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Abstract

In the last century, a huge multi–disciplinary scientific endeavor is de-

voted to answer the historical questions in understanding the brain func-

tions. Among the statistical methods used for this purpose, brain decoding

provides a tool to predict the mental state of a human subject based on the

recorded brain signal. Brain decoding is widely applied in the contexts of

brain–computer interfacing, medical diagnosis, and multivariate hypothesis

testing on neuroimaging data. In the latest case, linear classifiers are gen-

erally employed to discriminate between experimental conditions. Then, the

derived weights are visualized in the form of brain maps to further study the

spatio–temporal patterns of the underlying neurophysiological activity. It is

well known that the brain maps derived from weights of linear classifiers

are hard to interpret because of high correlations between predictors, low

signal–to–noise ratio, across–subject variability, and the high dimension-

ality of the neuroimaging data. Therefore, improving the interpretability

of brain decoding approaches is of primary interest in many neuroimaging

studies. Despite extensive studies of this type, at present, there is no formal

definition for interpretability of multivariate brain maps. As a consequence,

there is no quantitative measure for evaluating the interpretability of differ-

ent brain decoding methods. In this thesis, as the primary contribution, we

propose a theoretical definition of interpretability in linear brain decoding;

we show that the interpretability of multivariate brain maps can be decom-

posed into their reproducibility and representativeness. As an application

of the proposed definition, we exemplify a heuristic for approximating the

interpretability in multivariate analysis of evoked magnetoencephalography

(MEG) responses. We propose to combine the approximated interpretability

and the generalization performance of the model into a new multi–objective

criterion for model selection. Our results, for the simulated and real MEG



data, show that optimizing the hyper–parameters of the regularized linear

classifier based on the proposed criterion results in more informative mul-

tivariate brain maps. More importantly, the presented definition provides

the theoretical background for quantitative evaluation of interpretability,

and hence, facilitates the development of more effective brain decoding al-

gorithms in the future. As the secondary contribution, we present an ap-

plication of multi–task joint feature learning for group–level multivariate

pattern recovery in single–trial MEG decoding. The proposed method al-

lows for recovering sparse yet consistent patterns across different subjects,

and therefore enhances the interpretability of the decoding model. We eval-

uated the performance of the multi–task joint feature learning in terms of

generalization, reproducibility, and quality of pattern recovery against tra-

ditional single–subject and pooling approaches on both simulated and real

MEG datasets. Our experimental results demonstrate that the multi–task

joint feature learning framework is capable of recovering meaningful pat-

terns of varying spatio–temporally distributed brain activity across indi-

viduals while still maintaining excellent generalization performance. The

presented methodology facilitates the application of brain decoding for char-

acterizing the fine–level distinctive patterns of brain activity in group–level

inference on neuroimaging data.
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Chapter 1

Introduction

Understanding the nature and function of brain is one of the main questions

that has evoked human curiosity all along the history. Ancient Greek

philosophers envisaged different functions for the brain from 500 B.C.E

to 200 C.E, ranging from it is being the cooling agent of body heat to

the seat of a rational soul and center of sensation and understanding [42].

Nowadays, cognitive science tries to incorporate research areas that are

concerned with neurophysiological and behavioral understanding of the

brain, e.g., neuroscience and psychology, with variety of other research

fields, such as computer science, physics, and statistics, to provide a better

insight into the structure and function of the brain. As the field matures,

techniques are being adopted from other areas of computational science in

order to accelerate research in cognitive science.

Neuroimaging techniques (see Figure 1.1), also called brain imaging

techniques, such as structural and functional Magnetic Resonance Imaging

(s/fMRI) [54], Electro/Magnetoencephalography (E/MEG) [20, 37], Elec-

trocorticography (ECoG) [103], Positron Emission Tomography (PET) [13],

and Near–Infrared Spectroscopy (NIRS) [25], have become essential tools

for either invasive or non–invasive imaging of the structure and function

of the brain. Structural brain imaging is more concerned about the diag-

1



2 Introduction

(A) fMRI (B) MEG (C) NIRS

(D) ECoG (E) EEG (F) PET-CT

Figure 1.1: Neuroimaging techniques. (A) Siemens MAGNETOM Trio device for struc-

tural and functional brain imaging. (B) CTF–275 MEG scanner for recording magnetic

fields produced by electrical currents in the brain. (C) User preparation for a NIRS

recording. (D) A grid of ECoG sensors implanted on sensory and motor areas. (E) Con-

figuration of EEG sensors on the head for scanning electrical brain activity. (F) Discovery

D600 PET–CT system for positron emission tomography.

nosis of large–scale brain diseases resulting from the abnormality in brain

tissues [10, 179], e.g., tumors or brain injuries. On the other side, there

are a variety of applications for functional brain imaging, ranging from the

finer–level medical diagnosis to brain–computer interfaces and understand-

ing brain’s function.

In last three decades, the clinical application of functional brain imag-

ing in psychiatry has impressively broadened [28, 56]. Functional brain



3

imaging techniques are used to investigate the neural correlates of various

mental disorders in order to identify biomarkers for them. These biomark-

ers then can be employed to investigate the effect of behavioral therapies

and drug treatments. For example, resting–state functional connectivity

derived from patients’ fMRI are used for early identification of Alzheimer’s

disease and presurgical planning [169]. MEG and EEG recordings are also

employed for finding the seizure onset zone in presurgical evaluation of

epilepsy patients [109].

Brain–computer interface [207] (BCI) is a system that provides a real–

time communication channel between the brain and an external machine.

The application of neuroimaging in BCI is more focused on measuring elec-

trical activity of brain invasively by means of intracranial implants such

as ECoG [120], or non–invasively by means of EEG devices. Then an

algorithm is used for online translation of the recorded brain activity to

machine instructions. This technology has applications in verbal commu-

nication [50], controlling devices [209], affect recognition [1–3,110], multi–

media content retrival [59], and locomotion [200] especially for individuals

with severe motor disabilities by brainstem stroke or neuro–muscular dis-

eases such as amyotrophic lateral sclerosis.

In cognitive neuroscience [57], researchers use the recorded neuroimag-

ing data to understand the relationship between brain activity and specific

cognitive functions, i.e., to answer three key questions of where, when and

how 1 a brain region contributes to a particular cognitive process. To do

this, depending on the question of interest, an experimental protocol is

designed to evoke or induce certain brain activity in human or non–human

participants, while simultaneously recording neural correlates by means of

functional neuroimaging devices. Then statistical analysis techniques are

1Here the answer to “how” question refers to finding the connection between a specific cognitive

function and characteristics of the recorded neural correlates.



4 Introduction

employed to justify the initial hypotheses about the three key questions.

Here is an example of a scientific question in cognitive neuroscience [140]:

“We here wanted to reveal whether neural excitability of the auditory

cortex putatively reflected in local alpha–band power is modulated already

prior to speech onset, and which brain regions may mediate such a top–

down preparatory response.”

in which auditory cortex, modulation of alpha–band power, and occurrence

of this modulation prior to speech onset stand for hypothesized answers to

where, how, and when questions, respectively.

In this thesis, we are interested in the application of functional neu-

roimaging in understanding brain function. More specifically, we are inter-

ested in improving the interpretability of multivariate hypothesis testing

approaches in order to infer more reliable, reproducible, and plausible an-

swers to the main questions in cognitive neuroscience. Of course, the re-

sulting methodology is also applicable to the medical diagnosis domain, but

our experimental setups and discussion are more focused on the applica-

tions in confirmatory and exploratory data analysis techniques in cognitive

neuroscience.

There are two schools of thought in statistical analysis for inference on

neuroimaging data [32]: 1) classical statistical testing, and 2) statistical

learning theory. Classical statistical testing is an in–sample generaliza-

tion technique based on null–hypothesis falsification, in which, generally,

a set of univariate tests, e.g., t–tests, are independently applied to each

variable of interest. On the other hand, statistical learning theory is a

multivariate approach that is more concerned with out–of–sample gener-

alization. While both techniques are successfully applied for inference on

neuroimaging data, they capture partially different aspects of the underly-

ing neurophysiological activity [32].

Region–of–interest (ROI) analysis is one of the most popular methods
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in classical inference on neuroimaging data [71, 160]. It is typically based

on the mean activity analysis, using e.g., ANOVA, on a pre–specified ROIs.

The pre–specified ROIs are generally decided using prior knowledge on the

studied cognitive process, and the mean activity within the ROIs are tested

in different experimental conditions. Despite the popularity and simplicity

of the ROI analysis method, the prerequisite for pre–selecting the ROIs

limits its application especially in exploratory analysis of neuroimaging

data where little is known about the brain areas involved in a cognitive

function. Addressing this limitation, classical inference evolved to the new

generation of exploratory whole–brain analysis such as mass–univariate

hypothesis testing [64].

Mass–univariate analysis performs a large number of univariate tests

on each variable, e.g., each voxel, independently. It can be employed for

hypothesis testing in whole–brain exploratory analysis without the need

for prior variable selection. However, it requires a procedure to handle

the multiple–comparison problem (MCP) [60]. There are various methods

for multiple–comparison correction based on the strong or weak control of

family–wise error rate (FWER) [203,213] or false discovery rate (FDR) [16]

control. Being essential for the validity of results, on the down side this

correction reduces the power of statistical analysis with the increase in the

number of univariate tests [64].

In statistical learning approaches, also known as brain decoding and

multivariate pattern analysis (MVPA) in the literature [86, 99], a model

is trained to learn the relation between the independent variables, i.e.,

neuroimaging data, and the dependent variables, i.e., experimental condi-

tions. The training is performed in the framework of statistical learning

theory [80]. The performance of the model is evaluated on a test set,

which is different from the initial training set. If the performance is sig-

nificantly above the chance level, it can be concluded that a meaningful
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relation exists between the recorded neural signals and the cognitive task.

The statistical learning approach can possibly provide a multivariate al-

ternative for classical univariate hypothesis testing methods. The multi-

variate nature of this method yields higher sensitivity to the distributed

patterns of brain activities [149] and provides the possibility of capitaliz-

ing the complex interactions among the parameters of interest. Further,

by employing proper validation strategies, it resolves the multiple testing

problem of mass–univariate approaches [98]. In this thesis, we use brain

decoding to refer to the application of the statistical learning theory in the

neuroimaging context.

Due to the high dimensionality and limited number of samples typically

associated with neuroimaging data [41,114], linear classifiers are generally

used to assess the relation between spatio–temporal brain measurements

and cognitive tasks [22, 118, 157]. This assessment is performed by solv-

ing an optimization problem that minimizes a loss function by learning

weights associated with each independent variable. These learned weights

can then be visualized in the form of a brain map, in which the engage-

ment of different brain areas in a cognitive task is illustrated. In fact,

brain mapping via brain decoding can be viewed as a pattern recovery

problem, where the goal is to recover spatio–temporal patterns of the dis-

criminative brain activity involved in the cognitive processing of external

stimuli. If successful, brain maps created by means of brain decoding can

provide a comprehensive explanation regarding the nature of neural rep-

resentations and brain states, and may be more informative for cognitive

science than a merely decoding accuracy measure [154]. Currently, brain

decoding is the gold standard in multivariate analysis of functional mag-

netic resonance images (fMRI) [41,86,135,149] and magnetoencephalogra-

phy/electroencephalography(MEG/EEG) data [3, 34, 36, 93, 156, 167, 199].

However a number of challenges still remain, particularly regarding the
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interpretability of weights of classifiers, especially in group studies of neu-

roimaging data.

A classifier or a regression model that is trained in the statistical learn-

ing framework only answers the question of what is the most likely label

of a given unseen sample [12]. This fact is generally known as the knowl-

edge extraction gap [198] in the machine learning context. Thus far, much

effort has been devoted to filling this gap of linear and non–linear data

modeling methods in different areas such as computer vision [11], signal

processing [137], chemometrics [216], bioinformatics [72], and neuroinfor-

matics [83]. In the context of neuroimaging, this gap is generally known

as the interpretation problem [88, 142, 172]. Therefore, improving the in-

terpretability of linear brain decoding and the associated brain maps is a

topic of interest in many neuroimaging studies [178]. In spite of the exten-

sive efforts to improve the interpretability of brain decoding, there is still

no formal definition for the interpretability of brain decoding. Therefore,

the interpretability of different brain decoding methods is evaluated either

qualitatively or indirectly by means of an intermediate property.

Group–level analyses of neuroimaging data are extremely important,

as they allow for results to be generalized to new individuals. In sta-

tistical learning, an ideal group–level approach should be able to recover

both structural and functional similarities and dissimilarities across differ-

ent individuals. These similarities and dissimilarities generally occur at

both a coarse and fine level in space and time, and can provide valuable

spatio–temporal information about both the underlying macro and micro–

structures of the cognitive function in question. For example, visual stimuli

in general evoke a coarsely similar effect in early visual brain areas across

different subjects, but the response to different types or categories of visual

stimuli can differ from subject to subject at the finer level (see Ref. [87] for

more examples). This across–subject functional variability makes group–



8 Introduction

level inference on neuroimaging data challenging, particularly since there is

also substantial across–subject variability in the brain structure (e.g., the

different size and shape of brains) [129,164,165,180,181]. This problem is

even more pronounced when one takes into account the difference in the

spatio–temporal structure of noise that commonly occurs due to different

external and internal sources, or manual preprocessing errors. These vari-

ations not only negatively affect the generalization performance of brain

decoding, but they also make post–hoc interpretation of the derived brain

maps more challenging, due to concerns about lack of reproducibility and

plausibility. For these reasons, it is crucial to explore more effective de-

coding methods that are capable of recovering structural and functional

similarities and dissimilarities in a group–level analysis of neuroimaging

data.

With the aim of filling these gaps, the contribution of this thesis is

two–fold:

1. A theoretical definition for the interpretability of linear brain decod-

ing models is presented. The definition is based on cosine proximity

between the estimated and true solutions of brain decoding in the

parameter space. Furthermore, it is shown that the interpretability

can be decomposed into the reproducibility and representativeness.

As a proof of concept, a practical heuristic based on event–related

fields is exemplified to quantify the interpretability of brain maps.

Furthermore, the combination of interpretability and performance of

brain decoding is proposed as a new Pareto optimal multi–objective

criterion for model selection.

2. An application of multi–task joint feature learning [9] for accurate

spatio–temporal pattern recovery at the group–level decoding of MEG

data is presented. In the proposed framework, the data of each subject
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is considered as a task in the multi–task learning framework, where

only one decoding model is simultaneously trained over all subjects.

Further, `2,1 regularization [124] is employed to learn sparse patterns

consistently across different subjects, i.e., to jointly learn the features

across different subjects.

Regarding my first contribution, the presented definition for interpretabil-

ity of linear brain decoding models provides a concrete framework for a pre-

viously abstract concept and establishes theoretical background to explain

an ambiguous phenomenon in the brain decoding context. The experi-

mental results on MEG data show that accounting for the approximated

measure of interpretability has a positive effect on the human interpreta-

tion of brain decoding models. Furthermore, the proposed decomposition

of the interpretability of brain maps into their reproducibility and repre-

sentativeness explains the relationship between the influential cooperative

factors in the interpretability of brain decoding models and highlights the

possibility of indirect and partial evaluation of interpretability by mea-

suring these effective factors. The experimental results on single–subject

MEG decoding showed that adopting the new proposed criterion for op-

timizing the hyper–parameters of brain decoding models is an important

step toward reliable visualization of learned models from neuroimaging

data. Furthermore, these findings provide a step toward direct evaluation

of interpretability of the currently proposed regularization strategies. Such

an evaluation can highlight the advantages and disadvantages of applying

different regularization strategies on different data types and facilitates the

choice of appropriate regularizer for a certain application.

Regarding my second contribution, multi–task joint feature learning fa-

cilitates consistent sparse pattern recovery across individual subjects while

at the same time preserving idiosyncratic structural and functional prop-

erties within each individual. By taking into account the inter–subject
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spatio–temporal similarities and dissimilarities of brain activity, multi–task

joint feature learning provides higher interpretability for multivariate brain

maps at the group–level. To my knowledge, this is the first time one uses

multi–task joint feature learning in the context of group–level MEG de-

coding. Considering the fact that only EEG and MEG can non–invasively

record brain activity at a high temporal resolution [75, 78], the proposed

approach provides the possibility for recovering temporal brain dynamics

within the millisecond time scale, a crucial task if we aim to understand the

dynamics of human brain function [77,79]. On the other hand, multi–task

joint feature learning provides the infrastructure for combining structured

regularization with stability selection in group–level multivariate analysis.

While `2,1 penalty combines `2 and `1 norms to enforce group sparsity,

its integration with simultaneous optimization in multi–task learning also

offers a variant of stability selection across a group of subjects.

The rest of this thesis is organized in the following 4 chapters:

1. In order to provide the basic background for the general audience,

Chapter 2 reviews the basic concepts and terminologies that are used

to develop the contributions of this thesis. To this end, the basic

terminology to describe the structure and function of human brain is

firstly introduced. Then the principles of brain recording and analysis

using MEG data are briefly reviewed. At the end, I review the con-

cepts behind hypothesis testing on neuroimaging data, ranging from

the classical hypothesis testing to the statistical learning theory.

2. Chapter 3 presents a novel definition for the interpretability of linear

brain decoding models [105, 108]. It is shown that the interpretabil-

ity of multivariate brain maps can be decomposed into their repro-

ducibility and representativeness. Then, a heuristic for approximating

the interpretability in multivariate analysis of evoked MEG responses
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is exemplified. Finally, I propose to combine the approximated in-

terpretability and the generalization performance of brain decoding

into a new multi–objective criterion for model selection. The results

demonstrate the importance of including interpretability in the model

selection for deriving more meaningful brain maps.

3. In Chapter 4, an application of multi–task joint feature learning for

group–level multivariate pattern recovery in single–trial MEG decod-

ing is proposed [106,107]. The proposed method allows for recovering

sparse yet consistent patterns across different subjects, and therefore

enhances the interpretability of the decoding model in group–level

analysis.

4. Finally, Chapter 5 summarizes the lessons that have been learned and

states possible future directions.





Chapter 2

Background

The aim of this chapter is to provide background information about brain,

magnetoencephalography (MEG), hypothesis testing, and machine learn-

ing for the readers. The basic concepts introduced in this chapter provide

the formal and conceptual ingredients for understanding our contributions

in the following chapters. To this end, we first introduce the basic ter-

minology that is used to describe the brain structure. Second, we briefly

describe the mechanisms and characteristics of extracranial magnetic field

recording using an MEG device. Third, the principles of classic statistical

hypothesis testing on the neuroimaging data are reviewed. We finalize this

chapter by introducing the basic concepts in statistical learning theory.

2.1 Brain: from Neurons to the Cerebral Cortex

The brain is an organ contained in the skull of vertebrates and head of

most invertebrate animals; brain serves as the coordinating center of the

nervous system. The brain tissue is composed of two classes of cells:

1) neurons, and 2) glial cells. Glial cells are involved in structural and

metabolic support. Neurons are the basic elements of the nervous system

that process and transmit information via electro–chemical processes [100].

These signals are transmitted from one neuron to another via specialized

13
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inter–neuron connections called synapses. Synapses are key functional el-

ements of the brain as they form modifiable communication channels be-

tween neurons [174]. This modifiability provides the possibility of changing

the strength or patterns of neuro–electrical signals. This key feature pro-

vides the infrastructure for crucial brain functions such as learning and

memory. The web between neurons form densely connected networks. To

understand better the structural complexity of the neural networks, it is

worthwhile to emphasize that the brain has around 1011 neurons each of

which with up to ∼ 104 connections.

A typical neuron is composed of a cell body or soma, dendrites, and an

axon (see Figure 2.1). The electrical signals are received by the dendrites,

integrated at the soma, and transmitted to the synaptic terminals via the

axon. The signals that are transmitted along the axon are called action

potentials and the received signals at dendrites are called post–synaptic po-

tentials. Neurons are classified to several categories based on their struc-

tural properties. Purkinje neurons, Pyramidal neurons, Granule neurons,

and Spindle neurons are examples of neuron types in the brain.

Axons are generally wrapped in a fatty insulating cover called myelin.

Myelin is white, thus, the area of the brain that includes axons appears

white, hence, it is known as white matter [see Figure 2.2(A)]. In contrast the

area that contains the cell bodies of neurons and dendrites appears darker

and it is called the gray matter. The gray matter forms the human cerebral

cortex which is divided into left and right hemispheres along the sagittal

plane. The types of neurons in the gray matter divide the cerebral cortex

into six layers [see Figure 2.2(B)]: 1) molecular layer, 2) external granular

layer, 3) external pyramidal layer, 4) internal granular layer, 5) internal

pyramidal layer, and 6) polymorphic layer. The human cerebral cortex is

coarsely segmented into four lobes in each hemisphere [see Figure 2.2(C)]:

1. Occipital Lobe: The occipital lobe contains primary visual cortex (also
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Figure 2.1: The structure of a typical neuron [206]. The electrical signals are received by

the dendrites, processed at the soma, and transmitted to the synaptic terminals via the

axon.

called as V1 area or striate cortex) which processes the low–level vi-

sual features such as local orientation and spatial frequency. Primary

visual cortex is followed up by the ventral stream (V2 and V4 areas),

and the dorsal stream (V3, and V5 areas). The ventral stream pro-

cesses important information regard the identification of stimuli while

the dorsal stream focuses more on the spatial aspects of motor actions

in response to visual stimuli.

2. Parietal Lobe: The parietal lobe plays important roles in integrating

sensory information, e.g., visuo–spatial processing, and language.

3. Temporal Lobe: The temporal lobe consists several sub–areas which

are involved in associating meanings to the sensory inputs such as

visual and auditory stimuli, language comprehension, and emotion

processing.

4. Frontal Lobe: The frontal lobe is responsible for voluntary movement
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Figure 2.2: (A) The organization of the white and gray matter in the human brain.

(B) The six layers of the gray matter. (C) The division of human cerebral cortex into

occipital, parietal, temporal, and frontal lobes [204].

and performs some high–level cognitive functions such as attention,

short–term memory, emotions, and planning.

2.2 Magnetoencephalography (MEG)

2.2.1 History and Mechanisms

Nowadays, neuroimaging methods that allow to explore the brain func-

tions within the millisecond time scale provide exceptional opportunity to

unveil temproal patterns of neural activity [68,75,77–79,150]. Up to now,

only electroencephalogram (EEG) and magnetoencephalogram (MEG) can

non–invasively record neural activity at such a high temporal resolution.

These methods allow for real–time tracking of brain activation sequences

during sensory processing, motor planning and action, cognition, language

perception and production, social interaction, and various brain disor-

ders [73, 74,76,188].

According to Maxwell’s equations, the post–synaptic electrical current

resulting from synaptic transmission produces a magnetic field. Therefore
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the magnitude of the resulting magnetic field can be used as an indica-

tor for the activation of population of neurons. The weak neuro–magnetic

fields outside the human scalp were first measured by David Cohen in

1968 [37] using a copper induction coil. The weakness of the cortical mag-

netic fields, which are on the order of 10-103 femtotesla (fT), compared

to the environmental noise led to the invention of superconducting quan-

tum interference device (SQUID) [222]. Cohen used a heavy magnetically

shielded room and a single SQUID detector to show that MEG can capture

the brain’s alpha rhythms similarly as EEG [38]. Currently, MEG devices

contain around 300 SQUIDs arranged in a helmet–shaped array that cover

the whole human scalp [see Figure 1.1(B)].

Measuring the magnetic fields around the scalp provides an exceptional

technique to investigate the cognitive function of different brain regions

especially within cortical sulci that are barely observable even with in-

vasive intracranial brain recording techniques. The majority of magnetic

field measured by SQUID are produced by the parallel pyramidal cells that

are perpendicular to the cortical surface. Their electrical current flow is

directed perpendicular to the cortical sheet of the gray matter. Thus mag-

netic fields resulting from the synchronized tangential neural activity across

a population of pyramidal neurons can be sensed via SQUIDs outside the

head (see Figure 2.3).

In modern MEG devices, the temporal and spatial sampling frequency

is designed based on the multidimensional generalization of Nyqvist crite-

rion to avoid any spatio–temporal aliasing [6]. The temporal and spatial

sampling rate are generally ∼ 1000 and ∼ 300, respectively. The ∼ 300

spatial sampling rate stands for ∼ 300 MEG sensors which could be dif-

ferent from one device to another. For example CTF MEG 1 and Electa

1See http://www.ctfmeg.com/.

http://www.ctfmeg.com/
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Figure 2.3: The radial magnetic fields resulting from the tangential electrical currents can

be measured outside the scalp [205].

Neuromag 2 systems have 275 and 306 sensors, respectively. The MEG

sensors, depending on the type of the corresponding flux transformer, i.e.,

a device that transforms the magnetic field to SQUID, are categorized into

three main types [68]: 1) magnetometer, 2) axial gradiometer, and 3) pla-

nar gradiometer. Magnetometer sensors, with a single coil, measure only

one component of the magnetic field [see Figure 2.4(A)]. Axial gradiome-

ters consist of two vertically connected coils with opposite directions, thus,

these sensors are insensitive to homogeneous fields and therefore to most of

environmental noise [see Figure 2.4(B)]. Planar gradiometers consist of two

twisted magnetometers placed next to each other and measure the gradient

of the magnetic field in a plane roughly tangential to the head surface [see

Figure 2.4(C)].

Even though the effect of environmental noise can be alleviated to some

degree with astute design of flux transformers, the recorded MEG signal

is often contaminated with artifacts. Eye blinks, eye movements, cardiac

2See https://www.elekta.com/diagnostic-solutions/elekta-neuromag-triux.html.

https://www.elekta.com/diagnostic-solutions/elekta-neuromag-triux.html
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(A) (B) (C)

Figure 2.4: Types of flux transformers in MEG sensors [68]: (A) Magnetometer, (B) Axial

gradiometer, (C) Planar gradiometer.

activity, and muscular activity are examples of biological artifacts in MEG

signal. These artifacts can be partially rejected using band–pass frequency

filtering or using blind–source separation methods such as independent

component analysis (ICA) [94].

2.2.2 Data Analysis

Time–Domain Analysis

One of the most common methods for analyzing the EEG/MEG signals

is to compute the average event–related potential/fields (ERP/ERF) [71].

ERP/ERFs are suitable for investigating the neuronal correlates of specific

transient external stimuli [125]. In addition, abnormality in ERP/ERF

components can be used as a clinical biomarker for diagnosing neurologi-

cal diseases such as Alzheimer’s [27], Parkinson’s [163], and multiple scle-

rosis [159].

The main idea behind computing the ERP/ERF is to increase the

signal–to–noise ratio (SNR). Due to the internal (such as background brain

activity and other biological interference) and external (electromagnetic

interference by the light sources, electricity, and peripheral devices) noise
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contaminations, the single trials of EEG/MEG data suffer from low SNR.

One simple solution to address this problem is to compure ERP/ERF by

averaging many trials in order to cancel out the random uncorrelated noise

components [171]. The averaging operation is based on three main assump-

tions: 1) the noise components are uncorrelated with the signal of interest;

2) the signal of interest is time–locked, i.e., it has a fixed latency with

respect to the stimulus onset. This type of time–locked response is also

called as the evoked response in the literature; 3) the noise components

have a zero–mean Gaussian distribution with variance of σ2. This ap-

proach is generally known as a time–locked analysis and is available within

common EEG/MEG data analysis toolboxes such as Filedtrip [153], MNE–

Python [61], and EEGLAB [47].

One possible approach to interpret ERP/ERF responses is to categorize

them based on their amplitude and latency [171]. ERP/ERF responses

are divided into positive and negative based on the sign of their ampli-

tudes. The P100, P200, and P300 are examples of well–known positive

components that are evoked around 100, 200, and 300 ms after the stimulus

onset, respectively. The P100 is typically modulated by attention in the

extrastriate cortex and in response to visual stimuli [193]. The P200 com-

ponent is involved in cognitive processes such as working memory [116]

and semantic processing [53]. The P300 indicates higher cognitive pro-

cesses and occurs in response to a variety of sensory stimuli such as visual,

tactile, and auditory [161]. Due to its robustness, the P300 has some ap-

plications in the BCI context [158]. The N100 and N170 are examples

of negative ERP/ERF components that are generally elicited in response

to auditory [141] and human face [19] stimuli, respectively. Figure 2.5

illustrates schematically some well–known ERPs.
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Figure 2.5: A schematic illustration of some well–known ERPs.

Time–Frequency Analysis

In computing the evoked ERP/ERF in response to external stimuli/events,

one of the main assumptions is that the signal of interest is time–locked.

But in fact brain responses are not always time–locked to the stimulus

onset, and the timing might change slightly from one epoch to another.

These jitters in time result in cancellation of positive and negative signal

components when averaging the epochs. This situation might happen also

in case of induced responses, i.e., when the response is time–locked but

not phase–locked. An example for this kind of responses is Gamma os-

cillation in complex stimulus processing [182]. One possible approach to

overcome this problem is to compute the frequency power spectrograms by

transferring the signal from time domain to the time–frequency domain.

Short–time Fourier transform (SFT) and wavelet transform are two com-

mon methods for calculating time–frequency representations of EEG/MEG
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signals [68]. The computation is generally performed by calculating the

spectral power of different frequency bands on a sliding interval of the sig-

nal. The length of intervals can be considered fixed for different frequency

bands. An alternative and more effective approach is to decrease the in-

terval length by increase in frequency. The analysis can be enhanced using

the multitaper technique [136] which allows for a better control of time

and frequency smoothing and reduces spectral leakage.

Source–Space Analysis

The electrical/magnetic brain activity is recorded via EEG/MEG sensors

placed around the head. In sensor–space EEG/MEG data, each sensor

records the electrical/magnetic activity from several sources in the brain.

The goal of transferring the sensor–space data to the source–space is to

estimate the source of brain activity based on the signals measured out-

side the head. Although the EEG/MEG data are measured simultaneously

with several sensors, transforming the data to the source–space is an ill–

posed problem without a unique solution. This problem is known as the

inverse problem [68] in the context of EEG/MEG data analysis. One pos-

sible solution to derive valuable information on source distribution of brain

activity is to include additional physiological information in order to put

some constraints on the inverse problem. There are two main directions

toward addressing the inverse problem:

1. Parametric source models: These approaches make some specific

assumptions on the number and locations of focal sources. Generally,

it is assumed that there are few active sources and their number, lo-

cations, and orientations are estimated iteratively e.g., by using stan-

dard nonlinear least–squares optimization methods [130], until the

predicted electric potential or magnetic field is sufficiently close to the

measured one. The equivalent current dipole model [69] and multi-
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ple signal characterization [139] are two common parametric source

estimation approaches.

2. Distributed dipole models: Unlike parametric approaches, the

dipole distribution models make little assumptions on the parame-

ters of the source model, instead they try to extract the characteris-

tics of the data distribution in source–space in a data–driven manner.

To this end, distributed dipole models assume that the sources are

distributed within a volume or on a surface and then use various esti-

mation techniques to find out the most plausible source distribution.

Linear minimum–norm estimation [70] is an example of these meth-

ods.

2.3 Statistical Hypothesis Testing

The falsifiability is an indispensable principle of any scientific hypothe-

sis [162]. The falsifiability means that before any scientific hypothesis is

accepted as a theory, it must be inherently disprovable. In fact, the falsifia-

bility provides the possibility of replacing an old theory by an enhanced one

with more generalization. Statistical hypothesis testing provides a frame-

work to measure the degree of falsifiability of a probabilistic hypothesis. In

this section, we review the basic concepts behind the classical hypothesis

testing approaches with focus on applications in neuroimaging.

2.3.1 Classical Hypothesis Testing

A scientific hypothesis is a proposed explanation for a general behavior

of a particular phenomenon that is made based on limited observations.

The validity of any scientific hypothesis is evaluated by means of statistical

hypothesis testing, also known as confirmatory data analysis. Statistical
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hypothesis testing can be performed by adopting either a frequentist or

Bayesian approach.

Frequentist Framework

In the frequentist approach, the falsifiability of a hypothesis is measured

by computing the probability of erroneous inference by replicating the

experiment. There are two major schools of thoughts in frequentist ap-

proach [21,117,119,152]:

1. Significance Testing (Fisher’s method): Ronald Fisher for the

first time introduced the concept of significance testing in statistics [55].

The Fisher’s procedure for significance testing is as follows [see Fig-

ure 2.6(A)]:

i . Setting up the null hypothesis H0. The aim of the experiments

is to prove that the null hypothesis is false.

ii . Choosing an appropriate test statistic T to summarize the data

in real numbers.

iii . Deriving the null distribution p(T | H0) analytically or by re-

sampling.

iv . Collecting the experimental data and calculating the test statis-

tic in the observed data To.

v . Computing the p-value = p(T ≥ To | H0).

vi . Reporting the p-value as a measure of evidence against H0.

2. Hypothesis Testing (Neyman–Pearson’s Method): is intro-

duced first time in a paper by Jerzy Neyman and Egon Pearson in

1933 [145]. The Neyman–Pearson approach is applicable when the

problem can be explained in the form of two disjointed hypotheses
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(A) Significance Testing (B) Hypothesis Testing

Figure 2.6: Frequentist frameworks in classical hypothesis testing: (A) Fisher’s method

for the significance testing. (B) Neyman–Pearson’s method for the hypothesis testing.

and a meaningful cost/benefit trade–off can be set between the two.

The whole procedure can be summarized as follows [see Figure 2.6(B)]:

i . Setting up two simple complementary hypotheses: the null H1

and the alternative H2 hypothesis. The aim of the test is to see

whether we can reject H1 in favor of H2.

ii . Choosing an appropriate summary of the data based on a test

statistic T .

iii . Deciding critical value α, so called the Type I error rate or

false positive rate, and the sample size n. The α is a parameter

that specifies the probability of false alarms, i.e, the probability

of rejecting the null hypothesis when it is true.

iv . Computing the power of test for a given α and statistics T . The

power of the test is 1 − β, where β is the Type II error rate or

false negative rate.

v . Computing the rejection region R on T . The rejection region is

the range of values in T where the null hypothesis is rejected.

vi . Running the experiment and computing the statistic To on the

observed data.
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vii . Rejecting H1 and accepting H2 if To ∈ R, accepting H1 and

rejecting H2 if To /∈ R.

It is worthwhile to emphasize that failing to reject the H1 in hypothesis

testing must not be interpreted as the correctness of the null hypothesis,

but it just shows a lack of evidence against it [147].

Bayesian Framework

Bayesian framework is an alternative for the frequentist approaches in sta-

tistical hypothesis testing [147]. In contrary to the frequentist approaches

that test the data given the hypothesis, in Bayesian hypothesis testing we

test the hypothesis given the data. The procedure for general Bayesian

hypothesis testing for two alternative hypotheses can be summarized as

follows:

1. Set up two mutually exclusive hypotheses, H1 and H2.

2. Run the experiment and collect the data D.

3. Use prior knowledge to specify the prior probabilities p(H1) and p(H2)

where p(H1) + p(H2) = 1.

4. Specify the likelihood functions to model the data given the hypothe-

ses: p(D | H1) and p(D | H2).

5. Compute the posterior probability of each hypothesis using the Bayes

rule: p(Hi | D) = p(D|Hi)p(Hi)∑2
j=1 p(D|Hj)p(Hj)

.

6. Test the hypothesis using one of the following approaches:

i . Maximum a posteriori (MAP) approach: we accept H1 if p(H1 |
D) > p(H2 | D) and vice versa.

ii . Bayes factor (BF) approach: we compute the BF as p(D|H1)
p(D|H2) . The

resulting BF can be interpreted based on Table 2.1 [95,101].
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Table 2.1: Interpretation of the Bayes factor.

Bayes Factor (BF) Evidence

< 1 Negative (H1 is rejected and H2 is accepted)

1 to 3 Barely worth mentioning

3 to 10 Substantial (in favor of H1)

10 to 30 Strong (in favor of H1)

30 to 100 Very strong (in favor of H1)

> 100 Decisive (in favor of H1)

2.3.2 Mass–Univariate Hypothesis Testing on MEG data

The recorded MEG data represent the neural sources in space, time, and

frequency domains; thus, the data contain spatio–temporal correlated struc-

tures. Therefore, an ideal approach for hypothesis testing on MEG data

should consider the full range of spatio–temporal information. However,

the common statistical hypothesis testing approaches on MEG data [48] fail

to fully get advantage of these spatio–temporal information [64]. This fact

motivates exploring new methods for statistical testing on high–dimensional

data. Mass–univariate hypothesis testing is an effective approach in this

direction, and it can be used to simultaneously perform a large number of

univariate tests on whole spatio–temporal variables. In MEG data analy-

sis, the mass–univariate hypothesis testing can detect the underlying neu-

rophysiological effects with greater temporal and spatial details compared

to the conventional priori–based analysis. Therefore, it is preferable to

conventional analysis in exploratory studies on neuroimaging data where

little is known in advance about when, where, and how an effect will occur.

Despite its effectiveness, mass–univariate hypothesis testing suffers from

multiple comparisons problem (MCP). The MCP occurs in statistical hy-

pothesis testing when a set of statistical inferences are simultaneously per-

formed [134]. For example the MCP arises when we test concurrently a
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hypothesis on several data dimensions, e.g., on several MEG sensors. The

MCP increases the chance of commiting the Type I error, thus, ignoring

the MCP poses a threat on the reliability of multiple statistical testing [15].

Several techniques are proposed for correcting the results of multiple statis-

tical tests. These approaches can be classified into two main categories: 1)

controlling the family–wise error rate, and 2) controlling the false discovery

rate.

1. Controlling the Family–Wise Error Rate: The family–wise error

rate (FWER) is the probability of making at least one Type I error in

multiple–hypothesis testing. There are several methods to strongly or

weakly control the FWER such as Bonferroni correction, step–down

procedure [92], step–up procedure [91], and non–parametric cluster–

based permutation tests [127].

2. Controlling the False Discovery Rate: The false discovery rate

(FDR) is defined as the expected proportion of false discoveries to all

discoveries [16]. Here a discovery refers to the rejection of the null

hypothesis. Controlling the FDR is less restrictive than controlling

the FWER, thus, it provides more statistical power but increases the

Type I error rate. So far several methods have been proposed in

the literature for controlling the FDR such as controlling the FDR

under dependency [18], positive FDR [177], and adaptive linear step–

up procedures [17].

Being essential for validity of results, on the down side, both strong

control of FWER and controlling FDR reduce the statistical power of mass–

univariate analysis. One possible approach to alleviate this problem is to

weakly control the FWER, which guarantees the control of FWER in case

there are no experimental effects [146]. The cluster–mass test [31] is a

possible method in this direction. This method was first adopted by Maris
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and Oostenveld [127] for non–parametric cluster–based permutation test

on MEG data. The intuitive idea behind the cluster–based permutation

test is that if a group of significant tests are clustered meaningfully in

space, time, and frequency then the chance of committing the Type I error

decreases. This method can be summarized as the following steps [64,127]:

1. Combine the MEG trials of the two experimental conditions A and B

in a single dataset D.

2. Compute a random partition of D into A and B, D′, by randomly

permuting the trials.

3. For all the independent variables of D′ in time and space (e.g., each

time–bin of each sensor), compute the statistic T , e.g., t–statistic.

4. Ignore all variables with T statistic below a certain threshold. The

threshold is decided based on the pre–specified α and the probability

distribution of T .

5. Cluster the remaining independent variables that are adjacent in time

and space.

6. Compute the cluster–level statistic Tc for each cluster, for example by

summing up the statistics in each cluster.

7. Save the largest cluster level statistic as Tmax.

8. Repeat the steps 2–7 to construct the null hypothesis of cluster–level

statistics on the randomly partitioned data.

9. Perform steps 3–6 on D and save the cluster–level statistic for each

cluster in T ∗.

10. Use the Montecarlo method on the null hypothesis derived in step 8

to derive the p-value for each cluster obtained in step 9. The p-value
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is computed by computing the proportion of Tmax that are larger than

T ∗.

11. The cluster–level p-value is assigned to the all variables in that cluster.

The p-value of ignored variables (not involved in any cluster) are set

to 1.

In spite of its higher statistical power, the non–parametric cluster–based

permutation test suffers from three main limitations: 1) since it weakly

controls FWER, it is not reliable for explaining the exact spatio–temporal

pattern of the underlying effect. This shortcoming makes this method

more appropriate for understanding whether an effect is present in data

rather than finding out exactly when and where the effect occurs [127]; 2)

it is not sensitive enough to detect narrowly distributed effects in time and

space [64,65]; 3) due to its univariate nature, it does not benefit from mul-

tivariate and distributed patterns across different sensors, frequency bands,

and time scales. These limitations motivate exploring new approaches with

higher sensitivity and specificity that enable researchers to find the exact

discriminative source of neural correlates across different experimental con-

ditions.

2.4 Statistical Learning Theory

Statistical learning theory provides an alternative for classic statistical hy-

pothesis testing approaches. In the following text we briefly introduce the

basic concepts in the statistical learning theory that are used in the rest of

this thesis.
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2.4.1 From Maximum a Posteriori to Risk Minimization

In the supervised statistical learning framework, the main aim is to learn a

function Φ∗ : X → Y , where X = Rp and Y represent the input and output

spaces, respectively. In practice, the learning process is performed on the

sampled data S = {(X, Y ) | X ⊂ X , Y ⊂ Y} by approximating ΦS : X→
Y , the so called the regression function, among a family of functions H.

Here X ∈ Rn×p and Y ∈ Rn are n independently and identically distributed

(iid) samples drawn from the joint distribution of Z = X × Y ; based on

an unknown Borel probability measure ρ and ∀x ∈ X we have [43]:

ΦS(x) =

∫
y∈Y

y dρ(y | x). (2.1)

The probability measure ρ can be split into ρ(Y | X) and ρX [43].

Unlike the marginal distribution of X, i.e., ρX, which is known in some

cases, ρ and ρ(Y | X) are unknown in advance. Therefore, the goal of

learning is to estimate the predictive conditional density ρ(Y | X) by

training a parametric model ρ(Y | X,Θ) where Θ denotes the parameters

of the learning algorithm. In general, the parameters can be estimated

by maximizing the posterior probability ρ(Θ | X) using the maximum a

posteriori (MAP) estimate:

Θ̂ = argmax
Θ

ρ(Θ | X) ∝ argmax
Θ

ρ(X | Θ)ρ(Θ). (2.2)

The above maximization problem can be converted to the equivalent

risk minimization problem by computing the negative log–likelihood:

argmax
Θ

ρ(X | Θ)ρ(Θ) = argmin
Θ
− log(ρ(X | Θ))− log(ρ(Θ))

≡ argmin
Θ
L(Y,Φ(X)) + λΩ(Θ)

(2.3)



32 Background

where L : Y × Y → R+
0 is the loss function, Ω : Rp → R+ is the regular-

ization term, and λ ≥ 0 is a hyper–parameter that controls the amount of

regularization. It is worthwhile to emphasize that in the learning paradigm

presented in Eq. 3.1, we try to estimate ΦS (and not Φ∗) on the sampled

data by solving an optimization problem in H. The irreducible error [81]

ε ∈ Rn is the direct consequence of this approximation and provides a

lower bound on the error of a model and we have:

ΦS(X) = Φ∗(X) + ε. (2.4)

The assumption on the distribution of ε drives the motivation behind

the choice of the loss function L [211]. For example if we assume ε to have

a Gaussian distribution with mean 0 and variance σ2, we have the least

squares loss function of Eq. 3.1 as

Θ̂ = argmin
Θ

1

2
‖Y − Φ(X)‖2

2 + λΩ(Θ). (2.5)

Table 2.2 summarizes some popular choices for the loss function L.

Table 2.2: Some popular examples of the loss function.

Name Loss

Least–squares loss 1
2
‖Y − Φ(X)‖2

2 = 1
2

∑n
i=1(yi − Φ(xi))

2

Logistic loss
∑n

i=1 log(1 + exp(−yiΦ(xi)))

Hinge loss
∑n

i=1 max(0, 1− yiΦ(xi))

2.4.2 Bias–Variance Decomposition of Error

As mentioned before, the aim of statistical learning is to find the best

approximation of ΦS among a family of functions H, so called hypothesis
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space. Limiting the search space to H poses a restriction on finding the

best match because H might or might not include ΦS or even Φ∗. Thus,

considering this limitation the aim of learning reduces to finding ΦH ∈
H, so called the target function, as the best empirical approximation of

ΦS. For example, setting H to a set of linear functions is a very common

assumption in applying statistical learning framework on neuroimaging

data. Let Φ̂ ∈ H be the empirical approximation of the target function ΦH

on the training set S where

Φ̂ = argmin
Φ∈H

L(Y,Φ(X)). (2.6)

Then the expected prediction error (EPE) associated with Φ̂, denoted

by EΦ̂, can be computed by summing up three main contributing factors:

EΦ̂ = E(ΦH) + EH(Φ̂) + ε =

∫
x∈X
L(Φ∗(x), Φ̂(x)) (2.7)

where E(ΦH) =
∫
x∈X L(ΦS(x),ΦH(x)) is generally known as the approxi-

mation error or the bias of a model. It depends strongly on the choice of

the hypothesis space H. The second term EH(Φ̂) =
∫
x∈X L(ΦH(x), Φ̂(x)) is

known as the sample error or equivalently the variance of a model which

is highly dependent on the samples in S. Fixing H, the variance of the

model decreases by increasing the number of samples n. Enlarging the

hypothesis space H reduces the bias but has a negative effect on the vari-

ance of the model and vice versa. The relation between the sampling size

and the size of the hypothesis space and their effect on the final error

is typically referred as the bias–variance trade–off [58]. The last term

ε =
∫
x∈X L(Φ∗(x),ΦS(x)) is called irreducible error which provides the

lower bound on the error and cannot be reduced in the learning process.
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Figure 2.7: The components of the error and the effect of regularization on the bias and

variance of a model [81].

Figure 2.7 schematically illustrates the relation between the components

of the error.

2.4.3 Regularization

The size and complexity of H can also be controlled by the choice of the

regularization term Ω. This term, by putting prior assumptions on the

distribution of parameters ρ(Θ), enforces prior knowledge into the learning

process. In other words, regularization reduces the search space to H′ ⊂ H
based on prior knowledge on the distribution of parameters. This reduction
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Table 2.3: Some popular choices for Ω. Here θi is used to refer to the ith element of the

parameter vector Θ.

Name Ω(Θ) Description

`2 penalty
∑p

i=1 θ
2
i Computes squared `2-norm of the weight vectors.

`1 penalty (Lasso) [185]
∑p

i=1 |θi| Computes `1-norm of the weight vectors.

Elastic–net [223] (1− α)
∑p

i=1 θ
2
i + α

∑p
i=1 |θi| Combines `2 and `1 penalization using α coefficient as an extra hyper–parameter.

Group Lasso [96]
∑

g∈G
∑|g|

i=1 θ
2
i Divides the parameters into groups G and computes the `1-norm over `2-norms of grouped parameters.

Fused Lasso [186]
∑p−1

i=1 |θi+1 − θi| Computes the `1-norm on the difference between successive parameters.

decreases the variance of the model by the cost of increasing the bias (see

Figure 2.7). As a consequence, the chance of overfitting on the training

samples decreases especially when n � p. Table 2.3 summarizes some

popular choices for Ω.

2.4.4 Bias–Variance Decomposition in Binary Classification

A binary classification problem is a special case of statistical learning

problem where Y is categorical with two possible values, for example

Y ∈ {−1, 1}. Since in this case, the loss function reduces to a 0/1-loss

(e.g., logistic loss or hinge loss), computing the components of EPE is dif-

ferent from the general regression case. One possible approach to compute

the bias–variance decomposition of the error is by using the out–of–bag

(OOB) technique [49, 189]. The OOB employs bootstrapping repetitions

to perturb the training set and draw several training and validation sets.

The perturbed data are used to compute the EPE for an estimated binary

classifier Φ.

Let m be the number of perturbed training sets resulting from parti-

tioning S = (X, Y ) into Str = (Xtr, Ytr) and Svl = (Xvl, Yvl), i.e., training

and validation sets. If Φ̂j is the binary classifier estimated from the jth

perturbed training set, then the main prediction Φµ(xi) for each sample in

the dataset can be computed as follows:
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Φµ(xi) =

{
1 if 1

ki

∑ki
j=1 Φ̂j(xi) ≥ 1

2

0 otherwise
(2.8)

where ki is the number of times that xi is present in the test set3. In fact

the main prediction Φµ provides an estimate of the target function ΦH.

The computation of bias is challenging because the optimal model Φ∗

is unknown. The misclassification error is one of the loss measures that

satisfies a Pythagorean–type equality [184], where

1

n

n∑
i=1

L(Φµ(xi),Φ
∗(xi)) =

1

n

n∑
i=1

L(yi,Φ
µ(xi))−

1

n

n∑
i=1

L(yi,Φ
∗(xi)). (2.9)

Because all terms of the above equation are positive, the mean loss

between the main prediction and the actual labels can be considered as an

upper–bound for the bias, therefore we have

1

n

n∑
i=1

L(Φµ(xi),Φ
∗(xi)) ≤

1

n

n∑
i=1

L(yi,Φ
µ(xi)). (2.10)

Then, a pessimistic approximation of bias B(xi) can be calculated as:

B(xi) =

{
0 if Φµ(xi) = yi

1 otherwise
. (2.11)

Then, the unbiased and biased variances (see Ref. [49] for definitions)

in each training set can be calculated by:

V j
u (xi) =

{
1 if B(xi) = 0 and Φµ(xi) 6= Φ̂j(xi)

0 otherwise
(2.12)

3It is expected that each sample xi ∈ X appears (on average) ki ≈ m
3 times in the test sets.
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and

V j
b (xi) =

{
1 if B(xi) = 1 and Φµ(xi) 6= Φ̂j(xi)

0 otherwise
. (2.13)

The expected prediction error of Φ can be computed as follows (ignoring

the irreducible error):

EPEΦ(X) =
1

n

n∑
i=1

B(xi)︸ ︷︷ ︸
Bias

+
1

nm

m∑
j=1

n∑
i=1

[V j
u (xi)− V j

b (xi)].︸ ︷︷ ︸
V ariance

(2.14)

2.4.5 Multi–Task Learning

Basic Concepts: Domain, Task, and Transfer Learning

The aim of this section is to provide the notation needed for the formal

definition of multi–task learning. To this end, we briefly introduce basic

concepts such as domain, task, and transfer learning.

In the context of statistical learning theory, a domain D = {X , ρX} is

defined as a possible conjunction between an input space X and a marginal

probability distribution ρX. As an example in the neuroimaging context,

in the multi–modal brain imaging (where several imaging techniques, e.g.,

fMRI and EEG, are simultaneously used) each modality represents a do-

main. Given a domain D, a task T = {Y ,Φ} is defined as a predictive

function Φ from D to the output space Y . For example, assume we record

the brain activity when the subjects observe visual stimuli in different

shapes and colors. Then, predicting the shape or the color of a particular

stimulus from the recorded signal can be considered as two different tasks.

In the statistical learning theory the goal is to learn a task T in a certain

domain D. Assume DS, DT , TS, and TT represent the source domain, target
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domain, source task, and target task, respectively. Transfer learning aims

to benefit from the knowledge in the source domain and task in order to

improve the predictive power in the target domain when DS 6= DT , or

TS 6= TT . Depending on the last condition, supervised transfer learning is

categorized into two major branches [155]:

1. Inductive Transfer Learning: The necessary condition in induc-

tive transfer learning is TS 6= TT , thus the relation between DS and DT
does not matter. Further, in inductive transfer learning it is required

to have some labeled data in DT in order to learn ΦT in the target

domain. The goal of inductive transfer learning is to incorporate ad-

ditional information in source domains and tasks in order to improve

the generalization performance on the target task.

2. Transductive Transfer Learning: In transductive transfer learn-

ing, we have TS = TT while DS 6= DT . Further, it is assumed that

unlike the source domain there are no labeled data available in DT .

Multi–Task Learning

In order to solve a real–world problem, in general we need to deal with

multiple related sub–problems, i.e., tasks. A trivial approach is to solve

these problems independently, and ignore the useful shared information

across tasks. This single–task learning (STL) approach yields sub–optimal

solutions especially when few samples are available for each task. Multi–

task Learning (MTL) is an inductive transfer learning approach that tries

to improve the generalization performance of models by promoting infor-

mation sharing across different related tasks [35]. The learning process in

MTL is based on simultaneous training of several models, each of which

for one task. In addition, learning multiple related tasks simultaneously

effectively increases the sample size for each task. Thus, MTL is especially
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(A) Single-Task Learning (B) Multi-Task Learning

Figure 2.8: (A) In single–task learning the predictive functions are learned independently

across subject, while (B) multi–task learning provides the possibility of sharing informa-

tion across different tasks in the learning process.

advantageous over STL when there is a limited number of training samples

available for each task.

Assume D1,D2, . . . ,DK and T1, T2, . . . , TK be K corresponding pairs of

domain–task. In MTL, the empirical risk minimization problem in Eg. 3.1

is reformulated as follows:

Θ̂ = argmin
Θ

K∑
k=1

L(Yk,Φ(Xk)) + λΩ(Θ) (2.15)

where Xk ∈ Rnk×p represents the nk samples in input space from domain

Dk and under the probability distribution ρXk
, and Yk ∈ Rnk is the output

space from task Tk. The parameters of the model Θ̂ are estimated by par-

allel minimization of the loss functions across different tasks. Unlike the

common STL approach, where the predictive functions are learned inde-

pendently across tasks, the parallel optimization in MTL provides the pos-

sibility for exchanging useful information among tasks. Figure 2.8 schemat-

ically illustrates this advantage of MTL over STL.
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Learning Structures in Multi–Task Learning

The simultaneous learning and information sharing across tasks provides

another important advantage for MTL which is the possibility of learn-

ing the structures in input or output spaces. Here the structure refers

to a certain relational arrangement, e.g., correlation, between different di-

mensions of input spaces, i.e., features, or output spaces across the tasks.

Therefore the related samples are no longer iid and the standard statistical

learning approaches that assume independence between samples, are sub–

optimal. MTL overcomes this problem as it provides the infrastructure

to learn structures in input and output spaces. In formulation of the em-

pirical risk minimization problem for MTL (Eq. 2.15), the regularization

term Ω provides the possibility of learning the structures in the parame-

ter space. Several studies investigated different regularization schemes for

learning the structures in the MTL framework. Here we briefly explain

three possible options in this direction:

1. Joint Feature Learning: Joint feature learning enables the model

to capture a sparse set of features that are common across different

tasks. To this end, it employs the idea of group sparsity via `2,1

regularization [8, 9, 124,148] where

Ω(Θ) = ‖Θ‖2,1 =
K∑
k=1

‖Θk‖2 . (2.16)

Here Θ ∈ Rp×K is assumed to be the matrix of parameters, and Θk

refers to its kth columns.

2. Graph Encoding: In this scheme it is assumed that the relationships

between tasks can be encoded in the form of a graph where each task is

a node and there is an edge between two nodes if two tasks are related.
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It is beneficial when the existing relational structures between tasks

are known in advance or they can be derived in a data–driven manner.

Let E to denote the set of edges, where each edge is represented as a

vector e(i) ∈ RK . If the ith edge connects the uth and vth nodes, then

the uth and vth elements of e(i) are set to 1 and −1, respectively. The

complete graph matrix is then constructed by concatenating the edge

vectors R = [e(1), e(2), . . . , e(|E|)] ∈ RK×|E|, and we have a graph–fused

regularization term [121]

Ω(Θ) = ‖ΘR‖2
F =

|E|∑
i=1

∥∥∥Θe(i)
∥∥∥2

2
(2.17)

where ‖.‖F denotes the Frobenius norm of a matrix.

3. Temporal Encoding: In some applications, there are temporal struc-

tures in the feature space across different tasks. Longitudinal study

on disease progression is an example of these applications [221] where

a variety parameters are repeatedly measured in a period of time for

a patient. In this configuration, the prediction of the value of the dis-

ease status at one time point can be considered as a task. In order to

consider the temporal dependency between tasks, the regularization

term should be able to encode the temporal structures in the sequence

of measurements, and we have [221]

Ω(Θ) =
K−1∑
k=1

‖Θk −Θk+1‖2
F . (2.18)





Chapter 3

Interpretability in Linear Brain

Decoding

3.1 Introduction

Understanding the mechanisms of brain function has been a crucial topic

throughout the history of science. Modern cognitive science, emerging in

the 20th century, provides better insight into the functions of brain. In

cognitive science, researchers usually analyze recorded brain activity and

behavioral parameters to discover the answers of where, when, and how a

brain region participates in a particular cognitive process.

To answer the key questions in cognitive science, scientists often employ

mass–univariate hypothesis testing methods (see Section 2.3.2) to test sci-

entific hypotheses on a large set of independent variables [64, 126]. Mass–

univariate hypothesis testing is based on performing multiple tests, e.g.,

t–tests, one for each unit of the neuroimaging data, i.e., independent vari-

ables. The high spatial and temporal granularity of the univariate tests

provides a fair level of interpretability. On the down side, the high di-

mensionality of neuroimaging data requires a large number of tests that

reduces the sensitivity of these methods after multiple comparison correc-

tion [32]. Although techniques such as the non–parametric cluster–based

43
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permutation test [31, 127], by weak control of family–wise error rate, of-

fer more sensitivity, they still experience low sensitivity to brain activity

that are narrowly distributed in time and space [64, 65]. The multivariate

counterpart of mass–univariate analysis, known generally as multivariate

pattern analysis, have the potential to overcome these deficits. Multivariate

approaches, by employing the principles behind statistical learning theory

(see Section 2.4), are capable of identifying complex spatio–temporal inter-

actions between different brain areas with higher sensitivity and specificity

than univariate analysis [192], especially at the group–level [45].

Brain decoding [89] is a statistical learning approach that delivers a

model to predict the mental state of a human subject based on the recorded

brain signal. There are two applications for brain decoding: 1) brain–

computer interfaces (BCIs) [208], and 2) multivariate hypothesis testing [32].

In the first case, a brain decoder with maximum prediction power is de-

sired. In the second case, in addition to the prediction power, extra in-

formation on the spatio–temporal nature of a cognitive process is desired.

In this study, we are interested in the second application of brain decod-

ing that can be considered a multivariate alternative for mass–univariate

hypothesis testing. Further, we mainly focus on the linear brain decoding

because of its wider usage in analyzing inherently small–sample–size and

high–dimensional neuroimaging data, compared to the complex [41, 114]

and non–transparent [123] non–linear models.

In linear brain decoding, linear classifiers are used to assess the relation

between independent variables, i.e., features, and dependent variables, i.e.,

cognitive tasks [22, 118, 157]. This assessment is performed by solving an

optimization problem that assigns weights to each independent variable.

Currently, brain decoding is the gold standard in multivariate analysis

for functional magnetic resonance imaging (fMRI) [41, 86, 135, 149] and

magnetoencephalogram/electroencephalogram (MEEG) studies [3, 34, 36,
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93, 156, 167, 199]. It has been shown that brain decoding can be used

in combination with brain encoding [143] to infer the causal relationship

between stimuli and responses [202].

In brain mapping [112], the pre–computed quantities, e.g., univariate

statistics or weights of a linear classifier, are assigned to the spatio–temporal

representation of neuroimaging data in order to reveal functionally special-

ized brain regions which are activated by a certain cognitive task. In its

multivariate form, brain mapping uses the learned parameters from brain

decoding to produce brain maps, in which the engagement of different brain

areas in a cognitive task is visualized. Intuitively, the interpretability of a

brain decoder refers to the level of information that can be reliably derived

by an expert from the resulting maps. From the cognitive neuroscience

perspective, a brain map is considered interpretable if it enables a scientist

to find answers to the three key questions: “where, when, and how does a

brain region contribute to a cognitive function?”

3.1.1 Knowledge Extraction Gap in Brain Decoding

A classifier only tells what is the most likely label of a given unseen

sample [12] while it provides little information regard the underlying dis-

criminative properties. This problem is generally known as knowledge

extraction gap [198] in the machine learning context. In the context of

neuroimaging, the knowledge extraction gap in classification is generally

known as the interpretation problem [88, 142, 172]. Therefore, improving

the interpretability of linear brain decoding and associated brain maps is

an important goal in the brain imaging literature [178]. There are four

main reasons behind the lack of interpretability in multivariate brain map-

ping [7, 22,24,30,82,88,102,115,118,151,183,195,197,201]:

1. Low signal–to–noise ratio (SNR) in brain recordings [102]: Almost
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all non–invasive brain imaging methods suffer from low SNR due to

acquisition limitations and similarity in probability distribution of un-

derground unrelated brain activity with the signal–of–interest. Low

SNR generally reduces interpretability of the brain decoding model by

decreasing its accuracy.

2. The high dimensionality of whole–scalp recordings [22, 102, 104, 195]:

In brain decoding, we usually have a huge number of spatio–temporal

features (on the order of 105) while the number of samples is limited

(on the order of 102). This problem has two folds: 1) it causes the

curse–of–dimensionality problem which affects the model accuracy,

and 2) it makes the classification problem ill–posed where the num-

ber of unknown parameters is larger than the number of known data

points. Although the second problem can be mitigated using regular-

ization and sparse modeling, it still affects the interpretability of the

model by decreasing parameter stability [219]. In some studies, prior

knowledge is used to reduce dimensionality but unfortunately such

prior knowledge is not always available. This issue supports the need

for designing methods to decrease the dimensionality of the feature

space without losing task–related information [30,82,104].

3. The high correlation between different dimensions of data [83, 195]:

This problem, generally known as multicollinearity problem, reduces

the stability of the model, which leads to unjustified conclusions in

interpreting brain decoding models. When the feature space is highly

correlated, not only the model is variable from one training run to

another but also the amplitude of classifier weights is meaningless

regarding the existence of the signal–of–interest.

4. Across–subject variability [102, 151]: Across–subject decoding is a

meaningful process to make an inference at the group level. Unfortu-
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nately, training an interpretable model across subjects is technically

difficult because of variability of the underlying probability distribu-

tion of data samples from one subject to another. In practice, the

interpretability of across–subject models is lower than single subject

models because of decrease in both accuracy and stability of the brain

decoding model.

At present, two main approaches are proposed to enhance the inter-

pretability of multivariate brain maps: 1) introducing new metrics into the

model selection procedure, and 2) introducing new hybrid penalty terms

for regularization. In the following section we briefly review the current

state of the art in improving the interpretability of brain decoding models.

3.1.2 State of the Art

The first approach for improving the interpretability of brain decoding con-

centrates on the model selection. Model selection is a procedure in which

the best values for the hyper–parameters of a model are determined [118].

The selection process is generally performed by considering the general-

ization performance, i.e., accuracy, of a model as the decisive criterion.

For example, Rasmussen et al. [166] showed that there is a trade–off be-

tween the spatial reproducibility and the prediction accuracy of a classifier;

therefore, the reliability of maps cannot be assessed merely by focusing

on their prediction accuracy. To utilize this finding, the authors incor-

porated the spatial reproducibility of brain maps in the model selection

procedure. They concluded that choosing the optimal value for hyper–

parameters of the model based on the combination of reproducibility and

prediction metrics yields more interpretable brain decoding models. Us-

ing a similar methodology, in [14] the authors confirmed that accounting

for coefficient reproducibility in the model selection procedure alleviates
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the coefficient instability problem in sparse brain decoding models. An

analogous approach, using a different definition of spatial reproducibility,

is proposed by Conroy et al. [40] where the authors illustrated that mul-

tiple models with the same classification accuracy may show completely

different reproducibility level. Therefore, they proposed a model selection

approach that utilizes a combination of bootstrapping and permutation

testing to optimize both prediction accuracy and brain map reproducibil-

ity. They argue that optimizing hyper–parameters of the model in the

accuracy–reproducibility joint space results in more interpretable decod-

ing models. Elsewhere, Valverde and Moreno [190] experimentally showed

that in the classification task optimizing just classification error rate is

not enough to capture the transfer of crucial information from the input

to the output of a classifier. To alleviate the problem, the authors intro-

duced the entropy–modulated accuracy as a pessimistic estimate of the

performance of a model. Furthermore to promote the interpretability of

results, they introduced the normalized information transfer to avoid spe-

cialization in learning process. Beside spatial reproducibility, the stability

of the classifiers [26] is another criterion that is used in combination with

generalization performance to enhance the interpretability. For example,

it is shown that incorporating the stability of models into cross–validation

improves the interpretability of the estimated parameters [122,215].

The second approach to improving the interpretability of brain decoding

focuses on the underlying mechanism of regularization. The main idea be-

hind this approach is two–fold: 1) customizing the regularization terms to

address the ill–posed nature of brain decoding problems (where the num-

ber of samples is much less than the number of features) [138,197], and 2)

combining the structural and functional prior knowledge with the decoding

process so as to enhance the neurophysiological plausibility of the models.

Group Lasso [217] and total–variation penalty [186] are two effective meth-
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ods using this technique [168, 212]. The first effort in this direction was

made by Grosenick et al. [66]. To alleviate the multicollinearity problem in

fMRI data, The authors introduced sparse penalized discriminant analysis

(SPDA) for automatic selection of correlated variables. They compared

SPDA with common methods like logistic regression, linear discriminant

analysis (LDA), and linear support vector machine (lSVM). Their results

suggest that SPDA enhances the interpretability of brain decoding models

in both within and across–subject decoding scenarios. Elsewhere van Ger-

ven et al. [192] proposed a group–wise regularization method for brain de-

coding on EEG data. They motivated the incorporation of prior knowledge

into the regularization procedure by defining groups based on proximity of

features in space, time, or frequency bands. In this way, the same spar-

sity profile is shared among related features. They showed the grouping

strategy enhances the interpretability of the resulting models. In an MEG

study, de Brecht and Yamagishi [46] presented a generalization of sparse

logistic regression, called smooth sparse logistic regression (SSLR), which

combines the Laplacian prior with a multivariate Gaussian prior to pro-

duce more sparse and at the same time smooth brain maps. The multivari-

ate Gaussian prior encourages spatio–temporal smoothness and provides

similar weights for neighbouring features in time and space, therefore, it

selects spatio–temporally continuous groups of features. Their experiments

on simulated data and real MEG data illustrated that SSLR provides more

neuro–scientifically plausible brain maps. Following the idea of exploiting

the data–driven extracted prior knowledge, Gramfort et al. [62] used the

Total–Variation (TV) penalty to inject a spatial segmentation prior into

the sparse model with `1 penalty. Their proposed method, called TV-`1,

uses `1 penalization to set irrelevant features to zero and TV penaliza-

tion to segment the relevant features together. On an fMRI dataset, they

experimentally illustrated that their method provides better region recov-
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ery than other decoding and univariate brain–mapping strategies. They

concluded that their method yields brain maps in good agreement with

univariate methods like F-test while benefiting from the statistical power

of multivariate methods. Grosenick et al. [67] proposed to use structural

prior information, extracted from local smoothness or functional connec-

tivity, as a graph constraint in penalization. They proposed to combine

structured graph constraints with a global sparsity prior as a variation of

the Graph–constrained Elastic–Net (GraphNet) for interpretable whole–

brain decoding.

Recently, taking a new approach to the problem, Haufe and colleagues

questioned the interpretability of weights of linear classifiers because of

the contribution of noise in the decoding process [23, 83, 84]. To address

this problem, they proposed a procedure to convert the linear brain de-

coding models into their equivalent generative models. Their experiments

on the simulated and fMRI/EEG data illustrate that, whereas the direct

interpretation of classifier weights may cause severe misunderstanding re-

garding the actual underlying effect, their proposed transformation effec-

tively provides interpretable maps. Despite the theoretical soundness, the

intricate challenge of estimating the empirical covariance matrix of the

small–sample–size neuroimaging data [24] limits the practical application

of this method.

3.1.3 The Gap: Formal Definition for Interpretability

In spite of the aforementioned efforts to improve the interpretability of

brain decoding, there is still no formal definition for the interpretability of

brain decoding in the literature. Therefore, the interpretability of differ-

ent brain decoding methods are evaluated either qualitatively or indirectly

(i.e., by means of an intermediate property). In qualitative evaluation, to

show the superiority of one decoding method over the other (or a univari-
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ate map), the corresponding brain maps are compared visually in terms of

smoothness, sparseness, and coherency using already known facts (see, for

example, [195]). In the second approach, important factors in interpretabil-

ity, such as spatio–temporal reproducibility, are evaluated to indirectly as-

sess the interpretability of results (see for example Refs. [40,107,115,166]).

Despite partial effectiveness, there is no general consensus regarding the

quantification of these intermediate criteria. For example, in the case of

spatial reproducibility, different methods such as correlation [107,166], dice

score [115], or parameter variability [40,83] are used for quantifying the sta-

bility of brain maps, each of which considers different aspects of local or

global reproducibility.

Although there is no formal definition for the interpretability of brain

decoding models in the context of statistical learning theory, an overview of

the brain decoding literature shows frequent co–occurrence of the terms in-

terpretation, interpretable, and interpretability with the machine learning

related terms such as model, classification, parameter, decoding, method,

feature, and pattern. To experimentally illustrate this fact, we performed

a meta–analysis on 101 papers sampled from the decoding–related studies.

The AntConc 1 software was used for corpus analysis. Considering “inter-

pretability”, “interpretable”, and “interpretation” as target words, three

experiments were conducted:

1. In the first experiment, the frequency of target words were computed

in the corpus. A total number of 598 hits were reported which shows

on average ∼ 6 hits per article. This observation confirms the perva-

sive usage of these terms in the machine learning and brain decoding

contexts.

2. In the second experiment, the co–occurrence frequency of target words
1Anthony, L. (2014). AntConc (Version 3.4.3) [Computer Software]. Tokyo, Japan: Waseda Univer-

sity. Available from http://www.laurenceanthony.net/
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Figure 3.1: (A) The local co–occurrence rate of target words and machine learning re-

lated words. (B) The global co–occurrence rate of target words and common intuitive

definitions of interpretability in brain decoding.

with machine learning related terms, such as “model”, “classification”,

“parameter”, “decoding”, “method”, “feature”, and “pattern”, were

counted. In order to assess the local co–occurrence, the co–occurrence

window was defined from 10 words before to 10 words after the target

words. Figure 3.1(A) summarizes the result. The local co–occurrence

of target words with machine learning related terms shows the fact

that they are repeatedly used to assess/explain/discuss the decod-

ing models or their parameters. Further, the high frequency of co–

occurrence with “model” illustrates the fact that talking about an

“interpretable model” is very common in this context.

3. In the third experiment, the co–occurrence frequency of target words

with terms “reproducibility”, “stability”, “sparsity”, and “plausibil-

ity” were counted. These terms present some commonly used intuitive

explanations for interpretable models. In this case since we were in-

terested in the global frequency of co–occurrence, the co–occurrences

window is defined from 100 words before to 100 words after the tar-
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Figure 3.2: The high co–occurrence rate between the term “Interpretability” with a variety

of concepts such as “Stability”, “Reproducibility”, “Sparsity”, and “Plausibility” shows

that there is no consensus over its definition and quantification.

get words. Figure 3.1(B) summarizes the result. The global co–

occurrence of target words with these terms can be interpreted as an

index on how they are connected in the literature. For example, the

higher co–occurrence rate between the target words and “Sparsity”

shows the fact that the more sparse models are well–accepted to be

more interpretable models in the decoding studies.

3.1.4 The Contribution

With the aim of filling the aforementioned gap, our contribution is three–

fold: 1) Assuming that the true solution of brain decoding is available,

we present a theoretical definition of the interpretability. The presented

definition is simply based on cosine proximity in the parameter space. Fur-

thermore, we show that the interpretability can be decomposed into the

reproducibility and representativeness of brain maps. 2) As a proof of the

concept, we exemplify a practical heuristic based on event–related fields

for quantifying the interpretability of brain maps in time–locked analysis

of MEG data. 3) Finally, we propose the combination of the interpretabil-
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ity and the performance of the brain decoding as a new Pareto–optimal

multi–objective criterion for model selection. We experimentally, on both

simulated and real data, show that incorporating the interpretability into

the model selection procedure provides more reproducible, more neuro-

physiologically plausible, and (as a result) more interpretable maps. Fur-

thermore, in comparison with a standard univariate analysis, we show that

the proposed paradigm offers more sensitivity while preserving the inter-

pretability of results.

3.2 Materials and Methods

3.2.1 Notation and Background

Let X ∈ Rp be a manifold in Euclidean space that represents the input

space and Y ∈ R be the output space, where Y = Φ∗(X ). Then, let

S = {Z = (X,Y) | z1 = (x1, y1), . . . , zn = (xn, yn)} be a training set of n

independently and identically distributed (i.i.d) samples drawn from the

joint distribution of Z = X × Y based on an unknown Borel probability

measure ρ. In the neuroimaging context, X indicates the trials of brain

recording, e.g., fMRI, MEG, or EEG signals, Y represents the experimental

conditions or dependent variables, and we have ΦS : X → Y (note the

difference between ΦS and Φ∗). The goal of brain decoding is to find the

function Φ̂ : X → Y as an estimation of ΦS. From here on, we refer to Φ̂

as a brain decoding model.

As is a common assumption in the neuroimaging context, we assume

that the true solution of a brain decoding problem is among the family of

linear functions H (Φ∗ ∈ H). Therefore, the aim of brain decoding reduces

to finding an empirical approximation of ΦS, indicated by Φ̂, among all

Φ ∈ H. This approximation can be obtained by estimating the predictive

conditional density ρ(Y | X) by training a parametric model ρ(Y | X,Θ)
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(i.e., a likelihood function), where Θ denotes the parameters of the model.

Alternatively, Θ can be estimated by solving a risk minimization problem:

Θ̂ = argmin
Θ
L(XΘ,Y) + λΩ(Θ) (3.1)

where Θ̂ is the parameter of Φ̂, L : Y × Y → R+
0 is the loss function,

Ω : Rp → R+ is the regularization term, and λ is a hyper–parameter that

controls the amount of regularization. There are various choices for Ω,

each of which reduces the hypothesis space H to H′ ⊂ H by enforcing

different prior functional or structural constraints on the parameters of the

linear decoding model (see, for example, [97,185,186,223]). The amount of

regularization λ is generally decided using cross–validation or other data

perturbation methods in the model selection procedure.

In the neuroimaging context, the estimated parameters of a linear de-

coding model Θ̂ can be used in the form of a brain map so as to visualize

the discriminative neurophysiological effect. Although the magnitude of

Θ̂ (i.e., the 2nd-norm of Θ̂) is affected by the dynamic range of data and

the level of regularization, it has no effect on the predictive power and the

interpretability of maps. On the other hand, the direction of Θ̂ affects

the predictive power and contains information regarding the importance

of and relations among predictors. This type of relational information is

very useful when interpreting brain maps in which the relation between dif-

ferent spatio–temporal independent variables can be used to describe how

different brain regions interact over time for a certain cognitive process.

Therefore, we refer to the normalized parameter vector of a linear brain

decoder in the unit hyper–sphere as a multivariate brain map (MBM); we

denote it by ~Θ where ~Θ = Θ
‖Θ‖2

(‖.‖2 represents the 2nd-norm of a vector).

As shown in Eq. 3.1, learning occurs using the sampled data. In other

words, in the learning paradigm, we attempt to minimize the loss func-

tion with respect to ΦS (and not Φ∗) [43]. Therefore, all of the implicit
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assumptions (such as linearity) regarding Φ∗ might not hold on ΦS, and

vice versa. The irreducible error ε is the direct consequence of sampling;

it sets a lower bound on the error, where we have:

ΦS(X) = Φ∗(X) + ε. (3.2)

The distribution of ε dictates the type of loss function L in Eq. 3.1. For

example, assuming a Gaussian distribution with mean 0 and variance σ2

for ε implies the least–squares loss function [211].

3.2.2 Interpretability of Multivariate Brain Maps: Theoretical

Definition

In this section, we present a theoretical definition for the interpretability

of linear brain decoding models and their associated MBMs. Consider

a linearly separable brain decoding problem in an ideal scenario where

ε = 0 and rank(X) = p. In this case, the ideal solution of brain decoding,

Φ∗, is linear and its parameters Θ∗ are unique and neurophysiologically

plausible [191]. The unique parameter vector Θ∗ can be computed as

Θ∗ = Σ−1
X XTY (3.3)

where ΣX represents the covariance of X. Using Θ∗ as the reference, we

define the strong–interpretability of an MBM as follows:

Definition 1. An MBM
~̂
Θ associated with a linear brain decoding model

Φ̂ is “strongly–interpretable” if and only if
~̂
Θ ∝ Θ∗.

It can be shown that, in practice, the estimated solution of a linear brain

decoding problem is not strongly–interpretable because of the inherent

limitations of neuroimaging data, such as uncertainty [5] in the input and

output space (ε 6= 0), the high dimensionality of data (n � p), and the
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high correlation between predictors (rank(X) < p). With these limitations

in mind, even though in practice the solution of linear brain decoding is

not strongly–interpretable, one can argue that some are more interpretable

than others. For example, in the case in which Θ∗ ∝ [0, 1]T , a linear

classifier where
~̂
Θ ∝ [0.1, 1.2]T can be considered more interpretable than

a linear classifier where
~̂
Θ ∝ [2, 1]T . This issue raises the following question:

Problem 1. Let S be a training set of n i.i.d samples drawn from the joint

distribution of Z = X ×Y, and P (S) be the probability of drawing a certain

S from Z. Assume
~̂
Θ is the MBM of a linear brain decoding model Φ̂ on S

(estimated using Eq. 3.1 for a certain loss function L, regularization term

Ω, and hyper–parameter λ). How can we quantify the proximity of Φ̂ to

the strongly–intrepretable solution of the brain decoding problem Φ∗?

To answer this question, considering the uniqueness and the plausibility

of Φ∗ as the two main characteristics that convey its strong–interpretability,

we define the interpretability as follows:

Definition 2. Let S, P (S), and
~̂
Θ be as defined in Problem 1. Then,

assume α be the angle between
~̂
Θ and ~Θ∗. The “interpretability” (0 ≤

ηΦ ≤ 1) of a linear brain decoding model Φ̂ is defined as follows:

ηΦ = EP (S)[cos(α)] (3.4)

In practice, only a limited number of samples are available. There-

fore, perturbation techniques are used to imitate the sampling procedure.

Let S1, . . . , Sm be m perturbed training sets drawn from S via a cer-

tain perturbation scheme such as jackknife, bootstrapping [51], or cross–

validation [111]. Assume
~̂
Θ1, . . . ,

~̂
Θm are m MBMs estimated on the cor-

responding perturbed training sets, and αj (j = 1, . . . ,m) be the angle

between
~̂
Θj and ~Θ∗. Then, the empirical version of Eq. 3.4 can be rewrit-

ten as
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(A) (B)

(C) (D)

Figure 3.3: A schematic illustrations for (A) interpretability (ηΦ), (B) reproducibility

(ψΦ), and (C) representativeness (βΦ) of a linear decoding model in two dimensions. (D)

The independent effects of the reproducibility and the representativeness of a model on

its interpretability.

ηΦ =
1

m

m∑
j=1

cos(αj). (3.5)

Empirically, the interpretability is the mean of cosine similarities be-

tween Θ∗ and MBMs derived from different samplings of the training set

(see Figure 3.3(A) for a schematic illustration).

In addition to the fact that employing cosine similarity is a common

method for measuring the similarity between vectors, we have another

strong motivation for this choice which is elaborated in the next section.



3.2. Materials and Methods 59

Distribution of Cosine Similarity

It can be shown that, for large values of p, the distribution of the dot

product in the unit hyper–sphere, i.e., the cosine similarity, converges to a

normal distribution with 0 mean and variance of 1
p , i.e., N (0,

√
1/p). Due

to the small variance for large enough p values, any similarity value that

is significantly larger than zero represents a meaningful similarity between

two high–dimensional vectors. In order to analytically demonstrate this

fact, we first need to find the distribution of dot product in the uniform

unit hyper–sphere. Let a and b be two uniformly–drawn random vectors

from a unit hyper–sphere in Rp. Assuming that γ is the angle between a

and b, the distribution of cosine similarity is equivalent to the dot product

< a, b >. Without loss of generality, let b be along the positive x–axis in

the coordinate system. Thus, the dot product < a, b > is the projection of

a on the x–axis, i.e., x coordinate of a. Therefore, for a certain value of γ,

the dot product is a p− 1–dimensional hyper–sphere that is orthogonal to

the x–axis (the red circle in Figure 3.4) and the PDF of the dot product

is the surface area of p dimensional hyper–sphere constructed by the dot

products for different γ values (the dashed blue sphere in Figure 3.4). To

compute the area of this hyper–sphere we take the sum of the surface area

of the p dimensional conical frustums over small intervals dx (the gray area

in Figure 3.4):

Pr(−1 ≤ x ≤ 1) =

2p−2π

∫ 1

−1

(1− x2)p−2 dx

1− x2
= 2p−2π

∫ 1

−1

(1− x2)p−3dx
(3.6)

where (1 − x2)p−2 is the surface area of the base of the cone (e.g., the

perimeter of the red circle in Figure 3.4) and dx
1−x2 is the slope size. Setting
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dx

a

bx

Figure 3.4: Two–dimensional geometrical illustration for computing the PDF of cosine

similarity.

t = x+1
2 we have:

Pr(0 ≤ t ≤ 1) = 4p−2π

∫ 1

0

t
p−3

2 (1− t)
p−3

2 dt (3.7)

which is a Beta distribution, where α = β = p−1
2 , i.e., is a symmetric and

unimodal distribution with mean 0.5. Because the PDF of x = 2t− 1 can

be computed using a linear transformation of the above density function, it

can be shown that the distribution of the dot product in unit hyper–sphere,

i.e., the cosine similarity, has also a symmetric and unimodal distribution

with zero mean. Based on the asymptotic assumption of Ref. [176], for

large values of p this distribution converges to a normal distribution with

σ2 = 1
p . Therefore, assuming large p, the distribution of cosine similarity
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for uniformly random vectors drawn from p–dimensional unit hyper–sphere

is approximately N (0,
√

1
p) (see Appendix A.2 for an experimental demon-

stration).

In what follows, we demonstrate how the definition of interpretability is

geometrically related to the uniqueness and plausibility characteristics of

the true solution of the brain decoding problem.

3.2.3 Interpretability Decomposition into Reproducibility and

Representativeness

The trustworthiness and informativeness of decoding models provide two

important motivations for improving the interpretability of models [123].

The trust of a learning algorithm refers to its ability to converge to a unique

solution. On the other hand, the informativeness refers to the level of plau-

sible information that can be derived from a model to assist or advise a

human expert. Therefore, it is expected that the interpretability can be

quantified alternatively by assessing its uniqueness and neurophysiologi-

cal plausibility. In this section, we firstly define the reproducibility and

representativeness as measures for quantifying the uniqueness and neuro-

physiological plausibility of a brain decoding model, respectively. Then we

show how these definitions are related to the definition of interpretability.

The high dimensionality and the high correlations between variables are

two inherent characteristics of neuroimaging data that negatively affect the

uniqueness of the solution of a brain decoding problem. Therefore, a cer-

tain configuration of hyper–parameters may result in different estimated

parameters on different portions of data. Here, we are interested in assess-

ing this variability as a measure for uniqueness. We first define the main

multivariate brain map as follows:

Definition 3. Let S, P (S), and
~̂
Θ be as defined in Problem 1. The “main
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multivariate brain map” ~Θµ ∈ Rp of a linear brain decoding model Φ̂ is

defined as:

~Θµ =
EP (S)[

~̂
Θ]∥∥∥EP (S)[
~̂
Θ]
∥∥∥

2

. (3.8)

Assuming θji be the ith (i = 1, . . . , p) element of an MBM estimated

on the jth (j = 1, . . . ,m) perturbed training set, ~Θµ empirically can be

estimated by summing up
~̂
Θjs (computed on the perturbed training set

Sj) in the unit hyper–sphere, and we have:

~Θµ =

[∑m
j=1 θ

j
1

∑m
j=1 θ

j
2 . . .

∑m
j=1 θ

j
p

]T∥∥∥∥[∑m
j=1 θ

j
1

∑m
j=1 θ

j
2 . . .

∑m
j=1 θ

j
p

]T∥∥∥∥
2

. (3.9)

The main multivariate brain map, ~Θµ, provides a reference for quanti-

fying the reproducibility of an MBM:

Definition 4. Let S, P (S), and
~̂
Θ be as defined in Problem 1, and ~Θµ

be the main multivariate brain map of Φ̂. Then, assume α be the angle

between
~̂
Θj and ~Θµ. The “reproducibility” ψΦ (0 ≤ ψΦ ≤ 1) of a linear

brain decoding model Φ̂ is defined as

ψΦ = EP (S)[cos(α)]. (3.10)

Let
~̂
Θ1, . . . ,

~̂
Θm are m MBMs estimated on the corresponding perturbed

training sets, and αj (j = 1, . . . ,m) be the angle between
~̂
Θj and ~Θµ. Then,

the empirical version of Eq. 3.10 can be rewritten as

ψΦ =
1

m

m∑
j=1

cos(αj). (3.11)
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In fact, reproducibility provides a measure for quantifying the dispersion

of MBMs, computed over different perturbed training sets, from the main

multivariate brain map. Figure 3.3(B) shows a schematic illustration for

the reproducibility of a linear brain decoding model.

On the other hand, the similarity between the main multivariate brain

map of a decoder and the true solution can be employed as a measure for

the neurophysiological plausibility of a model. We refer to this similarity

as the representativeness of a linear brain decoding model:

Definition 5. Let ~Θµ be the main multivariate brain map of Φ̂. The “rep-

resentativeness” βΦ (0 ≤ βΦ ≤ 1) of a linear brain decoding model Φ̂ is

defined as the cosine similarity between its main multivariate brain map

(~Θµ) and the parameters of the true solution (~Θ∗),

βΦ =
|~Θµ.~Θ∗|∥∥∥~Θµ
∥∥∥

2

∥∥∥~Θ∗∥∥∥
2

. (3.12)

Figure 3.3(C) schematically illustrates the definition of representative-

ness.

As discussed before, the notion of interpretabilty is tightly related to

the uniqueness and plausibility, and thus to the reproducibility and repre-

sentativeness, of a decoding model. The following proposition analytically

shows this relationship:

Proposition 1. ηΦ = βΦ × ψΦ.

Proof. Throughout this proof, we assume that all of the parameter vectors

are normalized in the unit hypersphere (see Figure 3.5 as an illustrative

example in 2 dimensions). Let T = {~̂Θ1, . . . ,
~̂
Θm} be a set m MBMs, for

m perturbed training sets where
~̂
Θi ∈ Rp. Now, consider any arbitrary

p − 1-dimensional hyperplane A that contains ~Θµ. Clearly, A divides the

p-dimensional parameter space into 2 subspaces. Let O and H be binary
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operators where ~ΘiO~Θk indicates that ~Θi and ~Θk are in the same subspace,

and ~ΘiH~Θk indicates that they are in different subspaces. Now, we define

TU = {~Θi | ~ΘiO~Θ∗} and TL = {~Θi | ~ΘiH~Θ∗}. Let the cardinality of TL

denoted by n(TL) be j (n(TL) = j). Thus, n(TU) = m − j. Now, assume

that ](
~̂
Θi,A) = α1, . . . , αj are the angles between

~̂
Θi ∈ TL and A, and

(similarly) αj+1, . . . , αm for
~̂
Θi ∈ TU and A. Based on Eq. 3.8, let ~Θµ

L and
~Θµ
U be the main maps of TL and TU , respectively. Therefore, we obtain

~Θµ =
~Θµ
L+~Θµ

U

‖~Θµ
L+~Θµ

U‖
and ](~Θµ

L,A) = ](~Θµ
U ,A) = α. Furthermore, assume

](~Θ∗,A) = γ. As a result, ψΦ = cos(α) and βΦ = cos(γ). According to

Eq. 3.4 and using a cosine similarity definition, we have:

ηΦ =
1

m

m∑
j=1

∣∣∣~Θ∗.~̂Θj
∣∣∣

=
cos(γ + α1) + · · ·+ cos(γ + αj) + cos(γ − αj+1) + · · ·+ cos(γ − αm)

m

=
cos(γ + α) + cos(γ − α)

2

=
cos(γ) cos(α)− sin(γ) sin(α) + cos(γ) cos(α) + sin(γ) sin(α)

2

= cos(γ) cos(α) = βΦ × ψΦ.

(3.13)

A similar procedure can be used to prove η̃Φ = β̃Φ×ψΦ by replacing ~Θ∗

with ~ΘcERF (see Section 3.2.4 for the definition of ~ΘcERF ).

Proposition 1 indicates that the interpretability of a linear brain decod-

ing model can be decomposed into its representativeness and reproducibil-

ity. Figure 3.3(D) illustrates how the reproducibility and the representa-

tiveness of a decoding model independently affect its interpretability. Each

colored region schematically represents a span of different solutions of the

a certain linear model (for example, with a certain configuration for its

hyper–parameters) on different perturbed training sets. The area of each
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Figure 3.5: Relation between representativeness, reproducibility, and interpretability in 2

dimensions.

region schematically visualizes the reproducibility of each model, i.e., the

less is the area, the higher is the reproducibility of a model. Further, the

angular distance between the centroid of each region (Θµ) and the true so-

lution (Θ∗) visualizes the representativeness of each corresponding model.

While Φ1 and Φ2 have similar reproducibility, Φ2 has higher interpretabil-

ity than Φ1 because it is more representative of the true solution. On the

other hand, Φ1 and Φ3 have similar representativeness, however, Φ3 is more

interpretable due to the higher level of reproducibility.



66 Interpretability in Linear Brain Decoding

3.2.4 A Heuristic for Practical Quantification of Interpretability

in Time–Locked Analysis of MEG Data

In practice, it is impossible to evaluate the interpretability, as the true

solution of the brain decoding problem Φ∗ is unknown. In this study, to

provide a practical proof of the theoretical concepts, we exemplify contrast

event–related field (cERF) (see Eq. 3.14 for the definition) as a neuro-

physiological plausible heuristic for the true parameters of the linear brain

decoding problem (Θ∗) in a binary MEG decoding scenario in time domain.

Due to the nature of proposed heuristic, its application is limited to the

brain responses that are time–locked to the stimulus onset, i.e., the evoked

responses.

The MEEG data are a mixture of several simultaneous stimulus–related

and stimulus–unrelated brain activitions. Assessing the electro/magneto–

physiological changes that are time–locked to events of interest is a common

approach in analyzing MEEG data. In general, background brain activity

is considered Gaussian noise with zero mean and variance σ2. One popu-

lar approach to canceling the noise component is to compute the average

of multiple trials. The assumption is that, when the effect of interest is

time–locked to the stimulus onset, the independent noise components can

be vanished by means of averaging. It is expected that the average will

converge to the true value of the signal with a variance of σ2

n (where n is

the number of trials). The result of the averaging process consist of a se-

ries of positive and negative peaks occurring at a fixed time relative to the

event onset, generally known as ERF in the MEG context. These peaks

reflect phasic activity that are indexed with different aspects of cognitive

processing [171]2.

2The application of the presented heuristic to MEG data can be extended to EEG because of the

inherent similarity of the measured neural signals in these two devices. In the EEG context, the ERF

can be replaced by the event–related potential (ERP).
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Assume X+ = {xi ∈ X | yi = 1} ∈ Rn+×p and X− = {xi ∈ X | yi =

−1} ∈ Rn−×p to be sets of positive and negative samples in a binary MEG

decoding scenario. Then, the cERF brain map ~ΘcERF is computed by

~ΘcERF =
1
n+

∑
xi∈X+ xi − 1

n−

∑
xi∈X− xi∥∥ 1

n+

∑
xi∈X+ xi − 1

n−

∑
xi∈X− xi

∥∥
2

. (3.14)

Generally speaking, ~ΘcERF is a contrast ERF map between two experi-

mental conditions. Using the core theory presented in [83], the equivalent

generative model for the solution of linear brain decoding, i.e., the activa-

tion pattern (A), is unique and we have

A ∝ ΣXΘ̂. (3.15)

Assuming Θ̂ to be the least–squares solution in a binary decoding sce-

nario, the following proposition describes the relation between ~ΘcERF and

the activation pattern A:

Proposition 2. ~ΘcERF ∝ A.

Proof. According to [83], for a linear discriminative model with parameters

Θ̂, the unique equivalent generative model can be computed as

A ∝ ΣXΘ̂. (3.16)

In a binary (Y = {1,−1}) least–squares classification scenario, we have

A ∝ ΣXΣ−1
X XTY = XTY = µ+ − µ− (3.17)

where ΣX represents the covariance of the input matrix X, and µ+ and µ−

are the means of positive and negative samples, respectively. Therefore,
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the equivalent generative model for the above classification problem can be

derived by computing the difference between the mean of samples in two

classes that is equivalent to the definition of cERF in time–domain MEG

data.

Proposition 2 shows that, in a binary time–domain MEG decoding sce-

nario, cERF is proportional to the equivalent generative model for the

solution of a least–squares classifier (see Appendix A.3 for an experimental

support on real MEG data). Furthermore, ~ΘcERF is proportional to the

t-statistic that is widely used in the univariate analysis of neuroimaging

data. Using ~ΘcERF as a heuristic for ~Θ∗, the representativeness can be

approximated as follows:

β̃Φ =
|~Θµ.~ΘcERF |∥∥∥~Θµ
∥∥∥

2

∥∥∥~ΘcERF
∥∥∥

2

(3.18)

where β̃Φ is an approximation of the actual representativeness βΦ. In a

similar manner, ~ΘcERF can be used to heuristically approximate the inter-

pretability as follows:

η̃Φ =
1

m

m∑
j=1

cos(γj) (3.19)

where γ1, . . . , γm are the angles between
~̂
Θ1, . . . ,

~̂
Θm and ~ΘcERF . It can be

shown that η̃Φ = β̃Φ × ψΦ (see the proof of Proposition 1).

The proposed heuristic is only applicable to the evoked responses in sen-

sor and source space MEEG data. Despite this limitation, cERF provides

an empirical example that shows how the presented theoretical definitions

can be applied in a real decoding scenario. The choice of the heuristic

has a direct effect on the approximation of interpretability and that an

inappropriate selection of the heuristic yields a very poor estimation of
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interpretability. Therefore, the choice of heuristic should be carefully jus-

tified based on accepted and well–defined facts regarding the nature of the

collected data.

Since the labels are used in the computation of cERF, a proper valida-

tion strategy should be employed to avoid the double–dipping issue [113].

One possible approach is to exclude the entire test set from the model se-

lection procedure using a nested cross–validation strategy. An alternative

approach is to employ model–averaging techniques to neatly get advantage

of the whole dataset [196]. Since our focus is on the model selection, in

the remaining text we implicitly assume that the test data are excluded

from the experiments; thus, all the experimental results are reported on

the training and validation sets.

3.2.5 Incorporating the Interpretability into Model Selection

The procedure for evaluating the performance of a model so as to choose

the best values for hyper–parameters is known as model selection [81]. This

procedure generally involves numerical optimization of the model selection

criterion on the training and validation sets (and not the test set). Let U

be a set of hyper–parameters, then the goal of model selection procedure

reduces to finding the best model configuration u∗ ∈ U that maximizes the

model selection criterion (e.g., generalization performance) on the training

set S. The most common model selection criterion is based on an estimator

of generalization performance, i.e., the predictive power. In the context of

brain decoding, especially when the interpretability of brain maps matters,

employing predictive power as the only decisive criterion in model selec-

tion is problematic in terms of interpretability of MBMs [40, 63, 166, 196].

Valverde and Moreno [190] experimentally showed that in a classification

task optimizing only classification error rate is insufficient to capture the

transfer of crucial information from the input to the output of a clas-
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sifier. This fact highlights the importance of having some control over

the estimated model weights in the model selection. Here, we propose a

multi–objective criterion for model selection that takes into account both

prediction accuracy and MBM interpretability.

Let η̃Φ and δΦ be the approximated interpretability and the general-

ization performance of a linear brain decoding model Φ̂, respectively. We

propose the use of the scalarization technique [33] for combining η̃Φ and

δΦ into one scalar 0 ≤ ζ(Φ) ≤ 1 as follows:

ζΦ =

{
ω1η̃Φ+ω2δΦ
ω1+ω2

δΦ ≥ κ

0 δΦ < κ
(3.20)

where ω1 and ω2 are weights that specify the level of importance of the

interpretability and the performance, respectively. κ is a threshold on the

performance that filters out solutions with poor performance. In classifi-

cation scenarios, κ can be set by adding a small safe interval to the chance

level of classification. The hyper–parameters that are optimized based on

ζΦ are Pareto optimal [128]. We hypothesize that optimizing the hyper–

parameters based on ζΦ, rather only δΦ, yields more informative MBMs.

Algorithm 1 summarizes the proposed model selection scheme. The

model selection procedure receives the training set S and a set of possi-

ble configurations for hyper–parameters U , and returns the best hyper–

parameter configuration u∗.

3.2.6 Experimental Materials

Toy Dataset

We regenerate the simple 2-dimensional toy data presented in [83]. Assume

that the true underlying generative function Φ∗ is defined by:
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Algorithm 1 The model selection procedure.
1: procedure ModelSelection(S,U)

2: Compute ~ΘcERF on S. . using Eq. 3.14

3: for all ui ∈ U do . For all hyper–parameter configurations.

4: for j ← 1,m do . Data perturbation iterations.

5: Partition S into training Str and validation Svl subsets via a perturbation method.

6: Compute Θ̂j on Str using ui as the hyper–parameter.
end

7: Compute δiΦ of Θ̂js on Svl.

8: Compute η̃iΦ of Θ̂js using ~ΘcERF . . using Eq. 3.19

9: Compute ζiΦ. . using Eq. 3.20
end

10: u∗ = argmaxui∈U (ζΦ).

11: return u∗.

Y = Φ∗(X ) =

{
1 if x1 = 1.5

−1 if x1 = −1.5

where X ∈ {[1.5, 0]T , [−1.5, 0]T}; and x1 and x2 represent the first and the

second dimension of the data, respectively. Furthermore, assume the data

are contaminated by Gaussian noise with co–variance Σ =

[
1.02 −0.3

−0.3 0.15

]
.

Gaussian noise adds uncertainty to the input space.

Simulated MEG Data

We simulated two classes of MEG data, each of which composed of 250

epochs with length of 330 ms at 300 Hz sampling rate (so that we have

100 time–points). For simplicity, the whole scalp topography was simulated

with a single dipole located at−4.7, −3.7, and 5.3 cm in the RAS (right, an-

terior, superior) coordinate system. The dipole was oriented toward [1,1,0]

direction in the RA plane [see Figure 3.6(A)]. 102 magnetometer sensors of

Elekta Neuromag 3 system were simulated using a standard forward model

algorithm implemented in the Fieldtrip toolbox [153]. The epochs of the

positive class were constructed by adding three components to the dipole
3See https://www.elekta.com/diagnostic-solutions/elekta-neuromag-triux.html for more

information.

https://www.elekta.com/diagnostic-solutions/elekta-neuromag-triux.html
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time–course: 1) a time–locked ERF effect with a positive 3 Hz followed

by a negative 5 Hz half–cycle sinusoid peaks after 150 ± 10 and 250 ± 10

ms of the epoch onset, respectively; 2) uncorrelated background brain ac-

tivity that was simulated by summing 50 sinusoids of random frequency

from 1 to 125 Hz, and random phase between 0 and 2π. Following the

data simulation procedure in [214], the amplitude of any single frequency

component of the signal (the ERF effect and the background noise) was

set based on the empirical spectral power of human brain activity to mimic

the actual MEG signals; and 3) white Gaussian noise scaled with the root

mean squared of the signal in each epoch. The epochs of the negative class

were constructed without the ERF effect by adding up only the noise com-

ponents (i.e., the background activity and the white noise). Therefore, the

ERF component is considered as the discriminative ground–truth in our

experiments [see Figure 3.6(B)].

MEG Data

We used the MEG dataset presented in Ref. [90]4. The dataset was also

used for the DecMeg2014 competition5. In this dataset, visual stimuli

consisting of famous faces, unfamiliar faces, and scrambled faces were pre-

sented to 16 subjects and fMRI, EEG, and MEG signals were recorded.

Here, we are only interested in MEG recordings. The MEG data were

recorded using a VectorView system (Elekta Neuromag, Helsinki, Finland)

with a magnetometer and two orthogonal planar gradiometers located at

102 positions in a hemispherical array in a light Elekta–Neuromag mag-

netically shielded room.

Three major reasons motivated the choice of this dataset: 1) It is pub-

licly available. 2) The spatio–temporal dynamic of the MEG signal for face

4The full dataset is publicly available at ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/

wakemandg_hensonrn/
5The competition data are available at http://www.kaggle.com/c/decoding-the-human-brain

ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
http://www.kaggle.com/c/decoding-the-human-brain
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Figure 3.6: (A) The red circles show the dipole position, and the red stick shows the

dipole direction. (B) The spatio–temporal pattern of the discriminative ground–truth

effect.

vs. scramble stimuli has been well studied. The event–related potential

analysis of EEG/MEG shows that N170 occurs 130−200 ms after stimulus

presentation and reflects the neural processing of faces [19,90]. Therefore,

the N170 component can be considered the ground truth for our analy-

sis. 3) In the literature, non–parametric mass–univariate analysis such as

cluster–based permutation tests is unable to identify narrowly distributed

effects in space and time (e.g., an N170 component) [64, 65]. These facts

motivate us to employ multivariate approaches that are more sensitive to

these effects.

Similar to Ref. [151], we created a balanced face vs. scrambled MEG

dataset by randomly drawing from the trials of unscrambled (famous or



74 Interpretability in Linear Brain Decoding

unfamiliar) faces and scrambled faces in equal number. The samples in the

face and scrambled face categories are labeled as 1 and −1, respectively.

The raw data is high–pass filtered at 1 Hz, down–sampled to 250 Hz,

and trimmed from 200 ms before the stimulus onset to 800 ms after the

stimulus. Thus, each trial has 250 time–points for each of the 306 MEG

sensors (102 magnetometers and 204 planar gradiometers)6. To create the

feature vector of each sample, we pooled all of the temporal data of 306

MEG sensors into one vector (i.e., we have p = 250× 306 = 76500 features

for each sample). Before training the classifier, all of the features are

standardized to have a mean of 0 and standard–deviation of 1.

3.2.7 Classification and Evaluation

In all experiments, Lasso [185] classifier with `1 penalization was used for

decoding. Lasso is a very popular classification method in the context of

brain decoding, mainly because of its sparsity assumption. The choice of

Lasso, as a simple model with only one hyper–parameter, helps us to better

illustrate the importance of including the interpretability in the model

selection. The solution of decoding is computed by solving the following

optimization problem:

Θ̂ = argmin
Θ
L(XΘ,Y) + λ ‖Θ‖1 (3.21)

where ‖.‖1 represents the `1-norm, and λ is the hyper–parameter that spec-

ifies the level of regularization. Therefore, the aim of the model selection is

to find the best value for λ on the training set S. Here, we try to find the

best regularization parameter value among λ = {0.001, 0.01, 0.1, 1, 10, 50,

100, 250, 500, 1000}.
6The preprocessing scripts in python and MATLAB are available at: https://github.com/

FBK-NILab/DecMeg2014/

https://github.com/FBK-NILab/DecMeg2014/
https://github.com/FBK-NILab/DecMeg2014/
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As a complementary experiment, we repeated the single–subject de-

coding on the real MEG data also using an elastic–net classifier [223].

Elastic–net combines `1 and `2 penalization methods. Thus it has two

hyper–parameters, λ and α, to control the amount of regularization, and

the weights on the types of penalization, respectively. We have:

Θ̂ = argmin
Θ
L(XΘ,Y) + λ[α ‖Θ‖1 + (1− α) ‖Θ‖2

2] (3.22)

where ‖.‖1 and ‖.‖2 represent `1-norm and `2-norm, respectively. There-

fore, the aim of the model selection is to find the best value for both λ

and α. Here, we try to find the best hyper–parameter values among λ =

{0.001, 0.01, 0.1, 1, 10, 50, 100, 250, 500, 1000} and α = {0, 0.0001, 0.001, 0.01,

0.1, 0.25, 0.5, 0.75, 0.9, 1}.

We used the out–of–bag (OOB) [29,210] method for computing δΦ, ψΦ,

β̃Φ, η̃Φ, and ζΦ for different values of λ. In OOB, given a training set

(X,Y), m replications of bootstrap [51] are used to create perturbed train-

ing and validation sets (we set m = 50) 7. In all of our experiments, we

set ω1 = ω2 = 1 and κ = 0.6 in the computation of ζΦ. Furthermore, we

set δΦ = 1−EPE where EPE indicates the expected prediction error; it is

computed using the procedure explained in Section 2.4.4. Employing OOB

provides the possibility of computing the bias and variance of the model

as contributing factors in EPE.

7The MATLAB code used for experiments is available at https://github.com/smkia/

interpretability/

https://github.com/smkia/interpretability/
https://github.com/smkia/interpretability/
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Table 3.1: Comparison between δΦ, ηΦ, and ζΦ for different λ values on the toy example

shows the performance–interpretability dilemma, in which the most accurate classifier is

not the most interpretable one.

λ 0 0.001 0.01 0.1 1 10 50 100 250 500 1000

δ(Φ) 0.9883 0.9883 0.9883 0.9883 0.9883 0.9884 0.9880 0.9840 0.9310 0.9292 0.9292

η(Φ) 0.4391 0.4391 0.4391 0.4392 0.4400 0.4484 0.4921 0.5845 0.9968 1 1

ζ(Φ) 0.7137 0.7137 0.7137 0.7137 0.7142 0.7184 0.7400 0.7842 0.9639 0.9646 0.9646

~̂
Θ ∝

[
0.4520

0.8920

] [
0.4520

0.8920

] [
0.4520

0.8920

] [
0.4521

0.8919

] [
0.4532

0.8914

] [
0.4636

0.8660

] [
0.4883

0.8727

] [
0.5800

0.8146

] [
0.99

0.02

] [
1

0

] [
1

0

]

3.3 Results

3.3.1 Performance–Interpretability Dilemma: A Toy Example

In the definition of Φ∗ on the toy dataset discussed in Section 3.2.6, x1 is

the decisive variable and x2 has no effect on the classification of samples

into target classes. Therefore, excluding the effect of noise and based on

the theory of the maximal margin classifier [194], ~Θ∗ ∝ [1, 0]T is the true

solution to the decoding problem. By accounting for the effect of noise,

solving the decoding problem in (X,Y) space yields
~̂
Θ ∝ [1/

√
5, 2/
√

5]T

as the parameters of the linear classifier. Although the estimated parame-

ters on the noisy data provide the best generalization performance for the

noisy samples, any attempt to interpret this solution fails, as it yields the

wrong conclusion with respect to the ground truth (it says x2 has twice

the influence of x1 on the results, whereas it has no effect). This simple

experiment shows that the most accurate model is not always the most

interpretable one, primarily because the contribution of the noise in the

decoding process [83]. On the other hand, the true solution of the problem
~Θ∗ does not provide the best generalization performance for the noisy data.

To illustrate the effect of incorporating the interpretability in the model

selection, a Lasso model with different λ values is used for classifying the

toy data. In this example, because ~Θ∗ is known, the exact value of in-
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Figure 3.7: Noisy samples of toy data. The dotted line shows the true separator based

on the generative model (Φ∗). The dashed line shows the most accurate classification

solution. Because of the contribution of noise, any interpretation of the parameters of the

most accurate classifier yields a misleading conclusion with respect to the true underlying

phenomenon [83].

terpretability can be computed using Eq. 3.5. Table 3.1 compares the

resultant performance and interpretability from Lasso. Lasso achieves its

highest performance (δΦ = 0.9884) at λ = 10 with
~̂
Θ ∝ [0.4636, 0.8660]T

(indicated by the black dashed line in Figure 3.7). Despite having the

highest performance, this solution suffers from a lack of interpretability

(ηΦ = 0.4484). By increasing λ, the interpretability improves so that for

λ = 500, 1000 the classifier reaches its highest interpretability by compen-

sating for 0.06 of its performance. Our observation highlights two main

points:

1. In the case of noisy data, the interpretability of a decoding model can

be possibly incoherent with its performance. Thus, optimizing the

parameter of the model based on its performance does not necessarily

improve its interpretability. This observation confirms the previous

finding by Rasmussen et al. [166] regarding the trade–off between the
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spatial reproducibility (as a measure for the interpretability) and the

prediction accuracy in brain decoding.

2. If the right criterion is used in the model selection, employing proper

regularization technique (sparsity prior, in the case of toy data) leads

to more interpretable decoding models.

3.3.2 Decoding on Simulated MEG Data

With the main aim of comparing the quality of the heuristically approxi-

mated interpretability with respect to its actual value, we solve the decod-

ing problem on the simulated MEG data where the ground–truth discrim-

inative effect is known. The ground truth effect ~Θ∗ is used to compute the

actual interpretability of the decoding model. On the other hand, inter-

pretability is approximated by means of ~ΘcERF . The whole data simulation

and decoding processes are repeated 25 times and the results are summa-

rized in Figure 3.8. Figure 3.8(A) and 3.8(B) show the actual (ηΦ) and

the approximated (η̃Φ) interpretability for different λ values. Even though

η̃Φ consistently overestimates ηΦ, there is a significant co–variation (Pear-

son’s correlation p-value = 9× 10−4) between two measures as λ increases.

Thus, despite overestimation problem of the heuristically approximated in-

terpretability values, they are still reliable measures for quantitative com-

parison between interpretability level of brain decoding models with differ-

ent hyper–parameters. For example, both ηΦ and η̃Φ suggest the decoding

model with λ = 50 as the most interpretable model.

Figure 3.8(C) shows brain decoding models at λ = 10 and λ = 50 yield

equivalent generalization performances (Wilcoxon rank sum test p-value

= 0.08), while the MBM resulted from λ = 50 has significantly higher in-

terpretability (Wilcoxon rank sum test p-value = 4×10−9). The advantage

of this difference in interpretability levels is visualized in Figure 3.9 where
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Figure 3.8: (A) The actual ηΦ, and (B) the heuristically approximated interpretability η̃Φ

of decoding models across different λ values. There is a significant co–variation (Pearson’s

correlation p-value = 9× 10−4) between ηΦ and η̃Φ. (C) The generalization performance

of decoding models. The box gives the quartiles, while the whiskers give the 5 and 95

percentiles.

Figure 3.9: Topographic maps of weights of brain decoding models with different λ values.

topographic maps are plotted for the weights of brain decoding models

with different λ values by averaging the classifier weights in the time in-

terval of 100 to 200 ms. The visual comparison shows MBM at λ = 50 is

more similar to the ground–truth map [see Figure 3.6(B)] than the MBMs

computed at other λ values. This superiority is well–reflected in the corre-

sponding approximated interpretability values, that confirms the effective-

ness of the interpretability criterion in measuring the level of information

in the MBMs.

The results of this experiment confirm again the fact that the gener-
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alization performance is not a reliable criterion to measure the level of

information learned by a linear classifier. For example consider the decod-

ing model with λ = 1 in which the performance of the model is significantly

above the chance level [see Figure 3.8(C)] while the corresponding MBM

[Figure 3.9(A)] is completely misrepresents the ground–truth effect [Fig-

ure 3.6(B)].

3.3.3 Single–Subject Decoding on MEG Data

Lasso

To investigate the behavior of the proposed model selection criterion ζΦ,

we benchmark it against the commonly used performance criterion δΦ in a

single–subject decoding scenario. Assuming (Xi,Yi) for i = 1, . . . , 16 are

MEG trial/label pairs for subject i, we separately train a Lasso model for

each subject to estimate the parameter of the linear function Φ̂i, where

Yi = XiΘ̂i. We represent the optimized solution based on δΦ and ζΦ by

Φ̂δ
i and Φ̂ζ

i , respectively. We also denote the MBM associated with Φ̂δ
i and

Φ̂ζ
i by

~̂
Θδ
i and

~̂
Θζ
i , respectively. Therefore, for each subject, we compare

the resulting decoders and MBMs computed based on these two model

selection criteria.

Figure 3.10(A) represents the mean and standard–deviation of the per-

formance and interpretability of Lasso across 16 subjects for different λ

values. The performance and interpretability curves further illustrate the

performance–interpretability dilemma of Lasso classifier in the single–subject

decoding scenario, in which increasing the performance delivers less inter-

pretability. The average performance across subjects is improved when λ

approaches 1, but on the other side, the reproducibility and the represen-

tativeness of models declines significantly [see Figure 3.10(B)] (Wilcoxon

rank sum test p-value= 9 × 10−4 and 8 × 10−7, respectively). In fact, in
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Figure 3.10: (A) Mean and standard–deviation of the performance (δΦ), interpretabil-

ity (ηΦ), and ζΦ of Lasso over 16 subjects. (B) Mean and standard–deviation of the

reproducibility (ψΦ), representativeness (βΦ), and interpretability (ηΦ) of Lasso over 16

subjects. The interpretability declines because of the decrease in both reproducibility

and representativeness (see Proposition 1). (C) Mean and standard–deviation of the

bias, variance, and EPE of Lasso over 16 subjects. While the change in bias is correlated

with that of EPE (Pearson’s correlation coefficient= 0.9993), there is anti–correlation

between the trend of variance and EPE (Pearson’s correlation coefficient= −0.8884).

this dataset a higher amount of sparsity increases the gap between the

generalization performance and interpretability.

One possible reason behind the performance–interpretability dilemma

in this experiment is illustrated in Figure 3.10(C). The figure shows the

mean and standard deviation of bias, variance, and EPE of Lasso across

16 subjects. The plot shows while the change in bias is correlated with

that of EPE (Pearson’s correlation coefficient= 0.9993), there is anti–

correlation between the trends of variance and EPE (Pearson’s correlation

coefficient= −0.8884). Furthermore, it proposes that the effect of variance

is overwhelmed by bias in the computation of EPE, where the best perfor-

mance (minimum EPE) at λ = 1 has the lowest bias, its variance is higher

than for λ = 0.001, 0.01, 0.1. While this tiny increase in the variance has

negligible effect on the EPE of the model, Figure 3.10(B) shows its signif-

icant (Wilcoxon rank sum test p-value= 8 × 10−7) negative effect on the
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Table 3.2: The performance, reproducibility, representativeness, and interpretability of

Φ̂δ
i and Φ̂ζ

i over 16 subjects.

Subs
Criterion: δ(Φ) Criterion: ζ(Φ)

δcERF
δ(Φ) ζ(Φ) η̃(Φ) β̃(Φ) ψ(Φ) δ(Φ) ζ(Φ) η̃(Φ) β̃(Φ) ψ(Φ)

1 0.81 0.53 0.26 0.42 0.62 0.78 0.70 0.63 0.76 0.83 0.56

2 0.80 0.70 0.60 0.72 0.83 0.80 0.70 0.60 0.72 0.83 0.54

3 0.81 0.63 0.45 0.64 0.71 0.78 0.71 0.64 0.78 0.83 0.57

4 0.84 0.52 0.20 0.31 0.66 0.76 0.70 0.64 0.77 0.83 0.55

5 0.80 0.54 0.29 0.44 0.65 0.78 0.69 0.61 0.73 0.83 0.54

6 0.79 0.52 0.24 0.39 0.63 0.74 0.67 0.61 0.74 0.82 0.57

7 0.84 0.55 0.27 0.40 0.66 0.81 0.70 0.59 0.71 0.84 0.56

8 0.87 0.55 0.24 0.35 0.68 0.85 0.68 0.52 0.61 0.84 0.56

9 0.80 0.55 0.31 0.46 0.67 0.77 0.67 0.57 0.69 0.82 0.57

10 0.79 0.53 0.26 0.41 0.64 0.77 0.68 0.58 0.70 0.83 0.59

11 0.74 0.65 0.56 0.68 0.82 0.74 0.65 0.56 0.68 0.82 0.53

12 0.80 0.55 0.29 0.46 0.64 0.79 0.70 0.61 0.74 0.83 0.58

13 0.83 0.50 0.18 0.29 0.61 0.77 0.70 0.63 0.76 0.82 0.59

14 0.90 0.58 0.27 0.39 0.68 0.81 0.78 0.74 0.89 0.84 0.62

15 0.92 0.63 0.34 0.48 0.71 0.89 0.78 0.66 0.77 0.86 0.63

16 0.87 0.55 0.23 0.37 0.62 0.81 0.74 0.67 0.81 0.83 0.65

Mean 0.83±0.05 0.57± 0.05 0.31± 0.12 0.45± 0.13 0.68± 0.07 0.79± 0.04 0.70± 0.04 0.62±0.05 0.74±0.06 0.83±0.01 0.58± 0.03

reproducibility of maps from λ = 0.1 to λ = 1.

Table 3.2 summarizes the performance, reproducibility, representative-

ness, and interpretability of Φ̂δ
i and Φ̂ζ

i for 16 subjects. The average result

over 16 subjects shows that employing ζΦ instead of δΦ in model selection

provides higher reproducibility, representativeness, and (as a result) inter-

pretability compensating for 0.04 of performance. The last column of table

(δcERF ) summarizes the performance of decoding models over 16 subjects

when ~ΘcERF is used as classifier weights. The comparison illustrates a sig-

nificant difference (Wilcoxon rank sum test p-value= 1.5× 10−6) between

δcERF and δ(Φ)s. These facts demonstrate that
~̂
Θζ is a good compromise

between
~̂
Θδ and ~ΘcERF in terms of classification performance and model

interpretability.

These results are further analyzed in Figure 3.11 where Φ̂δ
i and Φ̂ζ

i are

compared subject–wise in terms of their performance and interpretabil-

ity. The comparison shows that adopting ζΦ instead of δΦ as the criterion

for model selection yields higher interpretable models by compensating a

negligible degree of performance in 14 out of 16 subjects. Figure 3.11(A)

shows that employing δΦ provides on average slightly higher accurate mod-
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Figure 3.11: (A) Comparison between generalization performances of Φ̂δ
i and Φ̂ζ

i . Adopt-

ing ζΦ instead of δΦ in model selection yields (on average) 0.04 less accurate classifiers

over 16 subjects. (B) Comparison between interpretabilities of Φ̂δ
i and Φ̂ζ

i . Adopting ζΦ

instead of δΦ in model selection yields on average 0.31 more interpretable classifiers over

16 subjects.

els (Wilcoxon rank sum test p-value= 0.012) across subjects (0.83± 0.05)

than using ζΦ (0.79± 0.04). On the other side, Figure 3.11(B) shows that

employing ζΦ and compensating by 0.04 in the performance provides (on

average) substantially higher (Wilcoxon rank sum test p-value= 5.6×10−6)

interpretability across subjects (0.62± 0.05) compared to δΦ (0.31± 0.12).

For example, in the case of subject 1 (see Table 3.2), using δΦ in model selec-

tion to select the best λ value for the Lasso yields a model with δΦ = 0.81

and η̃Φ = 0.26. In contrast, using ζΦ delivers a model with δΦ = 0.78

and η̃Φ = 0.63. This inverse relationship between performance and inter-

pretability is direct consequence of over–fitting of model to the noise struc-

ture in a small–sample–size brain decoding problem (see Section 3.3.1).

The advantage of the exchange between the performance and the inter-

pretability can be seen in the quality of MBMs. Figure 3.12(A) and 3.12(B)

show
~̂
Θδ

1 and
~̂
Θζ

1 of subject 1, i.e., the spatio–temporal multivariate maps

of the Lasso models with maximum values of δΦ and ζΦ, respectively. The

maps are plotted for 102 magnetometer sensors. In each case, the time

course of weights of classifiers associated with the MEG2041 and MEG1931
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(A) The spatio–temporal pattern of
~̂
Θδ

1.

(B) The spatio–temporal pattern of
~̂
Θζ

1.

Figure 3.12: Comparison between spatio–temporal multivariate maps of (A) the most

accurate, and (B) the most interpretable classifiers for Subject 1.
~̂
Θζ

1 provides a better

spatio–temporal representation of the N170 effect than
~̂
Θδ

1.

sensors are plotted. Furthermore, the topographic maps represent the spa-

tial patterns of weights averaged between 184 and 236 ms after the stimulus

onset. While
~̂
Θδ

1 is sparse in time and space, it fails to accurately repre-
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sent the spatio–temporal dynamic of the N170 component. Furthermore,

the multicollinearity problem arising from the correlation between the time

course of the MEG2041 and MEG1931 sensors causes extra attenuation of

the N170 effect in the MEG1931 sensor. Therefore, the model is unable to

capture the spatial pattern of the dipole in the posterior area. In contrast,
~̂
Θζ

1 represents the dynamic of the N170 component in time. In addition, it

also shows the spatial pattern of two dipoles in the posterior and tempo-

ral areas. In summary,
~̂
Θζ

1 suggests a more representative pattern of the

underlying neurophysiological effect than
~̂
Θδ

1.

In addition, optimizing the hyper–parameters of brain decoding based

on ζΦ offers more reproducible brain decoders. According to Table 3.2,

using ζΦ instead of δΦ provides (on average) 0.15 more reproducibility over

16 subjects. To illustrate the advantage of higher reproducibility on the

interpretability of maps, Figure 3.13 visualizes
~̂
Θδ

1 and
~̂
Θζ

1 over 4 perturbed

training sets. The spatial maps [Figure 3.13(A) and Figure 3.13(C)] are

plotted for the magnetometer sensors averaged in the time interval be-

tween 184 and 236 ms after stimulus onset. The temporal maps [Fig-

ure 3.13(B) and Figure 3.13(D)] are showing the multivariate temporal

maps of MEG1931 and MEG2041 sensors. While
~̂
Θδ

1 is unstable in time

and space across the 4 perturbed training sets,
~̂
Θζ

1 provides more repro-

ducible maps.

Elastic–Net

Figure 3.14 summarizes the mean and standard–deviation of the perfor-

mance and interpretability of elastic–net across 16 subjects for different lev-

els of regularization and sparsity. The results illustrate that increasing the

amount of sparsity, by increasing α, increases the chance of performance–

interpretability dilemma. While for a ridge model, with α = 0, the perfor-

mance and interpretability are consistent, by increasing the sparsity they
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Figure 3.13: Comparison of the reproducibility of Lasso when δΦ and ζΦ are used in the

model selection procedure. (A) and (B) show the spatio–temporal patterns represented

by
~̂
Θδ

1 across the 4 perturbed training sets. (C) and (D) show the spatio–temporal

patterns represented by
~̂
Θζ

1 across the 4 perturbed training sets. Employing ζΦ instead of

δΦ in the model selection yields on average 0.15 more reproduciblilty of MBMs.

show a divergent behavior. This observation illustrates the smooth, rather

sparse, nature of the underlying effect in space and time.

These results are further analyzed in Figure 3.15 where Φ̂δ
i and Φ̂ζ

i are

compared subject–wise in terms of their performance and interpretability.

Similar to the Lasso model in the main text, the comparison shows that
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Figure 3.14: The mean and standard–deviation of the performance (δΦ), interpretability

(ηΦ), and ζΦ of the elastic–net model over 16 subjects. In this dataset, increasing the

amount of sparsity increases the chance of performance–interpretability dilemma.

adopting ζΦ instead of δΦ as the criterion for model selection yields higher

interpretable models by compensating a negligible degree of performance

across all subjects. Figure 3.15(A) shows that employing δΦ provides on

average slightly higher accurate models across subjects (0.83± 0.05) than

using ζΦ (0.79 ± 0.04). On the other side, Figure 3.15(B) shows that

employing ζΦ and compensating by 0.04 in the performance provides (on

average) substantially higher level of interpretability across subjects (0.62±
0.05) compared to δΦ (0.34± 0.11). The results obtained using elastic–net

classifier are very similar to the ones of Lasso in the main text.

3.3.4 Mass–Univariate Hypothesis Testing on MEG Data

It is shown by [64, 65] that non–parametric mass–univariate analysis is

unable to detect narrowly distributed effects in space and time (e.g., an

N170 component). To illustrate the advantage of the proposed decod-
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Figure 3.15: (A) Comparison between generalization performances of Φ̂δ
i and Φ̂ζ

i using

elastic–net as the classifier. (B) Comparison between the interpretability of Φ̂δ
i and Φ̂ζ

i

using elastic–net as the classifier. The results obtained by the elastic–net classifier are

very similar to the Lasso model.

ing framework for spotting these effects, we performed a non–parametric

cluster–based permutation test [127] on our MEG dataset using Fieldtrip

toolbox [153]. In a single subject analysis scenario, we considered the

trials of MEG recordings as the unit of observation in a between–trials

experiment. Independent–samples t–statistics are used as the statistics for

evaluating the effect at the sample level and to construct spatio–temporal

clusters. The maximum of the cluster–level summed t–value is used for

the cluster level statistics; the significance probability is computed using

a Monte Carlo method. The minimum number of neighboring channels

for computing the clusters is set to 2. Considering 0.025 as the two–sided

threshold for testing the significance level and repeating the procedure

separately for magnetometers and combined–gradiometers, no significant

result is found for any of the 16 subjects. This result motivates the search

for more sensitive (and, at the same time, more interpretable) alternatives

for univariate hypothesis testing.

3.3.5 Across–Subject Decoding of MEG Data

As demonstrated in our results in Section 3.3.3, in the single–subject de-

coding of MEG data the performance and the interpretability of a Lasso
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Table 3.3: The performance, reproducibility, representativeness, and interpretability of

Φ̂δ and Φ̂ζ in the across–subject decoding scenario.

λ δΦ ψΦ β̃Φ η̃Φ ζΦ

Φ̂δ 0.1 0.7277 0.7841 0.4597 0.3605 0.5441

Φ̂ζ 0.01 0.7275 0.7853 0.4596 0.3609 0.5442

classifier are not consistent. In this experiment the aim is to assess the

relation between interpretability and generalization performance in the

across–subject decoding scenario. To perform across–subject analysis we

performed the decoding and evaluation phases on the pooled samples of all

subjects. Table 3.3 summarizes the performance, reproducibility, represen-

tativeness, and interpretability of Φ̂δ and Φ̂ζ in the across–subject decoding

scenario.

The comparison of results illustrates a negligible difference between Φ̂δ

and Φ̂ζ in terms of ζΦ and δΦ in the across–subject decoding. In other

words, in this case the interpretability and performance of the model are

consistent and the most accurate model is very close to the most inter-

pretable one. Therefore in across–subject decoding, using merely the gen-

eralization performance as the dicisive criterion in the model selection pro-

cedure would be enough for drawing interpretable brain maps. One possible

explanation behind this observation can be the increase in the sample size

in the across–subject decoding scenario.

Figure 3.16 shows the spatio–temporal multivariate brain map of Φ̂ζ in

the across–subject decoding scenario. The resulting multivariate brain map

represents the feedforward and feedback information flow in visual cortical

areas [132]. The 3 dipoles in 184 − 236 ms time interval [Figure 3.16(B)]

show the feedforward information flow from the posterior area to the pari-

etal and ventral areas. The topographic maps in the two following time

intervals [Figure 3.16(C) and 3.16(D)] show the spatial dynamic of face

processing from posterior to temporal lobs. Finally Figure 3.16(E) shows
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Figure 3.16: The spatio–temporal MBM of face processing in the across–subject decoding

scenario: (A) before the stimulus onset, (B) 3 occipo–parietal dipoles 200 ms after the

stimulus onset, (C) and (D) the forward ventral information flow from 300 to 400 ms after

the stimulus onset, (E) the backward information flow from temporal areas to occipital

area 500 ms after the stimulus onset.

a weak but still visible backward information flow from temporal lobes to

the posterior area 500 ms after the stimulus onset.

3.4 Discussions

3.4.1 Defining Interpretability: Theoretical Advantages

An overview of the brain decoding literature shows frequent co–occurrence

of the terms interpretation, interpretable, and interpretability with the

terms model, classification, parameter, decoding, method, feature, and

pattern; however, a formal formulation of the interpretability is never pre-
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sented. In this study, our primary interest is to present a simple and

theoretical definition of the interpretability of linear brain decoding mod-

els and their corresponding MBMs. Furthermore, we show the way in

which interpretability is related to the reproducibility and neurophysio-

logical representativeness of MBMs. Our definition and quantification of

interpretability remains theoretical, as we assume that the true solution of

the brain decoding problem is available. Despite this limitation, we argue

that the presented definition provides a concrete framework of a previously

abstract concept and that it establishes a theoretical background to explain

an ambiguous phenomenon in the brain decoding context. We support our

argument using an example in the time–domain MEG decoding in which we

show how the presented definition can be exploited to heuristically approx-

imate the interpretability. Our experimental results on MEG data shows

accounting for the approximated measure of interpretability has a positive

effect on the human interpretation of brain decoding models. This exam-

ple shows how partial prior knowledge regarding the timing and location

of neural activity can be used to find more plausible multivariate patterns

in data. Furthermore, the proposed decomposition of the interpretabil-

ity of MBMs into their reproducibility and representativeness explains the

relationship between the influential cooperative factors in the interpretabil-

ity of brain decoding models and highlights the possibility of indirect and

partial evaluation of interpretability by measuring these effective factors.

3.4.2 Application in Model Evaluation

Discriminative models in the framework of brain decoding provide higher

sensitivity and specificity than univariate analysis in hypothesis testing of

neuroimaging data. Although multivariate hypothesis testing is performed

based solely on the generalization performance of classifiers, the emergent

need for extracting reliable complementary information regarding the un-
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derlying neuronal activity motivated a considerable amount of research

on improving and assessing the interpretability of classifiers and their as-

sociated MBMs. Despite ubiquitous use, the generalization performance

of classifiers is not a reliable criterion for assessing the interpretability

of brain decoding models [166, 170]. Therefore, considering extra criteria

might be required. However, because of the lack of a formal definition for

interpretability, different characteristics of linear classifiers are considered

as the decisive criterion in assessing their interpretability. Reproducibil-

ity [14, 40, 166], stability selection [195, 201], sparsity [44, 175], and neuro-

physiological plausibility [4] are examples of related criteria.

Our definition of interpretability helped us to fill this gap by introducing

a new multi–objective model selection criterion as a weighted compromise

between interpretability and generalization performance of linear models.

Our experimental results on single–subject decoding showed that adopting

the new criterion for optimizing the hyper–parameters of brain decoding

models is an important step toward reliable visualization of learned mod-

els from neuroimaging data. It is not the first time in the neuroimaging

context that a new metric is proposed in combination with generalization

performance for the model selection. Several recent studies proposed the

combination of the reproducibility of the maps [40, 166, 178] or the stabil-

ity of the classifiers [122, 196, 215] with the performance of discriminative

models to enhance the interpretability of decoding models. Our definition

of interpretability supports the claim that the reproducibility is not the

only effective factor in interpretability. Therefore, our contribution can be

considered a complementary effort to the state of the art of improving the

interpretability of brain decoding at the model selection level. Further-

more, this work presents an effective approach for evaluating the quality

of different regularization strategies for improving the interpretability of

MBMs. As briefly reviewed in Section 3.1, there is a trend of research
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within the brain decoding context in which the prior knowledge is injected

into the decoding process via the penalization term in order to improve the

interpretability of decoding models. Thus far, in the literature, there is no

ad–hoc method to directly compare the interpretability of MBMs result-

ing from different penalization techniques. Our findings provide a further

step toward direct evaluation of interpretability of the currently proposed

penalization strategies. Such an evaluation can highlight the advantages

and disadvantages of applying different strategies on different data types

and facilitates the choice of appropriate methods for a certain application.

3.4.3 Regularization and Interpretability

Haufe et al. [83] demonstrated that the weight in linear discriminative mod-

els are unable to accurately assess the relationship between independent

variables, primarily because of the contribution of noise in the decoding

process. They concluded that the interpretability of brain decoding cannot

be improved using regularization. The problem is primarily caused by the

decoding process per se, where it minimizes the classification error only

considering the uncertainty in the output space [5, 187, 218] and not the

uncertainty in the input space (or noise).

Our experimental results on the toy data (see Section 3.3.1) shows that if

the right criterion is used for selecting the best values for hyper–parameters,

appropriate choice of the regularization strategy can still play a significant

role in improving the interpretability of results. For example, in the case

of toy data, the true generative function behind the sampled data is sparse

(see Section 3.2.6), but because of the noise in the data, the sparse model

is not the most accurate one.

On the other hand, a more comprehensive criterion (in this case, ζΦ)

that considers also the interpretability of model parameters facilitates the

selection of correct prior assumptions about the distribution of the data
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via regularization. This observation encourages a modification of the con-

clusion of Haufe et al. [83] as follows: if the performance of the model

is the only criterion in the model selection, then the interpretability can-

not necessarily be improved by means of regularization. This modification

offers a practical shift in methodology, where we propose to replace the

post–processing of weights with refinement of hyper–parameter selection

based on the newly developed model selection criterion.

3.4.4 The Performance–Interpretability Dilemma

The performance–interpretability dilemma refers to the trade–off between

the generalization performance and the interpretability of a decoding model.

In some applications of brain decoding, such as BCI, a more accurate model

(even with no interpretability) is desired. On the other hand, when the

brain decoding is employed for hypothesis testing purpose, an astute bal-

ance between two factors is more favorable. The presented metric for

model selection (ζΦ) provides the possibility to maintain this balance. An

important question at this point is on the nature of the performance–

interpretability dilemma, whether it is model–driven or data–driven? In

other words, whether some decoding models (e.g., sparse models) suffer

from this deficit, or it is independent from the decoding model and depends

on the distribution of data rather assumptions of the decoding model.

Our experimental observations shed light on the fact that the performance–

interpretability dilemma is driven by the uncertainty [5] in data. The

uncertainty in data refers to the difference between the true solution of

decoding Φ∗ and the solution of decoding in sampled data space ΦS, and

is generally consequence of noise in the input or/and output spaces (see

Appendix A.1 for a simple illustration about the effect of uncertainty in

the input space on the learning process). This gap between Φ∗ and ΦS is

also known as irreducible error (see Eq. 3.2) in the learning theory, and it
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cannot fundamentally be reduced by minimizing the error. Therefore, any

attempt toward improving the classification performance in the sampled

data space might increase the irreducible error. As an example, our exper-

iment on the toy data (see Section 3.3.1) shows the effect of noise in input

space on the performance–interpretability dilemma. Improving the per-

formance of the model (i.e., fitting to ΦS) diverges the estimated solution

of decoding Φ̂ from its true solution Φ∗, thus reduces the interpretability

of the decoding model. Furthermore, our experiments demonstrate that

incorporating the interpretability of decoding models in model selection

facilitates finding the best match between the decoding model and the dis-

tribution of data. For example in classification of toy data, the new model

selection metric ζΦ selects the more sparse model with a better match to

the true distribution of data, despite worse generalization performance.

3.4.5 Advantage over Mass–Univariate Analysis

Mass–univariate hypothesis testing methods are among the most popular

tools for forward inference on neuroimaging data in cognitive neuroscience

field. Mass–univariate analyses consist of univariate statistical tests on

single independent variables followed by multiple comparison correction.

Generally, multiple comparison correction reduces the sensitivity of mass–

univariate approaches because of the large number of univariate tests in-

volved. Cluster–based permutation testing [127] provides a more sensitive

univariate analysis framework by making the cluster assumption in the

multiple comparison correction. Unfortunately, this method is not able to

detect narrow spatio–temporal effects in the data [64]. As a remedy, brain

decoding provides a very sensitive tool for hypothesis testing; it has the

ability to detect multivariate patterns, but suffers from a low level of inter-

pretability. Our study proposes a possible solution for the interpretability

problem of classifiers, and therefore, it facilitates the application of brain
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decoding in the analysis of neuroimaging data. Our experimental results

for the MEG data demonstrate that, although the non–parametric cluster–

based permutation test is unable to detect the N170 effect in MEG data,

employing ζΦ instead of δΦ in model selection not only detects the stimuli-

relevant information in the data, but also assures both reproducible and

representative spatio–temporal mapping of the timing and the location of

underlying neurophysiological effect.

3.4.6 Limitations and Future Directions

Despite theoretical and practical advantages, the proposed definition and

quantification of interpretability suffer from some limitations. All of the

presented concepts are defined for linear models, with the main assumption

that Φ∗ ∈ H (where H is a class of linear functions). This fact highlights

the importance of linearizing the experimental protocol in the data collec-

tion phase [143]. Extending the definition of interpretability to non–linear

models demands future research into the visualization of non–linear mod-

els in the form of brain maps. Currently, our findings cannot be directly

applied to non–linear models. Furthermore, the proposed heuristic for the

time–domain MEG data applies only to binary classification. One possi-

ble solution in multiclass classification is to separate the decoding problem

into several binary sub–problems. In addition the quality of the proposed

heuristic is limited for the small sample size datasets (see Appendix A.4

for an experimental illustration). Of course the proposed heuristic is just

an example of possible options for assessing the neurophysiological plau-

sibility of MBMs in time–locked analysis of MEG data, thus, improving

the quality of heuristic would be of interest in future researches. Finding

physiologically relevant heuristics for other acquisition modalities such as

fMRI, or frequency domain MEEG data, can be also considered as possible

directions in future work.



Chapter 4

Multi–Task Joint Feature Learning

for Group MEG Decoding

4.1 Introduction

A common approach in cognitive neuroscience is to record brain activ-

ity, and to correlate that activity with behavioral parameters in order to

discover where, when, and how a brain region participates in a particu-

lar cognitive process. In functional neuroimaging research, scientists often

employ mass–univariate hypothesis testing methods, i.e., methods which

have been designed to test scientific hypotheses on a large set of inde-

pendent variables [64, 126]. Mass–univariate hypothesis testing is based

on performing multiple (generally thousands) univariate tests, which most

commonly involves performing a t–test, for each independent variable, e.g.,

each voxel. The statistical results for each voxel can then be projected onto

a structural image to form a brain map, that provides information about

which region in the brain is related to the experimental conditions. For

instance, in a common paradigm used to investigate the neural correlates

of face perception, participants see either intact faces or scrambled faces.

A univariate contrast is then run in each voxel and clusters of voxels that

are significantly more active for intact faces inform us of where in the brain

97
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holistic face processing occurs.

While mass–univariate analyses can at times be useful, there are a num-

ber of problematic aspects. Here we outline three major problematic as-

pects: 1) due to its univariate nature, the interaction between different

independent variables cannot be exploited [41]; 2) the high dimensionality

of neuroimaging data requires a large number of tests, but running this

many tests requires multiple comparison correction, and current multiple

comparison correction at the voxel level is overly conservative, increasing

type II errors and decreasing sensitivity [52]. Although some techniques,

such as the non–parametric cluster–based permutation test [31, 127] offer

more sensitivity by weakly controlling the family–wise error rate, they still

experience low sensitivity to brain activities that are narrowly distributed

in time and space due to the cluster assumption [64, 65]; 3) because of

inter–subject differences (in time and space), it is likely that univariate

statistical tests fail to find significant effects [126] as these tests implicitly

assume a one–to–one correspondence between independent variables across

different subjects.

A potentially more promising approach to overcome the shortcomings of

mass–univariate hypothesis testing is Brain decoding [89, 154]. Brain De-

coding is a multivariate pattern analysis (MVPA) technique that attempts

to predict the mental state of a human subject based on the recorded brain

signal. More specifically, brain decoding involves training an algorithm to

classify a number of samples of labeled brain data, and testing it on unseen

data. The generalization performance of a brain decoding model is used

as a measure for performing inference on neuroimaging data, or in other

words for concluding that a certain area or set of areas are important for

a specific cognitive process, or a certain class of stimuli. Brain decoding

is capable of capturing complex spatio–temporal interactions between dif-

ferent brain areas with higher sensitivity and specificity than univariate
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analysis [85]. Moreover, it avoids the multiple comparison problem, as it

deals with the whole set of independent variables at once.

Due to the high dimensionality and limited number of samples typically

associated with neuroimaging data [41, 114], generally in brain decoding,

the linear classifiers are used to assess the relation between spatio–temporal

brain measurements and cognitive tasks [22, 118, 157]. This assessment is

performed by solving an optimization problem that minimizes a loss func-

tion by learning linear weights associated with each independent variable.

These learned linear weights can then be visualized in the form of a brain

map, in which the engagement of different brain areas in a cognitive task

is illustrated. In fact, brain mapping via brain decoding can be viewed as

a pattern recovery problem, where the goal is to recover spatio–temporal

patterns of the discriminative brain activity involved in the cognitive pro-

cessing of external stimuli. If successful, brain maps created by brain

decoding can provide a comprehensive and interpretable explanation re-

garding the nature of neural representations and brain states, and may

be more informative for cognitive science than a numerical decoding accu-

racy measurement, as is currently commonly used [154]. Currently, brain

decoding is a gold standard in multivariate analysis of functional mag-

netic resonance images (fMRI) [41, 86, 135, 149] and magnetoencephalo-

gram/electroencephalogram(MEG/EEG) data [3, 34, 36, 93, 156, 167, 199].

However a number of challenges still remain, particularly regarding the

interpretability of recovered brain maps at the individual or group level.

4.1.1 Group–level Brain Decoding: Approaches and Challenges

Group–level analyses are extremely important, as they allow for results to

be generalized to new individuals. In brain decoding, an ideal group–level

approach should be able to recover both structural and functional similar-

ities and dissimilarities across different individuals. These similarities and



100 Multi–Task Joint Feature Learning for Group MEG Decoding

dissimilarities generally occur at both a coarse and a fine level in space

and time, and can provide valuable spatio–temporal information about

both the macro and micro–structures underlying the cognitive function in

question. For example, visual stimuli in general evoke a coarsely similar

effect in early visual brain areas across different subjects, but the response

to different types, or categories of visual stimuli can differ from subject to

subject at the finer level (see Ref. [87] for more examples). This across–

subject functional variability makes group–level inference on neuroimaging

data challenging, particularly since there is also substantial across–subject

variability in brain structure composition (e.g., the different size and shape

of brains) [129, 164, 165, 180, 181]. This problem is even more pronounced

when one takes into account the difference in the spatio–temporal structure

of noise, that commonly occurs due to different sources of the external and

internal noise, or to preprocessing errors. These variations not only nega-

tively affect the generalization power of brain decoding, but they also make

post–hoc interpretation of the derived brain maps more challenging, due to

concerns about lack of reproducibility and plausibility. For these reasons,

it is crucial to explore more effective decoding methods that are capable

of recovering structural and functional similarities and dissimilarities in a

group–level analysis of neuroimaging data.

There are two main approaches to group–level inference in brain decod-

ing: 1) A decoding model is trained and tested for each subject indepen-

dently, and then generalization performance is averaged across subjects;

2) A single decoding model is trained and tested on the pooled samples

of all subjects. While the first approach does not take advantage of simi-

larities between different subjects, the second method incorrectly assumes

that the brain recordings of all subjects are drawn from the same distri-

bution. These subtle assumptions may lead to impaired predictive perfor-

mance [129, 151] and to complications in interpreting results. Therefore,
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it is highly important to develop a principled approach that enables iden-

tification of common features across subjects [192] while accounting for

inter–subject differences that result from variations in structural and/or

functional anatomy.

4.1.2 Contribution

In this chapter, we present an application of multi–task joint feature learn-

ing [9] which allows for accurate spatio–temporal pattern recovery at the

group–level decoding of MEG data. Multi–task learning [35] (MTL) is

a machine learning technique in which a number of related problems with

salient shared properties is simultaneously solved (see Section 2.4.5). Previ-

ous work has shown that MTL has some benefits over the trivial single–task

setting, especially in terms of specificity and stability of feature maps [107,

131]. In our proposed framework, we consider the data of each subject as

a task in MTL framework, and, we simultaneously train only one decoding

model over all subjects. Further, we employ `2,1 regularization [124] to

learn sparse patterns consistently across different subjects, i.e., to jointly

learn the features across different subjects. This learning process facili-

tates consistent sparse pattern recovery across individual subjects while at

the same time preserving idiosyncratic structural and functional properties

within each individual.

To evaluate the effectiveness of the multi–task joint feature decoding

algorithm, we compared its performance against number of currently pop-

ular single–subject and pooled decoding approaches. We used three crite-

ria in our comparisons: 1) generalization performance, 2) reproducibility

of brain maps, and 3) the quality of pattern recovery. All analyses were

run on both synthetic and real MEG datasets. We chose MEG data be-

cause its complex wealth of spatiotemporal information poses a particular

challenge in recovering multi–way patterns in space and time. Our results
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demonstrate the potential of multi–task joint feature learning in recovering

the similarity and dissimilarity of brain activities across different subjects

in group–level MEG decoding, while still maintaining competitive perfor-

mance and high reproducibility with respect to single–subject and pooling

approaches. Such an approach can lead to more interpretable decoding

models in group–level multivariate analysis of MEG data. To our knowl-

edge, the present work is the first to use multi–task joint feature learning

in the context of group–level MEG decoding. Considering the fact that,

only EEG and MEG can non–invasively record brain activity at a high

temporal resolution [75, 78], the proposed approach provides the possibil-

ity for recovering temporal brain dynamics within the millisecond time

scale, a crucial task if we hope to understand the human brain function in

real–time [77,79].

In the remaining text, we first review the basic concepts of discriminative

linear brain decoding, and then formally elaborate the pros and cons of

single–subject and pooling approaches for group–level brain decoding. We

then present the multi–task joint–feature learning approach as a possible

alternative to single–subject and pooling approaches, and we formally show

the that multi–task joint feature learning provides significant benefits over

the currently popular approaches. Finally, we discuss the significance of our

work in improving the interpretability of brain maps derived from group

brain decoding analyses, its position with respect to the related works, the

limitations of our approach, and possible future directions.

4.2 Materials and Methods

4.2.1 Notation

In the following text, we denote scalar numbers by lower case italic letters,

vectors by lower case boldface letters, and matrices by capital boldface
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letters. We use ai,: and a:,i to refer to the ith row and column of matrix

A, respectively. We use ‖.‖2 to denote the `2-norm of a vector, ‖.‖1 the `1-

norm of a vector, and [., .] for the row–wise vector concatenation operator.

4.2.2 Brain Decoding for Brain Mapping: The Pattern Recov-

ery Problem

The aim of brain decoding is to learn the function F : X → Y , where X =

Rp represents the space of neural activity, and Y ∈ {1, 2, . . . , c} represents

the categorical output space, i.e., the target classes of the stimuli. In

this paper, for sake of simplicity, we focus on the binary brain decoding

problem where Y ∈ {−1, 1}. Let (xj, yj) ∈ Rp×{−1, 1} be the jth sample,

∀j ∈ {1, 2, . . . , n}, that is, independently and identically distributed (iid),

drawn from the joint distribution of Z = X × Y , based on an unknown

Borel probability measure P , and we have X = [x1,x2, . . . ,xn] ∈ Rn×p

and y = [y1, y2, . . . , yn] ∈ {−1, 1}n. In the neuroimaging context, it is

commonly assumed that the solution of a brain decoding problem is among

a family of linear functionsH. Therefore, the aim of brain decoding reduces

to finding an empirical linear approximation of F inH. This approximation

can be obtained via a maximum a–posteriori estimation, or alternatively,

by solving a regularized empirical risk minimization (rERM) problem:

ŵ = argmin
w
L(y,Xw) + λΩ(w) (4.1)

where ŵ ∈ Rp represents the weight vector of the linear classifier and

ŷ = Xŵ, L : Y × Y → R+
0 is the loss function, Ω : Rp → R+ is the

regularization term, and λ ≥ 0 is a hyper–parameter that controls the

amount of regularization. There are various choices for Ω, each of which

reduces the hypothesis space H to H′ ⊆ H by enforcing different functional

or structural constraints on the parameters of the linear decoding model.
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The `1 and the squared `2 penalizations where Ω(w) = ‖w‖1 and Ω(w) =

‖w‖2
2, respectively, are two common choices for the regularization terms.

The `1 regularization, also known as Lasso [185], promotes sparsity in the

parameter space, while `2 enforces a Gaussian prior on the distribution of

parameters.

The generalization performance of the decoding model can be estimated

via data perturbation techniques, such as cross–validation [111] or boot-

strapping [51], both of which evaluate the quality of predictions in ŷ with

respect to the actual target classes in y. The learned parameters of the

decoding model ŵ can be possibly used in the form of a brain map in

order to visualize the discriminating brain activity between different stim-

ulus categories. This inverse inference approach for multivariate analysis

of neuroimaging data is generally known as neural pattern recovery [195]

and has many applications in medical diagnosis and hypothesis testing.

4.2.3 Group–Level Brain Decoding

Let (x
(i)
j , y

(i)
j ) be the jth, ∀j ∈ {1, 2, . . . , n(i)}, iid sample that is drawn from

the joint distribution of Z = X×Y , based on an unknown Borel probability

measure P (i), where i ∈ {1, 2, . . . , s} denotes the neural recordings for the

ith subject. In this study, we are interested in MEG data decoding, thus

here x
(i)
j refers to the jth trial of MEG recording on subject i. The sam-

pling probability measures, i.e., P (i), are subject–specific and they depend

on the device used to measure the neural activity. These probability mea-

sures are partially different from subject to subject due to structural and

functional variability across individuals, as well as different levels and types

of internal and external noise contamination. While the difference in noise

levels is uninformative and should be ignored, the structural and functional

differences might reflect valuable and meaningful information regarding the

different cognitive processes across individuals. In the remaining text, we
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useD = {(X(i),y(i)) | i ∈ {1, 2, . . . , s}} to denote the training set composed

of s subjects neural recordings, where X(i) = [x
(i)
1 ,x

(i)
2 , . . . ,x

(i)

n(i)] ∈ Rn(i)×p

and y(i) = [y
(i)
1 , y

(i)
2 , . . . , y

(i)

n(i)] ∈ {−1, 1}n(i)

.

A successful group–level pattern recovery via brain decoding should

reflect similarities and dissimilarities in neural correlates across different

subjects, while ignoring the uninformative noise patterns. There are two

common approaches used to solve the brain decoding problem at the group–

level [129]:

1. Single–Subject Decoding: In single–subject decoding the rERM

problem is solved independently for each subject in order to find linear

functions F (i) : X(i) → y(i) as linear estimations of the solution to the

brain decoding problem F :

ŵ(i) = argmin
w
L(y(i),X(i)w) + λ(i)Ω(w) (4.2)

where ŵ(i) ∈ Rp is the recovered brain map for subject i, and we have

ŷ(i) = X(i)ŵ(i). Even though single–subject decoding is based on the

correct assumption of heterogeneity of P (i) across different subjects,

and therefore accounts for variability in structure, functional profile,

and noise of X(i) for different individuals, its solutions tend to overfit to

the noise patterns [83], due to the high–dimensionality of data where

n(i) � p. Consequently, there is high variability between recovered

brain maps from different perturbed training sets (for example folds

of k-fold cross–validation). This variability makes the post–hoc inter-

pretation of results cumbersome. Furthermore, single–subject decod-

ing relies only on the idiosyncratic brain activity patterns, and thus

does not take advantage of coarse–level similarities across different

brains [129].
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2. Pooling: In the pooling scenario, it is assumed that the data for

all subjects are generated by the same probability distribution, i.e.,

P (1) = P (2) = · · · = P (s), therefore the rERM problem is solved on

the pooled samples of all subjects X = [X(1),X(2), . . . ,X(s)] ∈ Rn×p,

y = [y(1),y(2), . . . ,y(s)] ∈ {−1, 1}n, where n =
∑s

i=1 n
(i), and we have

ŵ = argmin
w
L(y,Xw) + λΩ(w). (4.3)

Even though the pooling scenario alleviates, to some degree, the over-

fitting problem (n > n(i)), it suffers from the subtle assumption of

the homogenity of P (i) across different subjects and, consequently it

ignores the various sources of inter–subject variability. This sub–

optimal assumption has a negative effect on generalization perfor-

mance [151]. In addition, the pooling approach recovers only a single

brain map for all subjects, thus it is unable to recover the possible

structural and functional differences across different individuals.

4.2.4 Multi–Task Joint Feature Learning for Group–Level De-

coding

As a compromise between the two aforementioned extremes in multi–

subject brain decoding, we propose the multi–task joint feature learning

paradigm [9] for solving the brain decoding problem at the group–level.

In this approach, the brain recording of each subject is considered as a

task, and the rERM problem is optimized simultaneously across subjects

as follows:

Ŵ = argmin
W

s∑
i=1

L(y(i),X(i)w:,i) + λ ‖W‖2,1 (4.4)

where ‖W‖2,1 =
∑p

j=1 ‖wj,:‖2 is `2,1-norm of W ∈ Rp×s. The `2,1-norm is a

non–smooth regularizer which encourages learning sparse common features
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across multiple tasks, i.e., subjects. However, solving the above rERM

optimization problem is challenging due to non–smoothness of `2,1 term.

Several algorithms are proposed in the literature for solving this problem

or equivalent constrained versions. In this paper, we adopt the acceler-

ated group sparsity learning algorithm [124] for solving Eq. (4.4). This

algorithm reformulates the non–smooth `2,1 as a constrained convex opti-

mization problem with a smooth objective function. This problem is then

solved using Nesterov’s accelerated projected gradient descent method [144]

which provides a superior worst–case convergence rate than standard pro-

jected gradient descent, and is much faster than sub–gradient descent and

gradient descent algorithms.

In practice, the `2,1-norm encourages group sparsity over the features

across different tasks. The sparse feature selection over the groups of

spatio–temporal features is induced by the summation over `2-norms. As

schematically shown in Figure 4.1, the resulting weight matrix is expected

to have a similar sparse pattern across different tasks. This is while, in-

side each selected group of features, the features can have different weights

from task to task. This property is especially beneficial for representing

the differences in behavior of similar features across different tasks.

The proposed approach has three advantageous characteristics for group–

level pattern recovery: 1) it simultaneously optimizes the loss function

across subjects. This characteristic, similar to single–subject decoding,

and unlike the pooling approach, provides the possibility of subject–specific

pattern recovery, while, similar to pooling and unlike the single–subject ap-

proach, it learns the underlying patterns of neurophysiological activity on

a larger sample size (on all subjects). In addition, the simultaneous opti-

mization provides the infrastructure to learn the shared spatio–temporal

patterns across different individuals; 2) it accounts for different noise dis-

tributions in the recorded data across subjects, i.e., X(i), thus enhances
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Figure 4.1: A schematic illustration for multi–task joint feature learning via `2,1-norm.

The resulting weight matrix has a similar sparse pattern across different tasks while each

feature can have different weights on different tasks.

the subject–specific pattern recovery; 3) it encourages similar sparse pat-

tern recovery across subjects. This characteristic provides the possibility

of joint feature learning as it accounts for the similarity of neural responses

to a similar stimulus across individuals. We hypothesize that the combi-

nation of the proposed multi–task learning and `2,1 penalization provides

a fair compromise in recovering the similarities and dissimilarities of the

underlying neurophysiological activations across different subjects.

4.2.5 Experimental Materials

Simulated MEG Data

To evaluate the performance of the multi–task joint feature learning for

spatio–temporal pattern recovery in a group–level MEG decoding scenario,
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we benchmarked it against common off–the–shelf approaches on a simu-

lated MEG dataset. As the ground–truth effect is known in the simulations,

we can reliably compare the quality of pattern recovery in different group–

level decoding scenarios. To achieve this goal, we simulated sensor–space

MEG data for 7 subjects. For each subject, we simulated two classes of

MEG trials, each of which was composed by 250 epochs with a length of

330 ms at a 300 Hz sampling rate (so that we have 100 time–points for each

MEG sensor). For all subjects, the whole scalp topography was simulated

with a single dipole located at −4.7, −3.7, and 5.3 cm in the RAS (Right,

Anterior, Superior) coordinate system [Figure 4.2(A)]. The position of the

dipole location was arbitrary , but was close enough to the surface of the

brain to provide stronger sensor–level patterns. To construct the temporal

pattern of the target activity, the epochs of the positive class are, simi-

larly across subject, constructed by adding up 3 components to the dipole

time–course:

1. A time–locked effect composed of a positive 3 Hz half–cycle sinusoid

peak, followed by a negative 5 Hz half–cycle sinusoid peak. The peaks

are set 150 ± 3 and 250 ± 3 ms after the epoch onset, respectively

[Figure 4.2(B)].

2. Uncorrelated background brain activity was simulated by summing 50

sinusoids with a random frequency from 1 to 125 Hz, and a random

phase varied between 0 and 2π [Figure 4.2(C)]. In order to better

mimic the actual magnetic features of the scalp surface, following the

data simulation procedure described in Ref. [214], the amplitude of

any single frequency component of the signal (the time–locked effect

and the background noise) was set based on the empirically estimated

spectral power of human brain activity.

3. White Gaussian noise was scaled with respect to the root mean square
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Figure 4.2: (A) The dipole position in the RAS coordinate system (the red circle). (B)

The time–locked target effect is only present in the trials of the positive class. (C) The

background brain activity is present in all simulated trials. (D) All trials are contaminated

with white Gaussian noise. (E) An example of simulated trials in the positive and negative

classes.

of the amplitude of signal in each epoch [Figure 4.2(D)].

The epochs of the negative class were constructed without the time–locked

effect and by merely adding up the noise components (i.e., the background

activity and the white noise). Therefore, the time–locked component is

considered as the discriminating ground–truth pattern in our experiments.

To simulate the sensor–level variability across individuals, for each sub-

ject we used different orientation for the dipole in the source space. This

variability in orientation of dipoles simulates directly dissimilar formations

of gray matter, and indirectly simulates different head shapes and the posi-

tion of the head inside the MEG helmet for a group of subjects. We set the
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orientation of dipoles as [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [0, 1, 1], [1, 0, 1],

and [1, 1, 1] for simulated subject 1 to 7, respectively. These differences in

orientation are expected to provide different sensor–level spatial patterns

across subjects. In the final step, the signal of 102 magnetometer sensors

of the Elekta Neuromag system are simulated using a standard forward

model algorithm implemented in the Fieldtrip toolbox [153]. Using brain

decoding on the sensor–level simulated MEG data, a successful group–level

pattern recovery approach should be able to recover the similar temporal

pattern of the time–locked effect in 7 subjects despite the different topo-

logical distribution across sensors.

Real MEG Data

In order to evaluate the proposed method on real data, we employed the

MEG dataset that is collected by Henson et al. [90]1. This dataset includes

MEG recordings for 16 subjects. In the experimental protocol, visual stim-

uli consisting of famous, unfamiliar, and scrambled faces are presented to

subjects in a random order. MEG data were recorded using a Elekta Neu-

romag VectorView system. As in Ref. [151], we used the balanced face vs.

scrambled dataset where the samples in the face category were randomly

drawn from the trials of famous or unfamiliar faces 2. The samples in the

face and scrambled face categories are labeled as 1 and −1, respectively.

The raw data was high–pass filtered at 1 Hz, down–sampled to 250 Hz,

and trimmed from 200 ms before the stimulus onset to 800 ms after the

stimulus onset. Thus, each trial has 250 time–points for each 306 MEG

sensor (102 magnetometers and 204 planar gradiometers)3. To create the

1The full dataset is publicly available at ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/

wakemandg_hensonrn/
2The extracted dataset is used in DecMeg2014 competition and is publicly available at https://www.

kaggle.com/c/decoding-the-human-brain/data
3The preprocessing scripts in python and MATLAB are available at: https://github.com/

FBK-NILab/DecMeg2014/

ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
https://www.kaggle.com/c/decoding-the-human-brain/data
https://www.kaggle.com/c/decoding-the-human-brain/data
https://github.com/FBK-NILab/DecMeg2014/
https://github.com/FBK-NILab/DecMeg2014/
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feature vector of each sample, we pooled all of the temporal data of the

306 MEG sensors into one vector (i.e., we have p = 250 × 306 = 76, 500

features for each sample). Before training the classifier, the features were

standardized to have a mean of 0 and standard–deviation of 1.

4.2.6 Classification and Evaluation

We compared our multi–task joint feature learning algorithm with single–

subject decoding and pooling approaches in terms of decoding performance,

reproducibility of brain maps, and quality of spatio–temporal pattern re-

covery. `1 and `2 penalization terms are used in both single–subject de-

coding and pooling scenarios 4. Considering these 3 group–decoding ap-

proaches, and different penalization schemes, in total, 5 decoding methods

are benchmarked on the simulated and real MEG datasets, namely: SS-L1,

SS-L2, Pooling-L1, Pooling-L2, and MT-L21, respectively, single–subject

decoding with `1 regularization, single–subject decoding with `2 regular-

ization, pooling with `1 regularization, pooling with `2 regularization, and

multi–task learning with `2,1 regularization. We employ the implementa-

tion presented in MALSAR toolbox [220] for multi–task joint feature learn-

ing 5. Algorithm 2 summarizes the pseudo–code for optimizing Eq. 4.4. In

this algorithm, the outer while loop performs Nesterov’s optimization [144]

which is an optimal first–order black box method for smooth convex opti-

mization. The inner while loop performs the efficient Euclidean projection

onto a set of convex solutions [124].

The out–of–bag (OOB) [189] method with 50 bootstrap replications

was used for computing the expected prediction error (EPE) at different

regularization levels λ = {0.001, 0.1, 1, 5, 10, 25, 50, 100, 200, 300}. Then

4The MATLAB codes that are used for our experiments are made publicly available at https://

github.com/smkia/MTJFL_MEG.
5See https://github.com/jiayuzhou/MALSAR for open-source toolbox implementation and documen-

tation.

https://github.com/smkia/MTJFL_MEG
https://github.com/smkia/MTJFL_MEG
https://github.com/jiayuzhou/MALSAR
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1 − EPE is used as a measure for the generalization performance. To

evaluate the reproducibility of brain maps, we adopt the reproducibility

measure introduced in Ref. [108] (see Section 3.2.3).

Algorithm 2 The pseudo–code for optimizing Eq. 4.4. Let X1, . . . ,Xs, y1, . . . ,ys, and

λ be as defined in Section 4.2.3. The algorithm receives also tol and maxIter, i.e., the

tolerance and the maximum iteration, as two stopping criteria. The algorithm return the

weight matrix WMT ∈ Rp×s as output. In addition to the notation in Section 4.2.1, A′

represents the transpose of matrix A, � represents the element–wise matrix multiplica-

tion, and a(i,j) denotes the element of matrix A at the ith row and jth column. In all of

our experiments, we set tol = 10−4 and maxIter = 1000.
1: Input: X1, . . . ,Xs;y1, . . . ,ys;λ; tol;maxIter

2: Output: WMT ∈ Rp×s

3: Initialize: W0,W1,= 0p×s; v0 = 0, v1 = +∞;α0 = 0;α1 = 1; γ = 1; iter = 1; ∆ = +∞p×s;

4: while
∣∣∣v1 + λ

∑p
i=1

∥∥∥w(i,:)
1

∥∥∥
2
− v0 − λ

∑p
i=1

∥∥∥w(i,:)
0

∥∥∥
2

∣∣∣ > tol × (v0 + λ
∑p
i=1

∥∥∥w(i,:)
0

∥∥∥
2
) & iter ≤ maxIter do

5: S = W1 + α0−1
α1
× (W1 −W0)

6: for t← 1, s do

7: g(:,t) = X′t(Xts(:,t) − yt)
end of for

8: f = 0.5×
∑s
t=1

∥∥Xts(:,t) − yt
∥∥2

2

9: while ‖∆‖2F > 10−20

10: U = S− G
γ

11: η = λ
γ

12: for i← 1, p do

13: l(i,:) = max(01×s, 1− η

‖u(i,:)‖2
)

end of for

14: L = L�U

15: ∆ = L− S

16: v0 = v1

17: v1 = 0.5×
∑s
t=1

∥∥∥Xtl
(:,t) − yt

∥∥∥2

2

18: if v1 > f +
∑s
t=1

∑p
i=1(∆(i,t) × g(i,t)) + γ

2
× ‖∆‖2F then do

19: break the inner while loop.
end of if

20: γ = γ × 2
end of while

21: W0 = W1

22: W1 = L

23: α0 = α1

24: α1 = 0.5× (1 +
√

1 + 4× α2
1)

25: iter = iter + 1
end of while

26: WMT = W1
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4.3 Results

In this section, we compare the proposed multi–task joint feature learning

with traditional single–subject and pooling approaches in a group multi-

variate analysis of MEG data. The comparisons are made based on the

decoding performance, reproducibility of brain maps, and quality of the

recovered spatio–temporal brain maps. Figure 4.3 shows generalization

performance and the reproducibility of the 5 different methods on the sim-

ulated and real MEG data. In the case of simulated data the bar diagrams

depict the average performance and reproducibility over 10 simulation runs

and 7 simulated subjects. The results of the real MEG data are averaged

over 16 subjects.

4.3.1 Simulated Data

Single–Subject Decoding

In the single–subject decoding scenario, `1 penalization provides higher

generalization performance than `2, but this slight advantage in decoding

performance leads to a substantial drop in the level of reproducibility of

brain maps. The multicollinearity in the MEG data is the main reason

behind this observation. The `1 penalization enforces strong sparsity on the

parameters of the decoding model that makes the decoding process highly

unstable, especially on the multicollinear input space. Due to the nature of

the MEG signal, the independent variables are highly correlated in space

and time. Therefore, slight changes in the training set (for example using

perturbation techniques such as cross–validation) results in high variation

on the weights of the classifier. Furthermore, it increases the chance of

miss–fitting the classifier to spurious noise components that are partially

correlated with informative components of the signal.

The sensor maps in Figure 4.4 depict the spatial distribution of the re-
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Figure 4.3: Comparison between the generalization performance and the reproducibility

of the 5 different methods on the simulated and real MEG data. The results on the

simulated data are averaged over 10 simulation runs and 7 simulated subjects. The results

on the real MEG data are averaged over 16 subjects. MT-L21 provides the best decoding

performance, while preserving the highest reproducibility level among other competing

methods.

covered patterns for the 5 different methods tested on data from 7 simulated

subjects. A comparison between the first (the ground–truth maps) and the

second (the SS-L1 maps) columns of topographic sensor maps illustrates

how the pattern recovery by means of `1 regularized classifier is affected by

these deficits. The recovered maps via SS-L1 are over–attenuated in space

compared to the ground–truth effect, because the correlated sensors are

ignored by `1 penalized classifier, as they do not provide extra information

for decoding. Further, SS-L1 recovers some extra spurious spatial patterns

that are not present in the ground–truth maps.



116 Multi–Task Joint Feature Learning for Group MEG Decoding

Ground Truth SS-L1 SS-L2 Pooling-L1 Pooling-L2 MT-L21

Sub 1

Sub 2

Sub 3

Sub 4

Sub 5

Sub 6

Sub 7

Figure 4.4: Topographic sensor maps of the ground–truth effect and the weight vectors

computed using 5 different decoding approaches (columns) on 7 simulated subjects (rows).

The weight vectors are normalized in the unit hyper–sphere. The maps show the averaged

weights in 100 ms interval from 100 to 200 ms after the stimulus onset.
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The same conclusions can be made for the temporal pattern recovery

based on the temporal maps. Figure 4.5 shows the temporal maps of 5

different methods for the first three simulated subjects (see Appendix A.5

for similar maps on simulated subjects 4 to 7). The temporal patterns

show the averaged classifier weights over the highlighted channels. The

channels are selected based on the spatial distribution of the dipole in

the ground–truth effect. Again the temporal pattern recovered by SS-L1

(the blue dashed line) has much less expansion in time compared to the

ground–truth effect (the red line).

On the other hand, SS-L2 with a Gaussian prior assumption on the

distribution of weights, provides a higher level of reproducibility than SS-

L1, however it completely fails to recover the spatio–temporal pattern of

the ground–truth effect (see the third column of Figure 4.4 and the dotted

purple line in Figure 4.5). This fact is also well–reflected in Table 4.1, where

the recovered maps using SS-L2 show substantially less cosine similarity

with the ground–truth effect compared to SS-L1.

Pooling

The pooling method generally shows a lower performance than the single–

subject and multi–task approaches (see Figure 4.3). This loss in perfor-

mance is expected due to the wrong assumption on the similarity of Pi

across different subjects [151]. On the other hand, both Pooling-L1 and

Pooling-L2 approaches provide higher reproducibility than SS-L1. Putting

the performance aside, the main problem of the pooling approach arises

when the quality of pattern recovery matters. In pooling, since we come up

with only one model for all subjects, the subject specific pattern recovery

is impossible. In other words, the pooling approach ignores across–subject

structural and functional differences, and provides only one brain map for

all subjects. The fourth and the fifth columns of Figure 4.4 show the sim-
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Figure 4.5: Comparison between the temporal maps of the 5 different decoding methods

with the ground–truth effect, on data from the first three simulated subjects. The time

courses are showing the temporal patterns of the recovered effect computed by averaging

the weights of the classifier over the highlighted channels. The channels are selected based

on the spatial distribution of the dipole in the ground–truth effect (see Figure 4.4).

ilar recovered spatial patterns of simulated MEG data for seven subjects.

While in some subjects the recovered pattern by Pooling-L1 provides a

fair representation of the ground–truth effect, in some subjects (for ex-

ample subject 1) it completely misrepresents the ground–truth (see also

Figure 4.5 for temporal patterns). Similar to single–subject decoding, the

`2 penalization in the pooling scenario fails completely in spatio–temporal

pattern recovery (see Table 4.1 for quantitative comparison).
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Table 4.1: Cosine similarity between the recovered patterns for the 5 decoding methods

and the ground truth effect. The numbers show the average and the standard deviation

of cosine similarities between the ground–truth and brain maps in 10 simulation runs.

The bold faced numbers show the best method for each subject. The last row of the

table shows the mean similarity across subjects. MT-L21 maps are significantly more

representative of the ground–truth effect than other benchmarked approaches.

SS-L1 SS-L2 Pooling-L1 Pooling-L2 MT-L21

Sub1 0.36± 0.07 0.10± 0.01 −0.08± 0.02 0± 0.01 0.62 ± 0.05

Sub2 0.37± 0.07 0.10± 0.01 0.13± 0.02 0± 0.01 0.63 ± 0.05

Sub3 0.33± 0.03 0.11± 0.01 0.60 ± 0.03 0.06± 0.00 0.59± 0.03

Sub4 0.38± 0.04 0.11± 0.01 0.30± 0.02 0.02± 0.01 0.64 ± 0.05

Sub5 0.35± 0.05 0.10± 0.01 0.55± 0.03 0.05± 0.00 0.62 ± 0.05

Sub6 0.32± 0.03 0.11± 0.01 0.47± 0.02 0.05± 0.00 0.57 ± 0.03

Sub7 0.38± 0.05 0.11± 0.01 0.61 ± 0.03 0.06± 0.00 0.61 ± 0.03

Mean 0.36 0.11 0.37 0.04 0.61

Multi–Task Joint Feature Learning

The proposed multi–task joint feature learning method, MT-L21, achieves

as high of performance as the single–subject decoding, while preserving

high reproducibility like in the pooling approach. More importantly, it

enables reliable subject–specific pattern recovery in time and space. This

fact is well reflected in the topological plots in the sixth column of Fig-

ure 4.4. The recovered maps show a fair overlap with the ground–truth

effect. This overlap is also reflected in the cosine similarity between the

recovered maps and the ground–truth map in Table 4.1, where the MT-

L21 map has a 0.61 average similarity across the 7 simulated subjects. The

superiority of MT-L21 in decoding performance, reproducibility, and pat-

tern recovery can be explained by its three main characteristics: 1) unlike

the pooling method, and similar to single–subject decoding, it correctly

assumes a different sampling distribution (and thus different noise distri-

bution) across MEG recordings of different subjects, and therefore provides

a higher generalization capability; 2) unlike the single–subject method, and
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Figure 4.6: A comparison between the reproducibility of spatio–temporal maps in the SS-

L1 and MT-L21 decoding approaches. The topographic maps are plotted by averaging the

weights of the classifier between 100 and 200 ms in 3 simulation runs of simulated subject

1. The recovered time courses are plotted by averaging the weights over the highlighted

channels. MT-L21 is more stable in recovering the spatio–temporal maps.

similar to the pooling approach, the classifier is trained simultaneously on

all subjects. This specification alleviates the high dimensionality problem

(as we train on more samples), and therefore provides more highly repro-

ducible brain maps; 3) `2,1 regularization enforces group sparsity in weight

distributions. Thus the recovered maps are sparser than `2 regularization,

and at the same time are more consistent in space and time from subject

to subject than `1 regularization.

To compare the effect of the reproducibility of pattern recovery on the

final interpretation of brain maps, we conducted a decoding experiment

on the simulated MEG data. In this experiment, we compared pattern

recovery in SS-L1 and MT-L21 (as they have the best generalization per-

formance among the other methods) in three simulation runs. As described

in Section 4.2.5, the distribution of noise in the simulated data is differ-

ent from run to run. In fact, this difference simulates the across–session

variation of the MEG data on a single subject.

The recovered patterns for SS-L1 and MT-L21 of simulated subject 1
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across 3 simulation runs are shown in the first and the second row of

Figure 4.6, respectively. The SS-L1 maps show higher run–to–run variation

than the MT-L21 maps in both space and time. These kind of variations

make the post–hoc interpretation of maps cumbersome, and they might

lead to misinterpretation of results with respect to the actual underlying

effect (see Figure 4.4 and Figure 4.5 for the ground–truth). On the other

hand, MT-L21 shows a more stable pattern recovery in both space and

time, where it consistently recovers the same correct dipole in the sensor

space.

In common practice, generalization performance is the only criterion in

model selection. This means that the hyper–parameters of decoding mod-

els are decided based only on model accuracy, rather than its ability for

reliable pattern recovery. This approach may be shortsighted, especially

when interpreting the spatio–temporal source of discriminative brain ac-

tivity is desired [108]. Therefore, adopting decoding methods that show

higher reproducibility of brain maps in addition to higher generalization

performance facilitates the further interpretation of recovered maps.

4.3.2 Real MEG Data

Figure 4.7(A) depicts the scatter plot of the quality of 16 decoding mod-

els (for 16 subjects of real MEG data) in the performance–reproducibility

plane. The distribution of the generalization performances across 16 sub-

jects [Figure 4.7(B)] shows no statistically significant differences in per-

formances for SS-L1 and MT-L21 (Wilcoxon’s rank sum test p-value =

0.6538), while SS-L2 has significantly lower performance than the other two

approaches (Wilcoxon’s rank sum test p-value = 0.0125 and 0.0035, respec-

tively). On the other side, SS-L1 has substantially lower reproducibility

than SS-L2 and MT-L2 (Wilcoxon’s rank sum test p-value = 8× 10−7, see

[Figure 4.7(C)]). These results confirm the capability of MT-L21 in deliv-
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(A)

(B)

(C)

Figure 4.7: Comparison between the performance and reproducibility of SS-L1, SS-L2,

and MT-L21 across 16 subjects of real MEG data. (A) The scatter plot of 16 decoding

models in the performance–reproducibility plane. The circles represent subjects and the

colors denote different methods. (B) The fitted normal distributions on the performance

of 16 decoding models for 3 different approaches. (C) The fitted normal distributions on

the reproducibility of 16 decoding models for 3 different approaches.

ering highly accurate individual models (same as SS-L1) while preserving

the reproducibility of decoding models, across subjects.

Figure 4.8 illustrates the recovered spatio–temporal patterns by MT-L21

across 16 subjects of real MEG data (see Appendix A.6 for other methods).

In almost all subjects, MT-L21 is able to spot an occipo–temporal dipole

in the sensor space. The different position of the dipole from subject to

subject is expected due to differences in head shapes, anatomical proper-

ties, and position of the head in the MEG helmet. Despite meaningful



4.4. Discussion 123

Figure 4.8: The recovered spatio–temporal representation of the N170 effect in 16 subjects

from the real MEG dataset. The topoplots show the classifier weights for magnetometer

sensors averaged in the 150 to 250 ms time period after stimulus onset. The corresponding

plots represent the temporal dynamic of the dipole (red for the positive effect and blue

for the negative effect) in the time dimension.

but different spatial patterns, the N170 effect is robustly recovered across

almost all subjects around 200 ms after the stimulus onset. These results

confirm the previous event–related potential/field analysis of EEG/MEG

that shows that N170 occurs 130− 200 ms after the stimulus presentation,

and reflects the neural processing of faces [19, 90].

4.4 Discussion

4.4.1 Higher Interpretability of Brain Maps in Multi–Subject

Brain Decoding

The learned parameters of linear decoding models can be visualized in

the form of brain maps. These brain maps can be used to explore the

spatio–temporal origin of the underlying neurophysiological discriminating

activity among two or several cognitve tasks, or types of stimuli. Despite



124 Multi–Task Joint Feature Learning for Group MEG Decoding

theoretical advantages of brain mapping via brain decoding, such as higher

sensitivity and specificity than the alternative univariate approaches, its

application to inference on neuroimaging data is limited, primarily due

to the lack of interpretability [88, 142, 172, 197]. From a cognitive neu-

roscience perspective, reproduciblility and neurophysiological plausiblilty

of a brain map [108] are two necessary conditions for interpretability of

its corresponding brain decoding model. There are two main reasons be-

hind the interpretability problem: 1) the ill–posed nature of the brain de-

coding problem, where we have huge number of spatio–temporal features

(order of 105) while the number of samples is limited (order of 102), this

causes the generalization problem of over–fitting the model on the train-

ing set [30,118,133]; 2) multicollinearity [195] among predictors, where the

strong correlation between spatio–temporal measurements of brain activity

yields coefficient instability in linear brain decoding models [67]. Therefore,

there is an emergent need to incorporate structural and functional prior

knowledge on brain segregation and integration, in order to achieve stable,

reliable, and interpretable brain maps. There are two main directions in

the literature toward this goal: 1) employing structured penalization tech-

niques; 2) reducing the variance of feature selection via enhanced stability

selection.

Structured regularization approaches combine intelligently the basic reg-

ularizers (such as `1 and `2) in order to take advantage of any prior-

knowledge the experimenter may have about the correlational structure in

the neuroimaging data. Group Lasso [217] and total–variation penalty [186]

are two effective methods for enforcing spatio–temporal structure of covari-

ance between predictors into the regularization [168,212]. Group–wise reg-

ularization [192], smoothed–sparse logistic regression [46], total–variation

`1 penalization [62, 133], and the graph–constrained elastic–net [67], are

examples of structured regularization methods that are used effectively in
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the brain decoding context. On the other hand, stability selection is an en-

semble learning method to reduce the variance of feature selection for high

dimensional data analysis [173] that has recently received high attention

in the context of multivariate analysis of brain recordings (see for example

Refs. [195] and [201]).

Despite the aforementioned efforts, so far less attention is devoted to im-

proving the interpretability of brain decoding models in group–level brain

decoding. In fact, employing structured regularization or stability selec-

tion approaches in a single–task brain decoding framework still suffers from

the inadequacy of single–subject or pooling methods in multi–subject mul-

tivariate analysis of neuroimaging data. On the other hand, multi–task

joint feature learning provides the infrastructure for combining structured

regularization with stability selection in group–level multivariate analysis.

While `2,1 penalty combines `2 and `1 norms to enforce group sparsity, its

integration with simultaneous optimization in multi–task learning also of-

fers a variant of stability selection across a group of subjects. By taking

into account the inter–subject spatio–temporal similarities and dissimilar-

ities of brain activity, multi–task joint feature learning provides higher in-

terpretability for multivariate brain maps at the group–level, as supported

by our experimental results.

4.4.2 Related Work

The problem of recovering subject–specific brain responses is discussed in

several recent neuroimaging studies. In this section, we review some related

studies that tried to handle this problem at the preprocessing or decoding

stages.

The problem of characterizing the fine–level distinctive patterns in pop-

ulation response topographies was first elucidated by Haxby et al. [87],

where the authors presented a novel functional alignment method, called
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hyper–alignment, in order to derive a set of basis functions that are com-

mon across different individuals. They then modeled individual cortical

response patterns as weighted sums of these basis functions. In a single–

subject fMRI decoding scenario, they showed the superiority of the decod-

ing performance in the hyper–aligned common space over the anatomically

aligned data. Further, they showed the back–projection of predictive ba-

sis functions in the common space to the subject native space provides

subject–specific distinctive spatial maps. One practical limitation of this

method is in estimating the parameters of hyper–alignment, i.e., basis func-

tions, that should be performed on a separate dataset (preferably in re-

sponse to natural complex stimuli such as a movie). In addition, to the

best of our knowledge, at this time the application of hyper–alignment

remains limited to fMRI data.

To overcome inter–subject variability in group analysis of fMRI data,

Takerkart et al. [180] introduced a graph–based support vector classifi-

cation approach for across–subject multivariate pattern analysis. In this

method, an unsupervised learning approach is employed to construct at-

tribute graphs for fMRI data, where each node has two attributes, namely

location and activation. A support vector machine classifier with graph

kernel is used for classification in graph space. The authors hypothesized

that the inter–subject variability can be characterized based on different

node attributes across subjects. Despite high generalization performance

in a pooling decoding scenario, their proposed method lacks transparency

in their model, due to the non–linear nature of the employed classifier. In

addition, due to the single–task nature, it suffers from all of the limita-

tions of the single–subject and pooling decoding scenarios. Another study

attempted to take into account both the similarity in macro–structures,

and the dissimilarity in micro–structures of brain activity across different

individuals’ brains. Rao et al. [165] proposed a sparse overlapping group
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lasso (SOGLasso) method to learn both the commonalities and the differ-

ences across brains in an fMRI study. To do this, the authors introduced a

new penalty by combining `2 and `1 to promote both inter and inner group

sparsity. In spite of higher flexibility of SOGLasso over the pure group–

wise regularization in feature selection, no practical solution is suggested

for group–level decoding of neuroimaging data.

The idea of recasting the multi–subject brain decoding problem to a

MTL framework was first presented by Marquand et al. [129] where the

authors defined the input data of each subject as a task. The Gaussian

process MTL was employed in order to model the relationship, and to in-

duce coupling between tasks. To visualize the discriminative brain maps, a

transformation from function space to weight space is used to compute the

predictive weight vectors in the input space. Then, a procedure called pre-

dictive mapping, in combination with permutation one–sample t–tests is

used to identify discriminating regions. On an fMRI dataset, they showed

the employed MTL approach provides more accurate and reproducible

models than single–subject and pooling strategies. This work shares simi-

larities with the approach presented in this paper, given that both adopt an

MTL framework, however our approach offers a major advantage because

our method allows for sparse pattern recovery by applying `2,1 penaliza-

tion. Importantly, the sparse recovered patterns provide a more convenient

post–hoc interpretation of brain maps. Another minor advantage of our

method is its computational simplicity, where unlike in Ref. [129], there is

no need for estimating covariance matrices on a small number of samples

of high dimensional input data in the decoding or visualization phase.

4.4.3 Limitation and Future work

The proposed multi–task joint feature learning framework uses `2,1 regu-

larization to impose structured group sparsity in brain pattern recovery.
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Despite the experimental success presented in this study, one challenge is

that, `2,1 blindly encourages similar sparse patterns across different sub-

jects. In other words, it does not consider the possibility of different inter

and inner group sparsity profiles across different subjects. Enforcing extra

prior information regarding the structure of data in time and space can

provide these possibilities and lead to a new generation of enriched pattern

recovery methods. One possible way to move toward this goal is to encode

higher level prior information in the form of a graph, and then add an

extra graph–fused penalty term to the current optimization scheme. This

change can lead to a convex minimization problem involving the sum of

a smooth function (the loss function), a non–smooth proximable function

(`2,1 penalty term), and the composition of a proximable function with a

linear operator (the graph–fused term) that can be solved using the first–

order splitting algorithm proposed in Ref. [39]. Implementation of the

first–order splitting algorithm for the multi–task learning, and comparing

its quality in pattern recovery with `2,1 is an important future direction for

our work.



Chapter 5

Conclusions

The primary goal of this thesis was to reduce the knowledge extraction

gap in multivariate analysis of neuroimaging data by improving the inter-

pretability of linear brain decoding models. Considering the importance

of group–level inference in cognitive neuroscience studies and numerous

challenges in this direction, the secondary goal was focused on exploring

more effective decoding methods that are capable of recovering structural

and functional similarities and dissimilarities in a group–level analysis of

neuroimaging data.

To this end, first we presented a novel theoretical definition for the inter-

pretability of linear brain decoding and associated multivariate brain maps.

We demonstrated how the interpretability can be decomposed to the rep-

resentativeness and reproducibility of a linear brain decoding model. This

decomposition explains the relationship between the influential coopera-

tive factors in the interpretability of brain decoding models and highlights

the possibility of indirect and partial evaluation of interpretability by mea-

suring these effective factors. The presented definition provides a first step

toward practical solution for filling the knowledge extraction gap in linear

brain decoding and it provides a theoretical background to explain a previ-

ously ambiguous concept in the brain decoding context. To provide a proof

129
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of concept, a heuristic approach based on the contrast event–related field is

exemplified for practical evaluation of the interpretability in multivariate

recovery of evoked MEG responses. We further proposed to combine the

interpretability and the performance of the brain decoding as a new Pareto

optimal multi–objective criterion for model selection. We experimentally

showed that considering the interpretability of brain decoding models in

the model selection procedure has a positive effect on the human inter-

pretation of multivariate brain maps compensating a negligible amount of

performance. Collectively, our methodological and experimental achieve-

ments can be considered a complementary theoretical and practical effort

that contributes to researches on enhancing the interpretability of mul-

tivariate pattern analysis. Despite theoretical and practical advantages,

the proposed definition and quantification of interpretability only applies

to linear models, therefore extending the definition of interpretability to

non–linear models demands future research into the visualization of non–

linear models in the form of brain maps. Furthermore, the application

of the proposed heuristic for approximating the interpretability is limited

to the time–locked MEG responses, thus finding physiologically relevant

heuristics for other acquisition modalities such as fMRI, and other brain

responses such as induced responses can be also considered as possible

directions in future work.

Second, we presented an application of multi–task joint feature learn-

ing in multi–subject decoding of MEG data where the MEG recording of

each subject is defined as a task in the multi–task classification paradigm

and `2,1 regularization is used to recover sparse heterogeneous patterns of

brain activity across different individuals. The proposed framework pro-

vides the possibility of consistent sparse pattern recovery across different

individuals while at the same time preserving idiosyncratic structural and

functional properties, thus yields higher interpretability for multivariate
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brain maps at the group–level. In addition, multi–task joint feature learn-

ing provides the infrastructure for combining structured regularization with

stability selection in group–level multivariate analysis. While `2,1 penalty

combines `2 and `1 norms to enforce group sparsity, its integration with

simultaneous optimization in multi–task learning also offers a variant of

stability selection across a group of subjects. Considering the importance

of group–level inference in neuroimaging context, and inadequacy of clas-

sical univariate and multivariate approaches in group–level analysis, the

proposed approach can provide a methodological shift toward higher sensi-

tive and at the same time higher interpretable brain decoding models. Our

experiments on synthetic and real MEG data demonstrated the superiority

of proposed approach in reproducibility and quality of recovered patterns

over the traditional single–subject and pooling approaches. To the best

of our knowledge, our effort for the first time addresses the problem of

across subject pattern recovery in MEG decoding. Considering the high

temporal and spatial resolution of MEG brain recordings, the proposed

approach provides the possibility for recovering temporal brain dynamics

within the millisecond time scale with a fair spatial granularity. Our future

plan is to improve group–level pattern recovery by enforcing extra struc-

tural spatio–temporal prior knowledge via adding a graph–fused penalty

term to the current optimization scheme. Hopefully this addition provides

the possibility of accounting for different inter and inner group sparsity

profiles across different individuals.

Our contributions aimed to extend the state of the art in multi–disciplinary

researches for reliable, reproducible, and plausible inference on neuroimag-

ing data, by facilitating the application of brain decoding for brain mapping.

We hope this thesis contributes a tiny step toward answering historical

questions in understanding the brain and its functions.
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EEG data analysis with MNE-Python. Frontiers in Neuroscience,

7:267, 2013.

[62] Alexandre Gramfort, Bertrand Thirion, and Gaël Varoquaux. Iden-
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Appendix A

Appendices

A.1 Uncertainty in Input Space and Learning

Here we present a simple example to illustrate the effect of uncertainty in

the input space on the learning process and interpretation of results. Let

X ∈ [0, 1]× [0, 1], Y ∈ {−1, 1}, and the distribution of input space ρX be

a 2D-uniform distribution. If (a, b) be a random sample, we have:

Y = sgn(Φ∗(X )) =

{
1 if a < b

−1 if a ≥ b
.

In this example two classes are linearly separable and we have ~Θ∗ ∝
[−0.71, 0.71]T [see Figure A.1(A)]. We add Gaussian noise with co–variance

Σ =

[
0.02 −0.01

−0.01 1

]
to the sampled data. Figure A.1(B) shows the new

distribution of samples after adding noise to the data. After noise contam-

ination, the positive and negative classes are no longer linearly separable

(ΦS is not linear). Using the true solution for classifying the noisy data

yields 0.711± 0.003 classification accuracy. This is while solving the least

squares problem on the noisy samples provides
~̂
Θ ∝ [−0.97, 0.25]T as the

linear approximation of ΦS with accuracy rate of 0.747±0.003. Any model

selection approach based on the generalization performance promotes the

163
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(A) (B)

Figure A.1: (A) The distribution of the sampled data without noise and the true solution.

(B) The distribution of sampled data after noise contamination and the estimated solution

of least squares.

solution of least squares over the true solution. The extra 0.04 improve-

ment of the performance of least square over the true solution can be

considered as over–fitting to noise and it is the source of misinterpretation

of results. Any attempt to interpret the
~̂
Θ leads to a misleading conclusion

with respect to the actual underlying function.

Table A.1: Distribution of cosine similarity between two random p-dimensional vectors.

p = 5 10 50 100 500 1000 5000 10000

Fitted µ -0.00016 0.0012 0.00071 -0.00079 0.00075 -0.00017 -0.00021 -0.000006

Fitted σ 0.4492 0.3189 0.1411 0.0999 0.0450 0.0316 0.0143 0.0099√
1
p

0.4472 0.3162 0.1414 0.1 0.0447 0.0316 0.0141 0.010

Anderson–Darling test 1 1 0 0 0 0 0 0

Critical Value 0.8123 0.6070 0.2761 0.1946 0.0884 0.0621 0.0284 0.0193
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A.2 The Distribution of Cosine Similarity: an Ex-

perimental Support

To experimentally illustrate the characteristics of the distribution of cosine

similarity, 10000 random vectors for p = 5, 10, 50, 100, 500, 1000, 5000, 10000

are drawn from uniform distribution in [−1, 1]. Then histogram of simi-

larity between each random vector with a random reference vector is com-

puted separately for each value of p. Figure A.2 shows the histograms

where the red curve in each histogram represents the normal distribution

fitted to the histogram. The mean and standard deviation of the fitted nor-

mal distributions are summarized in Table A.1. We tested the normality of

the distributions using Anderson–Darling test. Table A.1 shows the results

of tests where 1 means the null–hypothesis is rejected (the distribution is

different from normal). The comparison between the fitted standard devi-

ation with σ =
√

1
p experimentally confirms our initial expectation on the

standard deviation of distribution of cosine similarity. The critical values

for different p are shown in Table A.1 by calculating 95% percentile of the

distribution. For a large enough p the critical value is very close to zero and

therefore any value significantly larger than zero represents a meaningful

similarity between two high dimensional vectors.

A.3 Experimental Comparison Between the Activa-

tion Patterns and cERF

As shown in Section 3.2.4, cERF is the equivalent generative model for

the least squares solution in a binary time–domain MEG decoding sce-

nario. The aim of this appendix is to provide an experimental support

for Proposition 2. To achieve this goal, we experimentally compare cERFs

and activation patterns (APs) in the experiment on the real MEG data
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Figure A.2: Histograms of cosine similarity between 10000 random vectors with a random

reference vector in p dimensional space.

(see Section 3.2.6 for the explanation of data and Section 4.2.6 for the

decoding process). The APs are computed based on the weight vector of

the most accurate decoding models (i.e.,
~̂
Θδ) using the proposed approach

in Ref. [83]. Table A.2 summarizes the cosine similarity between cERFs

and APs across 16 subjects. In addition, it compares the generalization

performance of cERFs (denoted by δcERF ) and APs (denoted by δAP ) with

that of the weights of the decoding model selected based on the proposed

criterion ζΦ (denoted by δζ).

The results experimentally confirm the validity of Proposition 2 as the

cosine similarity between cERFs and APs are very close to 1 for all subjects.

Furthermore, while cERFs and APs show equal prediction power (Wilcoxon

rank sum test p-value= 0.84), they are significantly less predictive than the

weights of the selected model by ζΦ criterion (Wilcoxon rank sum test p-

value= 1.5× 10−6).
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A.4 Limitations of the Proposed Heuristic

In this appendix the goal is to experimentally investigate the limitations of

the proposed heuristic based on contrast event–related fields in approximat-

ing the representativeness and interpretability of brain decoding models.

Here we examine the effect of the sample size and the uncertainty in input

and output spaces on the quality of this approximation.

In our experiments, following the data simulation procedure in Ref. [46],

we simulated samples of the positive class as a 2-dimensional 100×100 pat-

tern of a 5Hz sine wave [see Figure A.3(A)]. All samples in the positive class

are corrupted with Gaussian noise with 0 mean and σ standard deviation

[see Figure A.3(B)]. The value of σ is used to control the level of uncertainty

in the input space. The samples in the negative class are constructed by

drawing 100 × 100 random patterns from the Gaussian distribution with

0 mean and σ standard deviation [see Figure A.3(C)]. Similar to ΘcERF ,

Table A.2: Cosine similarity between cERFs and APs across 16 subjects and comparison

between the generalization performance of cERFs (δcERF ), APs (δAP ), and the weights of

the decoding model selected based on the proposed criterion (δζ).

Subjects
cERF-AP

similarity
δcERF δAP δζ

1 1 0.56 0.56 0.78

2 0.9998 0.54 0.54 0.80

3 0.9998 0.57 0.57 0.78

4 0.9970 0.55 0.55 0.76

5 0.9999 0.54 0.54 0.78

6 1 0.57 0.57 0.74

7 1 0.56 0.56 0.81

8 1 0.56 0.56 0.85

9 0.9999 0.57 0.57 0.77

10 0.9999 0.59 0.59 0.77

11 0.9997 0.53 0.53 0.74

12 0.9999 0.58 0.58 0.79

13 0.9973 0.59 0.58 0.77

14 1 0.62 0.61 0.81

15 1 0.63 0.62 0.89

16 1 0.65 0.65 0.81

Mean 0.9996 0.58± 0.03 0.57± 0.03 0.79± 0.04
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(A) (B) (C)

Figure A.3: (A) The clean positive sample. (B) A noisy positive sample (C) A negative

sample.

here we use µ+ − µ− as an heuristic approximation for Θ∗ (where µ+ and

µ− are averages of positive and negative samples, respectively).

To create the feature vectors, we rearranged the 2D-patterns into a 1D-

vector (i.e., we have p = 100×100 = 10000 features for each sample). Then

the ordinary least–squares (OLS) classifier is used to classify the data into

positive and negative classes. To evaluate the effect of sample size we re-

peated the experiment for n = 20, 200, 500, 1000, 2000, 5000, 10000, 15000

balanced samples of positive and negative classes. The parameter ε that

shows the ratio of miss–labeled data is used to control the level of uncer-

tainty in the output space.

In the first experiment the level of uncertainty in the input space is kept

fixed σ = 1, and we use ε = 0, 0.01, 0.05, 0.1, 0.2, 0.3 to control the uncer-

tainty in the output space for different sample sizes. All the procedures

(data simulation and classification) are repeated 15 times to estimate the

errorbars. Figure A.4 summarizes the result. Figure A.4(A) shows the

positive effect of sample size on the quality of heuristic in presence of un-

certainty in the data. As the sample size increases the ∆β, which measures

the cosine similarity between Θ∗ and µ+− µ−, approaches to 1. The clean

pattern of positive class is used as Θ∗ (ground–truth) in computation of
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(A) (B) (C)

Figure A.4: (A) The effect of sample size and ε on ∆β. Increase in sample size and decrease

in ε improves our approximation of (B) representativeness and (C) interpretability.

∆β and βΦ. Furthermore, it shows the higher uncertainty in the output

space yields lower ∆β. This fact is well reflected in Figure A.4(B) and

Figure A.4(C) where the difference between actual and approximated rep-

resentativeness and interpretability are plotted for different sample size and

ε values.

To further analyze the quality of heuristic, in the second experiment

we change the level of uncertainty in the input space by changing σ =

0, 0.25, 0.75, 1, 1.5, 2 and keeping fixed ε = 0. Figure A.5 summarizes the

result. Again the increase in sample size improves the quality of approxi-

mation. Our experiments highlights the effect of sample size on the quality

of the proposed heuristic in the presence of uncertainty in input and output

spaces. This fact limits the application of the proposed heuristic on the

small sample size datasets.

A.5 Recovered Time Courses on Simulated Data

This appendix presents the complementary figures for Section 4.3.1. Fig-

ure A.6- A.9 compare the temporal maps of 5 different decoding methods

with the ground–truth effect on simulated subject 4-7, respectively. The
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(A) (B) (C)

Figure A.5: (A) The effect of sample size and σ on ∆β. Increase in sample size and de-

crease in σ improves our approximation of (B) representativeness and (C) interpretability.

time courses show the temporal patterns of the recovered effect computed

by averaging the weights of the classifier over the effective channels. The

effective channels are selected based on the spatial distribution of the dipole

in the ground–truth effect.

Figure A.6: Recovered time course for simulated subject 4 using 5 different methods.
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Figure A.7: Recovered time course for simulated subject 5 using 5 different methods.

Figure A.8: Recovered time course for simulated subject 6 using 5 different methods.

Figure A.9: Recovered time course for simulated subject 7 using 5 different methods.
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A.6 Recovered Topoplots on Real Data

Here we present complementary figures for Section 4.3.2. Figure A.10-

A.12 show the recovered topological maps from the real MEG dataset for

16 subjects using SS-L1, SS-L2, and pooling approaches. The topoplots

show the classifier weights for magnetometer sensors averaged in 150 to

250 ms after the stimulus onset.

Figure A.10: Recovered topological maps using SS-L1 method from the real MEG dataset

across all 16 subjects.
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Figure A.11: Recovered topological maps using SS-L2 method from the real MEG dataset

across all 16 subjects.

Figure A.12: Recovered topological maps using Pooling-L1 (left) and Pooling-L2 (Right)

methods from the real MEG dataset.
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