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Ai miei nipoti, Diego, Eva & Matilde

"...Toujours rechercher la di�culté. Non pas le danger.
Aller de l'avant, tenter, oser.
Dans l'audace il y a l'enchantement..."

- Street Art in Chamonix (France) -

"Ho imparato questo, almeno, dal mio esperimento; che se uno avanza �ducioso
nella direzione dei suoi sogni, e si sforza di vivere la vita che ha immaginato,
incontrerà un successo inatteso nei momenti più comuni. Si porrà qualcosa
alle spalle, supererà un con�ne invisibile; leggi nuove, universali e più liberali
cominceranno ad a�ermarsi intorno e dentro di lui; oppure le vecchie leggi si
espanderanno, e saranno interpretate a suo favore in un senso più liberale, e vivrà
con la licenza di un superiore ordine di esseri. Nella misura in cui sempli�cherà
la sua vita, le leggi dell'universo appariranno meno complesse, e la solitudine non
sarà solitudine, né la povertà povertà o la debolezza debolezza. Se avete costruito
castelli in aria, il vostro lavoro non deve andare perduto; è lì che devono stare.
Ora metteteci sotto delle fondamenta."

- Henry David Thoreau, "Walden; or, Life in the Woods" -
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Abstract

Ultracold atoms are exceptional tools to explore the physics of quantum matter. In
fact, the high degree of tunability of ultracold Bose and Fermi gases makes them ideal sys-
tems for quantum simulation and for investigating macroscopic manifestations of quantum
e�ects, such as super�uidity.

In ultracold gas research, a central role is played by collective oscillations. They can be
used to study di�erent dynamical regimes, such as super�uid, collisional, or collisionless
limits or to test the equation of state of the system.

In this thesis, we present a uni�ed description of collective oscillations in low dimensions
covering both Bose and Fermi statistics, di�erent trap geometries and zero as well as �nite
temperature, based on the formalism of hydrodynamics and sum rules.

We discuss the di�erent behaviour exhibited by the second excited breathing mode in
the collisional regime at low temperature and in the collisionless limit at high temperature
in a 1D trapped Bose gas with repulsive contact interaction. We show how this mode
exhibits a single-valued excitation spectrum in the collisional regime and two di�erent
frequencies in the collisionless limit. Our predictions could be important for future research
related to the thermalization and damping phenomena in this low-dimensional system.

We show that 1D uniform Bose gases exhibit a non monotonic temperature dependence
of the chemical potential characterized by an increasing-with-temperature behaviour at low
temperature. This is due to the thermal excitation of phonons and reveals an interesting
analogy with the behaviour of super�uids.

Finally, we investigate a gas with a �nite number N of atoms in a ring geometry at
T = 0. We discuss explicitly the deviations of the thermodynamic behaviour in the ring
from the one in the large N limit.

Keywords:
quantum gases, Bose-Einstein condensates, Fermi super�uids, collective oscillations,

low-dimensions, Lieb-Liniger, Yang-Yang, collisionless, hydrodynamics, thermalization,
sum-rules, thermodynamics, equation of state, phonons, ring.

xvii





List of Notations
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Introduction

Whatever you can do or dream you can, begin

it. Boldness has genius, power and magic in it.

Begin it!

Johann Wolfgang von Goethe

Quantum gases provide a very useful text-book tool to investigate the consequences
of Quantum Mechanics. They can be exploited as quantum simulators, because they allow
one to model other quantum matter systems, sharing the same Hamiltonian [Bloch et al.,
2008, 2012]. One of the most spectacular manifestation of quantum e�ects, shared by
quantum gases, is the phenomenon of super�uidity.

After the �rst realisation of Bose-Einstein condensation (BEC) in a dilute atomic gas
[Anderson et al., 1995, Davis et al., 1995, Bradley et al., 1995], the experimental tech-
niques aiming at producing and manipulating quantum gases have undergone striking
progress. Today one can work with both bosonic and fermionic atomic gases and to cre-
ate mixtures of di�erent species [Pethick and Smith, 2002]. The interparticle interactions
can be tuned by means Feshbach resonances [Chin et al., 2010]. By using laser light it
is possible to achieve a large variety of external con�nements, like harmonic, periodic,
quasiperiodic, and disordered potentials. The dimensionality of the system can also be
managed by applying a tight optical con�nement of the atomic cloud along one or two
directions. This has opened the way for the investigation of new super�uid phases like the
two-dimensional Berezinskii-Kosterlitz-Thouless transition [Hadzibabic et al., 2006] and
novel quantum degenerate states like the one-dimensional Tonks-Girardeau gas [Paredes
et al., 2004, Kinoshita et al., 2004].

Collective oscillations in low dimensions

Harmonically trapped atomic gases exhibit collective oscillations, or normal modes, for
which all atoms move with the same collective frequency and with a wavelength comparable
to the size of the sample. Collective oscillations provide powerful tools to explore the
physics of quantum many-body systems and to test fundamental theories. On one hand,
normal modes can be used to investigate di�erent dynamical regimes of the system, such
as super�uid, collisional, or collisionless, for both Bose and Fermi atomic gases. On the
other hand, collective frequencies are important to test the equation of state (EOS) of the
system, including its temperature dependence, the thermodynamics and the presence of
super�uidity.

In the last twenty years, an intense theoretical [Stringari, 1996, 1998, Bruun and Clark,
1999, Ghosh, 2000, Menotti and Stringari, 2002, Heiselberg, 2004, Stringari, 2004, As-
trakharchik et al., 2005b, Baur et al., 2013] and experimental [Jin et al., 1996, Mewes
et al., 1996, Jin et al., 1997, Stamper-Kurn et al., 1998, Maragò et al., 2000, Bartenstein
et al., 2004b, Kinast et al., 2004, 2005, Wright et al., 2007, Altmeyer et al., 2007, Riedl
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et al., 2008, Tey et al., 2013, Sánchez Guajardo et al., 2013, Fang et al., 2014] research
activity was carried out aiming at the investigation of collective oscillations by consider-
ing both bosonic and fermionic atoms, di�erent trap geometries, temperature and various
dimensions.

Even if the state of the art is very rich, a uni�ed description of collective modes in
low dimensions, covering both Bose and Fermi statistics, di�erent trap geometries and
zero as well as �nite temperature is still missing. Our general approach De Rosi and
Stringari [2015] �lls this gap and it is also able to reproduce some results of the literature
in di�erent limiting cases. Our study is based on the hydrodynamic formalism, which
includes the description of the super�uid regime at zero temperature and the collisional
regime in the non-super�uid phase above the critical temperature.

Thermalization and damping are a key issue for the one-dimensional (1D) Bose gas with
repulsive contact interactions, due to its intrinsic integrability. They have been the object of
an intense research activity [Laburthe Tolra et al., 2004, Kinoshita et al., 2006, Ho�erberth
et al., 2007, Mazets et al., 2008, Mazets and Schmiedmayer, 2009, 2010, Tan et al., 2010]. In
harmonically trapped con�gurations, they a�ect the propagation of collective oscillations
[Mazets, 2011], whose nature evolves from the collisional regime at low temperature to a
collisionless regime at a higher temperature.

So far most research in collective oscillations in 1D has concerned the lowest breathing
mode [Menotti and Stringari, 2002, Moritz et al., 2003, Astrakharchik, 2005, Haller et al.,
2009, Hu et al., 2014, Fang et al., 2014, Gudyma et al., 2015, Gudyma, 2015, Chen et al.,
2015, De Rosi and Stringari, 2015]. Since at high temperature this mode exhibits the same
collective frequency in both collisional and collisionless regimes, it is not directly relevant
to the investigation of thermalization in 1D trapped Bose gases.

The second excited breathing mode is still less investigated in literature [Tey et al.,
2013, Hu et al., 2014]. Our results De Rosi and Stringari [2016] show that it exhibits a
di�erent behaviour in the collisional and collisionless regimes. Therefore, in contrast to
the lowest breathing mode, it is a natural candidate to exploit the e�ects of relaxation
caused by collisions and the corresponding thermalization in 1D. Our predictions are
based on the sum-rule approach, which allows us to investigate both the collisionless and
the hydrodynamic regimes.

Thermodynamics of a 1D Bose gas

The thermodynamic behaviour of a super�uid is dominated, at low temperature (T),
by the thermal excitation of phonons [Wilks, 1967] which causes an increase of the chemical
potential at low T [Papoular et al., 2012] as experimentally observed in strongly interacting
Fermi gases [Ku et al., 2012].

Uniform 1D Bose gases with repulsive contact interactions exhibit a phononic spec-
trum at low momenta [Lieb, 1963], but they cannot be considered as a super�uid. Our
results De Rosi et al. [2017] carried out in collaboration with Prof. Gregory Astrakharchik
(Universitat Politècnica de Catalunya, Barcelona, Spain), show that, despite the absence
of super�uidity, the chemical potential of 1D systems is characterized, at low T, by the
thermal excitation of phonons, a typical feature of super�uids.

Very recently, a ring geometry with few atoms was realised [Labuhn et al., 2016].
Motivated by the experimental progress, we have investigated a gas with a small number N
of atoms in a ring and the mapping with the 1D problem where calculations are carried out
using periodic boundary conditions. We have studied the deviations of the thermodynamic
behaviour in a ring at zero temperature from the one in the large N limit.

Our results De Rosi et al. [2017] show that �nite-N corrections are important in the
weakly-interacting regime, where the healing length can easily become comparable to the
size of the system.

Collective oscillations of a trapped atomic gas in low D
& thermodynamics of 1D Bose gas
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Outline

A detailed outline of the thesis follows.

Chapter 1. The �rst Chapter aims to introduce brie�y all ultracold gas systems investi-
gated throughout this thesis. The concept of ultracold atomic gases and their most
important quantum manifestations (BEC and super�uidity) are reviewed. A special
emphasis is given to interatomic interactions and how to tune them by using Fano-
Feshbach resonances. Finally, the theory of interacting Bose and Fermi systems is
discussed.

Chapter 2. This Chapter is completely devoted to low-dimensional quantum gases. The
concept of long-range order is introduced, by pointing out how its presence is related
to BEC and how it is a�ected by low-dimensionality. The second part presents 1D
Bose gases with repulsive contact interaction, described by the Lieb-Liniger model at
zero temperature (T = 0) and by its generalisation at �nite T: the Yang-Yang theory.
A special importance is given to the problem of thermalization in this system.

Chapter 3. The Chapter presents collective oscillations in low-dimensional harmonically
trapped gases. We derive a general formulation of the hydrodynamic equations in the
presence of an external trap in terms of the velocity �eld. This approach points out
the central role played by the EOS in the collective frequency calculation. It reduces
to a simpli�ed form when the EOS can be approximated by a power (polytropic) law
dependence on the density, allowing for an important class of analytic solutions. The
Chapter is based on the publication De Rosi and Stringari [2015].

Chapter 4. This Chapter is a brief overview on the formalism of linear response functions,
which is widely employed in Chap. 5.

Chapter 5. The Chapter is devoted to the investigation of the transition from the col-
lisional, at low T, to the collisionless regime at higher T in a 1D trapped Bose gas
with zero-range repulsive interactions. We predict the excitation of two di�erent fre-
quencies in the collisionless regime and a single frequency for the collisional regime
for the second excited breathing (dipole compression) mode. Our analysis is based
on the comparison of the collective frequencies calculated with both hydrodynamic
and sum-rule approaches. The �ndings of this Chapter are published in De Rosi and
Stringari [2016].

Chapter 6. The �nal Chapter contains some results about the thermodynamics at low T
of a 1D uniform Bose gas with repulsive contact interactions. In particular, we have
observed the same increasing-with-temperature behaviour of the chemical potential
at low T, caused by the thermal excitation of phonons, like in super�uids, even if
the system does not exhibit any super�uid phase. The investigation is based on the
numerical solution of the Bethe-Ansatz equations of the Yang-Yang theory. By using
the mapping with the 1D problem, we have studied a gas with a small number N
of atoms in a ring, by focusing on the deviations of the thermodynamic behaviour in
a ring from the one in the large N limit. The main results of this Chapter will be
presented in a forthcoming paper [De Rosi et al., 2017].
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Chapter 1

Overview of ultracold gases

Life is strong and fragile. It's a paradox... It's

both things, like quantum physics: It's a particle

and a wave at the same time. It all exists all

together.

Joan Jett

The 20th-century was characterised by a deep revolution in Physics: scientists
began to investigate the nature and the behaviour of atoms. This needed the introduction
of a new theoretical paradigm given by Quantum Mechanics. One of the most important
successes of this new theory was the explanation of the wave-particle duality exhibited by
both matter (like particles, in particular, electrons) and electromagnetic radiation. The
wave nature of light was �rst discovered in the Young experiment in 1801, through the
observation of di�raction and interference phenomena. Later on, similar experiments,
carried out also with electrons, lead to the same results and demonstrated the wave nature
of particles. In 1905, Einstein's conjecture on photoelectric e�ect [Einstein, 1905] showed
that light is composed of elementary particles: the photons. If one considers light of
angular frequency ω, each photon carries a quantum (i.e. a packet) of energy E = ~ω,
where ~ = h/(2π), being h the Planck constant.

The theoretical explanation of the wave-particle duality came only in 1924 thanks to
de Broglie [1925]. He showed that a particle with momentum, whose modulus is p, is
associated with a wave of wavelength λT = 2π~/p, known as de Broglie wavelength. If
one considers a gas at temperature T , by using the Maxwell-Boltzmann distribution, one
calculates the average momentum per particle 〈p〉 ∼

√
mkBT , where m is the mass of

the particle and kB is the Boltzmann constant. Therefore, one can rewrite the de Broglie
wavelength as a function of temperature λT ∼

√
~2/(mkBT ). If the temperature decreases,

the particle slows down and its λT increases. In particular, at room temperature, λT is
smaller than the atomic radius and the wave (quantum) nature of the gas does not emerge,
and the particles which compose the gas behave as billiards balls. On the other hand, at
temperature of few nK (reached experimentally only in the last two decades), λT is bigger
than the average interparticle distance, therefore the wavepackets associated to particles
overlap. The consequences of this are that particles lose their identity and they move all
together as a giant matter wave with a very small velocity ∼ 1 mm/s.

Moreover, at low temperature, the di�erent quantum statistics of particles, namely the
di�erent behaviour of bosons and fermions, becomes apparent. In fact, similarly to waves,
particles interfere. However, while bosons interfere constructively, fermions interfere de-
structively. This leads to distinct collective behaviours when many particles are prone to
occupy the same energy levels, that is in the quantum degenerate regime. At the thermo-
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dynamical level, the ground state of a system of non-interacting identical particles depends
on the nature of its constituents. The BEC phase was predicted for non-interacting bosons
(i.e. particles with integer spin, described by the Bose-Einstein distribution) [Einstein,
1924, 1925] on the basis of an idea on the statistical description of photons [Bose, 1924].
At T = 0, bosons condense in the ground state of the system described by a single wave-
function and they behave as a coherent matter wave. BEC phase is a consequence of
quantum statistical e�ects because it occurs even without interactions. For a long time,
these predictions were purely theoretical without any practical impact. Only after 70 years,
in 1995, this new phase was realised experimentally by using dilute clouds of alkali atoms
[Anderson et al., 1995, Davis et al., 1995, Bradley et al., 1995]. On the other hand, identical
fermions (i.e. particles with half-integer spin, described by the Fermi-Dirac distribution)
exhibit a di�erent behaviour at low T: they cannot occupy the same energetic state due
to the Pauli exclusion principle. Indistinguishable fermions populate the lowest energy
levels from bottom-up with exactly one particle per level, forming the so-called Fermi sea.
Moreover, di�erently from bosons, ideal fermions do not exhibit a quantum phase (like
super�uidity) but only a quantum nature at T = 0, as �rst experiments with cold atoms
showed, starting from 1999 [DeMarco and Jin, 1999, Schreck et al., 2001, Truscott et al.,
2001].

All interacting atomic systems (except helium) undergo a phase transition to the solid
state at enough low temperatures. The only way to reach a bosonic or fermionic ultracold
atomic gas is in conditions of metastability (i.e. of local and not global minimum energy
states). Metastability is ensured by the following criteria:

• the atomic gas is really dilute (with density n ∼ 1013 − 1015 atom/cm3) such that the
average interparticle spacing is much larger than the range r0 of interactions (n−1/3 �
r0). This avoids three-body collisions and only elastic binary collisions between atoms
are important. Since the density is really small, we need to reach very low temperatures
T ∼ µK in order to appreciate quantum statistical e�ects.

• The atomic gas is kept far away from any material wall in order to avoid any interaction
which would bring to the formation of molecules and, consequently, to the solid state.

The above conditions are satis�ed if one con�nes a very dilute ultracold atomic gas in
optical or magnetic traps [Inguscio and Fallani, 2013]. Elastic binary collisions are really
important. They are fast, being their relaxation times shorter than the lifetime of the
metastable atomic gas. Hence, they ensure the thermalization of the system. Moreover,
binary collisions are responsible for the evaporative cooling for which, while high-energy
atoms escape from the sample, the others thermalize with a redistribution of energy at
lower T. In addition, collisions are responsible for the interatomic interactions which
play a crucial role in the stability and the properties of quantum gases, a�ecting a lot of
measurable properties such as the equilibrium density pro�les, the ground-state energy and
the collective frequencies. Di�erently from bosons, the presence of a super�uid quantum
phase in Fermi gases depends not only on statistical e�ects but also on interaction.

The present Chapter is completely devoted to ultracold atomic gases which enable to
investigate the manifestations of Quantum Mechanics at the many-body level.

In Sec. 1.1, we focus on non-interacting quantum gases, pointing out the e�ects of
quantum statistics.

Since quantum gases are realised experimentally in trapped con�gurations, we discuss in
Sec. 1.2 the concept of local density approximation which allows simplifying the treatment
of trapped gases.

Given the importance of the interaction, we brie�y dedicate Sec. 1.3 to the investigation
of binary collisions in quantum gases, with the introduction of a single parameter a, the
s−wave scattering length, which encodes all the information of the short-range interaction
potential and how it can be tuned by means Fano-Feshbach resonances.
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Ideal quantum gases 7

In Sec. 1.4, we outline some key features related to the phenomenon of super�uidity,
a very peculiar quantum phase at low T and we investigate its main properties, like an
unusual �ow characterised by zero viscosity. Similar features are also shared by BEC.

We conclude this Chapter with interacting gases for both quantum statistics. In Sec. 1.5
we introduce the Bose gas and the two most important tools to describe it: the Bogoliubov
theory and the Gross-Pitaevskii equation. In Sec. 1.6, we review the Fermi gases and all
their experimentally accessible interaction regimes included in the BEC-BCS crossover.

An exhaustive treatment of these concepts is however out of the aims of this thesis;
readers interested in more extended discussions can see Dalfovo et al. [1999], Pethick and
Smith [2002], Giorgini et al. [2008], Walraven [2013], Pitaevskii and Stringari [2016], on
which this Chapter is based.

1.1 Ideal quantum gases

Particles are of two di�erent types: fermions and bosons. Fermions are characterised by
an half-integer spin and they are the elementary components of matter: electrons, protons
and neutrons which compose atoms are fermionic particles. Bosons instead have integer
spin. An assembly of fermions (like an atom) may have a fermionic nature (with half-
integer total spin and an odd number of fermions) or rather a bosonic nature (with integer
total spin and an even number of fermions).

Bosons and fermions satisfy di�erent quantum statistic laws. Ideal identical bosons
obey the Bose-Einstein statistics, for which the energy distribution is:

fB(ε) =
1

eβ(ε−µ) − 1
(1.1)

where β = 1/kBT and kB is the Boltzmann's constant. Eq. (1.1) represents the probability
for a boson to occupy the state with energy ε at the chemical potential µ and at temperature
T . Ideal fermions with the same chemical potential µ follow the Fermi-Dirac statistics:

fF (ε) =
1

eβ(ε−µ) + 1
(1.2)

which implies fF (ε) < 1, that is to say, the Pauli exclusion principle for which two indis-
tinguishable fermions cannot occupy the same energy state. In the limit of low-density or
high temperature, the two distributions (1.1) and (1.2) are equal to the classical Maxwell-
Boltzmann statistics:

fT (ε) = e−β(ε−µ) (1.3)

which describes a classical gas of non-interacting particles.
The quantum nature of particles appears only at low temperature and high atomic den-

sities n, for which the interparticle distance n−1/3 is of the order of the thermal de Broglie
wavelength λT =

√
2π~2/(mkBT ), which gives the size of the wave packet associated with

each particle. When nλ3
T & 1 Quantum Mechanics plays a role.

At low T, bosons occupy macroscopically the lowest energy state and there is a phase
transition (BEC) characterized by a critical temperature TC which provides, also, a scale
of quantum degeneracy, for which quantum statistical e�ects are important. The BEC is
a purely statistical phase, because it depends only on the distribution (1.1) and not on the
interaction. The condition fB(ε) > 0 implies µ < ε0, where ε0 is the ground state energy.
If µ → ε0, the occupation number (1.1) of the ground state diverges, marking the phase
transition. The critical temperature TC can be found from the normalization condition of
the total number of particles N :

N =
∑
i 6=0

fB(εi, TC , µ = E0) . (1.4)
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Ideal quantum gases 8

On the other hand, at low T, ideal fermions occupy the Fermi sea, characterized by one
particle per energy state. The highest energy state occupied is given by the Fermi energy
EF = µ(T = 0) and the Fermi temperature TF . The Fermi energy can be calculated from
the condition:

N =
∑
i

fF (εi, T = 0, µ = EF ) , (1.5)

and one �nds:

EF =
~2

2m

(
6π2n

)2/3
. (1.6)

For large T/TF , (1.2) tends to be equal to Eq. (1.3), while at T = 0, all states with energy
ε ≤ EF are occupied with probability 1, while all energy states with ε > EF are empty.
Therefore, TF sets the temperature scale of quantum degeneracy. Finally, di�erently from
the Bose case, the low temperature behaviour of an ideal Fermi gas does not imply a phase
transition.

If one adds an external harmonic trap

Vext(r) =
∑
i

1

2
mω2

i r
2
i (1.7)

where the index i = x, y, z denotes the spatial directions, both TC and TF , calculated
from Eq. (1.4) and Eq. (1.5), respectively, are modi�ed by the presence of the trap (1.7)
[Pitaevskii and Stringari, 2016].

In Fig. 1.1, we report the di�erent behaviours exhibited by bosons and fermions in
both high and low-temperature regimes in harmonically trapped con�gurations.

Figure 1.1: High (top) and low (bottom) temperature behaviour for bosons and fermions
in an harmonic trap. "High" and "low" temperature is referred with respect to the energy
spacing ~ωho between discretized levels of the trap with frequency ωho.
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Local Density Approximation 9

1.2 Local Density Approximation

In this Section, we investigate the Local Density Approximation (LDA) which simpli�es
the treatment of harmonically trapped systems. This condition holds if the system is large
(with a large number of atoms N), in a weak trapping potential for which the density
pro�le of the gas is slowly varying. At each position r there is a mesoscopic volume over
which the local system is at equilibrium and homogeneous. Since all small volumes are
in contact, they exchange heat (they are in thermal equilibrium with the temperature T)
and particles (imposing a constant chemical potential µ0 over the whole system). This
simpli�cation enables to investigate the thermodynamics of a trapped system, starting
from the knowledge of its thermodynamic properties in uniform matter [Damle et al.,
1996]. The global chemical potential µ0 is written as the sum of the value µ[n(r, T )] of
the chemical potential, evaluated in uniform matter at the local value of the density and
of the external potential Vext(r):

µ0 = µ[n(r, T )] + Vext(r) . (1.8)

Eq. (1.8) provides an implicit equation for the density pro�le n(r, T ) of the trapped
gas at a given temperature T:

n(r, T ) = n[µ(r), T ] = n[µ0 − Vext(r), T ] , (1.9)

where µ0 is �xed by the normalization condition of the number of particles:

N =

∫
drn[µ0 − Vext(r), T ] . (1.10)

Starting from the knowledge of the density pro�le (1.9), the global chemical potential
µ0 and the temperature T, one can calculate the density pro�le and all thermodynamic
functions. The LDA (1.8) is expected to be a reliable approximation for su�ciently large
systems where �nite size corrections and gradients terms in the density pro�le are negligible.
Moreover, its interest lies also in its generality: it can be applied to a large variety of
systems, independent on quantum statistics (bosons and fermions), on temperature, on
interaction regime, once it is known the equation of state µ[n(r, T )]. For example, while
in the case of BEC gases, LDA is ensured by the repulsive interaction among atoms, see
Sec. 1.5, in the ideal Fermi gas, LDA can be still applied thanks to the quantum pressure
related to the Pauli principle.

As we investigate in Chap. 3, LDA still applies in quasi-low-dimensional (D) (pancake
and cigar) systems but does not in deep low D (two-dimensional (2D) and 1D) along the
directions of tight con�nement.

1.3 Binary collisions

In this Section, we recall some basic tools of the theory of scattering of slow particles
[Landau, 1958], which can be applied to describe elastic binary collisions in ultracold
matter. We investigate why they occur generally in the s−wave channel (i.e. with zero
total angular momentum ` = 0) and exhibit a short-range character. In particular, in
SubSec. 1.3.1, we study how, given the short-range properties of the interatomic potential,
we can replace it with a contact pseudopotential depending only on one parameter, the
s−wave scattering length a, which encodes all the relevant information of the interaction.

This method can be applied to both bosons and fermions with some important dif-
ferences. As a matter of fact, for example, BEC containing a large number of bosons is
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Binary collisions 10

stable only in the presence of interparticle repulsion. It collapses with attractive interaction
when the number of bosonic atoms exceeds a critical threshold [Donley et al., 2001]. On
the other hand, the Pauli exclusion principle prevents two fermions in the same energy and
spin state to undergo s−wave scattering. Therefore, with attractive interactions, a Fermi
system does not collapse like BEC. a can be tuned experimentally with the variation of an
external magnetic �eld, thanks to the Feshbach resonances, introduced in SubSec. 1.3.2.
Hence, if one considers two fermions of di�erent spin states, by tuning a, one can explore
the crossover from a BEC of composite molecules to a super�uid of weakly-bound Cooper
pairs, described by the Bardeen-Cooper-Schrie�er (BCS) theory [Bardeen et al., 1957a,b],
see SubSec. 1.6.1.

1.3.1 s-wave scattering length

Let us consider an elastic collision of two slow particles of massm1 andm2, respectively.
By neglecting small relativistic spin-spin and spin-orbital interactions, the solution of this
two-body scattering problem reduces to that of the Schrödinger equation in the centre-of-
mass frame: [

− ~2

2µ
∇2
r + V (r)

]
Ψ(r) = EΨ(r) , (1.11)

where µ = m1m2/(m1 + m2) is the reduced mass of the two atoms and r = r1 − r2

is the relative coordinate, whose modulus is r = |r|, and the energy is positive E > 0.
The relative interaction potential V (r) is isotropic 1 and, therefore, depends only on r.
Moreover, it can be described as a Van der Waals potential with 1/r6 attractive tail and
short range 1/r12 repulsion. Since such potential decays fast with r, it manifests a �nite-
range character, in the sense that the interaction is relevant only within a region of radius
r0, the so-called range of the potential.

Let us show that at low T, the s−wave scattering is dominant in Eq. (1.11). Since
V (r) is a central potential, the wave function Ψ(r) can be factorized in radial and angular
contributions as Ψ(r) = ψ`(r)Y

m
` (θ, φ), where Y m

` is the spherical harmonics with ` orbital
angular momentum and m its projection along z−direction. Each ` term corresponds to a
partial wave with angular momentum ~`. The resulting radial equation is[

− ~2

2µ

(
∂2

∂r2
+

2

r

∂

∂r

)
+ Veff (r)

]
ψ`(r) = Eψ`(r) , (1.12)

where we have introduced the e�ective potential

Veff (r) = V (r) +
~2`(`+ 1)

2µr2
(1.13)

which, for all partial waves ` > 0, is given by the sum of the original central potential and
a centrifugal repulsive barrier ∝ 1/r2. The height of this centrifugal barrier, converted
in temperature, is typically of the order ∼ 1 mK and below this T, p−waves (` = 1)
and higher-order partial waves are suppressed, leaving only the s−wave collisions (` = 0)
dominant. Since the typical ultracold range of T is ∼ µK ÷ nK, quantum gases are in the
s-wave two-body collision regime.

In the centre-of-mass frame, an incoming wave packet of wave vector k is scattered by
the central potential V (r), as represented in Fig. 1.2.

Far from the scattering center r � r0 (for the diluteness condition), the two-body wave
function, solution of Eq. (1.11), takes the asymptotic form [Landau, 1958]:

Ψ(r) ∝ eik·r + f(k, θ)
eikr

r
(1.14)

1An example of anisotropic potential is provided by dipolar interaction.
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Figure 1.2: 3D scattering from a central potential V (r). In the relative coordinate frame
an impinging plane wave of wave vector ki enters in the region r < r0, where V (r) is
considerable. After the scattering process, and far from the scattering centre, the wave
function is the superposition of an emerging plane wave of wave vector k and an outgoing
spherical wave, whose amplitude is modulated in space depending on θ, the angle between
k and the detection direction. From Bartolo [2014].

that is, the superposition of an ingoing plane-wave (unperturbed free particle) with wave
vector k =

√
2µE/~2 and an outgoing spherical wave (scattered particle), modulated by

the 3D scattering amplitude f(k, θ) (i.e. amplitude of the wave function in the scattered
state).

In the s−wave regime, by symmetry f is independent on θ and, at low scattering
energies, it becomes also independent on k, by reaching consequently a constant value:

lim
k→0

f(k, θ) = −a , (1.15)

where we have introduced the 3D scattering length a. Therefore, at low energies, the only
parameter describing the interactions is a. This means that the details of the potential V (r)
do not a�ect the low-energy two-body Physics. As a consequence, the low-temperature
scattering properties of many di�erent atomic species are actually described by a unique
Hamiltonian, that can be derived using any model potential, as long as it reproduces Eq.
(1.15) and which can replace the original V (r). In particular, one can choose a "universal"
zero-range potential, approximating the interaction with a contact interaction:

V (r) =
2π~2a

µ
δ(r) , (1.16)

where we can de�ne the 3D coupling constant g3D = 4π~2a/m form = m1 = m2 and δ(r) is
the Dirac function 2. We remind also that since the wave nature of atoms is relevant at low
T, interactions can no longer be described by point-like collisions of particles approaching
on distances ∼ r0, but interactions behave more as an overlap of waves with the new length
scale provided by a.

2See Cohen-Tannoudji [1998-1999] for the details of the choices of the interaction potential. The δ(r)
potential has to be regularized for the calculation of some physical quantities.

Collective oscillations of a trapped atomic gas in low D
& thermodynamics of 1D Bose gas

G. De Rosi



Binary collisions 12

From the knowledge of f , one can compute the scattering cross-section σ:

dσ

dΩ
=

{
|f(k, θ)|2, 0 < θ < π distinguishable particles

|f(k, θ)± f(k, π − θ)|2, 0 ≤ θ ≤ π/2 identical particles
(1.17)

where dΩ = 2π sin θdθ is the di�erential solid angle and + (−) is referred to identical
bosons (fermions), ensuring that the orbital part of the wave function must be symmetric
or anti-symmetric, depending on whether the total spin of the two particles is even or odd.
Since f is independent on θ in the s−wave channel, one gets, by using Eq. (1.15):

σ =

{ 4πa2 distinguishable particles
8πa2 identical bosons

0 identical fermions .
(1.18)

The role played by quantum statistics is evident: for identical bosons, constructive inter-
ferences lead to an ampli�ed cross-section, while destructive interferences cancel out the
s-wave scattering for identical fermions. Thus, in the low-energy regime, two distinguish-
able spin-states are required for collisions to occur in a Fermi gas.

1.3.2 Fano-Feshbach resonances

In SubSec. 1.3.1 we introduced the concept of scattering length a, which characterizes
the strength of the pseudopotential in the low-energy scattering. By comparing a with
the average interparticle distance n−1/3, we can conclude if the interactions are weak or
strong: {

n1/3a� 1 weak interaction

n1/3a� 1 strong interaction .
(1.19)

In this Subsection, we review the basic concepts of Fano-Feshbach resonances (FR)
which are a very important experimental tool to tune the value and the sign of a, and
therefore the two-body interaction in ultracold gases. This possibility to control with
high precision the interaction is typical of ultracold gas experiments and it depends on the
internal spin degrees of freedom of atoms which a�ect the interatomic interaction potential.
By considering di�erent spins, we can change the interaction by means FR, even if we have
already �xed the atomic species and so their scattering potential. Even if the interaction
is �xed, FR can tune a by selecting di�erent scattering channels. The idea of FR was
introduced independently by Feshbach [1958, 1962] and Fano [1935, 1961] in the �eld of
nuclear and atomic Physics respectively (see Chin et al. [2010] for a review).

FR take place when two atoms in their initial lowest energy spin states (i.e. open
channel) can be coupled to di�erent �nal states (i.e. closed channel) by a collision, see
Fig. 1.3. If the coupling is of hyper�ne kind, the transition involves only spins and it
is a�ected by an external magnetic �eld B. In this special case, we refer to magnetic
FR, but in general, we refer to FR when the coupling is induced by the variation of an
external parameter like B. Therefore, FR work not only for atoms in di�erent internal
(i.e. spin) states but also for identical and di�erent atoms (i.e. of di�erent species). The
most important example is given by the magnetic FR, because, applied to fermionic atoms,
lead to the realisation of strongly interacting Fermi gases and to explore the whole BCS-
BEC crossover, see Sec. 1.6. In addition, FR can be obtained by coupling the open and
the closed channel with radio-frequency or optical radiation. The latter method [Fedichev
et al., 1996, Theis et al., 2004] su�ers from heating problems and this makes it less suitable
compared to magnetic FR for ultracold atoms experiments.

The open or background channel, given by the interaction potential Vbg and the scatter-
ing length abg, corresponds to the ground state spin con�guration of the incoming particles.
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We can consider also another scattering channel, described by the potential Vc, given by
di�erent spin states. Thus, the energy of the closed channel changes with an external
magnetic �eld B. Moreover, it admits a bound state with energy Ec, Fig. 1.3.

Figure 1.3: Schematic representation of the two-channel model for the Feshbach resonances
(FR). Two particles scatter with energy E in the open channel, given by the background
interaction potential Vbg. Another scattering channel given by, for instance, a di�erent spin
con�guration of the incoming particles, is the closed channel described by the potential Vc.
The closed channel admits a bound state with energy Ec. If E ∼ Ec, the scattering cross
section in the open channel is resonantly enhanced. From Chin et al. [2010]. Copyright c©
2010, American Physical Society.

If the scattering energy E, entering in Eq. (1.11), is far from Ec, the particles do not
feel the closed channel and a = abg. On the other hand, by tuning B, Ec ∼ E and we
say that the closed-channel bound state is resonant with E. This leads to an enhancement
of a and thus also of the cross section. From the experimental point of view, FR tune a
by means a static B which changes the relative distance between the open and the closed
channel.

For special values of B, if Ec crosses the zero energy point, Fig. 1.3, a is divergent
and one gets the resonance. The width of the resonance ∆ is expressed as a range of B
and it depends on the coupling strength between the open and the closed channel. This
coupling leads to a dressed bound state in the closed channel given by the open channel
and features also the dependence on B of the scattering length a [Moerdijk et al., 1995]:

a(B) = abg

(
1− ∆

B −B0

)
, (1.20)

where at B = B0, the resonance occurs: a diverges (1/a = 0) and drops out of the problem
(unitary regime). Eq. (1.20) is plotted in Fig. 1.4. For B = B0 +∆, a = 0 and one reaches
the non interacting limit. If B is far from B0, the scattering length tends to be equal to
its background value a→ abg.

We note also that both ∆ and abg can be either positive or negative like a. In particular,
by changing FR adiabatically from a negative to a positive value of a, one can observe the
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Figure 1.4: Scattering length a as a function of the external magnetic �eld B in a Feshbach
resonance, Eq. (1.20). The resonance occurs for B = B0 and has width ∆. From Ferrier-
Barbut [2014].

formation of a dimer state, composed by two atoms [Chin et al., 2010]. In particular, close
to the resonance, this bound state is strongly dressed, Eq. (1.20), and its binding energy
takes the typical value:

Eb = − ~2

ma2
, (1.21)

where a is also proportional to the spatial extent of the dimer wave-function.
We remark �nally that as experimentally shown by Inouye et al. [1998] for the �rst

observation of FR in an optically trapped BEC of Na atoms, we can conclude that the
two most important features of FR are the tunability of a and the fast loss of atoms in
the resonance region. Since this experiment investigates a BEC, it is natural to relate the
resonance to a strongly enhanced three-body recombination with the consequent molecular
formation for a Bose system. Therefore, when we refer to the unitary regime, we consider
mainly Fermi systems which are protected to molecular losses thanks to the Pauli exclusion
principle.

1.4 Super�uidity & Bose-Einstein condensation

The discovery of the super�uid state of matter marked the beginning of the explo-
ration of Quantum Physics at thermodynamic level in quantum many-body systems. In
this Section, we want to review the concept of super�uidity, its properties and how it is
connected to the phenomenon of the Bose-Einstein condensation, by analysing di�erences
and analogies between these two low-temperature quantum phases.

1.4.1 Historical Overview

Super�uidity was observed for the �rst time with the liquefaction of helium (with its
bosonic isotope 4He) in 1908 by Kamerlingh Onnes [1967]. While 4He reaches liquefaction
at T = 4.2 K, he succeeded in reaching temperatures as low as 1.5 K. Then, he used
this cold reservoir of liquid to cool down other materials. This led to the discovery of
superconductivity in mercury in 1911 which was marked by the absence of resistivity of the
system for temperatures below 4.2 K. In 1937, the experiments of Kapitza [1938] and Allen
and Misener [1938] allowed to understand that liquid 4He undergoes a super�uid phase
transition at 2.2 K, characterised by zero viscosity of the system. The low-temperature
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absence of electric resistance and viscosity are connected each other: superconductivity
is explained with the formation of Cooper pairs composed of electrons (fermions) in a
metal, as prescribed by the BCS theory [Bardeen et al., 1957a,b], while the super�uidity
in 4He is associated to the BEC of bosonic atoms [Tisza, 1938, 1947]. For the latter case,
London [1938] was the �rst who related super�uidity of 4He to BEC, by observing that the
experimental value of the super�uidity critical temperature is really close to the theoretical
prediction of the critical temperature of condensation for the ideal Bose gas at the same
density. A few years later, Landau [1941] provided the �rst theory of super�uids in terms
of the spectrum of elementary excitations of 4He. This led to the two-�uid hydrodynamics,
�rst suggested by Tisza [1940]. In 1972, Oshero� et al. [1972a,b] discovered the super�uidity
in the fermionic isotope 3He at temperature much lower than its bosonic twin (T < 2.6
mK). This very low critical temperature is needed to form pairs of fermionic 3He atoms.
This historical step was the bridge which related the super�uid 4He and superconductivity
phenomena. Finally, Leggett [1975] provided the theory describing the p-wave pairing in
3He, by modifying the BCS theory. In 1947, Bogoliubov developed the microscopic theory
of weakly interacting Bose gases, based on the BEC phenomenon. Moreover, the concept
of o� diagonal long range order [Penrose, 1951, Penrose and Onsager, 1956, Landau and
Lifshitz, 2013] was de�ned and its presence was related to BEC.

Di�erently from ultracold gases, liquid helium is a dense system: its average interatomic
distance is of the order of the range of interatomic forces (few Angstrom). It is characterised
by strong interactions which can mask most of the physical quantum features, Moreover, it
exhibits short-range correlations and quantum �uctuations which allow it to remain liquid
even at zero temperature. Only with the increase of the pressure, helium undergoes a
liquid-solid phase transition.

Since, in general, at very low temperatures, most of the materials undergo a solid phase
transition, no super�uid other than liquid helium was available until the �rst experimental
realisation of BEC in ultracold atoms [Anderson et al., 1995, Davis et al., 1995]. The
BEC phase is characterised by the velocity distribution reported in Fig. 1.5, which shows
the macroscopical occupation of the state with zero momentum at low T. During the
subsequent 22 years, an intense theoretical and experimental research was dedicated to the
investigation of ultracold gases as quantum systems as well as their properties, sign of a
super�uid phase transition, occurring at low temperatures.

In the following, we review the signatures of super�uidity shared by helium, both Fermi
and Bose atomic gases as well as BEC.

1.4.2 Properties of super�uidity

Super�uidity is strongly connected to BEC and they share some common properties.
The super�uid phase cannot be considered as a single phenomenon, but it is rather de�ned
by means its properties, reviewed in this Subsection.

In general, every super�uid can �ow through capillary tubes and slits without dissi-
pation of energy: its shear viscosity is zero. When, in 1937, Kapitza, Allen and Misener
discovered super�uidity in 4He, they measured its viscosity in capillary tubes at T < 2.2
K and they found that it exhibits non-viscous properties [Wilks and Betts, 1987]. This
phenomenon was explained by Landau [1941], who noticed that the �ow in a super�uid
occurs without dissipation (i.e. excitations) below a certain critical velocity, whose exis-
tence was proved by Raman et al. [1999] and Onofrio et al. [2000]. The Landau's criterion
for super�uidity �xes this critical velocity:

vc = min
p

(
ε(p)

p

)
(1.22)
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Figure 1.5: Velocity distribution of the BEC at di�erent low T for a gas of Rubidium
atoms. The BEC emerges as a peak around zero momentum, as the ground state becomes
macroscopically occupied. From Anderson et al. [1995]. Copyright c© 1995, American
Association for the Advancement of Science.

where ε(p) is the dispersion relation of elementary excitations of the system.
Moreover, a super�uid is described by a macroscopic wave function ψ(r), which implies

the phase coherence as experimentally proved with the interferences of condensates
[Andrews et al., 1997b, Bloch et al., 2000].

While the super�uid wave function can be expressed as ψ(r) = |ψ(r)|eiS(r) in module-
phase representation, the super�uid velocity is characterized by the gradient of the phase
S:

v =
~
m
∇S(r) (1.23)

where m is the mass of the super�uid particles. Therefore, the super�uid velocity, Eq.
(1.23) is always irrotational (∇× v = 0). The irrotationality is present also in BEC.

The phase S is always single-valued and this leads to the existence of quantized
vortices in every super�uid, but �rstly predicted in super�uid helium [Onsager, 1949,
Feynman, 1953, 1954] and experimentally observed in the same system [Hall and Vinen,
1956, Ray�eld and Reif, 1964] and only after even in ultracold gases [Matthews et al., 1999,
Madison et al., 2000, Abo-Shaeer et al., 2001, Zwierlein et al., 2005].

At T = 0, the macroscopic dynamics of every super�uid is described by the hydrody-
namic theory, which can be applied also to BEC.

This approach has been generalised at �nite temperature below the critical point of
super�uidity with the two-�uid model, �rst proposed for liquid helium [Tisza, 1938, Lan-
dau, 1941]. This theory provides the description of the dynamics of two �uids: a normal
�uid behaving like a Newtonian (i.e. classical) �uid and the super�uid component which
does not carry entropy and has no viscosity. In particular, the two-�uid hydrodynamic
theory predicts the existence of a second sound velocity associated to the presence of the
super�uid density. The second sound is an entropy wave, with constant pressure, where
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the super�uid and the normal densities oscillate with opposite phases. It is present not
only in 3He and 4He but also in quantum gases [Andrews et al., 1997a, Stamper-Kurn
et al., 1998, Hou et al., 2013b, Sidorenkov et al., 2013]. The experimental investigation of
second sound in quantum gases has provided a �rst measurement of the super�uid density.

1.5 Weakly interacting Bose-Einstein condensates

In this Section, we would like to consider the interactions in a BEC which are described
by the s-wave scattering length a.

If the interactions are attractive (a < 0), the BEC is unstable and it collapses above a
critical threshold of the number of atoms, of the order of 1000 [Bradley et al., 1997, Sackett
et al., 1999, Gerton et al., 2000, Donley et al., 2001, Roberts et al., 2001]. An ideal BEC
(a = 0) is stable, but the thermalization is forbidden because of the absence of interatomic
collisions. Moreover, it is not super�uid, because its critical velocity for super�uidity
vanishes, as prescribed by the Landau's criterion, see Sec. 1.4.2. The strongly interacting
unitary regime (1/a = 0), is unstable for a BEC, due to the three-body losses depleting the
gas. Finally, the weakly-interacting BEC, with atoms repelling each other (a > 0), has the
Bogoliubov excitation spectrum fully compatible with the Landau's criterion, therefore,
it can be considered as super�uid. Therefore, it exhibits some typical properties of every
super�uid, like quantized vortices [Matthews et al., 1999, Madison et al., 2000, Abo-Shaeer
et al., 2001] and the critical velocity [Raman et al., 1999, Onofrio et al., 2000] in a stirred
BEC. For this reason, from now on, we discuss only the case of weakly-interacting BEC
with a > 0, which can be realised experimentally on the tail of a FR. In this Section,
we discuss also the basic concepts of the theory describing this interaction regime: the
Bogoliubov theory and the Gross-Pitaevskii equation.

1.5.1 Bogoliubov theory

At T = 0, the weakly-interacting Bose gas is described by the Hamiltonian in the second
quantization, obtained for a contact interaction (1.16):

Ĥ =

∫
dr

(
~2

2m
∇ψ̂†∇ψ̂ +

g

2
ψ̂†ψ̂†ψ̂ψ̂

)
(1.24)

where g is the coupling constant

g =
4π~2a

m
, (1.25)

calculated within the Born approximation. Eq. (1.24) can be solved by using the Bogoliubov
(BG) prescription (also called mean-�eld (MF)) ψ̂ = ψ0 + δψ̂, with the perturbation
〈δψ̂〉 � 1 3, representing the depletion of the BEC. The ground-state condensate wave-
function ψ0 is not anymore an operator, but it is a complex quantity, see Eq. (1.40), which
assumes the role of the order parameter of the BEC, ψ0 =

√
n, with n the density of the

condensate, equal to the total value.
At the lowest order of approximation ψ̂ = ψ0, the ground-state energy is

E0 =
1

2
Nng , (1.26)

while the pressure

P = −∂E0

∂V
=

1

2
gn2 (1.27)

3The gauge symmetry ψ → eiαψ of Eq. (1.24) is broken for the onset of the BEC phase transition.
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which shows the condition of mechanical stability ∂n/∂P ≥ 0 for positive compressibility,
that an uniform BEC exists only for repulsive interaction a > 0. The chemical potential
is:

µ =
∂E0

∂N
= gn (1.28)

which can be combined with the LDA condition, see Eq. (1.8), to get the spatial density
pro�le in harmonically trapped con�gurations:

n(r) =
µ0

g

1−
∑

i=x,y,z

r2
i

R2
i

 (1.29)

where Ri =
√

2µ/(mω2
i ) is the Thomas-Fermi radius at which the density of the BEC

vanishes.
Quantum �uctuations, given by interactions, are responsible of the population of the

excited states, even if the system is strictly at T = 0. At the second order of approximation
in δψ, one �nally gets the BG dispersion relation of the elementary excitations of a BEC
[Bogoliubov, 1947]:

ε(p) =

√
v2
sp

2 +

(
p2

2m

)2

(1.30)

where the speed of sound is vs =
√

n
m
∂µ
∂n =

√
gn/m. Eq. (1.30) describes at low momenta

p the phononic spectrum ε(p) ∼ vsp, responsible of long wavelength excitations, while, at
high-momenta, the free-particle law ε(p) ∼ p2/2m+ gn.

By considering a renormalized scattering length a and the quantum �uctuation e�ect,
one �nally �nds the ground state energy per particle:

E0

N
=

1

2
gn+

1

2N

∑
p 6=0

[
ε(p)− gn− p2

2m
+
m(gn)2

p2

]
(1.31)

where the last term in the sum is given by the renormalization of a and it is present in
3D, but not in 1D, as we discuss in Chap. 6. By replacing the sum with the integral
in momentum space in Eq. (1.31), one �nally �nds the �rst correction (Lee-Huang-Yang
(LHY)), given by interactions, in the ground-state energy per particle [Lee et al., 1957,
Landau and Lifshitz, 1981, Pitaevskii and Stringari, 2016]:

E0

N
=

1

2
gn

(
1 +

128

15
√
π

√
na3

)
(1.32)

and in the chemical potential

µ = gn

(
1 +

32

3
√
π

√
na3

)
. (1.33)

The LHY correction is quanti�ed by a small value of the dimensionless gas parameter
na3 � 1. Therefore, one concludes that the MF approximation holds in the weakly-
interacting regime, see SubSec. 1.3.2. In Chap. 6 a similar LHY calculation will be
discussed, but in 1D. Thanks to FR, LHY correction has �nally been measured in BEC
[Papp et al., 2008, Navon et al., 2011].
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1.5.2 Gross-Pitaevskii equation

At T = 0, a BEC is described by the famous time-dependent Gross-Pitaevskii equation
[Gross, 1961, Pitaevskii, 1961]:

i~
dψ

dt
= − ~2

2m
∆ψ + Vext(r)ψ + g|ψ|2ψ , (1.34)

where ψ(r, t) is the wave-function of the BEC, connected to the density n = |ψ|2. It
coincides with the complex quantity ψ0 of the SubSec. 1.5.1. The coupling constant is
expressed by means the s-wave scattering length a, Eq. (1.25) and one considers an external
potential Vext, which can be of harmonic shape, Eq. (1.7). The terms in the right-hand-
side of Eq. (1.34) are, respectively, the kinetic, the trapping and the interaction energy
and they play an important role in the distinction of di�erent physical regimes.

Eq. (1.34) describes also the information of the stationary states (not depending on
time). Indeed, the time evolution of the order parameter is governed by the chemical
potential µ

ψ(r, t) = ψ(r)e−iµt/~ , (1.35)

and Eq. (1.34) becomes the time-independent Gross-Pitaevskii equation(
− ~2

2m
∆ψ(r) + Vext(r) + g|ψ(r)|2

)
ψ(r) = µψ(r) (1.36)

which has the shape of a non-linear Schrödinger equation, where the non-linearity comes
from the interaction term, proportional to the particle density n = |ψ|2.

If interactions can be neglected with respect to the trapping potential (ng � Vext) in
Eq. (1.34), one obtains the ideal gas limit, see Sec. 1.1, and the system is described by
the Schrödinger equation:

i~
dψ

dt
= − ~2

2m
∆ψ + Vext(r)ψ . (1.37)

In the stationary case, the solution of the corresponding Eq. (1.36) is the ground state of
the harmonic oscillator:

n(r) =
N

π3/2

e−x
2/a2x

ax

e−y
2/a2y

ay

e−z
2/a2z

az
(1.38)

where ai=x,y,z =
√

~/(mωi) is the harmonic oscillator length and N is the total number of
atoms in the BEC. Since a low collision rate implies a poor thermalization, these ideal non-
interacting BEC are di�cult to produce experimentally. Therefore, the most interesting
case is when interactions are not negligible.

In the opposite limit of strong interactions, the so-called Thomas-Fermi limit, one
neglects the kinetic term in the Gross-Pitaevskii equation (GPE), Eq. (1.34):

i~
dψ

dt
= Vext(r)ψ + g|ψ|2ψ . (1.39)

In this case, the solution of the stationary GPE (1.36) implies an equilibrium density
distribution with an inverted parabolic shape, Eq. (1.29).

In the homogeneous limit Vext(r) = 0, the stationary GPE (1.36) returns all the results
for the thermodynamics obtained with the Bogoliubov theory, see SubSec. 1.5.1. In par-
ticular, one gets the sound velocity vs =

√
gn/m which is the value obtained considering

only the long-wavelength elementary excitations of the Bogoliubov spectrum (1.30).
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The time-dependent GPE (1.34) describes the dynamics of the wave-function ψ(r, t) of
the condensate. This wave-function, also called order parameter, is normalized to the total
number of atoms

∫
dr|ψ(r, t)|2 = N and it can be expressed also as a complex quantity

ψ(r, t) =
√
n(r, t)eiS(r,t) , (1.40)

with S(r, t) the phase of the order parameter. By de�ning the time-dependent super�uid
velocity v(r, t) as a function of the phase S(r, t), see Eq. (1.23), one can easily show that
the GPE is completely equivalent to the two coupled equations of the density n = n(r, t)
and the velocity v = v(r, t):

∂n

∂t
+∇ (nv) = 0 , (1.41)

m
∂v

∂t
+∇

(
Vtrap(r) + gn− ~2

2m
√
n
∇2√n+

1

2
mv2

)
= 0 , (1.42)

called, respectively, the continuity equation and the Euler equation. Eqs. (1.41)-(1.42)
have the typical structure of the dynamical equations describing a super�uid at T = 0
[Pitaevskii and Stringari, 2016]. In Eq. (1.42), there is only one term ∼ ~2∇2√n/

√
n

which depends explicitly on the Planck constant: it is called quantum pressure. As we
discuss in Chap. 3, these equations are used to study collective oscillations, under certain
approximations.

1.6 Fermi super�uids

Di�erently from the bosonic case discussed in Sec. 1.5, Fermi gases are more stable in
all ranges of interaction accessible. This striking stability is ensured by the Pauli exclusion
principle, not present in Bose gas, responsible for the Fermi pressure which prevents the
collapse at macroscopical level. This pressure is present in a lot of di�erent systems,
such as ultracold Fermi gases and neutron stars, where it can reach very high values, by
counterbalancing the gravitational collapse. On the microscopical scale, the Pauli principle
prevents the formation of pairs composed by two fermions with the same spin and the
three-body collisions in a two-component gas.

In this Section, we discuss all interaction regimes which can be reached experimentally
by means a FR in an ultracold Fermi gas with two spin components. The importance of
these quantum gases lies, above all, in the fact that they can be used as quantum simulators
of other more complex many-body systems, which cannot be realised or their interaction
cannot be investigated easily nor manipulated, like in atomic gases.

1.6.1 BEC-BCS crossover

The experimental realisation of a degenerate [DeMarco and Jin, 1999] and super�uid
[Regal et al., 2004] Fermi gas had success only after some years of the �rst BEC. The reason
of this is related to the Pauli exclusion principle, which forbids the s-wave collisions, hence
it prevents the thermalization between indistinguishable fermions at low T. Therefore,
evaporative cooling techniques cannot be applied to Fermi systems. On the other hand,
more advanced and recent experimental techniques have allowed the cooling of a Fermi
gas. An example of these is the sympathetic cooling, where fermions thermalize with
bosons, previously evaporatively cooled [Schreck et al., 2001]. Another technique consists
in trapping two di�erent fermionic species (either di�erent atoms or spin states) between
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which collisions can occur [DeMarco and Jin, 1999]. In particular, the last option is really
e�cient in the unitary limit, where the cross-section is large.

From now on, we consider only the two-spin-component Fermi gas. Its super�uid
character depends not only on T, but also on the interaction parameter kFa, where kF is
the Fermi wave vector, de�ned through the Fermi energy, EF = ~2k2

F /(2m). As already
discussed in SubSec. 1.3.2, the value of a can be changed by using the FR and it determines
di�erent super�uid regimes.

• If kFa � 1, with a > 0, the gas is in the BEC limit. It is characterized by a
strong attraction between fermions, responsible of the formation of bosonic pairs which
undergo BEC [Zwierlein et al., 2003, Greiner et al., 2003, Jochim et al., 2003, Zwierlein
et al., 2004, Regal et al., 2004, Bourdel et al., 2004, Bartenstein et al., 2004a, Partridge
et al., 2005]. The binding energy of such molecules is given by Eq. (1.21) and,
due to the Pauli exclusion principle, the interaction between dimers is repulsive with
scattering length equal to ad = 0.6a [Petrov et al., 2004]. Leyronas and Combescot
[2007] showed that the EOS of this dimer gas is the same of that of the BEC, also
including the LHY correction, as observed experimentally by Navon et al. [2010].
• If kF |a| � 1, with a < 0, the gas is in the BCS regime. It is characterised by
a weak attraction between fermions of opposite momenta and spins, responsible for
the formation of Cooper pairs in momentum space, as predicted by the BCS theory
of superconductors [Cooper, 1956] 4. Di�erently from the BEC regime, for which
the pairing has a two-body character, in BCS limit, the pairing has a many-body
nature, thanks to the presence of the Fermi sea. The binding energy of Cooper pairs
is equal to the gap ∆ appearing in the excitation spectrum at the Fermi surface. By
using a variational many-body wave function, Bardeen et al. [1957a,b] have shown
that fermions, with arbitrarily small attractive interaction, form Cooper pairs which
exhibit a super�uid character.
• If kF |a| → ∞, the gas is in the strongly interacting (unitary) limit. Since a, which
is the characteristic length of the interaction, diverges, the only remaining length
scale is given by the interparticle distance n−1/3, by making the system universal
and not depending on the model. In fact, ultracold unitary fermions can be used
to simulate other systems with resonant interactions, like neutron stars and complex
systems [Bloch et al., 2012] or high-TC superconductors [Randeria et al., 1989, Sá de
Melo et al., 1993]. Given its universality, the unitary Fermi gas (UFG) is characterized
by an EOS proportional to that of the ideal Fermi gas (IFG) at T = 0:

µ = ξBEF , (1.43)

where ξB is the dimensionless Bertsch parameter, which encodes all the information
of the resonant interactions of the system. From the theoretical point of view, the
study of the UFG is really challenging, because, since in the theory there is no any
small parameter, perturbative methods cannot be applied. Therefore, experimental
measurements of ξB are really important in this case, by providing a benchmark for
many-body approaches and allowing a comparison between theory and experiment.
The value of ξB has been measured by Nascimbène et al. [2010], Ku et al. [2012],
Van Houcke et al. [2012]:

ξB = 0.37(1) . (1.44)

The three regimes described above form the so-called BEC-BCS crossover [Zwerger,
2011], Fig. 1.6. The name "crossover" derives from the fact that, by changing a and

4The BCS theory was born in order to explain �rstly the existence of Cooper pairs between electrons
in a superconductor. In these systems, the attractive interaction is mediated by phonons of the crystalline
lattice [Frohlich, 1952, Bardeen and Pines, 1955], while neutral atoms in a super�uid interact each other,
without any "mediator".

Collective oscillations of a trapped atomic gas in low D
& thermodynamics of 1D Bose gas

G. De Rosi



Fermi super�uids 22

Figure 1.6: Three regimes of the whole BEC-BCS crossover. Fermionic pairs are bounded
by a blue line. In the BEC limit (a), the pair size is much smaller than the interparticle
distance, while the opposite occurs in the BCS regime (b). In the unitary limit (c), the
two typical lengths are of the same order. From Delehaye [2016].

regime, there is no additional phase transition. The experimental realization of the BEC-
BCS crossover was early suggested by Leggett [1980], Nozières and Schmitt-Rink [1985].
The whole crossover exhibits super�uidity at T = 0, with the presence of quantized vortices
[Zwierlein et al., 2005] and of the critical velocity [Miller et al., 2007, Weimer et al., 2015,
Delehaye et al., 2015]. As discussed in Fig. 1.6, the size of pairs varies along the crossover
[Veeravalli et al., 2008]. Even the critical temperature TC of super�uidity varies from a weak
dependence on a (as shown for atomic BECs by Baym et al. [2001] and Smith et al. [2011])
in the BEC limit to an exponentially small value in the BCS regime TC ∝ TF e

−π/(2kF |a|),
by crossing its maximum value in the unitary limit [Haussmann et al., 2007].

The BEC-BCS crossover can be studied also at �nite T. In this regime, the UFG has
been investigated by Nascimbène et al. [2010], Ku et al. [2012] and its EOS agrees with
the diagrammatic Monte-Carlo method [Van Houcke et al., 2012]. Finally, the presence of
a super�uid phase transition was proven with the critical temperature TC = 0.167(13)TF
[Nascimbène et al., 2010, Ku et al., 2012, Navon et al., 2013].
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Chapter 2

Ultracold gases in low dimensions

By dimension, we simply mean an independent

direction in which, in principle, you can move; in

which motion can take place. In an everyday

world, we have left-right as one dimension; we

have back-forth as a second one; and we have

up-down as a third.

Brian Greene

In the typical experimental situations, an ultracold gas is trapped. If the trapping
is tight along one or two spatial directions, the atomic cloud reaches low dimensional con-
�gurations. The interest in low dimensional Physics is related to the presence of striking
phenomena, not present in the 3D counterpart. For example, new super�uid phase transi-
tions emerge, like the Berezinskii-Kosterlitz-Thouless (BKT) in 2D. Moreover, new quan-
tum degenerate states can be observed like the quasi-condensate and the Tonks-Girardeau
regime, where the last one is typical of 1D con�gurations.

This Chapter is entirely devoted to low dimensional atomic gases. First of all, we
discuss in Sec. 2.1 how realizing experimentally both quasi-low D as well as deep low-D
geometries, for one- and two-dimensions.

In Sec. 2.2, we introduce the concept of long range order (LRO) which describes
the correlations between distant points in a gas. Its presence is related to BEC and
super�uidity. We discuss also how low dimensionality a�ects the behaviour of the LRO
and, consequently, the onset of the low-T phase transition.

Given its stunning Physics, Sec. 2.3 is fully dedicated to 1D and to the Lieb-Liniger
model. We stress how this theory is more general than the Bogoliubov approach, discussed
in the last Chapter, by including also the strongly-interacting regime which corresponds
to the Tonks-Girardeau (TG). In this limit, the gas behaves like an ideal Fermi system.
In addition, we study the peculiar spectrum of elementary excitations, which exhibits a
two-fold nature, and some interesting analogies with the Bogoliubov spectrum, the soliton
and the ideal Fermi gas, depending on the strength of the interatomic interaction. We
investigate also the �nite-temperature generalisation of the Lieb-Liniger model, whose
theory was formulated by Yang and Yang in 1969. This Chapter is closed with a very
general overview of the problem of thermalization in 1D.

Readers interested in more extended discussions can see Mazets et al. [2008], Mazets
and Schmiedmayer [2009, 2010], Mazets [2011], Pitaevskii and Stringari [2016], on which
this Chapter is based.
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2.1 Low dimensions

In the �rst Chapter we have studied 3D systems. For harmonically trapped gases, see
Eq. (1.7), this is achieved by the constraint that the chemical potential be much larger
than the trapping oscillator frequencies: µ � ~ωi with i = x, y, z 1. Under this condition
the equation of state of 3D uniform system can be used in the LDA (1.8), which takes into
account the inhomogeneities caused by the external trapping potential.

By tuning the shape and the intensity of the trapping potential one can realise exper-
imentally dilute and cold gases in highly anisotropic con�gurations where the motion of
particles is quenched in one or two dimensions. This is accomplished by using optical and
magnetic techniques which can be applied to both Bose and Fermi gases. These new low
dimensional systems can show a deeply di�erent behaviour, for the equilibrium and the
dynamical properties.

Low dimensional systems always live in the 3D world and their actual realisation is
based on proper trapping conditions. It is then important to distinguish between con�g-
urations which seem to be low dimensional only from a geometrical point of view (with
the ratio between the axial Rz and radial R⊥ size much smaller or larger than unity, but
from a local point of view they have a 3D nature) and true low dimensional systems whose
quantum and thermal motion is frozen in one or two directions. In the �rst case, we use
the notation of pancake (Rz � R⊥) and cigar (Rz � R⊥) con�gurations, while in the
latter case we use the notation of 2D and 1D systems. Let us discuss all possible cases in
detail.

We �rstly investigate a 3D gas which occupies a surface A and it is axially con�ned by
the harmonic potential mω2

zz
2/2.

If one considers the pancake regime [Petrov et al., 2000a], the system is e�ectively 3D
and many con�gurations of the harmonic oscillator Hamiltonian are excited in the axial
(z) direction. In this limit, the system keeps locally its original 3D feature even though,
from a geometrical point of view, it looks 2D if

√
A� Rz, see Fig. 2.1.

Figure 2.1: A collection of pancakes. From IQOQI.

The local 3D nature (µ � ~ωz ) is ensured by the application of the LDA (1.8) along

1This condition holds at T = 0. At high T, one requires also kBT � ~ωi.
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the z-axis, which allows the derivation of the 2D EOS with the integration over z of the
3D EOS, see Appendix A.

If the axial trapping is tight, a deep 2D regime can be reached. The many-body wave
function approaches the Gaussian ground-state of the axial harmonic oscillator. The system
has lost its local 3D nature (µ � ~ωz) and, consequently, LDA cannot be applied along
the z-direction. In this case, the 2D EOS is derived from low-dimensional approaches, see
Appendix A.

If the gas is isotropically trapped also in the plane, one should consider the harmonic
potential of the form mω2

⊥r
2
⊥/2, with ω⊥ = ωx = ωy and r⊥ =

√
x2 + y2. Both pancake

and 2D geometries are reached with the condition that the planar trapping is weaker than
the axial con�nement ωz � ω⊥. In addition, LDA can be applied along the r⊥ direction
for large enough systems satisfying the condition µ� ~ω⊥.

A similar analysis can be carried out for a system of length Z con�ned radially by the
harmonic potential of the shape mω2

⊥r
2
⊥/2.

In 3D cigar geometry, many states of the harmonic oscillator Hamiltonian are excited
in the radial direction. In this limit, the gas keeps locally its original 3D nature although,
from a geometrical point of view, it looks 1D if L� R⊥, see Fig. 2.2.

Figure 2.2: A collection of cigars. From IQOQI.

The local 3D nature (µ � ~ω⊥) is ensured by the application of the LDA (1.8) along
the r⊥-axis, which allows the derivation of the 1D EOS with the integration over r⊥ of the
3D EOS, see Appendix A.

The 1D regime is reached for tight radial trapping. In this case, the solution of the
many-body problem approaches the Gaussian ground-state of the radial harmonic oscilla-
tor. The system has lost its local 3D nature (µ � ~ω⊥) and, consequently, LDA cannot
be applied along the radial direction. The 1D EOS is derived from low-dimensional ap-
proaches, see Appendix A.

If the gas is harmonically trapped along the z-direction by the potential mω2
zz

2/2, with
ωz � ω⊥, the 1D equilibrium density pro�le can be calculated by applying the LDA along
the z-direction (µ� ~ωz).

LDA regimes (pancake and cigar) have been realized both for Bose [Jin et al., 1996,
Mewes et al., 1996, Burger et al., 2002] and Fermi [Kinast et al., 2004, Bartenstein et al.,
2004a, Weimer et al., 2015] trapped gases. 2D [Görlitz et al., 2001, Rychtarik et al., 2004,
Desbuquois et al., 2012] and 1D [Görlitz et al., 2001, Greiner et al., 2001, Schreck et al.,
2001, Paredes et al., 2004] geometries have been also achieved experimentally.

Another way to obtain experimentally pancake geometries is to exploit the fast rotation
of the atomic cloud which leads to an increase of the number of atoms in planar directions
[Schweikhard et al., 2004].

In Chap. 3, we investigate the dynamics in these deep-low-D and quasi-low-D systems.
While the di�erence between these two kinds of geometries lies in the EOS, as we discuss in
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the next Chapter, they share the same deep-low-D nature for the lowest energy dynamics
(like collective oscillations). Therefore, both LDA regimes, even if locally are considered as
3D systems, they behave as deep low-D con�gurations from the kinematic point of view.

2.2 One-body density matrix and long range order in low

dimensions

As we have discussed in the last Chapter, symmetry breaking and the order parameter
are the underlying concepts of BEC. In this Section, we introduce the concept of LRO
exhibited by the one-body density matrix in the presence of BEC, and by the two-body
density matrix for the BEC-BCS crossover. We investigate how the behaviour of LRO
changes in low dimensionality.

Let us introduce the one-body density matrix [Pitaevskii and Stringari, 2016]:

n(1)(r, r′) = 〈ψ†(r)ψ(r′)〉 (2.1)

where ψ(r) and ψ†(r) are the annihilation and the creation �eld operators of a particle at
position r. Moreover, n(1)(r, r′) is an hermitian matrix and it is de�ned on the average 〈...〉.
Eq. (2.1) is a very general de�nition holding for every trapped as well as homogeneous
system, for every quantum statistics, in equilibrium and in dynamical evolution 2. By
considering the diagonal components r = r′ of the one-body density matrix (2.1), one �nds
the density of the system n(r) = n(1)(r, r), which provides the total number of particles
N =

∫
drn(r).

At �nite T, in the thermodynamic equilibrium, the average 〈...〉 in Eq. (2.1) is weighted
on the probability of the system to occupy n di�erent states (e−En/(kBT )). The eigenstates
ψn of the Hamiltonian are associated to the eigenvalues En and the one-body density
matrix becomes:

n(1)(r, r′) =
1

Q

∑
n

e−En/(kBT )n(1)
n (r, r′) , (2.2)

normalized to the partition function Q =
∑

n e
−En/(kBT ).

We de�ne the momentum p distribution

n(p) = 〈ψ†(p)ψ(p)〉 (2.3)

which can be connected to Eq. (2.1) by a Fourier transform

n(1)(|r− r′|) =
1

LD

∫
dpn(p)eip·(r−r

′)/~ (2.4)

holding for an uniform (without an external trap) and isotropic system with dimension D
and length L. From Eq. (2.4), we observe that the one-body density matrix depends only
on the modulus of the relative distance |r−r′| between two points in the system [Dalibard,
2015-2016].

Let us consider a 3D (D = 3) uniform and isotropic system of bosons. For a normal gas,
n(p) exhibits a smooth behaviour at low momenta and, from Eq. (2.4), one observes that
n(1)(|r−r′|) vanishes at divergent relative distance |r−r′| → +∞. On the other hand, in the
BEC phase, since n(p) contains a delta-function which marks the macroscopic occupation
of the single-particle ground state p = 0, Eq. (2.4) implies that at large distance the
one-body density matrix tends to a �nite value

lim
|r−r′|→+∞

n(1)(|r− r′|) = n0 (2.5)

2Out of equilibrium, Eq. (2.1) depends on time t.
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where n0 is exactly the density of the condensate fraction. This peculiar behaviour of
n(1)(|r− r′|) is the o�-diagonal-LRO, since it involves the non-diagonal components r 6= r′

of Eq. (2.1) [Penrose, 1951, Penrose and Onsager, 1956, Landau and Lifshitz, 2013]. The
o�-diagonal LRO (2.5) holds also in the presence of repulsive interactions and �nite T by
which n0 is modi�ed. In fact, while in an ideal Bose gas all atoms are in the BEC at T = 0,
with interactions n0 < n even at T = 0. Moreover, for T above the critical temperature
TC of BEC, n0 = 0, because the gas is in the normal phase.

In the case of BEC-BCS crossover for a 3D Fermi gas, see SubSec. 1.6.1, despite the
di�erent nature of the regimes in this crossover, they all exhibit super�uidity at low T.
They all share the o�-diagonal LRO at big relative distances, for the two-body density
matrix [Gor'kov, 1958]:

lim
r→+∞

〈ψ†↑(r2 + r)ψ†↓(r1 + r)ψ↓(r1)ψ↑(r2)〉 = |F (r1, r2)|2 (2.6)

where we have introduced the pairing �eld F (R, s) = 〈ψ↓(R+ s/2)ψ↑(R− s/2)〉, referring
to the spin-singlet pairing. The pairing �eld F (R, s) de�nes also the order parameter
[Pitaevskii and Stringari, 2016]. The vectors R = (r1 + r2)/2 and s = r1 − r2 are,
respectively, the centre-of-mass and the relative coordinate. Di�erently from the case of
the BEC, Eq. (2.1), the o�-diagonal LRO for a Fermi super�uid involves the expectation
value of the product of two �eld operators, Eq. (2.6).

In the following, we discuss the behaviour of LRO in low D for both quantum statistics
as well as T = 0 and �nite T. For example, in a homogeneous Bose gas, the dimensionality
strongly a�ects the presence and also the nature of the BEC. Indeed, the absence of a true
condensate in both 2D and 1D at �nite T is due to the long-wave �uctuations of the phase
S of the order parameter [Popov, 2001], as prescribed by the Hohenberg-Mermin-Wagner
theorem [Mermin and Wagner, 1966, Hohenberg, 1967].

We study brie�y how, while the presence of an external harmonic trap favours the
BEC, the T, the interactions as well as the low D tend to destroy the condensate. The
combination of these e�ects has as consequence the birth of new quantum degenerate states
not present in 3D, like the quasi-condensate in 2D and both the quasi-condensate and the
TG in 1D.

2.2.1 LRO in two dimensions

In the uniform 2D Bose gas a true BEC can exist only at T = 0 regime, for which bosons
occupy the condensate. The gas exhibits LRO for both the ideal and the weakly-interacting
case.

In this Subsection, we focus more on the behaviour of the LRO for a 2D Bose gas at
�nite T. For the Hohenberg-Mermin-Wagner theorem [Hohenberg, 1967], in uniform 2D
con�gurations, the thermal �uctuations of the phase S of the order parameter (1.40) destroy
the BEC and n(1) (2.1) vanishes with a power law at large relative distances, without
exhibiting LRO [Kane and Kadano�, 1967]. The exponent of this power law depends
explicitly on T, by showing the important role played by thermal �uctuations. The long-
wavelength (i.e. small momenta) �uctuations of the phase S destroy the condensate, but
they preserve the irrotationality condition∇×v = 0 ensuring the super�uid behaviour. For
this reason, every system exhibiting a power-law decay of the one-body density matrix is
called quasi-condensate. This new quantum state, not present in 3D, describes a condensate
with �uctuating phase, by exhibiting a true BEC only locally. Experimental evidence for
quasi-condensation in a 2D atomic hydrogen gas has been reported by Safonov et al. [1998].

In a uniform 2D ideal Bose gas, there is no phase transition at �nite T. If one considers
repulsive interactions, they favour the presence of a peculiar super�uid phenomenon at
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su�ciently low T. In fact, one can de�ne the BKT critical temperature TBKT , which char-
acterizes the super�uid BKT transition [Berezinskii, 1971, 1972, Kosterlitz and Thouless,
1973, Kosterlitz, 1974], observed experimentally by Bishop and Reppy [1978, 1980], Hadz-
ibabic et al. [2006], Cladé et al. [2009] and Tung et al. [2010]. For T > TBKT [Nelson and
Kosterlitz, 1977], there is the thermal 3 (and spontaneous) creation of free vortices which
characterizes a normal phase with an exponentially decay of n(1) (2.1) at large distances.
The absence of super�uid (SF) phase in this T regime has been observed by Choi et al.
[2013]. For T < TBKT , these vortices are bound in pairs with opposite circulation and the
system exhibits a quasi-condensate phase.

If one adds an external harmonic trap, the situation changes drastically. The trap, by
providing a �nite size of the system, introduces a lower bound for the moment and reduces
the phase �uctuations. In this way, the macroscopic occupation of the zero-momentum
ground state and so the BEC are favoured. At �nite T, di�erently from the uniform
gas, the BEC phase transition occurs with a critical temperature TC proportional to the
trapping frequency [Pitaevskii and Stringari, 2016]. This is true for the ideal Bose gas,
while in the weakly-interacting case, one has to distinguish between the true BEC taking
place at T � TC and the quasi-condensate at T < TC .

We close this Subsection by pointing out that the interaction, the T and the presence
of the trap a�ect the onset of a phase transition. The discrete nature of the lowest trap
levels emerges only if the interaction between particles which occupy a given level, is much
smaller than the level spacing. Otherwise, the interaction smears out the discrete nature
of the energy spectrum. The same happens for T. If the thermal energy kBT is much
smaller than the level spacing, the discrete structure of levels appears.

2.2.2 LRO in one dimension

In compressible 1D systems, the LRO is absent for quantum �uctuations of the phase
S, Eq. (1.40), even at T = 0 [Pitaevskii and Stringari, 1991, 2016]. In fact, as what
happens in 2D, the one-body density matrix n(1) decays with a power law at large relative
distance [Schwartz, 1977, Haldane, 1981]. On the other hand, di�erently from 2D at T 6= 0,
for 1D at T = 0 the exponent of this power law depends explicitly on the sound velocity,
pointing out the quantum nature of �uctuations at T = 0. This sound velocity varies
according to the interaction regime, from the weakly to strongly repulsive. In the latter
case, the system exhibits a novel quantum regime, typical of 1D: the Tonks-Girardeau
(TG), which is discussed in Sec. 2.3 and whose n(1) exhibits the same behaviour of that
of a 1D ideal Fermi gas [Mehta, 2004]. In the case of strongly attractive 1D Bose gas, the
system enters in the Super Tonks-Girardeau (STG) regime [Astrakharchik et al., 2005a],
for which correlations decay faster than in the TG case.

Let us consider now the �nite T. Phase transitions cannot occur in 1D at �nite T
[Landau and Lifshitz, 2013]. Indeed, the one-body density matrix n(1) decreases exponen-
tially at large distance [Reatto and Chester, 1967, Kane and Kadano�, 1967], by showing
the crucial role of thermal �uctuations in destroying the LRO. Moreover, this decrease is
faster for higher T.

For what concerns the ideal Bose gas in uniform con�gurations, there is no BEC at
�nite T. If one adds the trap to this system, one has a sharp crossover to BEC. In this case,
the decrease of T below an e�ective critical temperature TC , proportional to the trapping
frequency, gives rise to the increase of the population of atoms in the ground state, which
becomes macroscopic, as observed by Ketterle and van Druten [1996].

3We notice that in 3D the thermal creation of quantized vortices is forbidden, because it implies a
macroscopic cost of energy, which is proportional to their diameter.
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In the weakly interacting regime at low T, the density �uctuations are suppressed and
the gas is in the quasi-condensate state (even at T = 0 [Luxat and Gri�n, 2003]). The use
of Bogoliubov theory in this system is discussed by Mora and Castin [2003].

By adding the harmonic trap in the interacting Bose gas at T = 0, there is the true
BEC, with the density pro�le calculated from the GPE, see SubSec. 1.5.2. At �nite T,
one has to de�ne two T scales: the phase �uctuation T, Tφ, and the degeneracy T, Td.
These two temperatures de�ne three di�erent regimes: at T � Tφ, the system exhibits a
true BEC, for Tφ < T < Td, there is the quasi-condensate, while for T � Td, the gas is in
the classical regime [Petrov et al., 2000b].

The exponential decay behaviour of n(1) is exhibited also by trapped cigar con�gura-
tions, but with some important di�erences given by the quasi-1D geometry. In particular,
one can consider a quasi-condensation T, TΦ, and the 3D critical T of the BEC, TC . For
T < TΦ, these elongated systems are characterised by the presence of a true BEC, since
thermal �uctuations are small. For TΦ < T < TC , there is the appearance of a quasi-
condensate, as observed experimentally by Dettmer et al. [2001], Hellweg et al. [2001],
Richard et al. [2003], Gerbier et al. [2003], Hellweg et al. [2003]. The theory of phase
�uctuations in these highly elongated trapped Bose gases was developed by Petrov et al.
[2001].

Before ending this Subsection, let us consider the case of 1D Fermi gases whose one-
body density matrix [Haldane, 1981] behaves di�erently from the bosonic case. For an
ideal Fermi gas, the one-body density matrix n(1) decays as sin(πn|z − z′|)/|z − z′|, where
n is the 1D density and |z−z′| denotes the relative distance along the axial direction. This
behaviour re�ects the typical jump from 1 to 0 in the momentum distribution at the Fermi
surface k = ±kF . In the interacting case, the n(1) decays faster and the jump at the Fermi
surface disappears [Pitaevskii and Stringari, 2016].

2.3 Lieb-Liniger model

In this Section we investigate the Lieb-Liniger model, which describes N identical
bosons interacting with s-wave contact repulsive force, in uniform 1D con�gurations at
T = 0. At �nite T, this system has been generalised by Yang and Yang [1969], see SubSec.
2.3.1. Moreover, it is integrable and, consequently, it does not exhibit thermalization as
discussed in SubSec. 2.3.2.

The Lieb-Liniger model is more general than the 1D mean-�eld Gross-Pitaevskii (GP)
theory, because it takes into account also small values of the density [Pitaevskii and
Stringari, 2016]. In the high density limit 4, the model reproduces the same results of
GP theory.

The research of 1D bosons began with Girardeau [1960] who studied only the case of
in�nite repulsion. This limit, present only in 1D, is the Tonks-Girardeau (TG) regime.
After some years, Lieb and Liniger [1963] provided the whole description of 1D Bose gases.
These particles are characterised by a repulsive zero-range interaction. The Lieb-Liniger
model describes an exact solution of the many-body problem. This solution is numerical
and it depends on the interaction strength, but it has two analytical limits:

• Bogoliubov regime (BG): weak interaction and high density;

• Tonks-Girardeau regime (TG): strong interaction and small density.

4The validity of the 1D mean-�eld theory requires that the condition ξ/d� 1 for the ratio between the
healing length ξ ∼ ~/(mvs) and the interparticle distance d = n−1 be satis�ed. This gives the condition
n|a1D| � 1 ensured for large values of the 1D density n. a1D is the 1D scattering length. We notice that
this inequality is opposite to the 3D weakly-interacting gas, compare Eq. (1.19).
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In the TG regime, the deviations from the mean-�eld BG regime are relevant and the gas
exhibits the ideal Fermi gas behaviour.

The Lieb-Liniger Hamiltonian is

H = − ~2

2m

N∑
i=1

∂2

∂z2
i

+ g1D

N∑
i>j

δ(zi − zj) (2.7)

where the 1D coupling constant can be expressed as

g1D = 2a~ω⊥ =
2~2

m

a

a2
⊥

= − 2~2

ma1D
(2.8)

where we have used a1D = −a2
⊥/a, being a and a1D the 3D and the 1D scattering length,

respectively, while a⊥ =
√

~/mω⊥ is the radial harmonic oscillator length. In the Lieb-
Liniger model, since the interaction is repulsive, the coupling constant is positive g1D > 0,
which implies a negative scattering length a1D < 0. Eq. (2.8) holds only if a⊥ � a. In
this regime, Eq. (2.8) has been obtained by averaging the 3D interaction over the radial
Gaussian density pro�le [Olshanii, 1998, Petrov et al., 2000b].

If the condition a⊥ � a is not satis�ed, the a1D should be renormalized and the 1D
coupling constant becomes:

g1D =
2~2a

ma2
⊥

1

1− Ca/a⊥
, (2.9)

with C ' 1.0326. For a → aCIR = a⊥/C, g1D is divergent and one reaches the so-
called Con�nement Induced Resonance (CIR). For repulsive interaction, one should require
0 < a < aCIR. Eq. (2.9) points out that one can tune the coupling constant g1D by varying
the strength of the radial harmonic trapping.

The Hamiltonian (2.7) can be diagonalized via Bethe-Ansatz in an exact way [Lieb and
Liniger, 1963]. Therefore, one can calculate the EOS of the system at T = 0, for every
positive value of g1D. The ground state energy per particle is

E0

N
(γ) =

~2

2m
n2e(γ(n)) , (2.10)

where n is the 1D particle density. In Eq. (2.10), the interaction parameter γ is de�ned
as:

γ =
mg1D

~2n
= − 2

na1D
(2.11)

and, as we study in the following, it plays a crucial role in determining the interaction
regime of the Lieb-Liniger model.

In order to calculate numerically the ground state energy per particle e(γ) of Eq. (2.10),
one should solve the following system of integral equations [Lieb and Liniger, 1963, Menotti
and Stringari, 2002]:

gλ(x) =
1

2π
+

1

π

∫ 1

−1
gλ(y)

λ

λ2 + (x− y)2
dy, (2.12)

γ(λ) = λ

(∫ 1

−1
gλ(x)dx

)−1

, (2.13)

e(γ) =
γ3

λ3

∫ 1

−1
gλ(x)x2dx . (2.14)

From Eq. (2.10), one calculates the chemical potential µ = ∂E0/∂N .
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In the BG regime of high density n|a1D| � 1, corresponding to the weak repulsive limit
γ � 1, Eq. (2.11), one gets the ground state energy:(

E0

N

)
BG

=
1

2
g1Dn (2.15)

and for the chemical potential
µBG = g1Dn . (2.16)

Both of the above results have the same shape of the corresponding quantities in the BG
theory for a 3D case, SubSec. 1.5.1, provided the 1D coupling constant and density.

In the opposite TG regime, the density is low n|a1D| � 1 and the interaction is strongly
repulsive γ � 1. In this case, one gets:(

E0

N

)
TG

=
~2π2n2

6m
, (2.17)

and

µTG = EF =
~2π2n2

2m
, (2.18)

where we recover the result that, at T = 0, the chemical potential is equal to the Fermi
energy EF . Since the interaction potential is highly repulsive, the bosons behave as im-
penetrable. In order to explain the physical interpretation of this regime, let us discuss a
scattering process in 1D. In this low-D, the scattering angle is always zero, therefore the
process is described only by the re�ection probability of the two colliding particles. When
the energies of the two particles tend to be zero, the re�ection probability tends to be one.
In the TG regime, since the T is zero, the only relevant energy scale is given by EF which
tends to be zero in the small density TG limit. In the TG limit, the eigenfunctions ΨB of
the interacting Bose gas can be mapped into the eigenstates ΨF of the 1D ideal Fermi gas
[Girardeau, 1960]

ψB(z1, ..., zN ) = |ΨF (z1, ..., zN )| (2.19)

where ΨF are given by the Slater determinants. The modulus in Eq. (2.19) ensures the
symmetry of the Bose-Einstein statistics, while, for zi = zj , ΨB = 0 for any pair of bosons,
re�ecting the impenetrability in the TG regime. The mapping (2.19) is reported in Fig.
2.3.

Figure 2.3: Mapping between the strongly repulsive spinless bosons (blue spheres) and the
ideal fermions (red spheres). We notice also that all fermions have all equal spins in order
to satisfy the Pauli exclusion principle.

The mapping (2.19) ensures also that all local physical quantities A have the same
average if calculated with the bosonic and the fermionic eigenfunctions:

〈ΨB|A |ΨB〉 = 〈ΨF |A |ΨF 〉 . (2.20)

For this reason, we conclude that the TG gas behaves really as an ideal Fermi gas (IFG)
in 1D, since they share a lot of physical observables like the density pro�le, the energies
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and the thermodynamic functions. Moreover the TG-IFG mapping holds also at �nite T
as one can show, for example, by calculating the speci�c heat [Pitaevskii and Stringari,
2016].

On the other hand, the non-local observables of the TG regime cannot be calculated
by using Eq. (2.20). For example, the momentum distribution n(p) of the TG system does
not coincide with that of the IFG, which exhibits the typical step behaviour, because, for
low momenta p→ 0, the TG n(p) diverges [Vaidya and Tracy, 1979].

The TG regime was observed experimentally �rstly in 2004 by Kinoshita et al. [2004]
and Paredes et al. [2004].

The spectrum of the elementary excitations of the Lieb-Liniger model was investigated
by Lieb [1963]. For every value of the interaction parameter γ, there are always two
di�erent branches (an upper and lower one), which coincide, at small momenta p, with
the linear phononic spectrum ε = vsp. In the BG regime, the upper branch tends to be
equal to the Bogoliubov spectrum (1.30), while the lower one is characterised by the same
dispersion relation of the solitonic excitations of the GPE [Kulish et al., 1976, Ishikawa and
Takayama, 1980]. In the opposite TG limit, the upper and the lower branch coincides with
the single-particle and the hole spectrum of the IFG, respectively. In Fig. 2.4, we report
the Lieb-Liniger excitation spectrum for two di�erent values of the interaction parameter
γ.

For attractive interactions g1D < 0, the ground-state (not uniform in space) describes
a bright soliton with negative values of energy [McGuire, 1964]. Moreover, for strongly
attractive interactions, there is the presence of an uniform and metastable gas, the Super-
Tonks-Girardeau (STG) regime [Astrakharchik et al., 2005a]. In addition, the energy of
the STG corresponds to that of hard-rods of length a1D

5. The STG regime was realized
experimentally �rstly by Haller et al. [2009].

2.3.1 Yang-Yang thermodynamics

At �nite arbitrary T, the Lieb-Liniger model has to be generalised with the Yang-Yang
theory [Yang and Yang, 1969].

In the thermodynamic limit, the Bethe-Ansatz solution for the Hamiltonian (2.7) can
be obtained by solving the following system of three coupled equations [Yang and Yang,
1969, Yang, 1970, Lang et al., 2015]:

ε(k) = −µ(c, T ) + k2 − Tc

π

∫ +∞

−∞

dq

c2 + (k − q)2
× ln

{
1 + exp

[
−ε(q)

T

]}
, (2.21)

2πfp(k)

{
1 + exp

[
ε(k)

T

]}
= 1 + 2c

∫ +∞

−∞
dq

fp(q)

c2 + (k − q)2
, (2.22)

∫ +∞

−∞
dkfp(k) = n , (2.23)

where we have set ~ = 2m = kB = 1 and the coupling constant c = g1D/2, for simplicity.
In Eqs. (2.21) - (2.22) - (2.23), ε(k) is the excitation spectrum energy, k are the quasi-
momenta, fp(k) is the particle quasi-momenta distribution function, and exp [ε(k)/T ] ≡
fh/fp, with fh the hole quasi-momenta distribution function. From Eq. (2.23), we notice
also that the fp(k) distribution is normalized to the density n.

From the above equations, one can calculate all the thermodynamic functions, with
some important limits [Yang and Yang, 1969]. At T = 0 this approach reproduces the

5Di�erently from the Lieb-Liniger model, in the STG regime, the coupling constant is negative g1D < 0
and so the scattering length is positive a1D > 0.
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Figure 2.4: Particle (thin solid line) and hole (bold solid line) dispersion relations of the
Lieb-Liniger model for γ = 29.4 (upper panel) and γ = 4.52 (lower panel). Upper panel:
dashed-dot and dashed-dot-dot curves are the ideal Fermi gas particle and hole excitation
energies, respectively. Lower panel: the dashed-dot line corresponds to the Bogoliubov
spectrum (1.30), while the dashed-dot-dot curve gives the GP soliton dispersion. From
Pitaevskii and Stringari [2016]. Copyright c© 2016, Oxford University Press.

Lieb-Liniger theory results, while for c = 0 and for c = +∞, it provides the description of
a free Bose and Fermi gas, respectively.

In Chap. 6, we calculate the chemical potential as a function of T for a broad range
of values of γ, by using the correspondence c ≡ γn from the above equations. We observe
that the chemical potential increases for larger values of γ, compare Eq. (2.16) with Eq.
(2.18).
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2.3.2 Problem of thermalization

The Lieb-Liniger model at T = 0 is a special example of integrable model [Thacker,
1981, Yurovsky et al., 2008], which has the number of conserved quantities equal to that
of the degrees of freedom. For this reason, it can be exactly solved by Bethe-Ansatz [Lieb
and Liniger, 1963]. This has as consequence that if one considers its dynamical evolution,
the system always remembers its initial con�guration and it does not thermalize by means
collisions between atoms. The absence of thermalization is a direct consequence of the
deep 1D geometry. As already anticipated in Sec. 2.3, during every collision in 1D, since
the scattering angle is always zero, bosons can simply weakly repel (BG regime) or being
impenetrable (TG) each other. During a scattering process, the moduli of the momenta of
the two colliding particles remain the same or are exchanged. For this reason, without a
redistribution of kinetic energy, the system cannot thermalize locally (and, consequently,
globally) through collisions.

The absence of thermalization for arrays of trapped 1D Bose gases has been experi-
mentally observed by Kinoshita et al. [2006]. In particular, by preparing the system in
an out-of-equilibrium con�guration, this experiment showed that thermal equilibrium is
not reached (the momentum distribution never becomes a Gaussian) even after thousands
of collisions between atoms. This is true for a broad range of values of the interaction
strength (from TG to intermediate coupling regime). The experiment of Kinoshita et al.
[2006] was particularly insightful because it was the �rst which demonstrated the lack of
thermalization in 1D Bose gases, which is compromised, together with the integrability, by
both harmonic trap and not perfect contact interactions.

In the following, we discuss what are the factors responsible for the breakdown of
integrability and also the entity of their action on the thermalization of 1D Bose gas
[Mazets et al., 2008, Mazets and Schmiedmayer, 2009, 2010, Mazets, 2011].

Let us consider the �nite T, see SubSec. 2.3.1, and the axial harmonic trap:

Vtrap(z) =
1

2
mω2

zz
2 , (2.24)

in the Lieb-Liniger model. As already discussed in Sec. 2.1, the presence of the radial
trapping is always ensured in order to reach the 1D regime. We require that the trap is
highly elongated ω⊥ � ωz. To implement the deep 1D quantum physics we require the
following conditions:

µ� ~ω⊥ kBT � ~ω⊥ (2.25)

for the chemical potential and the thermal energy, respectively. Since we want to investigate
how the T and the radial trapping may in�uence the integrability, let us relax the above
conditions in order to reach a quasi-1D regime:

µ < ~ω⊥ kBT < ~ω⊥ . (2.26)

Let us consider a collision of two identical bosons which are initially in the transverse
ground state of the radial trapping. If the collision is purely 1D, both atoms remain in
this ground state after the scattering process and thermalization does not occur. In order
to observe an energy exchange and a consequent thermalization, there should be a radial
excitation after the collision. In this case, the 1D condition a/a⊥ � 1 is violated, since
ω⊥ is small and the 1D coupling constant g1D of pairwise collisions depends on the radial
trapping due to the radial excitations, see Eq. (2.9) [Olshanii, 1998]. In particular, g1D

increases for higher values of the ratio a/a⊥. If one calculates the population rate of the
radial modes given by two-body collisions and compares it with the experimental values
[Ho�erberth et al., 2008], the contribution to the thermalization of pairwise collisions is
negligible [Mazets et al., 2008, Mazets and Schmiedmayer, 2009, 2010].
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Let us look for the thermalization contribution in the three-body collisions mediated
by radial excited states. This kind of scattering really leads to a non-negligible violation
of the integrability of the system [Mazets and Schmiedmayer, 2010] and so, it should be
considered as a correction to the Lieb-Liniger model, being responsible for thermalization
processes. The three-body population rate of radial modes is dominant compared with the
two-body one discussed above, by considering the typical experimental values [Ho�erberth
et al., 2008].

Thermalization is a�ected also by the interaction strength because three-body collisions
require the presence of three atoms at the same location. Hence, thermalization is easier
for the BG regime, di�erently from the TG limit for which atoms behave as ideal fermions.
Therefore, the stronger is the delta-like pairwise repulsive interaction, the smaller is the
probability of �nding three particles close and, consequently, thermalization is suppressed
[Mazets and Schmiedmayer, 2009, 2010]. Thus, a quasi-1D system close to the TG limit is
almost integrable.

Finally, we would like to discuss the in�uence of a weak (ω⊥ � ωz) axial trapping
(2.24) on the integrability of the 1D Bose gas [Mazets, 2011]. For this purpose, we neglect
the radial excitations. By considering the typical experimental values [Kinoshita et al.,
2006] of quantities entering in the theory [Olshanii, 1998], one can calculate the timescale
on which the integrability breakdown due to the axial trap can be neglected. This time
scale is too long compared with the typical duration of an experiment in an ultracold atom
lab. Therefore, the e�ect of the longitudinal trap on the thermalization can be neglected
[Mazets, 2011].

We conclude this Subsection by summarising that the main source of the breakdown of
integrability with a consequent thermalization in trapped 1D Bose gases is provided by the
radial excitation modes. This is strictly connected to the occurring of three-body collisions
which allow the redistribution of moment of colliding particles [Mazets et al., 2008, Mazets
and Schmiedmayer, 2010, Tan et al., 2010].
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Chapter 3

Collective oscillations of a trapped
quantum gas in low dimensions

I'm attracted to ensembles: you get a lot of

really good moving pieces. It's sort of like a

horse race in a way, especially when you know

that everyone is on this collision course. It's like,

"Who's going to make it?" And you can put

people together in unexpected pairings.

Noah Hawley

In recent years the study of low-dimensional quantum gases has been the object of
signi�cant experimental and theoretical research [Pricoupenko et al., 2004, Pitaevskii and
Stringari, 2016]. As discussed in the last Chapter, the main interest is due to the increase of
quantum correlations and �uctuations caused by the reduced dimensionality which makes
the properties of these systems signi�cantly di�erent from their 3D counterpart [Bloch
et al., 2008]. For example, in 2D, thermal �uctuations rule out the existence of LRO at
�nite T (Hohenberg-Mermin-Wagner theorem) [Mermin and Wagner, 1966, Hohenberg,
1967] and novel aspects of super�uid phenomena, like the BKT transition, take place. In
compressible 1D systems the occurrence of LRO is ruled out by quantum �uctuations even
at T = 0 [Pitaevskii and Stringari, 1991, 2016].

The goal of this Chapter is to focus on the collective oscillations of a low dimensional
atomic gas. Their study is of paramount importance for the investigation of properties
of quantum many-body systems, like super�uidity and thermodynamics. During the last
twenty years, collective oscillations have been the object of systematic theoretical and
experimental investigations in di�erent trap geometries, dimensionality and atomic species
[Stringari, 1996, Jin et al., 1996, Mewes et al., 1996, Jin et al., 1997, Stamper-Kurn et al.,
1998, Maragò et al., 2000, Chevy et al., 2002, Cozzini et al., 2003, Pollack et al., 2010].

While some of the results discussed in this Chapter have been already derived in the
literature, a uni�ed description covering both Bose and Fermi statistics at zero as well
as at �nite temperature in di�erent regimes of axial and radial trapping is still missing.
Our analysis can help in providing useful links and comparisons among di�erent regimes
of experimental and theoretical interest.

Our investigation is based on the hydrodynamic formalism applicable to various regimes,
including the super�uid regime at zero temperature and the collisional regime in the non-
super�uid phase above the critical temperature. To this purpose, we derive a general
formulation of the hydrodynamic equations in presence of an external trapping potential
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in terms of the velocity �eld. This approach explicitly points out the irrotational vs rota-
tional nature of the solutions and the role of the equation of state. It reduces to a simpli�ed
form when the EOS exhibits a polytropic dependence on the density, allowing for an im-
portant class of analytic solutions. Our results are also compared with the predictions for
the frequencies of the normal modes in the collisionless regime.

The original results presented in this Chapter have been published in the paper De Rosi
and Stringari [2015]. The Chapter is organised as follows.

In Sec. 3.1 we introduce the concept of the polytropic equation of state, both in terms
of the pressure and, at T = 0, of the chemical potential. The values of the polytropic
coe�cient q, �xing the power law isoentropic dependence of the EOS on the density, are
discussed in some relevant cases of di�erent dimensionality for both Bose and Fermi gases at
zero as well as at �nite temperature. We consider geometrical con�gurations corresponding
to pancake and cigar pro�les, whose equation of state can be derived starting from the 3D
EOS, employing the local density approximation along the directions of the con�nement.
We also discuss the case of deep 2D and 1D con�gurations where the motion of the gas is
instead frozen along the directions of the con�nement.

In Sec. 3.2, we provide an overview of collective modes, by including the case of the
ideal gas model.

In Sec. 3.3 we derive a general equation obeyed by the velocity �eld associated with
the collective motion, starting from the hydrodynamic theory in the presence of external
trapping. This equation holds both for a super�uid gas at zero temperature, where the
macroscopic dynamic behaviour is described by the hydrodynamic theory of super�uids,
and in the normal phase, in the collisional regime, characterised by the condition ωτ � 1,
where τ is a typical collisional time. We show that the equation for the velocity �eld
acquires a particularly simple form if the equation of state of the gas exhibits a polytropic
dependence on the density.

In Secs. 3.4, 3.5, 3.6 and 3.7 we derive the discretized oscillation frequencies in the
presence of additional harmonic trapping in the plane (in the case of 2D con�gurations)
and along the axis (in the case of 1D con�gurations). Special emphasis is given to the
lowest breathing modes whose frequency, di�erently from the divergency free solutions, is
explicitly sensitive to the value of the polytropic coe�cient and can exhibit a temperature
dependence even in the hydrodynamic regime.

3.1 Polytropic equation of state

A useful feature, which allows for a signi�cant simpli�cation of the theoretical analysis,
is the fact that in several con�gurations, corresponding to di�erent dimensional, interaction
and temperature regimes and quantum statistics, the equation of state of the atomic gas
exhibits a simple power law dependence on the density n in the form

P (n, s̄) = nqp(s̄) , (3.1)

where P is the pressure of the gas, q is called the polytropic coe�cient, s̄ is the entropy per
particle and p(s̄) is a function of s̄, �xed by the thermodynamic behaviour of the gas at
zero (s̄ = 0) as well as at �nite temperature. As we will show in the following Sections, the
polytropic coe�cient q plays a crucial role in determining the frequency of the discretized
collective oscillations in the presence of harmonic trapping. Viceversa, the value of the
function p(s̄) determines the adiabatic sound velocity vs, according to the thermodynamic
law

mv2
s =

(
∂P

∂n

)
s̄

= qnq−1p(s̄) = q
P

n
. (3.2)
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Starting from Eq. (3.1) and using the thermodynamic relation (∂U/∂n)s̄ = P/n2, one
can write the following relationship between the energy per particle and the pressure of
the gas:

U =
1

q − 1

P

n
, (3.3)

which has been obtained by integration on the density.
At T = 0 the scaling law (3.1) can be also written in the form

µ(n, T = 0) =
q

q − 1
nq−1p(s̄ = 0) (3.4)

where µ is the chemical potential of the gas related to the pressure by the Gibbs-Duhem
thermodynamic relation

dP = ndµ+ sdT (3.5)

where s = ns̄ is the entropy density. The sound velocity at zero temperature, where
dP = ndµ, can be rewritten in terms of the chemical potential as

mv2
s = n

(
∂µ

∂n

)
s̄

= (q − 1)µ . (3.6)

When applied to con�gurations of lower dimensions the pressure and the density en-
tering (3.1) should be replaced by the corresponding 2D or 1D pressure and density of the
gas.

The parametrization (3.1) for the equation of state applies to an important class of
physical systems. The values of the corresponding polytropic index q are explicitly derived
in Appendix A and are reported in the Tables 3.1 and 3.2. For example, in a 3D Fermi
gas at unitarity [Giorgini et al., 2008] (as well as in the ideal 3D Fermi gas and in the ideal
3D Bose gas above the critical temperature) simple dimensionality arguments permit to
identify the value q = 5/3 for the polytropic coe�cient. The 3D weakly interacting Bose
gas [Dalfovo et al., 1999], at zero temperature, is instead characterized by the di�erent
value q = 2, in fully agreement with the EOS (3.4) and (1.28) within the Bogoliubov
theory. On the other hand, Eq. (3.1) does not hold for the ideal Bose gas below the
condensation temperature since this system has an in�nite compressibility and its pressure
vanishes in the limit of zero temperature.

In the presence of axial or radial con�nement, one should distinguish between the
case when the 3D equation of state can be still applied locally within the local density
approximation (LDA) (1.8) and the case where the motion is instead frozen along the
directions of con�nement, see Sec. 2.1.

The �rst case includes the so-called pancake geometry (where the equation of state can
be expressed in terms of the 2D density and pressure) and the so-called cigar geometry
(where the equation of state can be expressed in terms of the 1D density and pressure).
Both con�gurations have been realised experimentally both for bosons [Jin et al., 1996,
Mewes et al., 1996] as well as for fermions [Kinast et al., 2004, Bartenstein et al., 2004a,
Weimer et al., 2015] and are characterised by di�erent values of the polytropic coe�cient
(see Table 3.1). The second case includes the deep 2D and 1D con�gurations where the
thermodynamic behaviour cannot be derived starting from the 3D equation of state in
the LDA, as discussed in Chap. 2. These con�gurations are particularly interesting from
the many-body and thermodynamic point of view. In 2D they exhibit the Berezinski-
Kosterlitz-Thouless transition [Desbuquois et al., 2012], while in the 1D case for bosons,
at zero temperature, they are described by Lieb-Lininger theory [Lieb and Liniger, 1963,
Lieb, 1963]. Some of these low-dimensional regimes are also characterised by well-de�ned
values of the polytropic coe�cient which are reported in Table 3.2.
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Table 3.1: Polytropic index q for the weakly interacting Bose gas at T = 0 and for the
unitary Fermi gas in di�erent LDA regimes. The results for the unitary Fermi gas hold
also for the ideal Fermi gas at all temperatures and for the ideal Bose gas above Tc. From
De Rosi and Stringari [2015]. Copyright c© 2015, American Physical Society.

Bose gas (T = 0) Unitary Fermi gas

3D uniform 2 5/3

pancake (LDA) 5/3 3/2

cigar (LDA) 3/2 7/5

Table 3.2: Polytropic index q for a Bose gas for di�erent 2D and 1D regimes in the presence
of tight con�nement. The 2D mean �eld value q = 2 holds also for the interacting Fermi
gas in the BCS and BEC limits. From De Rosi and Stringari [2015]. Copyright c© 2015,
American Physical Society.

T = 0 high T

2D mean �eld 2 2

1D mean �eld 2 3

1D Tonks-Girardeau 3 3

It is �nally interesting to compare the adiabatic sound velocity vs3D of 3D uniform
systems with the sound velocity vs for the lower dimensional regimes reported in Table
3.1. At T = 0, for equal values of the chemical potential (which, in the case of the LDA
regimes, would correspond to equal values of the central density), one �nds the following
relationship

v2
s

v2
s3D

=
q − 1

q3D − 1
, (3.7)

where q3D is the polytropic coe�cient of the equation of state of 3D uniform matter. In the
special case of a cigar trap (see Table 3.1), the above equation gives the value v2

s/v
2
s3D

= 1/2
for a weakly interacting Bose gas and v2

s/v
2
s3D

= 3/5 for the unitary Fermi gas. The above
reduction factors of the sound velocity were �rst theoretically derived by Zaremba [1998]
and by Capuzzi et al. [2006]. They were con�rmed experimentally by Andrews et al. [1997a]
and Joseph et al. [2007] for cigar Bose and Fermi gases, respectively. In the classical regime
of high temperature, where P = nkBT , one instead �nd the result

v2
s

v2
s3D

=
q

q3D
, (3.8)

where the sound velocities are calculated at the same temperature.
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3.2 Overview of collective modes

In the last Chapters, we mainly discuss uniform atomic gases, without an external
harmonic trap. In this Section, we would like to investigate the di�erences and the analogies
of elementary excitations with and without a harmonic con�nement. In this way, we
introduce the concept of collective oscillations in trapped atomic systems, which is the
main topic of the present Chapter. Finally, in SubSec. 3.2.1, we discuss the special case
of normal excitations in the ideal gas.

In uniform systems, the lowest energy excitations have a phononic nature, characterised
by a linear dispersion ε(p) = vsp, where vs is the sound velocity. As we have studied in
Sec. 3.1, vs depends strongly on the EOS and, therefore, it changes from one system to
another. For example, for the Bogoliubov spectrum (1.30), the sound velocity is given by
the value vs =

√
gn/m. We remind that we got the linear phononic dispersion relation

exactly by taking the low-energy limit of Eq. (1.30), which corresponds to long-wavelength
excitations. The symmetries of the system always leave their footprint on the excitations.
Since the gas is homogeneous and therefore translationally invariant, the sound dispersion
relation is a continuous function of momentum. Moreover, the sound propagates by means
a series of oscillating compressions and expansions of the cloud at local level. At �nite T,
this process is adiabatic and one calculates the sound velocity starting from the adiabatic
compressibility, see Eq. (3.2), while at T = 0, the isothermal and adiabatic compressibil-
ities are equal, and vs is provided by Eq. (3.6). The excitation of the sound in highly
elongated geometry (cigar) is carried out with a laser pulse at the centre of the trap, which
is responsible for a small shift in density followed by the propagation of sound wave packets
in both positive and negative z-directions. With this excitation method, the sound velocity
has been measured both for Bose [Andrews et al., 1997a] as well as for Fermi [Joseph et al.,
2007] gases in cigar con�gurations.

Let us investigate how the lowest energy elementary excitations change by adding
an external harmonic trap (1.7). Given the nature of the con�nement, the excitation
spectrum is discrete and this is an important di�erence with respect to the phononic
spectrum discussed above. These discrete excitations are called collective oscillations or
normal modes with collective frequencies ω. The presence of the trap enters directly the
expressions of ω which are of the same order of the trapping frequency.

Normal modes are small oscillations characterised by both small amplitudes and ve-
locities and long wavelengths (of the order of the size of the cloud). These excitations are
linear (low-energy) oscillations for which the density, during its dynamical evolution, is
slowly varying in both time and space. If one considers the GP gas at T = 0, see SubSec.
1.5.2, in the linear regime, the quantum pressure term in Eq. (1.42) is negligible. Actually,
the two equations (1.41) and (1.42) are more general by considering a generic chemical
potential µ(n) instead of the value gn holding for the GP gas. In fact, with this important
generalisation, they describe every ultracold gas in the hydrodynamic regime at T = 0,
where µ(n) plays the role of the EOS, Eq. (3.4). Actually, as we will investigate in the
following Section, Eqs. (1.41) and (1.42) hold also for a normal gas with T above the
critical point of condensation or super�uidity T > TC . In this case, the role of the EOS in
Eq. (1.42) is played by the pressure P (n) and, at �nite T, we require that the dynamics is
adiabatic, by considering also a continuity equation for the entropy, really similar to that
of the density n, Eq. (3.14).

Another remarkable property of collective frequencies is that they do not depend ex-
plicitly on the actual value of the interaction coupling constant, even if their values depend
on the interaction regime. For example, as we will discuss in the following, in the collision-
less regime, the frequency ω of the ideal gas is di�erent from the result predicted in the
hydrodynamic regime.
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We close this Section by reminding that the investigation of collective oscillations al-
lowed to characterise some properties of the atomic gas, like, for example, the super�uidity
in a Bose [Maragò et al., 2000, De Rossi et al., 2016] or in a Fermi [Bartenstein et al.,
2004b, Nascimbène et al., 2009] gas and also the dimensionality of the system [Merloti
et al., 2013, Fang et al., 2014].

3.2.1 Ideal gas frequencies and harmonic trapping

In this Subsection, we summarise the behaviour of excitation frequencies of the ideal
gas model, in the presence of harmonic trapping (see Eq. (1.37)). This model describes a
gas in the absence of mean-�eld interaction and of collisions.

The eigenenergies of the harmonic oscillator (1.38) in 2D are:

εnx,ny =

(
nx +

1

2

)
~ωx +

(
ny +

1

2

)
~ωy , (3.9)

where nx, ny = 0, 1, 2... are the quantum numbers which identify the energy levels in x
and y spatial direction, respectively. While the values nx = ny = 0 characterize the
ground state (1.38), the non-zero integers nx = ny = 1, 2, 3... describe the excitations
of the harmonic oscillator system. In an isotropic harmonic trap ω⊥ = ωx = ωy, the
corresponding frequencies of the elementary excitations can be written as:

ωcl(n,m) = ω⊥(2n+ |m|) , (3.10)

with 2n + |m| = nx + ny. While n is associated with the number of radial nodes of the
density oscillation, m is the z-component of the angular momentum.

In 1D, one can carry out a similar analysis:

εnz =

(
nz +

1

2

)
~ωz , (3.11)

and the frequency is
ωcl(k) = (k + 1)ωz , (3.12)

with k + 1 = nz and the quantum number k = 0, 1, 2... is associated to the number of
radial nodes.

3.3 Hydrodynamic equations in the presence of external trap-

ping

In this Section, we discuss the hydrodynamic (HD) equations for the velocity �eld de-
scribing the collective motion of the gas in the presence of an external con�ning potential
and in the dissipationless (entropy conserving) regime. Even if these equations have a
classical shape, because they do not contain the Planck constant, quantum mechanical ef-
fects deeply a�ect their solutions, being responsible for important changes in the behaviour
of the equation of state and, in particular, in the value of the polytropic coe�cients, as
discussed in Sec. 3.1. These equations describe correctly the dynamic behaviour of an in-
teracting system at zero temperature, where they coincide with the irrotational (∇×v = 0)
hydrodynamic equations of super�uids and apply to interacting Bose and Fermi super�uid
gases, as well as to strongly interacting super�uids like 4He [Pitaevskii and Stringari,
2016]. In particular, for dilute weakly interacting Bose gases, HD equations can be derived
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explicitly from the time-dependent Gross-Pitaevskii equation with the Thomas-Fermi ap-
proximation which enables to neglect the quantum pressure term, see SubSec. 1.5.2. At
T = 0, HD equations have been used in predicting the frequencies of the collective oscil-
lations [Stringari, 1996], in fair agreement with the experimental �ndings. For the ideal
Fermi gas the HD equations were derived in the collisional limit by Minguzzi and Tosi
[2001] at T = 0. They also apply above the critical temperature TC for super�uidity, in
the collisional regime where ωτ � 1, with τ the collisional time, and the equation of state
can still depend in a crucial way on quantum statistical e�ects [Gri�n et al., 1997]. In
this regime, the velocity �eld admits the presence of rotational components (∇× v 6= 0),
forbidden in every super�uid phase. For �nite temperature, below TC , the hydrodynamic
equations should be instead generalised to include the coupled description of the normal
and super�uid components (Landau's two-�uid hydrodynamic equations), allowing for the
propagation of �rst and second sound [Pitaevskii and Stringari, 2016]. Therefore, they
hold only in the presence of one component (super�uid or normal). Finally, in the absence
of the trap, HD equations reproduce sound waves with dispersion ω = vsq, where vs is the
sound velocity, Eq. (3.2), see Sec. 3.2.

The hydrodynamic equations include the equation of continuity

∂n(r, t)

∂t
+∇ · [n0(r)v(r, t)] = 0, (3.13)

which expresses the conservation of density, the continuity equation for the entropy density
ensuring the dissipationless dynamics,

∂s(r, t)

∂t
= −∇ [s0(r)v(r, t)] , (3.14)

and the equation for the current density j(r, t) = mn0(r)v(r, t)

∂j(r, t)

∂t
= − [∇P (r, t) + n(r, t)∇Vext(r)] , (3.15)

which has the same shape of the Euler's equation for the �ow of a non-viscous liquid in
the presence of an external potential Vext(r). Eq. (3.15) provides a non-trivial solution for
the equilibrium con�guration (v = 0), for which the ground state density pro�le satis�es
the LDA (1.8) at T = 0.

In the above equations n0 and s0 are the equilibrium values of the density and of
the entropy density, respectively and, for simplicity, we have considered the limit of small
amplitude oscillations and small velocities from the equilibrium con�guration. At zero
temperature, where the equation for the entropy identically vanishes, the hydrodynamic
equations reduce to two coupled equations for the density and the velocity �eld. HD
equations can be used only for the study of macroscopic phenomena with long wavelength
excitations of phononic nature, for which all �elds entering Eqs. (3.13)-(3.15) vary slowly
in space and time. For these phenomena, the wavelength must be larger than the healing
length ξ, whose value depends on the system considered. For example, for the BEC, the
Bogoliubov dispersion law (1.30) tends to the phonon spectrum for wavelengths larger than
ξ ∼ ~/(mvs). In the BCS limit, ξ is given by the pairing gap ξ ∼ ~vF /∆gap. Close to the
resonance kF |a| → +∞, the only characteristic length of the system is determined by the
average interatomic distance and for wavelengths bigger than this, HD theory holds.

Starting from the above equations and using suitable thermodynamic relations, it is
possible to derive the following equation for the stationary solutions of the velocity �eld
characterized by the time dependence v(r, t) = v(r)e−iωt (see Appendix B):

mω2v = −∇
[(

∂P

∂n

)
s̄

(∇ · v)

]
+ (γad − 1)(∇Vext)(∇ · v) +∇ (v · ∇Vext) (3.16)
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where the adiabatic coe�cient

γad =

(
∂P

∂n

)
s̄

/

(
∂P

∂n

)
T

(3.17)

provides the ratio between the isothermal and the adiabatic compressibilities. Equation
(3.16) holds for con�gurations of di�erent dimensionality and for arbitrary external po-
tentials compatible with the applicability of the local density approximation along the
direction of the velocity �ow. It shows that the eigenfrequencies ω of the collective oscilla-
tions can be determined once the adiabatic and the isothermal compressibilities are known.
These quantities depend on the nature of the system, on temperature and, of course, on
the dimensionality of the con�guration. Result (3.16) shows explicitly the emergence of
rotational components in the velocity �eld v caused by the presence of the external po-
tential [term proportional to (γad − 1)]. This term exactly vanishes if the adiabatic and
isothermal compressibilities coincide (γad = 1), a condition ensured only at T = 0. In
this limit Eq. (3.16) actually coincides with the hydrodynamic equation of irrotational
super�uids. To our knowledge, the equations of linearized hydrodynamics, in the presence
of an external potential, have never been derived so far in the general form (3.16). Their
derivation represents one of the main results of the present PhD thesis and the principal
�ndings are reported in De Rosi and Stringari [2015].

Starting from the equations of hydrodynamics it is also possible to derive (see Appendix
B) the equation

∂T (r, t)

∂t
= − T

cv

(
∂P

∂T

)
n

∇ · v(r, t)

n0
, (3.18)

for the time dependence of the temperature of the gas, where cv is the speci�c heat at
constant volume. Eq. (3.18) shows that, for divergency free solutions (∇ · v = 0), like
the surface modes (Sec. 3.4), the temperature of the trapped gas is constant during the
oscillation.

For systems obeying the polytropic behaviour (3.1) the equation for the temperature
takes the simpli�ed form

∂T (r, t)

∂t
= −(q − 1)T∇ · v(r, t) (3.19)

which follows directly from Eq. (3.3) and from the thermodynamic relation cv = (∂U/∂T )n.
Equation (3.19) coincides with the result derived by Gri�n et al. [1997] for a 3D ideal Bose
gas at T ≥ Tc, where q = 5/3.

For systems obeying the polytropic law (3.1), the equation for the velocity �eld (3.16)
takes the further simpli�ed expression (see Appendix B)

mω2v = −
(
∂P

∂n

)
s̄

∇ (∇ · v) + (q − 1) (∇Vext)∇ · v +∇ (v · ∇Vext) (3.20)

in terms of the adiabatic compressibility and the polytropic coe�cient q. Equation (3.20)
coincides with the result derived by Gri�n et al. [1997] for a 3D ideal Bose gas for T ≥ Tc
with q = 5/3. At T = 0, where γad = 1, it reduces to

mω2v = −(q − 1)∇ [µ(n)∇ · v] +∇ [v · ∇Vext] (3.21)

where we have used the T = 0 expression (3.4) for the chemical potential µ(n).
In the form (3.20) (and (3.21) at T = 0) the equation for the velocity �eld admits a

useful class of analytical solutions that will be discussed in the following Sections where
we will consider an external potential of the shape

Vext(x, y) =
1

2
m
(
ω2
xx

2 + ω2
yy

2
)

(3.22)
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for the investigation of the collective oscillations of 2D con�gurations and of the form

Vext(z) =
1

2
mω2

zz
2 (3.23)

in the case of 1D con�gurations.
The solution of Eqs. (3.20) and (3.21) is the velocity �eld v. As we will discuss in

the following, we choose a proper ansatz for v which re�ects not only the symmetries of
the atomic cloud but also the kind of mode of which we want to calculate the collective
frequency ω. By inserting this ansatz in Eqs. (3.20) and (3.21) we calculate the frequency
ω.

3.4 Surface modes

In this Section, we discuss the surface modes, which involve only the surface of the
atomic cloud, without any change of its volume (compression or expansion). They are
completely independent on the EOS.

These modes are divergency free oscillations (∇ · v = 0) and, therefore, the hydrody-
namic equation (3.16) takes the simpli�ed form

mω2v = ∇ (v · ∇Vext) (3.24)

independent of the equation of state, quantum statistics and temperature.
First of all, we consider the case of 2D isotropic con�nement, where the trapping

frequency is the same in all directions (ωx = ωy ≡ ω⊥). An important class of solutions of
Eq. (3.24) is given by the irrotational choice (∇× v = 0) [Stringari, 1996]:

v(r⊥, φ) ∝ ∇
[
r
|m|
⊥ e±imφ

]
, (3.25)

where m is z-th component of angular momentum. The resulting eigenfrequencies take the
form

ω2(m) = ω2
⊥|m| . (3.26)

The lowest energy surface mode is the dipole or centre-of-mass mode with m = 1 in
Eq. (3.26). This mode corresponds to the oscillation of the centre-of-mass of the atomic
cloud. Its frequency is always equal to that of the trap (ωD = ω⊥), independently on the
system and on its EOS. The reason of this peculiar property is directly provided by the
Kohn's theorem: the centre-of-mass oscillation is a�ected only by the external potential
(the trap), and not by the internal forces of the system since the internal and the external
degrees of freedom are completely decoupled. The dipole mode is reported in Fig. 3.1.

Figure 3.1: Dipole mode. From De Rossi [2016].
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Figure 3.2: Quadrupole mode. From De Rossi [2016].

Another interesting mode is the quadrupole oscillation. It is a surface deformation
without volume change, see Fig. 3.2. Like every surface mode, the frequency of the
quadrupole is independent on the EOS. The frequency is however di�erent if one calculates
it in the HD interacting gas, from Eq. (3.26) with m = 2: ωQ =

√
2ω⊥ or in the ideal gas

(collisionless regime) ωQ = 2ω⊥ (see Eq. (3.10) with n = 0 and m = 2). This di�erence is
very useful, because through the measurement of this mode, one can distinguish between
the hydrodynamic and the collisionless regime.

In the case of anisotropic potentials (ωx 6= ωy) an important example of divergency
free oscillations is described by the ansatz:

v(x, y) ∝ ∇(xy) (3.27)

yielding the result
ω2
S = ω2

x + ω2
y (3.28)

for the collective frequency. This is the so-called scissors mode corresponding to an oscil-
lating rotation of the atomic cloud in the x-y plane, see Fig. 3.3. This mode can be excited
by means a sudden rotation of the trap by a small angle θ. Since it preserves the shape
of the gas during the oscillation, it is independent on the EOS. It has the same value in
3D as well as in 2D con�gurations described by the hydrodynamic formalism. It was �rst
predicted by Guéry-Odelin and Stringari [1999] and experimentally observed in both 3D
Bose [Maragò et al., 2000], where it was used to investigate the super�uid character of the
system, and in Fermi super�uids [Wright et al., 2007].

3.5 Compressional oscillations in pancake and 2D isotropic

traps

In this Section, we discuss the collective oscillations exhibiting a change of volume of
the atomic cloud. Since these modes are characterised by a compression of the gas, their
frequencies depend explicitly on the EOS.

Let us �rst consider the super�uid regime at T = 0 for which, as already pointed out
in the Section 3.3, the irrotationality condition for the velocity �eld holds. For systems
whose equation of state is characterized by the polytropic density dependence (3.4), the
velocity �eld obeys the hydrodynamic Eq. (3.21). For isotropic 2D traps one can easily
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Figure 3.3: The scissors mode is excited by turning the trapping axis. From De Rossi
[2016].

check that this equation is solved by the following irrotational ansatz for the velocity �eld
[Stringari, 1998]:

v(r⊥, φ) ∝ ∇
[
(r2n
⊥ + ....)r

|m|
⊥ e±imφ

]
(3.29)

where n �xes the number of the radial nodes of the density modulations occurring during
the oscillation and m is z-th component of angular momentum. The resulting hydrody-
namic eigenfrequencies take the form

ω2(n,m, q) = ω2
⊥[2n+ |m|+ 2n(q − 1)(n+ |m|)]. (3.30)

Result (3.30) can be applied to a rich variety of physical situations whose equation of state
is simply incapsulated in the polytropic q index and di�ers from the predicted values of
the ideal gas model in the collisionless regime, see SubSec. 3.2.1:

ωcl(n,m) = ω⊥(2n+ |m|). (3.31)

Moreover, result (3.30) should be compared with the hydrodynamic dispersion law holding
in the presence of a 3D isotropic harmonic potential (ωx = ωy = ωz ≡ ωho)

ω2(n, l, q) = ω2
ho[2n+ l + (q − 1)(2n2 + 2nl + n)] (3.32)

where l is the angular momentum. Eq. (3.32) reduces to the results of Stringari [1996] and
Bruun and Clark [1999], Baranov and Petrov [2000], Minguzzi and Tosi [2001] in the case
of the weakly interacting Bose (q = 2) and Fermi (q = 5/3) gases, respectively. Result
(3.30) reduces to the dispersion (3.26) of surface modes in the case n = 0.

The most important solution accounted for by (3.30) is the 2D monopole or breathing
mode (n = 1 and m = 0), for which one �nds the result

ω2
M (q) = 2qω2

⊥. (3.33)

Its name is taken from biology, because the evolution of this mode remembers the respira-
tion mode of a biological cell, see Fig. 3.4. Di�erently from the surface modes discussed in
the previous Section, the frequency of the breathing mode (3.33) depends explicitly on the
polytropic index q. Therefore, it is consequently sensitive to the EOS obeyed by the gas
and on all the information carried by it: the T, the D, the quantum statistics of atoms,
the shape of the trap and the interaction. For example, the monopole collective frequency
is di�erent for a Bose and a Fermi gas. The frequency (3.33) of the 2D breathing mode
di�ers from the one in the 3D isotropic case (see Eq. (3.32) with n = 1 and l = 0) which
yields the value ω2

M (q) = (3q − 1)ω2
ho.
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Figure 3.4: Monopole mode. From De Rossi [2016].

For the unitary Fermi gas in the pancake regime (q = 3/2), one gets the value
ωM =

√
3ω⊥. Actually, this value turns out to be independent of temperature, as a

consequence of the fact that, at unitarity, the scaling solution for the breathing mode is
exactly satis�ed by the hydrodynamic equations at all temperatures [Hou et al., 2013a].
Notice that this result di�ers from the value ωM = 2ωho holding for the unitary Fermi
gas with 3D isotropic trapping (q = 5/3). In this latter case, an exact solution of the
time-dependent Schrödinger equation is available for the monopole breathing mode, inde-
pendent not only of temperature but also of the amplitude of the oscillation and holding
in all collisional regimes (scale invariance) [Castin, 2004]. A similar situation holds also
for the 2D regime of a weakly interacting Bose gas (q = 2) in the presence of isotropic
trapping where one also �nds the result ωM = 2ω⊥, independent of temperature and of the
amplitude of oscillations [Pitaevskii, 1996, Pitaevskii and Rosch, 1997]. In the case of the
2D Fermi gas the result ωM = 2ω⊥, following from the q = 2 value of the polytropic coef-
�cient, holds both in the BEC and BCS regime and, with high accuracy, along the whole
crossover, revealing an apparent scale invariance [Taylor and Randeria, 2012, Levinsen and
Parish, 2015], as proven experimentally by Vogt et al. [2012].

The temperature dependence of the frequency of the breathing mode takes instead place
for the pancake weakly interacting Bose gas. At T = 0 (q = 5/3) one �nds ωM =

√
10/3ω⊥

[Stringari, 1996]. This result di�ers from the value obtained at high temperature, where the
thermodynamic behaviour of the gas can be approximated by the ideal Bose gas (q = 3/2)
and the hydrodynamic frequency takes the value ωM =

√
3ω⊥. The frequency of the

monopole mode of the pancake Bose gas is then expected to exhibit a temperature depen-
dence. The temperature dependence of this mode was pointed out in the �rst experiments
on the collective oscillations carried out at Jila [Jin et al., 1997] where, however, due to the
small number of atoms, the system enters soon the collisionless regime for T > Tc, rather
than the collisional one. Achieving the hydrodynamic condition ωτ � 1 is, in general, a
di�cult task in weakly interacting Bose gases, due to the small available values of the den-
sity of the gas. A simple estimate, based on the classical evaluation of the collisional time,
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Table 3.3: Hydrodynamic frequencies of the breathing mode in di�erent LDA regimes. The
values reported for the unitary Fermi gas hold also for the ideal Bose gas above TC . From
De Rosi and Stringari [2015]. Copyright c© 2015, American Physical Society.

Bose gas (T = 0) Unitary Fermi gas

3D isotropic
√

5ωho 2ωho

pancake (LDA)
√

10/3ω⊥
√

3ω⊥

cigar (LDA)
√

5/2ωz
√

12/5ωz

Table 3.4: Hydrodynamic frequencies of the breathing mode for a Bose gas in low dimen-
sions and tight trapping regimes. The 2D mean �eld value ωM = 2ω⊥ holds also for the
interacting Fermi gas in the BCS and BEC limits. From De Rosi and Stringari [2015].
Copyright c© 2015, American Physical Society.

T = 0 high T

2D mean �eld 2ω⊥ 2ω⊥

1D mean �eld
√

3ωz 2ωz

1D Tonks-Girardeau 2ωz 2ωz

yields, for frequencies of the order of the trapping frequency ωho, the condition [Dalfovo
et al., 1999] lmph � RT , where lmph = (nσ)−1 is the mean free path. Here n is the local

3D density, σ = 8πa2 is the s-wave cross section, while RT =
√

2kBT/mω2
ho is the thermal

radius.
A summary of the frequencies of the breathing mode in the most relevant cases discussed

in this Section is presented in Tables 3.3 and 3.4.

3.6 Coupled compressional and surface modes in anisotropic

traps

In this Section we investigate the case of anisotropic trapping (ωx 6= ωy), where the
breathing and the quadrupole oscillations discussed in the previous Sections are coupled.
The coupling is accounted for by the ansatz

v(x, y) = ∇(αx2 + βy2), (3.34)

where the relative value of the parameters α and β have to be determined by solving the
hydrodynamic equation (3.20). Since ∇ (∇ · v) = 0 the frequency of the coupled modes,
for a given value of the polytropic coe�cient q, are given by

ω2
±(q) =

(q + 1)

2
(ω2
x + ω2

y)±

√
(q + 1)2(ω2

x + ω2
y)

2 − 16qω2
xω

2
y

2
. (3.35)
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In the isotropic limit (ωx = ωy = ω⊥) Eq. (3.35) reproduces the results (3.33) and
(3.26) for the monopole and the quadrupole, respectively, derived in the previous Sections.
In the case of the 2D mean �eld regime, where the polytropic coe�cient takes the value
q = 2, result (3.35) was derived by Ghosh [2000] and by Baur et al. [2013] for bosons and
fermions, respectively.

Result (3.35) gives general predictions for the collective frequencies in 2D con�gurations
for arbitrary values of the deformation of the trap. It is interesting to consider the limit
of highly deformed 2D trapping potentials. For ωx � ωy the lower solution takes the form

ω2
− =

4q

(q + 1)
ω2
x, (3.36)

while the upper solution is given by

ω2
+ = (q + 1)ω2

y . (3.37)

Of course a symmetric result takes place in the opposite limit ωx � ωy.
In the 2D mean �eld case (q = 2), Eq. (3.36) provides the result ω− =

√
8/3ωx, in

agreement with the �ndings of Ghosh [2000]. In the pancake regime, Eq. (3.36) instead
reduces to the frequency of the axial breathing mode of a cigar con�guration (see next
Section).

Equation (3.37) instead coincides with the solution of the 3D hydrodynamic equations
for triaxial harmonic trapping [Pitaevskii and Stringari, 2016] in the intermediate regime
ωz � ωy � ωx.

3.7 Collective frequencies in cigar and 1D traps

In this Section, we complete the discussion on the collective frequencies of harmonically
trapped gases considering 1D con�gurations.

Similarly to the 2D case, two di�erent regimes can be considered also in 1D. The �rst
one, called cigar regime, corresponds to systems described locally by the 3D equation of
state, but the radial con�nement is enough tight to ensure a 1D nature to the low-energy
dynamic behaviour. This con�guration is particularly suited to investigate the propagation
of sound [Andrews et al., 1997a, Joseph et al., 2007, Horikoshi et al., 2010].

A second case is the deep 1D (hereafter simply called 1D) regime where the radial
motion is frozen (for a general review on 1D systems see, for example, Giamarchi [2004,
2016]). The role of correlations is particularly important in this regime and, in the case
of Bose gases at T = 0, is described by Lieb-Liniger theory [Lieb and Liniger, 1963], see
Sec. 2.3. A key question in 1D is the role of thermalization, see SubSec. 2.3.2. From this
point of view, the comparison between experiments and the predictions of hydrodynamic
theory (which assumes local thermalization at �nite temperature) would be particularly
insightful. Another important feature of 1D systems is the absence of phase transitions at
�nite temperature [Landau and Lifshitz, 2013], see SubSec. 2.2.2.

The equations of hydrodynamics derived in Sect. 3.3 become particularly simple in 1D,
the velocity �eld being a function of the variable z and all the gradients acting only on the
z-direction. Looking for solutions of the form

v = zk + αk−2z
k−2 + ... (3.38)

one �nds that the hydrodynamic equation (3.20), in the presence of the polytropic equation
of state (3.1), admits simple analytic solutions in the presence of the harmonic trapping
(3.23).
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At T = 0, where one can conveniently use Eq. (3.21) with the chemical potential given
by (A.1), the dispersion law takes the form

ω2(k, q) = (k + 1)

[
(q − 1)

k

2
+ 1

]
ω2
z . (3.39)

Equation (3.39) was �rst derived by Menotti and Stringari [2002] in the context of 1D Bose
gases.

In the classical limit of high temperature, where one can use the equation of state
P1D = n1DkBT , the hydrodynamic equation (3.20) gives rise instead to the following
dispersion relation

ω2(k, q) = (qk + 1)ω2
z . (3.40)

Result (3.39) should be also compared with the dispersion

ωcl(k) = (k + 1)ωz (3.41)

holding in the collisionless regime of a non interacting 1D gas, see SubSec. 3.2.1.
Let us �rst consider the case of the cigar unitary Fermi gas. In this case the polytropic

coe�cient is equal to q = 7/5 at all temperatures and the k = 1 hydrodynamic solution,
corresponding to the lowest breathing (LB) mode, is equal to ωLB =

√
12/5ωz [Heiselberg,

2004, Stringari, 2004] at both zero and �nite temperature. The situation is di�erent for
the higher nodal modes (k > 1) where the hydrodynamic frequencies at T = 0 and in the
classical limit are di�erent revealing an interesting temperature dependence [Hou et al.,
2013b] that was investigated experimentally by Tey et al. [2013] in good agreement with
the predictions of the theory. The case of the cigar Bose gas is di�erent. In fact in this
case the polytropic coe�cient depends on temperature, being equal to q = 3/2 at T = 0
and to q = 7/5 in the classical limit. As a result, the frequency of the k = 1 lowest
breathing mode takes the value ωLB =

√
5/2ωz [Stringari, 1996, 1998] while in the high

temperature classical limit one �nds the smaller hydrodynamic value ωLB =
√

12/5ωz.
In the collisionless limit, one instead �nds the value 2ωz. The T = 0 value

√
5/2ωz was

measured experimentally by Stamper-Kurn et al. [1998] in excellent agreement with the
prediction of theory. At �nite temperature, these authors found that the frequency slightly
drops below the low-temperature limit. At even higher temperatures they observed a
signi�cant increase of ω, likely due to the breakdown of the hydrodynamic condition ωτ �
1.

The comparison between the lowest compressional mode in the cigar geometry (k = 1)
and the lowest solution (3.36) holding in the pancake geometry with highly anisotropic 2D
trapping, allows for the non trivial relationship

qcigar + 1 =
4qpancake
qpancake + 1

(3.42)

between the polytropic coe�cients in the cigar and pancake geometries. The relationship
is con�rmed by the results reported in Table 3.1.

The behaviour of the collective frequencies in the deep 1D regime is also very interesting.
In the case of bosons, one should distinguish between the mean �eld case, where q = 2 at
T = 0, and the TG limit [Girardeau, 1960], where q = 3. In the former case the frequency
of the k = 1 breathing mode takes the value ωLB =

√
3ωz, while in the TG limit one �nds

ωLB = 2ωz. The behaviour of the lowest breathing frequencies, in the intermediate regimes
between the mean-�eld and the TG limits, was theoretically investigated by Menotti and
Stringari [2002] and experimentally observed by Haller et al. [2009]. At high temperatures,
both regimes predict the frequency ωLB = 2ωz for the same k = 1 mode. One then
concludes that, di�erently from the 1D mean �eld, the frequency of the breathing mode in
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the TG regime is temperature independent. The result is not surprising since in the TG
limit bosons behave like 1D non-interacting fermions where scaling invariance applies. It
is worth noting, however, that the hydrodynamic frequencies of the higher nodal modes
depend on temperature even in the TG limit. For example, the k = 2 mode has frequency
ωk=2 = 3ωz at T = 0 and ωk=2 =

√
7ωz in the classical limit. The temperature dependence

of the k = 1 breathing mode in the 1D mean �eld has been recently measured by Fang
et al. [2014].
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Chapter 4

Linear response theory

Everything, however complicated - breaking

waves, migrating birds, and tropical forests - is

made of atoms and obeys the equations of

quantum physics. But even if those equations

could be solved, they wouldn't o�er the

enlightenment that scientists seek. Each science

has its own autonomous concepts and laws.

Martin Rees

In this Chapter we introduce some basic concepts of the linear response theory,
which is really useful to investigate the dynamics of many-body systems at T = 0 as well
as at �nite T. It can be applied to several kinds of systems, ranging from atomic nuclei to
interacting quantum gases, just to mention some examples.

The main goal of linear response theory is to provide the description of the excitation
spectrum by applying an external perturbation to the system. The perturbation is usually
described by a one-body operator and it is enough weak, such that the linear regime holds.
The response of the system depends on the nature of the external perturbation as well as,
of course, on the properties of the system.

In the case of uniform systems, depending on the value of the transferred momentum
from the external probe, one can investigate di�erent regimes. For small momentum trans-
fer, the constituents of the system move coherently in the form of sound waves. In the
case of high momentum transfer, the external probe instead scatters from the individual
constituents in an incoherent way.

In the case of isotropically trapped systems, the external perturbation is usually as-
sociated to transfer of angular momentum l and the collective oscillations correspond to
small values of l.

The present Chapter is organised as follows.
In Sec. 4.1 we present a general analysis of the formalism, by introducing the concepts

of dynamic polarizability, dynamic structure factor and sum rules.
In Sec. 4.2 a special emphasis is given to density excitations.
Finally, in Sec. 4.3, we discuss general inequalities, based on the formalism of linear

response theory, which give useful bounds for the excitation energies as well as for the
�uctuations of physical observables.

An exhaustive treatment of these concepts is however out of the aims of this thesis;
readers interested in more extended discussions can see Pitaevskii and Stringari [2016], on
which this Chapter is based.
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4.1 Dynamic structure factor and sum rules

We consider a many-body system described by the unperturbed Hamiltonian H, and
two linear operators F and G, which represent physical observables, with vanishing ground-
state expectation values.

The system is coupled to the external perturbation G through the time-dependent
Hamiltonian:

Hpert(t) = −λGe−iωteηt − λ∗G†e+iωteηt , (4.1)

where λ � 1 represents the strength of the external �eld, which, following the above
considerations, is small enough in order to apply linear response theory. The factor eηt ,
with η positive and small, guarantees that at time t = −∞ the system is described by the
unperturbed Hamiltonian H, because, from Eq. (4.1), it is clear that Hpert(t = −∞) = 0.

Let us now calculate the �uctuation δ〈F †〉 induced by the presence of the external �eld.
This �uctuation oscillates in time with the same frequency ω as the external perturbation
(4.1), and it can be written as

δ〈F †〉 = λe−iωteηtχF †,G(ω) + λ∗e+iωteηtχF †,G†(−ω) , (4.2)

where we have introduced the linear response function, also called dynamic polarizability
of the system, χF †,G(ω). It satis�es the property χ∗

F †,G
(ω) = χF,G†(−ω). The response

function χF †,G(ω) gives information about the properties of the system in the absence of
the external perturbation, and it can be evaluated using perturbation theory. If the system
is in thermal equilibrium at temperature T at t = −∞, then one �nds the result [Kubo,
1956, 1957]:

χF †,G(ω) = −1

~
Q−1

∑
m,n

e−βEm
[
〈m|F † |n〉 〈n|G |m〉
ω − ωn,m + iη

− 〈m|G |n〉 〈m|F
† |n〉

ω + ωn,m + iη

]
, (4.3)

where |n〉 and ωn,m = (En − Em)/~ are, respectively, the eigenstates and the excitation
frequencies of the unperturbed Hamiltonian (H |n〉 = En |n〉), and Q =

∑
m e

(−βEm) is
the partition function. The Boltzmann factor e(−βEm) takes into account the thermal
equilibrium of the initial state.

The quantity which describes the properties of the excited system is called the dynamic
structure factor:

SF (ω) = Q−1
∑
m,n

e(−βEm)| 〈n|F |m〉 |2δ(~ω − ~ωnm) (4.4)

from which it is clear that depends not only on the perturbation F , but also on how
F interacts with the system at atomic levels | 〈n|F |m〉 |2 and it is responsible of atomic
transitions. The delta function in Eq. (4.4) describes that the frequency ω of the �uctuation
of the system (4.2) is selected starting from the proper atomic transition frequency ωnm.
The contribution of the terms with m 6= 0 is more important if T is high. At T = 0, the
dynamic structure factor reduces to

SF (ω) =
∑
n

| 〈n|F |0〉 |2δ(~ω − ~ωn0) . (4.5)

In Eq. (4.5), the quantity | 〈n|F |0〉 |2 is the strength of the operator F relative to the
state |n〉. Notice also that Eq. (4.5) vanishes at ω < 0 since the excitation energies ~ωn0

are always positive, the system being initially in its ground state. Therefore, at T = 0,
the system can only gain energy and not release it, di�erently from the �nite T case. At
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�nite T, from Eq. (4.4), by interchanging the indices m and n in the sum, one �nds the
principle of detailed balancing:

SF (ω) = eβ~ωSF †(−ω) (4.6)

which states that the probabilities (proportional to SF (ω) and S†F (−ω), respectively) that
the system gains and releases energy after the coupling with the external perturbation, are
connected each other by the Boltzmann factor eβ~ω. As discussed above, from Eq. (4.6),
one �nds again that at T = 0, β = 1/(kBT ) = +∞, and therefore S†F (−ω) = 0, with
ω > 0.

In the simplest case when the two operators coincide F = G, the response function
χF ≡ χF †,F can be written in terms of the dynamic structure factor SF as

χF (ω) = −
∫ +∞

−∞
dω′

[
SF (ω′)

ω − ω′ + iη
− SF †(ω

′)

ω + ω′ + iη

]
. (4.7)

By using the Dirac relation

lim
η→0

1

x− a+ iη
= P

1

x− a
− iπδ(x− a) , (4.8)

where P is the principal part, the function χF can be separated into its real and imaginary
parts

χF (ω) = χ′F (ω) + iχ′′F (ω) . (4.9)

From Eq. (4.7), one �nds for the real part

χ′F (ω) = −
∫ +∞

−∞
dω′

[
SF (ω′)P

1

ω − ω′
− SF †(ω′)P

1

ω + ω′

]
(4.10)

and for the imaginary part

χ′′F (ω) = π [SF (ω)− SF †(−ω)] . (4.11)

From Eqs. (4.10) - (4.11), one deduces that the real χ′ and the imaginary χ′′ are even and
odd functions with respect to the change of ω and F into −ω and F †. By using Eq. (4.6),
Eq. (4.11) can be rewritten as

χ′′F (ω) = π
(

1− e−β~ω
)
SF (ω) (4.12)

which is called also the dissipative component of the response function. From Eq. (4.12), it
is clear that at T = 0, the two functions χ′′F and SF are equal, up to a factor π, for positive
ω. This implies that, at T = 0, only processes which increase energy in the system are
allowed. On the other hand, at �nite T, the two functions χ′′F and SF can di�er a lot,
especially at high T when β~ω is small. In particular, the dynamic structure factor has
a much stronger dependence on T with respect to χ′′F , which is consequently considered a
more fundamental quantity from the many-body point of view.

The causal nature of the response of the perturbation is described by the Kramers-
Kronig relations [Kronig, 1926, Kramers, 1927, Pitaevskii and Stringari, 2016]:

χ′F (ω) = − 1

π

∫ +∞

−∞
dω′χ′′F (ω′)P

1

ω − ω′
(4.13)

χ′′F (ω) =
1

π

∫ +∞

−∞
dω′χ′F (ω′)P

1

ω − ω′
. (4.14)
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In order to evaluate explicitly the response function or, equivalently, the dynamic struc-
ture factor, one needs to solve the Schrödinger equation and �nd the eigenstates and the
eigenfrequencies of the many-body system. This yields to the calculation of the matrix
elements in Eq. (4.3). However, one can obtain information on the behaviour of the dy-
namic structure factor by applying the method of sum rules, which gives an algebraic way
to evaluate the moments of the dynamic structure factor

mp(F ) = ~
∫ +∞

−∞
(~ω)pSF (ω)dω (4.15)

which at �nite T, by using Eq. (4.4), becomes:

mp(F ) = Q−1
∑
m,n

e−βEm | 〈n|F |m〉 |2 (En − Em)p (4.16)

while at T = 0, by using Eq. (4.5):

mp(F ) =
∑
n

(En − E0)p | 〈n|F |0〉 |2 . (4.17)

An important advantage of this method is that it can reduce the calculation of the dy-
namical properties of the many-body problem to the knowledge of a few key parameters
relative to its initial unperturbed con�guration. Indeed, by using the completeness relation∑

n |n〉 〈n| = 1, one easily gets the exact identities for �nite T:

m0(F ) +m0(F †) = 〈{F †, F}〉 (4.18)

m0(F )−m0(F †) = 〈[F †, F ]〉 (4.19)

m1(F ) +m1(F †) = 〈[F †, [H,F ]]〉 (4.20)

m1(F )−m1(F †) = 〈{F †, [H,F ]}〉 (4.21)

where the average is taken on the equilibrium thermal state, and we have taken into account
only the lowest moments. In general, SF 6= S†F so the sum rules (4.19) and (4.21) di�er
from zero. The sum rules (4.19) and (4.20) are connected to the high-frequency expansion
of the dynamic response function (4.7) which is provided by

χF (ω)ω→∞ = − 1

~ω
〈[F †, F ]〉 − 1

(~ω)2
〈[F †, [H,F ]]〉 , (4.22)

showing that the leading term of the expansion, which depends on 1/ω, vanishes if F
commutes with its adjoint, as in the case of the density operator (see Sec. 4.2). Another
property is that the sum-rules (4.18) and (4.21) which contain the anticommutators do not
enter the above expansion. In the limit of small ω, the dynamic polarizability reproduces
its static limit (static polarizability χF (0)) according to the law

χF (0) ≡ χF (ω)ω→0 = m−1(F ) +m−1(F †) , (4.23)

where we have introduced the inverse energy-weighted moment m−1 of the dynamic struc-
ture factor. Di�erently from the moments with p ≥ 0, the inverse energy-weighted moments
cannot be calculated in terms of commutators, and they are evaluated with the direct cal-
culation of the static response χF (0).

By combining Eq. (4.12) with the antisymmetry property χ∗F (ω) = χF †(−ω), one
derives the �uctuation-dissipation theorem:

〈{F †, F}〉 = ~
∫ +∞

−∞
dω [SF (ω) + SF †(ω)] =

~
π

∫ +∞

−∞
dωχ′′F (ω) coth

(
β~ω

2

)
, (4.24)
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which connects the dissipative component χ′′F of the response function to the �uctuation

〈{F †, F}〉 of the operator F . By using the property χ′′F (ω) coth
(
β~ω

2

)
≥ χ′′F (ω) 2

β~ω which

holds for both positive and negative values of ω and the equation

χF (0) =
1

π

∫ +∞

−∞
dω
χ′′F (ω)

ω
(4.25)

coming from Eq. (4.13), one derives the inequality

〈{F †, F}〉 ≥ 2kBTχF (0) , (4.26)

which becomes an equality for coth
(
β~ω

2

)
= 2

β~ω in the classical regime of high T.

4.2 Density response function

In this Section, we apply the linear response theory to the density response function
[Pines and Nozières, 1999], which is the most important problem.

We consider the q-component of the Fourier transform

ρq =
N∑
i=1

e−iq·ri =

∫
dre−iq·rn(r) (4.27)

of the density operator

n(r) =
N∑
i=1

δ(r− ri) , (4.28)

where ri is the coordinate operator of the i-th particle.
As we discuss in the following, the above operator, within the framework of the sum-

rule approach, describes the propagation of sound in uniform con�gurations which has to
be compared with collective modes in trapped systems, investigated in Chap. 5.

The density response function χ(q, ω) is calculated by making the choice F = G = δρ†q,
with δρ†q = ρ†q − 〈ρ†q〉eq, in Eq. (4.3). Notice that the expectation value 〈ρ†q〉eq is taken at
equilibrium and it is zero in uniform con�gurations if q 6= 0. At T = 0, the equilibrium
con�guration coincides with the ground-state. For low-momentum transfer, the response
function χ(q, ω) is sensitive to the collective oscillations of the system, which are phonons
(sound) in uniform con�gurations. On the other hand, for high momentum, the collective
character is not anymore relevant, since the external probe scatters incoherently from the
individual components of the system. This regime is suitable to explore the momentum
distribution n(p) of the atomic cloud.

Analogously, one can calculate the dynamic structure factor S(q, ω) by using F = δρ†q
in Eq. (4.4). The importance of the dynamic structure factor resides in the fact that
it describes the cross-section of inelastic reactions where the scattering probe transfers
momentum ~q and energy ~ω to the system, as happens in neutron scattering from liquid
helium [Pitaevskii and Stringari, 2016].

We study now the moments

mp(q) = ~
∫ +∞

−∞
(~ω)pS(q, ω)dω (4.29)

of the dynamic structure factor. In many situations, they can be calculated explicitly
through the method of sum rules, which is useful if the dynamic structure factor S(q, ω)

Collective oscillations of a trapped atomic gas in low D
& thermodynamics of 1D Bose gas

G. De Rosi



Density response function 58

is characterized by a sharp peak. Moreover, the derivation of sum rules for the density
operator can be simpli�ed if the unperturbed con�guration is invariant under both parity
and time reversal transformations, in which case the following identity holds:

S(q, ω) = S(−q, ω) . (4.30)

A very relevant sum rule is given by the energy-weighted moment, which can be calcu-
lated by combining the completeness relation with Eq. (4.30)

m1(q) = ~2

∫ +∞

−∞
S(q, ω)ωdω =

1

2
〈[δρ†q, [H, δρq]]〉 . (4.31)

The energy-weighted moment (4.31) determines the high ω behaviour of the response
function

lim
ω→∞

χ(q, ω) =
2

(~ω)2
m1(q) (4.32)

as one can derive from Eq. (4.22) where the term 1/ω vanishes.
To calculate the double commutator of Eq. (4.31), we observe that, for velocity-

independent potentials, only the kinetic energy term contributes to the inner commutator
[H, δρq], yielding to the double commutator [δρq, [H, δρ−q]] = N~2q2/m. Then, one gets
the model-independent result

m1(q) = ~2

∫ +∞

−∞
S(q, ω)ωdω = N

~2q2

2m
, (4.33)

which is called the f -sum rule [Placzek, 1952, Nozières and Pines, 1958]. This is the
analogue of the famous dipole Thomas-Reich-Kuhn sum rule for atomic spectra, and it is
a very remarkable result. First, it can be applied to a wide class of many-body systems,
independent of statistics and temperature. Second, as we shall see later, it can be used,
combined with other moments, to calculate the frequency of the collective oscillations. In
addition, the f -sum rule is also deeply related to the equation of continuity (3.13). For
this reason, the f -sum rule describes also the conservation of the particle number.

Finally, let us discuss the inverse energy-weighted moment

m−1(q) =

∫ +∞

−∞
S(q, ω)

1

ω
dω , (4.34)

which is connected to the static response of the system, see Eq. (4.23), and therefore it
determines its low frequency limit

Nχ(q) ≡ χ(q, 0) = 2m−1(q) , (4.35)

where we have used Eq. (4.30). In uniform systems the low-q limit of the static response
can be connected to the thermodynamic isothermal compressibility κT . Indeed, the defor-
mations induced by the external force can be expressed as local changes of the pressure,
and a straightforward calculation provides the compressibility sum-rule

lim
q→0

∫ +∞

−∞
S(q, ω)

1

ω
dω =

NκT
2

=
N

2mv2
T

(4.36)

where κT is expressed in terms of the isothermal velocity vT : κT = 1/(mv2
T ).

If one applies the density operator to the �uctuation-dissipation theorem (4.24), one
gets

NS(q) = ~
∫ +∞

−∞
dωS(q, ω) =

~
2π

∫ +∞

−∞
dωχ′′(q, ω) coth

(
β~ω

2

)
. (4.37)
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For small values of q, the integral (4.37) is given by the classical contribution |ω| � kBT for

which coth
(
β~ω

2

)
= 2kBT

~ω . By using Eqs. (4.12) and (4.36), one gets the low-q behaviour

of the static structure factor at �nite T

lim
q→0

S(q) =
kBT

mv2
T

. (4.38)

For low T, Eq. (4.38) holds for very small ranges of the wave vectors q. In this special case,
for some values of q, the integral (4.37) is not exhausted by the classical region |ω| � kBT
and the static structure factor S(q) is sensitive to quantum �uctuations.

4.3 General inequalities

The formalism of the linear response function is really general, so it can be applied
to derive some relations of broad validity. In particular, in this Section, we discuss some
inequalities which will be useful to describe the collective response of the system after an
external perturbation.

At T = 0, where the dynamic structure factor vanishes for ω < 0, see Eq. (4.5), one
can �nd rigorous upper bounds for the energy ~ωmin of the lowest state excited by the
operator F:

~ωmin ≤
mp+1(F )

mp(F )
(4.39)

and

~ωmin ≤

√
mp+1(F )

mp−1(F )
(4.40)

both holding for any value of p.
Moreover, the moments (4.15) of the excitation operator F satisfy

mp+1(F )

mp(F )
≥ mp(F )

mp−1(F )
. (4.41)

All the previous inequalities become identities only if an unique excited state exhausts
the strength of the operator F or if the dynamic structure factor has a delta shape like
SF (ω) ∝ δ(~ω − ~ω̄). In this situation ωmin = ω̄ and the ratios of the moments on the
right-hand side of Eqs. (4.39) and (4.40) coincide with ~ω̄ for any value of p.

By choosing the density operator for F , see Sec. 4.2, and by considering Eq. (4.40)
with p = 0, in the low-momenta limit q → 0 one gets that the lowest excitation frequency
vanishes as

ωmin(q) ≤ vsq (4.42)

where we have introduced the sound velocity vs =
√
κ−1/m, being κ the compressibility.

The above �nding has been derived on a very general basis. No hypothesis on the exact
nature of the system has been made, except for the validity of the f -sum rule and the fact
that the compressibility is �nite. With these assumptions, we showed that the excitation
spectrum is gapless with the bound (4.42) which becomes an identity if all the moments
are exhausted by a single excited state. For example, this is true for both dilute Bose gas
and super�uid helium.

In the following, we will brie�y discuss how the linear response theory is also of a
paramount importance in order to show the occurrence or the absence of the BEC in low
dimensions, see Sec. 2.2, both at zero and �nite T.
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At �nite T, from the formalism of the response function, one can derive the Bogoliubov
inequality [Bogoliubov, 1962]

|χF †G(0)|2 ≤ χF (0)χG(0) (4.43)

which contains the static response function, Eq. (4.3) with ω = 0, of two operators F and
G with χF ≡ χF †F and χG ≡ χG†G.

By combining Eq. (4.43) and Eq. (4.26), one �nally �nds (see the detailed derivation
in Pitaevskii and Stringari [2016]):

〈{F †, F}〉 ≥ 2kBT
|〈
[
F †, C

]
〉|2

〈[C†, [H,C]]〉
(4.44)

where the operator C is de�ned by means G = [H,C]. Eq. (4.44) is called Bogoliubov
inequality and provides a rigorous lower bound to the �uctuations of any general operator
F in terms of the operator C. It has been used to show the absence of LRO in 2D and 1D
systems with continuous symmetry [Mermin and Wagner, 1966, Hohenberg, 1967].

Bogoliubov inequality can be applied in order to study the infrared divergent behaviour
exhibited by the particle distribution np of a BEC system, for which it becomes [Pitaevskii
and Stringari, 2016]:

2np + 1 ≥ m2kBT

p2
n0 (4.45)

where n0 is the condensate density. Inequality (4.45) was used by Hohenberg [1967] to
rule out the existence of BEC in 2D and 1D, for the 1/p2 infrared divergency responsible
for the absence of LRO. Moreover, result (4.45) has been derived by assuming that the
system is in thermal equilibrium and holds only at �nite T for which thermal �uctuations
of the phase, taken into account by Eq. (4.44), are present.

On the other hand, at T = 0, only quantum �uctuations survive but they are not
described by the Bogoliubov inequality (4.44). The e�ects of quantum �uctuations are
properly taken into account by the uncertainty inequality [Pitaevskii and Stringari, 2016]:

〈{F †, F}〉 ≥ |〈[F
†, C]〉|2

〈{C†, C}〉
(4.46)

which provides a lower bound for the �uctuations of the general operator F in terms of
the operator C. Let us compare the uncertainty inequality (4.46) with the Bogoliubov
inequality (4.44): both provide rigorous bounds. Di�erently from Eq. (4.44), Eq. (4.46)
does not depend on T and therefore, it can be also used at T = 0.

By considering a BEC as above, one �nds that the �uctuations of the phase and those
of the density cannot be simultaneously small [Pitaevskii and Stringari, 1991]. Moreover,
at T = 0, for low momenta p→ 0, the particle distribution function np diverges as 1/p:

np ≥
n0mvs

2p
, (4.47)

where vs is the sound velocity. This infrared divergency is the result of two-body inter-
actions which make the compressibility of the system �nite. The 1/p divergency in the
momentum distribution of a BEC was �rstly investigated by Gavoret and Nozières [1964].
Inequality (4.47) rules out the occurrence of LRO in 1D Bose systems at T = 0.
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Chapter 5

Hydrodynamic versus collisionless
dynamics of a 1D harmonically
trapped Bose gas

I must confess that, at that time, I had

absolutely no knowledge of the slowness of the

relaxation processes in the ground state,

processes which take place in collisions with the

wall or with the molecules of a foreign gas.

Alfred Kastler

Thermalization and relaxation phenomena represent a key issue in 1D systems
[Popov, 2001, Giamarchi, 2004] of identical bosons with zero-range repulsive interaction
due to the intrinsic integrability [Thacker, 1981, Rigol et al., 2007, Yurovsky et al., 2008,
Rigol, 2009] of this many-body system and have been the object of recent experimental
and theoretical investigations [Laburthe Tolra et al., 2004, Kinoshita et al., 2006, Hof-
ferberth et al., 2007, 2008, van Amerongen et al., 2008, Mazets et al., 2008, Mazets and
Schmiedmayer, 2009, 2010, Tan et al., 2010], see SubSec. 2.3.2. They play an important
role not only for the achievement of equilibrium but also for the propagation of collective
modes [Mazets, 2011] whose nature, in harmonically trapped con�gurations, is expected
to evolve from the HD regime at low temperature to a collisionless (CL) regime at higher
temperature. At low temperature, the applicability of the hydrodynamic description is en-
sured by the phononic nature of the elementary excitations. Phonons are in fact known to
characterise the long wavelength dispersion of the excitation spectrum in one-dimensional
interacting Bose gases, see Sec. 2.3 [Lieb and Liniger, 1963, Lieb, 1963] and their descrip-
tion has the same form as the one given by the hydrodynamic theory of super�uids, see
Chap. 3 [Menotti and Stringari, 2002, De Rosi and Stringari, 2015]. At high temperature1,
the density pro�le is provided by the Maxwell-Boltzmann distribution:

nT (z) = n(0)e−z
2/Z2

T , (5.1)

where the peak density is �xed by the normalization condition n(0) = N/(
√
πZT ) and the

thermal radius ZT characterizes the width of the Gaussian ZT =
√

2kBT/(mω2
z) and it

contains most of atoms in the trap at �nite T. Eq. (5.1) decays exponentially due to the

1High temperature regime implies that the thermal energy is much higher than the degeneracy energy
Edeg ∼ ~2n2/m: kBT � Edeg. On the other hand, the temperature should not be too high in order to
ensure the 1D condition: kBT � ~ω⊥, where ω⊥ is the radial trapping frequency.
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presence of the trap. Therefore, the collisional rate Γ = nσvth, with vth ∼
√
T the thermal

velocity and σ the s-wave cross-section, decreases as ∼ σ/T at high T, collisions become
rare and the system enters the collisionless regime described by the ideal gas model 2. One
then expects a transition between the HD and the CL regime which could provide valuable
information on the collisional e�ects in 1D con�gurations.

So far most of the attention in the collective features of 1D harmonically trapped Bose
gases has concerned the lowest breathing (LB) mode. The frequency of this mode was
calculated at T = 0 within the Lieb-Liniger model using a sum-rule approach [Menotti
and Stringari, 2002], exploring the transition from the weakly interacting BG gas to the
TG limit of strongly repulsive bosons [Tonks, 1936, Girardeau, 1960]. The experimental
results of Haller et al. [2009] have con�rmed with good accuracy the predictions of the
theory. Recent studies of this mode have also focused on the so-called STG regime of hard
rods [Astrakharchik, 2005, Haller et al., 2009] and on the regime of small number of particles
(or small coupling constant g1D) where the LDA, usually employed to calculate the density
pro�les using the equation of state of uniform matter, is not applicable [Gudyma et al.,
2015, Gudyma, 2015, Chen et al., 2015]. The temperature dependence of the frequency
of the lowest breathing mode has also been the object of recent theoretical [Hu et al.,
2014, Chen et al., 2015] and experimental [Moritz et al., 2003, Fang et al., 2014] work.
The theoretical predictions are usually based on a hydrodynamic description where the
relevant thermodynamic quantities are calculated using the Yang-Yang theory [Yang and
Yang, 1969, Yang, 1970], which generalises the Lieb-Liniger theory [Lieb and Liniger, 1963,
Lieb, 1963] of interacting 1D bosons to �nite temperature. A characteristic feature of the
hydrodynamic theory applied to the lowest breathing mode is that, at high temperatures,
it predicts [Hu et al., 2014, Fang et al., 2014, De Rosi and Stringari, 2015] the same
frequency ω = 2ωz as given by the non-interacting gas model, see Table 5.1. This rules out
the possibility of a simple identi�cation of the hydrodynamic versus (VS) the collisionless
nature of the oscillation.

In this Chapter, we exploit the di�erent behaviour exhibited by the dipole compres-
sional (DC) mode, identi�ed as the lowest compression mode with the same parity as the
centre-of-mass (dipole) mode. Di�erently from the centre-of-mass mode, which oscillates
with the model independent frequency ω = ωz, the dipole compression mode is sensitive to
the equation of state and, di�erently from the lowest breathing mode, is characterized by
a di�erent excitation spectrum at high temperatures, when investigated in the hydrody-
namic or in the collisionless regimes, see Table 5.2. This mode, whose frequency has been
already measured at low temperature in elongated con�gurations in the case of the unitary
Fermi gas [Tey et al., 2013], is consequently a natural candidate to exploit the e�ects of
relaxation caused by collisions and the corresponding thermalization e�ects in 1D con�g-
urations. Numerical calculations for the DC frequencies at zero and �nite temperature in
the hydrodynamic framework have been carried out by Hu et al. [2014].

In the following, we will use the Lieb-Liniger Hamiltonian [Kheruntsyan et al., 2005]

H = Hkin +Hint +Htrap = − ~2

2m

N∑
i=1

∂2

∂z2
i

+ g1D

N∑
i>j

δ(zij) +
N∑
i=1

Vext(zi) , (5.2)

describing a gas of 1D interacting Bose particles in the presence of the harmonic potential
Vext(z) = mω2

zz
2/2. Here zij ≡ zi − zj is the relative coordinate and g1D is the relevant

1D coupling constant. In the presence of radial harmonic trapping and in the absence of
con�nement induced resonance [Olshanii, 1998, Petrov et al., 2000b], the interaction pa-
rameter g1D can be written as g1D = 2~2a/ma2

⊥ where a is the three-dimensional scattering
length and a⊥ is the radial oscillator length, see Sec. 2.3.

2The opposite situation happens in uniform con�gurations: since the density is constant in space, the
collisional rate increases with T.
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The original results presented in this Chapter have been published in the paper De Rosi
and Stringari [2016]. This Chapter is organised as follows.

In Sec. 5.1 we summarise the basic results of the hydrodynamic theory of 1D gases
con�ned by a harmonic potential. This theory allows for analytic results for the collec-
tive frequencies if the equation of state exhibits a polytropic dependence on the density
[De Rosi and Stringari, 2015]. Furthermore, it can be conveniently formulated using a
variational procedure allowing for an easy determination of the collective frequencies in
the intermediate regimes of temperature and interaction.

In Sec. 5.2 we formulate a sum rule approach to describe the frequency of the collective
oscillations in the presence of harmonic trapping. This approach provides a useful insight
on the physical features of the collective oscillations, both at zero and �nite temperature.
In this Section we also provide a valuable derivation of the 1D virial theorem, holding in all
regimes of temperature and interaction. An extension of the virial theorem, which turns
out to be useful for the study of the dipole compression mode, is also presented.

In Sec. 5.3 we discuss the dipole compression frequency and point out the di�erent be-
haviour exhibited in the hydrodynamic and in the collisionless regime of high temperature.
In particular, in the latter case, this mode exhibits a characteristic beating e�ect involving
two di�erent frequencies which are expected to be of easy experimental identi�cation.

In Sec. 5.4 we investigate some important issues for the experimental measurement of
our theoretical predictions of Sec. 5.3.

5.1 Variational formulation of the hydrodynamic theory for

an harmonically trapped 1D Bose gas

In this Section, we introduce the variational formulation of the HD approach, which
provides the same results for the breathing mode frequencies, already derived in Sec. 3.7.

We consider the 1D version

m(ω2 − ω2
z)nv +

∂

∂z

[
n

(
∂P

∂n

)
s̄

∂v

∂z

]
= 0 (5.3)

of the linearized hydrodynamic equation [Gri�n et al., 1997, Taylor et al., 2009, De Rosi
and Stringari, 2015] for the velocity �eld v(z), where (∂P/∂n)s̄ is the adiabatic compress-
ibility (s̄ being the entropy per particle) evaluated at the local value of the 1D equilibrium
density pro�le n ≡ n(z) whose z-dependence, caused by the external potentials Vext(z),
can be determined in the Local Density Approximation (A.1), through the solution of the
equilibrium (v = 0) Euler equation, see Eq. (3.15)(

∂P (z)

∂n

)
T

∂n(z)

∂z
+ n(z)

∂Vext(z)

∂z
= 0 , (5.4)

for a �xed value of the temperature of the gas.
The above equations show that the eigenfrequencies ω of the collective oscillations are

determined once the adiabatic and the isothermal (∂P/∂n)T compressibilities, calculated
at the local value n(z) of the density, are known. These quantities depend on the interaction
and on the temperature of the gas.

In the uniform case (Vext = 0) Eq. (5.3) admits a plane wave solution v ∝ eiqz yielding
the phonon dispersion relation ω = vsq, where vs =

√
(∂P/∂n)s̄/m is the adiabatic sound

velocity.
It is worth noticing that, since in 1D there is no super�uid phase transition, see Sub-

Sec. 2.2.2 [Mermin and Wagner, 1966, Hohenberg, 1967], Eq. (5.3) can be applied to
all temperatures provided the dynamic behaviour of the gas is correctly described by the

Collective oscillations of a trapped atomic gas in low D
& thermodynamics of 1D Bose gas

G. De Rosi



Variational formulation of the hydrodynamic theory for an harmonically

trapped 1D Bose gas 64

hydrodynamic theory. This represents an important di�erence with respect to 2D and 3D
systems where hydrodynamic theory, for temperatures below the critical value, should be
generalised to the Landau theory of two �uids, see Sec. 3.3 [Pitaevskii and Stringari, 2016].

It is immediate to show that Eq. (5.3) can be derived [Hou et al., 2013b] from the
variational approach δω2/δv = 0 (and small velocity variation δv � 1) with 3

ω2 = ω2
z +

∫
dzn

(
∂P
∂n

)
s̄

(
∂v
∂z

)2∫
dzmnv2

, (5.5)

�rst developed in 3D systems [Taylor and Gri�n, 2005, Taylor et al., 2008, 2009]. The
advantage of using the variational approach, Eq. (5.5), rather than the di�erential hydro-
dynamic equation, Eq. (5.3), is that one can easily estimate the collective frequencies, at
zero as well as at �nite temperature, with a suitable ansatz for the velocity �eld. This
method has been recently implemented by Hu et al. [2014].

In addition to the universal dipole result ω(D) = ωz for the centre-of-mass oscillation
(Kohn mode), corresponding to the choice v = const, useful expressions for the frequencies
of the relevant collective modes concern the lowest breathing mode

ω2
HD(LB) = ω2

z +

∫
dzn

(
∂P
∂n

)
s̄∫

dzmnz2
, (5.6)

corresponding to the ansatz v = z, and the dipole compression mode

ω2
HD(DC) = ω2

z +

∫
dzn

(
∂P
∂n

)
s̄

4z2∫
dzmn(z2 − 〈z2〉)2

, (5.7)

corresponding to the ansatz v = z2 − 〈z2〉 where 〈z2〉 is the average value of z2 calculated
at equilibrium. The term 〈z2〉 ensures the orthogonality between the dipole compression
mode and the centre-of-mass oscillation. This is easily proven by noticing that the density
variations δn(z) = ∂z[vn], derived from Eq. (3.13), associated with the DC mode give rise
to a vanishing dipole moment:

∫
dzzδn(z) = 0 4.

Predictions (5.6) and (5.7) for the lowest breathing and the dipole compression modes
are expected to provide an accurate approximation to the exact solutions of the hydrody-
namic equation (5.3) in all regimes of interaction and temperature. This is the consequence
of the fact that the corresponding ansatz for the velocity �eld coincides with the exact so-
lution of the hydrodynamic equation in important asymptotic regimes, where the equation
of state exhibits a polytropic dependence on the density [De Rosi and Stringari, 2015],
like the T = 0 weakly interacting limit, the T = 0 Tonks-Girardeau limit as well as in the
classical regime of high temperatures [De Rosi and Stringari, 2015]. One then expects that
the same ansatz for v will be accurate also in the intermediate regimes of interaction and
temperature. Such accuracy was recently proven numerically by Hu et al. [2014]. The
values of the hydrodynamic frequencies calculated in the above three asymptotic regimes
[De Rosi and Stringari, 2015] are reported in Table 5.1 for the lowest breathing mode and
in Table 5.2 for the dipole compressional mode, see also Sec. 3.7 and Appendix C for
the detailed calculation. Finally, we notice that the LB HD frequencies of Table 5.1 were
obtained also by Bouchoule et al. [2016] using scaling arguments starting from the HD
equations.

3By applying the variational procedure to Eq. (5.5) and by using Eq. (5.4) and the de�nition of the
adiabatic coe�cient (3.17), one can �nd the hydrodynamic equation (3.16), which is completely equivalent
to Eq. (5.3).

4Since the DC mode has the same parity of the centre-of-mass mode, the velocity ansatz can be chosen
as v(z) = α2z

2 +α0. By imposing the vanishing dipole moment condition, one �nally �nds α0 = −α2〈z2〉,
for which the DC ansatz does not excite the centre-of-mass oscillation.
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Table 5.1: Hydrodynamic VS collisionless frequencies of the lowest breathing mode (LB)
for a 1D Bose gas. From De Rosi and Stringari [2016]. Copyright c© 2016, American
Physical Society.

Hydrodynamic

T = 0 high T Collisionless

1D weakly interact. (BG)
√

3ωz 2ωz 2ωz

1D Tonks-Girardeau 2ωz 2ωz 2ωz

5.2 Sum rules and collective oscillations

In this Section, we apply the sum-rule approach to calculate the collective frequencies
of the centre-of-mass (SubSec. 5.2.1), the lowest breathing (SubSec. 5.2.2) and the dipole
compression (SubSec. 5.2.3) modes.

As discussed in Chap. 4, sum rules represent a powerful tool to describe the collec-
tive behaviour exhibited by quantum many-body systems [Lipparini and Stringari, 1989,
Stringari, 1996, Pitaevskii and Stringari, 2016], perturbed by an external excitation with
low momentum transfer. Their main merit is that, in many cases, they provide accurate
predictions for the collective frequencies avoiding the full solution of the quantum many-
body problem. Furthermore, being based on the algebra of commutators, see Appendix D,
they emphasize the symmetry properties of the problem and the role of conservation rules.
In general sum rules provide compact expressions for the p-moments

mp(F ) = ~
∫ +∞

−∞
(~ω)pSF (ω)dω (5.8)

of the dynamic structure factor

SF (ω) = Q−1
N∑

n,m=1

e−βEm | 〈m|F |n〉 |2δ(~ω − ~ωnm) , (5.9)

where F =
∑N

k=1 f(zk) is the relevant excitation operator, Q =
∑N

m=1 exp[−βEm] is the
partition function and ωnm = (En−Em)/~ are the Bohr transition frequencies, relative to
the Hamiltonian, Eq. (5.2).

An important sum rule, widely employed in many-body calculations, concerns the
inverse-energy weighted moment m−1 of the dynamic structure factor. This moment is
directly related to the static response χ(F ) de�ned in terms of the �uctuation δ〈F 〉 =
λχ(F ), induced by an external static perturbation of the form Hpert = −λF applied to the

Table 5.2: Hydrodynamic VS collisionless frequencies of the dipole compressional mode
(DC) for a 1D Bose gas. From De Rosi and Stringari [2016]. Copyright c© 2016, American
Physical Society.

Hydrodynamic

T = 0 high T Collisionless

1D weakly interact. (BG)
√

6ωz
√

7ωz 3ωz & 1ωz

1D Tonks-Girardeau 3ωz
√

7ωz 3ωz & 1ωz
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system, according to the relationship [Pitaevskii and Stringari, 2016] χ(F ) = 2m−1(F ).
The calculation of m−1 for the classical gas is reported in Appendix E.

Them−1 sum rule can be combined with the energy weighted sum rule, which in general
can be reduced in the form of a double commutator involving the Hamiltonian H and the
excitation operator F , yielding the simple result

m1(F ) =
1

2
〈[F, [H,F ]]〉 =

~2

2m
N〈|∇zf(z)|2〉 , (5.10)

to provide an estimate of the collective frequency through the ratio

~2ω2
1,−1 =

m1

m−1
. (5.11)

The cubic energy weighted moment can be written in the form of a double commutator
involving the Hamiltonian H and the commutator [H,F ]:

m3(F ) =
1

2
〈[[F,H], [H, [H,F ]]]〉 . (5.12)

It can be combined with the energy weighted moment (5.10), in order to calculate the
collective frequency

~2ω2
3,1 =

m3

m1
. (5.13)

Both the ratios (5.11) and (5.13) are given by an equality and not an upper bound, since
the dynamic structure factor (5.9) has a delta structure, see Sec. 4.3.

In the presence of harmonic trapping, the choice for the excitation operator depends
on the nature of the collective mode. In the following Subsections, we will calculate the
collective frequencies of some modes.

5.2.1 Centre-of-mass mode

For the simplest case of the centre-of-mass (dipole) mode, we choose the excitation
operator FD =

∑N
k=1 zk

5. We remind that its frequency is always equal to that of the
trap ω(D) = ωz.

The inverse energy weighted moment m−1 can be calculated from Eq. (E.4):

m−1 =
N

2mω2
z

(5.14)

which turns to be independent on T and so holding for all temperature regimes.
Moreover, the energy weighted moment m1 is estimated from Eq. (5.10):

m1 =
N~2

2m
. (5.15)

By combining Eq. (5.14) and Eq. (5.15) in Eq. (5.11), one gets the trapping frequency.
From Eq. (5.12), one calculates the cubic energy weighted moment:

m3 =
~4ω2

zN

2m
(5.16)

and from the ratio (5.13) one �nds again the frequency ωz.
The model independence of the dipole mode is well re�ected by the fact that Eqs.

(5.14), (5.15) and (5.16) are independent on T and on the gas regime.
The most interesting cases of LB and DC modes will be discussed in the following

Subsections.
5The excitation operator F =

∑N
k=1 f(zk) is related to the velocity �eld v, de�ned in Sec. 5.1, by

v(z) ∝ ∇zf(z).
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5.2.2 Lowest breathing mode

For the lowest breathing mode the natural choice is provided by the operator FLB =∑N
k=1(z2

k − 〈z2〉) which ensures the condition 〈FLB〉 = 0 at equilibrium. In this case the
inverse energy weighted moment can be easily calculated since the static perturbation
−λFLB consists of a simple renormalization of the harmonic trapping frequency. One then
�nds the following result [Menotti and Stringari, 2002, Pitaevskii and Stringari, 2016]:

m−1(LB) = −N
m

∂〈z2〉
∂ω2

z

, (5.17)

for the inverse energy weighted moment. On the other hand, the energy weighted moment
(5.10), relative to the same excitation operator, yields the result

m1(LB) =
2N~2

m
〈z2〉 , (5.18)

so that the ratio between the two sum rules provides the expression

ω2
1,−1(LB) = −2

〈z2〉
∂〈z2〉/∂ω2

z

(5.19)

for the squared collective frequency.
Result (5.19) was successfully employed to evaluate the LB frequency in 1D Bose gases

at zero temperature [Menotti and Stringari, 2002]. In particular, by using the Local Density
Approximation to evaluate the ωz-dependence of the average square radius, this equation
accounts for the transition of the collective frequency from the value

√
3ωz holding in the

weakly interacting Bose gas to the value 2ωz holding in the Tonks-Girardeau limit, see
Table 5.1 6. Since Eq. (5.19) does not assume the Local Density Approximation, it can
be also used to estimate the collective frequencies when the coupling constant g1D or the
number of atoms are small [Gudyma et al., 2015, Gudyma, 2015], a relevant situation in
experiments where one usually works with arrays of 1D tubes, each of them containing
N ∼ 25 atoms, see Sec. 2.1.

One should however notice that result (5.19) is not adequate to describe the frequency
of the LB mode at �nite temperature. This is best understood in the classical limit of high
temperatures where Eq. (5.19) provides the result

√
2ωz for the collective frequency to be

compared with the exact value 2ωz holding in the classical limit where the Hamiltonian
of the system reduces to the ideal gas value (see Table 5.1) 7. The discrepancy between
the two values is due to the fact that, at �nite temperature, the operator FLB excites
zero-frequency modes which provide a �nite contribution to the inverse energy weighted
moment sum rule.

6For the BG regime, one must to take into account the pro�le (C.3), from which one calculates:〈z2〉BG = 35/3

15

(
g1DN
2mω2

z

)2/3
∂〈z2〉BG

∂ω2
z

= − 2
3
〈z2〉BG

ω2
z

.
(5.20)

For the TG regime, the density pro�le is (C.4), from which one �nds{
〈z2〉TG = ~N

2mωz
∂〈z2〉TG

∂ω2
z

= − 〈z
2〉TG

2ω2
z

.
(5.21)

7For the classical gas at high T, one must to take into account the Maxwell-Boltzmann distribution
(5.1), from which one derives {

〈z2〉T = kBT
mω2

z
∂〈z2〉T
∂ω2

z
= − 〈z

2〉T
ω2
z

.
(5.22)
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A similar situation takes place in uniform matter, where a natural choice for the ex-
citation operator is F = ρ(q) =

∑N
k=1 e

iqz, see Eq. (4.27). Eq. (5.11) yields, for small
wavevectors q, the result ω1,−1(q) = vT q with mv2

T = (∂P/∂n)T , see Eq. (4.42), related to
the isothermal sound velocity vT . In this case, we have used the well-known result for the
model-independent f -sum rule for m1, Eq. (4.33), and for the compressibility sum rule,
Eq. (4.36) [Pines and Nozières, 1999, Pitaevskii and Stringari, 2016]:

m−1(q)q→0 =
N

2

(
∂n

∂P

)
T

, (5.23)

for the inverse-energy weighted sum-rule which is �xed, at small wavevector q, by the
isothermal compressibility of the system. At zero temperature Eq. (5.11) provides the
exact result for the sound velocity in interacting Bose systems, being the isothermal and
the adiabatic compressibilities equal. The situation is di�erent at high temperature, where
the propagation of sound is provided, in the collisional regime, by the adiabatic rather
than by the isothermal compressibility. The inadequacy of the ratio (5.11) in providing
the correct value of the sound velocity at �nite temperature is due to the existence of
a di�usive (zero-sound) mode, located at very low excitation energies, which provides a
crucial contribution to the inverse energy weighted sum rule [Pines and Nozières, 1999].
The drawback of the inverse energy weighted sum rule in providing the propagation of
sound at �nite temperature is not peculiar of uniform systems, but it also shows up in
the study of the collective excitations in the presence of harmonic trapping, as we have
observed above.

The correct value of the collective frequency at �nite temperature is recovered if, in-
stead of calculating the inverse energy weighted sum rule, one evaluates the cubic energy
weighted sum rule m3(F ), Eq. (5.12). Di�erently from m−1(F ), the cubic energy weighted
moment is not sensitive to the zero frequency modes excited by the operator F at high
temperature. Evaluation of the triple commutator (5.12) with the Lieb-Liniger Hamilto-
nian (5.2) yields the following result for the m3 sum rule relative to the excitation operator
FLB =

∑N
k=1(z2

k − 〈z2〉):

m3(LB) =
2~4

m2
(4〈Hkin〉+ 4〈Htrap〉+ 〈Hint〉) . (5.24)

A useful simpli�cation of Eq. (5.24) is provided by the virial theorem [Stringari, 1996,
Gudyma, 2015, Pitaevskii and Stringari, 2016], which can be derived by imposing the
general condition 〈[H,G]〉 = 0 holding at equilibrium for any choice of the operator G.
By making the choice of the hermitian operator G =

∑N
k=1 (zkpz,k + pz,kzk) corresponding

to an unitary scaling deformation of the many-body wave function, one derives the exact
relationship, see Appendix G:

2〈Hkin〉 − 2〈Htrap〉+ 〈Hint〉 = 0 . (5.25)

Thanks to the virial theorem (5.25) the cubic energy weighted sum rule (5.24) can
be further simpli�ed and, combined with the energy weighted sum rule (5.18), yields the
following expression for the LB collective frequency [Gudyma, 2015]

~2ω2
3,1(LB) =

m3(LB)

m1(LB)
= ~2ω2

z

(
4− 〈Hint〉

2〈Htrap〉

)
, (5.26)

or, equivalently [Gudyma, 2015],

ω2
3,1(LB) = ω2

z

(
3 +
〈Hkin〉
〈Htrap〉

)
, (5.27)
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holding also beyond LDA. Eq. (5.26) explicitly shows that, if the average value of the
interaction energy is negligible, as happens in the TG regime and in the collisionless regime
of high temperatures, one recovers the correct value 2ωz for the lowest compression mode
(see Table 5.1). In the case of the weakly interacting Bose gas one can neglect, at T = 0, the
kinetic energy term and Eq. (5.27) correctly reproduces the hydrodynamic value

√
3ωz. In

conclusion, one expects that the sum rule result m3/m1 will provide an excellent estimate
of the frequency of the lowest compression mode in all ranges of temperature, interaction
and number of particles. At T = 0 it is expected to provide results of similar accuracy as
prediction (5.19) based on the ratio between the energy weighted and the inverse energy
weighted sum rule. The expression (5.26) for the LB collective frequency was already
considered by Fang et al. [2014] to analyse their experimental data at �nite temperature.

A further interesting expression for the ω2
3,1 ratio can be obtained by using the Hellmann-

Feynman expression 〈Hint〉 = g1D∂F/∂g1D for the interaction energy, where F is the free
energy of the system 8. In this way Eq. (5.26) takes the form

ω2
3,1(LB) = ω2

z

[
4 +

~2Ca1D

2m〈Htrap〉

]
(5.28)

where we have introduced the 1D Tan's contact parameter C = (m/~2)∂F/∂a1D with
a1D = −2~2/mg1D the 1D scattering length. The same result can be obtained by using
the Tan's contact 1D virial theorem (see, for example, Valiente [2012]):

E =
β + 2

2
〈Htrap〉 −

~2C
2m

a1D (5.29)

where Htrap ∝ zβ and E is the total energy of the system. By combining Eq. (5.29) with
β = 2 and Eq. (5.25), one gets

〈Htrap〉 − 〈Hkin〉 = −~2Ca1D

2m
, (5.30)

which used with Eq. (5.27) provides the relation (5.28).
The Tan's contact [Tan, 2008] characterizes the large momentum tail of the momentum

distribution. In its more general de�nition, it is expressed as:

C = Ω lim
|k|→∞

k4nσ(k) (5.31)

where Ω = LD is the volume, D is the dimension and σ is the spin component. Eq.
(5.31) is de�ned for both bosonic and fermionic systems with zero-range interactions in
any dimension [Olshanii and Dunjko, 2003, Combescot et al., 2009, Werner and Castin,
2010, Valiente et al., 2011, Barth and Zwerger, 2011]. In 1D, the contact C can be also
expressed in terms of the pair short-distance correlation function [Olshanii and Dunjko,
2003, Gangardt and Shlyapnikov, 2003].

8The Hellmann-Feynman theorem enables to calculate the derivative of the eigenvalue Eλ with respect
to a continuous parameter λ:

dEλ
dλ

=

∫
dV ψ∗λ

dHλ
dλ

ψλ

where Hλ is the Hamiltonian and ψλ the eigenfunction of Hλ both depending on λ and dV represents
the integration over the domain of the wavefunction. By considering the �nite T, one introduces the free
energy F = E − TS and the above expression becomes:

dF

dg1D
=

∫ +∞

−∞
dz
dHint

dg1D
nT (z) =

d〈Hint〉
dg1D

where we have considered the interaction energy of the Hamiltonian (5.2) and the Maxwell-Boltzmann
distribution (5.1), independent on the coupling constant g1D.
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Result (5.28) relates the frequency of the lowest compression mode, �xed with high
accuracy by the ratio ω2

3,1(LB), to independently measurable quantities, like the contact
and the trapping energy. Thus, from Eqs. (5.29) and (5.30), one can calculate also the
kinetic and the interaction energies.

5.2.3 Dipole compression mode

A similar analysis can be worked out for the dipole compression mode excited by the
operator FDC =

∑N
k=1 fDC(zk) with fDC(z) = z3/3 − z〈z2〉. The choice ensures that the

operator FDC will not excite the centre-of-mass (dipole) oscillation, thanks to the presence
of the term z〈z2〉. This can be easily shown by checking that the crossed energy weighted
sum rule 〈[FD, [H,FDC ]]〉, with FD =

∑N
k=1 zk, identically vanishes 9.

In the case of the DC mode the static response, and hence the inverse energy weighted
sum rule, can be easily calculated only in the LDA (A.1) where, in the presence of the exter-
nal perturbation −λFDC , the chemical potential is modi�ed according to µ→ µ−λfDC(z)
and the density pro�le is, accordingly, modi�ed as n(z)→ n(z) + λfDC(z)(∂n/∂µ)T . The
inverse energy weighted sum rule relative to the DC mode then takes the useful form 10

(see Appendix H for the detailed calculation)

m−1(DC) =
1

2

∫
dz

(
z3

3
− z〈z2〉

)2(
∂n

∂µ

)
T

. (5.32)

Using Eq. (5.10), the energy weighted moment is also easily evaluated and takes the
form:

m1(DC) =
~2N

2m
(〈z4〉 − 〈z2〉2) . (5.33)

It is straightforward to verify that, at T = 0, the ratio m1/m−1 provides the correct
(squared) hydrodynamic frequencies both in the weakly interacting Bose gas (

√
6ωz), where

∂µ/∂n = g1D, Eq. (A.15), and in the Tonks-Girardeau limit (3ωz), where ∂µ/∂n =
~2π2n/m, Eq. (A.18). At high temperatures, where ∂µ/∂n|T = ∂P/∂n|T /n = kBT/n,
one instead �nds that the frequency ω1,−1 takes the value

√
3ωz which is smaller than

the hydrodynamic value
√

7ωz, similarly to the case of the LB mode discussed above,
see Appendix I. This result is the consequence of the fact that the DC operator FDC
excites, at high temperature, two modes with frequency equal to ωz and 3ωz, respectively.
The corresponding strengths σ1 and σ3 characterizing the dynamic structure factor SF (ω)
can be easily evaluated through the identi�cation of the weighted combination of the two
excited frequencies 11 with the calculated result

√
3ωz:

ω2
1,−1(DC) =

σ1ωz + σ33ωz
σ1/ωz + σ3/(3ωz)

= 3ω2
z , (5.35)

9[H,FDC] =
i~
m

∑N
i=1

[(
〈z2〉 − z2i

)
pi + i~zi

]
.

10The same procedure, applied to the lowest breathing mode, should take into account a further position
independent correction δµ = −

∫
dzf(z)(∂n/∂µ)T /

∫
dz(∂n/∂µ)T , which is required to ensure the particle

number conservation
∫
dzδn = 0. This yields the general expression

m−1 =
1

2

∫
dzf(z) [f(z) + δµ]

(
∂n

∂µ

)
T

,

for the inverse energy weighted sum rule holding, in the LDA, for any choice of f(z), see Appendix H.
11The sum-rules can be expressed as weighted combinations by combining Eq. (5.8) and Eq. (5.9):

m1 =
∑
i=1,3 σiEi

m3 =
∑
i=1,3 σiE

3
i

m−1 =
∑
i=1,3

σi
Ei

(5.34)

where σi are the strengths relative to the excitation energy Ei = ~ωi. In our case, the excited frequencies
are just two: ωz and 3ωz.
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yielding the relationship σ1 = σ3. The above result for the strengths σ1 and σ3 permits to
predict, in the same regime of high temperature, the value of the ratio between the cubic
and the energy weighted moments. Indeed, by expressing the sum-rules as combinations
of the two frequencies ωz and 3ωz:

ω2
3,1(DC) =

σ1ω
3
z + σ3(3ωz)

3

σ1ωz + σ33ωz
= 7ω2

z , (5.36)

we �nd the correct hydrodynamic frequency at high T,
√

7ωz.
As in the case of the LB mode also for the dipole compression mode the cubic energy

weighted sum rule can be calculated on a general basis in all regimes of temperature by
carrying out explicitly the algebra of commutators. We �nd the result (see Appendix I):

m3(DC) =
~4N

m2
[g1D〈z2〉〈δ(zij)〉+ g1D〈Z2

ijδ(zij)〉−

− 3

2
mω2

z〈z2〉2 +
1

m
〈z2〉〈p2

z〉+
3

m
〈pzz2pz〉+

3

2
mω2

z〈z4〉 − ~2

m
] , (5.37)

where Zij = (zi + zj)/2 is the centre-of-mass coordinate and we have de�ned the intensive
quantities 〈δ(zij)〉 ≡ 〈

∑N
i>j δ(zij)〉/N and 〈Z2

ijδ(zij)〉 ≡ 〈
∑N

i>j Z
2
ijδ(zij)〉/N . Eq. (5.37)

holds also for a small number of particles N because its derivation does not imply the
validity of the LDA. Similarly to the case of the LB mode discussed above, also for the
DC mode one can obtain a useful relationship among the various contributions entering
(5.37) with the help of a generalized virial theorem derivable by imposing the condition
〈[H,G]〉 = 0, with the choice G =

∑N
k=1

(
z3
kpz,k + pz,kz

3
k

)
, see Appendix G. This yields the

relationship:
6

m
〈pzz2pz〉+ 6g1D〈δ(zij)Z2

ij〉 − 2mω2
z〈z4〉 − 3~2

m
= 0 . (5.38)

It is easy to verify that the ratio m3/m1 provides the correct square excitation energy in
some relevant limits at zero temperature. These include the weakly interacting Bogoliubov
gas, where the kinetic energy contribution to (5.25), (5.37) and (5.38) vanishes and the
DC excitation frequency takes the T = 0 hydrodynamic value

√
6ωz, and in the Tonks-

Girardeau limit, where the contribution due to the interaction vanishes and the frequency
takes the value 3ωz [Hu et al., 2014, De Rosi and Stringari, 2015]. At T = 0 the ratiom3/m1

also accounts for the regimes of small coupling constant g1D or small atomic numbers N
where the LDA is no longer applicable [Chen et al., 2015]. At high temperature, where
interaction e�ects are negligible, the ratio m3/m1 reproduces the hydrodynamic result√

7ωz for the average excitation frequency, consistently with the derivation of result (5.36),
(see Appendix I for the full calculation and Table 5.2).

In the next Section, we will provide a more detailed description of the excitation spec-
trum of the dipole compression mode, by studying the response of the trapped gas to
a sudden density perturbation, giving rise to observable signatures of the collisional VS
collisionless nature of the gas.
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5.3 Exciting the dipole compression mode

In this Section we exploit the peculiar behaviour exhibited by the dipole compres-
sion mode resulting from a sudden small density perturbation of the form Hpert(z, t) =

λFDC(z)Θ(t) with FDC =
∑N

k=1 fDC(zk), fDC(z) = z3/3 − z〈z2〉 and Θ(t) the Heaviside
function. Perturbations of similar form can be tailored with laser techniques and have
been already implemented in the case of highly elongated Fermi gases [Tey et al., 2013].
The form of the DC perturbation fDC(z) is shown in Fig. 5.1 where we have expressed
the variable z in units of the thermal radius ZT =

√
2kBT/(mω2

z). As pointed out in the
previous Section, the excitations produced by this perturbation are exactly decoupled from
the centre-of-mass motion.

−2 −1 0 1 2
z/ZT

−3

−2

−1

0

1

2

3

f D
C

(z
/Z

T
)

Figure 5.1: External perturbation fDC(z) = z3/3− z〈z2〉 exciting the dipole compression
(DC) mode. The value of 〈z2〉 is calculated using a Maxwell-Boltzmann distribution (5.1)
with thermal radius ZT =

√
2kBT/(mω2

z). From De Rosi and Stringari [2016]. Copyright
c© 2016, American Physical Society.

From the continuity equation (3.13) where we have identi�ed the velocity v(z) ∝ ∇zf(z)
with the gradient of the excitation operator, one can express the spatial density change
caused by the external perturbation f(z) as follows:

δn(z) ∝ ∇z [(∇zf(z))n(z)] . (5.39)

Let us calculate Eq. (5.39) for the DC perturbation f(z) = fDC(z) and in the high-T
regime. For this purpose, we consider the Maxwell-Boltzmann distribution (5.1) and Eq.
(5.39) is reported in Fig. 5.2. We observe that since the DC excitation operator is an odd
function in space, see Fig. 5.1, this symmetry is transmitted to the density change (5.39)
and the decay is fast for the presence of the gaussian classical distribution, Fig. 5.2. For
this reason, the signal is not relevant for |z/ZT | > 2. Since the density perturbation (5.39)
has been derived starting from the continuity equation which holds in the hydrodynamic
regime, Fig. 5.2 is referred only to the single mode excited with frequency

√
7ωz, see Table

5.2, and not to the CL limit where two di�erent modes are present at high temperatures.
For our discussion, the excitation operator fDC is the same for both the HD as well as
the CL regime. Actually, for the latter collisionless limit, one should calculate the two
excitation operators responsible of the two decoupled modes with frequencies ωz and 3ωz.
In this way, one gets two density perturbations δn(z, t) = δn(z)e−iωt relative to the two
frequencies.

Collective oscillations of a trapped atomic gas in low D
& thermodynamics of 1D Bose gas

G. De Rosi



Exciting the dipole compression mode 73

−5 −4 −3 −2 −1 0 1 2 3 4 5
z/ZT

−2000

−1500

−1000

−500

0

500

1000

1500

2000

Z
T
δn

Figure 5.2: Density change in space for the dipole compression mode at high temperature
in the hydrodynamic regime. ZT =

√
2kBT/(mω2

z) is the thermal radius.

According to linear response theory [Pitaevskii and Stringari, 2016] the time evolution of
the expectation value δ〈F 〉(t) =

∫
dzδn(z, t)fDC(z) follows the law [Zambelli and Stringari,

2001] (see Appendix J for its derivation):

δ〈F 〉(t) =
λ~
kBT

∫ +∞

−∞
dω′SF (ω′)

[
1− cos(ω′t)

]
, (5.40)

where SF (ω) is the dynamic structure factor relative to the excitation operator F , see Eq.
(5.9).

In the hydrodynamic regime a single frequency, provided by Eq. (5.7), will appear in
the time evolution of the signal. According to the results of Table 5.2, this frequency will
evolve continuously from the low temperature T value

√
6ωz (weakly interacting limit) or

3ωz (Tonks-Girardeau limit) to the large T value
√

7ωz. In Fig. 5.3(a) we show the time
dependence of the signal δ〈F 〉(t) predicted in the high T hydrodynamic limit, for which
the dynamic structure factor is S(ω) = σδ(ω −

√
7ωz) and Eq. (5.40) becomes:

δ〈F 〉HD(t) =
~λσ
kBT

[
1− cos(

√
7ωzt)

]
, (5.41)

being σ the excitation strength.
If instead the system is in the collisionless regime of high temperature, the dynamic

structure factor carries the contributions of both frequencies SF (ω) = σ[δ(ω−ωz) + δ(ω−
3ωz) + ω → −ω] (we have set σ1 = σ3 ≡ σ, according to the discussions presented at the
end of the previous Sec. 5.2), the signal will exhibit a typical beating involving the two
frequencies

δ〈F 〉CL =
~λσ
kBT

[2− cos(ωzt)− cos(3ωzt)] (5.42)

as reported in Fig. 5.3(b).
The observation of the transition between a single frequency signal to the beating

regime can then be considered a signature of the transition between the hydrodynamic
to the collisionless regime. A transition of similar nature was observed in the study of
the scissors mode of 3D Bose gases in a deformed harmonic potential where the frequency
has a single value at low temperature in the super�uid Bose-Einstein condensed phase,
while the spectrum exhibits a beating between two frequencies for temperatures larger
than the critical temperature where the system is in the non-super�uid collisionless regime
[Guéry-Odelin and Stringari, 1999, Maragò et al., 2000].
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Figure 5.3: Time evolution of the expectation value δ〈F 〉(t), in units of oscillator time
Tho = 2π/ωz, following the perturbation of the dipole compression mode (see text).
In the hydrodynamic regime of high temperatures (a) the signal is characterized by the
single frequency

√
7ωz, while in the collisionless regime of high T (b) by a periodic beating

of the two frequencies ωz and 3ωz. From De Rosi and Stringari [2016]. Copyright c© 2016,
American Physical Society.

5.4 Experimental issues

In this Section, we discuss some experimental issues relative to our theoretical predic-
tions about the DC mode reported in previous Secs. 5.2 and 5.3.

Even if we have chosen the DC excitation operator

FDC =

N∑
k=1

fDC(zk) =

N∑
k=1

z3
k

3
− zk〈z2〉 (5.43)

such that the centre-of-mass (dipole) mode is not excited, see SubSec. 5.2.3, this does
not re�ect the experimental situation. In fact, in a laboratory, it is extremely di�cult to
generate a perturbation which reproduces exactly Eq. (5.43). Therefore, in most cases,
even the dipole mode is excited [Tey et al., 2013]. The major experimental problem is to
distinguish always the extra dipole frequency ωz from the other modes of interest in all
regimes.

The case of zero temperature is trivial. As a matter of fact, the system is always in the
hydrodynamic regime, characterised by a single excitation frequency:

√
6ωz or 3ωz in the

BG or TG interaction limit, respectively, see Table 5.2. Therefore, it is easy to distinguish
the dipole mode, being its frequency di�erent from both the expected HD frequencies.

The situation at high T is more complicated. In the collisionless regime, we expect a
beating of two frequencies for the DC mode. One of them is exactly equal to the centre-
of-mass (CM) frequency ωz even if the CM is not excited by the operator (5.43). Since,
experimentally, one cannot easily realize the perturbation in the exact form (5.43), the CM
will be unavoidably excited and one cannot, consequently, distinguish if the frequency ωz,
appearing in the resulting signal, really belongs to the CM or to the DC mode. A possible
way to solve this problem is to measure the higher frequency present in the oscillation: if
it is equal to 3ωz, one can conclude that the system is in the CL regime; if instead one
measures the frequency

√
7ωz the gas is in the HD limit.
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A better solution to this problem is provided by the measurement of the signal in the
integral form:

δ〈F 〉(t) =

∫
dzδnDC(z, t)f(z) (5.44)

where the density perturbation δnDC is given by Eq. (5.39) relative to the DC mode. Let
us considers the dipole mode fD(z) = z in Eq. (5.44). By construction one gets that
the CM signal is not excited: δ〈F 〉D(t) = 0. Therefore, the observation of the ω = ωz
component in the signal (5.44) is a proof that we are in the collisionless regime. In other
words, the integrated signal (5.44) acts like a "�lter" for the centre-of-mass mode.
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Chapter 6

Thermodynamic behaviour of a 1D
Bose gas at low temperature

Life isn't one-dimensional. The world isn't

simply divided into good versus evil. I think

we're all capable of both.

Alexander Skarsgard

It is well known that the thermodynamic behaviour of a super�uid is dominated,
at low temperature, by the thermal excitation of phonons [Wilks, 1967]. This explains, in
particular, the peculiar behaviour exhibited at low temperature by the speci�c heat as well
as by other fundamental thermodynamic functions. A non-trivial (and less investigated
in the literature) consequence of super�uidity shows up in the non-monotonic behaviour
of the chemical potential [Papoular et al., 2012]. At low temperature T the chemical
potential increases with T as a consequence of the thermal excitation of phonons. At
high temperature, in the ideal gas classical regime, the chemical potential is instead a
decreasing function of T. This non-monotonic behaviour has been recently measured in a
strongly interacting atomic Fermi gas [Ku et al., 2012] where it was shown that the chemical
potential exhibits a maximum in the vicinity of the super�uid critical temperature.

It is consequently interesting to explore the low-temperature thermodynamic behaviour
of other systems, like one-dimensional (1D) interacting Bose gases, which are known to
exhibit a phononic excitation spectrum, despite the fact that they cannot be considered
super�uids according to standard de�nition. By investigating the drag �ow caused by a
moving external perturbation Astrakharchik and Pitaevskii [2004] have in fact shown that
1D Bose gases interacting with contact potential exhibit a traditional super�uid behaviour,
characterized by the absence of friction force, only in the weakly interaction regime, where
Bogoliubov theory applies and the gas can be locally considered Bose-Einstein condensed,
despite the absence of true long range order.

In this Chapter, we investigate the low-temperature expansion of the chemical potential
µ for a 1D Bose gas with contact repulsive interaction in uniform con�gurations for the
whole crossover, ranging from the weak to the strong interaction limit. We �nd that
for all intermediate interaction regimes, described at T = 0 by Lieb-Liniger (LL) theory,
the increase of the chemical potential at low temperature follows the law µ ∝ T 2 and
is actually caused by the phononic nature of the long wavelength elementary excitations,
as in usual super�uids [Papoular et al., 2012]. The relevant coe�cient �xing the T 2 law
depends on the density derivative of the T = 0 sound velocity which can be calculated
using Lieb-Liniger theory. This feature strengthens the analogy with super�uids even in
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1D dimension. Importantly, our results can be also generalised to every Luttinger liquid
at low temperature whose macroscopic elementary excitations can be described in terms
of non-interacting phonons.

Recently, a ring geometry has been experimentally realized for a microscopic system
of N = 8 − 20 atoms [Labuhn et al., 2016]. Motivated by the experimental progress, we
study in details also the behaviour of a gas containing a �nite number of atoms in a ring,
focusing on the deviations of its thermodynamic behaviour from the one in the large N
limit.

Our system is a uniform gas of bosons interacting with a repulsive contact interaction

H = − ~2

2m

N∑
i=1

∂2

∂x2
i

+ 2c
N∑
i>j

δ(xi − xj) (6.1)

where the interaction parameter c is related to the 1D coupling constant g1D = −2~2/(ma1D)
through c = mg1D/~2, where a1D is the 1D scattering length. The system (6.1) has been re-
alized experimentally for the whole interaction crossover by suitably tuning the interaction
strength [Kinoshita et al., 2004, 2006, Cazalilla et al., 2011], described by the dimensionless
parameter

γ =
c

n
= − 2

na1D
(6.2)

from weak (γ → 0) to strong (γ � 1) interactions [Kinoshita et al., 2004, 2006, Haller et al.,
2009, 2010, 2011]. The �rst case is described by Bogoliubov (BG) theory, while the latter
corresponds to the so-called Tonks-Girardeau (TG) regime where bosons are impenetrable
and their wave function can be mapped onto that of an ideal Fermi gas [Girardeau, 1960].

The original results presented in this Chapter will appear in the forthcoming paper
De Rosi et al. [2017]. This Chapter is organised as follows.

In Sec. 6.1 we derive the low-temperature expansion of the chemical potential, starting
from the free energy of an ideal phononic gas. This assumption is fully justi�ed by the
low-momenta behaviour of the Lieb-Liniger excitation spectrum. The low-temperature
expansion exhibits a T 2-dependence on temperature, with the coe�cient related to the
density derivative of the LL sound velocity at zero temperature. The Bethe-Ansatz results
for the chemical potential are shown to agree very well with the low-temperature expansion,
for the whole BG-TG crossover.

In Sec. 6.2 we investigate the BG weakly-interacting gas. By considering the quantum
�uctuation contribution in the ground-state energy at T = 0, we explore the behaviour of
the chemical potential and of the sound velocity. While this correction is important at
T = 0, it does not a�ect the low-temperature expansion of the chemical potential.

Similarly to Sec. 6.2, we calculate in Sec. 6.3 the �rst corrections in the interaction
parameter γ to the TG strongly interacting gas. The starting point is the expansion, for
large values of γ, of the ground-state energy of a hard-sphere gas.

In Sec. 6.4 we derive the low-temperature expansions of both the adiabatic and the
isothermal inverse compressibilities. The coe�cients of the T 2 laws are studied as a function
of the interaction parameter γ and analytically calculated in the BG and TG limits.

In Sec. 6.5 we consider a ring con�guration with a �nite number of particles at zero
temperature and calculate the �nite-size corrections with respect to the thermodynamic
limit for the energy, the chemical potential and the sound velocity.
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6.1 Low-temperature expansion of the chemical potential

As discussed in Sec. 2.3, the elementary excitations of an interacting 1D Bose gas at
T = 0 have a phononic character at small momenta [Lieb and Liniger, 1963, Lieb, 1963,
Pitaevskii and Stringari, 2016], characterized by the linear dispersion relation

ε(p)p→0 = vs(γ)p . (6.3)

The sound velocity is related to the inverse compressibility [Lieb and Liniger, 1963, Lieb,
1963]

vs(γ) =

√
n

m

∂µ(γ)

∂n
=

√
~2n2

2m2

(
6e(γ)− 4γ

∂e(γ)

∂γ
+ γ2

∂2e(γ)

∂γ2

)
, (6.4)

where n = N/L denotes the linear density and the chemical potential µ is calculated at
T = 0 within the Lieb-Liniger model from the ground-state energy per particle E0(γ)/N =
~2n2e(γ)/(2m) (2.10) [Lieb and Liniger, 1963, Lieb, 1963]:

µ(γ) =
∂E0(γ)

∂N
=

~2n2

2m

[
3e(γ)− γ ∂e(γ)

∂γ

]
. (6.5)

The ratio between the sound velocity and the Fermi velocity vF = ~πn/m is known as the
Luttinger parameter, KL = vF /vs, and plays an important role in de�ning the long-range
properties of one-dimensional systems. Figure 6.1 shows the dependence of the speed of
sound on the interaction parameter γ, Eq. (6.4), for the Lieb-Liniger model, described by
the Hamiltonian (6.1). There is a smooth crossover between the mean-�eld value de�ned
as vs =

√
g1Dn/m = vF

√
γ/π for weak interactions to the Tonks-Girardeau (ideal Fermi

gas) value vs = vF in the limit of strong repulsion, see Appendix K.
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Figure 6.1: Sound velocity vs at T = 0 in units of Fermi velocity vF (red solid line) as a
function of the interaction parameter γ, calculated by solving the Lieb-Liniger equations.
The Bogoliubov (blue dotted line, vBG

s (γ)/vF =
√
γ/π) and Tonks-Girardeau (purple

dashed line, vTG
s = vF ) limits, including their �rst-order corrections (blue solid line vs(γ �

1)/vF = vBG
s (γ)/vF

√
1−√γ/(2π) and purple solid line vs(γ � 1)/vF =

√
1− 8/γ, re-

spectively) are present too, see Secs. 6.2 and 6.3. From De Rosi et al. [2017].
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For larger momenta, the 1D excitation spectrum is characterised by a continuous struc-
ture, bounded by two branches of elementary excitations [Lieb and Liniger, 1963, Lieb,
1963, Yang and Yang, 1969, Pitaevskii and Stringari, 2016], which have been the object of
recent measurements [Meinert et al., 2015]. For small values of γ, the Lieb-I particle-like
branch corresponds to the Bogoliubov excitation spectrum [Lieb and Liniger, 1963, Lieb,
1963, Kulish et al., 1976, Pitaevskii and Stringari, 2016]. The Lieb-II hole-like branch
is instead associated with the dark soliton dispersion predicted by Gross-Pitaevskii the-
ory [Kulish et al., 1976, Ishikawa and Takayama, 1980, Pitaevskii and Stringari, 2016]. The
two branches merge into the phononic spectrum for p� mvs, Fig. 6.2 and Sec. 2.3.
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Figure 6.2: Lieb-Liniger excitation spectrum in the BG regime with γ = 4.52 (left) and
in the deep TG regime with γ = +∞ (right). The units are the Fermi energy EF and
the Fermi momentum pF = mvF . The shaded region represents the continuum of the
excitations and it is delimited by the upper (Lieb-I) and the lower (Lieb-II) branch of the
spectrum. On the left, Lieb-I and II branches are not reported and the purple dashed line
gives the Bogoliubov dispersion and the green dotted line describes the mean-�eld (GP)
soliton spectrum. In the limit γ → 0, Lieb-I branch tends to be equal to the BG dispersion,
while Lieb-II one coincides with the soliton spectrum. The red solid line is the Lieb-Liniger
phononic spectrum calculated with γ = 4.52. On the right, Lieb-I and Lieb-II branches are
reported and they coincide with the particle (purple dashed line) and hole (green dotted
line) ideal Fermi gas excitations, respectively. The red solid line is the phononic spectrum
calculated with the Fermi velocity. From De Rosi et al. [2017].

At low temperature (kBT � mv2
s) we expect that the thermodynamic behaviour of the

system can be calculated in terms of a gas of non-interacting phonons. The free energy
A = E − TS of this ideal Bose gas is then given by

A(T, L) = E0(γ) +
kBTL

2π~

∫ ∞
−∞

log
[
1− e−βε(p)

]
dp1 (6.6)

where ε(p) is dispersion (6.3) and we have added the energy E0(γ) calculated at T = 0 with
the Lieb-Liniger theory, Eq. (2.10). Notice that the thermal contribution to A is a�ected
by two-body interactions through the dependence of ε(p) on the interaction parameter γ.
The integral of Eq. (6.6) yields the following low-T expansion for the free energy

A(T, L) = E0(γ)− π

6

(kBT )2L

~vs(γ)
, (6.7)

1This equation is more general, because it holds also for the Planck radiation composed by photons.
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which di�ers from the usual T 4-behaviour exhibited by 3D super�uids [Pitaevskii and
Stringari, 2016] because of the 1D structure of the integral (6.6). Starting from result (6.7)
one can calculate the low-T expansion of the chemical potential:

µ(T, γ) =

(
∂A

∂N

)
T,L

= EF

[
α(γ) + β(γ)

(
T

TF

)2
]

(6.8)

where we have introduced the energy scale EF = kBTF = ~2π2n2/2m given by the Fermi
energy of a 1D Fermi gas, which exhibits the same density dependence as the quantum
degeneracy temperature of the system. We have also de�ned the relevant dimensionless
parameters of the expansion

α(γ) =
µ(γ)

EF
(6.9)

and

β(γ) =
πEF

6~v2
s(γ)

∂vs(γ)

∂n
, (6.10)

which are functions of the interaction parameter γ and can be calculated at zero temper-
ature using Lieb-Liniger theory and Eq. (6.4) and Eq. (6.5). It is worth noticing that
the parameter β(γ), which is the most relevant because it �xes the leading coe�cient of
the low-T expansion, depends on the density derivative of the sound velocity. The two
numerical functions α(γ), Eq. (6.9), and β(γ), Eq. (6.10), have been calculated within
LL theory and their values are reported in Figs. 6.3 and 6.4 with their BG and TG lim-
its, see Appendix K. In particular, the TG limits for α(γ) and β(γ) reproduce the low-T
Sommerfeld expansion of the chemical potential for the 1D ideal Fermi gas, Eq. (6.25).
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Figure 6.3: α(γ) (red solid line) with leading dependence (purple dashed line, αTG = 1 and
blue dotted line, αBG(γ) = 2γ/π2) and �rst-order corrections [purple solid line, α(|γ| �
1) = 1− 16/(3γ) and blue solid line, α(γ � 1) = αBG(γ)(1−√γ/π)] for Tonks-Girardeau
and Bogoliubov limits, respectively. From De Rosi et al. [2017].

In Figs. 6.5-6.6 we report the temperature dependence of the chemical potential of the
system described by Hamiltonian (6.1) as obtained from the Bethe-Ansatz (BA) approach
�rst developed by Yang-Yang [Yang and Yang, 1969, Yang, 1970, Kheruntsyan et al., 2005,
Lang et al., 2015] for several characteristic values of γ, see SubSec. 2.3.1. The crossover
from mean-�eld to Tonks-Girardeau regimes (see Fig. 6.1) introduces two distinct energy
scales. Correspondingly, we rescale the chemical potential in units of the Fermi energy EF
in Fig. 6.5 and in units of the mean-�eld zero-temperature chemical potential µBG = g1Dn
in Fig. 6.6.
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Figure 6.4: β(γ) (red solid line) with the Tonks-Girardeau (purple dashed line, βTG =
π2/12) and Bogoliubov (blue dotted line, βBG(γ) = π3/(24

√
γ)) limits. From De Rosi

et al. [2017].

The �rst choice provides natural units in TG regime in which strongly repulsive bosons
behave similarly to ideal fermions (IFG) in the limit of γ →∞. In this regime, the chemical
potential as a function of T is calculated by inverting the Fermi-Dirac distribution (magenta
dashed line in Fig. 6.5):

nIFG(p) =
1

e
1

kBT

(
p2

2m
−µ

)
+ 1

, (6.11)

and, despite the absence of super�uidity, it still exhibits the quadratic low-temperature
dependence µ ∝ T 2, which follows from the low-temperature Sommerfeld expansion, Eq.
(6.25).

By reducing the interaction parameter γ, the system becomes softer and the limit of
vanishing interactions (γ → 0) corresponds to an ideal Bose gas (IBG) with the chemical
potential µ(T ) �xed by the relationship (red dashed line in Fig. 6.5):

nIBG(p) =
1

e
1

kBT

(
p2

2m
−µ

)
− 1

. (6.12)

Notice that, because of the absence of Bose-Einstein condensation [Mermin and Wagner,
1966, Hohenberg, 1967], the chemical potential of the 1D ideal Bose gas is always negative
and approaches the value µ = 0 as T → 0.

Remarkably, for all �nite interaction strengths, the temperature dependence is not
monotonic. Moreover, the initial increase is perfectly described by the quadratic low-
temperature expansion (6.8), thereby proving that the model based on a gas of independent
phonons well accounts for the thermodynamic behaviour of the 1D interacting Bose gas.
This is a non-trivial result due to the complex structure of the elementary excitations at
larger wavevectors exhibiting a double branch converging into the phonon law (6.3) only at
small momenta. We notice also that the chemical potential for high temperatures, which is
a decreasing function of T, can be considered as a shift of the ideal Bose chemical potential,
Eq. (6.12), for every value of γ.

While Fig. 6.5 shows very well the whole crossover from the weakly to strongly inter-
acting regime, it is not appropriate for small values of γ, since the low-T expansion breaks
down at very low T. Therefore, for the BG regime, in addition to the new energy scale
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Figure 6.5: Chemical potential as a function of temperature T in Fermi units for several
values of γ. The solid lines represent the Bethe-Ansatz (BA) solutions for di�erent values
of γ. The dot-dashed lines are the low-temperature expansions of the chemical potential
taking into account only the phononic contribution, Eq. (6.8). The low-T expansions for
γ ≥ 1000 are equal to the analytical Sommerfeld expansion of Eq. (6.25). Both the chemical
potential as a function of T for the ideal Fermi (magenta dashed line) and ideal Bose (red
dashed line) gas are also reported, Eq. (6.11) and (6.12), respectively. From De Rosi et al.
[2017].

g1Dn for the chemical potential, we introduce the following T unit, see Fig. 6.6:

TBG(γ) =
~kF vBG

s (γ)

kB
= TF

2
√
γ

π
. (6.13)

Eq. (6.13) has been derived from the phononic linear dispersion law, with wave vector
�xed equal to the Fermi value kF (EF = ~2k2

F /(2m)) and sound velocity vBG
s (γ), provided

by Bogoliubov theory.
In the natural units for the BG regime, the low-T expansion (6.8) can be rewritten as:

µ(T, γ) = g1Dn

[
α(γ)

π2

2γ
+ 2β(γ)

(
T

TBG(γ)

)2
]
, (6.14)

which breaks at very small values of γ. For this reason, the curve (6.14) is not reported in
Fig. 6.6 for γ = 0.001.

For the weakly-interacting regime (γ � 1), we point out from Fig. 6.5 that, for low
temperatures T � µ with µ ∝ T 2, the gas behaves like a quasicondensate, exhibiting
typical features of super�uids. For µ� T � TF , the gas is in a thermal degenerate state,
while for T � TF the gas behaves classically with µ < 0. The above conditions, rewritten
in the more natural BG units of Fig. 6.6 becomes:

T

TBG(γ)
� µ

g1Dn

√
γ

π
, (6.15)

holding in the quasicondensate,

µ

g1Dn

√
γ

π
� T

TBG(γ)
� 1 , (6.16)
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Figure 6.6: Chemical potential as a function of temperature in BG units for several small
values of γ. The solid lines represent the Bethe-Ansatz (BA) solutions. The dashed lines are
the low-temperature expansions of the chemical potential taking into account the phononic
excitations, Eq. (6.14). We notice also that the phononic expansion (6.14) does not hold
for very small γ, like γ = 0.001, for which value the low-Texpansion is not reported. From
De Rosi et al. [2017].

for the thermal degenerate gas and

T

TBG(γ)
� π

2
√
γ
, (6.17)

in the classical regime. A similar classi�cation of the quantum degeneracy states in 1D
trapped con�gurations was �rst proposed by Petrov et al. [2000b], see SubSec. 2.2.2.

6.2 Bogoliubov regime γ → 0

In the mean-�eld theory, the chemical potential is linear in density, µBG(T = 0) = g1Dn
and the velocity of sound takes the value vBG

s (γ) = ~n√γ/m = vF
√
γ/π, see Fig. 6.1 and

Appendix K.
The �rst correction to the mean-�eld expression for the equation of state comes from

the quantum �uctuations [Lee et al., 1957, Lee and Yang, 1957, Pitaevskii and Stringari,
2016]. Di�erently from the 3D case, see SubSec. 1.5.1, in 1D the renormalization of
the scattering length due of the absence of ultraviolet divergences is not required in the
calculation of the ground-state energy, see Appendix L. Therefore in 1D one can consider
all ranges of momenta and one �nds [Lieb and Liniger, 1963, Lieb, 1963]:

E0

N
=

1

2
g1Dn+

2

2N

+∞∑
p>0

[
ε(p)− g1Dn−

p2

2m

]
(6.18)

where

ε(p) =

√
g1Dn

m
p2 +

(
p2

2m

)2

(6.19)

is the Bogoliubov excitation spectrum. By considering the thermodynamic limit of Eq. (6.18)
and by solving the integral in momentum space, one �nally �nds the �rst-order correction

Collective oscillations of a trapped atomic gas in low D
& thermodynamics of 1D Bose gas

G. De Rosi



Tonks-Girardeau regime γ →∞ 85

in the interaction parameter for the ground-state energy [Lieb and Liniger, 1963, Lieb,
1963]

E0

N
(γ � 1) =

~2n2

2m
γ

(
1− 4

3π

√
γ

)
. (6.20)

The same result can be also found by performing a power series expansion of the Lieb-
Liniger equations [Kaminaka and Wadati, 2011, Gudyma, 2015]. Contrarily to the usual
3D case, in one dimension the correction steaming from quantum �uctuations is negative.

Equation (6.20) allows one to calculate the higher-order corrections for the other ther-
modynamic quantities at T = 0. For the chemical potential (6.5), one �nds the result

µ(γ � 1) ≈ ~2n2γ

m

(
1−
√
γ

π

)
(6.21)

which implies the result

α(γ � 1) ≈ αBG(γ)

[
1−
√
γ

π

]
(6.22)

for the expansion of the coe�cient α(γ), where αBG(γ) = 2γ/π2 is the mean-�eld (BG)
value. The corresponding result has been plotted in Fig. 6.3 and well reproduces the exact
value of α(γ) up to values γ ∼ 1.

From Eq. (6.4) and Eq. (6.21), one can calculate also the correction to the sound
velocity [Lieb and Liniger, 1963, Lieb, 1963]

vs(γ � 1) ≈ vBG
s (γ)

√
1−
√
γ

2π
(6.23)

which is also reported in Fig. 6.1, yielding the expression

β(γ � 1) ≈ βBG(γ) , (6.24)

for the coe�cient β(γ), Eq. (6.10), with βBG(γ) = π3/(24
√
γ) the Bogoliubov value. Notice

that, di�erently from the case of α(γ) [see Eq. (6.22)], the �rst correction βBG(γ) vanishes
because of an exact cancellation between the corrections provided by the terms ∂vs/∂n
and v2

s of Eq. (6.10). This explains why the Bogoliubov approximation describes correctly
the value of β(γ) for a large interval of values of γ, up to γ ∼ 1 (see Fig. 6.4).

6.3 Tonks-Girardeau regime γ →∞

For γ → ∞, the TG regime describes a gas whose energetic behaviour coincides with
that of an ideal Fermi gas: the thermodynamic quantities do not depend on the coupling
constant g1D, but only on the density n, encoded in the Fermi energy EF . This regime can
be interpreted as a unitary Bose gas which behaves like an ideal Fermi gas (or a unitary
Fermi gas with Bertsch parameter equal to 1). Therefore, the chemical potential is equal
to the Fermi energy µTG(T = 0) = EF , while the sound velocity is equal to the Fermi
velocity vTG

s = vF =
√

2EF /m, see Fig. 6.1 and Appendix K. The low-T expansion of the
chemical potential in this limit is equal to the �rst terms of Sommerfeld expansion (orange
dot-dashed line for γ = 1000 in Fig. 6.5) of the 1D ideal Fermi gas, as already pointed out
by Lang et al. [2015]:

µSomm(T ) = EF

[
1 +

π2

12

(
T

TF

)2
]

(6.25)

which contains the TG limits of α(γ) and β(γ) parameters, Figs. 6.3 and 6.4.
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First-order corrections to the TG regime can be calculated by starting from the ground
state energy per particle of a gas of hard-sphere (i.e. impenetrable) bosons with diameter
a1D > 0 [Girardeau, 1960]:

E0

N
=
π2~2

6m

n2

(1− na1D)2
. (6.26)

In the limit of point-like bosons a1D = 0, Eq. (6.26) reproduces the ground state energy of
the free Fermi gas, Eq. (K.10).

It is natural to apply expression (6.26) for the energy of a strongly interacting 1D Bose
gas also to the case of negative scattering lengths a1D corresponding to large and positive
values of γ, see Eq. (6.2), i.e to the case of a strongly repulsive 1D Bose gas. The quantity
n|a1D| is interpreted as gas parameter in 1D and, in the TG regime, it is small, Eq. (6.2).
By expanding Eq. (6.26) for n|a1D| � 1, in terms of γ, one can then write

E0

N
(|γ| � 1) ≈ π2~2n2

6m

(
1− 4

γ

)
(6.27)

holding for both the Super Tonks-Girardeau [Astrakharchik et al., 2005a] (γ < 0) and the
strongly repulsive [Gudyma, 2015] (γ > 0) regimes, see Sec. 2.3.

From Eq. (6.27), one easily calculates the correction of the chemical potential at T = 0,
Eq. (6.5):

µ(|γ| � 1) ≈ EF
(

1− 16

3γ

)
(6.28)

which implies the result [Gudyma, 2015]

α(|γ| � 1) ≈ 1− 16

3γ
(6.29)

for α(γ), including the �rst correction to the TG result αTG = 1. Prediction (6.29) is
reported in Fig. 6.3 for positive values of γ, its accuracy being good for value of γ larger
than ∼ 10.

From Eq. (6.4) and Eq. (6.28), one can calculate also the �rst correction, at large γ, to
the sound velocity [Gudyma, 2015, Valiente and Öhberg, 2016]:

vs(|γ| � 1) ≈ vF
√

1− 8

γ
(6.30)

which is reported in Fig. 6.1. For the coe�cient β(γ), which provides the T 2-correction in
the expansion of the chemical potential, we �nd again an exact cancellation between the
1/γ correction (provided by the term ∂vs/∂n) and v2

s entering the expression (6.10) for
β(γ), similarly to what happens in the small γ expansion discussed in the previous Section
6.2 in the case of the Bogoliubov gas. We then �nd that the Tonks-Girardeau expression
βTG = π2/12 provides a very accurate estimate of β(γ) for values of γ larger than ∼ 10
(see Fig. 6.4).

6.4 Low-temperature expansion of the inverse compressibili-

ties

In this Section, we provide the phononic low-T expansions of both the adiabatic and
isothermal inverse compressibilities, discussed in SubSec. 6.4.1 and 6.4.2, respectively.
Both quantities provide relevant information about the equation of state of the gas under
investigation. In particular, the adiabatic inverse compressibility is of a paramount impor-
tance, being directly related to the adiabatic sound velocity, measured in the experiments
in cigar con�gurations.
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6.4.1 Adiabatic inverse compressibility and sound velocity

From the Gibbs-Duhem relation dP = ndµ+ sdT , one �nds(
∂P

∂n

)
s̄

= n

(
∂µ

∂n

)
s̄

+ ns̄

(
∂T

∂n

)
s̄

(6.31)

where s is the entropy density and s̄ = s/n is the entropy per particle.
At low temperature the entropy per particle of a non-interacting gas of phonons takes

the form 2 [Pitaevskii and Stringari, 2016]

s̄(T ) =
πk2

BT

3~vsn
, (6.32)

which depends on the T = 0 value (6.4) of the sound velocity.
Using Eq. (6.32), one derives the result(

∂T

∂n

)
s̄

=
3~vss̄
πk2

B

(
1 +

6~nvsβ(γ)

πEF

)
, (6.33)

where we have used Eq. (6.10) for the density derivative of the sound velocity at constant
entropy.

From the low-T expansion (6.8), Eq. (6.32), the coe�cient (6.9) and by introducing the
interaction parameter (6.2), one calculates the adiabatic density variation of the chemical
potential (

∂µ

∂n

)
s̄

=
m

n
v2
s +

(kBT )2

nEF

(
12n~vs
πEF

β2(γ)− γ ∂β(γ)

∂γ

)
. (6.34)

By inserting (6.33) and (6.34), in Eq. (6.31), one �nally �nds the low-temperature
expansion (

∂P (T, γ)

∂n

)
s̄

=

(
∂P

∂n

)
T=0

+ EF δ(γ)

(
T

TF

)2

(6.35)

of the adiabatic inverse compressibility, where(
∂P (γ)

∂n

)
T=0

= mv2
s(γ) (6.36)

is the T = 0 value of the inverse compressibility and we have de�ned the positive quantity

δ(γ) =
24

π2
β2(γ)

vs(γ)

vF
− γ ∂β(γ)

∂γ
+
π2

6

vF
vs(γ)

+ 2β(γ) , (6.37)

2From the entropy
S

kB
=
∑
i

[
β (εi − µ)
eβ(εi−µ) − 1

− ln
(
1− eβ(µ−εi)

)]
one considers the low-T description of a gas of non-interacting phonons µ = 0 with linear dispersion
ε(p) = vsp. By replacing the sum with an integral in momentum space, one �nally �nds Eq. (6.32).
The same equation can be also calculated starting from the expression of energy [Pitaevskii and Stringari,
2016]:

E =
∑
i

εi
eβ(εi−µ) − 1

and its low-T expansion:

E(T ) =
πL (kBT )

2

6~vs
which, combined with Eq. (6.7) of the free energy, reproduces Eq. (6.32).
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which is reported in Fig. 6.7 together with its asymptotic limits in the Bogoliubov
and Tonks-Girardeau regimes. The �rst corrections γ � 1 and γ � 1 for small and large
interaction parameter, respectively, vanish like for the β(γ) coe�cient. Indeed, the BG
limit describes very well the curve (6.37) up to γ ∼ 1 and the TG regime holds for values
larger than γ ∼ 10 of the interaction parameter.
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Figure 6.7: Curvature δ(γ) of the low-temperature expansion of the adiabatic inverse
compressibility (red solid line). Both BG (blue dotted line) and TG (purple dashed line)
analytical limits δBG(γ) = 5

16
π3
√
γ and δTG = π2

2 , respectively, are also reported. From

De Rosi et al. [2017].

The adiabatic inverse compressibility provides directly the sound velocity at �nite tem-
perature mv2

s = (∂P/∂n)s̄. From Eq. (6.35), one can calculate the phononic low-T expan-
sion of the adiabatic sound velocity

vs(T, γ) =

√
v2
s(γ) +

EF
m
δ(γ)

(
T

TF

)2

, (6.38)

being vs(γ) the T = 0 Lieb-Liniger sound speed (6.4).

6.4.2 Isothermal inverse compressibility

By �xing the temperature T in Eq. (6.31) and by considering the expansion of the
chemical potential (6.8), one can also calculate the low-T expression for the isothermal
inverse compressibility(

∂P (T, γ)

∂n

)
T

=

(
∂P

∂n

)
T=0

+ EF η(γ)

(
T

TF

)2

(6.39)

where we have de�ned the negative dimensionless coe�cient

η(γ) = −2β(γ)− γ ∂β(γ)

∂γ
. (6.40)

Notice that the thermal corrections to the isothermal and adiabatic inverse compress-
ibilities have opposite sign, being the coe�cient η(γ) always negative. The absolute value
of η(γ) is reported in Fig. 6.8 together with its asymptotic limits in the Bogoliubov and
Tonks-Girardeau regimes. The negative value of η(γ) is the consequence of the peculiar
temperature dependence of the free energy (6.7). As in the case of δ(γ), the �rst corrections
for small γ � 1 and large γ � 1 interaction parameter vanish in η(γ).
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Figure 6.8: Absolute value of the curvature η(γ) of the low-temperature expansion of the
isothermal inverse compressibility (red solid line). Both BG (blue dotted line) and TG
(purple dashed line) analytical limits ηBG(γ) = −π3/(16

√
γ) and ηTG = −π2/6, respec-

tively, are also reported. From De Rosi et al. [2017].

6.5 Gas on a ring

The physics in one dimension is unusual in many aspects. The mean��eld regime
is reached at large densities contrarily to what happens in three dimensions where the
weakly�interacting limit corresponds to small densities, according to the limit na3 → 0.
For a �xed number of particles N the mean��eld limit in one dimension, n|a1D| → ∞,
can be obtained either increasing the linear density n = N/L, by decreasing the system
size L, or by increasing the s�wave scattering length a1D, i.e. decreasing the coupling
constant g1D = −2~2/ma1D. Asymptotically, at a certain point, the size of the system L
will become comparable to the healing length

ξ =

√
~2

2mg1Dn
(6.41)

and �nite�size e�ects will become important. This should be contrasted to the three-
dimensional case where the mean��eld regime is instead achieved by increasing the system
size L which consequently becomes larger than the healing length.

Finite�size e�ects depend on the system geometry. Interestingly, periodic boundary
conditions (PBC), commonly used as a mathematical tool in three�dimensional world, in
one dimension can be explicitly realized in a ring and have consequently a direct physical
interest. This is another peculiarity of the one�dimensional world. In the following we
calculate the �nite�size dependence of thermodynamic quantities for a gas con�ned in a
ring whose properties are then equivalent to the ones of a linear 1D system satisfying PBC.
If one considers a plane wave ∝ eikz and one imposes PBC, one �nds that the momentum
is quantized according to

pi = ~ki =
2π~ni
L

(6.42)

where ni = 0,± are integers. Moreover, in 1D, all the integrals in momentum space,
de�ned in the thermodynamic limit (N,L→ +∞, n = �nite), are replaced by a sum over
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the discretized momenta (6.42) as:∫ +∞

−∞
dp→ 2π~

L

+∞∑
p=−∞

. (6.43)

In the following, we calculate the �nite-size corrections in both BG and TG regimes at
zero temperature for a �nite number of particles.

6.5.1 Bogoliubov regime at T = 0

Let us consider the T = 0 ground-state energy per particle given by

E0

N
=

1

2
g1Dn+

1

2N

+∞∑
p=−∞

[
ε(p)− g1Dn−

p2

2m

]
(6.44)

corresponding to the Bogoliubov regime of small γ, where ε(p) is provided by the Bogoli-
ubov spectrum (6.19). Equation (6.44) di�ers from Eq. (6.18) because it contains the p = 0
term in the sum. This term has been included in order to avoid self-interaction e�ects in
the leading mean-�eld term of Eq. (6.18) which should be replaced by g1D(N − 1)/(2L).

By introducing the discretized values of p (6.42), the energy can be rewritten in the
form

E0

N
=

1

2
g1Dn [1 +

√
γG(y)] (6.45)

where we have introduced the dimensionless variable

y = γN2, (6.46)

depending on the interaction parameter γ and the function

G(y) =
2

y
√
y

+∞∑
ni=0

[
2πni

√
y + (πni)2 − 2(πni)

2 − y
]

+
1
√
y
, (6.47)

where the adding of the quantity 1/
√
y ensures that the term ni = 0 in the sum is counted

just once.
By using the Euler Mac-Laurin expansion (see Appendix M), one can calculate the

expression for the series (6.47) for large values of y:

G(y � 1) ≈ − 4

3π
− π

3y
. (6.48)

In Fig. 6.9 we report the comparison of the series (6.47) with its expansion (6.48). We
notice that the two curves agree in excellent way for y > 10. The thermodynamic limit
−4/(3π) is also reported.

For large number of particles, the ground-state energy per particle (6.45) then takes
the form:

E0

N
(γN2 � 1, γ � 1) ≈ 1

2
g1Dn

[
1− 4

3π

√
γ − π

3N2√γ

]
(6.49)

and, in the thermodynamic limit, reproduces Eq. (6.20). The condition y = γN2 � 1 is
equivalent to requiring that the healing length (6.41) be smaller than the size L of the
system.

The ground-state energy contains three contributions: the leading term corresponds to
the usual mean �eld energy, the second contribution arises from the quantum �uctuations
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Figure 6.9: Comparison of the numerical series G(y) (6.47) (red solid line) and its ana-
lytical expansion (6.48) (purple dashed line) holding for y � 1. The blue dot-dashed line
represents the thermodynamic value. From De Rosi et al. [2017].

and is a one-dimensional analog of the Lee-Huang-Yang correction in 3D, while the last
term accounts for �nite-size e�ects and depends explicitly on the interaction parameter γ.

Finite size corrections can be sizeable, as clearly shown by Fig. 6.10 where we report
the energy per particle as a function of y for the thermodynamic limit (6.20) (dot-dashed
line), the Bethe-Ansatz (BA) calculation (circle), the Bogoliubov expression (6.45) (solid
line) and the expansion (6.49) (dashed line). The �gure reveals a general good agreement
between the BA and the Bogoliubov predictions (6.45), except for γ = 1, where Eq. (6.45),
being based on the Bogoliubov approach, is no longer adequate.
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Figure 6.10: Comparison of the ground state energy per particle, in BG units, as a function
of y = γN2 in the thermodynamic limit of Bogoliubov theory (6.20) (dot-dashed line), the
Bethe-Ansatz (BA) calculation (circle), the Bogoliubov expression (6.45) (solid line) and
the y � 1 expansion (6.49) (dashed line), for several values of the interaction parameter
γ. From De Rosi et al. [2017].
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The chemical potential can be obtained by deriving Eq. (6.44) with respect to N , at
�xed L. One �nds

µ =

(
∂E0

∂N

)
L

= g1Dn

[
1 +

1

2N

+∞∑
p=−∞

(
p2

2m

1

ε(p)
− 1

)]
(6.50)

which can be rewritten as µ = g1Dn[1 +
√
γF (y)], where y is provided by Eq. (6.46) and

we have introduced the series

F (y) =
1
√
y

+∞∑
ni=0

(
πni√

y + (niπ)2
− 1

)
+

1

2
√
y

(6.51)

depending on the quantized momenta (6.42) and such that the zero-momentum term is
accounted once. The Euler Mac-Laurin expression, applied to the sum (6.51), yields

F (y � 1) ≈ − 1

π
− π

12y
(6.52)

holding in the y � 1 limit. In Fig. 6.11 we report the comparison of the series (6.51) with
its expansion (6.52) holding for y � 1. The two curves agree very well for y > 10.
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Figure 6.11: Comparison of the numerical series F (y) (6.51) (red solid line) and its ana-
lytical expansion (6.52) (purple dashed line) holding for y � 1. The blue dot-dashed line
represents the thermodynamic value. From De Rosi et al. [2017].

Using Eq. (6.52), one can �nally write the following expansion for the chemical potential

µ(γN2 � 1, γ � 1) ≈ g1Dn

[
1−
√
γ

π
− π

12N2√γ

]
. (6.53)

In Fig. 6.12 we report the results for the chemical potential as a function of y (6.46)
for the thermodynamic limit (6.21) (dot-dashed line), the BA calculation (symbols) and
the Bogoliubov expression (6.50) (solid line). The y � 1 expansion (6.53) practically
coincides with the full series (6.50). The square symbol corresponds to the �forward�
de�nition µ+ = E0(N + 1) − E0(N) of the chemical potential, the star symbol to the
�backward� expression µ− = E0(N)−E0(N−1), while the circles to the �symmetric� value
µ̄ = (µ+ + µ−)/2. While the three de�nitions of the chemical potential coincide in the
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thermodynamic limit N → ∞, they are di�erent in a �nite system 3. In particular, the
symmetric de�nition µ̄ well agrees with the calculation (6.50), based on the di�erential
de�nition µ = (∂E0/∂N)L, except for the γ = 1 case.
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Figure 6.12: Comparison of the chemical potential in BG units as a function of y = γN2

in the thermodynamic limit (6.21) (dot-dashed line), the Bethe-Ansatz (BA) calculation
(symbols) and the Bogoliubov expression (6.50) (solid line), for several values of the interac-
tion parameter γ. For the BA: µ+ = E0(N+1)−E0(N) (square), µ− = E0(N)−E0(N−1)
(star) and µ̄ = (µ+ + µ−)/2 (circle). From De Rosi et al. [2017].

From Eq. (6.50), one can also calculate the sound velocity (6.4), corresponding to the
density derivative of the chemical potential for a �xed value of L. The resulting expression,

vs(γ) = vBG
s (γ)

√√√√1− g1Dn

2N

+∞∑
p=−∞

(
p2

2m

)2 1

ε3(p)
(6.54)

with vBG
s (γ) the sound velocity de�ned in the Bogoliubov regime, used in Fig. 6.1. The

above expression can be rewritten as vs(γ) = vBG
s (γ)

√
1−√γH(y) where we have de�ned

the series

H(y) =

√
y

2

+∞∑
ni=0

πni

[y + (πni)2]3/2
, (6.55)

after introducing the variable y (6.46) and the quantized momenta (6.42). As before, we
apply the Euler Mac-Laurin formula and we �nd the expansion

H(y � 1) ≈ 1

2π
− π

24y
(6.56)

holding in the y � 1 limit, yielding the asymptotic expansion

vs(γN
2 � 1, γ � 1) ≈ vBG

s (γ)

√
1−
√
γ

2π
+

π

24N2√γ
(6.57)

for the sound velocity.

3Important di�erences between µ+ and µ− are known to occur in nuclear physics [Bohr and Mottelson,
1969], where they are also employed to identify pairing e�ects of super�uid nature.
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6.5.2 Tonks�Girardeau regime at T = 0

According to Girardeau [1960], the ground-state energy of the gas in the strongly-
interacting limit is the same as that of an ideal Fermi gas. The energy for �nite number of
particles N in a box with periodic boundary conditions is obtained by summing the energy
of the single-particle levels in the box,

E0

N
(N) =

~2

mN

1
2

(N−1)∑
ni=1

(
2πni
L

)2

=
1

6

(
1− 1

N2

)
π2~2n2

m
. (6.58)

In the thermodynamic limit, N = ∞, Eq. (6.58) results in ETG = π2~2n2/(6m). The
�excluded volume� correction should be present for a �nite interaction strength, see the
hard�sphere like expression, Eq. (6.26), and the discussion below it. In order to incorporate
the leading �nite-size correction close to Tonks-Girardeau regime we replace L with L −
Na1D in Eq. (6.58) resulting in the following expression for the energy per particle

E0

N
(N, γ) =

1

6

π2~2n2

m

(
1− 1

N2

)(
1 +

2

γ

)−2

. (6.59)

For large values of the interaction parameter γ one can replace the factor (1 + 2/γ)−2 with
(1− 4/γ). In Fig. 6.13 we report the energy per particle as a function of N for the TG
regime (6.58) (solid line), the hard-sphere (HS) like model (6.59) (dashed and dotted lines)
and the BA solution (symbols) for several values of γ. We observe a very good agreement
between the BA solution and the analytical hard-sphere (6.59) expression. For γ = 1000
the BA results are indistinguishable from the TG limit (6.58) and they are not reported in
the �gure. The comparison between Eq. (6.59) and Eq. (6.49) reveals that �nite-size e�ects
are less important in the TG regime since in the weakly interacting Bogoliubov regime,
the correction 1/(N2√γ) is ampli�ed by the smallness of γ.
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Figure 6.13: Energy per particle in units of the TG gas energy ETG = π2~2n2/(6m) as a
function of N . Bethe-Ansatz (BA) results (symbols) with di�erent values of the interaction
parameter γ are compared with the TG gas (6.58) (red solid line) and the hard�sphere
(HS) model (6.59) (dashed and dotted lines). From De Rosi et al. [2017].

For strong repulsion we obtain the �nite-size correction to the chemical potential

µ(N, |γ| � 1) =

(
∂E0

∂N

)
L

≈ EF
[
1− 16

3γ
− 1

3N2

(
1− 8

γ

)]
(6.60)
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and to the sound velocity (6.4):

vs(N, |γ| � 1) ≈ vF
√

1− 8

γ
+

4

3γN2
. (6.61)

It is interesting to note that while the �nite-size correction to the energy (6.59) and the
chemical potential (6.60) scales as 1/N2 with the number of particles, such a correction is
instead asymptotically vanishing in the sound velocity (6.61).

From Eq. (6.59), one calculates the explicit expression for the chemical potential µ =
(∂E0/∂N)L:

µ(N, γ) =
EF(

1 + 2
γ

)3

[
1 +

2

3γ
− 1

3N2

(
1− 2

γ

)]
(6.62)

which, in the thermodynamic limit, gives

µ(γ) =
EF(

1 + 2
γ

)3

(
1 +

2

3γ

)
(6.63)

and for large values of the interaction parameter γ provides Eq. (6.60).
In Fig. 6.14, we plot the chemical potential (6.62) (solid line) as a function of N for

di�erent values of γ. In the same �gure we plot also the values of µ+ and µ− which di�er
from the symmetric value µ̄ = (µ+ + µ−)/2 for small values of N (See note 3), similarly
to the case of the weakly interacting Bose gas. Di�erently from the weakly interacting
BG gas, the symmetric value µ̄ however exhibits signi�cant deviations with respect to the
di�erential estimate (∂E0/∂N)L, for small values of N .
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Figure 6.14: Chemical potential at T = 0 in Fermi units as a function of the number of
particles N in the TG regime (6.62) for �xed values of γ (solid line). The dashed lines
correspond to the thermodynamic limit [1 + 2/(3γ)]/(1 + 2/γ)3 of the TG model (6.63).
The symbols correspond to the Bethe-Ansatz (BA) calculation: µ+ = E0(N + 1)−E0(N)
(square), µ− = E0(N) − E0(N − 1) (star) and µ̄ = (µ+ + µ−)/2 (circle). From De Rosi
et al. [2017].
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In the course of describing my formative moment

in 1978, I have already implicitly given my four

basic rules for research. Let me now state them

explicitly, then explain. Here are the rules:

1. Listen to the Gentiles

2. Question the question

3. Dare to be silly

4. Simplify, simplify.

Paul Krugman - "How I Work",
American Economist (1993)

This thesis is dedicated to the theoretical investigation of collective oscillations in
low-dimensional harmonically trapped atomic gases and the thermodynamics of the 1D
uniform Bose gas.

In the �rst part, we have derived a uni�ed description of the discretized collective
oscillations of quantum gases in di�erent conditions of trapping and dimensionality.

A major result is given by the derivation of a general hydrodynamic equation for the
velocity �eld [Eq. (3.16)], depending solely on the adiabatic and isothermal compressibil-
ities of the gas. This equation takes a particularly simple form in the case of systems
exhibiting a polytropic equation of state, characterised by a power law dependence of the
pressure on the density (P ∝ nq), for a �xed value of the entropy. The polytropic equation
of state characterises a signi�cant class of many-body con�gurations of either bosonic and
fermionic nature.

We analytically calculated the collective frequencies for pancake and cigar con�gura-
tions, where the equation of state can be obtained from the 3D equation of state using
the local density approximation, as well as in the deep 2D and 1D regimes where the mo-
tion is instead frozen along the direction of the con�nement. Special emphasis is given to
the lowest breathing mode, whose frequency has been shown to depend explicitly on the
value of the polytropic coe�cient q, and to its coupling with the quadrupole oscillations
in anisotropic external potentials.

We have emphasised, in particular, the comparison between the T = 0 results, char-
acterising the behaviour of super�uids, and the high-temperature behaviour, both in the
hydrodynamic and collisionless regime.

Our results can be used as a starting point to calculate the collective frequencies in
systems whose equation of state deviates from the polytropic law and the solution of the
hydrodynamic equations can be handled using a perturbative approach. This procedure,
�rst employed to estimate the frequency shifts of dilute Bose gases caused by beyond
mean-�eld e�ects [Pitaevskii and Stringari, 1998], was developed in a systematic way by
Astrakharchik [2005] in a variety of con�gurations of di�erent dimensionality and quantum
statistics. It was recently applied by Merloti et al. [2013] to explore the breakdown of scale
invariance in a quasi-two-dimensional Bose gas due to the presence of the third dimension.
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Another interesting perspective of our results is given by the study of the collective
frequencies in 1D harmonically trapped Bose gases at �nite temperature which can provide
a useful test for the achievement of the collisional (hydrodynamic) condition at �nite
temperature. This outlook has been developed in the second part of the present thesis, by
considering di�erent regimes of interaction, temperature and number of particles.

For this purpose, we have developed two di�erent theoretical methods: the hydrody-
namic approach, rewritten in an easier variational formulation, and the more microscopic
sum-rule approach. While the �rst method, which can be applied only within the Local
Density Approximation (LDA), enabled us to calculate the hydrodynamic frequencies for
all interaction and temperature regimes, the sum-rule approach allowed us to calculate
the collective frequencies even beyond the LDA and in the collisionless regime of high
temperatures.

The inverse energy weighted (m−1), the energy weighted (m1) and the cubic energy
weighted (m3) sum rules are calculated and their applicability to exploit the behaviour
of the collective frequencies at zero as well as at �nite temperature have been explicitly
discussed. We have furthermore developed the formalism of the virial theorem which
permits the derivation of more compact expressions for the average excitation frequencies,
de�ned by the ratio ~2ω2 = m3/m1.

The combined use of the hydrodynamic and sum-rule approaches enabled us to draw
important conclusions about the temperature dependence of the collective frequencies.
While in the case of the lowest breathing mode the frequencies in the high-temperature
hydrodynamic and collisionless regimes coincide and are equal to 2ωz, where ωz is the
oscillator frequency; a di�erent scenario emerges in the case of the dipole compression
mode excited by the operator fDC(z) = z3/3 − z〈z2〉. In the dipole compression case,
the hydrodynamic approach, in fact, predicts the value

√
7ωz for the collective frequency,

while in the collisionless regime the same operator gives rise to the excitation of two
di�erent frequencies given by ωz and 3ωz. By calculating the response of the system to a
sudden perturbation of the form λfDC(z)Θ(t), we predict a typical beating between the
two frequencies whose experimental observation would provide a useful signature of the
achievement of the collisionless regime. The investigation of the temperature dependence
of the dipole compression mode is then expected to provide valuable information on the
transition between the hydrodynamic and collisionless regime and on the role of collisions
in 1D interacting Bose gases.

The sum-rule approach is also expected to provide a useful tool to explore the be-
haviour of the dipole compression frequencies when the Local Density Approximation is
not available at zero as well as at �nite temperature and for di�erent interaction regimes.
This could be the object of a future investigation.

An interesting perspective is the application of our results to quantum �uids of light
[Carusotto and Ciuti, 2013], which exhibit some analogies with BECs. We would like to
provide the theoretical description of normal modes in light within nonlinear photonics
[Larré and Carusotto, 2015], by including also the �nite temperature case [Chiocchetta
et al., 2016]. The �nal goal of this project is not only the building of the still missing
theoretical framework of collective oscillations in quantum �uids of light but also the �rst
measurement of normal modes in this system and a better understanding of nature (like
the EOS) of the light itself. This project will be carried out in collaboration with Prof.
Iacopo Carusotto (University of Trento, Italy) and Dr. Pierre-Élie Larré (Laboratoire
Kastler�Brossel, UPMC, Paris, France).

In the last Chapter we have investigated the low-temperature properties of 1D Bose
gases along the whole Bogoliubov (BG) � Tonks-Girardeau (TG) crossover.

We have shown that, at low temperature, the chemical potential exhibits a typical T 2

behavior, which follows from the leading contribution to thermodynamics arising from the
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thermal excitation of phonons, similarly to what happens in super�uids. The chemical
potential is always a decreasing function of T at high temperature, thus the T 2 increase
exhibited by the chemical potential at low temperature is responsible for a typical non-
monotonic behaviour as a function of T. The coe�cient of the T 2 law has been calculated
using the Lieb-Liniger results for the sound velocity and the resulting behaviour has been
successfully compared with thermodynamic functions obtained from the Yang-Yang theory
of 1D interacting Bose gases. We have also presented results for the temperature depen-
dence of the isothermal and adiabatic inverse compressibilities. In particular we have shown
that the T 2 correction has opposite sign in the two cases.

In the second part of the Chapter we have focused on the corrections to the ther-
modynamic functions caused by the �nite size of the system. To this purpose, we have
considered the useful ring geometry and the mapping with the 1D problem where cal-
culations are carried out using periodic boundary conditions. Explicit results have been
obtained in the weakly and strongly interacting regimes where, at zero temperature, the
�rst corrections to the thermodynamic limit, due to �nite-size e�ects, can be calculated in
analytic form, in excellent agreement with the numerical results provided by the Bethe-
Ansatz. We have found that �nite-size corrections are particularly important in the weakly
interacting regime where the healing length can easily become comparable to the size of
the system.
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Appendix A

EOS and polytropic coe�cient

In this Appendix we identify the polytropic coe�cient q characterizing the equation
of state (3.1) of a uniform gas in di�erent low-dimensional con�gurations and for di�erent
quantum statistics (see Tables 3.1 and 3.2).

Let us �rst consider the ideal situation of zero temperature. As already discussed
in Section 3.1, a �rst interesting two-dimensional regime is the so-called pancake where
the system keeps, locally, its 3D nature in the sense that the chemical potential is much
larger than axial oscillator energy µ � ~ωz. In this case, we can apply the local density
approximation (LDA) along the axial direction and write the chemical potential in the
form

µ0 = µ(n) +
m

2
ω2
zz

2 (A.1)

which allows us to determine the z-dependence of the density pro�le. The value of µ0

coincides with the chemical potential µ(n) calculated at z = 0 and is �xed by the nor-
malization condition n2D =

∫
dzn(r). The quantity µ0 plays consequently the role of the

2D chemical potential and exhibits an explicit dependence on the 2D density n2D. This
dependence characterises the 2D equation of state and, for simplicity, we will omit the
su�x 0 in µ0 and use the simpler notation µ(n2D) to characterise the equation of state of
the two-dimensional gas.

The 2D equation of state of a pancake gas is easily derived in the case of dilute Bose
gas where the 3D equation of state has the form µ = gn and the use of the LDA procedure
(A.1) gives the result [Pitaevskii and Stringari, 2016]

µB(n2D) =

(
3π~2ωzan2D√

2m

)2/3

, (A.2)

characterized by the value q = 5/3 for the polytropic coe�cient, see Eq. (3.1) and (3.4).
An analogous calculation can be carried out for a pancake Fermi gas at unitarity, where

the 3D equation of state has the form µ = ξB
~2
2m(3π2n)2/3, with ξB the Bertsch parameter,

yielding [Pitaevskii and Stringari, 2016]

µF (n2D) =

(
2πξ

3
2
Bωz

~3

m
n2D

)1/2

, (A.3)

and hence the value q = 3/2 for the polytropic coe�cient.
Similar results can be obtained in cigar 1D-like con�gurations where the gas is harmon-

ically trapped along the x− y directions and satis�es the LDA along the radial direction

µ0 = µ(n) +
m

2
ω2
⊥r

2
⊥ , (A.4)
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where, for simplicity, we have considered an isotropic trap ω⊥ = ωx = ωy in the plane and
we have de�ned the radial coordinate r⊥ =

√
x2 + y2. In this case, after integrating the

radial 3D Thomas-Fermi pro�le, one �nds [Pitaevskii and Stringari, 2016]

µB(n1D) = 2~ω⊥(an1D)1/2 (A.5)

and

µF (n1D) =

(
ξB~2

2m

)3/5(
15

4
πmω2

⊥n1D

)2/5

(A.6)

for the chemical potential of the cigar Bose and unitary Fermi gas respectively where
n1D =

∫
dxdyn(r). From the above equations, one derives the values q = 3/2 and q = 7/5

for the polytropic coe�cients in the Bose and unitary Fermi cigars, respectively which are
reported in the Table 3.1.

The results q = 3/2 and q = 7/5 for the polytropic coe�cients of the pancake and
cigar Fermi gas at unitarity holds also at �nite temperature. In fact the 3D result for the
equation of state, given by Eq. (3.1) with q = 5/3, can be usefully rewritten in the form
[Ho, 2004, Hou et al., 2013b]

P3D(x, T ) = fp(x)
kBT

λ3
T

(A.7)

and

n3D(x, T ) =
f ′p(x)

λ3
T

=
fn(x)

λ3
T

(A.8)

where the temperature dependence of the 3D pressure and density follows from dimension-
ality arguments. We have here introduced the thermal wavelength λT =

√
2π~2/mkBT ,

the dimensionless functions fp(x) and its derivative fn(x) = f ′p(x). The dimensionless pa-
rameter x = µ/kBT , �xed by the ratio between the chemical potential and the temperature
of the gas, determines the entropy per particle s̄ according to the relationship

s̄(x)

kB
=

5

2

fp(x)

fn(x)
− x . (A.9)

The above results re�ect the universality of the 3D uniform Fermi gas at unitarity.
By applying the local density approximation (A.1) along the z-direction in the pancake

geometry and along the x − y plane (A.4) in the cigar geometry, after integration of the
density and of the pressure pro�le along the same directions, from Eq. (A.7) and Eq. (A.8)
one easily �nds a new temperature dependence of the 2D and 1D pressure and density for
a given value of the entropy, �xed by the ratio x = µ/kBT . For the pancake con�guration
one �nds

P2D(x2D, T ) =
kBT

λ3
T

√
2kBT

mω2
z

F 2D
p (x2D) (A.10)

and

n2D(x2D, T ) =
1

λ3
T

√
2kBT

mω2
z

F 2D
n (x2D) (A.11)

while for the cigar 1D con�guration the result is [Hou et al., 2013b]

P1D(x1D, T ) =
kBT

λ3
T

2kBT

mω2
⊥
F 1D
p (x1D) (A.12)

and

n1D(x1D, T ) =
1

λ3
T

2kBT

mω2
⊥
F 1D
n (x1D) (A.13)
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holding at all temperatures. From the above results one easily �nds, using Eq. (3.1)
the values q = 3/2 and q = 7/5 for the polytropic coe�cient in the 2D and 1D cases,
independent of temperature. In Eq. (A.10) and (A.11), we have de�ned the integrated
functions F 2D

n,p (x2D) =
∫ +∞
−∞ dz′fn,p(x

′) with x2D = µ0/kBT , while in Eq. (A.12) and

(A.13) the analogous 1D integrated functions are F 1D
n,p (x1D) = 2π

∫ +∞
0 dr′⊥r

′
⊥fn,p(x

′) with
x1D = µ0/kBT . The same results for the values of q hold also for the ideal Fermi gas as
well as for the ideal Bose gas above Tc where the thermodynamic functions can be written
in the same form as for the unitary Fermi gas, the functions fn and fp being of course
di�erent.

So far we have considered the pancake and cigar geometries where the local density
approximation allows us to safely use the 3D equation of state locally. The situation
is di�erent in the opposite regime of tight axial or radial con�nement where the motion
is frozen to the lowest harmonic oscillator wave function along the tight directions. At
zero temperature the condition for being in these deep 2D and 1D regimes is given by
µ � ~ωz and µ � ~ω⊥, respectively. At high temperature the conditions are, instead,
kBT � ~ωz and kBT � ~ω⊥, respectively, see Sec. 2.1. At T = 0 these low dimensional
regimes are easily described in the case of a weakly interacting Bose gas where the use of
Gross-Pitaevskii theory yields the simple results for the 2D and 1D equations of state

µB(n2D) = g2Dn2D (A.14)

and
µB(n1D) = g1Dn1D (A.15)

apart from unimportant additional constant terms. In Eq. (A.14) the 2D coupling constant
is given by [Pitaevskii and Stringari, 2016]

g2D =
√

8π
~2

m

a

az
(A.16)

and is �xed by the ratio a/az between the 3D s−wave scattering length and the axial har-
monic oscillator length az =

√
~/mωz, while in the 1D case one �nds the result [Pitaevskii

and Stringari, 2016]
g1D = 2a~ω⊥ . (A.17)

Result (A.14) for the equation of state of the 2D Bose gas holds only in the limit of
weak coupling (a � az), ensuring the absence of quantum anomaly e�ects [Papoular and
Stringari, 2015]. The 1D equation of state (A.15) instead holds provided n1Da

2
⊥/a � 1.

In both cases (also called 2D and 1D mean �eld regimes) one identi�es the value q = 2
for the polytropic coe�cient. Both the 2D and 1D mean �eld regimes have been achieved
experimentally by Desbuquois et al. [2012] and Kinoshita et al. [2004], Paredes et al. [2004],
respectively.

In the 1D case, extensive experimental and theoretical work has been done also to
explore regimes beyond the mean �eld condition n1Da

2
⊥/a � 1 where the many-body

properties of the gas are described by Lieb-Liniger theory. In the limit n1Da
2
⊥/a� 1, the

gas enters the limit of impenetrable bosons also called Tonks-Girardeau regime where the
gas acquires a Fermi-like behaviour and its equation of state exhibits a quadratic density
dependence [Girardeau, 1960], see also Sec. 2.3:

µTG(n1D) = π2 ~2

2m
n2

1D . (A.18)

In this regime, the value of the polytropic coe�cient is q = 3.
In the case of interacting Fermi gases, the theoretical description of the lower dimen-

sional regimes is more di�cult with respect to the Bose case. In two dimensions one can
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still identify a BCS-BEC crossover like in the 3D case, see SubSec. 1.6.1. However, in the
two-body problem, the presence of a resonance always corresponds to the occurrence of a
bound state, di�erently from what happens in 3D where this is ensured only for positive
values of the 3D scattering length, see SubSec. 1.3.2. Far from the resonance, the chemical
potential of the 2D Fermi gas is described by a linear dependence on the density, both
on the BEC side, where the gas is described by a 2D system of bosonic molecules, and
on the deep BCS limit, where the gas approaches the ideal Fermi gas behaviour. In both
cases, the value of the polytropic coe�cient is q = 2. The same value of q characterises
the equation of state of the classical gas at high temperature.

Tables 3.1 and 3.2 summarise the main results of this Appendix, reporting the values
of the polytropic coe�cients q in a class of interesting con�gurations.
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Appendix B

HD equations in the presence of an
external potential

In this Appendix, we derive the most relevant hydrodynamic equations used in Chap.
3 to calculate the collective frequencies in the presence of external harmonic trapping.

In order to derive Eq. (3.16), we �rst take the time derivative of Eq. (3.15) yielding,
in the limit of small amplitude oscillations,

mn0
∂2

∂t2
v = −∇ ∂

∂t
P −∇Vext

(
∂

∂t
n

)
. (B.1)

The time derivative of the pressure can be written as:

∂P

∂t
=

(
∂P

∂n

)
T

∂n

∂t
+

(
∂P

∂T

)
n

∂T

∂t
(B.2)

and requires the knowledge of the time derivative of the temperature.
In order to calculate ∂T/∂t it is convenient to rewrite the equation for the entropy

density (3.14) in terms of the entropy per particle s̄ = s/n. By using the equation of
continuity (3.13), it is immediate to �nd the equation

∂s̄(r, t)

∂t
= −v(r, t)∇s̄0(r) =

1

n2
0

(
∂P

∂T

)
n

v · ∇n0 (B.3)

where, in deriving the second equality, we have used the thermodynamical relation

Tds̄ = cvdT −
T

n2

(
∂P

∂T

)
n

dn (B.4)

applied to equilibrium (dT = 0), where

cv =
T

n2
0

(
∂P

∂T

)
n

(
∂n

∂T

)
s̄

(B.5)

is the speci�c heat at constant volume.
On the other hand, by considering s̄ as a function of density and temperature, one can

also write
∂s̄

∂t
=

(
∂s̄

∂n

)
T

∂n

∂t
+

(
∂s̄

∂T

)
n

∂T

∂t
. (B.6)

Using the equation of continuity (3.13) and thermodynamic relation (B.3), one �nally
obtains the useful equation

∂T (r, t)

∂t
= − T

cv

(
∂P

∂T

)
n

∇ · v(r, t)

n0
(B.7)
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for the time derivative of the temperature, holding also in the presence of external trapping.
Using the equilibrium condition (v = 0) in the Eq. (3.15)

∇P0 =

(
∂P0

∂n0

)
T

∇n0 = −n0∇Vext (B.8)

and the thermodynamic relation(
∂P

∂n

)
s̄

=

(
∂P

∂n

)
T

+

(
∂P

∂T

)
n

(
∂T

∂n

)
s̄

(B.9)

relating the adiabatic and isothermal compressibilities, it is easy to recast the hydrody-
namic equation (B.1) in the useful form

mω2v = −∇
[(

∂P

∂n

)
s̄

(∇ · v)

]
+ (γad − 1)(∇Vext)(∇ · v) +∇ (v · ∇Vext) (B.10)

where γad is the adiabatic coe�cient de�ned by Eq. (3.17) and we have considered velocity
�elds oscillating as v(r, t) = v(r)e−iωt.

Starting from Eq. (B.10), one can derive Eq. (3.20) in the case of a polytropic equation
of state for which Eq. (3.2) holds. By considering, moreover, Eq. (3.5) at constant
temperature, Eq. (A.1) and Eq. (3.17), one can �nally rewrite:

∇
[(

∂P

∂n

)
s̄

(∇ · v)

]
=

(
∂P

∂n

)
s̄

∇ (∇ · v) + q (∇ · v)∇Vext
(
γad
q
− 1

)
(B.11)

which plugged into Eq. (B.10) yields Eq. (3.20).
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Appendix C

Collective frequencies from
variational hydrodynamics

In this Appendix, we report the detailed calculation of the LB and the DC collective
frequencies by using the variational approach, Eq. (5.5) for di�erent interaction and T
regimes.

C.1 Lowest breathing mode

Let us consider the LB mode, whose variational hydrodynamic equation is (5.6). For
gases described by the polytropic EOS, Eq. (3.1), by using Eq. (3.2) holding at �nite T,
one gets:

ω2
HD(LB) = ω2

z +

∫
dzqP∫
dzmnz2

(C.1)

while, at T = 0, from Eq. (3.6), one calculates the variational expression:

ω2
HD(LB) = ω2

z +

∫
dzn(q − 1)µ∫
dzmnz2

. (C.2)

In the following, we consider the regimes of T and interaction, for which the density
pro�le n(z) can be calculated analytically.

For the classical regime of high T, P = nkBT , from the Euler equation at equilibrium
(5.4), one �nds the density pro�le nT (z), Eq. (5.1). By considering the polytropic index
q = 3 (see Table 3.2) in the variational expression, Eq. (C.1), one �nally calculates the
frequency ωHD(LB) = 2ωz which is the high-T HD result of Table 5.1.

We consider now the BG regime of weak interaction at T = 0. The density pro�le can
be found either from Eq. (5.4) or by considering the EOS (A.15) in the LDA (A.1). It
exhibits the typical inverted parabola shape of the Thomas-Fermi (TF) regime:

nBG(z) = n(0)
(
1− z2/Z2

TF

)
, (C.3)

and nBG(z) = 0 for |z| ≥ ZTF . The peak density and the TF radius are, respectively,

n(0) =
(
9mN2ω2

z/(32g1D)
)1/3

and ZTF =
(
3Ng1D/(2mω

2
z)
)1/3

. By using the polytropic
index q = 2 (see Table 3.2) in Eq. (C.2), one �nds the hydrodynamic frequency ωHD(LB) =√

3ωz, reported in Table 5.1.
Finally, we study the TG regime of strong repulsion at T = 0. By combining Eq.

(A.18) with Eq. (A.1), we calculate the density pro�le:

nTG(z) = n(0)(1− z2/Z2)1/2, (C.4)
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Dipole compression mode 110

and n(z) = 0 for |z| ≥ Z. The peak density and the radius of the cloud are, respectively,

n(0) =
(
2mNωz/(π

2~)
)1/2

and Z = (2~N/(mωz))1/2. With the polytropic index q = 3
(Table 3.2) in Eq. (C.2), one calculates the LB mode frequency ωHD(LB) = 2ωz, present
in Table 5.1.

C.2 Dipole compression mode

We consider in this Section the DC mode, whose collective frequency can be calculated
with Eq. (5.7) in the hydrodynamic regime. For polytropic EOS at �nite T, one gets:

ω2
HD(DC) = ω2

z +
4q
∫
dzPz2

m
∫
dzn (z2 − 〈z2〉)2 (C.5)

while, at T = 0, the hydrodynamic equation becomes

ω2
HD(DC) = ω2

z +
4(q − 1)

∫
dznµz2

m
∫
dzn (z2 − 〈z2〉)2 (C.6)

where the average 〈z2〉 =
∫
dzz2n(z)/N is calculated by using the suitable density pro�le,

according to the interaction and T regime [Kheruntsyan et al., 2005].
In a completely analogous way to the previous Section, one calculates all the collective

frequencies which coincide with results of Table 5.2 of the classical, BG and TG limits.
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Appendix D

Properties of commutators

In this Appendix, we report the most common properties of commutators, largely used
for the calculation of sum-rules in Chap. 5.

• [A,BC] = B[A,C] + [A,B]C ;

• [AB,C] = A[B,C] + [A,C]B ;

• [ABC,D] = AB[C,D] +A[B,D]C + [A,D]BC ;

• [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 ;

• [z, ddz ]A(z) = −A(z), for every A(z) ;

• [z,A(pz)] = i~ dAdpz ;

• [pz, A(z)] = −i~dAdz ;

• [z, p] = i~ ;

• [z, pnz ] = i~npn−1
z ;

• [zn, pz] = i~nzn−1 ,

where z and pz are the position and the momentum operators in z-direction, respectively.
A(z) denotes a function of z and A,B and C are generic operators.
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Appendix E

m−1 for the classical gas

In this Appendix, we report the explicit calculation of the inverse energy weighted
moment m−1 for a classical gas at high temperature.

The small perturbation of the Hamiltonian Hpert = −λF , with λ� 1, becomes a per-
turbation of the density pro�le, which, for high temperatures, is described by the Maxwell-
Boltzmann distribution (5.1):

npertT (z) =
N√
πZT

e−(〈Htrap〉−λF )/kBT , (E.1)

where the trap energy is 〈Htrap〉 = mω2
z〈z2〉/2.

By expanding Eq. (E.1) for small perturbation strengths λ � 1, we calculate the
average perturbation

δ〈F 〉 =

∫ +∞
−∞ dzFnpertT (z)

N
(E.2)

with the constraint that at equilibrium it must be zero:

〈F 〉eq =

∫ +∞
−∞ dznT (z)F

N
= 0 (E.3)

where nT (z) is the unperturbed Maxwell-Boltzmann distribution (Eq. (5.1) or Eq. (E.1)
with λ = 0). Therefore, one can calculate the static response function χ(F ) = δ〈F 〉/λ,
and �nally the moment m−1 = χ(F )/2, holding only at high T:

m−1(T � 1) =
1

2kBTN

∫ +∞

−∞
dznT (z)F 2 =

N

2kBT
〈|f(z)|2〉 , (E.4)

where in the second equality we have used the excitation operator f(z) de�ned by F =∑N
k=1 f(zk).
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Appendix F

Ideal gas model in 1D

In this Appendix, we discuss the ideal gas in 1D, which is relevant for rewriting the
virial theorem and the sum-rules beyond the LDA for a small number of particles N or
small values of the coupling constant g1D. In this regime, the interaction is negligible and
the ideal gas is described by the harmonic oscillator model.

The ground-state wavefunction, which corresponds to the eigenvalue (3.11) with nz = 0
of the 1D harmonic oscillator is:

ψ0(z) =
1

π1/4√az
e
− z2

2a2z (F.1)

where az is the harmonic oscillator length along the z−direction az =
√

~/mωz and it
corresponds to the width of the Gaussian (F.1). The wavefunction (F.1) is normalized∫ +∞
−∞ dz|ψ0(z)|2 = 1 and it de�nes the density distribution of the N -body system:

n(z) = N |ψ0(z)|2 (F.2)

from which one observes that n(z) increases with N .
We can use Eq. (F.2) for the calculation of averages of a generic quantity x:

〈x〉ho =

∫ +∞
−∞ dzxn(z)

N
=

∫ +∞

−∞
dzx|ψ0(z)|2 . (F.3)

In the following, we report some averages (F.3) which will be useful in Appendix G. By
using the momentum operator pz = −i~∇z and the ground-state wave function (F.1), one
calculates: 

〈z2〉ho = ~
2mωz

〈p2
z〉ho = −~2

∫ +∞
−∞ dzψ0(z)∇2

zψ0(z) = mωz~
2

〈pzz〉ho = i~
∫ +∞
−∞ dzz (∇zψ0(z))ψ0(z) = − i~

2

〈p2
zz

2〉ho = −~2
∫ +∞
−∞ dzz2ψ0(z)∇2

zψ0(z) = −~2
4

〈z4〉ho = 3
4

(
~

mωz

)2

〈pzz2pz〉ho = 3
4~

2 .

(F.4)
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Appendix G

Virial theorem

In this Appendix, we report the explicit derivation of the virial theorem (5.25) even in
its generalised form (5.38). We show that both expressions hold even beyond the LDA.

G.1 Virial theorem

The virial theorem connects the average contributions of the kinetic, trapping and
interaction energies. We want to �nd its formulation for the 1D trapped Bose gas, whose
Hamiltonian is (5.2). According to the quantum version of the virial theorem, we have to
impose that the average 〈[

∑
i zipi, H]〉 = 0, with the momentum operator pi = −i~∂/∂zi,

must be zero. The average is performed over the thermal state for the classical gas and
over the ground state at T = 0.

By applying the commutator properties, see Appendix D, we arrive at the following
expression: ∑

i

〈zi[pi, Htrap]〉+
∑
i

〈[zi, Hkin]pi〉+
∑
i

〈zi[pi, Hint]〉 = 0 . (G.1)

By using the properties of Dirac delta (x∂δ(x)/∂x = −δ(x)) and the centre-of-mass and
relative coordinates in the calculation with Hint, we �nd:

zi[pi, Htrap] = zi

(
−i~∂Htrap∂zi

)
= −i~(2Htrap) ;

[zi, Hkin]pi =
(
i~∂Hkin∂pi

)
pi = i~(2Hkin) ;

zi[pi, Hint] = zi

(
2i~ Hint

zi−zj

)
= i~Hint .

Therefore, Eq. (G.1) provides the virial theorem, Eq. (5.25).
It easy to show that result (5.25) can be obtained also with the hermitian operator

G =
∑N

k=1 (zkpz,k + pz,kzk) which commutes with the Hamiltonian 〈[H,G]〉 = 0.
Let us show now that the virial theorem (5.25) holds also beyond the LDA. The

limiting case is a system with just one particle N = 1, for which the interaction energy is
zero Hint = 0 in the Hamiltonian (5.2). In this regime, one exploits the harmonic oscillator
model discussed in Appendix F and the virial theorem reduces to:

〈p2
z〉ho
m

−mω2
z〈z2〉ho = 0 , (G.2)

where all averages are calculated on the ground-state state (F.1) of the harmonic oscillator.
By using the suitable expressions of Eq. (F.4), one �nds that Eq. (G.2) is veri�ed.

117



Generalized virial theorem 118

G.2 Generalized virial theorem

Let us �nd a generalisation of the virial theorem, Eq. (5.38), particularly useful for the
calculation of the cubic energy weighted moment m3 for the DC mode.

We impose 〈[
∑

i z
3
i pi, H]〉 = 0, where we have used the Hamiltonian (5.2). By perform-

ing similar calculations of above we �nd the expression:

3

m
〈p2
zz

2〉+ 3g1D〈δ(zij)Z2〉 −mω2
z〈z4〉+

9i~
m
〈pzz〉 −

3~2

m
= 0 , (G.3)

whose notation is the same used in Eq. (5.37) and Eq. (5.38).
If we consider the symmetrized form of the generalized virial theorem 〈[

∑
i z

3
i pi +

piz
3
i , H]〉 = 0, Eq. (G.3) becomes

6

m
〈p2
zz

2〉+ 6g1D〈δ(zij)Z2〉 − 2mω2
z〈z4〉+

12i~
m
〈pzz〉 −

3~2

m
= 0 . (G.4)

By using the commutator [z2, pz] = 2i~z, we can rewrite Eq. (G.4) in a more symmetrized
and hermitian way, see Eq. (5.38). We have preferred this �nal expression, because it is
fully hermitian and it does not contain any imaginary term.

All the di�erent forms of the generalized virial theorem (G.3), (G.4) and (5.38) hold
beyond LDA. In order to show it, as already discussed in Sec. G.1, we consider the
harmonic oscillator case of N = 1 particle and zero interaction energy. In this limit, Eq.
(5.38) is fully satis�ed by using the averages (F.4).
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Appendix H

General expressions for m−1

In this Appendix, we derive some general expressions for the inverse energy weighted
moment m−1, holding in the LDA, for all modes, interaction and temperature regimes.
Their high-T limit corresponds to the relation derived in Appendix E, for the classical gas.

Let us consider the LDA, Eq. (A.1). We add the external perturbation −λF , with
F =

∑N
k=1 f(z) to the Hamiltonian (5.2). The LDA becomes:

µ0 = µ(n) +
1

2
mω2

zz
2 − λf(z) (H.1)

where we have introduced µ(n) = µ(neq)+δµ = µ(neq)+(∂µ/∂n)δntot and µ0 = µ00 +δµ0

and the total density perturbation δntot = δnF + δnV , given by the perturbation and
the external trap. By using the LDA at equilibrium µ(neq) + 1

2mω
2
zz

2 = µ00, we recall
δn = δnF which is equal to:

δn = λ (f(z) + C)

(
∂n

∂µ

)
T

. (H.2)

By imposing the usual normalization condition
∫
dzδn = 0, we calculate the constant C:

C = −

∫
dzf(z)

(
∂n
∂µ

)
T∫

dz
(
∂n
∂µ

)
T

. (H.3)

The normalization constant (H.3), which ensures the conservation of the number of particles
after the perturbation, for symmetry reasons of the integral, it is di�erent from zero only
in the case of the LB mode, for which fLB(z) = z2 − 〈z2〉.

We observe that all above equations hold for both BG and TG regimes at T = 0. In
each case, one has to take into account the suitable density pro�le n(z): Eqs. (C.3) or
(C.4). By calculating the quantities δ〈F 〉 (E.2) and 〈F 〉eq (E.3), for each regime, one �nally
�nds the inverse energy weighted moment:

m−1 =
1

2λ

∫
dzf(z)δn =

1

2

∫
dzf(z) (f(z) + C)

(
∂n

∂µ

)
T

. (H.4)

Let us generalize result (H.4) for the classical regime of high T. By using the Gibbs-
Duhem relation (3.5) at �xed T, we can write ∂µ/∂n|T = (∂P/∂n)|T /n. Therefore, Eq.
(H.2) becomes:

δn = λn (f(z) + C)

(
∂n

∂P

)
T

. (H.5)

By imposing the normalization condition
∫ +∞
−∞ dzδn = 0, we �nally �nd that, at high

T, C = 0 always even for the LB mode. This implies that the addition of C quantity
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is necessary only at T = 0 where LDA applies. On the other hand, this problem is not
present with the other two momenta m1 and m3, for which we have used the more general
commutator expressions (5.10) and (5.12), without assuming the LDA. Di�erently from
the commutators, the LDA does not automatically satisfy the normalisation of the number
of particles, because it is a local law, de�ned point by point.

The more general expression for m−1 holding for all regimes of T and interaction is:

m−1 =
1

2

∫
dzf(z)n (f(z) + C)

(
∂n

∂P

)
T

. (H.6)

From Eq. (H.6), by using the EOS of a classical gas P = nkBT , we �nally �nd again the
classical limit (E.4).
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Appendix I

Sum-rules for the DC mode

In this Appendix, we report some detailed calculations of the sum rules for the DC
mode.

For the BG regime at T = 0, we use the density pro�le (C.3) and Eq. (5.20), from
which one �nds:

〈z4〉BG =
15

7
〈z2〉2BG (I.1)

which, combined with Eq. (5.33), gives the following expression for the energy weighted
moment in the BG regime:

m1(DC) =
4

7

~2N

m
〈z2〉2BG . (I.2)

The inverse energy weighted moment (5.32) becomes:

m−1(DC) =
2

21

N

mω2
z

〈z2〉2BG . (I.3)

By considering the ratiom1/m−1, one �nally �nds the hydrodynamic frequency ω1,−1(DC) =√
6ωz, see Table 5.2.
For the TG regime, by considering the density (C.4) and Eq. (5.21), one calculates the

average
〈z4〉TG = 2〈z2〉2TG . (I.4)

From Eq. (5.33), we �nd the relation

m1(DC) =
~2N〈z2〉2TG

2m
. (I.5)

For the inverse energy weighted moment (5.32), one calculates

m−1(DC) =
1

2

N~2

m
〈z2〉2TG . (I.6)

With the ratio m1/m−1, we �nally �nd the hydrodynamic frequency ω1,−1(DC) = 3ωz,
see Table 5.2.

Finally, we perform the same calculations for the classical gas (5.1) and Eq. (5.22):

〈z4〉T = 3〈z2〉2T . (I.7)

From Eq. (5.33) we �nd the energy weighted moment:

m1(DC) =
N~2

2m
2〈z2〉2T . (I.8)
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On the other hand, from Eq. (E.4) or (5.32), we get:

m−1(DC) =
N

3mω2
z

〈z2〉2T . (I.9)

From the ratio m1/m−1 we �nally �nd ω1,−1(DC) =
√

3ωz, which is di�erent from the
hydrodynamic value by comparing with Table 5.2, similarly to the case of the LB mode
discussed in Chap. 5.

Concerning the cubic energy weighted moment (5.12), by applying the properties of
the commutators reported in Appendix D, one �nds:

m3 =
~4N

m2
[g1D〈z2〉〈δ(zij)〉+ g1D〈Z2

ijδ(zij)〉 −
3

2
mω2

z〈z2〉2+

+
1

m
〈z2〉〈p2

z〉+
3

m
〈p2
zz

2〉+
3

2
mω2

z〈z4〉 − ~2

m
+

6i~
m
〈pzz〉] (I.10)

where we have used the same notation of Eq. (5.37). By using the commutator [z2, pz] =
2i~z, one can rewrite Eq. (I.10) in the more symmetric way (5.37), where imaginary parts
are not present.

Let us calculate now the cubic energy weighted moment m3 for several interactions and
T regimes. For simplicity, we neglect in (5.37) the term ∼ ~6N/m3, which is relevant only
in the small number of particle N regime.

For the BG regime, the kinetic energy is zero and one gets the following relations
between the interaction and the trapping energies: 〈Hint〉 = 2〈Htrap〉 and g1D〈δ(zij)Z2

ij〉 =

mω2
z〈z4〉/3, derived respectively from Eq. (5.25) and (5.38), where in the last equation we

have neglected the small N correction ∼ 3~2/m. Eq. (5.37) becomes:

m3(DC) =
~4Nω2

z

2m

[
11

3
〈z4〉BG − 〈z2〉2BG

]
, (I.11)

which combined with the Eq. (5.33), provides the ratio:

~2ω2
3,1(DC) =

m3

m1
=

~2ω2
z

3

[
11〈z4〉BG − 3〈z2〉2BG

〈z4〉BG − 〈z2〉2BG

]
. (I.12)

By using the averages (5.20) and (I.1), one �nds the hydrodynamic frequency ω3,1(DC) =√
6ωz of Table 5.2.
If one considers the non-interacting case 〈Hint〉 = 0, one can write 〈Hkin〉 = 〈Htrap〉

and 〈pzz2pz〉 = m2ω2
z〈z4〉/3, respectively from Eq. (5.25) and (5.38) in the large N limit.

One then �nds the cubic energy weighted moment (5.37):

m3(DC) =
~4N

m2

1

2
mω2

z

(
5〈z4〉 − 〈z2〉2

)
(I.13)

holding for the TG regime and for the classical gas. By using Eq. (5.33) we �nd the ratio:

~2ω2
3,1(DC) =

m3

m1
= ~2ω2

z

[
5〈z4〉 − 〈z2〉2

〈z4〉 − 〈z2〉2

]
. (I.14)

By considering the TG regime and by using Eqs. (5.21) and (I.4), one �nds

m3(DC) =
9~4Nω2

z〈z2〉2TG
2m

(I.15)

which combined with the energy weighted moment (I.5) gives the hydrodynamic frequency
ω3,1(DC) = 3ωz of Table 5.2. This result is obtained also directly from Eq. (I.14) in the
strongly repulsive regime.
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Let us consider now the classical gas. From Eq. (I.13), by considering Eqs. (5.22) and
(I.7), we �nally get

m3(DC) =
7~4Nω2

z〈z2〉2T
m

(I.16)

which combined with Eq. (I.8), provides the hydrodynamic frequency ω3,1(DC) =
√

7ωz,
obtained also from Eq. (I.14) and reported in Table 5.2.

Finally, we discuss the collisionless regime, described by the harmonic oscillator model,
see Appendix F. The ideal gas limit can be reached for one particle N = 1, which implies
that the interaction is equal to zero in the Hamiltonian (5.2). We consider the cubic
energy weighted moment (5.37), holding also for small N and without any approximation.
By using the averages (F.4), one �nds the expression for m3:

m3(DC) = 9ω2
z

~4

m
〈z2〉2ho , (I.17)

while the energy weighted moment (5.33) in the same limit is:

m1(DC) =
~2

m
〈z2〉2ho . (I.18)

By using Eqs. (I.17) and (I.18) and from the ratio m3/m1, we easily �nd ω3,1(DC) = 3ωz,
which is the same collisionless frequency of the DC mode, see Table 5.2. We observe
also that the result 3ωz is completely independent of the number of particles N : we have
calculated it for N = 1, but it is the same for every N in the harmonic oscillator model.
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Appendix J

Time evolution of the DC signal

In this Appendix we derive the time evolution of the expectation value (5.40) [Zambelli
and Stringari, 2001].

Starting from the expression of the perturbation of the Hamiltonian Hpert(z, t) =
λF (z)Θ(t), we express the Heaviside step function Θ(t) in terms of its Fourier compo-
nent and we �nd:

δ〈F 〉 = λχF (ω)Θ(t) =
iλ

4π

∫ +∞

−∞
dωχF (ω)

e−iωt

ω + iη
+ c.c. . (J.1)

We integrate Eq. (J.1) in the complex plane: δ〈F 〉 = λχF (0).
According to the linear response theory [Pitaevskii and Stringari, 2016] and Chap. 4,

we can rewrite the static polarizability as a complex quantity, see Eq. (4.9): χF (0) =
χ′F (0) + iχ′′F (0), where the real part can be expressed in terms of the imaginary one by
using the Kramers-Kronig relation, Eq. (4.13):

χ′F (0) = − 1

π

∫ +∞

−∞
dω′χ′′F (ω′)P

(
− 1

ω′

)
(J.2)

where P is the principal value which can be expressed through the Dirac relation (4.8).
By exploiting the properties of the Dirac delta, included its representation in terms of

the Fourier transform, we �nally �nd

δ〈F 〉(t) =
λ

π

∫ +∞

−∞
dω′

χ′′F (ω′)

ω′

(
1− eiω′t

)
, (J.3)

where we have used the fact that Eq. (J.3) is completely symmetric to the exchange of the
sign of the frequency eiωt → e−iωt. By using the �uctuation-dissipation theorem (4.24) in
the classical (high-T) regime, we �nally approximate:

1

π

χ′′F (ω)

ω
≈ ~SF (ω)

kBT
(J.4)

where the dynamic structure factor SF (ω), relative to the excitation operator F , is an even
function in ω for high temperatures for the property: SF (ω) = e~ω/(kBT )SF (−ω), see Eq.
(4.6). In addition, by using the Euler relation (eiωt = cos(ωt) + i sin(ωt)), we �nally �nd
that, for symmetry reason, only the cosine contributes in the integral (J.3) and we obtain
Eq. (5.40), where we observe that δ〈F 〉(t = 0) = 0 for causality, because the perturbation
F is turned on at t = 0 time.
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Appendix K

Analytical limits for BG and TG
regimes

In this Appendix, we report the BG and TG analytical limits of the thermodynamic
quantities investigated in Chap. 6.

First of all, by using Eq. (6.4) and (6.5), one can rewrite the coe�cients (6.9) and
(6.10) of the phononic expansion (6.8) as:

α(γ) =
1

π2

(
3e(γ)− γ ∂e(γ)

∂γ

)
(K.1)

and

β(γ) =
π3f(γ)

12
√

2
(K.2)

where we have de�ned the dimensionless function

f(γ) =
12e(γ)− 10γ ∂e(γ)

∂γ + 4γ2 ∂
2e(γ)
∂γ2

− γ3 ∂
3e(γ)
∂γ3[

6e(γ)− 4γ ∂e(γ)
∂γ + γ2 ∂

2e(γ)
∂γ2

]3/2
. (K.3)

In this way, it is more clear that the functions α(γ) and β(γ) depends on γ through the
dimensionless energy per particle e(γ), see Eq. (2.10), and its derivatives.

K.1 Bogoliubov regime

In the weakly-interacting BG regime, the dimensionless energy per particle (2.10) is
equal to the value [Lieb and Liniger, 1963, Lieb, 1963]

eBG(γ) = γ (K.4)

from which one can calculate all analytical limits of the relevant physical quantities dis-
cussed in the following.

The ground-state energy per particle is derived from Eq. (2.10)(
E0

N

)
BG

=
1

2
g1Dn . (K.5)

From Eq. (6.5), the BG limit of the chemical potential at T = 0 is

µBG(T = 0) = g1Dn , (K.6)

as expected from Bogoliubov theory.
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Tonks-Girardeau regime 128

One calculates also the Bogoliubov sound velocity (6.4)

vBG
s (γ) =

√
g1Dn

m
= vF

√
γ

π
(K.7)

where, in the second equality, we have introduced the interaction parameter γ (6.2) and
the Fermi velocity vF (K.12).

From Eqs. (K.1)-(K.2)-(K.3), one calculates the following BG limits:
fBG(γ) = 1√

2γ

αBG(γ) = 2γ
π2

βBG(γ) = π3

24
√
γ .

(K.8)

K.2 Tonks-Girardeau regime

For the strongly-interacting TG limit, the dimensionless energy per particle (2.10) is
[Lieb and Liniger, 1963, Lieb, 1963]

eTG =
π2

3
, (K.9)

independent on the interaction parameter γ as expected. From Eq. (K.9) we calculate all
analytical TG limits of the same quantities discussed in the previous Section.

The ground-state energy per particle (2.10) becomes:(
E0

N

)
TG

=
~2π2n2

6m
. (K.10)

The chemical potential (6.5) in the TG limit is equal to the Fermi energy:

µTG(T = 0) = EF =
~2π2n2

2m
. (K.11)

Correspondingly, the sound speed (6.4) at T = 0 is provided by the Fermi velocity

vTG
s (γ) = vF =

√
2EF
m

=
~πn
m

. (K.12)

The numerical functions (K.1)-(K.2)-(K.3) are independent on γ in the strongly inter-
acting regime 

fTG =
√

2
π

αTG = 1

βTG = π2

12 ,

(K.13)

where the last two coe�cients are the same appearing in the Sommerfeld expansion (6.25).
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Appendix L

Bogoliubov theory in 1D: the
quantum �uctuaction correction

In this Appendix we calculate explicitly the correction due to the quantum �uctuations
in the 1D energy per particle (6.20) for small values of γ.

First of all, we write the Hamiltonian of the 1D system at T = 0 in terms of the �eld
operators ψ:

H =

∫
dz

(
~2

2m
∇zψ†∇zψ

)
+

1

2

∫
dzdz′ψ†ψ′†V (z − z′)ψψ′ (L.1)

where
V (z − z′) = g1D

∑
i>j

δ(z − z′) (L.2)

is the two-body contact interaction. If we consider an uniform system of length L, the �eld
operators can be written in terms of plane-waves:

ψ(z) =
1√
L

∑
pi

apie
ipiz/~ (L.3)

where api is the annihilation operator which destroys a particle in the single-particle state
with momentum p, and p satis�es the cyclic boundary conditions. By inserting Eq. (L.2)
and Eq. (L.3) in Eq. (L.1), we �nally �nd

H =
∑
p

p2

2m
a†pap +

g1D

2L

∑
p1,p2

a†p1a
†
p2ap1ap2

1 . (L.4)

We use the Bogoliubov prescription in H: a0 = a†0 ≡
√
N0, where we have replaced the

operators a0 and a†0 with a c−number.
In �rst approximation, we neglect the p 6= 0 terms in H (L.4) and we get the ground

state of the BG limit, see Sec. K.1.

1In 3D, di�erently from the 1D case, this equation contains the real potential characterized by a short
range term which makes it di�cult to get the solution of the Schrödinger equation at microscopic level.
In particular, the scattering of slow particles cannot be studied by applying perturbation theory. Since in
3D the weakly-interacting Bose gas is dilute, the actual form of the two-body potential is not important
for the description of the macroscopic properties of the gas, provided the potential reproduces the correct
value of the s-wave scattering length. Therefore, one replaces the microscopic potential with an e�ective,
soft one without the hard-core at small distances and for which the perturbation theory can be applied.
Since the physics of the system depends only on the scattering length, this method in 3D provides the
correct many-body description, see SubSec. 1.3.1.
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In second approximation, we retain in (L.4) all the terms quadratic in ap with p 6= 0,
while the terms containing only one ap operator with p 6= 0 do not enter for the momentum
conservation.

By using the Bose commutation rules{
[a†p, a

′†
p ] = [ap, a

′
p] = 0

[ap, a
′†
p ] = δp,p′

(L.5)

Eq. (L.4) becomes:

H =
g1D

2L
a†0a
†
0a0a0+

∑
p

p2

2m
a†pap+

g1D

2L

∑
p 6=0

(
4a†0a

†
pa0ap + a†pa

†
−pa0a0 + a†0a

†
0apa−p

)
. (L.6)

By combining the normalization condition
∑

p a
†
pap = N , the Bogoliubov prescription and

Eq. (L.5) and by neglecting next-order terms, we �nd

a†0a
†
0a0a0 = N2 − 2N

∑
p6=0

a†pap (L.7)

which used together with Eq. (L.6), �nally gives

H =
g1DN

2

2L
+
∑
p

p2

2m
a†pap +

1

2
g1Dn

∑
p 6=0

(
2a†pap + a†pa

†
−p + apa−p

)
(L.8)

where we have introduced the density n = N/L 2.
Since the Hamiltonian (L.8) is quadratic in a†p and ap, it can be diagonalized by the

linear Bogoliubov transformation{
ap = upbp + v∗−pb

†
−p

a†p = u∗pb
†
p + v−pb−p .

(L.9)

By using Eq. (L.5) and by imposing the same Bose commutation rules for the new operators
b†p and bp, we �nally �nd

|up|2 − |v−p|2 = 1 (L.10)

which is satis�ed by imposing {
up = coshαp

v−p = sinhαp .
(L.11)

The parameter αp is chosen to make the coe�cient of the non-diagonal terms b†pb
†
−p and

bpb−p in the Hamiltonian (L.8) vanish. This condition yields

g1Dn

2

(
|up|2 + |v−p|2

)
+

(
p2

2m
+ g1Dn

)
upv−p = 0 (L.12)

where we have used the symmetry properties
∑

p 6=0 upu−p =
∑

p6=0 |up|2 and
∑

p6=0 vpv−p =∑
p 6=0 |v−p|2. In Eq. (L.12) we use Eq. (L.11) and the properties{

cosh 2αp = cosh2 αp + sinh2 αp

sinh 2αp = 2 coshαp sinhαp
(L.13)

2In 3D, one has to use also the renormalization of the scattering length [Landau, 1958], which contains
the divergency for large values of the momenta. This ultraviolet behaviour is the consequence of the
replacement of the Fourier transform of the e�ective potential with its value at zero wavevector, because
only small momenta are involved in slow-particle scattering.
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and by introducing cothαp = coshαp/ sinhαp, we get the condition

coth 2αp = −
p2

2m + g1Dn

g1Dn
(L.14)

in which we use Eqs. (L.13)-(L.10)-(L.11) and we �nd the explicit form of the coe�cient
up and vp

up, v−p = ±

√
p2

2m + g1Dn

2ε(p)
± 1

2
(L.15)

where we have de�ned the Bogoliubov dispersion law for the elementary excitations of the
system (6.19). From Eq. (L.15) we calculate the quantities

|up|2 =
p2

2m
+g1Dn

2ε(p) + 1
2

|v−p|2 =
p2

2m
+g1Dn

2ε(p) − 1
2

upv−p = −g1Dn
2ε(p)

(L.16)

which used in Eq. (L.8) gives the diagonal form of the Hamiltonian

H = E0 +
∑
p

ε(p)b†pbp (L.17)

where we have introduced the ground-state energy (6.18), calculated at higher order of
approximation. By observing Eq. (L.17) we conclude that the original Bose gas of inter-
acting particles can be described by using an Hamiltonian of independent quasi-particles
with energy ε(p) and whose annihilation and creation operators are, respectively, bp and
b†p.

The ground state of the interacting particles then corresponds to the vacuum of quasi-
particles ∀p 6= 0:

bp |vac〉 = 0 . (L.18)

We can calculate the ground-state energy Eq. (6.18) by replacing the sum with an
integral in momentum space 3. Finally, we get the �rst correction to the ground-state
energy per particle (6.20), where we have introduced the γ parameter, Eq. (6.2).

3In 3D the integration is performed only up the cut-o� p ∼ mvs. For such momenta, the gas parameter
na3 is much smaller than unity. This justi�es a posteriori the replacement of the Fourier transform of the
interaction potential with its value at zero momentum.
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Appendix M

Euler Mac-Laurin expansion for G(y)

In this Appendix, we show the detailed derivation of the expansion holding for y � 1
(6.48) for the series (6.47).

We use the Euler Mac�Laurin expansion which allows to approximate a series as fol-
lows [Abramowitz and Stegun, 2012]:

+∞∑
k=0

f(k) ≈
∫ +∞

0
f(x)dx+

m∑
k=1

Bk
k!
f (k−1)(x)|+∞0 (M.1)

where f(x) is a continuous function of real numbers x in the interval [0,+∞]. For m = 2,
one considers only the �rst terms in the sum, whose Bernoulli's numbers are{

B1 = −1
2

B2 = 1
6

(M.2)

and f (k)(x) are the k�derivatives of the function f(x).
By de�ning the following function

f(x) = 2πx
√
y + (πx)2 − 2(πx)2 − y (M.3)

entering the series (6.47), one estimates the integral∫ +∞

0
dxf(x) = −

2y
√
y

3π
, (M.4)

which allows to calculate the thermodynamic limit of the ground-state energy per particle
on a ring con�guration (6.45), provided by Eq. (6.20).

By calculating the �rst derivative of the function (M.3), and by using Eq. (M.1) and
Eq. (M.2), one �nally gets the expansion (6.48) holding for large values of y parameter.
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Abstract
Ultracold atoms are exceptional tools to explore the physics of quantum
matter. In fact, the high degree of tunability of ultracold Bose and Fermi
gases makes them ideal systems for quantum simulation and for investigating
macroscopic manifestations of quantum effects, such as superfluidity.
In ultracold gas research, a central role is played by collective oscillations.
They can be used to study different dynamical regimes, such as superfluid,
collisional, or collisionless limits or to test the equation of state of the system.
In this thesis, we present a unified description of collective oscillations in
low dimensions covering both Bose and Fermi statistics, different trap ge-
ometries and zero as well as finite temperature, based on the formalism of
hydrodynamics and sum rules.
We discuss the different behaviour exhibited by the second excited breathing
mode in the collisional regime at low temperature and in the collisionless
limit at high temperature in a 1D trapped Bose gas with repulsive contact
interaction. We show how this mode exhibits a single-valued excitation spec-
trum in the collisional regime and two different frequencies in the collisionless
limit. Our predictions could be important for future research related to the
thermalization and damping phenomena in this low-dimensional system.
We show that 1D uniform Bose gases exhibit a non monotonic temperature
dependence of the chemical potential characterized by an increasing-with-
temperature behaviour at low temperature. This is due to the thermal exci-
tation of phonons and reveals an interesting analogy with the behaviour of
superfluids.
Finally, we investigate a gas with a finite number N of atoms in a ring ge-
ometry at T = 0. We discuss explicitly the deviations of the thermodynamic
behaviour in the ring from the one in the large N limit.

Keywords
quantum gases, Bose-Einstein condensates, Fermi superfluids, collective oscil-
lations, low-dimensions, Lieb-Liniger, Yang-Yang, collisionless, hydrodynam-
ics, thermalization, sum-rules, thermodynamics, equation of state, phonons,
ring
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