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Abstract

Technology is evolving towards a higher degree of automation and connectivity, with concepts

of Pervasive Computing, Smart Factories, Cyber-Physical Systems (CPS) and the Internet of

Things (IoT) promising to integrate countless communicating devices into objects around us

at home, in the streets, and on industrial sites. These embedded devices are often very small

in size, autonomously-powered, and have restricted computational and communicational

capabilities.

Low-power and Lossy Networks (LLNs) are multi-hop, typically wireless, self-organising net-

works aimed at interconnecting hundreds or thousands of such embedded devices. They

inherit many techniques from wireless sensor networks, though going beyond their original

task of collecting sensor readings. New applications comprising actuators, control loops, user

interface devices and requiring connectivity of every “smart thing” with the Internet, pose

new challenges to the network protocol stacks.

These stacks should not only efficiently support data collection from numerous low-power

sensors, but provide scalable data forwarding in the opposite direction, making every single

device in the LLN addressable and reachable from a central controller or from the Internet.

This type of forwarding is needed to send commands to wireless actuators in the LLN or to

enable request-response communication between a low-power device and a remote server.

Control loops additionally require real-time guarantees from the communication system.

We demonstrate in this thesis that reconciling the battery lifetime with high reliability and low

latency is still a challenge for existing protocols even at the scale of few hundreds of network

nodes. Moreover, current techniques have a significant performance gap between their data

collection and actuation forwarding components on memory-constrained platforms. This gap

limits the applicability of the stacks, as the overall performance is determined by the weaker

component.

Motivated by two real-life applications, we first study novel techniques that eliminate the

performance gap in the standard IPv6 stack for LLNs, making the actuation traffic forwarding

as performant as the data collection one in networks that are five times larger than what the

original standard stack is able to support. Second, we demonstrate that the reliability of packet

delivery in the standard-compliant solution is limited in practice at around 99% while its

routing overhead causes significant inefficiency in energy consumption. Therefore, we change

focus to a forwarding mechanism based on the principle of synchronous transmissions, made

popular by Glossy. It is a recent and, thus, non-standard technique, known for excellent

reliability, speed and energy efficiency of the flooding-based data dissemination service it

provides. This service is a perfect match for actuation, but a similarly efficient data collection
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protocol did not exist. To close this gap, we design CRYSTAL, a novel data collection protocol

based on the same core principle of synchronous transmissions.

We show that, depending on the application, CRYSTAL reaches per-mille or even parts-per-

million radio duty cycle. It does that with a packet loss rate lower than 10−5 under external

Wi-Fi interference of a noisy office building, and provides a much higher reliability and energy

efficiency than the state of the art under even stronger interference generated by JamLab.

We thoroughly evaluate the proposed solutions both in realistic simulations and two large-

scale testbeds. We follow a principled approach based on understanding of the environment

and the properties of the network topologies. The latter are acquired by our connectivity

assessment tool Trident, which itself is one of the contributions of this thesis.

Through these contributions, this thesis pushes forward the applicability of LLNs, by improving

their scalability, reliability, latency, energy efficiency and interference resilience, both in the

context of an existing standard and in a clean-slate design. Further, by achieving this superior

performance via network stacks that natively support both collection and actuation traffic, this

thesis provides a stepping stone for applications that strongly rely on both, notably including

the low-power wireless control applications.

Key words: low-power and lossy networks, wireless actuation, synchronous transmissions,

routing protocols, internet of things, cyber-physical systems.
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Introduction

Technology is evolving towards a higher degree of automation and connectivity, with concepts

of Pervasive Computing, Smart Factories, Cyber-Physical Systems (CPS) and the Internet of

Things (IoT) promising to integrate countless communicating devices into objects around us

at home, in the streets, and on industrial sites.

Although connectivity has already become ubiquitous thanks to the undeniable success of

Wi-Fi and cellular networks, it is still prohibitively expensive in terms of service subscription

fees and/or energy consumption. An alternative technique for interconnecting numerous

miniaturised autonomously-powered devices with highly constrained computational capabil-

ities is to equip them with low-power short-range radios and organise them in a multi-hop

network to cover distances larger than their communication range (tens of meters).

In the past, such multi-hop networks were known as Wireless Sensor Networks (WSNs) as they

were mostly used for collecting sensor readings. Now they are advancing far beyond their

original task and the term Low-Power and Lossy Networks (LLNs) is increasingly used to denote

them, underlying the fact that the communication links in such networks are brittle, with

relatively high packet loss rate and with properties varying in time. Unlike pure data collection,

where individual sensor nodes might be even not addressable, in applications comprising

wireless actuators or when the low-power devices interact with the Internet, bidirectional

connectivity and individual addressability are required.

In the envisioned scenarios, there is typically a dedicated device that is either the source or the

destination for most of the packets sent inside a LLN. This can be the central controller which

accumulates knowledge about the system and commands actuators, and/or the border router,

bridging all data flows between the “big” Internet and the LLN. In both cases, there is a need

for organising a multipoint-to-point communication for the low-power devices to send data

packets towards the dedicated node, and the opposite, point-to-multipoint communication

from the central node towards the periphery of the LLN. Throughout this thesis we also use

terms collection and actuation traffic, respectively, to denote these communication patterns,

reflecting their common use in applications, or we distinguish them by the direction they

follow in the routing hierarchy, namely, upward and downward.

New applications not only broaden the communication patterns carried out by the low-power

wireless network, but also change the optimisation objectives for the underlying communi-

cation techniques. Unlike WSN research, where extending the battery lifetime was the main
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goal, the actuation component and the interactivity of modern applications bring reliability

and timeliness of data delivery to the same level of importance. How strict these requirements

are, depends on the application, as a delayed or omitted reaction of the system might be

just annoying to the user [11] or, on the other hand, it might be disrupting the control loop

dynamics, potentially causing damage to things or people [85]. Therefore, optimising for

reliability and timeliness is becoming a trend in the research community that is pushing the

low-power wireless technology towards more challenging control applications.

Still, whether these wireless systems are feasible is determined by their energy consumption.

Ideally, deployed devices should be maintenance-free or at least guarantee a battery lifetime

of several years [67, 85]. In this thesis, we argue that reconciling battery lifetime with high

reliability and low latency is still a challenge even at the scale of few hundreds of devices, not

to mention tens of thousands, the target for some application scenarios [29].

Motivation from real-world applications. This work is motivated by two application scenar-

ios, both having at their core a multi-hop low-power wireless network for monitoring and

control.

• The first scenario is built around an outdoor urban deployment comprising nearly a

thousand wirelessly communicating devices on lampposts, densely covering several

neighborhoods in the city of Trento, Italy. The lamppost devices are used to control the

street lighting, but also provide a connectivity “backbone” for various wireless sensors

and actuators located nearby, including pollution sensors, parking lot occupancy sensors

and irrigation valves. In this scenario, the main challenge is the need for individual

addressability of every device in combination with the scale and peculiarity of the

physical topologies defined by the urban structure.

• The second scenario is characterised by its inclusion of a control loop. In our particular

case, a WSN is used for adaptive lighting control in road tunnels[16]. The network col-

lects periodic illuminance readings to inform the central controller, which dynamically

maintains the desired light intensity along the tunnel by individually adjusting lamp

brightness. Making the WSN satisfy the real-time requirements of the control loop while

maximizing the WSN battery lifetime constitutes a challenge.

Both application scenarios suggest the use of a protocol stack for wireless LLNs that supports

both data collection and actuation traffic. Although several such stacks exist, to the best

of our knowledge, they were not evaluated in realistic scenarios as the ones we identified.

Furthermore, as we show in this thesis, current techniques have a significant performance gap

between their upward and downward forwarding components. This gap limits the applicability

of the stacks, as the overall performance is determined by the weaker component.

Therefore, the goal of this thesis is to harmonize the support for data collection and actua-

tion traffic in a unified stack of unprecedented reliability and performance. We achieve this

goal both by improving existing protocols and creating novel ones.

We argue that protocol implementation is as important for the performance as its design,
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hence, we work with real implementations for a popular hardware platform, TMote Sky, which

is commonly used in research as well as in publicly available network testbeds.

Contributions. The contributions of this thesis are grouped in three parts, which is reflected

in the thesis structure. They mostly lie in the area of protocol design, but also include a

deployment assessment tool for LLNs. We briefly describe the contributions next.

Part I. Working with real deployments requires understanding their connectivity properties:

the quality of individual links, the background noise, the network degree and diameter and

their variations over time. To systematically acquire these properties, we created Trident,

a tool that allows running various types of deployment assessments, including week-long

autonomous outdoor experiment campaigns, quick tests to guide new deployments, and

testbed measurements.

Part II. RPL, the IPv6 routing protocol for LLNs, became our first choice for the lamppost

network mentioned before thanks to the built-in support for both upward and downward

communications and interoperability with the Internet. RPL is an IETF standard designed

for a range of applications in home, office, urban and industrial automation [11, 85, 67, 29].

Moreover, there are several open-source implementations of RPL, among which we chose the

ones bundled with Contiki OS and TinyOS.

RPL is optimised for data collection by design, however, we show that it is not only less efficient

for actuation traffic, but it is often unable to deliver any packets to a part of the network. The

reason is that the unicast downward forwarding used by RPL needs a significant amount of

memory for keeping the network state, which limits the downward connectivity to around 50

devices on our hardware platform.

When the memory is insufficient to store the routes to all destinations, the only option to

enable connectivity with every node in the network is to rely on a form of data dissemination.

However, dissemination has scalability problems, too, though now in terms of network utili-

sation that grows with the network size. This increases energy consumption and potentially

disrupts the data collection service of the stack due to increased contention in the medium.

Therefore, we propose a solution that mitigates the scalability limitations of RPL by balancing

the memory use among devices and augmenting the unicast downward forwarding with

various types of limited-scope dissemination. We implement this solution and demonstrate

that its downward service scales up to hundreds of devices without affecting much the upward

traffic nor the battery lifetime.

Part III. Even though we harmonized the upward and downward forwarding of the standard-

based stack, the packet loss rate of both the original RPL implementation and our improved

protocol did not go below one per cent in either traffic direction. Such packet loss rate is

prohibitively high for many applications comprising control loops. We also identified that

the routing overhead of RPL, as well as that of other popular protocols based on conventional

multi-hop routing, constitutes a significant inefficiency in energy consumption.
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Therefore, in Part III, we approach the problem from another direction and do so in the absence

of any standard-imposed design constraints. We build on synchronous transmissions made

popular by Glossy [38], a very fast, reliable and energy-efficient network flooding protocol.

Although Glossy on its own provides an excellent point-to-multipoint dissemination service,

we argue that a similarly efficient solution for multipoint-to-point traffic did not exist. This

puts us in a symmetrical situation w.r.t. Part II, as now we need to optimise data collection to

close the performance gap.

Indeed, even though Glossy has been used for data collection before, this is done by scheduling

individual floods for every potential data source in the system. In the case of sparse, unpre-

dictable, aperiodic collection traffic, such over-provisioning creates significant amount of idle

listening when the sensor nodes do not have data to send. This type of collection traffic is

generated, for example, by the data prediction technique in [89] which suppresses more than

99% of the packets in the tunnel application mentioned earlier.

To overcome this performance gap between efficient dissemination and expensive data collec-

tion, we designed CRYSTAL, a novel reliable data collection protocol based on synchronous

transmissions. We demonstrate that CRYSTAL can dynamically adapt to the immediate traffic

demands without requiring expensive scheduling or over-provisioning. Thanks to this, CRYS-

TAL is very fast at delivering occasional bursts of packets, consuming very little energy when

the traffic is low, and it improves over the already remarkable reliability of Glossy.

The latency of data delivery in CRYSTAL is as low as 24 milliseconds per packet in a network

of four hops. This time includes the end-to-end acknowledgement as CRYSTAL provides an

acknowledged data collection service by design.

Regarding the reliability and energy efficiency, we show that, depending on the application,

CRYSTAL reaches per-mille or even parts-per-million radio duty cycle. It does that with a

packet loss rate lower than 10−5 under external Wi-Fi interference of a noisy office building.

Further, since industrial scenarios, which can benefit from CRYSTAL, are often characterised

by the presence of interfering equipment, we devote a significant part of this work to un-

derstanding how particularly strong interference affects the properties of our protocol. For

this, we use JamLab [9] to generate reproducible interference of various types, intensities and

spatial distributions. We show that CRYSTAL sustains much higher levels of interference than

state-of-the-art protocols, including Glossy itself, while maintaining its properties of being

ultra reliable and ultra-low power.

Through these contributions, this thesis pushes forward the applicability of LLNs, by improving

their scalability, reliability, latency, energy efficiency and interference resilience, both in the

context of an existing standard and in a clean-slate design. Further, by achieving this superior

performance via network stacks that natively support both collection and actuation traffic, this

thesis provides a stepping stone for applications that strongly rely on both, notably including

the low-power wireless control applications.
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1 Trident: A Connectivity Assessment Tool for
Wireless Sensor Networks

Wireless sensor networks (WSNs) are finding their way into real-world applications, whose

successful deployments are increasingly reported. This accrued experience has also evidenced

how the task of deploying a WSN entails a number of challenges. One of the most important

concerns the low-power wireless communication exploited by WSNs. This type of wireless

communication has peculiar characteristics, that have been studied by many researchers; a

summary is provided by a recent empirical study [92].

Motivation. Communication in the 2.4 GHz band of IEEE 802.15.4, commonly employed by

WSN devices, is also affected by factors strongly dependent on the environment where the WSN

is deployed, and hard to capture in the controlled setups typically used in the studies above.

These factors include the shape of the deployment site [71], variations in temperature [7] and

humidity [97] and their combination in outdoor [65, 103] or industrial [10] scenarios.

Figure 1.1 provides a concrete idea of the extent to which communication can be affected by

these factors, albeit using a small-scale setup. A single link between two nodes communicating

at 0 dBm and placed 40 m apart in an outdoor open field is observed over a 2-day period. Fig-

ure 1.1a shows the average temperature inside the plastic boxes holding the motes; Figure 1.1b

shows that, for TMote Sky devices, this temperature is negatively correlated with the Received

Signal Strength Indicator (RSSI) and Packet Delivery Rate (PDR) of the link. A 40°C tempera-

ture increase in the box (with a mere 11°C increase outside of it) causes a −13 dBm decrease in

RSSI . This is enough to turn a perfect link (PDR = 100%) into a dead one (PDR = 0%).

Assessing quantitatively the characteristics of low-power wireless links in-field, i.e., in the

target environment where a WSN must be deployed, is key for several, intertwined goals:

• supporting the WSN deployment, by determining where to place the motes to ensure

communication among them;

• informing the selection (or design) of protocols, to ensure they are well-suited to the

target environment;

The contents of this chapter have been originally published in: TRIDENT: In-field Connectivity Assessment
for Wireless Sensor Networks, Timofei Istomin, Ramona Marfievici, Amy L. Murphy, Gian Pietro Picco, In Pro-
ceedings of the 6th Extreme Conference on Communication and Computing (ExtremeCom), Galapagos Islands,
Ecuador, August 2014, and have been slightly adapted for this thesis.
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(c) Waspmote.

Figure 1.1 – Effect of temperature on RSSI and PDR.

• deriving models, to push the envelope of what can be predicted (or simulated) before-

hand.

Unfortunately, the tools supporting connectivity assessment (e.g., SWAT [93], SCALE [18],

RadiaLE [6]) were conceived to study the properties of low-power wireless links in controlled

environments, e.g., an office testbed. Therefore, they require a secondary, wired networking

infrastructure (e.g., USB cables) for gathering experimental data—a luxury one can rarely

afford in real-world settings.

Contribution. This chapter presents TRIDENT [1], a tool expressly designed to simplify the

chore of in-field connectivity assessment. TRIDENT relies only on the WSN nodes whose

connectivity needs to be ascertained, without any external infrastructure.

TRIDENT is useful to WSN researchers and practitioners, who may use it towards any of the

three aforementioned goals. However, the tool is designed to be easy to use also for domain

experts who, being the “users”, have precise knowledge of where the WSN nodes should be
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deployed from the application standpoint, but typically do not have a very deep knowledge

about the inner working of the WSN, and definitely do not take part in programming it. The

connectivity experiments can be configured easily without requiring any coding, and the data

collected with a straightforward procedure. Therefore, TRIDENT empowers domain experts

with the ability to assess the connectivity of WSN nodes deployed in-field, without the need

for a supporting WSN expert. The goals and requirements we set for TRIDENT are described in

Section 1.1.

TRIDENT covers the entire workflow concerned with connectivity assessment experiments.

After the WSN nodes are flashed with the TRIDENT software, appropriate user interfaces

enable the operator to (re)configure the experiment settings, discover nodes, and download

the results. The latter are stored in a database, simplifying the storage and analysis of the

(typically large volumes of) data gathered. The main operation of TRIDENT is described in

Section 1.2, along with the various components of the tool.

We originally developed TRIDENT for the popular research-oriented platform constituted

by TMote Sky motes running TinyOS. However, connectivity assessment is relevant also to

industry-oriented platforms, for which we chose Waspmote devices running the standard

ZigBee stack as a representative. Interestingly, supporting the latter platform is not simply a

matter of porting the code from the former; the fact that the ZigBee stack is “closed”, unlike

the TinyOS one, forced us to find ways to reliably measure the main metric of PDR, which

cannot be derived directly otherwise.

Although both platforms are based on radio chips compliant with IEEE 802.15.4, their behavior

is very different, as shown again in Figure 1.1. The same setup and observations we described

earlier were also performed for a link between a pair of Waspmote nodes, whose behavior is

shown in Figure 1.1c. The two experiments were performed in exactly the same conditions, by

placing the two pairs of motes side-by-side on different channels. The chart shows that, for

Waspmote, temperature is also negatively correlated with RSSI , but to a much lesser extent

w.r.t. TMote Sky, allowing the PDR to remain at 100%. These sharp differences motivated

different implementations of TRIDENT, discussed in Section 1.3. Finally, Section 1.4 ends the

chapter with brief concluding remarks.

1.1 Requirements

In this section we describe the requirements we set for ourselves in designing TRIDENT,

grouped according to their nature.

1.1.1 Type of Data Collected

Metrics. We want to support in-field collection of several metrics typically used to perform

connectivity assessment.

The key metric provided is the Packet Delivery Rate (PDR), i.e., the ratio of packets received over
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those sent. PDR provides a direct assessment of the ability of a link to reliably communicate

packets.

A number of metrics are extracted directly from the radio chip: Received Signal Strength (RSSI),

Link Quality Indicator (LQI), and RSSI noise floor, sampled after sending or receiving a packet.

These metrics provide insights about physical layer parameters influencing PDR, and their

correlation with it. Moreover, noise floor is useful to indirectly determine the presence of

interference.

Finally, TRIDENT supports the acquisition, upon packet sending or receiving, of environmental

parameters (e.g., temperature and humidity) from on-board sensors. These are useful to deter-

mine how the environment affects communication, as highlighted by the works mentioned

earlier and concretely shown in Figure 1.1.

Aggregated vs. per-packet samples. The reason for which connectivity assessment is per-

formed determines the nature of the data gathered. If a long-term observation is necessary,

the amount of data recorded can rapidly become prohibitive for a resource-constrained plat-

form like TMote Sky. Therefore, the tool should support the ability to store only an aggregate

of the metrics collected, computed over a well-defined sequence of packet exchanges.

On the other hand, recording the individual metrics (e.g., RSSI and noise floor) associated

with each packet provides a fine-grained detail that is necessary in some cases, e.g., when the

goal is to ascertain the time-variant characteristics of links with the resolution necessary to

inform the design of network protocols.

The choice between aggregated or per-packet samples should therefore be left to the user,

balancing the goals of connectivity assessment against the storage limitations of the platform

at hand.

Single packets vs. bursts. Another related dimension is the way the channel is observed.

Connectivity assessment is often performed by sending probe packets with an inter-message

interval (IMI) relatively high (e.g., seconds), representative of several WSN applications. Nev-

ertheless, some applications (e.g., recording data from accelerometers [104, 17]) require the

transmission of bursts of packets. Moreover, a well-known property of the wireless channel is

that the transmission of packets sent with a small-enough IMI [94] is more reliable. The tool

should allow the user to choose whether to use single packets or bursts of packets as probes.

1.1.2 Type of Experiments Supported

Interactive vs. batch. Connectivity assessment may be needed for reasons yielding different

requirements, as described earlier.

If the ultimate goal is to support a WSN deployment by helping determine a node placement

enabling communication, this is often achieved by performing tests of short duration (e.g., a

few minutes). These are useful to quickly evidence which nodes experience low PDR values;
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this information is used by the operator to relocate nodes and re-assess connectivity with

another short test. To effectively support this process, the tool must provide a way to quickly

(e.g., graphically) represent the PDR associated with WSN links.

On the other hand, connectivity assessment is often performed also to characterize the target

environment. This requires long-term observations (e.g., days); the continuous presence of

an operator would be impractical. The tool must provide the option to run automatically a

battery of tests, including different settings, defined by the operator but executed without her

involvement.

In our experience, the two modes of operation are often used in conjunction. Indeed, before

starting a long-term batch experiment, a short-term interactive one is performed, to make

sure that all nodes are functioning properly, and that the baseline connectivity is appropriate

to the purpose of the experiment.

Mobile nodes. Mobile WSN applications, e.g., involving nodes placed on humans, animals,

robots, or vehicles, are becoming increasingly popular. Therefore, the tool should support

experiments where some of the nodes are mobile, to assess the connectivity between these

and the fixed nodes. An interesting possibility, partially explored in our previous work[15], is

to use mobile nodes as a way to perform a preliminary exploration of the deployment area. As

the mobile node moves across the field and exchanges messages with fixed nodes, it samples

the connectivity of a high number of locations, cumbersome to explore individually only with

fixed nodes.

1.1.3 Support to Operators

In-field, wireless interaction with nodes. In-field operators must interact with the nodes

for various purposes. The primary reason is to retrieve the results of experiments, stored on

the nodes taking part in them. Another key operation is the re-tasking of the nodes with a

new set of experiments. The operator may also need to interact with the nodes for the sake

of monitoring the correct execution of the experiment, e.g., to retrieve statistics about the

experiments performed or the battery level. Other useful operations are the ability to put

selected nodes (or the entire WSN) in stand-by when they are not involved in an experiment,

and wake them up later on.

In principle, some of these operations can be performed by directly accessing the node; for

instance, data can be downloaded via USB. However, while this operation is trivial in a lab,

it becomes cumbersome when nodes are deployed in-field in a harsh environments, e.g.,

outdoor in winter, or in places that are not easily accessible. Therefore, all of the interactions

with the nodes should be performed over-the-air, by leveraging the wireless channel.

Data storage and processing. Connectivity assessment experiments may generate a huge

quantity of data. Handling these as individual files becomes rapidly impractical. Further, the

raw data gathered often needs to be processed in an automated way to simplify interpreta-
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tion. The tool should therefore integrate a database for storing experimental data, enabling

structured access and querying, and the definition of stored procedures providing a layer of

abstraction in data manipulation and interpretation.

1.1.4 Non-functional Requirements

No infrastructure. As we already argued in the introduction, this non-functional requirement

is a defining one. In-field experiments cannot afford the luxury of a secondary network; the

experiment execution must rely only on the WSN nodes under test.

No coding required. Our desire to support domain experts implies that using the tool should

not require writing even a single line of code. The configuration of experiments should occur

entirely via the user interface; at most, domain experts must learn how to flash motes with a

pre-canned binary before going in-field.

Ease of use. The logistics of in-field experiments makes them effort-demanding and time-

consuming. The situation should not be exacerbated by a complex or cumbersome interaction

with the tool. A graphical user interface, providing intuitive support for all the phases of the

experiments, is therefore an obvious requirement.

Flexibility. The experiment settings, including number of nodes, their nature and role in

the experiment, power and channel settings, number of messages, inter-message interval,

number of test repetitions, etc., should be designed in a way that allows users to combine

them freely, to explore different portions of the parameter space.

Decoupling from hardware platform. The tool should work on standard nodes without mod-

ifications to hardware. Nevertheless, as there are many WSN platforms available, supporting a

new one in the tool should be simplified by its software architecture, by confining platform-

specific details in well-identified components.

1.2 Design

Next we describe the design of TRIDENT. We begin with a description of the execution of

connectivity assessment experiments, then provide an overview of the TRIDENT toolset.

1.2.1 Experiment Execution

Definitions. An entire TRIDENT experimental campaign is defined as a sequence of rounds, as

shown in Figure 1.2. Each round has its own configuration parameters, detailed next, including

whether it uses single-packet probes or burst probes, i.e., multiple packets transmitted in rapid

sequence. The time between the beginning of two consecutive probes from the same node

is the inter-probe interval (IPI). For burst probes, we also define the inter-message interval

(IMI) as the time between two messages belonging to the same burst. Both IPI and IMI are

configurable on a per-round basis.
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Figure 1.2 – Sample TRIDENT experiment showing two rounds, staggered transmissions using
single-packet and burst probes, and per-round synchronization.

Probing the links. Connectivity is assessed by probing the communication link with packet

transmissions and evaluating the received packets and their properties. Therefore, TRIDENT

experiments must define precisely when each node transmits and listens.

All nodes behave the same: transmit a probe, pause for the IPI duration, repeat this process a

configurable number of times. In between transmissions, nodes can be configured to listen

for packets from other nodes. TRIDENT does not duty-cycle the radio during experiments,

ensuring that no packets are lost due to the radio state. Moreover, to avoid collisions among

simultaneously transmitted packets, which can confound the link evaluation, TRIDENT ensures

that only one sender transmits at any given time.

This is achieved by having nodes begin their probe sequence in a staggered way based on their

node identifiers. Specifically, the transmit time for the i -th probe of node n is defined as

tn,i = tstart +nTIPI + i N TIPI

where tstart is the start time of the round, TIPI is the value of the IPI, n is the node identifier,

and N is the overall number of nodes. n and N are setup statically during the experiment

design phase.

Staggering transmissions by assigning each nodes its transmit slot, requires the nodes to be

time-synchronized. In TRIDENT this is achieved at the beginning of each round, as shown in

Figure 1.2. This synchronization allows the system to compensate for clock drift during a long

running experimental campaign.

Master node. Time synchronization is initiated by a special node, called the master. The latter

acts in general as a coordinator towards the rest of the WSN nodes, as well as the “access point”

enabling the operator to change the configuration of experiments. The master has the same

binary code of the other nodes; its special role is determined by its identifier, n = 0.

The parameters describing the round configuration are also disseminated by the master node

during synchronization at the beginning of each round. The option to change parameters

13
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Table 1.1 – Per-round configuration parameters and their example values from [65].

Parameter Example Parameter Example

# of nodes (N ) 16 # of probes per sender 115

list of senders 0. . .15 single-packet probe yes

list of listeners 0. . .15 inter-probe interval 16 s

transmit power 27(−1 dBm) inter-message interval N/A

probing channel 18 aggregate logging yes

in each round allows the interleaving of rounds with different power levels, or interleaving

single-packet and bursty rounds, as shown in Figure 1.2.

This choice has multiple consequences. First, only the master node is aware of the experimen-

tal campaign, and therefore is the only one affected by changes to the latter. As the master can

receive an entire experimental campaign configuration over-the-air, physical access to nodes

is not required to change or initiate a campaign. Second, prior to starting a long-running

campaign, the operators can interactively run a number of small experiments, each time

uploading the round description to the master, instructing the master to initiate the round,

then collecting the results. After analysis, another short experiment can be carried out, or

the long-running experiment can be initiated. This is all possible because the nodes are

experiment-agnostic and the master can be controlled over-the-air.

Per-round configuration parameters. Table 1.1 shows the per-round configuration parame-

ters available in TRIDENT, communicated by the master before starting a round. We already

mentioned some of them, e.g., the overall number of nodes, the role (sender or listener), the

type of probe, the values of IPI and IMI. Additional parameters include the radio channel,

transmission power, overall number of probes transmitted per node, and number of packets
Table 1.2 – In-field commands.

Command Target Description

UPLOAD master load a campaign configuration

START network start the execution of an experi-
ment

STOP network stop the execution of an experi-
ment

POLL 1-hop query battery level

SLEEP 1-hop place nodes in low-power lis-
tening

WAKE-UP 1-hop remove nodes from low-power
listening

DOWNLOAD(n) node download logs from selected
node

ERASE(n) node erase flash of selected node

SNIFF operator toggle packet sniffing

14
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per burst. The logging method must also be defined, choosing between storing information

about every packet, or only the average over the entire round, based on the needs of the exper-

iment and the available storage. Finally, rounds and/or entire experiments can be repeated a

configurable number of times, to increase statistical relevance.

As for metrics, not shown in the table, PDR, RSSI , and (if available) LQI are collected by default.

If the platform allows, sender and receiver can acquire per-packet environmental conditions

such as noise floor, temperature, and humidity. These values are recorded according to the

per-round logging policy.

Interacting with the nodes under experiment. Changing the per-round configuration param-

eters is not the only option to interact in-field with nodes. Table 1.2 describes the commands

available to the operator. As already mentioned, the operator can upload the description of an

entire campaign configuration on the master, which then uses it to orchestrate the various

rounds with the appropriate per-round configuration. However, the operator can also start

and stop the execution of the experiment; these commands are propagated network-wide,

with a mechanism similar to the one used to mark the start of a single round, described in

Section 1.3.

The master node can instruct all nodes to automatically enter a sleep state upon the end of

an entire experimental campaign, allowing them to save their remaining battery power. In

TinyOS, nodes in this state use the default low-power listening (LPL) MAC with a long sleep

interval, currently set to 1 s. By duty-cycling the radio, nodes save battery power, but can

be woken up later, e.g., to initiate over-the-air data download or to start a new experimental

campaign. Alternately, the operator can also put to (or wake-up from) sleep a subset of the

nodes, and query for their battery level.

Other commands enable the operator to download the experiment logs from a selected node,

and to erase its flash memory after successful data transfer is verified. Finally, passive packet

sniffing can be activated on the node managed by the operator, enabling the latter to ascertain

whether all nodes properly started the experiment.

in-field
assistant

WSN

database 

experiment
planner

operator's laptop
configuration commands

reports scripts

data

Figure 1.3 – The TRIDENT toolset.
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1.2.2 Toolset Overview

Figure 1.3 depicts the main structure of TRIDENT. WSN nodes, the subject of the experiment,

are programmed with a platform-specific mote-level runtime that is experiment-agnostic; its

behavior is established by the operator without requiring any coding.

This configuration is performed through the GUI of a dedicated component, the experiment

planner, which resides on the operator’s laptop. The experiment planner essentially enables

the operator to quickly and easily define the various details of the experiment, by properly

setting the values for the parameters in Table 1.1. This step does not need to be performed

in-field, as the planner enables only the definition and storage of experiments.

The actual upload of experiments to the master, and from there to the rest of the WSN, is

instead supported by the in-field assistant, which also enables the execution of the other

commands in Table 1.2. Communication with the WSN is enabled by a mote acting as a

gateway, connected to the USB port of the operator’s laptop.

Figure 1.4 – The “results view” of the TRIDENT in-field assistant, showing one-hop connectivity
and PDR for node 4.

The in-field assistant provides also a simple visualization of the connectivity map built from

available collected traces. An example is shown in Figure 1.4, visualizing the quality of the

inbound links for node 4 according to an intuitive green/yellow/red color-coding, whose

semantics in terms of PDR is configurable. This feature is particularly useful when TRIDENT

is used for a short-term assessment, as it quickly informs the operator about areas with

connectivity problems, whose nodes can then be re-arranged. A similar visualization is

provided also for mobile nodes; once the in-field assistant is fed with a sequence of locations,

it can “replay” the maps, showing to the operator how connectivity evolved due to mobility.

Finally, the database and the associated plotting scripts simplify the storage of the collected
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Table 1.3 – Platform support in TRIDENT.

hardware TMote Sky Waspmote + XBee

software TinyOS Arduino

PHY layer 802.15.4 (2.4 GHz) 802.15.4 (2.4 GHz)

radio chip CC2420 EM250

TX power −25. . .0 dBm −8. . .2 dBm

metrics RSSI, LQI, noise RSSI

burst probes yes no

storage flash chip, 1 MB microSD, 2 GB

aggregate logging per round, on motes on operator’s laptop

sensors temperature, humidity —

data and its offline analysis. The database contains generic and customizable stored proce-

dures for data manipulation. The set of pre-canned scripts allows the user to quickly plot

trends derived from the data collected, e.g., currently including network-wide PDR, cumula-

tive distribution functions of the links w.r.t. their PDR, spatial and temporal variations of the

metrics, correlation of PDR with RSSI and LQI .

1.3 Platform-specific details

TRIDENT currently supports two hardware platforms: TMote Sky and Waspmote. The former

directly integrates the CC2420 radio chip, while the latter relies on an extension module for

radio communications, in our case the XBee S2 integrating the ZigBee-compliant EM250

system-on-chip. Both transceivers implement the 2.4 GHz IEEE 802.15.4 physical layer.

The software architecture of TRIDENT confines the differences mostly in the platform-specific

runtime installed on motes, although a few changes are needed also to parts of the in-field

assistant handling communication with the WSN and parsing the logs for visualization. We

refer to these platform-specific portions of the software as the backend, and summarize the

differences in Table 1.3. The Waspmote variant provides less features than the TMote Sky

counterpart, as TinyOS allows low-level access to the radio chip while Waspmote provides only

the high-level interface of the ZigBee application support sublayer (APS). These trade-offs are

discussed in the rest of the section, along with other implementation details.

Available metrics. The two platforms provide different metrics. TinyOS records RSSI and LQI

for each received message, while the XBee radio module reports only RSSI . Moreover, unlike

ZigBee, the low-level API available to TinyOS applications allows requesting RSSI when the

channel is idle to measure the noise floor.

The temperature and humidity sensor of TMote Sky provides important information for

our studies of the environmental effects on connectivity. In principle, the same holds for

Waspmote, given the wide range of sensors available for this platform. However, we have not
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yet implemented support for them in TRIDENT, although this does not pose any particular

technical problem.

Experiment execution. On both platforms the experiment configuration is installed in the

non-volatile storage of the master node. The TMote Sky backend supports uploading the

configuration wirelessly or via USB, and stores it in a dedicated flash partition, while the

Waspmote backend relies on a configuration file on the SD card.

As described in Section 1.2, the network is time-synchronized at the beginning of each round

to avoid collisions among probes. The backends implement different techniques. In the case

of TMote Sky, dissemination relies on a TDMA scheme where each node has its own time slots

to repropagate commands, in a way similar to the mechanism outlined for probe transmission

in Section 1.2. The common time reference needed for both the TDMA dissemination phase

and to calculate tstart is established with TinyOS packet-level time synchronization service [66],

yielding sub-millisecond precision.

As ZigBee does not provide such a synchronization service, we rely on the standard multi-hop

broadcast feature, basically a network flooding. However, based on the ZigBee Pro feature

set [109], broadcast packets are always sent 3 times in a row, increasing reliability at the

expense of energy consumption. These broadcast packets are separated by a 500 ms interval

plus a random delay between 0 and 40 ms. Therefore, in the worst case where the start

synchronization message is received only upon third attempt, the time synchronization error

goes slightly above 1 s per hop.

To secure a collision-free transmission schedule the IPI should be set long enough to compen-

sate for these synchronization errors and also for the time drift of the nodes. On TMote Sky

the synchronization error is negligible; the typical time drift of 100 ppm results in two nodes

drifting apart by 36 ms in half an hour. Therefore the use of 250 ms time slots during 30-minute

rounds can be considered safe, counting also the time needed for internal processing of the

received packets. Instead, on Waspmote the second-per-hop error should be compensated;

we achieve this by using 3 s time slots.

Moreover, transmission of probes as one-hop broadcast requires an additional second, again

due to the triple transmission performed by the ZigBee network layer. Therefore, it is impossi-

ble to send bursts of packets with Waspmote; on TMote Sky, bursts are instead supported with

a configurable IMI, set to 20 ms by default.

Another implication of ZigBee compliance is that nodes must join the wireless PAN (personal

area network) before sending application data. A multi-hop ZigBee network is built around its

coordinator with the standard join procedure, including channel scanning and handshaking,

one hop at a time. This process requires up to minutes, depending on the network diameter.

In case the channel is changed in between rounds, this affects the minimum interval between

them, as the network topology must be rebuilt from scratch.

Determining the link-level PDR. In principle, the value of PDR can be obtained straightfor-
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Figure 1.5 – ZigBee transmits each broadcast packet three times.

wardly, since the number of transmitted and received packets is known for each link. However,

Waspmote introduce additional complexity due to the triple transmission of broadcast packets

mandated by the ZigBee network layer. As shown in Figure 1.5, since duplicates are automat-

ically filtered at the receiver, the link-level PDR cannot be determined by simply counting

the delivered packets at the application layer. Consider two hypothetical experiment runs,

one where each probe sent is always received upon first attempt, and one where it is received

always upon the third attempt. The link-level PDR would be a meager 33% in the second case,

yet the application-level PDR (the only directly measurable) would be 100% in both cases,

providing a false representation of the quality of the wireless link.

Nevertheless, we can infer the number of failed attempts by looking at the packet arrival

time, based on the fact that the three broadcast transmissions in ZigBee are spaced relatively

far apart (500 ms). It is therefore possible to determine, upon receiving a broadcast packet,

whether this was the first, second, or third transmission. We confirmed this experimentally:

Figure 1.6 shows the distribution of the packet arrival interval (modulo the nominal IPI)

measured at the application level for an intermediate-quality link. For a perfect link, all

packets would be received with the same IPI, 15 s in this case; however, this is not the case

when packets are lost. Consider an application-level packet i , received on first attempt. If
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Figure 1.6 – Distribution of packet arrival interval.
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the previous packet, i −1, was received only on second or third attempt, the IPI between the

two packets is smaller than 15 s. A similar reasoning holds in case the next packet i +1 is not

received upon first attempt, yielding an IPI greater than 15 s. Clearly, the histograms to the left

and right of the central one in Figure 1.6 can be generated also by intermediate combinations,

e.g., if i is received upon second attempt and i +1 upon third, the IPI will be around 14.5 s.

Packet loss can be inferred by comparing the application-level packet arrival timestamps

(e.g., R1 and R2 in Figure 1.5), provided there is at least one packet in the received sequence

known to have arrived upon first attempt. This can be stated certainly when at least one

pair of packets (not necessarily consecutive) has either the minimum or maximum possible

recorded arrival interval (modulo the IPI), i.e., placed leftmost or rightmost on the histogram

of Figure 1.6. Indeed, this means that the one of the packets was delivered on first attempt and

the other on last, as in the case of R1 and R2.

In principle, it may happen that no such IPI is recorded during the whole test. In practice,

this is unlikely to happen for intermediate-quality links. However, one can still infer the

characteristics of the link based on the application-level PDR. If the latter is very good, one

can assume that the majority of the packets were received on the first attempt and base the

analysis on this fact. For very bad links, it may be impossible to measure the actual PDR

precisely when there are just few packets received from the whole sequence.

Storing the experiment data. Due to the storage limitations of TMote Sky, per-probe logging

can be replaced by storing per-round averages of the recorded values, computed on the nodes

themselves. Waspmote does not have strict storage capacity limitation; full logs are always

stored and the log analysis performed on the operator’s laptop. However, we plan to implement

on-board log processing also on Waspmote, to reduce the downloading time of large logs.

1.4 Conclusions

In this chapter we presented TRIDENT, a tool for in-field connectivity assessment. Unlike

similar tools in the literature, TRIDENT does not require any communication infrastructure

besides the WSN nodes. Moreover, it is designed to be easy to use for domain experts, which

can perform their connectivity experiments (e.g., to determine a correct placement of WSN

nodes) without coding. TRIDENT supports several configuration parameters and metrics,

enabling the investigation of many aspects of low-power communication. Moreover, the

operator’s interface provides a rich set of commands that simplify in-field management of

experiments.

We report connectivity properties of multiple deployments we dealt with throughout this

thesis. All of them were acquired by TRIDENT.
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2 RPL, the Routing Standard for the Internet of
Things... Or Is It?

RPL, the IPv6 Routing Protocol for Low-Power and Lossy Networks [105], was standardized

by the IETF in 2011 to establish a common ground for building interoperable commercial

appliances in growing markets enabled by low-power and lossy networks (LLNs). Meanwhile,

the Internet of Things (IoT) emerged, envisioning ubiquitous and global connectivity among

the billions objects that we use in the everyday life.

Given the significant overlapping between LLNs and IoT, and the fact that IPv6 is an essential

feature for the latter, RPL has rapidly become the routing protocol for IoT, incorporating the

protocol stack defined by IETF in this scope, atop the IEEE 802.15.4 MAC and PHY layers

(Figure 2.1a). The success of RPL as an IoT standard is also witnessed by the fact that the

companies part of the ZigBee Alliance have adopted RPL as their underlying technology

(Figure 2.1b).

Therefore, RPL became our first choice protocol for one of the application scenarios that

motivated this thesis, the urban lamppost network. This scenario is presented in detail in the

next chapter, together with a thorough evaluation of the protocol performance and several

proposed improvements. This chapter presents a high-level analysis of the main features and

limitations of RPL.

The design goals behind RPL date back to the routing requirements determined by IETF in

2009 by considering the applications domains of home and building automation [11, 67] and

of urban and industrial networks [29, 85]. After several years, it is important to ascertain the

extent to which these requirements have been fulfilled by RPL; we offer our analysis of the

state of the art in Section 2.2.

A similarly important question, however, is whether RPL is well-prepared to sustain today’s

rapidly-evolving field of IoT, which defines slightly different scenarios from those examined by

IETF in 2009. In Section 2.3, we identify a few specific challenges that RPL must face to remain

on the forefront of IoT technology. Finally, Section 2.4 contains concluding remarks.

The contents of this chapter have been originally published in: RPL, the Routing Standard for the Internet of
Things... Or Is It?, Oana Iova, Gian Pietro Picco, Timofei Istomin, Csaba Kiraly, In IEEE Communications Magazine
– Feature Topic on Research to Standards – Next Generation IoT/M2M Applications, Networks and Architectures,
pp. 16-22, vol. 54, no. 12, IEEE, December 2016, and have been slightly adapted for this thesis.
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Figure 2.1 – Protocol stacks for the Internet of Things.
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2.1 RPL in a Nutshell

As described in the standard [105], RPL creates a routing topology in the form of a Destination-

Oriented Directed Acyclic Graph (DODAG): a directed graph without cycles, oriented towards

a root node, e.g., a border router. By default, each node maintains multiple parents towards

the root; a preferred one is used for actually forwarding data packets upwards towards the root

(Figure 2.2b), while the others are kept as backup routes. This scheme, called multipoint-to-

point communication in RPL, naturally supports communication from the devices to the root

with minimal routing state.

The topology is created and maintained via control packets called DODAG Information Objects

(DIO), advertised by each node. The packet contains the routing metric (e.g., link quality,

residual energy) and an objective function used by each node to select the parents among its

neighbors. DIO packets are broadcast by each node according to an adaptive technique, the

Trickle algorithm [62], which strikes a tradeoff between reactivity to topology changes and

energy efficiency. Trickle ensures that DIOs are advertised aggressively when the network is

unstable, and instead transmitted at an increasingly slow pace while the network is stable.

To support the dual traffic pattern from the root to the devices, called point-to-multipoint

communication in RPL, the standard requires additional control messages and routing state.

Specifically, each node in the network must announce itself as a possible destination to the

root by sending Destination Advertisement Object (DAO) control packets. These messages

are propagated “upwards” in the DODAG topology, via a parent that may coincide with the

preferred parent (Figure 2.2c), therefore establishing “downwards” routes along the way.

As supporting this type of traffic could put more strain on the nodes memory due to the

increased routing state, RPL defines two modes of operation: storing and non-storing. In

storing mode, each node keeps a routing table containing mappings between all destinations

reachable via its sub-DODAG and their respective next-hop nodes, learned while receiving

DAOs. In non-storing mode, the root is the only network node maintaining routing informa-

tion; the root exploits this global view for source routing, i.e., by including routing information

directly into the packet itself.

These two modes of operation affect also the ability to support communication between

any two nodes in the network, called point-to-point communication in RPL, and achieved

as a combination of the techniques used for the previous two types of traffic. In storing

mode, data packets travel upwards until they reach a node with routing information about

their destination, i.e., a common ancestor (Figure 2.2d); from that point on, they proceed

downwards, following the routes previously established by DAO packets. The same technique

is used in non-storing mode; however, in this case, packets must travel upwards all the way

to the root (the only node maintaining routing information) before being redirected to their

destination (Figure 2.2e).
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2.2 Did RPL Live Up to Expectations?

RPL was standardized based on requirements published 7 years ago[105], a relatively long time

in the fast-paced world of networked computing in general and IoT in particular. This section

revisits the original requirements for RPL stated by IETF, and concisely reports about the

extent to which they are met by the state of the art. We frequently refer to the IETF documents

that focused on the paradigmatic applications of home [11] and building automation [67],

and urban [29] and industrial networks [85]. Due to space limitations, we focus on what we

argue are the key dimensions, therefore omitting considerations on other relevant aspects,

e.g., including zero-configuration or security.

2.2.1 Traffic Pattern

Original requirements. RPL was designed to account for different traffic patterns character-

istic of the aforementioned reference applications. Multipoint-to-point communication is

required by devices with sensing capabilities, which typically monitor the environment by

periodically acquiring samples of physical quantities (e.g., temperature, pollution, humidity)

and send them to a central unit. Applications may also need the dual point-to-multipoint

pattern where communication is directed from the central unit to the rest of the network. This

is often required to send queries to sensors or, when a control loop is present, to send actuation

commands—e.g., switching lights or activating window blinds in a smart home [11]. This

point-to-multipoint pattern may rely on multicast routing, which is actually a requirement in

some reference scenarios [67, 29]. Finally, in alternative to a centralized controller gathering

data and issuing commands, devices might cooperate with each other in a decentralized

fashion by relying on point-to-point communication; for instance, lamps and appliances may

automatically change their own state or the state of other appliances based on information

gathered by sensor nodes nearby.

The routing protocol should support communication: i) from devices to a central unit

(multipoint-to-point) ii) from the central unit to the rest of the network

(point-to-multipoint) iii) directly among devices (point-to-point).

Current status. As we discussed in Section 2.1, all three types of traffic patterns above are

supported by the RPL standard, although it emphasizes multipoint-to-point communication,

naturally supported by the DODAG routing topology. On the contrary, point-to-point commu-

nication is inherently costly, as shown in Figures 2.2d–2.2e; if two nodes want to communicate

with each other, packets must be sent upwards either to the first common ancestor (in storing

mode), or all the way up to the root (in non-storing mode), from where they are re-routed

downwards to their destination. This strategy creates congestion close to the root and greatly

increases overhead and latency, causing problems especially in use cases involving replies, e.g.,

a query result or a command outcome. In RPL, this is the price to pay for reconciling different

patterns in a single protocol, yielding the benefit of broader applicability at the expense of

optimal performance.
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These shortcomings motivated a new IETF standard protocol, Reactive Discovery of Point-

to-Point Routes in Low-Power and Lossy Networks (P2P-RPL), described in RFC 6697. This

protocol is meant to complement RPL by allowing nodes to discover on demand routes to

one or more nodes, via a temporary DODAG rooted at the node initiating communication.

However, the efficiency of this combined solution is yet to be thoroughly studied.

As for multicast routing in point-to-multipoint communication, RPL supports it only in storing

mode. Moreover, the standard only briefly describes how DAO messages should be used for

group registration, without providing a full description of multicast operation. However, a

complementary RFC 7731, Multicast Protocol for Low-Power and Lossy Networks (MPL), has

been recently standardized, defining multicast operation atop two protocols: Trickle and plain

flooding. Evaluations in simulation (e.g., [20]) show that MPL is highly reliable, but can have

high delay and energy consumption if Trickle parameters are not chosen carefully.

RPL supports all types of communication. However, for an efficient point-to-point

communication and multicast routing, complementary RFCs must be implemented,

increasing code complexity and memory footprint.

2.2.2 Mobility

Original requirements. In all the motivating scenarios analyzed by IETF it is foreseen that,

although devices are currently mostly fixed, a variety of devices with reduced mobility (e.g., re-

mote controls, vacuum cleaner robots, wearable healthcare devices) should be accommodated

by RPL. Moreover, it is stated that industrial applications require the support of nodes located

on vehicles or machines moving at speeds up to 35 km/h [85]. Devices should not act as routers

while in motion; on the other hand, they should reestablish end-to-end communication with

a static device within 5 s [67].

The routing protocol should allow devices that are moving to connect to the static

routing topology.

Current status. The requirement above is fulfilled by RPL by allowing a mobile node to attach

as a leaf to any node belonging to the routing topology. Communication from the mobile

node to the root is in principle quite straightforward, as the former only requires a preferred

parent, which may as well be the point of attachment. Point-to-multipoint communication,

instead, is more complex; as the mobile node moves from a parent to another, information

disseminated via DAOs may rapidly become obsolete.

Solutions for this case are not specified in the standard nor, to the best of our knowledge,

realized in publicly-available reference implementations. Moreover, the under-specification

in the standard is a problem also for multipoint-to-point; recent studies (e.g., [22]) show that

currently implemented RPL mechanisms fail to rapidly detect when the preferred parent of a

mobile node becomes unreachable as it moves, leading to high packet loss.
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RPL allows a mobile node to attach/detach to/from the routing topology, but

communication becomes highly unreliable.

2.2.3 Resource Heterogeneity

Original requirements. The devices targeted by RPL range from low-end battery-powered

embedded devices severely constrained in memory and processing capabilities, up to high-

end devices like smart watches or smartphones. This is in line with the reference scenarios;

for example, home automation devices range from dumb, resource-constrained smoke alarms

and temperature sensors to high-resource surveillance cameras. This diversity in hardware

capabilities and application scenarios should be accounted for at the network layer. On the

other hand, resource-constrained devices are envisioned to constitute the majority of network

nodes; the need to limit battery replacement sets a lifetime goal of several years.

The routing protocol must take into account the heterogeneity of devices, and specifically

address the memory and energy requirements of resource-constrained devices.

Current status. As mentioned in Section 2.1, RPL defines two modes—storing and non-

storing—meant to address different resource capabilities of the network nodes. However, the

RPL standard does not allow these two modes of operation to be mixed in the same network,

severely undermining their practical use. Research solutions allowing nodes with different

modes to operate in the same RPL network exist (e.g., [56]) but are yet to be standardized.

Even if this problem were to be solved, however, another threat to memory-constrained devices

comes from the protocol footprint. RPL inherits the interoperability benefits of IPv6, but also

its complexity; for instance, the need to construct and parse IPv6 packets with floating header

options and using 6LoWPAN address compression increases significantly code memory needs.

This is evident in Table 2.1, which compares the RPL implementations for TinyOS and Contiki,

the most popular operating systems for low-power devices, with some well-known wireless

sensor network protocols. The table shows that RPL requires almost twice the memory than a

collection tree protocol [45]; the latter provides only multipoint-to-point communication, but

it can be combined with the Trickle dissemination protocol (providing point-to-multipoint

communication) by only marginally increasing the footprint, remaining significantly smaller

than in RPL. On the popular TMote Sky platform, the footprint of RPL and of the variants

discussed in Section 2.2.1 is very close to the 48 kB limit for code memory, leaving almost no

memory to the application—despite the fact that these RPL implementations are far from

supporting all the features specified in the RPL standard.

Code memory is not even the most severe problem; for example, in the Contiki implementation

the 10 kB RAM of a TMote Sky limits the neighbor and routing tables to 20 and 50 entries,

respectively, severely limiting scalability as discussed next.
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Protocol name Contiki TinyOS
Collection tree 25.2 17.5
Trickle 21.2 14.2
Collection tree + Trickle 26.0 23.0
AODV 23.4 —
RPL 42.9 32.8
RPL + MPL 46.4 —
P2P-RPL 44.2 —

Table 2.1 – Code memory requirements (OS included), in kB.

RPL has too large of a footprint for resource-constrained devices, and requires all devices

in a network to run the same mode of operation, limiting heterogeneity.

2.2.4 Scalability

Original requirements. Scalability is a very important characteristic of a routing protocol,

bearing a direct impact on network reliability and performance. The applications studied

by IETF have different scalability requirements, depending on the area where networks are

deployed. For example, in home automation the routing protocol must support at least

250 devices, with larger numbers envisioned in the future [11]. Other scenarios imply even

higher numbers of deployed devices; in smart cities, networks of 102−107 nodes are envisioned,

possibly organized into regions containing 102 −104 devices each [29]. While these numbers

are very large, and unprecedented in the roll-outs prior to the issuing of the RPL standard,

they align with deployment experiences1 and projected trends2.

The routing protocol should support very large networks, possibly organized in

sub-networks up to thousands devices.

Current status. Recent real-world evaluations [33] show that the scalability of multipoint-to-

point communication is quite good. It does, however, become questionable when unicast

point-to-multipoint communication is used. In non-storing mode, the limiting factor is the

size of the packet header containing the source routing information; this can include up

to 8 IPv6 addresses (64 with a compressed header), but the longer the header the higher

the overhead and the route repair latency. The impact on scalability, however, has yet to

be evaluated; non-storing mode has been introduced only very recently in Contiki, and is

currently not supported by TinyOS or industrial implementations (e.g., from Cisco3).

In storing mode, instead, the limiting factor is the memory available to store neighbor and

routing tables. The nodes close to the root must store routing state for almost the entire

1For instance, e.g., http://www.smartsantander.eu
2An example are the recent statements by several companies about tens of billions of devices connected by the

IoT in the near future.
3RPL configuration guide for Cisco IOS, http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/rpl/

configuration/15-mt/rpl-15-mt-book.pdf.
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Figure 2.3 – As network size increases, the reliability of downward traffic decreases, as a
consequence of more nodes having memory problems.

DODAG, which can be challenging for resource-constrained devices. Moreover, the RPL stan-

dard does not specify the action to take after a parent refuses to install a new downward route

(e.g., because its routing table is full), therefore undermining the reliability of downward traffic.

We recently analyzed the problem in our own work, where we focused on emulation of the

Contiki RPL implementation over realistic topologies taken from a smart city deployment [52].

Figure 2.3 illustrates the problem: the reliability of downward traffic (e.g., for actuation) de-

creases severely as soon as the size of the network approaches the size of the routing table,

which we set to 50 entries—the maximum allowed on TMote Sky, as already discussed. In

practice, even for devices slightly more powerful than motes, this means that the scalability of

RPL remains a far cry from the thousands of nodes mentioned above.

Until now we considered a flat address space. However, RPL can support prefix-based hierar-

chical routing, e.g., via the Prefix Information Option (PIO) mechanism, which allows routers

to own an independent prefix and distribute it for autoconfiguration in their own sub-DODAG.

However, the prefix assignment is not part of the standard, and can lead to performance

deterioration [4].

RPL has serious scalability issues with point-to-multipoint traffic, especially when

configured in storing mode. Prefix-based sub-netting can alleviate the problem, but

requires better integration with RPL topology maintenance.

2.2.5 Reliability and Robustness

Original requirements. The quality of radio links among devices can be very unstable, espe-

cially in an urban setting, due to wireless channel effects (path loss, shadowing, fading), and

interference from other communication systems. It is important for the routing protocol to

react to changes in connectivity by rapidly reconfiguring the topology while maintaining a low

control overhead and therefore energy expenditure. Specific metrics are stated for some of

the reference scenarios considered; for instance, in home automation, the routing protocol is

expected to converge within 0.5 s if no nodes have moved, and within 4 s otherwise [11].

Clearly, changes in connectivity ultimately affect communication reliability, whose critical
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role depends on the target application and functionality. For instance, it is expected that

monitoring-only applications can tolerate a reliability as low as 90% [85], while those involving

actuation require higher reliability [67]; in some application domains, message loss is even

considered out of compliance and subject to fines [85], sometimes requiring a "five nines" or

even "nine nines" reliability.

The routing protocol should be robust w.r.t. the inherent dynamicity of wireless links,

quickly restoring communication to maintain high levels of reliability; some applications

cannot afford data loss.

Current status. RPL relies on the Trickle algorithm [62] to efficiently maintain the routing

topology, enabling quick reaction to connectivity changes while minimizing overhead during

stable conditions. Nevertheless, when a link quality metric is used for routing, even small

variations in link quality estimation can yield changes of preferred parent, as the objective

function constantly searches for the best path towards the root; the consequent reaction of

the Trickle algorithm generates unnecessary overhead.

The IETF addressed the problem in RFC 6719, Minimum Rank with Hysteresis Objective

Function (MRHOF), allowing a node to change its parent only when the new path towards the

root differs significantly from the old one. The latter aspect is defined by a threshold, yielding

a tradeoff between route stability and optimality; if the threshold is too high, parents are less

likely to change and routes are more stable, but their quality may degrade significantly before

they are reconfigured. The proper configuration of the threshold is therefore non-trivial, and

not well investigated in the literature.

On the other hand, the overall reliability of RPL has been analyzed by several studies in real-

world testbeds. A large 135-node experiment [33] showed values of 97% and 92% of delivered

packets for the multipoint-to-point and point-to-multipoint traffic respectively, while the

most challenging point-to-point traffic showed a very low reliability of 74%, due to scalability

problems. For the last two traffic patterns, the authors even had to reduce by half the number

of addressable nodes in the network for the routing tables to fit into the RAM, due to the

aforementioned memory problems.

For multipoint-to-point traffic, RPL mechanisms deal effectively with the vagaries of

wireless communication and yield good performance and reliability; the other two traffic

patterns suffer from poor reliability.

2.3 RPL for IoT: The Challenges Ahead

Having examined how RPL fares w.r.t. its original requirements, we now turn our attention to

current IoT trends and identify new requirements that may challenge future adoption of RPL

as the routing protocol for IoT.
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2.3.1 What Will Be the Dominant Traffic Pattern?

At the time of RPL standardization, multipoint-to-point communication was the main traffic

pattern, motivated by the need to support distributed monitoring applications, and fueled by

a decade of research on wireless sensor networks.

Today, monitoring is still a fundamental element of IoT architectures, but it is increasingly

associated with control in a plethora of application domains. In its simplest incarnation,

control entails the ability to send commands (e.g., for actuation) from a centralized controller

via the same network used for monitoring; however, the most disruptive scenarios envision

devices that interact and automatically take actions via in-network feedback loops. As a

consequence, point-to-multipoint and point-to-point communication become even more

critical than multipoint-to-point.

These two traffic patterns are addressed by RPL, which actually has a competitive advantage

as it supports the networking requirements of both monitoring and control i) in an integrated

fashion, and ii) in a large-scale setting. Unfortunately, as discussed in Section 2.2, these are

exactly the traffic patterns for which RPL does not provide efficient solutions. Paradoxically,

they are also the paradigms for which the integration with IP is key, as it enables direct

addressing of each device.

Point-to-multipoint and point-to-point communication received significantly less

attention in RPL, yielding implementations with poor performance; this may prevent

future adoption of RPL in the ever-increasing IoT applications with a control component.

2.3.2 Mobile Devices: Norm or Exception?

Scenarios for IoT assume devices embedded in things, which can be relocated (e.g., in asset

tracking), or carried and even worn by people, and therefore inherently mobile. In these

ever-increasing mobile scenarios, the ability to opportunistically exploit the presence of a

networking “backbone” to relay information regardless of the current location is fundamental,

yet is largely overlooked by RPL, as discussed in Section 2.2.2.

Moreover, mobility often implies the need for context-aware interactions; for instance, the

scope of a query or command issued by a node may need to be restricted to only a portion

of the network surrounding it, based on system or application level properties (e.g., the floor

building where the person carrying the device is walking).

Mobility is an unavoidable requirement in IoT scenarios, for which RPL currently

provides unsatisfactory performance; further developments should also consider

support for context-aware routing.
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2.3.3 Resource-constrained Devices: Norm or Exception?

The devices enabling the IoT vision are inherently resource-constrained. This is unlikely to

change in the future; technological developments will push the boundary of computing and

communication power for the devices we know today, but at the same time generate new

breeds of devices even smaller and therefore resource-constrained—a recurring trend in the

last decades.

In this respect, the current demands of RPL in terms of code and data memory are still too

high. In part, this is a consequence of IPv6 compliance. However, it is also the result of a stan-

dard that simply addresses (and requires) too much and, ironically, of implementations that

neglect the few opportunities the standard allows to explicitly cater for resource-constrained

devices—e.g., notably including non-storing mode. Specialized RPL variants must be devised,

guaranteeing a better tradeoff between performance and flexibility and allowing the selection

of the appropriate protocol components or variants based on the device (and application)

constraints at hand.

Resource-constrained devices are here to stay. However, the current definition of RPL is

often at odds with the requirements they pose, and the implementations are often

ignoring the few provisions the standard already offers to ameliorate the situation.

2.3.4 New Approaches to Network Stack Design

When the RPL standard was in the making, the predominant routing approach was incarnated

by the CTP protocol [45], from which RPL borrows several techniques. Around the time the

standard was issued, however, two alternative routing paradigms emerged in the closely-

related wireless sensor network research community: opportunistic routing and synchronous

transmissions. The former approach, popularized by ORW [60], considers all neighbors

as potential forwarders, therefore reducing delay and energy consumption and increasing

robustness by exploiting spatial diversity. The second approach, popularized by Glossy [38],

removes completely the need for a routing (and MAC) layer, by providing a reliable network

flooding primitive; reliability is achieved by guaranteeing that rebroadcasting occurs within a

very short time bound necessary to exploit constructive interference and the capture effect,

and yielding also network-wide time synchronization.

Both approaches are reported to significantly improve over the state of the art, in terms of

reliability, latency, and energy consumption. Opportunistic routing has already inspired a

RPL variant [33] aimed at improving downward traffic; this is not yet the case for synchronous

transmissions, whose even higher performance gains are currently obtained in networks of

homogeneous devices using the same radio chip [38].

New approaches with significantly better performance have emerged since the RPL

standard was defined, and should therefore receive attention.
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2.3.5 New Wireless Technology

The new scenarios fostered by IoT motivated the development of new wireless technology

tackling lower power consumption, increased range, or both. Some of these, e.g., Wi-Fi

HaLow (IEEE 802.11ah), are a natural evolution of existing technologies, and likely to be easily

accommodated into RPL. At the other extreme, Low-Power Wide-Area Networks (LPWANs)

hold the potential to radically change the picture of IoT networking as currently defined

by RPL. With a low-power budget similar to IEEE 802.15.4 devices, LPWANs provide long-

range communication (2–5 km in urban environments, 30 km and higher otherwise) at the

price of reduced bandwidth and data rates. At a minimum, LPWANs are likely to become an

inescapable alternative for interconnecting different sub-networks at a geographical scale;

however, they also hold the potential to induce a rethinking of multi-hop routing strategies. In

between these extremes, IoT technologies hitherto applied mostly on consumer appliances

are being optimized for ultra low-power consumption, as in the case of Bluetooth Low Energy

(BLE), therefore becoming an appealing alternative for fulfilling goals similar to RPL.

The scenarios fostered by IoT are triggering a new wave of wireless technologies that can

significantly redefine the goals, and therefore the mechanisms, of RPL.

2.4 Conclusion

In this chapter we analyzed the extent to which the RPL standard lived up to the expectations

defined by IETF requirements, and highlighted other challenges that emerged since its defini-

tion as a standard. RPL had its quota of successes, clearly contributing to the advancement of

communications in the world of tiny, embedded, networking devices.

The concise analysis we provided in this chapter, however, also highlighted several weaknesses

that, in our opinion, may undermine a larger IoT adoption of RPL. The complexity of today’s IoT

makes it difficult for a single standard to paper over the significant differences in application

requirements and heterogeneity in hardware constraints, both likely to be exacerbated in the

near future.

In the next chapter we look at RPL at a much deeper level of detail, studying its performance in

a set of IoT scenarios. We provide evidence backing up the identified weaknesses of RPL w.r.t.

the downward traffic delivery, suggest techniques to overcome them and study the techniques

at scale in simulation and on real hardware.
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Reliable Downward RPL

In this chapter we demonstrate that the performance gap between data collection and ac-

tuation in RPL is significant because of the scalability problems of the downward routing

identified in Chapter 2. This gap limits the overall reliability of the protocol in applications

relying on bi-directional connectivity.

Various techniques have been proposed at the network layer to support downward traf-

fic. Those can be divided into routing-based (proactive [19] or reactive [82]) and flooding-

based [46], with their own pros and cons. Routing protocols are usually blamed for the

extensive overhead introduced by maintaining the routing tables. Flooding, on the other hand,

does not need to maintain any routing entries, but it is an energy-hungry approach with a

high channel utilization.

In this chapter we show that mechanisms rooted in both approaches can help improve the

downward routing in RPL, considering the specific needs of each application. More specifically,

we take a deeper look at RPL [105], the only standard routing protocol for IoT at this date, we

show its shortcomings when it comes to transmit information from a border router towards a

node inside the network, and we propose several mechanisms to improve this communication,

integrating both routing and dissemination-based elements.

3.1 Context and Contribution

The IPv6 Routing Protocol for Low-power and Lossy Networks, RPL [105], has been in the

centre of attention in the last years as the standard routing protocol used to connect a plethora

of applications in the flourishing Internet of Things. RPL was designed to enable efficient IPv6

routing in several application domains, notably home and building automation [11, 67], as

well as industrial and urban settings [85, 29]. In these contexts, RPL is expected to reliably relay

This chapter is partially based on our published works: 1) D-RPL: Overcoming Memory Limitations in RPL
Point-to-Multipoint Routing, Csaba Kiraly, Timofei Istomin, Oana Iova, Gian Pietro Picco In Proceedings of the
40th Annual IEEE Conference on Local Computer Networks (LCN), 2015, Clearwater Beach, Florida, USA, October
2015; 2) Is RPL Ready for Actuation? A Comparative Evaluation in a Smart City Scenario, Timofei Istomin, Csaba
Kiraly, Gian Pietro Picco In Proceedings of the 12th European Conference on Wireless Sensor Networks (EWSN),
Porto, Portugal, February 2015.

35



Chapter 3. Route or Flood? Towards an Efficient and Reliable Downward RPL

the information to and from small, autonomous devices that perform sensing and actuation,

with unprecedented degrees of scalability and flexibility. However, it has been recently pointed

out that much of RPL’s expectations are not completely fulfilled in the current context of the

Internet of Things [51].

Indeed, while RPL supports both upward communication necessary to funnel data from

multiple sensors to a central data sink (e.g., a controller), and downward traffic necessary to

send commands from the sink to actuation devices, its operation is optimized for the former

type of traffic. Specifically, much more control packets have to be sent in the network in order

to propagate the routing information needed for downward communication, which means

more overhead and energy consumption.

RPL identifies two modes of operation when downward traffic is needed: storing and non-

storing, based on whether routing information is stored at every node or instead is attached

directly to (source-routed) packets. From an application point of view, non-storing mode

appears to be better suited to home automation and building control, where the majority

of nodes in the network have extremely constrained memory [12]. However, in advanced

metering infrastructure and industrial networks, the use of storing mode is considered more

energy efficient since it does not have to transport the hefty headers associated to source

routing [86]. Also, the storing mode allows for better prediction of the latency associated with

downward traffic flows [84], which is critical in most industrial networks, and very important

in several smart city applications.

Both modes of operation have their own place, and the choice between them must be per-

formed on a case-by-case basis. Still, no matter the mode of operation, RPL should offer

efficient and reliable multi-hop data forwarding. In this chapter we focus on the storing mode,

as it is by far the most used in both open source (e.g., TinyOS and Contiki) and industrial (e.g.,

Cisco1) implementations.

3.1.1 Motivation: Unexpected Findings from a Realistic Scenario

Our research team was sought after for collaboration by a company deploying a large-scale

low-power wireless infrastructure in the city of Trento, Italy, constituted by 860+ IEEE 802.15.4

nodes mounted on lampposts. The collaboration objective stated by the company was to

improve their current network stack, which was using a simple flooding algorithm with a

few mechanisms to mellow the effect of collisions. Our first step was to compare their im-

plementation against the state of the art protocols: RPL, and Trickle [47]. However, as we

showed in our previous work [52] the results were somewhat unexpected: mainstream RPL

implementations (ContikiRPL and TinyRPL) were outperformed in a mains powered scenario,

both in terms of reliability and efficiency. Albeit duty cycling was not taken into consideration

in this evaluation, our results showed that RPL has a network utilization comparable with

1RPL configuration guide for Cisco IOS, http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/rpl/
configuration/15-mt/rpl-15-mt-book.pdf
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flooding, as it cannot amortize the topology maintenance cost under the (realistic) traffic

properties used in our tests.

While timely, reliable, and efficient transmission of commands to actuation devices is key

in many scenarios, our findings suggest that this goal is currently not achieved by RPL. We

identified the main factor that undermines the performance of RPL as the poor handling of

both data and control packets when devices have scarce memory. Since in storing mode each

device in the network has to keep routing information about all the other devices to which

it has to relay packets, in dense or large-scale networks the resource-scarce sensor nodes

quickly deplete the available entries in their neighbor and routing tables, causing packets to

be dropped. This problem has been pointed out also in other contexts, e.g., when trying to

run IEEE802.15.4 TSCH with RPL on TelosB nodes, the authors had to disable the support for

downward routing, due to the limited memory [34]. In a sense, RPL shows its shortcomings

precisely when applied to the constrained devices it was designed for. The standard actually

acknowledges its incomplete specification mentioning that “Future extensions to RPL may

elaborate on refined actions/behaviors to manage this case”. However, until now, no such

extension has been provided, despite the fact that the number of constrained devices is

expected to soar in the near future [37].

A possible solution for some scenarios would be adding extra memory, but this clashes with

the trend towards smaller, cheaper and increasingly resource-scarce devices enabled by ever-

increasing miniaturization. Switching completely to the non-storing mode is not a solution

either, as the two modes of operation have different use cases. In consequence, we want to

push the state of the art for the storing mode well beyond the current simplistic specifications.

In our opinion, without extensions to RPL addressing the issues above, deployments would

rely on implementation-specific mechanisms, lacking interoperability, possibly leading to

undefined behavior, and ultimately jeopardizing the proper functioning of these solutions

and undermining the credibility of RPL at large.

3.1.2 Contribution

The goal of this chapter is to explore the design tradeoffs, and implement a novel downward

RPL protocol for the storing mode, significantly more reliable and efficient than the existing

alternatives on highly constrained devices.

We first go into the details of RPL’s underperformance, passing under the magnifying glass the

results that we previously obtained [52]. We show that the core of the problem is the inability

of RPL to react when devices remain without memory to store neighbor or routing information.

As a result, not only control packets, but also data packets are dropped, severely impacting the

reliability of the protocol.

To overcome these memory problems, we propose three new mechanisms, which incorporate

different levels of routing and dissemination-like techniques:
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1. SWITCH searches for alternative parents that can share the routing table load.

2. ROOT adds a 1-hop broadcast at the root to maximize the chance that the data packet

reaches a node that knows its destination.

3. MCAST generalizes this 1-hop broadcast solution into a limited and directed multi-hop

dissemination that uses multicast in its base.

While each of these solutions improves RPL in different ways, there is still a tradeoff to be

made between reliability and energy efficiency. To obtain the best tradeoff, we combine the

advantages of the proposed mechanisms into a new protocols T-RPL, which manages to have

a reliability close to 100%, while keeping the radio duty cycle low, at around 1%.

Finally, we provide an extended evaluation of all the proposed solutions, along several dimen-

sions:

• Protocol competitors. To offer a thorough evaluation we compare against the following

protocols: RPL variants (ContikiRPL [24], TinyRPL [98], ORPL [33]), dissemination-based

protocols (Trickle Multicast - TM [47], and Flooding) and a reactive Ad-Hoc On-Demand

Distance Vector (AODV) routing protocol [82];

• Simulation vs Testbed. We evaluate the aforementioned protocols both in simulations

and testbeds, as the presence of real-world factors can impact the reliability and energy

efficiency of the protocols.

• Physical topology. While our reference scenario is the real placement of LLN nodes that

we used in [52], we also experiment with synthetic, grid-like topologies that allow us to

study other properties of the proposed solutions, like scalability;

• Duty-cycling MAC. The findings we reported in [52] assume an always-on radio, moti-

vated by a mains-powered smart city scenario. Although this is a compelling case study,

i) this assumption does not hold for all applications where point-to-multipoint RPL is

envisioned, and ii) duty cycling may significantly change the tradeoffs among protocols,

e.g., it is known to negatively affect dissemination protocols;

• Different topology densities. The staple applications we mentioned differ in their levels

of topology densities, which affects differently the protocol performance (e.g., causing

the aforementioned issues with neighborhood and routing tables);

• Interplay with upward traffic. Downward traffic (e.g., for actuation) is often generated in

parallel to upward traffic (e.g., for data collection), which may heavily affect the former.

In the next section we make a detailed overview of RPL, then we present our motivating

scenario (Section 3.3), and we highlight the reasons behind RPL’s poor performance in point-

to-multipoint communication (Section 3.4). We present our three proposed mechanisms in
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Section 3.5, discussing also implementation details, their limitations, and possible combina-

tions into stronger protocols. Section 3.7 presents an evaluation of all the proposed solutions,

including their combinations against the baseline RPL and Flooding. Then, in Section 3.8, we

evaluate in simulation the best of the proposed protocols (T-RPL) against a series of competi-

tors, which shows the superiority of our solution in multiple scenarios. Then, in Section 3.10,

we also evaluated the performance of T-RPL and Flooding in a testbed scenario with over 90

nodes. We present the related work in Section 3.11 and our conclusions in Section 3.12.

3.2 RPL - The Routing Standard for the Internet of Things

The standardized IPv6 Routing Protocol for Low-Power and Lossy Networks, RPL [105], has

been designed to connect “thousands of constrained devices". The protocol builds a Destination-

Oriented Directed Acyclic Graph (DODAG) logical topology with the border router as the root

which is the connection point between the low-power lossy network to the Internet. In the

scope of the LLN, the DODAG root is the destination for the convergecast (upward) traffic

originating from the LLN and the source of downward traffic destined to the LLN nodes. The

former is usually associated with sensor readings or events and the latter with configuration

messages or actuation commands.

Unlike a tree topology, in a DODAG each node maintains multiple parents that are nodes

closer to the root according to a routing metric. Nevertheless, at every moment in time RPL

uses only a single (preferred) parent to forward the convergecast packets; the other parents

have a backup purpose and can be used if the preferred one is not reachable anymore.

For example, we can see in Fig. 3.1a a DODAG constructed using minimum hop count as the

routing metric. Even though C has two parents, it will only use the preferred parent B1 for all

packets that have A as the destination.

This topology enables nodes in the network to send packets to the root (upward) while keeping

only minimal routing state information. However, for the downward traffic, much more

routing state is needed since any node is a potential destination and the network needs to

maintain multi-hop paths from the root to all of them. To establish the required routing state

for downward forwarding, RPL uses Destination Advertisement Object (DAO) messages. Each

node in the network announces itself as a possible destination to the root by sending the DAO

messages which are propagated upward in the topology through the so called DAO parent.

The standard specifies that this DAO parent can be any of the node’s parents; however, in

practice (e.g., in Contiki, TinyOS), for simplicity, it is the same node as the preferred parent.

For downward traffic, RPL identifies two significantly different modes of operation: storing

(our current focus) and non-storing. In the latter, the root is the only node in the network that

has a routing table keeping a global view on the network which is learnt from DAO packets

containing the DAO parents of every node. When sending a data packet, the root computes

the route and attaches it as a complete list of forwarders directly to the packet (source routing).

In storing mode, however, the routing state is distributed across the network with every node
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Figure 3.1 – RPL - upward and downward route construction

keeping a routing table that lists the next-hop forwarders for all descendants (nodes in its

sub-DODAG) of the current node, learned from the received DAOs. In this mode of operation

no node knows the complete path towards the destination but at every hop a decision is taken

on where to forward the packet. If at any point a forwarder receives a packet from the root

with unknown destination, it has to either drop it, or return it to the sender which could try

another path (if any).

Figure 3.1b exemplifies how DAOs are propagated in the network and how the routing tables

are populated, when the storing mode is used. D has to announce itself as a possible desti-

nation to the root. It starts by sending a DAO with its own IP address as a target, to its DAO

parent, C . C checks if it has enough memory to add it to its routing table, and if that is the

case, it forwards the DAO upward to B1. This process is repeated by every node that receives

the DAO, until the message reaches the root.

3.3 A Motivating Scenario: Smart City Lamppost Deployment

In this chapter we target the smart city scenario, arguably one of the most promising appli-

cation domains for low-power wireless actuation, and one of the targeted applications by

RPL [29]. Thanks to our collaboration with an IT company from Trento, Italy, we have complete

knowledge of the placement of the 864 nodes on lampposts, and their grouping into 13 clusters

(whose sizes varies from 25 to 134 nodes) served by independent gateways. Messages arriving

from a command center through reliable links are relayed by these gateways to the nodes.

The variety of peculiar network topologies determined by the urban environment, containing

semi-regular structures such as long multi-hop stripes, circles, dense and sparse areas, make

this scenario different from studies in testbeds or simulations on regular grids or random

topologies. Figure 3.2a shows a comparison of cluster geometries. For simplicity, we identify
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Figure 3.2 – Summary statistics about the geometry of the topology of all the 13 clusters (a)
and topology of two representative clusters (b). Note the different scale of the maps.

clusters based on the number of nodes contained, and we characterize them using three

metrics: i) number of nodes in the cluster (point label); ii) distance to the closest neighbor,

averaged over all nodes (x −axi s); iii) aspect ratio of a bounding box aligned with the largest

span, indicating how “linear” a cluster is (y − axi s). Figure 3.2b shows an example of two

representative topologies: a 70-node “planar" one and a 51-node “linear" one. Note that the

latter is much less dense not only because of its linear shape but also due to larger distances

between the nodes.

Nevertheless, we do not have access to the actual infrastructure deployment, and cannot

perform protocol experiments directly on it. Simulation is essentially the only option to

perform our evaluation. We decided to use Cooja [78], which supports both Contiki [24] based

implementations and others (e.g., TinyRPL) thanks to its hardware emulation feature. The

use of simulation has well-known drawbacks, e.g., the approximations made w.r.t. the radio

channel. In our study, in the absence of radio models or experimental traces expressly targeting

a smart city environment, we resort to the multi-path ray tracing model (MRM) provided by

Cooja and commonly used in the literature. It models radio hardware properties, such as

transmission power, sensitivity, and antenna gain. It also models the effect of background

noise and interference through signal-to-interference-and-noise ratio (SINR), the capture and

multi-path effects.

On the upside, simulation also allows us to explore more parameters, which would otherwise

not be possible in real life deployments. For example, using different noise levels makes it

possible to study different topology densities, having as starting point the actual network

deployment. The theoretical range changes under different noise levels, and so does the

underlying network topology: as noise increases, the number of neighboring nodes decreases,

resulting in a more sparse topology, and vice versa.

The noise floor in a dense urban environment can be relatively high and with high short-

term variations. To see which noise values to apply to our smart city scenario, we performed
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Figure 3.3 – Background noise measured in various urban environments; mean and standard
deviation, dBm.

Table 3.1 – Background noise properties (mean and standard deviation) used in the simulations
with the smart city topologies.

Density Mean noise, dBm Std.dev.
Sparse −80 2

Intermediate −85 2
Dense −90 2

measurements on all IEEE 802.15.4 channels in several places of Trento and Moscow, including

suburbs, densely inhabited areas and the university campus. As we can see in Fig. 3.3, the

mean noise floor in the cities is usually −85 to −95 dBm, the standard deviation is typically

0–5 dBm. Occasionally these values reach −75 dBm and 10 dBm respectively.

This makes it difficult for system designers to predict the properties of the deployed network

such as the node neighborhood size and the number of hops, and demands from the protocols

to perform well in a wide range of conditions, including dense and sparse networks.

Considering this and the noise measurements, we chose to vary the background noise pa-

rameter in our simulations, which is equivalent to scaling the density of the clusters without

modifying the node coordinates. The values we used are presented in Table 3.1.

Building upon this smart city scenario, we generalize our network considering that it is formed

of resource scarce devices, for example, TMote Sky having only 48K of program memory and

10K of RAM. We also assume that the root has similarly limited hardware capabilities as the

rest of the nodes in the network.

3.4 The Problem with Downward Routing in RPL

In this section we make a detailed analysis of the reasons for which RPL underperforms in

the previous mentioned smart city scenario, when only point-to-multipoint traffic is used.

Consequently, we present why RPL’s routing and signaling mechanisms fail when operating

on devices that have scarce memory.
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Figure 3.4 – Routing table statistics on all smart cities topologies in function of different
topology densities. Ratio of 1-hop nodes rejected by their parent (i.e., the DODAG root) due to
full routing table.
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Figure 3.5 – Neighbor table statistics on all smart city clusters in function of different topology
densities (* marks the topologies that are linear). Ratio of nodes with the neighbor table full.

3.4.1 Too Many Routes

In large networks (e.g., the large clusters from our smart city scenario presented above) some

of the nodes (especially the ones close to the root) might not be able to store all destinations

situated in their sub-DODAG. When the routing table of a node becomes full, incoming DAOs

from new destinations are simply dropped by current implementations. The RPL standard

specifies an optional DAO-NACK message with a Rejection status code to notify the DAO

sender that the recipient is unwilling to act as a DAO forwarder (e.g., because it has no more

space in its routing table). Still, the standard does not define any mechanism to handle this

rejection. In fact, in popular Contiki and TinyOS implementations of RPL, this DAO-NACK is

not even sent. As a result, the DAO is ignored, and the path remains partially built, but useless,

since the destination remains unknown to all nodes higher in the DODAG, including the root.

Therefore, if there is an incoming packet for this unknown destination, the root has no choice

than to drop it.

Let us take the example from Fig. 3.1c and suppose that the routing table of all nodes is limited

to 2 entries. Node E wants to announce itself as a destination to the root, as D previously did,
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by sending a DAO to its preferred parent. Once C receives the DAO, it checks if it can add E to

its routing table. Since it has enough memory, it accepts it, and forwards the message to its

preferred parent. B1 follows the same reasoning. However, both of its routing table entries

are occupied (by D and C ), and it cannot store this new destination, so it drops the DAO.

B1 should also send a DAO-NACK message to C announcing it that it cannot act as a DAO

forwarder for destination E . Unfortunately, upon the reception of the DAO-NACK message,

RPL does not specify any mechanism for E to respond accordingly. Consequently, the root has

no way of finding out where E is in the DODAG, and will have to drop all the packets having

this destination.

We need to understand whether this routing table overflow happens mostly at the root or also

at other devices in the network. For this, we run ContikiRPL2 over all the network clusters

from our smart city scenario, with different topology densities. Figure 3.4 shows the ratio of

nodes situated at one hop from the root whose parent (i.e., the root) is out of memory. In the

sparse and intermediate scenarios we can notice that from the topologies with more than 50

nodes (i.e., more nodes than entries in the routing table), about 80% of them are situated at

one hop from the root, showing that the routing table problem affects mostly the root.

As network density increases, it appears that the routing table problem disappears. In the

dense scenario only 3 topologies still show nodes with full routing tables. Actually, the routing

problem is overshadowed by another issue: too many neighbors. Indeed, at such density, a

large number of nodes are connected directly to the root. This means that the root’s neighbor

table gets filled quicker than the routing table, causing existing routes to become unusable or

preventing new routes from being built. We present more details about this problem next.

3.4.2 Too Many Neighbors

Some implementations of RPL (e.g., in Contiki) rely on the neighbor table to map IP addresses

of the neighbors to their MAC addresses. If entries for some of the neighbors are not present in

the table, no forwarding can be done to these nodes. If we look closer at what happens when

a node receives a DAO for a new destination in its sub-DODAG we see that before checking

the routing table and accepting the message, the node has to check first if the neighbor that

forwarded this DAO already exists in its neighbor table. If such entry is not found and cannot

be added (as the neighbor table is full), the DAO packet is immediately dropped, without

further processing. In fact, a DAO-NACK cannot even be sent in this case, as instead of using

the source MAC address of the DAO packet to send the reply, the node looks for it in the

neighbor table, which is useless in this situation.

This problem can often be seen in dense environments, where a node has more neighbors

than memory to store them, as we saw in Fig. 3.4. If only collection traffic is used, this is not a

problem, since a node forwards all the received data packets to its preferred parent and the

2We used a configuration with 20 neighbor table entries (default for our platform) and 50 routing table entries
(the maximum that fits into node’s memory).
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implementation guarantees that the entry for the preferred parent always stays in the neighbor

table. However, for the point-to-multipoint traffic, downward routes have to be constructed

beforehand, using DAO messages.

To show just how important this problem is, we resorted again to the simulation of ContikiRPL

over our smart city networks. Figure 3.5 shows the results. As expected, the denser the

networks are, the more nodes suffer from the overflow of their neighbor tables. Even in the

sparse scenario, 2/3 of the topologies display neighbor table problems. This is no surprise as

in ContikiRPL for TMote Sky platform, by default, a node can register maximum 20 neighbors

and many topologies are denser than this. In the dense scenario, where the reception range

increases, all the planar topologies present almost 100% of nodes with memory problems,

illustrating the importance of this problem.

3.4.3 Summary

While these routing and neighbor table problems might be seen as technical details of the

RPL standard and its implementations, from a routing perspective it means that one of its

main mechanisms, the route signaling, is compromised: routers fail at constructing and

maintaining the proper downward paths, as DAO messages get dropped, without any warning.

As a result, the routing mechanisms cannot function properly, and some of the network nodes

remain isolated from the root due to the lack of routing information. In the next section we

present several mechanisms to solve this problem.

3.5 Rethinking Downward Routing for RPL

The memory problem appears on the path from the leaves of the routing topology to the

root, when the propagation of DAO messages upwards in the DODAG is suddenly stopped.

We distinguish two points where the protocol can react and try to re-establish the broken

connectivity:

• when the problem is detected by network nodes due to a rejection by their DAO parent;

• when the packet with an unknown destination enters the DODAG at the root.

Consequently, different solutions can be designed: a reaction mechanism to handle the

possible rejection of a node from its DAO parent, after the reception of a DAO-NACK packet,

or a mechanism that can forward packets with unknown destinations. We propose next three

solutions:

1. A reaction mechanism: SWITCH, a parent switching solution that allows rejected nodes

to establish an alternative downward path when they receive a DAO-NACK from their

parent.
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2. A forwarding mechanism: ROOT, a 1-hop broadcast mechanism used to send data

packets with unknown destinations to all the neighbors of the root, increasing thus the

chances for the data packet to reach a node that has a route to its destination.

3. A hybrid mechanism: MCAST, a multicast approach where rejected nodes join a special

multicast group, whose address is then used by the root to send downward traffic for

unknown destinations.

The rest of the section presents in detail these three mechanisms improving downward routing

in RPL.

3.5.1 Parent Switching

We recall here that even though the RPL standard allows nodes to use multiple parents for

routing, existing implementations only use one parent (the preferred one) both for forwarding

data packets, and for route signaling (i.e., DAO message transmission). We find this approach

non-optimal and propose SWITCH, a reaction mechanism that takes advantage of the directed

acyclic graph topology by using other parents than the preferred one to create alternative

downward routes, when necessary.

Mechanism description. When a node receives a DAO-NACK message from its parent, it

creates an alternative routing path through a secondary parent. Hence, the node sends DAO

messages to other parents (one by one), until it finds one that still has neighbor / routing

entries available. This approach not only takes advantage of the already existing topology, but

it is also standard compliant.

Example. In Fig. 3.1c node C forwarded a DAO message to B1 containing destination E , but

since B1’s routing table was full, the packet was dropped. As we can see in Fig. 3.6a, once C

receives a DAO-NACK from B1, it tries another parent by sending the DAO to B2, which still

has available memory. B2 accepts to be the forwarder for destination E , indicating this to

C with a positive acknowledgement and forwarding E ’s DAO to the root. Starting from this

moment, C keeps forwarding DAOs for destination D to B1 and for destination E to B2 until

the conditions in the network change.

Limitations. This simple standard-compliant solution has the following limitations:

• Nodes close to the root can quickly fill their routing table, and even if a node tries to use

other parents, these might also have their neighbor / routing table full;

• The root is the only node in the network that does not have any parents. When its

neighbor or routing table gets full, none of the above methods can be applied;

• The routing cost through the secondary parents and, possibly, link quality, might be

worse than that of the preferred parent, which will decrease reliability and increase

energy consumption due to additional packet transmissions;

46



3.5. Rethinking Downward Routing for RPL

(X,Y) Routing table: (dest, next hop)Legend: Routing table fullPreferred parent link Junction node 

a) C tries another parent;
It will remember B1 for D and B2 for E.

A

B1

C

D E

 (E,E), (D,D)

 (D,C), (C,C)

7: (D,B1), (C,B1), (B1, B1), 
(B2,B2), (E,B2)

B2
3: DAO (E)

5: ACK(E)

 4: (E,C)
6: DAO (E)

8: ACK(E)

2: NACK (E)

1: DAO (E)

c) C joins the D-RPL multicast group 
and becomes a junction node. 

A

B1

C

D E

 (E,E), (D,D)

(D,B1), (C,B1), 
(B1, B1), (B2,B2)

B2

C

3: Multicast 
subscription

2: NACK (E)

1: DAO (E)

b) B1 has the routing table full; 
The root broadcasts all data packets for 
which it does not have the destination.

A

B1

C

D E

 (E,E),(D,D)

 (D,C), (C,C)

(B1,B1), (C,B1)

B2

Figure 3.6 – The three mechanisms proposed for downward traffic: a) SWITCH, b) ROOT, and c)
MCAST.

• In sparse networks, a node might have no other parents that it could use.

3.5.2 Broadcasting at the root

As we saw in Fig. 3.4, the root is the memory bottleneck in most cases, as it has to keep in

its routing table an entry for all the nodes in the network. However, due to the hierarchy in

the DODAG topology, there are chances that nodes in its 1-hop neighborhood have some or

all routes missing at the root. In consequence, we propose a modification to the forwarding

mechanism at the root that sends data packets with unknown destinations using link-local

broadcast to all the neighbors of the root, increasing thus the chances of the data packet to

reach a node that knows how to forward it down the DODAG.

Mechanism description. In a nutshell, when the root has a packet for which there is no entry

in the routing table, it broadcasts this packet to all its neighbors. Since the root has this fallback

broadcast mechanism to reach its 1-hop neighbors, it does not strictly need a neighbor and/or

routing table entry to forward a packet. Therefore it never rejects incoming DAOs, creating an

illusion that its neighbor and routing tables are infinite.

Example. This solution is exemplified in Fig. 3.6b, where all the nodes have the routing table

limited to 2 entries. If the destination of data packets is situated at one hop from the root, the

ROOT mechanism works very well: B2 receives the packets even though it does not exist in

A’s routing table. However, since neither B1 nor B2 have a routing entry for E , all the packets

having this destination are be dropped (not by the root, but by its 1-hop neighbors).

Limitations. The main disadvantage of this mechanism is that it only covers the neighbor

and routing table problem at the root and does not help any other node in the network

that has depleted their memory. Furthermore, IEEE 802.15.4 layer-two broadcasts are not

acknowledged, which results in a higher probability of packet loss if compared to unicast
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propagation. Still, as we show in Section 3.7, this simple broadcast enhancement can have

very good impact on delivering data packets with unknown destination over the first hop.

3.5.3 Multicast for rejected nodes

In essence, our proposed hybrid mechanism, MCAST [54], enhances RPL’s storing mode by

modifying the root’s behavior, similar to the 1-hop broadcast mechanism, and by generalizing

it to the rest of the nodes in the network that have to handle DAO-NACK messages. In a

nutshell, all the nodes that failed to advertise a DAO (for themselves or for someone in their

sub-DODAG) and received a DAO-NACK from their parent, join a special multicast group,

whose address is then used by the root to send data with unknown destination. The normal

RPL unicast operation is resumed as soon as the packet reaches a group member knowing the

route to the destination.

Mechanism description. For each packet, the root first checks its routing table for normal

IP forwarding. If there is no route entry for the destination address, instead of dropping the

packet or broadcasting it, the root forwards it to a special multicast group for rejected nodes.

The root first changes the packet’s destination address to the multicast group address, and

adds a special MCAST IPv6 extension header that contains the original destination address3.

Unicast forwarding is resumed at the moment the packet reaches a node that knows the

packet’s original destination. We call this node a junction node, as it is situated at the crossroad

of two delivery mechanisms: multicast dissemination and unicast forwarding.

By joining the multicast group for rejected nodes, and therefore becoming a junction node, the

node enables the delivery of packets from the root to all destinations in its routing table, even

those for which it received a DAO-NACK. If a node receives several DAO-NACKs for different

destinations, it only has to join the group once. To avoid introducing duplicates in the network,

a junction node should keep track of destinations for which it received DAO-NACK messages

and switch to unicast forwarding only for these destinations.

To reduce traffic overhead in space and time to the necessary minimum, nodes that have no

more marked route entries can leave the multicast group.

Example. We demonstrate this in Fig. 3.6c. MCAST goes into action when node C receives the

DAO-NACK from B1, becoming the last node on the path knowing the route to E . As such, C

has the critical role of ensuring E ’s reachability from the root, and hence subscribes to the

multicast group of rejected nodes. When the root wants to send a packet to E , or to any other

node for which it does not have a route, it simply sends it to all the nodes subscribed to this

multicast group.

Now, let us assume that in Fig.3.6c node E has another parent C ′, which is a junction node for

other destinations, but not for E (i.e., C ′ did not receive a DAO-NACK for destination E ). Both

3The extension header is inserted after the RPL hop-by-hop option header. Other possibilities to achieve the
same functionality could be the use of an IPv6 destination option header or to use generic IPv6 tunneling.
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Table 3.2 – Characteristics of the proposed mechanisms and protocols.

Parent switching 1-hop broadcasting Multicasting rejected
at the root nodes

SWITCH X — —
ROOT — X —

MCAST — — X

SWITCH+ROOT X X —
MCAST+SWITCH X — X

MCAST+ROOT — X X
T-RPL X X X

C and C ′ receive the packets sent by the root via the multicast channel, but only C forwards

them to E , as C is its junction node. This way we avoid that E receives all the packets in

duplicate.

Limitations. The main drawback of MCAST is exactly the multicast mechanism that improves

the point-to-multipoint communication of RPL. Its dissemination nature makes it send data

packets to all the junction nodes, while, probably, only one of them has the route to the

destination. As a consequence, it can increase the overhead in the network and the energy

consumption of the nodes.

3.5.4 Mechanism combinations for downward RPL

Looking carefully at the proposed mechanisms for improving downward RPL, we notice that

none of them are mutually exclusive. Consequently, by taking advantage of their strengths we

can combine these mechanisms into new protocols, obtaining new solutions for downward

RPL. As we can see in Table 3.2, this approach can lead to 4 new solutions that we are going to

presents next into more details.

SWITCH+ROOT. A first natural combination consists in bringing together the forwarding

mechanism encompassed by ROOT, and the reaction meachanism of SWITCH, as they are

complementary to each other. ROOT has from the start the disadvantage that it only solves the

memory problem at the root, while SWITCH suffers mostly at the root. With this new approach,

all the nodes in the network (besides the root) can search for alternative DAO parents upon the

reception of a DAO-NACK message, while the root falls back to the 1-hop broadcasting when

it does not find any route entry for a given destination. Basically, the nodes in the network

are divided into two types: nodes that follow the 1-hop broadcast mechanism (i.e., the root),

and nodes that implement the parent switching mechanism (i.e., all the other nodes in the

network).

MCAST+SWITCH. The MCAST and SWITCH mechanisms are not mutually exclusive either.

Moreover, finding alternative downward routes can lead to a reduction of junction nodes,

which in return can reduce the amount of multicast traffic. When a node receives a DAO-NACK
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Is there a route for 
this destination?

Send packet to next hop from routing 
table (normal RPL behaviour)

Yes

No

Packet to send

IPv6 Hdr RPL
HBHO Payload

Activate D-RPL:
Destination address      group address
Add mcaster IPv6 extension header 

Send packet to 
D-RPL multicast channel

IPv6 Hdr
(DST=D-RPL multicast)

RPL
HBHO PayloadD-RPL

Ext. HDR

Send packet over
broadcast
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Any ACK 
received?

Done

No Timeout

Figure 3.7 – Flow chart of a RPL root that implements both ROOT and MCAST mechanisms
(marked with red) as in the MCAST+ROOT and T-RPL solutions.

from its preferred parent, besides joining the MCAST multicast group, it can also start searching

for alternative DAO parents in the background, as in SWITCH. When such a parent is found,

the junction node can leave the multicast group because it is able to use the normal unicast

forwarding for all nodes in its sub-DODAG. This approach should reduce the number of

subscribers to the multicast channel, and hence, the number of packets sent using multicast.

MCAST+ROOT. A more significant reduction of the number of multicast packets can be

obtained if we eliminate the junction nodes closest to the root. We recall here that a node

situated at 1-hop from the root is a junction node if it has received a DAO-NACK from its

parent (i.e., the root). By adding the ROOT mechanism to MCAST, we should eliminate all

junction nodes situated at 1-hop from the root, as in this case the root never rejects incoming

DAO packets.

More specifically, as we can see in Fig. 3.7, when the root has a data packet to send, it first

checks if there is any routing entry for the given destination. If it is the case, it forwards the

packet to the corresponding next hop. Otherwise, the data packet is transmitted as a link-local

broadcast. If any of the root’s neighbors has a routing table entry for that destination, forwards

it to the next hop, resuming the standard unicast forwarding, but also sends a layer three

acknowledgement to the root. If after a timeout the root did not receive an acknowledgement

(i.e., the junction node is not a 1-hop neighbor), it will send the data packet over the multicast

channel, using MCAST. All the other nodes in the network besides the root follow the MCAST

mechanism.

The layer three acknowledgement that we introduced here is a newly defined ICMPv6 message

that informs the root that the packet has been forwarded successfully and no further actions

are required.

Switch+Root+Mcast, or T-RPL. Finally, we combine all of the proposed mechanisms (parent

switching, 1-hop broadcasting at the root, and multicast for the rejected nodes) into one single,

powerful, protocol: T-RPL. In a nutshell, T-RPL functions at the root exactly like MCAST+ROOT
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Fully routed Fully flooding

RPL
FloodingSwitch

Root
Switch+Root
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Mcast+Switch

T-RPL
Mcast+Root

Figure 3.8 – Proposed mechanisms and solutions characteristics w.r.t. our baseline ContikiRPL
and Flooding (with bold).

(Fig. 3.7), while all the other nodes in the network use the MCAST+SWITCH reasoning: upon

rejection from its preferred parent, a node will both join the MCAST multicast group, and

search for an alternative DAO parent in the background. This combination assures us that

packets are delivered downstream using RPL’s mechanism when there are no problems, and

using the most efficient of our solutions, when nodes encounter the memory problem.

3.5.5 Summary

In this section we presented three mechanisms that can help improve downward routing

in RPL: SWITCH, ROOT, and MCAST. They each have their strengths, as each of them has a

different approach in solving the memory problem, ranging from a fully routed mechanism

(parent switching in SWITCH) to different levels of data flooding (a broadcast reduced to only

the 1-hop neighbors of the root in ROOT, and a limited dissemination using the multicast

tree in MCAST). Furthermore, as we saw in Section 3.5.4, some of these mechanisms are

complementary to each other, so a natural approach was to combine them, obtaining stronger

solutions. Figure 3.8 shows where these new protocols fit w.r.t. our baseline, RPL, but also w.r.t.

a full flooding approach, as each of them is characterized by different levels of routing and

dissemination, based on the mechanisms that they encompass. We present in the next section

a detailed evaluation of all the proposed mechanisms and protocols, comparing them with

RPL and Flooding.

3.6 Implementation Details

We implemented all our proposed mechanisms and solutions in Contiki OS4, starting from

adding support for the negative DAO acknowledgements (DAO-NACKs) we mentioned before.

Even though negative DAO-ACKs are defined by the RPL standard and carry a rejection code in

the status field, no specific rejection codes have been allocated, leaving 128 such codes open

for protocol implementations. In consequence, we define here a new status, Out of memory,

which will be sent in response to a DAO, when the receiver has reached its neighbor and/or

4A snapshot of the official Contiki repository on github.com from 22 January 2015
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routing table capacity.

Moreover, in Contiki OS, to be able to send these DAO-NACK messages, a node needs to

have the destination in its neighbor table. However, since the memory may be full when

receiving the DAO, its destination can not be added to the neighbor table, and hence, the

DAO-ACK cannot be sent. To solve this problem, from the total number of neighbor table

entries, we reserve N 5 of them to be used for sending DAO acknowledgements. This means

that a node temporarily adds a new neighbor, which it deletes after sending the corresponding

acknowledgement.

Next, we will present the implementation details for each mechanism separately.

SWITCH. Taking advantage of the DAO-NACK mechanism described above, the implementa-

tion of the SWITCH mechanism adds the following modifications to ContikiRPL:

• The parents table carries a new flag that tells whether a parent has already answered

with a DAO-NACK, to avoid inquiring it again;

• The routing table has a new field to memorize the parent to which DAOs advertising

each entry should be sent.

ROOT. In this case, we only need to modify the behavior of ContikiRPL at the root, all the other

nodes in the network maintain the same implementation. As we mentioned before, first of all,

the root accepts all incoming DAOs even if it has no space left in its tables. Later, when the

root has to forward a packet to an unknown destination, it sends it as a layer two broadcast

keeping the original layer three destination. Upon receiving a broadcast from the root, its

neighbors check whether they know the route to the destination and use it to forward the

packet in the standard unicast way. Otherwise they just drop the packet.

MCAST. In principle, MCAST could use any multicast protocol like MPL (Multicast Protocol for

Low power and Lossy Networks) [48], or SMRF (Stateless Multicast RPL Forwarding) [77] to

deliver the packets with unknown destination, however a combination with MPL would not

make sense because this protocol floods the whole network with multicast packets so there

is no need of an additional mechanism like MCAST to deliver them. SMRF, however, limits

the scope of dissemination to the multicast tree and MCAST resumes the unicast forwarding

between the junction node and the destination, reducing the overall amount of transmissions

in the network.

There are other implementations of multicast MCAST could benefit from, for example BMRF

[42], however, we chose to implement MCAST on top of SMRF, because it is already a part of

the Contiki OS codebase. In SMRF, the nodes keep no per-packet state and only very little

structure-related state. Multicast DAO messages are initiated by nodes joining the group and

are propagated up the DODAG. Nodes receiving these messages, even if they did not join

the group, store the multicast address in their routing table and forward the DAO message

5After several experiments, we fixed the value of N to 4 in our simulations, as this value offers the best reliability.
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upwards. Thus, nodes that have exhausted their memory can still use SMRF, given that only a

single multicast routing table entry is reserved for the MCAST multicast address.

The code specific to MCAST includes a hook in the IPv6 packet forwarding logic to divert

packets on the multicast channel and to add the MCAST extension header; the handling of the

MCAST extension header in the incoming packet processing code; an extension of routing table

entries with DAO-ACK/NACK status field; and the corresponding logic in the RPL DAO-ACK

handling code.

Flooding. As a second baseline in addition to ContikiRPL we use a combination of the stan-

dard RPL data collection and a simple whole-network flooding protocol to deliver actuation

commands.

In this case, the nodes do not keep routing entries for downward traffic at all, they only

maintain the default route used for data collection through their preferred parent; the neighbor

table size is kept the same as for the other protocols. When the root has a packet to send, it

broadcasts it to all its neighbors. When a node receives a packet that it did not see before, it

rebroadcasts the packet only once after a short random delay. There are no acknowledgements

and retries at the MAC layer, and duplicates are filtered by using a cache that stores message

identifiers; a time-to-live (TTL) is associated to messages to limit their rebroadcasting. We use

the memory space previously reserved for routing table to keep a history of the last 100 seen

packets.

3.7 Evaluation of Downward Protocols

This section presents a detailed evaluation of all the proposed mechanisms and their combina-

tions as presented in Section 3.5, and summarized in Table 3.2. Our baseline for comparison

is ContikiRPL and Flooding. After testing these solutions on all the network clusters from

our smart city scenario, we also evaluate their scalability by using unbiased 2D regular grid

topologies where we increase the network size up to 225 nodes. We start by presenting our

simulation setup.

3.7.1 Simulation Setup

We used Cooja [78] network simulator to run the real binaries of the protocols compiled for

the TMote Sky platform, for which Cooja provides instruction-level emulation. The radio

propagation was modelled by the Multi-Path Ray Tracer built into Cooja (MRM). For statistical

relevance, we ran simulations 20 times per set of parameters.

In our evaluation we used the smart city scenario presented in Section 3.3: a deployment of

864 nodes on lampposts, grouped into 13 clusters (whose sizes varies from 25 to 134 nodes).

In simulation, we used different noise levels to obtain different topology densities. The

characteristics of some representative clusters are shown in Table 3.3.
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Table 3.3 – Topology metrics for several planar smart city topologies in comparison with
synthetic grids of 121 and 255 nodes.

Smart City Synthetic
Topology density Sparse Intermediate Dense Intermediate
# nodes 70 91 134 70 91 134 70 91 134 121 225
Avg degree 30 49 37 57 83 82 68 90 125 82 101
Max degree 48 76 62 69 90 116 69 90 133 118 161
Min degree 8 21 6 27 64 24 62 90 77 47 44
Avg sum out PDR 11 16 11 24 37 28 46 69 63 27 29
Max sum out PDR 17 26 21 36 55 44 59 83 87 36 38
Min sum out PDR 3 3 1.6 7 13 5 20 43 20 12 11
Avg hops 3.6 3 5.3 2 1.6 2.6 1.2 1.1 1.6 2.3 3
Max hops 8 6 11 4 3 5 3 2 3 4 5
Avg path ETX 4.5 3.8 7.5 2.4 2 3.2 1.4 1.2 1.8 2.7 3.6
Max path ETX 11 8.2 22 5.2 4 6 3.1 2 3 4.7 6.3

Moreover, to eliminate the bias due to the structure of the smart city clusters and to go beyond

their scale, we also experimented with 2D regular grids. The nodes were situated on a N ×N

grid, where N ∈ {3,5,7, ...,15}, obtaining networks that have up to 225 nodes, with the root in

the center. We selected the grid step and the radio propagation properties so that the main

topology metrics presented in Table 3.3 for the synthetic topology of 121 and 225 nodes are

similar to the ones of the largest smart-city cluster with 134 nodes at the intermediate density.

In simulations we could go beyond networks that have 225 nodes to test the scalability of

our solutions. However, since the goal of our study is to improve the performance of the

downward traffic in RPL without hampering the data collection aspect of the protocol, we

chose to scale the network size as long as the collection performance of RPL is still solid. To do

so, we simulated ContikiRPL with collection only traffic, using an inter-packet interval of 3

minutes, and with DAO routing mechanism enabled, but no downward traffic.

As we can see in Fig. 3.9, the packet delivery ratio (PDR) of data collection starts decreasing

once the network size reaches 169 nodes. This performance degradation was traced down to

two problems. First, the larger number of nodes generate more packets that overload the net-

work. Second, the topology maintenance mechanism of ContikiRPL causes frequent DODAG

reconfigurations and thus generates an unbearable amount of DAO messages, showing that

above this size the network topology is unstable and it would not make sense studying the

downward routing at such scale.

Protocol setup. Table 3.4 presents the most important protocol settings used in this study.

For ContikiRPL and all of the proposed solutions we kept the default Minimum Rank with

Hysteresis Objective Function (MRHOF) [43] and the Expected Transmission Count (ETX)

routing metric. For the neighbor table size we kept to the default setting of 20 entries and

set the routing table size to 50, which occupied almost all remaining RAM on the TMote Sky

platform.
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Figure 3.9 – Performance Evaluation of ContikiRPL on synthetic topologies in the presence of
collection traffic with an inter-message interval of 3 minutes.

Table 3.4 – Protocol setup for ContikiRPL and all the proposed solutions.

Neighbor table size 20
Routing table size 50
Routing metric ETX
Objective function MRHOF

At the MAC layer we used ContikiMAC in all the simulations, with a wake up interval of 125ms,

its default value.

Application setup. We test the performance of ContikiRPL and our proposed solutions with an

actuation traffic: sending commands from the gateway to other nodes in the cluster. Messages

have a 6 B payload, enough to fit a command code and 1–2 parameters. In each experiment,

after a warm-up time needed to stabilize the logical topology (10 minutes in our simulations),

the gateway sends B = 2000 isolated commands, each destined to a node chosen with uniform

random selection, with an inter-message interval (IMI) of 10s; we focus on the reliability and

timeliness of delivering isolated commands, rather than scalability in terms of traffic load,

which we analyze later.

Performance metrics. The plots report the average value along with error bars denoting the

confidence interval. Reliability and timeliness are quantified by measuring the packet delivery

ratio (PDR) – computed as the ratio of valid received packets over the number of transmitted

packets, and average delivery delay – time between the packet generation at the source and its

reception at the destination, for each destination and further averaging over all nodes of the

cluster. For the energy efficiency, we measured the radio duty cycle – ratio of time spent by the

nodes with their radio on, either transmitting or listening, as reported by Cooja.
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3.7.2 Evaluation on smart city topologies

We start our evaluation by taking a look at how our proposed mechanisms perform individually,

when compared to our baseline, ContikiRPL and Flooding, over all the 13 clusters from our

smart city scenario, using 3 different topology densities. Then, we evaluate all of the proposed

combinations in the same scenario, to find the best tradeoff between reliability and network

lifetime.

Evaluation of the mechanisms. Figure 3.10 shows the performance of our three mechanisms

(SWITCH, ROOT, and MCAST) under different topology densities. The performance of Con-

tikiRPL starts degrading once the network size gets over 50 nodes, due to the limited space

in the routing and neighbor tables (a node can store maximum 20 neighbors and 50 routes,

as we mentioned in Section 3.4). The PDR barely reaches 20% in some cases, when networks

become dense and neighbor tables get saturated.

SWITCH manages to improve the reliability of RPL in all topologies, while keeping the same

low duty cycle as ContikiRPL. Still, this improvement is not that significant in all cases, as the

PDR is bounded by the maximum number of routes that the root can keep (50 in our case),

and by the link quality to the alternative parents. If we look at the PDR figures from right to

left we notice that as density decreases, the gap between SWITCH and ContikiRPL becomes

smaller, as the diversity of paths also decreases, leaving the nodes with almost no alternative

DAO parents.

For our second solution, ROOT, surprisingly, just by adding the simple 1-hop broadcast en-

hancement to ContikiRPL, the PDR gets above 80%, while keeping similar duty cycle and delay

as ContikiRPL. Indeed, the duty cycle is always around 1%, showing the efficiency of the ROOT

mechanism. Still, ROOT does not reach 100% of reliability on any of the topologies, as we can

see also in Tables 3.5, 3.6, and 3.7. The reason is that the link-layer broadcast is less reliable

than unicast and moreover, the 1-hop broadcast only applies to the root; all the other nodes in

the network that have memory problems continue to drop packets if they don’t know where to

forward them. These results show that, as we expected, the root is often a bottleneck, limiting

the overall network performance while the rest of the nodes suffer less from the memory

limitations. By fixing the problem only at the root we manage to significantly improve the

downward packet delivery ratio of RPL.

MCAST on the other hand, is the only mechanism that manages to reach a reliability close to

100% of where ContikiRPL barely has 20%. As we can see in Tables 3.5, 3.6, and 3.7, MCAST’s

reliability is above 87% in sparse scenarios, above 95% in intermediate scenarios, and above

98% in dense scenarios. This improvement comes with slightly increased duty cycle and

delay, partially because MCAST delivers up to 4 times more data packets than ContikiRPL,

but also partially due to reliance on multicast: the same data packet is forwarded in several

directions, reaching all the junction nodes. Contrary, in ContikiRPL and in the other two

solutions, packets are forwarded only by nodes that have a route for that destination.

Finally, Flooding is the only protocol delivering 100% of packets in dense scenarios, and above
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(b) Intermediate
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(c) Dense

Figure 3.10 – Performance evaluation of the proposed mechanisms on all 13 clusters from
our real-world smart city deployment, under different topology densities. The value on the
x −axi s represents the size of the cluster (* marks the topologies that are linear).
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98% in intermediate scenarios. In sparse scenarios, however, the reliability drops to 48% for

the linear topologies, as we can see also in Table 3.5. However, the high reliability comes with

an increase in duty cycle, which in dense scenarios is up to 6 times more than ContikiRPL.

Indeed, even though Flooding does not use DAO messages for downward route construction,

the overhead induced by duplicate packets is very high. In sparse networks however, the duty

cycle is comparable to MCAST, as when the links are weak, the redundancy of flooding pays

off.

Evaluation of the combinations. We evaluate now all of the proposed combinations in the

same scenario, and against the same baseline: ContikiRPL and Flooding, to find the best

tradeoff between reliability and network lifetime.

As we previously mentioned, the SWITCH and ROOT mechanisms are complementary to each

other, and as we can see in Fig. 3.11, combining them into SWITCH+ROOT manages to increase

RPL’s reliability close to 100%, as now all the nodes in the network implement a mechanism to

overcome the memory problem. Still, the worse link quality on the secondary routes, inherited

from SWITCH, and the lack of L2 acknowledgements for the link-local broadcasts prevent

SWITCH+ROOT from reaching 100% of PDR on all topology densities. Still it is important to

notice that this reliability is obtained while always keeping a duty cycle below 2%.

The combination of the ROOT and MCAST mechanisms into MCAST+ROOT leads to an overall

lower duty cycle, while keeping similar PDR to MCAST, as can be seen in Tables 3.5, 3.6, and 3.7.

To understand the reason behind that, we took a closer look at one of the smart city clusters.

As Fig. 3.12 shows, thanks to the ROOT mechanism, there is a considerable decrease in the total

number of junction nodes, mostly achieved by eliminating those from the immediate vicinity

of the root. This can be clearly seen from the right-side chart of the figure, as the 1-hop junction

nodes constitute the vast majority of those in the network for MCAST, while MCAST+ROOT

does not have any 1-hop junction nodes. This means that the relatively expensive multicast

mechanism is activated infrequently, considerably reducing the overhead in the network, and

hence, the radio duty cycle.

The same reduction in duty cycle cannot be seen in MCAST+SWITCH. Indeed, even though

SWITCH manages to restore some of the junction nodes to their normal behavior, these are

situated lower in the network topology, and as Fig. 3.12 shows, their number is not very high.

Now, if we look at T-RPL, which combines all three mechanisms, we can notice that overall,

it presents the lowest duty cycle, while having a reliability around 90%. As we can see in

Tables 3.5, 3.6, and 3.7, T-RPL’s reliability is above 89% in sparse scenarios, above 94% in

intermediate scenarios, and above 96% in dense scenarios. The only case where it drops

below 90% (to ∼ 89%) is at sparse density and high number of nodes (134), as the 1-hop

broadcast mechanism and the multicast are less reliable on large sparse topologies in general,

and particularly in this cluster that has a group of nodes with very weak connectivity at high

noise. The reason for which T-RPL does not reach 100% of PDR in all cases is that the 1-hop

broadcast is less reliable than the unicast, as packets are not acknowledged at the MAC layer,
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(a) Sparse
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(b) Intermediate
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(c) Dense

Figure 3.11 – Performance evaluation of the proposed combinations on all 13 clusters from
our real-world smart city deployment, under different topology densities. The value on the
x −axi s represents the size of the cluster (* marks the topologies that are linear).
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Figure 3.12 – Statistics with the number of junction nodes in the planar cluster with 70 nodes.

Table 3.5 – PDR (%) for all smart city clusters under the sparse topology density

25 28* 31* 45 46 51* 54 62 70 91 104 123 134
ContikiRPL 98.42 98.65 99.06 95.41 96.47 98.45 88.37 73.76 61.24 43.59 41.49 33.36 32.06

Switch 98.15 98.85 98.03 95.27 96.31 97.81 92.46 79.31 71.06 53.77 48.33 38.92 36.06
Root 98.58 99.41 99.20 94.08 97.04 92.77 97.72 94.31 95.98 90.18 92.37 76.46 81.72

Mcast 98.98 98.75 98.71 95.61 96.88 95.08 96.06 97.44 98.71 97.02 99.33 97.03 87.30
Switch+Root 97.68 99.31 98.18 93.52 97.15 98.85 95.83 97.54 97.00 92.47 96.49 89.32 84.60
Mcast+Root 99.04 98.88 98.93 96.40 97.59 99.59 97.71 95.78 98.10 96.26 97.85 94.72 85.09

Mcast+Switch 97.61 99.29 98.78 95.91 96.49 91.80 98.11 97.13 98.40 95.00 99.56 98.44 92.37
T-RPL 98.16 98.86 92.14 95.87 97.21 98.60 98.08 97.52 97.89 94.94 98.16 97.16 89.28

Flooding 99.38 83.68 48.17 96.77 99.97 52.06 96.72 100 98.89 99.79 99.80 99.98 97.53

and hence, they are not retransmitted. Still, such a low difference, might be not noticeable by

most applications.

If we look at the duty cycle figures, we notice that T-RPL manages to significantly differentiate

itself from the other multicast-based solutions, being the most energy efficient, while having

roughly the same PDR. This shows us that by combining the advantages of the three techniques

we obtain the best reliability among the RPL-based protocols while keeping the duty cycle low.

Summary. The results obtained until now show that T-RPL improves tremendously over

ContikiRPL. Although T-RPL does not manage to maintain 100% of PDR in all cases, it gets

very close (98%), while offering the lowest duty cycle. For applications that need 100% of

reliability and have dense networks, Flooding might be a more suited protocol, however

network lifetime has to suffer in this case.

3.7.3 Evaluation using synthetic topologies

In this section we continue the evaluation of the proposed solutions by experimenting with 2D

regular grids, using the same approach as before: first we compare the proposed mechanisms

individually, then their combinations. This will allow us to:
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Table 3.6 – PDR (%) for all smart city clusters under the intermediate topology density

25 28* 31* 45 46 51* 54 62 70 91 104 123 134
ContikiRPL 97.58 98.72 98.49 92.09 95.43 98.45 48.61 64.83 54.44 35.97 39.46 22.67 27.89

Switch 96.89 98.16 98.44 94.98 95.32 99.29 78.73 78.95 69.86 52.86 47.42 38.88 36.53
Root 98.05 98.75 98.76 93.89 95.22 98.75 94.34 92.69 94.08 86.29 91.44 80.40 88.78

Mcast 98.02 98.85 97.80 95.95 95.93 99.31 98.55 99.11 97.40 98.33 98.55 96.49 97.27
Switch+Root 97.13 97.93 99.11 94.23 95.24 98.75 96.59 95.04 95.82 92.39 96.86 93.49 95.12
Mcast+Root 97.78 98.58 98.34 96.40 95.85 98.77 99.26 97.85 97.94 98.11 96.60 96.89 95.68

Mcast+Switch 96.87 98.59 99.42 95.83 95.05 97.31 99.28 99.15 97.76 98.73 99.21 96.88 98.37
T-RPL 96.78 98.10 97.80 94.88 96.15 98.72 99.75 98.44 97.68 98.93 98.03 97.20 97.16

Flooding 100 99.86 98.88 100 100 99.11 100 100 100 100 100 100 100

Table 3.7 – PDR (%) for all smart city clusters under the dense topology density

25 28* 31* 45 46 51* 54 62 70 91 104 123 134
ContikiRPL 98.93 95.54 98.16 97.02 70.27 98.68 24.81 23.40 21.11 12.58 28.19 19.52 17.28

Switch 98.82 97.38 98.14 95.98 94.08 98.00 56.49 58.64 55.65 34.11 46.25 39.04 36.98
Root 98.75 97.97 98.39 94.31 94.80 98.74 96.22 93.53 92.71 94.64 88.41 87.93 84.54

Mcast 98.95 98.61 99.01 98.31 98.40 98.97 98.84 99.45 99.63 98.97 98.51 99.28 99.08
Switch+Root 98.80 95.71 98.05 96.75 97.86 99.14 97.42 94.36 94.25 95.01 94.77 90.68 90.89
Mcast+Root 99.09 97.29 98.30 99.24 99.02 98.02 98.63 99.88 99.60 99.89 96.44 99.50 98.90

Mcast+Switch 97.45 96.57 98.09 97.09 98.03 98.38 99.85 99.35 99.59 99.37 99.03 99.39 99.02
T-RPL 98.90 96.68 98.12 98.71 98.77 97.96 99.27 99.82 99.51 99.89 98.60 99.33 98.88

Flooding 100 100 100 100 100 100 100 100 100 100 100 100 100

1. remove the bias of topologies using regular grids;

2. test the scalability of our solutions by almost doubling the size of the network;

3. provide an indirect validation of the smart city results.

Evaluation of the mechanisms. Figure 3.13 shows the comparison between the proposed

mechanisms and our baseline: ContikiRPL and Flooding. We can notice that ContikiRPL does

not scale at all, being severely affected by the routing and neighbor table problems. Flooding

on the other hand, has perfect reliability on all network sizes, and the lowest delay among all

protocols. However, its duty cycle is three times more than ContikiRPL, due to the overhead

induces by duplicate packets.

SWITCH improves over ContikiRPL, but only slightly, barely managing to reach 20% of PDR

when the network has 225 nodes. With the increase of network size SWITCH has problems

scaling, as again, the PDR is bounded by the maximum number of routes that the root can

keep.

ROOT also shows results consistent to what we saw on the smart city topologies, managing to

maintain a PDR above 84%, but without reaching 100%. Still, it is impressive that a simple 1

hop broadcast mechanism can quadruple the reliability of ContikiRPL while maintaining a

duty cycle below 1%.
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Figure 3.13 – Performance evaluation of proposed mechanisms on 2D regular grids, as a
function of network size on the x −axi s. Notice the logarithmic scale for the y −axi s on the
figure representing the delay.

MCAST, on the other hand, has a slightly different behavior. Even if its reliability is similar to

that on the smart city topologies, with a PDR above 93%, its duty cycle increases linearly with

the size of the network, tripling w.r.t. ContikiRPL, and almost reaching Flooding. Indeed, as

network size increase and more nodes overload their routing and neighbor tables, so does the

number of data packets that are being sent using the multicast mechanism, increasing thus

the duty cycle.

Evaluation of the combinations. Figure 3.14 shows the performance evaluation for the com-

binations of our mechanisms. SWITCH+ROOT manages to maintain a PDR above 91% on all

network sizes, but without reaching 100%, which is consistent to what we saw on the smart city

topologies. Still, it presents the lowest duty cycle among all the proposed solutions, remaining

around 1%.

Among the multicast-based protocols, the performance of MCAST+SWITCH and T-RPL is

remarkable, having a reliability above 97%, and respectively, 96% for all network sizes, as

can be also seen from Table 3.8. The small difference in 1% between their PDR comes from

the fact that T-RPL uses the slightly less reliable 1-hop broadcast mechanism at the root.

However, even though the PDR is similar, T-RPL is more energy efficient, having the lowest

duty cycle among them. Indeed, T-RPL consumes consistently less energy than MCAST and

MCAST+SWITCH, as the addition of the root broadcast to the multicast solutions helps decrease

the radio duty cycle.

Summary. The results obtained using unbiased grid topologies confirm the previous results

from the smart city scenario: T-RPL manages to have the best tradeoff between reliability and

energy efficiency, as it combines the advantages of all the proposed mechanisms. Although

T-RPL does not manage to maintain 100% of PDR in all cases, it gets very close (98%), while

offering the lowest duty cycle.
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Figure 3.14 – Performance evaluation of proposed combinations on 2D regular grids, as a
function of network size on the x −axi s. Notice the logarithmic scale for the y −axi s on the
figure representing the delay.

Table 3.8 – PDR (%) for synthetic topologies

9 25 49 81 121 169 225
ContikiRPL 100 96.64 81.29 44.10 25.41 19.08 15.83

Switch 100 98.04 93.74 60.53 40.20 29.33 21.87
Root 100 98.93 95.72 90.06 87.33 86.01 84.09

Mcast 100 98.94 98.84 97.69 97.67 97.62 93.35
Switch+Root 100 98.97 96.02 94.80 93.65 92.66 91.27
Mcast+Root 100 99.24 98.33 97.23 96.29 96.05 92.27

Mcast+Switch 100 98.62 97.79 97.99 98.14 98.49 97.67
T-RPL 100 99.30 98.34 97.55 97.56 97.37 96.53

Flooding 100 100 100 100 100 100 100
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Flooding is the only protocol to reach 100% of reliability on all topologies, but with twice and

in some cases even three times the duty cycle of T-RPL. Considering the redundancy of the

data packets sent in the network, it is not surprising that in the end, Flooding manages to

deliver everything, making it the best choice for applications that need 100% of reliability and

do not care that much about energy consumption.

3.8 Evaluation against Existing Protocols

In this section we compare T-RPL, the protocol that offers the best tradeoff between reliability

and duty cycle, against other routing protocols and implementations of the RPL standard, as

they can bear significant differences [55].

3.8.1 State of the art protocols for downward routing

We compare our proposed solution against a series of routing protocols used for downward

routing in WSNs, which have different characteristics:

• routing using individual unicast routes: Ad Hoc On-Demand Distance Vector (AODV) [82];

• opportunistic routing: Opportunistic RPL (ORPL) [33];

• dissemination/flooding: Trickle Multicast (TM) [47];

• different implementation of RPL: TinyRPL.

Ad Hoc On-Demand Distance Vector (AODV) is a reactive routing protocol that floods the

network with RouteRequest control packets in order to construct the routes. Each node

registers locally an entry for the originator of the flooding, creating this way a reverse path.

The destination replies (in unicast) with a RouteRepl y message, and a bi-directional route is

set between the source and the destination.

ORPL, among other benefits, aims at improving the scalability of downward routing in RPL

by replacing the RPL path building mechanism with a hash- or bitmap-based one, adding

also support for multiple downlink paths, and using the anycast-based opportunistic for-

warding [60] at the link layer. ORPL also uses a custom version of ContikiMAC [31] as its

duty-cycling MAC, the only one currently supported.

For comparison we also chose TM, which adaptively scales the number of retransmissions of

the data packet depending on how many times the node has heard the same packet transmitted

by its neighbors. The protocol allows nodes to resend data packets several times, if needed,

and it should be less verbose than pure flooding, suppressing completely a retransmission

if the data packet have been already sent by many neighbors. The retransmission period is

also adaptive. When a new data message is received, the period is reset to the minimum, and

doubled when there is no new data, until the maximum period is reached. This mechanism
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Figure 3.15 – TinyRPL performance as a function of different DAO interval values. Notice the
logarithmic scale for the y −axi s on the figures representing the delay and the duty cycle.

provides eventual delivery of the message to all nodes, a guarantee not provided by pure

flooding.

We also choose to compare our solution against TinyRPL, as this is the reference implemen-

tation of RPL for TinyOS, one of the mainstream operating system in the WSN community.

When compared to ContikiRPL, TinyRPL has a significant difference that can severely impact

the results, regarding the timer implementation for triggering DAO messages: instead of

dynamically taking into account network changes (e.g., using Trickle [62] like ContikiRPL),

TinyRPL sends DAO messages with a fixed periodicity, no matter the status of the network.

This is less efficient and induces much more traffic in the network.

We experimented with a range of DAO interval values, to choose the best configuration for our

scenario. Consequently, we simulated TinyRPL on two representative smart city topologies: a

70-node “planar" one and a 51-node “linear" one. We can see in Fig. 3.15 that as the interval

increases, the PDR and delay stabilize, while the duty cycle decreases, as less control packets

are sent in the network. In consequence, we chose to fix the value of the DAO interval to 180s

for the rest of our simulations, as this offers the lowest duty cycle for the best PDR.

Protocols setup. All these protocols are highly customizable through parameters such as

buffer sizes, timeouts, retries and hop limit. Also, some of them are highly dependent on

the MAC protocol. Wherever possible, we used the default values, as these are likely to be
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Table 3.9 – Protocol-specific parameters.

MAC
Neighbor table

size
Routing table

size
Routing
metric

Objective
Function

ContikiRPL ContikiMAC 20 50 ETX MRHOF
T-RPL ContikiMAC 20 (4 reserved) 50 ETX MRHOF

Flooding ContikiMAC 20 50 ETX MRHOF
TM ContikiMAC 20 – ETX MRHOF

ORPL ContikiMAC 6 40 – EDC custom
TinyRPL BoxMAC 20 (parent table) 50 ETX MRHOF

AODV ContikiMAC 20 256 hop count –

first choice in a deployment and the ones tested the most. The most important protocol

parameters used in our study are summarized in Table 3.9. We can notice that ORPL can

use a larger neighbor tables size than the other RPL-based protocols, as it does not use any

routing table. Also, AODV has a considerably larger routing table, partly because it does not

use IPv6 addresses, and partly because it’s implementation occupies less memory than RPL’s

implementations.

3.8.2 Evaluation on smart city topologies

For the first step in our evaluation we keep the same scenario as before (Section 3.7.1): the root

sends actuation commands towards the nodes with an inter-message interval of 10 seconds.

We compare the selected protocols under different topology densities and on all the 13 network

clusters from the smart city scenario.

We can see in Fig. 3.16 that TinyRPL also suffers from the memory problem, however, much

less than ContikiRPL. The reason is in an optimisation implemented in TinyRPL that allows

forwarding data packets without consulting the neighbor table for address conversion. In

TinyRPL, the global IP addresses of the nodes are derived from their MAC addresses, making

the opposite conversion possible without storing any state.

As a result, the neighbor table size does not limit forwarding and in the dense topologies the

PDR goes up with respect to ContikiRPL. However, the upper bound of addressable devices

still holds, with the maximum of 50 routes stored by the nodes, affecting the PDR on larger

clusters. Further, because of the non-adaptive interval at which DAOs are sent in TinyRPL,

its duty cycle is 10 times higher than that of ContikiRPL, significantly reducing the network

lifetime.

ORPL shows the same density problems as ContikiRPL, but more accentuated, having a sudden

drop of PDR to 0% when it reaches its memory limit in the neighbor table. This is the result of

a complete lack of any mechanism for handling memory problems. In sparse topologies, as

the number of neighbors is reduced, this problem is less severe.

6customized version
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(a) Sparse
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(b) Intermediate
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(c) Dense

Figure 3.16 – Performance evaluation on all 13 clusters from our real-world smart city deploy-
ment, under different topology densities. The value on the x −axi s represents the size of the
cluster (* marks the topologies that are linear).
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AODV has a bad reliability throughout all density scenarios, and especially in the sparse case.

Indeed, as nodes have less neighbors and paths are longer, there are more chances for the

RouteRequest and/or RouteResponse messages to get lost, and hence the path remains

partially not built. Furthermore, the hop-count metric tends to use longer but weaker links to

minimise the path length. The low duty cycle in this is explained by the equally low PDR.

The reliability of TM is around 80% in large or dense networks. TM also has the highest duty

cycle among all the protocols, even higher than that of Flooding, varying between 10 and 20%,

as it uses a large number of broadcast control packets.

In what concerns the delay, there is a general trend of slightly reduced values for all protocols

as density increases, due to a reduction of the network diameter.

T-RPL and Flooding are the only protocols that achieve a PDR close to 100% for all topologies,

except for several points in sparse environments. However, Flooding is consistently less energy

efficient, having 3 to 5 times the duty-cycle of T-RPL, due to the overhead induced by the

link-layer broadcast.

3.8.3 Evaluation using synthetic topologies

In this section we continue our evaluation by removing the bias of the smart city topologies,

using regular 2D grids, which also allows us to test the scalability of the protocols as we can

easily increase the size of the networks.

We can see in Fig. 3.17 that the only protocol that manages to achieve perfect reliability is

Flooding. Even though T-RPL does not reach 100% of reliability, its PDR remains above 97%

(as mentioned in Table 3.8), while keeping the lowest duty cycle.

All the other protocols just do not scale, as already observed earlier. Even if TinyRPL does not

suffer from the neighbor table problem, it still can hold maximum 50 route entries, which

makes its reliability decrease once the network size is larger than 49 nodes. The performance

of ORPL, again, suddenly drops from 100% to 0%, as the root’s neighbor table reaches its

maximum (40 entries), causing the protocol to stop working. The PDR of AODV seems to

linearly decrease, due to an increased number of RouteRequest / RouteRepl y messages,

which overload the network. Its duty cycle is lower than that of Flooding only because it

delivers considerably fewer packets.

TM shows a constant PDR of 80% throughout all networks larger than 49 nodes, and the

highest delay among all protocols. Indeed, due to its multicast mechanism and the high

number of retransmissions TM overloads the network. This can also be seen in the high duty

cycle, which is almost always above 10% (the only exception is the network with 9 nodes).
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●

●

ContikiRPL

T−RPL

Flooding

TinyRPL

ORPL

TM

AODV

●
●

●

●

●
●

●

● ● ● ● ● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

32 52 72 92 112 132 152

Number of nodes

M
ea

n 
ac

tu
at

io
n 

P
D

R

●

●
●

●
●

●
●

●

●
●

●
●

●
●

0.
1

1.
0

10
.0

32 52 72 92 112 132 152

Number of nodes

M
ea

n 
ac

tu
at

io
n 

de
la

y 
(s

)
● ● ● ● ● ● ●● ● ● ● ● ● ●

0
5

10
15

20

32 52 72 92 112 132 152

Number of nodes

R
ad

io
 d

ut
y 

cy
cl

e,
 %

 

Figure 3.17 – Performance evaluation on 2D regular grids, as a function of network size on the
x −axi s. Notice the logarithmic scale for the y −axi s on the figure representing the delay.

3.8.4 Summary

The evaluation of our proposed protocol, T-RPL, against both ContikiRPL and TinyRPL shows

that the problems highlighted in Section 3.4 are not implementation depended and a solution

is greatly needed. Moreover, all of the downward routing protocols against which we compared

showed the same inability to reliably deliver actuation commands in large networks. Our

solution, T-RPL, and Flooding, are the only protocols able to reach a PDR close to 100%,

offering different tradeoffs between reliability and energy efficiency.

3.9 Influence of Background Traffic

Finally, since our goal is to improve downward forwarding without hampering the data col-

lection performance, we study the protocols when both actuation and data collection traffic

is present. Note that all the protocols except for AODV and ORPL rely on the standard RPL

mechanism to deliver upward traffic, i.e., TM, Flooding, and T-RPL, all use the unmodified

version of ContikiRPL for data collection.

We keep the actuation traffic as before – the root sends actuation commands towards the

nodes with an inter-message interval of 10 seconds, and we add a background collection traffic

where each node sends a data packet to the root every 3 minutes. Although it might seem

that the collection traffic is much less intensive, in reality it increases with scale. Indeed, for

networks with more than 18 nodes (i.e., all the clusters from the smart city scenario), the data

collection traffic is higher than the actuation traffic.
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3.9.1 Evaluation on smart city topologies

Figure 3.18 shows the results for all the smart city clusters, under three different topology

densities, as before. If we compare the actuation PDR against the one from Fig. 3.16, where only

actuation traffic was used, we can notice that the added collection traffic only impacts AODV,

the only protocol that does not use RPL as the underlying mechanism for data collection. As

a result, the data collection traffic and the corresponding control traffic for route discovery

(RouteRequest / RouteRepl y) is overloading the network, and the protocol barely manages

to deliver any packets (be it actuation or collection) with a duty cycle close to 100%.

A similar behavior can be seen also in TM, which although delivers the actuation traffic same

as before, its collection PDR is below 25% in all clusters, for all topology densities. The high

number of retransmissions needed by TM to deliver actuation traffic overloads the network

and in consequence, the underlying RPL used for data collection fails. The network saturation

affects also the time to deliver both actuation and collection packets, as TM and AODV present

the highest delay.

Flooding also shows a sign of increased contention in the channel: the whole-network flooding

used for actuation is overloading the network, hindering the collection. In consequence,

Flooding reaches a PDR for the collection traffic only around 90% in the sparse scenario, and

between 90−100% for the intermediate density. Even in the dense scenario, the reliability of

collection does not manage to reach 100% on the linear topologies.

ORPL shows the best collection PDR among all protocols, throughout all network densities.

However, it fails at delivering actuation traffic when networks become large and dense.

T-RPL is the only protocol delivering both actuation and collection traffic with high reliability,

in all density scenarios, while having the lowest duty cycle.
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(b) Intermediate
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(c) Sparse

Figure 3.18 – Performance evaluation on all the smart city topologies, combined actuation
and data collection traffic. Note the logarithmic scale for the Delay and the Duty cycle.
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Figure 3.19 – Performance evaluation on the synthetic topologies with the intermediate
density, combined actuation and data collection traffic. Note the logarithmic scale for the
Delay and the Duty cycle.

3.9.2 Evaluation using synthetic topologies

Figure 3.19 shows the results of all the protocols over the synthetic topologies. Flooding

performs very well, having a PDR of 100% for delivering actuation traffic. However, as we

saw in the case of the smart city evaluation, its actuation forwarding overhead overloads the

network to the detriment of the data collection. Indeed, as network size increases, collection

data is increasingly dropped because of collisions and buffer saturation.

On the other hand, T-RPL maintains a PDR very close to 100% for both actuation and collec-

tion traffic, but it starts degrading faster than Flooding for actuation, and faster than ORPL

for collection. Interestingly, the reliability of T-RPL goes below that of Flooding in the largest

network.

If we look at the duty cycle results, we can notice that compared to Flooding, T-RPL does not

spend energy when it is not needed: while Flooding shows an almost constant duty cycle over

all network sizes, T-RPL increases its energy consumption only when the collection traffic

intensifies (which happens the network grows).

On the opposite side, ORPL is the best for collection, having a duty cycle close to our pro-
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3.10. Testbed Experiments

Table 3.10 – Topology metrics for Indriya testbed at various transmission power levels.

TX Power 7 (–15 dBm) 15 (–7 dBm) 31 (0 dBm)
Avg degree 7 12 14
Max degree 15 26 25
Min degree 2 4 5
Avg sum out PDR 5.3 9 12
Max sum out PDR 13 18 21
Min sum out PDR 1.2 3.2 5
Avg hops 4.3 2.9 2.5
Max hops 8 5 4
Avg path ETX 5.5 3.6 2.9
Max path ETX 10.2 6 4.9

posed solution, T-RPL, but it does not manage to deliver any actuation traffic as soon as the

neighborhood of the root exceeds the number of entries in the neighbor table.

Finally, the behavior that we saw for AODV and TM in the smart city scenario is exacerbated in

this environment, as the collection PDR drops close to 0% and duty cycle rises close to 100%

for AODV.

3.9.3 Summary

We showed in this section that no matter the topology, T-RPL offers the best tradeoff between

reliability (both for actuation and collection traffic) and energy efficiency. On the other hand,

while Flooding excels at delivering actuation traffic, though at a cost of a significantly increased

energy consumption and reduced reliability of data collection.

3.10 Testbed Experiments

So far we focused on simulation to support our findings and evaluate the proposed protocol

improvements. Simulation is a convenient tool that allows studying scalability and assess the

impact of various parameters in isolation. However, to validate the simulation results we also

ran experiments on real devices. We present in next our setup the performance evaluation of

T-RPL against our baseline, ContikiRPL and Flooding.

3.10.1 Experiments setup

We tested our protocols in the Indriya testbed [27], which consists of around 100 TelosB motes

located on three floors of an office building. We have varied the TX power to affect the topology

density, and, consequently the link quality among the nodes (the equivalent of using different

noise levels in simulation).

Table 3.10 summarizes the topology characteristics measured in Indriya at the selected three

TX power levels. We can notices that while the average number of neighbors are lower than
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what we obtained in simulation, the average number of hops and path ETX are still comparable

with the sparse and intermediate densities of the smart city networks.

We evaluated the protocols under the same metrics as before: reliability (mean actuation PDR),

delay, and duty cycle. However, unlike simulation where Cooja reported the percentage of

time the radio of the nodes was active, on real devices we relied on Energest [32], the built-in

energy profiler of Contiki to estimate the duty cycle metric. Unlike the charts we used before,

here the error bars present the minimum and the maximum of those metrics observed across

several runs, because the number of testbed runs was not enough to accurately compute the

confidence intervals.

As before, we studied the protocol performance under two traffic patterns, downward (actu-

ation) traffic only, and a combination of actuation and collection traffic. We kept the same

inter-message interval (IMI) as before: one actuation packet generated by the root with a

fixed interval of 10 seconds, and one collection packet generated by each node in the network

every 3 minutes. In addition, we also ran tests with a lower intensity of the collection traffic,

with each node sending a packet once every 10 minutes, as the collection IMI of 3 minutes

turned out to be challenging for the protocols. Indeed, in this case, in a network of 100 nodes,

a collection packet reaches the sink roughly once every two seconds.

3.10.2 Downward traffic evaluation

Figure 3.20 shows the result of the ROOT and MCAST mechanisms, as well as our main solution,

T-RPL, when compared to the baseline, ContikiRPL and Flooding. In general, the results of

the testbed experiments match well the ones from the simulations. ContikiRPL shows poor

actuation performance at all TX powers, due to the limitations of the routing and neighbor

table sizes.

Interestingly, even in much less dense scenarios, ROOT goes a long way, keeping a PDR close

to 90%, still not reaching 100%. Its less reliable 1-hop broadcast mechanism is also what

keeps T-RPL from having a perfect reliability in all the scenarios. However, T-RPL manages to

overcome the storage problem of ContikiRPL showing a PDR above 96%, while keeping a low

duty cycle (around 1%).

Again, Flooding is the only protocols that reaches 100% of PDR in all the scenarios, even in

sparser topologies. However, when TX power increases, so does the duty cycle, as in denser

topologies every broadcast disturbs and awakens more nodes.

3.10.3 Influence of background traffic

Figures 3.21 and 3.22 show the performance of the studied protocols under two intensities of

the background data collection traffic. Thanks to the inherent redundancy, the flooding-based

forwarding shows the best actuation reliability among the three protocols even under the

intense collection traffic.
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Figure 3.20 – Actuation performance in Indriya testbed with different TX powers (dBm).

Table 3.11 – Actuation PDR (%) in Indriya testbed with different TX powers (dBm)

−15 −7 0
ContikiRPL 31.68 34.25 34.32

Root 87.91 95.39 91.71
Mcast 97.50 100 99.86
T-RPL 97.41 97.23 99.00

Flooding_with_dao 98.92 100 100

Flooding is also the fastest protocol, as it requires several times less time to forward the

actuation traffic to the destination. At the downside, at high network density (high TX power)

it negatively affects data collection traffic, resulting in slightly lower values of the PDR due to

increased contention in the channel. This is also reflected in the increased collection delays

coinciding with the flooding-based actuation.

T-RPL seems to suffer from the background data traffic more than Flooding, as it does not

reach 100% of PDR, not even when the collection IMI is 10 minutes. This could be again

related to the unreliability of the ROOT mechanism, as the upward traffic can create more

collisions, and the actuation traffic will not be retransmitted by the root due to the lack of layer

two broadcast acknowledgements. Still, the duty cycle of the T-RPL is consistently lower than

that of Flooding, sometimes reaching two-fold difference.
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Figure 3.21 – Protocol performance with the combined actuation and collection traffic in
Indriya testbed with different TX powers (dBm) and the collection IMI of 3 minutes.

Table 3.12 – Actuation and collection PDR (%) in Indriya testbed with different TX powers
(dBm) and collection IMI of 3 minutes.

Actuation Collection
−15 −7 0 −15 −7 0

ContikiRPL 49.86 47.78 49.57 96.45 89.04 93.27
T-RPL 91.02 93.80 95.57 88.34 83.07 93.01
Flooding 95.15 99.71 99.85 89.65 84.44 89.80
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Figure 3.22 – Protocol performance with the combined actuation and collection traffic in
Indriya testbed with different TX powers (dBm) and the collection IMI of 10 minutes.
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Table 3.13 – Actuation and collection PDR (%) in Indriya testbed with different TX powers
(dBm) and collection IMI of 10 minutes.

Actuation Collection
−15 −7 0 −15 −7 0

ContikiRPL 48.03 45.65 46.72 99.14 98.90 98.83
T-RPL 93.15 96.63 97.92 97.63 99.15 99.19
Flooding 96.82 100 99.96 97.66 97.50 95.96

3.11 Related work

Since RPL was standardized by IETF, a lot of studies have explored its data collection perfor-

mance, topology stability, and energy efficiency [40], [50], [55], [88]. Still, the evaluation of

point-to-multipoint communication required for actuation has been marginalized.

Clausen et al. criticized the design of RPL in what concerns its approach for point-to-

multipoint communication: DAO transmission generates too much control traffic overhead,

nodes close to the root have to store routing information for too many destinations, and

elements such as the DAO timer or the DAO-ACK messages are underspecified [21]. While this

paper shows RPL‘s shortcomings, the analysis was made just by studying the RPL standard,

lacking any type of experimental evaluation.

Ko et al. compared RPL head to head with the Collection Tree Protocol (CTP) [45], the de-facto

standard routing protocol in TinyOS [57]. Even though the experiments were carried out on

an indoor testbed with only 30 nodes, the authors warn the readers that in order to support

routes to all nodes in the network, the network size must be limited. This observation matches

our findings for small clusters under low noise: nodes quickly fill their memory, not being able

to support routes to all destinations.

The neighbor table problem that we described in this chapter was also reported in [25] and

[100]. The authors observed that reaching the limit of the neighbor table size creates unde-

sirable churn in the network because some of the entries are being dropped just to be later

rediscovered with a non-accurate link quality estimation. We saw during our tests that the

excessive churn hampers the protocol performance, especially the downward forwarding, as

unneeded DAO traffic is generated, removing the routes from the old parents (by sending

No-Path DAOs) and re-establishing them through the new parent. These additional control

packets not only occupy the medium, but also increase the chances that the routing tables

are not consistent if some of the DAO packets get lost, causing partially built routes and,

consequently, drops of downward data packets.

An answer to the many problems encountered by the point-to-multipoint communication

came from Duquennoy et al., who proposed a new opportunistic routing protocol, ORPL,

that uses bitmaps and Bloom filters to represent and propagate the routing information [33].

This representation is very compact and therefore allows networks to grow larger. In our tests
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we confirm the superiority of ORPL over RPL in many cases, however, we also shown that

the current implementation of the protocol does not handle the situation when the network

becomes denser than the neighbor table threshold.

In an effort to get the advantages of both the storing and non-storing modes, researchers

have tried to mix both modes of operation in the same network even though this is not

allowed by the RPL standard. The authors of MERPL [41] proposed to use source routing (like

in the non-storing mode of RPL) for a subset of nodes that cannot be reached in a purely

storing mode due to memory limitations of the forwarders along the path. However, this

requires an assumption that the sink potentially needs to store the whole topology of its

DODAG, furthermore the evaluation was done in simulation without a realistic radio channel

model and it is unknown how this solution will perform with unreliable and/or saturated

links. Another way of mixing the modes of operation was implemented in DualMOP-RPL [56],

however that RPL modification aimed at improving interoperability of co-located RPL devices

of different capabilities, and, as a consequence, connectivity and resilience to failures, but did

not provide a solution for insufficient storage.

Low-power wireless stacks for industrial networks like WirelessHART and ISA100.11a [83],

although interesting for the scope of this work, were excluded from our study. They both use

TSCH-based data link layers and a dedicated network device, Network Manager, that collects

link statistics from the network, computes routes and the timeslot schedules for the individual

links along the routes, based on the connectivity graph. However, up to our knowledge, there

is now open implementation of the routing and scheduling functionality of the Network

Manager.

3.12 Discussion and Conclusion

RPL, the IPv6 routing protocol for LLNs, became our first choice for the smart city application

scenario described in Section 3.1.1 thanks to the built-in support for both upward and down-

ward communications. On the other hand, RPL is optimised for data collection by design, and

we show that it is not only less efficient for actuation traffic, but it is often unable to deliver

any packets to a part of the network. The reason is that the unicast downward forwarding used

by RPL needs a significant amount of memory for keeping the network state, which limits the

downward connectivity to around 50 devices on a typical hardware platform. Thus, RPL shows

its shortcomings precisely when applied to the constrained devices it was designed for.

We based our study on two RPL implementations, ContikiRPL and TinyRPL, that are sub-

stantially different in the underlying implementation choices. Still, in our tests, they both

were severely affected by the memory constraints, illustrating that the identified problem is

not implementation-specific. Hence, this work was targeted at finding a solution that would

improve downward forwarding in RPL by restoring connectivity with network devices in much

larger networks, on the same memory-constrained platform.

We introduced three techniques for dealing with the limited device memory. The first one,
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SWITCH, tries to balance the memory used by the nodes by making them search for an alterna-

tive parent that still can store the routing information. However, when all potential parents

have saturated their routing or neighbor tables, this technique alone does not help. When

routing cannot be done, another possibility to enable connectivity with all destinations is to

rely on a form of dissemination.

Therefore, the idea behind the second proposed mechanism, ROOT, comes from the obser-

vation that the root is the first node in the network to saturates its routing table, since it

has to store the next-hop address for all of the network destinations. In the cases when the

routing entry is not present and the next-hop node is not known for a data packet, the root just

broadcasts it to all its neighbors. This technique alone proved to be quite efficient: reliability

on our network topologies has improved fourfold (from 20% to 80% and more) while keeping

the same duty cycle as that of our baseline ContikiRPL.

In larger networks, the neighbors of the root may also have their memory saturated, therefore,

the third proposed mechanism, MCAST, generalizes the idea of ROOT and extends it over

multiple hops. It uses multicast forwarding to overcome areas with nodes that have exhausted

their memory. This increases both the protocol reliability and the scope of dissemination, still

keeping it limited, as the normal unicast forwarding is resumed as soon as the packet reaches

a node knowing the path to destination.

We studied the proposed mechanisms (SWITCH, ROOT, MCAST) in separation and in combina-

tion to understand their trade-offs and limitations. As a second baseline besides RPL we used

a simple flooding, representative of dissemination approaches. In general, we demonstrated

that extending the scope of data dissemination improved the protocol reliability but negatively

affected energy efficiency. In fact, the unlimited flooding provided the best reliability in most

of our tests. At the same time, on very sparse topologies Flooding is the least reliable, and it

is consistently the worst in terms of the radio duty cycle. Flooding is also too aggressive at

forwarding the actuation traffic, which hampers data collection.

Both simulation and testbed experiments showed that our ultimate solution, T-RPL, that

combines the three proposed techniques, offers the best trade-off between reliability and

energy efficiency. Even though T-RPL is not best in every single aspect, its main feature is

versatility. It manages to provide first class performance according to several metrics and

maintain this performance consistently when facing challenging scenarios without the need

for manual protocol parameter tuning, on different types of topologies, with and without

background traffic. In this sense, we have engineered it to be robust to topology extremes

in terms of structure, density and scale, and to overcome device memory constraints. We

demonstrated that the downward service of T-RPL scales up to hundreds of devices without

affecting much the upward traffic nor the battery lifetime.

We argue that the proposed techniques can be applied to any RPL implementation, providing

benefits similar to what we have shown in this work. Being layer-three techniques they are

expected to unleash their full potential when combined with the time-slotted channel hopping
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(TSCH) MAC protocol that achieves remarkable improvements at layer two [34]. Recently, an

implementation of IEEE802.15.4 TSCH was made available for Contiki, and it is a part of our

future plans to test it in combination with T-RPL.

The techniques presented in this chapter all build on top of a standard-compliant IPv6 stack

for LLNs. In the next chapter we explore possibilities of achieving even better performance in

a novel stack based on synchronous transmissions and designed without constraints imposed

by the standards.
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4 Data Prediction + Synchronous Transmissions
= Ultra-low Power Wireless Sensor Networks

On our way towards a reliable, fast and energy efficient stack supporting bidirectional connec-

tivity we dedicated the first part of this thesis to improving the point-to-multipoint (actuation)

service of a standard-compliant IoT protocol stack. We managed to alleviate its scalability

problems that had been limiting the number of reachable devices in the network to around

half a hundred on memory-constrained devices. The solution partially relied on a limited-

scope data dissemination and enabled the reachability, though, at a cost of elevated network

utilisation and energy spendings. Regarding the reliability, the proposed protocols showed

packet loss rate of around 1% in a network of more than 200 devices, bringing the actuation

component of the stack on par with the data collection one. However, even higher deliv-

ery rates are required for certain control applications, while further reduction of the energy

consumption is always favourable.

Therefore, in this chapter we approach the problem from the opposite direction. We rely on

synchronous transmissions made popular by Glossy [38] to design a novel data collection

protocol that can complement existing excellent actuation services based on Glossy (e.g.,

LWB [39], Blink [110] and sharing their remarkable properties.

Indeed, these recent (and thus non-standard) protocols were shown to be highly energy-

efficient, fast, extremely reliable and have a very modest needs for program and data memory.

In implementing the data collection service we could just reuse one of existing protocols either

based on conventional multi-path forwarding or on scheduled Glossy floods, however, as

we show next, the existing approaches were not adaptive enough to the immediate traffic

demands of the application thus requiring significant over-provisioning and, consequently,

high energy consumption. This becomes especially important for applications that generate

aperiodic traffic, for example when data prediction, introduced next, is used.

The contents of this chapter have been originally published in: Data Prediction + Synchronous Transmissions
= Ultra-low Power Wireless Sensor Networks, Timofei Istomin, Amy L. Murphy, Gian Pietro Picco, Usman Raza,
In Proceedings of the 14th ACM Conference on Embedded Networked Sensor Systems (SenSys 2016), Stanford (CA,
USA), November 2016, and have been slightly adapted for this thesis.
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Data prediction [49] has emerged as an application-level technique to reduce the amount

of data generated and transmitted by WSN nodes. In this approach, each node constructs a

mathematical model, shared by the node and the sink, to approximate future sensed data. As

long as sensor readings fall within an application-defined tolerance of the value predicted by

the model, no data is transmitted. When significant deviations occur, a new model is generated

and sent to the sink. Data prediction is particularly effective when applied to environmental

data such as light and temperature, suppressing up to 99% of message transmissions.

Recent work [89], however, has shown that this significant reduction of application messages

does not lead to analogous savings when considering the lifetime of the system as a whole;

e.g., when applying data prediction over a typical stack of CTP and BoX-MAC, only a 7-fold

lifetime was achieved. Idle listening in the MAC layer and routing overhead prohibit further

lifetime improvements.

Protocols based on synchronous transmissions neither maintain a topology nor rely on a

duty-cycled MAC, making it tempting to place synchronous transmissions at the core of the

collection aspect of the network stack.

In fact, work has been done to exploit Glossy for collection of periodic data [39, 95], the traffic

resulting from data prediction is aperiodic, making these approaches inapplicable.

Indeed, inspection of the traffic profiles induced by data prediction (Section 4.1) reveals long

periods of inactivity when models accurately predict the data; occasionally, these models must

be updated and are transmitted by nodes to the sink. However, the time interval between

updates and the number of updates to be communicated concurrently are irregular, not

known globally, and ultimately unpredictable.

These observations lead to two key requirements (Section 4.2) for our new stack, CRYSTAL1.

First, when there is nothing to transmit, the network overhead must be minimized. Second,

model updates themselves must be delivered in both a timely and reliable manner despite

their unpredictable nature in terms of distribution over time and number of concurrent

transmissions.

CRYSTAL approaches these conflicting requirements by using Glossy network flooding as a

primitive to build reliable data collection with data prediction at the topmost layer. CRYSTAL

inherits the aforementioned properties of Glossy to broadcast a single message, and offers

a simple but effective mechanism to provide reliability of the unpredictable and possibly

concurrent model transmissions arising from data prediction. The core of CRYSTAL is a

periodic, flexible sequence of synchronized slots organized in pairs, providing a network-wide

transport protocol of sorts. In the first slot, all nodes with data to transmit send it by initiating a

Glossy flood. In the second slot, it is the sink that initiates a Glossy flood, acknowledging which

packet it has received, if any. Due to the capture effect [61], a property of IEEE 802.15.4 radios,

the sink is highly likely to receive one of the packets even when there are multiple, concurrent

1Crystal balls are often associated with the ability to predict the future; further, a crystal is a beautiful, glossy
object.
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transmitters. The alternate execution of these two slots is repeated continuously inside a

reporting interval; a distributed termination policy allows all network nodes to determine

when the transmission sequence is complete, i.e., all data has been received by the sink, and

nodes can safely go to sleep.

As CRYSTAL relies on Glossy, we offer a concise primer about it (Section 4.3) followed by

a complete CRYSTAL protocol description (Section 4.4). An analytical model (Section 4.5)

provides the foundation to analyze the energy consumption of CRYSTAL. An extensive set of

90-node experiments in the Indriya testbed [27] enable us to characterize the operation of

CRYSTAL (Section 4.6) by determining experimentally a few key parameters that determine the

accuracy of the model, allowing us to identify a good configuration and experimentally validate

the model itself. Finally, we close the circle by using both our model and our implementation of

CRYSTAL to determine the duty cycle it can achieve on 7 publicly-available real-world datasets

(Section 4.7). We confirm our claim that CRYSTAL achieves per-mille duty cycle and lower,

and show experimentally that this translates into improvements up to 80x over the CTP +

BoX-MAC baseline, therefore bringing low energy consumption to levels hitherto possible

only via specialized hardware.

We end the chapter by surveying related work (Section 4.8), followed by brief concluding

remarks (Section 4.9).

4.1 Data Prediction: Network Implications

Data prediction enables the suppression of a remarkable number of periodic data reports,

greatly reducing the need for communication in WSNs and improving significantly their

lifetime. Nevertheless, the potential benefits brought by this application-level technique can

be reaped only to some extent when applied to mainstream network stacks; these are designed

for periodic traffic and therefore are ill-suited for the aperiodic, sparse traffic induced by

data prediction. In this section we discuss qualitatively and quantitatively these issues, for a

specific data prediction technique.

4.1.1 Derivative-Based Prediction

Several prediction techniques exist [49], with varying degrees of complexity and accuracy. In

this work, we adopt Derivative Based Prediction (DBP) [89], in which each node constructs

a linear model to predict the data. The model is formed by taking a sequence of m sensor

values and approximating the slope (the derivative) of the data by a line formed by two points,

respectively the average of the initial and final l values in the sequence. This model is used to

predict the subsequent sensor values. As long as the actual, sensed value is within a certain

value tolerance of the predicted value, no data is sent. Instead, if the sensed value falls outside

the value tolerance for a given time tolerance, a new model is generated from the last m sensed

values and sent to the sink.
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We choose DBP as it is the most recent in the literature, shown to perform equivalently or

better than the state of the art. Further, it is the only one that has been evaluated on a real WSN

platform and for which the interplay with the underlying network stack has been evaluated.

As summarized next, this constitutes the motivation for the work presented in this chapter.

4.1.2 Data Prediction on a Staple WSN Stack

The authors of [89] report message suppression rates up to 99% w.r.t. periodic collection, based

on several publicly-available datasets we also use here for comparison; they are summarized

in Table 4.1 and discussed in Section 4.1.3.

Nevertheless, in the same work the authors also show that the savings on the system as a whole

are not as significant when the staple WSN stack constituted by CTP [45] and BoX-MAC [70]

is used. The maximum improvement is seen by exploiting the characteristics of the sparse

traffic induced by data prediction inside the configuration of the underlying network stack.

Specifically, the infrequent transmissions generated by model updates enable in BoX-MAC the

use of a sleep interval much longer than in the periodic case. This sleep interval can be further

increased if, at the same time, a much longer maximum beaconing interval is used in CTP.

Differently from [89], in this work we use the Indriya testbed. Therefore, to establish a baseline

for CRYSTAL, we apply the same experimental methodology and datasets in Indriya, validating

the results of [89] in this setting. Figure 4.1 shows results for the INDOOR temperature dataset.

The lowest duty cycle DC = 4.778% for periodic reporting is achieved with a MAC sleep

interval of 500 ms, while data prediction yields the lowest DC = 1.146% (4.17x improvement)

with a sleep interval of 2.5 s. The cross-layer configuration of data prediction, MAC, and

routing achieves the lowest DC = 0.743% (6.4x improvement) with a sleep interval of 3 s and

a maximum beaconing interval of 4000 s, instead of the default 500 s. Both data prediction

configurations achieve 100% data yield, thanks to reduced contention, while the plain periodic

configuration achieves 98.3%.

●

●

● ● ● ● ● ●

2.5

5.0

7.5

1000 2000 3000 4000
Sleep interval (ms)

D
ut

y 
C

yc
le

 (
%

)

●●● DBP, 1x
DBP, 8x
No DBP, 1x

Figure 4.1 – Exploring the best configuration for CTP, BoX-MAC, and DBP-based data predic-
tion in Indriya.

The sparse traffic induced by data prediction implies that energy consumption is dominated
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Table 4.1 – Datasets characteristics.

Application & Dataset Epoch Nodes Samples Description

INDOOR

temperature 30 s 54 2,303,255
A 36-day dataset from an Intel Berkeley Research Lab WSN de-
ployment; used by many papers on data prediction, e.g., [99, 80].

humidity 30 s 54 2,303,255
light 30 s 54 2,303,255

SOIL
air temperature 10 min. 10 225,360 A 225-day dataset from the Life Under Your Feet project [63]; the

WSN is deployed in forests to study soil properties.soil temperature 10 min. 4 77,904

TUNNEL light 30 s 40 5,414,400
The 47-day dataset used in the WSN-based closed-loop control
system for road tunnel lighting described in [16].

WATER chlorine 5 min. 166 715,460
A dataset from a sensor network monitoring a water distribution
system, simulated via the EPANET 2.0 [35] tool, used in several
previous works (e.g., [81, 8]).

Table 4.2 – Data prediction applied to the INDOOR temperature dataset.

updates sent in a given epoch
TOT 0–1 ≥ 2 0 1 2 3 4 5 6 7 8 9 10 11,12 13

epoch occurrences 103K 99.8K 2.9K 84.3K 15.5K 2.2K 432 131 43 21 13 5 3 4 0 1
% over #epochs 100 97.2 2.8 82.1 15.1 2.2 0.4 0.1 0.04 0.02 0.01 0.005 0.003 0.004 0 0.001

#updates 22.3K 15.5K 6.8K N/A 15.5K 4.4K 1.3K 524 215 126 91 40 27 40 0 13
% over #updates 100 69.4 30.6 N/A 69.4 19.9 5.8 2.3 1 0.6 0.4 0.2 0.1 0.2 0 0.1

by network overhead. In the best CTP/DBP configuration, 65% of the energy is spent in idle

listening, 25% in transmitting beacons for tree maintenance, and only 10% in transmitting

model updates. This observation motivates the approach presented in this chapter that, based

on synchronous transmissions, entirely removes the need for a duty-cycling MAC and the

maintenance of a routing topology.

4.1.3 Traffic Patterns with Data Prediction

We mentioned that data prediction induces a very sparse traffic w.r.t. periodic collection.

We now quantify this statement based on the same publicly-available datasets used in [89],

concisely summarized in Table 4.1.

Without data prediction, each WSN node reports a sample during each reporting period,

hereafter called epoch. Epochs are not synchronized; nevertheless, if we were to discretize

time based on their duration, each epoch would “see” a number of messages equal to the

number of nodes, e.g., 54 in the INDOOR dataset. The message suppression achieved by data

prediction in DBP dramatically changes this behavior, as shown in Figure 4.2. Discretizing

the model updates in our traces over the epoch size shows that the vast majority of epochs

contains no message transmission (Figure 4.2a); further, epochs with at most one message

transmission are common in several datasets (Figure 4.2c). On the other hand, epochs with

multiple message transmissions in the same epoch do exist, although their frequency depends

on the phenomena at hand. For instance, Figure 4.2a shows that most datasets show a sort

of “exponential decay”, where the maximum number of transmissions in the same epoch is

between 2 (SOIL temperature) and 19 (INDOOR light). The only exception is the WATER dataset

(Figure 4.2b) where, due to the dynamics of the underlying physical phenomena sensed and

the long epoch duration of 5 minutes, i) a negligible number of epochs contain at most one
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update, and ii) up to 38 message transmissions in the same epoch are observed.

Table 4.2 offers a closer look at the number of epochs with multiple updates for the INDOOR

temperature dataset, the one analyzed in-depth in [89]. The table also illustrates the number

of updates occurring with some other in the same epoch—an important factor for protocol

design, as discussed next. For instance, the table shows that although only 2.80% of the epochs

see u > 2 updates, these “concurrent” updates are 30.57% of all those to be disseminated.

Figure 4.2c provides a similar view for all datasets, showing the fraction of updates that are

not isolated in an epoch. Again, the WATER dataset is the exception: almost all updates occur

concurrently with at least one other update.

4.2 Crystal: Design Rationale

The quantitative considerations in Section 4.1.2–4.1.3 allow us to distill the goals that inspired

the design of CRYSTAL:

Goal 1. Minimal network overhead in the control plane. An obvious goal of our design is

to harvest the potential gains offered by the message suppression of data prediction, which

drastically reduces data transmissions. As discussed in Section 4.1.3, this creates a traffic

pattern with no message transmissions during the majority of reporting epochs. Section 4.1.2

shows this clashes with the operation of a perfectly tuned, mainstream WSN stack due to

control overhead.

Goal 2. Timely and reliable dissemination of unpredictable model updates. We mentioned

that the distribution of model updates across epochs is not known a priori; at the beginning

of an epoch we cannot know if there will be several updates or none. Still, in the former

case, applications demand that all pending updates are disseminated within the epoch in

which they were generated. Deferring the update to a later epoch or, worse, losing an update,

causes the sink to become unaware of changes in the actual data sensed at the nodes. This is

exacerbated if the network is part of a control system, whose actions may be delayed or even

incorrect.

Our solution to tackle these goals is a network stack based on synchronous transmissions

that, requiring neither a MAC layer nor topology maintenance, is in line with Goal 1. The

fundamental communication primitive is network-wide flooding, performed by exploiting

physical properties of wireless communication (i.e., constructive interference and the capture

effect [61]) yielding rapid and reliable packet dissemination, in line with Goal 2.

Nevertheless, this choice has consequences. Synchronous transmissions require all nodes to

be simultaneously awake to help disseminate the flooded packet. For us, this requires a global

schedule to ensure nodes are awake when an update must be disseminated. However, this

schedule must consider that Goal 1 and Goal 2 pose conflicting concerns. On one hand, the

desire to minimize control overhead (Goal 1) implies that nodes should normally be awake

as briefly as possible during an epoch, as in most cases no transmissions occur. This argues for
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(b) Percentage of epochs in which a given number of concurrent updates occur (only WATER).

Application & Dataset
%epochs

with u ≤ 1
%updates

not isolated

INDOOR

temperature 97.19 30.57
humidity 95.84 36.32

light 70.19 84.13

SOIL
air temperature 84.51 55.52
soil temperature 99.94 3.42

TUNNEL light 99.00 20.77
WATER chlorine 0.34 99.99

(c) Percentage of epochs where at most one update occurs and, dually, fraction of updates occurring
with others in a given epoch.

Figure 4.2 – Distribution of model updates over epochs, in the datasets of Table 4.1.
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a very short schedule. At the other extreme, the need for timely and reliable dissemination

of unpredictable model updates (Goal 2) demands that nodes with a pending update have

enough opportunities to transmit and recover from rare packet loss within a single epoch. This

argues for a long-enough schedule accommodating all nodes with updates, whose number or

even presence is impossible to ascertain without (very expensive) global knowledge.

CRYSTAL reconciles these conflicting goals with the mechanics of synchronous transmissions

by essentially providing a network-wide transport protocol atop Glossy. In a nutshell, nodes

with data simultaneously attempt to transmit their updates. After each transmission, the

sink must acknowledge which packet it has received, if any. When all transmissions have

completed, the network returns to sleep. Before going into the details of CRYSTAL in Section 4.4,

we offer a concise primer on synchronous transmissions.

4.3 Synchronous Transmissions

Simply put, Glossy offers network-wide packet flooding and high-accuracy synchronization.

In Glossy, a single node initiates a flood with a single transmission. Neighboring nodes

receive it and immediately retransmit it, with their neighbors doing the same. While such

a straightforward approach seems to lead to an inordinate number of collisions with many

nodes transmitting simultaneously, Glossy observes that such concurrent transmissions need

not be negative. In fact, they can be exploited due to a phenomenon of IEEE 802.15.4 radios

called the capture effect. In these radios, a node can receive a packet despite interference from

other transmitters when the signal of that packet is stronger than other signals or when the

node begins to receive the packet sufficiently earlier than other signals. Further, if multiple

transmissions initiate with a tiny temporal difference (smaller than 0.5 µs), the transmissions

constructively interfere, increasing the probability of reception.

Glossy builds on these two phenomena, carefully controlling the timing of retransmissions

to encourage constructive interference and to reliably flood a packet from a single initiator

throughout the network. Experiments show that, with a single initiator, a Glossy flood reaches

all network nodes with reliability >99% in few milliseconds, depending on the configuration

parameters. To increase the flooding reliability, Glossy allows nodes to retransmit packets

multiple times, denoting this with N .

4.4 Crystal: Protocol Description

We recall that our goals are to keep nodes asleep as much as possible and to disseminate the

model updates in a timely, reliable fashion. CRYSTAL accomplishes these goals by using Glossy

for rapid, highly reliable flooding. CRYSTAL itself is periodic, with the epoch determining

when communication is possible toward the sink. Each epoch is formed by a very short active

portion in which all nodes participate in data collection, and a much longer sleep portion

when nodes consume very little power. The intricacies of CRYSTAL lie in how we guarantee that
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Table 4.3 – CRYSTAL parameters.

Parameter Description
E Epoch duration (reporting period)

WS , WT , WA Glossy maximum listening interval (slot duration) for the
S, T, A phases

NS , NT , NA Number of Glossy transmissions in S, T, A phases
G Guard time before the S, T, A slots
R Number of consecutive silent T slots triggering the termi-

nation of the active portion of the epoch at the sink
Y Number of consecutive TA pairs with zero packets caus-

ing a network node without data go to sleep
Z Number of consecutive missing acknowledgements caus-

ing a network node with data go to sleep

all updates are reliably received during the active portion using only Glossy transmissions.

In a nutshell. A CRYSTAL epoch starts with a synchronizing Glossy transmission from the

sink, ensuring all nodes are temporally aligned and ready to participate in data collection.

Subsequently, any node with a data packet to send transmits it with a Glossy flood. Due to

the capture effect, at least one of these packets is highly likely to reach the sink, which then

sends an acknowledgement via a Glossy flood, announcing the ID of the packet it received.

With high reliability, all senders receive this acknowledgement, and if their data packet was

not acknowledged, they simply try again by transmitting data then listening for the acknowl-

edgement. This repeats until all transmitting nodes have received an acknowledgement for

their data, then all nodes go to sleep.

S T A T A

tref guard

ton,S

WS

data TX/RX
radio ON (no activity)

WT

ton,T ton,A ton,T

WA

Figure 4.3 – The active part of a sample CRYSTAL epoch with one sender (u = 1) whose data is
immediately acknowledged by the sink. For simplicity, R = 1.

An example. Figure 4.3 offers a sample of the active portion of a single CRYSTAL epoch, shown

as a sequence of Glossy transmissions. Table 4.3 offers the key parameters. The first slot, S,

contains a synchronization message from the sink, and serves the purpose of preparing the

network nodes for communication following the previous, long sleep interval. This is followed

by some number of TA pairs in which T represents a data transmission slot for use by nodes

transmitting data and A is an acknowledgement slot for use by the sink. The number of TA

pairs in each epoch varies depending on the number of nodes with data to transmit and the
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desired reliability. To identify the end of the active portion of the epoch, we define a distributed

termination policy, detailed later. Note that although we refer to this as the active portion,

when a node is not involved in communication (either receiving or transmitting) its radio is

off. Slots have a duration W , defining the maximum interval a node listens on the channel to

detect an ongoing Glossy flood. When the latter occurs, it normally completes before the end

of W , as seen by comparing the two T slots in Figure 4.3.

Detailing TA. Inside a single TA pair, all nodes with data to send become Glossy initiators,

meaning they initiate floods in the T slot, which are then carried out concurrently throughout

the network. All non-initiators act as forwarders. Although Glossy is a flooding protocol, we

focus on packet reception at the sink, as our goal is data collection. Glossy was designed to work

with only a single initiator, but our experiments in Section 4.6 show that, due to the capture

effect, one of the concurrent transmissions reaches the sink with a probability close to 1. In this

case, the T slot is successful, and the sink floods a positive acknowledgement in the next A slot.

If, instead, the sink does not receive a packet, it floods a negative acknowledgement. Turning

our attention back to the network, if the positive acknowledgement reaches the corresponding

sender, its data is known to have been received at the sink and the sender will not attempt

retransmission.

Distributed termination. All TA pairs follow this structure with the expectation that, in each

subsequent TA, there will be fewer initiators until, eventually, some number of consecutive T

slots have no data, triggering termination of the active portion of the epoch. We call these TA

pairs without data silent pairs.

The number R of consecutive silent pairs is key in determining termination, based on three

conditions. First, the sink goes to sleep after R consecutive T slots without data. Therefore,

if a data packet did not get through in an earlier T slot, a node has R −1 additional attempts

to transmit before the sink stops listening. Increasing R decreases the probability of falsely

detecting the end of the transmissions, at the expense of energy consumption.

To indicate the end of the active part of the epoch, the sink piggybacks the sleep command in

its last negative acknowledgement by setting its sleep bit to 1. When such an acknowledgement

arrives to a network node, it goes to sleep immediately, as there is no reason to stay awake

when the sink is already sleeping. This is the second termination condition.

While these two conditions are nearly always sufficient, due to the occasional loss of acknowl-

edgements we cannot rely on the second condition alone to put network nodes to sleep.

Therefore, we define a third condition, used at the network nodes, that i) puts a node to sleep

if it is mistakenly awake due to the loss of the last acknowledgement (the one carrying the

sleep bit), but ii) simultaneously keeps a node awake for some additional time which is helpful

in noisy conditions when it is unable to detect activity in the network due to high interference.

We distinguish whether the node still has unacknowledged data to send. If yes, it goes to

sleep when it misses Z acknowledgements from the sink in a row. In this case, the node’s

data might remain undelivered during the epoch, however transmission can be attempted
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again in the next epoch. Alternatively, if the node has no unacknowledged messages, it goes to

sleep only when it detects Y consecutive TA pairs with zero packets, i.e., neither data in T nor

acknowledgement in A.

Intuitively, this third condition expresses the fact that a node “keeps trying” until the sink is

likely asleep or inaccessible and there are no nodes around trying to deliver their packets. The

last part of the condition increases overall reliability in situations when the node’s neighbors

have better connectivity and, therefore, might be still receiving sink’s acknowledgements. In

this case, the current node will stay awake to serve as a forwarder as long as needed.

Synchronization. It is critical that CRYSTAL ensures all nodes are properly aligned to wake up

and participate in data collection. This is particularly challenging in applications with long

epochs, e.g., WATER. CRYSTAL accomplishes time alignment by beginning the epoch with a

Glossy synchronizing packet and prepending this S slot with a sufficiently long guard time

G to compensate for clock drift. For applications with long epochs, or systems composed of

nodes with significant clock drift, this approach can lead to large guard times and increased

consumption. Therefore, our CRYSTAL implementation includes a mechanism to learn the

clock skew at each node, and adjust the wake-up period accordingly. While this works remark-

ably well, guards are still needed due to imperfect estimation and changes in clock skew over

time. In addition to a guard at the beginning of the epoch, each T and A slot also includes a

guard time; this compensates for clock drift should the synchronization packet be lost.

All nodes expect to receive the synchronizing Glossy message from the sink within G +WS .

By starting the CRYSTAL epoch with a synchronization packet from the sink, we expect to

spread with high probability the correct reference start time tr e f to all nodes. Nevertheless,

our implementation allows both G and WS to grow with the number of consecutive losses of

this synchronization packet.

Further, if the number of consecutive transmitters is large, the TA sequence can become

similarly long, increasing the risk that nodes lose synchronization in the middle. To combat

this, CRYSTAL makes every A slot a synchronizing Glossy slot, bringing all nodes back in line.

Glossy reliability. Inside a single flood, the Glossy protocol allows packets to be repeated

a variable number of times N . A higher number of repetitions increases reliability but also

power consumption, as we show in Section 4.6. CRYSTAL leaves the number of repetitions

for each slot type, NS , NT , and NA , to be configured to meet application requirements. For

instance, Figure 4.3 shows the transmission in S longer than the transmissions in the T and

A slots, a choice ensuring that the synchronization message at the beginning of the epoch is

more reliable than the other transmissions, as discussed in Section 4.6.3.

4.5 Analytical Model

We derive an analytical model for CRYSTAL, estimating the average, network-wide radio-on

time Ton within an epoch, a key constituent to estimate duty cycle and therefore lifetime. We
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leverage this model in Section 4.7, to compute accurately the performance of CRYSTAL over the

data profiles described in Section 4.1.3 and elicit the associated tradeoffs, without replaying

month-long datasets. We validate the model in Section 4.6.5, based on the key parameters

we measure in the rest of Section 4.6. The validation in Section 4.6.5 shows that the model

we present in this section is very accurate. From Section 4.4, it is evident that Ton depends on

the number u of concurrent updates, as this determines the minimum number of TA pairs

necessary for their dissemination. We estimate Ton(u) in two ways: an upper bound that uses

only CRYSTAL’s configuration parameters, and a much more accurate model that requires a

few measurements of some constituents of CRYSTAL.

Upper bound. The average radio-on time across the entire network is (over)approximated by:

Ton(u) =W ′
S + (u +R)(W ′

T +W ′
A) (4.1)

where W ′
x =G+Wx is the slot duration in Glossy augmented by the short guard time discussed

in Section 4.4, and R is the number of silent TA pairs. The equation above is a strict upper

bound for Ton because, when an actual transmission takes place in a slot, the actual average

per-slot radio-on time is ton < W ′. Knowing this value ton for each slot type enables us to

derive a much more accurate estimate, discussed next. Eq. (4.1) assumes perfectly reliable

dissemination, potentially underestimating Ton when retransmissions occur. However, as

discussed next and shown empirically in Section 4.6.4, retransmissions are extremely rare; the

underestimation caused by neglecting them is amply overcome by the overestimation caused

by considering W ′ in place of ton.

Model. Determining the values of ton for each slot type, hereafter referred to as ton,S, ton,T ,

ton,A, is necessary to obtain accurate estimates of Ton(u). The values of ton,S and ton,A can be

safely assumed constant w.r.t. u, as transmission in the S and A slots is performed only by

the sink; they are effectively a normal Glossy dissemination. This does not hold for T slots, in

which multiple update senders may compete, and for which the value of u affects the radio-on

time ton,T (u), as shown experimentally in Section 4.6.2.

Interestingly, the value of ton (regardless of the slot type) also implicitly depends on W . Indeed,

while the strict inequality ton < W ′ holds on average, this is not true for a single update

transmission; if the expected number of packets N is not received, a node remains awake for

the entire slot. If we know the fraction σ of nodes that complete their flood before the end of

the slot, and the average time t̂on it takes, we can formalize the dependency of ton on W as:

ton =σt̂on + (1−σ)W ′ (4.2)

Empirical knowledge of all these parameters, which we acquire in Section 4.6.2, allows us to

determine an accurate estimate of the average per-epoch radio-on time as:

Ton(u) = ton,S +uρ(ton,T (u)+ ton,A)+R(W ′
T + ton,A) (4.3)
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where ρ is the average number of TA pairs required to successfully deliver an update to the

sink. This parameter also implicitly defines the probability that an update is successfully

disseminated in a single pair, easily computed as 1
ρ = pT p A , where pT is the probability that

the update is received at the sink in a T slot, and p A the probability that the acknowledgement

sent by the sink is received in the subsequent A slot. In practice, as we show in Section 4.6.2,

these probabilities i) depend on the number N of Glossy retransmissions ii) are both very high,

causing ρ to be very small.

4.6 Characterization

We have implemented CRYSTAL atop the original publicly-available version of Glossy based

on ContikiOS for the TMote Sky platform. In this section, we analyze the operation of our

CRYSTAL implementation with the double goal of identifying and quantifying the main factors

affecting its performance, as well as of measuring the parameters necessary to inform the

model in Eq. (4.3).

After describing our experimental setup (Section 4.6.1) we focus on the mechanics of the S,

T, A slots (Section 4.6.2). We then use this information to identify the best configuration for

running CRYSTAL in the Indriya testbed (Section 4.6.3) and use it in Section 4.6.4 to characterize

the performance of CRYSTAL at the level of a single round of execution within an epoch. This

data is used in Section 4.6.5 to validate our model, which is then exploited in Section 4.7 to

derive duty cycle estimates based on the datasets of Section 4.1.3.

4.6.1 Experimental Setup

We ran our experiments in the Indriya testbed that, at that time of writing, had 88–92 opera-

tional nodes. We generated two topologies with different transmit power levels, 0 dBm (power

31) and -15 dBm (power 7), yielding an average network diameter of 4 and 7 hops, respectively.

We tested CRYSTAL during the night and also during the day, when the interference from

Wi-Fi networks is significantly higher. We chose two channels, 20 and 26, which are believed

to have respectively high and low influence from Wi-Fi. To assess the actual interference

during the experiments, our CRYSTAL test application sampled and logged noise (RSSI) in the

inactive portion of each epoch. Additionally, we ran regular, isolated network connectivity

tests probing all links individually, without any concurrent transmissions. This identified two

nodes (71 and 83) unpredictably losing connectivity, which we removed from our analysis.

CRYSTAL showed very similar performance on both channels during the night runs; however,

the daytime results were inconsistent and difficult to assess. For example, while the majority

of tests on channel 20 during the day yielded perfect reliability as in nighttime runs, in some

others the packets from a handful of nodes were sometimes lost on the way to the sink.

For instance, in one run 5 nodes showed a packet loss between 25% and 40% (Figure 4.4b).

Closer inspection revealed that these nodes were exposed to an average noise of around
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−70 dBm. Although we conjecture that the resilience built into CRYSTAL is an asset in these

harsh conditions, a full analysis and comparison w.r.t. the state of the art requires the ability to

control and reproduce interference patterns. Therefore, in this chapter we report the results

only from night runs on channel 26. This is not to say that these experiments are interference-

free: the average noise is between −90 and −95 dBm, while the maximum noise is often above

−70 dBm and as high as −30 dBm for several nodes. This holds for both channel 20 and 26,

despite the fact that the latter is often purported to be interference-free. In the next chapter

we study in detail how strong interference affects CRYSTAL.
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Figure 4.4 – Examples of Crystal runs on a busy channel 20 during the day with inconsistent
results. PDR (top) and average/maximum noise (bottom) registered for each node.

As for the scheduling of transmissions, for every test a unique table of nodes that should

send packets in any given epoch was randomly generated and “replayed” cyclically by the

nodes. Logging was performed via serial line during the inactive portion of an epoch. The logs

contained information about transmission and reception of every message, and other vital

information for each node and epoch. Node-level statistics (over all epochs) and network-wide

ones (over all epochs and nodes) have been calculated offline from the logs.
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4.6.2 Dissecting a Crystal Slot

Knowledge about key metrics of CRYSTAL slot types is fundamental to inform the model we

defined in Section 4.5, enabling a correct configuration of the system as well as accurate duty

cycle estimates given an update traffic profile.

Setup. To measure these parameters, we run specialized “benchmarks”, where each slot type is

measured in isolation. We used S phases only (pure Glossy) or a combination of S and a single

TA pair. We used E = 250 ms to increase the sampling rate. We set W = 20 ms to ensure that

all floods have enough time to complete. The results we show here are based on 1500 epochs

for each individual point on the plot.
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Figure 4.6 – S phase: per-slot radio-on time, t̂on,S. Note the different y-axis scale.

S and A phases. These phases are pure Glossy disseminations, as they are always performed

by the sink. Figure 4.5 shows that the packet delivery rate (PDR) of the S phase, defined as the

percentage of nodes that correctly receive the packet sent by the sink; PDR is very high, in line

with results reported in the literature [38, 39, 59]. Furthermore, Figure 4.5 also confirms that,

given a value of N , the corresponding reliability decreases as the network diameter increases,

and is therefore lower in the low power case.

Figure 4.6 shows the per-slot radio-on time t̂on,S, computed only for the fraction σS of nodes

receiving all N Glossy transmissions. t̂on,S is crucial to dimension properly the slot duration

WS ; if the latter is shorter than t̂on,S, the Glossy dissemination may not reach distant nodes.
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Therefore, WS should be larger than the maximum value of t̂on,S, shown in Figure 4.6a.

On the other hand, WS cannot be too large. Even if the disseminated packet is received with

high probability (as shown in Figure 4.5), some of the individual N transmissions may be lost,

causing the corresponding nodes to stay awake for the entire WS , wasting energy. As shown in

Figure 4.7a, the fraction σS of nodes for which this does not happen (i.e., those for which t̂on,S

is computed) decreases as N increases and is lower for the larger-diameter low power case,

because both these factors increase the chance of individual packet losses. The average value

of t̂on,S, shown in Figure 4.6b, is relevant for computing the overall ton,S according to Eq. (4.2).
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Figure 4.7 – Fraction of nodes completing transmission within the slot duration W . Note the
different scale on both axes.

The results above hold also for A phases, as their mechanics is exactly the same, apart from the

different packet size, 8 B for S vs. 9 B for A. This yields a minimal difference on the radio-on

time: on average, t̂on,A = t̂on,S ×1.020.

T phase. Unlike S and A, the T phase behaves as in Glossy only if u = 1, i.e., there is only

one sender in the network. Otherwise, if u ≥ 2, multiple senders act as Glossy initiators, and

compete during dissemination; as described in Section 4.3, the capture effect determines

which packet among those concurrently broadcast is received, if any.

This mode of dissemination is inherently more unreliable than standard Glossy; however,

the built-in redundancy inherited from the latter still yields a rather high probability that

at least one update among those concurrently sent in the T slot is correctly received at all

nodes. Figure 4.8b shows this probability of success, computed across the entire network, as a

function of N and the number of concurrent updates u. The chart shows that, as the number

of concurrent updates increases from u = 1, competition among senders causes transmissions

to increasingly fail—up to a given point. As u increases, in fact, the probability that a node is

close to one of the senders, and therefore receives its packet with high probability, increases.

The chart also includes curves with N = 1 that, not surprisingly, provides the worst reliability

especially in the low power case. This value was not included in the analysis of the S and A

phases; these are used for time synchronization, and in this case Glossy requires N ≥ 2.
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Figure 4.8 – T phase: average probability of successful transmission. Note the different y-axis
scale.

0.00

0.25

0.50

0.75

1.00

0.900 0.925 0.950 0.975 1.000
Success rate of T phase

F
ra

ct
io

n 
of

 n
od

es
, C

C
D

F

U
1
2

5
10

15
20

N 1 2 3 4

(a) Low power (-15 dBm).

0.00

0.25

0.50

0.75

1.00

0.900 0.925 0.950 0.975 1.000
Success rate of T phase

F
ra

ct
io

n 
of

 n
od

es
, C

C
D

F

U
1
2

5
10

15
20

N 1 2 3

(b) High power (0 dBm).

0.00

0.25

0.50

0.75

1.00

0.900 0.925 0.950 0.975 1.000
Success rate of T phase

F
ra

ct
io

n 
of

 n
od

es
, C

C
D

F

N 1 2 3 4

(c) Low power (-15 dBm), aggregated.
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Figure 4.9 – CCDF for Figure 4.8b, individually for each value of U (top) and aggregated across
all values of U (bottom).
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On the other hand, the T phase in CRYSTAL is devoted to communication towards the sink. The

probability of successful transmission to the sink in our experiments, shown in Figure 4.8a,

is always at 100% except for the configuration with low power and N = 1. The reader may be

led to think that this is the result of conveniently selecting the sink node. However, Figure 4.9

shows that a significant fraction of nodes similarly enjoy 100% reception rate when chosen

as a sink. The chart shows the complementary cumulative distribution function (CCDF) of

the probability of success per node (over all values of u), based on the same data shown in

Figure 4.8b; effectively, this allows us to compute the probability of success for each node, in

case it were chosen as the sink. For N = 2 and high power, in the worst case (u = 15) 43% of

the nodes have perfect reception rates, and 53% have > 99.9%; for N = 3 at low power, 61% of

the nodes have 100% reception. This confirms that our choice of sink is not biased.
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Figure 4.10 – T phase: per-slot radio-on time, t̂on,T .

Finally, Figures 4.10 and 4.7b show the average values of t̂on,T and σT for the T phase. Fig-

ure 4.10b shows that the value of t̂on,T decreases rapidly as concurrent updates increase from

u = 1; this is due to the increased likelihood of finding a closer sender, which therefore yields

a shorter radio-on time. As u further increases, however, the density of senders increases

and therefore the likelihood that their transmissions result in a packet loss. Since, as already

mentioned, in Glossy a node remains awake (up to the end of W ) until N transmissions of the

same packets have been received, the increase in packet loss yields an increase in the average

and, especially, maximum values of t̂on,T . This phenomenon is mirrored by the linear decrease

in the fraction σT of nodes that complete dissemination within W , shown in Figure 4.7b.

4.6.3 Configuring Crystal

The results in Section 4.6.2 enable us to determine a reasonable configuration for CRYSTAL, i.e.,

one that strikes an appropriate balance between reliability and energy consumption. We later

use this configuration, shown in Table 4.4, to further analyze the inner characteristics of CRYS-

TAL and its overall performance against our datasets. We distinguish the configuration based
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on the power, as we have seen that this is the parameter that most affects the configuration.

Slot configuration: High power. N is the critical parameter affecting reliability, as already

discussed. For the S and A phases, Figure 4.5 shows that N = 3 provides 99.99% reliability.

Larger values further approach perfect reliability but induce higher energy costs, due to higher

radio-on time t̂on,S (Figure 4.6) and fraction 1−σS of nodes remaining awake for the entire

slot (Figure 4.7a). Therefore, N = 3 is a good tradeoff for both S and A. As for T, similar

considerations motivate NT = 2. In principle, NT = 1 could further reduce t̂on,T and energy

consumption; however, this would make sink selection more critical, as shown in Figure 4.9.

The slot duration W should be chosen for each phase by looking at the maximum radio-

on time ton. For the S and A phases, a value N = 3 implies W ≥ 7 ms (Figure 4.6a). We

use this value for WA , while we use a higher WS = 10 ms, given that the S phase is crucial

for synchronization. In any case, unlike for the T and A phases, the impact of WS on duty

cycle is limited, given that i) the S phase occurs less frequently than T and A, for u > 0, and

ii) σS > 99% for NS = 3 (Figure 4.7a), therefore the impact of WS (which comes into play only

for the remaning 1% of the S phases) is negligible. A similar reasoning for the T phase, based

on Figure 4.10a and the chosen NT = 2, yields WT = 5 ms.

Slot configuration: Low power. The configuration for low power is determined based on

analogous reasoning. For the S and A phases, we choose N = 4. Although it does not yield reli-

ability as good as its high power counterpart (Figure 4.5), higher values of N would significantly

increase energy consumption due to the dissemination time t̂on. For the T phase, NT = 1 is

not an option, as it does not guarantee reliable transmission to the sink (Figure 4.8a). Our

choice of NT = 3 approaches the overall reliability of the high power counterpart (Figure 4.8b)

and limits the impact of the sink placement.

Table 4.4 – CRYSTAL configuration parameters. Wx and G values are expressed in ms.

Power NS NT NA WS WT WA G R Y Z

High 3 2 3 10 5 7 0.15 2 2 4
Low 4 3 4 14 8 12 0.15 2 2 4

For S and A, a slot duration W = 12 ms is sufficient to guarantee that W > max(t̂on) (Fig-

ure 4.6a). Therefore, we use this value for the A phase, and a higher value WS = 14 ms,

coherently with the high power case. We then set WT = 8 ms based on similar reasonings

(Figure 4.10a).

Slot configuration: Guards. Selecting W is not enough; we must determine also the duration

of the guard G preceding it. We verified that G = 150 µs yields good reliability for all types,

even with E = 5 minutes, as discussed in Section 4.6.4.

Terminating a CRYSTAL round. As discussed in Section 4.4, three additional parameters

govern the behavior of CRYSTAL, specifically concerning the termination of the sequence of

TA pairs in a single round: the number of T slots with no data R , causing the sink to piggyback
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the sleep command in its last acknowledgement; and the local termination parameters that

have an effect only when a node has lost the final acknowledgement: Y and Z .

We use R = 2 as we determined experimentally that i) higher values do not bring additional

benefits w.r.t. reliability, while they obviously greatly and negatively affect energy consumption

ii) using R = 1 in general negatively affects reliability, although we show in Section 4.6.4 that

the energy savings it enables can be exploited in some cases.

Finally, we use Y = 2 and Z = 4 as we determined experimentally that this yields good reliability,

and hardly affects the duty cycle of CRYSTAL since almost always all the nodes receive all the

acknowledgements.

4.6.4 Dissecting a Crystal Epoch

We now focus on the mechanics of CRYSTAL operation inside an epoch, i.e., the entire sequence

of S, T, A phases necessary to disseminate a given number u of updates.

Setup. We use E = 2 s to accommodate long TA sequences, as we need to explore u values

in the range 0–40. We use R = 2 and the slot durations in Table 4.4. For every point in the

parameter space, we gathered data for 450 epochs.

Reliability. For both high and low power, the configuration in Table 4.4 yields 100% reliability,

for all values of u we consider. In other words, despite the fact that at most one out of the u

updates is delivered in a single T slot, and that occasional packet loss may occur even for u = 1,

the network-wide transport mechanism we devised is very effective in ensuring reliability.

Re-transmissions do occur however, as shown in Table 4.5; these are more frequent with high

power, consistent with the larger collision domain. Their number is however very small; even

for the maximum u = 40 considered, only 7 times in 450 epochs an extra TA pair was needed.

Table 4.5 – Average TA pairs required for each update, ρ(u).

1, 2, 5, 10 15 20 30 40
High power 1 1.0004 1.0003 1.0001 1.0004
Low power 1 1 1 1 1.0002

Impact of R on the reliability of TA chains. The results we just presented are derived with

R = 2 silent pairs; for a TA chain to break prematurely (i.e., before u TA pairs have been

executed) it must happen twice in a row that the packet transmitted in a T slot is not received

at the sink, which therefore replies with an empty acknowledgement in the corresponding A

slot. The probability of this event is extremely low in practice, yielding the aforementioned

very high reliability.

Nevertheless, while it does not make sense to explore R > 2, the question remains about

the impact of a lower value R = 1, which would enable energy savings. We focus again on

u = 40 concurrent updates, as this defines a challenging test to reliability. Figure 4.11 shows

the results for high power, with R = 1, over 1800 epochs. The chart shows that the majority
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Figure 4.11 – Analyzing TA chains, u = 40, R = 1.

of chains terminate correctly upon the 41st TA pair; a few terminate slightly after, due to

retransmissions. However, a few chains terminate earlier, therefore causing the loss of one or

more updates; the probability of this happening increases towards the end of the chain. This

is explained by the fact that the “stronger” a sender is the earlier its transmission succeeds;

therefore, the end of the chain is usually populated by the “weakest” senders, for which the

probability of packet loss is higher. Nevertheless, in a few cases, the TA chain breaks even

halfway, around the 20th position, causing the loss of half the updates. Therefore, a value R = 1

cannot be used for an entire chain.

Opportunity for optimization: Dynamic R. On the other hand, the positive side of the previ-

ous argument is that the TA chain in Figure 4.11 does not break until the 20th position, with

R = 1. This observation enables significant savings in energy consumption without prejudicing

reliability.

Recall from Section 4.1.3 that the message suppression achieved by data prediction yields

traffic profiles where the majority of epochs see at most one update. This holds for all our

profiles except WATER (Figure 4.2c).

Therefore, optimizing the case with u = 0 is of paramount importance. In the R = 2 configu-

ration we used thus far, CRYSTAL unfolds a transmission schedule with 5 slots, arranged in a

STATA sequence. This was motivated by the reasoning that when using R = 1 (i.e., STA), the

loss of a sent update would cause the sink to mistakenly believe that no update is disseminated,

and send an empty acknowledgement in the A phase, effectively putting the entire network to

sleep. However, Figure 4.11 shows that, in practice, a chain is extremely unlikely to break on

the first TA pair. This is corroborated by Figure 4.8a showing that, at both powers, when any

number u of updates are sent concurrently in a T slot, one always reaches the sink.

This leads to a strategy with a dynamic R value, using R = 1 for the first TA pair and, if a

transmission occurs in it, switch to R = 2 for the rest of the epoch. In the cases where no

update is actually transmitted, this dynamic assignment of R saves an entire TA pair, enabling

substantial savings in energy consumption, as we further illustrate in Section 4.7.

Assessing the impact of the epoch duration. Until now, we executed experiments with an

epoch E = 2 s, motivated by the need to reduce experiment time while exploring several
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Table 4.6 – Validating the model: per-epoch radio-on time Ton(u), in milliseconds.

number of concurrent updates
0 1 2 5 10 15 20

High power
Maximum from CRYSTAL runs 30.6 41.51 51.82 81.54 130.18 180.13 231.33

Upper bound 34.75 47.05 59.35 96.25 157.75 219.25 280.75
Over-approximation (%) 13.57 13.34 14.52 18.04 21.18 21.71 21.36

Average from CRYSTAL runs 27.41 37.01 46.26 73.95 119.15 164.74 210.08
Model from benchmarks 26.82 36.32 45.38 72.25 117.52 163.96 211.69

Model from CRYSTAL runs 27.26 36.87 46.16 73.9 119.18 164.86 210.25
Error vs. benchmarks (%) -2.15 -1.87 -1.91 -2.3 -1.37 -0.48 0.77

Error vs. runs (%) -0.56 -0.38 -0.23 -0.07 0.03 0.07 0.08

Low power
Maximum from CRYSTAL runs 48.86 71.59 85.37 138.4 224.44 305.04 395.61

Upper bound 54.75 75.05 95.35 156.25 257.75 359.25 460.75
Over-approximation (%) 12.05 4.84 11.69 12.89 14.84 17.77 16.47

Average from CRYSTAL runs 41.81 58.23 73.62 118.14 189.88 259.08 327.64
Model from benchmarks 41.75 56.81 70.92 112.61 182.81 254.47 328.06

Model from CRYSTAL runs 41.65 56.76 71.43 114.79 185.79 254.7 323.1
Error vs. benchmarks (%) -0.68 -0.65 -1.13 -2.08 -1.61 -0.03 1.63

Error vs. runs (%) -0.92 -0.74 -0.42 -0.18 0.003 0.06 0.09

combination of parameters. However, this is a rather small duration if compared with the

epoch typically adopted in sensing applications; Table 4.1 shows that, in our real-world

datasets, E ranges between 30 s and 10 minutes. Are the results we derived thus far applicable

to these long epochs?

In principle, the inner working of CRYSTAL is determined by the execution of the schedule,

which is the same irrespective of the epoch length. Therefore, all of our estimates still hold

unchanged; we verified this experimentally, although we omit the results due to space limita-

tions.

A threat to this statement comes from time synchronization, to ensure the correct operation

of the underlying Glossy layer. The S phase serves this purpose; however, if E is very large, the

clock drift among nodes may grow to a point where the synchronization packet in the S slot is

lost, causing inefficiencies due to node de-synchronization. However, this can be easily solved

by choosing a larger guard for the S slot.

In our experiments, we verified that the value G = 150 µs we use for all slot types is enough to

reliably maintain time synchronization for epochs up to 5 minutes. This enables us to apply

the model of Section 4.5 to the duty cycle computation by simply changing the value of the

epoch. An investigation of longer epochs is beyond the scope of this work.
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4.6.5 Validating the Model

We now focus on validating the accuracy of the CRYSTAL model we presented in Section 4.5. The

upper bound of Eq. (4.1) can be determined solely by knowledge of the CRYSTAL configuration

parameters shown in Table 4.4. Instead, the more accurate estimate of Eq. (4.3) requires also

knowledge of the parameters ton,S, ton,T , ton,A, and ρ.

We have two options for determining these parameters. The first one is to derive them from

the slot-centric analysis in Section 4.6.2. The parameter values in this case are less accurate, as

they are derived from specialized, slot-centric benchmarks instead of a full CRYSTAL run. These

benchmarks are faster to gather than CRYSTAL runs and, as shown in Section 4.6.3, useful to

choose the CRYSTAL configuration; it is therefore interesting to see what error they introduce

in estimating Ton. The second option is instead to acquire these parameters directly from the

full CRYSTAL experimental runs in Section 4.6.4. In this case, the parameters are obviously

more accurate. These two model variants, derived from benchmarks and from runs, are then

compared to the actual Ton in the CRYSTAL runs of Section 4.6.4.

The results are shown in Table 4.6, for both high and low power, as a function of the number

u of concurrent updates. In the top part of the table, for both high and low power, we find

confirmation that Eq. (4.1) is indeed an upper bound for Ton, by comparing against the

maximum Ton in the CRYSTAL runs. The over-approximation introduced by neglecting the fact

that ton <W grows with u, as expected. However, it always remains below 22%; therefore, the

upper bound is still a valid design tool to get a first rough estimate of Ton.

In the rest of the table we assess (both variants of) the model by comparing its estimates

against the average Ton(u). We consider the error ε= real−model
real , in percentage. As expected,

the error of the benchmarks variant is higher, yet |ε| ≤ 2.3%. The runs variants has much higher

accuracy, as expected, always achieving |ε| < 1%.

Therefore, we can conclude that our model is a very good approximation of the real behavior

of CRYSTAL, and we can exploit it next for computing the duty cycle over long datasets, without

introducing a significant error.

4.7 Ultra-low Power Wireless Sensor Networks: A Reality

The premise of this work is that by combining the power of data prediction with a network

stack efficiently supporting the traffic patterns it induces, it is possible to achieve ultra low-

power WSNs. To verify the extent to which we achieve this goal we need to ascertain the duty

cycle CRYSTAL achieves on the datasets we illustrated in Section 4.1.3. We divide our evaluation

in two complementary parts. In the first one, we apply our model to the datasets, therefore

estimating for all of them the duty cycle achievable over a long time span—impractical to

reproduce in a testbed. In the second one, we instead measure directly the duty cycle in 2-hour

experimental sessions where we compare the performance of CRYSTAL against the staple

CTP-based stack, concerning not only duty cycle but also reliability.
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In both cases, the duty cycle for each dataset is given by:

DC =
∑N

u=0 Ton(u)e(u)

E
∑N

u=0 e(u)
(4.4)

where e(u) is the number of epochs in which u updates are transmitted concurrently, and

Ton(u) is the per-epoch radio-on time. The value of e(u) is known for all datasets; see Table 4.2

for the INDOOR temperature one. As for Ton(u), in the first part we use the model estimates,

while in the second part we use directly the measured value. All results, computed and

measured, are reported for the CRYSTAL variants with fixed and dynamic R, and for both high

and low power.

Computing the duty cycle from datasets. Table 4.7 shows the results of applying the model

to our datasets, using the more accurate estimates resulting from the parameters derived from

experimental runs, as described in Section 4.6.5.

For the INDOOR dataset and high power, the upper bound estimate already places the duty

cycle of CRYSTAL around our per-mille target. For the temperature and humidity datasets the

upper bound for DC is slightly above 0.1% (i.e., 1‰) with a fixed R, and slightly below with

a dynamic one. The light dataset has a slightly higher DC, as it has the highest number of

concurrent updates among INDOOR datasets. However, the more accurate estimates provided

by the model show that, by using a dynamic R , DC is reduced to slightly above 1‰ for light and

as low as 0.7‰ for temperature and humidity. These best DC values translate to remarkable

improvements w.r.t. CTP: up to 70x for temperature.

The DC of TUNNEL is ∼0.1‰ lower than the INDOOR temperature and humidity datasets; this

is reasonable, as these three datasets have a similar epoch and traffic pattern, as illustrated

in Section 4.1.3. However, given the very small values at stake, this minuscule difference

translates in an additional 8–10x improvement w.r.t. CTP.

The SOIL datasets also have a similar traffic pattern but a much longer (∼20x) epoch. This

brings the upper bound of DC for soil temperature to reach a stunning 0.06‰—i.e., 60 ppm.

The more accurate model estimate brings this value down to 50 ppm, and dynamic R further

reduces it to a tiny DC = 30 ppm. In this case, the table does not report any comparison against

CTP. This would require finding the right configuration for epochs this long, and would anyway

yield an exorbitant amount of control traffic w.r.t. the application one. However, our model

reports an improvement of 955.6x for air temperature and 1592.67x for soil temperature.

The WATER dataset is somehow in the middle w.r.t. the other datasets. Its epoch is 5 minutes

(half of SOIL, 10x more than INDOOR and TUNNEL) but, as discussed in Section 4.1.3, it exhibits

a much higher frequency of concurrent updates. Therefore, the upper bound is DC = 0.8‰,

while the actual one is as low as DC = 0.60‰. Interestingly, using a fixed or dynamic R bears a

negligible impact on WATER. This is not surprising given that only 0.34% of the epochs have

u ≤ 1 (Figure 4.2c), i.e., 15 epochs out of the 4310 in the dataset.
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4.7. Ultra-low Power Wireless Sensor Networks: A Reality

In illustrating the results, we focused for simplicity on the high power ones; low power increases

the network diameter, leading to a slightly higher DC. However, the right-hand side of Table 4.7

clearly shows that CRYSTAL achieves a DC around our 1‰ target and improves significantly

over CTP.

This analysis allows us to put the duty cycle that can be achieved by CRYSTAL into the context

of typical parameters for the real-world applications from which the datasets were obtained.

In this respect, a duty cycle below per-mille, and in some cases of parts-per-million, is several

orders of magnitude smaller than what is achieved by the state of art.

On the other hand, the epoch duration has a strong impact on the overall duty cycle. Therefore,

the bottom of Table 4.7 offers an alternative view where the duty cycle of the various datasets

is normalized to the lowest 30-second epoch of INDOOR and TUNNEL. Clearly, this is purely

speculative, as in reality changing the epoch duration would actually change the probability of

concurrent updates: the shorter the epoch, the lower this probability. In other words, we are

artificially defining a more challenging setup for CRYSTAL.

Table 4.7 shows that, with this artificial normalization, the DC achievable for SOIL is in line

with the other datasets that are not normalized; SOIL temperature actually achieves an im-

provement of 83.82x over CTP, the highest in our comparison. This is not the case for WATER,

whose upper bound is 8‰, and best DC is 6‰. Nevertheless, considering the peculiar pattern

shown in Figure 4.2, where essentially every epoch in WATER has concurrent updates, and the

fact that even in these conditions CRYSTAL achieves a 7.86x improvement w.r.t. CTP, we argue

this is actually a remarkable result.

Measuring the duty cycle (and reliability) from testbed experiments. We now report about

experiments that enable us to measure the duty cycle, therefore validating the findings we

obtained by computing DC from the datasets with our model. In addition, this enables us to

also evaluate the reliability of CRYSTAL, not captured by our model.

For these experiments, we “scale down” the traffic profiles of our datasets to reproduce their

trends over a much shorter interval. The latter is determined by the maximum length of

Indriya experiments (2 hours, i.e., 240 epochs of 30 s) minus a “burn-in” time for the CTP

topology to stabilize, yielding experiments that are 200 epochs long.

Given a traffic profile, scaling is performed by simply multiplying by 200 the fraction of epochs

with a given number u of updates. For instance, for INDOOR temperature in Table 4.2, the

number of epochs with u = 0 updates becomes 0.8211×200 = 164. This obviously removes

some values of u for which very few epochs exist (e.g., u = 13 in Table 4.2) but faithfully

preserves the dominant trends of the profile. The latter is then reproduced by choosing, at

each epoch, u nodes at random to serve as the update senders.

We focus only on three representative datasets, based on the estimates in Table 4.7: i) INDOOR

temperature, for which CRYSTAL achieves good performance; ii) INDOOR light, the most

challenging among the INDOOR datasets; iii) WATER normalized to a 30 s epoch because, albeit
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artificially generated, serves as a very challenging case for CRYSTAL.

We repeat the experiments for each dataset with both high and low power. For each combi-

nation, we compare the estimate given by our model against the sum of the Ton values we

measure in each epoch divided by 200, the total number of epochs. Moreover, we measure

reliability as the data yield at the sink. We repeat all experiments both with a fixed and dynamic

R. Finally, for each combination we also compare against plain CTP (no prediction) as in

Table 4.7, and also with the best configuration (for the combination of power and dataset) for

CTP with DBP data prediction.

Table 4.8 shows the results. In all of our experiments CRYSTAL achieved 100% reliability. Plain

CTP achieved the lowest reliability, as expected due to the higher traffic. However, even the

CTP/DBP combination, despite the much sparser traffic induced by data prediction, achieved

100% only in 1/6 of the cases, namely, INDOOR temperature at high power.

The duty cycle values in Table 4.8 agree closely with those in Table 4.7. The scaled down

profiles induce tiny changes across the two tables, marked in italics in Table 4.8. The measured

DC is always very close to the model estimates, therefore corroborating the results derived in

Table 4.7, including the improvement over plain CTP. Moreover, Table 4.8 shows that, in all

combinations, CRYSTAL significantly improves (up to 10.9x) also against the best configuration

of CTP/DBP; even in the challenging WATER* dataset, CRYSTAL achieves a 3.2x improvement,

confirming that CRYSTAL offers a significant advancement w.r.t. the state of the art.

4.8 Related Work

Data prediction [90, 49, 3] is applicable to a large number of real-world applications, in which

it greatly abates data traffic. Prior work [89] showed the limitations of a staple network stack in

taking full advantage of data prediction, opening the way for CRYSTAL to remove limitations

from idle listening and collection topology maintenance.

Routing Optimization. Accurate link estimation with broadcast beacons is a major overhead

source in CTP. Some protocols mitigate this by using overhearing to estimate link quality [60,

87] or queue status [68] but, by relying on periodic traffic to update estimates, they compromise

their accuracy and therefore usefulness in the extreme, low-traffic scenarios CRYSTAL targets.

CRYSTAL also removes the low-power listening MAC, thus abating idle listening costs.

Ultra low-power data collection. A number of protocols achieve extremely low duty cycles

by crossing the line between MAC and routing. Dozer [13] and Koala [72] do so by accepting

extremely long latencies, minutes or days respectively, allowing nodes to sleep as long as

possible between communication events. DISSense [23] reduces latency with a synchronous

wake-up mechanism somewhat similar to CRYSTAL, but it only reaches per-mille duty cycle for

reporting intervals of 60 minutes. CRYSTAL, instead, achieves per-mille duty cycle even with a

short 30 s reporting interval, making it applicable to control-loop applications.

Concurrent Transmissions. Glossy [38] pioneered work on exploiting constructive interfer-
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ence to achieve millisecond level network-wide flooding from a single sender, and is at the

core of other protocols supporting multiple senders.

In LWB [39] and Choco [95], Glossy floods are used to collect node requests for transmission

slots and to distribute a global transmission schedule computed at the sink. Changes in traffic

require regeneration and dissemination of the schedule. These solutions are effective for

periodic data streams where a schedule is used for several transmissions, but inapplicable to

the unpredictable and aperiodic traffic induced by data prediction, which would require a

continuous rescheduling for each new transmission. Instead, CRYSTAL exploits the capture

effect to build a network-wide transport protocol that involves sink-based acknowledgements,

effectively allowing transmissions to compete and “self-schedule” based on the contingent

communication needs.

Chaos [59] also supports multiple senders but allows concurrent, unscheduled transmissions

by relying on the capture effect. Packets from different senders are merged before forwarding

to compute, over several iterations, a network-level aggregate (e.g., the maximum value

transmitted). CRYSTAL also relies on the capture effect, but with the opposite goal of delivering

reliably to the sink all the data transmitted by nodes, bringing a different set of challenges and

solutions.

Studies [101, 75] show that the Glossy flooding reliability degrades as the density and num-

ber of nodes increases. This problem is mitigated by limiting the number of concurrent

transmitters [101, 14, 106, 107], or improving synchronization between the transmitters by

compensating for radio processing and signal propagation delays [102]. These enhancements

are orthogonal to CRYSTAL and can improve its performance.

Concurrent transmissions have also been explored for bulk data transfer [26, 28, 30]. The use

of channel and spatial diversity allows them to push larger amounts of data, however, their

complexity and higher power consumption make them unsuitable for the ultra-low data rates

of data prediction.

4.9 Conclusions

We demonstrated that the synergy between the high message suppression rates offered by

data prediction and the lightweight, reliable, energy-efficient, fast communication enabled

by synchronous transmissions bring the performance of WSNs to unprecedented levels. Our

system, CRYSTAL, can deliver multiple concurrent packets—the model updates generated

infrequently, unpredictably, and aperiodically by data prediction—very fast and with perfect

reliability, making it amenable to applications where WSNs are part of a control loop. Further,

CRYSTAL achieves per-mille duty cycle, improving on the staple WSN stack (CTP + BoX-MAC)

up to a factor of 80x. This remarkable reduction in energy consumption is achieved by neither

compromising on the data reporting period nor using specialized hardware. On the contrary,

the very small duty cycle achieved by CRYSTAL may offer a large leap towards energy-neutrality,

e.g., in combination with energy harvesting techniques hitherto considered insufficient to
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power WSN nodes under real-world profiles like those we considered in this chapter.

We showed that CRYSTAL almost always provides perfect reliability in moderate noise condi-

tions of a typical office environment characterised by fluctuating Wi-Fi interference. However,

we noticed that during rare and unpredictable peaks of external interference some packets

from the nodes under the highest noise exposure were lost. This motivated a more thorough

study of CRYSTAL under high but controllable noise that is presented in the next chapter.
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5 Interference-resilient Aperiodic Data Col-
lection in Wireless Sensor Networks with
Synchronous Transmissions

As we showed in the previous chapter, CRYSTAL, our protocol based on synchronous trans-

missions, provides ultra-low power reliable data collection service for WSNs. Although we

tested it at day and night, the unpredictable external interference present in office buildings

during the day resulted in inconsistent results that are difficult to interpret. This chapter is

thus dedicated to a thorough study of synchronous transmissions and CRYSTAL in particular

under strong and reproducible interference.

Motivation and goals. Although synchronous transmissions are commonly considered highly

resilient to interference due to inherent redundancy (e.g., multiple transmissions propagating

along multiple paths) and reliance on PHY-level properties (i.e., constructive interference and

capture effect), to the best of our knowledge, the interference resilience of synchronous trans-

missions has never been systematically evaluated, and the extent to which it holds is unknown.

A commonly-accepted methodology to test against interference is to run experiments in office

testbeds both at night, when WiFi interference is lower, and day, where instead it is higher

due to human presence. This approach is adopted for the evaluation of several well-known

systems [39, 59, 106, 53] including Glossy [38], which was the first to exploit synchronous

transmissions and is often used as the core dissemination layer in other systems.

Unfortunately, these conditions are a far cry from those typically found, e.g., in industrial set-

tings [76, 79], where noise levels are much higher than those induced by WiFi, and monitoring

tasks sometimes require nodes to be placed next to the noise-generating equipment. Worse,

the interference patterns in testbeds, especially during the day, often fluctuate randomly. For

instance, in Indriya [27] we sometimes observed nodes exposed to an average noise of -60 dBm

and higher, which would appear on any of the 16 channels offered by the IEEE 802.15.4 radios.

In principle, this random and high noise allows one to reproduce realistic conditions. However,

it prevents systematic testing; the performance of a protocol is jeopardized by random high

noise whose source remains unknown and whose pattern cannot be reproduced. Considering

the high reliability of synchronous transmissions, a single “unlucky” run is often enough to

put a dent in reliability and, at the same time, this run cannot be reproduced and analyzed to

devise effective countermeasures.
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Our goal in this chapter is therefore to provide, for the first time, the systematic analysis of the

performance of a protocol based on synchronous transmissions under interference.

Choice of protocol. Many synchronous transmission protocols exist [39, 59, 106, 53] that

build upon Glossy [38] by relying on a custom schedule of its network-wide floods to achieve

different goals. Therefore, analyzing only the Glossy protocol would be limiting, as the different

protocols exploit it with different performance and application targets. At the same time, a

comparative evaluation across all existing Glossy-based protocols is prohibitive due to their

number and the many dimensions at stake.

We focus on the CRYSTAL protocol, described in the previous chapter. Apart from being a recent

proposal with remarkable lifetime gains, our choice is motivated by these characteristics:

• Heavy reliance on the capture effect. The core operation of CRYSTAL relies on concurrent

Glossy floods from different senders, each with unique packets, to “compete”. Thanks

to the capture effect and the redundancy of Glossy floods, the packet of one sender is

received at the sink with high probability; a network-wide acknowledgment informs

other senders that they must retransmit, while also providing for the (unlikely) case in

which no data is received at the sink.

• Challenging target traffic pattern. Originally driven by the needs of higher-level data

prediction schemes, CRYSTAL targets aperiodic and sparse traffic. This traffic pattern is

particularly challenging because i) with fewer packets than periodic approaches, the

loss of a single one has a much larger impact on reliability, and ii) packet transmissions

are separated by long periods of inactivity, during which energy consumption should be

minimized.

These characteristics define very challenging requirements w.r.t. interference, as it may under-

mine the very operation of CRYSTAL by significantly lowering the benefits of capture effect,

jeopardizing reception at the sink. Moreover, interference exacerbates the clash between

reliability and energy consumption; the extra protocol effort necessary to ensure the former

increases the latter.

Experimental Methodology and Comparison Baselines. The results reported in this chapter

are derived from real-world experiments in a 49-node testbed available at our office premises,

allowing exclusive and continuous access to the infrastructure. Our testbed exhibits its own

natural interference, mostly due to WiFi. Nevertheless, the aforementioned goal of a sys-

tematic analysis of interference demands the ability to generate and reproduce interference

patterns. To this end, we exploit JamLab [9], summarized in 5.1, to create realistic and repro-

ducible noise patterns, both more disruptive and extensive than natural ones. We focus on

interference emulating the behavior of WiFi devices and microwave ovens, as these show the

greatest network disruption. Details of the experimental setup and the associated noise levels

appear in 5.1.

We evaluate CRYSTAL in terms of packet delivery rate (PDR) and duty cycle (DC) as indicators of

reliability and energy consumption, respectively. Moreover, as CRYSTAL relies on unmodified
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Glossy, we indirectly evaluate the latter with the same experiments. Further, we observe

that none of the proposals to cope with interference has found its way into the mainstream.

Therefore, we compare against RPL [105] and ORPL [33], described previously in this thesis, as

they are readily available and have been used as baselines in analogous works [74, 69, 108].

Results and main contributions. We show in 5.3 that when only natural interference is

present, all protocols perform satisfactorily, but only Glossy and CRYSTAL achieve near-perfect

reliability—and with a much lower duty cycle that the others. On the other hand, with JamLab

interference, RPL performance degrades to unacceptable levels of PDR =85% when a single

node acts as a WiFi interferer, while ORPL and synchronous transmissions protocols still

achieve perfect reliability. Nevertheless, when WiFi interference covers the entire testbed,

ORPL reliability also degrades. Interestingly, however, the roles are reversed when a JamLab-

emulated microwave oven is placed 1m from the sink. Here, ORPL achieves nearly perfect

reliability, while synchronous transmissions fall below 80%.

These results motivated us to explore two techniques to improve interference resilience in syn-

chronous transmissions, described in 5.4. The first allows nodes to escape from interference

by performing each transmission-acknowledgement pair—a core CRYSTAL constituent—on

different channels, following a network-wide hopping sequence. Second, noise detection at

all nodes enables them to schedule additional opportunities for transmission in a decentral-

ized way, increasing the chances that a packet is delivered. This technique effectively fights

interference; however, it may be detrimental when traffic is sparse—a scenario targeted by

CRYSTAL—by keeping nodes more active than needed.

The experimental results in 5.5 show that the combination of these two techniques achieves

near-perfect reliability extremely challenging scenarios with both microwave oven and WiFi in-

terference are simultaneously present. Overall, we confirm that synchronous transmissions in

general, and the original CRYSTAL in particular, can tolerate the moderate levels of interference

commonly found in office environments. However, they can also be modified with relative

ease to sustain much stronger interference patterns with extremely low energy consumption.

Finally, 5.6 concisely surveys related work, and 5.7 ends the chapter with brief concluding

remarks.

5.1 Radio Interference in the Testbed

The experiments we report were performed in our local testbed, composed of 49 TMote Sky

nodes deployed as shown in Figure 5.1 in a 60×40 m2 office area, subject to WiFi interference.

Similar to other reports [69] the latter i) is more intense during the day and less at night and

during the weekends, and ii) varies depending on the channel considered.

Moreover, in addition to this natural interference, we also leverage controlled JamLab gener-

ated interference, enabling repeatable experiments. A brief description of JamLab is presented

next.
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5.1.1 Generating Interference: JamLab

JamLab [9] uses the same mote-class nodes available in a testbed, to faithfully emulate various

types of interference relevant to IEEE 802.15.4, including Bluetooth, WiFi, and microwave

ovens. These have very different characteristics. Bluetooth interferes with all IEEE 802.15.4

channels, as it uses a channel hopping scheme. WiFi spans 4 IEEE 802.15.4 channels with

interference that is significantly stronger than Bluetooth, but also based on the type of data

traffic. Microwave ovens interfere with 7 channels, and induce very strong, continuous inter-

ference for 10ms, alternated with inactive periods of similar duration. In the rest of the chapter

we focus only on WiFi and microwave ovens, as they yield the strongest interference. Simi-

larly, among the WiFi patterns offered by JamLab, we consider JL_WIFI4, which emulates the

combination of a file transfer and radio streaming. Finally, to put ourselves in the worst-case

scenario, we set the TX power of the interferers to the maximum, 0dBm, and consider only

modulated carrier interference as it has a much stronger effect on the radio communication.

One JamLab limitation comes by noting that real interference sources typically interfere with

many contiguous IEEE 802.15.4 channels at the same time, e.g., 4 for WiFi. In contrast, a

JamLab node generates noise on a single channel. The majority of the proposed protocols,

including the synchronous transmissions ones and the mainstream ones considered in this

chapter, operate on a single channel; therefore this limitation does not affect the experiments

in 5.3. However, in 5.5 we explore channel hopping and address this JamLab limitation with a

channel mapping strategy.

Another limitation is that the maximum output 0dBm power of motes is much smaller than

the typical one of other interference sources (e.g., 25 and 60dBm for WiFi and microwave

ovens, respectively). As suggested in JamLab [9], we therefore use multiple motes, strategically

placed at different points in our testbed (Figure 5.1).

5.1.2 Testbed Interference Scenarios

Overall, we define four types of interference described in Table 5.1. The choice of channels in

the natural interference types derives from an extensive, cross-channel measurement cam-

paign, which identified the best (26) and worst (18) channels during night and day, respectively.

The generated interference is created at night on channel 26 (i.e., under natural T-LOW inter-

ference) and uses interfering JamLab nodes configured with the maximum TX power of 0 dBm.

Our evaluation uses varying numbers of JamLab interferers for each type as well as combines

different types in the same experiments, to obtain challenging, realistic setups. Node 1 acts as

the sink in all experiments.

Figure 5.2 quantitatively compares the various types of interference. The natural T-LOW in

Figure 5.2a exhibits an average noise of−92 dBm, rather stable and uniform across the network;

a notable exception is node 45, physically located near complex cabling, which is subject to

an average noise of −78 dBm affecting all channels. The interference environment in natural

T-HIGH is drastically different (Figure 5.2b). The average noise is −88 dBm, but several nodes
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Table 5.1 – Types of interference.

Type of interference Description

Natural
T-LOW testbed at night/weekends, channel 26

T-HIGH testbed during the day, channel 18

Generated
J-WIFI JamLab WiFi interference (JL_WIFI4)
J-MWO JamLab microwave oven interference

are exposed to significantly higher noise levels, which occasionally reach values as high as

−40 dBm. Table 5.2 shows that this higher noise also affects the network topology, e.g., causing

a 10% increase in the average hopcount for the case with 49 nodes.

The interference generated via JamLab yields stronger noise than naturally present in the

testbed. Figure 5.2c shows the J-WIFI interference generated by node 7 alone, the closest (1m)

to the sink. Figure 5.2d shows instead the case with 6 J-WIFI interferers (including node 7)

whose placement (Figure 5.1) is chosen to cover the entire testbed. Compared with Figure 5.2b,

whose interference is mostly due to WiFi, the network in Figure 5.2d with J-WIFI is subjected

to a slightly higher average noise of −85 dBm, and many more nodes are exposed to noise

with significantly higher variance. This noise significantly affects also the network topology,

increasing the average hopcount by 20% w.r.t. T-HIGH (Table 5.2).

Figure 5.2e shows the interference generated by J-MWO when the JamLab interferer is placed

on node 7. About one quarter of the network (obviously including the sink) is severely affected

by interference, with an average noise from −80 to −65 dBm, far higher than the previous

scenarios. In the rest of the chapter, we experiment with alternate placements of the J-MWO

40m

60m

1 (sink)

13

7

12
20

2231

37
42

41

49

Figure 5.1 – Position of the JamLab interferers in the testbed.
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Chapter 5. Interference-resilient Aperiodic Data Collection in Wireless Sensor Networks
with Synchronous Transmissions

interferer at various distances from the sink. This clearly affects differently the sink, but also

has different global effects on the network topology (Table 5.2). Moreover, we experiment with

2 J-MWO interferers (node 7 and 42) also in combination with J-WIFI. Figure 5.2f shows the

noise generated by a configuration with 2 J-MWO and 4 J-WIFI interferers, which is significantly

higher than all the previous scenarios and affects significantly the network (Table 5.2). This

scenario is the most challenging we consider in this chapter, and can be considered akin to

extreme settings such as industrial ones.
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(a) T-LOW: channel 26, night.
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(b) T-HIGH: channel 18, day.
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(c) J-WIFI: node 7.
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(d) J-WIFI: node 7,12,20,31,37,49.
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(f) J-WIFI (node 12,20,31,49) and J-MWO

(node 7,42) combined.
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(g) J-MWO: node 7 and 42.
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Figure 5.2 – Noise levels for the interference types in Table 5.1.
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5.2. Protocols and Configurations

Table 5.2 – Impact of interference on network topology.

removed or nodes in # Glossy hops
TX power ch. type interfering nodes network avg max

0 dBm

26 T-LOW — 49 2.6 5.1
18 T-HIGH — 49 2.9 5.6
26 J-WIFI 7 48 2.9 5.3
26 J-WIFI 7,12,20,31,37,49 43 3.5 6.3
26 J-MWO 7 48 3.3 5.3
26 J-MWO 13 48 3.0 5.0
26 J-MWO 42 48 2.5 5.5
26 J-MWO 7,42 43 3.6 7.0
26 J-WIFI 12,20,31,49 43 3.3 5.9

26
J-MWO 7,42

43 4.2 7.6
J-WIFI 12,20,31,49

−7dBm

26 T-LOW — 49 3.0 5.8
18 T-HIGH — 49 3.4 6.7
26 T-LOW 7,12,20,31,42,49 43 3.1 6.3
18 T-HIGH 7,12,20,31,42,49 43 3.9 7.8

26
J-MWO 7,42

43 6.4 11.6
J-WIFI 12,20,31,49

5.2 Protocols and Configurations

We briefly characterise the mainstream protocols we use as a baseline for comparison against

the synchronous transmissions protocols we consider, Glossy and CRYSTAL, along with the

configuration for all protocols used in the experimental campaign. All protocols considered

in this chapter run atop Contiki [24]. At the application layer we use a payload of two bytes

which translates into eight-byte packets for CRYSTAL, but much longer packets for RPL and

ORPL because of their protocol overhead.

5.2.1 Mainstream Protocol Descriptions

RPL [105], the Routing Protocol for Low-power Lossy Networks, is an IETF standard. RPL can

be seen as an evolution of CTP [45], as instead of a tree it maintains a Destination-Oriented

Directed Acyclic Graph (DODAG), i.e., a directed graph without cycles, rooted at the sink.

Therefore, each node maintains multiple parents towards the root; a preferred one is used for

actual packet forwarding towards the root, while the others are kept as backup routes. This

feature is beneficial for noise resilience since the forwarders eventually switch to a backup

parent if the connectivity to the previous one was hampered by interference, however this

process is slow and does not help in avoiding short-term noise variations.

ORPL [33] is an opportunistic routing protocol inheriting many design choices from RPL

but replacing unicast forwarding with an anycast technique. Instead of relaying a packet to
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the parent, the forwarder broadcasts it; any neighbor closer to the sink is free to catch the

packet, acknowledge it, and forward it further following the same technique. This improves

interference-resistance as the packets may follow various paths, dynamically avoiding noisy

areas. This mechanism reacts to interference much faster than the parent switching of RPL,

however, the forwarding is still based on the routing gradient, possibly causing some data

packets to get trapped. If all the potential forwarders are hampered by high noise, the packet

will not be forwarded around the interferer, even if a noise-free path exists.

5.2.2 Mainstream Protocol Configurations

MAC wake-up interval. Both protocols rely on ContikiMAC [31] for medium access control

and duty cycling; the value of the wake-up interval is therefore a key parameter affecting per-

formance. We initially chose a value of 8Hz, as this is the default in ContikiMAC and therefore

commonly used in the literature. Although our goal in this chapter is not to systematically

explore the best configuration of these mainstream protocols, we experimented also with

values of 1, 2, 4 Hz, as they may provide better performance under interference. We observed

this to be the case for ORPL, which performs best at 2Hz. Therefore, hereafter we report only

about experiments with a wake-up interval of 2Hz and 8Hz; in general, these also strike a

different balance between reliability and duty cycle, and are therefore interesting to compare.

The other configurations always perform worse, and are omitted due to space limitations.

Choosing the right CCA. Clear Channel Assessment (CCA) is a mechanism used in CSMA-

based link layers to deter a packet transmission if the medium is observed busy. Its configura-

tion significantly affects the interference resilience of the stack.

The CC2420 radio chip offers three CCA modes [96], in which the CCA reports a busy medium

upon detecting either 1) energy above the energy detection threshold; 2) valid IEEE 802.15.4

data, regardless of the energy detection threshold; 3) valid IEEE 802.15.4 data or energy above

threshold as in mode 1.

We verified empirically that energy threshold of -90dBm used as default in ContikiMAC yields

unacceptable performance; even with natural T-HIGH interference, the baseline protocols

achieve PDR < 30%. We are not aware of established guidelines about how to set the energy

threshold in the presence of interference. Therefore, we tested the mainstream protocols with

several values ranging from −60 to −90 dBm under natural T-HIGH and generated interference.

The value of −77 dBm yielded the best performance and became our choice. In fact, this value

is default for CC2420.

As for the CCA mode, the protocols we considered use the default mode 3. However, in the case

of interference generated by JamLab nodes, the question arises whether the noise patterns

these nodes emit can be possibly detected by other nodes as legitimate IEEE 802.15.4 data,

instead of interference. We performed dedicated experiments comparing the performance

obtained with CCA modes 1 and 3, observing essentially the same performance. Therefore,

hereafter we used the default CCA mode 3.
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Retransmissions. The protocols we consider employ different strategies concerning layer 2

transmission attempts. When an acknowledgment is not received, a maximum of 7 retrans-

missions is allowed by RPL, and 4 by ORPL. However, a retransmission can be triggered also by

a CCA check detecting a busy channel, in which case a few subtleties of the Contiki operating

system come into play. Contiki v.3.0, used by RPL, considers 5 busy CCAs as equivalent to a

failed transmission attempt, while the two events are completely unrelated in Contiki v.2.7.

The latter is used by ORPL, which allows unlimited number of CCA checks till the channel is

free.

We did not modify these settings, as changing these default parameters may have unexpected

and undesired effects on the protocols, whose analysis is outside the scope of this chap-

ter. However, we mention them here because they are useful in interpreting the results we

present in the next section, e.g., the superior performance of ORPL in the presence of strong

interference next to the sink.

5.2.3 Crystal configurations

In essence, CRYSTAL builds a reliability layer atop Glossy, which strikes different tradeoffs w.r.t.

energy consumption by exploiting the interplay between the two layers. As in Glossy, the

number N of retransmissions in each flood is key, however, in CRYSTAL this value can be set

independently for each of the S, T, A phases. This also holds for another key Glossy parameter,

the maximum slot duration W .

Table 5.3 shows the configurations we use throughout this chapter, adapted from the originals

along two dimensions. First, our testbed has a larger diameter than Indriya used in the previous

chapter. This forced us to use larger values for the intervals WT and WA to allow Glossy floods

to complete; we determined the optimal value using the methodology introduced in the

previous chapter. Second, we experiment with combinations of NT and NA values to explore

the impact of the T phase w.r.t. interference. The values of the remaining parameters WS , G , R ,

Z and Y are unchanged.

Finally, we use two power settings, high (0dBm) and low (-7dBm), the former serving as the

default throughout the chapter.

Table 5.3 – CRYSTAL configurations used in this chapter. The values of Wx and G are in mil-
liseconds.

Power NS NT NA WS WT WA G R Z Y

High
3 2 3 10 6 8

0.15 2 4 2
3 3 3 10 8 8

Low
3 3 3 12 10 10
4 4 4 14 12 12
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5.3 Comparing Against the Mainstream

We compare the mainstream protocols from 5.2 against CRYSTAL, and indirectly Glossy, when

all are exposed to the same natural or generated interference. Aside from the intrinsic and

novel value of this experimental comparison, this section also serves a stepping stone toward

tolerating stronger interference, discussed in 5.4.

5.3.1 Experimental Setup

We configure and analyze CRYSTAL and the baseline protocols in the interference scenarios

described in 5.1. We experiment with a number U of concurrent senders between 0 and 48,

aligning with the aperiodic, sparse data described in the previous chapter. U = 0 represents

the absence of traffic while U = 48 offers a stress case when all nodes except the sink are

senders. Further, note that the reliability of the underlying Glossy layer can be derived from

the same CRYSTAL experiments, as the reliability of the T phase when U = 1 (Table 5.7).

In CRYSTAL, the U senders all attempt transmission of their packet at exactly the same time,

i.e., in the first T phase of the epoch, for which we choose a duration E = 2s. Thanks to the very

low latency of synchronous transmissions, this value is enough for dissemination to complete

in all our tests except for U > 43 under high interference, for which we use a larger value and

rescale DC accordingly. On the other hand, baseline protocols have much higher latency,

especially under interference. Therefore, we chose a larger epoch E = 10s for them, which

represents solely the period according to which packets are generated. In reporting duty cycle,

we re-scale the values measured for CRYSTAL to 10s, enabling direct comparison between the

two protocol classes. As shown in the previous chapter, such rescaling is legitimate because

the inner structure of the active part of an epoch does not depend on the epoch duration, and

the guard times need not be larger in longer epochs because of the clock skew compensation

implemented in CRYSTAL.

Finally, experimental results of both synchronous transmissions and baseline protocols are

based on several one-hour runs. For baseline protocols, this interval is preceded by a 30-

minute period since bootstrap, allowing the network topology to stabilize. For CRYSTAL, the

number of packets sent per configuration varied from 1800 to 500k, but typically was around

5k–50k.

5.3.2 Natural Interference: T-LOW

We first consider the most favorable conditions, T-LOW, described in 5.1 as the lowest possible

interference. T-LOW is similar to most experiments throughout the literature, and thus offers

the baseline for comparison when we increase interference.

The performance of the mainstream protocols in the T-LOW scenario (left-hand side of Ta-

ble 5.4) is in line with several experiments in the literature [33, 44]. As expected, the MAC

wake-up interval bears a significant effect: RPL performs best at 8Hz, while ORPL achieves
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Table 5.4 – Natural interference: Mainstream protocols, U = 1.

T-LOW T-HIGH

protocol wake-up PDR DC PDR DC
(Hz) (%) (%) (%) (%)

RPL 2 92.0 1.36 65.2 1.62
RPL 8 93.7 1.2 90.3 1.52

ORPL 2 99.8 0.380 98.2 0.71
ORPL 8 98.7 0.737 98.6 1.45

Table 5.5 – Natural interference: CRYSTAL.

T-LOW T-HIGH

NT WT U PDR DC PDR lost 1 DC
(%) (%) (%) pkt in (%)

2 6 0 — 0.293 — — 0.297
2 6 1 100 0.387 100 ∞ 0.396
2 6 2 100 0.479 100 ∞ 0.491
2 6 5 100 0.751 100 ∞ 0.773
2 6 10 100 1.205 99.997 33242 1.233
2 6 20 100 2.107 99.999 134077 2.162
2 6 48 100 4.883 100 ∞ 4.982
3 8 0 — 0.332 — — 0.334
3 8 1 100 0.442 100 ∞ 0.451
3 8 2 100 0.551 100 ∞ 0.564
3 8 5 100 0.868 99.996 27667 0.890
3 8 10 100 1.391 100 ∞ 1.421
3 8 20 100 2.448 99.999 209201 2.475
3 8 48 100 5.596 100 ∞ 5.719
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near-perfect reliability at 2Hz. Further, its DC is much lower than RPL thanks to opportunistic

behavior.

Table 5.6 – Natural interference: ORPL (2Hz) vs. U .

T-LOW T-HIGH

U PDR DC PDR DC
(%) (%) (%) (%)

0 — 0.295 — 0.571
1 99.8 0.380 98.2 0.710
5 98.9 0.859 97.4 1.312

10 98.9 1.497 98.4 2.140
20 97.8 2.977 86.3 4.718
48 73.0 6.845 65.5 7.402

These results were derived with a single sender per epoch, U = 1. Table 5.6 shows the results

for various values of U ; we consider only ORPL as the performance of RPL is significantly

lower. The reliability of ORPL decreases with the increase in traffic; ORPL still achieves a good

PDR = 97.8% with U = 20, but the PDR drops to 73% when all U = 48 nodes transmit in every

10 s epoch. Duty cycle similarly increases sharply with U .

These trends are of course expected; however, Table 5.5 shows that, under the same conditions,

the performance of CRYSTAL is significantly better, in line with what we reported in the previous

chapter. Regardless of the 〈NT ,WT 〉 combination used, CRYSTAL always achieves perfect PDR,

even in the extreme case of U = 48. This is largely to be ascribed to the excellent performance

of the underlying Glossy layer (Table 5.7). Further, CRYSTAL achieves a DC lower than ORPL,

itself the best among the mainstream protocols considered. For instance, for U = 48 the

improvement is 18% with NT = 3, and 29% with NT = 2. With no data sent (U = 0), the DC of

ORPL is, however, comparable with NT = 2, and even lower than NT = 3.

Note how the CRYSTAL sink is duty cycled just like any other node; this may be an asset

in deployments where powering the sink is complicated. In contrast, the results shown

throughout this chapter for mainstream protocols are derived with an always-on sink, which

we verified to provide higher reliability and lower duty cycle; the latter, poorer results are

omitted for brevity.

5.3.3 Natural Interference: T-HIGH

Next we discuss experiments assessing the same protocols during daytime, which presents

higher levels of interference mostly arising from WiFi traffic, as discussed in 5.1.

Concerning the mainstream baseline protocols, a comparison of the left- and right-hand sides

of Table 5.4 shows a generalized decrease in PDR accompanied by significant increases in

duty cycle. As in T-LOW, ORPL remains the protocol with the best performance. The price to

pay, however, is that the duty cycle increases nearly twofold for both 2 and 8Hz, as a result of
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longer idle listening and retransmissions induced by interference. Varying the number U of

senders shows a similar trend of decreasing PDR and increasing duty cycle, as can be observed

in Table 5.6.

Instead, CRYSTAL performs quite well (Table 5.5). PDR is perfect or near-perfect regardless

of the value of U ; the occasional packet loss seen for some values of U is likely due to the

unpredictable nature of natural T-HIGH interference. Further, the duty cycle is nearly identical

to the T-LOW case. For instance, in the worst-case scenario of NT = 3 and U = 48, the increase

in T-HIGH w.r.t. T-LOW is a negligible 0.22%. This is partly ascribed to the inherent reliability of

the Glossy protocol CRYSTAL builds upon. However, our experiments also show that Glossy

by itself does not achieve perfect reliability. The superior reliability of CRYSTAL is due to its

redundancy mechanisms built atop Glossy, overcoming daytime noise with little additional

overhead. Another way to look at this is to observe that even the configuration with NT = 2,

i.e., less reliability in the Glossy layer, still achieves the same reliability as NT = 3, while of

course enjoying better duty cycle.

Table 5.7 – PDR of Glossy (T phase of CRYSTAL with U = 1).

scenario NT ,WT PDR (%)

T-LOW
2, 6 100
3, 8 100

T-HIGH
2, 6 99.971
3, 8 99.985

J-WIFI 1 interferer 3, 8 100
J-WIFI 6 interferers 3, 8 99.32

J-MWO 42 3, 8 99.88
J-MWO 13 3, 8 100
J-MWO 7 3, 8 67.90
J-MWO 7 6, 12 83.86
J-MWO 7 10, 17 99.76

5.3.4 Generated Interference: J-WIFI

We turn our attention to interference scenarios that we can control with JamLab, outlined

in 5.1. This section focuses on WiFi interference, first observing the impact of a single interferer

next to the sink, then of 6 interferers covering the entire network. We focus on U = 1 as this is

sufficient to draw the observations motivating the further investigation described in the rest

of this chapter.

Single interferer next to the sink. We designate a single node as JamLab interferer, specifically

node 7 in Figure 5.1; its placement is challenging, as it is only 1 m from the sink. Table 5.8

shows that RPL achieves a reasonable PDR = 84%, while ORPL achieves near-perfect PDR with

both 2Hz and 8Hz, and a duty cycle comparable to natural T-HIGH interference. In the same

conditions, CRYSTAL achieves perfect reliability and a duty cycle lower than ORPL, as shown in
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Table 5.9. This remarkable performance is mainly a consequence of the perfect performance

of Glossy, as shown in Table 5.7.

Table 5.8 – Generated interference: Mainstream protocols, U = 1.

JamLab node id protocol wake-up (Hz) PDR (%) DC (%)

J-WIFI

7 RPL
8 84 1.50
2 89 1.30

7 ORPL
8 99.7 1.31
2 99.9 0.59

7,12,20,31,37,49 ORPL
8 60 3.91
2 64 1.70

J-MWO

42 ORPL
8 98.3 2.13
2 98.6 0.844

13 ORPL
8 99.7 1.84
2 98.0 0.67

7 ORPL
8 99.1 2.23
2 99.8 0.67

Table 5.9 – Generated interference: CRYSTAL, U = 1.

JamLab node id NT , WT R PDR (%) DC (%)

J-WIFI

7
3, 8 2 100 0.457
2, 6 2 100 0.403

7,12,20,31,37,49
3, 8 2 100 0.497
2, 6 2 100 0.443

J-MWO

42
3, 8 2 100 0.507
2, 6 2 99.52 0.430

13
3, 8 2 100 0.459
2, 6 2 100 0.405

7
3, 8 2 78.5 0.453
2, 6 2 78.6 0.425

7 3, 8 6 100 1.11
7 6, 12 2 100 0.839

Six WiFi interferers covering the entire network. We next consider a scenario with 6 JamLab

nodes generating WiFi interference across the entire network like T-HIGH but, as outlined

in 5.1 with significantly higher noise. We focus only on ORPL, as RPL showed low performance

even with a single interferer. As seen in Table 5.8, ORPL has significant difficulty overcoming

this noise level, regardless of the wake-up interval; in the best case, 8Hz achieves PDR = 60%.

Glossy, instead, achieves near-perfect PDR (Table 5.7) and together with the CRYSTAL mecha-

nisms built atop it achieves perfect reliability (Table 5.9). Interestingly, this is achieved with a

duty cycle that is only 12% higher than in the natural T-LOW interference.

128



5.3. Comparing Against the Mainstream

5.3.5 Generated Interference: J-MWO

We now investigate the impact of a JamLab-emulated microwave oven that, as illustrated in 5.1,

induces a type of interference that is much stronger than WiFi and also characterized by differ-

ent temporal patterns. In our experiments, we move the source of interference increasingly

closer to the sink, therefore evaluating its effect in increasingly challenging scenarios. Given

the results in the previous section, our comparison against mainstream protocols considers

only ORPL, as the others yield unacceptable performance.

Interferer far from the sink, node 42. Our first set of experiments use a JamLab interferer on

node 42, which is far from the sink, in a corner of the network and in the middle of a dense

neighborhood. This means that interference from node 42 affects nodes that initiate traffic

in its neighborhood, but likely bears limited influence on packets flowing in the rest of the

network.

Table 5.8 shows that ORPL performs well in this scenario, although with an increased duty

cycle compared to lower noise scenarios. This is due to ORPL buffering and continuously

attempting to re-transmit packets until it finds the channel free, as we discussed in 5.2.2. Recall

from 5.1.1 that the J-MWO scenario induces periods of strong interference alternated to periods

with no interference. Therefore, the buffering and infinite CCA retries in ORPL effectively

delay packets when the microwave oven interference is active, enabling their transmission

during the no-interference periods. Nevertheless, these retransmissions do increase the duty

cycle.

Crystal instead achieves perfect reliability, as shown in Table 5.9. Nevertheless, the underlying

Glossy layer is somewhat affected by interference, as seen in Table 5.7; therefore, reliability

in CRYSTAL comes at the cost of a higher duty cycle. This cost is even higher than in the

case with 6 WiFi interferers, despite the fact that in the latter scenario the reliability of Glossy

is worse. The reason lies in the position of node 42; being in a corner of the network, its

strong interference causes the loss of acknowledgments in that neighborhood, triggering

retransmissions from the corresponding senders and unnecessarily keeping the entire network

awake to help forwarding. In the scenario with 6 WiFi interferers that cover the entire network,

packet losses are more spatially and temporally distributed; in this situation, the redundancy

achieved by the combination of Glossy and CRYSTAL mechanisms enables packets to more

easily find routes “around” the interference.

Interferer close to the sink, node 13. We now move the interference source to node 13, about

4m from the sink, based on the intuition that this is likely to be more disruptive than the far

away node 42, but less than an even closer placement, discussed next.

However, our results tell a different story. The reliability of ORPL is nearly perfect, as shown in

Table 5.8, and is achieved with a duty cycle that is about 20% lower than in the previous case

with node 42. The same holds for CRYSTAL (Table 5.9), which achieves perfect reliability with a

duty cycle that is about 9% less than in the case of node 42, thanks to the perfect reliability of

Glossy (Table 5.7).
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For all protocols, the reason for the better performance with the interferer on node 13 w.r.t. 42

is due to the position of the nodes. Node 13 is closer to the sink, and therefore in principle

induces a stronger interference on it. Nevertheless, it also means that it has a more “central”

position, which allows packets to follow routes “around” it. In contrast, node 42 is in the

corner of the network, as already mentioned, and the disruption caused to that portion of the

network is much harder to compensate via alternative routes.

Interferer next to the sink, node 7. When moving the emulated microwave oven on node 7,

1m from the sink, the reliability of CRYSTAL significantly degrades for the first time, causing a

21.5% packet loss (Table 5.9), mainly due to the fact that, unlike the previous scenarios, the

underlying Glossy layer fails to achieve acceptable reliability, losing 32.1% of the packets. The

reason is that the interference on node 7 is so strong and so close that Glossy cannot overcome

it. Receiving packets via alternate routes, as in the case of node 13, is no longer an option

because all routes are jammed by interference, given that the sink is basically at the center of

it.

In contrast, ORPL achieves near-perfect reliability also in this case (Table 5.8), and with a duty

cycle only marginally different w.r.t. the interference source on node 13. From the point of

view of ORPL, the two situations are virtually the same: i) both node 7 and 13 are in the center

of the network, and therefore do not suffer from the more challenging corner placement of

node 42, and ii) in both cases, the buffering and retransmission guarantees that, if a packet is

not lucky enough to be received by the sink despite interference, it eventually is received in

the periods without interference.

On the other hand, CRYSTAL dissemination is designed to be as fast as possible, even with all

the amount of redundancy built atop the even shorter one-shot Glossy floods. Consequently,

CRYSTAL and Glossy cannot exploit a “wait-and-see” strategy as in ORPL.

5.3.6 Is There a Better Configuration?

We explore whether we can find a configuration that yields perfect reliability in the only

scenario synchronous transmissions cannot cope with, i.e., node 7 acting as a J-MWO interferer.

We explore two options: one in CRYSTAL, and one in the underlying Glossy layer.

CRYSTAL: Keeping the network awake. We already observed that an asset of ORPL in the

scenario at stake is its ability to keep retransmitting until interference is over. The analogous

CRYSTAL configuration comes from increasing R. As discussed in the previous chapter, this

is the number of consecutive empty T slots that must be detected by the sink to determine

that communication is over, and it is safe to enter sleep mode until the beginning of the next

epoch. Increasing R keeps the network awake longer. This gives senders more opportunities

to attempt retransmission under interference. Indeed, Table 5.9 shows that R = 6 enables

perfect reliability. However, keeping the network awake for three times longer than before

causes a nearly three-fold increase in duty cycle.
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Glossy: Increasing redundancy. An alternative is to make the underlying Glossy layer more

reliable. As discussed in 5.2.3, the main knob to achieve this is to increase the number N

of retransmissions during a flood, and increase the slot duration W to ensure the flood has

enough time to complete. We verified experimentally that, when pure Glossy is used in

isolation, a setting N = 10, W = 17 yields PDR = 99.76%. However, the reliability provided by

CRYSTAL atop Glossy enables the use of a smaller N , considerably reducing duty cycle. Indeed,

Table 5.9 shows that with NT = 6, WT = 12, CRYSTAL achieves perfect delivery (despite Glossy

yielding only PDR = 83.86%, see Table 5.7) but nearly doubles the duty cycle, as each packet is

transmitted twice as many times w.r.t. NT = 3.

In summary, a proper static configuration of either CRYSTAL or Glossy parameters enables

perfect reliability, but with unacceptable energy consumption if compared to what ORPL

achieves, albeit with only nearly-perfect reliability. Ideally, perfect reliability should come

without a significant increase w.r.t. the duty cycle observed in the other scenarios in Table 5.9,

i.e., at most 0.50%. Further, over-provisioning for the worst case, as these static configurations

achieve, is undesirable. Ideally, CRYSTAL should dynamically adapt to interference, bearing

extra duty cycle costs only when needed. These observations motivate the techniques we

illustrate next.

5.4 Taming Strong Interference

In this section we illustrate a technique to escape interference and a complementary one to

fight it after detecting its presence.

Escaping Interference: Channel Hopping. We first turn to a well-known technique for inter-

ference resilience: exploiting frequency diversity. As discussed in 5.1.1, interference typically

affects only a subset of the 16 channels available. Therefore, a network-wide channel-hopping

sequence can be exploited to enable subsequent TA pairs to move to different channels, re-

ducing the probability that two consecutive ones both execute on noisy channels. This simple

modification does not affect any CRYSTAL parameters.

Figure 5.3 illustrates this, highlighting that channel hopping is performed on the S phase,

following a predefined sequence. The channels of the subsequent TA pairs in the epoch

depend on the channel of the S phase. This mechanism keeps all nodes on the same, rotating

channel at the beginning of each epoch, independent of the number of TA phases they

executed in the previous epoch.

A key design decision is how to determine the next channel to be used. As discussed in 5.1.1,

WiFi and microwave ovens are common sources of interference that occur on 4 and 7 consecu-

tive channels, respectively. Spacing the current and next channel apart by 4 channels would be

sufficient to escape a WiFi source, but not a MWO source. Therefore, our implementation uses

a hopping sequence with 7 channel spacing. Different hopping sequences could be designed,

e.g., based on knowledge of industrial interference.
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Figure 5.3 – Channel hopping in CRYSTAL. The number on each CRYSTAL phase denotes the
channel used.

Fighting Interference: Noise Detection. Our next technique relies on the ability to detect

abnormally high noise levels. Recall from the previous chapter that, in CRYSTAL, the dis-

tributed termination condition relies on counting T slots without data and A slots without

acknowledgements. Under high noise, these missing-packet conditions often occur even when

a packet was transmitted, but encountered interference. If this happens during the T phase

and in the neighborhood of the sink, the sender will re-transmit the packet in the next T slot

but the sink still may not receive the packet in R consecutive T slots, therefore mistakenly

detecting termination and putting the whole network to sleep. Instead, noise in the network

periphery may cause a node to similarly miss Z acknowledgements, going to sleep, likely

before the sink. In both cases, data may remain undelivered because termination was falsely

detected.

Adding noise detection and modifying distributed termination conditions fights these cases.

Intuitively, in the presence of noise, missing packets are not counted toward the termination

condition, keeping the network awake and allowing more opportunities for data and acknowl-

edgments to escape the interference. Recall that receiving any packet keeps a node awake to

serve as a forwarder.

Noise detection can be easily achieved by periodically checking the CCA pin of the CC2420

radio chip; in our current implementation, all nodes perform the CCA check every 64µs while

listening during T or A phases, and define high noise when an RSSI >−60dBm is detected

at least 80 times. Note that this threshold is designed to detect only very high noise, e.g., a

microwave oven; lower thresholds would unnecessarily trigger the scheduling of extra TA pairs,

e.g., in the WiFi scenarios of 5.3, where the unmodified CRYSTAL achieves perfect reliability.

We make the following modifications to CRYSTAL:

• define Rnoise as the maximum number of consecutive slots that i) do not contain a packet

and ii) with high noise.

• change the termination rule at the sink to put the network to sleep when either i) it de-

tects R non-noisy empty T slots since the last received data packet, or ii) max(R,Rnoise)

consecutive noisy T slots (with no data) occur.

• change the termination rule at network nodes to go to sleep when either i) it receives a

sleep command from the sink (piggybacked on an acknowledgement), ii) it has data to

send and it detects Z non-noisy A slots with no acknowledgements since the last time
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it received an acknowledgement, or iii) it does not have data to send and it detects Y

non-noisy TA pairs without any packets since the last time it received a packet in either

T or A slot, or iv) max(Z ,Rnoise) consecutive noisy A slots (without acknowledgements)

occur.

The new termination strategy of CRYSTAL allows to overcome interference that lasts less than

Rnoise TA pairs. A potential drawback of this technique is that it schedules extra TA pairs upon

detecting high noise regardless of whether a packet is currently being disseminated. If no

packet is being disseminated (and there is no way to ascertain it in CRYSTAL due to its aperiodic

and sparse traffic) our noise detection technique may yield unnecessary energy consumption.

We empirically determined that Rnoise = 6 strikes a good balance between reliability and energy

consumption, and use this value. If Rnoise = 0, the noise detection mechanism is disabled.

Fighting and Escaping Interference. Although each of these techniques improves perfor-

mance along some dimension, it is only through their combination that very strong sources

of interference can be effectively overcome with very low energy consumption. Indeed, the

adoption of frequency diversity reduces the probability of the sink to be exposed, in consecu-

tive TA pairs, to high noise levels from the same interference source, and therefore mitigates

the aforementioned drawback of noise detection. On the other hand, the ability to detect

and react to noise is helpful in reducing packet loss when hopping from one bad channel to

another one. The next section illustrates experimental results supporting these arguments.

5.5 Under Strong Interference

We now evaluate the techniques in 5.4 and show that they not only overcome the interference

scenarios considered in 5.3, but also sustain much higher noise levels, whose details are

described next.

5.5.1 Experimental Setup

We extend our experimental setup along three dimensions.

Channel mapping. Testing our channel hopping mechanism in principle requires reproduc-

ing interference across multiple channels, something JamLab cannot do, as discussed in 5.1.1.

We overcome this limitation by defining a mapping between the 16 channels provided by

IEEE 802.15.4 and those in the testbed. Whenever our channel hopping mechanism decides to

switch to a channel c , a corresponding channel creal is instead used for communication, based

on a predefined mapping c → creal established based on the interference types and channels

affected we want to reproduce. For instance, when emulating a microwave oven, we map

channels 20–26 to the real channel used by J-MWO interferers.

More challenging interference scenarios. As described later, extending CRYSTAL with the

techniques in 5.4 allows it to sustain much stronger interference than considered in 5.3, which
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considered the separate effect of generated J-WIFI and J-MWO interference. Therefore, we

now focus on the combined effect of these two interference types. We combine them in two

ways, yielding the scenarios in Table 5.10. The first, COMBINEDsplit , combines the two types of

interferences by placing each on different real channels. This significantly reduces the chances

that channel hopping finds a good channel, and increases the likelihood to hop from one type

of interference to the other. The second scenario is even more challenging, placing J-MWO

and J-WIFI interferers on the same real channel, generating noise that is the sum of the two.

Increasingly challenging scenarios can be generated by determining the number n of channels

this strong interference is mapped to. Table 5.10 shows we experiment with values ranging

from 7 (i.e., the maximum of channels affected when J-MWO and J-WIFI fully overlap in reality)

to 16 (i.e., all channels jammed by the same combined interference).

Besides combining the types of interference, we also strengthen J-MWO, the most disruptive

one, by using 2 interferers simultaneously, selected to be the worst based on 5.3: node 7 next

to the sink, and node 42 in the corner. As for J-WIFI, using the scenario with 6 interferers used

in 5.3 would force us to remove a total of 8 nodes, therefore reducing further the size of the

network. Therefore, we used 4 J-WIFI interferers that, as we verified experimentally, yields a

noise pattern close to natural T-HIGH interference.

Table 5.10 – Scenarios with combined interference generated by 2 J-MWO and 4 J-WIFI.

scenario
#channels jammed

description
2 J-MWO 4 J-WIFI

COMBINEDsplit 7 6 interferers on different real
channels based on type,
mapped on different sets of
channels

COMBINEDn n ∈ {7,10,13,16} all interferers on one real chan-
nel, itself mapped on n chan-
nels

43-node topology. Therefore, overall we use 6 out of the 49 nodes in the testbed as JamLab

interferers. In the rest of this section, we always consider a network of the same 43 nodes,

even when reporting results where some or none of the interferers are used as in T-HIGH. This

avoids biasing the results with different connectivity properties, which is more important

in this section given that this contains our final and most impressive results, derived under

significantly higher interference levels than in 5.3. Note that this 43-node topology is itself a

more challenging environment, given that nodes are intrinsically less connected.

To re-establish our baseline against ORPL, the left-hand side of Table 5.11 shows results from

experiments in this 43-node topology, by considering the individual performance with 4 J-WIFI

and 2 J-MWO, and their combined one over a single channel. Note that ORPL still performs

quite well even with 2 J-MWO (one of which includes node 7), but its performance degrades

significantly even with only 4 J-WIFI interferers, instead of the 6 used in 5.3.4.
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Table 5.11 – ORPL (2Hz) in a 43-node network, U = 1.

scenario
TX Power 0 dBm TX Power −7 dBm

PDR (%) DC (%) PDR (%) DC (%)
T-LOW 99.6 0.497 97.0 0.454

T-HIGH 98.5 0.776 — —
4 J-WIFI 61.0 1.35 39.5 6.192
2 J-MWO 97.8 1.19 94.8 1.503

2 J-MWO 4 J-WIFI 65.0 2.14 39.6 5.375

5.5.2 Channel Hopping

We are now ready to investigate CRYSTAL extended with channel hopping as discussed in 5.4.

We call this variant CRYSTALCH, to distinguish it from the original single-channel one, and

similarly call CRYSTALCH
ND the variant that also adds noise detection.

Table 5.12 – CRYSTALCH, T-HIGH.

NT U PDR DC
(%) (%)

2 0 — 0.294
2 1 100 0.392
2 2 100 0.486
2 5 100 0.766
2 10 100 1.221
2 20 100 2.122
2 48 100 4.768

A first glimpse at the impact of channel hopping is shown in Table 5.12, reporting experiments

under natural T-HIGH interference, without channel mapping and with CRYSTALCH hopping

across all 16 channels. A comparison with Table 5.5 shows that CRYSTAL achieves perfect

reliability regardless of U , and does so with the setting NT = 2, which generally yields worse

reliability w.r.t. NT = 3. Further, the duty cycle is comparable to (actually 1–2% lower than)

the single-channel version. This confirms that our incorporation of channel hopping into

CRYSTAL is already useful with natural interference.

The bigger question lingering from 5.3, however, is whether CRYSTALCH is able to overcome

J-MWO interference next to the sink. To this end, we first analyze the performance in the

COMBINEDsplit scenario, shown in Table 5.13 (left). Recall that this scenario subsumes the

J-MWO on node 7 we discussed at the end of 5.3, by adding a second interferer on node 42,

and overall defines a much more challenging scenario. Indeed, when hopping out of J-MWO

interference, which is found with a 7
16 = 43.75% probability, there is still a 37.5% chance

to stumble on J-WIFI interference, and only a 18.75% chance to enjoy T-LOW interference.

Nevertheless, in this case CRYSTALCH achieves perfect reliability for U = 1 and three-nines

reliability for U > 1, NT = 3. Further, this is achieved with only a slight increase in duty
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Table 5.13 – CRYSTALCH vs. CRYSTALCH
ND.

CRYSTALCH CRYSTALCH
ND

COMBINEDsplit COMBINED16

NT U PDR lost 1 DC PDR lost 1 DC
(%) pkt in (%) (%) pkt in (%)

2 0 — — 0.335 — — 0.543
2 1 100 ∞ 0.454 99.526 211 0.763
2 2 100 ∞ 0.583 99.360 156 0.988
2 5 99.949 1980 0.954 99.027 103 1.712
2 10 99.982 5620 1.568 98.643 74 3.020
2 20 99.979 4822 2.792 98.582 71 5.372
2 42 97.627 42 5.646 90.056 10 9.308
3 0 — — 0.374 — — 0.739
3 1 100 ∞ 0.514 99.705 339 0.955
3 2 100 ∞ 0.661 99.402 167 1.218
3 5 99.949 1978 1.069 97.665 43 1.792
3 10 99.988 8374 1.750 96.224 26 2.964
3 20 99.941 1681 3.138 96.640 30 5.206
3 42 100 ∞ 6.434 94.397 18 9.952

cycle w.r.t. our lowest-interference scenario, T-LOW: 14.3% and 12.6% for NT = 2 and NT = 3,

respectively.

A natural next step is to identify the limit at which CRYSTALCH breaks, which clearly depends on

the type of interference applied and on the number of channels affected. Table 5.14 explores

this limit by using the COMBINEDn scenario of Table 5.10. The interference is stronger, as

it is the sum of 2 J-MWO and 4 J-WIFI, which in the left part of Table 5.13 are instead split

on separate sets of channels. Moreover, we apply this strong interference to an increasing

number n of channels, which allows us to leave fewer and fewer good options to hop away

from interference. The left-hand side of Table 5.14 shows that when n = 7, CRYSTALCH achieves

perfect reliability regardless of the configuration NT and number U of senders, with a duty

cycle marginally smaller than in COMBINEDsplit . On the other hand, when only 6 channels

are free and the others subjected to COMBINED10 interference, performance drastically drops.

When only U = 1 sender is active, PDR = 95% is achieved at best, with NT = 3; as U increases,

PDR plummets. Finally, with only 3 channels free reliability becomes unacceptable, reaching

PDR < 85% with a single sender, and degrading to at best 13.9% with all 42 senders.

5.5.3 Channel Hopping and Noise Detection

These scenarios are very challenging, both in absolute terms and relative to the literature,

making the performance of CRYSTALCH already remarkable. Nevertheless, here we show that

we can push reliability even further. When interference affects so many channels that it

becomes difficult to escape it, the only other choice to improve reliability is to fight it, with the
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Table 5.14 – CRYSTALCH vs. CRYSTALCH
ND, COMBINEDn.

CRYSTALCH CRYSTALCH
ND

n NT U PDR lost 1 DC PDR lost 1 DC
(%) pkt in (%) (%) pkt in (%)

7 2 0 — — 0.328 — — 0.367
7 2 1 100 ∞ 0.456 100 ∞ 0.497
7 2 10 100 ∞ 1.574 100 ∞ 1.624
7 2 20 100 ∞ 2.746 100 ∞ 2.890
7 2 42 100 ∞ 5.848 100 ∞ 5.936
7 3 0 — — 0.370 — — 0.444
7 3 1 100 ∞ 0.513 100 ∞ 0.587
7 3 10 100 ∞ 1.749 100 ∞ 1.826
7 3 20 100 ∞ 3.142 100 ∞ 3.256
7 3 42 100 ∞ 6.494 100 ∞ 6.566

10 2 0 — — 0.347 — — 0.430
10 2 1 93.947 17 0.479 100 ∞ 0.562
10 2 10 71.201 3 1.289 99.962 2637 1.911
10 2 20 46.900 2 1.511 99.788 471 3.414
10 2 42 22.459 1 1.618 99.557 226 7.008
10 3 0 — — 0.386 — — 0.521
10 3 1 95.094 20 0.536 100 ∞ 0.690
10 3 10 74.722 4 1.469 99.646 282 2.130
10 3 20 54.497 2 1.878 99.252 134 3.730
10 3 42 30.353 1 2.271 98.402 63 7.464
13 2 0 — — 0.362 — — 0.483
13 2 1 84.363 6 0.489 99.748 397 0.656
13 2 10 36.581 2 0.844 99.719 356 2.322
13 2 20 19.497 1 0.817 99.409 169 4.132
13 2 42 9.277 1 0.882 97.577 41 8.456
13 3 0 — — 0.410 — — 0.628
13 3 1 85.938 7 0.558 99.919 1237 0.696
13 3 10 47.427 2 1.073 98.608 72 2.484
13 3 20 26.522 1 1.121 96.901 32 4.268
13 3 42 13.936 1 1.230 97.360 38 8.436
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noise detection technique of 5.4.

The right-hand side of Table 5.14 shows results. With U = 1, CRYSTALCH
ND achieves perfect

reliability with n = 10 channels jammed, two- to three-nines reliability with n = 13. However,

the biggest performance gap between CRYSTALCH and CRYSTALCH
ND can be observed with U > 1,

noting that the PDR remains always above 99%, except for U ≥ 10 and NT = 3; the worst-case

U = 20, however, still achieves a respectable PDR = 96.9%.

Noise detection becomes more and more important as the number n of jammed channels

increases. The extreme case is when all channels are jammed by the same strong interference

(Table 5.13, right), in which channel hopping becomes pointless and reliability is provided

entirely by noise detection, which performs quite well. Indeed, the PDR achieved here is only

marginally lower than in COMBINED13, with the worst-case for U = 42 achieving PDR = 90%.

To put this value in context, we observe that it is i) comparable with what RPL achieves in the

T-LOW scenario with U = 1 (Table 5.4), and ii) more than what ORPL achieves in the natural

T-HIGH scenario (no microwave ovens) with U = 20 (Table 5.6).

The price to pay for this remarkable reliability, however, is energy consumption. As mentioned

(5.4), a drawback of noise detection is that high noise keeps the network awake even without

packet transmissions. This is reflected in the increase of DC as the number n of jammed

channels increases; as more channels are jammed by strong interference, the likelihood of

remaining unnecessarily awake increases. This is clearly undesirable for U = 0; yet, it is key to

reliability as U increases, as seen by comparing the two sides of Table 5.14. However, the actual

impact of this increased DC on the overall energy consumption depends on the characteristics

of the aperiodic traffic at hand, as we analyze in 5.5.5.

5.5.4 A Different Topology: Low Power

We now present results with lower output transmission power, −7 dBm. This reduces the

number of neighbors and increases network diameter (Table 5.2), providing a more challenging

topology.

To re-establish the ORPL baseline, we repeated experiments in the new topology (Table 5.11,

right-hand side). ORPL performs close to the high-power setting with only minimal (T-LOW)

or J-MWO interference, but shows drastic performance degradation in the presence of J-WIFI,

with an almost halved PDR.

We ran multiple experiments with CRYSTAL, confirming the trends we observed throughout this

chapter. Nevertheless, duty cycle increases slightly in all cases, as we necessarily increase the

size of Glossy slots to handle the larger network diameter (Table 5.3). Due to space limitations,

we focus only on the final and most challenging scenarios, with CRYSTALCH
ND incorporating both

techniques from 5.4.

The left-hand part of Table 5.15 shows the performance in the COMBINEDsplit scenario. Com-
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Table 5.15 – Low power: CRYSTALCH
ND.

COMBINEDsplit COMBINED16

U NT PDR lost 1 DC NT PDR lost 1 DC
(%) pkt in (%) (%) pkt in (%)

0 3 — — 0.541 4 — — 1.072
1 3 99.992 11825 0.709 4 99.031 103 1.427
2 3 100 ∞ 0.865 4 97.936 48 1.830
5 3 100 ∞ 1.335 4 97.969 49 2.871

10 3 99.997 28889 2.125 4 96.376 28 4.515
20 3 99.987 7840 3.652 4 95.082 20 7.784
42 3 100 In f 7.612 4 93.146 15 14.982

Table 5.16 – An aperiodic, sparse data traffic profile, showing number and fraction of epochs
with U concurrent senders.

U 0 1 2 5 10 20

epochs
# 84.3K 15.5K 2.2K 606 46 1
% 82.1 15.1 2.2 0.14 0.038 0.005

paring against the left part of Table 5.13 we see that NT = 3 is enough to obtain a reliability

similar to the high-power case. On the other hand, to sustain the most challenging scenario

COMBINED16 where all channels are jammed, the redundancy of the underlying Glossy layer

must be increased to NT = 4 (Table 5.15, right-hand side). With this setting, CRYSTALCH
ND

achieves a PDR within 0.5–3% of the high-power setting, remaining above 93% even with all

42 concurrent senders.

These results confirm that our techniques bring significant benefits also in the larger-diameter,

lower-power setting we considered.

5.5.5 Back to Aperiodic, Sparse Data Collection

We now reconcile the experimental results we reported with the original goal of supporting

aperiodic, sparse data collection.

To this end, we use one of the data traffic profiles presented in the previous chapter, the one

resulting from applying the data prediction technique to temperature samples of the 36-day

Intel dataset [58]. The sampling rate (epoch) is equal to 30 seconds.

We slightly adapted the traffic profile to cater for missing values of U in our experiments

(Table 5.16). A missing value is always replaced by the next higher value of U available; for

instance, the value 606 corresponding to U = 5 is actually the sum of the epochs in which 3, 4,

or 5 concurrent senders were present. This achieves a worst-case estimate of PDR and DC, as
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both increase with U . These are aggregated over the entire dataset as

C =
∑N

u=0 c(u)×e(u)∑N
u=0 e(u)

where c(u) is the value of PDR or DC for a given number u of concurrent senders (reported in

previous sections) and e(u) is the number of epochs in which u concurrent senders are present

(from Table 5.16). We re-scaled DC to the epoch E = 30s (i.e., 1
3 of those hitherto shown) used

the original dataset, therefore enabling a comparison with the performance reported in the

previous chapter, albeit in a different testbed. The results are shown in Table 5.17 where, due to

space limitations, we consider only the extremes of the interference scenarios we analyzed in

this chapter, viz. natural interference and generated interference in the COMBINED16 scenario.

These are however sufficient to draw a few interesting observations.

Table 5.17 – Performance of CRYSTALCH
ND with the aperiodic, sparse, real-world data traffic

profile shown in Table 5.16.

interference NT = 2 NT = 3
scenario PDR DC PDR DC

T-LOW 100 0.105 100 0.119
T-HIGH 100 0.105 — —

COMBINED16 99.487 0.198 99.592 0.263

First, DC in the T-LOW scenario is around 0.1%, i.e., achieving the per-mille duty cycle targeted

and reported in the previous chapter of this thesis, confirming that the results we report for

T-LOW are in line with the original ones.

Indeed, in our previous study, we ran experiments on channel 20 and 26 which “showed very

similar performance [...] during the night runs; however, the daytime results were inconsistent

and difficult to assess” and therefore “the results only from night runs on channel 26” were

included. It is therefore interesting to look at the performance of CRYSTALCH
ND in (daytime)

T-HIGH; Table 5.17 shows that it is identical to the one in T-LOW, a result that can be ascribed

to the higher performance under interference of our techniques.

Finally, Table 5.17 shows that the PDR accrued over the 36-day dataset remains near to 99.5%

in COMBINED16, which is remarkable given the very challenging nature of this interference sce-

nario. Further, this is achieved with a DC slightly above or below 0.2% (2 per mille) depending

on NT ; in relative terms this is twice the baseline established by natural interference, but in

absolute terms is very small w.r.t. what commonly reported in the state of the art.

5.6 Related Work

Our goal was to offer an in depth evaluation of synchronous transmission, specifically CRYSTAL,

in the presence of interference, motivating our study CRYSTAL and CRYSTALCH
ND in a range

of conditions and parameters. We offered detailed comparison to ORPL as it offers good
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performance and also serves as the baseline for related work.

CSMA + Channel Hopping. Adding channel hopping to combat interference is well accepted

in the literature, with recent works modifying standard, CSMA protocol stacks. MiCMAC [74]

extends ContikiMAC with channel hopping, resulting in a synchronization-free MAC with

high PDR in the presence of WiFi interference. MiCMAC mechanisms require transmitting

and receiving nodes to synchronize in time as well as across channels, increasing latency.

Oppcast [69] and MOR [108] offer full-stack alternatives to RPL and MicMAC, combining

channel hopping and opportunistic routing to combat high latencies while also escaping high

interference.

To offer an informal, numerical comparison, we consider the evaluation in [108] for FlockLab

with duty cycling WiFi on one channel and U = 2.1. MOR, using this single jammed channel

plus two free channels, showed the best results, namely PDR = 99.35% and DC = 1.56%. We

compare to a more challenging scenario with constant, generated WiFi traffic on all channels

in our testbed where CRYSTAL shows PDR = 100% and DC = 0.559 for N = 2. This DC is nearly

three times smaller than that of MOR, and is achieved without any interference avoidance

mechanisms. Naturally, with more concurrent packets, the CRYSTAL DC increases, however

the same is true for other protocols. Further, in the absence of traffic, a common case in 5.5.5,

CRYSTAL maintains DC < 0.4%, levels that duty cycling protocols cannot achieve due to the

required periodic channel probing. Finally, to manage latency, these protocols hop among

few channels, selected during pre-deployment evaluations. By contrast, CRYSTALCH can use

all channels without affecting its performance, allowing it to adapt to changing interference

conditions. Finally, unlike our investigation, these protocols have been stress tested only

under WiFi interference, and only for constant periodic traffic.

TDMA + Channel Hopping. TSCH [2] with Orchestra [34] scheduling offers a protocol in which

all nodes follow a repeating, slotted schedule, with local and independent slot allocation. The

number and type of slots is statically determined, according to expected traffic. Results from

Indriya show Orchestra with 47 slots maintains PDR = 99.99% with an average DC = 0.4%,

without interference. While this is better than CRYSTAL, which in an analogous setting offers

DC = 0.8%. However, Orchestra node duty cycles vary significantly throughout the network,

with nodes closer to the sink reporting much higher values. Further, Orchestra is designed for

periodic data, which is critical to statically configure slot parameters. In dynamic scenarios

such as 5.5.5, Orchestra would over-dimension for the worst case, unable to reduce the DC

under low traffic. Finally, recall that Orchestra has not been evaluated under interference.

Synchronous Transmissions + Channel Hopping. Applying channel hopping to synchronous

transmissions has been explored in the context of the EWSN dependability competition [91].

The three winning 2017 approaches [64, 36, 73] perform channel hopping directly in Glossy.

This has significant drawbacks: i) the implementation is more complex, as changing channel

between Glossy transmissions interferes with timing; ii) it requires a high value of the Glossy

parameter N , to attempt retransmission on several (potentially all 16) channels. In contrast,

our application of channel hopping is atop Glossy. This i) yields a simple implementation, and
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ii) relies on the intrinsic reliability of Glossy even with low N .

5.7 Conclusions

This chapter set out to verify the extent to which the common wisdom that synchronous

transmissions are highly resilient to interference holds. We selected the recent CRYSTAL

protocol to study, as its heavy reliance on the capture effect and focus on aperiodic, sparse

traffic define very challenging requirements for interference resilience. Along the way, we also

evaluated the underlying Glossy protocol, as well as two representative mainstream protocols,

RPL and ORPL.

Unlike many existing works limited to study under WiFi interference, we subjected our pro-

tocols to the stronger noise generated by microwave ovens, emulated via JamLab. In our

reproducible and controlled setting we showed, for the first time, that ORPL is very resilient to

this type of interference, while synchronous transmissions are not. This motivated us to push

them further, exploiting a combination of channel hopping and noise detection. We showed

that our enhanced CRYSTALCH
ND protocol achieves unprecedented, near-perfect reliability even

against the combination of emulated WiFi and microwave ovens, along with a per-mille duty

cycle in the aperiodic, sparse traffic targeted by CRYSTAL.
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In this thesis we proposed and evaluated novel techniques and protocols that harmonise

support for data collection and actuation traffic in protocol stacks for multi-hop wireless

low-power and lossy networks (LLNs). We started by analysing shortcomings of the standard

IPv6 protocol stack for LLNs on memory-constrained devices and, motivated by a smart city

application scenario, improved the scalability of its downward forwarding mechanisms. This

improvement brought the downward forwarding aspect of the stack on par with the upward

forwarding in networks of several hundreds of nodes and with a very moderate increase in

energy consumption. This achievement extends the applicability of the stack while preserving

its main benefit of being IPv6-compliant.

Nevertheless, in our second application scenario that comprises a control loop and requires

real-time guarantees, the reliability of our standard-compliant stack is not enough. Moreover,

the overhead of the routing and MAC layers prevents proportional energy savings when the

application-level data prediction technique suppresses most of the traffic.

To take full advantage of data prediction, we created CRYSTAL, a novel data collection protocol,

based on synchronous transmissions. We showed that it has unprecedented reliability, and

that it dynamically adapts to the immediate traffic demands, delivers all data fast, when they

appear, and is ultra-low power when the traffic is sparse or not present.

CRYSTAL is applicable as a general-purpose data collection protocol with properties similar or

better than those of the state of the art, however, its full potential is unleashed in applications

that are periodic in their nature but are able to suppress the great majority of their traffic.

We showed in this thesis that control applications like the adaptive tunnel lighting achieve

a sub-permille radio duty cycle with CRYSTAL. We also proved experimentally that CRYSTAL

sustains very strong external interference, which is an asset for wireless control systems in

industrial environments.

Being a data collection protocol, CRYSTAL builds atop Glossy floods, that themselves provide a

similarly efficient, fast and reliable actuation service. Our protocol already uses sink-initiated

Glossy floods to deliver acknowledgements, the same point-to-multipoint primitive can be

utilised for sending actuation commands, resulting in a combined actuation-collection proto-

col stack.

Through these contributions, this thesis pushes forward the applicability of LLNs, by improv-
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ing their scalability, reliability, latency, energy efficiency and interference resilience. At the

same time, this thesis opens new possibilities for future research, briefly characterised in the

following.

CRYSTAL is a clean-slate design, not constrained by Internet standards. Therefore, a new

IPv6-enabled stack based on the principles we used in CRYSTAL might be created in the

future. Related to this, it is in our research plan to thoroughly compare CRYSTAL with recent

IPv6-enabled techniques built on top of IEEE 802.15.4 TSCH [34].

The current version of CRYSTAL was implemented for a relatively old TMote Sky platform with

an MSP430 microcontroller and a separate CC2420 radio chip. Newer platforms built around

a system-on-chip and/or new physical layers like Ultra-Wide Band PHY of IEEE 802.15.4 may

provide even better properties thanks to more precise timing of events and operations they

provide.

A promising area where CRYSTAL or techniques based on similar principles can make a differ-

ence is event-based control [5] that requires a combination of scheduled and non-predictable

aperiodic traffic with exactly the reliability and adaptability CRYSTAL provides. It is in our

immediate plans to try CRYSTAL in combination with various event-based approaches to

control.
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