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Foreword

At a first glance, the research carried out during my PhD might seem het-
erogeneous: the study of an axiomatic approach to measure-theory and the
study of generalized solutions to partial differential equations do not share
many contact points. However, there are at least two common ideas be-
hind my work in these different fields: on the one hand, there is the study
of the mathematical continuum by means of discrete models; on the other
hand, there is the attempt at a unifying approach to seemingly different
phenomena.

In nonstandard measure theory, elementary numerosities generalize the
properties of finite cardinality, a function with a discrete range, to arbi-
trary sets. Numerosities generalize also measures, as every measure can be
obtained from an elementary numerosity. In functional analysis, the grid
functions are functions defined on a hyperfinite domain that generalize the
distributions and the Young measures. The distributional derivative is repre-
sented by finite difference operators, and time-dependent partial differential
equations can be coherently formulated as hyperfinite systems of ordinary
differential equations. Moreover, it turned out that the applications of grid
functions go way beyond the study of partial differential equations, and
that the grid functions share some common ground with other theories of
generalized functions beyond distributions.

But, to me, there is another idea underlying the work of these years:
simplicity. And this idea has two distinct facets. The first one stems from
this consideration: sometimes, in the quest for a unifying theory, simplicity
is sacrificed for generality. An example is given by the theory of Young
measures: they are a very powerful, very general notion of generalized func-
tion, but they are rather nontrivial to understand – or, possibly, to get used
to. Instead, to my eyes, the numerosities and the grid functions have a
certain simplicity: numerosities are characterized by just four axioms that
they share with finite cardinalities, and what could be simpler than a func-
tion with a finite domain? It might be argued that this apparent simplicity
is offset by working with the notoriously “hard” and “esoteric” theory of
nonstandard analysis, but this is up to debate.

The second aspect of the simplicity of these approaches to measure the-
ory and to functional analysis is of a very personal nature: by taking these
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nonstandard routes, I have been able to work on some mathematical theo-
ries that I would have found difficult to approach by any other way. Here,
perhaps, lies the source of my fascination with nonstandard methods in
mathematics.

Trento, November 7, 2016,
Emanuele Bottazzi

Structure of the thesis

This thesis is divided in two parts. The first part, consisting of Chapter 1,
is devoted to the study of elementary numerosities. Throughout the chap-
ter, it is proved that elementary numerosities simultaneously generalize the
notion of cardinality for finite sets and of non-atomic measures. Moreover,
in Theorem 1.3.2 and in Theorem 1.3.3 it is shown that any non-atomic
measure can be obtained from an elementary numerosity, and that the co-
herence between the original measure and the numerosity is rather sharp.
The chapter closes with a discussion of several applications of these results
in various areas of measure theory and probability. This part of the thesis
is based upon joint work with Vieri Benci and Mauro di Nasso [6, 7].

The second part of the thesis, consisting of Chapters 2 through 4, fo-
cuses on applications of nonstandard analysis to various areas of functional
analysis. Chapter 2 is devoted to the study of grid functions, a space of func-
tions from nonstandard analysis that simultaneously generalizes the space
of distributions and the space of Young measures. The results presented
in this chapter are of a more theoretical nature, and are mostly geared to-
wards the study of partial differential equations within the framework of
grid functions. However, by the end of the chapter, there is also a discus-
sion of some applications of the theory of grid functions to problems from
various areas of functional analisys. Chapter 3 consists of the study of a
class of ill-posed partial differential equations within the theoretical frame-
work developed through Chapter 2. By working with grid functions, it is
defined a notion of generalized solution for the class of ill-posed problems,
and it is shown that this generalized solution always exists and it is unique.
Moreover, it is proved that the generalized solution is coherent with other
standard notions of solutions for the family of ill-posed pdes. The Chap-
ter concludes with a study of the properties of the generalized solutions.
Chapter 4 briefly outlines some research perspectives for the theory of grid
functions. The second part of the thesis is based upon original research
carried out under the supervision of professor Vieri Benci.
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Part I

Measure theory
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Chapter 1

Elementary numerosities and
measures

In mathematics there are essentially two main ways to estimate the size of
a set, depending on whether one is working in a discrete or in a continuous
setting. In the continuous case, one uses the notion of (finitely) additive
measure, namely a real-valued function (possibly taking also the value +∞)
which satisfies the following properties:

1. m(∅) = 0

2. m(A) ≥ 0

3. m(A ∪B) = m(A) +m(B) whenever A ∩B = ∅.

In the discrete case, one uses the notion of cardinality n that strengthens
the three properties itemized above as follows:

(n.1) n(∅) = 0

(n.2) n(A) ≥ 0

(n.3) n(A ∪B) = n(A) + n(B) whenever A ∩B = ∅

(n.4) n ({x}) = 1 for all singletons.

Our goal is to investigate the relationships between these two notions. To
this end, we will introduce the concept of elementary numerosity as a special
function defined on all subsets of a given set Ω that takes values in a suitable
ordered field F and satisfies the four properties of finite cardinalities itemized
above (see Definition 1.2.1). We remark that if Ω is infinite, then the range
of such a function n necessarily contains infinite numbers, and hence the
field F must be non-Archimedean. Notice that also Cantorian cardinality
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satisfies properties (n.1), (n.2), (n.3), (n.4), the fundamental difference being
that “numerosities” are required to be elements of an ordered field.

The idea of numerosity as a notion of measure for the size of infinite sets
was introduced by Benci in [4], and then given sound logical foundations
by Benci and Di Nasso in [8]. A theory of numerosities have been then
developed in a sequel of papers (see for instance [10, 36]). The main feature
of numerosities is that they preserve the spirit of the ancient Euclidean
principle that “the whole is larger than the part”; indeed, the numerosity
of a proper subset is strictly smaller than the numerosity of the whole set.
This has to be contrasted with Cantorian cardinalities, where every infinite
set have proper subsets of the same cardinality.

Inspired by the same idea, elementary numerosities refine the notion
of finitely additive measure in such a way that also single points count.
Elementary numerosities, developed by Benci, Bottazzi and Di Nasso in
[6, 7], are functions defined on all subsets of a given set Ω which take values
in a suitable non-Archimedean field, and satisfy the same formal properties
as finite cardinality. By improving a classic result by C. W. Henson in
nonstandard analysis, we prove a general compatibility result between such
elementary numerosities and measures. Afterwards, we will present three
applications of numerosity in topics of measure theory. The first one is
about the existence of “inner measures” associated to any given non-atomic
pre-measure. The second application is focused on sets of real numbers.
We show that elementary numerosities provide a useful tool with really
strong compatibility properties with respect to the Lebesgue measure. For
instance, intervals of equal length can be given the same numerosity, and any
interval of rational length p/q has a numerosity which is exactly p/q. We
derive consequences about the existence of totally defined finitely additive
measures that extend the Lebesgue measure. Finally, the third application is
about non-Archimedean probability. Following ideas from [11], we consider
a model for infinite sequences of coin tosses which is coherent with the
original view of Laplace. Indeed, probability of an event is defined as the
numerosity of positive outcomes divided by the numerosity of all possible
outcomes; moreover, the probability of cylindrical sets exactly coincides with
the usual Kolmogorov probability.

We will assume the reader to be familiar with the basics of nonstandard
analysis; a classic reference is Davis [33] (see also the more recent book by
Goldblatt [44]). For the used terminology of measure theory, we refer to
Yeh [90]. A comprehensive exposition of nonstandard measure theory and
probability theory is given in Ross [73].
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1.1 Terminology and preliminary notions

We fix here our terminology, and recall a few basic facts from measure theory
and numerosity theory that will be used in the sequel.

Let us first agree on notation. We write A ⊆ B to mean that A is
a subset of B, and we write A ⊂ B to mean that A is a proper subset
of B. The complement of a set A is denoted by Ac, and its powerset is
denoted by P(A). We use the symbol t to denote disjoint unions. By N
we denote the set of positive integers. For an ordered field F, we denote
by [0,∞)F = {x ∈ F | x ≥ 0} the set of its non-negative elements. We
will write [0,+∞]R to denote the set of non-negative real numbers plus the
symbol +∞, where we agree that x +∞ = +∞ + x = +∞ +∞ = +∞
for all x ∈ R. If A is a hyperfinite internal set, by ‖A ‖ we will denote its
hyperfinite internal cardinality.

Definition 1.1.1. A finitely additive measure is a triple (Ω,A, µ) where:

• The space Ω is a nonempty set;

• A is an algebra of sets over Ω, i.e. a nonempty family of subsets of
Ω which is closed under finite unions and intersections, and under
relative complements, i.e. A,B ∈ A ⇒ A ∪ B,A ∩ B,A \ B ∈ A.
(Actually, the closure under intersections follow from the other two
properties, since A ∩B = A \ (A \B).)

• µ : A→ [0,+∞]R is an additive function, i.e. µ(A∪B) = µ(A)+µ(B)
whenever A,B ∈ A are disjoint. (Such functions µ are sometimes
called contents in the literature.) We also assume that µ(∅) = 0.

The measure (Ω,A, µ) is called non-atomic when all finite sets in A
have measure zero. We say that (Ω,A, µ) is a probability measure when
µ : A→ [0, 1]R takes values in the unit interval, and µ(Ω) = 1.

For simplicity, in the following we will often identify the triple (Ω,A, µ)
with the function µ.

Remark that a finitely additive measure µ is necessarily monotone, i.e.

• µ(A) ≤ µ(B) for all A,B ∈ A with A ⊆ B.

Definition 1.1.2. A finitely additive measure µ defined on an algebra of
sets A is called a pre-measure if it is σ-additive, i.e. if for every countable
family {An}n∈N ⊆ A of pairwise disjoint sets whose union lies in A, it holds:

µ

(⊔
n∈N

An

)
=

∞∑
n=1

µ(An).
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A measure is a pre-measure which is defined on a σ-algebra, i.e. on an
algebra of sets which is closed under countable unions and intersections.

Definition 1.1.3. An outer measure on a set Ω is a function

M : P(Ω)→ [0,+∞]R

defined on all subsets of Ω which is monotone and σ-subadditive, i.e.

M

(⋃
n∈N

An

)
≤
∑
n∈N

M(An).

It is also assumed that M(∅) = 0.

Definition 1.1.4. Given an outer measure M on Ω, the following family is
called the Caratheodory σ-algebra associated to M :

CM = {X ⊆ Ω |M(Y ) = M(X ∩ Y ) +M(X \ Y ) for all Y ⊆ Ω} .

A well known theorem of Caratheodory states that the above family
is indeed a σ-algebra, and that the restriction of M to CM is a complete
measure, i.e. a measure where M(X) = 0 implies Y ∈ CM for all Y ⊆ X.
This result is usually combined with the property that every pre-measure
µ over an algebra A of subsets of Ω is canonically extended to the outer
measure µ : P(Ω)→ [0,∞]R defined by putting:

µ(X) = inf

{ ∞∑
n=1

µ(An)
∣∣∣ {An}n ⊆ A & X ⊆

⋃
n∈N

An

}
.

Indeed, a fundamental result in measure theory is that the above function
µ is actually an outer measure that extends µ, and that the associated
Caratheodory σ-algebra Cµ includes A. Moreover, such an outer measure µ
is regular, i.e. for all X ∈ P(Ω) there exists C ∈ Cµ such that X ⊆ C and
µ(X) = µ(C). (See e.g. [90] Prop. 20.9.)

Next, we will recall the notion of elementary numerosity, a variant of
the notion of numerosity that was introduced in [6]. The underlying idea is
that of refining the notion of finitely additive measure in such a way that
also single points count. To this end, one needs to consider ordered fields
that extend the real line.

Recall that every ordered field F that properly extend R is necessarily
non-Archimedean, in that it contains infinitesimal numbers ε 6= 0 such that
−1/n < ε < 1/n for all n ∈ N. Two elements ξ, ζ ∈ F are called infinitely
close if ξ− ζ is infinitesimal; in this case, we write ξ ≈ ζ. A number ξ ∈ F is
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called finite if −n < ξ < n for some n ∈ N, and it is called infinite otherwise.
Clearly, a number ξ is infinite if and only if its reciprocal 1/ξ is infinitesimal.
We remark that every finite ξ ∈ F is infinitely close to a unique real number
r, namely r = inf{x ∈ R | x > ξ}. Such a number r is called the standard
part of ξ, and is denoted by r = ◦ξ. Notice that ◦(ξ + ζ) = ◦ξ + ◦ζ and
◦(ξ ·ζ) = ◦ξ ·◦ζ for all finite ξ, ζ. The notion of standard part can be extended
to the infinite elements ξ ∈ F by setting ◦ξ = +∞ when ξ is positive, and
◦ξ = −∞ when ξ is negative.

1.2 Elementary numerosity

We will now define the notion of elementary numerosity.

Definition 1.2.1. An elementary numerosity on the set Ω is a function

n : P(Ω) −→ [0,+∞)F

defined on all subsets of Ω, taking values in an ordered field F ⊇ R that
extends the real line, and that satisfies the following two properties:

1. Additivity: n(A ∪B) = n(A) + n(B) whenever A ∩B = ∅;

2. Unit size: n({x}) = 1 for every point x ∈ Ω.

Notice that if Ω is a finite set, then the only elementary numerosity is the
finite cardinality. On the other hand, when Ω is infinite, then the numerosity
function must also take “infinite” values, and so the field F must be non-
Archimedean. It is worth remarking that also Cantorian cardinality satisfies
the above properties (1), (2), but the sum operation between cardinals is
really far from being a ring operation. (Recall that for infinite cardinals κ, ν
it holds κ+ ν = max{κ, ν}.)

Elementary numerosities satisfy the same basic properties as finite car-
dinalities. Indeed:

Proposition 1.2.2. Let n be an elementary numerosity. Then:

1. n(A) = 0 if and only if A = ∅;

2. If A ⊂ B is a proper subset, then n(A) < n(B);

3. If F is a finite set of cardinality n, then n(F ) = n.

Proof. Notice that n(∅) = n(∅ ∪ ∅) = n(∅) + n(∅), and x = 0 is the only
number x ∈ F such that x + x = x. If A ⊆ B then n(B) = n(A) + n(B \
A) ≥ n(A). Moreover, if A ⊂ B is a proper subset and x ∈ B \ A, then
n(B) ≥ n(A ∪ {x}) = n(A) + n({x}) = n(A) + 1 > n(A). In consequence,
n(A) > 0 for all nonempty sets A. Finally, the last property directly follows
by additivity and the fact that every singleton has numerosity 1.
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Remark 1.2.3. If one takes F = R, then elementary numerosities n exist
on a set Ω if and only if Ω is finite; and in this case, the only numerosity n
is given by the finite cardinality.

We will show in the sequel that by taking suitable non-Archimedean
fields that properly extend the real line, elementary numerosities exist on
every infinite set.

Given an elementary numerosity and a “measure unit” β ∈ F, there is a
canonical way to construct a (real-valued) finitely additive measure.

Definition 1.2.4. If n : P(Ω) → [0,+∞)F is an elementary numerosity,
and β ∈ F is a positive number, the map nβ : P(Ω) → [0,+∞]R is defined
by setting

nβ(A) = ◦
(
n(A)

β

)
.

Proposition 1.2.5. nβ is a finitely additive measure. Moreover, nβ is non-
atomic if and only if β is an infinite number.

Proof. For all disjoint A,B ⊆ Ω, one has:

nβ(A ∪B) = ◦
(
n(A ∪B)

β

)
= ◦

(
n(A)

β
+

n(B)

β

)
= ◦

(
n(A)

β

)
+ ◦

(
n(B)

β

)
= nβ(A) + nβ(B).

Notice that the measure nβ is non-atomic if and only if nβ({x}) =
◦(1/β) = 0, and this holds if and only if β is infinite.

The class of measures that we just introduced turns out to be really
general. Indeed, we will prove a strong version of the following

• Claim. Every finitely additive non-atomic measure is a restriction of
a suitable nβ.

1.3 The main result

In the 60s and early 70s of the last century, researchers in nonstandard
analysis deeply investigated the possibility of representing finitely additive
measures as counting measures on suitable hyperfinite samples. Notice that,
after the introduction of the Loeb measure [59] in 1975, this line of research
has been almost abandoned; however, see D.A. Ross’ paper [74] for a survey
of alternative nonstandard approaches to measure theory. The starting point
was the following key observation, pointed out by A.R. Bernstein and F.
Wattenberg in [19]:
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• For every nonempty hyperfinite set F ⊆ ∗Ω,

µF (A) = ◦
(
‖∗A ∩ F‖
‖F‖

)
is a finitely additive probability measure defined on all subsets of Ω.

In that paper, the tool of hyperfinite counting measures was used to give
a nonstandard proof of the existence of a totally defined translation-invariant
extension of the Lebesgue measure on R. In 1972, extending a previous result
obtained by A. Robinson [72], C.W. Henson proved the following general
representation theorem:

• (Theorem 1 of [47]) Let Ω be an infinite set and assume that the non-

standard extension ∗ satisfies the property of
(
2|Ω|
)+

-enlargement. If
m is a non-atomic finitely additive probability measure defined on all
subsets of Ω, then there exists a nonempty hyperfinite set F ⊆ ∗Ω such
that m = µF .

Remark 1.3.1. In any model of nonstandard analysis, every hyperfinite set
F ⊆ ∗Ω such that ∗x ∈ F for all x ∈ Ω determines an elementary numerosity
nF : P(Ω)→ ∗R simply by letting:

nF (A) = ‖∗A ∩ F‖.

In consequence, by taking ratios of the elementary numerosity n = nF to
the fixed “measure unit” β = ‖F‖ > 0, the above Henson’s Theorem yields
the following corollary:

• For every non-atomic finitely additive probability measure (Ω,P(Ω), µ)
defined on all subsets of a set Ω, there exist an ordered field of hyper-
reals ∗R, an elementary numerosity n : P(Ω) → [0,+∞)∗R, and a
positive number β ∈ ∗R, such that µ = nβ.

The above result shows that elementary numerosities can be found which
are compatible with any given non-atomic finitely additive probability mea-
sure, provided one takes ratios over a suitable measure unit, and identities
are taken only up to infinitesimals. Here, we investigate the possibility of a
stronger coherence of elementary numerosities with measures. Most notably,
a natural requirement would be to have equal numerosity for sets of equal
measure.

• Given a non-atomic finitely additive measure µ defined on an algebra
A ⊆ P(Ω), is there an elementary numerosity n : P(Ω) → [0,+∞)F
which is “coherent” with µ, in the following strong sense?

1. There exists a positive β such that nβ(A) = µ(A) for all A ∈ A;
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2. µ(A) = µ(A′)⇐⇒ n(A) = n(A′) for all A,A′ ∈ A.

Unfortunately, in the presence of nonempty null sets or of sets of infinite
measure, it is readily seen that (2) cannot hold in general. (Recall that
proper subsets have a strictly smaller numerosity.) However, these are basi-
cally the only obstacles; indeed, for any given measure, we will be able to find
elementary numerosities that satisfy (1), and that satisfy also the “strong”
coherence property (2) on suitable subalgebras. To this end, we will prove
an improvement of Henson’s Theorem about nonstandard representation of
measures, as given by the Theorem below.

We remark that our proof is grounded on a combinatorial lemma, and
uses different arguments with respect to the ones used in the original proofs
of the classic results by Bernstein, Wattenberg and Henson.

Since the proof is rather long, it is put off to Section 1.5.

Theorem 1.3.2. Let (Ω,A, µ) be a non-atomic finitely additive measure
on the infinite set Ω, and let B ⊆ A be a subalgebra that does not contain
nonempty null sets. Then in any model of nonstandard analysis that satisfies

the property of
(
2|Ω|
)+

-enlargement there exists a hyperfinite set F ⊆ ∗Ω such
that:

1. ∗x ∈ F for every x ∈ Ω;

2. ‖F ∩ ∗B‖ = ‖F ∩ ∗B′‖ ⇔ µ(B) = µ(B′) for all B,B′ ∈ B of finite
measure;

3. for every hyperreal number of the form β = ‖F∩∗Z‖
µ(Z) where Z ∈ A has

positive finite measure, and for every A ∈ A:

µ(A) = ◦
(
‖F ∩ ∗A‖

β

)
.

Let us see now the relevant corollary about elementary numerosities.

Theorem 1.3.3. Let (Ω,A, µ) and B ⊆ A satisfy the hypotheses of Theorem
1.3.2. Then there exists an elementary numerosity n on Ω such that:

1. µ(B) = µ(B′)⇔ n(B) = n(B′) for all B,B′ ∈ B of finite measure;

2. For every β = n(Z)/µ(Z) where Z ∈ A has positive finite measure,
µ = (nβ)|A is the restriction of nβ to A.

Proof. Let F ⊆ ∗Ω be the hyperfinite set as given by Theorem 1.3.2, and let
n = nF .
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Remark 1.3.4. We stress the fact that in (2), the measure nβ that repre-
sents µ does not depend on the choice of β, as long as β = n(Z)/µ(Z)
for some Z with 0 < µ(Z) < +∞. In fact, let β = n(Z)/µ(Z) and
β′ = n(Z ′)/µ(Z ′) for some Z,Z ′ ∈ A with 0 < µ(Z), µ(Z ′) < +∞. Then

◦
(
n(Z ′) · µ(Z)

n(Z) · µ(Z ′)

)
=

nβ(Z ′)

µ(Z ′)
= 1

and, for all A ⊆ Ω,

nβ′(A) = ◦
(
n(A) · µ(Z ′)

n(Z ′)

)
· ◦
(
n(Z ′) · µ(Z)

n(Z) · µ(Z ′)

)

= ◦
(
n(A) · µ(Z ′)

n(Z ′)
· n(Z ′) · µ(Z)

n(Z) · µ(Z ′)

)

= ◦
(
n(A) · µ(Z)

n(Z)

)
= nβ(A)

In several examples, one naturally finds subalgebras B with the property
that every nonempty B ∈ B has positive measure. For instance, if one
considers the Lebesgue measure m on R then one can take B as the algebra
of the finite unions of half-open intervals [a, b) where possibly b = +∞,
and intervals of the form (−∞, b) where possibly b = +∞. In this case,
the above theorem guarantees the existence of an elementary numerosity n
defined on all subsets of R such that m(A) ≈ n(A)/n([0, 1)) for all Lebesgue
measurable A ⊆ R, and with the strong translation-invariant property that
n([a, a + `)) = n([b, b + `)) for every a, b and for every length ` > 0. This
example, along with others, is studied in Benci, Bottazzi and Di Nasso [6].

Remark 1.3.5. Notice that Theorem 1.3.3 still does not provide a full proof
to our claim (made at the end of 1.2) that every finitely additive non-atomic
measure (Ω,A, µ) be a restriction of a measure of the form nβ. Indeed, if
µ only takes the values 0 and +∞, then there are no suitable “measure
units” β, because there are no sets Z ∈ A with positive finite measure.
Nevertheless, we remark that even such measures are restrictions of suitable
nβ. To see this, pick any non-atomic finitely additive probability measure
(Ω′,P(Ω′), µ′) where Ω′ ∩ Ω = ∅. Then let

C = {A ∪B | A ∈ A, B ∈ P(Ω′)},

and define ν : C→ [0,+∞]R by putting

ν(C) = µ(C ∩ Ω) + µ′(C ∩ Ω′).

It is easily verified that ν is a non-atomic finitely additive measure over
Ω ∪ Ω′; notice also that ν(Ω′) = µ′(Ω′) = 1. So, Theorem 1.3.3 can be
applied to ν and we obtain the existence of an elementary numerosity n and
of a number β (e.g., β = n(Ω′)/ν(Ω′) = n(Ω′)) such that nβ(C) = ν(C) for
all C ∈ C. In particular, nβ(A) = µ(A) for all A ∈ A, as desired.
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1.4 Some applications of elementary numerosities

We will now discuss some consequences of Theorems 1.3.2 and 1.3.3. In
particular, in the proofs of Theorem 1.4.1, Theorem 1.4.3 and Theorem
1.4.5, we will work with elementary numerosities taking values in F = ∗R, a
field of hyperreal numbers of a model of nonstandard analysis that satisfies

the property of
(
2|Ω|
)+

-enlargement.

1.4.1 Numerosities and inner measures

In this section we will use elementary numerosities to prove a general exis-
tence result about “inner” measures.

Theorem 1.4.1. Let A be an algebra of subsets of Ω and let µ : A →
[0,+∞]R be a non-atomic pre-measure. Assume that µ is non-trivial, in the
sense that there are sets Z ∈ A with 0 < µ(Z) < +∞. Then, along with the
associated outer measure µ, there exists an “inner” finitely additive measure

µ : P(Ω)→ [0,+∞]R

such that:

1. µ(C) = µ(C) for all C ∈ Cµ, the Caratheodory σ-algebra associated to
µ. In particular, µ(A) = µ(A) = µ(A) for all A ∈ A.

2. µ(X) ≤ µ(X) for all X ⊆ Ω.

Proof. By Caratheodory extension theorem, the restriction of µ to Cµ is a
measure that agrees with µ on A. Now we apply Theorem 1.3.3 to the
measure (Cµ,A, µ), and obtain the existence of an elementary numerosity
n : P(Ω) → [0,+∞)∗R. By property (2) in the Theorem, if we pick any

number β = n(Z)
µ(Z) where 0 < µ(Z) < +∞, then nβ(C) = µ(C) for all

C ∈ Cµ. We claim that µ = nβ : P(Ω) → [0,+∞]R is the desired “inner”
finitely additive measure.

Property (1) is trivially satisfied by our definition of µ, so let us turn
to (2). For every X ⊆ Ω, by definition of outer measure we have that for
every ε > 0 there exists a countable union A =

⋃∞
n=1An of sets An ∈ A

such that A ⊇ X and
∑∞

n=1 µ(An) ≤ µ(X) + ε. Notice that A belongs to
the σ-algebra generated by A, and hence A ∈ Cµ. In consequence, µ(A) =
nβ(A) = µ(A). Finally, by monotonicity of the finitely additive measure µ,
and by σ-subadditivity of the outer measure µ, we obtain:

µ(X) ≤ µ(A) = µ(A) ≤
∞∑
n=1

µ(An) =

∞∑
n=1

µ(An) ≤ µ(X) + ε.

As ε > 0 is arbitrary, the desired inequality µ(X) ≤ µ(X) follows.
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It seems of some interest to investigate the properties of the extension
of the Caratheodory algebra given by family of all sets for which the outer
measure coincides with the above “inner measure”:

C(nβ) =
{
X ⊆ Ω | µ(X) = µ(X)

}
.

Clearly, the properties of C(nβ) may depend on the choice of the elementary
numerosity n.

Theorem 1.4.1 ensures that the inclusion Cµ ⊆ C(nβ) always holds. More-
over, this inclusion is an equality if and only if every X 6∈ Cµ satisfies the
inequality µ(X) < µ(X). It turns out that, when µ(Ω) < +∞, this property
is equivalent to a number of other statements.

Proposition 1.4.2. If µ(Ω) < +∞, then the following are equivalent:

1. Cµ = C(nβ).

2. X 6∈ Cµ ⇒ µ(X) < µ(X) and µ(Xc) < µ(Xc).

3. µ(X) = µ(X)⇐⇒ µ(Xc) = µ(Xc).

4. µ(X) = 0⇐⇒ µ(X) = 0.

If µ(Ω) = +∞, then (1)⇔ (2)⇒ (3)⇒ (4).

Proof. We have already seen that (1) and (2) are equivalent.

(2) ⇒ (3). Suppose towards a contradiction that (2) holds but (3) is
false. The latter hypothesis ensures the existence of a set X such that
µ(X) = µ(X) and µ(Xc) < µ(Xc). Thanks to Theorem 1.4.1, we deduce
that X 6∈ Cµ. By (2) we get the contradiction µ(X) < µ(X).

(3) ⇒ (4). The implication µ(X) = 0 ⇒ µ(X) = 0 is always true. On
the other hand, if µ(X) = 0, then µ(Xc) = µ(Ω) = µ(Ω). By the inequality
µ(Xc) ≤ µ(Xc), we deduce µ(Xc) = µ(Ω) = µ(Xc) and, thanks to (3), also
µ(X) = 0 follows.

(4) ⇒ (2), under the hypothesis that µ(Ω) < +∞. Suppose towards a
contradiction that (4) holds but (2) is false. The latter hypothesis ensures
the existence of a set X 6∈ Cµ satisfying µ(X) = µ(X) and µ(Xc) < µ(Xc).
Thanks to Propositions 20.9 and 20.11 of [90], we can find a set A ∈ Cµ
satisfying A ⊃ X, µ(A) = µ(X) and µ(A \ X) > 0. From the hypothesis
µ(X) = µ(X) we obtain the following equalities:

µ(X) = µ(X) = µ(A) = µ(A).

The above equalities and the hypothesis µ(Ω) < +∞ imply µ(A \X) = 0.
By (4), we obtain the contradiction µ(A \X) = 0.

12



1.4.2 Numerosities and Lebesgue measure

In this section, we show that elementary numerosities exist which are con-
sistent with Lebesgue measure in a strong sense. Precisely, the following
result holds:

Theorem 1.4.3. Let (R,L, µL) be the Lebesgue measure over R. Then
there exists an elementary numerosity n : P(R)→ [0,+∞)∗R such that:

1. n([x, x+ a)) = n([y, y + a)) for all x, y ∈ R and for all a > 0.

2. n([x, x+ a)) = a · n([0, 1)) for all rational numbers a > 0.

3. ◦
(

n(X)
n([0,1))

)
= µL(X) for all X ∈ L.

4. ◦
(

n(X)
n([0,1))

)
≤ µL(X) for all X ⊆ R.

Proof. Notice that the family of half-open intervals

I = {[x, x+ a) | x ∈ R & a > 0}

generates a subalgebra B ⊂ L whose nonempty sets have all finite positive
measure. Then, by combining Theorems 1.3.3 and 1.4.1, we obtain the
existence of an elementary numerosity n : P(R) → [0,+∞)F such that, for

β = n([0, 1)) = n([0,1))
µL([0,1)) , one has:

(i) n(X) = n(Y ) for all X,Y ∈ B with µL(X) = µL(Y ) ;

(ii) nβ(X) = µL(X) for all X ∈ L ;

(iii) nβ(X) ≤ µL(X) for all X ⊆ R.

Since [x, x + a) ∈ B for all x ∈ R and for all a > 0, property (1)
directly follows from (i). In order to prove (2), it is enough to show that
n([0, a)) = a · n([0, 1)) for all positive a ∈ Q. Given p, q ∈ N, by (1) and
additivity we have that

n

([
0,
p

q

))
= n

(
p−1⊔
i=0

[
i

q
,
i+ 1

q

))
=

p−1∑
i=0

n

([
i

q
,
i+ 1

q

))
= p ·n

([
0,

1

q

))
.

In particular, for p = q we get that n([0, 1)) = q · n([0, 1/q)), and hence
property (2) follows:

n

([
0,
p

q

))
=

p

q
· n ([0, 1)) .

Finally, (ii) and (iii) directly correspond to properties (3) and (4), re-
spectively.
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Remark 1.4.4. Let {Xn | n ∈ N} be a countable family of isometric,
pairwise disjoint, non-Lebesgue measurable sets such that the union A =⋃
n∈NXn is measurable with positive finite measure. (For instance, one can

consider a Vitali set on [0, 1) and take the countable family of its ratio-
nal translations modulo 1.) Let n be an elementary numerosity as given
by the above theorem, and consider the finitely additive measure nβ with
β = n(A)/µ(A). Then, one and only one of the following holds:

• nβ(Xn) = 0 for all n ∈ N. In this case, the measure nβ is not σ-
additive because nβ(A) = µL(A) > 0.

• nβ(Xn) = ε > 0 for some n ∈ N. In this case, nβ is not invariant
with respect to isometries, as otherwise one would get the contradiction
µL(A) = nβ(A) ≥

∑
n∈N nβ(Xn) =

∑
n∈N ε = +∞.

1.4.3 Numerosities and probability of infinite coin tosses

The last application of elementary numerosities that we present is about
the existence of a non-Archimedean probability for infinite sequences of coin
tosses, which we propose as a sound mathematical model for Laplace’s orig-
inal ideas.

Recall the Kolmogorovian framework :

• The sample space

Ω = {H,T}N = {ω | ω : N→ {H,T}}

is the set of sequences which take either H (“head”) or T (“tail”) as
values.

• A cylinder set of codimension n is a set of the following form, where
we agree that i1 < . . . < in.

C
(i1,...,in)
(t1,...,tn) = {ω ∈ Ω | ω(is) = ts for s = 1, . . . , n}

From the probabilistic point of view, the cylinder set C
(i1,...,in)
(t1,...,tn) represents

the event that for every s = 1, . . . , n, the is-th coin toss gives ts as outcome.
Notice that the family C of all finite disjoint unions of cylinder sets is an
algebra of sets over Ω.

• The function µC : C→ [0, 1] is defined by setting:

µC

(
C

(i1,...,in)
(t1,...,tn)

)
= 2−n

for all cylindrical sets, and then it is extended to a generic element of
C by finite additivity:

µC

(
C

(i1,...,in)
(t1,...,tn) ∪ . . . ∪ C

(j1,...,im)
(u1,...,um)

)
= µC

(
C

(i1,...,in)
(t1,...,tn)

)
+. . .+µC

(
C

(j1,...,im)
(u1,...,um)

)
.
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It is shown that µC is a probability pre-measure on the algebra C.

Let A be the σ-algebra generated by the algebra of cylinder sets C, and
let µ : A → [0, 1] be the unique probability measure that extends µC , as
guaranteed by Caratheodory extension theorem.

The triple (Ω,A, µ) is named the Kolmogorovian probability for infinite
sequences of coin tosses.

In [11] it is proved the existence of an elementary numerosity n : P(Ω)→
[0,+∞)F which is coherent with the pre-measure µC . Namely, by consid-
ering the ratio P (E) = n(E)/n(Ω) between the numerosity of the given
event E and the numerosity of the whole space Ω, then one obtains a non-
Archimedean finitely additive probability

P : P(Ω) −→ [0, 1]F

that satisfies the following properties:

1. If F ⊂ Ω is finite, then for all E ⊆ Ω, the conditional probability

P (E|F ) =
|E ∩ F |
|F |

.

2. P agrees with µC over all cylindrical sets:

P
(
C

(i1,...,in)
(t1,...,tn)

)
= µC

(
C

(i1,...,in)
(t1,...,tn)

)
= 2−n.

We are now able to refine this result by showing that, up to infinitesimals,
we can take P to agree with µ on the whole σ-algebra A.

Theorem 1.4.5. Let (Ω,A, µ) be the Kolmogorovian probability for infi-
nite coin tosses. Then there exists an elementary numerosity n : P(Ω) →
[0,+∞)∗R such that the corresponding non-Archimedean probability P (E) =
n(E)/n(Ω) satisfies the above properties (1) and (2), along with the addi-
tional condition:

(3) ◦(P (E)) = µ(E) for all E ∈ A.

Proof. Recall that the family C ⊂ A of finite disjoint unions of cylinder
sets is an algebra whose nonempty sets have all positive measure. So, by
applying Theorems 1.3.3 and 1.4.1, we obtain an elementary numerosity n :
P(Ω)→ [0,+∞)F such that for every positive number of the form β = n(Z)

µ(Z)

(where 0 < µ(Z) < +∞), one has:

(i) n(C) = n(C ′) whenever C,C ′ ∈ C are such that µ(C) = µ(C ′) ;
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(ii) nβ(E) = µ(E) for all E ∈ A.

Property (1) trivially follows by recalling that elementary numerosities
of finite sets agree with cardinality:

P (E|F ) =
P (E ∩ F )

P (F )
=

n(E∩F )
n(Ω)

n(F )
n(Ω)

=
n(E ∩ F )

n(F )
=
|E ∩ F |
|F |

.

Let us now turn to condition (2). Notice that for any fixed n-tuple of
indices (i1, . . . , in):

• There are exactly 2n-many different n-tuples (t1, . . . , tn) of heads and
tails;

• The associated cylinder sets C
(i1,...,in)
(t1,...,tn) are pairwise disjoint and their

union equals the whole sample space Ω.

By (i), all those cylinder sets of codimension n have the same numerosity

η = n
(
C

(i1,...,in)
(t1,...,tn)

)
and so, by additivity, it must be n(Ω) = 2n·η. We conclude

that

P
(
C

(i1,...,in)
(t1,...,tk)

)
=

n
(
C

(i1,...,in)
(t1,...,tk)

)
n(Ω)

=
η

2n · η
= 2−n.

We are left to prove (3). By taking as β = n(Ω)
µ(Ω) = n(Ω), property (ii)

ensures that for every E ∈ A:

µ(E) = nβ(E) = ◦
(
n(E)

β

)
= ◦

(
n(E)

n(Ω)

)
= ◦(P (E)).

1.5 Proof of the Main Theorem 1.3.2

The proof of the main theorem is grounded on the following combinatorial
property.

Lemma 1.5.1. Let (Ω,A, µ) be a non-atomic finitely additive measure, and
let B ⊆ A be a subalgebra of subsets of Ω whose nonempty sets have all
positive measure. Denote by Af (by Bf ) the family of sets in A (in B,
respectively) which have finite measure. Given m ∈ N, finitely many points
x1, . . . , xk ∈ Ω, and finitely many nonempty sets A1, . . . , Av ∈ A, there exists
a finite subset λ ⊂ Ω that satisfies the following properties:

1. x1, . . . , xk ∈ λ ;
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2. If Ai, Aj ∈ Bf satisfy µ(Ai) = µ(Aj), then |λ ∩Ai| = |λ ∩Aj | ;

3. If Ai ∈ Af and µ(Ai) 6= 0, then for all j such that Aj ∈ Af :∣∣∣∣ |λ ∩Aj ||λ ∩Ai|
− µ(Aj)

µ(Ai)

∣∣∣∣ < 1

m
;

4. If Ai ∈ Af and µ(Ai) 6= 0, then for all j such that Aj ∈ A \ Af :

|λ ∩Aj |
|λ ∩Ai|

> m.

Proof. Without loss of generality, we can assume that the given sets Ai are
arranged in such a way that A1, . . . , Al ∈ Bf , Al+1, . . . , An ∈ Af \Bf and
An+1, . . . , Av ∈ A \ Af for suitable l and n. It will be convenient in the
sequel that the considered elements in Bf be pairwise disjoint. To this end,
consider the partition {B1, . . . , Bh} induced by {A1, . . . , Al}.1 Notice that,
by the algebra properties of B, every piece Bs belongs to Bf . Finally, let

n⋃
i=1

Ai = C1 t . . . t Cp tD1 t . . . tDq

be the partition of
⋃n
i=1Ai induced by {B1, . . . , Bh, Al+1, . . . , Av}, where

0 < µ(Cs) < +∞ for s = 1, . . . , p and µ(Dt) = 0 for t = 1, . . . , q. (The
union

⋃n
i=1Ai has finite measure because it is a finite union of sets of finite

measure.) For every s = 1, . . . , h, the set Bs includes at least one piece Cj .
Moreover, sinceB1, . . . , Bh are pairwise disjoint, by re-arranging if necessary,
we can also assume that Cs ⊆ Bs for s = 1, . . . , h.

We now need the following result:

• “Given finitely many real numbers ys > 0, for every ε > 0 there exists
an arbitrarily large N ∈ N such that every fractional part {N · ys} =
N · ys − [N · ys] < ε”.

Recall that by Dirichlet’s simultaneous approximation theorem (see e.g.
Hardy and Wright [46, S 11.12]), the above property holds if at least one of
the ys is irrational. On the other hand, when all ys ∈ Q, if N is any multiple
of the greatest common denominator of the numbers ys, then trivially all
fractional parts {N · ys} = 0.

Let

• α = µ (
⋃n
i=1Ai);

1 Recall that the partition induced by a finite family {A1, . . . , An} is the partition on

A1∪ . . .∪An given by the nonempty intersections
⋂n
i=1A

χ(i)
i for χ : {1, . . . , n} → {−1, 1},

where A1
j = Aj and A−1

j = (
⋃n
i=1Ai) \Aj .
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• c = min{µ(Cs) | s = 1, . . . , p}.

By the above property we can pick a natural number N such that:

(a) N > α (2m+1) (k+1)
c2

;

(b) es = {N · µ(Cs)} < 1
p for all s = 1, . . . , p .

Denote by

• C =
⊔p
s=1Cs the “relevant part” of the partition ;

• D =
⊔q
t=1Dt the “negligible part” of the partition ;

• F = {x1, . . . , xk}.

Then, set

• Ns = [N · µ(Cs)] for s = 1, . . . , p ;

• Ms = |Bs ∩D ∩ F | for s = 1, . . . , h .

Notice that Ns > k for all s. In fact, by the above conditions (a) and
(b):

Ns = N · µ(Cs)− es >
α (2m+ 1) (k + 1)

c2
· µ(Cs)− es >

>
α · µ(Cs)

c2
· (k + 1)− es > 1 · (k + 1)− 1 = k.

For s = 1, . . . , h, pick a finite subset λs ⊂ Cs containing exactly (Ns −
Ms)-many elements, and such that Cs∩F ⊆ λs. Observe that this is possible
because

|Cs ∩ F | ≤ |Bs ∩ C ∩ F | = |Bs ∩ F | −Ms ≤ k −Ms < Ns −Ms.

For s = h+1, . . . , p, pick a finite subset λs ⊂ Cs containing exactly Ns-many
elements. Finally, define

λ = F ∪
p⋃
s=1

λs.

We claim that λ satisfies the desired properties (1), (2), (3). Since F ⊆ λ,
condition (1) is trivially satisfied. For every i = 1, . . . , n let:

G(i) = {s ≤ h | Cs ⊆ Ai} and G′(i) = {s > h | Cs ⊆ Ai}.
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With the above definitions, we obtain:

|λ ∩Ai| =
∑
s∈G(i)

|λs|+
∑

s∈G′(i)

|λs| + |Ai ∩D ∩ F |

=
∑
s∈G(i)

(Ns −Ms) +
∑

s∈G′(i)

Ns + |Ai ∩D ∩ F |

=
∑

s∈G(i)∪G′(i)

Ns −
∑
s∈G(i)

Ms + |Ai ∩D ∩ F |

= N ·

 ∑
s∈G(i)∪G′(i)

µ(Cs)

− εi − ηi + ϑi

= N · µ(Ai)− εi − ηi + ϑi

where:

• εi =
∑

s∈G(i)∪G′(i) es ≤
∑p

s=1 es < 1 by condition (b) ;

• ηi =
∑

s∈G(i)Ms ≤
∑h

s=1 |Bs ∩D ∩ F | ≤ |F | = k ;

• ϑi = |Ai ∩D ∩ F | ≤ k.

If Ai ∈ Bf , i.e. if i ≤ l, recall that Ai =
⊔
s∈S(i)Bs for a suitable

S(i) ⊆ {1, . . . , h}. Since Cs ⊆ Bs for all s = 1, . . . , h, it must be G(i) = S(i).
So, for i ≤ l we have

ηi =
∑
s∈S(i)

Ms =
∑
s∈S(i)

|Bs ∩D ∩ F | =

∣∣∣∣∣∣
 ⊔
s∈S(i)

Bs

 ∩D ∩ F
∣∣∣∣∣∣

= |Ai ∩D ∩ F | = ϑi,

and hence |λ ∩ Ai| = N · µ(Ai)− εi. In consequence, for every i, j ≤ l such
that µ(Ai) = µ(Aj), one has that∣∣|λ ∩Ai| − |λ ∩Aj |∣∣ = |N · µ(Ai)− εi −N · µ(Aj) + εj | = |εj − εi|.

Now notice that |εj − εi| ≤ max{εi, εj} < 1, and so the natural numbers
|λ ∩Ai| = |λ ∩Aj | necessarily coincide. This completes the proof of (2).

As for (3), notice that |λ∩Ai| = N · µ(Ai) + ζi where ζi = (ϑi − ηi)− εi
is such that −(k + 1) < ζi ≤ k. For every i, j such that µ(Aj) 6= 0, we have
that

N · µ(Ai) + ζi
N · µ(Aj) + ζj

− µ(Ai)

µ(Aj)
=

µ(Aj) · ζi − µ(Ai) · ζj
N · µ(Aj)2 + µ(Aj) · ζj

.

Now, the absolute value of the numerator

|µ(Aj) · ζi − µ(Ai) · ζj | < (µ(Ai) + µ(Aj)) · (k + 1) ≤ 2α (k + 1) ;
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and the absolute value of the denominator

|N · µ(Aj)
2 + µ(Aj) · ζj | > N c2 − α (k + 1)

≥ α (2m+ 1) (k + 1)− α (k + 1) = 2mα (k + 1).

So, we reach the thesis:∣∣∣∣ |λ ∩Ai||λ ∩Aj |
− µ(Ai)

µ(Aj)

∣∣∣∣ < 2α (k + 1)

2mα (k + 1)
=

1

m
.

In order to get a finite subset λ′ satisfying also property (4), for t =
n + 1, . . . , v pick a finite subset ηt ⊂ At \

⋃n
i=1Ai with |ηt| > m · |λ|, and

set λ′ = λ ∪
⋃v
t=n+1 ηt. It is clear that such a λ′ still satisfies properties

(1), (2), (3), and it is readily checked that it also satisfies property (4).

Proof of 1.3.2. Let Λ = Fin(Ω) be the family of all finite subsets of Ω, and
define the following subsets of Λ:

• For all x ∈ Ω, let
x̂ = {λ ∈ Λ : x ∈ λ} .

• For all A,A′ ∈ Af with µ(A′) > 0 and for all n ∈ N, let

Γ(A,A′, n) =

{
λ ∈ Λ : λ ∩A′ 6= ∅ and

∣∣∣∣ |λ ∩A||λ ∩A′|
− µ(A)

µ(A′)

∣∣∣∣ < 1

n

}
.

• For all nonempty B,B′ ∈ Bf , let

Θ(B,B′) =
{
λ ∈ Λ : |B ∩ λ| = |B′ ∩ λ|

}
.

• For all C ∈ A \ Af , for all C ′ ∈ Af with µ(C ′) > 0, and for all n ∈ N,
let

Ξ(C,C ′, n) =

{
λ ∈ Λ : λ ∩ C ′ 6= ∅ and

|λ ∩ C|
|λ ∩ C ′|

> n

}
.

Then consider the following family:

G = {x̂ | x ∈ Ω}
⋃ {

Γ(A,A′, n) | A,A′ ∈ Af , µ(A′) > 0, n ∈ N
}⋃{

Θ(B,B′) | B,B′ ∈ Bf , µ(B) = µ(B′) > 0
}⋃{

Ξ(C,C ′, n) | C ∈ A \ Af , C ′ ∈ Af , µ(C ′) > 0, n ∈ N
}
.

As a consequence of the Lemma, the family G has the finite intersection
property. Indeed, let finitely many elements of G be given, say

x̂1, . . . , x̂k; Γ(A1, A
′
1, n1), . . . ,Γ(Au, A

′
u, nu);

Θ(B1, B
′
1), . . . ,Θ(Bw, B

′
w); Ξ(C1, C

′
1,m1), . . . ,Ξ(Cs, C

′
s,ms) .
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Without loss of generality, we can assume that the set {x1, . . . , xk} in-
cludes at least one point from each of the above sets A′i and C ′j . Pick
m = max{n1, . . . , nu,m1, . . . ,ms} and apply Lemma 1.5.1 to get the exis-
tence of a finite set λ ∈ Λ such that:

1. x1, . . . , xk ∈ λ ;

2. For all i = 1, . . . , w, if µ(Bi) = µ(B′i) then |λ ∩Bi| = |λ ∩B′i| ;

3. For all i, j = 1, . . . , u, then∣∣∣∣ |λ ∩Aj ||λ ∩A′i|
− µ(Aj)

µ(A′i)

∣∣∣∣ < 1

m
;

4. for all i, j = 1, . . . , s:
|λ ∩ Ci|
|λ ∩ C ′j |

> m.

Then it is readily verified that such a λ belongs to all considered sets of
G. Since |G| ≤ 2|Ω|, we can apply the enlarging property and pick a set

F ∈
⋂
G∈G

∗G.

Now notice that:

(a) For every x ∈ Ω, F ∈ ∗x̂ means that ∗x ∈ F ;

(b) For every A,A′ ∈ Af with µ(A′) > 0, F ∈ ∗Γ(A,A′, n) for every n ∈ N
means that

‖F ∩ ∗A‖
‖F ∩ ∗A′‖

≈ µ(A)

µ(A′)
;

(c) For every B,B′ ∈ Bf with µ(B) = µ(B′) > 0, F ∈ ∗Θ(B,B′) means
that ‖F ∩ ∗B‖ = ‖F ∩ ∗B′‖;

(d) For every C,C ′ ∈ A with µ(C) = +∞ and 0 < µ(C ′) < +∞, F ∈
∗Ξ(C,C ′, n) for every n ∈ N means that

‖F ∩ ∗C‖
‖F ∩ ∗C ′‖

is infinite.

Properties (1) and (2) of the thesis are directly given by (a) and (c),
respectively. As for (3), let β = ‖F ∩ ∗Z‖/µ(Z) where Z ∈ A is such that
0 < µ(Z) < +∞. If µ(A) < +∞, by property (b) where A′ = Z, we get

‖F ∩ ∗A‖
β

=
‖F ∩ ∗A‖
‖F ∩ ∗Z‖

· µ(Z) ≈ µ(A)

µ(Z)
· µ(Z) = µ(A);
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and if µ(A) = +∞, by property (d) where C = A and C ′ = Z, we have that
the following number is infinite:

‖F ∩ ∗A‖
β

=
‖F ∩ ∗A‖
‖F ∩ ∗Z‖

· µ(Z).
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Part II

Functional analysis
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Chapter 2

Grid functions in functional
analysis

The theory of distributions, pioneered by Dirac in [37] and developed in the
first half of the XX Century, has become one of the fundamental tools of
functional analysis. In particular, the possibility to define the weak deriva-
tive of a non-differentiable function has allowed the formulation and the
study of a wide variety of nonsmooth phenomena by the theory of partial
differential equations. However, the lack of a nonlinear theory of distribu-
tions is a limiting factor both for the applications and for the theoretical
study of nonlinear PDEs. On the one hand, in the description of some phys-
ical phenomena such as shock waves and relativistic fields, it arises the need
to have some mathematical objects which cannot be formalized in the sense
of distributions (we refer to [26] for some examples). On the other hand,
the absence of a nonlinear theory of distributions poses some limitations in
the study of nonlinear partial differential equations: while some nonlinear
problems can be solved by studying the limit of suitable regularized prob-
lems, other problems do not allow for solutions in the sense of distributions
(see for instance the discussion in [39]).

In 1954, L. Schwartz proved that the absence of a nonlinear theory for
distributions is intrinsic: more formally, the main theorem of [77] entails that
there is no differential algebra (A,+,⊗, D) in which the real distributions
D′ can be embedded and the following conditions are satisfied:

1. ⊗ extends the product over C0 functions;

2. D extends the distributional derivative ∂;

3. the product rule holds: D(u⊗ v) = (Du)⊗ v + u⊗ (Dv).

Despite this negative result, there have been many attempts at defining
some notions of product between distributions (see for instance [27, 57]).
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Following this line of research, Colombeau in 1983 proposed an organic ap-
proach to a theory of generalized functions [25]: Colombeau’s idea is to
embed the distributions in a differential algebra with a good nonlinear the-
ory, but at the cost of sacrificing the coherence between the product of the
differential algebra with the product over C0 functions. This approach has
been met with interest and has proved to be a prolific field of research. For
a survey of the approach by Colombeau and for recent advances, we refer to
[26].

Research about generalized functions beyond distributions is also being
carried out within the setting of nonstandard analysis. Possibly the earliest
result in this sense is the proof by Robinson that the distributions can be
represented by smooth functions of nonstandard analysis and by polynomi-
als of a hyperfinite degree [71]. Distributions have also been represented
by functions defined on hyperfinite domains, for instance by Kinoshita in
[55] and, with a different approach, by Sousa Pinto and Hoskins in [51].
Another nonstandard approach to the theory of generalized functions has
been proposed by Oberbuggenberg and Todorov in [67] and further studied
by Todorov et al. [85, 86]. In this approach, the distributions are embed-
ded in an algebra of asymptotic functions defined over a Robinson field of
asymptotic numbers. Moreover, this algebra of asymptotic functions can be
seen as a generalized Colombeau algebra where the set of scalars is an alge-
braically closed field rather than a ring with zero divisors. In this setting,
it is possible to study generalized solutions to differential equations, and in
particular to those with nonsmooth coefficient and distributional initial data
[34, 64].

Another theory of generalized functions oriented towards the applica-
tions in the field of partial differential equations and of the calculus of varia-
tions has been developed by Benci and Luperi Baglini. In [5] and subsequent
papers [12, 13, 14, 15], the authors developed a theory of ultrafunctions, i.e.
nonstandard vector spaces of a hyperfinite dimension that extend the space
of distributions. In particular, the space of distributions can be embedded
in an algebra of ultrafunctions V such that the following inclusions hold:
D ′(R) ⊂ V ⊂ ∗C1(R) [14]. This can be seen as a variation on a result
by Robinson and Bernstein, that in [18] showed that any Hilbert space H
can be embedded in a hyperfinite dimensional subspace of ∗H. In the set-
ting of ultrafunctions, some partial differential equations can be formulated
coherently by a Galerkin approximation, while the problem of finding the
minimum of a functional can be turned to a minimization problem over a
formally finite vector space. For a discussion of the applications of ultra-
functions to functional analysis, we refer to [5, 13, 15].

The idea of studying the solutions to a partial differential equation via a
hyperfinite Galerkin approximation is not new. For instance, Capińsky and
Cutland in [24] studied statistical solutions to parabolic differential equa-
tions by discretizing the equation in space by a Galerkin approximation in an

25



hyperfinite dimension. The nonstandard model becomes then a hyperfinite
system of ODEs that, by transfer, has a unique nonstandard solution. From
this solution, the authors showed that it is possible to define a standard
weak solution to the original problem. In the subsequent [21], the authors
proved the existence of weak and statistical solutions to the Navier-Stokes
equations in 3-dimensions by modelling the equations with a similar hyper-
finite Galerkin discretization in space. This approach has spanned a whole
line of research on the Navier-Stokes equations, concerning both the proof
of the existence of solutions (see for instance [23, 30]) and the definition
and the existence of attractors (see for instance [22, 31]). One of the advan-
tages of this approach is that, by a hyperfinite discretization in space, the
nonstandard models have a unique global solution, even when the original
problem does not. For a discussion of the relation between the uniqueness
of the solutions of the nonstandard formulation and the non-uniqueness of
the weak solutions of the original problem in the case of the Navier-Stokes
equations, we refer to [21].

In the theoretical study of nonlinear partial differential equations, some-
times problems do not allow even for a weak solution. However, the develop-
ment of the notion of Young measures, originally introduced by L. C. Young
in the field of optimal control in [91], has allowed for a synthetic charac-
terization of the behaviour of the weak-? limit of the composition between
a nonlinear continuous function and a uniformly bounded sequence in L∞.
By enlarging the class of admissible solutions to include Young measures,
one can define generalized solutions for some class of nonlinear problems
as the weak-? limit of the solutions to a sequence of regularized problems
[35, 39, 62, 63, 70, 78, 79]. A similar approach can be carried out in the
field of optimal controls, where generalized controls in the sense of Young
measures can be defined as the measure-valued limit points of a minimizing
sequence of controls. For an in-depth discussion of the role of Young mea-
sures as generalized solution to PDEs and as generalized controls, we refer
to [2, 39, 81, 88].

In [28, 29, 32], Cutland showed that Young measures can be interpreted
also as the standard part of internal controls of nonstandard analysis. The
possibility to obtain a Young measure from a nonstandard control allows to
study generalized solutions to nonlinear variational problems by means of
nonstandard techniques: such an approach has been carried out for instance
by Cutland in the aforementioned papers, and by Tuckey in [87]. For a
discussion of this field of research, we refer to [65].

Structure of the chapter

In this chapter, we will discuss another theory of generalized functions of
nonstandard analysis, hereafter called grid functions (see Definition 2.1.1),
that provide a coherent generalization both of the space of distributions
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and of a space of parametrized measures that extends the space of Young
measures. In Section 2.1, we will define the space of grid functions, and re-
call some well-established nonstandard results that will be used throughout
Chapter 2 and Chapter 3. In particular, we will formulate in the setting of
grid functions some known results regarding the relations between the hy-
perfinite sum and the Riemann integral, and the finite difference operators
of an infinitesimal step and the derivative of a C1 function.

In Section 2.2, we will study the relations between the grid functions
and the distributions, with the aim of proving that every distribution can
be obtained from a suitable grid function. In order to reach this result, we
will introduce an algebra of nonstandard test functions that can be seen as
the grid function counterpart to the space D(Ω) of smooth functions with
compact support over Ω ⊆ Rk. By duality with respect to the algebra
of test functions, we will define a module of bounded grid functions, and
an an equivalence relation between grid functions (see Definition 2.2.3 and
Definition 2.2.5). We will then prove that the set of equivalence classes of
bounded grid functions with respect to this equivalence relation is a real
vector space that is isomorphic to the space of distributions. The premises
of this approach are similar to those by Kinoshita in [55]: in particular,
our Theorem 2.2.9 can be obtained from Theorem 1 of [55] and from the
properties of the equivalence relation defined at the beginning of Section 2.2.

Afterwards, we will discuss how the finite difference operators generalize
not only the usual derivative for C1 functions, but also the distributional
derivative. A similar result is also established by Kinoshita in [55] for a
module of functions that is smaller than our module of bounded grid func-
tions. On the other hand, this result provides the starting point for the work
of Sousa Pinto and Hoskins on a hyperfinite representation of distributions
in [51]. They define a module of pre-distributions over R as the module
of functions obtained by applying an arbitrary number of times the finite
difference operator to some S-continuous function defined on a hyperfinite
grid. Then, they define a module of global distributions over R by piecing
together pre-distributions that agree on the intersection of their support.
However, the authors do not prove results comparable to our Theorem 2.2.9
or to Theorem 1 of [55].

After having shown that the finite difference operator generalizes the
distributional derivative, our study of the relations between grid functions
and distributions concludes with a discussion of the Schwartz impossibility
theorem. In particular, we will show that the space of distributions can be
embedded in the space of grid functions in a way that

1. the product over the grid functions generalizes the pointwise product
between continuous functions;

2. the finite difference is coherent with the distributional derivative mod-
ulo the equivalence relation induced by duality with test functions;
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3. a discrete chain rule for products holds.

This theorem supports our claim that the space of grid functions provides a
nontrivial generalization of the space of distributions.

In Section 2.3, we will embed the space of grid functions in the spaces
∗Lp with 1 ≤ p ≤ ∞, and we will study some properties of grid functions
through this embedding. Moreover, we will discuss a generalization of the
embedding of L2(Ω) in a hyperfinite subspace of ∗L2(Ω) due to Robinson
and Bernstein [18]. This classic result will be generalized in two directions:

1. for every 1 ≤ p ≤ ∞, we will embed the spaces Lp(Ω) in the space of
grid functions, which is a subspace of ∗Lp(Ω) of a hyperfinite dimen-
sion;

2. the above embedding is actually an embedding of the bigger space
D ′(Ω) into a hyperfinite subspace of ∗Lp(Ω) for all 1 ≤ p ≤ ∞.

Moreover, this embedding is obtained with different techniques from the
original result by Robinson and Bernstein.

In the second part of Section 2.3, we will establish a correspondence
between grid functions and parametrized measures, in a way that is coherent
with the isomorphism between equivalence classes of bounded grid functions
and distributions discussed in Section 2.2. The results discussed in Section
2.3 will be used in Section 2.4, where we will discuss the grid function
formulation of partial differential equations, in Section 2.5, where we will
show selected applications of grid functions from different fields of functional
analysis, and in Chapter 3, where we will study in detail a grid function
formulation of a class of ill-posed partial differential equations with variable
parabolicity direction.

In Section 2.4, we will discuss how to formulate partial differential equa-
tions in the space of grid functions in a way that coherently generalizes
the standard notions of solutions. In particular, stationary PDEs will be
given a fully discrete formulation, while time-dependent PDEs will be given
a continuous-in-time and discrete-in-space formulation, resulting in a hy-
perfinite system of ordinary differential equations, as in the nonstandard
formulation of the Navier-Stokes equations by Capińsky and Cutland.

In Section 2.5, we will use the theory of grid functions developed so
far to study two problems in the nonlinear theory of distributions and in
the calculus of variations. These problems are classically studied within
different frameworks, but we will show that each of these problems can be
formulated in the space of grid functions in a way that the nonstandard
solutions generalize the respective standard solutions.
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2.1 Terminology and preliminary notions

In this section, we will now fix some notation and recall some results from
nonstandard analysis that will be useful throughout Chapter 2 and Chapter
3.

If A ⊆ Rk, then A is the closure of A with respect to any norm in Rk,
∂A is the boundary of A, and χA is the characteristic function of A. If
x ∈ R, then χx = χ{x}. If f : A → R, supp f is the closure of the set
{x ∈ A : f(x) 6= 0}. These definitions are generalized as expected also to
nonstandard objects.

We consider the following norms over Rk and ∗Rk: if x ∈ Rk or x ∈ ∗Rk,
then |x| =

√∑k
i=1 x

2
i is the euclidean norm, and |x|∞ = maxi=1,...,k |xi| is

the maximum norm.
We will denote by ∗Rfin the set of finite numbers in ∗R, i.e. ∗Rfin =

{x ∈ ∗R : x is finite}. The notion of finiteness already discussed in Chapter
1 can be extended componentwise to elements of ∗Rk whenever k ∈ N: we
will say that x ∈ ∗Rk is finite iff all of its components are finite, and we
define ◦x = (◦x1,

◦x2, . . . ,
◦xk) ∈ Rk. Similarly, if x, y ∈ ∗Rk, we will write

x ≈ y if |x− y| ≈ 0 (notice that this is equivalent to |x− y|∞ ≈ 0).
We will denote by e1, . . . , ek the canonical basis of Rk and of ∗Rk. If

f : A ⊆ ∗Rm → ∗Rk, we will denote by f1, . . . , fk the hyperreal valued
functions that satisfy the equality f(x) = (f1(x), . . . , fk(x)) for all x ∈ ∗R.

Let Ω ⊆ Rk be an open set or the closure of an open set. We will often
reference the following real vector spaces:

• C0
b (Ω) = {f ∈ C0(Ω) : f is bounded and lim|x|→∞ f(x) = 0}.

• C0
c (Ω) = {f ∈ C0

b (Ω) : supp f ⊂⊂ Ω}.

• D(Ω) = {f ∈ C∞(Ω) : supp f ⊂⊂ Ω}.

• In the sequel, measurable will mean measurable with respect to µL,
the Lebesgue measure over Rn. Consider the equivalence relation given
by equality almost everywhere: two measurable functions f and g are
equivalent if µL({x ∈ Ω : f(x) 6= g(x)}) = 0. We will not distinguish
between the function f and its equivalence class, and we will say that
f = g whenever the functions f and g are equal almost everywhere.

For all 1 ≤ p <∞, Lp(Ω) is the set of equivalence classes of measurable
functions f : Ω→ R that satisfy∫

Ω
|f |pdx <∞.

If f ∈ Lp(Ω), the Lp norm of f is defined by

‖f‖pp =

∫
Ω
|f |pdx.
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L∞(Ω) is the set of equivalence classes of measurable functions that
are essentially bounded: we will say that f : Ω→ R belongs to L∞(Ω)
if there exists y ∈ R such that µL({x ∈ Ω : |f(x)| > y}) = 0. In this
case,

‖f‖∞ = inf{y ∈ R : µL({x ∈ Ω : f(x) > y}) = 0}.

If 1 < p <∞, we recall that p′ is defined as the unique solution to the
equation

1

p
+

1

p′
= 1,

while 1′ =∞ and ∞′ = 1.

• M(R) = {ν : ν is a Radon measure over R satisfying |ν|(R) < +∞}.

• MP(R) = {ν ∈M(R) : ν is a probability measure}.

Following [2, 3, 88] and others, measurable functions ν : Ω → MP(R)
will be called Young measures. Measurable functions ν : Ω → M(R) will
be called parametrized measures, even though in the literature the term
parametrized measure is used as a synonym for Young measure. If ν is a
parametrized measure and if x ∈ Ω, we will write νx instead of ν(x).

If f ∈ C1(R), we will denote the derivative of f by df
dx , f ′ or Df . If

f : [0, T ] × Ω → R, we will think of the first variable of f as the time
variable, denoted by t, and we will write ft for the derivative ∂f

∂t . We adopt
the multi-index notation for partial derivatives and, if α is a multi-index,
we will denote by Dαf the function

Dαf =
∂|α|f

∂xα1
1 ∂xα2

2 . . . ∂xαkk
.

If α = (α1, . . . , αk) is a multi-index, then α− ei = (α1, . . . , αi − 1, . . . , αk).
We recall that a real distribution over Ω is an element of D ′(Ω), i.e. a

continuous linear functional T : D(Ω) → R. If T is a distribution and ϕ is
a test function, we will denote the action of T over ϕ by 〈T, ϕ〉D(Ω). When
T can be identified with a Lp function, we will sometimes write

∫
Ω Tϕdx

instead of 〈T, ϕ〉D(Ω).
If T ∈ D ′(R), we will denote the derivative of T by T ′ or DT . Recall

that T ′ is defined by the formula

〈DT,ϕ〉D(Ω) = −〈T,Dϕ〉D(Ω).

If T ∈ D ′(Ω) and α is a multi-index, the distribution DαT is defined in a
similar way:

〈DαT, ϕ〉D(Ω) = (−1)|α|〈T,Dαϕ〉D(Ω).

It is well-established that the distributional derivative allows to define
a notion of weak derivative for Lp functions (see for instance [80, 82]). L2
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functions whose weak derivatives up to order p < ∞ are still L2 functions
are of a particular relevance in the study of partial differential equations.
We will now recall the definition of the space of such functions. For p ∈ N,
p ≥ 1, the space Hp(Ω) is defined as

Hp(Ω) = {f ∈ L2(Ω) : Dαf ∈ L2(Ω) for every multi-index α with |α| ≤ p}.

We also consider the following norm over the space Hp(Ω):

‖f‖Hp =
∑
|α|≤p

‖Dαf‖2,

and we will call it the Hp norm. Recall also that Hp
0 (Ω) ⊂ Hp(Ω) is defined

as the closure of D(Ω) in Hp(Ω) with respect to the Hp norm. For the
properties of the space Hp(Ω) and of the space Hp

0 (Ω), we refer to [80, 82].
We will now introduce the space of grid functions.

Definition 2.1.1. Let N0 ∈ ∗N be an infinite hypernatural number. Set
N = N0! and ε = 1/N , and define

X = {nε : n ∈ [−N2, N2] ∩ ∗Z}.

We will say that an internal function f : Xk → ∗R is a grid function and, if
A ⊆ Xk is internal, we denote by G(A) the space of grid functions defined
over A: G(A) = Intl(∗RA) = {f : A→ ∗R and f is internal}.

2.1.1 Some elements of nonstandard topology

In the next definition, we will give a canonical extension of subsets of the
standard euclidean space Rk to internal subsets of the grid Xk.

Definition 2.1.2. For any A ⊆ Rk, we define AX = ∗A ∩ Xk. Notice that
AX is an internal subset of Xk, and in particular it is hyperfinite.

In general, we expect that for a generic set A ⊆ ∗Rk, ◦AX 6= A. For
instance, if A ∩ Qk = ∅, then AX = ◦AX = ∅. In this section, we will prove
that if A is an open set, then indeed AX is a faithful extension of A, in the
sense that ◦AX = ◦AX = A. Moreover, there is a nice characterization of the
boundary of AX which is projected to the boundary of A via the standard
part map.

In order to prove these results, we need to show that for an open set A,
µ(x) ∩ ∗A 6= ∅ is equivalent to µ(x) ∩AX 6= ∅ for all x ∈ A.

Lemma 2.1.3. If A ⊆ Rk is an open set, then for all x ∈ A it holds

µ(x) ∩ ∗A 6= ∅ ⇐⇒ µ(x) ∩AX 6= ∅. (2.1.1)
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Proof. Let x ∈ A. The hypothesis N = N0! for an infinite N0 ∈ ∗N ensures
that for all p ∈ Qk, p ∈ Xk. As a consequence, for all n ∈ N there exists
p ∈ AX with |x − p| < 1/n. By overspill, for some infinite M ∈ ∗N there
exists p ∈ AX that satisfies |x− p| < 1/M .

We want to define a boundary for the set AX that is coherent with the
usual notion of boundary for A. The idea is to define the X-boundary of AX
as the set of points of AX that are within a step of length ε from a point of
∗Ac.

Definition 2.1.4. Let A ⊆ Xk. We define the X-boundary of A as

∂XA = {x ∈ A : ∃y ∈ ∗Ac satisfying |x− y|∞ ≤ ε}.

This definition is coherent with the usual boundary of an open set.

Proposition 2.1.5. Let A ⊆ Rk be an open set. Then ◦AX = A and
◦(∂XAX) = ∂A.

Proof. The equality ◦AX = A is a consequence of Lemma 2.1.3.
Recall the nonstandard characterization of the boundary of A: x ∈ ∂A

if and only if there exists y ∈ ∗A, x 6= y, and z ∈ ∗Ac with x ≈ y ≈ z. This
is sufficient to conclude that ∂A ⊇ ◦(∂XAX).

To prove that the other inclusion holds, we only need to show that if
x ∈ ∂A, then there exists y ∈ ∂XAX with y ≈ x. Let x ∈ ∂A: since AX is a
hyperfinite set, we can pick y ∈ AX satisfying

|∗x− y|∞ = min
z∈AX
{|∗x− z|∞}.

Recall that x ∈ Ac, since A is open: as a consequence, for our choice of
y we have y 6= ∗x and |∗x − y|∞ > 0. We claim that y ∈ ∂XAX. In fact,
suppose towards a contradiction that y 6∈ ∂XAX: in this case, for all z ∈ Ac,
|y − z|∞ > ε and, in particular, |∗x − y|∞ > ε. Let ∗x − y =

∑k
i=1 aiei, let

I = {i ≤ k : |ai| = |∗x− y|∞}, and define

ỹ = y +
∑
i∈I

ai
|ai|

εei.

Since |ỹ − y|∞ = ε and since y 6∈ ∂XAX, then ỹ ∈ AX. Moreover,

|∗x− ỹ|∞ = max
i 6∈I
{|∗x− y| − ε, |ai|} < |x− y|∞,

contradicting |∗x− y|∞ = minz∈AX{|∗x− z|∞}.

From now on, let Ω ⊆ Rk be an open set or the closure of an open set.
By Proposition 2.1.5, this hypothesis is sufficient to ensure the equalities
◦ΩX = Ω and ◦(∂XΩX) = ∂Ω.
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2.1.2 Derivatives and integrals of grid functions

Since grid functions are defined on a discrete set, there is no notion of deriva-
tive for grid functions. However, in nonstandard analysis it is fairly usual
to replace the derivative by a finite difference operator with an infinitesimal
step.

Definition 2.1.6 (Grid derivative). For an internal grid function f ∈
G(ΩX), we define the i-th forward finite difference of step ε as

Dif(x) = D+
i f(x) =

f(x+ εei)− f(x)

ε

and the i-th backward finite difference of step ε as

D−i f(x) =
f(x)− f(x− εei)

ε
.

If n ∈ ∗N, Dni is recursively defined as Di(Dn−1
i ) and, if α is a multi-index,

then Dα is defined as expected:

Dαf = Dα1
1 Dα2

2 . . .Dαnn f.

These definitions can be extended to D− by replacing every occurrence of D
with D−.

For further details about the properties of the finite difference operators,
we remand to Hanqiao, St. Mary and Wattenberg [45], to Keisler [53] and
to van den Berg [16, 17].

Remark 2.1.7. Notice that if f ∈ G(ΩX) and if α is a standard multi-index,
then Dαf is not defined on all of ΩX. However, if we let

Ωα
X = {x ∈ ΩX : Dαf is defined} = {x ∈ ΩX : x+ αε ∈ ΩX}

then we have ◦Ωα
X = ◦ΩX = Ω, since for every x ∈ Ωα

X we have x+ αε ∈ ΩX
and x+ αε ≈ x by the standardness of α.

In a similar way, if we define

∂αXΩX = {x ∈ ΩX : x+ αε ∈ ∂XΩX},

then, from the relation x + αε ≈ x and from Proposition 2.1.5, we deduce
that it holds also the equality ◦∂αXΩX = ◦∂XΩX = ∂Ω. In section 2.4.1, we
will use this result in order to show show how Dirichlet boundary conditions
can be expressed in the sense of grid functions.

Since Ωα
X is a faithful extension of Ω in the sense of proposition 2.1.5,

we will often abuse notation and write Dαf ∈ G(ΩX) instead of the correct
Dαf ∈ G(Ωα

X).
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In the setting of grid functions, integrals are replaced by hyperfinite
sums.

Definition 2.1.8 (Grid integral and inner product). Let f, g : ∗Ω→ ∗R and
let A ⊆ ΩX ⊆ Xk be an internal set. We define∫

A
f(x)dXk = εk ·

∑
x∈A

f(x)

and

〈f, g〉 =

∫
Xk
f(x)g(x)dXk = εk ·

∑
x∈Xk

f(x)g(x),

with the convention that, if x 6∈ ∗Ω, f(x) = g(x) = 0.

A simple calculation shows that the fundamental theorem of calculus
holds. In particular, for all f : G(X) → ∗R and for all a, b ∈ X, b < N , we
have

ε

b∑
x=a

Df(x) = f(b+ ε)− f(a) and D

(
ε

b∑
x=a

f(x)

)
= f(b+ ε).

The next Lemma is a well-known compatibility result between the grid in-
tegral and the Riemann integral of continuous functions.

Lemma 2.1.9. Let Ω ⊂ Rk be a compact set. If f ∈ C0(Ω), then∫
ΩX

∗f(x)dXk ≈
∫

Ω
f(x)dx.

Proof. See for instance Section 1.11 of [60].

2.1.3 Sα functions and Cα functions

We will now recall some well-known facts about S-continuity. This property
has been widely used as a bridge between discrete functions of nonstandard
analysis and standard continuous functions.

Definition 2.1.10. We will say that x ∈ ΩX is nearstandard in Ω iff there
exists y ∈ Ω such that x ≈ y.

Definition 2.1.11. We say that a function f ∈ G(ΩX) is S-continuous on
ΩX iff f(x) is finite for some nearstandard x ∈ ΩX and for every nearstan-
dard x, y ∈ ΩX, x ≈ y implies f(x) ≈ f(y).

We also define functions of class Sα for every multi-index α:

• f is of class S0(ΩX) if f is S-continuous on ΩX;

• f is of class Sα(ΩX) if Dαf ∈ S0(ΩX).
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• f is of class S∞(ΩX) if Dαf ∈ S0(ΩX) for any standard multi-index
α.

Notice that if f ∈ Sα(ΩX) for some standard multi-index α, then f(x)
is finite at all nearstandard x ∈ ΩX.

In the study of S-continuous functions, we find it useful to introduce the
following equivalence relation.

Definition 2.1.12. Let f, g ∈ G(ΩX). We say that f ≡S g iff (f−g)(x) ≈ 0
for all nearstandard x ∈ ΩX. From the properties of ≈, it can be proved
that ≡S is an equivalence relation. We will denote by πS the projection
from G(ΩX) to the quotient space G(ΩX)/ ≡S, and will denote by [f ]S the
equivalence class of f with respect to ≡S.

The rest of this section is devoted to the proof that the quotient Sα(ΩX)/ ≡S
is real algebra isomorphic to the algebra of Cα functions over Ω. This result
is a reformulation in the language of grid functions of some results by van
den Berg [16] and by Wattenberg, Hanqiao, and St. Mary [45].

Lemma 2.1.13. For every standard multi-index α, Sα(ΩX) with pointwise
sum and product is an algebra over ∗Rfin, and Sα(ΩX)/ ≡S inherits a struc-
ture of real algebra from Sα(ΩX).

Proof. The only non-trivial assertion that needs to be verified is closure of
Sα(ΩX) with respect to pointwise product. This property is a consequence
of Proposition 2.6 of [16].

Theorem 2.1.14. S0(ΩX)/ ≡S is a real algebra isomorphic to C0(Ω). The
isomorphism is given by i[f ]S = ◦f . The inverse of i is the function i−1(f) =
[∗f|X]S.

Proof. If f ∈ S0(ΩX), then it is well-known that ◦f is a well-defined function
and that ◦f ∈ C0(Ω). Surjectivity of ◦ is a consequence of Lemma II.6 of
[45]. Since

ker(◦) = {f ∈ Sα(ΩX) : f(x) ≈ 0 for all finite x ∈ ΩX} = [0]S ,

we deduce that i is injective and surjective. Since ◦(x + y) = ◦x + ◦y and
◦(xy) = ◦x◦y for all x, y ∈ ∗Rfin, iα is an isomorphism of real algebras.

We will now show that, for grid functions of class Sα, the finite difference
operators D+

i and D−i assume the role of the usual partial derivative for Cα

functions. In particular, these finite difference operators can be seen as
generalized derivatives.
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Theorem 2.1.15. For all 1 ≤ i ≤ k and for all standard multi-indices α
with αi ≥ 1, the diagram

Sα(ΩX)
D+
i−→ Sα−ei(ΩX)

i ◦ πS ↓ ↓ i ◦ πS
Cα(Ω)

Di−→ Cα−ei(Ω)

and the diagram

Sα(ΩX)
D−i−→ Sα−ei(ΩX)

i ◦ πS ↓ ↓ i ◦ πS
Cα(Ω)

Di−→ Cα−ei(Ω)

commute.

Proof. By Theorem 2.1.14, if f ∈ Sα(ΩX) ⊆ S0(ΩX) then (iα ◦ πS)(f) = ◦f
and, by Lemma II.7 of [45], ◦(D±i f) = Di

◦f .

By Theorem 2.1.15, the isomorphism i defined in Theorem 2.1.14 induces
an isomorphism between Sα(ΩX)/ ≡S and Cα(Ω) as real algebras.

Corollary 2.1.16. For any multi-index α, the isomorphism i restricted to
Sα(ΩX)/ ≡S induces an isomorphism between Sα(ΩX)/ ≡S and Cα(Ω) as
real algebras.

Thanks to this isomorphism, if f ∈ Sα(ΩX), we can identify the equiva-
lence class [f ]S with the standard function ◦f ∈ Cα(Ω).

2.2 Grid functions as generalized distributions

In this section, we will study the relations between the space of grid functions
and the space of distributions. In particular, we will prove that the space of
grid functions can be seen as generalization of the space of distributions, and
the operators D+ and D− coherently extend the distributional derivative to
the space of grid functions.

In order to prove the above results, we start by defining a projection
from an external ∗Rfin-submodule of G(ΩX) to the space of distributions.
This projection is defined by duality with an external ∗Rfin-algebra of grid
functions that is a counterpart to the space of test functions.

Definition 2.2.1 (Algebra of test functions). We define the algebra of test
functions over ΩX as follows:

DX(ΩX) = {f ∈ S∞(ΩX) : ◦supp f ⊂⊂ Ω} .

The above definition provides a nonstandard counterpart of the usual
space of smooth functions with compact support.

36



Lemma 2.2.2. The isomorphism i defined in Theorem 2.1.14 induces an
isomorphism between the real algebras DX(ΩX)/ ≡S and D(Ω). The iso-
morphism preserves integrals, i.e. for all ϕ ∈ DX(ΩX), it holds the equality

◦
∫

ΩX

ϕdXk =

∫
Ω
i[ϕ]Sdx. (2.2.1)

Moreover, if ϕ ∈ D(Ω), then ∗ϕ|X ∈ DX(ΩX), so that i−1(ϕ) =
[∗ϕ|X]S ∩

DX(ΩX).

Proof. From Theorem 2.1.14, from Theorem 2.1.15 and from the definition
of DX(ΩX), we can conclude that the hypothesis ϕ ∈ DX(ΩX) ensures that
i[ϕ] ∈ D(Ω). Since DX(ΩX) ⊂ S0(ΩX), injectivity of i is a consequence of
Theorem 2.1.14.

Similarly, surjectivity of i can be deduced from Theorem 2.1.14 and from
Theorem 2.1.15. In fact, suppose towards a contradiction that there exists
ψ ∈ D(Ω) such that ψ 6= i[ϕ] for all ϕ ∈ DX(Ω). Since ψ ∈ C0(Ω), Theorem
2.1.14 ensures that there exists φ ∈ S0(ΩX) with i[φ] = ψ. If φ 6∈ S∞(ΩX),
then for some standard multi-index α, Dαφ 6∈ S0(ΩX), contradicting The-
orem 2.1.15. As a consequence, i is an isomorphism between DX(ΩX)/ ≡S
and D(Ω).

Equality 2.2.1 is a consequence of the hypothesis ◦suppϕ ⊂⊂ Ω and of
Lemma 2.1.9.

Now let ϕ ∈ D(Ω): by Theorem 2.1.14 and by Theorem 2.1.15, ∗ϕ|X ∈
S∞(ΩX). Let A = suppϕ: since A is the closure of an open set, by Propo-
sition 2.1.5 ◦AX = A ⊂⊂ Ω, from which we deduce ∗ϕ|X ∈ DX(ΩX). As a
consequence, i−1(ϕ) =

[∗ϕ|X]S ∩DX(ΩX), as we claimed.

The duality with respect to the space of test functions can be used to de-
fine an equivalence relation on the space of grid functions. This equivalence
relation plays the role of a weak equality.

Definition 2.2.3. Let f, g ∈ G(ΩX). We say that f ≡ g iff for all ϕ ∈
DX(ΩX) it holds 〈f, ϕ〉 ≈ 〈g, ϕ〉. We will call π the projection from G(ΩX)
to the quotient G(ΩX)/ ≡, and we will denote by [f ] the equivalence class of
f with respect to ≡.

The new equivalence relation ≡ is coarser than ≡S .

Lemma 2.2.4. For all f, g ∈ G(ΩX), f ≡S g implies f ≡ g.

Proof. We will show that f ≡S g implies 〈f − g, ϕ〉 ≈ 0 for all ϕ ∈ DX(ΩX):
by linearity of the hyperfinite sum, this result is equivalent to f ≡ g.

Let ϕ ∈ DX(ΩX), and let η = maxx∈suppϕ{|(f − g)(x)|}. The hypothesis
that f ≡S g and the hypothesis that ◦suppϕ is bounded are sufficient to
ensure that η ≈ 0. As a consequence, we have the following inequalities

|〈f − g, ϕ〉| ≤ 〈|f − g|, |ϕ|〉 ≤ |η|
∫

ΩX

|ϕ(x)|dXk ≈ 0,
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that are sufficient to conclude the proof.

We can now define a duality pairing with respect to the inner product
defined in 2.1.8.

Definition 2.2.5. For any V ⊆ G(ΩX), we define

V ′ = {f ∈ G(ΩX) : 〈g, f〉 is finite for all g ∈ V }.

The ∗Rfin-module

D ′X(ΩX) = {f ∈ G(ΩX) | 〈f, ϕ〉 is finite for all ϕ ∈ DX(ΩX)}

is called the module of bounded grid functions.

The rest of this section is devoted to the proof that the quotient D ′X(ΩX)/ ≡
is real vector space isomorphic to the space of distributions D ′(Ω).

Lemma 2.2.6. For any V ⊆ G(ΩX), V ′ with pointwise sum and product
is a module over ∗Rfin. Moreover, V ′/ ≡ inherits a structure of real vector
space from V ′.

Notice that, contrary to what happened for the space S0(ΩX), V ′ is not
an algebra, since in general the hypothesis f, g ∈ V ′ is not sufficient to
ensure that fg ∈ V ′.

The following characterization of bounded generalized distributions will
be used in the proof of the isomorphism between the quotient of the module
of the bounded generalized distributions and the space of distributions.

Lemma 2.2.7. The following are equivalent:

1. f ∈ D ′X(ΩX);

2. 〈f, ϕ〉 ≈ 0 for all ϕ ∈ DX(ΩX) satisfying ϕ(x) ≈ 0 for all x ∈ ΩX.

Proof. (1) implies (2), by contrapositive. Suppose that 〈f, ϕ〉 6≈ 0 for some
ϕ ∈ DX(ΩX) with ϕ(x) ≈ 0 for all x ∈ ΩX. Now take some ψ ∈ DX(ΩX)
with ψ(x) ≥ nϕ(x) for all x ∈ ΩX and for all n ∈ N. From the inequality
〈f, ψ〉 ≥ n〈f, ϕ〉 for all n ∈ N, we deduce that 〈f, ψ〉 is infinite, i.e. that
f 6∈ D ′X(ΩX).

(2) implies (1), by contrapositive. Suppose that 〈f, ϕ〉 = M is infinite for
some ϕ ∈ DX(ΩX). Since ϕ/M ∈ DX(ΩX) and ϕ/M(x) ≈ 0 for all x ∈ ΩX,
we deduce that (2) does not hold.

From the above Lemma, we deduce that the action of a bounded gener-
alized distribution over the space of test functions is continuous.

Corollary 2.2.8 (Continuity). If ϕ,ψ ∈ DX(ΩX) and ϕ ≡S ψ, then 〈f, ϕ〉 ≈
〈f, ψ〉 for all f ∈ D ′X(ΩX).
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Proof. The hypotheses ϕ,ψ ∈ DX(ΩX) and ϕ ≡S ψ imply ϕ − ψ ∈ DX(ΩX)
and (ϕ − ψ)(x) ≈ 0 for all x ∈ ΩX. Then, by Lemma 2.2.7, we have
〈f, ϕ− ψ〉 ≈ 0 for all f ∈ D ′X(ΩX), as we wanted.

We are now ready to prove that D ′X(ΩX)/ ≡ is isomorphic to the space
of distributions over Ω.

Theorem 2.2.9. The function Φ : (D ′X(ΩX)/ ≡)→ D ′(Ω) defined by

〈Φ([f ]), ϕ〉D(Ω) = ◦〈f, ∗ϕ〉

is an isomorphism of real vector spaces.

Proof. At first, we will show that the definition of Φ does not depend upon
the choice of the representative for [f ]. Let g, h ∈ [f ]: then, by definition of
≡, ◦〈g, ϕ〉 = ◦〈h, ϕ〉 for all ϕ ∈ DX(ΩX). By Lemma 2.2.2, for all ϕ ∈ D ′(Ω),
∗ϕ|X ∈ DX(ΩX), so that if g, h ∈ [f ], then ◦〈g, ∗ϕ〉 = ◦〈h, ∗ϕ〉 so that the
definition of Φ is independent on the choice of the representative for [f ].

Lemma 2.2.8 ensures that for all [f ] ∈ D ′X(ΩX)/ ≡, Φ([f ]) ∈ D ′X(Ω), and
in particular that Φ([f ]) is continuous.

We will prove by contradiction that Φ is injective. Suppose that 〈Φ([f ]), ϕ〉 =
0 for all ϕ ∈ D(Ω) and that [f ] 6= [0]. The latter hypothesis implies that
there exists ψ ∈ DX(ΩX) such that 〈f, ψ〉 6≈ 0. But, since ∗(◦ψ)|X ≡S ψ, by
Corollary 2.2.8 we deduce

〈Φ([f ]), ◦ψ〉D(Ω) = ◦〈f, ∗(◦ψ)〉 = ◦〈f, ψ〉 6= 0,

contradicting the hypothesis 〈Φ([f ]), ϕ〉 = 0 for all ϕ ∈ D(Ω). As a conse-
quence, Φ is injective.

Surjectivity of Φ is a consequence of Theorem 1 of [55].

In view of the isomorphism Φ, from now on we will identify the equiva-
lence class [f ] with the distribution Φ([f ]). Notice that if f ∈ S0(ΩX), this
identification is coherent with [f ]S .

Corollary 2.2.10. If f ∈ S0(ΩX), then [f ] = [f ]S = ◦f .

Proof. Since f is S-continuous, by Lemma 2.1.9 and by Lemma 2.2.2 we
have the equality ∫

Ω

◦fϕdx = ◦〈f, ∗ϕ〉

for all ϕ ∈ D(Ω), and this is sufficient to deduce the thesis.

Remark 2.2.11. If k ∈ N, define

D ′X(Ω, ∗Rk) =
{
f : ΩX → Rk : fi ∈ D ′X(Ω) for all 1 ≤ i ≤ k

}
.
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If f ∈ D ′X(Ω, ∗Rk), then we can define a functional [f ] over the dual of the
space of vector-valued test functions

D(Ω,Rk) =
{
ϕ : Ω→ Rk : ϕi ∈ D(Ω) for all 1 ≤ i ≤ k

}
by posing 〈[f ], ϕ〉D(Ω,Rk) =

∑k
i=1
◦〈fi, ∗ϕi〉 for all ϕ ∈ D(Ω,Rk). From The-

orem 2.2.9, we deduce that the quotient of the ∗Rfin-module D ′X(Ω, ∗Rk)
with respect to ≡ is isomorphic to the real vector space of linear continuous
functionals over D(Ω,Rk).

Remark 2.2.12. Theorem 2.2.9 can be used to define more general projec-
tions of nonstandard functions. For instance, if f ∈ ∗C0(∗R,D ′X(ΩX)), then
for all T ∈ R f induces a continuous linear functional [f ] over the space
C0([0, T ],D ′(Ω)) defined by the formula∫ T

0
〈[f ], ϕ〉D(Ω)dt = ◦

(
∗
∫ T

0
〈f(t), ∗ϕ(t)〉dt

)
for all ϕ ∈ C0([0, T ],D ′(Ω)). Moreover, if f ∈ ∗C1(∗R,D ′X(ΩX)), then [f ]
allows for a weak derivative with respect to time: for all T ∈ R, [f ]t is the
distribution that satisfies∫ T

0
〈[f ]t, ϕ〉D(Ω)dt = −◦

(
∗
∫ T

0
〈f(t), ∗ϕ(t)〉dt

)
for all ϕ ∈ C1([0, T ],D ′(Ω)).

2.2.1 Discrete derivative and distributional derivative

In this section, we will show that the finite difference operators D+
i and D−i

generalize the distributional derivative to the setting of grid functions, i.e.
that [D±i f ] = Di[f ] for all f ∈ D ′X(ΩX). For a matter of commodity, we
will suppose that ΩX ⊆ X: the generalization to an arbitrary dimension can
be deduced from the proof of Theorem 2.2.15 with an argument relying on
Theorem 2.1.15.

Recall the discrete summation by parts formula: for all grid functions f
and g and for all a, b ∈ ∗N with N2 ≤ a < b < N2 it holds the equality

b∑
n=a

(f((n+ 1)ε)− f(nε))g(nε) = f((b+ 1)ε)g((b+ 1)ε)− f(aε)g(aε) +

−
b∑

n=a

f((n+ 1)ε)(g((n+ 1)ε)− g(nε))

that, in particular, implies

〈Df, ϕ〉 = −〈f(x+ ε),Dϕ〉 (2.2.2)
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for all f ∈ G(ΩX) and for all ϕ ∈ DX(ΩX).
Inspired by the above formula, we will now prove that if we shift a

bounded generalized distribution by an infinitesimal displacement, we still
obtain the same generalized distribution.

Lemma 2.2.13. Let f ∈ G(ΩX). Then f(x) ∈ D ′X(ΩX) if and only if
f(x+ ε) ∈ D ′X(ΩX). If f(x) ∈ D ′X(ΩX) then, [f(x)] = [f(x+ ε)].

Proof. The hypothesis that for all ϕ ∈ DX(ΩX) it holds ◦suppϕ ⊂⊂ Ω
ensures the equality

〈f(x), ϕ(x)〉 = 〈f(x+ ε), ϕ(x+ ε)〉

from which we deduce the equivalence f(x) ∈ D ′X(ΩX) if and only if f(x+ε) ∈
D ′X(ΩX).

We will now prove that, f(x) ∈ D ′X(ΩX), then [f(x)] = [f(x + ε)]. By
equation 2.2.2, we have

〈f(x+ ε)− f(x), ϕ〉 = −〈f(x+ ε), εDϕ〉 (2.2.3)

for all ϕ ∈ DX(ΩX). Notice that ϕ ∈ DX(ΩX) implies that εDϕ ∈ DX(ΩX)
and εDϕ(x) ≈ 0 for all x ∈ ΩX. Hence, by the hypothesis f ∈ D ′X(ΩX) and
by Lemma 2.2.7, we deduce that 〈f(x+ε), εDϕ〉 ≈ 0 for all ϕ ∈ DX(ΩX). By
equation 2.2.3, this is sufficient to deduce the equality [f(x)] = [f(x+ε)].

As a consequence of the above Lemma, we can characterize a nonstan-
dard counterpart of the shift operator.

Corollary 2.2.14. Let f ∈ D ′X(ΩX). For all n such that nε is finite, [f(x±
nε)] = [f ](x± ◦(nε)).

We are now ready to prove that the finite difference operators generalize
the distributional derivative.

Theorem 2.2.15. The diagram

D ′X(ΩX)
D+

−→ D ′X(ΩX)
Φ ◦ π ↓ ↓ Φ ◦ π
D ′(Ω)

D−→ D ′(Ω)

and the diagram

D ′X(ΩX)
D−−→ D ′X(ΩX)

Φ ◦ π ↓ ↓ Φ ◦ π
D ′(Ω)

D−→ D ′(Ω)

commute.
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Proof. We will prove that the first diagram commutes, as the proof for the
second is similar.

Let f ∈ D ′X(ΩX): we have the following equality chain

〈D[f ], ϕ〉D(Ω) = −〈[f ], Dϕ〉D(Ω) = −◦〈f, ∗D∗ϕ〉.

By Theorem 2.1.15, ∗D∗ϕ ≡S D±∗ϕ and, by Corollary 2.2.8,

〈f, ∗D∗ϕ〉 ≈ 〈f,D±∗ϕ〉.

By the discrete summation by parts formula 2.2.2 and by Lemma 2.2.13 we
have

〈f,D±∗ϕ〉 ≈ −〈D±f, ∗ϕ〉

from which we deduce

〈D[f ], ϕ〉D(Ω) = ◦〈[D±f ], ∗ϕ〉

for all ϕ ∈ D(Ω).

By composing finite difference operators, we obtain the grid function
counterpart of many differential operators. In Section 3.3, we will use the
grid function counterpart of the gradient, the divergence and the Laplacian.

Definition 2.2.16 (Grid gradient, divergence and Laplacian). If f ∈ G(ΩX),
we define the forward and backward grid gradient of f as:

∇±Xf = (D±1 f, . . . ,D
±
i , . . . ,D

±
k f).

In a similar way, if f : ΩX → ∗Rk, we define the forward and backward grid
divergence as

div±X (f(x, t)) =

k∑
i=1

D±i f(x, t).

The grid Laplacian of f ∈ G(ΩX) is defined as

∆Xf = div−X (∇+
X (f)) = div+

X (∇−X (f)) =

k∑
i=1

D+
i D
−
i f.

In the sequel, we will mostly drop the symbol + from the above defini-
tions: for instance, we will write ∇X instead of ∇+

X .
It is a consequence of Theorem 2.1.15 that, if f ∈ S(1,...,1)(ΩX), then

◦(∇X(f)) is the usual gradient of ◦f , and similar results holds for ∇−X , divX,
div−X and ∆X. Moreover, by Theorem 2.2.15, the operators ∇X and ∇−X
satisfy the formula

◦〈∇Xf,
∗ϕ〉 = ◦〈∇−Xf,

∗ϕ〉 = −〈[f ],divϕ〉D(Ω)
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for all f ∈ D ′X(ΩX) and for all functions ϕ ∈ D(Ω,Rk), and divX and div−X
satisfy the formula

◦〈divXf,
∗ϕ〉 = ◦〈div−Xf,

∗ϕ〉 = −〈[f ],∇ϕ〉D(Ω)

for all f ∈ D ′X(ΩX,
∗Rk) and for all ϕ ∈ D(Ω). For the discrete Laplacian

∆X, it holds
◦〈∆Xf,

∗ϕ〉 = 〈[f ],∆ϕ〉D(Ω)

for all f ∈ D ′X(ΩX) and for all ϕ ∈ D(Ω).

2.2.2 Discrete chain rule for generalized distributions and
the Schwartz impossibility theorem

For the usual distributions, it is well-known that some of the derivation rules
that hold for smooth functions do not hold in general. In particular, it is a
consequence of the impossibility theorem by Schwartz that no extension of
the distributional derivative satisfies a product rule.

However, for the grid functions there are some discrete product rules
that generalize the product rule for smooth functions. Indeed, the following
identities can be established by a simple calculation.

Proposition 2.2.17 (Discrete product rules). Let f, g ∈ G(ΩX). Then

D+(f · g)(x) =
f(x+ ε)g(x+ ε)− f(x)g(x)

ε
= f(x+ ε)D+g(x) + g(x)D+f(x)

= f(x)D+g(x) + g(x+ ε)D+f(x)

and

D−(f · g)(x) =
f(x)g(x)− f(x− ε)g(x− ε)

ε
= f(x)D−g(x) + g(x− ε)D−f(x)

= f(x− ε)D−g(x) + g(x)D−f(x).

Example 2.2.18 (Derivative of the sign function and the product rule). For
an in-depth discussion of this example and of the limitations in the definition
of a product rule for the distributional derivative, we refer to [82]. Consider
the following representative of the sign function

u(x) =

{
−1 if x < 0

1 if x ≥ 0.

For this function u, u2 = 1 and u3 = u, but the distributional derivative
ux = 2δ0 is different from (u3)x = 3u2ux = 3ux = 6δ0. So, even if u2 is
smooth, the product rule does not hold.
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If we regard u as a grid function, however, it is easy to see that u ∈
D ′X(X), and with a simple calculation we obtain:

Du(x) =

{
2ε−1 if x = −ε

0 otherwise.
(2.2.4)

Notice also that [Du] = 2δ0, as we expected from Theorem 2.2.15. Applying
one of the chain rule formulas of Lemma 2.2.17 and taking into account that
u2(x) = 1 for all x ∈ X, we obtain

Du3(x) = u(x)Du2(x) + u2(x+ ε)Du(x)

= u(x)(u(x)D(x) + u(x+ ε)Du(x)) + Du(x)

= Du(x)(2 + u(x)u(x+ ε))

so that

Du3(x) =

{
Du(−ε) = 2ε−1 if x = −ε
0 otherwise,

in agreement with 2.2.4.

We can summarize the results obtained so far as follows: the space of
grid functions

• is a vector space over ∗R that extends the space of distributions in the
sense of Theorem 2.2.9;

• has a well-defined pointwise multiplication that extends the one de-
fined for S0 functions;

• has a derivative D that generalizes the distributional derivative and for
which the discrete version of the chain rule established in Proposition
2.2.17 holds.

These properties are the nonstandard, discrete counterparts to the ones
itemized in the impossibility theorem by Schwartz [77]. As a consequence,
the space of grid functions can be seen as a non-trivial generalization of the
space of distributions, as we claimed at the beginning of this section.

We will complete our discussion about the relation of the space of grid
functions and the space of distributions by showing that the space of dis-
tributions can be embedded, albeit in a non-canonical way, in the space of
grid functions. Notice that we cannot ask to this embedding to be fully
coherent with derivatives: in fact, there is already an infinitesimal discrep-
ancy between the usual derivative and the discrete derivative in the set of
polynomials: the derivative of x2 is 2x, but Dx2 = 2x + ε. However, as
shown in Theorem 2.1.15, for all f ∈ Cn, Dnf = [Dn(∗f|X)]. In fact, the
canonical linear embedding l : C0(R) ↪→ S0(X) given by l(f) = ∗f|X does
not preserve derivatives, but it has the weaker property

l(f ′) ≡ D(l(f)). (2.2.5)
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This will be the weaker coherence request that we will impose on the em-
bedding from the space of distributions to the space of grid functions.

Theorem 2.2.19. Let {ψn}n∈N be a partition of unity, and let H be a
Hamel basis for D ′(R). There is a linear embedding l : D ′(R) → D ′X(X),
that depends on {ψn}n∈N and H, that satisfies the following properties:

1. Φ ◦ l = id;

2. the product over D ′X(X)×D ′X(X) generalizes the pointwise product over
C0(R)× C0(R);

3. the derivative D over D ′X(X) extends the distributional derivative in
the sense of equation 2.2.5;

4. the chain rule for products holds in the form established in Lemma
2.2.17.

Proof. We will define l over H and extend it to all of D ′(R) by linearity. Let
T ∈ H. From the representation theorem of distributions (see for instance
[80]), we obtain

T =
∑
n∈N

Tψn =
∑
n∈N

Danfn (2.2.6)

with fn ∈ C0(R) and supp (Danfn) ⊆ suppψn for all n ∈ N. Moreover, the
sum is locally finite and for all ϕ ∈ D(Ω) there exists a finite set Iϕ ⊂ N
such that

〈T, ϕ〉D(Ω) = 〈
∑
i∈Iϕ

Daifi, ϕ〉D(Ω). (2.2.7)

Let {φn}n∈∗N be the nonstandard extension of the sequence {ψn}n∈N,
and let {bn}n∈∗N be the nonstandard extension of the sequence {an}n∈N.
By transfer, from the representation 2.2.6 we obtain

∗T =
∑
n∈∗N

∗Tφn =
∑
n∈∗N

∗Dbngn (2.2.8)

with gi ∈ ∗C0(R) and supp (Dbngn) ⊆ suppψn for all n ∈ ∗N. We may also
assume that the representation 2.2.8 has the following properties:

1. bn = min
{
m ∈ ∗N : ∗Tφn = ∗Dmf with f ∈ ∗C0(R)

}
for all n ∈ ∗N

2. if ∗Tφn = ∗Dbng = ∗Dbnh with g, h ∈ ∗C0(R), then g − h is a polyno-
mial of a degree not greater than bn − 1;

3. if n is finite and ∗Tφn = ∗Dbngn, then gn = ∗fn and bn = an, where
fn and an satisfy Tψn = Danfn.
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For T ∈ H, we define

l(T ) =
∑

n∈∗N: bn≤N
Dbn(gn|X),

and we extend l to D ′(R) by linearity. Notice that l does not depend on
the choice of the functions {gn}n∈∗N. In fact, suppose that ∗Tφn = ∗Dbng =
∗Dbnh with g, h ∈ ∗C0(R). By property (2) of the representation 2.2.8, g−h
is a polynomial of a degree not greater than bn− 1. Recall that, if p ∈ G(X)
is a polynomial of degree at most bn − 1, then Dbnp = 0. As a consequence,
Dbn(g|X) = Dbn(h|X), as we wanted.

We will now show that, for all T ∈ H, 〈Φ([l(T )]), ϕ〉D(Ω) = 〈T, ϕ〉D(Ω) for
all ϕ ∈ D ′(R). This and linearity of l entail that Φ ◦ l = id. Let ϕ ∈ D(R),
and let Iϕ ⊂ N a finite set such that equality 2.2.7 holds. We claim that
whenever i 6∈ Iϕ, then 〈Dbi(gi|X), ∗ϕ〉 = 0. In fact, if i 6∈ Iϕ is finite, then by
formula 2.2.7 and by property (3) of the representation 2.2.8 we have

◦〈Dbi(gi|X), ϕ〉 = ◦〈Dai(∗fi|X), ϕ〉 = 〈Daifi, ϕ〉D(Ω) = 0.

We want to show that 〈Dbi(gi|X), ∗ϕ〉 = 0 also when i is infinite. Notice
that if x ∈ ∗Rfin, then for sufficiently large n ∈ N it holds x 6∈ suppφn:
otherwise, we would also have ◦x ∈ suppψn for arbitrarily large n, against
the fact that for all x ∈ ∗Rfin, ◦x ∈ suppφn only for finitely many n. As
a consequence, suppφi ∩ ∗Rfin = ∅, and by the inclusion supp (Dbigi) ⊆
suppφi, then also supp (Dbigi) ∩ ∗Rfin = ∅. Taking into account property
(2) of the representation 2.2.8, we deduce that the restriction of gi to ∗R \
supp (Dbigi) is a polynomial p of degree at most bn − 1. We have already
observed that Dbip = 0 and, as a consequence, ◦〈Dbi(gi|X), ϕ〉 = 0.

We then have the following equality:

〈l(T ), ∗ϕ〉 = 〈
∑
i∈Iϕ

Dai(∗fi|X), ∗ϕ〉.

By Theorem 2.2.15, we obtain

〈l(T ), ∗ϕ〉 = 〈
∑
i∈Iϕ

Dai(∗fi|X), ∗ϕ〉 = 〈
∑
i∈Iϕ

Daifi, ϕ〉D(Ω) = 〈T, ϕ〉D(Ω),

that is sufficient to conclude that Φ([l(T )]) = T .
Assertion (2) is a consequence of Lemma 2.1.13, assertion (3) is a conse-

quence of Theorem 2.2.15, and assertion (4) is a consequence of Proposition
2.2.17.

2.3 Grid functions as ∗Lp functions and as parametrized
measures

The main goal of this section is to show that there is an external ∗Rfin-
submodule of the space of grid functions whose elements correspond to
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Young measures, and that this correspondence is coherent with the pro-
jection Φ defined in Theorem 2.2.9. Moreover, we will show how this corre-
spondence can be generalized to arbitrary grid functions. Before we prove
these results, we find it useful to discuss some properties of grid functions
when they are interpreted as ∗Lp functions. These properties will be used
also in Section 2.4, when we will discuss the grid function formulation of
partial differential equations.

Recall that for all 1 ≤ p ≤ ∞, a function f ∈ Lp(Ω) induces a distribu-
tion Tf ∈ D ′(Ω) defined by

〈Tf , ϕ〉D(Ω) =

∫
Ω
fϕdx

for all ϕ ∈ D(Ω). As a consequence, by identifying f with Tf we have the
inclusions Lp(Ω) ⊂ D ′(Ω) for all 1 ≤ p ≤ ∞. Since Φ is surjective, we expect
that for all f ∈ Lp(Ω) there exists g ∈ D ′X(ΩX) satisfying [g] = Tf . In this
case, we will often write [g] = f and [g] ∈ Lp(Ω). If [g] ∈ Lp(Ω), thanks to
the Riesz representation theorem, we can think of [g] either as a functional
acting on Lp

′
(Ω), or as a member of an equivalence class of Lp(Ω) functions.

To our purposes, we find it more convenient to treat [g] as a function. With
this interpretation, if f = [g] and f ∈ Lp(Ω), then it holds the equality
f(x) = [g](x) for almost every x ∈ Ω.

2.3.1 Grid functions as ∗Lp functions

If f ∈ G(ΩX), then we can identify f with a piecewise constant function de-
fined on all of ∗Rk. Among many different extensions, we choose to represent
f by the function f̂ defined by

f̂(x) =

{
f((n1, n2, . . . , nk)ε) if niε ≤ xi < (ni + 1)ε for all 1 ≤ i ≤ k
0 if |xi| > N for some 1 ≤ i ≤ k,

with the agreement that f((n1, n2, . . . , nk)ε) = 0 if (n1, n2, . . . , nk)ε 6∈ ΩX.
If f is a grid function, the function f̂ is an internal ∗simple function and,

as such, it belongs to ∗Lp(Rk) for all 1 ≤ p ≤ ∞. The integral of f̂ is related
with the grid integral of f by the following formula:

∗
∫
∗Rk

f̂dx =

∫
ΩX

f(x)dXk = εk
∑
x∈ΩX

f(x).

As a consequence, the ∗Lp norm of f̂ can be expressed by

‖f̂‖pp = εk
∑
x∈ΩX

|f(x)|p if 1 ≤ p <∞, and ‖f̂‖∞ = max
x∈ΩX

|f(x)|.

Moreover, notice that if f ∈ G(ΩX), then ◦supp f̂ ⊆ ◦supp χ̂ΩX = Ω.

If we define Ω̂ = supp χ̂ΩX , then from the above inclusion we can write
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f̂ ∈ ∗Lp(Ω̂) for all 1 ≤ p ≤ ∞. By identifying f ∈ G(ΩX) with f̂ , for
all 1 ≤ p ≤ ∞ the space of grid functions is identified with a subspace of
∗Lp(Ω̂) which is closed with respect to the ∗Lp norm. Since Ω̂ is ∗bounded
in ∗Rk, for 1 ≤ p ≤ ∞ we have the usual relations between the ∗Lp norms
of f ∈ G(ΩX):

‖f̂‖1 ≤ ‖f̂‖p ≤ ‖f̂‖∞.

From now on, when there is no risk of confusion, we will often abuse the
notation and write f instead of f̂ .

We begin our study of grid functions as ∗Lp functions by showing that if
a grid function f has finite ∗Lp norm for some 1 ≤ p ≤ ∞, then f ∈ D ′X(ΩX)
and, as a consequence, [f ] is a well-defined distribution.

Lemma 2.3.1. If ‖f‖p ∈ ∗Rfin for some 1 ≤ p ≤ ∞, then f ∈ D ′X(ΩX).

Proof. Notice that DX(ΩX) ⊂ ∗Lp(Ω̂) for all 1 ≤ p ≤ ∞ and, for any ϕ ∈
DX(ΩX), ‖ϕ‖p ∈ ∗Rfin for all 1 ≤ p ≤ ∞. By the discrete Hölder’s inequality

|〈f, ϕ〉| ≤ ‖fϕ‖1 ≤ ‖f‖p‖ϕ‖p′

so that if ‖f‖p ∈ ∗Rfin, then 〈f, ϕ〉 ∈ ∗Rfin for all ϕ ∈ DX(ΩX), as desired.

From the previous Lemma we deduce that, if the Lp norm of the differ-
ence of two grid functions f and g is infinitesimal, then f ≡ g.

Corollary 2.3.2. Let f, g ∈ G(ΩX). If ‖f − g‖p ≈ 0 for some 1 ≤ p ≤ ∞,
then f ≡ g.

Proof. If ‖f − g‖p ≈ 0, then by Lemma 2.3.1

〈f − g, ϕ〉 ≤ ‖f − g‖p‖ϕ‖p′ ≈ 0

for all ϕ ∈ DX(ΩX). As a consequence, f ≡ g.

Notice that the other implication does not hold, in general. As an ex-
ample, consider the grid function f(nε) = (−1)n. Since 〈f, ϕ〉 ≈ 0 for all
ϕ ∈ DX(ΩX), we deduce that [f ] = 0, but ‖f‖p = 1 for all 1 ≤ p ≤ ∞.

Notice also that ‖f‖p is finite, but ‖f̂ − ∗g‖p 6≈ 0 for all g ∈ Lp(Ω) and for
all 1 ≤ p ≤ ∞.

In the next section, we will show that the hypothesis ‖f‖∞ ∈ ∗Rfin is
sufficient to ensure that [f ] ∈ L∞(Ω). If 1 ≤ p <∞, however, the hypothesis
‖f‖p ∈ ∗Rfin is not sufficient to imply that [f ] ∈ Lp(Ω). An example is given
by Nχ0 ∈ G(X), a representative of the Dirac distribution centred at 0. It
can be calculated that

‖Nχ0‖1 = εN = 1,

but [Nχ0] = δ0 6∈ Lp(R) for any p. In general, whenever [f ] ∈ Lp(Ω), it
holds the inequality ‖f‖p ≥ ‖[f ]‖p.
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Proposition 2.3.3. For all f ∈ G(ΩX) and for all 1 ≤ p ≤ ∞, if [f ] ∈
Lp(Ω), then

1. if [|f |] ∈ Lp(Ω), then [|f |] ≥ |[f ]| a.e. in Ω;

2. ◦‖f‖p ≥ ‖[f ]‖p.

Proof. Define f+(x) = max{f(x), 0} and f−(x) = min{f(x), 0}, so that
f = f+ + f− and |f |p = |f+|p + |f−|p for all 1 ≤ p < ∞. If [|f |] ∈ Lp(Ω),
then [f+] and [f−] ∈ Lp(Ω) and, by linearity of Φ,

[|f |](x) = [f+](x)− [f−](x) ≥ [f+](x) + [f−](x) = [f ](x)

for a.e. x ∈ Ω.
Let f ∈ G(ΩX) and suppose that [f ] ∈ Lp(Ω) with p < ∞. If either

|f+| 6∈ D ′X(ΩX), |f+|p 6∈ D ′X(ΩX), |f−| 6∈ D ′X(ΩX) or |f−| 6∈ D ′X(ΩX) then by
Lemma 2.3.1 we would have |f |p 6∈ D ′X(ΩX) and, as a consequence,

‖f‖pp = ‖|f |p‖1 6∈ ∗Rfin,

so that inequality (2) would hold. Suppose then that |f+| ∈ D ′X(ΩX), |f+|p ∈
D ′X(ΩX), |f−| ∈ D ′X(ΩX) and |f−|p ∈ D ′X(ΩX). As a consequence, both
|f | ∈ D ′X(ΩX) and |f |p ∈ D ′X(ΩX). If [|f |] ∈ Lp(Ω), then (2) is a consequence
of (1). The only case left is [|f |] 6∈ Lp(Ω).

For a matter of commodity, let g = [f ], and let g+(x) = max{g(x), 0}
and g−(x) = min{g(x), 0}. Since

[f+] + [f−] = [f ] = g+ + g− in D ′(Ω),

we deduce that
[f+]− g+ = −([f−]− g−).

Since [f+] 6∈ Lp(Ω), then also [f+]−g+ 6∈ Lp(Ω). Let K = supp ([f+]−g+):
then for all ϕ ∈ D(Ω) with suppϕ ⊂ K and with ϕ(x) ≥ 0 for all x ∈ Ω,

0 ≤ 〈[f+]− g+, ϕ〉D(Ω) = ◦〈f+, ∗ϕ〉 −
∫

Ω
g+ϕdx.

Similarly,

0 ≤ −〈[f−]− g−, ϕ〉D(Ω) = ◦〈|f−|, ∗ϕ〉 −
∫

Ω
|g−|ϕdx.

From the arbitrariness of ϕ, we deduce ‖fχKX‖p ≥ ‖gχK‖p. Since K =
supp ([f+]− g+), we also have

‖([f+]− g+)χΩ\K‖p = ‖([f−]− g−)χΩ\K‖p = ‖0‖p = 0,

from which we conclude that (2) indeed holds.
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Suppose now that [f ] ∈ L∞(Ω). If ‖f‖∞ 6∈ ∗Rfin, then inequality (2)
holds. If ‖f‖∞ ∈ ∗Rfin, let cf ∈ G(ΩX) satisfy cf (x) = ‖f‖∞ for all
x ∈ ΩX. Then [cf ](x) = ◦‖f‖∞ for all x ∈ Ω, so that [cf ] ∈ L∞(Ω). Since
cf (x) ≥ max{f+(x), |f−(x)|} for all x ∈ ΩX, then also [cf ](x) ≥ [f ](x) for
all x ∈ ΩX. This is sufficient to conclude that inequality (2) holds.

If [f ] ∈ Lp(ΩX) and ◦‖f‖p > ‖[f ]‖p, then f features some oscillations
that are compensated by the linearity of Φ. In this case, we can interpret f
as the representative of a weak or (weak-? when p =∞) limit of a sequence
of functions whose Lp norm is uniformly bounded by ◦‖f‖p. In the next
section, we will see how the behaviour of this weak-? limit can be described
by a parametrized measure associated to f .

If ‖f‖p 6∈ ∗Rfin but nevertheless [f ] ∈ Lp(Ω), then f also features con-
centrations that are compensated by the linearity of Φ. An example is
given by the function f = Dχ0 = Nχ−ε − Nχ0. The ∗Lp norm of f is
‖f‖p = 2Np−1/p for p 6= ∞ and N for p = ∞; however, from Theorem
2.2.15, we deduce that [f ] = D[χ0] = 0. In the next section, we will discuss
how these concentrations affect the parametrized measure associated to f .

We will now address the coherence between the nonstandard extension
of a L2 function and its projection in the space of grid functions. These
technical results will be used in Section 2.4.

Definition 2.3.4. Let P : ∗L2(Ω̂) → G(ΩX) be the ∗L2 projection over
the closed subspace G(ΩX). Recall that P (f) is the unique grid function
satisfying

〈P (f), g〉 = ∗
∫
∗Ω
f(x)ĝ(x)dx

for all g ∈ G(ΩX).

Lemma 2.3.5. For all f ∈ C0(Ω), P (∗f) ∈ S0(ΩX) and ∗f(x) ≈ P (∗f)(x)
for all x ∈ ΩX.

Proof. Let f ∈ C0(Ω). Since for all g ∈ G(ΩX) we have the equality

〈P (∗f), g〉 = ∗
∫
∗Ω

∗f(x)ĝ(x)dx,

by choosing g = ε−kχy , we obtain

P (∗f)(y) = 〈P (∗f), ε̂−kχy〉 = ε−k∗
∫

[y,y+ε]k

∗f(x)dx

for all y ∈ ΩX. Since

min
x∈[y,y+ε]k

{∗f(x)} ≤ ε−k∗
∫

[y,y+ε]k

∗f(x)dx ≤ max
x∈[y,y+ε]k

{∗f(x)},

by S-continuty of ∗f , we deduce the thesis.
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Lemma 2.3.6. For all f ∈ L2(Ω), [P (∗f)] = f .

Proof. For all ϕ ∈ D ′(Ω) we have

〈P (∗f), ∗ϕ|X〉 = ∗
∫
∗Ω

∗f ∗̂ϕ|Xdx

and, by S-continuity of ∗ϕ,

∗
∫
∗Ω

∗f ∗̂ϕ|Xdx ≈ ∗
∫
∗Ω

∗f∗ϕdx =

∫
Ω
fϕdx.

This implies [P (∗f)] = f .

The above Lemma can be sharpened under the hypothesis that Ω has
finite measure.

Lemma 2.3.7. Let µL(Ω) < +∞. For all f ∈ L2(Ω), ‖∗f − P (∗f)‖2 ≈ 0.

Proof. Let f ∈ L2(Ω), and let r = ∗f −P (∗f). By the properties of the ∗L2

projection, we have
‖∗f‖2 = ‖P (∗f)‖2 + ‖r‖2. (2.3.1)

By the nonstandard Lusin’s Theorem, there exists a ∗compact set K ⊆ ∗Ω
that satisfies ∗µL(∗Ω \K) ≈ 0 and ‖rχK‖2 ≈ 0. Since ∗µL(∗Ω \K) ≈ 0 and
since f ∈ L2(Ω), we have also ‖∗fχK‖2 ≈ ‖∗f‖2 and, as a consequence,

‖∗f‖2 ≈ ‖∗fχK‖2 = ‖P (∗f)χK‖2 + ‖rχK‖ ≈ ‖P (∗f)χK‖2.

From the inequality chain

‖∗f‖2 ≈ ‖P (∗f)χK‖2 ≤ ‖P (∗f)‖2 ≤ ‖∗f‖2

we deduce that ‖∗f‖2 ≈ ‖P (∗f)‖2 that, by equality 2.3.1, implies ‖∗f −
P (∗f)‖2 ≈ 0, as we wanted.

The previous Lemma suggests a definition of nearstandardness that will
be useful in the sequel of the paper.

Definition 2.3.8. Let µL(Ω) < +∞. We will say that f ∈ G(ΩX) is near-
standard in L2(Ω) iff there exists g ∈ L2(Ω) such that ‖f − P (∗g)‖2 ≈ 0.

Notice that, thanks to Corollary 2.3.2 and to Lemma 2.3.7, f is near-
standard in L2(Ω) if and only if [f ] ∈ L2(Ω) and ‖f − P (∗[f ])‖2 ≈ 0.

We conclude the study of the properties of grid functions as ∗Lp func-
tions by discussing the generalization of an embedding due to Robinson and
Bernstein

L2(Ω) ⊂ V ⊂ ∗L2(Ω),
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where V is a vector space of a hyperfinite dimension (for the details, we
refer to [18, 33]). In our case, by considering the embedding l of the space
of distributions to the space of grid functions defined in Theorem 2.2.19 and
by modifying the extension of f to f̂ , we will obtain the inclusions

Lp(Ω) ⊂ D ′(Ω) ⊂ G(ΩX) ⊂ ∗Lp(Ω)

for all 1 ≤ p ≤ ∞.

Proposition 2.3.9. Let l be defined as in the proof of Theorem 2.2.19.
There is an embedding l′ : G(ΩX)→

⋂
1≤p≤∞

∗Lp(Ω) such that

∗
∫
∗Rk

(l′ ◦ l)(f)∗ϕdx ≈
∫
Rk
fϕdx (2.3.2)

for all 1 ≤ p ≤ ∞, for all f ∈ Lp(Ω) and for all ϕ ∈ D(Ω). As a con-
sequence, if we identify D ′(Ω) with l(D ′(Ω)) ⊆ G(ΩX) and G(ΩX) with
l′(G(ΩX)) ⊆ ∗Lp(Ω), we have the inclusions

Lp(Ω) ⊂ D ′(Ω) ⊂ G(ΩX) ⊂ ∗Lp(Ω)

for all 1 ≤ p ≤ ∞.

Proof. Define l′ by l′(f) = f̂χ∗Ω for all f ∈ G(ΩX). Since l′(f) is an internal
∗simple function, it belongs to ∗Lp(Ω) for all 1 ≤ p ≤ ∞. We will now prove
that, for this choice of l′, equality 2.3.2 holds.

Notice that for all f ∈ G(ΩX), if l′(f)(x) 6= f̂(x), then x ∈ ∗Ω \ Ω̂ or
x ∈ Ω̂ \ ∗Ω. By the definition of Ω̂, this entails ◦x ∈ ∂Ω. In particular, if
ϕ ∈ D(Ω), then ◦x 6∈ suppϕ. As a consequence, for all f ∈ D ′X(ΩX) and for
all ϕ ∈ D(Ω), it holds

∗
∫
∗Rk

l′(f) ∗ϕdx = ∗
∫
∗Rk

f̂ ∗ϕdx.

By S-continuity of ∗ϕ, we have also

∗
∫
∗Rk

f̂ ∗ϕdx ≈ 〈f, ∗ϕ〉.

If we let f = l(g) for some g ∈ Lp(Ω), from Theorem 2.2.19 we have

〈l(g), ∗ϕ〉 ≈ 〈g, ϕ〉D(Ω) =

∫
Rk
gϕdx.

By putting together the previous equalities, we conclude that equation 2.3.2
holds.

We conjecture that for p = 2 and under the hypothesis that Ω has finite
Lebesgue measure then by an appropriate choice of the embedding l defined
in Theorem 2.2.19, we could have ‖(l′ ◦ l)(f) − ∗f‖2 ≈ 0, as in the original
embedding by Robinson and Bernstein.
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2.3.2 Grid functions as parametrized measures

It is well known that weak limits of Lp functions behave badly with respect to
composition with a nonlinear function [2, 39, 81, 88]. Consider for instance
a bounded sequence {un}n∈N of L∞(Ω) functions: by the Banach–Alaoglu
theorem, there is a subsequence of {un}n∈N that has a weak-? limit u∞ ∈
L∞(Ω). Now let f ∈ C0

b (R): the sequence {f(un)}n∈N is still bounded in
L∞(Ω), so it has a weak-? limit f∞. However, in general f∞ 6= f(u∞). To
overcome this difficulty, the weak-? limit of the sequence {un}n∈N can be
represented by a Young measure, i.e. a measurable function ν : Ω→MP(R)
such that for all f ∈ C0

b (R) the weak-? limit of {f(un)}n∈N is the function
defined a.e. by f(x) =

∫
R fdνx, in the sense that the equality

lim
n→∞

∫
Ω
f(un(x))g(x)dx =

∫
Ω

(∫
R
fdνx

)
g(x)dx =

∫
Ω
f(x)g(x)dx (2.3.3)

holds for all g ∈ L1(Ω).

Example 2.3.10. The following example is discussed in detail in [88]. Con-
sider the Rademacher functions un(x) = u0(n2x), with u0(x) = χ[0,1/2)(x)−
χ[1/2,1)(x) extended periodically over R. It can be calculated that the Young
measure ν associated to the sequence {un}n∈N is constant and that

νx =
1

2
δ1 +

1

2
δ−1

for almost every x ∈ Ω, i.e. that for all f ∈ C0
b (R) and for all g ∈ L1(Ω),

lim
n→∞

∫
R
f(un(x))g(x)dx =

(
1

2
f(1) +

1

2
f(−1)

)∫
R
g(x)dx.

In the setting of grid functions, instead of bounded sequences of L∞

functions, we have grid functions with finite ∗L∞ norm. These functions
can be used to represent weak-? limits of L∞ functions.

Example 2.3.11. The function u(nε) = (−1)n can be thought as a repre-
sentative for the weak-? limit of the Rademacher functions: in fact, for all
f ∈ C0

b (R) and for all ϕ ∈ C0
c (Ω),

◦〈∗f(u), ∗ϕ〉 =

(
1

2
f(1) +

1

2
f(−1)

)∫
R
ϕ(x)dx.

Since C0
c (Ω) is dense in L1(Ω), this is sufficient to conclude that the above

formula holds for all ϕ ∈ L1(Ω).

We will now make precise the connection between grid functions and
Young measure by showing that every grid function that has finite ∗L∞

norm corresponds to a Young measure. The proof of the following theorem
relies on a result by Cutland [28].
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Theorem 2.3.12. For every u ∈ G(ΩX) with ‖u‖∞ ∈ ∗Rfin, there exists a
Young measure νu : Ω → MP(R) such that, for all f ∈ C0

b (R) and for all
ϕ ∈ C0

c (Ω),

◦〈∗f(u), ∗ϕ〉 =

∫
Ω

(∫
R
fdνux

)
ϕ(x)dx. (2.3.4)

Proof. Since ‖u‖∞ ∈ ∗Rfin, there exists n ∈ R such that |u(x)| < n. We can

identify u with a function ũ : Ω̂ → ∗MP(∗[−n, n]) defined by ũ(x) = δû(x).
Notice that for all f ∈ C0

b (R) and for all ϕ ∈ C0
c (Ω) it holds

〈∗f(u), ∗ϕ〉 ≈ ∗
∫

Ω̂

∗f(û(x))∗ϕ(x)dx

= ∗
∫

Ω̂

(
∗
∫
∗[−n,n]

∗fdũ(x)

)
∗ϕ(x)dx. (2.3.5)

We define an internal measure µ over ∗Ω× ∗[−n, n] by posing

µ(A×B) = ∗
∫
A
ũx(B)dx

for all Borel A ⊆ Ω and for all Borel B ⊆ ∗[−n, n]. Let Lµ be the Loeb
measure obtained from µ (for the properties of the Loeb measure, we refer
for instance to [1, 59, 60, 73]). We can define a standard measure µs over
Ω× [−n, n] by posing

µs(A×B) = Lµ({x ∈ ∗Ω× ∗[−n, n] : ◦x ∈ A×B}).

Since µs satisfies µs(A× [−n, n]) = µL(A) for all Borel A ⊆ Ω, by Rohlin’s
Disintegration Theorem the measure µs can be disintegrated as

µs(A×B) =

∫
A
νux (B)dx,

with νu : Ω→MP([−n, n]). By Lemma 2.6 of [28], νu satisfies

◦

(
∗
∫
∗Ω

(
∗
∫
∗[−n,n]

∗fdũ(x)

)
∗ϕ(x)dx

)
=

∫
Ω

(∫
[−n,n]

fdνux

)
ϕ(x)dx.

for all f ∈ C0
b (R) and for all ϕ ∈ C0

c (Ω). Thanks to equality 2.3.5, we
deduce that νu satisfies 2.3.4. We can extend νux to all of MP(R) by defining
νux (A) = νux (A ∩ [−n, n]) for all Borel sets A ⊆ R and for all x ∈ Ω, thus
obtaining a Young measure that satisfies equation 2.3.4.

In [3, 88], it is shown that Young measures describe weak-? limits of
bounded sequences of L∞ functions. We will now show that grid functions
with finite L∞ norm can be similarly used to represent weak-? limits of L∞
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functions in the setting of grid functions. This is a consequence of a more
general property of the correspondence between grid functions and Young
measures: if u ∈ G(ΩX) satisfies ‖u‖∞ ∈ ∗Rfin and νu is the Young measure
associated to u in the sense of Theorem 2.3.12, then [u] corresponds to the
barycentre of νu.

Theorem 2.3.13. Let u ∈ G(ΩX) with ‖u‖∞ ∈ ∗Rfin, and let νu be the
Young measure that satisfies equality 2.3.4. Then [u] ∈ L∞(Ω) and the
following equality holds for a.e. x ∈ Ω:

[u](x) =

∫
R
τdνux . (2.3.6)

Moreover,

1. if {un}n∈N is a sequence of L∞ functions that converges weakly-? to

νu in the sense of equation 2.3.3, then un
?
⇀ [u] in L∞;

2. if νu is Dirac, then νux is the Dirac measure centred at [u](x) for a.e.
x ∈ Ω.

Proof. Define a function fν by posing fν(x) =
∫
R τdν

u
x for all x ∈ Ω. Since

|fν(x)| ≤ ◦‖u‖∞ for a. e. x ∈ Ω and since ‖u‖∞ ∈ ∗Rfin, fν ∈ L∞(Ω). By
Theorem 2.3.12, for all ϕ ∈ C0

c (Ω) we have the following equalities:∫
Ω
fν(x)ϕ(x)dx =

∫
Ω

∫
R
τdνxϕ(x)dx = ◦〈u, ∗ϕ〉 =

∫
Ω

[u]ϕdx.

Since C0
c (Ω) is dense in L1(Ω), we deduce that fν = [u] in L∞(Ω), as we

wanted.
We will now prove (1). By hypothesis, from equation 2.3.3 and from

equation 2.3.4, it holds

lim
n→∞

∫
Ω
f(un(x))ϕ(x)dx =

∫
Ω

(∫
R
fdνx

)
ϕ(x)dx = ◦〈∗f(u), ∗ϕ〉

for all ϕ ∈ C0
c (Ω). As a consequence, by considering a function f ∈ C0

b (R)
with f(x) = 1 for all x satisfying |x| ≤ ◦‖u‖∞, we obtain that the weak-?
limit of the sequence {un}n∈N is equal to [u].

Assertion (2) is a consequence of equality 2.3.6.

If the sequence {un}n∈N is not bounded in L∞, but it is bounded in Lp(Ω)
for some 1 ≤ p <∞, then it can be proved that there exists a parametrized
measure ν : Ω → M(R) such that for all f ∈ C0

b (R) the weak-? limit of the
sequence {f(un)}n∈N is the function defined a.e. by f(x) =

∫
R fdνx (for an

in-depth discussion of this result, we refer to [3]). Notice that ν takes values
in M(R) instead of MP(R), since the sequence {un}n∈N could diverge in a
subset of Ω with positive measure.
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The grid function counterpart of this result is that for any u ∈ G(ΩX)
there exists a function νu : Ω → M(R) that satisfies equation 2.3.4, even if
‖u‖∞ 6∈ ∗Rfin. If ‖u‖∞ 6∈ ∗Rfin, νux might not be a probability measure, but
it still satisfies the inequalities 0 ≤ νux (R) ≤ 1 for all x ∈ Ω. In particular,
the difference between νux (R) and 1 is due to u being unlimited at some
non-negligible fraction of µ(x) ∩ Xk.

Theorem 2.3.14. For every u ∈ G(ΩX), there exists a parametrized mea-
sure νu : Ω → M(R) such that, for all f ∈ C0

b (R) and for all ϕ ∈ C0
c (Ω),

equality 2.3.4 holds. Moreover, for all x ∈ Ω and for all Borel A ⊆ R,
0 ≤ νux (A) ≤ 1.

Proof. Let u ∈ G(ΩX), and for all n ∈ N define

un(x) =


u(x) if |u(x)| ≤ n,
n if u(x) > n,
−n if u(x) < −n.

Since for all n ∈ N it holds ‖un‖∞ ≤ n ∈ ∗Rfin, by Theorem 2.3.12 there
exists a Young measure νn that satisfies

◦〈∗f(un), ∗ϕ〉 =

∫
Ω

(∫
R
fdνnx

)
ϕ(x)dx. (2.3.7)

for all f ∈ C0
b (R) and for all ϕ ∈ C0

c (Ω).
Recall that a sequence of parametrized measures {µn}n∈N converges

weakly-? to a parametrized measure µ if for all f ∈ C0
b (R), the sequence

{fn}n∈N of L∞ functions defined by

fn(x) =

∫
R
fdµnx

converges weakly-? to a function f ∈ L∞(Ω) defined by

f(x) =

∫
R
fdµx.

Define νu as the parametrized measure satisfying νn
?
⇀ νu for some subse-

quence (not relabelled) of {νn}n∈N. The existence of such a weak-? limit can
be obtained as a consequence of the Banach-Alaouglu theorem (for further
details about the weak-? limit of measures, we refer to to [39]). We claim
that νu satisfies equality 2.3.4 and that for all x ∈ Ω, 0 ≤ νux (R) ≤ 1.

Let f ∈ C0
b (R). Since lim|x|→∞ f(x) = 0, there is an increasing sequence

of natural numbers {ni}i∈N such that if |x| ≥ ni, then |f(x)| ≤ 1/i. As a
consequence of this inequality, for all i ∈ N and for all ϕ ∈ C0

c (Ω) it holds

|〈∗f(uni),
∗ϕ〉 − 〈∗f(u), ∗ϕ〉| ≤ 2/i‖∗ϕ‖1.
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Taking into account equation 2.3.7, from the previous inequality we obtain∣∣∣∣∫
Ω

(∫
R
fdνnix

)
ϕ(x)dx− ◦〈∗f(u), ∗ϕ〉

∣∣∣∣ ≤ 2/i‖ϕ‖1.

As a consequence, we deduce that

lim
i→∞

∫
Ω

(∫
R
fdνnix

)
ϕ(x)dx = ◦〈∗f(u), ∗ϕ〉.

This is sufficient to entail that νn
?
⇀ νu and that νu satisfies equality 2.3.4.

The inequality 0 ≤ νux (A) ≤ 1 for all Borel A ⊆ R is a consequence of
the lower semicontinuity of the weak-? limit of measures (see for instance
theorem 3 of [39]).

Notice that, as a consequence of Theorem 2.3.14, we deduce that the
hypothesis ‖u‖∞ ∈ ∗Rfin in Theorem 2.3.12 can be relaxed. In particular, if
v differs from u at some null set, then u and v induce the same parametrized
measure, even if u 6≡ v.

Corollary 2.3.15. Let LN be the Loeb measure obtained from the measure
µN (A) = |A|/Nk for all internal A ⊆ Xk. If for u, v ∈ G(ΩX) it holds
LN ({x ∈ ΩX : u(x) 6≈ v(x)}) = 0, then νu = νv. If ‖u − v‖p ≈ 0, then
νu = νv.

Proof. If LN ({x ∈ ΩX : u(x) 6≈ v(x)}) = 0, then also

LN ({x ∈ ΩX : ∗f(u(x)) 6≈ ∗f(v(x))}) = 0

for all f ∈ C0
b (R). This is and the hypothesis f ∈ C0

b (R) are sufficient to
deduce 〈∗f(u), ∗ϕ〉 ≈ 〈∗f(v), ∗ϕ〉 for all ϕ ∈ C0

c (Ω) that, thanks to equation
2.3.4, is equivalent to the equality νu = νv.

The hypothesis ‖u − v‖p ≈ 0 implies LN ({x ∈ ΩX : u(x) 6≈ v(x)}) = 0,
so the equality between νu and νv is a consequence of the previous part of
the proof.

The above corollary can be seen as the grid function counterpart of
Corollary 3.14 of [88], that shows how Young measure ignore concentration
phenomena. We find it useful to discuss this behaviour with an example,
that also highlights how a grid function can describe simultaneously very
different properties of a sequence of Lp functions.

Example 2.3.16. The following example is discussed from the standard
viewpoint in [88]. Consider the sequence {un}n∈N defined by un(x) = nχ[1−1/n,1].
Notice that ‖un‖∞ = n, so that the sequence is not bounded in L∞(R). For
all f ∈ C0

b (R) and for all ϕ ∈ C0
c (R), it holds

lim
n→∞

∫
R
f(un)ϕdx = f(0)

∫
R
ϕdx
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so that the sequence {un}n∈N converges weakly-? to the constant Young mea-
sure νx = δ0 for all x ∈ R.

The sequence {un}n∈N satisfies the L1 uniform bound ‖un‖1 = 1 for all
n ∈ N. Since for all ϕ ∈ D(R) it holds

lim
n→∞

∫
R
unϕdx = lim

n→∞
n

∫
[1−1/n,1]

ϕdx = ϕ(1)

the sequence {un}n∈N converges in the sense of distributions to δ1, the Dirac
distribution centred at 1. Indeed, it can be proved that the sequence {un}n∈N
converges weakly-? to δ1 in the space M(R) of Radon measures.

In the setting of grid functions, a representative for the limit of the se-
quence {un}n∈N is given by uN = Nχ1. For all f ∈ C0

b (R) and for all
ϕ ∈ C0

c (R), it holds

〈∗f(uN ), ∗ϕ〉 = ε
∑

x∈X, x 6=1

f(0)∗ϕ(x) + ε∗f(N)ϕ(1).

Since f ∈ C0
b (R), ∗f(N) ≈ 0 and, by Lemma 2.1.9, we deduce

◦〈∗f(uN ), ∗ϕ〉 = f(0)

∫
R
ϕ(x)dx.

From the above equality and from equation 2.3.4, we deduce that the Young
measure associated to uN is the constant Young measure νx = δ0 for all
x ∈ R. Notice that the same result could have been deduced from Corollary
2.3.15 by noticing that, since LN ({x ∈ ΩX : uN (x) 6≈ 0}) = 0, the Young
measure associated to uN is the same as the Young measure associated to
the constant function c(x) = 0 for all x ∈ ∗R.

As for the distribution corresponding to [uN ], since for all ϕ ∈ DX(X)
it holds 〈Nχ1, ϕ〉 = ϕ(1), we deduce that [uN ] = δ1. In particular, the grid
function uN coherently describes the behaviour of the limit of the sequence
{un}n∈N both in the sense of Young measures and in the sense of distribu-
tions.

In the previous example we have considered a grid function u with
‖u‖1 ∈ ∗Rfin, and we verified that the parametrized measure associated
to u was indeed a Young measure. This result holds under the more general
hypothesis that ‖u‖p ∈ ∗Rfin.

Proposition 2.3.17. If ‖u‖p ∈ ∗Rfin, then νux is a probability measure for
a.e. x ∈ Ω.

Proof. If for some x ∈ Ω it holds νux (R) < 1, then there exists y ∈ ΩX, y ≈ x
such that u(y) 6∈ ∗Rfin. The hypothesis ‖u‖p ∈ ∗Rfin implies LN ({y ∈ ΩX :
u(y) 6∈ ∗Rfin}) = 0: this is sufficient to conclude that µL({x ∈ Ω : νux (R) <
1}) = 0, as desired.

58



We will conclude the discussion of the relations between grid functions
and parametrized measures by determining the parametrized measure asso-
ciated to a periodic grid function with an infinitesimal period. This is the
grid function counterpart of the formula for the Young measure associated
to the limit of a sequence of periodic functions (see Example 3.5 of [2]).
We will prove this result for k = 1, as the generalization to an arbitrary
dimension is mostly a matter of notation.

Proposition 2.3.18. If u ∈ G(X) is periodic of period Mε ≈ 0, then the
parametrized measure ν associated to u is constant, and∫

R
fdνx = ◦

(
1

M

M−1∑
i=0

∗f(u(iε))

)
for all x ∈ Ω and for all f ∈ C0

b (R).

Proof. Without loss of generality, let M ∈ ∗N and let u be periodic over
[0, (M − 1)ε] ∩ X, with Mε ≈ 0.

Let f ∈ C0
b (R). At first, we will prove that 1

M

∑M−1
i=0

∗f(u(iε)) is finite:
in fact,

inf
x∈∗R

∗f(x) ≤ 1

M

M−1∑
i=0

∗f(u(iε)) ≤ sup
x∈∗R

∗f(x) (2.3.8)

and by the boundedness of f , we deduce that 1
M

∑M−1
i=0

∗f(u(iε)) is finite.
Let now ϕ ∈ S0(X) with suppϕ ⊂ [a, b], a, b ∈ ∗Rfin. Then there exists

h, k ∈ ∗N satisfying a ≈Mhε and b ≈Mkε. We have the equalities

〈∗f(u), ϕ〉 ≈ ε
∑

x∈[Mhε,Mkε]X

f(u(x))ϕ(x)

= ε
k∑
j=h

(
M−1∑
i=0

∗f(u(iε))ϕ(jMε+ iε)

)

= ε
k∑
j=h

((
M−1∑
i=0

∗f(u(iε))

)
(ϕ(jMε) + e(j))

)

=

(
1

M

M−1∑
i=0

∗f(u(iε))

)Mε

k∑
j=h

(ϕ(jMε) + e(j))

 .(2.3.9)

Let
e = max

0≤i≤M, k≤j≤h
{|ϕ(jMε)− ϕ(jMε+ iε)|}.

Since ϕ ∈ S0(X) and suppϕ ⊂ ∗Rfin, e ≈ 0 and, as a consequence, |e(j)| ≤
e ≈ 0. We deduce∣∣∣∣∣∣Mε

h∑
j=k

e(j)

∣∣∣∣∣∣ ≤Mε(k − h)e ≈ (b− a)e ≈ 0
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and, by equation 2.3.8,(
1

M

M−1∑
i=0

∗f(u(iε))

)Mε
k∑
j=h

e(j)

 ≈ 0. (2.3.10)

Since Mε ≈ 0,

Mε
k∑
j=h

(ϕ(jMε) ≈
∫ ◦b
◦a

◦ϕ(x)dx. (2.3.11)

Putting together equalities 2.3.9, 2.3.10 and 2.3.11, we conclude

◦〈∗f(u), ϕ(x)〉 = ◦

(
1

M

M−1∑
i=0

∗f(u(iε))

)∫ ◦b
◦a

◦ϕ(x)dx

as we wanted.

2.4 The grid function formulation of partial differ-
ential equations

In this section, we will give some results that allow to coherently formu-
late stationary and time-dependent PDEs in the sense of grid functions in
a way that, if the solutions to the grid function formulation are regular
enough, they induce standard solutions to the original problem. Moreover,
the existence of regular solutions to the original problem is equivalent to the
existence of regular solutions to the grid function formulation. If the original
problem does not have solutions in the sense of distributions, then we re-
gard the solution to the grid function formulation as a generalized solution.
It turns out that, for some nonlinear problems, the generalized solution in
the sense of grid functions is related with some notions of measure-valued
solutions.

2.4.1 The grid function formulation of linear PDEs

A linear PDE can be written in the most general form as

L(u) = f, (2.4.1)

with f ∈ D ′(Ω), where L : D ′(Ω)→ D ′(Ω) is linear, and where the equality
is meant in the sense of distributions, i.e.

〈L(u), ϕ〉D(Ω) = 〈f, ϕ〉D(Ω)

for all ϕ ∈ DX(Ω). We would like to turn problem 2.4.1 in a problem in the
sense of grid functions, i.e.

LX(u) = fX, (2.4.2)
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with fX ∈ D ′X(ΩX) and where LX : D ′X(ΩX) → D ′X(ΩX) is ∗R-linear. More-
over, we would like to determine sufficient conditions that ensure equivalence
between problem 2.4.2 and problem 2.4.1, in the sense that 2.4.1 has a so-
lution if and only if 2.4.2 has a solution.

Such a coherent formulation of linear PDEs relies upon the existence
of ∗R-linear extensions of linear functionals over the space of distributions.
Recall that every linear functional L : D ′(Ω) → D ′(Ω) induces an adjoint
M : DX(Ω)→ DX(Ω) that satisfies

〈L(T ), ϕ〉D(Ω) = 〈T,M(ϕ)〉D(Ω)

for all T ∈ D ′(Ω) and for all ϕ ∈ D(Ω). If we find a ∗R-linear extension of
M in the sense of grid functions, by taking the adjoint we are able to define
a ∗R-linear extension of L.

Lemma 2.4.1. For every linear L : D(Ω) → D(Ω) there is a ∗R-linear
LX : G(ΩX)→ G(ΩX) such that LX(∗ϕ) = ∗(L(ϕ))|ΩX for all ϕ ∈ D(Ω).

Proof. For ϕ ∈ D ′(Ω) define

U(ϕ) = {LX : G(ΩX)→ G(ΩX) such that LX is ∗R-linear and LX(∗ϕ) = ∗L(ϕ)|ΩX}

and let U = {U(ϕ) : ϕ ∈ D(Ω)}. If we prove that U has the finite in-
tersection property, then, by saturation,

⋂
U 6= ∅, and any LX ∈

⋂
U is a

∗R-linear function that satisfies LX(∗ϕ) = ∗(L(ϕ))X for all ϕ ∈ D(Ω).
We will prove that, if ϕ1, . . . , ϕn ∈ D , then

⋂n
i=1 U(ϕi) 6= ∅ by induction

over n. If n = 1, we need to show that U(ϕ) 6= ∅ for all ϕ ∈ D ′(Ω). If ϕ = 0,
then the constant function LXf = 0 for all f ∈ G(ΩX) belongs to U(ϕ). If
ϕ 6= 0, let f = ∗ϕ|ΩX , g = ∗(L(ϕ))|ΩX , and let {f, b2, . . . , bM} be a ∗basis of
G(ΩX). Define also

LX

(
a1f +

M∑
i=2

aibi

)
= a1g.

By definition, LX is ∗R-linear and LX ∈ U(ϕ).
We will now show that if

⋂n−1
i=1 U(ϕi) 6= ∅ for any choice of ϕ1, . . . , ϕn−1 ∈

D(Ω), then also
⋂n
i=1 U(ϕi) 6= ∅ for any choice of ϕ1, . . . , ϕn ∈ D(Ω). If

{ϕ1, . . . , ϕn} are linearly dependent, thanks to linearity of L, any LX ∈⋂n−1
i=1 U(ϕi) satisfies LX ∈

⋂n
i=1 U(ϕi). If {ϕ1, . . . , ϕn} are linearly indepen-

dent, let fn = (∗ϕn)|ΩX , let gn = ∗(L(ϕn))|ΩX and let {fn, b2, . . . , bM} be a
∗basis of G(ΩX). For any LX ∈

⋂n−1
i=1 U(ϕi), define LX : G(ΩX)→ G(ΩX) by

LX

(
a1fn +

M∑
i=2

aibi

)
= a1gn + LX

(
M∑
i=2

aibi

)
.

Then LX ∈
⋂n
i=1 U(ϕi). This concludes the proof.
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Theorem 2.4.2. For every linear L : D ′(Ω) → D ′(Ω) there is a ∗R-linear
LX : G(ΩX)→ G(ΩX) such that ◦〈LXf,

∗ϕ〉 = 〈L[f ], ϕ〉D(Ω) for all ϕ ∈ D(Ω).
Moreover, if LX(D ′X(ΩX)) ⊆ D ′X(ΩX), the following diagram commutes:

D ′X(ΩX)
LX−→ D ′X(ΩX)

Φ ◦ π ↓ ↓ Φ ◦ π
D ′(Ω)

L−→ D ′(Ω).

(2.4.3)

Proof. Let M be the adjoint of L, and let MX be the ∗R-linear operator co-
herent with M in the sense of Lemma 2.4.1. Define 〈LX(f), ϕ〉 = 〈f,MX(ϕ)〉
for all ϕ ∈ DX(ΩX). From this definition, ∗R-linearity of LX can be deduced
from the ∗R-linearity of MX.

We will now prove that LX satisfies ◦〈LXf,
∗ϕ〉 = 〈L[f ], ϕ〉D(Ω) for all

ϕ ∈ D(Ω). For any ϕ ∈ D(Ω), thanks to Lemma 2.4.1 we have the equalities

〈LX(f), ∗ϕ〉 = 〈f,MX(∗ϕ|ΩX)〉 = 〈f, ∗M(ϕ)〉 ≈ 〈[f ],M(ϕ)〉D(Ω) = 〈L[f ], ϕ〉D(Ω),

as we wanted.
If LX(f) ∈ D ′X(ΩX), then for all ϕ ∈ DX(ΩX)

〈LX(f), ϕ〉 = 〈LX(f), ϕ− ∗(◦ϕ)〉+ 〈LX(f), ∗(◦ϕ)〉.

Since ϕ− ∗(◦ϕ) ≡ 0, by Lemma 2.2.7 the hypothesis LX(f) ∈ D ′X(ΩX) allows
to conclude that 〈LX(f), ϕ−∗(◦ϕ)〉 ≈ 0, so that ◦〈LX(f), ϕ〉 = 〈L[f ], ◦ϕ〉D(Ω).
As a consequence, the hypothesis LX(D ′X(ΩX)) ⊆ D ′X(ΩX) is sufficient to
entail that diagram 2.4.3 commutes.

From the previous Theorem, we obtain some sufficient conditions that
ensure the equivalence between the linear problem 2.4.1 in the sense of dis-
tributions and the linear problem 2.4.2 in the sense of grid functions.

Theorem 2.4.3. Let L : D ′(Ω) → D ′(Ω) be linear, and let LX : G(ΩX) →
G(ΩX) any function such that diagram 2.4.3 commutes. Let also f ∈ D ′(Ω).
Then problem 2.4.1 has a solution if and only if problem 2.4.2 has a solution
u ∈ D ′X(ΩX) for some fX satisfying [fX] = f .

Proof. By Theorem 2.4.2, if problem 2.4.2 has a solution u, then [u] satisfies
problem 2.4.1.

The other implication is a consequence of Theorem 2.4.2 and of sur-
jectivity of Φ: suppose that 2.4.1 has a solution v. The commutativity of
diagram 2.4.3 ensures that for any u ∈ Φ−1(v) it holds [LX(u)] = f , hence
for fX = LX(u) problem 2.4.2 has a solution.

Thanks to this equivalence result, any linear PDE that admits an exten-
sion LX such that diagram 2.4.3 commutes can be studied in the setting of
grid functions with the techniques from linear algebra.

As an example of the grid function formulation of a linear PDE, we find
it useful to discuss the Dirichlet problem.
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Definition 2.4.4. Let Ω ⊂ Rk be open and bounded, h ∈ N, aα,β ∈ C∞(Ω),
and let

L(v) =
∑

0≤|α|,|β|≤h

(−1)|α|Dα(aα,βD
βv).

The Dirichlet problem is the problem of finding v satisfying{
L(v) = f in Ω
Dαu = 0 for |α| ≤ h− 1 in ∂Ω.

(2.4.4)

If f ∈ Cb(Ω), then v is a classical solution of the Dirichlet problem if

v ∈ C2h
b (Ω) ∩ C2h−1

b (Ω) and L(v) = f. (2.4.5)

If f ∈ L2(Ω), then v is a strong solution of the Dirichlet problem if

v ∈ H2h(Ω) ∩Hh
0 (Ω) and L(v) = f a.e.

If f ∈ H−h(Ω), then v is a weak solution of the Dirichlet problem if

v ∈ Hh
0 (Ω) and

∑
0≤|α|,|β|≤h

∫
aα,βD

βvDαw = f(w) for all w ∈ Hh
0 (Ω).

(2.4.6)

Definition 2.4.5. A grid function formulation of the Dirichlet problem
2.4.4 is the following: let

LX(u) =
∑

0≤|α|,|β|≤h

(−1)|α|Dα(∗aα,βDβu).

The Dirichlet problem is the problem of finding u ∈ G(ΩX) satisfying{
LX(u) = P (∗f) in ΩX
Dαu = 0 in ∂αXΩX for |α| ≤ s− 1.

(2.4.7)

Notice that equation 2.4.7 is satisfied in the sense of grid functions, i.e.
pointwise, while equation 2.4.4 assumes the different meanings shown in
Definition 2.4.4.

A priori, a solution u of problem 2.4.2 induces a solution [u] of problem
2.4.1 in the sense of distributions. However, if [u] is more regular, it is a
solution to 2.4.1 in a stronger sense.

Theorem 2.4.6. Let u be a solution of problem 2.4.7. Then

1. if f ∈ Cb(Ω) and [u] ∈ C2h
b (Ω) ∩ C2h−1

b (Ω), then [u] is a classical
solution of the Dirichlet problem;

2. if f ∈ L2(Ω) and [u] ∈ H2h(Ω) ∩Hh
0 (Ω), then [u] is a strong solution

of the Dirichlet problem;
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3. if f ∈ H−h(Ω) and [u] ∈ Hh
0 (Ω), then [u] is a weak solution of the

Dirichlet problem, i.e. [u] satisfies 2.4.6.

Proof. A solution u of problem 2.4.7 satisfies the equality

〈P (∗f), φ〉 =
∑

0≤|α|,|β|≤h

(−1)|α|〈Dα(∗aα,βDβu), ϕ〉

=
∑

0≤|α|,|β|≤h

〈∗aα,βDβu,Dαϕ〉.

for all ϕ ∈ D ′X(ΩX).
We will now prove (1). If f ∈ Cb(Ω), then by Lemma 2.3.5, [P (∗f)] = f .

By Theorem 2.2.15, [Dβu] = Dβ[u], [∗aα,βDβu] = aα,βD
β[u], so that

[(−1)|α|Dα(∗aα,βDβu)] = (−1)|α|Dα(aα,βD
β[u]).

We deduce that [u] satisfies equation 2.4.5 in the classical sense, as desired.
The proof of parts (2) and (3) is similar to that of part (1). The only

difference is that it relies on Lemma 2.3.2 instead of Lemma 2.3.5.

Remark 2.4.7. While Theorem 2.4.2 and Theorem 2.4.3 do not explicitly
determine an extension LX for a given linear PDE, they determine a suffi-
cient condition for problem 2.4.2 to be a coherent representation of problem
2.4.1 in the sense of grid function. In the practice, an explicit extension
LX of a linear L : D ′(Ω)→ D ′(Ω) can be determined from L by taking into
account that

• thanks to Theorem 2.2.15, derivatives can be replaced by finite differ-
ence operators;

• shifts can be represented in accord to Corollary 2.2.14;

• if a ∈ C∞(Ω), then [∗af ] = a[f ] for all f ∈ D ′X(ΩX), since for all
ϕ ∈ DX(ΩX), ∗aϕ ∈ DX(ΩX), and we have the equalities

◦〈∗af, ϕ〉 = ◦〈f, ∗aϕ〉 = 〈[f ], aϕ〉D(Ω) = 〈a[f ], ϕ〉D(Ω).

Similarly, we have not established a canonical representative fX for f .
However, observe that for all g ∈ G(ΩX) and for all x ∈ ΩX it holds

g(x) =
∑
y∈ΩX

g(y)Nkχy(x)

Moreover, χy(x) = χ0(x − y), so that once a solution u0 for the problem
LXu = Nkχ0 is determined, a solution for LXu = g can be determined from
the above equality by posing

ug(x) =
∑
y∈ΩX

g(y)u0(x− y). (2.4.8)
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In fact, by linearity of LX we have that, for all x ∈ ΩX,

LX(ug(x)) = LX

∑
y∈ΩX

g(y)u0(x− y)


=

∑
y∈ΩX

g(y)LX(u0(x− y))

=
∑
y∈ΩX

g(y)Nkχ0(x− y)

= g(x).

In particular, u0 plays the role of a fundamental solution for problem 2.4.2,
while equality 2.4.8 can be interpreted as the discrete convolution between g
and u0. As a consequence, the study of a linear problem 2.4.2 can be carried
out by determining the solutions to the problem LX(u) = Nkχ0.

2.4.2 The grid function formulation of nonlinear PDEs

A nonlinear PDE can be written in the most general form as

F (u) = f,

usually with u ∈ V ⊆ L2(Ω) and F : V → W ⊆ L2(Ω). As in the linear
case, the grid function formulation of nonlinear problems is based upon the
possibility to coherently extend every continuous F : L2(Ω)→ L2(Ω) to all
of G(ΩX). Since the proofs of the following theorems are based upon Lemma
2.3.7, we will impose the additional hypothesis that the Lebesgue measure
of Ω is finite. Notice that, in contrast to what happened for Theorem 2.4.2,
in the proof of Theorem 2.4.8, we will be able to explicitly determine a
particular extension FX for a given continuous F : L2(Ω)→ L2(Ω).

Theorem 2.4.8. Let µL(Ω) < +∞ and let F : L2(Ω)→ L2(Ω) be continu-
ous. Then there is a function FX : G(ΩX)→ G(ΩX) that satisfies

1. whenever u, v ∈ G(ΩX) are nearstandard in L2(Ω), ‖u − v‖2 ≈ 0
implies ‖FX(u)− FX(v)‖2 ≈ 0;

2. for all f ∈ L2(Ω), [FX(P (∗f))] = F (f).

Proof. We will show that the function defined by FX(u) = P (∗F (û)) for all
u ∈ G(ΩX) satisfies the thesis. By continuity of F , whenever u and v are
nearstandard in L2(Ω) we have

‖u− v‖2 ≈ 0 implies ‖∗F (u)− ∗F (v)‖2 ≈ 0,

and, by Lemma 2.3.7,

‖∗F (u)− ∗F (v)‖2 ≈ 0 implies ‖FX(u)− FX(v)‖2 ≈ 0,

65



hence (1) is proved.
We will now prove that [FX(P (∗f))] = F (f). By Lemma 2.3.7, we have

‖∗f − P (∗f)‖2 ≈ 0 and, by continuity of ∗F , ‖∗F (∗f) − ∗F (P (∗f))‖2 ≈ 0.
From Lemma 2.3.6 we have [FX(∗f)] = [P (∗F (∗f))] = F (f), as desired.

Remark 2.4.9. In the same spirit, if F : V → W is continuous and the
space of grid functions can be continuously embedded in ∗V and ∗W , then
one can prove similar theorems by varying condition (1) in order to properly
represent the topologies on the domain and the range of F . For instance, if
F : H1(Ω)→ L2(Ω), then (1) would be replaced by

‖u− v‖H1 ≈ 0 implies ‖FX(u)− FX(v)‖2 ≈ 0,

where ‖u− v‖H1 is defined in the expected way as

‖u− v‖H1 = ‖u− v‖2 + ‖∇X(u− v)‖2.

Condition (1) of Theorem 2.4.8 is a continuity requirement for FX, and
condition (2) implies coherence of FX with the original function F , so that
theorem 2.4.8 ensures that for all continuous F : L2 → L2 there is a function
FX : G(ΩX)→ G(ΩX) which is continuous and coherent with F . This result
allows to formulate nonlinear PDEs in the setting of grid functions.

Theorem 2.4.10. Let µL(Ω) < +∞, let F : L2(Ω) → L2(Ω) and let FX :
G(ΩX) → G(ΩX) satisfy conditions (1) and (2) of Theorem 2.4.8. Let also
f ∈ L2(Ω). Then the problem of finding v ∈ L2(Ω) satisfying

F (v) = f (2.4.9)

has a solution if and only if there exists a solution u ∈ G(ΩX), u nearstan-
dard in L2(Ω), that satisfy

FX(u) = fX (2.4.10)

for some fX ∈ G(ΩX) with [fX] = f , and in particular for fX = P (∗f).

Proof. Suppose that 2.4.10 with fX = P (∗f) has a solution u. Since [P (∗f)] =
f by Corollary 2.3.6, u satisfies the equality [FX(u)] = f in the sense of dis-
tributions. At this point, if u is nearstandard in L2(Ω), by Lemma 2.3.7 we
have ‖∗[u] − u‖2 ≈ 0, so that [u] ∈ L2(Ω), and condition (2) of Theorem
2.4.8 ensures that [FX(u)] = F ([u]), so that [u] is a solution of 2.4.9.

For the other implication, suppose that v is a solution to 2.4.9. Then, by
condition (2) of Theorem 2.4.8, [FX(P (∗v))] = F (v) = f , so that problem
2.4.10 has a solution.

If u is a solution to 2.4.10 but it is not nearstandard in L2(Ω), i.e. if
‖∗[u]− u‖2 6≈ 0, [FX(u)] needs not be equal to F ([u]). In fact, if [u] ∈ L2(Ω)
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and ‖∗[u] − u‖2 6≈ 0, we have argued in Section 2.3.1 that we expect u to
feature either strong oscillations or concentrations. Due to these irregulari-
ties, we have no reasons to expect that [FX(u)](x), that represents the mean
of the values assumed by FX(u) at points infinitely close to x, is related to
F ([u])(x), that represents the function F applied to the mean of the values
assumed by u at points infinitely close to x. However, as we have seen in
Section 2.3.12, if ‖u‖∞ ∈ ∗Rfin, then u can be interpreted as a Young mea-
sure νu. If the composition F (νu) is defined in the sense of Equation 2.3.4,
then νu satisfies∫

Ω

∫
R
F (τ)dνu(x)ϕ(x)dx = ◦〈FX(u), ϕ〉 = ◦〈P (∗f), ϕ〉 =

∫
Ω
fϕdx

for all φ ∈ D ′(Ω), and can be regarded as a Young measure solution to
Equation 2.4.9. In particular, since Young measures describe weak-? limits
of sequences of L∞ functions, the relation between F (νu) and problem 2.4.9
is the following: there exists a family of regularized problems

Fη(u) = fη

and a family {uη}η>0 of L2(Ω) ∩ L∞(Ω) solutions of these problems such
that νu represents the weak-? limit of a subsequence of {uη}η>0, and F (νu)
is the corresponding weak limit of the sequence {F (uη)}η>0.

In the case that ‖u‖∞ is infinite or that [u] 6∈ L2(Ω), we consider u as a
generalized solution of problem 2.4.9 in the sense of grid functions. More-
over, we expect u to capture both the oscillations and the concentrations
we would expect from a sequence of solutions of some family of regular-
ized problems of 2.4.9. We will see such an example while discussing the
generalized solution to an ill-posed PDE in Chapter 3.

Remark 2.4.11. Notice that if FX satisfies the stronger continuity hypoth-
esis

u ≡ v implies FX(u) ≡ FX(v), (2.4.11)

then FX has a standard part F̃ defined by

F̃ (g) = [FX(P (∗g))]

for any g ∈ L2(Ω). Moreover, from Lemma 2.3.7 and from Theorem 2.4.8,
we deduce that F̃ = F . As a consequence, any grid function u that satisfies
FX(u) = P (∗f) induces a solution to problem 2.4.9.

However, the continuity condition 2.4.11 holds only for very regular func-
tions, and it fails for many of the functions that still satisfy the hypotheses
of Theorem 2.4.8.

Remark 2.4.12. If the function F appearing in equation 2.4.9 can be ex-
pressed as

F = L ◦G,
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where G is nonlinear and L is linear, the equivalence between the standard
notions of solutions for the PDE 2.4.9 and one of its formulations in the
sense of grid functions can be obtained by a suitable combination of the
results of Theorem 2.4.3 and of Theorem 2.4.10.

2.4.3 Time dependent PDEs

Time dependent PDEs have been studied in the setting of nonstandard
analysis by a variety of means. A possibility is to give a nonstandard rep-
resentation of a given time dependent PDE by discretizing in time as well
as in space, and by defining a standard solution to the original problem
by the technique of stroboscopy. In [17], van den Berg showed how the
stroboscopy technique can be extended to the study of a class of partial dif-
ferential equations of the first and the second order by imposing additional
regularity hypotheses on the time-step of the discretization. For an in-depth
discussion on the stroboscopy technique and its applications to partial dif-
ferential equations, we remand to [17, 75, 76].

A delicate point in the time discretization of PDEs is that the discrete
time step cannot be chosen arbitrarily. In fact, it is often the case that the
time-step of the discretization must be chosen in accord to some bounds that
depend upon the specific problem. As an example, consider the nonstan-
dard model for the heat equation discussed in [45], where the time-step is
dependent upon the diameter of the grid and upon the diffusion coefficients.
In general, if the discrete timeline T is a deformation of the grid X, then the
finite difference in time does not generalize faithfully the partial difference
in time, and Theorem 2.1.15 fails. However, it is possible to determine suffi-
cient conditions over T that imply the existence of k ∈ N such that Theorem
2.1.15 holds for derivatives up to order k. This study has been carried out
in depth by van den Berg in [16].

In order to provide a general theory that is not dependent upon the
specific problem, we have chosen to follow the idea of Capińsky and Cutland
in [21, 24] and subsequent works: we will not discretize in time, but instead
we will work with functions defined on ∗R × Xk, where the first variable
represents time, and the other k variables represent space. In particular, we
want to describe the problem

ut − Fu = f (2.4.12)

with u : R→ V ⊆ L2(Ω), F : V →W ⊆ L2(Ω) by the nonstandard problem

ut − FXu = fX (2.4.13)

with u : ∗R→ G(ΩX), with [fX] = f , and where FX is a suitable extension of
F in the sense of Theorems 2.4.2 and 2.4.8. Notice that, by Theorem 2.2.15
and by Theorem 2.4.2, the grid function formulation of a time dependent
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PDE is formally a hyperfinite system of ordinary differential equations, and
it can be solved by exploiting the standard theory of dynamical systems.

Once we have a grid function formulation for a time dependent PDE, we
would like to study the relation between its solutions and the solutions to
the original problem. As expected, if for a suitable choices of FX problem
2.4.13 has a solution u and u is regular enough, then u induces a solution
to problem 2.4.12.

Theorem 2.4.13. Let FX be coherent with F in the sense of Theorems 2.4.2
and 2.4.8. If 2.4.13 has a solution u(t) ∈ ∗C1(∗[0, T ],G(ΩX)) that satisfies
the continuity hypothesis

u(t) ≡ u(t′) and F (u(t)) ≡ F (u(t′)) whenever t ≈ t′, (2.4.14)

then u induces two functions [u], [FX(u)] ∈ C0([0, T ],D ′(Ω)) that satisfy∫
[0,T ]×Ω

[u]ϕt+[FX(u)]ϕd(t, x)+

∫
Ω

[u(0, x)]ϕ(0, x)dx = −
∫

[0,T ]×Ω
[fX]ϕd(t, x)

for all ϕ ∈ C1([0, T ],D(Ω)) with ϕ(T, x) = 0.
Moreover, if F is linear or if u(t) is nearstandard in the domain of F for

all t ∈ ∗[0, T ], then we can replace [FX(u)] with F ([u]) in the above equality.

Proof. By condition 2.4.14, the functions t 7→ [u(t)] and t 7→ [F (u(t))] are
well-defined and continuous with respect to the weak-? topology on D ′(Ω).
Moreover, since u ∈ ∗C1,∫

∗[0,T ]
〈ut, ∗ϕ〉dt = −

∫
∗[0,T ]

〈u, ∗ϕt〉dt− 〈∗u(0, x), ∗ϕ(0, x)〉

for all ϕ ∈ C1([0, T ],D(Ω)) with ϕ(T, x) = 0. As a consequence, u satisfies
the equality∫

[0,T ]
〈u, ∗ϕt〉+ 〈FX(u), ∗ϕ〉dt+ 〈∗u(0, x), ∗ϕ(0, x)〉 = −

∫
[0,T ]
〈fX, ∗ϕ〉dt

for all ϕ ∈ C1([0, T ],D(Ω)) with ϕ(T, x) = 0, and this is equivalent to the
first part of the thesis.

The second part of the thesis is a consequence of Theorem 2.4.2 and of
Theorem 2.4.8.

If u does not satisfy 2.4.14 but ‖u(t)‖∞ is finite and uniformly bounded
in t, by the same argument of Theorem 2.3.12 u corresponds to a Young
measure νu : [0, T ]×Ω→MP(R). If the composition F (νu) is defined in the
sense of Equation 2.3.4, then νu satisfies the equality∫

[0,T ]×Ω

∫
R
τdνu(t, x)ϕt +

∫
R
F (τ)dνu(t, x)ϕd(t, x) +

+

∫
Ω

∫
R
τdνu(0, x)ϕ(0, x)dx =

∫
[0,T ]×Ω

[fX]ϕd(t, x)
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for all ϕ ∈ C1([0, T ],D(Ω)) with ϕ(T, x) = 0.
If ‖u(t)‖p is finite for some 1 ≤ p < +∞, the sense in which [u] is a

solution to problem 2.4.12 has to be addressed on a case-by-case basis. In
Chapter 3, we will discuss an example where ‖u(t)‖1 is finite and uniformly
bounded, and [u] can be interpreted as a Radon measure solution to problem
2.4.12.

2.5 Selected applications

In this section, we will discuss two classic problems: the first concerns the
nonlinear theory of distributions, and the second is a minimization problem
from the calculus of variations. The discussion of these examples is meant
to show how grid functions can be applied to a variety of problems while
retaining coherence with the various standard approaches.

2.5.1 The product HH ′

The following example is discussed in the setting of Colombeau algebras in
[26], and it can also be formalized in the framework of algebras of asymptotic
functions [67].

Let H be the Heaviside function

H(x) =

{
0 if x ≤ 0
1 if x > 0

and let H ′ be the derivative of the Heaviside function in the sense of dis-
tributions, i.e. the Dirac distribution centered at 0. It is well-known that
the product HH ′ is not well-defined in the sense of distributions. How-
ever, this product arises quite naturally in the description of some physical
phenomena. For instance, in the study of shock waves discussed in [26],
it is convenient to treat H and H ′ as a smooth functions and performing
calculations such as∫

R
(Hm−Hn)H ′dx =

[
Hm+1

m+ 1

]+∞

−∞
−
[
Hn+1

n+ 1

]+∞

−∞
=

1

m+ 1
− 1

n+ 1
. (2.5.1)

This calculation is not justified in the theory of distributions: on the one
hand, Hm = Hn for all m,n ∈ N, so that we intuitively expect that the
integral should equal 0; on the other hand, since the products HmH ′ and
HnH ′ are not defined, the integrand is not well-defined.

We will now show how in the setting of grid functions one can rigorously
formulate the integral 2.5.1 and compute the product HH ′. Let M ∈ ∗N\N
satisfy Mε ≈ 0, and consider the grid function h ∈ D ′X(X) defined by

h(x) =


0 if x ≤ 0
x/(Mε) if 0 < x < Mε
1 if x ≥Mε
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The function Dh is given by

Dh(x) =

{
0 if x ≤ 0 and x ≥Mε
1/(Mε) if 0 < x < Mε

In the next Lemma, we will prove that h is a representative of the Heaviside
function for which the calculation 2.5.1 makes sense.

Lemma 2.5.1. The function h has the following properties:

1. [hm] = H and [Dhm] = δ0 for all m ∈ ∗N;

2. hm 6= hn whenever m 6= n;

3. 〈hm − hn,Dh〉 ≈ 1
m+1 −

1
n+1 .

Proof. (1). Let ϕ ∈ DX(X) and, without loss of generality, suppose that
ϕ(x) ≥ 0 for all x ∈ X. Then for all m ∈ ∗N we have the inequalities

ε
∑
x≥Mε

ϕ(x) ≤ 〈hm, ϕ〉 ≤ ε
∑
x≥0

ϕ(x),

and, by taking the standard part of all the sides of the inequalities, we
deduce ∫ +∞

0

◦ϕ(x)dx ≤ ◦〈hm, ϕ〉 ≤
∫ +∞

0

◦ϕ(x)dx.

This is sufficient to conclude that [hm] = H for all m ∈ ∗N. By Theorem
2.2.15, [Dhm] = H ′ = δ0.

(2). Let m 6= n. Then,

(hm − hn)(x) =

{
0 if x ≤ 0 and x ≥Mε
(x/(Mε))m − (x/(Mε))n if 0 < x < Mε.

In particular, hm − hn 6= 0, even if [hm]− [hn] = 0.
(3). By the previous point,

〈hm − hn,Dh〉 =
1

M

M∑
j=1

(j/M)m − (j/M)n.

Since M is infinite,

1

M

M∑
j=1

(j/M)m − (j/M)n ≈
∫ 1

0
xm − xndx =

1

m+ 1
− 1

n+ 1
.

Thanks to the lemma above, we can compute the equivalence class in
D ′(R) of the product hh′.
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Corollary 2.5.2. [hDh] = 1
2H
′.

Proof. For any ϕ ∈ DX(X), we have

〈hDh, ϕ〉 =
1

M2

M∑
j=1

jψ(jε).

Let m = min1≤j≤M{ϕ(jε)} and m = max1≤j≤M{ϕ(jε)}. We have the
following inequalities:

m

M

M∑
j=1

j/M ≤ 1

M2

M∑
j=1

jϕ(jε) ≤ m

M

M∑
j=1

j/M.

Since M is infinite,

1

M

M∑
j=1

j/M ≈
∫ 1

0
xdx =

1

2
,

so that
◦
(m

2

)
≤ ◦〈hDh, ϕ〉 ≤ ◦

(
m

2

)
.

By S-continuity of ϕ, m ≈ m ≈ ϕ(0), so that ◦〈hDh, ϕ〉 = 1
2
◦ϕ(0) for all

ϕ ∈ DX(X), which is equivalent to [hDh] = 1
2H
′.

Notice that h is not the only function satisfying Lemma 2.5.1 and Corol-
lary 2.5.2. In fact, we conjecture that Lemma 2.5.1 and Corollary 2.5.2 hold
for a class of grid functions that satisfy some regularity conditions yet to be
determined.

2.5.2 A variational problem without a minimum

We will now discuss a grid function formulation of a classic example of
a variational problem without a minimum. For an in-depth analysis of the
Young measure solutions to this problem we refer to [81], and for a discussion
of a similar problem in the setting of ultrafunctions, we refer to [15]. The grid
function formulation consists in a hyperfinite discretization, as in Cutland
[29].

Consider the problem of minimizing the functional

J(u) =

∫ 1

0

(∫ x

0
u(t)dt

)2

+ (u(x)2 − 1)2dx (2.5.2)

with u ∈ L2([0, 1]). Intuitively, a minimizer for J should have a small mean,
but nevertheless it should assume values in the set {−1,+1}. Let us make
precise this idea: define

u0 = χ[k,k+1/2) − χ[k+1/2,k+1), k ∈ Z
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and let un : [0, 1]→ R be defined by un(x) = u0(nx). It can be verified that
{un}n∈N is a minimizing sequence for J , but J has no minimum. However,
the sequence {un}n∈N is uniformly bounded in L∞([0, 1]), hence it admits
a weak* limit in the sense of Young measures. The limit is given by the
constant Young measure

νx =
1

2
(δ1 + δ−1).

We can now evaluate J(ν):∫ x

0
ν(t)dt =

∫ x

0

(∫
R
τdνx

)
dt = 0,

meaning that the barycentre of ν is 0, and

(ν(x)2 − 1)2 =

∫
R

(τ2 − 1)2dνx = 0

since the support of ν is the set {−1,+1}. As a consequence, ν can be
interpreted as a minimum of J in the sense of Young measures.

In the setting of grid functions, the functional 2.5.2 can be represented
by

JX(u) = ε
N∑
n=0

(ε n∑
i=0

u(iε)

)2

+ (u(nε)2 − 1)2

 .
Observe that this representation is coherent with the informal description of
J , and that the only difference between J and JX is the replacement of the
integrals with the hyperfinite sums. Let us now minimize JX in the sense of
grid functions. The minimizing sequence found in the classical case suggests
us that a minimizer of JX should assume values ±1, and that it should be
piecewise constant in an interval of an infinitesimal length. For M ∈ ∗N, let
uM = ∗u0(Mx). If M < M ′ ≤ N/2, then

ε
n∑
i=0

uM (iε) > ε
n∑
i=0

uM ′(iε).

We deduce that a minimizer for JX is the grid function uN/2, that is explicitly
defined by uN/2(nε) = (−1)n.

We will now show that this solution is coherent with the one obtained
with the classic approach, i.e. that the Young measure associated to uN/2
corresponds to 1

2(δ1 + δ−1). Since ‖uN/2‖∞ = 1, Theorem 2.3.12 guarantees
the existence of a Young measure ν that corresponds to uN/2. Moreover, by
Proposition 2.3.18, ν is constant, and∫

R
fdνx =

1

2

1∑
i=0

f(uN/2(iε)) =
1

2
(f(1) + f(−1))
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for all f ∈ C0
b (R). We deduce that the Young measure associated to uN/2 is

constant and equal to 1
2(δ1 + δ−1), the minimizer of J in the sense of Young

measures.
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Chapter 3

A grid function formulation
of a class of ill-posed
parabolic equations

One of the applications of grid functions is the study of generalized solutions
to partial differential equations. In this chapter, we will discuss the grid
function formulation of a class of parabolic equations that depend upon a
parameter u+. This class of parabolic equations is ill-posed forward in time,
in the sense that they do not have solutions in the sense of distributions.
Under the hypothesis that 0 < u+ < +∞, the ill-posed problem has been
studied by Plotnikov in [70], where he introduced a notion of solution in the
sense of Young measures. If u+ = +∞, then the problem has no solution also
in the class of Young measures; however, a notion of measure-valued solution
has been given by Smarrazzo [79] and can be characterized as the sum of a
Young measure and a Radon measure. In Section 3.1 we will introduce the
class of ill-posed parabolic equations 3.1.1 and recall the definition of the
measure-valued solutions for these problems.

Despite the different notions of measure-valued solutions, that depend
upon the value of u+, we will be able to give a unique grid function for-
mulation for the class of ill-posed PDEs. In section 3.2 we will derive the
grid function formulation of problem 3.1.1 from a discrete model of diffu-
sion, then we will discuss its solutions. In section 3.3, we will show the
relations between the solutions to the grid function formulation and the so-
lutions to the original problem 3.1.1. In particular, if the solutions to the
nonstandard problem are regular enough, they induce solutions to problem
3.1.1 that are coherent with the approaches of Plotnikov and Smarrazzo. In
section 3.4 we will discuss the asymptotic behaviour of the grid solutions
to problem 3.1.1 by studying the asymptotic behaviour of the solution to
the grid function formulation. We will also give a positive answer to a con-
jecture by Smarrazzo on the coarsening of the solutions to problem 3.1.1
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when u+ = +∞. The chapter concludes with a brief discussion of some
properties of the grid solution to problem 3.1.1 with Riemann initial data.
In particular, by studying this initial value problem, we will show that the
grid solution to problem 3.1.1 features a hysteresis loop, in agreement with
the behaviour of the Young measure solution.

3.1 The ill-posed PDE

Consider the Neumann initial value problem
∂tu = ∆φ(u) in Ω
∂φ(u)
∂ν = 0 in [0, T ]× ∂Ω

u(0, x) = u0(x)

(3.1.1)

where Ω ⊆ Rk is an open, bounded, and connected set, u : R× Ω→ R and
where the following hypotheses over φ are assumed:

Hypothesis 3.1.1. φ satisfies:

• φ(x) ≥ 0 for all x ≥ 0 and φ(0) = 0;

• φ ∈ C1(R);

• φ is non-monotone, i.e. there are u−, u+ with 0 < u− < u+ ≤ +∞
such that φ′(u) > 0 if u ∈ (0, u−) ∪ (u+,+∞) and φ′(u) < 0 for
u ∈ (u−, u+);

• if u+ = +∞, then limx→+∞ φ(x) = 0.

It is well-known that, if u0 ∈ L∞(Ω) and ess sup v ≤ u− or ess inf v ≥
u+, then the dynamics described by equation 3.1.1 amount to a parabolic
smoothing. The main feature of problem 3.1.1 is that it is ill–posed forward
in time for u in the interval (u−, u+): there are no weak solutions to problem
3.1.1 whenever ‖u0‖∞ > φ(u−) and, if we allow for measure-valued solutions,
then solutions to problem 3.1.1 exist for any initial data but are not unique.

Forward-backward parabolic equations like 3.1.1 or the closely related

ut = divφ(∇u) (3.1.2)

with non-monotone φ have been used to describe various physical phenom-
ena. Cubic-like functions with u+ < +∞ arise for instance in models of
phase transitions: in this context, the function u represents the enthalpy
and φ(u) the temperature distribution. Equation 3.1.1 can be deduced as a
consequence of the Fourier law.

If u+ = +∞, then equation 3.1.1 has been used in models of the dy-
namics of aggregating populations both in a discrete approximation (see for
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instance Horstmann, Othmer and Painter [49] and Lizana and Padron [58])
and as a continuous diffusion approximation [68]. Equation 3.1.2 has been
used to describe also shearing of granular media (see Witelski, Shaeffer and
Shearer [89]). It is also noteworthy to mention that the Perona-Malik edge-
enhancement algorithm via backward diffusion [69] is based on equation
3.1.2.

The hypothesis that φ is non-monotone is crucial both for the applica-
tions and for the description of the physical phenomena. For this reason,
suitable approximations of initial value problems for equations 3.1.1 and
3.1.2 has been studied in a variety of ways. For a discussion of these ap-
proaches, we refer to [62] and to [79].

3.1.1 The Young measure solution in the case u+ < +∞

The most common approach to problem 3.1.1 and to problem 3.1.2 is to
treat them as the limit of some sequence of approximating problems: the
notions of solutions will accordingly depend on the chosen regularization.

In [70], Plotnikov studied problem 3.1.1 by means of the following Sobolev
regularization: 

ut = ∆v in Ω
v = φ(u) + ηut
∂v
∂ν = 0 in [0, T ]× ∂Ω
u(x) = u0 in Ω.

(3.1.3)

with η > 0. The Neumann initial-boundary value problem for this reg-
ularized problem under the hypothesis that u+ < +∞ has been studied
by Novick-Cohen and Pego [66]. In particular, Novick-Cohen and Pego
proved that if φ is locally Lipschitz continuous and the initial data is L∞(Ω),
then there exists a unique classical solution (uη, vη) to problem 3.1.3, with
u ∈ C1([0, T ], L∞(Ω)) and vη = φ(u) + η(uη)t, and the functions (uη, vη)
satisfy the inequality∫ T

0

∫
Ω
G(uη)ϕt − g(vη)∇ϕ− g′(vη)|∇vη|2ϕdxdt ≥ 0 (3.1.4)

for all non-decreasing g ∈ C1(R) and with G′ = g, and for all ψ ∈ D([0, T ]×
Ω) with ψ(t, x) ≥ 0 for all (t, x) ∈ [0, T ] × Ω. This inequality has the role
of an entropy condition for the weak solutions of problem 3.1.1, in a sense
made precise by Evans [38] and by Mascia, Terracina and Tesei [62].

Since the sequences {uη}η>0 and {vη}η>0 are uniformly bounded in
L∞([0, T ]×Ω), they have a weak-? limit (u, v) ∈ L∞([0, T ]×Ω) that satisfies
equation 

ut = ∆v in Ω
∂v
∂ν = 0 in [0, T ]× ∂Ω
u(x) = u0 in Ω

(3.1.5)
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in the weak sense, i.e. u ∈ L∞([0, T )×Ω), v ∈ L∞([0, T )×Ω)∩L2([0, T ], H1(Ω))
such that∫ T

0

∫
Ω
uψt −∇v · ∇ψdxdt+

∫
Ω
u0(x)ψ(0, x)dx = 0 (3.1.6)

for all ψ ∈ C1([0, T ]× Ω) with ψ(T, x) = 0 for all x ∈ Ω. However, since in
general weak-? convergence is not preserved by composition with a nonlinear
function, we have no reason to expect that v = φ(u), so that the weak
solution of 3.1.5 is not a weak solution of 3.1.1.

Thanks to the uniform bound on the L∞ norm of {uη}η>0, Plotnikov in
[70] showed that the sequence {uη}η>0 has a limit point ν in the space of
Young measures, and ν can be interpreted as a weak solution to equation
3.1.1. Moreover, ν can be characterized as a superposition of at most three
Dirac measures concentrated at the three branches of φ, and the Young
measure ν and the function v defined by v =

∫
R φ(τ)dν still satisfy the

entropy inequality 3.1.4. This analysis suggests the following definition of
weak solution to problem 3.1.1 in the sense of Young measures.

Definition 3.1.2. An entropy Young measure solution of problem 3.1.1
consists of funtions u, v, λi ∈ L∞([0, T ] × Ω), 1 ≤ i ≤ 3, satisfying the
conditions:

1. λi ≥ 0,
∑3

i=1 λi = 1, and λ1(x) = 1 if v(x) < φ(u+), λ3(x) = 1 if
v(x) > φ(u−);

2. v ∈ L2([0, T ], H1(Ω)) and u =
∑3

i=1 λiSi(v), where Si(v) are defined
as follows:

S1 : (−∞, φ(u−)]→ (−∞, u−],
S2 : (φ(u+), φ(u−))→ (u−, u+),
S3 : [φ(u+),+∞)→ [u+,+∞),

and, for all i, u = Si(v) iff v = φ(u);

3. ut = ∆v in the weak sense, i.e.∫ T

0

∫
Ω
uψt −∇v · ∇ψdxdt+

∫
Ω
u0(x)ϕ(0, x)dx = 0

for all ϕ ∈ C1([0, T ]× Ω) with ϕ(T, x) = 0 for all x ∈ Ω.

4. for all g ∈ C1(R) with g′ ≥ 0, define

G(x) =

∫ x

0
g(φ(τ))dτ and G?(u) =

3∑
i=1

λiG(Si(v)).

Then the following entropy inequality holds:∫ T

0

∫
Ω
G?(u)ϕt − g(v)∇v∇ϕ− g′(v)|∇v|2ϕdxdt ≥ 0 (3.1.7)
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for all ϕ ∈ D([0, T ]× Ω) with ϕ(t, x) ≥ 0 for all (t, x) ∈ [0, T ]× Ω.

It has been proved [62, 70] that problem 3.1.1 allows for an entropy Young
measure solution, but in general these solutions are not unique, as shown
for instance in [83]. Uniqueness of Young measure solutions has been proved
by Mascia, Terracina and Tesei [63] under the additional constraint that the
initial data and the solution do not take value in the interval (u−, u+). For
a detailed discussion of the Young measure solutions to problem 3.1.1, we
refer to [40, 62, 63, 70, 83].

3.1.2 The Radon measure solution in the case u+ = +∞

The Neumann initial-boundary value problem for 3.1.3 under the hypoth-
esis that u+ = +∞ has been studied by Padron [68]. In analogy to the
case where u+ < +∞, if φ is Lipschitz continuous and the initial data is
L∞(Ω), then there exists a unique classical solution (uη, vη) to 3.1.3, with
u ∈ C1([0, T ], L∞(Ω)) and vη = φ(u) + ηut. However, while the sequence
{vη}η>0 is still uniformly bounded in the L∞ norm, the sequence {uη}η>0

is not, so we cannot take the weak-? limit of {uη}η>0, even in the sense
of Young measures. Nevertheless, thanks to the Neumann boundary con-
ditions, ‖uη(t)‖1 = ‖u0‖1 for all t ≥ 0. As a consequence, the sequence
{uη}η>0 has a limit point u in the space of positive Radon measures over
[0, T ]×Ω. In [79], it is proved that u can be represented as the sum u = u+µ,
where u is the baricenter of the Young measure ν(t, x) associated to an equi-
integrable subsequence of {uη}η>0, and µ is a Radon measure over [0, T ]×Ω.
As a consequence, the Radon measure u and the L∞ function v are a weak
solution to problem 3.1.1 in the sense that∫ T

0
〈µ, ϕt〉D(Ω)dt+

∫ T

0

∫
Ω
uϕt−∇v∇ϕdxdt+

∫
Ω
u0(x)ϕ(0, x)dx = 0, (3.1.8)

for any ϕ ∈ C1([0, T ] × Ω) with ϕ(T, x) = 0 for all x ∈ Ω. In particular, a
notion of entropy Radon measure solution can be defined for equation 3.1.1
even in the case u+ = +∞.

Definition 3.1.3. An entropy Radon measure solution of problem 3.1.1
consists of funtions u, v, λi ∈ L∞([0,+∞) × Ω), i = 1, 2 and of a positive
Radon measure µ ∈M([0, T ]× Ω), satisfying the conditions:

1. λi ≥ 0,
∑2

i=1 λi = 1;

2. v ∈ L2([0,+∞), H1(Ω)) and

u =

{ ∑2
i=1 λiSi(v) if v(x) > 0

0 if v(x) = 0;

3. (u+ µ)t = ∆v in the the sense of equation 3.1.8;
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4. the entropy inequality 3.1.7 holds for u and v.

Smarrazzo proved in [79] that problem 3.1.1 allows for a global entropy
Radon measure solution, and we refer to her paper for an in-depth analysis
of the properties of such solutions.

We conclude the discussion of the entropy Radon measure solution to
problem 3.1.1 by recalling two features of the singular part of the solution.
In [79], Smarrazzo showed that the singular part µ of the entropy Radon
measure solution satisfies the following equality for all t ≥ 0:

µ(t) =

(∫
Ω
u0(x)dx−

∫
Ω
u(t, x)dx

)
µ̃(t), (3.1.9)

where µ̃(t) is a positive probability measure over Ω. Moreover, she conjec-
tured that this singular term prevails over the regular term for large times.
In section 3.3, we will show that the solution to problem 3.1.1 obtained from
the grid function formulation satisfies an equality analogous to 3.1.9, and
in section 3.4 we will show that the conjecture by Smarrazzo holds for such
solutions.

3.1.3 Further remarks on problems 3.1.1 and 3.1.2

In [78], Slemrod showed that an approach similar to the one in [70] can
be used to obtain Young measure solutions to problem 3.1.2. Notice how-
ever that, depending on the choice of the regularized problem, there are
different notions of Young measure solutions for problems 3.1.1 and 3.1.2.
For instance, Demoulini [35] has given a notion of Young measure solution
to problem 3.1.2 based on a discrete-in-time energy minimization approach
that sacrifices some of the physical meaning of the Sobolev approximation
in favour of stability of the solution. For a comparison between Demoulini’s
solutions and the solutions obtained via the Sobolev approximation, see
Horstmann and Schweizer [50].

Due to the wide range of their applications to the description of physical
phenomena, numerical approximations of equations 3.1.1 and 3.1.2 have also
been widely studied, especially focusing on particular choices of function φ
(see for instance [48, 49, 58, 56, 69, 89]). The somewhat surprising feature of
problems 3.1.1 and 3.1.2 is that, despite their ill-posedness and the absence
of solutions in classical functional spaces, they nevertheless allow for stable
numerical schemes that lead to successful applications. In particular, in
addition to the original Perona-Malik algorithm for edge enhancing [69], the
discrete-in-space counterparts of equations 3.1.1 and 3.1.2 have been shown
to have a well-defined unique solution and their equilibria have been studied
in depth, for instance by Lizana and Padron [58] and by Witelski, Shaeffer
and Shearer [89].
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3.2 The grid function formulation for the ill-posed
PDE

In this section, we will derive the grid function formulation for the ill-posed
problem 3.1.1 from very simple basic principles by using an elementary de-
scription that generalizes the nonstandard model for the diffusion equation
by Hanqiao, St. Mary and Wattenberg [45]. This approach will allow us to
choose a suitable grid function counterpart to the operator ∆φ(u). Under
the hypotheses 3.1.1 over φ, we will prove that the grid function formulation
always has a unique well-defined solution. At the end of this section, we will
discuss the coherence of the solution to the grid function formulation with
the notions of solutions discussed in section 3.1.

3.2.1 Derivation of the grid function formulation

For a matter of commodity, in the derivation of the model we will use the
image of a population that moves around the grid Xk according to some basic
rules. The initial distribution of the population around the grid is described
by an internal function u0 : Xk → ∗[0, 1] satisfying

∫
Xk u0(x)dXk = c ∈ ∗R.

The value u0(x) determines the number of individuals of the population
inhabiting point x at time t = 0.

Let εt = ε2. The population moves around the grid according to the
following rules:

• the n-th move occurs between time (n− 1)εt and nεt;

• at each jump the population at each grid point breaks into (2k + 1)
smaller groups:

– for i = 1, . . . , k, a fraction pi(u((n− 1)εt, x)) of the population at
x jumps to x+ εx~ei;

– for i = 1, . . . , k, a fraction pi(u((n− 1)εt, x)) of the population at
x jumps to x− εx~ei;

– the remaining fraction 1 − 2
∑k

i=1 pi(u((n − 1)εt, x)) of the pop-
ulation at x remains at x.

In the above description, the functions pi are internal functions pi : ∗R→ ∗R
satisfying

• 0 ≤ pi(r) for all r ∈ ∗R;

•
∑k

i=1 pi(r) ≤ 1/2 for all r ∈ ∗R

for all i = 1, . . . , k. The properties of the functions pi determine the criteria
used by the population to choose whether and how to jump to a nearby
grid point. In particular, in the model outlined above an individual chooses

81



its next movement to move according only to local informations. If the
functions pi are constant and do not depend on i, then the above model
coincides with the nonstandard model of diffusion discussed in [45]. More
complex behaviour can be described by different choices of functions pi and
by introducing a spatial bias.

If we denote by u(t, x) the population present at time t at point x, then
by arguing as in section III of [45] we deduce that u(t, x) evolves according
to the finite difference initial value problem

u(0, x) = u0(x)

u((n+ 1)εt, x) =

(
1− 2

k∑
i=1

pi(u(nεt, x))

)
u(nεt, x)

+

k∑
i=1

pi(u(nεt, x+ εxei))u(nεt, x+ εxei)

+
k∑
i=1

pi(u(nεt, x− εxei))u(nεt, x− εxei))

From the above equation, if we define φi(u(nεt, x)) = pi(nεt, x)u(nεt, x), we
obtain

u((n+1)εt, x)−u(nεt, x) =
k∑
i=1

[
φi(u(nεt, x+εxei))−2φi(u(nεt, x))+φi(u(nεt, x−εxei))

]
.

At this point, we divide both sides of the above equation by εt = ε2
x and

obtain

u((n+ 1)εt, x)− u(nεt, x)

εt
=

k∑
i=1

D+
i D
−
i φi(u(x, t)).

If φi = φ for all i = 1, . . . , k, i.e. if the population moves without spatial
bias, from the above equality we deduce

u((n+ 1)εt, x)− u(nεt, x)

εt
= ∆Xφ(u). (3.2.1)

Neumann boundary conditions are imposed in the discrete formulation of
the Laplacian in the following way: if x ∈ ∂XΩX, let

I+
x = {i : x+ εei 6∈ ΩX} and I−x = {i : x− εei 6∈ ΩX}.

The Neumann boundary conditions are equivalent to∑
i∈I+x

D+
i
∗φ(u(x)) = 0 and

∑
i∈I−x

D−i
∗φ(u(x)), (3.2.2)
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for all x ∈ ∂XΩX, so that the first-order discrete approximation of the Lapla-
cian with Neumann boundary conditions is defined by:

∆X
∗φ(u(x)) = −

∑
i∈I+x

D−i
∗φ(u(x)) +

∑
i∈I−x

D+
i
∗φ(u(x)) +

+
∑

i 6∈I+x ∪I−x

D+
i D
−
i φ(u(x)).

The above argument suggests that the functional F : L∞(Ω)∩H1(Ω)→
(C1(Ω))′ defined by

〈F (u), ϕ〉C1(Ω) = −
∫

Ω
∇φ(u)∇ϕdx (3.2.3)

for all ϕ ∈ C1(Ω) can be represented in the sense of grid functions by ∆X
∗φ.

We will now prove that ∆X
∗φ is indeed coherent with F in the sense of

Theorem 2.4.8. Notice how condition (1) of Theorem 2.4.8 is replaced by a
different coherence condition that depends upon the definition of F .

Proposition 3.2.1. Let φ be a standard function satisfying hypotheses 3.1.1,
and let F be defined by equation 3.2.3. Then

1. if u ∈ G(ΩX) satisfies ‖u‖∞ ∈ ∗Rfin and if u and D±i u are nearstan-
dard in L2(Ω), then [∆X

∗φ(u)] = F ([u]) ∈ (C1(Ω))′;

2. whenever u, v ∈ G(ΩX) are nearstandard in L∞(Ω) ∩H1(Ω), if ‖u −
v‖∞ ≈ 0 and ‖u− v‖H1 ≈ 0, then [∆X

∗φ(u)] = [∆X
∗φ(v)];

3. for all u ∈ L∞(Ω) ∩H1(Ω), [∆X
∗φ(P (∗u))] = F (u).

Proof. By the discrete summation by parts formula and by taking into ac-
count the Neumann boundary conditions 3.2.2, for all ϕ ∈ S1(ΩX) we have
the equality

〈∆X
∗φ(u), ϕ〉 = −〈∇−Xφ(u(x+ ε)),∇+

Xϕ〉. (3.2.4)

We will now show that [∇−X ∗φ(u)] = [φ′(u)]∇[u]. For all 1 ≤ i ≤ k, we have
the equality

D−i
∗φ(u(x)) =

∗φ(u(x))− ∗φ(u(x− εxei))
ε

=
∗φ(u(x))− ϕ(u(x)− εD+

i u(x− εxei))
εD+

i u(x− εxei)
· D+

i u(x− εxei).

The hypothesis that D+
i u is nearstandard in L2(Ω) ensures that there is a

LN -nullset Ω0 ⊂ ΩX such that D+
i u(x − εxei) is finite for all x ∈ ΩX \ Ω0.

Moreover, if x ∈ Ω0, εD+
i u(x − εxei) ≈ 0, otherwise D+

i u would not be
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nearstandard in L2(Ω). As a consequence, [D+
i u(x− εxei)] = Di[u](◦x) and,

since ‖u‖∞ is finite, [D−i ∗φ(u)] = [φ′(u)]D+
i [u]. Taking into account these

equalities, we deduce

◦〈∆X
∗φ(u), ϕ〉 = 〈[∆X

∗φ(u)], ◦ϕ〉C1(Ω)

= −
∫

Ω
[∇−∗φ(u)]∇◦ϕdx

= −
∫

Ω
[φ′(u)]∇[u]∇◦ϕdx (3.2.5)

and, by the hypothesis that D+
i u are nearstandard in H1(Ω) for 1 ≤ i ≤ k,

[u] ∈ H1(Ω). As a consequence, the integral 3.2.5 is finite, and [∆X
∗φ(u)] ∈

(C1(Ω))′.
In order to prove that [∆X

∗φ(u)] = F ([u]), notice that the hypothesis
that ‖u‖∞ ∈ ∗Rfin and that u is nearstandard in L2(Ω) entail that the
Young measure associated to u is Dirac, hence a.e. equal to [u] by Theorem
2.3.13. As a consequence, [∗ϕ(u)] = ϕ([u]), so that from equality 3.2.5 we
deduce that [∆X

∗φ(u)] = F ([u]).
We will now prove that ‖u − v‖∞ ≈ 0 and ‖u − v‖H1 ≈ 0 imply

[∆X
∗φ(u)] = [∆X

∗φ(v)]. From the hypothesis ‖u − v‖∞ ≈ 0 and by S-
continuity of ∗φ and of ∗φ′, we have

‖∗φ(u)− ∗φ(v)‖∞ ≈ ‖∗φ′(u)− ∗φ′(v)‖∞ ≈ 0.

The assumption ‖u− v‖H1 ≈ 0 entails also [∇+
Xu] = [∇+

Xv], so that

[∇+
X
∗φ(u)] = [φ′(u)]∇[u] = [φ′(v)]∇[v] = [∇+

X
∗φ(v)].

As a consequence, from equality 3.2.5 we obtain

〈[∆X
∗φ(u)]−[∆X

∗φ(v)], ◦ϕ〉C1(Ω) =

∫
Ω

([φ′(u)]∇−[u]−[φ′(v)]∇−[v])∇◦ϕdx = 0,

so that the proof of (2) is concluded.
Part (3) of the assertion is a consequence of part (1), since if u ∈ L∞(Ω)∩

H1(Ω), then Lemma 2.3.7 ensures that P (∗u) satisfies the hypotheses of part
(1) of the assertion and that [P (∗u)] = u.

3.2.2 The grid function formulation for the ill-posed PDE

We now have all of the elements to formulate problem 3.1.1 in the sense of
grid functions.

Definition 3.2.2. The functions [u], [∗φ(u)] ∈ G(ΩX)/ ≡ are called a grid
solution of 3.1.1 if u satisfies the following system of ODEs:{

ut = ∆X
∗φ(u);

u (0, x) = ∗u0 (x) .
(3.2.6)
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Remark 3.2.3. A standard version of the formulation 3.2.6 with ΩX = [0, 1]
and with standard N has been used by Lizana and Padron [58] to describe the
dynamics of a population inhabiting a finite collection of N+1 equally spaced
points {0, . . . , i/N, . . . , 1} on the interval [0, 1]. By the transfer principle,
many properties of the finite model discussed in section 3 of [58] hold also
for the hyperfinite system 3.2.6. Conversely, many of the results discussed
in Sections 3.4 and 3.5 of this chapter can be applied to this finite model by
omitting the stars and by taking N ∈ N.

Remark 3.2.4. Notice that problem 3.2.6 makes sense for an arbitrary
f : ∗R → ∗R instead of ∗φ and for arbitrary initial data. However, since
we are interested not only in the solutions to problem 3.2.6, but also in the
coherence with the measure-valued solutions to problem 3.1.1, we will restrict
our attention to the case where f = ∗φ, and φ satisfies hypotheses 3.1.1, and
where the initial data is the nonstandard extension of a function u0 ∈ L∞(Ω)
that satisfies u0(x) ≥ 0 for all x ∈ Ω.

Problem 3.2.6 can be interpreted as a hyperfinite system of ordinary
differential equations: as such, the existence of solutions and their properties
can be studied by the theory of ordinary differential equations. These results,
in turn, apply to the grid solution for problem 3.1.1.

Theorem 3.2.5. There exists a maximal interval I ⊆ ∗R such that Problem
3.2.6 has a unique solution u ∈ ∗C1(I,G(ΩX)); Moreover, ‖u(t)‖1 = ‖u0‖1
for all t ∈ I.

Proof. By transfer, existence and uniqueness can be deduced from the theory
of ordinary differential equations.

In order to prove that ‖u(t)‖1 = ‖u0‖1 for all t ∈ I, notice that it holds

d

dt

∫
ΩX

u(t, x)dXk =

∫
ΩX

ut(t, x)dXk =

∫
ΩX

∆Xφ(u(t, x))dXk.

Thanks to the Neumann boundary conditions,
∫

ΩX
∆Xφ(u(t, x))dXk = 0, so

that the mass of the solution is preserved.

Proposition 3.2.6 (Invariant set). For all t ∈ I and for all x ∈ ΩX,

1. if u+ = +∞, then u(t, x) ≥ 0.

2. if u+ < +∞, then u(t, x) ∈ {0,max{‖∗u0‖∞, S3(φ(u−))}}. In partic-
ular, ‖u(t)‖∞ ∈ ∗Rfin is homogeneously bounded for all t ≥ 0.

Proof. If u+ = +∞, let

t = sup{t ≥ 0 : u(t, x) ≥ 0 for all t ∈ I and x ∈ ΩX}.

The hypotheses over φ and the definition of t ensure that if u(t, x) = 0, then
ut(t, x) = ∆Xφ(u(t, x)) ≥ 0. As a consequence, t = sup I.
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Similarly, if u+ < +∞, let

t = sup{t ≥ 0 : u(t, x) ∈ {0,max{‖∗u0‖∞, S3(φ(u−))}} for all t ∈ I and x ∈ ΩX}.

In this case, if u(t, x) = 0, the equality ut(t, x) = ∆Xφ(u(t, x)) ≥ 0 holds as
in the previous part of the proof. If u(t, x) = max{‖∗u0‖∞, φ(u−)}, then a
similar calculation allows to conclude ut(t, x) ≤ 0. We deduce that it holds
t = sup I also for this case.

Since for any initial data u0 ∈ L∞(Ω) the invariant set for the dynamical
system 3.2.6 is bounded, we deduce global existence in time.

Corollary 3.2.7 (Global existence in time). The solution u of system 3.2.6
satisfies u ∈ ∗C1(∗[0,∞),G(ΩX)).

Proof. Let u be the solution of Problem 3.2.6, and let I be the interval over
which u is defined. Define also

S+(∗u0) = {f ∈ G(ΩX) : f(x) ≥ 0 for all x ∈ ΩX and ‖f‖1 = ‖∗u0‖1} .

By Theorem 3.2.5 and by Proposition 3.2.6, u(t) ∈ S+(∗u0) for all t ∈ I.
Let ΩX = {x1, . . . , xM}, with M = |ΩX|. We identify u with a vector-

valued function that, by abuse of notation, we will still denote by u : I →
∗RM , with the convention that the k-th component of u(t) is u(t, xk). Since
the set S+(∗u0) is ∗compact in ∗RM , the theory of ODEs allows to conclude
that u has global existence in time.

As a consequence of Theorem 3.2.5 and of Corollary 3.2.7, we deduce
that problem 3.1.1 always has a unique global grid solution.

3.3 Coherence of the grid solution with the measure-
valued solutions to the ill-posed PDE

This section is devoted to the study of the coherence of the grid solution
with the notions of measure-valued solutions for problem 3.1.1 discussed in
section 3.1. In particular, we will show that, if u is regular enough, then
the grid solution of problem 3.1.1 coincides with an entropy Young measure
solution in the case where u+ < +∞, and with the entropy Radon measure
solution in the case where u+ = +∞.

Our argument relies on an equality that will be used to establish an
entropy condition for the pair [u], [∗φ(u)].

Lemma 3.3.1. For all internal f, g : Xk → ∗R, it holds

div−X
(
g(f(x)) · ∇Xf(x)

)
= g(f(x))∆X(f(x)) +∇−Xf(x) · ∇−Xg(f(x)).

Notice that the above result is independent of the regularity of f and g.
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Lemma 3.3.2 (Entropy condition). For any g ∈ C1(R) with g′ ≥ 0, define

G(u(t, x)) =
∫ u(t,x)

0 g(φ(s))ds. Then, if u is the solution to problem 3.2.6, it
holds

∗G(u)t = div−X ((∗g(φ(u))∇+
X (φ(u)))−∇−X

∗g′(φ(u)) · ∇−Xφ(u).

and, if ∇−Xφ(u) is finite,

∗G(u)t ≈ div−X ((∗g(φ(u))∇+
X (φ(u)))− ∗g′(φ(u))|∇−Xφ(u)|2. (3.3.1)

Proof. For G, g and u it holds

G(u)t = g(φ(u))ut = g(φ(u))∆Xφ(u).

By Lemma 3.3.1,

div−X ((g(φ(u))∇+
X (φ(u))) = g(φ(u))∆Xφ(u) +∇−X

∗g(φ(u)) · ∇−Xφ(u),

so that the first equality is proved.
For the second equality, we have already shown in the proof of Proposi-

tion 3.2.1 that if ∇−Xφ(u) is finite, then ∇−Xg(φ(x)) ≈ g′(φ(x))∇−Xφ(x). As a
consequence,

∇−Xg(φ(x)) · ∇−Xφ(x) ≈ g′(φ(x))|∇−Xφ(x)|2,

as desired.

Formula 3.3.1 can be regarded as an entropy condition for system 3.2.6.
In particular, this equality allows us to prove that the solution obtained
by the nonstandard model 3.2.6 retains the physical meaning of an entropy
solution.

Now, we will prove that the grid solution of problem 3.1.1 is always a
very weak solution in the sense of distributions.

Lemma 3.3.3. Let u be the solution of problem 3.2.6. Then [u], [∗φ(u)] ∈
D ′(R×Ω) is a very weak solution of problem 3.1.1 in the sense of distribu-
tions, i.e. [u] and [∗φ(u)] satisfy∫ T

0
〈[u], ϕt〉+ 〈[∗φ(u)],∆ϕ〉dt+

∫
Ω
u0(x)ϕ(0, x)dx = 0 (3.3.2)

for all ϕ ∈ C1([0, T ],D ′(Ω)) with ϕ(T, x) = 0 for all x ∈ Ω.

Proof. By Proposition 3.2.6, ‖u(t)‖1 = c ∈ ∗Rfin for all t ∈ ∗R≥0 and, by
Proposition 3.2.6 if u+ < +∞ or by the boundedness of φ if u+ = +∞, also
‖∗φ(u)‖∞ ∈ ∗Rfin for all t ∈ ∗R≥0.
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Now let ϕ ∈ C1([0, T ],D ′(Ω)) with ϕ(T, x) = 0 for all x ∈ Ω, and define
ϕX(t) = ∗ϕ(t)|X. Since u ∈ ∗C1(∗R≥0,G(ΩX)) and ϕX ∈ ∗C1([0, T ],DX(ΩX)),
we have∫ T

0
〈ut(t), ϕX(t)〉dt = −

∫ T

0
〈u(t), (ϕX)t(t)〉dt− 〈∗u0, ϕX(0, x)〉. (3.3.3)

By the discrete summation by parts formula, for all t ∈ ∗R≥0 we have

〈∆Xφ(u(t)), ϕX(t)〉 = 〈φ(u(t)),∆XϕX(t)〉. (3.3.4)

Taking into account that u satisfies 3.2.6, by equations 3.3.3 and 3.3.4, we
obtain∫ T

0
〈u(t), (ϕX)t(t)〉+ 〈φ(u(t)),∆XϕX(t)〉dt+ 〈∗u0, ϕX(0, x)〉 = 0.

By Lemma 2.3.6,

◦〈∗u0, ϕX(0, x)〉 =

∫
Ω
u0ϕ(0, x)dx.

As a consequence, [u] and [∗φ(u)] satisfy

◦
(∫ T

0
〈u(t), ∗ϕ(t)〉dt

)
=

∫
[0,T ]
〈[u], ϕt〉D(Ω)dt+

∫
Ω
u0(x)ϕ(0, x)dx

and
◦
(∫ T

0
〈∆Xφ(u(t)), ∗ϕ(t)〉dt

)
=

∫ T

0
〈[∗φ(u)],∆ϕ〉D(Ω)dt.

As a consequence, we deduce that equality 3.3.2 holds.

3.3.1 The case u+ < +∞

We will now discuss coherence of the grid solution with the solutions of
problem 3.1.1 in the case where u+ < ∞. As expected, if u is regular
enough, then the grid solution to problem 3.1.1 is a solution of problem
3.1.1 in a classical sense. The degree of regularity of the standard solution
depends upon the regularity of u.

Theorem 3.3.4. Let [u], [∗φ(u)] be the grid solution of Problem 3.2.6, and
let ν(t, x) the Young measure associated to u.

1. If [∗φ(u)] ∈ L2([0, T ], H1(Ω)), then [u], [∗φ(u)] is an entropy Young
measure solution of Problem 3.1.1 in the sense of equation 3.1.6.

2. Under the hypotheses

• ν(t, x) is Dirac a.e.,
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• [∗φ(u)] ∈ L∞([0, T ]× Ω),

then [u] ∈ L∞([0, T ], L∞(Ω)) and [u], [∗φ(u)] is a very weak solution
of Problem 3.1.1.

3. Under the hypotheses

• ν(t, x) is Dirac a.e.,

• [∗φ(u)] ∈ L∞([0, T ]× Ω) ∩ L2([0, T ], H1(Ω)),

then [u], [∗φ(u)] is a weak solution of Problem 3.1.1.

4. If u ∈ S1(∗[0,+∞), S2(ΩX)), then [u] = ◦u is a classical global solution
of Problem 3.1.1.

Proof. (1). Since [∗φ(u(t))] ∈ H1(Ω) for a.e. t ≥ 0, we deduce that
∫

Ω φ(τ)dν(t, x)
is single-valued for a.e. t ≥ 0. In particular, ν(t, x) is a.e. a superposition of
at most three Dirac measures centred at Si

(∫
Ω φ(τ)dν(t, x)

)
, and [u] is the

barycentre of ν in the sense that

[u](t, x) =

∫
R
τdν(t, x).

From these properties, we recover conditions (1)–(3) of the definition of
entropy Young measure solution.

By taking into account that [∗φ(u)] ∈ H1(Ω), from Proposition 3.2.1 and
from equation 3.3.2 we deduce that [u] and [∗φ(u)] satisfy∫ T

0

∫
Ω

[u]ϕt −∇[∗φ(u)]∇ϕdxdt+

∫
Ω
u0(x)ϕ(0, x)dx = 0

for all ϕ ∈ C1([0, T ]× Ω) with ϕ(T, x) = 0 for all x ∈ Ω.
We will now derive the entropy condition 3.1.7 for [u] and [∗φ(u)]. Let

g ∈ C1(R), g′ ≥ 0, G(x) =
∫ x

0 g(φ(τ))dτ , and let ϕ ∈ D([0, T ] × Ω) with
ϕ ≥ 0. Define also

G?([u]) =
3∑
i=1

∫ Si([
∗φ(u)])

0
g(τ)dτ.

By Theorem 2.3.12, we have the following equalities

−
∫ T

0

∫
Ω
G?([u])ϕtdxdt = −◦

∫ T

0
〈∗G(u), ∗ϕt〉dt

= ◦
∫ T

0
〈∗G(u)t,

∗ϕ〉dt

= ◦
∫ T

0
〈∗g(∗φ(u))ut,

∗ϕ〉dt

= ◦
∫ T

0
〈∗g(∗φ(u))∆Xϕ(u), ∗ψ〉dt.
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By Lemma 3.3.2 and by [∗φ(u)] ∈ H1(Ω), we deduce∫ T

0
〈∗g(∗φ(u))∆Xv,

∗ϕ〉dt ≈
∫ T

0
〈div−X (∗g(∗φ(u)∇+

Xφ(u))−∗g′(∗φ(u))|∇−Xφ(u)|2, ∗ϕ〉dt

By the discrete summation by parts formula and by Theorem 2.2.15,

−
∫ T

0
〈div−X (∗g(∗φ(u)∇+

Xφ(u)), ∗ϕ〉dt ≈
∫ T

0
〈∗g(∗φ(u))∇+

X
∗φ(u),∇−X

∗ϕ〉dt

≈
∫ T

0

∫
Ω
g([∗φ(u)])∇[∗φ(u)]∇ϕdxdt

and, by Proposition 2.3.3,

◦
∫ T

0
〈∗g′(∗φ(u))|∇−X

∗φ(u)|2, ∗ϕ〉dt ≥
∫ T

0

∫
Ω
g′([∗φ(u)])|∇[∗φ(u)]|2ϕdxdt.

Putting together the above inequalities, we deduce∫ T

0

∫
Ω
G?([u])ϕt−g([∗φ(u)])∇([∗φ(u)])∇ϕ−g′([∗φ(u)])|∇[∗φ(u)]|2ϕdxdt ≥ 0,

so that [u] and [∗φ(u)] satisfy the entropy condition 3.1.7.
(2). Since ν(t, x) is Dirac, by Lemma 2.3.13, it coincides with [u] and,

as a consequence, we also have [∗φ(u(t))] = φ([u]). By substituting [u] and
φ([u]) in equation 3.3.2, we obtain∫ T

0

∫
Ω

[u](t, x)ϕt + φ([u])(t, x)∆ϕd(t, x) +

∫
Ω
u0(x)ϕ(0, x)dx = 0,

that is, [u] and [∗φ(u)] are a very weak solution of Problem 3.1.1.
(3). In addition to the conclusions of point (2), we also have φ([u]) ∈

L∞((0, T ), H1(Ω)), so that by Proposition 3.2.1 the following equality

〈∆Xφ(u(t))(x), ∗ϕ(t)〉 = −
∫

Ω
∇φ([u])(t)∇ϕ(t)dx

holds for a.e. t ≥ 0. Hence, by substituting [u] and [∗φ(u)] in equation 3.3.2,
we deduce that [u] and [∗φ(u)] are a weak solution of Problem 3.1.1.

We will now prove (4). By Theorem 2.1.14, [u] = ◦u and, by Corollary
2.1.16, ◦u ∈ C1(R≥0, C

2(Ω)). Moreover, ◦∗φ(u) = φ(◦u) ∈ C1([0,+∞), C2(Ω))
and, by Theorem 2.1.15, [∆X

∗φ(u(t))] = ∆φ(◦u(t)) for all t ≥ 0. The bound-
ary conditions 3.2.2 ensure that

∂φ(◦u)

∂ν
= 0 in [0,+∞)× ∂Ω.

This is sufficient to conclude that ◦u is a classic global solution of Problem
3.1.1.
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3.3.2 The case u+ = +∞

We will now discuss coherence of the grid solution to problem 3.2.6 with
the measure-valued solution to equation 3.1.1 under the hypothesis that
u+ = +∞.

Theorem 3.3.5. Let [u], [∗φ(u)] be the grid solution of Problem 3.2.6, and
let ν(t, x) the Young measure associated to u. If [∗φ(u)] ∈ L2([0,+∞), H1(Ω)),
then [u], [∗φ(u)] is an entropy Radon measure solution of problem 3.1.1 in
the sense of equation 3.1.8.

Proof. Let

ur(t, x) =

∫
R
τdν(t, x)

be the barycentre of ν, and let µ(t) = [u](t) − u(t). The Young measure
ν(t, x) corresponds to the regular term of the solution to problem 3.1.1, and
the Radon measure µ corresponds to the singular term.

The hypothesis [∗φ(u)](t) ∈ H1(Ω) ensures that [∗φ(u)](t, x) is single-
valued for a.e. t ≥ 0 and x ∈ Ω. If [∗φ(u)](t, x) = c 6= 0, this implies that
ν(t, x) is a superposition of at most two Dirac measures centred at S1(c) and
at S2(c). If [∗φ(u)](t, x) = 0, then ν(t, x) is a Dirac Young measure centred
at 0.

Notice that, for any ϕ ∈ C1([0, T ] × Ω) with ϕ(T, x) = 0 for all x ∈ Ω,
we have the equality∫ T

0
〈u, ∗ϕ〉dt =

∫ T

0

∫
Ω

[u]ϕdxdt =

∫ T

0

∫
Ω
urϕdxdt+

∫ T

0
〈µ, ϕ〉D(Ω)dt,

for any arbitrary T > 0. By Proposition 3.2.1, by equality 3.3.2 and by the
hypothesis that [∗φ(u)](t) ∈ H1(Ω), we deduce that ur, µ and [∗φ(u)] satisfy
the equality∫ T

0
〈µ, ϕt〉D(Ω)dt+

∫ T

0

∫
Ω
urϕt −∇[∗φ(u)]∇ϕdxdt+

∫
Ω
u0(x)ϕ(0, x)dx = 0,

so that [u] and [∗φ(u)] induce a Radon entropy solution to problem 3.1.1 in
the sense of equation 3.1.8.

The entropy condition under the hypothesis that G is equi-integrable
can be deduced from Lemma 3.3.2 and from an argument analogous to the
one in the proof of point (1) of Theorem 3.3.4.

We can also prove that the singular part of the Radon measure solution
can be disintegrated as in equation 3.1.9.

Proposition 3.3.6. Let µ be defined as in the proof of Theorem 3.3.5. There
exists a function µ̃ : L∞([0,+∞),MP(Ω)) such that

µ(t) =

(∫
Ω
u0(x)dx−

∫
Ω
ur(t, x)dx

)
µ̃(t).
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Moreover, the support of µ̃(t) is a null-set with respect to the k-th dimen-
sional Lebesgue measure for all t ≥ 0.

Proof. By definition of µ, µ can be interpreted as a function µ : L∞([0,+∞),M(Ω))
that satisfies ∫

Ω
ur(t, x)dx+

∫
Ω
dµ(t) = ◦‖u(x, t)‖1.

By Theorem 3.2.5, ◦‖u(x, t)‖1 =
∫

Ω u0(x)dx, so the first part of the assertion
is proved. The second part of the assertion is a consequence of ‖u(t)‖1 ∈
∗Rfin.

3.4 Asymptotic behaviour of the grid solutions to
the ill-posed PDE

In this section, we will draw conclusions about the asymptotic behaviour of
the grid solutions to problem 3.1.1 by studying the asymptotic behaviour
of the solutions to the grid function formulation 3.2.6. In particular, we
will carry out this study by determining the stability of the steady states of
problem 3.2.6.

A steady state of problem 3.2.6 is a grid function u ∈ G(ΩX) that satisfies
∆X
∗φ(u) = 0. By definition of ∆X

∗φ, u is a steady state if and only if
∗φ(u(x)) = c for all x ∈ ΩX. In particular, u can assume up to three values
ω1 ∈ (0, u−), ω2 ∈ (u−, u+) and, when u+ < +∞, ω3 ∈ (u+,+∞) satisfying
φ(ω1) = φ(ω2) = φ(ω3). By Proposition 3.2.1, the steady states of the grid
function formulation 3.2.6 induce a steady state for problem 3.1.1.

Notice however that a steady state of problem 3.1.1 corresponds to a
grid function ṽ that satisfies only the weaker condition ∆X

∗φ(ṽ) ≈ 0. If
‖ṽ‖∞ ∈ ∗Rfin, then we expect that there exists a steady state u of problem
3.2.6 with ‖u− ṽ‖∞ ≈ 0. In this case, the stability of ṽ can be determined
by studying the stability of u. On the other hand, if u+ = +∞ and ‖ṽ‖∞ 6∈
∗Rfin, then ṽ induces a measure-valued steady state of problem 3.1.1, but
there might not exist a steady state u of the grid function formulation 3.2.6
which satisfies ‖u − ṽ‖∞ ≈ 0. Nevertheless, in section 3.4.4, we will show
that the asymptotic behaviour of the grid solutions to problem 3.1.1 can be
characterized a posteriori from the asymptotic behaviour of the solutions to
problem 3.2.6.

3.4.1 Asymptotic behaviour of the solutions to problem 3.2.6

Since problem 3.2.6 corresponds to a hyperfinite dynamical system, we need
to introduce an appropriate notion of stability for its steady states. Our
choice is to use the nonstandard counterpart of the classical notion of sta-
bility in the L∞ norm for discrete dynamical systems. In the following
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definition, it is useful to keep in mind that u ∈ G(ΩX) can be identified with
a vector in the euclidean space ∗R|ΩX|.

Definition 3.4.1. Let f : G(ΩX) → ∗R and let v(t) : ∗R → G(ΩX) be the
solution of the nonstandard differential equation u′ = f(u) with initial data
v(0). We will say that u ∈ G(ΩX) is

• ∗stable iff for all η ∈ ∗R, η > 0 there exists δ ∈ ∗R, δ > 0 such that
‖u− v(0)‖∞ < δ implies ‖u− v(t)‖∞ < η for all t ∈ ∗R+;

• ∗attractive iff there exists ρ ∈ ∗R, ρ > 0 such that ‖u − v(0)‖∞ < ρ
implies ∗ limt→+∞ ‖u− v(t)‖∞ = 0;

• asymptotically ∗stable iff it is ∗stable and ∗attractive;

• globally asymptotically ∗stable iff it is ∗stable and for all v(0) ∈ ΩX
∗ limt→+∞ |u− v(t)| = 0;

• ∗unstable iff it is not ∗stable.

Notice that a necessary condition for u to be ∗stable or ∗attractive is that
f(u) = 0, i.e. u must be an equilibrium point of the differential equation.

Since the ∗L∞ norm over ΩX is equivalent to the euclidean norm in
∗R|ΩX|, the stability in the ∗L∞ norm for the grid function formulation 3.2.6
can be studied by exploiting the theory of finite dynamical systems.

For the following analysis of the asymptotic behaviour of solutions of
system 3.2.6, we assume that they are isolated in S+(∗u0), i.e. that there
is only a hyperfinite number of steady states in S+(∗u0). For a discussion
of this hypothesis and for sufficient conditions that ensure the existence of
a hyperfinite number of steady states in S+(∗u0), we refer to Lizana and
Padron [58]. Their hypothesis is a sharpening of the condition that S′1, S

′
2

and S′3 must be linearly independent on the spinoidal interval (u−, u+),
already discussed in [66].

Proposition 3.4.2. If the steady states of 3.2.6 are isolated in S+(∗u0) and
if M is the largest positively invariant set contained in

S+(∗u0) ∩ {f ∈ G(ΩX) : φ(f(x)) is constant over ΩX} ,

then ∗ limt→+∞ u(t) ∈M . In particular, system 3.2.6 has at least an asymp-
totically ∗stable steady state.

Proof. This is a consequence of Proposition 2 of [58].

We observe that, under the hypothesis that the steady states of system
3.2.6 are isolated in S+(∗u0), then ∗stability is equivalent to asymptotic
∗stability.
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Lemma 3.4.3. If u is a ∗stable steady state of system 3.2.6 and if the steady
states are isolated in S+(∗u0), then u is asymptotically ∗stable.

Proof. Suppose that u is ∗stable: since the steady states of system 3.2.6 are
isolated, we can find ρ > 0 such that if |u − v| < ρ then v is not a steady
state of system 3.2.6. By the ∗stability of u, we can find δ > 0 such that if
|u − v| < δ then, denoting by v(t) the solution of system 3.2.6 with initial
data v, |u − v(t)| < ρ for all t ∈ ∗R+. Moreover, by Proposition 3.4.2 v(t)
converges to a steady state of system 3.2.6. By our choice of ρ, this steady
state must be u, hence u is ∗attractive.

3.4.2 Steady states of problem 3.2.6

For a matter of commodity, we will carry out the study of the steady states
of problem 3.2.6 in the case where k = 1, and where the spatial domain is
[0, 1]X = [0, ε, . . . , Nε = 1], but the analysis can be carried out in higher
dimension and with other domains. Moreover, we identify a grid function
u ∈ G([0, 1]X) with a vector u ∈ ∗RN+1, with the convention that ui, the i-th
component of u, satisfies ui = u(iε). If u : ∗R→ G([0, 1]X), we will identify
it with a vector-valued function u : ∗R → ∗RN+1, with the convention that
ui(t) = u(t, iε).

We begin the study of the ∗stability of the steady states of system 3.2.6
by discussing its homogeneous steady state uh = (||∗u0||1, . . . , ||∗u0||1).

Proposition 3.4.4. The homogeneous steady state uh of system 3.2.6 has
the following properties:

• if ||∗u0||1 < u− or ||∗u0||1 > u+, then uh is ∗stable;

• if uh is the only steady state of 3.2.6, then uh is globally asymptotically
∗stable;

• if u− < ||∗u0||1 < u+, then uh is ∗unstable. Moreover, if ∗u0 6≈ uh
and if the steady states are isolated in S(∗u0), then u converges to a
non-homogeneous steady state.

Proof. It is a consequence of Proposition 3 and of Corollary 4 of [58].

In addition to the homogeneous steady state uh, system 3.2.6 may have
many non-homogeneous steady states. If we denote by ni the number of
components of u that assume the value ωi, by Proposition 3.2.5 we obtain
the relations

n3 = N+1−(n1 +n2), n1ω1 +n2ω2 +(N+1−(n1 +n2))ω3 = (N+1)||∗u0||1

that in the case where u+ = +∞ become

n2 = N + 1− n1, n1ω1 + (N + 1− n1)ω2 = (N + 1)||∗u0||1.(3.4.1)
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In the first step of the study of the ∗stability of the non-homogeneous
steady states of system 3.2.6, we will prove that all the steady states with
n2 > 1 are ∗unstable.

Proposition 3.4.5. If u ∈ ∗RN+1 is a steady state of 3.2.6 with n2 > 1,
then it is ∗unstable.

Proof. As in the proof of Proposition 4 of Witelski, Schaeffer and Shearer
[89], we will show that u is not a stable steady state of 3.2.6 by showing that
it is not a local minimum of a suitable Lyapunov function: the thesis follows
from this result. In order to simplify the notation, suppose that n3 = 0, as
the proof for the general case can be deduced by the argument below.

Consider the perturbed steady state given by
ui1(t) = ω2 + q
ui2(t) = ω2 − q
uik(t) = ω2 for k = 3, 4, . . . , n2

ui(t) = ω1 otherwise

Let now V (ui) =
∫ ui

0 φ(s)ds, and L(u) =
∑N+1

i=0 V (ui). From Proposition 4
of [89], it can be deduced that L is a Lyapunov function for system 3.2.6.
By evaluating L as a function of q, we get

L(q) =
V (ω2 + q) + V (ω2 − q) + (n2 − 2)V (ω2) + (N + 1− n2)V (ω1)

N

so we deduce

dL

dq

∣∣∣∣
0

= 0 and
d2L

dq2

∣∣∣∣
0

=
2

N
φ′(q2) < 0,

where the last inequality follows from the hypothesis that ω2 ∈ (u−, u+).
We conclude that u is not a local minimum of L and, as a consequence, that
u is ∗unstable.

The characterization of the asymptotically ∗stable non-homogeneous steady
states of system 3.2.6 is based on the following bound on φ′(q2).

Lemma 3.4.6. If u is an asymptotically ∗stable non-homogeneous steady
state of 3.2.6, then it holds the inequality

|φ′(ω2)| < max{φ′(ω1), φ′(ω3)}2

N min{φ′(ω1), φ′(ω3)}
. (3.4.2)

Proof. For a matter of commodity, suppose that
u(0) = ω2

u(i) = ω1 for i = 1, 2, . . . , n1

u(i) = ω3 otherwise.
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Let X1(u) = −(φ′(u(0)) + φ′(u(1))) and define by recursion

Xi+1(u) = −φ′(u(i+ 1))Xi(u) + (−1)i+1
i∏

j=0

φ′(u(j))

It is a consequence of Proposition 8 of [58] that asymptotic ∗stability of u
is equivalent to (−1)iXi(u) > 0 for i = 1, . . . , N . Notice that, as long as
i ≤ n1,

Xi(u) = (−1)iφ′(ω1)i−1(φ′(ω1) + iφ′(ω2)),

so that (−1)iXi(u) > 0 is equivalent to

|φ′(ω2)| < φ′(ω1)

i
≤ φ′(ω1)

n1
.

For i = n1 + 1, . . . , N , a similar computation shows that (−1)iXi(u) > 0
implies

|φ′(ω2)| <
φ′(ω1)φ′(ω3)

n1φ′(ω3) + (i− n1)φ′(ω1)

≤ φ′(ω1)φ′(ω3)

n1φ′(ω3) + (N − n1)φ′(ω1)
.

From the inequality

φ′(ω1)φ′(ω3)

n1φ′(ω3) + (N − n1)φ′(ω1)
≤ max{φ′(ω1), φ′(ω3)}2

N min{φ′(ω1), φ′(ω3)}

we deduce that the desired result holds.

3.4.3 Asymptotic behaviour of the grid solutions under the
hypothesis u+ < +∞

We will now discuss the asymptotic behaviour of the grid solutions to prob-
lem 3.1.1 under the hypothesis that u+ < +∞. Under this hypothesis, the
steady states of the grid function formulation with n2 = 0 are all asymptot-
ically ∗stable.

Proposition 3.4.7. Let u be a steady state of system 3.2.6 with n2 = 0.
Then u is asymptotically ∗stable.

Proof. It is a consequence of Proposition 8 of [58].

It turns out that, thanks to the hypotheses over φ, all ∗stable non-
homogeneous steady states of system 3.2.6 for which ω1 6≈ u− and ω3 6≈ u+

must have n2 = 0, giving a partial converse to Proposition 3.4.7.
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Proposition 3.4.8. If u is an asymptotically ∗stable non-homogeneous steady
state of 3.2.6 with ω1 6≈ u− and ω3 6≈ u+, then n2 = 0.

Proof. Suppose towards a contradiction that n2 = 1. The hypotheses ω1 6≈
u− and ω3 6≈ u+ imply min{∗φ′(ω1), ∗φ′(ω3)} 6≈ 0, otherwise either φ′(◦ω1) =
0 or φ′(◦ω3) = 0, against the hypotheses 3.1.1. As a consequence, N min{∗φ′(ω1), ∗φ′(ω3)}
is infinite. Thanks to inequality 3.4.2, we deduce that |∗φ′(ω2)| ≈ 0. By the
hypotheses over φ, there exists ω2 ∈ ∗(u−, u+) with |∗φ′(ω2)| ≈ 0 if and
only if ω2 ≈ u− or ω2 ≈ u+. However, ω2 ≈ u− implies ω1 ≈ u− and
ω2 ≈ u+ implies ω3 ≈ u+, in contradiction with the hypotheses q1 6≈ u− and
ω3 6≈ u+.

Putting together the results of this section, we can characterize the
asymptotic behaviour of a grid solution of problem 3.1.1. In particular,
for a.e. initial data, the grid solution converges to a steady state that is a
superposition of at most two Dirac measures centred at the stable branches
of φ.

Proposition 3.4.9. Let [u], [∗φ(u)] be the grid solution of problem 3.1.1
with initial data ∗u0. For almost every ∗u0 ∈ L∞(Ω), [u] converges to a
steady state ν satisfying:

1. there exists c ∈ R such that
∫
R φ(τ)dν(x) = c for all x ∈ ΩX;

2. there exist ω1 ∈ [0, u−], ω3 ∈ [u+,+∞), and λ1, λ2 : Ω → [0, 1], such
that

(a) ν(x) = λ1(x)δω1 + λ2(x)δω2 for a.e. x ∈ Ω;

(b) φ(ω1) = φ(ω2) = c;

(c) λ1(x) + λ2(x) = 1 for a.e. x ∈ Ω.

3.4.4 Asymptotic behaviour of the grid solutions under the
hypothesis u+ = +∞

If u+ = +∞, the bound of Lemma 3.4.6 becomes

|φ′(ω2)| < φ′(ω1)

N
. (3.4.3)

From this inequality we will deduce that a necessary condition for the asymp-
totic ∗stability of a non-homogeneous steady state p is that φ′(ω2) ≈ 0, and
this is possible only when ω2 is infinite.

Proposition 3.4.10. Suppose that u+ = +∞ and that u is an asymptoti-
cally ∗stable non-homogeneous steady state of 3.2.6. Then ω2 is infinite.
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Proof. Since the steady state is non-homogeneous, ω2 > u−. By inequality
3.4.3, and since φ ∈ C1(R), it must hold ∗φ′(ω2) ≈ 0. Since hypotheses 3.1.1
entails the inequality ∗φ′(x) < 0 for all x > u−, and this can only happen if
ω2 is infinite, as desired.

This result together with Proposition 3.4.5 implies that any non-homogeneous
asymptotically ∗stable steady states of system 3.2.6 in the case where u+ =
+∞ are piecewise constant with a single spike. Proposition 3.4.10 implies
that an infinite amount of the mass is concentrated in the spike. This result
is in accord with both the theoretical results and the numerical experiments
of [48, 49, 58, 68, 89]. However, as we observed previously, we do not ex-
pect that [u] converges to a steady state which satisfies Proposition 3.4.10.
Proposition 3.4.10 should be interpreted as a confirmation of a conjecture
by Smarazzo that, for a grid solution [u] of problem 3.1.1, the regular part
of the solution eventually vanishes, and the singular part of the solution
prevails. More precisely, we obtain the following result.

Proposition 3.4.11. Let [u], [∗φ(u)] be the grid solution of problem 3.1.1
with initial data ∗u0. For almost every ∗u0 ∈ L∞(Ω), [u] converges to a
steady state ν + µ satisfying:

1. ν is a homogeneous Dirac Young measure centred at 0, i.e. ν ∈ L∞(Ω)
and ν(x) = 0 a.e.;

2. µ = ‖∗u0‖1µ̃, and µ̃ is a probability measure over Ω.

In particular, for almost every initial data ∗u0, [u] converges to a steady
state with null regular part.

3.5 The Riemann problem

In the study of problems 3.1.1 and 3.1.2 in the case when u+ < +∞, the
dynamics of solutions with Riemann initial data are of particular interest
both in the theoretical and in the numerical setting (see for instance [41, 56]).
We will discuss the Riemann problem where the initial data ∗u0 satisfies

∗u0(iε) =

{
ω1 ∈ [0, u−] for 0 ≤ i ≤ n
ω3 ∈ [u+,+∞) for n+ 1 ≤ i ≤ N (3.5.1)

for some n ≤ N . In order to understand the evolution of system 3.2.6 with
initial data 3.5.1, we need to focus on the behaviour of the solution near
the discontinuity in the data. In particular, we will discuss the conditions
at which ui(t) ∈ (0, u−), ui+1 ∈ (u+,+∞) and either ui(t + τ) ∈ (u−, u+)
or ui+1(t + τ) ∈ (u−, u+) for some small τ > 0. If ui(t) ∈ (0, u−) and
ui(t + τ) ∈ (u−, u+) we will say that there is an upward phase transition
at ui(t); if ui+1(t) ∈ (u+,+∞) and ui+1(t + τ) ∈ (u−, u+) we will say that
there is a downward phase transition at ui+1(t).
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Proposition 3.5.1. Let u be a solution of system 3.2.6 with initial data
3.5.1. Then an upward phase transition occurs at ui(t) for some t > 0 and
for some 0 ≤ i ≤ N iff ui(t) = u−,

∗φ(ui−1(t)) + ∗φ(ui+1(t)) > 2∗φ(u−) (3.5.2)

and
i = max

j∈[0,1]X
{j : um(t) ≤ u− for all m ≤ j}. (3.5.3)

A downward phase transition occurs at time t at some 0 ≤ i ≤ N iff ui(t) =
u+,

∗φ(ui−1(t)) + ∗φ(ui+1(t)) < 2∗φ(u+) (3.5.4)

and
i = max

j∈[0,1]X
{j : um(t) ≥ u+ for all m ≤ j}. (3.5.5)

Proof. Suppose that ui(t) = u− for some t ∈ ∗R+ and for some i ≤ N . Then
there is a phase transition iff

ε2u′i(t) = ∗φ(ui−1(t))− 2∗φ(ui(t)) + ∗φ(ui+1(t)) > 0

from which 3.5.2 follows. Inequality 3.5.4 can be proved in a similar way.
Notice that the two inequalities imply that if at time t ui(t), ui+1(t) and
ui−1(t) are in the same stable phase, then ui cannot have a transition at time
t. This is sufficient to entail 3.5.3 and 3.5.5 for Riemann initial data.

Proposition 3.5.2. Let u be a solution of system 3.2.6 with initial data
3.5.1. For every t ∈ ∗R+, there exists at most one i ≤ N such that ui(t) ∈
(u−, u+).

Proof. Conditions 3.5.3 and 3.5.5 imply that if ui(t) and ui+1(t) ∈ (0, u−)
or if ui(t) and ui+1(t) ∈ (u+,+∞), then they cannot have a simultaneous
phase transition. If both ui(t) and ui+1(t) 6∈ (u−, u+), there cannot be an
upwards phase transition at point ui(t) and a downward phase transition at
point ui+1(t): otherwise, from 3.5.2 and 3.5.4 we would have ∗φ(ui+1(t)) >
∗φ(u−) or ∗φ(ui(t)) <

∗φ(u+), against the necessity that ui(t) = u− and
ui+1(t) = u+. If ui(t) ∈ (u−, u+) and if ui−1(t) had an upwards phase
transition, from 3.5.2 we would have ∗φ(ui−2(t)) > ∗φ(u−), contradicting
3.5.3. If ui(t) ∈ (u−, u+) and if ui+1(t) had a downward phase transition,
from 3.5.4 we would have ∗φ(ui+2(t)) < ∗φ(u+), against 3.5.5.

Notice that Propositions 3.5.1 and 3.5.2 can be generalized to any piece-
wise S-continuous initial data taking values in (0, u−) ∪ (u+,+∞): in this
case, if the initial data has n discontinuities, then ui(t) ∈ (u−, u+) for at most
n values of i ≤ N . In particular, if the initial data has finitely many discon-
tinuities, then the dynamics of the system outside of the stable branches of φ
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is negligible. In these cases, it could be argued by the above proposition that
the phase transitions of [u] trace a clockwise hysteresis loop, in agreement
with the behaviour of two-phase solutions to 3.1.1 studied in [38, 40, 62].

We conclude our discussion of the Riemann problem with initial data
3.5.1 with a characterization of the asymptotic behaviour of the solution.

Corollary 3.5.3. Let u be the solution of system 3.2.6 with initial data
3.5.1. If ∗φ(ω1) > ∗φ(ω2) then no phase transitions occur.

Proof. It is a consequence of 3.5.2 and 3.5.4 of Proposition 3.5.1 and of the
fact that ∗φ(ω1) > ∗φ(ω2) implies u′n(0) < 0 and u′n+1(0) > 0.

Corollary 3.5.4. Let [u] be the grid solution of problem 3.1.1 with initial
data 3.5.1. Then [u] converges to an asymptotically stable state that is either
constant or Riemann-shaped.

Proof. If no phase transitions occur, then the thesis is a consequence of
Proposition 3.4.2. If phase transitions occur, this is a consequence of Propo-
sition 3.4.2 and of Proposition 3.4.8.
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Chapter 4

Research perspectives

The study of grid functions and their applications in functional analysis is
far from concluded. We will briefly outline some promising directions for
further research.

4.1 Regularity of the solutions to grid function
problems

In Chapters 2 and 3 we have shown that, if the solution u of a grid function
formulation of a partial differential equation is regular enough, then [u] is a
solution to the original PDE in some standard sense. Moreover, for the ill-
posed problem 3.1.1, we have shown in Lemma 3.3.3 and in Theorems 3.3.4
and 3.3.5 which regularity hypotheses over u ensure that [u] is a measure-
valued, very weak, weak or classical solution to the original problem.

We believe that it would be of importance to sharpen the sufficient con-
ditions for u that ensure regularity of [u] as a standard solution to a PDE,
and to study if these conditions are met for some relevant classes of PDEs.
Possibly, the most natural starting point for this line of research would be
to study the regularity of the solution u to the grid function formulation for
problem 3.1.1.

4.2 Grid functions and the mathematical descrip-
tion of physical phenomena

We have seen in Section 2.5.1 that, in some cases, it is possible to coher-
ently define the product between two distributions T and S by studying the
product between some classes of grid function representatives of T and S.
This, in turn, allows for the rigorous formulation of some real-world phe-
nomena that cannot be formulated in the sense of distributions. Inspired
by this example, we believe it would be interesting to determine to what
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extent the space of grid functions allows for the rigorous formulation of the
physical phenomena that cannot be formalized coherently in the space of
distributions.

In order to carry out a research in this direction, we believe it would
be also relevant to study some grid function counterparts of some useful
operators on the space of distributions, such as the convolution operator
and the trace operator.

4.3 Relations between some notions of generalized
functions beyond distributions

The examples discussed in Section 2.5 and the theoretical results from Sec-
tion 2.4 suggest that some problems in functional analysis are addressed
coherently in the setting of Colombeau algebras, algebras of asymptotic
functions, ultrafunctions and grid functions. These evidences seem to sug-
gest that there is a “common core” to these theories of generalized functions
beyond distributions.

We believe that a study of this common core could be beneficial for the
development of all of these theories. Some results in this direction are al-
ready known: in [84, 86], Todorov showed that the algebra of asymptotic
functions can be seen as a generalization of the Colombeau algebras. It
would be interesting to determine whether the space of grid functions can
be interpreted as a subspace of some algebras of asymptotic functions, or if
the opposite inclusion might hold. Similar questions arise when considering
the ultrafunctions and the algebras of asymptotic functions, or the ultrafunc-
tions and the grid functions. In particular, since both the grid functions and
the spaces of ultrafunctions can be seen as subspaces of ∗L2(Ω), we believe
it would be possible to study in depth the relation between these two spaces
of generalized functions.
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