm

(
1+

9p
2

√
2ν

ωR2

)
(2.11)

and a further dimensionless constant is also defined as follows

ζ =
ρob

ρm
=

1
1+ γ

(2.12)

with γ = ρmρ
−1
ob − 1. At the end, the quasi-standard Voigt viscoelastic

constitutive law is written down

fres = c0G (uob−um)+ (c1µ + c1G) (u̇ob− u̇m)+ (c2µ + c2G) (üob− üm)
(2.13)

Laplace transforming the response force (2.13) one has

Fres = (Uob−Um)
[
c0G +(c1µ + c1G) s+(c2µ + c2G)s2] (2.14)

and, replacing (2.14) and (2.6) in (2.5) and after some algebraic manip-
ulations, the final form of the equation is obtained as[

c0G +(c1µ + c1G) s+
(
(c2µ + c2G)+

4
3

πρobR3
)

s2
]

∆U =
4
3

πγρobR3sVm

(2.15)
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where ∆U = Uob−Um . By solving the eq. (2.15), the in-frequency an-
alytical solution in terms of amplitude of the relative displacement ∆U
between cell nucleus and environment takes hence the form

|∆U |
∣∣∣
s=iω

=

∣∣∣∣∣∣∣∣
4
3

πγζ ρmR3sVm

c0G +(c1µ + c1G) s+
(
(c2µ + c2G)+

4
3

πρobR3

)
s2

∣∣∣∣∣∣∣∣
∣∣∣∣∣
s=iω

(2.16)

2.1.2 Cells behaving as quasi-standard Maxwell model

As above introduced in section 1.5, in the Maxwell system, viscous
and elastic elements are connected in series (see Figure 2.1). In order to
obtain the response in terms of relative displacement ∆U one has to start
by imposing the isostress condition, that is

FG = Fµ = Fres (2.17)

and then to write the compatibility condition, that is that the sum of the
relative displacement due to the elastic and to the viscous components
equates the relative displacement

∆U = ∆UG +∆Uµ (2.18)

where Fµ and FG constitute the Laplace transforms of the viscous and the
elastic response forces given in eqs. (2.8) and (2.9), respectively. As a
consequence, one has

Fµ = (c1µs+ c2µs2)∆Uµ , FG = (c0G + c1Gs+ c2Gs2)∆UG (2.19)

from which viscous and elastic components of the relative displacement
are separately given as

∆Uµ =
Fµ

c1µs+ c2µs2 , ∆UG =
FG

c0G + c1Gs+ c2Gs2 (2.20)

By recalling Fres from eq. (2.5) and by taking into account eq. (2.20),
the analytical solution for the frequency response of the quasi-standard
Maxwell system is finally obtained as follows

|∆U |
∣∣∣
s=iω

=

∣∣∣∣∣∣∣∣
4
3

πγρobR3sVm

1+
4
3

πρobR3s2

(
1

c1µs+ c2µs2 +
1

c0G + c1Gs+ c2Gs2

)
∣∣∣∣∣∣∣∣
∣∣∣∣∣
s=iω

(2.21)
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2.1.3 Cells behaving as Spring-Pot based quasi-Standard Linear Kelvin
model

2.1.3.1 Spring-Pot model involving virtual friction and added mass

In section section 1.5 it has been shwn that the so-called Spring-Pot
model is a viscoelastic system in which the constitutive law is defined
through Fractional Derivatives. For the present purpose, the Spring-Pot
model is substantially that firstly introduced by Blair and Caffyn [7], but
it is here generalized to take into account the virtual friction and the
added mass by means of the suitable introduction of additional contri-
butions. In particular, the response Spring-Pot force fSP is defined as
follows

fSP :=Cα

(C
0 Dα

t (uob−um)
)
+ c1SP (u̇ob− u̇m)+ c2SP (üob− üm) (2.22)

in which C
0 Dα

t represents the Caputo’s fractional time-derivative of or-
der α , with α ∈ [0,1] , defined over the time interval (0, t) , Cα is a
frequency-depending coefficient re-written by following Koeller [73]

Cα = c0G

(
c1µ

c0G

)α

(2.23)

while the dissipative and the inertial terms were included by assuming
for them the following simplest form

c1SP = (1−α)c1G, c2SP = c2G

(
1+α

9p
2

√
2ν

ωR2

)
(2.24)

in this way obtaining that in the limit cases, say α = 0 and α = 1, the
Or and Kimmel [103] elastic and viscous models are respectively repro-
duced.
Therefore, by substituting eq. (2.22) into eq. (2.5) and additionally ex-
ploiting the fractional derivative rule which leads to Laplace transform
preserving the ordinary (integer) derivative law for the Laplace variable
s - i.e. C

0 Dα
t

L−→ sα - the Spring-Pot frequency response of the system is
finally obtained in terms of relative displacement as follows

∀α ∈ [0,1], |∆U |
∣∣∣
s=iω

=

∣∣∣∣∣∣∣∣
4
3

πγρobR3sVm(
4
3

πρobR3 + c2SP

)
s2 + c1SPs+Cαsα

∣∣∣∣∣∣∣∣
∣∣∣∣∣
s=iω

(2.25)
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2.1.3.2 Generalized standard linear Kelvin model incorporating Spring-
Pot systems

Among fundamental viscoelastic schemes, Standard linear Kelvin (SLK)
models are often used to enrich Voigt and Maxwell ones by building up
in series a Voigt system and an elastic spring. An alternative to this con-
figuration is represented by the Maxwell-Wiechert model - a Maxwell
system in parallel with an elastic spring - from which the most general
form of linear viscoelastic scheme can be derived through the Prony se-
ries method. However, both the above mentioned models can be seen as
special cases of the so-called Standard Linear Solid (SLS) systems [127].
Since Spring-Pot can be physically thought as a viscoelastic system with
the special capability of smoothly generating intermediate behaviors as
the constitutive parameter α moves from zero (purely elastic behavior) to
one (purely viscous behavior), a generalized SLK model is here defined
by substituting a spring-pot to each dashpot and spring in the classical
SLK model, as illustrated in Figure 2.1. In this straightforward way, by
also suitably including the additional terms of virtual friction and added
mass, a powerful low-parameter linear viscoelastic system is finally ob-
tained and the related in-frequency response derived in closed-form: as a
result, all the above mentioned simpler viscoelastic schemes and analyti-
cal solutions, including those given in [103], are found as limit or special
cases of this generalized spring-pot based SLK system.
Therefore, let us consider the generalized quasi-SLK model as illustrated
in Figure 2.1. Due to the configuration of spring-pot elements, it is pos-
sible to write forces and displacements as follows

fSLK = fP = fSP3 (2.26)

∆uSLK = ∆uP +∆uSP3 (2.27)

where fSLK is the resultant force of the entire system, fP = fSP1 + fSP2,
fSP1, fSP2 and fSP3 representing the forces due to the three spring-pots
shown in Figure 2.1, whose explicit expressions are given in eqn (2.22).
Also, the terms appearing in (2.27) are the displacements, being ∆uP =

∆uSP1 = ∆uSP2.
By Laplace transforming fP and fSP3, fractional derivative rule C

0 Dα
t

L−→
sα gives

FP =
[
Cα1sα1 +Cα2sα2 +(c1SP1 + c1SP2) s+(c2SP1 + c2SP2) s2]∆UP

(2.28)
FSP3 =

[
Cα3sα3 + c1SP3s+ c2SP3s2]∆USP3 (2.29)
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After standard manipulations it is possible to obtain

∆UP =
FP

Cα1sα1 +Cα2sα2 +(c1SP1 + c1SP2) s+(c2SP1 + c2SP2) s2

(2.30)

∆USP3 =
FSP3

Cα3sα3 + c1SP3s+ c2SP3s2 (2.31)

By recalling Fres from eq. (2.5) one finally attains the analytical so-
lution of the in-frequency response of the generalized SLK system is
|∆USLK |

∣∣∣
s=iω

where

∆USLK =

γVm

[
1

s(c1SP1+c1SP2)+s2(c2SP1+c2SP2)+Cα1sα1+Cα2sα2 +
1

s(c1SP3+c2SP3s)Cα3sα3

]
[

1
(c1SP1+c1SP2)+s2(c2SP1+c2SP2)+Cα1sα1+Cα2sα2 +

1
(c1SP3+c2SP3s)+Cα3sα3

]
− 1

4
3

πρobR3s2

(2.32)

Parameters
Models α1 Cα1 α2 Cα2 α3 Cα3

Elastic 0 → ∞ - - 0 c0G

Viscous 0 → ∞ - - 1 c1µ

V 0 c0G 1 c1µ 0 → ∞

M 0 → 0 1 c1µ 0 c0G

SLK 0 c0G 1 c1µ 0 c0G

SLK_1 0.5 C0.5 1 c1µ 0 c0G

SLK_2 0 c0G 0.5 C0.5 0 c0G

SLK_3 0 c0G 1 c1µ 0.5 C0.5

Table 3: Synoptic frame illustrating how to set the parameters characterizing the
proposed generalized quasi-standard linear Kelvin viscoelastic model, in order
to replicate Elastic, Viscous, Voigt (V), Maxwell (M) and standard linear Kelvin
(SLK) limit cases, as well as the three intermediate chosen configurations, say
SLK_1, SLK_2 and SLK_3, employed to perform the subsequent analyses.

The obtained generalized SLK model, which also takes into account
virtual friction and added mass, is then capable to reproduce all the vis-
coelastic models presented in [103], including viscous and elastic ones;
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additionally, modulating the spring-pot parameters - say the order of the
fractional derivative α - a vast number of viscoelastic "intermediate" sys-
tems might be obtained, as summarized in table 3 for some selected cases
that will be afterwards used in the simulations.

2.2 S E N S I T I V I T Y A N A LY S E S : Q UA L I TAT I V E I N S I G H T S A N D

R E S O N A N C E H Y P OT H E S I S I N S I N G L E - C E L L DY N A M I C S

With the aim of deriving both quantitative information and qualita-
tive insights into the frequency response of single-cell systems through
simple (one-degree of freedom) visco-elastic schemes, sensitivity analy-
ses have been performed by generalizing some models successfully em-
ployed by [103]. To explore possible different behaviors and enrich the
in-frequency responses of these single-cell systems, a wide class of vis-
coelastic paradigms have been in particular considered by introducing
a new generalized SLK model and constructing related analytical solu-
tions. To gain realistic physical results, mechanical properties of actual
cells have been deduced from consolidated literature data and, to untie
the key aspects of the cell response from the specific choice of the vis-
coelastic model, the sensitivity analyses have been conducted by query-
ing different schemes.
Actually, to measure physical and in particular biomechanical properties
at single-cell scale level (i.e. stiffness, ultimate strain, strength, tough-
ness, etc) is a difficult and often challenging task. This is fundamentally
due to several obstacles that might emerge when dealing with complex
microstructures characterizing living systems, difficulties essentially aris-
ing from the fact that, during the test, intrinsic changes of the biologi-
cal structure, movements of its mechanical apparatus and biochemical
responses can all in principle interfere with the actual property to be
measured. Furthermore, for example at single-cell scale, mechanical fea-
tures may be drastically different from a site to another, as a conse-
quence of reorganization dynamics activated by adhesion, migration and
polymerization-depolymerization processes which change the internal
configuration of the cytoskeleton and, as a result, may determine non
homogeneous distribution of stiffness and deformation [3, 9, 116]. With
this respect, Lekka et al [83] show, for instance, that depth of indenta-
tion, the substrate on which the cells are spread, the load rate as well
as the position and time of cell poking might all influence the stiffness
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AFM measurements. This implies that the physical measurements gener-
ally can be strongly dependent on the technique utilized and, as a conse-
quence, quantitative estimations may cover wide ranges. Several experi-
mental tests [11, 22, 23, 41, 70, 81–83, 85, 100, 113, 115] have in fact
shown that the Young’s modulus of the cytoplasm of different (healthy
and cancer) cell lines can oscillate from about 100 Pa to 10 kPa. Also,
the size of the cell nucleus is of the order of few micrometers and may
depend on the cell size [37]. Further studies on the overall cell viscos-
ity demonstrated that rheological properties may span over five orders
of magnitude, probably as effect of the high dependence of the response
on frequency bands and measurement techniques. Indeed, as highlighted
in the paper by Or and Kimmel [103], while the viscosity of aqueous
cytoplasm was found to be similar to that of water in fibroblasts, say
µ = (1.3±0.1)×10−3 Pa×s [49], and slightly higher in smooth muscle
cells, e.g. µ = (12.5±5.5)×10−3 Pa×s [129], the apparent viscosity of
blood granulocytes was instead estimated to be substantially higher, with
about µ = (210±100)×10−3 Pa×s [40].

This said, by taking into account the above mentioned literature ex-
perimental results which suggest that the measured mechanical features
of cells can oscillate within wide ranges, the sensitivity analyses of the
frequency response of single-cell units have been performed by making
variable the overall cell Young modulus, the viscosity of the cytosol and
the nucleus size in a way to cover the whole range spanned by the lit-
erature biomechanical data for different cell lines. Except for the infor-
mation here utilized for parametrically describing the cell stiffness, the
remaining physical data used for the analytical simulations are mainly
referred to those suggested in [103].
Thus, with respect to the notations already introduced to describe the
key parameters in the proposed generalized SLK visco-elastic model,
all the analyses have been conducted by using vibration velocity ampli-
tude of the medium vm0 = 0.12 ms-1 , derived for plain progressive wave
with acoustic intensity of 1 W cm-2 to which is associated an intensity
I = 0.5ρmcv2

m0, with speed of sound c = 1500 ms-1 at room temperature
[86]. The mass density of the medium has taken to be that of water at
room temperature, the nucleus being considered 30% more dense than
the environment, as generally assumed in literature [97].
In particular, the analyses have been performed by making reference to
six representative viscoelastic schemes, say Voigt, Maxwell, SLK and
three further generalized SLK models modified by respectively placing
in position 1, 2 and 3 spring-pots with α = 0.5, all enhanced by introduc-
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Figure 2.2: Sensitivity analysis for the frequency response of the cyclic dis-
placement amplitude of a spherical object (R = 1 µm) with respect to its sur-
roundings with low viscosity (µ = 10−3 Pa× s) and varying Young modulus
(E = 100, 500, 1000, 5000, 10000Pa): (V) Voigt; (M) Maxwell; (SLK) Stan-
dard Linear Kelvin; (SLK_1) generalized Standard Linear Kelvin with spring-
pot in position 1, (SLK_2) 2 and (SLK_3) 3, with α = 0.5.



2.2 S E N S I T I V I T Y A N A LY S E S A N D R E S O N A N C E H Y P OT H E S I S I N S I N G L E - C E L L DY N A M I C S 39

Figure 2.3: Sensitivity analysis for the frequency response of the cyclic
displacement amplitude of a spherical object (R = 1 µm) with respect to
its surroundings with stiffness (E = 2100Pa) and varying viscosity (µ =[
10−3 ∼ 10

]
Pa× s): (V) Voigt; (M) Maxwell; (SLK) Standard Linear Kelvin;

(SLK_1) generalized Standard Linear Kelvin with spring-pot in position 1,
(SLK_2) 2 and (SLK_3) 3, with α = 0.5.
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Figure 2.4: Sensitivity analysis for the frequency response of the cyclic dis-
placement amplitude of a spherical object with respect to its surroundings with
stiffness (E = 2100Pa) viscosity (µ = 10−3 Pa×s) and varying size of the ob-
ject (R= 0.1, 1, 5, 10, 20 µm): (V) Voigt; (M) Maxwell; (SLK) Standard Linear
Kelvin; (SLK_1) generalized Standard Linear Kelvin with spring-pot in posi-
tion 1, (SLK_2) 2 and (SLK_3) 3, with α = 0.5.
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ing the effects of virtual friction and added mass.
The analytical results have been obtained by making use of the symbolic
code Wolfram Mathematica®and have been plotted in the frequency do-
main of interest for possible applications in biomedical engineering, that
is 1kHz≤ f ≤ 100MHz, showing the frequency response of the systems
in terms of relative displacement amplitude, |∆U |, which represents, in
the time domain, the amplitude of the US induced relative oscillations
between cell nucleus and environment.
The most significant results are all summarized in Figures 2.2, 2.3 and
2.4, where cell stiffness, viscosity and nucleus size have been separately
assumed as varying over the ranges experimentally reported in the scien-
tific studies, in each group of sensitivity analyses keeping fixed the other
complementary parameters and choosing for them the most common val-
ues encountered in the literature, that is the Young modulus E = 2100Pa
[23], the mean nucleus radius R = 1 µm [20] and the viscosity of the wa-
ter µ = 10−3 Pa×s, [103].
In particular, in Figure 2.2 the frequency response of the relative dis-
placement between environment and the embedded spherical object rep-
resenting the cell nucleus, with radius R = 1 µm , is shown by assuming
low viscosity (i.e. µ = 10−3 Pa×s ) and varying cell stiffness through
five selected Young moduli, coherently deduced by literature and rang-
ing from E = 100Pa to E = 10kPa. Analogously, Figures 2.3 and 2.4
illustrate again the results in terms of displacement amplitude versus fre-
quency, for the six viscoelastic models, respectively assuming stiffness
fixed to E = 2100Pa and varying viscosity (choosing five values in the
range µ = 10−3 Pa×s to µ = 10Pa×s ) and nucleus radii spanning the
actual physical range, that is from R = 0.5 µm to R = 10 µm.
The analytical outcomes obtained from the sensitivity analyses allow to
highlight some relevant preliminary remarks which guide the subsequent
simulations performed by specializing the viscoelastic models in order to
discriminate mechanical frequency responses of healthy and cancer cells.
In particular, the most significant results can be summarized in the fol-
lowing points.
First of all, some relevant qualitative behaviors can be recognized in the
results shown in Figures 2.2, 2.3 and 2.4, all represented by plotting rela-
tive displacement amplitude versus frequency, that is: i. increasing peak
frequencies and associated decreasing maximum displacements as stiff-
ness of the system grows up (see Figure 2.2), ii. decreasing maximum dis-
placement peaks with moderate frequency shifts as viscosity increases,
with some slight differences in Voigt and SLK_3 models that leave how-
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ever unaltered the trend, as shown in Figure 2.3, iii. increasing maximum
displacement peaks with decreasing of corresponding frequencies as cell
sizes grow (i.e. the nucleus radii increase), as illustrated in Figure 2.4.
Importantly, with the exception of the sole limit cases (extremely large
or small cell nuclei, significantly low elastic moduli and highest viscos-
ity values), in all the investigated models, the results show that the peak
frequency and the corresponding maximum vibrational amplitudes |∆U |
can be recognized to lie within the range 104 ∼ 106 Hz, an interval co-
herent with that found in the experiments by [66] and [80], which thus
authorizes to think of obtaining resonance-like responses by stimulating
cells by means of ultrasounds.

In agreement with Or and Kimmel outcomes [103], the obtained re-
sults derived by conducting the simulations with different viscoelastic
models, where Young moduli variation has been additionally taken into
account, confirm that mechanical (e.g. ultrasound-induced) vibrations
|∆U | are mostly comparable or greater than spontaneous thermal fluc-
tuations. This happens for both the case of purely elastic solid, where
- according to Ohshima and Nishio [102] - the Mean Square Displace-
ment with respect to its equilibrium position can be analytically assumed

to obey the equation 〈u2
T ,e〉 =

kBT
πRG

, and viscous media, in which the

Mean Relaxation Distance is 〈uT ,ν〉 =
2R2ρobv0

9µ
[72], where kB is the

Botzmann constant, T is the absolute temperature and v0 is the initial
velocity. To prove this numerically, it is sufficient to verify that, by mak-
ing variable in the ranges of interest the cell nucleus radii and both the
elastic and the viscous moduli appearing in the equations above recalled,
the codomain of the square root of the Mean Square Displacement is
(2× 10−10,9× 10−9) and the codomain of the Mean Relaxation Dis-
tance is (6× 10−15,2× 10−8), the upper bounds of both the intervals
giving values comparable with or smaller than the peaks of mechanical
vibrations amplitudes theoretically obtained from the sensitivity analy-
ses (see Figures 2.2, 2.3 and 2.4).
Moreover, it has been experimentally demonstrated that cyclic loads at
low frequencies, associated to strain levels in the range (10−2,10−1),
may induce mechanical and configurational alterations or rupture in liv-
ing cells (see Table 1. in [103]). Analogous effects can be also observed
at relatively high frequencies, in the case of ultrasound-stimulated cells,
as experimentally shown by [80] and [99]. In particular, Mizrahi et al
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[99] show that these physical changes are caused by very small strains
(10−5) at ultrasonic frequencies (106 Hz) and are close to those caused
by relatively large strains (10−1) at physiological frequencies (100 Hz).
With respect to the present work, by taking into account the relative dis-
placement peaks between cell nucleus and environment obtained from
analytical results, a rough estimate of the equivalent uniaxial strain can

be calculated as ε ∝
|∆U |

(10×R)
. Therefore, by considering that cell nu-

clei may vary within the range (2× 10−7,10−5) m and vibrational dis-
placement amplitudes are found ranging from 10−9 m to 10−7 m (with
the exception of the extreme cases of fluid-like behaviors), strains from
10−5 up to 10−1 can be reached. As a consequence, at the ultrasound
frequencies (and/or by increasing the US radiation intensity), after a few
seconds of exposure, cell configurational alterations or disruptions due
to fatigue-like phenomena might be actually expected.
Importantly, the peak frequencies theoretically obtained by means of the
implemented viscoelastic models may span from tens kHz to one MHz,
both the frequency extreme values of this interval being involved as crit-
ical frequencies at which it has been experimentally observed that cells
show relevant biological responses as a result of prevailing mechanical
effects on thermal ones [66, 118].
Further details of the results can be however traced in the Figure’s cap-
tions.

2.3 F R E Q U E N C Y- B A S E D D E T E C T I O N O F C A N C E R A N D H E A LT H Y

C E L L S AT S I N G L E - C E L L L E V E L

On the basis of the sensitivity analyses, it has been above demonstrated
- by means of theoretical arguments - that single-cells, modeled through
different elementary viscoelastic systems, exhibit frequencies (from tens
to hundreds kHz) associated to oscillation magnitude peaks which con-
firm that mechanical resonance-like phenomena induced by ultrasounds
can be prevailing with respect to thermal fluctuations, a fact that also sug-
gests that the cell structural response can be recognized as a candidate
to play a key role to explain some experimentally observed biological
effects [66, 80, 99, 118].
On the other hand, as recalled above, independent literature results have
in the last years shown that, regardless of measurement techniques and
cell lines, cancer cells are always significantly softer than their healthy
counterparts, a fact ascertained among biologists (see Table 4). Given



44 S I N G L E C E L L M E C H A N I C S

that there are very few common factors shared by tumor cells (this is the
main reason of the success of molecular markers) this stiffness discrep-
ancy between normal and tumor cells constitutes an extremely relevant
property.
With the aim of both gaining information about the possibility of me-

chanically targeting healthy and cancer cells and quantitatively estimat-
ing the frequency bands at which detection could be in principle realized,
in the present section the viscoelastic schemes, already utilized above for
the sensitivity analyses, are specialized with reference to the stiffness val-
ues actually experimentally measured and reported in the literature for a
number of healthy and cancer cell lines (see Table 4). In particular, as an
example, Figure 2.5 illustrates how benign and tumor mesothelial cells
extracted from carcinoma of the lung [23] would behave in terms of rela-
tive displacement amplitude versus frequency. The outcomes show that,
in all the six examined viscoelastic models, the difference in stiffness be-
tween the cells results to be sufficient for recognizing corresponding sig-
nificant frequency shifts defined as in-frequency distances between the
resonance-like oscillation magnitude peaks. Importantly, a relevant dif-
ference is also reflected in the graphics of the obtained results in terms
of relative displacement amplitudes, which would in principle ensure the
possibility of selectively targeting tumor cells if - for example by means
of ultrasounds - the radiation is applied at a prescribed intensity and at a
frequency close to the resonance-like frequency of the cancer single-cell
system, an effect amplified by the fact that, due to the above recalled
frequency shift, the normal cell always exhibits a smaller displacement
amplitude at the tumor critical frequency.
To stress this aspect, Figure 2.6 collects - in form of histograms - all the
theoretical outcomes obtained by making reference to the viscoelastic
properties experimentally measured in numerous independent literature
works for six healthy and cancer cell lines (see Table 4). In particular,
the results are summarized by highlighting - for each cell line - the dif-
ference of frequencies at which the oscillation amplitude peak occurs,
in both cancer and healthy cells and averaging the results - for sake of
simplicity - over each viscoleastic scheme adopted for performing the
simulations. The bar-chart confirms the possibility of observing relevant
differences, in terms of resonance-like frequencies, in comparing cancer
and healthy cell mechanical responses, a fact registered for all the cell
lines examined and regardless of the implemented viscoelastic model,
and occurring at frequencies always compatible with LITUS.
Finally, by keeping in mind possible practical uses for targeting tumor
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Figure 2.5: Frequency response, in terms of relative displacement amplitude
vs frequency, of Healthy (H) and Cancer (C) mesothelial cells extracted from
carcinoma of the lung, simulated through the proposed viscoelastic schemes:
(R = 1 µm; µ = 10−3 Pa× s; measured cancer Young modulus:E = 560Pa;
measured healthy Young modulus: E = 2100Pa). The six graphics are ref-
fered to the following models: (V) Voigt; (M) Maxwell; (SLK) Standard Linear
Kelvin; (SLK_1) generalized Standard Linear Kelvin with spring-pot in posi-
tion 1, (SLK_2) 2 and (SLK_3) 3, with α = 0.5. The grey regions highlight
the difference in frequency between peaks in cancer and healthy cells. Dashed
lines represent the displacement amplitudes corresponding to the thermal fluc-
tuations, always smaller than the mechanical ones.
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Figure 2.6: Bar-chart with synopsis of the theoretically derived in-frequency
responses of healthy and cancer cells whose mechanical properties have been
experimentally measured: the histograms compare peak frequencies for each
tumor and normal cell line pair examined, by averaging over all the results ob-
tained from the six viscoelastic schemes utilized. The first column reports the
cell type and the corresponding literature reference from which the data are
deduced; the last two columns give some quantitative results in terms of ratio

between maximum (
(∆ f )max

fH
) and minimum frequency shifts (

(∆ f )min

fH
) over

the reference resonance-like frequency of the healthy cell, for each cell line.
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cells, the last columns in 2.6 report a synopsis of the most important
quantitative results obtained from the performed analyses, showing that

both the ratios
∆ f
fH

between maximum and minimum frequency shifts

∆ f = fH − fC over reference healthy resonance frequency fH , (occur-
ring in the cases at hand with respect to SLK_1 and Voigt viscoelastic
models) would allow in principle to quantitatively discriminate the peak
frequencies in a real case. As a matter of fact, the reference healthy fre-
quencies fH are indeed about 40 ∼ 400 kHz, while the frequency shifts
oscillate between about 20∼ 250 kHz. This seems to explain the exper-
imental findings in [80] and also to suggest that, for a practical (ther-
apeutic) purpose, a biomedical device could be designed to selectively
determine ultrasound-induced large vibrations in tumor cells, once wave
frequencies were tuned from 25% to 60% of the reference healthy fre-
quency.

2.4 E L E M E N TA L N O N L I N E A R E L A S T I C M O D E L O F A N A D -
H E R E N T C E L L

Influence of prestress and number of cytoskeleton filaments on the single-
cell stiffness

With the aim of deriving the effect of the pre-stretch accumulated in
the cytoskeleton filaments on the overall single-cell stiffness, in this sec-
tion it is presented a simple non-linear elastic model of the cell structure
in which the essential features responsible for the mechanical response
of the ensemble (e.g., cytoskeleton protein filaments, cell nucleus and
interface conditions with a rigid substrate –say the extra-cellular matrix,
ECM) are taken into account, in this manner determining the cell elastic-
ity via a bottom-up procedure.
To this purpose, let us consider the sketch in Figure 2.7. Therein, starting
from a generally unknown initial stress-free configuration (Figure 2.7a),
the cell is assumed to be in an actual prestretched configuration (say
adherent to the ECM, as shown in Figure 2.7b), and then subjected to
a small displacement of its nucleus (Figure 2.7c). In this scheme, as
highlighted in the lateral view (see Figure 2.7), the cell cytoskeleton is
modeled through a structure made of symmetrically and radially placed
non-linear elastic filaments (or filament strands) anchored to the central
nucleus and to the substrate through the focal adhesion points, in this



48 S I N G L E C E L L M E C H A N I C S

Stiffness [kPa] ± SD
Investigator Year Cell Line

Healthy Cancer

Human Bladder HCV29 3.09±0.42
1. Lekka et al. [83] 2012

Human Bladder T24 0.83±0.27

Human Kidney non-tumorigenic RC-124 9.38

Human Kidney carcinoma A-498 7.412. Rebelo et al [115] 2013

Human Kidney adenocarcinoma ACHN 2.48

Human Prostate non-tumorigenic PZHPV7 3.09±0.28

Human Prostate metastatic carcinoma LNCaP 0.45±0.21

Human Prostate metastatic carcinomaa Du145 1.36±0.42

Human Prostate adenocarcinoma PC-3 1.95±0.47

Human Breast Normal A184A1 2.26±0.56

Human Breast Cancer T47D 1.20±0.28

3. Lekka et al. [82] 2012

Human Breast Adenocarcinoma MCF7 1.24±0.46

Human Thyroid S748 2.211∼ 6.879
4. Prabhune et al [113] 2012

Human Thyroid anaplastic carcinoma S277 1.189∼ 1.365

Mouse Early Ovarian surface Epithelia MOSE 0.549±0.281
5. Ketene et al [70] 2012

Mouse Late Ovarian surface Epithelia MOSE 1.097±0.632

Human Breast normal mammary epithelium MCF10A 1.13±0.84
6. Nikkhah et al [100] 2010

Human Breast metastatic tumor MDA-231 0.51±0.35

Human Prostate Benign BPH 2.797±0.491

Human Prostate adenocarcinoma PC-3 1.401±0.1627. Faria et al [41] 2008

Human Prostate metastatic carcinoma LNCaP 287±52

Human Epithelial normal Hu609 9.7±3.6

Human Epithelial normal HCV29 7.5±3.6

Human Epithelial cancerous Hu456 1.0±0.6

Human Epithelial cancerous T24 0.8±0.4

8. Lekka et al [81] 1999

Human Epithelial cancerous BC3726) 0.3±0.2

Human Breast Epithelial non malignant MCF10 1.15±0.52
9. Li at al [85] 2008

Human Breast Epithelial malignant (MCF-7) 0.614±0.237

Human Lung Benign carcinoma 2.10±0.79

Human Lung Tumoral carcinoma 0.56±0.09

Human Brest Benign ductal adenocarcinoma 1.93±0.50
10. Cross et al. [23] 2007

Human Brest Tumoral ductal adenocarcinoma 0.5±0.08

Table 4: Actual stiffness for different lines of healthy and cancer cells, mea-
sured by means of several techniques, as precised in the references reported in
the first column.
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Figure 2.7: Cartoon –with plan and lateral views– of the elemental cell cy-
toskeleton structure: a) initial (stress-free) unknown configuration; b) adherent
cell with non-linearly prestretched/prestressed filaments (reference configura-
tion); c) small-on-large cell deformation induced by nucleus displacement (cur-
rent configuration)

way implicitly assuming that the cell membrane follows the overall ge-
ometry of the model. Also, for sake of simplicity, the entire kinematics is
projected in the horizontal plane (say the plane defined by the focal adhe-
sion points), so neglecting the minor effects of stress and strain aliquots
associated to the out-of-plane filament elongations caused by the cell
stretching. In particular, a reference prestretch (denoted by λp) character-
izes the deformed configuration in which the nucleus is constrained by
n elastic strings –representing the actin filaments– arranged uniformly
around the nucleus and identified by an angle φ j0 = j 2π

n .
To find how the cell structure influences the overall cell stiffness when
its filaments are prestressed, by making reference to a small-on-large
approach, the nucleus is displaced of u in an arbitrary (say horizontal)
direction: as a consequence, maintaining prescribed the focal adhesion
points, each filament will result to be stressed to follow the nucleus and
the corresponding Piola-Kirchhoff stress tensor can be generally written
as

P j =

PL j 0 0

0 PT j 0

0 0 PT j

 (2.33)

where –for the -jth filament– PL j denotes the longitudinal stress compo-
nent and PT j is the transverse stress one, in this case to be set equal to
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zero. Once the force fu to be applied to the nucleus for obtaining the dis-
placement u is determined, the related equivalent tangent stiffness can be
formally derived as follows

Keq =
∂ fu

∂u

∣∣∣
u=0

(2.34)

Obviously, the force fu – the resultant of the axial forces of the n fila-
ments (see Figure 2.8) – will depend on u, the prestretch λp of each sin-
gle filament, the initial stiffness (related to the stress-free configuration),
the geometrical parameters, the number n of filaments and the constitu-
tive assumption, say the type of hyperelastic law chosen fot the strings.
Therefore, one has

f
2

N
2

N
1

N

3

f
3

N

i f
i

Figure 2.8: Illustration of how the axial forces kindled in each string contribute
to the equilibrium of the nucleus: the angles φ j are referred to the actual (dis-
placed) nucleus position.

fu +
n

∑
j=1

N j cos (φ j) = 0 (2.35)

where N j = PL jA is the contribute of the -jth filament due to the longitu-
dinal stress times the reference cross-section area A = A j and φ j is the
angle of the -jth filament in its current configuration.
The constitutive model for the strings is here fixed by following [61], in
the case of compressible Neo-Hookean solids in which the Strain Energy
Density Function (SEDF) is written in terms of the first invariant, I1, of
the right Cauchy-Green tensor C = FT F (chosen as measure of the defor-
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mation) which in the so-called coupled form – where the isochoric and
volumetric parts are interacting – is given by:

ΨNH =
G
2
(I1−3)+

G
2β

(
J−2β −1

)
with β =

ν

1−2ν
(2.36)

where J = detF and G and ν denote the shear modulus and the Pois-
son’s ratio, respectively. The principal stresses will hence depend on the
principal stretches in the form

Pj =
∂ ΨNH

∂λ j
(2.37)

and furthermore

PL j = G

λL j−

(
λL jλ

2
T j

)
2ν

2ν−1

λL j

 , (2.38)

PT j = G

λT j−

(
λL jλ

2
T j

)
2ν

2ν−1

λT j

 (2.39)

Algebraic manipulations lead to observe that prescribing uniaxial stress
states in each filament (PT j = 0) reduces to impose λT = λ

−ν

L , finally
obtaining the longitudinal stress as follows

PL j = GλL j

(
1−λ

−2(1+ν)
L j

)
(2.40)

The total stretch in the generic -jth filament strand can be multiplicatively
written as:

λL j = λpλu j (2.41)

in which λp =
L
L0

is the initial prestretch related to the current filament

length L referred to the initial configuration L0 –whose values are here
assumed to be the same for all the elements due to the symmetry of
the initial cell shape – λu j being the stretch of the -jth string due the
displacement u and explicitly given by

λu j =

√
L2 sin2

φ j +(Lcosφ j−u)2

L
(2.42)

where

sinφ j =
Lsinφ j0√

L2 sin2
φ j0 +(Lcosφ j0−u)2

,

cosφ j =
Lcosφ j0−u√

L2 sin2
φ j0 +(Lcosφ j0−u)2

(2.43)
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Finally, by substituting eqs (2.40) and (2.35) into (2.34), after some
further algebraic manipulations, one obtains the stiffness K which varies
with the displacement u as follows

K = −GAλp

n

∑
j=1

[
(1+(1+ 2ν)λ

−(1+2ν)
p λ

−2(1+ν)
u j )cosφ j

∂λu j

∂u
−

(λu j−λ
−2(1+ν)
p λ

−(1+2ν)
u j ) sinφ j

∂ φ j

∂u
)

]
(2.44)

from which one finally has

Keq = K
∣∣∣
u=0

= GAL−1
λp

n

∑
j=1

(1+λ
−2(1+ν)
p (ν +(1+ν)cos2φ j0))

(2.45)

that represents the analytical form –explicitly depending on both the ge-
ometrical and mechanical parameters– of the tangent stiffness of the ad-
herent single-cell structure, associated to the imposed displacement u. It
is worth to notice that, from (2.45) and for an arbitrary couple of fila-
ments with prescribed angles φ j0 and φ j0 +π respectively, the prestretch
influences the stiffness in a non linear way, whose form depends on the
Poisson’ratio ν . It is then natural to ask if the stiffness is monotonic with
the prestretch. By calculating the derivative of the j-th addend (and its
coaxial) in Keq, say Keq j, with respect to λp and equating it to zero, one
finds

∂Keq j

∂λp
= GAL−1 cosφ j0λp

(
1+(1+ 2ν)λ

−2(1+ν)
p

)
= 0 (2.46)

whose in closed-form solution is

λp = |1+ 2ν |
1

1+ν (2.47)

which gives compatible (positive) stretches for any angle φ j0 and Pois-
son ratios belonging to the classical thermodynamically consistent range
]−1, 1

2 [.
From the biomechanical point of view, this enough counter-intuitive re-
sult implies that, as the stiffness varies with increasing prestretches, a
minimum must be found (see Figure 2.9) and thus –at least in principle–
during a monotonic stretching of the substrate or in searching optimal
cytoskeleton configuration, an adherent cell could find minimal energy
positions at nonzero strains as well.
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Figure 2.9: Plot of the dimensionless contribution of a filament to the cell stiff-
ness as function of the prestretch: note that –for different Poisson’s ratio values–
a minimum is always highlighted.

Identification of the model parameters to describe actual cell stiffness

The above nonlinear elastic model has been introduced to quantita-
tively estimate the effect of prestress and number of filaments on the
overall stiffness of an adherent (prestretched) single cell. With reference
to the experimentally measured cell stiffness values (see for a synoptic
frame the tables in [44]) and by making use of (2.45), it is possible to
determine the equivalent overall elastic Young modulus of the cell in an
arbitrary prestretched configuration, Eeq, by considering incompressibil-

ity condition –that is G' E
3

, G being the first Lamé modulus– as follows
(the symbol C0G = 6πGR will be afterwards used for the stiffness)

Eeq '
3Keq

6πR
(2.48)

where R represents the cell nucleus radius, as reported by [103]. This
expression –which will be used in the following viscoelastic schemes–
implicitly takes into account the prestretch as well as the number of fila-
ments, all these parameters being included in Keq. As a consequence, the
formula furnishes a direct first estimation of the equivalent cell Young
modulus Eeq –once all the mechanical and geometrical parameters are
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known– but, because of its elementary structure, it can be also used to
identify the number of "active" cytoskeleton elements in an experimental
measurement, as well as to determine the average prestress of an adher-
ent cell.
In Figure 2.10 are illustrated the results of the parametric analyses con-
ducted on the equivalent stiffness for three values of the Poisson’s ratio of
the filaments (ν = 0,0.25,0.5), initial filament length L0 equal to 50 µm
and circular cross sections with diameters of 7 nm, all these values being
coherent with the literature data. In particular, the equivalent cell Young
moduli of a cell have been carried out by both considering 75 active pro-
tein filaments for a single cell strand, making variable the prestretch (see
Figure 2.10a), and complementary prescribing a prestretch (λp = 1.3),
thus plotting the cell stiffness against the number of filaments (see Fig-
ure 2.10b). Both the graphics show how the whole range of elastic moduli
measured through different techniques and reported in the literature for
a vast class of cell lines ([44]) can be obtained with a good agreement,
modulating the prestretch and the number of "active" filaments within
experimentally documented intervals. An instructive numerical example
can be easily done by considering the case of cell stiffness measured by
Cross et al [22] for human healthy cells and corresponding abnormal car-
cinoma of the lung, estimated about 2100 Pa and 560 Pa, respectively. In
this case, setting ν = 0.4, the stiffer value associated to the healthy cells
can be obtained through the proposed model by assuming a prestretch
λp = 1.32 and considering n = 75 active protein filaments, the cancer
cell elastic modulus being caught by merely reducing to about 26 the
number of active filaments to simulate possible lower levels of polymer-
ization in the cytoskeleton structure of cancer cells to facilitate squeezing
and metastatic migration abilities.

T H E R E S O N A N C E H Y P OT H E S I S I N A D H E R E N T C E L L S : T H E RO L E

O F P R E S T R E T C H A N D N U M B E R O F AC T I V E C Y T O S K E L E T O N

F I L A M E N T S

With reference to the (one-degree of freedom) visco-elastic schemes
presented in Section 2.1 in which the the in-frequency response of single-
cell systems has been in detail analyzed through sensitivity analyses
aimed to gain information about positioning and magnitude of the re-
sponse peaks for envisaging possibilities of exploiting the stiffness dis-
crepancies experimentally observed between healthy and tumor cells for
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Figure 2.10: Parametric analyses for the equivalent Young modulus of a single-
cell system for different Poisson’s ratios: a) elastic stiffness versus prestretch
with fixed number of active filaments (75); b) elastic stiffness versus number of
(active) filaments, with prescribed prestretch value (λp = 1.3).

mechanically targeting and selectively attacking cancer cells. To make
this It has been explored the in-frequency responses of a wide class of
viscoelastic single-cell paradigms, by ad hoc introducing a new general-
ized fractional derivative–based SLK model and constructing the related
analytical solutions, whose results were referred to ranges of mechanical
properties and physical parameters actually measured at single-cell level
and reported in the consolidated literature.
However, when dealing with living systems, the measures of stiffness
can be significantly affected by intrinsic structural changes of the bio-
logical matter, for example by the reorganization dynamics guided by
polymerization-depolymerization processes which change the internal
configuration of the cytoskeleton, so regulating adhesion and migration
cell capabilities and in turn provoking non homogeneous cell deforma-
tions and changes in stiffness ([3, 9, 116]), with Young’s moduli also
oscillating from about 100 Pa to 10 kPa ([11, 22, 23, 41, 70, 81–83, 85,
100, 113, 115]).
Nevertheless, the vast majority of the experimental data somewhat con-
siders stiffness of "round" (suspended) cells and –at the best authors
knowledge– no many efforts have been devoted, from the modeling stand-
point, to mechanically relate the overall change of cell stiffness to its
stretched configuration, as well as to the average number of active/assem-
bled cytoskeletal filaments.
Therefore, by starting from the literature experimental results and tak-
ing into account the ranges within which actual measured mechanical
features of cells can oscillate, the overall stiffness –determined from the
proposed elemental non-linear elastic single-cell model– has been intro-
duced into the fractional derivative–based SLK scheme. In this way, the



56 S I N G L E C E L L M E C H A N I C S

cell visco-elastic behavior explicitly depends, among other geometrical
and physical parameters, upon the stiffness resulting from the number
of active cytoskeletal filaments, their prestretch level due to possible ad-
herent configurations, as well as from the round shape–associated cell
Young modulus, directly related to the cell line and to the cell (i.e. healthy
or cancer) state.
To highlight the possibility of following the above described strategy for
representing the whole range of the experimentally measured single-cell
mechanical properties, in both suspended and adherent conditions, also
demonstrating that viscoelaatic response peaks still fall within frequen-
cies intervals of ultrasound which would still preserve the possibility of
of selectively inducing resonance-like phenomena in cells ([44]), sensi-
tivity analyses have been thus ad hoc performed by making variable the
overall intrinsic round-shaped cell Young modulus, the prestretch and the
number of active micro-filaments, the cytosol viscosity and the nucleus
size being prescribed and set equal to average values, in this manner cov-
ering the entire range of the mechanical data given in the literature for
many cell lines investigated.
By essentially following data and methods already introduced in [44] and
with respect to the notations proposed for the generalized SLK visco-
elastic systems, the analyses reported below have been conducted by
assuming medium vibration velocity magnitude vm0 = 0.12 ms-1, deter-
mined in case of plain progressive waves characterized by acoustic in-
tensity of 1 W cm-2 and associated intensity I = 0.5ρmcv2

m0, c = 1500
ms-1 being the speed of sound at room temperature ([86]) at which mass
density of the medium has been also assumed to be coincident with that
of the water, the nucleus –as reported in ([97])– being considered about
30% more dense than the environment.

More specifically, the performed analyses have been referred to six
selected viscoelastic schemes, that is the enhanced Voigt, Maxwell and
SLK ones and further three generalized fractional derivative–based SLK
models constructed by positioning in the sections 1, 2 and 3 spring-
pots with α = 0.5 (see Figure 2.1), in all the cases also taking into
account added mass and virtual friction effects. Additionally, the elas-
tic modulus G appearing in the fractional derivative–based models im-
plicitly takes into account the cell configuration (suspended and adher-
ent) through prestretch and number of active filaments determined by
eqs. (2.45) and (2.48). The theoretical outcomes have been carried out
by making the calculations using the symbolic commercial code Wol-
fram Mathematica®([Wolfram2003]) and the results have been repre-
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Figure 2.11: Sensitivity analysis for the frequency response of the cyclic dis-
placement amplitude of a spherical object (R = 1 µm) with respect to its sur-
roundings with prescribed viscosity (µ = 10−3 Pa× s) and varying Young mod-
ulus (E = 100, 500, 1000, 5000, 10000Pa): (V) Voigt; (M) Maxwell; (SLK)
Standard Linear Kelvin; (SLK_1) generalized Standard Linear Kelvin with
spring-pot in position 1, (SLK_2) 2 and (SLK_3) 3, with α = 0.5.
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Figure 2.12: Sensitivity analysis for the frequency response of the cyclic dis-
placement amplitude of a spherical object (R = 1 µm) with respect to its sur-
roundings with prescribed viscosity (µ = 10−3 Pa× s), tangent Young modu-
lus (E = 2.6× 109Pa) and Poisson ratio (ν = 0.4) of the microfilaments, for
a fixed number of active filaments (n = 50), varying the level of prestretch
(λp = 1, 1.5, 2, 3, 4): (V) Voigt; (M) Maxwell; (SLK) Standard Linear Kelvin;
(SLK_1) generalized Standard Linear Kelvin with spring-pot in position 1,
(SLK_2) 2 and (SLK_3) 3, with α = 0.5.
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Figure 2.13: Sensitivity analysis for the frequency response of the cyclic dis-
placement amplitude of a spherical object (R = 1 µm) with respect to its sur-
roundings with prescribed viscosity (µ = 10−3 Pa× s), tangent Young modu-
lus (E = 2.6× 109Pa) and Poisson ratio (ν = 0.4) of the microfilaments, for a
fixed level of prestretch (λp = 1.3), varying number of active microfilaments
(n = 50, 100, 150, 200, 250): (V) Voigt; (M) Maxwell; (SLK) Standard Linear
Kelvin; (SLK_1) generalized Standard Linear Kelvin with spring-pot in posi-
tion 1, (SLK_2) 2 and (SLK_3) 3, with α = 0.5.



60 S I N G L E C E L L M E C H A N I C S

sented in the domain of the frequencies within the interval most interest-
ing for biomedical applications, i.e. 1kHz ≤ f ≤ 100MHz. In particular,
the main attention is paid to the in-frequency system responses plotted in
terms of maximum relative displacement |∆U |, in the time domain repre-
senting the magnitude of relative oscillations between environment and
cell nucleus, induced by ultrasound.
Figures 2.11, 2.12 and 2.13 collect the most relevant results from the an-
alytical models: therein, cell stiffness, prestrech intensity and number of
filaments have been assumed to vary within intervals compatible with ex-
perimental findings, keeping fixed the other complementary parameters
and choosing for them the most common literature values, i.e. Young
modulus E = 2100Pa ([23]), cell nucleus radius R = 1 µm ([20]) and
viscosity of the water µ = 10−3 Pa×s ([103]).
Figure 2.11 in particular illustrates the cell in-frequency response in
terms of relative displacement, by parametrically making variable the
cell stiffness from E = 100Pa to E = 10kPa, coherently with data ranges
reported in the experimental literature. Similarly, Figures 2.12 and 2.13
show the results for the six viscoelastic models chosen, by plotting again
displacement amplitude against frequency and respectively setting the
tangent Young modulus (E = 2.6× 109Pa) and Poisson ratio (ν = 0.4)
of the microfilamts, the viscosity µ = 10−3 Pa×s and making variable
the prestretch λp and the number n of cytoskeleton filaments.
The outcomes obtained from the sensitivity analyses confirm both quali-
tative trends and quantitative results already found in [44], with growing
peak frequencies and associated decreasing displacement amplitudes as
the overall cell stiffness grows up as a consequence of the increase of the
intrinsic Young moduli of the (round) cells (see Figure 2.11), as well as
when the cell stiffening is induced by its adherent configuration, a situa-
tion here modeled by increasing the tensile pre-stresses in the cytoskele-
tal elements and the number of prestretched filaments (see Figures 2.12
and 2.13). Also, in all the analyzed single-cell systems, the results high-
light that the maximum vibrations |∆U | and associated peak frequencies
always fall within the interval 104 ∼ 106 Hz, a range coherent with that
experimentally established by several works (see, for instance, [80] and
[66]) that still authorizes –at least in principle– to think of obtaining
resonance-like responses by stimulating single cells by means of ultra-
sounds. Importantly, for all the viscoelastic schemes, the obtained results
confirm that US-induced mechanical vibrations, |∆U |, are mostly com-
parable (or greater than) spontaneous thermal fluctuations if both calcu-
lated in limit situations of pure elastic media –where MSD (the Mean
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Square Displacement) is 〈u2
T ,e〉 =

kBT
πRG

([102])– and pure viscous sys-

tems, where MRD (the Mean Relaxation Distance) is 〈uT ,η〉=
2R2ρobv0

9µ

([72]), kB being the Botzmann constant, T the absolute temperature and
v0 the initial velocity. It can be in fact numerically verified that the MSD
maximum square root is of the order of 10−9m while MRD can oscillate
between 10−15m and 10−8m, in both the cases leading to values smaller
than (or at most comparable with) the vibration amplitude peaks ob-
tained theoretically from the above mentioned parametric analyses (see
Figures 2.11, 2.12 and 2.13).
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2.5 E N H A N C E D 3 D - C I R C U S T E N T M O D E L F O R T H E C E L L I N -
C O R P O R AT I N G T H E P R E - S T R E T C H O F T H E C E L L - M E M B R A N E

Figure 2.14: Cartoon of an adherent cell (a)), in the unkown rest and pre-
stretched configuration, and its axysimmetric schematic idealization (b)). The
nucleus, for sake of simplicity, is assumed to be a cylinder with radius ri and
height h in the prestretched configuration. The membrane is modeled as an annu-
lus with external radius re and thickness t. The effect of prestretch it to compress
the nucleus.

With the aim of enhancing the model presented in Section 2.4 and in-
cluding the effects of the pre-stretch accumulated in the membrane cou-
pled with the finite deformation of the nucleus on the overall out of plane
stiffness, in this section it is presented a 3D circus tent-like model where a
non linear hyper elastic analysis has been conducted starting from some
recent analytic and experimental results regarding the stiffness tuning
effect of Dielectric Elastomer diaphragm device followed by the applica-
tion of a Electrical Field [24, 27, 88]. In fact in the work by Cugno et
al. [24] it has been provided an analytical solution for the out of plane
stiffness tuning effect in a elastomeric membrane due to the change in-
duced by an external electrical field on internal stress. This solution has
been the starting point to characterize the non linear mechanics of the
cell membrane coupled with the deformation of the nucleus.
As previously mentioned in literature when dealing with living systems,
the measures of stiffness can be significantly affected by intrinsic struc-
tural changes of the biological matter, for example by the reorganization
dynamics guided by polymerization-depolymerization processes, which
change the internal configuration of the cytoskeleton in this way regulat-
ing adhesion and migration cell capabilities and in turn provoking nonho-
mogeneous cell deformations and changes in stiffness ([3, 9, 116]), with
Young’s moduli also oscillating from approximately 100 Pa to 10kPa
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([11, 22, 23, 41, 70, 81–83, 85, 100, 113, 115]). In this perspective
the model here presented could be useful, during a AFM experimental
stiffness mapping to perform the inverse procedure to obtain the bio-
mechanical estimates.
Making reference to Figure 2.14 the cell is considered in an axis-symmetric
adherent situation where the nucleus, for sake of simplicity, is assumed
to be a cylinder with radius ri and height h in the prestretched configura-
tion. The membrane is modeled as an annuls with external radius re and
thickness t. In the cartoon (see Figure 2.14) is highlighted the effect of
prestretch which tends to compress the nucleus inducing an alteration of
the internal stress. The stiffness has been evaluated by means a small on
large strategy considering a relatively small displacement superimposed
in the prestretched configuration in correspondence of the nucleus in the
out of plain direction e3

2.5.1 Cell-Membrane

2.5.1.1 Kinematics and consitutive relation

For the membrane, in the deformed state, the current configuration Ω
has been considered as χ = χ0 ◦ χ p that is decomposed as follows: (i) a
uniform biaxial (pre)stretch xp = χ p(X), that maps the membrane from
the reference configuration Ω0 to the intermediate one Ωp, and (ii) a
pull out of the internal radius of the annular membrane mapped by x =

χ0(xp), due to the presence of the nucleus, which transfers the body to
the current configuration Ω (see figure to be inserted). For convenience,
three different coordinate systems (COOS) and orthonormal bases are
used to represent the points of the body:

1. Cylindrical COOS in Ω0, which describes material points in the
reference stress-free configuration, spanned by the triad {Es,Eθ ,E3},

2. Cylindrical COOS in Ωp with bases {es,eθ ,e3}

3. Curvilinear COOS in Ω with covariant bases {el,et ,en} that are
tangent to the coordinate lines.

Therefore, the deformation gradient of the mapping χ can be multiplica-
tively decomposed as F = F0Fp. Here, Fp = diag{λp,λp,λ−2

p } is the
deformation gradient due to the prestretch while F0 corresponds to the
out-of-plane deflection. The transverse stretch λ−2

p is obtained by the
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incompressibility constraint detFp = 1 and gives the intermediate mem-
brane thickness tp = T /λ 2

p .
The deformation mapping x = χ0(xp), adapted from the membrane

theory previously presented in [88], is assumed in the following form:

χ0(xp) = xp− x3e3 +u0 +(x3 + q)en, (2.49)

where u0 = u0(s,θ ) is the displacement of a point with coordinates (s,θ )
on the midplane (for which x3 = 0), en is the unit vector normal to the
deformed surface and q(s,θ ,x3) is the normal component of the displace-
ment of points away from the midplane related to the deformed config-
uration. By definition, the function q (and its partial derivatives w.r.t. s
and θ ) must vanish on the midplane:

q(x3 = 0) =
∂q
∂ s

∣∣∣
x3=0

=
1
s

∂q
∂θ

∣∣∣
x3=0

= 0. (2.50)

The covariant bases at a point on a surface parallel to the midplane in the
current configuration may be expressed as

e′s = es +
∂

∂ s
u0, e′θ = eθ +

1
s

∂

∂θ
u0 and en =

e′s× e′
θ

‖e′s× e′
θ
‖

. (2.51)

Noting that, for the membrane in the prestretched configuration, tp be-
comes small with respect to the annular width, the deformation gradient
F0 can be assumed homogeneous along the thickness and thus approxi-
mated as follows [88]:

F0 ' (F0)x3=0 = I− e3⊗ e3 +∇u0 +λn3en⊗ e3 , (2.52)

where λn3 = (1+ ∂q/∂x3) is hence independent from x3. Because we
are interested in the response of the device to a normal displacement
imposed on the internal frame, we consider the deformation as axis-
symmetrical. The resulting displacement u0 is then a function of the sole
coordinate s and no displacement occurs in the θ direction:

u0 = us(s)es + u3(s)e3 andq = q(s). (2.53)

Substituting the expressions for Fp and F0 into F, it is possible to write
the right Cauchy-Green deformation tensor [55] as follows:

C = FTF = diag
{

λ
2
p
[
(u′s + 1)2 +(u′3)

2] ,
λ 2

p (us + s)2

s2 ,
λ 2

n3
λ 4

p

}
, (2.54)
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where the principal stretches are simply the square roots of its elements.
Applying the incompressibility constraint yields the following expres-
sion for λn3:

λn3 =
s

(us + s)
√
(u′s + 1)2 +(u′3)

2
. (2.55)

To capture the nonlinear mechanics of the membrane, we treat it as an
incompressible Neo-Hookean solid. The strain energy density function
(eq. (1.74) in Chapter 1) is here reported, for sake of clarity, in terms of
the principal stretches [61] as follows:

Ψ =
1
2

µm
(
λ

2
s +λ

2
θ +λ

2
3 −3

)
, (2.56)

where µm, as well known, in order to converge to the Hooke’s law at
small strains, represent the shear modulus of the membrane measured
for infinitesimal deformations taken about a third of the Young Modulus
since the incompressible behavior.

2.5.1.2 Variational Analysis

The total potential energy written w.r.t. the intermediate (prestretched)
configuration Ωp is expressed as:

Π =
∫

Ωp

(Ψ)dΩp =
∫ re

ri

(Ψ)2πstp ds =:
∫ re

ri

L ds . (2.57)

The Lagrangian density L corresponds to the potential energy per unit
width of each concentric ring forming the annulus. The explicit expres-
sion for L is obtained from Equations (2.54) to (2.56), holds as follows

L =
πsT µm

λ 2
p

{
s2 (u′3)

2

λ 4
p (us + s) 2 [(u′s + 1) 2 + u′3

2] 2 +

s2 [u′s + 1) 2

λ 4
p (us + s) 2 [(u′s + 1) 2 + u′3

2] 2 +
λ 2

p (us + s) 2

s2 +λ
2
p (u

′
s + 1) 2 +λ

2
p (u

′
3)

2−3

}
.

(2.58)

At static equilibrium, Π must be minimized w.r.t. the functions {us,u′s,u
′
3},

which implies the following stationary conditions (i.e. Euler-Lagrange
equations):

∂L

∂us
− ∂

∂ s
∂L

∂u′s
= 0 and

∂

∂ s
∂L

∂u′3
= 0. (2.59)
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the complete expressions being found in Equation (2.70). The solutions
to the governing equations in ((2.59)) must satisfy the following set of
boundary conditions:

us(s)|s=Ri = 0 us(s)|s=Re = 0 u3(s)|s=Ri = ū u3(s)|s=Re = 0,
(2.60)

where ū is the prescribed displacement of the shuttle, due to the presence
of the nucleus.

Once the solution to ((2.59)) with boundary conditions ((2.60)) is ob-
tained, by applying the Castigliano’s theorem (or the Crotti’s theorem
in the generalized context of nonlinear elasticity) the relationship be-
tween the shuttle displacement ū and the corresponding reaction force
fm, needed to induce the displacement, can be established. In fact, the
force fm is obtained from the following derivative of the total potential
energy evaluated for the extremized potential Π∗ = Π(u∗0) at static equi-
librium:

fm =
∂ Π∗

∂ ū
. (2.61)

It is worth noting that F depends on the following set of parameters: {λp,
µm, Ri, Re}.

2.5.1.3 Approximate Solution

In order to obtain a closed-form approximation that relates the force
fm with the out of plane displacement ū, we use a small-on-large strat-
egy. This is applicable by assuming that the displacements that can be ex-
perienced from an already highly deformed configuration are relatively
small w.r.t the radial dimension of the membrane, thus employing a first
order incremental approach. The kinematics introduced in the previous
section is such that a further deformation is superimposed on the highly
prestretched (intermediate) configuration Ωp through the prescription of
the displacement ū. Therefore, under the hypothesis that ū is relatively
small, and, consequently, the current configuration is not far from the
intermediate configuration, a linear approximation of the kinematics can
be used to predict incremental variations of the system response.

For sake of clarity, a displacement ũ0 can be defined by scaling u0

in (2.53) by a quantity η � 1, namely

ũ0 = ηu0 = η (uses + u3e3) , (2.62)

and use this field in place of u0 in the sequel.
By performing a Taylor expansion of the Euler-Lagrange equations in



2.5 3 D - C I R C U S T E N T M O D E L F O R T H E C E L L 67

(2.59) and keeping only first order terms w.r.t. η , one obtains the lin-
earization of the problem upon the intermediate configuration. Next, by
substituting relation (2.62) in (2.58), Eq. (2.59) implies the following
“scaled” set of Euler-Lagrangian equations:

u′′s +
1
s

u′s−
1
s2 us = 0 and u′′3 +

1
s

u′3 = 0. (2.63)

Note that, as expected in axis-symmetric problems encountered in linear
elasticity, the first order approximation of the problem does not depend
on the constitutive behavior of the material when the boundary condi-
tions are completely prescribed in terms of displacement.

As shown in (2.63) the system takes the form of a set of Euler-Cauchy
differential equations that, with reference to boundary conditions in (2.60),
leads to the following analytic solutions:

us(s) = 0 and u3(s) =
log(s)− log(Re)

log(Ri)− log(Re)
ū . (2.64)

The force in (2.61) can be thus expressed, after some algebraic manipu-
lations, as follows:

fml = −
πT ūµm

λ 6
p log2

(
ri
re

)
log

 ū2 + r2
e log2

(
ri
re

)
ū2 + r2

i log2
(

ri
re

)
+

ū2
(
r2

i − r2
e
)

log2
(

ri
re

)
(

ū2 + r2
e log2

(
ri
re

))(
ū2 + r2

i log2
(

ri
re

)) + 2λ
6
p log

(
ri

re

)
(2.65)

2.5.2 Cell-Nucleus

The nucleus, as shown in Figure 2.14, has been modeled with an equiv-
alent cylinder subjected to a uniform deformation with initial height Hn

and transversal area An. In this simplification, the kinematics is com-
pletely described considering the following deformation gradient Fn =

diag{λL,λT ,λT} being λl and λt the longitudinal and transveral stretch-
ing.
To obtain the relationship that relates the force and the displacement in
the longitudinal direction it has been considered in the framework of
finite hyperelasticity, as already seen in Section 2.4, a compressible Neo-
Hookean behavior (Equation (2.36)), for which prescribing an uniaxial
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stress state implies that λT = λ
−ν

L (see Section 2.4 for more details). Con-
sidering the hyperelastic constitutive Equation (1.55) and the definition
of P (Equation (1.36)), the longitudinal force fn will be the following

fn = AnPL j = AnGnλL

(
1−λ

−2(1+νn)
L

)
(2.66)

2.5.3 Coupling

Considering the sketch of the model in Figure 2.14, at static equilib-
rium the reaction force fm needed to bring the membrane in the current
configuration, where in the internal frame it is prescribed a displacement
ū = h, has to be balanced with the force fn to induce a change in height
in the nucleus (h = λlH, being h the eight at static equilibrium) that
is fm− fn = 0. It has been shown in Equation (2.65) that fm depends
on the geometrical-constitutive parameters (µm,re), the prestretch of the
membrane (λp) as well as the unknown internal radius of the cylinder
representing the nucleus in the current configuration (ri) and it current
unknown height (h = λLH). The internal radius ri is fixed by the incom-
pressibility constraint assumed for the nucleus that is ri = R0/

√
λl . Tak-

ing into account the Equations (2.65) and (2.66) one obtains an implicit
solution of the problem at hand, namely

πλlµnR2
n

(
1−λ

−2(νn+1)
l

)
− πHT λlµm

λ 6
p log2

(
Rn

re
√

λl

){2λ
6
p log

(
Rn

re
√

λl

)

log

λl

(
r2

e log2
(

Rn

re
√

λl

)
+H2λ 2

l

)
R2

n log2
(

Rn

re
√

λl

)
+H2λ 3

l


= 0

(2.67)

In Figure 2.15 it is shown how the longitudinal stretch λl varies w.r.t.
the prestretch λp of the membrane in order to respect the equilibrium.
The plot has been obtained by substituting reasonable values for the
geometrical-constitutive parameters of the cell ([50, 60]).
Once the solution of this equation is found with respect λl , it is possible
to derive formally the equivalent tangent stiffness of the cell following
a small on large strategy. It has been assumed that the relatively small
displacement testing (for example, during a AFM stiffness mapping) is



2.5 3 D - C I R C U S T E N T M O D E L F O R T H E C E L L 69

Figure 2.15: Longitudinal stretch λl vs prestretch λp that guarantee the equi-
librium fn + fm = 0 with a specific choiche of the parameters: µm = 500Pa,
µn = 1000Pa, Rn = 500Pa, νn = 0.49, H = 10 µm, Rn = 1 µm , re = λp×5 µm,
T = λ 2

p ×10nm

performed in correspondence of the nucleus. In this perspective the stiff-
ness tested will be the stiffness of the cylinder affected, however, by the
current status of stretch depending, in turn, on the deformation of the
membrane. The out of plane stiffness of the cell takes the form:

K3 =
∂ fn

∂v

∣∣∣
v=0

(2.68)

where v is displacement (in the direction e3) imposed to evaluate the cell
stiffness incorporating nucleus and membrane elasticity. The current lon-
gitudinal stretch λl = λvλ̂ , being λ̂ the stretch solution of Equation (2.67)
(coupled with the geometrical-constitutive parameters and prestretch of
the membrane) and λv = (1+ v

λ̂H
) the superimposed stretch due to the

displacement v. Thus, following Equation (2.66) the out-of-plane stiff-
ness of the cell becomes

K3 =
πµnR2

n

H

[
1− (2νn + 3) λ̂

−2(νn+1)
l

]
(2.69)

Figure 2.16 shows how varies the equivalent out-of-plane stiffness of the
cell with the prestretch changes. As expected, is found how the differ-
ent status (adhesion, suspension, migration) of the cell characterized by
different levels of polymerization-depolymerization processes, and thus
different levels of the prestretch, affects the measures of cell stiffness.
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Figure 2.16: Normalized out of plane cell stiffness to the unstretched stiffness
of the nucleus K3/K30 vs prestretch λp with a specific choiche of the parameters:
µm = 500Pa, µn = 1000Pa, Rn = 500Pa, νn = 0.49, H = 10 µm, Rn = 1 µm ,
re = λp×5 µm, T = λ 2

p ×10nm
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A P P E N D I X : E U L E R - L AG R A N G I A N E Q UAT I O N I N E X P L I C I T

To minimize L in Equation (2.59), since is function of (us,u′s,u3), the
following set of Euler-Lagrangian equations have to be imposed equal to
zero:
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M E C H A N I C A L M O D E L L I N G O F C O L L E C T I V E
B E H AV I O R O F C E L L S

3.1 I N T RO D U C T I O N

In this chapter, preliminary results and some first models will be pre-
sented to investigate the role that mechanics plays in collective cell be-
haviors. Collective behavior refers to the emergence of complex migra-
tion patterns over scales larger than those of the individual elements con-
stituting a system. It plays a pivotal role in biological systems in regu-
lating various processes such as gastrulation, morphogenesis and tissue
organization [14]. Wolgemuth et al. [78] suggested that wound healing is
predominantly a mechanical process that is modified, but not produced,
by cell-cell signaling. Coherent angular rotation of epithelial cells, oc-
curing during many vital physiological processes including tissue mor-
phogenesis and glandular formation, has been replicated by Mandar et
al [122] by a cell-centered based mechanical model in which units are
polarized, motile, and interact with the neighboring cells via harmonic
forces. Starting from the above mentioned literature, a continuum non-
linear viscoelastic model (upper convected Maxwell model) incorporat-
ing the dynamics of liquid crystals has been studied and numerical sim-
ulations have been performed in order to reproduce recent experimental
biological evidences for collective behavior of cells such as gastrulation.

3.2 C E L L - C E N T E R E D D I S C R E T E M O D E L F O R C O L L E C T I V E

B E H AV I O R

With reference the work by Mandar et al. [122] here is presented the
discrete modeling of a coherent motion of mono-layer sheets of epithelial
cells by a cell-center mechanical model. In fact Epithelial and endothe-
lial cells that line various cavities and the vasculature in our bodies, are
tightly connected to each other and exist as sheets. Upon confinement in
two-dimensional geometries, these cells exhibit rotational motion, which
has also been observed in vivo and implicated in physiological processes.
However, how this rotational motion is achieved remains unclear. In Man-
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dar et al. [122] is shown that a simple rule wherein preferred direction
of motion (i.e., polarization) of cells tends to align with the direction of
their velocity is sufficient to induce such coherent movement in confined
geometries. It has also shown that the number of cells within the con-
finement, the size of the tissue, cell motility and physical properties of
the cell and cell-cell connections regulate this coherent motion, and the
pattern of invasion when the confinement is relaxed. A interested reader
can find more details in the results and discussion in the work above
mentioned ([122]).

3.2.1 Computational model

An epithelial sheet is comprised of a group of cells that are connected
to each other via cadherin bonds to form a monolayer. Many experimen-
tal observations have demonstrated that cells in this network are persis-
tently motile, and upon reaching a critical density show collective mi-
gration behavior [112]. Presence of front-rear polarity axis is known to
be essential for migrating cells. This polarity axis manifests in migrat-
ing cells in different forms like: (i) increased actin activity in the front
and formation of actin structures such as lamellipodia, (ii) localization
of the microtubule organizing center (MTOC) at the front of the nucleus
with microtubule growth towards the leading edge, (iii) gradients in cell-
ECM adhesion, and (iv) establishment of front-rear gradients in the ac-
tivity of GTPases such as Rac/Cdc42 [87]. Cell polarity is actively main-
tained and constantly steered by complex mechano-chemical processes
governed by cell-cell and cell-ECM interactions [10, 17]. A surprisingly
simple upshot of these complex processes in terms of mechanical observ-
ables is that, in epithelial sheets such as MDCK tissue, the polarization of
constituent cells is closely oriented with the principal direction of stress
as well as with their average velocity [26, 124]. Keeping these experi-
mental observations in mind, it has utilized a simple model to explore
how mechano-chemical properties of individual cells impact their collec-
tive behavior in confined epithelial sheets.
For modeling the collective mechanics of cells, we have adopted a ‘cell
center-based mechanics model’ with cells represented as discrete points
at their center of mass [89, 106, 123]. As shown in Figure 3.1, the whole
epithelial tissue is represented as a continuous sheet with cell-cell cad-
herin junctions represented by simple harmonic springs [89, 123]. Each
cell is assumed to exert an attractive or repulsive force on its neighbor-
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Figure 3.1: A schematic of cell center model depicting the arrangement of cells
and the forces acting on them. (a) A 2-D monolayer of epithelial cells, con-
fined inside a circular geometry is considered with cells represented as points at
their center. (b) Delaunay triangulation (blue) has been used to model cell—cell
connectivity, which finds the nearest neighbors of each point and form the con-
nectivity array accordingly. Because of the greater clarity it affords and better
connection with the experimental geometry, Voronoi tessellation (topological
dual of Delaunay triangulation) is used for visualization of cells.

(continued)
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Figure 3.1: (c) When two originally connected cells move apart and form new
neighbors, the connectivity of the system is updated using Delaunay triangula-
tion. This connectivity update automatically takes T1 transitions into account.
(d) Enlarged view of a representative cell i, along with its connection to neigh-
boring cells. The position vector of this cell center is denoted by ri and position
vector of its jth neighbor is denoted by rj. The blue arrow indicates the force,
Fij acting between cells i and j. The total force acting on ith cell is the sum
of the contributions from all the connecting neighbors. (e) The interaction be-
tween two adjacent cells is either compressive or tensile, depending upon the
relative deformation of connecting spring with respect to its undeformed length,
a0. Here compressive and tensile stiffness of each spring is represented by kc
and kt, respectively. While kc mimics the bulk cell stiffness, kt mimics cell-cell
cohesivity. It is assumed that if the deformation of any spring is greater than
dmax, the cell-cell connection is broken and there is no force transfer between
these two cells. (f) Force acting on each cell is resolved along anti-parallel (F‖)
and perpendicular(F⊥) to the direction of the cell’s polarization(p̂). Here v de-
notes the velocity vector on each particle. (g) Velocity profile in the direction of
polarization as a function of F‖.

ing cells depending on the relative deformation of springs with respect to
their undeformed length, a0 and stiffness, k. The force acting on any cell
at any time, t, is the sum of the contributions of all the connecting neigh-
bors. Thus, if ri represents the position of ith cell, the net force exerted
on that cell by neighbors (m, say) is given by

Fi = ∑
j∈neighbor

k(
∣∣ri− r j

∣∣−a0)ei j (3.1)

where ei j =
(ri−r j)

|ri−r j| represents the unit vector along the direction connect-

ing the ith cell with its jth neighbor. Depending on the relative deforma-
tion of springs with respect to the natural length, the interaction poten-
tial can either be tensile or compressive. In order to avoid force transfer
between distant neighbors, it is assumed that when the deformation of
spring is greater than a threshold, dmax, no force transfer occurs between
those two cells. Thus the value of spring stiffness for the entire range of
deformation can be written as:

k =


0, i f

∣∣ri− r j
∣∣−a0 > dmax

kt, i f 0≤
∣∣ri− r j

∣∣−a0 ≤ dmax

kc, i f
∣∣ri− r j

∣∣−a0 ≤ 0

(3.2)
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In the above expression, kc and kt represent the bulk cell stiffness and the
stiffness of cell-cell adhesions (or cohesivity), respectively. Figure 3.1(e)
illustrates the attractive/repulsive force acting on each cell. The cells are
allowed to exchange their neighbors, which are obtained by repeated De-
launay triangulation [84, 106]. For a given set of cell centers, Delau-
nay triangulation provides a connectivity for cells that produces the least
number of distorted triangles, i.e., triangles with least shear strain. De-
launay triangulations are dual to Voronoi tessellations (Figure 3.1(b) and
Figure 3.1(c)) and the Voronoi polygon for a given cell center can be
modeled to be the cell itself (see Materials and Methods in [122]).
In this model, cells are assumed to act as self propelled active particles
[123], with their inherent motility (v0) representing the speed with which
they move in the absence of any external force. The preferential direc-
tion of cell’s motion (i.e., polarization) is represented by the vector p̂,
which is a coarse-grained representation of the front-rear polarization in
a motile cell [87]. As cells move over a viscous substrate with mobility
µ , the drag force acting in the opposite direction of motion balances the
internal forces. If ri is the position vector of ith cell, its velocity at time t
can be written as:

vi =
dri

td
= v0p̂+ µFi (3.3)

Similar to the procedure followed elsewhere [123] and as motivated ear-
lier, we assume that the cell’s polarization vector tends to orient with its
velocity vector as per the following equation:

dp̂i

dt
= ξ (p̂i× v̂i · êz)p̂⊥i (3.4)

3.2.2 Results

3.2.2.1 Coherent rotationof cells confined in circular geometry

Various theoretical studies modeling the behavior of cells on micro-
patterned substrates have established the emergence of coherent rotation
of cells under confined conditions [84, 123]. Similar to these studies,
our model also shows the emergence of a persistent mode of rotation
for a group of cells (N = 140) when confined on a circular substrate
(kc = kt = 10,x = 1,v0 = 1, µ = 1) (See for instance S1 Video by Man-
dar et al. [122]).While the theory of active elastic systems attributes the
onset of rotational motion to energy transfer to the lowest modes [42], a
systematic analysis of this phenomenon in the context of epithelial sheets
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Figure 3.2: Coherent rotation of cells on circular geometry. (a) The time evo-
lution of polarization vector, p̂ and velocity vector v̂ is shown for ξ = 0.1. The
evolution rule for polarization is chosen in such a way that, from an initial ran-
dom orientation, p̂ will try to orient along velocity vector with time. (b) The
coordination between p̂ and p̂ is decided by the parameter ξ . The higher the
value of ξ , higher is the tendency of p̂ to orient along v̂. The orientation of p̂
and v̂ at steady state for ξ = 0.5 and ξ = 1 are also shown. (c) Mean vorticity
for systems with different ξ = 0.5 is plotted as a function of time. (d) The ten-
dency of polarization vector to orient with velocity vector is shown by the plot
between p̂ · v̂ and time. As the value of ξ increases, value of p̂ · v̂ approaches
1, indicating perfect alignment between two vectors. (e) A plot of velocity cor-
relation length for varying system size shows that correlation length equal to
the confinement size. (f) A plot of correlation function with time shows that the
velocity correlation length increases with time, till the coherent rotation sets in.
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remains to be performed. Using our model, we demonstrate that rotation
is indeed the preferred mode of motion for tissues confined in circular
geometries — this mode of CAM is very different than that observed in
bacterial suspensions [130] (also see S2 Text by Mandar et al.[122]). Fig.
3.2(c) illustrates the quantification of this rotational motion in terms of
mean vorticity of the system (See Materials and Methods in [122]). After
an initial transient mode, cells start to rotate steadily as evidenced by the
constant value of the mean vorticity of the system (Figure 3.2(a)). The
greater the value of ξ , higher is the tendency of polarization vector to re-
organise and align along the velocity vector, resulting in faster initiation
of coherent rotation of cells (Figure 3.2(b)). Fig. 3.2(d) emphasizes this
by plotting the scalar product of polarization vector and velocity vector
p̂ · v̂ as a function of time. From the figure it is seen that, as the value of
ξ increases, coordination between p̂ and v̂ is builds up faster resulting in
a faster approach to steady state of motion. We would also like to empha-
size that, for larger values of ξ , the time scale for polarization evolution
can be faster than the relaxation of a few long wavelength radial modes
(see S2 Text and S3 Video in [122]). In this case, some long wavelength
radial modes can be sustained during the coherent rotation and the tissue
can exhibit radial movements that are similar to those observed by De-
foret et al. [29]. Additionally, as the confinement radius R for the tissue
increases, these radial movements become prominent even at lower val-
ues of ξ (S2 Text and S19 Video by [122]). This is because, larger the
system size, lower is the stiffness of long wavelength radial modes, and
hence slower is their decay. This behavior of increasing radial velocity
for the tissue with increasing confinement size is also observed by De-
foret et al. in their experiments (see SI Fig. 4 of Ref. [29]).
It was reported by Doxzen et al that, for tissues with confinement size
greater than the velocity correlation length (≈ 200m), there was no onset
of CAM within the observation window of around 48 hours [35]. How-
ever, we find from our simulations that irrespective of tissue size (R),
the tissue always reaches the steady state of coherent rotation (see Fig-
ure 3.2). In other words, we find that the steady state velocity correlation
length is set by the size of the confined tissue. However, the time required
to reach the steady state is higher for larger tissues (see 3.2e, f). This in-
crease in the time required to reach the steady state may be attributed to
the presence of a greater number of long wavelength modes for the larger
system, as described above. The presence of these modes would interfere
with the transfer of cellular motility to the rotational mode.We can recon-
cile our simulation results with the experimental observations by noting
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that, as the time required for setting the coherent motion is greater for
larger tissues, the tissue is likely to be perturbed by certain unknown
factors (e.g., cell proliferation) in that additional time. The resulting me-
chanical and polarization perturbations may, therefore, further delay the
onset of coherence with respect to the experimental time window, or
make CAM infeasible. We predict that in the absence of perturbations,
even a large confined tissue can undergo CAM. These predictions differ
from the observation of finite velocity correlation lengths of around 10
cell lengths in unconfined tissues (e.g. Refs. [26, 110]), wherein different
boundary conditions (e.g., leader cells, high cable tension, etc) are likely
to lead to qualitatively different behavior from that of confined tissues.
Collectively, these results illustrate the effect of confinement in inducing
coherent angular motion. Under in vivo conditions, such confinement
may be provided by non-motile cells [58] possessing higher substrate
frictions than motile cells (see S4 Text and S3 and S4 Figs, S4–S11
Videos by [122]). Under these conditions, the efficiency of coherent mo-
tion is dictated by the ratio of substrate frictions between the two cell
types.

3.2.2.2 Cell crowding leads to fluidisation of tissue

As the presence of a rotational mode of migration under confinement
is well established by now, we focused our attention in understanding the
characteristics of that motion in detail. Studies by Doxzen et. al. have
shown that the movement of small circular tissues under confinement
is similar to solid body rotations with angular velocity ω equal to 4v0

3R ,
where R is the radius of circle [35]. Further, the linear relationship be-
tween velocity and radial distance for rotating cell collectives obtained
by multiple research groups support the argument of solid body rotations
[35, 84]. However, what factors influence this solid-like tissue behavior
has not been addressed. Here, we show that cell density is one such pa-
rameter dictating the nature of tissue behavior. As shown in S1 Video
in [122], at lower cell densities, system behaves as an elastic solid with
negligible neighbor changes and a linear velocity versus radial distance
relationship (Figure 3.4(a)). Increase in number of cells in the system
while keeping the size R constant, i.e., increase in cell density, leads to
an interesting phenomena. Increase in cell density alters the nature of the
velocity versus radial distance relationship and induces a transition from
solid-like behavior (N = 140) to that like a fluid (N = 170). Specifically,
with increase in cell density, the linear velocity versus radial distance
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Figure 3.4: Cell crowding leads to fluidisation of tissue. (a) The relation-
ship between velocity and radial distance is examined for varying number den-
sity. Keeping the values of other parameters same as in previous simulations,
the absolute velocity, |v| averaged over time, after the system reaches steady
state, is plotted as a function of radial distance for varying number of cells
N = 140,150,160,170. As the number density of system increases, the velocity-
radial distance curve become less linear, indicating the presence of shear in the
system. (b)Variation of principal shear strain rate along the radial distance plot-
tedas a function of number density. Increase in shear rate with number density
illustrates the fluidisation of tissue induced by cell density. (c) Vorticity of sys-
tem decreases with increase in cell density.(d)Without considering the effect of
contact inhibition, mean velocity of the system increases with number density.
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curve becomes more saturating. At the highest cell density (N = 170),
the velocity plateaued to v0 = 1 at the edges. One of the probable rea-
sons for this change is the large shear that the system experiences at such
densities, as evident from the relative sliding of cells past each other (S2
Video in [122]). Quantification of the shear strain rate (ε̇xy) from the rate

of deformation tensor as ε̇xy =
1
2

(
∂u
∂y +

∂v
∂x

)
was performed to obtain

additional insight into the magnitudes of shear experienced by the cells
at various cell densities. A plot showing the variation of principal shear
strain rate as a function of radial distance shows that with increase in
cell number, the shear in the system also increases (Figure 3.4(b)). Col-
lectively, the above numerical results indicate that the number density
of cells alters the behavior of system; i.e, at lower cell densities, system
behaves like an elastic solid and at higher cell densities, system becomes
more fluid-like.
While studying the effect of cell crowding on the nature of coherent ro-

Figure 3.6: Cell motility dictates the fluidized behavior of tissue. (a)Mean
velocity for varying values of cell motility (v0).(b)Normalized velocity-radial
distance

tation, we assumed that the motile cell speed or the fraction of motile
cells is not modified by cell density. Consequently, we find that the mean
speed of the cells in the tissue increases with cell density (Figure 3.4(d)).
This finding follows from our observation in Figure 3.4(a) wherein upon
increase in cell density, the tissue fluidises, as a result of which more and
more layers of the tissue move with speeds comparable to v0 = 1. On the
other hand, when the tissue behaves elastically (for N = 140), the tissue
rotates as a rigid body with cell speed comparable to v0 at the edges, but
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significantly lower speed of cells in the interior. However, while studying
the effect of cell density on velocity profile of the over-confluent tissue,
the condition of contact inhibition observed experimentally [91] has not
been taken into account. To mimic the condition of contact inhibition for
a denser system, and reconcile the experimental observations of decrease
in mean velocity with increase in number density [35], we have consid-
ered the following cases: (i) due to crowding, the self-propelled speed
of cells can be smaller on account of cells forming smaller lamellipodia
[35] (see Figure 3.6(a)), or (ii) due to crowding, a fraction of cells are
possibly not motile. Both of these effects are feasible due to contact in-
hibition of motility in crowded tissues. For both cases, as expected, we
observed reduction in mean cell speeds. Additionally, we can also see
from Figure 3.6(b) that the tissue shows fluidisation for value of v0 as
low as 0.3; only at really low v0 = 0.1 does it recover back its elastic
behavior. Thus, for appropriate values of v0 at large N, we can observe
lower mean cell speeds, concurrently with a fluid-like behavior for the
overall tissue.

3.2.2.3 Effect of tissue size, cell stiffness and cell cohesivity on tissue
fluidisation

The continuum modeling performed in [122] gives a simple expres-
sion for maximum shear strain (stress) in the tissue that is

τmax =
v0ρR
12µ

and εmax =
v0ρR(1+ν)

12µEh
(3.5)

being E,ν and h are, respectively, the Young’s modulus, Poisson’s ra-
tio,and thickness for the sheet. This equation gives also further insights
into the possible behavior of the tissue. For example, this expression pre-
dicts that a tissue with larger R has greater shear strain, and is hence more
susceptible to cross over the critical strain threshold and exhibit fluidisa-
tion. To test this prediction, we performed simulations with increasing R,
such that the number density of cells in the tissue was very close to the
number density for the case R = 5, N = 130, where the tissue rotates as
a solid. It can be seen from Figure 3.8(a) that, though there is no fluidisa-
tion for R = 5, for larger R, the tissue behaves in an increasing fluid-like
manner—more and more layers of tissue were observed to move with
velocity close to v0 = 1. Thus, tissue can undergo fluidisation solely due
to the influence of system size. The relatively larger values of cell speeds
at lower radial distance is due to radial movement of cells, and is possi-
bly related to the dominance of radial modes with increasing system size.
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Figure 3.8: Tissue size, cell stiffness and cell cohesivity influence the fluid-
like behavior of tissue. (a)The relationship between velocity and radial dis-
tance is examined for three systems with varying radius, while keeping the num-
ber density approximately same for all. The number of cells in the systems are
taken as N = 1170,520,130 for R = 15,10,5, respectively. The values of other
parameters are chosen as that of the previous simulations. It is observed that,
while keeping the number density constant, with increase in system size, the ve-
locity versus radial-distance profile become less linear as more number of cells
tend to move with a velocity comparable to v0; this shows the presence of shear
strain rate in the system.(b)Increase in cell stiffness by increasing the value of
compressive stiffness (kc) of a system will make the system stiff and resulting
rotational behavior will be more like a solid.(c) Reduction in cell cohesivity (kt )
leads to fluid-like tissue behavior.



3.2 C E L L - C E N T E R E D D I S C R E T E M O D E L F O R C O L L E C T I V E B E H AV I O R 85

Thus, even though Equation (3.5), does not exactly capture the tissue be-
havior with increasing system size, it provides us with pointers in the
right direction, and concurrently exposes the shortcoming of describing
the tissue as a solid-like material [35].
It can be noted from Equation (3.5) that, the shear strain is, as expected,
inversely proportional to the tissue stiffness. This implies that tissues
with stiffer cells (kc) and greater cell-cell cohesivity (kt) are less suscep-
tible to cross over the critical strain threshold and more likely to exhibit
solid-like behavior; the inverse would apply for tissues with softer cells.
For the case R = 5, N = 170, increasing the stiffness kc for a tissue from
10 to 100 results in a transition from fluid-like to solid-like coherent ro-
tation of the tissue Figure 3.8(b). Similarly decreasing the value of cell
cohesivity (kt) also leads to fluid-like behavior of tissue. We can see from
Figure 3.8(c) that for N = 140 when kt = kc = 10, then the velocity pro-
file being linear is an indication of rigid body rotation. However, when kt

is decreased from 10 to 1 while keeping kc = 10, then it is clearly seen
that the tangential velocity as a function of radial position has saturating
profile indicating fluidisation. Thus the stiffness and cohesivity of tissue
cells can independently control the nature of coherent rotation for the
confined tissue.

3.2.2.4 Effect of removal of confinement: Cell stiffness and cell-cell
cohesivity dictates invasion pattern from coherent motion

Under in vivo conditions, the confinement assumed in our simulations,
is generally provided by the surrounding extracellular matrix (ECM). For
example, all epithelial tissues are surrounded by the basement membrane,
which helps to maintain tissue organization and prevents cell invasion.
However, the basement membrane is breached by epithelial cells which
turn cancerous. Cancer cells are known to invade both as single cells and
collectively [25, 47, 57]. Since coherent rotation is sensitive to the prop-
erties of cell-cell contacts (i.e., kt and kc, respectively) (see Figure 3.8),
we hypothesize that, the initial coherent rotation dictated by the proper-
ties of cell-cell adhesions has a distinct bearing on the eventual invasion
pattern, when confinement is removed. To test this hypothesis, we have
studied the invasion patterns formed when a coherently moving group of
cells break their boundaries and invade to the surrounding matrix. For
doing this, three conditions were chosen with the following combina-
tions of kt and kc to mimic different properties of cells and cell-cell ad-
hesions: kc = kt = 1 (i.e., soft), kc = 10, kt = 1 (i.e., medium stiff), and
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Figure 3.10: Cell stiffness and cohesivity dictate invasion pattern from co-
herent motion. Three different systems of cells are taken with different stiff-
ness of cell-cell connections. Simulations for (a) a soft system with kc = 1 and
kt = 1; (b) a medium stiff system with kc = 10 and kt = 1; (c) stiff system
with kc = 10 and kt = 10. The number of cells in all the three cases are same
and equal to 100. After reaching a steady state of rotation, confinement was re-
moved at time, t = 50. The snapshots of cell migratory patterns at t = 55 and
t = 60 are also shown. For the case of intermediate stiff system, cells migrate in
clusters compared to softer system where cell invasion pattern is more scattered.
At the highest stiffness, cells continue to rotate even after removal of boundary.
The length scale for each set of figure is shown below them.
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kc = 10,kt = 10 (i.e., stiff). The number of cells in each system was
taken as 100 and the values of all other parameters were kept the same
as that of other simulations.
Once coherent rotation was set up in all the systems, the confinement
was relaxed at t = 50 to allow for invasion. Consistent with our hypoth-
esis, the combination of kc and kt were found to directly influence the
nature of coherent motion (Figure 3.10(a)-(c)). For the soft and medium
stiff systems, the extent of invasion (i.e., radial position as function of
time) remained the same. However, contrary to the soft case where cells
scatter in all directions, for the medium stiff case, cells move radially
outward as clusters which remain connected. For the stiff case, cells con-
tinue to rotate even after the removal of confinement. Together, these
results demonstrate that the nature of coherent motion set by the extent
of cell-cell cohesivity dictates the invasion pattern when confinement is
removed. Also, the persistent rotation of stiff cells with stiff adhesions
even after the removal of boundary shows that even though confinement
is essential for the emergence of coherent rotation, depending upon the
properties of the system, the presence of a confinement is not mandatory
condition for the cells to continue in their coherent motion.
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3.3 C O N T I N U U M M O D E L F O R C O L L E C T I V E B E H AV I O R

Recently Lee and Wolgemuth [78] have hypothesized a dominant role
for mechanics in wound healing, presenting a biophysical description of
the collective migration of epithelial cells during wound healing based
on the basic motility of single cells and cell-cell interactions. This model
quantitatively captures the dynamics of wound closure and reproduces
the complex cellular flows that are observed. These results suggest that
wound healing is predominantly a mechanical process that is modified,
but not produced, by cell-cell signaling. Here it will be presented essen-
tially the Wolgemuth [78] model that is the starting point used to show
the preliminary results of the continuum model for collective behavior.
A strategy to enhance the model will be also presented in the following.

3.3.1 Mechanical Model

Inside a crawling eukaryotic cell, the actin cytoskeleton flows rear-
ward at the front of the cell and forward at the rear of the cell [123].
Nascent and/or mature focal adhesions, which include integrin, link the
cytoskeleton to the substrate or extracellular matrix (ECM) [4], and thereby
convert the cytoskeletal flows into traction stresses that are applied to the
substrate [12, 125, 130]. Like the actin velocity, the force that the cell ex-
erts on the substrate is rearward at the front and forward at the rear; i.e.,
it is distributed like a dipole shows the traction stress inside a cell that is
polarized along the direction d [12, 125, 130]. These dipole-distributed
traction stresses, Td , lead to a net thrust force F that propels the cell at
roughly constant velocity. The turnover rate of integrin inside focal adhe-
sions is on order of a minute [32], and, therefore, integrin turnover is fast
compared to the crawling speed of the cell, which allows us to treat the
interaction between the cytoskeletal flows and the substrate as a resistive
drag force that is proportional to the velocity, with drag coefficient ξ [69].
Epithelial cells that are in close contact can adhere to one another through
cadherin molecules [74, 128]. The turnover of cadherin molecules in cell-
cell adhesions is on the order of tens of minutes to an hour, which is
significantly slower than the turnover rate of integrin in focal adhesions
[128]. For timescales less than this turnover time τd ,neighboring cells
are effectively stuck together. A tissue of cells should therefore behave
like an elastic solid on short timescales. On longer timescales, though,
cadherin turnover allows the cells to slide with respect to each other, and
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the bulk tissue should behave more like a fluid with viscosity η . There-
fore, the stress between cells is maintained on times shorter than τd , but
dissipates on longer timescales. Cells in monolayers overlap [84] and the
initial 10–12 hours of the dynamics of wound healing are not dependent
on cell division [29], so we do not track the density in our model. They
assume, though, that changes in density are resisted by a different effec-
tive viscosity than shear displacements and define a volumetric viscosity
(λ − η/2). The intercellular stress sc can then be described with the
Maxwell model,

Tc + τd
∂Tc

∂ t
+Tc =

η

2
(
∇v+(∇v)T +(∇ ·v)I)

)
+λ (∇ ·v)I (3.6)

which is a simple model for viscoelastic fluids, being I the identity ma-
trix. Their choice of this cell-cell interaction model is justified by analyz-
ing the behavior of two solid objects connected by spring-like adhesion
molecules, which is based on a model for muscle cross-bridges devel-
oped by Lacker and Peskin [75] (See supplemental Text S1B of [78] for
a complete description of how this model leads to the Maxwell model).
For crawling cells, the resistive drag forces are large compared to the in-
ertial terms. Therefore, the sum of all of the forces acting on a cell must
be equal to zero. In our model, we consider four types of forces that act
throughout the monolayer. First is the force produced by the intercellu-
lar stress that is described above Equation (3.6). The second force is due
to the internal stresses that are generated inside single cells. This stress,
which we denote by Td , includes the viscoelastic stress of the cytoskele-
ton, as well as the active stresses from actin dynamics and molecular
motors, such as myosin. For our model, we consider that this stress is
largely dipole-distributed along the polarization direction of the cell and
set it equal to its average value, that is Td = f0bd⊗d, where f0 is the
dipole force and b is the dipole length. The actin flow inside a cell inter-
acts with the substrate through adhesions and produces the thrust force F
against the substrate. Finally, motion of the cell with respect to the sub-
strate is resisted by drag forces, which are also due to the cell-substrate
adhesions. We average the internal forces that are generated by a cell and
balance these with the average external applied forces on the cell, which
provides a mean-field dynamic equation governing the flow of the cells
(for complete details, see Text S1A of [78]:

∇ · (Tc +Td)+ f−ξ v (3.7)

where f = F/A is the thrust force per unit area, and A is the area of a cell.
In this model, we assume that the magnitude of the thrust force is a con-
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stant. The velocity v in Equation (3.7) defines the average local velocity
of the cells in the monolayer. They consider two torques that act to de-
termine cellular orientation. First, the polarization of the cells combined
with the cell elasticity favor alignment of neighboring cells. When neigh-
boring cells are not aligned, there is a restoring torque that acts to align
them. Therefore gradients in the orientation produce an elastic torque
similar to the torque on a nematic liquid crystal. For this model, we use a
single Franck constant, K, to describe the magnitude of the elastic restor-
ing torque. Second, a resistive drag torque impedes the reorientation of
the cells and is proportional to the time rate of change of the orientation
vector. The re-orientational dynamics are then similar to that for nematic
liquid crystals [28]:

ξr

[
∂d
∂ t

+(∇d)v− 1
2
(∇×v)×d

]
= K∇

2d (3.8)

Here ξr is a drag coefficient, and v is the velocity field for the cells. The
second term on the lefthand side represents changes in orientation due to
advection. The third term represents rotation of the polarization due to
the motion of the cells (see Text S1C of [78] for more details).

3.3.2 preliminary results

The above mentioned authors have shown how the dynamics presented
in the Equations (3.6) to (3.8) were able to catch analytically for 1-D sim-
plification and numerically using the Moving Boundary Node Method
[48] the wound healing border progression found in the experiments,
showing possibly non-uniform progression of the wound border and tran-
sient vortices. Near the boundary the cells do not always move perpen-
dicular to the boundary and the boundary shows characteristics of a fin-
gering instability. However, the fingering of the border that they observe
in their simulations is not as pronounced as is sometimes observed in
experiments (see [78] for more details).
With the aim to reproduce the collective coherent rotation behavior in
confined tissues of cells highlighted in experiments during numerous
biological processes, as during gastrulation, and reprlicated with a dis-
crete model in [122], the continuum model presented through from Equa-
tions (3.6) to (3.8) has been used considering a circular fixed domain
adopting the same choice for the parameters used in the simulation [78]
and reported in the table 3.12. The simulation shown in Figure 3.13
has been performed using COMSOL Multiphysics with the Weak Form
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Figure 3.12: Table of the parameters used by [78] and in the simulations. These
are extimated from experiments or from simulaiton (see [78] for majior detail)

PDE tool considering a time dependent study. This preliminary solution
has been carried out considering a zero stress initial condition a saddle
like initial condition for the orientation of the director d = (cosθ , sinθ ),
boundary conditions v · n̂ = 0 and ∇d · n̂ = 0, being n̂ the normal to
the boundary. Comparing this preliminary simulations with experimen-
tal observations [35] where MCDK has been plated and cultured in a
disk exhibiting collective co-rotational behavior (see Figure 3.14), it is
evident how is possible to reproduce this complex overall cells behavior
by means of the model presented from Equations (3.6) to (3.8).

Figure 3.13: Preliminary results obtained with the parameters in Figure 3.12 in
three diferent time istants.

Upper convective Maxwell viscoelastic model

A generalization of the viscoelastic model presented in Equation (3.6)
could be hypothesized, considering a more objective time derivative in
order to include the nonlinearities due to the large deformation showed
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Figure 3.14: Figure from the work by Doxzen et al. [35]. MCDK has been
plated and cultured in a disk exhibiting collective co-rotational behavior.

in the experiments. In this perspective the Mawxwell viscoelastic fluid
can be substituted by the Upper Convected Mawell model as follows

Tc + τd

[
∂Tc

∂ t
+ v ·∇Tc−

(
(∇v)T ·Tc +Tc · (∇v)

)]
=

η

2
(
∇v+(∇v)T +(∇ ·v)I)

)
+λ (∇ ·v)I

(3.9)

The introduction of the nonlinearities leads a grater complexity on the
computational side. For this reason the numerical simulations are still an
ongoing work and the strategy to find the solution will be followed for
expample by implementing Hu-washizu like variational formulation.
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I N P RO G R E S S E X P E R I M E N TA L AC T I V I T Y

In Chapter 2 it has theoretically demonstrated, at least in principle, the
possibility to selectively attacking cancer cell by means ultrasound, ex-
ploiting the difference in stiffness -and thus the different resonance-like
frequency of tumor and healthy cells. To experimentally prove this hy-
pothesis and with the aim to develop bio-medical device to administrate
LITUS for targeting e selectively attacking cancer cells an ongoing lab-
oratory activity is in progress in the laboratories of the Institute of the
Applied Sciences and Intelligent Systems "ISASI- Eduardo Caianiello"
of the National Research Council (CNR). In the following sections some
preliminary results and the experimental setup are presented.

4.1 S TAT E O F A RT

In this section the work by Geltmeier et al. [50] appeared in litera-
ture recently will be illustrated. Although the are some experimental
evidences on the biological effect of the ultrasound treatment [16, 38,
62, 79, 80, 118], to date this work is the first which exploits the differ-
ence in stiffnessm between normal MCF10 and cancerous MCF7 breast
cells that would provide the possibility of selectively targeting and at-
tacking cancerous cell by means Low Intensity Ultrasound theoretically
proposed in Chapter 2. In particular, Geltmeier et al. have combined in
silico FEM (finite element method) analyses and in vitro assays to bolster
the significance of low-frequency ultrasound for tumour treatment.

4.1.1 FEM Validation

From the FEM analysis simulating the AFM experiments reported in
the literature (Li et al [85]), validation of the assumed cell material pa-
rameters was obtained. In this sense, the reaction force-deformation re-
lationship for the different material parameter combinations for nucleus
and cytoplasm were calculated from the FE results and compared with
the reference curves determined experimentally for the lowest and high-
est AFM loading rates (1Hz and 0.03Hz, respectively) (Figure 4.1A).

93
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Young’s modulus reference values for cytoplasm, and nucleus for the
modal analysis were chosen from the best possible match of the vali-
dation simulations with the experimental curve at an AFM loading rate
of 1Hz. These were 0.7kPa and 7kPa for MCF10A cells and 0.47kPa
and 4.7kPa for MCF7 cells, respectively. The minimum elasticity values
for cytoplasm and nucleus to be used in the modal analysis were de-
fined from fitting with the minimal experimental loading rate of 0.03Hz.
For both compartments, 0.25kPa were calculated for MCF10 cells and
0.15kPa for MCF7 cells.

Figure 4.1: Depth of indentation for MCF10A cells in water[50](A). Calcu-
lated reaction force–deformation curves for different parameter sets for Young’s
modulus of cytoplasm and nucleus (first and second value in parenthesis) for
cell type MCF10A compared to reference curves from the literature (Li et al,
2008). (B) Displacements of the first three eigenforms for MCF7 and MCF10A
cells in water.
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4.1.2 Modal Analysis (FEM)

In the next step, a modal analysis was performed using reference val-
ues for the stiffness of cytoplasm and nucleus which were obtained from
the above-mentioned validation studies. The modal analysis was used to
characterize the eigenoscillation behaviour of the structure without exter-
nal excitation. The identified mode shapes and natural frequencies pro-
vide evidence regarding what form and with which frequency the struc-
ture oscillates freely on the sole basis of its mass and stiffness as well as
under defined fixation conditions. The modal analysis was used to pre-
dict the first natural frequencies and eigenforms of MCF7 and MCF10A
cells for a large number of variations with respect to geometry, material
and boundary conditions. An example of the shape of the deformed cells
for the first three modes is shown in Figure 4.1B comparing MCF-7 and
MCF10A cells. Slight differences could be observed between both cell
types in the cell deformations.
With respect to the natural frequencies determined, cell dimensions, Young’s
modulus of cytoplasm and nucleus as well as the embedding conditions
showed the greatest influence on the shift of the natural frequencies as
shown in Figure 4.2. The material characteristics of the nucleus and cy-
toplasm showed a clear influence on the natural frequencies of both cell
lines (Figure 4.2A). The material parameters were defined according to
the results of the validation. The softer model with the minimum Young’s
modulus for cell plasma and nucleus reduced the resonance frequencies
up to 50% for both cell types. The size of the cell also had a large impact
on the level of the natural frequency (Figure 4.2B). Compared with the
average size, the minimum cell size increased the natural frequency by
up to 20%; and for the maximum cell size, the resonant frequency was
reduced by up to 40%. A similar influence of cell size was also found for
MCF10A cells (data not shown). The thickness of the actin cortex had
only marginal effects on the natural frequencies; absence of any actin cor-
tex caused a reduction of the resonant frequencies by 10% (Figure 4.2C).
Compared to a cell in water, the natural frequencies for a cell embedded
in an agar solution increased by 50% to 60% (Figure 4.2D). Reduction
of the elasticity modulus of the agar solution from 50kPa to 25kPa led
to a negligible reduction of these natural frequencies.
By comparing both cell lines, it could be concluded that the natural fre-
quencies of the benign MCF10A cells were about 1.5 times higher than
those of the malignant MCF7 cells due their smaller dimensions and
higher stiffness.
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Figure 4.2: Influence of (A) material properties (Young’s modulus for cyto-
plasm and nucleus are as first and second value in parenthesis), (B) cell dimen-
sions, (C) thickness of the actin cortex in percent of the cell radius, and (D) cell
embedding (Young’s modulus for agar in parenthesis) on natural frequencies of
MCF10A cells (A) or MCF7 cells (A-D).

4.1.3 Harmonic vibration analysis

As a result of a harmonic analysis, an amplitude frequency response
can be determined that delivers resonance frequencies and the corre-
sponding amplitudes. For the analysed cell models of minimum, mean,
and maximum cell dimensions of both cell types, the range of excita-
tion frequency was defined from the initial natural frequency up to 60
kHz. Cell type and dimension showed a great influence on the amplitude
frequency response. A typical amplitude frequency response diagram is
shown in Figure 4.3 for a MCF7 cells and MCF10A cells of minimum
dimension. The depicted amplitude’s frequency response showed signif-
icant peaks at those frequencies at which oscillation forms were excited
by the ultrasonic pressure. The first peak for MCF7 cells rose at 21kHz
in contrast to 34kHz for MCF10A cells. Especially this first maximum
resonance amplitude of MCF7 cells amounted to more than three times
the maximum cell length, indicating huge stress on cellular integrity.
The first resonance frequencies of MCF7 cells of mean dimension were
also significantly lower than those of MCF10A cells. In contrast, the
differences between the resonance frequencies and the amplitudes were
smaller for the maximum cell dimensions of both cell lines (data not
shown).
Compared to being embedded in water, the resonance frequencies for
cells embedded in agar were significantly higher. The significant reso-
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nance amplitudes for the cell in agar solution were in the frequency range
from 29kHz¯39kHz (data not shown).
The influence of ultrasonic pressure and the damping coefficient on the
amplitude could be considered as being linear proportional and reverse
proportional, respectively. The resonance frequencies remained constant
(data not shown).

Figure 4.3: Harmonic vibration analysis of (A) MCF7 and (B) MCF10A cells
(minimal sizes for both cell types) with external hydrostatic pressure in a fre-
quency range of 20 kHz up to 60 kHz showing the displacement amplitudes.
The red horizontal lines depict the maximum cell size which allows the ampli-
tudes with the cell dimension to be compared.

4.1.4 Ultrasonic irradiation of MCF7 and MCF10A cells

For experimental validation of the in silico-determined resonance fre-
quencies of MCF7 and MCF10A, specific equipment for ultrasonic irra-
diation was constructed. An ultrasound actuator consisting of a piezoce-
ramic and a petri dish with a duroplastic ring in its centre as reaction ves-
sel (—–S1A Fig—-) was triggered by a function generator and an ampli-
fier. Each ultrasound actuator was characterised for its specific frequency
response in the range from 20kHz up to 60kHz over the whole reaction
area of 130mm2. Since every glass petri dish possessed only certain spe-
cific resonance frequencies, a particular petri dish/actuator combination
was used for each tested ultrasonic frequency.

4.1.5 Selective toxicity of MCF7 cells at 24.5kHz under 2D and 3D
culture conditions

MCF7 cells and MCF10A cells were irradiated with different ultra-
sonic frequencies each with four specific intensities (0.3W /cm2, 0.7W /cm2,
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1W /cm2, and 1.65W /cm2). Irradiation with 24.5kHz induced a sig-
nificant increase in cell death of MCF7 cells in contrast to untreated
cells (Figure 4.4A) resulting in up to 12.5% ± 2.2% dead cells with
1.65W /cm2 (p = 0.007 vs. untreated cells). No cytotoxicity could be
observed for MCF10A cells at the same frequency (Figure 4.4A). Treat-
ment with 29.4kHz or 43.6kHz resulted in a significant increase of MCF10A
cells being killed (29.4kHz: 5.5% ± 0.8% in untreated cells to 14.7% ±
2.4% with 1W /cm2, p = 0.01; 43.6kHz: 3.4% ± 0.8% in untreated cells
to 12.4% ± 2.6% with 1W /cm2, p = 0.03) but only marginally of MCF7
cells (—S2A and S2B Fig—); no effect was seen in either cell line after
irradiation with 51.2kHz (—S2C Fig—). In order to more accurately re-

Figure 4.4: Increased death of MCF7 and MDA-MB-231 cells after irradi-
ation with an ultrasonic frequency of 24.5kHz. (A) Cells either cultivated in
2D culture or (B) growing in 3D culture on alginate beads (gems) were treated
with 24.5kHz and four different intensities for 4min; 1h later the proportion
of dead cells (propidium iodide (PI) positive cells) was determined by FACS
analysis. Results represent the means of data from eight (A) or three (B) inde-
pendent experiments; the error bars represent the standard errors; p-values were
calculated by the two-sided, paired Student’s t-test with * p<0.05, ** p<0.01.

flect the in vivo situation in the next setting, 3D cell growth techniques
were used by culturing cells on alginate beads using the BioLevitator
system. As additional cell line MDA-MB-231 (breast tumour, derived
from metastatic site) was used. Treatment with 24.5kHz again resulted
in a significant increase in cell death of both malignant cell lines (Fig-
ure 4.4B) with a maximum after use of 1W /cm2 (MCF7: 17.0% ± 1.6%
in untreated cells to 41.4% ± 4.2% with 1W /cm2, p = 0.02; MDA-MB-
231: 6.1% ± 1.8% in untreated cells to 24.3% ± 2.8% with 1W /cm2,
p = 0.01). In contrast to the previous results, we also found an increase
of dead MCF10A cells (12.3% ± 1.8% in untreated cells to 25.8% ± 3.9%
with 1W /cm2, p = 0.05).
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However, the selectivity for induction of death for MCF7 but not of
MCF10A cells after treatment with 24.5kHz was corroborated by the re-
sults using real-time and label-free xCELLigence technology. Each cell
type displays its own characteristic pattern which is expressed in the Cell
Index (CI). Untreated MCF7 cells reached maximal impedance after 15
hours (Figure 4.5A). Whereas treatment with increasing intensities re-
sulted in a shift of the maximum to later time-points, the cells did not
reach confluence with 0.7W /cm2 during the observation period; after
treatment with 1.65W /cm2, no impedance could be measured at all, indi-
cating that an insignificant number of cells survived ultrasonic treatment.
In contrast, MCF-10 cells treated with increasing intensities and also
24.5kHz were only delayed in proliferation, and maximal impedance val-
ues were measured in all samples (Figure 4.5B).

Figure 4.5: Decreased survival of MCF7 cells after irradiation with an ul-
trasonic frequency of 24.5kHz as determined by XCelligence (Roche).

4.1.6 Increased cytotoxicity after fractionated ultrasonic irradiation

Next, we examined if fractionated treatments by ultrasonic irradiation
might result in enhanced cytotoxicity. Since repeated trypsinization of
adherent MCF7 cells was not feasible, we used the suspension myeloid
cell line HL60 for which we determined 24.9 kHz as the most effective
frequency for cell killing. Cells were treated by ultrasonic irradiation up
to three times at intervals of 3 h or 6 h. The number of viable cells was de-
termined 1 h after each treatment. Even a singular treatment significantly
reduced the number of viable cells to 60% (p = 0.0001) (Figure 4.6). Re-
peated ultrasonic irradiation resulted in a further substantial decrease of
viable cells, most significant after threefold irradiation in intervals of 3 h
(p = 0.02). Increasing the interval between two irradiations from 3 h to



100 I N P RO G R E S S E X P E R I M E N TA L AC T I V I T Y

Figure 4.6: Decreased survival of HL60 cells after fractionated irradia-
tion.HL60 suspension cells were treated by ultrasonic irradiation once, twice
or three times at intervals of 3h (2x 3 h, 3x 3 h) or 6 h (2x 6 h). The number
of vital cells was determined by FACS 1 h after each irradiation. (The num-
ber of vital cells of the untreated control was set as 100%.) Results represent
the means of data fromthree independent experiments; the error bars represent
the standard errors; p-values were calculated by the two-sided, paired Student’s
t-test with * p<0.05, ** p<0.01, *** p<0.001.

6 h showed a trend toward increased cytotoxicity with only 43% or 31%
viable cells, respectively.

4.1.7 Combination of ultrasonic irradiation and paclitaxel

In another experiment, we evaluated if the effect of ultrasonic irradia-
tion might be enhanced by a combination with chemotherapy. With this
inmind,MCF7 cells were treated by ultrasonic irradiation with 23.22kHz
and either 0.3W /cm2 or 1W /cm2 and subsequently cultivated for 48
hours with 100nM or 200nMo f paclitaxel, one of the standard cytostatic
drugs for treatment of breast cancer, (Figure 4.7) or else treated with
paclitaxel followed by ultrasonic irradiation (—S3 Fig—). Monother-
apy with either ultrasonic irradiation (Figure 4.7A) or paclitaxel (Fig-
ure 4.7B) resulted in a significant reduction of the numbers of vital cells
to 63.9% ± 4.6% or 66.5% ± 2.8%, respectively (p= 0.0002 for 1W /cm2

vs. unirradiated control; p < 0.0001 for 200nM vs. unirradiated control).
A further significant decrease with only 47.9% ± 4.5% of vital cells
was achieved after combining ultrasonic irradiation with 1W /cm2 and
200nM paclitaxel (p = 0.0007 for combination vs. ultrasonic monother-
apy; p= 0.002 for combination vs. 200nM paclitaxel monotherapy) (Fig-
ure 4.7C). The results of the combination treatment in the opposite or-
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der (paclitaxel followed by ultrasonic irradiation) showed similar effects
(—-S3 Fig—-). We again found a significant enhancement of the ef-
fects (reduction of proportion of surviving cells) of both monotherapies
(67.1% ± 4.8% after irradiation with 1W /cm2 or 69.8% ± 6.8% treat-
ment with 200nM paclitaxel) in their combination to only 47.9% ± 5.5%
(p = 0.0003 combination vs. ultrasonic monotherapy with 1W /cm2; p =
0.0008 combination vs. 200nM paclitaxel monotherapy) (—S3A–S3C
Fig—).
For both regimens, the comparison between monotherapy with 200 nM
pactlitaxel and combination therapy with only 100nM and ultrasonic
treatment revealed a significant decrease in vital cells in the combina-
tion treatment (p = 0.02 for ultrasonic treatment (23.22kHz, 1W /cm2)
+ 100nM paclitaxel; p < 0.0001 for 100nM paclitaxel + ultrasonic treat-
ment (23.22kHz, 0.3W /cm2); p = 0.01 for 100nM paclitaxel + ultra-
sonic treatment (23.22kHz, 1W /cm2); all vs. 200nM paclitaxel).

Figure 4.7: Treatment of MCF7 cells with either (A) ultrasonic irradiation
with 23.22 kHz and two different intensities (0.3W/cm2 or 1W/cm2, dark
grey bars), (B) paclitaxel with 100 nM or 200 nM (light grey bars) or (C)
combinations of both treatments (ultrasonic irradiation followed by pacli-
taxel treatment; white bars) with a) constant concentration of paclitaxel
and different intensities of ultrasonic irradiation, and b) constant inten-
sity and different concentrations of paclitaxel.Results represent the means of
data from eight independent experiments; the error bars represent the standard
errors; p-values were calculated by the two-sided, paired Student’s t- test with *
p<0.05, ** p<0.01, *** p<0.001.
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4.2 P R E PA R AT I O N O F T H E E X P E R I M E N TA L S E T U P ( AT T H E

I S A S I )

In the laboratory of the Institute of the Applied Sciences and Intel-
ligent Systems "ISASI- Eduardo Caianiello" of the National Research
Council (CNR) an ongoing work is focused for preparing an experimen-
tal setup with the aim to exploit the difference in resonance-like fre-
quency due to the difference stiffness of cancer and healthy as shown
in Section 2.3 and in the above mentioned studies. The work represents
a preliminary validation status and in the following it will be presented
the experimental setup used.
In particular in in this phase it has been investigated the integration of
digital holography (DH) imaging and acoustic manipulation of micro-
particles in a 3D microfluidic environment. The ability of DH to precisely
quantify and track the position of a floating sphere inside a microfluidic
channel is used to measure the motion of an object trapped by a stationary
pressure field generated through ultrasonic waves. The obtained displace-
ment is compared with the numerically computed positions of the nodes
of the standing wave, providing a direct verification of the theoretical
expectations. Moreover, DH allows following the aggregation dynamics
of trapped spheres in the planar direction. All together, the integration
of DH and acoustophoresis is suggested as a powerful approach for pre-
cise design and implementation of accurate manipulation in advanced
lab-on-chip microfluidic devices.

4.2.0.1 Introduction

Manipulation of particles in microchannels using ultrasound waves,
commonly known as acoustophoresis, has attracted increasing attention
in the past decade. Several applications have already been proposed in
which acoustic radiation forces generated by ultrasonic waves were used
to trap and manipulate objects in 3D. In fact, depending on the adopted
geometry, the radiation forces can be exploited to different ends. They
have been successfully employed to trap cells and particles, retaining
them against a flow and promoting clusters formation [39], to move them
to arbitrary positions in a controlled manner [19], to levitate or push them
toward a surface [51, 121]. Moreover, acoustic forces demonstrated to be
able to sort particles based on their size and density in a continuous flow
setup [121].
In general, acoustophoresis proved to be a very effective tool to be in-
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corporated in microfluidic-based lab-on-chip devices but, in order to op-
timize the design and implementation, a very precise calibration of the
obtained pressure field is required [76].
This issue is even more pressing when dealing with soft samples, such as
biological ones, which can be deformed by the application of ultrasonic
pressures [64, 98].
In this case, a detailed calibration of the system is of paramount impor-
tance and, in turn, it could provide an alternative contact-less approach to
apply and measure forces to single cells and biological specimens, with
respect to standard nanotechnology-based actuators [2].
Several strategies have already been proposed, but an ultimate approach
for acoustic forces calibration has not yet been assessed. Here the inte-
gration of Digital Holography (DH) with acoustic manipulation within a
transparent microfluidic channel is proposed to precisely measure the 3D
motion induced by the acoustic pressure field. This result provides a first
step towards precise and direct calibration of the ultrasonic pressure field
for quantitative biological applications. Moreover, the ability to control
the particles’ position in the microchannel is fundamental to validate the
manipulation effectiveness.
Standard tracking techniques are based on quantitative analysis of video
microscopy images [21] and are commonly employed for motion paral-
lel to the microscope’s focal plane. On the other side, multi-particle axial
tracking is based on the interpretation of diffraction rings and can be ob-
tained only after extensive calibration [13] or at the expenses of reduced
spatial-temporal resolution or z-range [126].
Those limitations can be surmounted employing digital holography (DH)
in microscopy. This powerful, label-free imaging technique furnishes
quantitative phase-contrast maps (QPMs), while simultaneously allow-
ing investigating dynamic processes [71] and tracking cells/particles mi-
gration in the sample volume [96]. In particular, it can be utilized to
follow the displacements of all the multiple objects observable inside
the field-of-view (FOV): the axial displacement are usually evaluated by
refocusing criteria [96], while the lateral shifts can be computed by ap-
plying conventional video-tracking methods to the retrieved QPMs [93,
94, 96].
In this work, we employ DH fro assessing the 3D dynamic displacement
and position of polystyrene microspheres subjected to ultrasonic stand-
ing waves. In particular, we make use a refocusing criteria, based on
Tamura coefficient [92, 95], to monitor displacements along the optical
axis ascribable to the action of PRF and SRF. Moreover, we study the de-
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gree of particles aggregation around nodes by a 2D image segmentation
method.

4.2.1 Experiments

We employed 5 µm-radius polystyrene spheres dispersed in water, gen-
erating inside a microchannel different ultrasound standing waves. The
study is articulated in two steps. In the first part, we demonstrate the
ability of DH to track particle in 3D by monitoring height variations.
We apply sequences of different standing waves, each with nodal planes
at specific heights. For polystyrene microspheres in water, the PRF is
dominated by the gradient of the squared acoustic pressure, driving the
microspheres toward an acoustic pressure node (Eq.1). When different
resonant frequencies are applied in a sequence, the microspheres move
from one node to another. In this way, it is possible to modify the par-
ticles’ height in a controlled manner. In the second part, we study the
aggregation dynamics on particles ensembles, where a single ultrasound
standing wave is applied and the particles’ aggregation rate is monitored.
We employ a Mach-Zehnder-based digital holographic microscopy setup,
working in transmission mode (Figure 4.8a).
The emitted light of a laser (Coherent Inc., Sapphire SF, λ=488 nm) is
divided into an object illumination wave (O) and a reference wave (R)
by a 50:50 beam splitter (BS1). The former impinges orthogonally on
the sample holder, described in details in the following section, and it is
coupled into a microscope lens (MO) to enhance the lateral resolution.
The reference wave is guided directly by a second beam splitter (BS2) to
the image-recording device. On its path, a second MO is placed to com-
pensate for the formation of circular aberration in the recorded image.
Holographic off-axis geometry is achieved by a phase gradient of the ref-
erence wave front relative to the object wave front, which is obtained by
a slight tilt of the beam splitter BS2. The optical path length difference
has been adjusted in order to assure the formation of the interference pat-
tern.
The interferogram formed by the superposition of the two waves is reg-
istered by a CMOS digital camera (IDS, UI-3370-CP) and transferred to
an image processing system for the reconstruction and the evaluation of
the digitized holograms. Regarding the sample holder, to generate the ul-
trasounds standing waves we employ the AFS module from LUMICKS.
Its main element is a chip (see Figure 4.8b), consisting of two glass lay-
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ers with a fluid channel inbetween and a piezo element on top. The chip
is inserted in a custom-made holder that enables sample injection in the
microchannel through a microfluidic system. As shown in Figure 4.8, the
piezo-device is driven by a function generator (Tektronix, AFG3051C).
In particular, we have employed sinusoidal signals with frequencies in
the range of 7-15 MHz and peak-to-peak voltage up to a maximum of
7Vpp.

Figure 4.8: a) Mach-Zehnder setup for digital holographic microscopy in trans-
mission mode. Laser: laser light source (λ=488nm); O: object wave; R: ref-
erence wave; BS1, BS2: non-polarizing beam splitter cubes; M: mirror; AFS
Module: sample holder and ultrasound generator; MO: microscope lens; Cam-
era: hologram recording device (CMOS image sensor); PC: computer. b) De-
tailed structure of the flow cell, consisting of two glass plates with a fluid cham-
ber in between. For the ultrasound generation, a piezo plate is attached to the
upper glass slide and connected to a signal generator.

4.2.1.1 Data Analysis

The polystyrene microspheres (PS) carboxylate-modified 4% solids,
diameter 5.1 µm were purchased from Thermo Scientific. Their density
at 20°C is of 1.055 g / cm3 and they have been dispersed in water and son-
icated before being used. The information of the particles and medium
composition have been used to calculate resonance frequencies and force
profiles of the flow chamber by a one-dimensional model furnished by
Lumicks [68].
We have concentrated our attention on two specific resonance frequen-
cies, at 14.11MHz and 7.04MHz, based on their nodes position. In Fig-
ure 4.9 are reported the axial components of the radiation forces exerted
by the two fields, calculated from the model employing the following
definition:

F = −V ∇

[
1−κ∗

4
κm p2− 3

4

(
ρ ∗−1

2ρ ∗+1

)
ρmv2

]
(4.1)
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where V is the microsphere volume, p is the acoustic pressure, v the
acoustic velocity and r ∗ (= rp/rm) and k ∗ (= kp/km) are the density
ratio and compressibility ratio between the particle and the medium, re-
spectively [120].
The reported values are calculated using in both cases a driving signal
with amplitude V = 7V pp. However, the forces’ intensities depend on
the square value of the driving field amplitude, so they can be easily
tuned to suit ones needs [68].
This force, called primary acoustic radiation force (PRF), acts in the di-
rection of the ultrasound wave’s propagation. Upon its action, the par-
ticles are pushed towards either the pressure nodes or antinodes, de-
pending on their characteristics and that of the medium. In our case -
polystyrene microspheres dispersed in water - the PRF is dominated by
the gradient of the squared acoustic pressure, driving the microspheres
toward an acoustic pressure node. Moreover, once the particles have
reached their equilibrium plane, they start to form two dimensional ag-
gregates due to the lateral component of the PRF. This process is also
influenced by the existence of secondary radiation forces (SRF), caused
by the sound field’s scattering from the particles [39, 52]. We experimen-

Figure 4.9: Primary radiation forces simulated profile inside the microchannel.
The forces are generated by a driving signal with frequencies of 14.11MHz
(green) and 7.04MHz (blu), and amplitude V = 7V pp. The corresponding nodal
planes (N) and the initial plane are highlighted.

tally test theoretical results reported in Figure 4.9. We recorded videos
of the changes in the spheres position upon application of sequences of
different ultrasound standing waves. In the setup, a 20X microscope ob-
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jective is mounted in order to enhance the DH resolution capabilities
along the z-axis [14]. Moreover, from the camera settings the region-
of-interest (ROI) is restricted around a single microbead to increase the
acquisition rate to 20 fps. A sequence of two frequencies, 7.04MHz and
then 14.11MHz, has been applied. The piezo is driven with a peak-to-
peak voltage of 5V. The signal amplitude has been chosen to minimize
the impact of the lateral component of the PRF. In fact, the latter tends
to move the particles in the x-y plane. We have observed that for higher
driving voltage amplitudes, the resulting lateral component of the radi-
ation force is intense enough to drive the microsphere outside the ROI
during the video recording.
Initially the sample holder position is adjusted so that the sphere is in
the focal plane. Following the application of the resonance frequencies’
sequence, the microsphere moves towards available nodes, changing its
axial position. Nevertheless, for each video frame, which is a holographic
image of the sample, it is possible to apply a refocusing criterion method
to track the position of the microsphere along the optical axis. We use
the Tamura coefficient Td [92, 95] defined as:

Td =

√
σ (Ad)

µ (Ad)
(4.2)

where Ad is the amplitude reconstruction of the digital hologram calcu-
lated at distance d, σ(·) and µ(·) are the standard deviation and aver-
age value operators, respectively. The refocusing criterion is obtained by
solving the following optimization problem

d f oc = argmax{Td} (4.3)

where d f oc is the calculated microsphere position along the optical axis.
We apply the Tamura criterion to the holographic recorded sequence of a
single microsphere under the cascade of resonance frequencies 7.04MHz
and then 14.11MHz. The resulting particle movement along the optical
axis is depicted in Figure 4.10. The microsphere is initially suspended
at about 100µm from the channel’s bottom. This position is taken as the
reference height, i.e. the axial position is assumed as 0 in Figure 4.10(a).
When the first standing wave is generated at the time t1, the resulting pri-
mary acoustic radiation force traps the particle at the nearest nodal plane
(at about 46 µm from the initial position).
Subsequently, the 14.11MHz resonance frequency is applied and the mi-
crosphere moves towards the nearest nodal plane, placed at z=75 µm.
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Notice that in the first case the microbead needs about 7s from the in-
stant in which the field is applied to reach the nodal plane. In the second
case, the result is reached in less than a second. The difference is due not
only to the different travelling distances, but also to the difference in the
PRF’s intensity in the two cases (see Figure 4.8).
On the other hand, to check the process of particle’s aggregation, a sin-

Figure 4.10: a) Changes in the particle’s axial position upon application of
two resonant frequencies, 7.04MHz and 14.11MHz, as reconstructed from the
numerical refocusing of the holographic video. The three images in the left
are the recorded holograms where the axial movement is clearly detectable b)
Schematic depiction of the changes in the microspheres height.

gle ultrasound standing wave is applied while the particles positions are
monitored via DH. We have chosen to drive the piezo-device with the fre-
quency of 14.11MHz, which results in the highest force intensities and
thus has the strongest effect on the particles. The driving voltage has a
7Vpp amplitude.
In the setup a 10X MO is mounted, providing a FOV of about 650x650
µm2 and guaranteeing that a significant number of particles are imaged.
Following the application of resonance frequency, the microspheres im-
mediately move towards the first available node, then they start to form
two-dimensional aggregates in the nodal plane. The whole process is
recorded with an acquisition rate of 14 fps. Each video frame is a holo-
graphic image of the sample from which it is possible to obtain amplitude
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or quantitative phase-contrast maps. In our case, the amplitude maps are
extracted, as the microbeads are made of absorbing material. In case of
transparent samples such as cells, QPM can be instead employed, fully
exploiting the potentiality of DH.
We analyse the particles aggregation rate by measuring the number of
clusters of microspheres in time and the number of microspheres per
cluster in time. An image segmentation method based on thresholds is
adopted for detecting separated regions of interest (ROIs). Each ROI con-
tains a certain number of microspheres, thus an isolated microsphere is
the simplest ROI. Therefore, we define the number of clusters as the num-
ber of ROIs, while the number of microspheres per cluster is defined as
the area of the corresponding ROI divide by the ideal area of one micro-
sphere. In Figure 4.11 is illustrated the results of the ROI extract method

Figure 4.11: Four amplitude reconstructions of the holographic sequence. The
red boxes highlight the results of the ROI extraction method where the estimated
number of microspheres for the detected cluster is calculated.

applied to 4 amplitude reconstructions, while in Figure 4.12 the two plots
of number of clusters/time and number of microspheres per cluster/time.
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Figure 4.12: Estimation of (a) the number of clusters of microspheres in time
and (b) the number of microspheres per cluster in time.
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Cancer is a genetic disorder that involves the transformation of be-
nign body cells into malignant rapidly dividing cells through abnormal
changes called hyperplasia and dysplasia. In hyperplasia, there is an in-
crease of the number of cells that generally leaves organs or tissues nor-
mal when observed under a microscope; in dysplasia, the process is still
accompanied by an altered proliferation program, but the cells look gen-
erally abnormal. However, rigorously speaking, hyperplasia and dyspla-
sia may or may not become cancer, even if they represent propaedeutic
steps toward cancer diseases.
Tumors are constituted by a complex mix of neoplastic (cancer) and nor-
mal (healthy) cells. At this scale, regardless the cell line, there are very
few common factors in solid tumors: two of these are the overall abnor-
mal growth of the tissues and the anomalous regression in cell differen-
tiation, prodromal to cell spread and metastasis. To distinguish between
anomalous malignant and benign cell growth is however often impossi-
ble in small tissues.
To date, in absence of alternative ways for recognizing and targeting can-
cer cells, molecular markers are widely employed to detect tumors. As
a matter of fact, not-specialized, back-differentiated and generally poten-
tially metastatic cells are in the vast majority of the cases excluded by this
type of targeting, because molecular markers require to deal with highly
specialized cells, normally less aggressive than the not-specialized coun-
terparts. However, regression toward less specialized cell types nearly
often camouflages cancer cells in normal less differentiated cells, a fact
that generally forces to change markers.
After a preliminary introduction in Chapter 1 of the fundamentals of
nonlinear mechanics and classical and fractional viscoelasticity, in Chap-
ter 2 by exploiting some consolidated literature results that have demon-
strated that tumor cells are significantly softer than the healthy ones, in-
dependently from the cell line and regardless of the measurement tech-
niques utilized for determining the cell stiffness, the frequency response
of single-cell systems has been investigated by using both consolidated
and generalized spring-pot based viscoelastic schemes. After conducting
a sensitivity analysis with respect to cells physical and geometrical pa-
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rameters, the theoretical models have been finally specialized to cancer
and healthy cells, whose mechanical properties were ex vivo or in vitro
experimentally measured.
The results have shown that a mechanical-based way for targeting can-
cer and healthy cells may be actually envisaged. To this purpose, the
theoretical outcomes have in fact highlighted that, for all the cell lines
examined and independently from the viscoelastic scheme adopted to
simulate the cells response, normal and tumor cells peak frequencies can
be clearly distinguished. Importantly, they mosty fall within the range
(104,106) Hz, an interval compatible with LITUS (Low Intensity Ther-
apeutic UltraSound) already widely employed for medical applications.
Peak frequency values outside this interval are found for the sole cases
associated to extreme limit situations, that is both when the cells behave
as fluid-like (Maxwell) viscoelastic materials and exhibit highest elastic
modulus and/or large nucleus sizes (in this case the peak frequency tends
to disappear) and when the cells behave as Voigt viscoelastic systems and
contemporaneously are characterized by lowest stiffness or highest vis-
cosity (in this case the peak frequencies move toward frequencies slightly
lower than 104 Hz). It is worth to notice that both these theoretical limit
situations are quite unrealistic, because they assume that essentially the
cells would behave as a viscous fluid, in the first case the Maxwell model
intrinsically representing a fluid-like material and in the second case the
Voigt with high viscosity and low stiffness still representing a fluid-like
behavior.
Although the outcomes are to date only theoretically derived, it is felt that
- if the predictions were experimentally confirmed - the present study
might open the way for envisaging alternative strategies for diagnosis
and therapy of cancer diseases, both designing pioneering generations of
mechanically-based tumor markers and ad hoc taking advantages from
the resonance-like phenomena to selectively attack malignant cells. In
this perspective an experimental activity is in act in the the laboratory of
the Institute of the Applied Sciences and Intelligent Systems "ISASI- Ed-
uardo Caianiello" of the National Research Council (CNR) (illustrated in
Chapter 4). The activities have been to date limited to asses the experi-
mental procedure and calibrate the setup. Subsequently analyzing cancer
and healthy cell lines, ultrasounds will be applied at selected frequencies
to prove the theoretical principle described in Chapter 2.
Furthermore, with the aim to enrich the modeling of single-cell systems,
in Chapter 2 has also been considered the effect of the prestress (for
instance, induced in protein filaments during cell adhesion) on the over-
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all cell stiffness, finally determining its influence on the in-frequency
response of the cell. To this end, a simple multiscale scheme that incor-
porates finite elasticity has been first proposed to include, by using a
bottom-up homogenization procedure, suitable prestress-modified stiff-
ness values into the viscoelastic single-cell models.
Successively, an enhanced 3-D circus tent-like model, which includes
finite elasticity and involves prestretched filaments in the membrane as
well as the deformation of the nucleus, has been introduced to better cap-
ture the actual effects of the cell configuration states on the overall out
of plane stiffness. it has been constructed an analytical approach to find
a solution of memebrane-nucleus coupled problem. The model proposed
could be helpfully utilized in AFM experimental measurements when de-
termining stiffness maps for example to give formulas for obtaining how
actual prestress level in the cell membrane influence the overall cell elas-
ticity.
To replicate more faithfully in-vivo behavior of cells, in Chapter 3, pre-
liminary results and some first models have been presented to investi-
gate the role that mechanics plays in collective cell behaviors, relevant in
wound healing and embrogenesis processes (gastrulation). The introduc-
tion of the nonlinearities (upper convected Mawell model) leads a grater
complexity on the computational side. For this reason the numerical sim-
ulations are still an ongoing work and the strategy to find the solution will
be followed for expample by implementing Hu-washizu like variational
formulation.
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