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Abstract

In the last century, a huge multi—-disciplinary scientific endeavor is de-
voted to answer the historical questions in understanding the brain func-
tions. Among the statistical methods used for this purpose, brain decoding
provides a tool to predict the mental state of a human subject based on the
recorded brain signal. Brain decoding is widely applied in the contexts of
brain—computer interfacing, medical diagnosis, and multivariate hypothesis
testing on neuroimaging data. In the latest case, linear classifiers are gen-
erally employed to discriminate between experimental conditions. Then, the
derived weights are visualized in the form of brain maps to further study the
spatio—temporal patterns of the underlying neurophysiological activity. It is
well known that the brain maps derived from weights of linear classifiers
are hard to interpret because of high correlations between predictors, low
signal-to—noise ratio, across—subject variability, and the high dimension-
ality of the neuroimaging data. Therefore, improving the interpretability
of brain decoding approaches is of primary interest in many neuroimaging
studies. Despite extensive studies of this type, at present, there is no formal
definition for interpretability of multivariate brain maps. As a consequence,
there is no quantitative measure for evaluating the interpretability of differ-
ent brain decoding methods. In this thesis, as the primary contribution, we
propose a theoretical definition of interpretability in linear brain decoding;
we show that the interpretability of multivariate brain maps can be decom-
posed into their reproducibility and representativeness. As an application
of the proposed definition, we exemplify a heuristic for approrimating the
interpretability in multivariate analysis of evoked magnetoencephalography
(MEG) responses. We propose to combine the approximated interpretability
and the generalization performance of the model into a new multi—objective

criterion for model selection. Our results, for the simulated and real MEG



data, show that optimizing the hyper—parameters of the reqularized linear
classifier based on the proposed criterion results in more informative mul-
tivariate brain maps. More importantly, the presented definition provides
the theoretical background for quantitative evaluation of interpretability,
and hence, facilitates the development of more effective brain decoding al-
gorithms in the future. As the secondary contribution, we present an ap-
plication of multi—task joint feature learning for group—level multivariate
pattern recovery in single—trial MEG decoding. The proposed method al-
lows for recovering sparse yet consistent patterns across different subjects,
and therefore enhances the interpretability of the decoding model. We eval-
uated the performance of the multi—task joint feature learning in terms of
generalization, reproducibility, and quality of pattern recovery against tra-
ditional single—subject and pooling approaches on both simulated and real
MEG datasets. Our experimental results demonstrate that the multi—task
joint feature learning framework is capable of recovering meaningful pat-
terns of varying spatio—temporally distributed brain activity across indi-
viduals while still maintaining excellent generalization performance. The
presented methodology facilitates the application of brain decoding for char-
acterizing the fine—level distinctive patterns of brain activity in group—level

inference on neuroimaging data.
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Chapter 1

Introduction

Understanding the nature and function of brain is one of the main questions
that has evoked human curiosity all along the history. Ancient Greek
philosophers envisaged different functions for the brain from 500 B.C.E
to 200 C.E, ranging from it is being the cooling agent of body heat to
the seat of a rational soul and center of sensation and understanding [42].
Nowadays, cognitive science tries to incorporate research areas that are
concerned with neurophysiological and behavioral understanding of the
brain, e.g., neuroscience and psychology, with variety of other research
fields, such as computer science, physics, and statistics, to provide a better
insight into the structure and function of the brain. As the field matures,
techniques are being adopted from other areas of computational science in

order to accelerate research in cognitive science.

Neuroimaging techniques (see Figure [I.I)), also called brain imaging
techniques, such as structural and functional Magnetic Resonance Imaging
(s/tMRI) [54], Electro/Magnetoencephalography (E/MEG) [20}37], Elec-
trocorticography (ECoG) [103], Positron Emission Tomography (PET) [13],
and Near—Infrared Spectroscopy (NIRS) [25], have become essential tools
for either invasive or non—invasive imaging of the structure and function

of the brain. Structural brain imaging is more concerned about the diag-

1



2 Introduction

(A) fMRI

Sensory area Motor area

Surgical opening \

Electrocorticography |

(D) ECoG (E) EEG (F) PET-CT

Figure 1.1: Neuroimaging techniques. (A) Siemens MAGNETOM Trio device for struc-
tural and functional brain imaging. (B) CTF-275 MEG scanner for recording magnetic
fields produced by electrical currents in the brain. (C) User preparation for a NIRS
recording. (D) A grid of ECoG sensors implanted on sensory and motor areas. (E) Con-
figuration of EEG sensors on the head for scanning electrical brain activity. (F) Discovery

D600 PET-CT system for positron emission tomography.

nosis of large-scale brain diseases resulting from the abnormality in brain
tissues ,, e.g., tumors or brain injuries. On the other side, there
are a variety of applications for functional brain imaging, ranging from the
finer—level medical diagnosis to brain—computer interfaces and understand-

ing brain’s function.

In last three decades, the clinical application of functional brain imag-
ing in psychiatry has impressively broadened [28,/56]. Functional brain



imaging techniques are used to investigate the neural correlates of various
mental disorders in order to identify biomarkers for them. These biomark-
ers then can be employed to investigate the effect of behavioral therapies
and drug treatments. For example, resting—state functional connectivity
derived from patients’ fMRI are used for early identification of Alzheimer’s
disease and presurgical planning [169]. MEG and EEG recordings are also
employed for finding the seizure onset zone in presurgical evaluation of
epilepsy patients [109].

Brain—computer interface [207] (BCI) is a system that provides a real—
time communication channel between the brain and an external machine.
The application of neuroimaging in BCI is more focused on measuring elec-
trical activity of brain invasively by means of intracranial implants such
as ECoG [120], or non-invasively by means of EEG devices. Then an
algorithm is used for online translation of the recorded brain activity to
machine instructions. This technology has applications in verbal commu-
nication [50], controlling devices [209], affect recognition [1-3,/110], multi—
media content retrival [59], and locomotion [200] especially for individuals
with severe motor disabilities by brainstem stroke or neuro-muscular dis-

eases such as amyotrophic lateral sclerosis.

In cognitive neuroscience [57], researchers use the recorded neuroimag-
ing data to understand the relationship between brain activity and specific
cognitive functions, i.e., to answer three key questions of where, when and
how [[] a brain region contributes to a particular cognitive process. To do
this, depending on the question of interest, an experimental protocol is
designed to evoke or induce certain brain activity in human or non—human
participants, while simultaneously recording neural correlates by means of

functional neuroimaging devices. Then statistical analysis techniques are

'Here the answer to “how” question refers to finding the connection between a specific cognitive

function and characteristics of the recorded neural correlates.



4 Introduction

employed to justify the initial hypotheses about the three key questions.
Here is an example of a scientific question in cognitive neuroscience [140]:

“We here wanted to reveal whether neural excitability of the auditory
cortex putatively reflected in local alpha—band power is modulated already
prior to speech onset, and which brain regions may mediate such a top—
down preparatory response.”
in which auditory cortex, modulation of alpha-band power, and occurrence
of this modulation prior to speech onset stand for hypothesized answers to
where, how, and when questions, respectively.

In this thesis, we are interested in the application of functional neu-
roimaging in understanding brain function. More specifically, we are inter-
ested in improving the interpretability of multivariate hypothesis testing
approaches in order to infer more reliable, reproducible, and plausible an-
swers to the main questions in cognitive neuroscience. Of course, the re-
sulting methodology is also applicable to the medical diagnosis domain, but
our experimental setups and discussion are more focused on the applica-
tions in confirmatory and exploratory data analysis techniques in cognitive
neuroscience.

There are two schools of thought in statistical analysis for inference on
neuroimaging data [32]: 1) classical statistical testing, and 2) statistical
learning theory. Classical statistical testing is an in-sample generaliza-
tion technique based on null-hypothesis falsification, in which, generally,
a set of univariate tests, e.g., t—tests, are independently applied to each
variable of interest. On the other hand, statistical learning theory is a
multivariate approach that is more concerned with out—of-sample gener-
alization. While both techniques are successfully applied for inference on
neuroimaging data, they capture partially different aspects of the underly-
ing neurophysiological activity [32].

Region-of-interest (ROI) analysis is one of the most popular methods



in classical inference on neuroimaging data [71,/160]. It is typically based
on the mean activity analysis, using e.g., ANOVA, on a pre—specified ROIs.
The pre—specified ROIs are generally decided using prior knowledge on the
studied cognitive process, and the mean activity within the ROIs are tested
in different experimental conditions. Despite the popularity and simplicity
of the ROI analysis method, the prerequisite for pre—selecting the ROIs
limits its application especially in exploratory analysis of neuroimaging
data where little is known about the brain areas involved in a cognitive
function. Addressing this limitation, classical inference evolved to the new
generation of exploratory whole-brain analysis such as mass—univariate

hypothesis testing [64].

Mass—univariate analysis performs a large number of univariate tests
on each variable, e.g., each voxel, independently. It can be employed for
hypothesis testing in whole—brain exploratory analysis without the need
for prior variable selection. However, it requires a procedure to handle
the multiple-comparison problem (MCP) [60]. There are various methods
for multiple-comparison correction based on the strong or weak control of
family—wise error rate (FWER) [203],213] or false discovery rate (FDR) [16]
control. Being essential for the validity of results, on the down side this
correction reduces the power of statistical analysis with the increase in the

number of univariate tests [64].

In statistical learning approaches, also known as brain decoding and
multivariate pattern analysis (MVPA) in the literature [86,/99], a model
is trained to learn the relation between the independent variables, i.e.,
neuroimaging data, and the dependent variables, i.e., experimental condi-
tions. The training is performed in the framework of statistical learning
theory [80]. The performance of the model is evaluated on a test set,
which is different from the initial training set. If the performance is sig-

nificantly above the chance level, it can be concluded that a meaningful
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relation exists between the recorded neural signals and the cognitive task.
The statistical learning approach can possibly provide a multivariate al-
ternative for classical univariate hypothesis testing methods. The multi-
variate nature of this method yields higher sensitivity to the distributed
patterns of brain activities [149] and provides the possibility of capitaliz-
ing the complex interactions among the parameters of interest. Further,
by employing proper validation strategies, it resolves the multiple testing
problem of mass—univariate approaches [98]. In this thesis, we use brain
decoding to refer to the application of the statistical learning theory in the

neuroimaging context.

Due to the high dimensionality and limited number of samples typically
associated with neuroimaging data [41,[114], linear classifiers are generally
used to assess the relation between spatio—temporal brain measurements
and cognitive tasks [22,/118,[157]. This assessment is performed by solv-
ing an optimization problem that minimizes a loss function by learning
weights associated with each independent variable. These learned weights
can then be visualized in the form of a brain map, in which the engage-
ment of different brain areas in a cognitive task is illustrated. In fact,
brain mapping via brain decoding can be viewed as a pattern recovery
problem, where the goal is to recover spatio-temporal patterns of the dis-
criminative brain activity involved in the cognitive processing of external
stimuli. If successful, brain maps created by means of brain decoding can
provide a comprehensive explanation regarding the nature of neural rep-
resentations and brain states, and may be more informative for cognitive
science than a merely decoding accuracy measure [154]. Currently, brain
decoding is the gold standard in multivariate analysis of functional mag-
netic resonance images (fMRI) [41,[86}/135],149] and magnetoencephalogra-
phy /electroencephalography(MEG /EEG) data [3,,34}36},93, 156|167, 199].

However a number of challenges still remain, particularly regarding the



interpretability of weights of classifiers, especially in group studies of neu-

roimaging data.

A classifier or a regression model that is trained in the statistical learn-
ing framework only answers the question of what is the most likely label
of a given unseen sample [12]. This fact is generally known as the knowl-
edge extraction gap [198] in the machine learning context. Thus far, much
effort has been devoted to filling this gap of linear and non-linear data
modeling methods in different areas such as computer vision [11], signal
processing [137], chemometrics [216], bioinformatics [72], and neuroinfor-
matics [83]. In the context of neuroimaging, this gap is generally known
as the interpretation problem [88,/142,/172]. Therefore, improving the in-
terpretability of linear brain decoding and the associated brain maps is a
topic of interest in many neuroimaging studies [178]. In spite of the exten-
sive efforts to improve the interpretability of brain decoding, there is still
no formal definition for the interpretability of brain decoding. Therefore,
the interpretability of different brain decoding methods is evaluated either

qualitatively or indirectly by means of an intermediate property.

Group—level analyses of neuroimaging data are extremely important,
as they allow for results to be generalized to new individuals. In sta-
tistical learning, an ideal group—level approach should be able to recover
both structural and functional similarities and dissimilarities across differ-
ent individuals. These similarities and dissimilarities generally occur at
both a coarse and fine level in space and time, and can provide valuable
spatio—temporal information about both the underlying macro and micro—
structures of the cognitive function in question. For example, visual stimuli
in general evoke a coarsely similar effect in early visual brain areas across
different subjects, but the response to different types or categories of visual
stimuli can differ from subject to subject at the finer level (see Ref. [87] for

more examples). This across—subject functional variability makes group—
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level inference on neuroimaging data challenging, particularly since there is
also substantial across—subject variability in the brain structure (e.g., the
different size and shape of brains) [129,(164],165,/180,,[181]. This problem is
even more pronounced when one takes into account the difference in the
spatio—temporal structure of noise that commonly occurs due to different
external and internal sources, or manual preprocessing errors. These vari-
ations not only negatively affect the generalization performance of brain
decoding, but they also make post—hoc interpretation of the derived brain
maps more challenging, due to concerns about lack of reproducibility and
plausibility. For these reasons, it is crucial to explore more effective de-
coding methods that are capable of recovering structural and functional
similarities and dissimilarities in a group-level analysis of neuroimaging
data.

With the aim of filling these gaps, the contribution of this thesis is
two—fold:

1. A theoretical definition for the interpretability of linear brain decod-
ing models is presented. The definition is based on cosine proximity
between the estimated and true solutions of brain decoding in the
parameter space. Furthermore, it is shown that the interpretability
can be decomposed into the reproducibility and representativeness.
As a proof of concept, a practical heuristic based on event-related
fields is exemplified to quantify the interpretability of brain maps.
Furthermore, the combination of interpretability and performance of
brain decoding is proposed as a new Pareto optimal multi-objective

criterion for model selection.

2. An application of multi-task joint feature learning [9] for accurate
spatio—temporal pattern recovery at the group—level decoding of MEG

data is presented. In the proposed framework, the data of each subject



is considered as a task in the multi-task learning framework, where
only one decoding model is simultaneously trained over all subjects.
Further, 51 regularization [124] is employed to learn sparse patterns
consistently across different subjects, i.e., to jointly learn the features

across different subjects.

Regarding my first contribution, the presented definition for interpretabil-
ity of linear brain decoding models provides a concrete framework for a pre-
viously abstract concept and establishes theoretical background to explain
an ambiguous phenomenon in the brain decoding context. The experi-
mental results on MEG data show that accounting for the approximated
measure of interpretability has a positive effect on the human interpreta-
tion of brain decoding models. Furthermore, the proposed decomposition
of the interpretability of brain maps into their reproducibility and repre-
sentativeness explains the relationship between the influential cooperative
factors in the interpretability of brain decoding models and highlights the
possibility of indirect and partial evaluation of interpretability by mea-
suring these effective factors. The experimental results on single—subject
MEG decoding showed that adopting the new proposed criterion for op-
timizing the hyper—parameters of brain decoding models is an important
step toward reliable visualization of learned models from neuroimaging
data. Furthermore, these findings provide a step toward direct evaluation
of interpretability of the currently proposed regularization strategies. Such
an evaluation can highlight the advantages and disadvantages of applying
different regularization strategies on different data types and facilitates the
choice of appropriate regularizer for a certain application.

Regarding my second contribution, multi—task joint feature learning fa-
cilitates consistent sparse pattern recovery across individual subjects while
at the same time preserving idiosyncratic structural and functional prop-

erties within each individual. By taking into account the inter—subject
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spatio—temporal similarities and dissimilarities of brain activity, multi—task
joint feature learning provides higher interpretability for multivariate brain
maps at the group—level. To my knowledge, this is the first time one uses
multi-task joint feature learning in the context of group-level MEG de-
coding. Considering the fact that only EEG and MEG can non-invasively
record brain activity at a high temporal resolution [75]|78|, the proposed
approach provides the possibility for recovering temporal brain dynamics
within the millisecond time scale, a crucial task if we aim to understand the
dynamics of human brain function [77,79]. On the other hand, multi-task
joint feature learning provides the infrastructure for combining structured
regularization with stability selection in group—level multivariate analysis.
While ¢ penalty combines 3 and ¢; norms to enforce group sparsity,
its integration with simultaneous optimization in multi-task learning also
offers a variant of stability selection across a group of subjects.

The rest of this thesis is organized in the following 4 chapters:

1. In order to provide the basic background for the general audience,
Chapter [2| reviews the basic concepts and terminologies that are used
to develop the contributions of this thesis. To this end, the basic
terminology to describe the structure and function of human brain is
firstly introduced. Then the principles of brain recording and analysis
using MEG data are briefly reviewed. At the end, I review the con-
cepts behind hypothesis testing on neuroimaging data, ranging from

the classical hypothesis testing to the statistical learning theory.

2. Chapter [3| presents a novel definition for the interpretability of linear
brain decoding models [105,/108]. It is shown that the interpretabil-
ity of multivariate brain maps can be decomposed into their repro-
ducibility and representativeness. Then, a heuristic for approximating

the interpretability in multivariate analysis of evoked MEG responses
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is exemplified. Finally, I propose to combine the approximated in-
terpretability and the generalization performance of brain decoding
into a new multi—objective criterion for model selection. The results
demonstrate the importance of including interpretability in the model

selection for deriving more meaningful brain maps.

. In Chapter [, an application of multi-task joint feature learning for
group—level multivariate pattern recovery in single-trial MEG decod-
ing is proposed [106},107]. The proposed method allows for recovering
sparse yet consistent patterns across different subjects, and therefore
enhances the interpretability of the decoding model in group-level

analysis.

. Finally, Chapter [5| summarizes the lessons that have been learned and

states possible future directions.






Chapter 2

Background

The aim of this chapter is to provide background information about brain,
magnetoencephalography (MEG), hypothesis testing, and machine learn-
ing for the readers. The basic concepts introduced in this chapter provide
the formal and conceptual ingredients for understanding our contributions
in the following chapters. To this end, we first introduce the basic ter-
minology that is used to describe the brain structure. Second, we briefly
describe the mechanisms and characteristics of extracranial magnetic field
recording using an MEG device. Third, the principles of classic statistical
hypothesis testing on the neuroimaging data are reviewed. We finalize this

chapter by introducing the basic concepts in statistical learning theory.

2.1 Brain: from Neurons to the Cerebral Cortex

The brain is an organ contained in the skull of vertebrates and head of
most invertebrate animals; brain serves as the coordinating center of the
nervous system. The brain tissue is composed of two classes of cells:
1) neurons, and 2) glial cells. Glial cells are involved in structural and
metabolic support. Neurons are the basic elements of the nervous system
that process and transmit information via electro—chemical processes [100].

These signals are transmitted from one neuron to another via specialized

13
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inter-neuron connections called synapses. Synapses are key functional el-
ements of the brain as they form modifiable communication channels be-
tween neurons [174]. This modifiability provides the possibility of changing
the strength or patterns of neuro—electrical signals. This key feature pro-
vides the infrastructure for crucial brain functions such as learning and
memory. The web between neurons form densely connected networks. To
understand better the structural complexity of the neural networks, it is
worthwhile to emphasize that the brain has around 10'' neurons each of
which with up to ~ 10* connections.

A typical neuron is composed of a cell body or soma, dendrites, and an
axon (see Figure 2.1)). The electrical signals are received by the dendrites,
integrated at the soma, and transmitted to the synaptic terminals via the
axon. The signals that are transmitted along the axon are called action
potentials and the received signals at dendrites are called post—synaptic po-
tentials. Neurons are classified to several categories based on their struc-
tural properties. Purkinje neurons, Pyramidal neurons, Granule neurons,
and Spindle neurons are examples of neuron types in the brain.

Axons are generally wrapped in a fatty insulating cover called myelin.
Myelin is white, thus, the area of the brain that includes axons appears
white, hence, it is known as white matter [see Figure[2.2(A)]. In contrast the
area that contains the cell bodies of neurons and dendrites appears darker
and it is called the gray matter. The gray matter forms the human cerebral
cortex which is divided into left and right hemispheres along the sagittal
plane. The types of neurons in the gray matter divide the cerebral cortex
into six layers [see Figure 2.2(B)]: 1) molecular layer, 2) external granular
layer, 3) external pyramidal layer, 4) internal granular layer, 5) internal
pyramidal layer, and 6) polymorphic layer. The human cerebral cortex is

coarsely segmented into four lobes in each hemisphere [see Figure 2.2(C)]:

1. Occipital Lobe: The occipital lobe contains primary visual cortex (also
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Figure 2.1: The structure of a typical neuron [206]. The electrical signals are received by

the dendrites, processed at the soma, and transmitted to the synaptic terminals via the

called as V1 area or striate cortex) which processes the low—level vi-
sual features such as local orientation and spatial frequency. Primary
visual cortex is followed up by the ventral stream (V2 and V4 areas),
and the dorsal stream (V3, and V5 areas). The ventral stream pro-
cesses important information regard the identification of stimuli while
the dorsal stream focuses more on the spatial aspects of motor actions

in response to visual stimuli.

. Parietal Lobe: The parietal lobe plays important roles in integrating

sensory information, e.g., visuo—spatial processing, and language.

. Temporal Lobe: The temporal lobe consists several sub—areas which
are involved in associating meanings to the sensory inputs such as
visual and auditory stimuli, language comprehension, and emotion

processing.

4. Frontal Lobe: The frontal lobe is responsible for voluntary movement
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Figure 2.2: (A) The organization of the white and gray matter in the human brain.
(B) The six layers of the gray matter. (C) The division of human cerebral cortex into
occipital, parietal, temporal, and frontal lobes ||

and performs some high—level cognitive functions such as attention,

short—term memory, emotions, and planning.

2.2 Magnetoencephalography (MEG)

2.2.1 History and Mechanisms

Nowadays, neuroimaging methods that allow to explore the brain func-
tions within the millisecond time scale provide exceptional opportunity to
unveil temproal patterns of neural activity ,,,. Up to now,
only electroencephalogram (EEG) and magnetoencephalogram (MEG) can
non—invasively record neural activity at such a high temporal resolution.
These methods allow for real-time tracking of brain activation sequences
during sensory processing, motor planning and action, cognition, language
perception and production, social interaction, and various brain disor-
ders ,,,.

According to Maxwell’s equations, the post—synaptic electrical current

resulting from synaptic transmission produces a magnetic field. Therefore
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the magnitude of the resulting magnetic field can be used as an indica-
tor for the activation of population of neurons. The weak neuro-magnetic
fields outside the human scalp were first measured by David Cohen in
1968 [37] using a copper induction coil. The weakness of the cortical mag-
netic fields, which are on the order of 10-10% femtotesla (fT), compared
to the environmental noise led to the invention of superconducting quan-
tum interference device (SQUID) [222]. Cohen used a heavy magnetically
shielded room and a single SQUID detector to show that MEG can capture
the brain’s alpha rhythms similarly as EEG [38]. Currently, MEG devices
contain around 300 SQUIDs arranged in a helmet—shaped array that cover
the whole human scalp [see Figure [1.1(B)].

Measuring the magnetic fields around the scalp provides an exceptional
technique to investigate the cognitive function of different brain regions
especially within cortical sulci that are barely observable even with in-
vasive intracranial brain recording techniques. The majority of magnetic
field measured by SQUID are produced by the parallel pyramidal cells that
are perpendicular to the cortical surface. Their electrical current flow is
directed perpendicular to the cortical sheet of the gray matter. Thus mag-
netic fields resulting from the synchronized tangential neural activity across

a population of pyramidal neurons can be sensed via SQUIDs outside the
head (see Figure [2.3).

In modern MEG devices, the temporal and spatial sampling frequency
is designed based on the multidimensional generalization of Nyqvist crite-
rion to avoid any spatio—temporal aliasing [6]. The temporal and spatial
sampling rate are generally ~ 1000 and ~ 300, respectively. The ~ 300
spatial sampling rate stands for ~ 300 MEG sensors which could be dif-
ferent from one device to another. For example CTF MEG [[] and Electa

!See http://www.ctfmeg.com/.
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Figure 2.3: The radial magnetic fields resulting from the tangential electrical currents can

be measured outside the scalp [205].

Neuromag [ systems have 275 and 306 sensors, respectively. The MEG
sensors, depending on the type of the corresponding flux transformer, i.e.,
a device that transforms the magnetic field to SQUID, are categorized into
three main types [68]: 1) magnetometer, 2) axial gradiometer, and 3) pla-
nar gradiometer. Magnetometer sensors, with a single coil, measure only
one component of the magnetic field [see Figure [2.4[A)]. Axial gradiome-
ters consist of two vertically connected coils with opposite directions, thus,
these sensors are insensitive to homogeneous fields and therefore to most of
environmental noise [see Figure [2.4B)]. Planar gradiometers consist of two
twisted magnetometers placed next to each other and measure the gradient
of the magnetic field in a plane roughly tangential to the head surface [see
Figure 2.4(C)].

Even though the effect of environmental noise can be alleviated to some
degree with astute design of flux transformers, the recorded MEG signal

is often contaminated with artifacts. Eye blinks, eye movements, cardiac

2See https://www.elekta.com/diagnostic-solutions/elekta-neuromag-triux.html.
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Figure 2.4: Types of flux transformers in MEG sensors [68]: (A) Magnetometer, (B) Axial

(A)

gradiometer, (C) Planar gradiometer.

activity, and muscular activity are examples of biological artifacts in MEG
signal. These artifacts can be partially rejected using band—pass frequency
filtering or using blind-source separation methods such as independent

component analysis (ICA) [94].

2.2.2 Data Analysis

Time—Domain Analysis

One of the most common methods for analyzing the EEG/MEG signals
is to compute the average event-related potential/fields (ERP/ERF) [71].
ERP/ERFSs are suitable for investigating the neuronal correlates of specific
transient external stimuli [125]. In addition, abnormality in ERP/ERF
components can be used as a clinical biomarker for diagnosing neurologi-
cal diseases such as Alzheimer’s [27], Parkinson’s [163], and multiple scle-
rosis [159].

The main idea behind computing the ERP/ERF is to increase the
signal-to—noise ratio (SNR). Due to the internal (such as background brain
activity and other biological interference) and external (electromagnetic

interference by the light sources, electricity, and peripheral devices) noise
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contaminations, the single trials of EEG/MEG data suffer from low SNR.
One simple solution to address this problem is to compure ERP/ERF by
averaging many trials in order to cancel out the random uncorrelated noise
components [171]. The averaging operation is based on three main assump-
tions: 1) the noise components are uncorrelated with the signal of interest;
2) the signal of interest is time-locked, i.e., it has a fixed latency with
respect to the stimulus onset. This type of time—locked response is also
called as the evoked response in the literature; 3) the noise components
have a zero-mean Gaussian distribution with variance of 2. This ap-
proach is generally known as a time-locked analysis and is available within
common EEG/MEG data analysis toolboxes such as Filedtrip [153], MNE-
Python [61], and EEGLAB [47].

One possible approach to interpret ERP/ERF responses is to categorize
them based on their amplitude and latency [171]. ERP/ERF responses
are divided into positive and negative based on the sign of their ampli-
tudes. The P100, P200, and P300 are examples of well-known positive
components that are evoked around 100, 200, and 300 ms after the stimulus
onset, respectively. The P100 is typically modulated by attention in the
extrastriate cortex and in response to visual stimuli [193]. The P200 com-
ponent is involved in cognitive processes such as working memory [116]
and semantic processing [53]. The P300 indicates higher cognitive pro-
cesses and occurs in response to a variety of sensory stimuli such as visual,
tactile, and auditory [161]. Due to its robustness, the P300 has some ap-
plications in the BCI context [158]. The N100 and N170 are examples
of negative ERP/ERF components that are generally elicited in response
to auditory [141] and human face [19] stimuli, respectively. Figure

illustrates schematically some well-known ERPs.
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Figure 2.5: A schematic illustration of some well-known ERPs.

Time—Frequency Analysis

In computing the evoked ERP/ERF in response to external stimuli/events,
one of the main assumptions is that the signal of interest is time—locked.
But in fact brain responses are not always time-locked to the stimulus
onset, and the timing might change slightly from one epoch to another.
These jitters in time result in cancellation of positive and negative signal
components when averaging the epochs. This situation might happen also
in case of induced responses, i.e., when the response is time-locked but
not phase-locked. An example for this kind of responses is Gamma os-
cillation in complex stimulus processing [182]. One possible approach to
overcome this problem is to compute the frequency power spectrograms by
transferring the signal from time domain to the time—frequency domain.
Short—time Fourier transform (SFT) and wavelet transform are two com-

mon methods for calculating time—frequency representations of EEG/MEG
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signals [68]. The computation is generally performed by calculating the
spectral power of different frequency bands on a sliding interval of the sig-
nal. The length of intervals can be considered fixed for different frequency
bands. An alternative and more effective approach is to decrease the in-
terval length by increase in frequency. The analysis can be enhanced using
the multitaper technique [136] which allows for a better control of time

and frequency smoothing and reduces spectral leakage.

Source—Space Analysis

The electrical/magnetic brain activity is recorded via EEG/MEG sensors
placed around the head. In sensor-space EEG/MEG data, each sensor
records the electrical /magnetic activity from several sources in the brain.
The goal of transferring the sensor—space data to the source—space is to
estimate the source of brain activity based on the signals measured out-
side the head. Although the EEG/MEG data are measured simultaneously
with several sensors, transforming the data to the source—space is an ill—-
posed problem without a unique solution. This problem is known as the
inverse problem [68] in the context of EEG/MEG data analysis. One pos-
sible solution to derive valuable information on source distribution of brain
activity is to include additional physiological information in order to put
some constraints on the inverse problem. There are two main directions

toward addressing the inverse problem:

1. Parametric source models: These approaches make some specific
assumptions on the number and locations of focal sources. Generally,
it is assumed that there are few active sources and their number, lo-
cations, and orientations are estimated iteratively e.g., by using stan-
dard nonlinear least—squares optimization methods [130], until the
predicted electric potential or magnetic field is sufficiently close to the

measured one. The equivalent current dipole model [69] and multi-
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ple signal characterization [139] are two common parametric source

estimation approaches.

2. Distributed dipole models: Unlike parametric approaches, the
dipole distribution models make little assumptions on the parame-
ters of the source model, instead they try to extract the characteris-
tics of the data distribution in source—space in a data—driven manner.
To this end, distributed dipole models assume that the sources are
distributed within a volume or on a surface and then use various esti-
mation techniques to find out the most plausible source distribution.

Linear minimum-norm estimation [70] is an example of these meth-
ods.

2.3 Statistical Hypothesis Testing

The falsifiability is an indispensable principle of any scientific hypothe-
sis [162]. The falsifiability means that before any scientific hypothesis is
accepted as a theory, it must be inherently disprovable. In fact, the falsifia-
bility provides the possibility of replacing an old theory by an enhanced one
with more generalization. Statistical hypothesis testing provides a frame-
work to measure the degree of falsifiability of a probabilistic hypothesis. In
this section, we review the basic concepts behind the classical hypothesis

testing approaches with focus on applications in neuroimaging.

2.3.1 Classical Hypothesis Testing

A scientific hypothesis is a proposed explanation for a general behavior
of a particular phenomenon that is made based on limited observations.
The validity of any scientific hypothesis is evaluated by means of statistical

hypothesis testing, also known as confirmatory data analysis. Statistical
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hypothesis testing can be performed by adopting either a frequentist or

Bayesian approach.

Frequentist Framework

In the frequentist approach, the falsifiability of a hypothesis is measured
by computing the probability of erroneous inference by replicating the
experiment. There are two major schools of thoughts in frequentist ap-
proach [21}/117,/119,152]:

1. Significance Testing (Fisher’s method): Ronald Fisher for the
first time introduced the concept of significance testing in statistics [55].

The Fisher’s procedure for significance testing is as follows [see Fig-
ure ZG(A)):
i . Setting up the null hypothesis Hy. The aim of the experiments
is to prove that the null hypothesis is false.

ii . Choosing an appropriate test statistic T' to summarize the data
in real numbers.

iii . Deriving the null distribution p(T | Hy) analytically or by re-
sampling.

iv . Collecting the experimental data and calculating the test statis-
tic in the observed data T,.

v . Computing the p-value = p(T' > T, | Hy).

vi . Reporting the p-value as a measure of evidence against Hy.

2. Hypothesis Testing (Neyman—Pearson’s Method): is intro-
duced first time in a paper by Jerzy Neyman and Egon Pearson in
1933 [145]. The Neyman—Pearson approach is applicable when the

problem can be explained in the form of two disjointed hypotheses
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Figure 2.6: Frequentist frameworks in classical hypothesis testing: (A) Fisher’s method

for the significance testing. (B) Neyman—Pearson’s method for the hypothesis testing.

and a meaningful cost/benefit trade—off can be set between the two.
The whole procedure can be summarized as follows [see Figure 2.6](B)]:

i

1

1l .

v

A%

Vi .

. Setting up two simple complementary hypotheses: the null H;
and the alternative Hs hypothesis. The aim of the test is to see

whether we can reject H; in favor of Hs.

. Choosing an appropriate summary of the data based on a test
statistic T

Deciding critical value «, so called the Type I error rate or
false positive rate, and the sample size n. The « is a parameter
that specifies the probability of false alarms, i.e, the probability

of rejecting the null hypothesis when it is true.

. Computing the power of test for a given « and statistics 7. The
power of the test is 1 — 3, where [ is the Type II error rate or

false negative rate.

. Computing the rejection region R on T'. The rejection region is

the range of values in T" where the null hypothesis is rejected.

Running the experiment and computing the statistic 7, on the

observed data.
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vii . Rejecting H; and accepting Hs if T, € R, accepting H; and
rejecting Hy if T, ¢ R.

It is worthwhile to emphasize that failing to reject the Hy in hypothesis
testing must not be interpreted as the correctness of the null hypothesis,

but it just shows a lack of evidence against it [147].

Bayesian Framework

Bayesian framework is an alternative for the frequentist approaches in sta-
tistical hypothesis testing [147]. In contrary to the frequentist approaches
that test the data given the hypothesis, in Bayesian hypothesis testing we
test the hypothesis given the data. The procedure for general Bayesian
hypothesis testing for two alternative hypotheses can be summarized as

follows:

1. Set up two mutually exclusive hypotheses, H; and Ho.
2. Run the experiment and collect the data D.

3. Use prior knowledge to specify the prior probabilities p(H;) and p(H>)
where p(Hy) + p(Hz) = 1.

4. Specity the likelihood functions to model the data given the hypothe-
ses: p(D | Hy) and p(D | Hy).

5. Compute the posterior probability of each hypothesis using the Bayes

. | __ p(D|Hi)p(H;)
rule: p(H; | D) = > p(DIH;)p(H;)’

6. Test the hypothesis using one of the following approaches:

i . Maximum a posteriori (MAP) approach: we accept H if p(H; |
D) > p(Hy | D) and vice versa.

ii . Bayes factor (BF) approach: we compute the BF as ;’ Eg}g;g The

resulting BF can be interpreted based on Table [95,101].
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Table 2.1: Interpretation of the Bayes factor.

Bayes Factor (BF) Evidence
<1 Negative (H; is rejected and Hy is accepted)
1to3 Barely worth mentioning
3 to 10 Substantial (in favor of Hy)
10 to 30 Strong (in favor of Hy)
30 to 100 Very strong (in favor of H;)
> 100 Decisive (in favor of Hy)

2.3.2 Mass—Univariate Hypothesis Testing on MEG data

The recorded MEG data represent the neural sources in space, time, and
frequency domains; thus, the data contain spatio—temporal correlated struc-
tures. Therefore, an ideal approach for hypothesis testing on MEG data
should consider the full range of spatio—temporal information. However,
the common statistical hypothesis testing approaches on MEG data [48] fail
to fully get advantage of these spatio—temporal information [64]. This fact
motivates exploring new methods for statistical testing on high—dimensional
data. Mass—univariate hypothesis testing is an effective approach in this
direction, and it can be used to simultaneously perform a large number of
univariate tests on whole spatio—temporal variables. In MEG data analy-
sis, the mass—univariate hypothesis testing can detect the underlying neu-
rophysiological effects with greater temporal and spatial details compared
to the conventional priori—based analysis. Therefore, it is preferable to
conventional analysis in exploratory studies on neuroimaging data where
little is known in advance about when, where, and how an effect will occur.

Despite its effectiveness, mass—univariate hypothesis testing suffers from
multiple comparisons problem (MCP). The MCP occurs in statistical hy-
pothesis testing when a set of statistical inferences are simultaneously per-

formed [134]. For example the MCP arises when we test concurrently a
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hypothesis on several data dimensions, e.g., on several MEG sensors. The
MCP increases the chance of commiting the Type I error, thus, ignoring
the MCP poses a threat on the reliability of multiple statistical testing [15].
Several techniques are proposed for correcting the results of multiple statis-
tical tests. These approaches can be classified into two main categories: 1)
controlling the family—wise error rate, and 2) controlling the false discovery

rate.

1. Controlling the Family—Wise Error Rate: The family—wise error
rate (FWER) is the probability of making at least one Type I error in
multiple-hypothesis testing. There are several methods to strongly or
weakly control the FWER such as Bonferroni correction, step—down
procedure [92], step—up procedure [91], and non—parametric cluster—

based permutation tests [127].

2. Controlling the False Discovery Rate: The false discovery rate
(FDR) is defined as the expected proportion of false discoveries to all
discoveries [16]. Here a discovery refers to the rejection of the null
hypothesis. Controlling the FDR is less restrictive than controlling
the FWER, thus, it provides more statistical power but increases the
Type I error rate. So far several methods have been proposed in
the literature for controlling the FDR such as controlling the FDR
under dependency [18], positive FDR [177], and adaptive linear step—
up procedures [17].

Being essential for validity of results, on the down side, both strong
control of FWER and controlling FDR reduce the statistical power of mass—
univariate analysis. One possible approach to alleviate this problem is to
weakly control the FWER, which guarantees the control of FWER in case
there are no experimental effects [146]. The cluster—mass test [31] is a

possible method in this direction. This method was first adopted by Maris
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and Oostenveld [127] for non—parametric cluster-based permutation test
on MEG data. The intuitive idea behind the cluster—based permutation

test is that if a group of significant tests are clustered meaningfully in

space, time, and frequency then the chance of committing the Type I error

decreases. This method can be summarized as the following steps [64},127]:

1.

10.

Combine the MEG trials of the two experimental conditions A and B

in a single dataset D.

. Compute a random partition of D into A and B, D', by randomly

permuting the trials.

For all the independent variables of D’ in time and space (e.g., each

time—bin of each sensor), compute the statistic T, e.g., t—statistic.

Ignore all variables with T statistic below a certain threshold. The
threshold is decided based on the pre—specified a and the probability
distribution of 7.

. Cluster the remaining independent variables that are adjacent in time

and space.

Compute the cluster—level statistic T, for each cluster, for example by

summing up the statistics in each cluster.
Save the largest cluster level statistic as T},4..

Repeat the steps 2—7 to construct the null hypothesis of cluster—level

statistics on the randomly partitioned data.

. Perform steps 3-6 on D and save the cluster—level statistic for each

cluster in T™.

Use the Montecarlo method on the null hypothesis derived in step 8

to derive the p-value for each cluster obtained in step 9. The p-value
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is computed by computing the proportion of T,,,, that are larger than
T,

11. The cluster—level p-value is assigned to the all variables in that cluster.
The p-value of ignored variables (not involved in any cluster) are set
to 1.

In spite of its higher statistical power, the non—parametric cluster—based
permutation test suffers from three main limitations: 1) since it weakly
controls FWER, it is not reliable for explaining the exact spatio—temporal
pattern of the underlying effect. This shortcoming makes this method
more appropriate for understanding whether an effect is present in data
rather than finding out exactly when and where the effect occurs [127]; 2)
it is not sensitive enough to detect narrowly distributed effects in time and
space [64,65]; 3) due to its univariate nature, it does not benefit from mul-
tivariate and distributed patterns across different sensors, frequency bands,
and time scales. These limitations motivate exploring new approaches with
higher sensitivity and specificity that enable researchers to find the exact
discriminative source of neural correlates across different experimental con-

ditions.

2.4 Statistical Learning Theory

Statistical learning theory provides an alternative for classic statistical hy-
pothesis testing approaches. In the following text we briefly introduce the
basic concepts in the statistical learning theory that are used in the rest of
this thesis.
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2.4.1 From Maximum a Posteriori to Risk Minimization

In the supervised statistical learning framework, the main aim is to learn a
function ®* : X — ), where X = R? and Y represent the input and output
spaces, respectively. In practice, the learning process is performed on the
sampled data S = {(X,Y) | X C X,Y C Y} by approximating &g : X —
Y the so called the regression function, among a family of functions H.
Here X € R and Y € R" are n independently and identically distributed
(#4d) samples drawn from the joint distribution of Z = X x ); based on

an unknown Borel probability measure p and Vx € X we have [43]:

By(x) = / v doly 1) (2.1)

The probability measure p can be split into p(Y | X) and px [43].
Unlike the marginal distribution of X, i.e., px, which is known in some
cases, p and p(Y | X) are unknown in advance. Therefore, the goal of
learning is to estimate the predictive conditional density p(Y | X) by
training a parametric model p(Y | X, ©) where © denotes the parameters
of the learning algorithm. In general, the parameters can be estimated
by maximizing the posterior probability p(© | X) using the maximum a

posteriori (MAP) estimate:

© = argmax p(© | X) o argmax p(X | ©)p(0). (2.2)
O C)
The above maximization problem can be converted to the equivalent

risk minimization problem by computing the negative log-likelihood:

argénaxp(X | ©)p(©) = argmin — log(p(X | ©)) —log(p(©))

(2.3)
= argénin L(Y,?(X)) + \2(O)
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where £ : Y x Y — R is the loss function, Q : R? — R* is the regular-
ization term, and A > 0 is a hyper—parameter that controls the amount of
regularization. It is worthwhile to emphasize that in the learning paradigm
presented in Eq. 3.1 we try to estimate ®g (and not ®*) on the sampled
data by solving an optimization problem in H. The irreducible error [81]
e € R" is the direct consequence of this approximation and provides a

lower bound on the error of a model and we have:

Bs(X) = O*(X) + <. (2.4)

The assumption on the distribution of € drives the motivation behind

the choice of the loss function £ [211]. For example if we assume ¢ to have

a Gaussian distribution with mean 0 and variance o2

squares loss function of Eq. as

, we have the least

A 1
© = argmin - | — O(X)[5 + AQO). (2.5)
)

Table summarizes some popular choices for the loss function L.

Table 2.2: Some popular examples of the loss function.

Name Loss

Least-squares loss 1 ||V — ®(X)|5 = 230 (v — ®(x:))?
Logistic loss Yo log(1 4 exp(—y:®(x;)))
Hinge loss o max(0,1 — y,P(x;))

2.4.2 Bias—Variance Decomposition of Error

As mentioned before, the aim of statistical learning is to find the best

approximation of $g among a family of functions H, so called hypothesis
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space. Limiting the search space to H poses a restriction on finding the
best match because H might or might not include ®g or even ®*. Thus,
considering this limitation the aim of learning reduces to finding &y €
‘H, so called the target function, as the best empirical approximation of
®g. For example, setting H to a set of linear functions is a very common
assumption in applying statistical learning framework on neuroimaging
data. Let ® € H be the empirical approximation of the target function ®4

on the training set S where

A

¢ = argmin L(Y, ¢(X)). (2.6)
dcH
Then the ezpected prediction error (EPE) associated with <i>, denoted

by &, can be computed by summing up three main contributing factors:

€ = E(Dy) + En(d) + e = /EX L(D*(x), b(x)) (2.7)

where £(®y) = [, L(Pg(x), Py(x)) is generally known as the approi-
mation error or the bias of a model. It depends strongly on the choice of
the hypothesis space H. The second term &y (®) = Jeer L(Py(x), d(x)) is
known as the sample error or equivalently the variance of a model which
is highly dependent on the samples in S. Fixing H, the variance of the
model decreases by increasing the number of samples n. Enlarging the
hypothesis space H reduces the bias but has a negative effect on the vari-
ance of the model and vice versa. The relation between the sampling size
and the size of the hypothesis space and their effect on the final error
is typically referred as the bias—variance trade—off [58]. The last term
€ = [y L£(®*(x),Ps(x)) is called irreducible error which provides the

lower bound on the error and cannot be reduced in the learning process.
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Err (D)

By

Figure 2.7: The components of the error and the effect of regularization on the bias and

variance of a model [81].

Figure schematically illustrates the relation between the components

of the error.

2.4.3 Regularization

The size and complexity of H can also be controlled by the choice of the
regularization term (2. This term, by putting prior assumptions on the
distribution of parameters p(0), enforces prior knowledge into the learning
process. In other words, regularization reduces the search space to H' € H

based on prior knowledge on the distribution of parameters. This reduction
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Table 2.3: Some popular choices for €2. Here 6; is used to refer to the ith element of the

parameter vector ©.

Name Q(0) Description
{5 penalty P62 Computes squared ¢y-norm of the weight vectors.
(y penalty (Lasso) {185 >-7 | [6;] Computes ¢;-norm of the weight vectors.
Elastic-net [223 (1—a)>? 62+ ad? |6 Combines £5 and ¢; penalization using o coefficient as an extra hyper—parameter.
Group Lasso |96 de(; Z‘f’:‘l 02 Divides the parameters into groups G' and computes the £;-norm over {,-norms of grouped parameters.
Fused Lasso [186 Z',);l [0;41 — 0;] Computes the £1-norm on the difference between successive parameters.

decreases the variance of the model by the cost of increasing the bias (see
Figure [2.7). As a consequence, the chance of overfitting on the training
samples decreases especially when n < p. Table summarizes some

popular choices for €.

2.4.4 Bias—Variance Decomposition in Binary Classification

A binary classification problem is a special case of statistical learning
problem where ) is categorical with two possible values, for example
Y € {—1,1}. Since in this case, the loss function reduces to a 0/1-loss
(e.g., logistic loss or hinge loss), computing the components of EPE is dif-
ferent from the general regression case. One possible approach to compute
the bias—variance decomposition of the error is by using the out—of-bag
(OOB) technique [49,/189]. The OOB employs bootstrapping repetitions
to perturb the training set and draw several training and validation sets.
The perturbed data are used to compute the EPE for an estimated binary

classifier ®.

Let m be the number of perturbed training sets resulting from parti-
tioning S = (X,Y) into S = (X4, Y3r) and Sy = (X, Yar), i.e., training
and validation sets. If &/ is the binary classifier estimated from the jth
perturbed training set, then the main prediction ®#(x;) for each sample in

the dataset can be computed as follows:
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D (x;) = (2.8)

{1 if LY (x> 4
0 otherwise
where k; is the number of times that x; is present in the test setﬂ In fact
the main prediction ®* provides an estimate of the target function 4.
The computation of bias is challenging because the optimal model ®*
is unknown. The misclassification error is one of the loss measures that

satisfies a Pythagorean—type equality [184], where

n

%ZL(@M(XZ.), *(x;)) = %Zﬁ(yi, OH(x;)) — %Zﬁ(yi, ®*(xi)). (2.9)

i=1
Because all terms of the above equation are positive, the mean loss
between the main prediction and the actual labels can be considered as an

upper—bound for the bias, therefore we have

7L (), B x0)) < - 3 L D). (2.10)

Then, a pessimistic approximation of bias B(x;) can be calculated as:

B(x;) = {0 if ®ha) =i (2.11)

1 otherwise

Then, the unbiased and biased variances (see Ref. [49] for definitions)

in each training set can be calculated by:

1 if B(x)=0 and P'x;)#£ D(x;)

(2.12)
0 otherwise

V(%) = {

3It is expected that each sample x; € X appears (on average) k; ~ T times in the test sets.



2.4. Statistical Learning Theory 37

and

Vi) = {1 if B(x)=1 and @“(Xi)#@j(xi). (21

o otherwise

The expected prediction error of ® can be computed as follows (ignoring

the irreducible error):

m n

1 1 , .
EPEs(X)=—=% B(xi)+—3 > [Vi(x)—Vj(x)). 214
=1 7=1 =1 )
Bias Va;ignce

2.4.5 Multi—-Task Learning

Basic Concepts: Domain, Task, and Transfer Learning

The aim of this section is to provide the notation needed for the formal
definition of multi-task learning. To this end, we briefly introduce basic
concepts such as domain, task, and transfer learning.

In the context of statistical learning theory, a domain D = {X, px} is
defined as a possible conjunction between an input space X and a marginal
probability distribution px. As an example in the neuroimaging context,
in the multi-modal brain imaging (where several imaging techniques, e.g.,
fMRI and EEG, are simultaneously used) each modality represents a do-
main. Given a domain D, a task T = {), P} is defined as a predictive
function ® from D to the output space ). For example, assume we record
the brain activity when the subjects observe visual stimuli in different
shapes and colors. Then, predicting the shape or the color of a particular
stimulus from the recorded signal can be considered as two different tasks.

In the statistical learning theory the goal is to learn a task 7 in a certain

domain D. Assume Dg, Dy, Tg, and T represent the source domain, target
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domain, source task, and target task, respectively. Transfer learning aims
to benefit from the knowledge in the source domain and task in order to
improve the predictive power in the target domain when Dg # Dr, or
Ts # Tr. Depending on the last condition, supervised transfer learning is

categorized into two major branches [155]:

1. Inductive Transfer Learning: The necessary condition in induc-
tive transfer learning is Tg # T, thus the relation between Dg and Dy
does not matter. Further, in inductive transfer learning it is required
to have some labeled data in Dy in order to learn ®7 in the target
domain. The goal of inductive transfer learning is to incorporate ad-
ditional information in source domains and tasks in order to improve

the generalization performance on the target task.

2. Transductive Transfer Learning: In transductive transfer learn-
ing, we have Tg = Tp while Dg # Dp. Further, it is assumed that

unlike the source domain there are no labeled data available in Dr.

Multi—Task Learning

In order to solve a real-world problem, in general we need to deal with
multiple related sub—problems, i.e., tasks. A trivial approach is to solve
these problems independently, and ignore the useful shared information
across tasks. This single-task learning (STL) approach yields sub—optimal
solutions especially when few samples are available for each task. Multi—
task Learning (MTL) is an inductive transfer learning approach that tries
to improve the generalization performance of models by promoting infor-
mation sharing across different related tasks [35]. The learning process in
MTL is based on simultaneous training of several models, each of which
for one task. In addition, learning multiple related tasks simultaneously

effectively increases the sample size for each task. Thus, MTL is especially
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(A) Single-Task Learning (B) Multi-Task Learning

Figure 2.8: (A) In single-task learning the predictive functions are learned independently
across subject, while (B) multi-task learning provides the possibility of sharing informa-

tion across different tasks in the learning process.

advantageous over STL when there is a limited number of training samples

available for each task.

Assume Dy, D,, ..., Dk and T1,7Ts, ..., Tk be K corresponding pairs of
domain—task. In MTL, the empirical risk minimization problem in Eg.

is reformulated as follows:

K
o= argéninz L(Yi, ®(Xy)) + A2(O) (2.15)
k=1

where X € R"*P represents the n;, samples in input space from domain
Dy, and under the probability distribution px,, and Y, € R™ is the output
space from task 7. The parameters of the model © are estimated by par-
allel minimization of the loss functions across different tasks. Unlike the
common STL approach, where the predictive functions are learned inde-
pendently across tasks, the parallel optimization in M'TL provides the pos-
sibility for exchanging useful information among tasks. Figure[2.8schemat-
ically illustrates this advantage of MTL over STL.
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Learning Structures in Multi—Task Learning

The simultaneous learning and information sharing across tasks provides
another important advantage for MTL which is the possibility of learn-
ing the structures in input or output spaces. Here the structure refers
to a certain relational arrangement, e.g., correlation, between different di-
mensions of input spaces, i.e., features, or output spaces across the tasks.
Therefore the related samples are no longer #2d and the standard statistical
learning approaches that assume independence between samples, are sub—
optimal. MTL overcomes this problem as it provides the infrastructure
to learn structures in input and output spaces. In formulation of the em-
pirical risk minimization problem for MTL (Eq. , the regularization
term €2 provides the possibility of learning the structures in the parame-
ter space. Several studies investigated different regularization schemes for
learning the structures in the MTL framework. Here we briefly explain

three possible options in this direction:

1. Joint Feature Learning: Joint feature learning enables the model
to capture a sparse set of features that are common across different
tasks. To this end, it employs the idea of group sparsity via ¢
regularization [8,9,124,/148] where

Q(0) = 6]

K
21= D114l (2.16)
k=1

Here © € RP*K is assumed to be the matrix of parameters, and O,

refers to its kth columns.

2. Graph Encoding: In this scheme it is assumed that the relationships
between tasks can be encoded in the form of a graph where each task is

a node and there is an edge between two nodes if two tasks are related.
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It is beneficial when the existing relational structures between tasks
are known in advance or they can be derived in a data—driven manner.
Let E to denote the set of edges, where each edge is represented as a
vector e € RE. If the ith edge connects the uth and vth nodes, then
the uth and vth elements of e are set to 1 and —1, respectively. The
complete graph matrix is then constructed by concatenating the edge
vectors R = [eM e® ... elF)] ¢ REXIFI and we have a graph-fused

regularization term [121]

E|

(6) = [OR|; = Y H@e@‘) (2.17)

2
2

where ||| denotes the Frobenius norm of a matrix.

3. Temporal Encoding: In some applications, there are temporal struc-
tures in the feature space across different tasks. Longitudinal study
on disease progression is an example of these applications [221] where
a variety parameters are repeatedly measured in a period of time for
a patient. In this configuration, the prediction of the value of the dis-
ease status at one time point can be considered as a task. In order to
consider the temporal dependency between tasks, the regularization
term should be able to encode the temporal structures in the sequence

of measurements, and we have [221]

K-1
(0) = Y 01— O} (218)
k=1






Chapter 3

Interpretability in Linear Brain

Decoding

3.1 Introduction

Understanding the mechanisms of brain function has been a crucial topic
throughout the history of science. Modern cognitive science, emerging in
the 20th century, provides better insight into the functions of brain. In
cognitive science, researchers usually analyze recorded brain activity and
behavioral parameters to discover the answers of where, when, and how a
brain region participates in a particular cognitive process.

To answer the key questions in cognitive science, scientists often employ
mass—univariate hypothesis testing methods (see Section [2.3.2)) to test sci-
entific hypotheses on a large set of independent variables [64],126]. Mass—
univariate hypothesis testing is based on performing multiple tests, e.g.,
t—tests, one for each unit of the neuroimaging data, i.e., independent vari-
ables. The high spatial and temporal granularity of the univariate tests
provides a fair level of interpretability. On the down side, the high di-
mensionality of neuroimaging data requires a large number of tests that
reduces the sensitivity of these methods after multiple comparison correc-

tion [32]. Although techniques such as the non-parametric cluster-based

43
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permutation test [31,/127], by weak control of family—wise error rate, of-
fer more sensitivity, they still experience low sensitivity to brain activity
that are narrowly distributed in time and space [64,/65]. The multivariate
counterpart of mass—univariate analysis, known generally as multivariate
pattern analysis, have the potential to overcome these deficits. Multivariate
approaches, by employing the principles behind statistical learning theory
(see Section [2.4)), are capable of identifying complex spatio—temporal inter-
actions between different brain areas with higher sensitivity and specificity

than univariate analysis [192], especially at the group—level [45].

Brain decoding [89] is a statistical learning approach that delivers a
model to predict the mental state of a human subject based on the recorded
brain signal. There are two applications for brain decoding: 1) brain—
computer interfaces (BClIs) [208], and 2) multivariate hypothesis testing [32].
In the first case, a brain decoder with maximum prediction power is de-
sired. In the second case, in addition to the prediction power, extra in-
formation on the spatio—temporal nature of a cognitive process is desired.
In this study, we are interested in the second application of brain decod-
ing that can be considered a multivariate alternative for mass—univariate
hypothesis testing. Further, we mainly focus on the linear brain decoding
because of its wider usage in analyzing inherently small-sample—size and
high—dimensional neuroimaging data, compared to the complex [41,/114]

and non-transparent [123] non-linear models.

In linear brain decoding, linear classifiers are used to assess the relation
between independent variables, i.e., features, and dependent variables, i.e.,
cognitive tasks [22,[118],[157]. This assessment is performed by solving an
optimization problem that assigns weights to each independent variable.
Currently, brain decoding is the gold standard in multivariate analysis
for functional magnetic resonance imaging (fMRI) [41,86|135,/149] and
magnetoencephalogram /electroencephalogram (MEEG) studies [3, 34,136,
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93,|156,,167,/199]. It has been shown that brain decoding can be used
in combination with brain encoding [143] to infer the causal relationship
between stimuli and responses [202].

In brain mapping [112], the pre—computed quantities, e.g., univariate
statistics or weights of a linear classifier, are assigned to the spatio—temporal
representation of neuroimaging data in order to reveal functionally special-
ized brain regions which are activated by a certain cognitive task. In its
multivariate form, brain mapping uses the learned parameters from brain
decoding to produce brain maps, in which the engagement of different brain
areas in a cognitive task is visualized. Intuitively, the interpretability of a
brain decoder refers to the level of information that can be reliably derived
by an expert from the resulting maps. From the cognitive neuroscience
perspective, a brain map is considered interpretable if it enables a scientist
to find answers to the three key questions: “where, when, and how does a

brain region contribute to a cognitive function?”

3.1.1 Knowledge Extraction Gap in Brain Decoding

A classifier only tells what is the most likely label of a given unseen
sample [12] while it provides little information regard the underlying dis-
criminative properties. This problem is generally known as knowledge
extraction gap [198] in the machine learning context. In the context of
neuroimaging, the knowledge extraction gap in classification is generally
known as the interpretation problem [88]142,(172]. Therefore, improving
the interpretability of linear brain decoding and associated brain maps is
an important goal in the brain imaging literature [178]. There are four
main reasons behind the lack of interpretability in multivariate brain map-
ping [7,122,124,130},82,88,/102,/115,/118,/151,/183,/195,/197,201]:

1. Low signal-to-noise ratio (SNR) in brain recordings [102]: Almost
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all non—-invasive brain imaging methods suffer from low SNR due to
acquisition limitations and similarity in probability distribution of un-
derground unrelated brain activity with the signal-of-interest. Low
SNR generally reduces interpretability of the brain decoding model by

decreasing its accuracy.

. The high dimensionality of whole—scalp recordings 22,102,104} 195]:

In brain decoding, we usually have a huge number of spatio—temporal
features (on the order of 10°) while the number of samples is limited
(on the order of 10?). This problem has two folds: 1) it causes the
curse—of—dimensionality problem which affects the model accuracy,
and 2) it makes the classification problem ill-posed where the num-
ber of unknown parameters is larger than the number of known data
points. Although the second problem can be mitigated using regular-
ization and sparse modeling, it still affects the interpretability of the
model by decreasing parameter stability [219]. In some studies, prior
knowledge is used to reduce dimensionality but unfortunately such
prior knowledge is not always available. This issue supports the need
for designing methods to decrease the dimensionality of the feature

space without losing task-related information [30,82,(104].

. The high correlation between different dimensions of data [83,/195]:

This problem, generally known as multicollinearity problem, reduces
the stability of the model, which leads to unjustified conclusions in
interpreting brain decoding models. When the feature space is highly
correlated, not only the model is variable from one training run to
another but also the amplitude of classifier weights is meaningless

regarding the existence of the signal-of-interest.

. Across—subject variability [102,/151]: Across—subject decoding is a

meaningful process to make an inference at the group level. Unfortu-
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nately, training an interpretable model across subjects is technically
difficult because of variability of the underlying probability distribu-
tion of data samples from one subject to another. In practice, the
interpretability of across—subject models is lower than single subject
models because of decrease in both accuracy and stability of the brain

decoding model.

At present, two main approaches are proposed to enhance the inter-
pretability of multivariate brain maps: 1) introducing new metrics into the
model selection procedure, and 2) introducing new hybrid penalty terms
for regularization. In the following section we briefly review the current

state of the art in improving the interpretability of brain decoding models.

3.1.2 State of the Art

The first approach for improving the interpretability of brain decoding con-
centrates on the model selection. Model selection is a procedure in which
the best values for the hyper—parameters of a model are determined [118].
The selection process is generally performed by considering the general-
ization performance, i.e., accuracy, of a model as the decisive criterion.
For example, Rasmussen et al. [166] showed that there is a trade—off be-
tween the spatial reproducibility and the prediction accuracy of a classifier;
therefore, the reliability of maps cannot be assessed merely by focusing
on their prediction accuracy. To utilize this finding, the authors incor-
porated the spatial reproducibility of brain maps in the model selection
procedure. They concluded that choosing the optimal value for hyper—
parameters of the model based on the combination of reproducibility and
prediction metrics yields more interpretable brain decoding models. Us-
ing a similar methodology, in [14] the authors confirmed that accounting

for coefficient reproducibility in the model selection procedure alleviates
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the coefficient instability problem in sparse brain decoding models. An
analogous approach, using a different definition of spatial reproducibility,
is proposed by Conroy et al. [40] where the authors illustrated that mul-
tiple models with the same classification accuracy may show completely
different reproducibility level. Therefore, they proposed a model selection
approach that utilizes a combination of bootstrapping and permutation
testing to optimize both prediction accuracy and brain map reproducibil-
ity. They argue that optimizing hyper—parameters of the model in the
accuracy-reproducibility joint space results in more interpretable decod-
ing models. Elsewhere, Valverde and Moreno [190] experimentally showed
that in the classification task optimizing just classification error rate is
not enough to capture the transfer of crucial information from the input
to the output of a classifier. To alleviate the problem, the authors intro-
duced the entropy—modulated accuracy as a pessimistic estimate of the
performance of a model. Furthermore to promote the interpretability of
results, they introduced the normalized information transfer to avoid spe-
cialization in learning process. Beside spatial reproducibility, the stability
of the classifiers [26] is another criterion that is used in combination with
generalization performance to enhance the interpretability. For example,
it is shown that incorporating the stability of models into cross—validation

improves the interpretability of the estimated parameters [122,215].

The second approach to improving the interpretability of brain decoding
focuses on the underlying mechanism of regularization. The main idea be-
hind this approach is two—fold: 1) customizing the regularization terms to
address the ill-posed nature of brain decoding problems (where the num-
ber of samples is much less than the number of features) [138197], and 2)
combining the structural and functional prior knowledge with the decoding
process so as to enhance the neurophysiological plausibility of the models.

Group Lasso [217] and total-variation penalty [186] are two effective meth-
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ods using this technique [168,212]. The first effort in this direction was
made by Grosenick et al. [66]. To alleviate the multicollinearity problem in
fMRI data, The authors introduced sparse penalized discriminant analysis
(SPDA) for automatic selection of correlated variables. They compared
SPDA with common methods like logistic regression, linear discriminant
analysis (LDA), and linear support vector machine (ISVM). Their results
suggest that SPDA enhances the interpretability of brain decoding models
in both within and across—subject decoding scenarios. Elsewhere van Ger-
ven et al. [192] proposed a group—wise regularization method for brain de-
coding on EEG data. They motivated the incorporation of prior knowledge
into the regularization procedure by defining groups based on proximity of
features in space, time, or frequency bands. In this way, the same spar-
sity profile is shared among related features. They showed the grouping
strategy enhances the interpretability of the resulting models. In an MEG
study, de Brecht and Yamagishi [46] presented a generalization of sparse
logistic regression, called smooth sparse logistic regression (SSLR), which
combines the Laplacian prior with a multivariate Gaussian prior to pro-
duce more sparse and at the same time smooth brain maps. The multivari-
ate Gaussian prior encourages spatio—temporal smoothness and provides
similar weights for neighbouring features in time and space, therefore, it
selects spatio—temporally continuous groups of features. Their experiments
on simulated data and real MEG data illustrated that SSLR provides more
neuro—scientifically plausible brain maps. Following the idea of exploiting
the data—driven extracted prior knowledge, Gramfort et al. [62] used the
Total-Variation (TV) penalty to inject a spatial segmentation prior into
the sparse model with ¢; penalty. Their proposed method, called TV-/;,
uses /1 penalization to set irrelevant features to zero and TV penaliza-
tion to segment the relevant features together. On an fMRI dataset, they

experimentally illustrated that their method provides better region recov-
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ery than other decoding and univariate brain-mapping strategies. They
concluded that their method yields brain maps in good agreement with
univariate methods like F-test while benefiting from the statistical power
of multivariate methods. Grosenick et al. [67] proposed to use structural
prior information, extracted from local smoothness or functional connec-
tivity, as a graph constraint in penalization. They proposed to combine
structured graph constraints with a global sparsity prior as a variation of
the Graph—constrained Elastic-Net (GraphNet) for interpretable whole—
brain decoding.

Recently, taking a new approach to the problem, Haufe and colleagues
questioned the interpretability of weights of linear classifiers because of
the contribution of noise in the decoding process [23,83,84]. To address
this problem, they proposed a procedure to convert the linear brain de-
coding models into their equivalent generative models. Their experiments
on the simulated and fMRI/EEG data illustrate that, whereas the direct
interpretation of classifier weights may cause severe misunderstanding re-
garding the actual underlying effect, their proposed transformation effec-
tively provides interpretable maps. Despite the theoretical soundness, the
intricate challenge of estimating the empirical covariance matrix of the
small-sample—size neuroimaging data [24] limits the practical application
of this method.

3.1.3 The Gap: Formal Definition for Interpretability

In spite of the aforementioned efforts to improve the interpretability of
brain decoding, there is still no formal definition for the interpretability of
brain decoding in the literature. Therefore, the interpretability of differ-
ent brain decoding methods are evaluated either qualitatively or indirectly
(i.e., by means of an intermediate property). In qualitative evaluation, to

show the superiority of one decoding method over the other (or a univari-
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ate map), the corresponding brain maps are compared visually in terms of
smoothness, sparseness, and coherency using already known facts (see, for
example, [195]). In the second approach, important factors in interpretabil-
ity, such as spatio—temporal reproducibility, are evaluated to indirectly as-
sess the interpretability of results (see for example Refs. [40,107,115,166]).
Despite partial effectiveness, there is no general consensus regarding the
quantification of these intermediate criteria. For example, in the case of
spatial reproducibility, different methods such as correlation [107,166], dice
score [115], or parameter variability [40,83] are used for quantifying the sta-
bility of brain maps, each of which considers different aspects of local or
global reproducibility.

Although there is no formal definition for the interpretability of brain
decoding models in the context of statistical learning theory, an overview of
the brain decoding literature shows frequent co—occurrence of the terms in-
terpretation, interpretable, and interpretability with the machine learning
related terms such as model, classification, parameter, decoding, method,
feature, and pattern. To experimentally illustrate this fact, we performed
a meta—analysis on 101 papers sampled from the decoding-related studies.
The AntConc [[] software was used for corpus analysis. Considering “inter-
pretability”, “interpretable”, and “interpretation” as target words, three

experiments were conducted:

1. In the first experiment, the frequency of target words were computed
in the corpus. A total number of 598 hits were reported which shows
on average ~ 6 hits per article. This observation confirms the perva-
sive usage of these terms in the machine learning and brain decoding

contexts.

2. In the second experiment, the co—occurrence frequency of target words

! Anthony, L. (2014). AntConc (Version 3.4.3) [Computer Software]. Tokyo, Japan: Waseda Univer-
sity. Available from http://www.laurenceanthony.net/
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Figure 3.1: (A) The local co-occurrence rate of target words and machine learning re-

lated words. (B) The global co—occurrence rate of target words and common intuitive

definitions of interpretability in brain decoding.

with machine learning related terms, such as “model”, “classification”,
“parameter”, “decoding”, “method”, “feature”, and “pattern”, were
counted. In order to assess the local co—occurrence, the co—occurrence
window was defined from 10 words before to 10 words after the target
words. Figure[3.1(A) summarizes the result. The local co-occurrence
of target words with machine learning related terms shows the fact
that they are repeatedly used to assess/explain/discuss the decod-
ing models or their parameters. Further, the high frequency of co—
occurrence with “model” illustrates the fact that talking about an

“interpretable model” is very common in this context.

In the third experiment, the co—occurrence frequency of target words
with terms “reproducibility”, “stability”, “sparsity”, and “plausibil-
ity” were counted. These terms present some commonly used intuitive
explanations for interpretable models. In this case since we were in-
terested in the global frequency of co—occurrence, the co—occurrences

window is defined from 100 words before to 100 words after the tar-
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Figure 3.2: The high co—occurrence rate between the term “Interpretability” with a variety
of concepts such as “Stability”, “Reproducibility”, “Sparsity”, and “Plausibility” shows

that there is no consensus over its definition and quantification.

get words. Figure (B) summarizes the result. The global co—
occurrence of target words with these terms can be interpreted as an
index on how they are connected in the literature. For example, the
higher co—occurrence rate between the target words and “Sparsity”
shows the fact that the more sparse models are well-accepted to be

more interpretable models in the decoding studies.

3.1.4 The Contribution

With the aim of filling the aforementioned gap, our contribution is three—
fold: 1) Assuming that the true solution of brain decoding is available,
we present a theoretical definition of the interpretability. The presented
definition is simply based on cosine proximity in the parameter space. Fur-
thermore, we show that the interpretability can be decomposed into the
reproducibility and representativeness of brain maps. 2) As a proof of the
concept, we exemplify a practical heuristic based on event-related fields
for quantifying the interpretability of brain maps in time-locked analysis

of MEG data. 3) Finally, we propose the combination of the interpretabil-
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ity and the performance of the brain decoding as a new Pareto—optimal
multi-objective criterion for model selection. We experimentally, on both
simulated and real data, show that incorporating the interpretability into
the model selection procedure provides more reproducible, more neuro-
physiologically plausible, and (as a result) more interpretable maps. Fur-
thermore, in comparison with a standard univariate analysis, we show that
the proposed paradigm offers more sensitivity while preserving the inter-

pretability of results.

3.2 Materials and Methods

3.2.1 Notation and Background

Let X € RP be a manifold in Euclidean space that represents the input
space and Y € R be the output space, where ) = ®*(X). Then, let
S={Z=(XY) | z1 = (z1,11),- .-, 20 = (Tp,yn)} be a training set of n
independently and identically distributed (i.i.d) samples drawn from the
joint distribution of Z = X x ) based on an unknown Borel probability
measure p. In the neuroimaging context, X indicates the trials of brain
recording, e.g., fMRI, MEG, or EEG signals, Y represents the experimental
conditions or dependent variables, and we have &g : X — Y (note the
difference between ®g and ®*). The goal of brain decoding is to find the
function ® : X — Y as an estimation of ®g. From here on, we refer to d
as a brain decoding model.

As is a common assumption in the neuroimaging context, we assume
that the true solution of a brain decoding problem is among the family of
linear functions ‘H (®* € H). Therefore, the aim of brain decoding reduces
to finding an empirical approximation of ®g, indicated by CiD, among all
® € H. This approximation can be obtained by estimating the predictive
conditional density p(Y | X) by training a parametric model p(Y | X, ©)
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(i.e., a likelihood function), where © denotes the parameters of the model.

Alternatively, © can be estimated by solving a risk minimization problem:

A

© = argmin £L(X0O,Y) + A\Q(O) (3.1)
e

where © is the parameter of <i>, L:Y xY — Ry is the loss function,
Q) : RP — R* is the regularization term, and ) is a hyper—parameter that
controls the amount of regularization. There are various choices for 2,
each of which reduces the hypothesis space H to H' C H by enforcing
different prior functional or structural constraints on the parameters of the
linear decoding model (see, for example, [97,(185}]186,223]). The amount of
regularization A is generally decided using cross—validation or other data
perturbation methods in the model selection procedure.

In the neuroimaging context, the estimated parameters of a linear de-
coding model © can be used in the form of a brain map so as to visualize
the discriminative neurophysiological effect. Although the magnitude of
O (i.c., the 2nd-norm of ©) is affected by the dynamic range of data and
the level of regularization, it has no effect on the predictive power and the
interpretability of maps. On the other hand, the direction of O affects
the predictive power and contains information regarding the importance
of and relations among predictors. This type of relational information is
very useful when interpreting brain maps in which the relation between dif-
ferent spatio—temporal independent variables can be used to describe how
different brain regions interact over time for a certain cognitive process.
Therefore, we refer to the normalized parameter vector of a linear brain
decoder in the unit hyper—sphere as a multivariate brain map (MBM); we
denote it by © where © = H(O)+H2 (]|-|| represents the 2nd-norm of a vector).

As shown in Eq. [3.1] learning occurs using the sampled data. In other
words, in the learning paradigm, we attempt to minimize the loss func-
tion with respect to ®g (and not ®*) [43]. Therefore, all of the implicit
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assumptions (such as linearity) regarding ®* might not hold on ®g, and
vice versa. The irreducible error € is the direct consequence of sampling;

it sets a lower bound on the error, where we have:
Og(X) = O*(X) +«. (3.2)

The distribution of € dictates the type of loss function £ in Eq. 3.1} For
example, assuming a Gaussian distribution with mean 0 and variance o2

for € implies the least—squares loss function [211].

3.2.2 Interpretability of Multivariate Brain Maps: Theoretical

Definition

In this section, we present a theoretical definition for the interpretability
of linear brain decoding models and their associated MBMs. Consider
a linearly separable brain decoding problem in an ideal scenario where
e = 0 and rank(X) = p. In this case, the ideal solution of brain decoding,
®*, is linear and its parameters ©* are unique and neurophysiologically

plausible [191]. The unique parameter vector ©* can be computed as

0" = XY (3.3)

where Yx represents the covariance of X. Using ©* as the reference, we

define the strong—interpretability of an MBM as follows:

Definition 1. An MBM © associated with a linear brain decoding model
P is “strongly—interpretable” if and only zf@ x OF.

It can be shown that, in practice, the estimated solution of a linear brain
decoding problem is not strongly—interpretable because of the inherent
limitations of neuroimaging data, such as uncertainty [5] in the input and

output space (¢ # 0), the high dimensionality of data (n < p), and the
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high correlation between predictors (rank(X) < p). With these limitations
in mind, even though in practice the solution of linear brain decoding is
not strongly—interpretable, one can argue that some are more interpretable
than others. For example, in the case in which 6" o 0,1]7, a linear
classifier where © o [0.1J 1.2]7 can be considered more interpretable than

a linear classifier where © 2, 1]7. This issue raises the following question:

Problem 1. Let S be a training set of n 1.1.d samples drawn from the joint
distribution of Z = /f x Y, and P(S) be the probability of drawing a certain
S from Z. Assume © is the MBM of a linear brain decoding model ® on S
(estimated using Fq. for a certain loss function L, reqularization term
Q, and hyper—parameter \). How can we quantify the prorimity of d to
the strongly—intrepretable solution of the brain decoding problem ®* ¢

To answer this question, considering the uniqueness and the plausibility
of ®* as the two main characteristics that convey its strong—interpretability,

we define the interpretability as follows:

Definition 2. Let S, P(S), and © be as defined in Problem . Then,
assume o« be the angle between © and ©*. The “interpretability” (0 <
ne < 1) of a linear brain decoding model P is defined as follows:

ne = Ep(g)[cos(a)] (3.4)

In practice, only a limited number of samples are available. There-
fore, perturbation techniques are used to imitate the sampling procedure.
Let S',..., 8™ be m perturbed training sets drawn from S via a cer-
tain perturbatlon scheme such as jackknife, bootstrapping [51], or cross—
validation [111]. Assume @1 ..,©™ are m MBMs estimated on the cor-

responding perturbed training sets, and o/ (5 = 1,...,m) be the angle

between ©7 and ©*. Then, the empirical version of Eq. [3.4] can be rewrit-

ten as
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Figure 3.3: A schematic illustrations for (A) interpretability (ne), (B) reproducibility
(o), and (C) representativeness (fg) of a linear decoding model in two dimensions. (D)
The independent effects of the reproducibility and the representativeness of a model on

its interpretability.

Ne = %Zcos(ozj). (3.5)

Empirically, the interpretability is the mean of cosine similarities be-
tween ©* and MBMs derived from different samplings of the training set
(see Figure [3.3[(A) for a schematic illustration).

In addition to the fact that employing cosine similarity is a common
method for measuring the similarity between vectors, we have another

strong motivation for this choice which is elaborated in the next section.
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Distribution of Cosine Similarity

It can be shown that, for large values of p, the distribution of the dot
product in the unit hyper—sphere, i.e., the cosine similarity, converges to a
normal distribution with 0 mean and variance of %, i.e., N(0,/1/p). Due
to the small variance for large enough p values, any similarity value that
is significantly larger than zero represents a meaningful similarity between
two high—dimensional vectors. In order to analytically demonstrate this
fact, we first need to find the distribution of dot product in the uniform
unit hyper—sphere. Let a and b be two uniformly—drawn random vectors
from a unit hyper—sphere in R?. Assuming that 7 is the angle between a
and b, the distribution of cosine similarity is equivalent to the dot product
< a,b >. Without loss of generality, let b be along the positive x—axis in
the coordinate system. Thus, the dot product < a,b > is the projection of
a on the x—axis, i.e., x coordinate of a. Therefore, for a certain value of ~,
the dot product is a p — 1-dimensional hyper—sphere that is orthogonal to
the x—axis (the red circle in Figure and the PDF of the dot product
is the surface area of p dimensional hyper—sphere constructed by the dot
products for different y values (the dashed blue sphere in Figure 3.4). To
compute the area of this hyper—sphere we take the sum of the surface area

of the p dimensional conical frustums over small intervals dx (the gray area

in Figure :

Pr(-1<z<1)=

1 1 (3.6
2p_27r/ (1 —x?)P2 d :2p_27r/ (1 — 2P 3dx )

2
1 I —x 1

where (1 — 2?)P72 is the surface area of the base of the cone (e.g., the

dx
1—22

perimeter of the red circle in Figure 3.4)) and is the slope size. Setting
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Figure 3.4: Two-dimensional geometrical illustration for computing the PDF of cosine

similarity.
t= xTH we have:
) 1 p—3 p—3
PrO<t<1)— 4 7r/ (1= 1) (3.7)
0
which is a Beta distribution, where o = g = 7%1, i.e., is a symmetric and

unimodal distribution with mean 0.5. Because the PDF of x = 2t — 1 can
be computed using a linear transformation of the above density function, it
can be shown that the distribution of the dot product in unit hyper—sphere,
i.e., the cosine similarity, has also a symmetric and unimodal distribution
with zero mean. Based on the asymptotic assumption of Ref. [176], for
large values of p this distribution converges to a normal distribution with

o’ = %. Therefore, assuming large p, the distribution of cosine similarity
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for uniformly random vectors drawn from p—dimensional unit hyper—sphere

is approximately N (0, 2—1)) (see Appendix [A.2|for an experimental demon-

stration).
In what follows, we demonstrate how the definition of interpretability is
geometrically related to the uniqueness and plausibility characteristics of

the true solution of the brain decoding problem.

3.2.3 Interpretability Decomposition into Reproducibility and

Representativeness

The trustworthiness and informativeness of decoding models provide two
important motivations for improving the interpretability of models [123].
The trust of a learning algorithm refers to its ability to converge to a unique
solution. On the other hand, the informativeness refers to the level of plau-
sible information that can be derived from a model to assist or advise a
human expert. Therefore, it is expected that the interpretability can be
quantified alternatively by assessing its uniqueness and neurophysiologi-
cal plausibility. In this section, we firstly define the reproducibility and
representativeness as measures for quantifying the uniqueness and neuro-
physiological plausibility of a brain decoding model, respectively. Then we
show how these definitions are related to the definition of interpretability.

The high dimensionality and the high correlations between variables are
two inherent characteristics of neuroimaging data that negatively affect the
uniqueness of the solution of a brain decoding problem. Therefore, a cer-
tain configuration of hyper—parameters may result in different estimated
parameters on different portions of data. Here, we are interested in assess-
ing this variability as a measure for uniqueness. We first define the main

multivariate brain map as follows:

Definition 3. Let S, P(S), and O be as defined in Problem . The “main
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multivariate brain map” 6" € R? of a linear brain decoding model d is

defined as:

< Ep(s)[O]

" = HE 5 (3.8)

2

Assuming 017 be the ith (i = 1,...,p) element of an MBM estimated
on the jth (j = 1,...,m) perturbed training set, or empirically can be
estimated by summing up O’s (computed on the perturbed training set

S7) in the unit hyper—sphere, and we have:

T
o (ZRH S e 39

. . T
= sme - e

2

The main multivariate brain map, ©", provides a reference for quanti-

fying the reproducibility of an MBM:

Definition 4. Let S, P(S), and © be as defined in Problem , and O
be the main multivariate brain map of . Then, assume « be the angle
between ©F and O". The “reproducibility” e 0 < g < 1) of a linear

brain decoding model P is defined as
Vg = Epg)[cos(a)]. (3.10)

Let @1, e O™ are m MBMs estimated on the corresponding perturbed
training sets, and o (j = 1, ..., m) be the angle between ©7 and 6#. Then,

the empirical version of Eq. can be rewritten as

_ %zmj (3.11)
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In fact, reproducibility provides a measure for quantifying the dispersion
of MBMs, computed over different perturbed training sets, from the main
multivariate brain map. Figure [3.3|(B) shows a schematic illustration for
the reproducibility of a linear brain decoding model.

On the other hand, the similarity between the main multivariate brain
map of a decoder and the true solution can be employed as a measure for
the neurophysiological plausibility of a model. We refer to this similarity

as the representativeness of a linear brain decoding model:

Definition 5. Let ©" be the main multivariate brain map of d. The “rep-
resentativeness” Be (0 < Bo < 1) of a linear brain decoding model d s
defined as the cosine similarity between its main multivariate brain map
(©1) and the parameters of the true solution (©*),

[SEXCH
S

Bo = (3.12)

—

@*

’ 2

Figure [3.3(C) schematically illustrates the definition of representative-

ness.

2

As discussed before, the notion of interpretabilty is tightly related to
the uniqueness and plausibility, and thus to the reproducibility and repre-
sentativeness, of a decoding model. The following proposition analytically

shows this relationship:
Proposition 1. g = B3 X Vg.

Proof. Throughout this proof, we assume that all of the parameter vectors
are normalized in the unit hyperspherg (see liigure as an illustrative
example in 2 dimensions). Let T = {@1, e ém} be a set m MBMs, for
m perturbed training sets where O € Re. Now, consider any arbitrary
p — 1-dimensional hyperplane A that contains ©”. Clearly, A divides the

p-dimensional parameter space into 2 subspaces. Let V and ¥ be binary
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operators where O'vO* indicates that ©F and OF are in the same subspace,
and ©'¥OF indicates that they are in different subspaces. Now, we define
Ty = {6 | ©/vO*} and Ty, = {6 | ©6/'¥O*}. Let the cardinality of T},
denoted by n(T%) be j (n(Tr) = j). Thus, n(Ty) = m — j. Now, assume
that £(0", A) = ay, ... ,a; are the angles between O € T;, and A, and
(similarly) o1, ..., o, for (E)Z € Ty and A. Based on Eq. 3.8, let é’z and
é’f] be the main maps of 17 and Ty, respectively. Therefore, we obtain

O — % and 4(6%7“4) = A(é“,.A) = «. Furthermore, assume

£(6*, A) = 7. As a result, 1 = cos(a) and B = cos(y). According to
Eq. 3.4 and using a cosine similarity definition, we have:

1 <a o 2.
-y |e¢/]
No m;)

cos(y+ 1)+ -+ -+ cos(y+ ;) + cos(y — ajp1) + -+ - + cos(y — ay)

_ cos(y + a) + cos(y — a) . (3.13)
2
cos(y) cos(a) — sin(7y) sin(a) + cos(7y) cos(a) + sin(y) sin()

2
= cos(y) cos(a) = B X Vo.

A similar procedure can be used to prove ng = Bq, X g by replacing o*
with ©°FRF (see Section [3.2.4] for the definition of O°FRF). ]

Proposition (1| indicates that the interpretability of a linear brain decod-
ing model can be decomposed into its representativeness and reproducibil-
ity. Figure 3.3(D) illustrates how the reproducibility and the representa-
tiveness of a decoding model independently affect its interpretability. Each
colored region schematically represents a span of different solutions of the
a certain linear model (for example, with a certain configuration for its

hyper—parameters) on different perturbed training sets. The area of each
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Figure 3.5: Relation between representativeness, reproducibility, and interpretability in 2

dimensions.

region schematically visualizes the reproducibility of each model, i.e., the
less is the area, the higher is the reproducibility of a model. Further, the
angular distance between the centroid of each region (©*) and the true so-
lution (©*) visualizes the representativeness of each corresponding model.
While ®; and &, have similar reproducibility, ®s has higher interpretabil-
ity than ®; because it is more representative of the true solution. On the
other hand, ®; and ®3 have similar representativeness, however, ®3 is more

interpretable due to the higher level of reproducibility.
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3.2.4 A Heuristic for Practical Quantification of Interpretability
in Time—Locked Analysis of MEG Data

In practice, it is impossible to evaluate the interpretability, as the true
solution of the brain decoding problem ®* is unknown. In this study, to
provide a practical proof of the theoretical concepts, we exemplify contrast
event-related field (cERF) (see Eq. for the definition) as a neuro-
physiological plausible heuristic for the true parameters of the linear brain
decoding problem (©*) in a binary MEG decoding scenario in time domain.
Due to the nature of proposed heuristic, its application is limited to the
brain responses that are time—locked to the stimulus onset, i.e., the evoked

responses.

The MEEG data are a mixture of several simultaneous stimulus-related
and stimulus—unrelated brain activitions. Assessing the electro/magneto—
physiological changes that are time—locked to events of interest is a common
approach in analyzing MEEG data. In general, background brain activity
is considered Gaussian noise with zero mean and variance o>. One popu-
lar approach to canceling the noise component is to compute the average
of multiple trials. The assumption is that, when the effect of interest is
time—locked to the stimulus onset, the independent noise components can
be vanished by means of averaging. It is expected that the average will
converge to the true value of the signal with a variance of %2 (where n is
the number of trials). The result of the averaging process consist of a se-
ries of positive and negative peaks occurring at a fixed time relative to the
event onset, generally known as ERF in the MEG context. These peaks
reflect phasic activity that are indexed with different aspects of cognitive

processing [171]F]

2The application of the presented heuristic to MEG data can be extended to EEG because of the
inherent similarity of the measured neural signals in these two devices. In the EEG context, the ERF

can be replaced by the event-related potential (ERP).
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Assume X' = {z; € X | y; = 1} € R P and X~ = {r;i e X |y =

—1} € R™ *P to be sets of positive and negative samples in a binary MEG

écERF

decoding scenario. Then, the cERF brain map is computed by

1 1
éCERF o n_+ in€X+ Li — F ZJ%GX_ €L 3 14
B 1 : (3.14)
Hn_+ Z$i€X+ Li — 5= Zl’iGX_ IZH2

écERF

Generally speaking, is a contrast ERF map between two experi-

mental conditions. Using the core theory presented in [83], the equivalent
generative model for the solution of linear brain decoding, i.e., the activa-

tion pattern (A), is unique and we have

A x Ex06. (3.15)

Assuming © to be the least—squares solution in a binary decoding sce-
nario, the following proposition describes the relation between O°ERF and

the activation pattern A:

Proposition 2. OERF A,

Proof. According to [83], for a linear discriminative model with parameters

O, the unique equivalent generative model can be computed as

A x 0. (3.16)

In a binary (Y = {1, —1}) least—squares classification scenario, we have

Ao OSx5S XY = XY =t — (3.17)

where Yx represents the covariance of the input matrix X, and g+ and p~

are the means of positive and negative samples, respectively. Therefore,
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the equivalent generative model for the above classification problem can be
derived by computing the difference between the mean of samples in two
classes that is equivalent to the definition of cERF in time-domain MEG
data. ]

Proposition [2| shows that, in a binary time—domain MEG decoding sce-
nario, cERF is proportional to the equivalent generative model for the
solution of a least—squares classifier (see Appendix for an experimental
support on real MEG data). Furthermore, OCERE g proportional to the
t-statistic that is widely used in the univariate analysis of neuroimaging
data. Using O°ERE a5 a heuristic for é*, the representativeness can be

approximated as follows:

_ ‘éu.écERF|

o — — —
6], &=
2

(3.18)

where B@ is an approximation of the actual representativeness fB3. In a

@cERF

similar manner, can be used to heuristically approximate the inter-

pretability as follows:

1 m .
-1 j
e = Zcos(v ) (3.19)
7=1
where v1, ..., 7, are the angles between @1, e O™ and O°FRE It can be

shown that 7 = Bq, X g (see the proof of Proposition .

The proposed heuristic is only applicable to the evoked responses in sen-
sor and source space MEEG data. Despite this limitation, cERF provides
an empirical example that shows how the presented theoretical definitions
can be applied in a real decoding scenario. The choice of the heuristic
has a direct effect on the approximation of interpretability and that an

inappropriate selection of the heuristic yields a very poor estimation of
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interpretability. Therefore, the choice of heuristic should be carefully jus-
tified based on accepted and well-defined facts regarding the nature of the
collected data.

Since the labels are used in the computation of cERF, a proper valida-
tion strategy should be employed to avoid the double-dipping issue [113].
One possible approach is to exclude the entire test set from the model se-
lection procedure using a nested cross—validation strategy. An alternative
approach is to employ model-averaging techniques to neatly get advantage
of the whole dataset [196]. Since our focus is on the model selection, in
the remaining text we implicitly assume that the test data are excluded
from the experiments; thus, all the experimental results are reported on

the training and validation sets.

3.2.5 Incorporating the Interpretability into Model Selection

The procedure for evaluating the performance of a model so as to choose
the best values for hyper—parameters is known as model selection [81]. This
procedure generally involves numerical optimization of the model selection
criterion on the training and validation sets (and not the test set). Let U
be a set of hyper—parameters, then the goal of model selection procedure
reduces to finding the best model configuration ©«* € U that maximizes the
model selection criterion (e.g., generalization performance) on the training
set S. The most common model selection criterion is based on an estimator
of generalization performance, i.e., the predictive power. In the context of
brain decoding, especially when the interpretability of brain maps matters,
employing predictive power as the only decisive criterion in model selec-
tion is problematic in terms of interpretability of MBMs [40,63,/166,(196].
Valverde and Moreno [190] experimentally showed that in a classification
task optimizing only classification error rate is insufficient to capture the

transfer of crucial information from the input to the output of a clas-
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sifier. This fact highlights the importance of having some control over
the estimated model weights in the model selection. Here, we propose a
multi-objective criterion for model selection that takes into account both
prediction accuracy and MBM interpretability.

Let 7o and dg be the approximated interpretability and the general-
ization performance of a linear brain decoding model CiD, respectively. We
propose the use of the scalarization technique [33] for combining 7 and
de into one scalar 0 < ((P) < 1 as follows:

w1Me+wads Sa >
Go=1 wrm 2=F (3.20)
0 5@ <K

where w; and wy are weights that specify the level of importance of the
interpretability and the performance, respectively. x is a threshold on the
performance that filters out solutions with poor performance. In classifi-
cation scenarios, x can be set by adding a small safe interval to the chance
level of classification. The hyper—parameters that are optimized based on
(e are Pareto optimal [128]. We hypothesize that optimizing the hyper—
parameters based on (g, rather only g, yields more informative MBMs.
Algorithm [I] summarizes the proposed model selection scheme. The
model selection procedure receives the training set S and a set of possi-
ble configurations for hyper—parameters U, and returns the best hyper—

parameter configuration u”.

3.2.6 Experimental Materials

Toy Dataset

We regenerate the simple 2-dimensional toy data presented in [83]. Assume

that the true underlying generative function ®* is defined by:
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Algorithm 1 The model selection procedure.

1: procedure MODELSELECTION(S,U)

2: Compute 6°ERF op . > using Eq. |3.14
3: for all u; € U do > For all hyper—parameter configurations.
4: for j < 1,m do > Data perturbation iterations.
5: Partition S into training St, and validation S,; subsets via a perturbation method.
6: Compute @j on Sir using u; as the hyper—parameter.
end

7 Compute 6}'1) of C:)js on Sy;.
8: Compute ﬁfp of ©;s using OcERF, > using Eq.
9: Compute (2}. > using Eq.

end
10: u* = argmax, cy(Ca)-
11: return u*.

1 if =15
~1 if m=-15

where X € {[1.5,0]7,[—1.5,0]T}; and x1 and x5 represent the first and the

second dimension of the data, respectively. Furthermore, assume the data
1.02 —-0.3

are contaminated by Gaussian noise with co—variance X = 03 015

Gaussian noise adds uncertainty to the input space.

Simulated MEG Data

We simulated two classes of MEG data, each of which composed of 250
epochs with length of 330 ms at 300 Hz sampling rate (so that we have
100 time—points). For simplicity, the whole scalp topography was simulated
with a single dipole located at —4.7, —3.7, and 5.3 cm in the RAS (right, an-
terior, superior) coordinate system. The dipole was oriented toward [1,1,0]
direction in the RA plane [see Figure[3.6/(A)]. 102 magnetometer sensors of
Elekta Neuromag [J| system were simulated using a standard forward model
algorithm implemented in the Fieldtrip toolbox [153]. The epochs of the

positive class were constructed by adding three components to the dipole

3See https://www.elekta.com/diagnostic-solutions/elekta-neuromag-triux.html for more

information.
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time—course: 1) a time-locked ERF effect with a positive 3 Hz followed
by a negative 5 Hz half-cycle sinusoid peaks after 150 4+ 10 and 250 + 10
ms of the epoch onset, respectively; 2) uncorrelated background brain ac-
tivity that was simulated by summing 50 sinusoids of random frequency
from 1 to 125 Hz, and random phase between 0 and 27. Following the
data simulation procedure in [214], the amplitude of any single frequency
component of the signal (the ERF effect and the background noise) was
set based on the empirical spectral power of human brain activity to mimic
the actual MEG signals; and 3) white Gaussian noise scaled with the root
mean squared of the signal in each epoch. The epochs of the negative class
were constructed without the ERF effect by adding up only the noise com-
ponents (i.e., the background activity and the white noise). Therefore, the
ERF component is considered as the discriminative ground-truth in our
experiments [see Figure [3.6(B)].

MEG Data

We used the MEG dataset presented in Ref. [90]}] The dataset was also
used for the DecMeg2014 Competitionﬂ In this dataset, visual stimuli
consisting of famous faces, unfamiliar faces, and scrambled faces were pre-
sented to 16 subjects and fMRI, EEG, and MEG signals were recorded.
Here, we are only interested in MEG recordings. The MEG data were
recorded using a VectorView system (Elekta Neuromag, Helsinki, Finland)
with a magnetometer and two orthogonal planar gradiometers located at
102 positions in a hemispherical array in a light Elekta—Neuromag mag-
netically shielded room.

Three major reasons motivated the choice of this dataset: 1) It is pub-

licly available. 2) The spatio—temporal dynamic of the MEG signal for face

4The full dataset is publicly available at ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/

wakemandg_hensonrn/
°The competition data are available at http://www.kaggle.com/c/decoding-the-human-brain


ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
http://www.kaggle.com/c/decoding-the-human-brain
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Figure 3.6: (A) The red circles show the dipole position, and the red stick shows the
dipole direction. (B) The spatio-temporal pattern of the discriminative ground-truth
effect.

vs. scramble stimuli has been well studied. The event-related potential
analysis of EEG/MEG shows that N170 occurs 130 — 200 ms after stimulus
presentation and reflects the neural processing of faces [19,/90]. Therefore,
the N170 component can be considered the ground truth for our analy-
sis. 3) In the literature, non—parametric mass—univariate analysis such as
cluster—based permutation tests is unable to identify narrowly distributed
effects in space and time (e.g., an N170 component) ,. These facts
motivate us to employ multivariate approaches that are more sensitive to

these effects.

Similar to Ref. [151], we created a balanced face vs. scrambled MEG

dataset by randomly drawing from the trials of unscrambled (famous or
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unfamiliar) faces and scrambled faces in equal number. The samples in the
face and scrambled face categories are labeled as 1 and —1, respectively.
The raw data is high—pass filtered at 1 Hz, down—sampled to 250 Hz,
and trimmed from 200 ms before the stimulus onset to 800 ms after the
stimulus. Thus, each trial has 250 time—points for each of the 306 MEG
sensors (102 magnetometers and 204 planar gradiometers)]. To create the
feature vector of each sample, we pooled all of the temporal data of 306
MEG sensors into one vector (i.e., we have p = 250 x 306 = 76500 features
for each sample). Before training the classifier, all of the features are

standardized to have a mean of 0 and standard—deviation of 1.

3.2.7 Classification and Evaluation

In all experiments, Lasso [185] classifier with ¢; penalization was used for
decoding. Lasso is a very popular classification method in the context of
brain decoding, mainly because of its sparsity assumption. The choice of
Lasso, as a simple model with only one hyper—parameter, helps us to better
illustrate the importance of including the interpretability in the model
selection. The solution of decoding is computed by solving the following

optimization problem:

A

© = argmin £(X0O,Y) + A ||O]|, (3.21)
S

where ||.||; represents the ¢;-norm, and A is the hyper-parameter that spec-
ifies the level of regularization. Therefore, the aim of the model selection is
to find the best value for A on the training set S. Here, we try to find the
best regularization parameter value among A = {0.001,0.01, 0.1, 1, 10, 50,
100, 250, 500, 1000} .

6The preprocessing scripts in python and MATLAB are available at: https://github.com/
FBK-NILab/DecMeg2014/


https://github.com/FBK-NILab/DecMeg2014/
https://github.com/FBK-NILab/DecMeg2014/
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As a complementary experiment, we repeated the single—subject de-
coding on the real MEG data also using an elastic-net classifier [223].
Elasticnet combines ¢; and ¢ penalization methods. Thus it has two
hyper—parameters, A and «, to control the amount of regularization, and

the weights on the types of penalization, respectively. We have:

O = argmin £(X0,Y) + A 0], + (1 — ) |©]3] (3.22)
(C]

where |[.|[; and ||.||, represent ¢;-norm and ¢;-norm, respectively. There-
fore, the aim of the model selection is to find the best value for both A
and «. Here, we try to find the best hyper—parameter values among A =
{0.001,0.01,0.1, 1, 10, 50, 100, 250, 500, 1000} and o = {0, 0.0001, 0.001, 0.01,
0.1,0.25,0.5,0.75,0.9,1}.

We used the out—of-bag (OOB) [29,210] method for computing ¢, Vs,
Be, N, and Cp for different values of A\. In OOB, given a training set
(X,Y), m replications of bootstrap [51] are used to create perturbed train-
ing and validation sets (we set m = 50) IZ] In all of our experiments, we
set w; = wy = 1 and k = 0.6 in the computation of (. Furthermore, we
set 0 = 1 — EPFE where EPE indicates the expected prediction error; it is
computed using the procedure explained in Section 2.4.4 Employing OOB
provides the possibility of computing the bias and variance of the model

as contributing factors in EPE.

"The MATLAB code used for experiments is available at https://github.com/smkia/
interpretability/


https://github.com/smkia/interpretability/
https://github.com/smkia/interpretability/
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Table 3.1: Comparison between d4, 1e, and (e for different A values on the toy example
shows the performance-interpretability dilemma, in which the most accurate classifier is

not the most interpretable one.

A ‘ 0 0.001 0.01 0.1 1 10 50 100 250 500 1000
o(®) | 0.9883 0.9883 0.9883 0.9883 0.9883 0.9884 0.9880 0.9840  0.9310 0.9292  0.9292
n(®) | 0.4391 0.4391 0.4391 0.4392 0.4400 0.4484 0.4921 0.5845  0.9968 1 1
¢(®) | 0.7137 0.7137 0.7137 0.7137 0.7142 0.7184 0.7400 0.7842  0.9639 0.9646 0.9646
z 0.4520 0.4520 0.4520 0.4521 0.4532 0.4636 0.4883 0.5800 0.99 1 1

= 0.8920 0.8920 0.8920 0.8919 0.8914 0.8660 0.8727 0.8146 0.02 0 0

3.3 Results

3.3.1 Performance—Interpretability Dilemma: A Toy Example

In the definition of ®* on the toy dataset discussed in Section [3.2.6], x; is
the decisive variable and x5 has no effect on the classification of samples
into target classes. Therefore, excluding the effect of noise and based on
the theory of the maximal margin classifier [194], ©* o [1,0]% is the true
solution to the decoding problem. By accounting for lzhe effect of noise,
solving the decoding problem in (X,Y) space yields © o [1/v/5,2//5]T
as the parameters of the linear classifier. Although the estimated parame-
ters on the noisy data provide the best generalization performance for the
noisy samples, any attempt to interpret this solution fails, as it yields the
wrong conclusion with respect to the ground truth (it says xs has twice
the influence of z1 on the results, whereas it has no effect). This simple
experiment shows that the most accurate model is not always the most
interpretable one, primarily because the contribution of the noise in the
decoding process [83]. On the other hand, the true solution of the problem
©* does not provide the best generalization performance for the noisy data.

To illustrate the effect of incorporating the interpretability in the model
selection, a Lasso model with different A values is used for classifying the

toy data. In this example, because 0" is known, the exact value of in-
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Toy Data

@ Negative Samples
@ Positive Samples
= = The True Solution
= = The Most Accurate Solustion

Figure 3.7: Noisy samples of toy data. The dotted line shows the true separator based
on the generative model (®*). The dashed line shows the most accurate classification
solution. Because of the contribution of noise, any interpretation of the parameters of the
most accurate classifier yields a misleading conclusion with respect to the true underlying
phenomenon [83].

terpretability can be computed using Eq. 3.5l Table compares the
resultant performance and interpretability from Lass_(?. Lasso achieves its
highest performance (65 = 0.9884) at A = 10 with ©  [0.4636,0.8660]”
(indicated by the black dashed line in Figure . Despite having the
highest performance, this solution suffers from a lack of interpretability
(ng = 0.4484). By increasing A, the interpretability improves so that for
A = 500, 1000 the classifier reaches its highest interpretability by compen-
sating for 0.06 of its performance. Our observation highlights two main

points:

1. In the case of noisy data, the interpretability of a decoding model can
be possibly incoherent with its performance. Thus, optimizing the
parameter of the model based on its performance does not necessarily
improve its interpretability. This observation confirms the previous
finding by Rasmussen et al. regarding the trade—off between the
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spatial reproducibility (as a measure for the interpretability) and the

prediction accuracy in brain decoding.

2. If the right criterion is used in the model selection, employing proper
regularization technique (sparsity prior, in the case of toy data) leads

to more interpretable decoding models.

3.3.2 Decoding on Simulated MEG Data

With the main aim of comparing the quality of the heuristically approxi-
mated interpretability with respect to its actual value, we solve the decod-
ing problem on the simulated MEG data where the ground—truth discrim-
inative effect is known. The ground truth effect O* is used to compute the
actual interpretability of the decoding model. On the other hand, inter-
pretability is approximated by means of OERF  The whole data simulation
and decoding processes are repeated 25 times and the results are summa-
rized in Figure 3.8, Figure 3.8(A) and [.8(B) show the actual (1¢) and
the approximated (7jg) interpretability for different A values. Even though
ne consistently overestimates 7g, there is a significant co—variation (Pear-
son’s correlation p-value = 9 x 107%) between two measures as ) increases.
Thus, despite overestimation problem of the heuristically approximated in-
terpretability values, they are still reliable measures for quantitative com-
parison between interpretability level of brain decoding models with differ-
ent hyper—parameters. For example, both ng and 73 suggest the decoding
model with A = 50 as the most interpretable model.

Figure [3.§((C) shows brain decoding models at A = 10 and A = 50 yield
equivalent generalization performances (Wilcoxon rank sum test p-value
= 0.08), while the MBM resulted from A\ = 50 has significantly higher in-
terpretability (Wilcoxon rank sum test p-value = 4 x 107Y). The advantage
of this difference in interpretability levels is visualized in Figure where
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Figure 3.8: (A) The actual 7¢, and (B) the heuristically approximated interpretability 7
of decoding models across different A values. There is a significant co—variation (Pearson’s
correlation p-value = 9 x 10™%) between ng and 7jp. (C) The generalization performance
of decoding models. The box gives the quartiles, while the whiskers give the 5 and 95

percentiles.

Ar=1 B)2=10 (©)=50 DA =100
Figure 3.9: Topographic maps of weights of brain decoding models with different A values.

topographic maps are plotted for the weights of brain decoding models
with different A values by averaging the classifier weights in the time in-
terval of 100 to 200 ms. The visual comparison shows MBM at A\ = 50 is
more similar to the ground—truth map [see Figure [3.6(B)] than the MBMs
computed at other A values. This superiority is well-reflected in the corre-
sponding approximated interpretability values, that confirms the effective-
ness of the interpretability criterion in measuring the level of information
in the MBMs.

The results of this experiment confirm again the fact that the gener-
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alization performance is not a reliable criterion to measure the level of
information learned by a linear classifier. For example consider the decod-
ing model with A = 1 in which the performance of the model is significantly
above the chance level [see Figure [3.§(C)] while the corresponding MBM
[Figure [3.9|(A)] is completely misrepresents the ground-truth effect [Fig-

ure [3.6/(B)].

3.3.3 Single—Subject Decoding on MEG Data

Lasso

To investigate the behavior of the proposed model selection criterion (g,
we benchmark it against the commonly used performance criterion d¢ in a
single-subject decoding scenario. Assuming (X;,Y;) for i = 1,...,16 are
MEG trial/label pairs for subject i, we separately train a Lasso model for
each subject to estimate the parameter of the linear function <i>i, where
Y; = X;0,. We represent the optimized solution based on d¢ and (g by
@f and i)f, respectively. We also denote the MBM associated with Cin and
<i>§ by (3? and éf, respectively. Therefore, for each subject, we compare
the resulting decoders and MBMs computed based on these two model
selection criteria.

Figure [3.10[(A) represents the mean and standard—deviation of the per-
formance and interpretability of Lasso across 16 subjects for different A
values. The performance and interpretability curves further illustrate the
performance—interpretability dilemma of Lasso classifier in the single—subject
decoding scenario, in which increasing the performance delivers less inter-
pretability. The average performance across subjects is improved when A
approaches 1, but on the other side, the reproducibility and the represen-
tativeness of models declines significantly [see Figure [3.10[(B)] (Wilcoxon

rank sum test p-value= 9 x 107% and 8 x 1077, respectively). In fact, in
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Figure 3.10: (A) Mean and standard—deviation of the performance (dg), interpretabil-
ity (ne), and (o of Lasso over 16 subjects. (B) Mean and standard-deviation of the
reproducibility (is), representativeness (f8¢), and interpretability (ne) of Lasso over 16
subjects. The interpretability declines because of the decrease in both reproducibility
and representativeness (see Proposition [I). (C) Mean and standard-deviation of the
bias, variance, and EPE of Lasso over 16 subjects. While the change in bias is correlated
with that of EPE (Pearson’s correlation coefficient= 0.9993), there is anti-correlation

between the trend of variance and EPE (Pearson’s correlation coefficient= —0.8884).

this dataset a higher amount of sparsity increases the gap between the
generalization performance and interpretability.

One possible reason behind the performance—interpretability dilemma
in this experiment is illustrated in Figure 3.10(C). The figure shows the
mean and standard deviation of bias, variance, and EPE of Lasso across
16 subjects. The plot shows while the change in bias is correlated with
that of EPE (Pearson’s correlation coefficient= 0.9993), there is anti-
correlation between the trends of variance and EPE (Pearson’s correlation
coefficient= —0.8884). Furthermore, it proposes that the effect of variance
is overwhelmed by bias in the computation of EPE, where the best perfor-
mance (minimum EPE) at A = 1 has the lowest bias, its variance is higher
than for A = 0.001,0.01,0.1. While this tiny increase in the variance has
negligible effect on the EPE of the model, Figure 3.10(B) shows its signif-

icant (Wilcoxon rank sum test p-value= 8 x 107") negative effect on the
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Table 3.2: The performance, reproducibility, representativeness, and interpretability of
®? and & over 16 subjects.

y Criterion: §(®) Criterion: ((®) .
Subs — - — — OcERF
6(®) () ii(®) B(®) Y(®) 6(¢) () ii(®) B(®) (P)

1 0.81 0.53 0.26 0.42 0.62 0.78 0.70 0.63 0.76 0.83 0.56
2 0.80 0.70 0.60 0.72 0.83 0.80 0.70 0.60 0.72 0.83 0.54
3 0.81 0.63 0.45 0.64 0.71 0.78 0.71 0.64 0.78 0.83 0.57
4 0.84 0.52 0.20 0.31 0.66 0.76 0.70 0.64 0.77 0.83 0.55
5 0.80 0.54 0.29 0.44 0.65 0.78 0.69 0.61 0.73 0.83 0.54
6 0.79 0.52 0.24 0.39 0.63 0.74 0.67 0.61 0.74 0.82 0.57
7 0.84 0.55 0.27 0.40 0.66 0.81 0.70 0.59 0.71 0.84 0.56
8 0.87 0.55 0.24 0.35 0.68 0.85 0.68 0.52 0.61 0.84 0.56
9 0.80 0.55 0.31 0.46 0.67 0.77 0.67 0.57 0.69 0.82 0.57
10 0.79 0.53 0.26 0.41 0.64 0.77 0.68 0.58 0.70 0.83 0.59
11 0.74 0.65 0.56 0.68 0.82 0.74 0.65 0.56 0.68 0.82 0.53
12 0.80 0.55 0.29 0.46 0.64 0.79 0.70 0.61 0.74 0.83 0.58
13 0.83 0.50 0.18 0.29 0.61 0.77 0.70 0.63 0.76 0.82 0.59
14 0.90 0.58 0.27 0.39 0.68 0.81 0.78 0.74 0.89 0.84 0.62
15 0.92 0.63 0.34 0.48 0.71 0.89 0.78 0.66 0.77 0.86 0.63
16 0.87 0.55 0.23 0.37 0.62 0.81 0.74 0.67 0.81 0.83 0.65

Mean | 0.83+0.05 0.57+0.05 0.31+£0.12 0.45+0.13 0.68+£0.07 | 0.79+0.04 0.70+ 0.04 0.62+0.05 0.74+0.06 0.83+0.01 | 0.58 £ 0.03

reproducibility of maps from A = 0.1 to A = 1.

Table summarizes the performance, reproducibility, representative-
ness, and interpretability of éf and é)f for 16 subjects. The average result
over 16 subjects shows that employing (¢ instead of d¢ in model selection
provides higher reproducibility, representativeness, and (as a result) inter-
pretability compensating for 0.04 of performance. The last column of table
(0cgrr) summarizes the performance of decoding models over 16 subjects
when O°FRF is used as classifier weights. The comparison illustrates a sig-
nificant difference (Wilcoxon rank sum test p-value= 1.5 X 107%) between
Ocerr and o (®)s. These facts demonstrate that ©¢ is a good compromise

écERF

between ©; and in terms of classification performance and model

interpretability.

These results are further analyzed in Figure |3.11| where @f and Ci)f are

compared subject—wise in terms of their performance and interpretabil-
ity. The comparison shows that adopting (s instead of d¢ as the criterion
for model selection yields higher interpretable models by compensating a

negligible degree of performance in 14 out of 16 subjects. Figure |3.11|(A)

shows that employing d¢ provides on average slightly higher accurate mod-
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Figure 3.11: (A) Comparison between generalization performances of éf and (ff Adopt-
ing (¢ instead of dg in model selection yields (on average) 0.04 less accurate classifiers
over 16 subjects. (B) Comparison between interpretabilities of ®¢ and ®¢. Adopting (s
instead of dg in model selection yields on average 0.31 more interpretable classifiers over
16 subjects.

els (Wilcoxon rank sum test p-value= 0.012) across subjects (0.83 + 0.05)
than using (s (0.79 £0.04). On the other side, Figure 3.11(B) shows that
employing (g and compensating by 0.04 in the performance provides (on
average) substantially higher (Wilcoxon rank sum test p-value= 5.6 x 107)
interpretability across subjects (0.62 £ 0.05) compared to dg (0.31£0.12).
For example, in the case of subject 1 (see Table , using dg in model selec-
tion to select the best A value for the Lasso yields a model with dp = 0.81
and ng = 0.26. In contrast, using (g delivers a model with dg = 0.78
and 7 = 0.63. This inverse relationship between performance and inter-
pretability is direct consequence of over—fitting of model to the noise struc-

ture in a small-sample—size brain decoding problem (see Section [3.3.1)).

The advantage of the exchange between the performance and the inter-
pretability can be seen in the quality of MBMs. Figure[3.12(A) and[3.12/(B)
show @ and @g of subject 1, i.e., the spatio—temporal multivariate maps
of the Lasso models with maximum values of d¢ and (g, respectively. The
maps are plotted for 102 magnetometer sensors. In each case, the time
course of weights of classifiers associated with the MEG2041 and MEG1931
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Figure 3.12: Comparison between spatio-temporal multivariate maps of (A) the most
accurate, and (B) the most interpretable classifiers for Subject 1. ©$ provides a better

spatio—temporal representation of the N170 effect than @‘15

sensors are plotted. Furthermore, the topographic maps represent the spa-
tial patterns of weights averaged between 184 and 236 ms after the stimulus

onset. While (:)‘f is sparse in time and space, it fails to accurately repre-
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sent the spatio—temporal dynamic of the N170 component. Furthermore,
the multicollinearity problem arising from the correlation between the time
course of the MEG2041 and MEG1931 sensors causes extra attenuation of
the N170 effect in the MEG1931 sensor. Therefore, the model is unable to
capture the spatial pattern of the dipole in the posterior area. In contrast,
(1)§ represents the dynamic of the N170 component in time. In addition, it
also shows the spatial pattern of two dipoles in the posterior and tempo-
ral areas. In summary, é% suggests a more representative pattern of the
underlying neurophysiological effect than (:)‘1S

In addition, optimizing the hyper—parameters of brain decoding based
on (g offers more reproducible brain decoders. According to Table [3.2]

using (g instead of dg provides (on average) 0.15 more reproducibility over

16 subjects. To illustrate the advantage of higher reproducibility on the

interpretability of maps, Figure [3.13| visualizes @‘1; and @% over 4 perturbed

training sets. The spatial maps [Figure [3.13[(A) and Figure |3.13/(C)] are
plotted for the magnetometer sensors averaged in the time interval be-

tween 184 and 236 ms after stimulus onset. The temporal maps [Fig-
ure [3.13(B) and Figure 3.13(D)] are showing the multivariate temporal
maps of MEG1931 and MEG2041 sensors. While @7 is unstable in time
and space across the 4 perturbed training sets, ég provides more repro-

ducible maps.

Elastic—Net

Figure [3.14] summarizes the mean and standard—deviation of the perfor-
mance and interpretability of elastic—net across 16 subjects for different lev-
els of regularization and sparsity. The results illustrate that increasing the
amount of sparsity, by increasing «, increases the chance of performance—
interpretability dilemma. While for a ridge model, with a = 0, the perfor-

mance and interpretability are consistent, by increasing the sparsity they
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Figure 3.13: Comparison of the reproducibility of Lasso when ds and (s are used in the
model selection procedure. (A) and (B) show the spatio-temporal patterns represented
by ©f across the 4 perturbed training sets. (C) and (D) show the spatio-temporal

patterns represented by (1)§ across the 4 perturbed training sets. Employing (s instead of
0 in the model selection yields on average 0.15 more reproduciblilty of MBMs.

show a divergent behavior. This observation illustrates the smooth, rather

sparse, nature of the underlying effect in space and time.

These results are further analyzed in Figure |3.15 where CiD? and <i>f are

compared subject—wise in terms of their performance and interpretability.

Similar to the Lasso model in the main text, the comparison shows that
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Figure 3.14: The mean and standard—deviation of the performance (dq), interpretability
(ns), and (e of the elastic-net model over 16 subjects. In this dataset, increasing the

amount of sparsity increases the chance of performance—interpretability dilemma.

adopting (¢ instead of dg as the criterion for model selection yields higher
interpretable models by compensating a negligible degree of performance
across all subjects. Figure [3.15(A) shows that employing d¢ provides on
average slightly higher accurate models across subjects (0.83 4+ 0.05) than
using (g (0.79 £ 0.04). On the other side, Figure [3.15(B) shows that
employing (s and compensating by 0.04 in the performance provides (on
average) substantially higher level of interpretability across subjects (0.624
0.05) compared to dg (0.34 £0.11). The results obtained using elastic—net

classifier are very similar to the ones of Lasso in the main text.

3.3.4 Mass—Univariate Hypothesis Testing on MEG Data

It is shown by [64,|65] that non—parametric mass—univariate analysis is
unable to detect narrowly distributed effects in space and time (e.g., an

N170 component). To illustrate the advantage of the proposed decod-
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Figure 3.15: (A) Comparison between generalization performances of ®° and ®¢ using
elastic-net as the classifier. (B) Comparison between the interpretability of Cin and Cﬁf
using elastic—net as the classifier. The results obtained by the elastic—net classifier are

very similar to the Lasso model.

ing framework for spotting these effects, we performed a non—parametric
cluster—based permutation test [127] on our MEG dataset using Fieldtrip
toolbox [153]. In a single subject analysis scenario, we considered the
trials of MEG recordings as the unit of observation in a between—trials
experiment. Independent—samples t—statistics are used as the statistics for
evaluating the effect at the sample level and to construct spatio—temporal
clusters. The maximum of the cluster—level summed t—value is used for
the cluster level statistics; the significance probability is computed using
a Monte Carlo method. The minimum number of neighboring channels
for computing the clusters is set to 2. Considering 0.025 as the two—sided
threshold for testing the significance level and repeating the procedure
separately for magnetometers and combined—gradiometers, no significant
result is found for any of the 16 subjects. This result motivates the search
for more sensitive (and, at the same time, more interpretable) alternatives

for univariate hypothesis testing.

3.3.5 Across—Subject Decoding of MEG Data

As demonstrated in our results in Section [3.3.3] in the single—subject de-

coding of MEG data the performance and the interpretability of a Lasso
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Table 3.3: The performance, reproducibility, representativeness, and interpretability of

® and ®¢ in the across—subject decoding scenario.

A ‘ 23 ‘ Vo ‘ P ‘ Mo ‘ Co
| 0.1 0.7277 0.7841 0.4597 0.3605 0.5441
¢ | 0.01 0.7275 0.7853 0.4596 0.3609 0.5442

classifier are not consistent. In this experiment the aim is to assess the
relation between interpretability and generalization performance in the
across—subject decoding scenario. To perform across—subject analysis we
performed the decoding and evaluation phases on the pooled samples of all
subjects. Table [3.3|summarizes the performance, reproducibility, represen-
tativeness, and interpretability of $% and ®¢ in the across—subject decoding
scenario.

The comparison of results illustrates a negligible difference between P°
and ¢ in terms of (o and d¢ in the across—subject decoding. In other
words, in this case the interpretability and performance of the model are
consistent and the most accurate model is very close to the most inter-
pretable one. Therefore in across—subject decoding, using merely the gen-
eralization performance as the dicisive criterion in the model selection pro-
cedure would be enough for drawing interpretable brain maps. One possible
explanation behind this observation can be the increase in the sample size

in the across—subject decoding scenario.

Figure |3.16| shows the spatio—temporal multivariate brain map of 3¢ in

the across—subject decoding scenario. The resulting multivariate brain map
represents the feedforward and feedback information flow in visual cortical
areas [132]. The 3 dipoles in 184 — 236 ms time interval [Figure 3.16(B)]
show the feedforward information flow from the posterior area to the pari-
etal and ventral areas. The topographic maps in the two following time
intervals [Figure 3.16((C) and [3.16(D)] show the spatial dynamic of face
processing from posterior to temporal lobs. Finally Figure [3.16(E) shows
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(A) Pre-stimulus (B) 184ms-236ms (C) 284ms-340ms

(D) 396ms-420ms (E) 460ms-500ms 0.01
0.005
0
-0.005
-0.01

Figure 3.16: The spatio—temporal MBM of face processing in the across—subject decoding

scenario: (A) before the stimulus onset, (B) 3 occipo—parietal dipoles 200 ms after the
stimulus onset, (C) and (D) the forward ventral information flow from 300 to 400 ms after
the stimulus onset, (E) the backward information flow from temporal areas to occipital

area 500 ms after the stimulus onset.

a weak but still visible backward information flow from temporal lobes to

the posterior area 500 ms after the stimulus onset.

3.4 Discussions

3.4.1 Defining Interpretability: Theoretical Advantages

An overview of the brain decoding literature shows frequent co—occurrence
of the terms interpretation, interpretable, and interpretability with the
terms model, classification, parameter, decoding, method, feature, and

pattern; however, a formal formulation of the interpretability is never pre-
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sented. In this study, our primary interest is to present a simple and
theoretical definition of the interpretability of linear brain decoding mod-
els and their corresponding MBMs. Furthermore, we show the way in
which interpretability is related to the reproducibility and neurophysio-
logical representativeness of MBMs. Our definition and quantification of
interpretability remains theoretical, as we assume that the true solution of
the brain decoding problem is available. Despite this limitation, we argue
that the presented definition provides a concrete framework of a previously
abstract concept and that it establishes a theoretical background to explain
an ambiguous phenomenon in the brain decoding context. We support our
argument using an example in the time-domain MEG decoding in which we
show how the presented definition can be exploited to heuristically approx-
imate the interpretability. Our experimental results on MEG data shows
accounting for the approximated measure of interpretability has a positive
effect on the human interpretation of brain decoding models. This exam-
ple shows how partial prior knowledge regarding the timing and location
of neural activity can be used to find more plausible multivariate patterns
in data. Furthermore, the proposed decomposition of the interpretabil-
ity of MBMs into their reproducibility and representativeness explains the
relationship between the influential cooperative factors in the interpretabil-
ity of brain decoding models and highlights the possibility of indirect and

partial evaluation of interpretability by measuring these effective factors.

3.4.2 Application in Model Evaluation

Discriminative models in the framework of brain decoding provide higher
sensitivity and specificity than univariate analysis in hypothesis testing of
neuroimaging data. Although multivariate hypothesis testing is performed
based solely on the generalization performance of classifiers, the emergent

need for extracting reliable complementary information regarding the un-
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derlying neuronal activity motivated a considerable amount of research
on improving and assessing the interpretability of classifiers and their as-
sociated MBMs. Despite ubiquitous use, the generalization performance
of classifiers is not a reliable criterion for assessing the interpretability
of brain decoding models [166,/170]. Therefore, considering extra criteria
might be required. However, because of the lack of a formal definition for
interpretability, different characteristics of linear classifiers are considered
as the decisive criterion in assessing their interpretability. Reproducibil-
ity [14},140,/166], stability selection [195],201], sparsity [44,[175], and neuro-

physiological plausibility [4] are examples of related criteria.

Our definition of interpretability helped us to fill this gap by introducing
a new multi-objective model selection criterion as a weighted compromise
between interpretability and generalization performance of linear models.
Our experimental results on single—subject decoding showed that adopting
the new criterion for optimizing the hyper—parameters of brain decoding
models is an important step toward reliable visualization of learned mod-
els from neuroimaging data. It is not the first time in the neuroimaging
context that a new metric is proposed in combination with generalization
performance for the model selection. Several recent studies proposed the
combination of the reproducibility of the maps [40}/166,/178] or the stabil-
ity of the classifiers [122,/196,215] with the performance of discriminative
models to enhance the interpretability of decoding models. Our definition
of interpretability supports the claim that the reproducibility is not the
only effective factor in interpretability. Therefore, our contribution can be
considered a complementary effort to the state of the art of improving the
interpretability of brain decoding at the model selection level. Further-
more, this work presents an effective approach for evaluating the quality

of different regularization strategies for improving the interpretability of
MBMs. As briefly reviewed in Section [3.1] there is a trend of research
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within the brain decoding context in which the prior knowledge is injected
into the decoding process via the penalization term in order to improve the
interpretability of decoding models. Thus far, in the literature, there is no
ad—hoc method to directly compare the interpretability of MBMs result-
ing from different penalization techniques. Our findings provide a further
step toward direct evaluation of interpretability of the currently proposed
penalization strategies. Such an evaluation can highlight the advantages
and disadvantages of applying different strategies on different data types

and facilitates the choice of appropriate methods for a certain application.

3.4.3 Regularization and Interpretability

Haufe et al. [83] demonstrated that the weight in linear discriminative mod-
els are unable to accurately assess the relationship between independent
variables, primarily because of the contribution of noise in the decoding
process. They concluded that the interpretability of brain decoding cannot
be improved using regularization. The problem is primarily caused by the
decoding process per se, where it minimizes the classification error only
considering the uncertainty in the output space [5,(187,)218] and not the
uncertainty in the input space (or noise).

Our experimental results on the toy data (see Section shows that if
the right criterion is used for selecting the best values for hyper—parameters,
appropriate choice of the regularization strategy can still play a significant
role in improving the interpretability of results. For example, in the case
of toy data, the true generative function behind the sampled data is sparse
(see Section , but because of the noise in the data, the sparse model
is not the most accurate one.

On the other hand, a more comprehensive criterion (in this case, ()
that considers also the interpretability of model parameters facilitates the

selection of correct prior assumptions about the distribution of the data
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via regularization. This observation encourages a modification of the con-
clusion of Haufe et al. [83] as follows: if the performance of the model
is the only criterion in the model selection, then the interpretability can-
not necessarily be improved by means of regularization. This modification
offers a practical shift in methodology, where we propose to replace the
post—processing of weights with refinement of hyper—parameter selection

based on the newly developed model selection criterion.

3.4.4 The Performance—Interpretability Dilemma

The performance—interpretability dilemma refers to the trade—off between
the generalization performance and the interpretability of a decoding model.
In some applications of brain decoding, such as BCI, a more accurate model
(even with no interpretability) is desired. On the other hand, when the
brain decoding is employed for hypothesis testing purpose, an astute bal-
ance between two factors is more favorable. The presented metric for
model selection ((g) provides the possibility to maintain this balance. An
important question at this point is on the nature of the performance-
interpretability dilemma, whether it is model-driven or data—driven? In
other words, whether some decoding models (e.g., sparse models) suffer
from this deficit, or it is independent from the decoding model and depends
on the distribution of data rather assumptions of the decoding model.
Our experimental observations shed light on the fact that the performance—

interpretability dilemma is driven by the uncertainty [5] in data. The
uncertainty in data refers to the difference between the true solution of
decoding ®* and the solution of decoding in sampled data space ®g, and
is generally consequence of noise in the input or/and output spaces (see
Appendix for a simple illustration about the effect of uncertainty in
the input space on the learning process). This gap between ®* and ®g is

also known as irreducible error (see Eq. in the learning theory, and it
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cannot fundamentally be reduced by minimizing the error. Therefore, any
attempt toward improving the classification performance in the sampled
data space might increase the irreducible error. As an example, our exper-
iment on the toy data (see Section shows the effect of noise in input
space on the performance—interpretability dilemma. Improving the per-
formance of the model (i.e., fitting to ®g) diverges the estimated solution
of decoding ® from its true solution ®*, thus reduces the interpretability
of the decoding model. Furthermore, our experiments demonstrate that
incorporating the interpretability of decoding models in model selection
facilitates finding the best match between the decoding model and the dis-
tribution of data. For example in classification of toy data, the new model
selection metric (3 selects the more sparse model with a better match to

the true distribution of data, despite worse generalization performance.

3.4.5 Advantage over Mass—Univariate Analysis

Mass—univariate hypothesis testing methods are among the most popular
tools for forward inference on neuroimaging data in cognitive neuroscience
field. Mass—univariate analyses consist of univariate statistical tests on
single independent variables followed by multiple comparison correction.
Generally, multiple comparison correction reduces the sensitivity of mass—
univariate approaches because of the large number of univariate tests in-
volved. Cluster—based permutation testing [127] provides a more sensitive
univariate analysis framework by making the cluster assumption in the
multiple comparison correction. Unfortunately, this method is not able to
detect narrow spatio-temporal effects in the data [64]. As a remedy, brain
decoding provides a very sensitive tool for hypothesis testing; it has the
ability to detect multivariate patterns, but suffers from a low level of inter-
pretability. Our study proposes a possible solution for the interpretability

problem of classifiers, and therefore, it facilitates the application of brain
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decoding in the analysis of neuroimaging data. Our experimental results
for the MEG data demonstrate that, although the non—parametric cluster—
based permutation test is unable to detect the N170 effect in MEG data,
employing (g instead of dg in model selection not only detects the stimuli-
relevant information in the data, but also assures both reproducible and
representative spatio—temporal mapping of the timing and the location of

underlying neurophysiological effect.

3.4.6 Limitations and Future Directions

Despite theoretical and practical advantages, the proposed definition and
quantification of interpretability suffer from some limitations. All of the
presented concepts are defined for linear models, with the main assumption
that ®* € H (where H is a class of linear functions). This fact highlights
the importance of linearizing the experimental protocol in the data collec-
tion phase [143]. Extending the definition of interpretability to non-linear
models demands future research into the visualization of non—linear mod-
els in the form of brain maps. Currently, our findings cannot be directly
applied to non—linear models. Furthermore, the proposed heuristic for the
time—domain MEG data applies only to binary classification. One possi-
ble solution in multiclass classification is to separate the decoding problem
into several binary sub—problems. In addition the quality of the proposed
heuristic is limited for the small sample size datasets (see Appendix
for an experimental illustration). Of course the proposed heuristic is just
an example of possible options for assessing the neurophysiological plau-
sibility of MBMs in time-locked analysis of MEG data, thus, improving
the quality of heuristic would be of interest in future researches. Finding
physiologically relevant heuristics for other acquisition modalities such as
fMRI, or frequency domain MEEG data, can be also considered as possible

directions in future work.



Chapter 4

Multi—Task Joint Feature Learning
for Group MEG Decoding

4.1 Introduction

A common approach in cognitive neuroscience is to record brain activ-
ity, and to correlate that activity with behavioral parameters in order to
discover where, when, and how a brain region participates in a particu-
lar cognitive process. In functional neuroimaging research, scientists often
employ mass—univariate hypothesis testing methods, i.e., methods which
have been designed to test scientific hypotheses on a large set of inde-
pendent variables [64,/126]. Mass—univariate hypothesis testing is based
on performing multiple (generally thousands) univariate tests, which most
commonly involves performing a t—test, for each independent variable, e.g.,
each voxel. The statistical results for each voxel can then be projected onto
a structural image to form a brain map, that provides information about
which region in the brain is related to the experimental conditions. For
instance, in a common paradigm used to investigate the neural correlates
of face perception, participants see either intact faces or scrambled faces.
A univariate contrast is then run in each voxel and clusters of voxels that

are significantly more active for intact faces inform us of where in the brain

97
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holistic face processing occurs.

While mass—univariate analyses can at times be useful, there are a num-
ber of problematic aspects. Here we outline three major problematic as-
pects: 1) due to its univariate nature, the interaction between different
independent variables cannot be exploited [41]; 2) the high dimensionality
of neuroimaging data requires a large number of tests, but running this
many tests requires multiple comparison correction, and current multiple
comparison correction at the voxel level is overly conservative, increasing
type II errors and decreasing sensitivity [52]. Although some techniques,
such as the non—parametric cluster—based permutation test [31,[127] offer
more sensitivity by weakly controlling the family—wise error rate, they still
experience low sensitivity to brain activities that are narrowly distributed
in time and space due to the cluster assumption [64,/65]; 3) because of
inter—subject differences (in time and space), it is likely that univariate
statistical tests fail to find significant effects [126] as these tests implicitly
assume a one—to—one correspondence between independent variables across

different subjects.

A potentially more promising approach to overcome the shortcomings of
mass—univariate hypothesis testing is Brain decoding [89,/154]. Brain De-
coding is a multivariate pattern analysis (MVPA) technique that attempts
to predict the mental state of a human subject based on the recorded brain
signal. More specifically, brain decoding involves training an algorithm to
classify a number of samples of labeled brain data, and testing it on unseen
data. The generalization performance of a brain decoding model is used
as a measure for performing inference on neuroimaging data, or in other
words for concluding that a certain area or set of areas are important for
a specific cognitive process, or a certain class of stimuli. Brain decoding
is capable of capturing complex spatio—temporal interactions between dif-

ferent brain areas with higher sensitivity and specificity than univariate
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analysis [85]. Moreover, it avoids the multiple comparison problem, as it
deals with the whole set of independent variables at once.

Due to the high dimensionality and limited number of samples typically
associated with neuroimaging data [41}]114], generally in brain decoding,
the linear classifiers are used to assess the relation between spatio—temporal
brain measurements and cognitive tasks [22,|118,157]. This assessment is
performed by solving an optimization problem that minimizes a loss func-
tion by learning linear weights associated with each independent variable.
These learned linear weights can then be visualized in the form of a brain
map, in which the engagement of different brain areas in a cognitive task
is illustrated. In fact, brain mapping via brain decoding can be viewed as
a pattern recovery problem, where the goal is to recover spatio—temporal
patterns of the discriminative brain activity involved in the cognitive pro-
cessing of external stimuli. If successful, brain maps created by brain
decoding can provide a comprehensive and interpretable explanation re-
garding the nature of neural representations and brain states, and may
be more informative for cognitive science than a numerical decoding accu-
racy measurement, as is currently commonly used [154]. Currently, brain
decoding is a gold standard in multivariate analysis of functional mag-
netic resonance images (fMRI) [41],86,|135,/149] and magnetoencephalo-
gram/electroencephalogram(MEG/EEG) data [3,34,136,93, /156, 167, (199).
However a number of challenges still remain, particularly regarding the

interpretability of recovered brain maps at the individual or group level.

4.1.1 Group—level Brain Decoding: Approaches and Challenges

Group-level analyses are extremely important, as they allow for results to
be generalized to new individuals. In brain decoding, an ideal group-level
approach should be able to recover both structural and functional similar-

ities and dissimilarities across different individuals. These similarities and
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dissimilarities generally occur at both a coarse and a fine level in space
and time, and can provide valuable spatio—temporal information about
both the macro and micro—structures underlying the cognitive function in
question. For example, visual stimuli in general evoke a coarsely similar
effect in early visual brain areas across different subjects, but the response
to different types, or categories of visual stimuli can differ from subject to
subject at the finer level (see Ref. [87] for more examples). This across—
subject functional variability makes group—level inference on neuroimaging
data challenging, particularly since there is also substantial across—subject
variability in brain structure composition (e.g., the different size and shape
of brains) [129]164}165,/180,/181]. This problem is even more pronounced
when one takes into account the difference in the spatio—temporal structure
of noise, that commonly occurs due to different sources of the external and
internal noise, or to preprocessing errors. These variations not only nega-
tively affect the generalization power of brain decoding, but they also make
post—hoc interpretation of the derived brain maps more challenging, due to
concerns about lack of reproducibility and plausibility. For these reasons,
it is crucial to explore more effective decoding methods that are capable
of recovering structural and functional similarities and dissimilarities in a

group—level analysis of neuroimaging data.

There are two main approaches to group—level inference in brain decod-
ing: 1) A decoding model is trained and tested for each subject indepen-
dently, and then generalization performance is averaged across subjects;
2) A single decoding model is trained and tested on the pooled samples
of all subjects. While the first approach does not take advantage of simi-
larities between different subjects, the second method incorrectly assumes
that the brain recordings of all subjects are drawn from the same distri-
bution. These subtle assumptions may lead to impaired predictive perfor-

mance [129,/151] and to complications in interpreting results. Therefore,
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it is highly important to develop a principled approach that enables iden-
tification of common features across subjects [192] while accounting for
inter—subject differences that result from variations in structural and/or

functional anatomy.

4.1.2 Contribution

In this chapter, we present an application of multi—task joint feature learn-
ing [9] which allows for accurate spatio-temporal pattern recovery at the
group-level decoding of MEG data. Multi-task learning [35] (MTL) is
a machine learning technique in which a number of related problems with
salient shared properties is simultaneously solved (see Section. Previ-
ous work has shown that MTL has some benefits over the trivial single-task
setting, especially in terms of specificity and stability of feature maps [107,
131]. In our proposed framework, we consider the data of each subject as
a task in MTL framework, and, we simultaneously train only one decoding
model over all subjects. Further, we employ f2; regularization [124] to
learn sparse patterns consistently across different subjects, i.e., to jointly
learn the features across different subjects. This learning process facili-
tates consistent sparse pattern recovery across individual subjects while at
the same time preserving idiosyncratic structural and functional properties
within each individual.

To evaluate the effectiveness of the multi-task joint feature decoding
algorithm, we compared its performance against number of currently pop-
ular single—subject and pooled decoding approaches. We used three crite-
ria in our comparisons: 1) generalization performance, 2) reproducibility
of brain maps, and 3) the quality of pattern recovery. All analyses were
run on both synthetic and real MEG datasets. We chose MEG data be-
cause its complex wealth of spatiotemporal information poses a particular

challenge in recovering multi-way patterns in space and time. Our results
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demonstrate the potential of multi-task joint feature learning in recovering
the similarity and dissimilarity of brain activities across different subjects
in group—level MEG decoding, while still maintaining competitive perfor-
mance and high reproducibility with respect to single-subject and pooling
approaches. Such an approach can lead to more interpretable decoding
models in group-level multivariate analysis of MEG data. To our knowl-
edge, the present work is the first to use multi-task joint feature learning
in the context of group-level MEG decoding. Considering the fact that,
only EEG and MEG can non—invasively record brain activity at a high
temporal resolution [75}/78], the proposed approach provides the possibil-
ity for recovering temporal brain dynamics within the millisecond time
scale, a crucial task if we hope to understand the human brain function in
real-time [77,/79].

In the remaining text, we first review the basic concepts of discriminative
linear brain decoding, and then formally elaborate the pros and cons of
single—subject and pooling approaches for group—level brain decoding. We
then present the multi—task joint—feature learning approach as a possible
alternative to single—subject and pooling approaches, and we formally show
the that multi—task joint feature learning provides significant benefits over
the currently popular approaches. Finally, we discuss the significance of our
work in improving the interpretability of brain maps derived from group
brain decoding analyses, its position with respect to the related works, the

limitations of our approach, and possible future directions.

4.2 Materials and Methods

4.2.1 Notation

In the following text, we denote scalar numbers by lower case italic letters,

vectors by lower case boldface letters, and matrices by capital boldface
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letters. We use a;. and a.; to refer to the ¢th row and column of matrix
A, respectively. We use ||.||, to denote the ¢o-norm of a vector, ||.||; the ¢;-

norm of a vector, and [.,.] for the row—wise vector concatenation operator.

4.2.2 Brain Decoding for Brain Mapping: The Pattern Recov-

ery Problem

The aim of brain decoding is to learn the function F : X — ), where X =
R? represents the space of neural activity, and ) € {1,2,...,c} represents
the categorical output space, i.e., the target classes of the stimuli. In
this paper, for sake of simplicity, we focus on the binary brain decoding
problem where Y € {—1,1}. Let (x;,y;) € R?x{—1,1} be the jth sample,
V5 € {1,2,...,n}, that is, independently and identically distributed (iid),
drawn from the joint distribution of Z = X x ), based on an unknown
Borel probability measure P, and we have X = [x1,X3,...,X,] € R™?
and y = [y1,Y2,.--,Yn] € {—1,1}". In the neuroimaging context, it is
commonly assumed that the solution of a brain decoding problem is among
a family of linear functions H. Therefore, the aim of brain decoding reduces
to finding an empirical linear approximation of F in H. This approximation
can be obtained via a maximum a—posteriori estimation, or alternatively,

by solving a regularized empirical risk minimization (rERM) problem:

w = argmin L(y, Xw) + AQ(w) (4.1)

where w € RP represents the weight vector of the linear classifier and
y = Xw, L:YxY — Rj is the loss function, Q : R — RT is the
regularization term, and A > 0 is a hyper—parameter that controls the
amount of regularization. There are various choices for €2, each of which
reduces the hypothesis space H to H' C H by enforcing different functional

or structural constraints on the parameters of the linear decoding model.
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The ¢, and the squared ¢, penalizations where Q(w) = ||w||; and Q(w) =
|w||3, respectively, are two common choices for the regularization terms.
The ¢, regularization, also known as Lasso [185], promotes sparsity in the
parameter space, while /5 enforces a Gaussian prior on the distribution of
parameters.

The generalization performance of the decoding model can be estimated
via data perturbation techniques, such as cross—validation [111] or boot-
strapping [51], both of which evaluate the quality of predictions in y with
respect to the actual target classes in y. The learned parameters of the
decoding model w can be possibly used in the form of a brain map in
order to visualize the discriminating brain activity between different stim-
ulus categories. This inverse inference approach for multivariate analysis
of neuroimaging data is generally known as neural pattern recovery [195]

and has many applications in medical diagnosis and hypothesis testing.

4.2.3 Group—Level Brain Decoding

Let (XE-i), y)) be the jth, Vj € {1,2,...,n%}, iid sample that is drawn from
the joint distribution of Z = X x ), based on an unknown Borel probability
measure P where i € {1,2,..., s} denotes the neural recordings for the
1th subject. In this study, we are interested in MEG data decoding, thus
here X§i) refers to the jth trial of MEG recording on subject ¢. The sam-
pling probability measures, i.e., P, are subject-specific and they depend
on the device used to measure the neural activity. These probability mea-
sures are partially different from subject to subject due to structural and
functional variability across individuals, as well as different levels and types
of internal and external noise contamination. While the difference in noise
levels is uninformative and should be ignored, the structural and functional
differences might reflect valuable and meaningful information regarding the

different cognitive processes across individuals. In the remaining text, we
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use D = {(X9 y®) | i e {1,2,...,s}} to denote the training set composed
of s subjects neural recordings, where X0 = [xgi), Xg), . ,ngi)] c R xp
and yO = [y, 8", ... yl) € {(—1, 13"

A successful group-level pattern recovery via brain decoding should
reflect similarities and dissimilarities in neural correlates across different
subjects, while ignoring the uninformative noise patterns. There are two

common approaches used to solve the brain decoding problem at the group—
level [129]:

1. Single—Subject Decoding: In single-subject decoding the rERM
problem is solved independently for each subject in order to find linear
functions F® : X — y() as linear estimations of the solution to the

brain decoding problem F:

w = argmin £(y"”, XOw) + \OQ(w) (4.2)
where w'”) € R? is the recovered brain map for subject ¢, and we have
y@ = XOw® . Even though single—subject decoding is based on the
correct assumption of heterogeneity of P across different subjects,
and therefore accounts for variability in structure, functional profile,
and noise of X for different individuals, its solutions tend to overfit to
the noise patterns [83], due to the high—dimensionality of data where
n < p. Consequently, there is high variability between recovered
brain maps from different perturbed training sets (for example folds
of k-fold cross—validation). This variability makes the post—hoc inter-
pretation of results cumbersome. Furthermore, single—subject decod-
ing relies only on the idiosyncratic brain activity patterns, and thus

does not take advantage of coarse-level similarities across different
brains [129).
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2. Pooling: In the pooling scenario, it is assumed that the data for
all subjects are generated by the same probability distribution, i.e.,
PW = p@ = ... = PG) therefore the TERM problem is solved on
the pooled samples of all subjects X = [X(l),X(Q), e ,X(S)] e R"*P,
y = [y, y? .. y®] € {-1,1}", where n = > ;_ n) and we have

w = argmin L(y, Xw) + \Q(w). (4.3)

Even though the pooling scenario alleviates, to some degree, the over-
fitting problem (n > n(i)), it suffers from the subtle assumption of
the homogenity of P across different subjects and, consequently it
ignores the various sources of inter—subject variability. This sub—
optimal assumption has a negative effect on generalization perfor-
mance [151]. In addition, the pooling approach recovers only a single
brain map for all subjects, thus it is unable to recover the possible

structural and functional differences across different individuals.

4.2.4 Multi—-Task Joint Feature Learning for Group—Level De-

coding

As a compromise between the two aforementioned extremes in multi—
subject brain decoding, we propose the multi—task joint feature learning
paradigm [9] for solving the brain decoding problem at the group—level.
In this approach, the brain recording of each subject is considered as a

task, and the rERM problem is optimized simultaneously across subjects

as follows:
W = argmin ¥~ L(y", XPw.;) + AW, (4.4)
W
where [[W||,; = >, [|w;.[|, is £21-norm of W € RP**. The {5 ;-norm is a

non—smooth regularizer which encourages learning sparse common features
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across multiple tasks, i.e., subjects. However, solving the above rERM
optimization problem is challenging due to non-smoothness of ¢5; term.
Several algorithms are proposed in the literature for solving this problem
or equivalent constrained versions. In this paper, we adopt the acceler-
ated group sparsity learning algorithm [124] for solving Eq. (4.4). This
algorithm reformulates the non-smooth ¢5; as a constrained convex opti-
mization problem with a smooth objective function. This problem is then
solved using Nesterov’s accelerated projected gradient descent method [144]
which provides a superior worst—case convergence rate than standard pro-
jected gradient descent, and is much faster than sub—gradient descent and

gradient descent algorithms.

In practice, the f3;-norm encourages group sparsity over the features
across different tasks. The sparse feature selection over the groups of
spatio—temporal features is induced by the summation over fo-norms. As
schematically shown in Figure 4.1} the resulting weight matrix is expected
to have a similar sparse pattern across different tasks. This is while, in-
side each selected group of features, the features can have different weights
from task to task. This property is especially beneficial for representing

the differences in behavior of similar features across different tasks.

The proposed approach has three advantageous characteristics for group—
level pattern recovery: 1) it simultaneously optimizes the loss function
across subjects. This characteristic, similar to single-subject decoding,
and unlike the pooling approach, provides the possibility of subject—specific
pattern recovery, while, similar to pooling and unlike the single-subject ap-
proach, it learns the underlying patterns of neurophysiological activity on
a larger sample size (on all subjects). In addition, the simultaneous opti-
mization provides the infrastructure to learn the shared spatio—temporal
patterns across different individuals; 2) it accounts for different noise dis-

tributions in the recorded data across subjects, i.e., X(i), thus enhances
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Figure 4.1: A schematic illustration for multi-task joint feature learning via f3;-norm.
The resulting weight matrix has a similar sparse pattern across different tasks while each

feature can have different weights on different tasks.

the subject—specific pattern recovery; 3) it encourages similar sparse pat-
tern recovery across subjects. This characteristic provides the possibility
of joint feature learning as it accounts for the similarity of neural responses
to a similar stimulus across individuals. We hypothesize that the combi-
nation of the proposed multi-task learning and f5; penalization provides
a fair compromise in recovering the similarities and dissimilarities of the

underlying neurophysiological activations across different subjects.

4.2.5 Experimental Materials

Simulated MEG Data

To evaluate the performance of the multi-task joint feature learning for

spatio—temporal pattern recovery in a group—level MEG decoding scenario,
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we benchmarked it against common off-the—shelf approaches on a simu-
lated MEG dataset. As the ground—truth effect is known in the simulations,
we can reliably compare the quality of pattern recovery in different group—
level decoding scenarios. To achieve this goal, we simulated sensor—space
MEG data for 7 subjects. For each subject, we simulated two classes of
MEG trials, each of which was composed by 250 epochs with a length of
330 ms at a 300 Hz sampling rate (so that we have 100 time—points for each
MEG sensor). For all subjects, the whole scalp topography was simulated
with a single dipole located at —4.7, —3.7, and 5.3 cm in the RAS (Right,
Anterior, Superior) coordinate system [Figure [4.2(A)]. The position of the
dipole location was arbitrary , but was close enough to the surface of the
brain to provide stronger sensor—level patterns. To construct the temporal
pattern of the target activity, the epochs of the positive class are, simi-
larly across subject, constructed by adding up 3 components to the dipole

time—course:

1. A time—locked effect composed of a positive 3 Hz half—cycle sinusoid
peak, followed by a negative 5 Hz half—cycle sinusoid peak. The peaks
are set 150 £+ 3 and 250 4+ 3 ms after the epoch onset, respectively

[Figure [4.2/(B)].

2. Uncorrelated background brain activity was simulated by summing 50
sinusoids with a random frequency from 1 to 125 Hz, and a random
phase varied between 0 and 27 [Figure [1.2[C)]. In order to better
mimic the actual magnetic features of the scalp surface, following the
data simulation procedure described in Ref. [214], the amplitude of
any single frequency component of the signal (the time-locked effect
and the background noise) was set based on the empirically estimated

spectral power of human brain activity.

3. White Gaussian noise was scaled with respect to the root mean square
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Figure 4.2: (A) The dipole position in the RAS coordinate system (the red circle). (B)
The time—locked target effect is only present in the trials of the positive class. (C) The
background brain activity is present in all simulated trials. (D) All trials are contaminated
with white Gaussian noise. (E) An example of simulated trials in the positive and negative

classes.

of the amplitude of signal in each epoch [Figure 4.2(D)].

The epochs of the negative class were constructed without the time—locked
effect and by merely adding up the noise components (i.e., the background
activity and the white noise). Therefore, the time—locked component is
considered as the discriminating ground—truth pattern in our experiments.

To simulate the sensor—level variability across individuals, for each sub-
ject we used different orientation for the dipole in the source space. This
variability in orientation of dipoles simulates directly dissimilar formations
of gray matter, and indirectly simulates different head shapes and the posi-
tion of the head inside the MEG helmet for a group of subjects. We set the
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orientation of dipoles as [1,0,0], [0,1,0], [0,0,1], [1,1,0], [0,1,1], [1,0,1],
and [1, 1, 1] for simulated subject 1 to 7, respectively. These differences in
orientation are expected to provide different sensor—level spatial patterns
across subjects. In the final step, the signal of 102 magnetometer sensors
of the Elekta Neuromag system are simulated using a standard forward
model algorithm implemented in the Fieldtrip toolbox [153]. Using brain
decoding on the sensor—level simulated MEG data, a successful group-level
pattern recovery approach should be able to recover the similar temporal
pattern of the time-locked effect in 7 subjects despite the different topo-

logical distribution across sensors.

Real MEG Data

In order to evaluate the proposed method on real data, we employed the
MEG dataset that is collected by Henson et al. [90] This dataset includes
MEG recordings for 16 subjects. In the experimental protocol, visual stim-
uli consisting of famous, unfamiliar, and scrambled faces are presented to
subjects in a random order. MEG data were recorded using a Elekta Neu-
romag VectorView system. As in Ref. [151], we used the balanced face vs.
scrambled dataset where the samples in the face category were randomly
drawn from the trials of famous or unfamiliar faces Pl The samples in the
face and scrambled face categories are labeled as 1 and —1, respectively.
The raw data was high—pass filtered at 1 Hz, down—sampled to 250 Hz,
and trimmed from 200 ms before the stimulus onset to 800 ms after the
stimulus onset. Thus, each trial has 250 time—points for each 306 MEG

sensor (102 magnetometers and 204 planar gradiometers)f| To create the

!The full dataset is publicly available at ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/
wakemandg_hensonrn/

“The extracted dataset is used in DecMeg2014 competition and is publicly available at https://www.
kaggle.com/c/decoding-the-human-brain/data

3The preprocessing scripts in python and MATLAB are available at: https://github.com/

FBK-NILab/DecMeg2014/
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feature vector of each sample, we pooled all of the temporal data of the
306 MEG sensors into one vector (i.e., we have p = 250 x 306 = 76, 500
features for each sample). Before training the classifier, the features were

standardized to have a mean of 0 and standard—deviation of 1.

4.2.6 Classification and Evaluation

We compared our multi-task joint feature learning algorithm with single—
subject decoding and pooling approaches in terms of decoding performance,
reproducibility of brain maps, and quality of spatio—temporal pattern re-
covery. {1 and ¢y penalization terms are used in both single—subject de-
coding and pooling scenarios ﬁ Considering these 3 group—decoding ap-
proaches, and different penalization schemes, in total, 5 decoding methods
are benchmarked on the simulated and real MEG datasets, namely: SS-L1,
SS-L2, Pooling-Li1, Pooling-L.2, and MT-L21, respectively, single-subject
decoding with ¢; regularization, single-subject decoding with ¢y regular-
ization, pooling with ¢; regularization, pooling with ¢, regularization, and
multi-task learning with ¢ regularization. We employ the implementa-
tion presented in MALSAR toolbox [220] for multi-task joint feature learn-
ing ﬁ Algorithm [2 summarizes the pseudo—code for optimizing Eq. . In
this algorithm, the outer while loop performs Nesterov’s optimization [144]
which is an optimal first—order black box method for smooth convex opti-
mization. The inner while loop performs the efficient Euclidean projection
onto a set of convex solutions [124].

The out—of-bag (OOB) [189] method with 50 bootstrap replications
was used for computing the expected prediction error (EPE) at different
regularization levels A = {0.001,0.1, 1,5, 10, 25, 50, 100, 200, 300}. Then

4The MATLAB codes that are used for our experiments are made publicly available at https://

github.com/smkia/MTJFL_MEG.
°Seehttps://github.com/jiayuzhou/MALSAR|for open-source toolbox implementation and documen-

tation.
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1 — EPFE is used as a measure for the generalization performance. To
evaluate the reproducibility of brain maps, we adopt the reproducibility
measure introduced in Ref. [108] (see Section |3.2.3)).

Algorithm 2 The pseudo-code for optimizing Eq. [{.4] Let X4,...,X,, yy,...,y,, and
A be as defined in Section [4.2.3] The algorithm receives also tol and maxIter, i.e., the
tolerance and the maximum iteration, as two stopping criteria. The algorithm return the
weight matrix Wy € RP*® as output. In addition to the notation in Section 4.2.1, A’
represents the transpose of matrix A, ® represents the element—wise matrix multiplica-
tion, and a(®?) denotes the element of matrix A at the ith row and jth column. In all of

our experiments, we set tol = 10~* and maxIter = 1000.

1: Input: Xi,...,Xsy1,.--,¥s; A tol; mazIter
2: Output: Wy, € RPXS
3: Initialize: Wo, W1, = 0PX5;99 = 0,v =1;v=ljiter =1 <>op><6
4: while ’1)1 +AXP Hw?’” , V0 )\Z Hw(l )H ‘ > tol X (vo+ AP Hw H iter < mazlter do
5: S=W1+a37:1X(W17W0)
6: for t < 1,s do
7 gt = X} (Xystt) —y))
end of for

8 f=05x 5 [ XestD —y, |2
9:  while [|A||% > 10720
10: U=s-¢
11: n= %
12: for i < 1,p do
13: 1) = max(01%s,1 — W)

end of for ?
14: L=LOoU
15: A=L-S
].62 vy = V1
17: v =05 x 5y [ X160 - ytHz
18: ifor > fF+30 30 (AGD x gG0) 4 I x |A]|% then do
19: break the inner while loop.

end of if
20: end 'of whils

21: Wy =W,
22: W; =L
23: ap = a1

24: a; =05 x (1+4/1+4xa?)

25: iter = iter + 1
end of while

26: Wyr =W,
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4.3 Results

In this section, we compare the proposed multi-task joint feature learning
with traditional single-subject and pooling approaches in a group multi-
variate analysis of MEG data. The comparisons are made based on the
decoding performance, reproducibility of brain maps, and quality of the
recovered spatio—temporal brain maps. Figure [4.3| shows generalization
performance and the reproducibility of the 5 different methods on the sim-
ulated and real MEG data. In the case of simulated data the bar diagrams
depict the average performance and reproducibility over 10 simulation runs
and 7 simulated subjects. The results of the real MEG data are averaged

over 16 subjects.

4.3.1 Simulated Data

Single—Subject Decoding

In the single-subject decoding scenario, 1 penalization provides higher
generalization performance than /5, but this slight advantage in decoding
performance leads to a substantial drop in the level of reproducibility of
brain maps. The multicollinearity in the MEG data is the main reason
behind this observation. The ¢ penalization enforces strong sparsity on the
parameters of the decoding model that makes the decoding process highly
unstable, especially on the multicollinear input space. Due to the nature of
the MEG signal, the independent variables are highly correlated in space
and time. Therefore, slight changes in the training set (for example using
perturbation techniques such as cross—validation) results in high variation
on the weights of the classifier. Furthermore, it increases the chance of
miss—fitting the classifier to spurious noise components that are partially
correlated with informative components of the signal.

The sensor maps in Figure depict the spatial distribution of the re-
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Figure 4.3: Comparison between the generalization performance and the reproducibility
of the 5 different methods on the simulated and real MEG data. The results on the
simulated data are averaged over 10 simulation runs and 7 simulated subjects. The results
on the real MEG data are averaged over 16 subjects. MT-L21 provides the best decoding
performance, while preserving the highest reproducibility level among other competing
methods.

covered patterns for the 5 different methods tested on data from 7 simulated
subjects. A comparison between the first (the ground—truth maps) and the
second (the SS-L1 maps) columns of topographic sensor maps illustrates
how the pattern recovery by means of ¢; regularized classifier is affected by
these deficits. The recovered maps via SS-L1 are over—attenuated in space
compared to the ground—truth effect, because the correlated sensors are
ignored by ¢; penalized classifier, as they do not provide extra information
for decoding. Further, SS-L1 recovers some extra spurious spatial patterns

that are not present in the ground—truth maps.
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Figure 4.4: Topographic sensor maps of the ground—truth effect and the weight vectors
computed using 5 different decoding approaches (columns) on 7 simulated subjects (rows).
The weight vectors are normalized in the unit hyper—sphere. The maps show the averaged

weights in 100 ms interval from 100 to 200 ms after the stimulus onset.
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The same conclusions can be made for the temporal pattern recovery
based on the temporal maps. Figure 4.5 shows the temporal maps of 5
different methods for the first three simulated subjects (see Appendix
for similar maps on simulated subjects 4 to 7). The temporal patterns
show the averaged classifier weights over the highlighted channels. The
channels are selected based on the spatial distribution of the dipole in
the ground-truth effect. Again the temporal pattern recovered by SS-L1
(the blue dashed line) has much less expansion in time compared to the
ground—truth effect (the red line).

On the other hand, SS-L2 with a Gaussian prior assumption on the
distribution of weights, provides a higher level of reproducibility than SS-
L1, however it completely fails to recover the spatio—temporal pattern of
the ground—truth effect (see the third column of Figure and the dotted
purple line in Figure . This fact is also well-reflected in Table , where
the recovered maps using SS-L2 show substantially less cosine similarity
with the ground—truth effect compared to SS-L1.

Pooling

The pooling method generally shows a lower performance than the single—
subject and multi-task approaches (see Figure . This loss in perfor-
mance is expected due to the wrong assumption on the similarity of P,
across different subjects [151]. On the other hand, both Pooling-L.1 and
Pooling-1.2 approaches provide higher reproducibility than SS-L1. Putting
the performance aside, the main problem of the pooling approach arises
when the quality of pattern recovery matters. In pooling, since we come up
with only one model for all subjects, the subject specific pattern recovery
is impossible. In other words, the pooling approach ignores across—subject
structural and functional differences, and provides only one brain map for
all subjects. The fourth and the fifth columns of Figure 4.4 show the sim-
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Figure 4.5: Comparison between the temporal maps of the 5 different decoding methods
with the ground-truth effect, on data from the first three simulated subjects. The time
courses are showing the temporal patterns of the recovered effect computed by averaging
the weights of the classifier over the highlighted channels. The channels are selected based
on the spatial distribution of the dipole in the ground—truth effect (see Figure .

ilar recovered spatial patterns of simulated MEG data for seven subjects.
While in some subjects the recovered pattern by Pooling-L1 provides a
fair representation of the ground—truth effect, in some subjects (for ex-
ample subject 1) it completely misrepresents the ground—truth (see also
Figure for temporal patterns). Similar to single-subject decoding, the
{5 penalization in the pooling scenario fails completely in spatio-temporal

pattern recovery (see Table for quantitative comparison).
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Table 4.1: Cosine similarity between the recovered patterns for the 5 decoding methods
and the ground truth effect. The numbers show the average and the standard deviation
of cosine similarities between the ground-truth and brain maps in 10 simulation runs.
The bold faced numbers show the best method for each subject. The last row of the
table shows the mean similarity across subjects. MT-L21 maps are significantly more

representative of the ground—truth effect than other benchmarked approaches.

SS-L1 SS-L2 Pooling-LL1 Pooling-L2 MT-L21

Subl | 0.36 £0.07 0.10+0.01 —0.08 £0.02 0£0.01 0.62 £ 0.05
Sub2 | 0.37+0.07 0.10+0.01 0.13£0.02 0£0.01 0.63 £ 0.05
Sub3 | 0.33+0.03 0.11£+0.01 0.60 £0.03 0.06£0.00 0.59+£0.03
Sub4 | 0.38+0.04 0.114+0.01 0.30£0.02 0.02£0.01 0.64 £ 0.05
Sub5 | 0.35+0.05 0.10+0.01 0.55£0.03 0.05+£0.00 0.62 £ 0.05
Sub6 | 0.32+0.03 0.11+0.01 0.47£0.02 0.05£0.00 0.57 £+ 0.03
Sub7 | 0.38 £0.05 0.11+0.01 0.61 £0.03 0.06+0.00 0.61 £ 0.03
Mean 0.36 0.11 0.37 0.04 0.61

Multi—Task Joint Feature Learning

The proposed multi-task joint feature learning method, MT-L21, achieves
as high of performance as the single-subject decoding, while preserving
high reproducibility like in the pooling approach. More importantly, it
enables reliable subject—specific pattern recovery in time and space. This
fact is well reflected in the topological plots in the sixth column of Fig-
ure 4.4, The recovered maps show a fair overlap with the ground—truth
effect. This overlap is also reflected in the cosine similarity between the
recovered maps and the ground—truth map in Table [£.1], where the MT-
L21 map has a 0.61 average similarity across the 7 simulated subjects. The
superiority of MT-L21 in decoding performance, reproducibility, and pat-
tern recovery can be explained by its three main characteristics: 1) unlike
the pooling method, and similar to single—subject decoding, it correctly
assumes a different sampling distribution (and thus different noise distri-
bution) across MEG recordings of different subjects, and therefore provides

a higher generalization capability; 2) unlike the single—subject method, and
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Figure 4.6: A comparison between the reproducibility of spatio-temporal maps in the SS-
L1 and MT-L21 decoding approaches. The topographic maps are plotted by averaging the
weights of the classifier between 100 and 200 ms in 3 simulation runs of simulated subject
1. The recovered time courses are plotted by averaging the weights over the highlighted

channels. MT-L21 is more stable in recovering the spatio—temporal maps.

similar to the pooling approach, the classifier is trained simultaneously on
all subjects. This specification alleviates the high dimensionality problem
(as we train on more samples), and therefore provides more highly repro-
ducible brain maps; 3) f2 regularization enforces group sparsity in weight
distributions. Thus the recovered maps are sparser than ¢ regularization,
and at the same time are more consistent in space and time from subject

to subject than ¢; regularization.

To compare the effect of the reproducibility of pattern recovery on the
final interpretation of brain maps, we conducted a decoding experiment
on the simulated MEG data. In this experiment, we compared pattern
recovery in SS-L.1 and MT-L21 (as they have the best generalization per-
formance among the other methods) in three simulation runs. As described
in Section [4.2.5] the distribution of noise in the simulated data is differ-
ent from run to run. In fact, this difference simulates the across—session

variation of the MEG data on a single subject.

The recovered patterns for SS-LL1 and MT-L21 of simulated subject 1
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across 3 simulation runs are shown in the first and the second row of
Figure 4.6, respectively. The SS-L.1 maps show higher run—to-run variation
than the MT-L21 maps in both space and time. These kind of variations
make the post—hoc interpretation of maps cumbersome, and they might
lead to misinterpretation of results with respect to the actual underlying
effect (see Figure and Figure for the ground-truth). On the other
hand, MT-L21 shows a more stable pattern recovery in both space and
time, where it consistently recovers the same correct dipole in the sensor
space.

In common practice, generalization performance is the only criterion in
model selection. This means that the hyper—parameters of decoding mod-
els are decided based only on model accuracy, rather than its ability for
reliable pattern recovery. This approach may be shortsighted, especially
when interpreting the spatio—temporal source of discriminative brain ac-
tivity is desired [108]. Therefore, adopting decoding methods that show
higher reproducibility of brain maps in addition to higher generalization

performance facilitates the further interpretation of recovered maps.

4.3.2 Real MEG Data

Figure [1.7(A) depicts the scatter plot of the quality of 16 decoding mod-
els (for 16 subjects of real MEG data) in the performance-reproducibility
plane. The distribution of the generalization performances across 16 sub-
jects [Figure [4.7(B)] shows no statistically significant differences in per-
formances for SS-L1 and MT-L21 (Wilcoxon’s rank sum test p-value =
0.6538), while SS-L2 has significantly lower performance than the other two
approaches (Wilcoxon’s rank sum test p-value = 0.0125 and 0.0035, respec-
tively). On the other side, SS-L1 has substantially lower reproducibility
than SS-1.2 and MT-L2 (Wilcoxon’s rank sum test p-value = 8 x 1077, see
[Figure [4.7)(C)]). These results confirm the capability of MT-L21 in deliv-
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Figure 4.7: Comparison between the performance and reproducibility of SS-L1, SS-L2,
and MT-L21 across 16 subjects of real MEG data. (A) The scatter plot of 16 decoding
models in the performance-reproducibility plane. The circles represent subjects and the
colors denote different methods. (B) The fitted normal distributions on the performance
of 16 decoding models for 3 different approaches. (C) The fitted normal distributions on
the reproducibility of 16 decoding models for 3 different approaches.

ering highly accurate individual models (same as SS-L1) while preserving
the reproducibility of decoding models, across subjects.
Figurel4.§8illustrates the recovered spatio—temporal patterns by MT-L21
across 16 subjects of real MEG data (see Appendix[A.6|for other methods).
In almost all subjects, MT-L21 is able to spot an occipo-temporal dipole
in the sensor space. The different position of the dipole from subject to
subject is expected due to differences in head shapes, anatomical proper-

ties, and position of the head in the MEG helmet. Despite meaningful
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Figure 4.8: The recovered spatio—temporal representation of the N170 effect in 16 subjects
from the real MEG dataset. The topoplots show the classifier weights for magnetometer
sensors averaged in the 150 to 250 ms time period after stimulus onset. The corresponding
plots represent the temporal dynamic of the dipole (red for the positive effect and blue
for the negative effect) in the time dimension.

but different spatial patterns, the N170 effect is robustly recovered across
almost all subjects around 200 ms after the stimulus onset. These results
confirm the previous event-related potential/field analysis of EEG/MEG
that shows that N170 occurs 130 — 200 ms after the stimulus presentation,
and reflects the neural processing of faces [19,/90].

4.4 Discussion

4.4.1 Higher Interpretability of Brain Maps in Multi—Subject

Brain Decoding

The learned parameters of linear decoding models can be visualized in
the form of brain maps. These brain maps can be used to explore the
spatio—temporal origin of the underlying neurophysiological discriminating

activity among two or several cognitve tasks, or types of stimuli. Despite



124 Multi-Task Joint Feature Learning for Group MEG Decoding

theoretical advantages of brain mapping via brain decoding, such as higher
sensitivity and specificity than the alternative univariate approaches, its
application to inference on neuroimaging data is limited, primarily due
to the lack of interpretability [88,/142,|172,/197]. From a cognitive neu-
roscience perspective, reproduciblility and neurophysiological plausiblilty
of a brain map [108] are two necessary conditions for interpretability of
its corresponding brain decoding model. There are two main reasons be-
hind the interpretability problem: 1) the ill-posed nature of the brain de-
coding problem, where we have huge number of spatio—temporal features
(order of 10°) while the number of samples is limited (order of 10%), this
causes the generalization problem of over—fitting the model on the train-
ing set [30,[118,133]; 2) multicollinearity [195] among predictors, where the
strong correlation between spatio—temporal measurements of brain activity
yields coefficient instability in linear brain decoding models [67]. Therefore,
there is an emergent need to incorporate structural and functional prior
knowledge on brain segregation and integration, in order to achieve stable,
reliable, and interpretable brain maps. There are two main directions in
the literature toward this goal: 1) employing structured penalization tech-
niques; 2) reducing the variance of feature selection via enhanced stability

selection.

Structured regularization approaches combine intelligently the basic reg-
ularizers (such as ¢; and /¢5) in order to take advantage of any prior-
knowledge the experimenter may have about the correlational structure in
the neuroimaging data. Group Lasso [217] and total-variation penalty [186]
are two effective methods for enforcing spatio-temporal structure of covari-
ance between predictors into the regularization [168,212]. Group—wise reg-
ularization [192], smoothed—sparse logistic regression [46], total-variation
{1 penalization [62,|133], and the graph—constrained elastic—net [67], are

examples of structured regularization methods that are used effectively in
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the brain decoding context. On the other hand, stability selection is an en-
semble learning method to reduce the variance of feature selection for high
dimensional data analysis [173] that has recently received high attention
in the context of multivariate analysis of brain recordings (see for example
Refs. [195] and [201]).

Despite the aforementioned efforts, so far less attention is devoted to im-
proving the interpretability of brain decoding models in group—level brain
decoding. In fact, employing structured regularization or stability selec-
tion approaches in a single—task brain decoding framework still suffers from
the inadequacy of single—subject or pooling methods in multi—subject mul-
tivariate analysis of neuroimaging data. On the other hand, multi—task
joint feature learning provides the infrastructure for combining structured
regularization with stability selection in group-level multivariate analysis.
While /5 ; penalty combines ¢o and ¢; norms to enforce group sparsity, its
integration with simultaneous optimization in multi—task learning also of-
fers a variant of stability selection across a group of subjects. By taking
into account the inter—subject spatio—temporal similarities and dissimilar-
ities of brain activity, multi-task joint feature learning provides higher in-
terpretability for multivariate brain maps at the group—level, as supported

by our experimental results.

4.4.2 Related Work

The problem of recovering subject—specific brain responses is discussed in
several recent neuroimaging studies. In this section, we review some related
studies that tried to handle this problem at the preprocessing or decoding
stages.

The problem of characterizing the fine—level distinctive patterns in pop-
ulation response topographies was first elucidated by Haxby et al. [87],

where the authors presented a novel functional alignment method, called
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hyper—alignment, in order to derive a set of basis functions that are com-
mon across different individuals. They then modeled individual cortical
response patterns as weighted sums of these basis functions. In a single—
subject fMRI decoding scenario, they showed the superiority of the decod-
ing performance in the hyper—aligned common space over the anatomically
aligned data. Further, they showed the back—projection of predictive ba-
sis functions in the common space to the subject native space provides
subject—specific distinctive spatial maps. One practical limitation of this
method is in estimating the parameters of hyper—alignment, i.e., basis func-
tions, that should be performed on a separate dataset (preferably in re-
sponse to natural complex stimuli such as a movie). In addition, to the
best of our knowledge, at this time the application of hyper—alignment
remains limited to fMRI data.

To overcome inter—subject variability in group analysis of fMRI data,
Takerkart et al. [180] introduced a graph—based support vector classifi-
cation approach for across—subject multivariate pattern analysis. In this
method, an unsupervised learning approach is employed to construct at-
tribute graphs for fMRI data, where each node has two attributes, namely
location and activation. A support vector machine classifier with graph
kernel is used for classification in graph space. The authors hypothesized
that the inter—subject variability can be characterized based on different
node attributes across subjects. Despite high generalization performance
in a pooling decoding scenario, their proposed method lacks transparency
in their model, due to the non—linear nature of the employed classifier. In
addition, due to the single-task nature, it suffers from all of the limita-
tions of the single—subject and pooling decoding scenarios. Another study
attempted to take into account both the similarity in macro—structures,
and the dissimilarity in micro—structures of brain activity across different

individuals’ brains. Rao et al. |[165] proposed a sparse overlapping group
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lasso (SOGLasso) method to learn both the commonalities and the differ-
ences across brains in an fMRI study. To do this, the authors introduced a
new penalty by combining ¢ and ¢; to promote both inter and inner group
sparsity. In spite of higher flexibility of SOGLasso over the pure group—
wise regularization in feature selection, no practical solution is suggested
for group—level decoding of neuroimaging data.

The idea of recasting the multi—subject brain decoding problem to a
MTL framework was first presented by Marquand et al. [129] where the
authors defined the input data of each subject as a task. The Gaussian
process MTL was employed in order to model the relationship, and to in-
duce coupling between tasks. To visualize the discriminative brain maps, a
transformation from function space to weight space is used to compute the
predictive weight vectors in the input space. Then, a procedure called pre-
dictive mapping, in combination with permutation one-sample t-tests is
used to identify discriminating regions. On an fMRI dataset, they showed
the employed MTL approach provides more accurate and reproducible
models than single-subject and pooling strategies. This work shares simi-
larities with the approach presented in this paper, given that both adopt an
MTL framework, however our approach offers a major advantage because
our method allows for sparse pattern recovery by applying f5; penaliza-
tion. Importantly, the sparse recovered patterns provide a more convenient
post—hoc interpretation of brain maps. Another minor advantage of our
method is its computational simplicity, where unlike in Ref. [129], there is
no need for estimating covariance matrices on a small number of samples

of high dimensional input data in the decoding or visualization phase.

4.4.3 Limitation and Future work

The proposed multi-task joint feature learning framework uses ¢ regu-

larization to impose structured group sparsity in brain pattern recovery.
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Despite the experimental success presented in this study, one challenge is
that, ¢5; blindly encourages similar sparse patterns across different sub-
jects. In other words, it does not consider the possibility of different inter
and inner group sparsity profiles across different subjects. Enforcing extra
prior information regarding the structure of data in time and space can
provide these possibilities and lead to a new generation of enriched pattern
recovery methods. One possible way to move toward this goal is to encode
higher level prior information in the form of a graph, and then add an
extra graph—fused penalty term to the current optimization scheme. This
change can lead to a convex minimization problem involving the sum of
a smooth function (the loss function), a non—smooth proximable function
(¢21 penalty term), and the composition of a proximable function with a
linear operator (the graph—fused term) that can be solved using the first—
order splitting algorithm proposed in Ref. [39]. Implementation of the
first—order splitting algorithm for the multi—task learning, and comparing
its quality in pattern recovery with ¢ ; is an important future direction for

our work.



Chapter 5

Conclusions

The primary goal of this thesis was to reduce the knowledge extraction
gap in multivariate analysis of neuroimaging data by improving the inter-
pretability of linear brain decoding models. Considering the importance
of group—level inference in cognitive neuroscience studies and numerous
challenges in this direction, the secondary goal was focused on exploring
more effective decoding methods that are capable of recovering structural
and functional similarities and dissimilarities in a group—level analysis of

neuroimaging data.

To this end, first we presented a novel theoretical definition for the inter-
pretability of linear brain decoding and associated multivariate brain maps.
We demonstrated how the interpretability can be decomposed to the rep-
resentativeness and reproducibility of a linear brain decoding model. This
decomposition explains the relationship between the influential coopera-
tive factors in the interpretability of brain decoding models and highlights
the possibility of indirect and partial evaluation of interpretability by mea-
suring these effective factors. The presented definition provides a first step
toward practical solution for filling the knowledge extraction gap in linear
brain decoding and it provides a theoretical background to explain a previ-

ously ambiguous concept in the brain decoding context. To provide a proof

129
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of concept, a heuristic approach based on the contrast event-related field is
exemplified for practical evaluation of the interpretability in multivariate
recovery of evoked MEG responses. We further proposed to combine the
interpretability and the performance of the brain decoding as a new Pareto
optimal multi-objective criterion for model selection. We experimentally
showed that considering the interpretability of brain decoding models in
the model selection procedure has a positive effect on the human inter-
pretation of multivariate brain maps compensating a negligible amount of
performance. Collectively, our methodological and experimental achieve-
ments can be considered a complementary theoretical and practical effort
that contributes to researches on enhancing the interpretability of mul-
tivariate pattern analysis. Despite theoretical and practical advantages,
the proposed definition and quantification of interpretability only applies
to linear models, therefore extending the definition of interpretability to
non—linear models demands future research into the visualization of non—
linear models in the form of brain maps. Furthermore, the application
of the proposed heuristic for approximating the interpretability is limited
to the time—locked MEG responses, thus finding physiologically relevant
heuristics for other acquisition modalities such as fMRI, and other brain
responses such as induced responses can be also considered as possible

directions in future work.

Second, we presented an application of multi—task joint feature learn-
ing in multi-subject decoding of MEG data where the MEG recording of
each subject is defined as a task in the multi-task classification paradigm
and /5 regularization is used to recover sparse heterogeneous patterns of
brain activity across different individuals. The proposed framework pro-
vides the possibility of consistent sparse pattern recovery across different
individuals while at the same time preserving idiosyncratic structural and

functional properties, thus yields higher interpretability for multivariate



131

brain maps at the group—level. In addition, multi-task joint feature learn-
ing provides the infrastructure for combining structured regularization with
stability selection in group-level multivariate analysis. While /5 penalty
combines /5 and ¢; norms to enforce group sparsity, its integration with
simultaneous optimization in multi-task learning also offers a variant of
stability selection across a group of subjects. Considering the importance
of group—level inference in neuroimaging context, and inadequacy of clas-
sical univariate and multivariate approaches in group-level analysis, the
proposed approach can provide a methodological shift toward higher sensi-
tive and at the same time higher interpretable brain decoding models. Our
experiments on synthetic and real MEG data demonstrated the superiority
of proposed approach in reproducibility and quality of recovered patterns
over the traditional single-subject and pooling approaches. To the best
of our knowledge, our effort for the first time addresses the problem of
across subject pattern recovery in MEG decoding. Considering the high
temporal and spatial resolution of MEG brain recordings, the proposed
approach provides the possibility for recovering temporal brain dynamics
within the millisecond time scale with a fair spatial granularity. Our future
plan is to improve group-level pattern recovery by enforcing extra struc-
tural spatio—temporal prior knowledge via adding a graph—fused penalty
term to the current optimization scheme. Hopefully this addition provides
the possibility of accounting for different inter and inner group sparsity
profiles across different individuals.

Our contributions aimed to extend the state of the art in multi—disciplinary
researches for reliable, reproducible, and plausible inference on neuroimag-
ing data, by facilitating the application of brain decoding for brain mapping.
We hope this thesis contributes a tiny step toward answering historical

questions in understanding the brain and its functions.
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Appendix A

Appendices

A.1 Uncertainty in Input Space and Learning

Here we present a simple example to illustrate the effect of uncertainty in
the input space on the learning process and interpretation of results. Let
X €10,1] x [0,1], ¥ € {—1,1}, and the distribution of input space py be

a 2D-uniform distribution. If (a,b) be a random sample, we have:

y—&m@%*ﬂ—{l oast

—1 if a>b

In this example two classes are linearly separable and we have 6%

[—0.71,0.71]7 [see Figure[A.1(A)]. We add Gaussian noise with co-variance

0.02 —-0.01
Y= to the sampled data. Figure [A.1(B) shows the new

—0.01 1
distribution of samples after adding noise to the data. After noise contam-

ination, the positive and negative classes are no longer linearly separable
(®g is not linear). Using the true solution for classifying the noisy data
yields 0.711 £ 0.003 classification accuracy. This s while solving the least
squares problem on the noisy samples provides O x [—0.97,0.25]" as the
linear approximation of ®g with accuracy rate of 0.747+0.003. Any model

selection approach based on the generalization performance promotes the

163
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Figure A.1: (A) The distribution of the sampled data without noise and the true solution.
(B) The distribution of sampled data after noise contamination and the estimated solution

of least squares.

solution of least squares over the true solution. The extra 0.04 improve-
ment of the performance of least square over the true solution can be
considered as over—fitting to noise and it s the source of misinterpretation
of results. Any attempt to interpret the © leads to a misleading conclusion

with respect to the actual underlying function.

Table A.1: Distribution of cosine similarity between two random p-dimensional vectors.

p= 5 10 50 100 500 1000 5000 10000
Fitted p -0.00016 0.0012 0.00071 -0.00079 0.00075 -0.00017 -0.00021 -0.000006
Fitted o 0.4492  0.3189 0.1411  0.0999  0.0450 0.0316  0.0143 0.0099
\/% 0.4472  0.3162 0.1414 0.1 0.0447  0.0316 0.0141 0.010
Anderson—Darling test 1 1 0 0 0 0 0 0
Critical Value 0.8123  0.6070 0.2761  0.1946  0.0884  0.0621 0.0284 0.0193




A.2. The Distribution of Cosine Similarity: an Experimental Support 165

A.2 The Distribution of Cosine Similarity: an Ex-

perimental Support

To experimentally illustrate the characteristics of the distribution of cosine
similarity, 10000 random vectors for p = 5, 10, 50, 100, 500, 1000, 5000, 10000
are drawn from uniform distribution in [—1,1]. Then histogram of simi-
larity between each random vector with a random reference vector is com-
puted separately for each value of p. Figure shows the histograms
where the red curve in each histogram represents the normal distribution
fitted to the histogram. The mean and standard deviation of the fitted nor-
mal distributions are summarized in Table[A.TIl We tested the normality of
the distributions using Anderson—Darling test. Table shows the results
of tests where 1 means the null-hypothesis is rejected (the distribution is
different from normal). The comparison between the fitted standard devi-
ation with o = \/% experimentally confirms our initial expectation on the
standard deviation of distribution of cosine similarity. The critical values
for different p are shown in Table by calculating 95% percentile of the
distribution. For a large enough p the critical value is very close to zero and
therefore any value significantly larger than zero represents a meaningful

similarity between two high dimensional vectors.

A.3 Experimental Comparison Between the Activa-
tion Patterns and cERF

As shown in Section [3.2.4, cERF is the equivalent generative model for
the least squares solution in a binary time-domain MEG decoding sce-
nario. The aim of this appendix is to provide an experimental support
for Proposition [2 To achieve this goal, we experimentally compare cERFs

and activation patterns (APs) in the experiment on the real MEG data
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Figure A.2: Histograms of cosine similarity between 10000 random vectors with a random

reference vector in p dimensional space.

(see Section for the explanation of data and Section for the
decoding process). The APs are Compute_(j based on the weight vector of
the most accurate decoding models (i.e., @5) using the proposed approach
in Ref. [83]. Table summarizes the cosine similarity between cERF's
and APs across 16 subjects. In addition, it compares the generalization
performance of cERF's (denoted by d.prr) and APs (denoted by d4p) with
that of the weights of the decoding model selected based on the proposed
criterion (s (denoted by dc).

The results experimentally confirm the validity of Proposition [2| as the
cosine similarity between cERF's and APs are very close to 1 for all subjects.
Furthermore, while cERFs and APs show equal prediction power (Wilcoxon
rank sum test p-value= 0.84), they are significantly less predictive than the
weights of the selected model by (g criterion (Wilcoxon rank sum test p-
value= 1.5 x 107°).
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A.4 Limitations of the Proposed Heuristic

In this appendix the goal is to experimentally investigate the limitations of
the proposed heuristic based on contrast event—related fields in approximat-
ing the representativeness and interpretability of brain decoding models.
Here we examine the effect of the sample size and the uncertainty in input
and output spaces on the quality of this approximation.

In our experiments, following the data simulation procedure in Ref. [46],
we simulated samples of the positive class as a 2-dimensional 100 x 100 pat-
tern of a 5H z sine wave [see Figure[A.3[(A)]. All samples in the positive class
are corrupted with Gaussian noise with 0 mean and o standard deviation
see Figure[A.3|(B)]. The value of o is used to control the level of uncertainty
in the input space. The samples in the negative class are constructed by

drawing 100 x 100 random patterns from the Gaussian distribution with
0 mean and o standard deviation [see Figure [A.3[(C)]. Similar to ©°F%F

Table A.2: Cosine similarity between cERFs and APs across 16 subjects and comparison
between the generalization performance of cERFs (0.prr), APs (04p), and the weights of

the decoding model selected based on the proposed criterion ().

Subjects CERF_{\P CERF Oap O¢
similarity
1 1 0.56 0.56 0.78
2 0.9998 0.54 0.54 0.80
3 0.9998 0.57 0.57 0.78
4 0.9970 0.55 0.55 0.76
5 0.9999 0.54 0.54 0.78
6 1 0.57 0.57 0.74
7 1 0.56 0.56 0.81
8 1 0.56 0.56 0.85
9 0.9999 0.57 0.57 0.77
10 0.9999 0.59 0.59 0.77
11 0.9997 0.53 0.53 0.74
12 0.9999 0.58 0.58 0.79
13 0.9973 0.59 0.58 0.77
14 1 0.62 0.61 0.81
15 1 0.63 0.62 0.89
16 1 0.65 0.65 0.81
Mean 0.9996  0.58+0.03 0.574+0.03 0.79£0.04




168 Appendices

(A)
Figure A.3: (A) The clean positive sample. (B) A noisy positive sample (C) A negative

sample.

here we use ™ — = as an heuristic approximation for ©* (where u+ and
p~ are averages of positive and negative samples, respectively).

To create the feature vectors, we rearranged the 2D-patterns into a 1D-
vector (i.e., we have p = 100 x 100 = 10000 features for each sample). Then
the ordinary least—squares (OLS) classifier is used to classify the data into
positive and negative classes. To evaluate the effect of sample size we re-
peated the experiment for n = 20, 200, 500, 1000, 2000, 5000, 10000, 15000
balanced samples of positive and negative classes. The parameter e that
shows the ratio of miss—labeled data is used to control the level of uncer-
tainty in the output space.

In the first experiment the level of uncertainty in the input space is kept
fixed 0 = 1, and we use ¢ = 0,0.01,0.05,0.1,0.2,0.3 to control the uncer-
tainty in the output space for different sample sizes. All the procedures
(data simulation and classification) are repeated 15 times to estimate the
errorbars. Figure summarizes the result. Figure [A.4[A) shows the
positive effect of sample size on the quality of heuristic in presence of un-
certainty in the data. As the sample size increases the Ag, which measures
the cosine similarity between ©* and u™ — i~ , approaches to 1. The clean

pattern of positive class is used as ©* (ground-truth) in computation of
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Figure A.4: (A) The effect of sample size and € on Ag. Increase in sample size and decrease

in € improves our approximation of (B) representativeness and (C) interpretability.

Ap and fB¢. Furthermore, it shows the higher uncertainty in the output
space yields lower Ag. This fact is well reflected in Figure (B) and
Figure (C) where the difference between actual and approximated rep-
resentativeness and interpretability are plotted for different sample size and
€ values.

To further analyze the quality of heuristic, in the second experiment
we change the level of uncertainty in the input space by changing o =
0,0.25,0.75,1,1.5,2 and keeping fixed ¢ = 0. Figure summarizes the
result. Again the increase in sample size improves the quality of approxi-
mation. Our experiments highlights the effect of sample size on the quality
of the proposed heuristic in the presence of uncertainty in input and output
spaces. This fact limits the application of the proposed heuristic on the

small sample size datasets.

A.5 Recovered Time Courses on Simulated Data

This appendix presents the complementary figures for Section [4.3.1, Fig-
ure compare the temporal maps of 5 different decoding methods
with the ground—truth effect on simulated subject 4-7, respectively. The
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Figure A.5: (A) The effect of sample size and o on Ag. Increase in sample size and de-

crease in o improves our approximation of (B) representativeness and (C) interpretability.

time courses show the temporal patterns of the recovered effect computed

by averaging the weights of the classifier over the effective channels. The

effective channels are selected based on the spatial distribution of the dipole

in the ground-truth effect.
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A.6 Recovered Topoplots on Real Data

Here we present complementary figures for Section [.3.2] Figure
show the recovered topological maps from the real MEG dataset for
16 subjects using SS-L1, SS-L2, and pooling approaches. The topoplots
show the classifier weights for magnetometer sensors averaged in 150 to

250 ms after the stimulus onset.
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Figure A.10: Recovered topological maps using SS-L.1 method from the real MEG dataset

-0.01

across all 16 subjects.
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Figure A.11: Recovered topological maps using SS-L2 method from the real MEG dataset
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across all 16 subjects.
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Figure A.12: Recovered topological maps using Pooling-L1 (left) and Pooling-L2 (Right)
methods from the real MEG dataset.
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