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Abstract

Nowadays, the advances in information and communication technology have brought

a revolution in many disciplines, including medicine and public health. Due to these ad-

vances, there is an enormous amount of data generated daily from individuals. Extracting

knowledge from large amounts of data involves different challenges, such as processing

and extracting valuable information from collected data in real-life activities. In the past

decades, data collected at the different sources were neglected, due to the lack of efficient

machine learning algorithms and many opportunities to improve patients’ knowledge of

their chronic diseases were missed. One of the advanced technologies in healthcare is wear-

able sensing that is integrated into various accessories such as wristwatches, headphones,

and smartphones. Significant advances in sensor manufacturing and data analysis meth-

ods have opened up new possibilities for using wearable technology for continuous vital

signs monitoring in order to prevent, treat and control users’ diseases. However, despite

their potential use of remotely-sensed data, for some healthcare applications often we need

to deal with scarce data. Dealing with scarce data is a significant problem, especially in

predicting wellbeing of the individuals from data acquired in real-life activities.

In the field of Ubiquitous Computing, a significant problem of building accurate ma-

chine learning models is the effort and time consuming process to gather labeled data

for the learning algorithm. Moreover, efficient data use demands are constantly growing.

These demands for efficient data use are growing constantly. Researchers are therefore

exploring the use of machine learning techniques to overcome the problem of data scarcity.

In healthcare, classification tasks require a ground truth normally provided by an expert

physician, ending up with a small set of labeled data with a larger set of unlabeled data.

It is also common to rely on self-reported data through questionnaires, however, this in-

troduce an extra burden to the user who is not always able or willing to fill in. Finally, in

some healthcare domains it is important to be able to provide immediate response (feed-

back), even if the user is not familiarized with the use of an application. In all of these

cases the amount of available data may be insufficient to produce reliable models.

This thesis proposes a new approach specifically designed for the challenges in pro-

ducing better predictive models. We propose using our novel Intermediate Models to pre-

dict the mood variables associated with the questionnaire using data acquired from smart-

phones. Then, we use the predicted mood variables with the rest of the data to predict the

class, in our empirical assessment, the state mood of a bipolar disorder patient or stress

levels of employees have been used. The motivation behind this new approach is that there

are relevant proposed methods such as latent variables used as intermediate information

3



helping to create better predictive models. These methods are used in literature to complete

the missing data using the most common value, the most probable value given the class,

or induce a model for predicting missing values using all the information from features

and the class. However, these variables are artificially created and used as intermediate

information to build better model. In our Intermediate Models, we know in advance how

many mood variables to use and we have the information from these variables, which allow

us to produce better models.

To address scarce data, we propose applying a semi-supervised learning setting while

taking advantage of the presence of all unlabeled datasets. In addition, we propose using

transfer learning methods that is used to improve the learning performance with the aim

at avoiding expensive data labeling efforts. To the best of our knowledge, there are few

works that have used transfer learning for healthcare applications to address the problem

of limited labeled data. The proposed methods have been applied in two different healthcare

fields: mental-health and human behaviour field. This thesis addresses two classification

problems, a) classification of episodic state of bipolar disorder patients, and b) detecting

work-related stress using data acquired from smartphone sensing modalities.

The proposed approaches improve classification performance in terms of accuracy: a)

classification of bipolar disorder episodes yielded overall accuracy from ≈73% to ≈90%,

and b) the results in predicting work-related stress yielded the accuracy from ≈71.68%

and ≈78%. Results obtained overcome previously proposed approaches that use traditional

supervised learning techniques. Finally, results shown that the proposed approaches are

capable to successfully deal with scarce data.

Keywords: [Intermediate models, Semi-supervised learning, and Transfer-learning.]
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Chapter 1

INTRODUCTION

”Arguably the greatest technological triumph

of the century has been the public-health

system, which is sophisticated preventive

and investigative medicine organized around

mostly low and medium-tech equipment; ...

fully half of us are alive today because of the

improvements.”

— Richard Rhodes

This chapter opens with a brief overview of machine learning approaches and its

role in healthcare. We explain several motivations for addressing the issues of scarce

data and learning the model with a small amount of labeled data. We discuss the most

common methods used in this thesis and offer intuitive explanations and key insights

why the proposed methods work under scarcity settings. The motivation, importance of

the topic, problem statement, methodology, as well as the research contributions of these

studies are then provided. Finally, the structure of the dissertation is discussed.

1.1 Machine learning and the advances in healthcare applica-

tions

Prevalence of chronic diseases is increasing all over the world and management of them

represents one of the greatest healthcare challenges. Due to this reason, healthcare sys-

tems are struggling to find better solutions that improve quality, efficiency and reduce care

costs. In addition, using wearable technologies for supporting individuals with chronic

conditions has been associated with significant improvements in quality of life (Park and

Jayaraman, 2003). Mobile computing and sensing technologies have shown potential to

improve healthcare quality, and efficiency. Compared with standard clinical practice for
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monitoring patients, measurements rely on observation data collected in laboratory set-

tings or in person (Pentland, 2004). For example, in (Vancampfort et al., 2013a) authors

argue that increased knowledge about motor activity and repetitive movements of bipolar

disorder patients during the manic episodes offers deeper insight towards new therapies.

As a result, accurate and continuous monitoring has become increasingly important in

healthcare, where employing technology for patient monitoring can help assess the impact

of mental illness on patients daily activities (Hansen and Christensen, 2011), to increase

effectiveness in treating mental disorders (Vancampfort et al., 2013b), and to monitor per-

ceived stress at working environments (Quer et al., 2013). Due to its embedded sensors,

smartphones have become capable of monitoring multiple dimensions of human behav-

ior, including physical, mental, and social interaction dimensions (Grunerbl et al., 2015;

Osmani et al., 2013a).

In general, healthcare institutions are becoming more and more dependent on advances

in technology, and the use of Machine Learning (ML) techniques can provide useful sup-

port to assist physicians in many ways. In the last decade, ML received attention from

many domains, including healthcare with an aim of improving service quality and care.

To-date, advanced ML techniques that are used in healthcare aimed at solving prognos-

tic problems, including mental-health (Grunerbl et al., 2014; Osmani et al., 2013a) and

human behaviour fields (Ertin et al., 2011; Muaremi et al., 2013). It is often argued that

using ML tools in medicine will lead to improvements in patients care. ML has already

demonstrated global impact in clinical medicine due to the latest advances in sensor tech-

nology that can use data to assess a patient’s wellbeing in real-time settings (Matthews

et al., 2014). It offers the opportunities to enhance physicians work, including efficiency

and quality of healthcare (Clifton et al., 2015).

Current technologies are generating and collecting large volume of data, that makes

them too complex to be analysed using traditional methods, such as supervised-learning

methods. There are various demands faced in building such systems, however, of partic-

ular interest is that of building robust learning systems that function in real-life environ-

ments, where data are acquired continuously by multiple sensing modalities. However,

acquiring patient data poses several difficulties, due to incompleteness (missing label val-

ues), noise in the dataset, irrelevant features selection, and scarceness of data as result

of low number of patient records available. This research addresses the problems of data

scarcity and incompleteness using ML methods that are able to handle datasets aiming

at improving the classification performance.

This chapter lays the groundwork for this thesis by providing an overview of the

challenges posed for acquiring qualitative data from users real-life activities with respect

to learning a classification models and other known learning strategies used for tackling
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the scarcity and incomplete data. This thesis tackles some of the facing challenges by

building efficient and accurate classification system. Those challenges mainly arise from

the difficulty of acquiring large-scale labeled training data, since they are very costly

in terms of human time and effort. The availability of training data is also a common

problem in machine learning, as they are a critical resource to build classifiers. As result,

the scarcity of training data is also the most common problem in monitoring human

behaviour which leads to a poor classification accuracy using the standard supervised-

learning techniques (Brodley and Friedl, 1999).

1.2 Research challenges

In the field of machine learning, classification is a common problem in most applications.

Machine learning approaches have been widely applied in many domains. Supervised

learning is the most popular category of machine learning algorithms. However, the

performance of supervised algorithms strongly depend on sufficient labeled training data

to build an accurate model and make prediction on the future data (Yang and Wu, 2006).

Nonetheless, in real-life settings, labeled training data can be obtained with expensive

cost which has been a major bottleneck of making effective predictive models that can

be applicable in practice. For example, the monitoring systems applied in healthcare

settings have a common problem, in particular when the size of available training set is

small, supervised methods may fail to correctly classify individuals behaviour (Longstaff

et al., 2010).

On the contrary, unlabeled training can be easily achieved which can positively impact

classification performance. However, selecting unlabeled data for labeling to achieve high

classification performance with minimal labeling efforts is a challenging problem. It is

generally assumed that labeled data is available, however, in practice, there is often asso-

ciated with high costs for obtaining this labeled data. As a result, it is often the case that

only a small amount of labeled data is available. Thus, it may be possible that a large

amount of unlabeled data is available, which is usually ignored, that can be exploited

with the appropriate algorithms like the ones proposed in this thesis.

For this thesis, we identify key challenges and core issues surrounding the detection

of behavioral changes from smartphones sensing, which collects data from the different

sensing modalities. The main challenge is to address issues of having scarce information.

Further, we identify also challenges for extracting information from datasets and results

interpretation. Finally, we explore the challenges of reducing annotation cost and improve

prediction accuracy.
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1.3 Research objectives

In this research work main research questions are:

RQ.1 How can we manage scarce data sets from long-term monitoring studies using

machine learning techniques in the healthcare domain? To what extent can we

improve the knowledge about individuals wellbeing using scarce data?

RQ.2 Is it possible to build a system that reduces users’ burden in terms of providing

annotated data in monitoring systems?

1.4 Overview of the proposed approaches

Despite significant advances made towards a better understanding of human behaviour

through smartphone sensing capabilities, there are still many open challenges associated

with monitoring individuals in real-life setting. In this thesis, we focus on analysing data

from participants monitored in real-life settings collecting information from smartphone

sensor and self-assessment questionnaires. The problems addressed in this thesis are

divided into two classes of problems, classification of episodic state of bipolar disorder

patients and detection of work-related stress. In both domains, we deal with large number

of unlabeled data. At first view it might seem that nothing is to be gained from unlabeled

data, however, we demonstrate how unlabeled data can be used to address issues of having

scarce information.

In order to overcome aforementioned obstacles, in this research we propose using ap-

proaches that aim at improving classifier accuracy using unlabeled data and investigate

algorithms that require only minimal feedback from users. We start by introducing Semi-

supervised learning (SSL), which concerns the issue on how to improve classification per-

formance and to reduce the need of expensive labeled data via unlabeled data (Zhu,

2006). Data acquired in our studies contains missing data and a large number of in-

stances available are unlabeled. Thus, the key challenge of this thesis is to exploit the

amount of unlabeled data to enhance the overall performance of the proposed models.

In this thesis, we propose three methods based on: semi-supervised learning, transfer

learning and the novel use of intermediate models. However, it is important to notice that

transfer learning has not been included in mental-health areas, because we are dealing

with only five patients with relatively different symptoms.

First, we propose a SSL approach to increase the accuracy of classification models to

address missing labeled instances. The proposed semi-supervised learning demonstrated

their efficacy in situations where participants have a small amount of labeled data avail-

able, and then used a trained model to predict the rest of unlabeled data. We assume
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that only a small amount of the dataset collected from participants are labeled and we

try to use the unlabeled instances to learn about data structure. In this thesis we apply a

well-known semi-supervised learning algorithm to improve the classification performance

of models induced for two health-care applications. However, despite the capability to

handle scarce information, there are still several limitations using semi-supervised learning

approaches. For example, data acquired from few participants in our studies contain very

few amounts of labeled or incomplete number of classes. Thus, semi-supervised learning

techniques may fail in these settings, if existing classes are not covered in the training

phase.

For this reason, the proposed approach is based on Transfer Learning (TL) (Pan

and Yang, 2010) and consists in using information from other known models to tackle the

problem of users having large amount or complete unlabeled data. In this thesis we use TL

approaches to build suitable models even with scarce data. We propose several approaches

for transferring data from other users under different conditions and by combining different

users models. We transfer information from previously built models (i.e., subjects with

sufficient labeled instances) to the target model which contains insufficient data to produce

an accurate one. Using this approach assumes to have a set of previously learned models

along with their respective data (used to learn the model). Furthermore, we investigate

Ensemble Learning (EL) (Turner and Oza, 1999) to improve classification performance

by combining multiple learning algorithms. The goal of ensemble learning is the same as

in transfer learning.

The above-mentioned approaches attempt to reduce the annotation cost by resorting

to semi-supervised learning and transfer learning. In this thesis, we aim at studying the

information collected by users through questionnaires as useful information. However, it

is a tedious task for each user. In this research, we propose to predict mood variables

associated with questionnaires using data from smartphones to alleviate the user from

this burden. Then, the predicted mood variables are used with the rest of data from

smartphones for class prediction. We call the models that predict mood variables from

the questionnaires: intermediate models as they are used as input for the final predictive

model. In terms of machine learning techniques, although we can relate this technique

with other existing methods, we are not aware of any research that uses the same approach.

For instance, some techniques use latent variables (Muthén and Muthén, 2007), which can

be exploited to create better predictive models. However, latent variables are artificially

created and used as intermediate information to build better models.

To the best of our knowledge, this is the first approach to demonstrate the ability

for increasing classification accuracy by using intermediate models in healthcare domain.

The proposed methods have shown to overcome several obstacles surrounding smartphone
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classification which can be used to reduce the burden during long-term users monitoring

in terms of providing labeled training data.

This thesis findings open new research perspectives to improve future monitoring sys-

tems based on ’autonomous’ data classification reducing costs from human annotations

or self-assessment.

1.5 Contribution of this research

In this thesis, data scarcity problem is tackled considering real-life applications. The use-

fulness of proposed methods are evaluated in two health related problems: mental-health

and stress detection. The proposed approaches may contribute for future monitoring

systems to infer human behaviour with small amount of labeled data and to reduce the

bottleneck in self-monitoring systems with high burden placed on users. To the best of

our knowledge, no research studies to date in bipolar disorder and work-related stress

have reported the challenges of having all annotations or labeled classes or other issues

for including unlabeled dataset within classification processes and yet to improve their

performance.

This thesis improves the state of the art in several directions:

u We propose a novel method, namely intermediate models to predict psychological

and wellbeing conditions using measures derived from self-assessment questionnaires

of individuals wellbeing as they are used as input for the final predictive model.

Thus, enhancing the accuracy in classification of episodic state of patients with

bipolar disorder, as well as the perceived stress of employees.

u We propose a semi-supervised learning method to address the challenge of smart-

phone monitoring in healthcare domains, in order to improve a supervised learning

algorithm with unlabeled data.

u We propose a transfer learning algorithm based on models comparison to select the

closest subject for knowledge transfer. The aim of using this approach is to identify

a similar subject and to improve the model of a new user with scarce data, thus,

improving overall classification accuracy through transfer learning.

Through the investigation carried out in this thesis, foundations are laid for managing

data scarcity in monitoring data while opening new research guidelines for future methods

development.
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1.6 Structure of the research

This thesis is organized as follows, see Figure 1.1:

Chapter 2. Background: It presents relevant concepts that are necessary for under-

standing our research. It describes the stages of data processing chain, describing the

challenges and sensing capabilities in both fields, mental-health and human behaviour. It

also introduces the steps in pre-processing, such as feature extraction, feature selection

and classification methods in detail. Finally, it also faces the challenges when dealing with

scarce data and it aims at improving classification performance using the Semi-supervised

learning and Transfer Learning methods.

Chapter 3. Related Work: It provides an overview of human behaviour monitor-

ing research in the field of mental-health and work-related stress in general. We address

the most important topics related to smartphone sensing systems, including: type of

monitored behaviour, type of sensing modalities required in mental-health and other ap-

plication areas in healthcare. Finally, we provide machine learning methodologies used to

date for classification of patients health state in bipolar disorder and individuals stress at

working places.

Chapter 4. Description Of The Monitoring Systems: It introduces formally the

key challenges addressed in this thesis for classification of state of bipolar disorder patients

and classification of employees perceived stress at working environment. It also shows the

problems of existing solutions and their practical limitation of monitoring systems in

mental-health and field of behaviour, concerning for instance, classification of scarce data

and unlabeled data from annotators (i.e., patients, employees).

Chapter 5. Classification Of Episodic States Of Bipolar Disorder Patients

Using Smartphones:

Provides the methodology used in our research to detect behaviour patterns in bipolar

disorder patients. First section shows the association of physical activity level with psychi-

atric evaluations and estimates differences of physical activity level (morning, afternoon,

night context) into different stages of patients episodic state. Second section, focuses on

classification of bipolar disorder episodes based on analysis of voice and motor activity of

patients during phone conversations. This research evaluates the performance of several

classifiers, different sets of features and the role of questionnaires for classifying bipolar

disorder episodes.

The research in physical activity monitoring is first described in the conference paper

(Osmani et al., 2013a):

u Osmani, V., Maxhuni, A., Grunerbl, A., Lukowicz, P., Haring, C., and Mayora,

O. Monitoring activity of patients with bipolar disorder using smart phones. In
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ACM Proceedings of International Conference on Advances in Mobile Computing

and Multimedia (MoMM2013), Vienna, Austria, December 2013.

The research work on classification of bipolar disorder episodes based on analysis of

voice and motor activity is described in the journal (Maxhuni et al., 2016a):

u Maxhuni, A., Munoz-Melendez, A., Osmani, V., Perez, H., Mayora, O., and Morales,

E. F. (2016). Classification of bipolar disorder episodes based on analysis of voice

and motor activity of patients. Pervasive and Mobile Computing.

Chapter 6. Monitoring Stress@Work Using Smartphones:

The contents of this chapter consist of three parts. First section propose a new approach

based only on smartphone data to predict subjects’ daily stress. Comprehensive analysis

of the association between objectively measured data (e.g., physical activity, location,

social-interaction and social-activity) with subjective self-assessment of work-related stress

based on demographic information. In the second section we propose an approach based

on transfer learning for building a subject model with scarce data. Finally, in the third

section, we focus on classification of employees stress based on analysis of motor activity

during phone conversations.

The research in smartphone assessment of stress and modeling stress had as a result

the following papers:

u Maxhuni, A., Hernandez-Leal, P., Osmani, V., Sucar, E., Mayora, O., and Morales,

E. Stress assessment using Smartphones. Transactions on Intelligent Systems and

Technology, Submission January 2016 (in review).

u Maxhuni, A., Hernandez-Leal, P., Sucar, E., Osmani, V., Morales, E., and Mayora,

O. Stress Modeling and Prediction in Presence of Scarce Data. Journal of Biomedical

Informatics , January 2016.

u De Santa, A., Gabrielli, S., Mayora, O., and Maxhuni, A., (2015). Strumenti Inno-

vativi per la Misura dello Stress Correlato al Lavoro. Medico competente Journal,

2015, Journal Article.

The work in Transfer Learning and Intermediate Models in Stress Prediction are in-

troduced in conference papers (Hernandez-Leal et al., 2015)

u Hernandez-Leal, P., Maxhuni, A., Sucar, L. E., Osmani, V., Morales, E. F., and

Mayora, O. (2015). Stress Modeling Using Transfer Learning in Presence of Scarce

Data. In Ambient Intelligence for Health (pp. 224-236). Springer International

Publishing.
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u Maxhuni, A., Hernandez-Leal, P., Morales, E. F., Sucar, L. E., Osmani, V., Munoz-

Melendez, A., and Mayora, O. (2016). Using Intermediate Models and Knowledge

Learning to Improve Stress Prediction. In AFI360 Conference Track on Future

Internet e-Health.

Relevant research in monitoring wellbeing at work are described in the conference

papers Maxhuni et al. (2011), Matic et al. (2012), Matic et al. (2013), and Garcia-Ceja

et al. (2014) :

u Maxhuni, A., Matic, A., Osmani, V., and Ibarra, O. M. (2011, May). Correlation

between self-reported mood states and objectively measured social interactions at

work: A pilot study. In Pervasive Computing Technologies for Healthcare (Perva-

siveHealth), 2011 5th International Conference on (pp. 308-311). IEEE.

u Matic, A., Osmani, V., Maxhuni, A., and Mayora, O. (2012, May). Multi-modal mo-

bile sensing of social interactions. In Pervasive computing technologies for healthcare

(PervasiveHealth), 2012 6th international conference on (pp. 105-114). IEEE.

u Matic, A., Maxhuni, A., Osmani, V., and Mayora, O. (2013, September). Virtual

uniforms: using sound frequencies for grouping individuals. In Proceedings of the

2013 ACM conference on Pervasive and ubiquitous computing adjunct publication

(pp. 159-162). ACM.

u Garcia-Ceja, E., Osmani, V., Maxhuni, A., and Mayora, O. (2014). Detecting walk-

ing in synchrony through smartphone accelerometer and wi-fi traces. In Ambient

Intelligence (pp. 33-46). Springer International Publishing.

Altogether, these chapters provide the research work in investigating development and

evaluation of robust methods in everyday life scenarios in both mental-health and human

behaviour fields, with a focus on the behaviour patterns recognition and intensity of motor

activity estimation. They introduce the design and the outcome of a number of experi-

ments that were conducted. These experiments confirm that the semi-supervised learning

methods outperforms existing traditional-methods due to missing labeled instances. We

proposed four different transfer learning approaches to cope with scarce data. Ensemble

weighted approach obtained the best scores increasing accuracy almost by 10% in average.

Finally, the Intermediate Models approach proposed have demonstrated to improve the

accuracy performance in stress prediction and classification of bipolar disorder episodes.

Chapter 7. Conclusion: Summarizes the thesis, draws conclusions and gives ideas

for possible future extension of the presented research work.
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Chapter 2

BACKGROUND

”When you apply computer science and

machine learning to areas that haven’t had

any innovation in 50 years, you can make

rapid advances that seem really incredible.”

– Bill Maris

This chapter presents an overview of the methods used to extract and interpret data.

We begin by providing a review of pervasive health computing and data that can be acquired

from the sensing modalities to infer human behaviour. We present our main focus of this

thesis: models, concepts and algorithms in machine learning that are relevant for this

research work. Finally, in this chapter we highlight the novel intermediate models proposed

in this research.

2.1 Pervasive health computing

By far the most dominant concepts in research literature in healthcare context includes

pervasive computing, ubiquitous computing, and ambient intelligence (AI) that evolve

toward the development and deployment of pervasive health application (Borriello et al.,

2007). The main goal of pervasive health is to support patients, and clinicians through the

use of mobile, pervasive, and ubiquitous computing technologies (Mihailidis and Bardram,

2006).

In 1991, Mark Weiser (Xerox PARC) envisioned the future of smart-sensing environ-

ment as:

”...the most profound technologies are those that disappear. They weave themselves into

the fabric of everyday life until they are indistinguishable from it” (Weiser, 1991).

His visions toward advances of technology have predicted that computing units will

become so ubiquitous like an invisible servant without noticing their presence within
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environments. Current trends are rapidly moving toward Weiser’s vision. Further, authors

such as (Mihailidis and Bardram, 2006) argue that nowadays healthcare models need

to be transformed into a more distributed and highly responsive healthcare processing

model, where patients can take control of their own health to manage their wellness,

preventive care and proactive intervention. Despite their complexity, these concepts have

demonstrated that integration of interventions into hospitals and home-care are moving

toward patient-centered healthcare delivery system.

Additionally, the information used for personal healthcare today largely derives from

self-report questionnaires and infrequent short visits to the cabinet of physicians or clini-

cians. These methods are often prone to certain biases in self-rating of individual state,

such as recall and social desirability bias (Mortel et al., 2008). Therefore, research stud-

ies in healthcare advocate moving toward patient-centered healthcare (Mihailidis and

Bardram, 2006), that would improve current healthcare services by understanding indi-

viduals’ context through non-intrusive and wearable sensing devices.

Nowadays, smartphones are viewed as an essential part of life and considered as a per-

sonal accessory (Ventä et al., 2008). Taking all these advantages into account, including

their functionality in ubiquitous computing and communication, smartphones are con-

sidered as an important accessory in users social behaviour (Srivastava, 2005). As such,

smartphones are becoming widely accepted among all population ages and suit their needs

and lifestyles. These features have turned attention also to healthcare systems, allowing

them access to pervasive healthcare applications (Korhonen, 2004).

In the field of pervasive computing, research work initiatives are looking for better

alternatives for continuous and regular measurements of participants through behaviour

and lifestyle (e.g., bad habits, sedentary behaviour, inactivity). This information may

contribute to prevention of chronic diseases and to reduce the risk of premature death.

The ongoing progress in technology has led healthcare institutions to increase efficiency

and to improve service quality throughout the use of pervasive healthcare applications

while providing support to hospitals and promoting preventive healthcare, where data

processing is integrated into everyday objects and activities (Korhonen, 2004).

Sensor-enabled in wearable devices (e.g., smartphones) have the potential for collecting

real-day activities from continuous sensor data that have a huge impact in changing the

way health and wellbeing are assessed, and how care and treatment are delivered. For

example, the Ubitfit Garden project (Consolvo et al., 2008), demonstrate the importance

of capturing levels of physical activities and relate this information to personal health

goals when presenting feedback to the users. These types of systems have been suggested

to decrease the risk of sedentary behaviour through their physical exercises.

These systems have been gaining attention also in mental-healthcare services. Marcu
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et al. (2011) suggest that using sensing capabilities of smartphones in pervasive healthcare

would help both, patients and physicians, to control diseases by providing continuous

feedback based on objective measurements. The authors emphasize the importance of

using smartphone sensing technologies that could also serve to manage mental illnesses by

monitoring behaviour patterns, daily activities and self-reported mood. Data measured

from these systems would allow clinicians to help patients reacting accordingly and to

prevent moving toward extreme severe states of the disease.

Additionally, smartphone are also capable of monitoring physiological reaction (i.e,

expressing various emotions during phone conversations) that can derive from speech

(Scherer, 1986). Several quantitative studies demonstrated the importance in assessing

individuals emotional state by observing various forms of non-verbal communication, such

as non-verbal elements of speech or body postures (Hansen and Christensen, 2011).

2.2 Monitoring in healthcare

According to recent reports presented from World Population Prospect of the United

Nations (Nations, 2013) the average age of the population is expected to grow rapidly in

developed countries within the next decades. This increase will automatically raise the

cost of healthcare and result in significant effects of a government’s budget. However, the

latest advances in different fields of technology has enabled the healthcare institutions

to decrease the problem with integration help of these technologies to accelerate and to

improve services in healthcare.

Healthcare is an essential part of humans in everyday life and periodic monitoring of

vital parameters, such as treatments are the basic function of healthcare. These processes

become even more crucial when it comes to the treatment of mental disorders which require

trained medical personnel to monitor their state. Current practice for monitoring these

basic health parameters in healthcare are measured from physicians or medical personnel

only at discrete intervals. In addition, self-reported subjective health measurements are

essential to assess the effectiveness of treatments (i.e., mental-health). These approaches

often leads to the loss of crucial information about individuals treatments during entire

day or night periods.

Therefore, a particular interest is focused on continuous monitoring techniques capable

of monitoring long-term information about individuals to understand significant changes

of their health conditions in real-time. These systems could be used to assess certain

health parameters during a long period and to provide a complete information about

patients health and perhaps find new unknown markers of specific diseases.

In the past two decades, physicians in healthcare have used new advanced technology
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to improve healthcare services and at the same time to increase the quality of care and

health outcomes. In particular, there has been a focus on using computers, smartphones,

and other wearable sensors as means to support medical and healthcare education and

provide more cost-effective care.

2.3 Advantages of using smartphone computing to monitor hu-

man behaviour

In 2014 approximately 1.8 billion people worldwide owned smartphones. This number

is increasingly growing and in just a few years smartphone users are expected to exceed

one third of the world’s population (Portio, 2011). Due to their mobility and power

afforded with the embedded sensors in these devices, smartphones have been identified

as an important component that opens up smartphones to new advances across a wide

spectrum of applications in healthcare domain.

A number of research works have demonstrated the potential of monitoring human

behaviour using mobile computing and sensing technologies. In order to infer relation

dynamics of people and behaviour changes in real-life activities, smartphones have been

suggested as a promising candidate (Raento et al., 2005). Research using smartphones

for long-term monitoring (Maurer et al., 2006; Raento et al., 2005) have reported several

advantages of using smartphone sensing to collect many types of contextual data con-

tinuously, such as locations, physical activities, body postures, emotion from speech and

social networking.

They are often reported as deeply personal devices, regarding them as personal ac-

cessory (Ventä et al., 2008). Alongside these technological advances, there has been also

increasing interest from researchers and clinicians in harnessing smartphones as a means

of delivering behavioural interventions for health. In the last decades there has been an in-

creasingly wide range of research on using smartphone applications and various features to

support general physical and mental wellbeing. They have shown the effect of using smart-

phones in non-clinical settings for supporting regular physical activity and behavioural

health, which is of critical importance for reducing the risks of several chronic diseases.

Findings have reported that using smartphones for managing physical and mental-health

in supporting changes in health-related behaviour have been widely accepted from indi-

viduals participating to those studies (Dantzig et al., 2013; Lane et al., 2011; Mukhtar

and Belaid, 2013).

Regarding behaviour monitoring, several research initiatives have shown that human

activity recognition involving the use of smartphone technology provides a great potential

for personal health systems by monitoring daily activities, wellness, and health status of
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individuals. As discussed above, smartphones are easily accepted by the mass for adoption

of personal activity recognition’s systems on wearable platforms due to their integrated

rich set of sensors together with their ubiquity. Besides their rich set of new sensors and

their ubiquity, using smartphones have been presented in Table 2.1 as unobtrusive device,

less costly in installing, and ease of use.

Table 2.1: Summary of methods for monitoring individual in healthcare.

Methods for healthcare
performance monitoring

Accuracy Intrusiveness Privacy

Medical Personal High Medium High

EEG - Brain Sensing High High Medium-High

Image-based Sensing High Medium High

Audio-based Sensing High Medium High

Physiological Sensing Low-Medium Low-High Low-High

Smartphone Sensing Low-Medium Low Low-High

2.4 Instruments

A smartphone has often been suggested as a computing platform which functionality

and performance has always been introduced with embedding new sensors. For instance,

embedding accelerometer sensors in smartphone has been introduced to enhance the user

interface of the smartphone in order to determine the orientation of display, while the

user is holding or interacting with the phone.

Sensors embedded on smartphones include a gyroscope, magnetometer, barometer,

accelerometer, proximity sensor, ambient light sensor as well as other more conventional

devices that can be used to sense including front and back facing cameras, a microphone,

GPS and WiFi, Bluetooth radios, Near field communication (NFC) and recently embed-

ded sensors, such as SpO2 sensor for blood oxygen saturation levels, Ultra-Violete (UV)

radiation, and Heart Rate Monitor (HRV) sensor. All above mentioned sensors have been

used or combined to improve smartphones functionality, such as support to user’s interface

(e.g., the accelerometer), augment location base services (e.g., magnetometer and GPS)

or measuring health-related aspects, such as heart-rate variability using HRM sensor.

Moreover, accelerometer data is capable of characterizing physical movements of user’s

while carrying the phone (Constandache et al., 2010). Analysing and measurement of

accelerometer data derived from smartphone have been exploited to recognize different

activities when the smartphone is carried (e.g., running, walking, standing). Fusion of

accelerometer data measurement with location, distances, and speed estimated from the
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GPS can be used to recognize the mode of transportation of a user, such as using a bus,

bike, or car (Mun et al., 2009).

The most powerful and ubiquitous sensors in smartphones are camera and microphone.

With the audio recording from the smartphone’s microphone it is possible to classify a

diverse set of distinctive sounds associated with a particular context or activity in a

person’s life, such as social interaction, listening to music, or driving (Lu et al., 2009). In

addition, camera embedded in smartphones have not only been used for traditional task

of capturing images, but also tracking user’s eye and movement across phone’s display

which help understand users’ interaction by activating applications using cameras that are

embedded in the front of the phone (Miluzzo et al., 2010). Finally, this trend of advances

and the incorporation of new sensors will also improve healthcare services.

2.5 Continuous sensing

When it comes to smartphone sensing, applications are particularly developed and de-

signed for a single individual (namely human-centered sensing) and their main focus is on

how data are collected, analysed and represented. However, utility of these systems for

inferring users behaviour, requires their active involvement in the sensing system (Lane

et al., 2008).

Despite advances described in previous section, such as computation, memory, storage,

sensing and communications capabilities, smartphones resources are limited if complex

signal processing and inference are required (Postolache et al., 2007). For instance, signal

processing and machine learning algorithms involves a large volume of sensed data (e.g.,

classification of audio data (Lu et al., 2009)) and different sensing applications place

further distinct requirements in the execution of these algorithms.

Continuous sensing applications that require real-time interferences or frequent sam-

pling rate from energy expensive sensor (e.g., GPS), are vulnerable to quickly drain smart-

phone’s battery and shorten usability time and therefore sensing capabilities. Further-

more, application used in healthcare have specific demands when it comes to continuous

sensing of the user since they require actual time classification in response to the incoming

data stream measurements (Lu et al., 2010). Thus, for continuous sensing to be feasible

there needs to be new breakthroughs or a boost in low energy algorithms that organize

duty cycles of smartphone devices while maintaining necessary applications running (Lane

et al., 2008)

In this line, earlier research work that used smartphone continuous-sensing systems

tended to trade off performance accuracy and decrease battery usage by implementing

algorithms that require less computation of sensor data. Further strategies that are often
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used to synchronize and transfer different sensor data collected to the cloud infrastructures

(Cuervo et al., 2010) which are responsible for further processing and analysis steps as well

as improving the battery life. In addition, similar techniques have been using duty-cycling

methods in order to synchronize sensing using the user context (i.e., during night time

hours) which tend to trade off the battery consumption against the sensing performance

and latency (Wang et al., 2009). These challenges are actively being studied and are

currently hot-topic in the field of continuous sensing in pervasive health.

We believe that the future sensing applications will be successful if they adapt to users

context in a smarter way, which will decrease the energy costs and offer sufficient accuracy.

2.6 Methods and techniques

In the next sections, we will present briefly methods and data processing techniques to

describe data that are collected from smartphone sensors and infer behaviour changes of

individuals in real-life activities. These methods can be described as a chain of processing

steps, which starts from raw sensory data and resulting in a prediction of the users well-

being while inferring their behaviour changes. In Figure 2.1, we have demonstrated the

simplest example of data flow from left to right presenting a human behaviour recognition

system.

Figure 2.1: Supervised Learning: data collection, feature extraction and prediction for
classifying human context and activities.

In the following subsections, we describe each stage of the process starting with: inter-
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preting raw sensor data and feature extraction collected from smartphone sensors that are

relevant to our studies. Further, we discuss about classification methods (e.g., standard

supervised learning methods, semi-supervised learning methods, and transfer learning

usage in healthcare applications.

2.6.1 Interpreting raw sensor data

As presented in Figure 2.1, the first stage to feed a recognition system is data collec-

tion. At this stage data measured requires being converted to numerical form before the

behaviour pattern vector is set for further training stages. Moreover, raw sensor data

that are collected or captured from embedded sensors (e.g., accelerometer, gyroscope,

magnetometer) are meaningless without their interpretation, such as interpreting human

behaviour or other related aspects. As such, a variety of data mining techniques and sta-

tistical measurement tools are often used to interpret information from the data collected

by smartphones, e.g., total activity level, daily steps, the total distance run by a user

and also cluster with their group of friends of individuals performing in nearby area (e.g.,

Runtastic (2015)).

In following subsections, we discuss the challenges of interpreting sensor data with

more focus on human behaviour monitoring and context modeling.

2.6.2 Pre-processing

Noise in the raw-data collected from sensor modalities is a common problem. Thus, in a

field of machine learning, mining raw data begins with pre-processing methods that aim

at improving the efficiency of the mining process. This process is one of the most critical

step in data mining process since it deals with transformation of the raw dataset.

Data collected from non-invasive sensors (e.g., accelerometers) embedded on smart-

phones have low signal noise due to environment noise and other artifacts. The term

noise in the field of human pattern recognition is used in the broad sense, for instance,

all the properties that limits the performance of a recognition system tasks is regarded

as noise. The goal of pre-processing is to improve signal noise with the use of filtering

methods, normalisation, and other artifact removal. In order to enhance representation

of behavioural patterns, filtering methods are techniques that reduce the amount of noise

from the data collected.

u Segmentation:

In machine learning, preprocessed input data are often suggested being split to

provide useful entities for classification, namely segmentation. In Figure 2.2 we

illustrate segmentation processes, a) each segment add the information regarding

18



the segment (i.e., window size), and b) the process is interwoven with the previous

or following processes (i.e., window overlap). Some recognition systems require

segmentation of each individual pattern, i.e, segmenting dataset into hours or days

to create meaningful entities for the feature extraction and for final classification

step. For instance, in activity recognition segmentation is used for partitioning

data into fixed-sized windows and at fixed temporal intervals to describe better the

activities.

Figure 2.2: Feature segmentation process.

u Normalisation:

In order to prevent singular features from dominating other and to obtain comparable

values ranges, feature normalisation is performed to decrease variation within ranges.

Normalisation is used to scale features of data in order to fall within a specific range.

The goal of these process is to make it easier for the learning algorithm to learn and to

make comparison more straightforward across dataset. An instance to normalisation

method is the Neural-Network Models (Cochocki and Unbehauen, 1993; Duda et al.,

2012), which require dataset normalisation to be within the range of -1 to 1 or 0 to

1.

In order to increase effectiveness of human behaviour recognition and reduce the com-

putation, feature selection is performed. In cases where dimensionality of features set is

too high, feature selection detects and discards features that are irrelevant and useless
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information to train the classifier. In addition, different methods are used to perform ar-

tifacts removal. Principal Components Analysis (PCA) (Johnson, Wichern, et al., 1992)

and Independent Components Analysis (ICA) (Lee, 1998) are often used to separate ar-

tifacts from dataset using higher order statistics of data. All operations used in the

pre-processing step, contribute to define a compact representation of behaviour patterns

and improve the classification performance (Duda et al., 2012).

2.6.3 Feature extraction

The meaning of the feature extracting step is defined in Devijver and Kittler (1982):

”Feature extraction problem ....is that of

extracting from the raw data the

information which is most relevant for

classification purposes, in the sense of

minimizing the within-class pattern

variability while enhancing the between-class

pattern variability.”

In the area of human behaviour recognition, selecting the best set of features that help

to reduce the dimension from dataset is considered as the most important issue. Feature

extraction aims at reducing the number of features extracted from dataset and chooses

the features which are similar in the same class and very different from other different

classes. After data dimensionality has been reduced during features extraction process,

classification step will yield saving in memory and also alleviate the worst effects of the

curse of dimensionality (CD) (Bellman, 1957). At first, CD increases dimensionality of

the feature vector space which enhances the classification accuracy but rapidly leads to

sparseness of the training data, poor representation of the vector densities, which decreases

classification accuracy. Thus, many experts in the field, such as the work in (Duda et al.,

2012) emphasized that to properly carry out behaviour recognition it is necessary to use

the right features.

In Table 2.2 we show an example of features that can be extracted from smartphone

sensors and infer the behaviour pattern of the smartphone users. Collectively, GPS,

microphone, and accelerometers have proven to be effective at inferring more complex

human behaviour. The microphone is one of the most ubiquitous smartphone sensor.

They are capable of detecting individuals being involved at social interactions (e.g., verbal

interaction), or their surrounding ambient noise (Lu et al., 2009). Researchers in the field

have demonstrated that variety of human activities can be inferred from multi-modal
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sensors, e.g., significant places and activity level from GPS and accelerometers (Jeong

et al., 2007; Proper et al., 2003).

Table 2.2: Example of feature extraction from smartphones.

Data Type Sensor Type Description

Physical Activity
Accelerometer # Number of level of Activities
Accelerometer # Number of Steps
Accelerometer # Intensity of motor activity

Gestures Recognition
Magnetometer # Direction of a movement
Gyroscope # Gestures

Locations

GPS # Location Clusters (Outdoor locations)
Cell Tower # Most frequented places (Indoor, Outdoor locations)
Google Maps # Most frequented places (Indoor, Outdoor locations)
Wi-Fi # Most frequented places (Indoor, Outdoor locations)

Email contacts
Phone sensor # Number of Messages
Phone sensor # Number of Characters

Phone call contacts
Phone sensor # Number of Calls
Phone sensor # Duration of Calls

Calendars
Phone sensor # Number of Events
Phone sensor # Location of Events

Applications
Phone sensor # Count Application launches
Phone sensor # Duration of Application launches

Categories of Applications
Phone sensor # Count Application launches
Phone sensor # Duration of Application launches

Web-browsing Phone sensor # Count Visits

Voice
Microphone # Speech activity
Microphone # Ambient Noise

Social Interactions / Proximity
Bluetooth # Count number address of Bluetooth Id Tags
Wi-Fi # Count similar AP address and location changes
Microphone # Count verbal proximity

2.6.4 Classification

Finally, selected features obtained from complete datasets are used as input for the next

processing step, namely the classification. Results obtained from the classifier are typically

a discrete selection of one of the per-defined classes. The degree of classification difficulty

may depend directly from the similarity relations between pattern belonging to a different

classes. Thus, its performance accuracy is significantly affected by the feature extraction

stage.

Next, a general framework of supervised learning, semi-supervised and transfer learn-

ing methods is presented.

2.7 Learning from data

Machine learning is the field of study that is concerned with the question of how to

construct computer applications that automatically improve with experience (Mitchell,

1997). In Figure 2.3, main types of techniques in ML are presented, such as supervised

learning, and unsupervised learning.
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Figure 2.3: Learning paradigms.

2.7.1 Supervised learning

One important task of supervised learning is classification, where usually data is known

before the learning task starts, which is called offline learning. Data consists of a set

of examples containing a feature vector Xi and a label (class) Yi. A supervised learning

algorithm produces a function g : X → Y , with X and Y input and output spaces,

respectively. In order to satisfy classification performance requirements, the following

conditions are required: (a) all data instances should be assigned to a class, and (b)

all data instances are assigned to only one class. There exists different techniques for

performing classification, such as Bayesian Networks (BN) (Pearl, 2014), Support Vector

Machines (SVM) (Vapnik et al., 1997) and Decision Trees (DT) (Quinlan, 1993) (as shown

in Figure 2.3).

There are several methods that have been developed for supervised classification meth-

ods in human behaviour recognition and are listed in the Table 2.3.

Decision Tree (DT)

Decision trees are the most commonly used decision modeling techniques. As a powerful
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Table 2.3: Most common supervised classification methods.

Classification
Methods

Description

Naive Bayes
(NB)

Naive Bayes is one of the most efficient and effective inductive learning algorithm.
It is known as probabilistic classifier which uses Bayes’ theorem with naive in-
dependence assumptions to simplify the estimation of P(X|C) =

∏n
i=1 P (Xi|C) ,

where X = (X1,...,Xn) is a feature vector and C is a class (Rish, 2001).
Bayesian

Network (BN)
Bayesian Network is a probabilistic graphical model. It represent a probabilis-
tic dependencies among the corresponding variables of interest by using training
dataset. It is often used in healthcare studies to learn relationships between the
symptoms and the disease outcomes (Friedman et al., 1997).

k-NN k-NN classifier is based on the closest training instances in the feature space.
Euclidean distance k is used to measure similarity between instances by finding
the closest instance (Altman, 1992). k denotes the number of classes.

Support Vector
Machine (SVM)

SVMs are binary classifiers, derived from statistical learning theory and kernel-
based methods (Cortes and Vapnik, 1995). SVM classifier separates the classes
with decision surface that maximizes the margin between the classes (data points
closest to decision surface support vectors). While SVM is a binary classifier, it is
often used as a multi-class classifier by combining several binary SVM classifiers.

Decision Tree
(DT)

Decision tree algorithms are used extensively for data mining in many domains.
DT is a tree data structure consisting of decision nodes and leaves and the leaf
specifies a class value (Witten and Frank, 2005). Decision Tree algorithms predicts
the labeled instances based on features values. Decision nodes of the tree denote
the different features whereas the branches between nodes provide possible values
that selected feature can have. Leaf nodes provide the final classification accuracy.
The algorithm used to generate a decision tree is information entropy (Witten and
Frank, 2005).

classification algorithm, DT are becoming increasingly popular in the field of information

systems applications in healthcare and medicine, including in mental-health (Batterham

et al., 2009). The most popular DT algorithms include Quinlan’s ID3, C4.5, C5 (Quin-

lan,1993) and Breiman’s Classification and Regression Tree (Breiman et al., 1984). In

clinical research studies, decision tress were widely used in disease models and are often

used to represent the progress of patients wellbeing through different degree of their states

over time (Batterham et al., 2009).

Decision tree learning is a method for approximating discrete-valued target functions,

in which the learned function is represented by a decision tree. Learned trees can also

be transformed to sets of if-then rules to improve human readability (Mitchell, 1997).

The objective of a decision tree is to specify a model that predicts the value of a certain

variable, called class, given that some input information is provided.

Definition: (Decision tree). A decision tree D is composed of nodes which represent

tests to be carried out on variables known as attributes. Each test has different outcomes,

which are branches of the node. These outcomes can be of two types: a leaf in which a
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Figure 2.4: An example of a decision tree that classifies the level of Stress of a subjects. Ovals
represent decision nodes. Rectangles are leaves (terminal nodes) that give the classification

value, in this case they represent low, mid or high level of stress. Below each leaf accuracy is
presented as a percentage.

value for the class (predicted variable) is provided and represents a final node for the tree.

Or it can be another test.

One of the most well-known algorithms for learning decision trees from a batch of

information is C4.5 Quinlan, 1993. In our domains, trees are useful to represent individuals

wellbeing. For example, in Figure 2.4 a decision tree to predict the stress level is depicted.

Each oval represents a decision node and rectangles correspond to a stress level (low, mid,

high) of a person.

There are different performance measures to evaluate the prediction quality. Let TP,

FP, TN and FN be the number of true positives, false positives, true negatives and false

negatives, respectively:

u Accuracy: TP+TN
TP+TN+FP+FN

u Precision: TP
TP+FP

u Recall: TP
TP+FN

u F-score: 2 · (precision) (recall)
precision+recall

When using decision trees, a sensible measure to compare them is needed. There are

two common approaches to compare decision trees, measures based on comparing the

structure (Shannon and Banks, 1999) and measures based on comparing the prediction

results (Miglio, 1996). Miglio, 1996 presented a dissimilarity measure that can combine

the structure (the nodes attributes) and predictive (the predicted classes) similarities in a

single value (Miglio and Soffritti, 2004). Let Di and Dj be two trees with H and K leaves

respectively used to classify n observations. We label 1, . . . , H Di leaves, and 1, . . . , K Dj

leaves to form the matrix:
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M = [mhk] h = 1, . . . , H and k = 1, . . . , K

where mhk is the number of instances which belong to both hth Di leaf and to kth Dj

leaf and mh0 =
∑K

k=1mhk, m0k =
∑H

h=1 mhk.

The dissimilarity measure is defined as:

d(Di, Dj) =
H∑
h=1

αh(1− sh)
mh0

n
+

K∑
k=1

αk(1− sk)
m0k

n
(2.1)

where m values measure the predictive similarity and α and s values measure the struc-

tural similarity. In detail, sh coefficient is a similarity coefficient whose value synthesizes

similarities shk between hth leaf ofDi andK Dj leaves. The value shk measures similarities

of two leaves taking into account their classes and objects they classify:

shk =
mhkchk√
mh0m0k

k = 1, . . . , K

where chk = 1 if the hth leaf of Di has the same class label as the kth lead of Dj, and

chk = 0 otherwise. Choosing the maximum shk is a way to synthesize them as:

sh = max{shk k = 1, . . . , K}. (2.2)

Coefficient αh = q − p + 1 is a dissimilarity measure computed between a leaf of Di

and with respect to the leaf identified by Equation 2.2 of Dj. When paths associated to

those leaves are not discrepant, then the value is set equal to 0. If, on the contrary, those

paths are discrepant, the value is > 0 depending on the length of the longest path, p, and

the level where two paths differ from each other, q. The maximum value of d(Di, Dj) can

be reached when the difference between the structures of Di and Dj is maximum and the

similarity between their predictive powers is zero. The normalizing factor for d(Ti,Tj) is

thus equal to:

max d(Di, Dj) =
H∑
h=1

αh
mh0

n
+

K∑
k=1

αk
m0k

n

where αh is the length of the path from the root node to the hth leaf. Thus, the normalized

version of the dissimilarity is:

dn =
d(Di, Dj)

max d(Di, Dj)
(2.3)
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Figure 2.5: Example of highly dissimilar decision trees (a) and (b) using measure in Equation 2.3
(since their paths and predictions differ); in contrast (c) and (d) depict highly similar trees since the

attributes in the nodes are the same and the predictions are similar.

where a dn = 0 represents that the trees are very similar1 and dn = 1 that they are

totally dissimilar. The normalization factor defined in Equation 2.2 can be interpreted

as the weighted sum of paths lengths from the root node to all leaves of both trees. The

length of each path is weighted with the proportion of observations classified in the related

leaf.

Now, we present some trees with results using the dissimilarity measure presented in

Equation 2.3. We refer to the reader to (Miglio and Soffritti, 2004) for a more detailed

example. Figures 2.5 (a) and (b) depict trees with a high dissimilarity value, (d =

0.38). The reason is that paths are discrepant (structural similarity) and their predictive

classification is different. In contrast, Figures 2.5 (c) and (d) depict highly similar trees,

(d = 0.0), note that attributes in the nodes are the same (even when the split value is

different they are considered the same).

C4.5 Classifier

Among decision tree algorithms, the C4.5 tree-induction algorithm deserves a special

mention for several reasons, including their good classification accuracy and is the fastest

(i.e., for large amount of datasets) compared with main-memory algorithms for machine

1Nodes with numeric attributes with the same variables but with different splitting values are seen as totally
similar.
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learning and data-mining (Quinlan, 1993). The C4.5 is an extension of the ID3 algorithm

used to improve its disadvantages:

u Dealing with training data that have missing values of attributes.

u Handling different cost in the tree.

u Pruning the decision tree after its construction (namely post-pruning).

u Handling attributes with discrete and continuous values.

C4.5 algorithm constructs a big trees with a divide and conquer strategy (Quinlan,

1993). The trees are constructed by considering amount of attribute values and finally

it applies the decision rule by pruning. In C4.5 pruning trees after creation, it prevents

the tree from over-fitting and attempts to remove branches in the tree by replacing them

with leaf nodes (as shown in Algorithm 1). Similarly, as shown in the Figure 2.6, decision

trees are constructed as following:

Figure 2.6: Example of C4.5 decision tree nodes.

u On top of the node of the tree are root nodes that select the attributes that are most

significant.

u The measured information is passed to branch of nodes (e.g., branch n1 and n2)

which terminate in leaf nodes that give decisions.

u Finally, rules are generated by highlighting the path from the root node to leaf node.

The construction of DT classifiers are relatively fast and the accuracy of decision trees

is often superior if we compare with other models. DT algorithms present several ad-

vantages over other learning algorithms, due to their robustness and lower computational
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cost for generating of the model. The models created from DT are capable to predict

the class based on several input variables, e.g., each node correspond to one of the input

attributes and edges to children for each of the possible values of that input attribute (as

shown in Figure 2.6). Every leaf in the tree represents a value of the target variable given

the values of the input attributes defined by the path from the root to the leaf (Witten

and Frank, 2005).

Algorithm 1: C4.5 Algorithm

Input: an attribute-valued dataset D
1: Tree = [ ]
2: if D is ”pure” then

terminate
end if

3: for all attribute a ∈ D do
Compute information-theoretic criteria if we split on a
end for

4: abest = Best attribute according to above computed criteria
5: Tree = Create a decision node that test abest in the root
6: Dv = Induced sub-datasets from D based on abest
7: for all Dv do

Treev = C4.5(Dv)
Attach Treev to the corresponding branche of Tree
end for

8: return Tree

C4.5 can be built by splitting the dataset into subsets based on an attribute value test

and can be repeated on each subset in a recursive manner (namely recursive partitioning).

The recursion process finalizes when splitting no longer adds value to the predictions or

when the subset at a node has achieved same value of the target variable. The structure

of DT algorithms are based on a greedy top-down recursive partitioning for tree growth

and uses various impurity measures, information gain (IG), gain Ration, Gini Index and

distances based measures as an input attribute to be associated with an internal node.

To form DT, the following steps are required:

1. Step 1: Define x entropy,

H(X) =
∑
j

pj log2(pj) (2.4)

where x is a random attribute with k discrete values which are distributed according

to probability value P = (p1, p2,..., pn).
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2. Step 2: Calculate the weighted sum the entropies for each subsets,

HT =
k∑
i=1

PiHS(Ti) (2.5)

where Pi is the proportion of attributes in subset i.

3. Step 3: Measurement of information gain,

Information Gain IG (S) = H(T )−HS(T ) (2.6)

The information gain (IG) is the criterion needed for selecting the most effective at-

tribute in order to make decision. The selection of the attribute at each decision node

would be the one with the highest IG.

Moreover, one of the unique feature of C4.5 algorithm is handling with missing at-

tributes in the dataset. The C4.5 uses probability values for missing attributes rather

then assigning existing most common values of that attribute. Handling missing attribute

values is an important issue for classifier learning, since it can affect the prediction accu-

racy of learned classifiers. Thus, C4.5 has gained increased attention in semi-supervised

learning methods to address the missing instances for improving the classification perfor-

mance.

2.7.2 Ensemble learning techniques

One technique used by machine learning to increase the accuracy of different classifiers is

to use several of them and then join their collective decisions into one. These are called

ensemble methods which use multiple models to obtain better predictive performance

than could be obtained from any single model. By joining multiple classifiers decisions

into one final classifier, ensemble methods aim at leveraging the wisdom of the crowds

(Rokach, 2010). Their task can be described as a group of individuals trying to solve one

particular problem, but within the group might be an individual very skilled to lead the

group toward a correct solution, however, there is still an advantage to have the rest of

the group around.

Two most popular methods are Bagging (Breiman, 1996) and Boosting (Freund,

Schapire, et al., 1996). Bagging methods train multiple instances of a classifier on differ-

ent subsamples (bootstrap samples) of the training data (Breiman, 1996). Decision are

made by a majority vote among the base classifiers. On the other hand, Boosting methods

(Freund, Schapire, et al., 1996), training data is more logically by sampling instances that

are difficult for the existing ensemble to classify with higher preference.
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Figure 2.7: Example of the ensemble learning.

In particular, one ensemble method commonly used is called random forests (Diet-

terich, 2000) and it is based on decision trees. The method constructs a multitude of

decision trees at training time and the predicted class is the mode of the classes of the

individual trees. In our research work, we have used weighted ensemble of models that

is used after transfer learning is applied (see the Algorithm 3) and discussed in Chapter

6. The example of ensemble learning used in prediction of stress at work (in Chapter 6 is

presented in Figure 2.7).

When dealing with real-world data it is likely to have missing data, some techniques

from machine learning that deal with this problem are called semi-supervised learning

techniques.

2.7.3 Semi-supervised learning (SSL)

Semi-supervised learning (SSL), is in fact a missing link between the supervised learning

and clustering methods. Having a limited training set, using the SSL aims to accurately

predict correct classes for unseen data. Semi-supervised learning has got various applica-

tions in real life. It became particularly popular in the 1990s when it proved to be useful

technique in text classification and natural language processing (Zhu, 2006).
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According to (Chapelle et al., 2006b),

”SSL is halfway between supervised and unsupervised learning. In addition to unlabeled

data, the algorithm is provided with some supervision information – but not necessarily

for all examples.”

Figure 2.8: Issues in model learning and usage process using supervised learning methods.

Definition of semi-supervised learning

Semi-supervised learning methods have been suggested in machine learning field as the

right choice aiming to exploit unlabeled samples to improve learning performance (Longstaff

et al., 2010; Zhu, 2006). The main objective of semi-supervised learning in machine learn-

ing is to combine the advantages of supervised and unsupervised approaches by learning

from both labeled and unlabeled data. In Figure 2.9 the advantage to utilize and to exploit

the costless unlabeled data during the training process makes semi-supervised learning

algorithms to be one of the hottest research topics in machine learning. There are a num-

ber of different algorithms for semi-supervised learning, some are designed specifically for

a classifier such as semi-supervised SVMs (S3VM) (Zhu, 2006). Others offer a general

approach for any classifier period.
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Self-training

In this section, we briefly describe the method used in our research for semi-supervised

learning, namely, Self-training (Nigam and Ghani, 2000). Self-training approach allows

a classifier to start with a small amount of labeled instances to build an initial classifier

and later to incorporate both labeled and unlabeled data with the aim at improving the

accuracy performance. As discussed in previous chapter, having small amount of labeled

instances is a common problem in machine learning. Let us assume that we have a set

L (usually small amount) of labeled instances, and a set U (usually large) of unlabeled

data. As shown in Figure 2.9 supervised methods will ignore unlabeled instances to build

a classifier.

Algorithm 2: Self-Training Algorithm

Input: L = (xi, yi); set of labeled instances
U = (xi, ?); set of unlabeled instances
T; threshold for confidence

1 while U 6= ∅ or U’ 6= ∅ do
2 Train a classifier C with training data L
3 Classify data in U with C
4 Find a subset of U’ of U with the most confident scores (confidence > T)
5 L + U’ =⇒ L
6 U - U’ =⇒ U

Using self-training algorithm only one classifier is need, thus, only one feature set is

required. This classifier is trained on existing labeled data and then applied on a set of

unlabeled data. For several iterations, the classifier labels the unlabeled data and includes

the most confidently predicted instances of each class into a labeled training set Nigam and

Ghani (2000). Algorithm 2 shows the pseudo-code for a typical self-training algorithm.

Self-training begins with a set of labeled data L, and builds a classifier C, which is then

applied to the set of unlabeled data U. T which is the set of most confidently predicted

instances are added to the labeled set. The classifier is then retrained on the new set of

labeled instances, and the process continues for several iterations (see Figure 2.9).

In this thesis, we focus on the self-training algorithm (Zhu, 2006) that uses its own

predictions to assign values to unlabeled data that achieved higher confidence in predic-

tions (in our studies we use confidence ≥ 80%). The unlabeled data with high confidence

in its predicted class is added, with its class, to the labeled data. This new augmented

labeled data is used to induce a new model from which new predictions over the reduced

unlabeled data are produced (see Algorithm 2). The procedure is repeated until there are

no more instances above the threshold value or until the unlabeled data becomes empty.

Adding new labeled instances acquired from unlabeled data, is often shown to achieve a
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Figure 2.9: Semi-supervised learning method (SSL), where L represents labeled instance, U
unlabeled instances, and t number of iterations, L = Lt ∪ Ut.

better accuracy than supervised learning that uses only the labeled data.

2.7.4 Transfer Learning (TL)

Being capable to learn an accurate model for predicting subjects outcomes from a specific

behaviour typically depends on the amount of available training data. Acquiring sufficient

labeled data is often very difficult and expensive to obtain in many domains. A system

with the capability to use not only labeled but also unlabeled data holds a great promise

in terms of broadening the applicability of learning methods. In this regard, the area

of machine learning has proposed semi-supervised methods to overcome these problems.

However, these methods assume that both labeled and unlabeled data are generated from

the same distribution. In contrast, a more general approach will allow these distributions

to be different, this is the case of Transfer Learning (Rashidi and Cook, 2010). In this

way, we can benefit from previous acquired knowledge from other related domain, task or

model to improve our learning process.

TL methods have been successfully applied to establish more accurate models using

scarce data (Luis et al., 2010) in different domains such as social networking (Roy et

al., 2012), text classification (Roy et al., 2012), image classification (Raina et al., 2007)

and indoor and outdoor localization problems (Pan et al., 2008). While these are only

a handful of examples, TL has been used in many other applications as shown in the

surveys in (Pan and Yang, 2010; Weiss et al., 2016). However, in the healthcare domain,

the use of TL is still in its infancy. For our work related model refers to information from

other subjects, that is when a new subject is added into the system, it is expected to have

scarce data.

In this thesis, we used the following approach to address scarcity of data:

u Initially, we learn a model Ti for a new subject i using the available data.
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u We compare the model with the rest of the T models generated for the other subjects.

u Finally, we apply transfer learning to infer a better model.

Our proposed approach is described in more detail in Algorithm 3 where decision trees

have been used in to induce subjects models.

A categorization of Transfer Learning techniques

In transfer learning, we have the following three main research issues:

u What to transfer

u How to transfer

u When to transfer

“What to transfer”: focuses in understanding knowledge that can be transferred

across tasks. This knowledge can be similar between the individuals tasks that may

help improve performance for the targeted task. When similarity between individuals is

determined, this knowledge can be transferred which corresponds to ”How to transfer”.

At this step learning algorithms need to be developed to transfer knowledge.

”When to transfer”: focuses in transferring intelligence that should be used. We are

interested in knowing in which cases knowledge transfer can be applied. For instance, in

situation where the source domain and target domain are not related, transfer may result

unsuccessfully. In our dataset collected from bipolar disorder patients, transfer learning

could not be applied due to small number of participants and due to different degree of

their state and would result to negative transfer.

Figure 2.10 presents our approach proposed combining TL and SSL which has been

applied in data collected from 30 employees at working environments.

2.7.5 Intermediate models

The information provided by the users through questionnaires is useful, however, it is a

tedious task for each user. In this research, we propose to predict the mood variables

associated with questionnaires using data from smartphone to alleviate the user from this

burden. Then, the predicted mood variables are used with the rest of data from the

smartphones to predict the class, in our experiments, the mood state of a bipolar disorder

patient or stress levels at working environments (see Algorithm 4). We call the models

that predict the mood variables from the questionnaire: intermediate models as they are

used as input for the final predictive model.

In terms of machine learning techniques, although we can relate this technique with

other existing methods, we are not aware of any research that uses the same approach. For

instance, some techniques use latent variables to help to create better predictive models.
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Figure 2.10: Transfer learning with self-training, proposed method.

These hidden variables are artificially created and used as intermediate information to

build better models. In our case, we know in advance exactly how many variables to

use and we have some information (values) for these variables, which allow us to produce

better models.

Another related technique is precisely semi-supervised learning, where there is some

labeled data and a normally larger set of unlabeled data. In our case, what we are missing

is not the class labels, but a large proportion of information of useful features that can

be used to build a better predictive model. What we propose is to use the available

information to fill-in the missing data for some of the attributes.

Normally when there is some missing data, researchers have used imputation methods.

These methods try to complete missing data using, for instance, the most common value,

the most probable value given the class, or induce a model to predict the missing values

using all the information from features and the class. In our case, we are not using class

labels for the induced intermediate models, we target the process to very specific features

(those involving the intervention from the user) and assume that reliable models can be

built from available data (in our case from information obtained from smartphones).
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Algorithm 3 Transfer Learning used in our research with four different transfer learning strate-
gies.

Let DT ; dataset from target user
Let {D1, . . . , Dn}; datasets from other users
Let Mall = {M1, . . . ,Mn}; induced models from other users
Let Th = threshold value
Induce model MT using DT

for each Mi ∈Mall do
Find similarity value with MT (sim(MT ,Mi))

end for
Sort Mall using sim(MT ,Mi) |Mi ∈Mall

Use one of the following TL strategies:
if Näıve then

Select most similar model Mi (first element in Mall)
Select data Di used to construct Mi

Induce new model MT with {DT ∪Di}
else if Theshold then

Select the most similar models Msim = {
⋃

iMi | sim(MT ,Mi) > Th})
Select D = {

⋃
iDi | Di was used to induce Mi ∈Msim} )

Induce new model MT with {DT ∪D}
else if Sampling then

Select the K most similar models MK = first K elements in Mall

Select D = {
⋃

iDi | Di was used to induce Mi ∈MK} )
Let D′ = {

⋃
i sample Di ∈ D ∝ sim(MT ,Mi)}

Induce new model MT with DT ∪D′

else if Ensemble then
Select the L most similar models ML = first L elements in Mall

Create a weighted ensemble of models {MT

⋃L
i=1 wiMi | wi = sim(MT ,Mi) ∧Mi ∈MT }

end if

Algorithm 4 Intermediate Models

Let D1; dataset (matrix) with more instances (e.g., variables from smartphones)
Let D2; dataset (matrix) with fewer instances (e.g., variables from questionnaires)
Let Y ; set (column vector) with associated classes (e.g., state bipolar/stress value)
% Build intermediate models
for each variable (column) xi ∈ D2 do

Train a classifier Ci with training data (D1, xi)
end for
% Create estimated values for D2

for each Ci do
for each instance (row) ej ∈ D1 do

Use ej as input to Ci to predict an instance (row) of D̂2

end for
end for
% Induce final classifier
Train a classifier Cfinal with training data ((D1 ∪ D̂2), Y )
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For training we follow these steps:

1. Use initial data (smartphone + questionnaires) to predict mood variables associated

to the questionnaires .

2. Trained a classifier to predict a weighted value (based on accuracy) for each of the

variables associated to questionnaires.

3. Use smartphone data and predicted variables to induce a model to predict the

episodic state of a bipolar disorder patient or stress levels.

For testing we follow these steps:

1. Use information from smartphones to predict, with intermediate models, a weighted

set (based on accuracy) of mood variables.

2. Use information from smartphones and predicted mood variables to predict the final

model

In this thesis, we used three variables for bipolar disorder and six variables for stress

to characterize information from questionnaires. Consequently, we induce three and six

classifiers, respectively, for bipolar and stress applications.

2.8 Chapter Summary

In this chapter, we reviewed some of the most important concepts related to feature

extraction and machine learning methods which will be relevant for the approaches de-

scribed in Chapter 6 and Chapter 5. We presented the algorithms that were used in this

research work. Finally, we demonstrated the novelty of using intermediate models and

the importance in building final models. In the next chapter we focus on recent works

which are related to this thesis.
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Chapter 3

RELATED WORK

”Ultimately, I hypothesize that technology

will one day be able to recreate a realistic

representation of us as a result of the

plethora of content we’re creating converging

with other advances in machine learning,

robotics and large-scale data mining.”

– Adam Ostrow

There are various applications for semi-supervised learning and transfer learning.

Depending on their properties, different models can be derived. The purpose of this chapter

is to review some applications of both approaches when addressing scarce data. Section

3.1 is about semi-supervised learning when targeting scarce data. Section 3.1, shows how

semi-supervised learning helps to find the best model from a fixed set of models to solve a

problem. Section 3.2, describes the transfer learning algorithm together with an interesting

application for transfer learning is healthcare. We examine the use of transfer learning

for this problem in Section 3.2.

3.1 Semi-supervised learning in scarce data

Semi-supervised learning approaches have been proposed and widely studied in order

to target scarce data. We present the most important algorithms in this area, a more

extensive survey is presented in (Zhu, 2006).

The main objective of semi-supervised learning is to combine advantages of supervised

and unsupervised approaches by learning from both labeled and unlabeled data. Thus,

due to their ability of using unlabeled data, semi-supervised learning is an actual topic of

interest, within machine learning (Ma et al., 2010).
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Semi-supervised learning has been suggested in several research studies (Dempster et

al., 1977; Longstaff et al., 2010; Ma et al., 2010) as the right choice aiming to address this

issue, which has shown to exploit unlabeled samples to improve learning performance.

However, it is good to note that there exists relatively little work exploring semi-

supervised techniques withing the healthcare arena.

Co-training

Co-training and self-training are both bootstrapping methods, which belong to so

called ”weakly supervised” learning algorithms. Co-training method is similar to self-

training, however, the difference is that co-training uses two classifiers to make predic-

tions from unlabeled data. Similarly, as in self-training method, co-training is a wrapper

method that uses two classifiers C1 and C2 that can assign a confidence score to their

predictions (as shown in Algorithm 5). The two classifiers trained on two data ”views”

(v1 and v2) provide their most confident unlabeled prediction from the training set of each

other (i.e., v1 → L2 and v2 → L1).

The success of co-training using the views depends on the following two assumptions

(Johnson and Zhang, 2007):

u Each view (v1, v2) alone are sufficient to make a good classification, give enough

labeled data.

u Both views are conditionally independent given the class label.

The most obvious assumption is the existence of two separate views v = [v1, v2]. If

the two assumptions hold, co-training classifier can learn successfully from labeled and

unlabeled data. These assumptions have been examined for natural language processing

tasks (Nigam and Ghani, 2000), and some research work has investigated the conditional

independence assumption (Johnson and Zhang, 2007), due to its difficulty to find tasks

in practice in which it is satisfied.

In cases when the conditional independence assumption is violated, co-training method

may not perform well (Chapelle et al., 2006b; Johnson and Zhang, 2007). This means

that, despite some theoretical co-training analysis (Balcan et al., 2004) it is merely a

mean to know whether two classifiers C1 and C2 agree in predicting the same label on

the unlabeled instances. The agreement is justified by learning theory, where not many

candidate predictors can agree on unlabeled data in two views, the hypothesis space is

small (Dasgupta et al., 2002). In situations where a candidate predictor in this small

hypothesis space also fits the labeled data, it is less likely to be overfitting ad can be

expected to be a good predictor.

Co-training methods make strong assumptions on features splitting. Goldman and

Zhou, 2000 demonstrated the performance of two learning algorithms of different type
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which take the whole feature set. This is essentially used on learners with high confidence

instances , identified with a set of statistical tests, in U to teach the other learning and

vice versa. Other improvements of Co-training, (Zhou and Goldman, 2004) propose a

single-view multiple-learner Democratic Co-learning algorithm. The ensemble of learners

are trained separately on all features of labeled data, then make prediction on unlabeled

data. If most learners agree on the class of an unlabeled point xi, then classification uses

xi as a label. xi and its label is added to the training data, where all learners are retrained

again on the actual updated training set. Finally, the best prediction is decided based on

majority vote among all learners.

Similarly, Zhou and Li, 2005 propose and advance Co-training, namely ’Tri-training’

which uses instead three learners. In situations where two of the learners agree on the

classification of an unlabeled instance, the classification is used to teach the third classifier.

Strength of this approach avoids the need of explicitly measuring label confidence of any

learner. This method can be applied to datasets without different views, or different types

of classifiers.

Algorithm 5 Co-Training

Input: L = (xi, yi); set of labeled instances
U = (xi, ?); set of unlabeled instances

Training set L1 for classifier C1, where L1=L
Training set L2 for classifier C2, where L2=L

T; threshold for confidence
WHILE U 6= ∅ or U’ 6= ∅

Train a classifier C1 on L1

Train a classifier C2 on L2

Classify the unlabeled data with C1 and C2 separately
Add C1’s most-confident prediction T to L2

Add C2’s most-confident prediction T to L1

L1 = L2 + U’ =⇒ L
U - U’ =⇒ U

Semi-supervised SVM (S3SVM)

Semi-supervised approaches differ from each other in the classifier’s learning process.

Considering the fact that using unlabeled data to learn can help improve the perfor-

mance of supervised classifiers (i.e., when its predictions provide new useful predicted

information), as shown in Figure 3.1. Nevertheless, not always the new included incorrect

predictions (i.e., noise) can worsen the new learned model resulting in low performance

of the classifier accuracy.

Semi-supervised learning for SVM (S3VM) has been first introduced by (Joachims,
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1999) by optimizing the original SVM function (see Equation 3.1).

min

[
1

2
· ||w||2 + C ·

i=1∑
l

ζ d
i

+ C∗ ·
u∑
j=1

ζ ∗
d

j

]
(3.1)

where u depict the amount of unlabeled data and parameters for unlabeled instances

included in the learning phase (ζ ∗
d

j
). The margin is measured using 1

||w|| and minimizing

the norm ||w||2 which is equivalent to maximizing the margin and satisfying the margin

constraint for each data point (Joachims, 1999).

Joachims (1999) demonstrated the performance gap between the supervised SVM and

the semi-supervised S3VM, in favour of the latter one. The goal of a S3VM is to find

a labeling of unlabeled instances, so that a decision boundary has the maximum margin

on both labeled and new added labeled instances. In S3VM, a SVM classifier has to be

trained by solving a quadratic programming issue in every iteration (Booch et al., 1999).

It is applied to classification tasks with large number of data sets and their computational

cost is high (Joachims, 1999). Figure 3.1 (a) shows the support vector machine classi-

fier where a straight line separates two classes and the linear boundary maximizes the

geometric margin (i.e., nearest positive (red dots) and negative instances (black dots)).

Better decision boundary using S3VM is shown in Figure 3.1 (b) which falls between the

unlabeled data. It separates two classes in labeled data. The margin is smaller than the

Figure 3.1 (a) and new decision boundary is the one found by S3VMs that is defined by

both labeled and unlabeled data.

Chapelle et al., 2006a have proposed an approximation solution to S3VM in order

to understand S3VM global optimum. Using the Branch and Bound methods (Welch,

1982) authors finds the global optimal solutions for small datasets, with excellent accu-

racy. Despite the fact that, Branch and Bound methods are probably not useful for large

datasets, results provide some ground truth, and T3VMs potential with better approxi-

mation methods.

On the ohter hand, Weston et al., 2006 proposes learning with a ’universum’, which is

a set of unlabeled data that does not come from two classes. But, the decision boundary

is determined by passing through the universum. Authors find similar interpretation to

the maximum entropy, where the classifier should be confident on labeled examples, and

maximum ignorant on unrelated instances. In this line, Jaakkola et al., 1999 proposes a

maximum entropy discrimination method to maximize the margin. The proposes method

is able to take into account unlabeled data with SVM as a special case.

Other Semi-supervised Models
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Figure 3.1: SVM vs S3VM, where black and red dots are labeled resource, and blue dots are
unlabeled resources. a) Supervised SVM, only labeled data are included. The linear decision

boundary that maximizes the distance to only labeled instance is shown in solid line and
associated margin is shown in dashed lines, b) Semi-supervised SVM, unlabeled data are

associated with the classes and the decision boundary seeks a gap in unlabeled data.

The important semi-supervised learning algorithms used in the literature are demon-

strated in Table 3.1. There are other semi-supervised learning methods in the literature

including:

u learning from positive and unlabeled data, when there is no negative labeled data

(Denis et al., 2002)

u semi-supervised regression (Brefeld and Scheffer, 2006);

u advances in learning theory for semi-supervised learning (Amini et al., 2009)

u inferring label sampling mechanisms (Rosset et al., 2004), multi-instance learning

(Zhou and Xu, 2007), multi-task learning (Liu et al., 2008), and deep learning (Ran-

zato and Szummer, 2008);

u model selection with unlabeled data (Kääriäinen, 2005)

u self-taught learning (Raina et al., 2007) and the universum (Weston et al., 2006),

where unlabeled data do not derive from positive or negative classes, but rather from

another third class of instances in the same general domain.
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Table 3.1: A summary of semi-supervised learners with inductive property of the algorithm.

Approach Summary

– Co-training Increases prediction consistency among two distinct feature views (v1, v2)
– Self-training Assumes pseudo-labels as true labels and re-trains the model (Rosenberg

et al., 2005)
– TSVM, S3V Margin maximization using density of unlabeled data (Fung and Mangasar-

ian, 2001)
– Gaussian processes Bayesian discriminative model (Lawrence and Jordan, 2004)

– Semi-supervised
Margin Boost (SSMB)

Maximizes pseudo-margin using boosting (Grandvalet, Ambroise, et al.,
2001)

– Assemble Maximizes pseudo-margin using boosting (Bennett et al., 2002)
– Mixture of Experts Expectation Maximization (EM) based model-fitting of mixture models

(Miller and Uyar, 1997)
– EM-Naive Bayes Expectation Maximization (EM) based model-fitting of Naive Bayes (Nigam

et al., 2000)

3.2 Scarce data and transfer learning

The motivation for transfer learning in the field of machine learning was introduced

in NIPS-95 workshop on ”Learning To Learn” 1 with the focus on building machine

learning methods that uses previously learned knowledge. Since then research on TL

has attracted attention by different names, such as learning to learn, life-long learn-

ing, knowledge transfer, inductive transfer, multi-task learning, knowledge consolidation,

context-sensitive learning, knowledge-based inductive bias, meta learning, and incremen-

tal/cumulative learning (Thrun and Pratt, 1998).

Demands for transfer learning approaches is described in Chapter 2 where in real-

life settings, applications deal with missing labeled data. In some particular fields i.e.

healthcare, a large amount of expert knowledge is needed. As a result, there is only a

very limited amount of data available. Therefore, the reason for making an accurate pre-

diction from the dataset with a lower labeled instance or none is a very crucial problem.

TL approaches have been applied in situations where there is not enough labeled in-

stances from the target task available and create an accurate model and reduce the cost.

For example, Figure 3.2 shows the difference between traditional and transfer learning

techniques. Traditional learning process tries to learn each task from scratch, in contrast

TL tries to transfer knowledge from currently built knowledge to a target task.

We provide the relationship between traditional machine learning and current transfer

learning settings, such as Inductive transfer learning, Transductive transfer learning, and

Unsupervised transfer learning. All three methods requires understanding of TL presented

in previous Chapter 2.

1 http://socrates.acadiau.ca/courses/comp/dsilver/NIPS95 LTL/transfer.workshop.1995.html
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Figure 3.2: Traditional machine learning and transfer learning. Second figure presents the TL
process which aim at extracting the knowledge from one or more sources tasks and applies

that knowledge gained ot a target task.

– Inductive transfer learning: In this setting, there is a difference between the

targeted task and the source task, regardless of whether the domain is the same or not.

Labeled data in the target domain are required to induce an objective predictive model

ft(·) for use in the target domain. There are two categories of an inductive transfer learn-

ing setting:

1. In situations where a large number of labeled data in the source domain are available,

the inductive TL is similar to the multi-task learning setting (Caruana, 1998). Nev-

ertheless, inductive TL aims at achieving better performance in the target task by

transferring knowledge from the source task, on the other hand multi-task learning

tries to learn target and source task simultaneously.

2. Second situation is where no labeled data in the source domain are available. The

inductive TL learning is similar to the Self-learning method proposed in (Raina et al.,

2007). Using this method, the label spaces between the source and target domains

may be different, however, the information of source domain cannot be used directly.

Thus, it is relevant to the inductive TL setting where the labeled data in the source

45



domain are unavailable.

Inductive Transfer with Scarce Data

This setting can be also viewed as a way to offset difficulties posed by tasks that involve

semi-supervised learning. In scarce data, if there are small amounts of class labels for a

task, treating it as a target task and performing inductive TL setting from a source task

could lead in building accurate models. These methods aim at boosting a target task

from the source task, even though the both datasets are assumed to come from different

probability distributions.

Research work in (Dai et al., 2007b) has investigated Bayesian transfer methods to

address scarce data of a target task data. The advantage of using Bayesian TL method

is the stability that a prior distribution can afford in the absence of large datasets. Eval-

uating a prior from related source tasks, Bayesian TL methods prevent the over-fitting

that would tend to occur with limited data. Dai et al., 2007a demonstrated TL in a

boosting algorithm using large number of datasets from a previous learned task to sup-

plement small amount of dataset. Boosting is another approach for learning several weak

classifiers and combining them to build a stronger classifier (Freund and Schapire, 1995).

Authors weight source task data according to their similarity to the target task data.

This method allows classifiers to leverage source task data that is relevant to the target

task while paying less attention to data that appears less relevant.

TL in unsupervised and semi-supervised learning setting is proposed in (Shi et al.,

2008). Authors assume that a reasonably sized dataset exists in the target task, however,

there are large amounts of unlabeled data due to the cost of having an expert assigning

labels. They proposed using an active learning approach to address this problem, where

the target learner requests labels for data only when necessary. The classifiers are built

with labeled data, including source task and estimate the confidence with which these

classifiers can label unknown instances. In cases where confidence is too low, they suggest

requesting an expert for labeling.

– Transductive transfer:

In the transductive TL setting, source and target tasks are required to be the same,

while source and target domains are different. There are no labeled data available in the

target domain, however, there are a lot of labeled data available in the source domain.

In addition, according to different situations between source and target domains, we can

further categorize the transductive TL setting:

1. Where feature spaces between source and target domains are different, XS 6=XT .
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2. Where feature spaces between domains are relevant, XS = XT , however, marginal

probability distributions of the input data are different, P(XS) 6= P(XT ).

– Unsupervised transfer:

This setting is similar to Inductive TL, however, in unsupervised TL the target task is

different from but related to the source task. Nevertheless, unsupervised TL focus on solv-

ing unsupervised learning tasks in the target domain, such as clustering, dimensionality

reduction and density estimation (Dai et al., 2008a). These methods are more common in

situations where no labeled data are available, similar to source as well in target domain

in training.

3.2.1 Research issues of transfer learning

There are several research issues of TL that have gained interest from the machine learning

community. We summarize them as follows,

u TL from multiple source domains:

In previous chapter we have introduced our focus on one-to-one transfer where only

one source domain and one target domain exist. But, in real-life settings, we may

have multiple source as a task. Yang et al., 2007 proposed algorithms to a new

SVM for target domains using SVMs learned from multiple source domains. In

(Luo et al., 2008) proposed to train a classifier for use in the target domain by

maximizing predictions agreement from multiple sources. Similarly, (Mansour et

al., 2009) proposed a framework using linear weighted distribution for learning from

multiple sources. The focus of this work is to estimate data distribution of each

source to re-weight data from different source domains.

u TL against different feature spaces:

Another interesting issue in TL is transferring knowledge across different feature

spaces. Ling et al., 2008 proposed a method for transfer learning to address the

cross-language classification problem. The method aims at solving the problem

where there are a large number of labeled English text data whereas there are only

a small number of labeled Chinese text documents. Moreover, Dai et al., 2008b

proposed a new risk minimization framework based on a language model for machine

translation. These method aims at solving the problem of learning heterogeneous

data that belong to different feature spaces.

u TL with Active-learning:

In Chapter 2 we have discussed the aim of TL to build an accurate model with min-
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imal human supervision for a target task in order to reduce cost. Several research

work have suggested combing active learning and transfer learning techniques in

order to improve the learner and to build more accurate model with less human

supervision. Liao et al., 2005, proposed novel active learning techniques to select

unlabeled data in a target domain to be labeled with the help of the source domain

data. Similarly, Shi et al., 2008 proposed using active learning algorithms to select

important instances for transfer learning with TrAdaBoost (Dai et al., 2007a) and

standard SVM. In (Harpale and Yang, 2010) proposed an active learning frame-

work for the multi-task adaptive filtering problem to explore various active learning

approaches to the multi-task adaptive filter to improve the performance.

u TL for new tasks:

Despite their popularity of TL in classification, clustering, regression tasks, they

have been also proposed for other tasks, such as metric learning (Zha et al., 2009),

structure learning (Honorio and Samaras, 2010), and online learning (Zhao and Hoi,

2010). Zha et al., 2009 proposed learning a new distance metric in a target domain

by leveraging pre-learned distance metric from auxiliary domains. In (Honorio and

Samaras, 2010), propose a multi-task learning method to learn structures across

MultipleGaussian graphical models simultaneously. In the same line, Zhao and

Hoi, 2010 investigated a framework to transfer knowledge from a source domain to

an online learning task in a target domain.

3.3 Latent variables and scarce data

In machine learning field, latent variable models provide classic formulation for several

applications.

Definition: Let D = (xi, yi),...,(xn, yn) denote the training data, where xi∈χ
are observed variables (input variables) for the ith instance and yi∈Υ are the unobserved

variables (output variables) whose values are known during training. In addition, latent

variables models, denoted by hi∈H. For example, in image processing techniques, we may

have a bird images ′x′ from which we wish to learn a type of bird ′y′. However, the

location of the bird may be unknown and can be modeled as latent variables ′h′ (as shown in

Figure 3.3). Similarly, in healthcare, learning to diagnose a disease based on symptoms or

other health signs which can be improved by treating unknown diseases as latent variables.

These learning parameters of a latent variable model often requires solving a non-convex

optimization problem.

A learning algorithm proceeds by iterating in two stages, first stage the hidden vari-

ables are imputed to obtain an estimate of the objective function that only depends on
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w. Second stage includes an estimation of the objective function to obtain a new set of

parameters. EM algorithm (Dempster et al., 1977) is one of the most popular learning

method for estimation in latent variable models.

Figure 3.3: An example of latent variable model, where x is input variables, y is output
variables, and h is hidden variables.

EM Algorithm for Likelihood Maximization:

The objective of this method is to maximize the likelihood (as shown in Equation 3.2):

max
w

∑
i

logPr(xi, yi;w) = max
w

(∑
i

logPr(xi, yi, hi;w)−
∑
i

logPr(hi|xi, yi;w)

)
(3.2)

The task for this approach is to use the EM algorithm (Dempster et al., 1977). The EM

algorithm for Likelihood Maximization is presented in Algorithm 6, where EM iterates

between finding the expected value of the latent variables h and maximising objective in

Equation 3.2.

Algorithm 6 EM algorithm for parameter estimation by likelihood maximization.

Input D=(x1, y1, ... , xn, yn), w0, ε.
1: t ← 0
2: repeat
3: Acquire 3.2 under the distribution Pr(hi | xi,yi;wt)
4: Update wt+1by maximizing the expectation of objective 3.2,

where wt+1 = argmaxw
∑

i Pr(hi | xi, yi; wt) logPr(xi, yi, hi; w)
5: t ← t + 1
6: until Objective function cannot be increased above tolerance ε.
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3.4 Chapter Summary

In this chapter, we reviewed recent works that are related to this thesis. We presented

the most important related works and compared them by their type of learning, including

theoretical guarantees provided and their complexity.

A summary of the limitations found in the state of the art is the following:

u Approaches that can be used only for scarce data (Raina et al., 2007; Triguero et al.,

2015).

u Approaches that are computationally intractable for large scale problems (Raina et

al., 2007; Rokach, 2010; Yu and Joachims, 2009; Zhou and Xu, 2007).

u Approaches that assume to address scarce data problem (Blum and Mitchell, 1998;

Raina et al., 2007; Xiang et al., 2013).

In the next chapters, we present our contributions in addressing scarce data. We

start by presenting frameworks used to collect data from subjects that participated in

the studies and the features selected for this research work. Then, challenges to address

scarce data are presented. We conclude the proposed approach named as Intermediate

Models to improve classifiers precision.
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Chapter 4

DATA COLLECTION AND

ANALYSIS

”We should have lifelong monitoring of our

vital signs that predict things like skin or

pancreatic cancer so we can eradicate it. We

should have personalized medicine; there’s a

huge amount of innovation possible.”

– Sebastian Thrun

In this chapter, we provide an overview of the monitoring systems, study setup, and

initial data analysis. We begin providing an overview of the trial setup and participants

demographics. Then, we provide description of features extracted from the data collected

from both systems. We demonstrate the problems that occur in monitoring individuals

in long-term using smartphone sensing capabilities. Further, we select the appropriate

types of sensors for inferring behaviour changes with respect to users privacy, dealing with

scarce data, and the common issues faced using our datasets. Finally, we will close the

chapter with our proposed approaches for addressing limitations of scarce data and novel

intermediate models proposed to improve the performance of supervised classifiers.

The main contributions of this chapter are as follows:

A.1 Introductions of the trials and the number of sensory data collected from participants

A.2 Methods used to extract features from each type of sensor data acquired

A.3 We evaluated the data mining approaches used for this research

A.4 Finally, we provide our initial picture of the data and results from data analysis

The outline of this chapter is as following: the Section 4.1 provides a brief introduction

of monitoring system using smartphone sensing modalities. In the Section 4.2 we provide

a brief introduction of monitoring system used in bipolar disorder patients, data acquired

from the patients in situ, data sources selected for our research, features extracted, and
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the initial result from data analysis. Similar, in Section 4.3 we provide details of data

collected and analysed. Finally, we provide an overview of the Stress@Work assessments

items used to assess employees perceived stress at working environments.

4.1 Brief introduction of monitoring systems using smartphones

Due to the rapid development of information technologies in healthcare domain, data col-

lection have been shown to play a significant role in improving disease-related knowledge.

The new generation of smartphone devices with embedded sensors has created oppor-

tunities for exploring new context-aware services and this kind of data can be useful.

Despite the advances of sensing systems, there are several challenges that must be tar-

geted to overcome. These challenges revolve around scarcity of data, and missing labeled

measurements that limit the systems to have an accurate classification of their users.

The problem of collecting large-scale training data is a common problem. Continu-

ous inference of human behaviour using sensory data measurementsand self-assessments

scales (e.g., wellbeing, psychological state) from individuals is itself relatively simple from

a technical point of view. However, in practice collecting large sample of data from in-

dividuals as they go in their real-life activities requires a lot of effort. Current systems,

still suffer from both practical limitations and a number of technological shortcomings,

for instance, battery drain causes a significant problem in data collection, the application

crashes, the application hung due to system memory, and others.

In order to have an accurate self-care health monitoring system, participants are requested

to provide reliable training data that are valuable information for classification accuracy.

This provides a clear evidence that obtaining efficient learning model is a crucial issue

when it comes to human monitoring. However, in uncontrolled settings labeling data is

not nearly as easy due to the time and effort for individuals to manually provide labeled

data. This problem is even more expressed when it comes in monitoring mental disorder

or even the individuals perceiving stress due to their condition. Under this scenario labels

are sometimes unreliable, however, the information provided contain valuable information

for classification.

The main problems in real-world scenarios for self-monitoring systems can be summa-

rized as follows:

u Most of the existing systems are built under the supervised setting where labeled

data are crucial for training the model.

u Having sufficient labeled instances require more effort and it is time consuming.

u These systems suffer from its dependence on the accuracy of the users labeled data.
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u Self-monitoring requires the active involvement and motivation of users (i.e., re-

minders, feedback) which sometimes may lack.

u Most of the systems do not use the unlabeled instances, however, these instances

can also give important information.

4.2 Monitoring systems used in bipolar disorder patients

MONARCA (MONitoring, treAtment and pRediCtion of bipolAr disorder episodes) is

an EU project from the FP7 framework program2. The main goal of the project was to

develop and validate solutions for multi-parametric, long term monitoring of behavioural

and physiological information relevant to bipolar disorder. The system consisted of 5

components: smartphone, a wrist worn activity monitor, a novel sock integrated physio-

logical (GSR, pulse) sensor, a stationary EEG system for periodic measurements, and a

home gateway. In order to successfully accomplish the goals of the project, there were 2

hospitals and 7 technical universities involved, and 3 companies responsible for the busi-

ness model and the integration of the final system into the existing clinical work-flows.

At CREATE-NET3, we focused on the analysis of the smartphone data gathered during

the trials in one of the hospitals.

4.2.1 Trial setup in bipolar disorder monitoring

The study group consisted of 10 patients (9 female and 1 male). As inclusion criteria,

each of the patients had to be diagnosed with bipolar disorder (with frequent changes of

episodes), age between 18 and 65, ability and are willing to operate modern smartphone

devices. The patients were categorized by the ICD-10, F31 classification (by the Interna-

tional Classification of Disease and Related Health Problems) and were selected from the

ward’s psychiatrists that are capable of dealing with the requirement of the study.

The trial was uncontrolled, not randomized, mono-centric, prolective, observational

study. Each patient was given a personal smartphone to use in any way they wanted.

There were no constraints of any kind placed upon the patients, with respect to holding the

phone in a specific manner or at a specific place in the body or otherwise. The phone had

the continuous sensing application (developed in German Research Center for Artificial

Intelligence (DFKI) 4 installed that recorded data on the phone memory and transmitted

the data periodically to a dedicated server. All sensing modalities were sampled, including

microphone, accelerometer, GPS, WiFi access points, Bluetooth, SMS, phone calls and

2http://www.monarca-project.eu
3http://www.create-net.org/projects/4/1026/MONARCA
4https://www.dfki.de/web/intelligent-solutions-for-the-knowledge-society
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Figure 4.1: Patient monitoring application in bipolar disorder.

their duration. The application, shown in Figure 4.1 ran continuously in the background,

sampling these sensors and was set to start automatically on phone start up.

Patient monitoring application was designed to measure two aspects, namely patients’

internal affective states, through the use of questionnaires; and, objective behaviour,

through sampling of phone sensors. The application has been developed in close cooper-

ation with the psychiatrics in order to capture relevant aspects of the disease. In order

to increase patients’ motivation to provide daily experience sampling, the application

provides alarms and reminders to fill out the questionnaire at a predefined time in the

evening. Through the questionnaires the patients were able to provide their current state

as well as activities they performed during the day, estimate their sleeping hours as well

as quality, time spent outdoors and their social-activities.

4.2.2 Patient psychiatric evaluation

Psychiatric assessment and the psychological state examination were performed every 3

weeks over a period of 12-weeks at the psychiatric hospital Hall in Austria (TILAK -

Department of Psychiatric, State Hospital, Hall in Tyrol, Innsbruck). The psychiatrists

have set the interviews for the patients in such a way to reduce memory effect, which

prevents having biased evaluation outcomes. To improve the scarcity of ground truth,

between scheduled interviews well trained and experienced clinicians talked collaboratively
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with patients about treatment by phone. During the examination, four standardized scales

were used from clinical psychologists.

The clinicians used the following standard scales during the assessment of the patients:

u Hamilton Depression Scale (HAMD): HAMD scale has been applied to rate the

severity of depression in patients through assessment of a range of symptoms. The

higher the magnitude of symptoms, the higher is the scale of severity of depression

(cut-off value: ≥8)

u Young Mania Rating Scale (YRMS): YRMS is most frequently utilized rating

scale to assess manic symptoms. The baseline scores can differ in general, depend-

ing on the patients’ clinical features such as depression (YMRS=3) and for mania

(YMRS=12).

In order to evaluate the patients, the HAMD and YRMS scores were normalized in a

scale of -3 to +3 where the former indicates Severe Depression and the latter indicated

Severe Mania, with intermediate steps of depressed, slightly depressed, normal, slightly

manic and manic.

Table 4.1: Psychiatric Evaluation (PE) Scores during the trial.

P.ID 1stPE 2ndPE 3rdPE 4thPE 5thPE

P0101 +2 +1 +1 +0.5 0
P0201 -1 0 0 0 -3
P0302 -3 -2 0 0 0
P0402 -3 – -3 – -3
P0502 0 – -3 -2 0
P0602 -0.5 -1 0 quitted

Trials
–

P0702 -2.5 -2 -0.5 -2 -2
P0802 -3 -1 0 – 0
P0902 0 0 -2 -1 -2
P1002 +1 -1 -2 -2.5 –

Psychiatric evaluation scores of the patients are shown in Table 4.1 using the normal-

ized scale.

None of the patients had rapid relapses where their state did not change within a few

days but at least one or more weeks. According to the professional psychiatrist, it was

acceptable to set the ground truth assessment values 7 days before the examination and

7 days after the examination and it was adjusted (extended or shortened) according to

stable or unstable daily subjective self-assessments.
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4.2.3 Completeness of study

There were five measurements points for 10 bipolar disorder patients. A patient (P0402)

did not show any changes in their episodic state during entire trial. As such, their data was

of no use in respect to classification state and are discarded. Further, the patient (P0602)

drop out of a clinical trial due to the condition faced at that period. In our studies, we

have analysed the data during phone-conversation, however, patients (P0101, P0802) did

not use the smartphones for phone-conversation. Furthermore, patient P0502 did not

have sufficient phone-conversations to be used in the classification model.Therefore, only

5 patients (P0201, P0302, P0602, P0902, P1002) provided sufficient data point for and

different classes due to their relapses (i.e, experiencing more than two episodic changes)

to make our studies possible for classification to their state.

4.2.4 Scarce data and missing information in monitoring system

A number of challenges plagued the trial, most prominent of which was patient compliance.

Considering that the trial was conducted under uncontrolled conditions, during normal

daily life of the patients, it was impossible to ensure that the patients always carried the

phone with them. In addition, many practical challenges have been faced. Some patients

switched-off sensing application at certain occasions or forget charging the smartphone

over night, creating gaps in available data. This increased significantly a number of

missing data for entire recording period.

As discussed in previous section, ground truth was available every three weeks and

increased a number of unlabeled instances between psychiatric evaluations. The inability

of supervised learning approaches to endure with unlabeled training data reduced even

more the number of available days. The actual amount of sensor data available lies

between 19 and 71 datasets per patient per sensor modality. Fortunately, self-reported

mood were assessed on a daily basis on the smartphone, allowing us to draw the knowledge

upon patient’s behaviour and self-reported mood to extend the ground truth periods.

We believe that proposed approaches can be effective in overcoming many of the

obstacles to smartphone sensing. The following chapter of this thesis prove the strength

of using semi-supervised learning and intermediate models, to overcome the challenges on

handling scarce information.

4.2.5 Quantifying physical activity in bipolar disorder patients

In order to quantify the level of activity we use accelerometer sensor data acquired from

the smart phone. We have captured 3-axial linear acceleration continuously at a rate of

4Hz to 10Hz, which varied due to Android system operating conditions, such as system
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load and battery levels. However, this sampling rate was sufficient to infer physical

activity levels of patients. The accelerometer signals were re-sampled at fixed rate of 5

Hz (25.6 second). For each patient there was an average of 2 GB of raw accelerometer

data. Physical activity levels were estimated using pre-processed accelerometer data.

Acceleration magnitude (namely Signal Vector Magnitude 4.1) vector was calculated as

square root of sum of squares of individual acceleration axis, which allowed calculation of

physical activity levels to be invariant to phone orientation, which due to unconstrained

nature of the trial, phone orientation is unknown. The variance of the magnitude (as

shown in Equation 4.17) on each n=128 samples provided an activity score, which was

set within a threshold of three states, namely ‘none’, ‘moderate’ and ‘high’ activity as

detailed in FUNF framework (Aharony et al., 2011).

SVM =
1

n

n∑
i=1

√
x2
i + y2

i + z2
i (4.1)

varSum(n) = ((SVM(n)− avgSVM(n))
2 − (

n

n− 1
)− 2SVM(n) (4.2)

For this research we were interested in change of overall activity levels, therefore we

have combined the two active states (‘moderate’ and ‘high’ ) to produce a single score. In

the sections that follow, we provide results of our initial analysis of overall activity levels

and also the results of intervals, where monitored days were divided in daily intervals. It

is important to note that for this analysis, we have excluded the days in which the patient

went to the clinic for the psychiatric evaluation. This is because during the assessment

there would be physical activity recorded, which may not correspond with the natural

behaviour of the patient and thus would have biased our results.

4.2.6 Classifying episodic states of the patients with bipolar disorder

As discussed in previous section there were no constraints of any kind placed upon the

patients, with respect to holding the phone in a specific manner or at a specific place in the

body. Considering the fact that the trials were conducted under uncontrolled conditions

in real life activities, in this research we focus on analysing accelerometer raw data and

the speech features extracted from microphone during the phone conversation, when we

are almost sure that the patients are holding their smartphone. We believe that both

sensing techniques have their own advantages, complement each other, and can provide

adequate information for classifying the course of mood episodes or relapse of a patient.

In our experiments, we also included information from the self-assessment questionnaires

relevant to motor activity, such as self-reported psychological state, physical state, and

activity level.
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We analysed the information collected and selected those patients with enough data

recorded during their phone conversation and who represent different severities of disease

on their psychiatric evaluation scores.

Table 4.2: Number of calls and class associated to them based on psychiatric evaluations.
There is also additional data (last column) where there is no class associated.

Severe Moderate Mild Mild Additional
Patient Depression Depression Depression Normal Manic Total Data
P0201 36 – 113 149 – 298 435
P0302 135 – – 99 – 234 199
P0702 – 112 39 – – 151 116
P0902 – 142 – 161 – 303 178
P1002 – – 35 – 162 197 28

All 171 254 187 409 162 1183 956

Table 4.2 shows the number of class and class associated to them based on psychiatric

evaluations. It can be seen that we have a different number of calls per patient and per

episode. The table also shows additional data (last column) indicating the numbers of

phone calls that we have that are not associated to any episode as they were performed

outside the 7 days window of the psychiatric assessments.

4.2.7 Feature selection

Feature selection from smartphone sensory data is probably the most important factor to

consider in order to improve the recognition performance of machine learning tools. In

the following subsections, we describe the most representative techniques for extracting

time and frequency domain features from accelerometer raw data and prosodic and energy

features extracted from speech.

4.2.8 Accelerometer signal features in Time-Domain (TD)

In order to quantify motor activities from the smartphone, acceleration readings collected

during conversation (including picking up the phone, starting and finishing the call, and

replacing the phone into the holder) were used in our analyses. These periods during

conversation determine meaningful changes of acceleration values. We captured 3-axial

linear acceleration continuously at rates, which varied due to Android system operating

conditions, such as system load and battery levels. In this research, the accelerometer

signals were re-sampled at a fixed rate of 5 Hz. The accelerometer features proposed in

this research, shown in Table 4.3, are quite popular amongst practitioners in the field, and

were used as the basis for identifying periods of activity. To reduce the effect of spikes and

noise from the accelerometer signal, statistical metrics such as mean 4.3a), variance 4.3b),
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Table 4.3: Features selected for the accelerometer sensor signals.

Time Domain Frequency Domain

(1) Magnitude (1) FFT Energy
(2) Signal magnitude area (2) FFT Mean Energy
(3) Root-Mean-Square (RMS) (3) FFT Std.Dev Energy
(4) Variance Sum (4) Peak Power
(5) Curve Length (5) Peak DFT Bin
(6) Non Linear Energy (6) Peak Magnitude
(7-14) For the 3 axes: (7) Entropy
Variance, Mean, Max, Min, (8) DFT
Std. Dev., Absolute, (9) Freq.Dom. Entropy
Median, and Range (10)Freq.Dom. Entropy with DFT
(15-20) Mean and Std. Dev. of X, Y and Z axis.
For all 20 features, we obtained the Min, Max, Mean For all: Min, Max, Mean

Total: 60 Total: 30

and standard deviation 4.3c), where x(i) represents sum of three axis are applied over

a window of approximately 26 seconds (non-overlapping fixed length windows of N=128

samples).

a) µ =
1

N

n∑
i=1

x(i)

b) σ2 =

∑
(xi − x̄)2

N − 1

c) σ =
1

N − 1

N∑
i=1

(x(i)− µ)2

(4.3)

Other features included the root-mean-square (RMS) acceleration for the period of

conversation, as an indication of the time-averaged power in the signal. The RMS of a

signal xi, yi and zi represents a sequence of n=128 discrete values obtained using Equa-

tion 4.4.

RMS =

√
x2

2 + x2
2 + x2

3 + ....+ xn2
n

(4.4)

The RMS results demonstrate differences in the motor activity during the phone con-

versation. The lower the RMS value, the lower the motor response which is manifested

in depressed patients, whereas patients in the manic phase show elevated levels, as shown

in Figure 4.2 b).
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Figure 4.2: Overall mean values of a) RMS (p0201), b) SMA (p0201), c) energy (p0302) and d)
entropy (p1002) with psychiatric evaluation.
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Another suitable measure for phone activities is the normalized signal magnitude area

(SMA) that was used as the basis for identifying periods of activity during phone conver-

sations, where x(t), y(t), and z(t) are the acceleration signals from each axis with respect

to time t as denoted by Equation 4.5.

SMA =
1

t

∫ t

o

|x(t)|dt+

∫ t

o

|y(t)|dt+

∫ t

o

|z(t)|dt (4.5)

An example using SMA is presented in Figure 4.2 a) where changes of motor activity

can be compared in two states of the disease, transition from mild depressive state to

normal state. The graph includes of number of phone calls in both states (n=140).

Also, a feature like Signal Vector Magnitude (SVM) (Jeong et al., 2007) has been

used to measure the degree of activity intensity and velocity of phone movement during

the phone conversation and was obtained using Equation 4.6. In addition to SVM, we

computed the Variance Sum (Aharony et al., 2011), that using the equation shown 4.7,

where n represents the window size and avgSVM the mean of the SVM of that window

size:

SVM =
1

n

n∑
i=1

√
x2
i + y2

i + z2
i (4.6)

varSum(n) = ((SVM(n)− avgSVM(n))
2 − (

n

n− 1
)− 2SVM(n) (4.7)

Furthermore, in order to capture abrupt changes of phone activity during the phone

conversation we used Averaged Non-linear Energy feature and Curve Length (CL) (Mukhopad-

hyay and Ray, 1998) feature using Equations 4.8 and 4.9.

CurveLength =
n∑
i=1

|xi−1 − xi| (4.8)

NonEi = x2
i − x(i−1)x(i+1); avgNLE =

n−1∑
i=2

NonEi
n− 2

(4.9)

4.2.9 Accelerometer signal features in Frequency-Domain (FD)

The signal and the distribution of signal energy over the frequency-domain are also pop-

ular choices in signal analysis. In this research, we used frequency-domain techniques

to capture the repetitive nature of an accelerometer signal. These repetitions are often

correlated to motor activity changes, which are capable of capturing distinctive pattern of

movements in bipolar disorder patients during phone conversations. We applied the Fast
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Fourier Transform (FFT) on acceleration segments. Similarly as in TD, we used time

window of approximately 26 seconds (non-overlapping fixed length windows of n=128

samples), which enabled fast computation of FFT’s that produces 128 components for

each 128-sample window. Since our goal is to investigate the activity signatures, energy

features were used to assess the strength of motor acts. The features in frequency-domain

that are given in Table 4.3 have been used to determine the intensity of the signal. Total

Energy of the acceleration signal was calculated as the squared sum of its spectral coeffi-

cients (sum of the squared discrete FFT component magnitudes of the signal) normalized

by the length of the window. Using this metric, we were able to capture the intensity of

the activity obtained using Equation 4.10 component magnitudes of the signal.

Energy =

(n/2)+1∑
j=1

y[j]2 (4.10)

Figure 4.2 c) shows an example of the total energy values of patient P0302 during

phone conversations with different episode. As can be appreciated, the patient shows an

increase level of motor activity in normal state compared to depressive states.

In order to determine the highest magnitude of all frequencies, frequency magnitude

was measured using the real and imaginary components of the FFT values (using Equa-

tion 4.11). Frequency magnitude values below the cut-off and above the Nyquist rate

(Nyquist-Rate=window-length/2) where nullified by keeping the peaks obtained in the

window. Data has been normalized using Equation 4.12 and multiplied by 2 to main-

tain the same energy. Furthermore, feature values obtained from entropy metric were

measured using the normalized information entropy of the discrete FFT coefficient mag-

nitudes by excluding the gravitational component, so called DC component of FFT (using

Equation 4.13). Figure 4.2 d) shows an example of mean entropy values for patient P1002.

Magnitude =
√
FFT.real2 + FFT.imag2 (4.11)

Normalized = Magnitude ∗ 2/windowLength (4.12)

Entropy =

(n/2)+1∑
j=1

cj · log(cj), where cj =
|yi|

energy
(4.13)

PeakFreq =argmax
j |yi| (4.14)
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Peakenergy =max
j |yi| (4.15)

Together with the FFT Energy mean, FFT Energy standard deviation, FFT en-

ergy, DFT (Discrete Fourier Transform), and frequency magnitude, Entropy (Cover and

Thomas, 2012) is helpful in discriminating activities that differ in complexity. In our

research, using this feature helped us to distinguish signals that have similar energy val-

ues with different motor activity patterns. Furthermore, we also investigated the largest

signal peak using Peak Power Frequency that was compared against the baseline values

(Equations 4.14 and 4.15).

4.2.10 Feature selection and extraction from speech during the phone con-

versation

Previous work have shown scientific evidence that speech features can be used as an

indicator of bipolar disorder (Moore et al., 2003; Moore et al., 2008). In this regard,

speech production is one physiological function that has been reported to affect motor

retardation in bipolar patients. The application developed for our research, records speech

signals from microphone only during the phone conversation with a sampling rate of 44Hz

and 16 bits amplitude quantization. Algorithms were developed to scrabbled/stretched

the actual signal to avoid its original reconstruction while keeping the required properties

for analysing the voice. In the current research work, we extracted acoustic features

from the speech signal using OpenEar (Eyben et al., 2009) and Praat (Boersma, 2002).

We evaluated features that have been successful in previous work (Pérez-Espinosa et al.,

2012). Table 4.4 shows the acoustic features that were included in this research. We

divided the features in two types: prosodic and vocal tract spectrum.

Table 4.4: Selected speech features relevant to bipolar disorder states.

Group Feature Type
Prosodic:

Energy, Times LOG energy, Zero crossing rate
PoV, F0 Probability of voicing, F0

Spectral:
MFCC MFCC

MEL MEL spectrum
SEB Spectral energy in bands

SROP Spectral roll of poing
SFlux Spectral flux

SC Spectral centroid
SpecMaxMin Spectral max and min with DFT
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The features that were extracted from the patients’ speech data include the first-order

functional of low-level descriptors (LLD) such as FFT-Spectrum, Mel-Spectrum, MFCC,

Pitch, Energy, Spectral and LSP.39 functionals such as Extremes, Regression, Moments,

percentiles, Crossings, Peaks, and Means. Prosodic features have been shown to provide

rich source of information in speech such as pitch, loudness, speed, duration, pauses, and

rhythm that could be used to detect the state of mind of patients during phone calls, i.e.,

when patients are in severe depressive state to normal or from moderate depression to

normal states (Moore et al., 2003).

The second types of features were spectral features, which provide accurate distinction

to a speaker’s voice when prosodic aspects are excluded. We included the most popular

voice quality descriptors shown in Table 4.4. With these types of features, we were able to

distinguish periods of speech from patients, such as duration of speech segments, number

and type of pauses (i.e., long, medium, and short), and overlapped or non-overlapped

speech during conversations. We also measured the reaction and response time during

the conversation time. We use the terms Number- and Duration of long pauses during the

conversation to refer to the phone rate over the total conversation session, with times when

the speech is not active (pauses) included in the total conversation session. Motivated by

the clinical work carried out in studying bipolar patients in (Moore et al., 2008; Naranjo et

al., 2011), we examined the association between long speech pauses in depressive patients

and speech increments in manic phase during the phone conversation with their psychiatric

scores, as shown in Table 4.7.

Table 4.5: Selected speech features relevant to bipolar disorder states.

Emotional Features Spectral Features
(1) Percentage of Angriness (1) Number of speech segments
(2) Percentage of Nonconformity (2) Number of short pauses
(3) Percentage of Happiness (3) Number of medium pauses
(4) Percentage of Equanimity (4) Number of long pauses

(5) Total duration speech in call
(6) Total duration not overlapped speech
(7) Total duration overlapped speech
(8) Quality of Service
(9) Duration of medium pauses in call
(10)Duration of long pauses in call

Total: 4 Total: 10

Table 4.6 provides an overview of phone conversations during the trial. This ta-

ble shows the overall number and average duration of phone conversation between the

psychological evaluations in a daily basis. Since we focus on understanding meaningful

information around the phone conversation, we keep accelerometer reading one-minute
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before the phone conversation, the readings from the entire duration of the call, and one

minute after the conversation ended. Phone calls of less that 10 seconds were discarded

in our experiments.

Table 4.6: Overall number and duration of phone calls (Incoming, Outgoing) between the
psychiatric assessments (Mean±SD)

Patient ID 1st-2ndPE 2nd-3rdPE 3rd-4thPE 4th-5thPE

P0201 400 (8.76±5.38) 204 (5.1±3.7) 153 (4.02±3.21) 193 (5.36±3.79)
P0302 169 (6.76±3.4) 119 (5.66±3.46) 158 (7.53±4.52) 85 (5.31±3.33)
P0702 121 (6.1±4.33) 50 (5.0±3.01) 125 (7.73±5.47) 119 (6.4±4.92)
P0902 172 (10.06±7.09) 108 (8.71±5.76) 185 (5.44±4.85) –
P1002 130 (13.16±8.01) 216 (11.36±12.6) – –

Table 4.7: Relationship between duration and number of long pauses in phone calls and
psychiatric assessment scores (*n/a - not applicable, since the patient did not experience a

second depressive episode).

P.ID. Avg. Duration
/ Avg. Long

Pauses (Score)

Avg. Duration /
Avg. Long

Pauses (Score)

Difference (%) Avg. Duration /
Avg. Long

Pauses (Score)

Difference (%)

P0201 57.56/ 0.52 (MiD) 39.77/ 0.28 (N) -30.90/ -46.15 74.74/ 0.57 (SeD) 87.93/ 103.57
P0302 130.86/ 1.15 (SeD) 87.95/ 0.87 (N) -32.79/ -24.34 n/a n/a
P0702 54.19/ 0.53 (MoD) 143.66/ 1.32 (N) 165.10/ 149.05 119.17/ 0.98 (MoD) -17.04/ -25.75
P0902 95.64/ 0.75 (N) 130.86/ 1.05 (SeD) 26.91/ 28.57 n/a n/a
P1002 85.96/ 0.62 (MiM) 222.97/ 1.51

(MiD)
73.27/ 143.54 n/a n/a

– (MiD)=Mild Depression;
– (N)=Normal;
– (SeD)= Severe Depression;
– (MoD)=Moderate Depression;
– (MiM)=Mild Manic.

As can be seen from Table 4.7, average pauses and response delays in depressive state

were inserted, in general, more often than during non-depressive state. This decrease can

be seen across patients P0201, P0302, and P0902. In patients P0201 and P0302 it is

more noticeable, where the average of decrease of phone call duration/average number

of long pauses between the words went from 57.56(sec.)/0.52 during a depressive state

to 39.77(sec.)/0.28 during a normal state (P0201); and patient P0302 where the average

decrease of phone call duration and number of long pauses went from 130.86(sec.)/1.15

during a depressive state to 87.95(sec.)/0.87 during a normal state. In Figure 4.3 c) and

Figure 4.4 a) we present the distribution of overall speech segments in conversation by

mood episode of the patients. The speaking rate is significantly reduced during depressive

periods as well as the duration of continuous speech segments.

In contrast to patients P0201 and P0302, where the transition of their state was from

depression to normal phase, patient P0902 had a noticeable decrease number of long
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Figure 4.3: Overall mean values of a) number of long pauses (p1002), b) duration of long
pauses (p1002), c) number of speech segments (p0702).
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Figure 4.4: Overall mean values of a) total duration of speech segments (p0201), b) duration of
overlapped speech (p0302) -on the left, c) duration of not overlapped speech with psychiatric

evaluation (P1002)- on the right.

pauses during the phone calls as he went from a normal state to a depressive state. As

such, there was a 26.91%/28.57% increase average duration of phone call duration and

number of long pauses due to the transition to a depressive episode.

For the patient that experienced a manic episode, P1002 we can see a reverse trend,

where the patient had decreased his average of long pauses, in accordance with the study

reported in (Vanello et al., 2012). Average duration and number of long pauses were

increased to 73.27%/143.54% during the depressive episode. Figure 4.3 a) and Figure 4.3

b) provide the proportion of number/duration of long pauses between transitions from

a manic episode to a depressive episode (P1002). We also studied speech overlapping,
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voice quality and emotional features during phone conversations. Voice quality measures

active speech frames, which were determined according to an energy-based speech activity.

We explored the regularity and the responses from both active speakers during a phone

conversation. Speech-overlapping was used to see the regularity during the conversation.

Figure 4.4 b) and 4.4 c) present a comparison between non-overlapped in depression

(P0302) and overlapped speech from patients in manic episodes (P1002).
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Figure 4.5: Distribution of percentage of: a) happiness (p1002), and b) equanimity (p0201)
features by psychiatric evaluation.
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Table 4.8: Number of features used in the experiments.

Feature Number

Accelerometers:
1) Time-Domain 60
2) Frequency-Domain 30

Audio:
1) Emotional 4
2) Spectral 10

Questionnaire 3

The effects of emotional expression on speech are an interesting feature in bipolar

disorder. Emotional state has been reported in previous studies, by identifying changes

in muscle tension and in breathing. In our previous work (Pérez-Espinosa et al., 2012),

we have explored emotional state features from speech (i.e., happiness, angriness, non-

conformity, and equanimity). In clinical reports that have investigated the symptoms in

a manic episode, such as in (Vanello et al., 2012), patients were characterized by extreme

happiness and hyperactivity. Similarly, in our research we found a different percentage

of happiness extracted from speech in manic episodes, while in a depressive state we

found lower percentage of happiness, as shown in Figure 4.5 a). Equanimity feature has

also shown lower percentage in mild depression, whereas in normal state we found lower

percentage of equanimity during the phone conversation (as shown in Figure 4.5 b)).

For our experiments we also used information from the questionnaires in terms of three

attributes: (1) Physical, (2) Activity, and (3) Psychological condition, whose values range

from 1=low to 5=high. A summary of all the attributes used in the experiments is given

in Table 4.8. In the experiments we tested different sets of these attributes.

4.3 Monitoring Stress@Work

TurnOut-Burnout is a project for monitoring Stress@Work funded from EIT ICT Labs.

The main goal of the project was to use unobtrusive technologies for monitoring (i.e.,

smartphones) behavioural information and detect burnout in the early phases of the so-

called burnout cascade.4 The system consists of a smartphone and web-server to visualize

their daily behaviour patterns. Acquiring data from the employees’ life are used to gen-

erate recommendations for people at risk of getting a burnout. The aim of the project

ws to create prototype services for early burnout recognition as well as recommendation

4http://www.create-net.org/projects/4/2716/Turn-Out%20Burnout
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services for people who are at risk to get a burnout.

4.3.1 Introduction to Stress@Work

Stress is a physiological response to mental, emotional, or other physical challenges that

humans confront in their real-life activities, including in their working environments.

Continuous exposure to stress may lead to serious health problems, such as causing phys-

ical illness through its physiological effects, behaviour changes, and social isolation issues

(Glanz et al., 2008; Korabik et al., 1993; Maslach et al., 2001). All these negative effects

are known to affect the wellbeing of a person at workplace. As a consequence, a long-term

exposure to stress typically leads to job-burnout, a state that leads to mental and physical

exhaustion Maslach et al., 2001.

Over the last four decades there has been rising concern in many countries about

the growth and consequences of work related stress and burnout. Recent reports show

that stress is ranked as a second most common work-related health problem across the

members of the European Union Milczarek et al., 2009; the same report shows that

individuals with high levels of stress were accompanied by physical and psycho-social

complaints and decreased work-control for the requirements placed on them.

To date, current approaches for measuring stress rely almost exclusively on self-

reported questionnaires Näätänen and Kiuru, 2003, which are subjective and cannot

provide immediate information about the state of a person. Therefore, a continuous

stress monitoring with the use of current technology may help to better understand stress

patterns and also provide better insights about possible future interventions. On the

other hand, to get more information about human behaviour patterns through the use of

technology requires use of less obtrusive and more comfortable devices as they measure

real-life activities. Several works have shown that smartphones are an appropriate tool

to collect relevant data used to classify specific human behaviour, such as Al-Mardini

et al., 2014; Guidoux et al., 2014, therefore in our work we have used smartphones as non

obtrusive approach to collect relevant behaviour data relative to stress levels.

4.3.2 Study demographics

In total, 30 employees from two different organisation in Trento, Italy, were selected for

the study. Table 4.9 provides the summary of employees’ demographics characteristics.

We can note that there is a balanced mix of gender, age and education level, marital status

and number of children among the subjects. The respondents in the sample comprised 16

(60%) male and female 14 (40%); married 15 (50%) and not married 15 (50%), and age

ranged from 26-30 (16.67%), 31-40 (60%) and above 40 (23.33%). The participants had
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different educational background, where 10 (33.33%) had an academic degree, 11 (36.7%)

had bachelor degree and 9 (30%) had high school education.

Table 4.9: Study demographics of the subjects in our research.

Variable Characteristics Nr. (%)
Gender Male 18 (60.00%)

Female 12 (40.00%)
Education High-school graduate 9 (30.00%)

Bachelor degree 11 (36.67%)
Graduate degree 10 (33.33%)

Age 26-30 5 (16.67%)
31-40 18 (60.00%)
>40 7 (23.33%)
Mean (±SD) 37.46 (±7.15)

Marital status Married 15 (50.00%)
Never married 15 (50.00%)

No. of children None 17 (56.67%)
1-2 10 (33.33%)
3-4 3 (10.00%)

4.3.3 Trial description

Data was collected from a group of 30 subjects in the course of 8 weeks. Considering

the fact that the data collection period covered the months of November and December

(where the employees have to finalize yearly objectives), we could ensure that the data

contained behavioural changes from elevated stress levels. Our data collection framework

was based on a server-client architecture built around the Samsung Galaxy S3 mini 32GB

smartphone1. During the study, subjects used the smartphone in daily basis as their own

phone (including working hours).

There were no restrictions placed on users regarding the handling of their smartphones,

so our analysis is framed under usual/realistic conditions. The application developed

to collect data was running continuously as a background application. The application

started automatically at 9am at working days (Monday-Friday) without any interaction

with the user. In order to understand users’ mood and stress levels, the app prompted

users to fill in a questionnaire at three different times of the day: at 9am (at the beginning

of the work hours), at 2pm (after lunch break) and at 5pm (at the end of the work

hours). The questionnaires appeared automatically and the user had the option to answer

the questions or snooze the questionnaire for later. The questionnaire consisted of 14

questions that were answered is around one minute. Some examples of screenshots of the

questionnaire are shown in Figure 4.6.

1We did not consider using other devices like smart watches are they are currently more expensive and less
available among the population.
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Figure 4.6: Examples of screen shots of the questionnaire.

Even when questionnaires appeared automatically no compulsory actions (such as

blocking the phone until answering) were taken, therefore users had the possibility to

ignore them. This resulted in incomplete information of two types: missing questionnaires

in a day (possibly because users decided to ignore them) and missing questionnaires for

a complete day (possibly because high work load). From the complete set of 30 users

feature extraction was performed for two types of variables.

u The first group of variables includes information of user’s behaviour during work

hours, these are called objective variables.

u The second group contains subjective information obtained from the questionnaires

which reflects the mood, work-demands/control and perceived stress of the user,

these are called subjective variables.

Extracted data for everyday was divided into two intervals: from 9am to 2pm, and from

2pm to 5pm, referring to the subjective variables (considered as ground truth) acquired

from questionnaires.

Now we present a summary of the demographics of the 30 subjects in the study.

Then, we present the variables that correspond to stress and mood (subjective variables).

Finally, we present the features extracted from smartphone usage (objective variables).

4.3.4 Employees state evaluation

The first type of data includes subjective information related to subjects’ stress and mental

state. In order to get insights in the working environments and job-demands of employ-

ees during working days, we developed a questionnaire in a smartphone application to

assess several psychological working variables related to work stress. The questionnaire

is clinically validated to capture subjects perceived stress and mood states of the em-

ployees at work. Three times a day the questionnaires appeared automatically (9am -at
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the beginning of the work, 2pm -around noon, and 5pm -before leaving workplace). The

questionnaire was derived from the POMS (Profile of Mood State) scale (McNair et al.,

1971) which has two dimensions related to affect of mood states, including, ”Positive Af-

fect (PA)” (e.g., Cheerful, Energetic, Friendly) and ”Negative Affect (NA)” (e.g., Tensed,

Anxious, Sad, Angry) and the rest measures disengagement from work. The PA, NA and

disengagement from work items were presented in mixed order.

Each item had five response alternatives, which assessed five stress-related factors on

a Likert scale ranging from 1 (absolutely agree) to 5 (absolutely disagree). The answers

were stored on the mobile device and constituted part of the analysis. For the purpose

of our analyses score distribution has been segmented into three regions, which in our

case correspond to three ordinal classes: (”low” or ”poor”), when score<3; (”moderate”

or ”fair”), when score = 3; and (”high” or ”sufficient”), when score>3.

Table 4.10: Subjective variables: overall percentage self-reported questionnaires (exhaustion
and disengagement from work) by Perceived Level (High, Moderate, Low) and Number of

Subjects.

Variable Level Nr.Response(%) Nr.Subjects Variable Level Nr.Response(%) Nr.Subjects
Perceived High 325 (22.18%) 27 Perceived High 612 (41.77%) 30

Stress Moderate 515 (35.15%) 30 Job- Moderate 604 (41.23%) 30
Low 625 (42.66%) 30 control Low 249 (17.00%) 27

Perceived High 741 (50.58%) 29 Perceived High 357 (24.37%) 28
Job Moderate 357 (24.37%) 30 Energy Moderate 756 (51.60%) 30

demand Low 367 (25.05%) 24 Low 352 (24.03%) 28
High 118 (8.06%) 19 High 128 (8.74%) 18

Tensed Moderate 280 (19.11%) 28 Anxious Moderate 279 (19.04%) 3
Low 1067(72.83%) 30 Low 1058(72.22%) 30
High 274 (18.70%) 28 High 463 (31.60%) 27

Cheerful Moderate 756 (51.60%) 30 Friendly Moderate 692 (47.23%) 30
Low 435 (29.70%) 30 Low 310 (21.16%) 29
High 83 (5.67%) 11 High 28 (1.91%) 10

Angry Moderate 186 (12.70%) 5 Sad Moderate 112 (7.65%) 30
Low 1196 (81.63%) 30 Low 1325 (90.44%) 12

Sufficient 886 (60.48%) 30
Sleep Fair 313 (21.37%) 28

quality Poor 266 (18.15%) 24

The first section of the questionnaire, collected information about occupational health

outcomes of the participants: i) job induced stress, ii) job-control, iii) job-demand and

iv) energy perceived during working days. The second section contained several widely

used scales to measure mood: the existence of tensions and pressures growing out of job

requirements, feelings of anxiety, cheerfulness, friendliness, sadness, angriness, and quality

of sleep. In Table 4.10 we provide overall response rates of completed questionnaires on

work-relevant stress from all participants throughout the entire study using the 3-point

scale defined earlier. We obtained 1455 completed questionnaires, which represented a

response rate of 79.97%. It is worth mentioning that in this research work we include

only self-reported questionnaire items obtained at ∼2pm and ∼5pm, since we are inter-
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ested in exploring the relation of stress, moods, and job-performance with respect to the

objective variables measured in the previous working hours. We did not include data of

the questionnaires at 9 am because we started to get data from the smartphones exactly

at that time and could not relate (almost) any information to this questionnaire. It can

be noted that employees perceived increased workload and stress, since almost all the

respondents perceived a moderate (35.15%) to high (22.18%) stress level throughout the

entire monitoring period.

Regarding how stress impaired productivity of the employees, almost all of them (29

out of 30) reported that at some point their job tasks and job responsibilities as highly

demanding (50.58%) throughout the entire monitoring period (marked with red-colour in

Table 4.10). This is important since prolonged exposure to certain job-demands has been

shown to lead employees to variety of health issues, such as mental and physical disorder

(Maslach et al., 2001). In response to work-related stress, 19 employees felt themselves

High - Tensed at some point of the study, 18 respondents felt High - Anxious, 11 of

respondents have reported High - Angriness (5.67%), which shows that a large group of

subjects showed negative moods. Finally, a relevant physical reaction to stress is a Poor

- Sleep Quality, which was felt by 24 of the respondents.

4.3.5 Employees Evaluation

The second type of data which provides objective measures associated with users’ be-

haviour was collected from sensors embedded on the smartphones used in this research.

From the analysis presented in Section 4.3.4 we concluded that 4 categories were needed

to perform a proper assessment of subjects stress: physical activity, location, social in-

teraction and smartphone usage. From these categories we extracted 18 features using 9

sensors, as shown in the Table 4.11.

4.3.6 Physical Activity Level - (pACL)

The potential role of physical activity (and its relation with sedentary behaviour) in the

development of psychological complaints has received increased attention during the last

decades (Bernaards et al., 2006; Fleshner, 2005; Penedo and Dahn, 2005). On the one

hand, psychological stress has been reported as a factor in reducing frequency, intensity,

and duration of physical activity (Lutz et al., 2010) by inducing specific physical responses

such as tiredness, weakness, and fatigue (Spielberger et al., 2003). On the other hand, re-

search studies have acknowledged physical activity as a psychological de-stressor (Proper

et al., 2003) since an active lifestyle is associated with health benefits (Fleshner, 2005).

Most related research has used mainly self-reported questionnaires to address the asso-

ciation between physical activity and psychological wellbeing. In contrast, we wanted to
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Table 4.11: Objective variables divided in four categories. Sensors and features extracted from
smartphone usage on every subject in the study.

Category Sensors Features
1. Physical Accelerometer 1) 3-axis Magnitude
Activity Level 2) Variance Sum (Aharony et al., 2011)
2. Location Cellular 3) CellID and LACID (Number of clusters (DBSCAN) (Birant

and Kut, 2007)
WiFi 4) Access Points (Number of clusters (DBSCAN) (Birant and Kut,

2007))
Google-
Maps

5) Latitude and Longitude (Number of clusters (DBSCAN)(Birant
and Kut, 2007), Haversine (Robusto, 1957))

3. Social Microphone 6) Proximity based on verbal interaction (Pitch (Hedelin and Hu-
ber, 1990), Mel-MBSES (Harris, 1978))

Interaction Phone
Calls

7) Number of Incoming Calls

8) Number of Outgoing Calls
9) Number of missed Calls
10) Duration of Incoming Calls
11) Duration of Outgoing Calls
12) Most common Contact-Calls

SMS 13) Number of Incoming SMS’s
14) Number of Outgoing SMS’s
15) Length of Incoming SMS’s
16) Length of Outgoing SMS’s
17) Most common Contact-SMS

4. Social Activity App usage 18) Number of used applications (Social, System)
19) Duration of used applications (Social, System)

investigate the association between objectively measured physical activity and perceived

psychological stress.

We assume that most forms of physical activity (such as mini-breaks and lunch breaks)

would reduce the level of stress and increase the positive mood of the subjects. To analyse

physical activity, we measure it using accelerometer signals from the smartphones. For

this research, we captured 3-axial linear acceleration continuously at a rate of 5Hz, which

was sufficient to infer physical activity levels of subjects. Similar to the work in (Aharony

et al., 2011), we measured the variance sum of 26 seconds (non-overlapping fixed length

windows of n=128 samples) accelerometer readings, providing the activity levels of high,

low, and none using the magnitude of the signal (as shown in Equation 4.16), and the

variance sum (varSum) in Equation 4.17:

Mag =
1

n

n∑
i=1

√
x2
i + y2

i + z2
i ; (4.16)
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varSum(n) = ((Mag(n)− newAvg(Mag)(n))
2 − (

n

n− 1
)− 2Mag(n); (4.17)

We define three ranges of percentage of physical activity level (pACL) as follows: high-

(h) when varSum≥7, low -(l) when 3≤varSum≤7, and none-(n) when varSum<3; using

Equation 4.18:

pACL(h,l,n) = Number of High Activities (h)
Total Classified Activities (h,l,n)

X100% (4.18)

4.3.7 Location patterns

Additional sources of stress can produce behaviours such as frequent smoking, caffeine

consumption and skipping lunch (Conway et al., 1981), which are known to contribute

to health issues. For this reason, we analyse locations of subjects with the focus in

understanding frequent locations changes during working hours. For example, we assume

that during the days with high job-demands and high-stress, subjects tends to reduce

changing locations or skip lunches due to their responsibilities or deadlines for delivering

their work.

In order to measure location changes, we retrieved 3 important sources: (i) the list

of WiFi networks available with their respective BSSID address, (ii) cell tower locations

(CID, LAC-ID) and (iii) Google Maps locations information (latitude, longitude). In or-

der to preserve the battery life of the smartphones, we have intentionally not used the

GPS sensor. Using the location information we cluster locations from each source using

the DBSCAN algorithm (Birant and Kut, 2007), which is an algorithm mainly used for

clustering spatio-temporal locations. For Google location information, we clustered loca-

tions with maximal diameter of 300 meters (using latitudinal and longitudinal coordinates

and the Haversine distance equation (Robusto, 1957)) where the subjects stay for more

than 15 minutes and measured the amount of locations in each day. For Cell Tower in-

formation and WiFi networks we clustered location information on an hourly basis. Our

objective is to test whether subjects show changes of location in each interval (9am-2pm

and 2pm-5pm). For this we compared locations every hour counting +1 when different

clusters appear with respect to the previous hour.

4.3.8 Social Interaction (SI)

Perceiving stress in everyday activities evokes a number of emotional responses that may

affect interpersonal relations and social ties (AIS, 2015). Several works have reported

that continuous stress may reduce social wellbeing in the long-term (Cohen and Wills,
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1985). As a result, lowered social functioning (AIS, 2015) may predict decreased mental

and physical health (Singh-Manoux et al., 2005). For example, social withdrawal has

been used as one of the diagnostic criteria for post-traumatic stress disorder. On the

contrary, being socially active has been found to reduce stress by providing a sense of

security, enhancing self-confidence, and buffering the impacts of a stressful situation on

individuals (Cohen and Wills, 1985).

In the last decades, monitoring social interaction has attracted significant attention

(Vinciarelli et al., 2009). Social behaviour encompasses skills from social recognition

and many distinct types of interaction. Previous studies monitored speech articulation

aiming at inferring stress using smartphones. However, these works have been performed

on controlled experimental (laboratory) studies (Lu et al., 2012).

In contrast, in this research we investigate the effects of stress on social behaviour

derived from continuously recorded and classified human voice (from smartphone’s mi-

crophone) in real working environments. Moreover, since social interaction includes not

only face to face conversations but also phone conversations and messages, another impor-

tant social aspect that we have taken into account are the employees phone conversations

and SMS logs. For this, we investigate the number of conversations (incoming, outgoing

and missing), SMS messages (incoming and outgoing), and unique common called and

calling contacts, compared with the perceived stress on a daily basis. In order to protect

users privacy, all phone call events where anonymized where we register only the five last

numbers of each calling or called contact. In detail, we measured two aspects of social

interaction:

u Speaker Recognition: Recent work in stress detection suggest to use Bluetooth

embedded sensor on smartphones for measuring social-proximity (Bogomolov et al.,

2014). However, this method poses several disadvantages since the users may not

carry the phones all the time. Second, Bluetooth scans have time limits, which

restricts the estimation of social-interaction.

In contrast, in this research we use the microphone embedded on the smartphones

for better and accurate recognition of verbal interactions, namely social-interactions.

We have extracted two main audio features (Pitch (Hedelin and Huber, 1990) and

Mel-Multi-Band Spectral Entropy Signature, Mel-MBSES (Harris, 1978)) to obtain

a higher accuracy in speech activity recognition.

In this research, two conditions required for processing audio on smartphones: i)

measuring pitch within the range of human voice (40 Hz to 600 Hz), and ii) rec-

ognizing human voice from the captured frames using the MEL-MBSES coefficients

and Support Vector Machine (SVM) classifiers (Vapnik et al., 1997). We built
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a SVM (Vapnik et al., 1997) classifier using MEL-MBSES coefficients trained on

frames coming from 3 minutes of voiced data and 3 minutes of background data.

The training set for the SVM consisted of positive vectors (speech) and the negative

vectors (non-speech or background). We sampled audio frequency of 8000Hz and

set a frame every 256 samples where we calculated Pitch and Mel-MBSES features

for each frame, then each frame is labeled either as human voice or not a human

voice. Approximately every 0.7 second (7 out of 30 frames) must be detected as

voice in order to indicate voice activity in that audio segment. We measured per-

centage of social-interaction based on the total duration (hourly, daily, weekdays) of

conversations as shown in Equation 4.19:

SI =
n∑
i=1

TrueClassified
TotalClassified

× 100% (4.19)

It should be noted that since there were no restrictions on the use of the smartphones,

in some cases these were placed inside pockets. The smartphone can still be used

to recognise voice in these cases, although the information is less reliable and only

works at reduced distances. This may result on underestimating our results for social

interaction.

u Phone-Call and SMS behaviour: Since calling and texting messages (SMS’s)

behaviour could be an important source to infer stress-relevant factors we consider

phone calls in terms of: number, duration and most frequent number (on a daily basis)

of incoming, outgoing and missed. Furthermore, for SMS’s, we measure number and

length (incoming and outgoing). These features may serve as a source of stress, for

example understanding phone-call behaviour from subjects that contact different

persons more frequent during stress-less periods in comparison with stress-full times.

In order to find the most common called/calling ID in each interval (9am-2pm and

2pm-5pm) we used argmax(Call) =
∑n

i=1 countmax(CallID) and argmax(SMS) =∑n
i=1 countmax(SMSID) for most frequent Call and SMS’s respectively. In order

to remove ties among ID’s that have the same number of calls, we proposed a scoring

model Score for both calls and SMSs:

Score(Call) =
duration(CallID)

countmax(CallID)
and Score(SMS) =

length(SMSID)

countmax(SMSID)
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4.3.9 Social Activity

Finally, another aspect that may have impact on the stress levels is application usage

of the smartphones. Our first intention was to explore the impact of smartphones usage

during working days and to investigate whether their usage were more likely to view them

as a positive influence in balancing their work and personal life. For this, each time and

employee uses an app, our software captures the event and stores it together with the

duration and time-stamps. With this information we were able to extract the following

data: number of application used per interval and duration of their usage. Applications

were divided in two categories:

u System apps: pre-installed apps like Camera or Calendar, Web-browsing, E-Mail

client.

u Social apps, such as Viber, WhatsApp, Facebook, Skype and other user downloaded

apps (e.g., games other entertainment apps).

4.3.10 Analysis of information

Using the features presented in Section 4.3.3 we retrieved the data from all the partic-

ipants in the study. First, data was filtered discarding information from weekends and

hours not in the range 9:00am-5:00pm (representing the working hours). Recall that this

range is closely related with the ground truth information acquired from self-assessments

(Section 4.3.4). After the data was filtered, different techniques were used to perform a

thorough analysis: (i) we started using hierarchical clustering (Section 4.3.11), (ii) then

correlation analysis (Section 6.1.1), and (iii) finally, we performed variable importance

analysis (Section 6.1.2.1).

4.3.11 Diversity and similarity of stress level within subjects

Hierarchical clustering was used to analyse the participants self-reported stress on a daily

basis. We used Ward’s method (Ward Jr, 1963) to perform the hierarchical clustering of

self-reported stress using the half-square euclidean distance between subjects. Euclidean

distance is always greater than or equal to zero. Measurements would be ≈ 0 for identical

subjects and ≈ 1 for subjects that show less similarity. Figure 4.7 present dendrograms

about the perceived stress level divided by gender and organisation. Each dendrogram is

ordered by clusters, and inside each cluster they are ordered by mean values of perceived

stress level. From these figures we can note that gender do not easily determine the stress

level since both of them show a great variation of perceived stress, however, as we will

see, at least in these experiments, there is a higher percentage of women in the high

79



Su
bj

ec
ts

male

subj94813

subj96040

subj48081

subj95521

subj87676

subj78218

subj95505

subj95414

subj93401

subj94615

subj94441

subj14446

subj95513

subj94516

subj94532

subj89532

subj94508

subj94722

> 3 - High
= 3 - Moderate
< 3 - Low

C2

C3

female

subj87684

subj95448

subj95596

subj95216

subj94714

subj88278

subj89953

subj96479

subj94433

subj88187

subj57407

subj84616

> 3 - High
= 3 - Moderate
< 3 - Low

C1
C1

C2

C3

0.9 0.0 0.9 0.0

Su
bj

ec
ts

(a)

organization   A

subj87676

subj78218

subj95505

subj95414

subj93401

subj94441

subj95513

subj94433

subj94516

subj88187

subj94532

subj89532

subj57407

subj94508

subj84616

subj94722

> 3 - High
= 3 - Moderate
< 3 - Low

0.0 0.90

C1

C2

C3

Su
bj

ec
ts

organization       B

subj87684

subj94813

subj96040

subj48081

subj95521

subj95448

subj95596

subj95216

subj94714

subj88278

subj89953

subj94615

subj14446

subj96479

= 3 - Moderate
< 3 - Low

Su
bj

ec
ts

0.90 0.0

C1

C2

(b)

Figure 4.7: Dendrograms obtained by computing similarities and diversity between perceived
stress level of each subject (a) by Gender and (b) by Organisation. Three major clusters can

be noted, colour boxes correspond to average stress for different subjects.
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stress group. In contrast, when clustering by organisation we can see that subjects in

organisation A showed in average a higher stress than those in organisation B.

It is interesting to note that organisation A is an IT organisation, while B is a social

support organisation. In Table 4.12, we provide an overview of clustering results based on

gender. Cluster analysis yielded 3 distinct clusters (C1, C2 and C3) which represent low,

moderate, and high stress levels. Note that women show a uniform distribution across

stress levels and men showed slightly more subjects with low stress. We also performed

clustering within the organisations, which is shown in the Table 4.13. The results show

that stress was different between organisations. For example, in organisation A, all women

(4) showed high stress levels. In contrast, in organisation B, half of the women showed

low stress and half of the women showed moderate stress levels. Again, in this company,

there are slightly more men with low level of stress.

Table 4.12: Perceived stress level from dendrogram analysis by gender. Three major clusters
can be noted based on perceived level of stress.

Cluster (Stress-Level) Men (Nr./%) Women (Nr./%)
C1 (low < 3) 7/18 (38.89%) 4/12 (33.33%)
C2 (moderate = 3) 6/18 (33.33%) 4/12 (33.33%)
C3 (high > 3) 5/18 (27.78%) 4/12 (33.33%)

Table 4.13: Perceived stress level from dendrogram analysis by Gender within Organisations.
Three major clusters can be noted based one perceived stress.

Cluster (Stress-Level) Organisation A Organisation B
C1 (low<3 ) Men: 3/12 (25.00%) 4/6 (66.67%)

Women: 0/4 (0.00%) 4/8 (50.00%)

C2 (moderate=3) Men: 4/12 (33.33%) 2/6 (33.33%)
Women: 0/4 (0.00%) 4/8 (50.00%)

C3 (high>3) Men: 5/12 (41.67%) 0/6 (0.00%)
Women: 4/4 (100.00%) 0/8 (0.00%)

Table 4.14: Perceived Stress Level from dendrogram analysis by Response Intervals
([9am-2pm], [2pm-5pm]). Three major clusters can be noted based on perceived level of stress

and transition of perceives stress into intervals.

Cluster (Stress-Level) Intervals
C1 low→low ; low←→moderate 11/30 (36.67%)
C2 moderate←→low ; moderate←→moderate 12/30 (40.00%)
C3 high←→moderate; high←→high 7/30 (23.33%)

Finally, we clustered self-reported stress changes within intervals (9am-2pm and 2pm-

5pm) as shown in Table 4.14. For example, low ←→ moderate, means that subjects in

81



Table 4.15: Overall average percentage of physical Activity Level (pACL) by Intervals
(9am-2pm and 2pm-5pm) and Perceived Stress Level (SL) [High, Moderate, Low].

Distribution of pACL by (Gender,
Age, Education, Marital Status and

Organisation)

pACL
[9am.-
2pm.]

pACL
[2pm.-
5pm.]

High
(SL)

Moderate
(SL)

Low
(SL)

– Male 18.03 21.34 16.29
(*)

16.68 23.60

– Women 15.66 18.74 10.57
(**)

15.37 18.89

– 26-30 (28.6±1.95) 12.89 15.48 12.45 13.65 17.83
– 31-40 (35.33±2.4) 17.50 21.00 12.87 16.22 21.97
– >40 (49±2.52) 18.69 21.66 17.61 18.20 21.90
– High school graduate 17.01 21.40 16.84 16.84 18.77
– Bachelor degree 19.22 23.52 11.70 17.48 29.19
– Graduate degree 14.78 15.54 12.64 14.86 16.51
– Married 20.51 25.48 17.71 19.53 26.73
– Never married 13.36 14.78 10.23 13.39 16.31
– A. 12.17 15.50 12.21 10.77 17.33
– B. 22.45 25.49 18.39 23.93 24.21
– Overall (Mean±SD) of pACL

(%)
17.06
(±12.01)

20.14
(±13.12)

16.43
(±16.42)

16.46
(±12.30)

19.65
(±12.85)

(*) 16/18 - male subjects perceived high stress.
(**) 11/12 - female subjects perceived high stress.

the clusters showed low stress levels in the first interval and the changed to moderate

in the second interval or that moderate changed to low. In this case, 23.33% of the

subjects showed at least a high level of stress in their daily activities (high←→moderate

or high←→high) and 2/3 of the subjects (63.33%) showed levels between moderate and

high. It is important to note that employees did not perceive drastic changes of stress,

from low←→high. Now we present a more detailed analysis for each category of objective

variables and its relation with mood, and specifically with perceived stress levels.

As a summary of this first set of experiments, we can note that with our current data:

(i) there is a slight bias in men towards lower levels of stress in their working environments,

(ii) there is a clear difference between stress levels in companies, where an IT company

showed higher stress levels than a social support company, (iii) about 2/3 of the employees

perceived moderate to high stress and 23.33% perceived high stress, and (iv) there were

no drastic changes between levels of stress.

4.3.12 Physical activity levels

Table 4.15 presents overall percentage of physical activity level with respect to perceived

stress level (High, Moderate, and Low) on a daily basis for all 30 participants compared

with demographic characteristics (age, gender, education, marital status, number of chil-
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Table 4.16: Overall average percentage of activity level (mean ± Std.dev.) during working
days and perceived level (SL) of Stress (H-high, M-moderate, L-low) by Gender.

Men Women

H (SL) M (SL) L (SL) H (SL) M (SL) L (SL)

Monday: 24.3±22.2 16.2±16.2 21.6±18.0 12.3±12.1 13.0±7.0 21.6±22.4
Tuesday: 10.0±6.5 17.5±16.6 22.2±14.4 6.2± 3.1 12.3± 6.3 16.5±7.7
Wednesday: 18.0±19.8 19.8±18.3 22.5±18.5 12.6±8.4 13.2±7.7 14.6±7.6
Thursday: 19.0±20.7 20.7±18.6 24.3±18.7 9.6±8.0 17.9±12.4 14.3±13.9
Friday: 14.9±17.3 15.9±19.6 20.4±19.5 11.4±12.4 17.7±13.6 13.8±8.0

Table 4.17: Overall average percentage of activity level (Mean ± Std. Dev.) by Job-Demands,
Job-Control, Energy and Sleep-Quality perceived level (PL) with respect to Gender.

Men Women

H (PL) M (PL) L (PL) H (PL) M (PL) L (PL)

Job-Demand 20.0 ± 16.7 17.9±14.8 22.3 ±22.1 16.1±6.0 13.1±8.4 11.7±6.2
Job-Control 19.0±14.6 18.0±14.8 18.9±16.0 14.2± 6.5 16.7±6.2 13.3 ± 8.7
Energy 23.7±15.6 19.9±14.8 17.8± 14.6 14.1± 9.7 15.3± 6.1 16.8±9.7
Sleep-Quality 20.9± 14.3 22.1±15.8 22.7± 17.4 16.6±6.9 15.9±6.8 15.8± 6.9

dren and organisations). Activity levels were normalized for each interval (9am-2pm and

2pm-5pm) or for a complete day.

Some conclusions are:

u pACL during lower perceived stress times was associated with higher activity (19.65%

of activity). In contrast, a high perceived stress showed less activity (16.43%).

u Subjects were more active during the second interval (2pm-5pm), with 20.14% pACL

compared to 17.06% in the first interval.

u Following age, education level, and marital status, participants that reported high

and moderate stress levels were associated mostly with lower pACL than when they

have low stress.

u The age group of (≥40) showed more activity level than the rest when they perceived

high stress level.

u The group of married subjects showed more activity than the never married group

no matter their perceived stress level.

Furthermore, separating overall activities into working days allowed us to compare

pACL in different days of the week (as shown in Table 4.16). Results show that men have

a higher pACL only on Mondays when they perceive high stress. In contrast to women

that do not show a high level of pACL when they perceive high stress.
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As described in Section 4.3.4, it is important collecting information about occupational

health, such as job-demands and job-control. In this regard, Table 4.17 shows mean scores

on perceived job-demand, perceived job-control, perceived stress, and perceived energy for

the respondents. Low perceived job-demand was associated with higher physical activity

level (22.3%) for male participants. In contrast, women showed increased activity levels

when they perceive high job-demands. Men participants with higher pACL perceived

higher energy. In contrast, women with higher pACL showed lower energy. In summary,

this table shows that in general men and women show different results in terms of perceived

emotions with respect to their activity levels throughout the day.

4.3.13 Social Interaction

In contrast to our previous work (Ferdous et al., 2015), where we explored the correlation

of total amount of verbal interaction per day with self-reported stress, in this research we

expand that analysis, since now we explore the distribution of the verbal-interaction in

an hourly basis and working intervals.

In Table 4.18 we present a summary of social-interaction levels, with respect to different

characteristics of the employees.

Some findings are the following:

u In average subjects showed higher social interaction in moments of low stress than

in moments of high stress.

u However, analysing this data by age group we observe that older (and married)

employees showed the opposite behaviour, they increased their social interaction

during low levels of perceived stress.

u There is in general more social interaction in the afternoons than in the mornings.

u Another interesting behaviour appears across organisations. In this case subjects in

organisation A showed higher social interaction than those in organisation B.

We explore further these measurements. We depict social-interaction as a) percentage

in hourly basis in a day, b) per day day of week, c) per hour within organisations and d)

per day of the week by gender in Figure 4.8.

u A notable result is a homogeneous behaviour (similar shapes of the curves) of social

interaction across stress levels (Figure 4.8 (a)), with higher interaction in the morning

for moderate perceived stress and a higher interaction in the afternoon for high

perceived stress.

u Another homogeneous behaviour is shown across organisations, where people de-

crease their social interaction near lunch time (12-13 hrs), see Figure 4.8 (c).

u The peak of the verbal interaction in High-Level of stress is achieved in the afternoon

(one hour before the end of the working day).
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u When subjects perceive high stress, social interaction drops on Thursdays and then

increases again on Fridays, see Figure 4.8 (b).

u The social interaction varies with the perceived stress during the week, except on

Mondays where it has similar values with the different perceived stress levels.

u With respect to gender, men showed a more stable social interaction across the

weekdays. In contrast, women then to increase their interaction near the weekend,

see Figure 4.8 (d).

Figure 4.8: Overall percentage of social Interaction and stress Level a) by working hours, b) by
week days, c) by Organisations and d) by Gender.
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Social interaction also include phone calls and SMS behaviours. Using the self-reported

stress level, we were able to compare the phone activeness from 5767 phone calls and 5911

SMS’s. To be noted, that all marketing SMS’s or responses from the GSM operators were

excluded in this research. In Tables 4.19 and 4.20 we explored the relation of phone calls

and SMS’s with respect to perceived level of stress. From these tables it can be seen that

the number of phone-placed Outgoing, phone received Incoming and missing calls, was
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Table 4.18: Distribution of Social-Interaction (SI) by Response Intervals ([9am.-2pm.], [2pm. -
5pm.]) and Stress-Level (SL)

Distribution of SI by
Gender, Age, Education,

Marital Status,
Organisation

SI
[9am.-
2pm.]

SI
[2pm.-
5am.]

High
(SL)

Moderate
(SL)

Low
(SL)

Nr.
Employee

– Male 25.67 28.75 27.88(*) 27.54 25.74 18
– Women 20.17 23.83 22.88(**) 22.72 19.79 12

– 26-30 (28.6±1.95) 25.46 29.53 28.57 26.02 26.44 5
– 31-40 (35.33±2.4) 22.96 26.61 24.90 26.67 22.34 18
– >40 (49±2.52) 22.73 24.84 22.97 22.54 24.32 7

– High school graduate 20.63 25.09 22.97 26.95 26.22 11
– Bachelor degree 24.23 28.16 29.49 26.28 23.12 10
– Graduate degree 25.30 26.94 22.81 23.37 21.24 9

– Married 21.75 25.02 22.91 21.92 23.56 15
– Never married 24.68 28.07 27.61 28.45 22.89 15

– A. 26.40 30.41 27.96 29.64 25.67 16
– B. 20.07 22.49 18.20 20.21 21.80 14

– Overall (Mean±SD)
of SI (%)

23.61
(±10.53)

26.93
(±11.04)

23.47
(±11.02)

24.58
(±10.47)

25.28
(±11.67)

30

(*) 16/18 - male subjects perceived high stress.
(**) 11/12 - female subjects perceived high stress.

Table 4.19: Number of phone-calls by perceived stress level (SL).

Nr. Phone Calls High SL Moderate SL Low SL

Incoming: 1696 (100%) 355 (20.9%) 511(30.1%) 830 (48.9%)
Outgoing: 2912 (100%) 547 (18.7%) 839 (28.8%) 1526 (52.4%)

Missing: 1159 (100%) 220 (18.9%) 405 (34.9%) 534 (46.1%)

Table 4.20: Number of SMS’s by perceived stress level (SL).

Nr. SMS High SL Moderate SL Low SL

Incoming: 3767 (100%) 1067 (28.3%) 801 (21.2%) 1899 (50.4%)
Outgoing: 2144 (100%) 697 (32.5%) 710 (33.1%) 737 (34.3%)

higher when subjects perceive less stress. In the appendix (Tables A.5 and A.6) we show

the overall mean number, duration and length of Outgoing, Incoming, Missed Calls and

SMS’s (Incoming, Outgoing) from 30-subjects throughout the entire monitoring period,

using demographics of the study and separating into weekdays.

We also analysed the duration and length of SMS’s and calls and some interesting

observations are the following:
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u In stress-full days, in most of the cases Outgoing calls have in average shorter dura-

tion.

u Longer duration of Incoming calls were associated with high perceived stress level.

u Almost in all cases a high number (and length) of Incoming-SMS and Outgoing-SMS

were also related to high stress.

u Analysing the conversations by weekdays, high perceived stress was associated with

longer duration of Incoming-Calls and the length of Incoming-SMS’s, which in con-

trary to duration of Outgoing-Calls and length of Outgoing-SMS’s is lower when the

employees perceive high stress. Similarly, having high job-demands was associated

with lower duration of phone-call and length of SMS’s in all categories.

Moreover, in Figures in 4.9 we depict the frequency of the most common contact for

phone calls and SMSs (blue line) for every subject. From these figures we note a higher

frequency of phone-calls and SMS’s with the most common contacted number when they

perceive high stress levels (average frequency of most frequent contacts is shown with red

line). In contrary, in low and moderate stress the frequency of phone-call is in average

lower. These results shows that higher frequency of the phone-calls and SMS’s can be an

indicator of stress during the working times.

4.3.14 Location changes

Table 4.21: Overall number of clusters obtained from location using the DBSCAN algorithm by
perceived Stress Level (SL). Descriptive statistics (Mean±SD) provide information of overall
number of clusters retrieved from the 30-subjects throughout the entire monitoring period.

Locations Clusters
9am-5pm

Nr.(Mean±SD)

High-(SL)
Nr.(Mean±SD)

Moderate-
(SL)

Nr.(Mean±SD)

Low-(SL)
Nr.(Mean±SD)

Cell: 1383 (1.05±0.38) 230 (1.01±0.39) 349 (1.07±0.40) 527
(1.05±0.33)

WiFi AP’s: 2663 (1.40±1.38) 486 (1.42±1.41) 742 (1.49±1.35) 961
(1.55±1.39)

Google Maps: 628 (0.48±0.78) 143 (0.63±1.01) 158 (0.48±0.90) 234
(0.46±0.85)

To analyse location changes we measured the number of clusters obtained from differ-

ent locations throughout the entire monitoring interval (see Table 4.21). From all three

sources it is evident that overall subjects tend to reduce visiting different places or going

further away from work environments when they perceive high-stress level during working
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Figure 4.9: Frequency of the most common contact calls for each subject by perceived stress
level.

Figure 4.10: Frequency of the most common contact SMS’s for each subject by perceived stress
level.
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days. We obtained more Cell-Tower and WiFi clusters from both parameters due to fre-

quent scanning. Changes of clusters in WiFi represent changes of indoor locations, such as

changing environments, areas, departments or either having mini-breaks in specific hours.

In contrast, using Google Maps locations show distance and most visited places outdoors.

Table 4.22: Overall number/duration (sec.) of phone application usage by perceived stress
level (SL). Descriptive statistics (Mean±SD) provides overall usage of applications from 30

subjects during the entire monitoring period.

Perceived
Stress
Level

Frequency
System-Apps
Nr.(Mean±SD)

Frequency
Social-Apps
Nr.(Mean±SD)

Duration
System-Apps
Nr.(Mean±SD)

Duration
Social-Apps

Nr.(Mean±SD)

High 5531 (24.0±26.1) 357 (3.5±4.0) 48445 (211.0±157.2) 4621
(45.3±52.5)

Moderate 7823 (25.2±28.5) 508 (4.0±4.2) 57607 (185.2±153.3) 7420
(57.0±73.2)

Low 13787 (31.0±28.2) 966 (4.3±4.2) 88782 (197.2±150.3) 9582
(42.3±65.2)

4.3.15 Application usage

Another source that provides information relevant to subjects daily activities at work is

the usage of the smartphone applications. Recall that we divided the type of applications

subjects ran on their devices during the working days and we categorized them into system

and social applications (as described in Section 4.3.9). Next, we examine the frequency

(number of accesses) and the duration of the applications used and contrast them with

the perceived self-reported stress on a daily basis (see Table 4.22). Results show that in

stress-less times subjects tend to use longer times the smartphone (both social and system

applications). This also seems a good indicator for identifying perceived stress levels.

In summary, from these results we can draw the following conclusions:

u Activity levels changed with perceived stress and with weekdays.

u There is an opposite behaviour of activity levels in male and female in terms of

job-demand and energy.

u There is more social interaction with higher stress levels except for older people that

show an opposite behaviour.

u There is more social interaction during the afternoons.
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u There is an increase level in social interaction by women towards the end of the

week.

u There is a very different social interaction among employees of different companies.

Curiously the company with higher stress levels also have higher percentages of social

interaction.

u There are shorter outgoing calls and longer incoming calls during high stress levels.

u People use much more their smartphones during lower perceived stress levels.

4.4 Chapter Summary

In this chapter, we presented the data the were collected in both studies selected for this

research. We demonstrated the features that has been extracted from sensors and the

methods used to analyse the data.

In the following chapter, we present the methods proposed to infer behaviour changes

and to handle the scarce data collected from bipolar disorder patients.
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Chapter 5

SCARCE DATA AND

CLASSIFICATION OF BIPOLAR

DISORDER

”Our technologies become more complex

while we become more simple. They learn

about us while we come to know less and

less about them. No one person can

understand everything going on in an

iPhone, much less pervasive systems.”

– Douglas Rushkoff

This chapter summaries the thesis’ the proposed approach in classification of motor

activity levels in different bipolar disorder states. We begin with the importance of mon-

itoring physical activity in bipolar disorder in they real-life activities. Further, we use

semi-supervised learning method to address the problem of scarce data and missing in-

formation. We frame the challenges facing the building of accurate models for predicting

disease progression. The chapter provides the proposed approaches (i.e., Self-training,

Intermediate models) to improve the knowledge of their state. Finally, it closes with sum-

mary of current research directions.

The contributions of this chapter are as follows: 1

1This chapter is manly based on the following research work:
I. Maxhuni, A., Muñoz-Meléndez, A., Osmani, V., Perez, H., Mayora, O. and Morales, E.F., 2016. Classifica-
tion of bipolar disorder episodes based on analysis of voice and motor activity of patients. Pervasive and Mobile
Computing. (Maxhuni et al., 2016a).
II. Osmani, V., Maxhuni, A., Grünerbl, A., Lukowicz, P., Haring, C. and Mayora, O., 2013, December. Moni-
toring activity of patients with bipolar disorder using smart phones. In Proceedings of International Conference
on Advances in Mobile Computing & Multimedia (p. 85). ACM. (Osmani et al., 2013a).
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A.1 We propose using ”Semi-supervised learning” methods to cope with scarce data ac-

quired from the bipolar disorder patients in our trials.

A.2 We propose analysing correlation strength between patients physical activity levels

and their psychological state.

A.3 We propose using our novel ”Intermediate models” method to build better predictive

performance.

A.4 We have evaluated the dataset comprising 5 subjects; we measure the motor activity

and speech production during the phone conversation to classify the depression level.

The outline of this chapter is as following: the Section 5.2 describes the problem state-

ment related to disease interventions and importance of classifying psychological state of

bipolar patients. Section 5.3 begins with evaluation of physical activity level and psychiatric

evaluation level. Further, in the Section 5.4 and Section 5.5 we analyse the information

about patients motor-related behaviour and voice production while having conversation on

the phone. Finally, we propose using Semi-supervised learning method and Intermediate

Models to improve the classification accuracy of bipolar disorder in presence of scarce

data.

5.1 Monitoring bipolar disorder patients

The worldwide prevalence of many chronic health conditions is steadily increasing, so

the management of diseases represents one of the most important challenges for health

systems. The World Health Organisation (WHO) has ranked mental disorders and mental

injuries within the top 20 causes of disability among all medical conditions worldwide in

persons aged in the range 14 to 55 (WHO, 2001). Like other psychiatric disorder such

as schizophrenia and major depression, bipolar disorder (BD) is a severe and chronic

psychiatric illness that is associated with high rates of medical morbidity and premature

mortality (Bopp et al., 2010). In 2001 bipolar disorder was ranked as the 6th leading

disabling illness worldwide (WHO, 2001) and is associated with high cost for healthcare.

As a matter of fact, the mortality is high in people who suffer with bipolar disorder

and is estimated two to three times higher in comparison with the mortality of general

population (Belmaker, 2004). Relapse in bipolar patient increases over time and the

relapse can vary from a few weeks to many months. Therefore, patients with bipolar

disorder require lifetime maintenance therapy (Morriss, 2004).

Illness characteristics and neuro-cognitive deficits certainly influence the quality of life

and general functioning in bipolar disorder patients. One of its main characteristics is

a repeated relapse of two polar episodes, mania and depression. Patients suffering from
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the disorder may experience episodes of altered mood states ranging from depression

with sadness, hopelessness (including suicidal ideation), loss of energy, and psycho-motor

retardation, whereas manic episodes are characterized by irritability, excessive energy

(hyperactivity), reduction in the need of sleep and psycho-motor agitation or acceleration.

The diagnosis of bipolar disorder is based on clinical evaluations through interviews

and evaluations of scores gathered by quantitative psycho-pathological rating scales that

were developed in the early 1960s (e.g., HAMD, BRAMS, YMRS) and other more recent

variations of them (e.g., BSDS). Although these interviews and questionnaires are well

established and defined in a specific manual (Faurholt-Jepsen et al., 2012), they have

their drawback, as they are performed on sporadic days, while a change to a potentially

dangerous state can be produced in between these sessions. Other approaches include

daily self-reports, however, they can be unreliable as they often depend on current mood

episode polarity of the patients (Sims et al., 1999).

Currently, drug therapy is the main treatment in BD, but its effectiveness critically

depends on the timing of administration and has to be individually modified according to

a patients’ state of mind. Therapy can be very effective if administered at the beginning of

a patient’s transition to a different state, however it may be less effective in severe states

where the symptoms are present and persisted to a significant degree. The advantages of

using smartphone technology to monitor bipolar disorder have recently been documented

in the work carried out in MONARCA EU project (Grunerbl et al., 2014, 2015; Osmani,

2015; Osmani et al., 2013b) and have presented the basic concepts of using smartphones

for the management of bipolar disorder. Using the sensor embedded in smartphones

for inferring significant usage data, such as location patterns from day-to-day activities,

social-interaction sensing, level of physical activity, that objectively monitor the state of

patients with bipolar disorder might increase the availability and pervasiveness of treat-

ment. Sensor data acquired from smartphones offers huge potential that through machine

learning techniques get valuable insights of behaviour of bipolar disorder patients in their

real-life.

5.2 Monitoring in mental-health

In recent years, different systems have been developed aiming to monitor, diagnose and

provide health services to the individuals, including the mental-care. Considering the

popularity of smartphone devices, new challenging possibilities are opening up, those of

monitoring subjects outside the laboratory, in unconstrained and uncontrolled environ-

ments so as to capture subjects’ natural behaviour. Possibilities of sensing outside the

lab are numerous, ranging from lifestyle monitoring, behaviour change, detecting stress
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and burnout in workers, up to applications in medicine, including monitoring of patients

with major depression and bipolar disorder.

Smartphone computing can have a substantial impact in monitoring patients with

mental disorders due to the following factors:

u symptoms of mental disorders are primarily manifested through changes in patients’

behaviour. For example depression is manifested through motor retardation, where

such change in behaviour can be captured through analysis of the information from

the motion sensors on the mobile phone; and

u psychiatric assessment of mental disorders is typically carried out through the use

of a questionnaire. The questionnaire relies on patients recalling events pertaining

to their past behaviour, such as amount of physical activity for example reported by

the patient. Self-reporting suffers from a number of issues, including:

1. Recall bias: where subjects have difficulties recalling events in the past;

2. Subjectivity: self-reporting may be affected by the current mental state of

the subject; and

3. High effort: self-reporting requires high effort in order to gather high quality

data, especially in longitudinal studies, where data is gathered either through

self-reporting or through a third party observer.

Smartphone computing can address these difficulties through continuous monitoring

of user activities, by sampling sensors commonly found on mobile devices and in return

providing objective measures of behaviour phenomena and also allow for experience sam-

pling through self-reporting. Continuous monitoring is especially suitable for measuring

physical activity, since activity levels of individuals can be measured through the phone’s

accelerometer and a solid picture of overall physical levels can be inferred. Measuring

physical activity levels in this manner alleviates the issues faced when relying on subjects’

memory of physical activity events, which is the current practice in psychiatry.

5.3 Physical activity monitoring in bipolar disorder patients

Significant interest in physical activity monitoring for patients with bipolar disorder is

increasing. Some of the most important findings regarding physical activity, have shown

how physical activity reduces risk for chronic diseases, such as cardiovascular diseases

(Winkler et al., 2011), obesity (Kriska et al., 2003), and enhance mental-health with

respect to lowering levels of anxiety and depression, elevating mood, improving self- esteem

and reducing stress (Bartholomew et al., 2005; Mata et al., 2012; Vancampfort et al.,
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2013a). Hence, an accurate measurement of physical activity is an important component

of research, in order to monitor people’s health and to quantify the relation between

physical activity and outcomes of chronic diseases.

Most studies utilizing self-monitoring are based on traditional monitoring with paper

and pencil diaries and questionnaires (Gwaltney et al., 2008). These methods are often

biased assessment of the health outcomes. Due to irritable state of individuals with

bipolar disorder during depressive and manic state, using traditional methods patients

are prone to neglect or to overestimate performed activities. Thus, if self-assessment on

the mobile phone enables easier monitoring and tracking of the patients’ progress than

traditional methods, then the data collected will be of higher quality. The benefits of

using technology include more accurate data and also provide clinicians with the ability

to evaluate the patients’ progress in a more granular scale and increase the efficacy of the

treatments. Moreover, bipolar patients who are trained to use self-help treatments can

benefit from greater control over their care and life decisions and can detect early warning

signs of serious illness (Morriss, 2004).

5.3.1 Correlation between physical activity levels and episodic state in bipo-

lar disorder

During initial analysis phase, we were interested whether overall physical activity levels

show any correlation with the patients’ state. Literature suggests that patients in the

depressive state show decreased levels of physical activity in comparison to their normal

state, while the contrary holds true for manic patients. Note that in this research we

did not carry out between subjects comparison, rather we focused on differences within

subject. Table 5.1 shows activity levels of patients for the whole duration of monitoring of

3 months and correlation with the psychiatric evaluation scores, using Pearson correlation

coefficient r.

As it can be seen from the Table 5.1, there exist a correlation between the patients’

state and the overall physical activity levels. The correlation is strongest for patient P0101

(r=0.672), while there is a low negative correlation for P0302 (r=-0.148), which indicates

that the overall level of physical activity (as measured by the phone) was decreasing as

the patient’s state was improving (patient P0302 went from major depressive episode (-3)

to a normal state (0)).

While there have been studies that correlate overall physical activity levels with de-

pressive and manic episodes (Judd et al., 2012; Vancampfort et al., 2013b), our research

did not yield strong correlation for all patients using overall daily physical activity levels.

Considering these results, we have decided to investigate further in order to understand

how the daily behaviour levels correspond to bipolar disorder episodes. In this respect, we
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Table 5.1: Correlation between patient state and overall physical activity levels (p<0.05, N=5).

Patient ID r

P0101 0.672
P0102 0.377
P0201 0.332
P0302 -0.148
P0702 0.290

have divided the day into four intervals, namely Morning (06 AM to 12 PM), Afternoon

(12 PM to 06 PM), Evening (06 PM to 12AM) and Night (12 AM to 06 AM). Clearly,

different patients will have different behaviour patterns as to what constitutes morning

time, however the division of the day was setup in order to investigate whether at specific

6-hour intervals there is a higher correlation of physical activity and patient state.

5.3.2 Daily interval analysis

Once the days were divided in intervals, we investigated trends of physical activity levels

in comparison to the patients’ psychiatric evaluation. In order to normalize activity levels

we have calculated the sum of all activity percentages in hourly basis for each day. This

provides the average of activity level for each hour and each day. Separating the activities

into hours allowed us to compare normalized average activity levels in different hours of

the day. Motivated by the clinical work carried out in studying bipolar disorder patients in

(Faurholt-Jepsen et al., 2012), where patients in depressive state have decreased morning

activity levels, we examined association between morning Physical Activity (PA) levels

and psychiatric scores, as shown in Table 5.2. Mean levels of PA in the morning had a

noticeable difference when patients went from a depressive state to a normal state. This

increase can be seen across all patients, although it is most noticeable for patient P0201,

where the average increase in physical activity went from 16.17% during depressive state

to 45.03% during normal state; and patient P0302 where the average PA increase went

from 16.17% during depressive state to 45.03% during normal state.

The other two patients, P0102 and P0702 had a noticeable decrease of physical activity

as they went from a normal state to a depressive state. As such there was a 55.20%

decrease in physical activity levels for patient P0102 that went from normal state to

severe depression (score of -3), while for patient P0702 the decrease in physical activity

was 36.25% as he experienced a depressive episode with score of -2. For the patient that

experienced a manic episode, P0101 we have seen a reverse trend, similar to the research

reported in (Grunerbl et al., 2014). The average PA decreased from 5.70% during a manic

episode to 1.14% during a mild manic episode as shown in Table 5.2. The reason that

96



Table 5.2: Relationship between overall physical activity (PA) and psychiatric assessment
scores in depressive/manic episode (*n/a - not applicable since the patient did not experience

a decrease in the assessment score).

P. ID Nr.
Evaluations

Average of PA
in Depressive
State (Score)

Average of PA
in Improved
State (Score)

PA
Improvement

Factor

Average of PA
in Depressive

State

Decrease of
PA

P0102 5 12.49% (-2) 14.42% (0) 15.45% 6.46% (-3) 55.20%
P0201 5 16,17% (-1) 45.03% (0) 178.47% 38.7% (-3) 14.06%
P0302 5 4.42% (-3) 12.16% (0) 175.11% n/a* n/a*
P0702 3 15.42 (-2.5) 21.93% (-0.5) 42.22% 13.98% (-2) 36.25%

P. ID Nr.
Evaluations

Average of PA
in Manic

State (Score)

Average of PA
in Improved
State (Score)

PA
Improvement

Factor

Average of PA
in Manic

State

Decrease of
PA

P0101 5 5.7% (+2) 1.14% (+0.5) 80% n/a n/a

recorded activity levels were low for the manic patient can be attributed to the fact that

the usage of the phone for this patient was very low; which, incidentally, is one of the

symptoms of mania. This was also confirmed from the recordings of phone usage logs

(provided by the application), resulting in low amount of accelerometer data that was

available for analysis.

5.3.3 Correlation of physical activity during daily intervals with psychiatric

assessment scores

Previous section focused on morning activity levels and their relationship with the psy-

chiatric assessment scores. However, we also wanted to investigate whether there is a

correlation between physical activity levels during other daily intervals.In this respect

we have calculated Pearson correlation coefficient between physical activity levels during

each daily interval and psychiatric evaluation scores for all the patients. Results of the

correlation are shown in Table 5.3.

Table 5.3: Correlation between patients’ state and physical activity level during day intervals
(p<0.05, N = 5, N∗∗ = 3) (*n/s not statistically significant result (p > 0.05) - *n/d not

enough data recorded, due to phone being off)

Patient ID Morning Afternoon Evening Night

P0101 n/s* 0.315 -0.045 n/d*

P0102 0.581 -0.542 0.619 n/d*

P0201 0.261 0.586 0.243 n/d*

P0302 0.858 -0.842 -0.627 0.604

P0702∗∗ -0.746 0.213 0.452 0.007

One of the interesting findings from analysing activities of these patients is that there
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is much stronger correlation between the individual daily intervals than there is for the

overall activity levels (shown in Table 5.1). These results can be seen from patient P0102

where correlation with overall activity level is r=0.377 whereas strongest correlation with

daily interval is r = 0.619 (Evening). A similar pattern emerges with other patients also,

such as P0201, where the values are r=0.332 for overall activity levels versus r=0.586 for

daily interval; P0302, with values r =-0.148 (overall) vs r=0.858 (interval); and, P0702

with values r =0.290 (overall) vs r=-0.746 (interval), where this patient had a strong

negative correlation of physical activity levels with psychiatric scores.

One exception to this pattern is patient P0101, where correlation with overall activity

levels is much higher (r=0.672 ) than the correlation with daily interval (r=0.315 ). With-

out a further research, we can only speculate on the reasons for these results. However,

from the study group, this patient was the only one to have experienced a manic episode

at the onset of the trial, with the state decreasing in severity towards the end of the

trial.One speculative explanation may be that the patient’s overall activity levels may

have correlated well with their state, however due to missing data for the morning and

night interval, it is impossible to understand whether those intervals may have affected

the overall correlation score.

5.4 Classification of bipolar disorder episodes based on analysis

of voice and motor activity of patients

There is growing amount of scientific evidence that motor activity is the most consis-

tent indicator of bipolar disorder. Motor activity includes several areas such as body

movement, motor response time, level of psycho-motor activity, and speech related mo-

tor activity. Motor activity information can be used to classify episode type in bipolar

patients, which is highly relevant, since severe depression and manic states can result in

mortality. This chapter introduces a system able to classify the state of patients suffering

from bipolar disorder using sensed information from smartphones. Further, we present

the evaluation performance of several classifiers, different sets of features and the role

of the questionnaires for classifying bipolar disorder episodes. Finally, we present our

novel approach for observing of day-to-day phone conversation to classify impaired life

functioning in individuals with bipolar disorder.

5.4.1 Monitoring motor activity behaviour in bipolar disorder patients

Motor activity is often used as a term to describe a group of symptoms that may range

from mild to very severe, and is common feature of bipolar disorder. Assessing the motor

activity of the patients with bipolar disorder has always been an essential part of psychi-
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atric evaluations. Clinical measurement of motor activity is largely subjective and derives

from caregivers’ observations of specific behaviour. Motor functioning manifests itself in

different areas such as speech production, facial expressions, gait, gestures, fine motor

behaviour and the overall gross motor activity (Alderfer and Allen, 2002). Furthermore,

motor agitation has been shown to be potentially disruptive in patients with bipolar disor-

der who are experiencing a manic episode, a period when patients have increased activity

levels, pressed to incoherent speech, racing thoughts and a decreased need for sleep. Mo-

tor activity may also be present during mixed and depressive episodes of bipolar patients,

which can be reflected in motor retardation and irritable periods of time (Faurholt-Jepsen

et al., 2012). Therefore, monitoring motor activity is relevant for classifying critical state

of the disorder. Smartphone is an enabling technology for this purpose due to increasing

sensing capabilities.

Sensor data acquired from smartphones offers huge potential that through machine

learning techniques get valuable insights of behaviour of bipolar disorder patients in their

real life. In contrast to other studies, we show that mood episodes of bipolar patients can

be predicted using only information obtained during phone calls.

To our knowledge, no research to date has focused on a naturalistic observation of

the day-to-day relationship between motor activities during phone conversation and pa-

tients’ mood episode in individuals with bipolar disorder. This current approach shows

that motor activity features extracted from motion readings and speech articulation from

smartphone sensors can be used to classify the course of mood episodes of a bipolar dis-

order patients. This is important because a non invasive and ubiquitous technology, like

smartphones, can be used to obtain reliable information for patients during their phone

conversations, in contrast to other studies using smartphone over long periods of time

that can produce unreliable information when the phones are carried in purses, left at

homes or use for playing or texting.

In following sections, we demonstrate the methodology used and features extracted

in classification of motor activity in bipolar patients. The Figure 5.1 demonstrates two

categories of features that were extracted, i.e., speech features (prosodic, spectral) and

intensity of phone handling during phone conversation (features in time and frequency

domain).

5.4.2 Experimental results

This section shows four experimental results in order to validate our model to classify

bipolar disorder episodes with the available data:

1. Comparing the performance of different classifiers on the data
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Concatenation

Figure 5.1: Proposed approach for classifying motor activity in bipolar disorder patients.

2. Selecting a set of features appropriate to the given task

3. Assess the effect of the information from the questionnaires on knowledge of depres-

sion in patients

4. Use a semi-supervised learning methodology to address the problem on how to use

information from unlabeled data to enhance classification accuracy of bipolar disor-

der episodes from the phone calls information and specify the relationship between

labeled and unlabeled data from entire data set.

We learned a model for each patient and also a single model combining all the informa-

tion from all the patients. We performed 10-fold cross validation for all the experiments

and report global accuracy, precision and recall values for each of the episodes.

5.4.3 Experiments with different classifiers

Table 5.4 a) and Table 5.4 b) shows the results from using emotional and spectral audio

features with frequency domain features from the accelerometers and with information

from the questionnaires. Similar results were obtained with other sets of features.

The tables show the accuracy results for different classifiers for each patient, their

average, and the results for a single model with information from all patients (last column
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Table 5.4: Accuracy results from different classifiers taken from Weka with their default
parameters.

a) Accuracy results from Frequency domain features and all Audio features.

Classifier P0201 P0302 P0702 P0902 P1002 Avg.(SD) All P.
C4.5 89.93 85.47 78.81 87.79 85.79 85.56 (±4.17) 76.50
Random Forest (RF) 87.25 84.62 70.86 89.44 83.76 83.19 (±7.24) 70.33
SVM 92.28 75.21 75.50 83.50 87.82 82.86 (±7.52) 69.99
Naive Bayes (NB) 71.81 62.39 61.59 62.71 78.17 67.33 (±7.35) 47.59
k-NN (1) 87.90 63.68 59.60 79.54 81.22 74.39 (±12.14) 69.43
AdaBoost.M1 84.56 87.18 74.17 89.77 86.80 84.50 (±6.06) 49.20
Bagging 89.26 86.32 71.52 89.44 86.29 85.57 (±7.45) 79.04

b) Accuracy results from Frequency domain features and Spectral features.

Classifier P0201 P0302 P0702 P0902 P1002 Avg.(SD) All P.

C4.5 90.27 83.76 78.81 87.79 85.79 85.28 (±4.35) 76.50
Random Forest (RF) 89.93 82.90 70.86 90.43 85.79 83.98 (±7.96) 79.84
SVM 92.95 75.21 76.16 83.83 86.80 82.99 (±7.44) 69.32
Naive Bayes (NB) 72.48 61.97 64.90 62.38 77.16 67.78 (±6.73) 46.83
k-NN (1) 87.58 63.38 61.59 77.89 81.73 74.43 (±11.46) 58.58
AdaBoost.M1 84.56 87.18 74.17 89.77 87.82 84.7 (±6.17) 49.20
Bagging 89.26 86.32 72.85 89.77 86.29 84.90 (±6.93) 78.95

Table 5.5: Accuracy results from using different sets of features.

Features P0201 P0302 P0702 P0902 P1002 Avg.(SD)

Accelerometer:
– Time Domain (TD) 89.53 73.08 72.19 83.83 85.28 80.78 (±7.73)
– Frequency Domain (FD) 89.93 83.76 75.50 87.71 85.79 84.54(±5.55)
Audio:
– Emotional+Spectral 90.60 71.79 74.17 86.46 83.24 81.25 (±8.03)
– Spectral 90.60 73.93 74.17 87.12 83.24 81.81 (±7.55)
– Emotional 90.60 72.22 74.17 88.11 82.74 81.57 (±8.18)
– TD+Spectral 89.52 70.94 69.54 83.50 85.28 79.75 (±8.97)
– TD+Emotional 89.52 74.36 70.20 83.17 84.26 80.30 (±7.85)
– TD+(Emotional+Spectral) 89.53 70.09 69.54 82.18 85.28 79.32 (±9.07)
– TD+(Emotional+Spectral)
without Questionnaire 50.0 59.40 70.86 51.16 81.22 62.53 (±13.37)
– FD+Spectral 90.26 83.76 78.81 87.78 85.79 85.28 (±4.34)
– FD+Emotional 90.27 85.47 74.83 87.79 86.29 84.93 (±5.93)
– FD+(Emotional+Spectral) 89.93 85.47 78.81 87.79 85.79 85.56 (±4.18)
– FD+(Emotional+Spectral)
without Questionnaire 79.53 84.19 74.83 88.45 85.79 82.56 (±5.40)

named ”All P.”). As can be seen from the table, there is no winning classifiers for all the

data sets, although on average decision trees performed better than most other classifiers.
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It also performed reasonably well with information from all the patients. For these reasons

and in the rest of the experiments we only report results for C4.5.

5.4.4 Different Sets of Features

We tested different sets of features. In particular, using only accelerometer features (time

domain vs. frequency domain), only audio features (emotional and spectral), and combin-

ing accelerometer features with different audio features. In all these results information

from the questionnaires was also included. Table 5.5 shows the results.

As can be seen from the experiments, using only features from the accelerometers have

results over 80% on average with the frequency domain features performing slightly better.

It is also interesting to notice that the audio features have similar performance, when

both types, emotional and spectral, are considered together or when tested in isolation.

The best results are obtained when the spectral and emotional features from audio are

combined with the frequency domain features from the accelerometers.

For the rest of the experiments, all the results will be presented only with frequency

domain features combined with the spectral and emotional features.

5.4.5 Impact from the questionnaire

Assessing the impact on the results from the questionnaires is important for produc-

ing a fully autonomous application. This is relevant as self-assessment can be counter-

productive for depressed patients as they are reminded every day, with the questionnaires,

of their state of depression. We performed tests with the frequency domain features and

the audio features with and without information from the questionnaires, and also using

only information from the questionnaires (examples with only three features). Table 5.6

shows the results.

As can be seen there is a small decrement in the results obtained without information

from the questionnaires, however, the average results are still over 82%, from which it is

reasonable to think in the development of a fully automatic monitoring tool. From the

table it can be seen that using only information from the questionnaires, produces very

competitive results. It is interesting to notice, that in this case, two models (marked with

”*”) are simply a majority class classifier, which of course are very poor classified for

individual class values.

5.4.6 Semi-supervised learning and motor activity classification

As described in Table 4.2, there are more than 900 phone calls without an associated

episode. In this subsection, we decided to use a semi-supervised algorithm to see if we
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Table 5.6: Accuracy results using information from questionnaires. Results with an ”*”
indicate that the model is simply the majority class.

With Without Only
Patient Questionnaires Questionnaires Questionnaires

P0201 89.93 79.53 90.60
P0302 85.47 84.19 76.92
P0702 78.81 74.83 74.17 (*)
P0902 87.78 88.45 89.77
P1002 85.79 85.79 82.74 (*)

Avg.: 85.55 82.55 82.84

All P.: 76.50 60.78 59.76

Table 5.7: Accuracy results from a semi-supervised learning approach.

Patient Supervised Semi-Supervised

P0201 81.54 83.78
P0302 85.47 81.53
P0702 72.84 71.45
P0902 87.45 88.77
P1002 85.76 83.78

Avg.: 82.61 81.86

All Patients: 65.55 62.71

can improve on the performance of previous results using all the available data. We

followed a simple approach where we divided the data into ten folds; the training data

was used to classify the unlabeled data. This classification included a weight associated

with the classified value. We then used all the classified data with the original training set

to produce an extended training set. We created a model with this set and test it on the

testing set and then we averaged the results over the 10 folds. The results are presented

in Table 5.7.

As can be seen from the results, adding information from other calls is not making

much difference in the final results. There is a large number of alternative semi-supervised

algorithms that can be considered in the future to improve over these results.

5.4.7 Precision and recall

Although the overall accuracy results may look promising, it is important to analyse the

individual precision and recall measurements to see how effective the constructive models
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are for each episode. Table 5.8 shows the results for each patient for Mild Depression

(MiD), Moderate Depression (MoD), Severe Depression (SeD), Mild Manic (MiM), and

Normal (N) state.

Table 5.8: Precision and recall results for some of the states of patients.

Precision Recall

Patient (State) +Questionnaire -Questionnaire +Questionnaire -Questionnaire

P0201 (Mild Depression) 1.000 0.851 0.947 0.912
(Normal) 0.890 0.826 0.919 0.799
(Severe Depression) 0.640 0.455 0.667 0.795

P0302 (Severe Depression) 0.863 0.855 0.889 0.874
(Normal) 0.842 0.823 0.808 0.798

P0702 (Moderate Depression) 0.851 0.843 0.866 0.813
(Mild Depression) 0.595 0.512 0.564 0.564

P0902 (Normal) 0.892 0.899 0.876 0.882
(Moderate Depression) 0.862 0.869 0.880 0.887

P1002 (Mild Manic) 0.899 0.904 0.932 0.926
(Moderate Depression) 0.613 0.904 0.514 0.543

All Patients:
– (Severe Depression) 0.725 0.649 0.447 0.415
– (Moderate Depression) 0.699 0.760 0.641 0.681
– (Mild Depression) 0.790 0.684 0.640 0.588
– (Normal) 0.790 0.836 0.633 0.633
– (Mild Manic) 0.824 0.809 0.613 0.654

Average: 0.766 0.765 0.606 0.608

It is interesting to note that most of the cases and both measures we have results

above 80% with information from questionnaires and very similar results without infor-

mation from questionnaires. We believe that these results give evidence that smartphone

technologies can be effectively used as aid in the diagnosis of bipolar disorder episodes.

5.4.8 Predictive classes vs. Expert evaluation

The last set of experiments was designed to show how the inductive models to classify

the prospective onset of episodes of patients for all the available phone calls. We show

only figures for the best results obtained with patient P0201 (Figure 5.2) and for the

worst results obtained with patient P0702 (Figure 5.3). Both figures show at the top the

evaluation scores from the psychiatrist, in the middle the classified states from the model,

and the bottom the weight or confidence in the class classified by the model.

As can be seen from the figures, the induced models follow closely the assessment of

the experts (which is not surprising as the models were trained with this information),

and make reasonable classifications in the intermediate states between psychiatric assess-

ments. The figures also show, in red, the classification errors produced by the models. In

particular, it can be seen that the models make few errors, which can be further reduced,

if the classification with a weight less than a threshold value, e.g., 0.8, are discarded.
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Figure 5.2: Results from the induced model of patient P0201 and the assessments from the
psychiatrist.
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Figure 5.3: Results from the induced model of patient P0702 and the assessments from the
psychiatrist.
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5.5 Using motor activity and voice features with Intermediate

Models in bipolar disorder

In the previous sections 5.4 we demonstrate the importance of analysing motor activity-

related behaviour to classify the episodic state of the patients. We compared the standard

supervised methods with semi-supervised learning methods. As a ground truth we used

the psychiatric evaluation evaluated from the psychiatrist during their regular interviews.

We demonstrated the problem of unlabeled instances between interviews and usage of

semi-supervised learning method to address this problem.

In this research, we propose using the data derived from self-reported wellbeing ques-

tionnaires that are collected in daily basis. We propose using a novel intermediate models

and the key advantage of using this approach is to improve the performance of supervised

classifier. We build three intermediate models using the items recorded, i.e., physical, ac-

tivity, and the psychological condition to build the final model for classification of episodic

state in bipolar disorder.

In the context of our research work, the following research questions are put forth:

u Is it possible to improve classification accuracy by incorporating intermediate hid-

den variables related to the patients’ wellbeing, before building the final model for

classification episodic state of the patients?

The present work tries to answer the research question by comparing measurements de-

rived from questionnaires and motor activity-related behaviour during phone conversa-

tions.

We performed an experimental analysis using real world data. The research includes

2 aspects:

u Using semi-supervised learning to complete the models for subjects with missing

data.

u Using Intermediate Models to predict mood variables, which are incorporated in the

final model with the aim at improving the accuracy of the predictions.

5.5.1 Experiments

Similar as in previous research work, we focus on analysing accelerometer raw data during

phone conversation, where we are sure that the subjects are holding their smartphones.

This type of measurement has the advantage of their availability and unobtrusiveness.

We believe that analysing data collected from accelerometer readings during the phone

conversations provide adequate information for classifying the trajectory of the episodic
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Figure 5.4: Intermediate Models. Based on the accelerometer data from the smartphones, 30
frequency domain features are extracted. These are used to build the intermediate models for
the mood variables, Q1; and the model for stress, S1. In the prediction stage both models are

combine via a weighted linear combination to predict the stress level.
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state changes. The second type of data that was analysed for this research includes the

subjective information related to patients’ physical, activity and psychological wellbeing.

5.5.2 Intermediate Models

The information provided by the patients through the questionnaires is very useful, how-

ever, it is a tedious task for the patients. In this research we propose to predict the

wellbeing-related variables associated to the questionnaires using the data from the smart-

phone to alleviate the patients from this burden. We then use the predicted mood vari-

ables with the rest of the data from the smartphones to classify the episodic state of the

patients. We call the models that predict psychological and wellbeing conditions vari-

ables from the questionnaire Intermediate Models as they are used as input for the final

predictive model. Although the use of additional variables, such as latent variables (Li

et al., 2009), have been previously used in the literature, we are not aware of research

that aims at building an intermediate model that can then be used as input for the final

model. Figure 5.4 illustrates the procedure for building the intermediate models.

In this research, we used three variables derived from physical, activity and psycho-

logical condition to build 3 intermediate models. We train each classifier separately using

each the self-reported questionnaires derived from the daily self-assessment. In the predic-

tion stage, the intermediate models use the information from the smartphones to predict

a weighted set of wellbeing conditions based on the accuracy of each model. Then all the

data from the smartphones and the mood variables are used as input for the final episodic

state model.
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5.5.3 Experimental results

Our experiments have the following objectives

u Compare the performance of different classifiers on the data.

u Assess the effect of Intermediate Models to enhance the knowledge of self-reported

psychological condition in bipolar disorder patients.

u Use SSL to address the problem on how to use information from unlabeled data to

enhance classification accuracy.

For all the experiments, we used Weka’s (Hall et al., 2009) classifiers with their default

parameters. We build a model for each subject and performed a 10-fold cross validation

for all the experiments; we report the global accuracy and precision values.

5.5.4 Experiments with different classifiers

In previous research, we demonstrated that the information obtained from the frequency

domain features of the accelerometers lead to higher classification accuracy combined with

all audio features. In Figures 5.5 2, we use the extracted features from frequency domain

with all audio and spectral features. The result are compared using supervised and semi-

supervised learning using the approach with intermediate models. As can be seen from

the tables, the C4.5 are the winning classifier for all the data sets. Using semi-supervised

methods have been shown on average decision trees performed better than the most other

classifiers. In the following experiments we only report result from C4.5.

5.5.5 Different sets of features and Intermediate Models

Different set of features using the Intermediate Models has been tested. Different set

of features derive from accelerometer features in frequency domain, all audio features

(emotional and spectral), and combining frequency domain features with emotional or

spectral features. The results’ information are shown in the Tables (Table 5.9 and Table

5.10).

Using only features from the accelerometer in frequency domain have results over 81%

on average. However, using only the features derived from audio the performance lower

than using accelerometer features. The best results are obtained when the spectral and

emotion features from audio are combined with the frequency domain features from the

accelerometers.

In Figure 5.5 we demonstrate the results after using a semi-supervised learning al-

gorithm with the aim to improve on the performance of other previous results using all

2More details about motor accuracy are shown in Tables A.1, A.2, A.3 and A.4
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Figure 5.5: Accuracy results from accelerometer frequency domain features and all audio
features.
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Table 5.9: IM: Accuracy results from using different sets of features.
Features P0201 P0302 P0702 P0902 P1002 Avg. (±SD)

Accelerometer:
– Time Domain (TD) 59.12 61.11 69.54 56.16 80.71 65.33 (±9.93)
– Frequency Domain (FD) 81.54 84.19 69.54 86.80 85.79 81.57 (±7.01)
Audio:
– Emotional+Spectral 56.71 55.56 67.96 53.82 78.36 62.48 (±10.47)
– Spectral 55.70 67.16 67.96 53.82 79.85 64.90 (±10.55)
– Emotional 59.73 64.93 73.79 56.63 79.10 66.84 (±9.45)

– TD+Spectral 59.80 58.97 70.86 60.13 79.70 65.89 (±9.13)
– TD+Emotional 62.16 57.69 70.86 77.83 79.70 69.65 (±9.60)
– TD+(Emotional+Spectral) 60.81 58.55 70.86 60.61 78.17 65.80 (±8.41)
– FD+Spectral 86.91 84.62 70.86 96.47 83.76 84.52 (±9.16)
– FD+Emotional 82.55 84.62 70.86 95.22 83.76 83.40 (±8.65)
– FD+(Emotional+Spectral) 81.54 85.04 70.86 92.72 84.77 82.99 (±7.93)

Table 5.10: Intermediate models and semi-supervised learning - Accuracy results from using
different sets of features.

Features P0201 P0302 P0702 P0902 P1002 Avg. (±SD)

Accelerometer:
– Time Domain (TD) 72.12 76.91 77.15 56.16 84.00 73.27 (±10.46)
– Frequency Domain (FD) 89.73 84.19 77.15 86.80 85.33 84.64 (±4.67)
Audio:
– Emotional+Spectral 76.35 71.13 80.33 65.48 79.74 74.61 (±6.28)
– Spectral 71.77 82.43 84.70 73.60 81.05 78.71 (±5.69)
– Emotional 64.08 75.52 85.25 56.63 82.35 72.77 (±12.16)

– TD+Spectral 76.76 66.74 85.02 60.13 76.44 73.02 (±9.69)
– TD+Emotional 73.96 67.44 89.03 77.83 76.89 77.03 (±7.84)
– TD+(Emotional+Spectral) 83.85 68.13 80.90 60.61 74.67 73.63 (±9.46)
– FD+Spectral 94.88 90.99 85.02 96.47 87.11 90.89 (±4.89)
– FD+Emotional 89.84 90.99 82.77 95.22 87.11 89.19 (±4.63)
– FD+(Emotional+Spectral) 90.88 90.99 80.90 92.72 87.11 88.52 (±4.73)

the available data. It also interesting to notice that using semi-supervised methods with

models built using intermediate models have achieved better accuracy in comparison with

other methods used so far. In contrary to previous work in previous Section 5.4, using

the intermediate models has been shown to improve the accuracy (as shown in Table 5.9

and Table 5.10) were we add information from unlabeled phone calls and increase the

performance accuracy (yielded accuracy of ≈ 90%).

5.6 Chapter Summary

In this chapter we have presented how to classify the course of mood episodes of bipolar

disorder patients from information extracted from smartphones during phone conversa-
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tion. We used information from patients during 12 weeks on unconstrained conditions.

We considered a wide range of features, both from accelerometer information and from

audio information during the phone calls and analyse their behaviour for different users

and mood episodes. We also make a comparison of different classifiers and different sets

of features.

5.6.1 Semi-supervised learning in classification of bipolar disorder

In this research 5.4, the information obtained from the frequency domain features of the

accelerometers lead to higher classification accuracy than the information extracted from

audio. Also, the frequency domain features produced better classification results than

the time domain features. When we combined the audio features with the accelerometer

features, there was only a small improvement when the emotional and spectral features

were included. Adding information from the questionnaires improved the overall results

and also showed good results when considered on their own. However, without information

from the questionnaires we obtained reasonable results ( > 80% for accuracy, precision

and recall), suitable for the development of automatic tools that could aid psychiatrists

in the monitoring of their patients.

5.6.2 Intermediate models in classification of bipolar disorder motor activity

In this research we presented a new novel method, namely Intermediate Method used to

classify the course of mood episodes of bipolar disorder patients from the accelerometer

and voice features extracted from smartphones during phone conversations. Involving the

self-reported wellbeing for building the intermediate models has been shown to improve the

accuracy for classifying bipolar disorder episodic states. Further, we make a compassion

of different classifiers and different set of features. Similarly, as in previous section, using

the information obtained from the frequency features of the accelerometers lead to higher

classification accuracy than the information extracted from audio signals. Combining the

data from audio features with the accelerometer features, there was an improvement when

the spectral were included.

The proposed methods using the Intermediate Models and Semi-Supervised learning

methods has been shown to improve the overall results. Although relying (only) on

psychological evaluation information (we obtained reasonable precision from ≈ 73% to ≈
90%), using the information from self-reported questionnaires on the smartphone suggest

for the development personalized models with small labeled dataset would be suitable for

the automatic behaviour changes recognitions that could aid psychiatrist in the nearest

future in the monitoring of their patients as they go in their daily life.
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Chapter 6

SCARCE DATA AND

IMPROVEMENT OF STRESS

PREDICTION

”If we can reduce the cost and improve the

quality of medical technology through

advances in nanotechnology, we can more

widely address the medical conditions that

are prevalent and reduce the level of human

suffering.”

– Ralph Merkle

The key message in the previous chapter is that current sensing systems are promising

the near future in healthcare services and together with ML techniques are improving the

diagnostic accuracy in mental-health. In this chapter, we begin with a brief introduction of

the study setup and the features extracted to building a classification model. Further, we

use several ML methods to predict the perceived work-related stress on the data acquired

from employees in their real-working environments. Finally, we frame the challenges

facing the building of accurate models for stress detection.

The contributions of this chapter are as follows:1

1This chapter is mainly based on the following research work:
I. Maxhuni, A., L. Hernandez, E. Sucar, V. Osmani, E. Morales, and O. Mayora, ”Stress Modeling and Prediction
in Presence of Scarce Data”, Elsevier Journal of Biomedical Informatics, 2016, Journal Article.
II. Maxhuni, A., P. Hernandez-Leal, E. M. Manzanares, E. Sucar, A. Muñoz-Melendez, and O. Mayora, ”Using
Intermediate Models and Knowledge Learning to Improve Stress Prediction”, FI-eHealth, Puebla, Mexico, EAI,
May, 2016, Conference Paper.
III. Hernandez-Leal, P., Maxhuni, A., Sucar, L. E., Osmani, V., Morales, E. F., and Mayora, O. (2015,
December). Stress Modeling Using Transfer Learning in Presence of Scarce Data. In Ambient Intelligence for
Health (pp. 224-236). Springer International Publishing.
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A.1 We propose using ”Semi-supervised learning” methods to cope with scarce data from

the subjects in our research.

A.2 ”Transfer learning” method is proposed to transfer information from other models to

our target model which contains insufficient data to produce an accurate one.

A.3 We propose using ”Ensemble learning” methods to build multiple models to obtain

better predictive performance than could be obtained from any single model.

A.4 We have evaluated the datasets comprising 30 subjects; we measure the robustness of

our proposed methods to address the problem scarce data and improve the accuracy

for classification of perceived stress.

The outline of this chapter is as following: the current Section in 6.1 describes the prob-

lem statement related to stress assessment. This section defines the conditions, such as

feature extractions, classification problems, classifications methods of the research carried

out in this chapter. Section 6.2 proposes using machine learning methods (i.e., Semi-

supervised learning, Transfer learning, Ensemble learning) for stress modeling and predic-

tion in presence of scarce data. Finally, in the Section 6.3 we investigate the information

about user’s motor activity-related behaviour while having conversation on the phone to-

ward less obtrusive method for stress detection.

6.1 Stress assessment

Nowadays, social competition is becoming increasingly stronger, which together with the

rapid economic transformation have changed the dynamics of workplace environments.

Due to these changes, enterprise employees are experiencing a period of intense job-

insecurity, increased work-loads, and long working hours. All these factors are known

to engender work-related stress of different degrees, affecting the physiological and psy-

chological functioning of the employees. According to recent reports from the European

Agency for Safety and Health at Work - EUOSHA (Milczarek et al., 2009), stress was

found to be the second most common work-related health problem across 27 Member

states of the European Union (EU). Overall, 22% of EU employees reported work-related

stress.

Furthermore, it is also demonstrated that long-term exposure to stress can lead to

many serious health problems, causing physical illness through its physiological effects

(e.g., fatigue, decreased sleep quality), behaviour changes (e.g., addiction, attention

deficit), and social isolation issues (e.g., anger) (Bongers et al., 1993; Glanz et al., 2008;

Korabik et al., 1993; Maslach et al., 2001; Paoli, 2003; Sultan-Täıeb et al., 2013). As a

IV. Maxhuni, A., L. Hernandez, E. Sucar, V. Osmani, E. Morales, and O. Mayora, ”Stress Assessment Using
Smartphones”, 2016, Journal Article. (in review)
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consequence, these negative effects have been shown to decrease wellbeing at workplace

and employees’ work effectiveness. Moreover, long-term exposure to stress typically leads

to job-burnout, a state that leads to mental and physical exhaustion (Maslach et al.,

2001). For the reasons previously mentioned it is important to measure stress as a way of

monitoring individual’s wellbeing. However, unlike other mental and physical problems,

stress is not easy to measure (Occupational Safety and Stress, 1999). Thus, its assessment

represents a current open problem.

Measuring physiological dynamics has become a challenging issue, from both research

and clinical practice. To date, physiological measurements and self-reported question-

naires are the most common methods used to infer work-related stress. However, only

very limited research has been directed in detecting psychological factors deriving from

behavioural dynamics that connotes psychological functions at workplaces. Therefore,

monitoring the affect changes of employees and other personality traits (e.g., behavioural

aspects) should be of great interest for both healthcare institutions and organisations.

A number of studies have investigated detecting stress and emotions based on facial

expressions (Valstar et al., 2011). Other mood and stress detectors have used individ-

ual physiological parameters. These include heart rate and the galvanic skin response

(GSR) (Bakker et al., 2011; Muaremi et al., 2013). Lastly, other studies have analysed

voice acquired from individuals to detect stress in laboratory or clinical settings (He et al.,

2009). However, their limitation is that laboratory settings are often an inadequate envi-

ronment compared to the complexity of real-day environment monitoring at diverse scales

(i.e., physically and socially). In this regard, another aspect that has to be considered

when it comes to long-term monitoring, is that sensors have to be as least intrusive as

possible trying to minimize the impact on workers’ routines and their natural behaviour.

Smartphones are becoming more powerful (in terms of sensors capabilities) and ev-

ery year the number of these devices is increasing. For these reasons, smartphones are

excellent candidates to be used for monitoring everyday activities including activities in

working environments. Thus, the challenge is to use the sensor capabilities of the smart-

phones to detect stress-related behaviour of a person in an unobtrusive manner. Then, this

could be communicated to the person in order to take pre-emptive actions and alleviate

high stress levels (Sanches et al., 2010).

Several factors can affect employees’ stress at work, however our approach focuses on

behaviour changes that can be directly measured using smartphones: location changes,

physical activities, social interactions and phone application usage. In this section we

demonstrate our objective aiming at detecting behaviour changes using only information

obtained from smartphones and investigate their correlation with perceived stress levels.

The following research questions were put forth:
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u Is there a correlation between the subjects’ behavioural characteristics, extracted

from smartphone sensor data, and their self-reported stress levels?

u Is it possible to improve prediction accuracy of work-related stress based on smart-

phone sensor data by combining limited labeled data and unlabeled data?

6.1.1 Correlation between objective and Self-reported emotions data

We conducted two correlation analyses to investigate the association between four factors:

perceived stress, negative-mood, positive-mood, and overall mood score. Emotions were

divided in two categories: negative-mood (tense, angry, anxious and sad) and positive-

mood (friendly, energetic, cheerful and being good at current activity). As presented in

the Chapter 4, mood items were rated on a 5-point scale established by ”low or not at

all” (1) to ”high or very much so” (5), similar to research work in (Lutgendorf et al.,

1999) using POMS model of mood assessing. An overall score derived from both types of

emotions was obtained by subtracting negative mood scores from positive scores.

6.1.2 Pearson correlation in stress events

A two-tailed Pearson correlation and multiple linear regression analysis were performed

to examine the relationships among perceived stress and wellbeing (moods) scores with

objective measurements. First, we performed the correlation tests between objective

and subjective variables. The Pearson correlation coefficient ρ was used, we take as

statistically significant when ρ <0.05 (*) and ρ <0.01 (**). In Table 6.12 we present

the correlations between objective measurements (rows) and subjective measurements

derived from self-reported stress, negative-mood score, positive-mood score, and overall-

mood score (columns) and we can make some observations:

u For stress level,

– Physical activity level: r= -0.153, **ρ <0.01, N=1465

– Number of system Apps: r= -0.129, **ρ <0.01, N=1292

– WiFi location: r= -0.087, **ρ <0.01, N=1456

– Cellular location: r= -0.070, **ρ <0.01, N=1456

– Number and duration of Outgoing calls: r= -0.098, **ρ <0.01, N=1120

– Number and length of SMS responses: r= 0.090, **ρ <0.01, N=505

obtained statistically significant correlations.

u In particular, for missing calls we expected to have correlation with different fac-

tors. We assume that during a stress-full day, participants are more prone to reject

2More details related to correlation are presented in the Table A.8
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the phone-conversations due to responsibilities and task that they have to achieve.

However, it was shown to have a weak correlations with the stress factor.

u Negative emotions show high correlation with accelerometer, number of system apps,

social interaction information and social-activeness (number of incoming and outgo-

ing phones calls, and outgoing SMS’s).

u Social interaction information and the use of social applications showed high corre-

lation with positive mood scores.

u Information from social applications and location obtained low correlation with neg-

ative emotions. This is interesting because these same two variables obtained high

correlation with positive emotions. Similarly, the number of incoming calls show low

correlation with positive emotions but is highly correlated with negative emotions.

Table 6.1: Pearson correlations between objective variables and Perceived Stress Level,
Negative Mood Score, Positive Mood Score, and Overall Mood Score.

Objective Variables Stress
Level

Negative
Mood

Positive
Mood

Total Mood
Score

Physical Activity Level -0.153** -0.112** 0.071** 0.116**

Cellular Locations -0.070 * -0.070* 0.033 0.065*
Google-Maps Locations 0.051 0.017 0.079* 0.033

Wifi Locations 0.087** 0.039 -0.120** -0.093**

Social-Interaction 0.032 0.059* -0.142** -0.119**
Number-Outgoing-Calls -0.980** -0.112** 0.083** 0.121**
Number-Incoming-Calls -0.005 -0.090** -0.019 0.05

Missed-Incoming-Call -0.006 -0.023 -0.012 0.009
Duration-Outgoing-Call -0.098** -0.097** 0.101** 0.123**
Duration-Incoming-Call 0.037 -0.034 0.091* 0.074*
Number-SMS-Outgoing 0.090** -0.071* 0.004 0.05

Number-SMS-Incoming 0.006 -0.012 -0.044 -0.016
Length-SMS-Outgoing -0.154** -0.153** 0.106* 0.156**

Length-SMS-Incoming 0.013 -0.028 0.088* 0.069

Duration-Apps-System 0.008 -0.021 -0.024 0.001
Duration-Apps-Social 0.067 0.067 -0.218** -0.161**
Number-Apps-System -0.129** -0.181** 0.194** 0.228**

Number-Apps-Social -0.060 -0.040 -0.004 0.024

– Significant at the level: *ρ <0.05; **ρ <0.01.

6.1.2.1 Multiple regression analysis

In order to obtain the best possible model for prediction of stress and total mood score we

decided to use multiple linear regression. We found that regression result was significant

for stress (r2=0.3912, F(18,64)=2.28, ρ <0.008 ) and with total mood-scores (r2=0.4419,

F(18,64)=2.81, ρ <0.001 ) using all features (as shown in Table 6.2, which depict the
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Table 6.2: Significant results from the multiple regression using objective measurements with
respect to Stress and Total Mood Score.

Stress Total Mood Score

Objective Variables β t ρ β t ρ

Physical-Activity Levels -.0111 -5.88 0.001 -.0111 -5.88 0.001
Cellular Location -.2333 -2.29 0.022 .0376 2.10 0.036

Google-Maps Location .0685 1.65 0.100 .0077 1.06 0.289
WiFi Location .0057 3.34 0.001 -.0041 -3.58 0.001

Social Interaction (SI) .0001 1.13 0.258 -.0008 -4.28 0.001
Number-Outgoing-Calls -.0374 -3.31 0.001 .0081 4.07 0.001

Number-Incoming-Calls -.0033 -0.17 0.866 .0058 1.68 0.093
Missed-Incoming-Call -.0015 -0.19 0.847 .0004 0.29 0.769

Duration-Outgoing-Call -.0125 -2.73 0.006 .0026 3.43 0.001
Duration-Incoming-Call .0048 1.01 0.313 .0016 2.02 0.044

Number-SMS-Outgoing .0188 3.05 0.002 .0018 1.68 0.092
Number-SMS-Incoming .0003 0.19 0.850 -.0001 -0.54 0.590

Length-SMS-Outgoing -.0015 -3.49 0.001 .0003 3.55 0.001
Length-SMS-Incoming .0001 0.34 0.737 .0001 1.72 0.086

Duration-Application-System .0001 0.31 0.759 .0001 0.03 0.976
Duration-Application-Social .0001 1.43 0.153 -.0001 -3.47 0.001

Number-Application-System -.0061 -4.69 0.001 .0020 8.42 0.001
Number-Application-Social -.0189 -1.27 0.203 .0014 0.51 0.610

Significant at the level: ρ <0.05; ρ <0.01.

name of each feature, the regression coefficient, β, the distribution value, t, the and ρ-

value for each used feature). This results show that selected features are having an effect

on predicting stress (ρ <0.008 ) and total mood score (ρ <0.001 ). Similarly, several

objective variables (with italic typeface in Table 6.1) show significant correlation with

perceived stress and total mood score of the subjects. It is interesting to note that these

objective variables (physical activity, cellular and Wifi location, number and duration of

outgoing calls, number and length of outgoing SMSs, and number of applications) also

show significant linear correlation using Pearson.

To summarize the correlation results:

u Stress level is highly correlated with physical activity, WiFi location, number and

duration of outgoing calls and SMS, and with social apps. These values are consistent

with what was obtained with multiple linear regression.

u In contrast, negative mood is highly correlated with the number of incoming calls

and is not correlated with WiFi location.

u Similarly, positive mood is highly correlated with social interaction and duration of

social apps but it is not correlated with the number of outgoing SMS.
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Figure 6.1: An example of a decision tree, each oval represent a decision node which contain
arrows to other decision nodes. Squares are leaves (terminal nodes) that give the classification

value, in this case they represent Low, Mid or High level of stress.

6.1.3 Stress prediction as classification problem

In the previous section we analysed the relation between the measured objective variables

with perceived stress. We presented results showing many features correlated with stress

levels. Thus, our next step is to make a model capable of predicting the stress level given

the objective variables.

Predicting perceived stress of the user can be seen as a classification problem. In

this case, the attributes correspond to each feature related to the objective variables

and the class to predict is the self-reported stress level (low, moderate, high). Since

we are interested in analysing behaviour changes or patterns that may appear in daily

activities, we used decision trees which can be easily understood. Our approach was to

build a decision tree for each subject of the study, with the idea of analysing individual

behaviours and models.

As we mentioned in previous chapter, an important benefit of decision trees is that

they can be easily understood, for example obtaining rules to be further analysed. In

Figure 6.1 we present a decision tree that classifies the stress level of a subject in the

research work. The subject shows low levels of stress when having an average level of

social interaction, or when the social interaction and number of outgoing calls is low.

On the contrary, if this subject had low level of social interaction but a high number of

outgoing calls then it is more probable to have a mid level of stress.

We performed classification of the stress variable using the C4.5 algorithm (Quinlan,

1993) and 10-fold cross validation for each user. Table 6.3 presents the classification

accuracy of stress level for the 30 subjects. In average the accuracy obtained was 67.57%.
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However, we noted that dataset contained 20% of missing data. This is an important

portion which can be exploited with a SSL technique.

Table 6.3: Stress Prediction using decision trees before and after applying a Semi-supervised
learning approach. Overall classes represent overall number of labeled instances derived from

self-reported stress in supervised learning and after performing semi-supervised learning
methods.

Subjects (30) Supervised Semi-
Supervised

Increase

Accuracy (%) 67.57 ± 15.60 71.73 ± 15.25 4.20 ± 9.52
Overall Classes (%) 1465/1832

(79.97)
(1722/1832)

(94.00)
14.03

Precision(%) 65.4 68.9 3.5
Recall(%) 68.9 73.0 4.1

F-Score (%) 66.0 70.0 4.0

6.1.4 Semi-supervised learning (SSL)

In most real-world datasets it is common to have missing data. The most basic approach

is to ignore those instances. However, that information even when is not complete can be

helpful and should not be discarded. Semi-supervised learning (Longstaff et al., 2010; Zhu,

2006) has been suggested as a method aiming to address this issues in machine learning.

The main objective of semi-supervised learning is to learn from both labeled and unlabeled

data, i.e., by exploiting unlabeled samples to improve the learning performance.

For this research we consider one of the most common methods of SSL that uses a

single classifier called Self-Training (Zhu, 2006). It works by selecting the most confident

unlabeled points, together with their predicted labels and then adding those to the training

set. In each iteration the newly high-confidence (>80%) labeled instances are added to

the original labeled data. Note that the classifier uses its own predictions to teach itself.

The classifier is re-trained and the procedure repeated (see Algorithm 2).

In Table 6.3 we present the results in terms of accuracy after applying the SSL approach

on all subjects in this research. Using the Self-Training method, we were able to improve

the accuracy on predicting stress to 71.73% (+4.20%). In Table 6.3 we demonstrate that

using Self-Training we were able to reduce the number of missing classes from 20% to 6%.

We have also analysed accuracy results by gender. Results show that the Male achieved

better accuracy 72%(Precision: 73.5%; Recall: 78.5% ) for supervised approach and 76.4%

(Precision: 73.5%; Recall: 78.5% ) for SSL, in contrast to Female with 59.8%(Precision:

59.0%;Recall: 60.0% ) for supervised and 64.8% (Precision: 62.0%; Recall: 65.0% ) when

using SSL approach.
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In this section we have shown that simple models can be generated to predict stress

levels with around 70% of accuracy. Unsurprisingly, most of the models used the relevant

features identified in the previous section. It is also shown that a slight improvement

in the predictive performance can be achieved with a simple semi-supervised learning

algorithm. It is left as future work to use other more powerful classifiers and semi-

supervised techniques.

6.2 Stress modeling using transfer learning in presence of scarce

data

The objective of this research is to model stress levels from different behavioural variables

obtained from smartphones and in particular with the limitation that the labeled data for

a person is scarce. This scarcity of data is a common problem while monitoring humans in

situ and requires constant annotation of their current wellbeing, as the data derived from

self-reports are considered as a ground truth. From the collected data we extracted several

features such as physical activity level, location, social interaction and social-activity. In

order to deal with scarce data, common to many real-world applications, we apply two

machine learning techniques, namely, semi-supervised learning, to be reduce unlabeled

data, and transfer learning (Pan and Yang, 2010) to use previously learned models to

improve the model of a person with scarce data.

The proposed approach learns a model for each subject participated in a study. This

approach is useful not only to predict the stress levels but also to perform comparisons

among different subjects in order to obtain groups of people (clusters) that behave sim-

ilarly. Moreover, when a model is built for a new subject it usually contains insufficient

information to have an accurate model. For this reason we use a transfer learning ap-

proach that uses data from similar subjects in order to improve the target model, which

results in better prediction results.

Our research addresses 4 aspects:

1. Using semi-supervised learning to complete the models for subjects with missing

data.

2. Clustering the subjects based on the similarity of the learned decision trees.

3. Applying transfer learning to improve the model of a new user with scarce data.

4. Using ensemble methods to improve the accuracy of the models.

To the best of our knowledge, few works have dealt with scarce data even when this is

a common challenge in health research, most often founded in studies where participants
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Figure 6.2: Dendrogram obtained by computing similarities between models of each subject
(using only 18 subjects). Three major clusters can be noted, colour boxes correspond to

average stress for different subjects (best seen in colour).

use self-report instruments.

6.2.1 Modeling Stress

Predicting perceived stress of a person can be modeled as a classification problem. We

used decision trees (Quinlan, 1993) to model subject’s stress since this representation can

be easily understood by a human, and this could help to have a better understanding

of what causes stress. Also, using this representation we can compare different subjects,

which is important for transfer learning. Our approach is to build a decision tree, a model

to predict stress, for each subject of the study. To learn decision trees we used the C4.5

algorithm using as attributes the objective variables presented in Chapter 4 and the class

to predict is the self-reported stress level (Low, Mid, High).

Our first objective is to analyse how subjects are related to each other in terms of

how similar are their models. From the set of 30 subjects, we removed those that had a

significant number of missing values (mainly in the questionnaires for self-evaluation of

their stress level). Thus, having a remaining set of 18 subjects.

A decision tree was learned for each subject and using the distance in Equation (2.3)

we compared all pairs of models to obtain a similarity matrix. From that matrix we

performed hierarchical clustering using the unweighted pair group method with arithmetic
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mean (UPGMA) algorithm which yields the dendrogram depicted in Figure 6.2, where a

coloured box indicates the average self-reported stress for that subject. From the figure,

we can observe 3 clusters with 7, 6 and 4 subjects. The largest cluster (with 7 subjects)

roughly corresponds to subjects which reported low levels of stress in average (denoted by

the blue boxes). The second major cluster (with 6 subjects) corresponds to subjects who

reported a mid level of stress (gray boxes). A third cluster with only 4 subjects shows

subjects with high and mid level of stress.

6.2.2 Missing data and Semi-supervised learning

Since the initial data had a large portion of missing values (≈20% of overall dataset),

semi-supervised learning was used to fill those. In this research, we use self-training

(ST) Zhu, 2006 with C4.5 as classifier. We have trained a model for each subject and we

have also established a single model combining all the attributes from all the subjects. We

performed 10-fold cross validation in all the experiments using Weka Hall et al., 2009 with

the default parameters of C4.5 classifier. The new classified data with high confidence

(≥80%) is added to the training set, the classifier is re-trained and the procedure repeated.

Using ST we were able to reduce the unlabeled data (improving the labeled dataset in

≈14%). This resulted in improving the average accuracy (4.20%), precision (3.5%), recall

(4.1%) and F-score (4.0%) as shown in the Table 6.3.

After applying the semi-supervised learning phase, there is enough data to compute

comparisons with the 30 subjects in the study. The process described in the previous

section was repeated to obtain a similarity matrix, depicted in Fig.6.3 (a), where the

more similar a subject is to another the darker that square is (subjects are ordered by

clusters). To evaluate our proposed transfer learning approach, we generated another

dataset which has a reduced amount of instances. We randomly removed 50% of the data

from all subjects. The similarity matrix of this reduced dataset is depicted Figure 6.3

(b). Finally, in Figure 6.3 (c) we depict the matrix resulting from the difference of (a)

and (b), where a grey box means no difference.

In summary, we have three similarity matrices: i) initial dataset (18 subjects) ii) after

applying semi-supervised technique dataset (30 subjects) and iii) after removing 50% of

data (30 subjects). All of them have different missing data. For each matrix we computed

its average value, with the following results. The initial data showed a more disperse set

of distances with an average of 0.65±0.18 (higher value, means subjects are more different

to each other). After the semi-supervised algorithm was applied the average distance was

0.55± 0.16 even when the number of subjects increased (30 subjects). Finally, when the

data was reduced the average distance decreased to 0.49 ± 0.15, which may not happen

in all cases.
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(a) (b) (c)

Figure 6.3: Similarity matrices of 30 users using (a) all data (after semi-supervised learning)
and (b) with 50% of instances removed –darker cells indicate high similarity. (c) depicts the

difference between (a) and (b); a white cell indicates a + difference, black a − negative
difference, and grey no difference.

∆i, j(original,modified) = |eoriginali,j − emodifiedi,j | (6.1)

Since we are interested in knowing how the similarity among models is affected by

adding or removing data, we evaluated the percentage of entries (models) where ∆i,j > ε

with ε = 0.1, . . . , 0.9 between two matrices. After applying the semi-supervised approach,

only 1% of entries changed more than 0.8 (1.0 is the maximum possible change). After

applying the semi-supervised approach the similarity matrices were only slightly altered

with an average value of 0.12±0.14, meaning there were no drastic changes in similarities.

In contrast, when we reduced the data by 50% and compare the similarity matrices their

difference in average was 0.19 ± 0.20, which is expected since the data was significantly

reduced. Moreover, only 5% of the entries were altered more than 0.9 (i.e., the similarity

matrix changed completely).

These results show that 1) the semi-supervised approach does not alter drastically the

learned models and 2) the used similarity measure is robust even when data is added

or remove from the model. This is an important result which will be useful in the next

section since we start with the reduced data and show that using transfer learning can

improve the accuracy of the learned models.

6.2.3 Transfer Learning

The previous section showed how to use semi-supervised learning to cope with missing

data by using the information obtained from one subject. A different way to solve this
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problem is to use information from another known models (another subjects in the study).

In this way, we need to transfer information from other models to our target model which

contains insufficient data to produce an accurate one.

In order to perform transfer learning we need information of other subjects, in partic-

ular our approach assumes a set of previously learned models (decision trees) along with

their respective data (used to learn the decision trees). When, a new subject appears, it

is expected to be associated with scarce data, which can result in having a model with

poor predictive accuracy. TL uses information from other subjects to improve the model.

First we learn a model ti for the new subject i using only the available data. This

model is compared with the rest of the T models of the other users using Equation 2.3. In

order to select which data should be transferred four different approaches were evaluated.

The first two are simple approaches transferring all data from the most similar subject.

The third one is based on sampling data weighted by its distance and the last one is based

on ensembles that weight their prediction based on its distance to the target model. In

detail,

1. Naive approach. Select the most similar model,k, to ti:

k = argmintj∈Td(ti, tj)

and transfer all its data to i. A new model is learned using the original and the

transferred data.

2. Threshold approach. If most similar subject to ti is closer than a threshold β then

transfer its data.

k = argmintj∈Td(ti, tj) and d(ti, tj) < β

A new model is learned using the original and the transferred data.

3. Sampling weighted approach. Select the K most similar (source) models closer to

ti:

K =
⋃

m|most similar to ti

Then, for each source model perform sampling weighted by its distance to ti. Sam-

pled data is transferred and used with the existing data, to learn a new model.

4. Ensemble weighted approach. Use the K most similar (source) models closer to ti
and the model learned with scarce data to classify the target data. The voting scheme

(to select the actual prediction from the ensemble) is weighted by the distance from

each model to the target one.
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We applied the four proposed transfer learning approaches on the data which has a

percentage of data removed and we use as upper bound the results obtained with the

complete data.

One of the important aspects in transfer learning is deciding which data to transfer.

In our case we are interested in how similar source models are to our current target model

(with scarce data). We computed the distance to the nearest model, the farthest model

and average for every subject in the study. From the results we obtained an average

distance of 0.42 (using Equation 2.3) to the nearest subject, in contrast, the average to

all models was 0.74±0.17. We also noted that there are cases where a subject has several

nearest models with the same distance. There are 18 subjects that have a unique nearest

subject. These subjects were selected for the proposed transfer learning approach (see

Table 6.4).

Table 6.4: Classification accuracy using the naive transfer learning approach, ∆ transfer shows
the difference between no transfer and transfer columns, d(near) shows the distance to the

nearest model. All data shows the accuracy using all original data (upper bound). Using the
naive approach does not yield the best accuracy in average.

S.ID No Trans. Naive Trans. d(near) ∆ Trans. All data
S09 57.69 73.08 0.36 15.38 76.92
S30 42.86 53.57 0.36 10.71 78.57
S11 65.45 74.55 0.62 9.09 72.72
S10 44.89 51.02 0.27 6.13 71.42
S28 57.35 63.24 0.18 5.88 77.94
S16 61.11 62.96 0.48 1.85 74.07
S24 67.14 67.14 0.36 0.00 71.42
S12 55.93 54.24 0.32 -1.69 62.71
S25 85.71 83.67 0.39 -2.04 89.79
S14 51.56 48.44 0.49 -3.13 82.81
S23 53.33 50.00 0.53 -3.33 58.33
S05 70.69 65.52 0.36 -5.17 86.20
S19 60.00 53.33 0.54 -6.67 90.00
S08 57.41 50.00 0.46 -7.41 55.55
S18 70.27 62.16 0.32 -8.11 75.67
S04 81.25 71.88 0.42 -9.38 84.37
S01 72.86 61.43 0.58 -11.43 78.57
S29 62.07 44.83 0.60 -17.24 79.31

Avg.±Std.
Dev.

62.09 ± 11.32 60.61 ± 10.71 0.42 ± 0.12 -1.47 ± 8.42 75.91 ± 9.70

First, we evaluated the naive transfer learning approach. Accuracy for the transfer

learning approach is obtained by learning a classifier using the reduced data and the

transferred data, then testing that model on the data without removed instances. As an

upper value of the possible accuracy we learned a model with the complete data and the

evaluation was performed on that same dataset. Table 6.4 summarises the results using
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the naive approach showing the accuracy results with and without our proposed transfer

learning approach and the accuracy using the complete data.

Using the naive approach did not improve the accuracy for all subjects. This happens

because we are ignoring when transfer can be more useful: the distance to the nearest

subject. The idea is to use transfer only when the distance is small (i.e., when the model

is close to another) defined by a threshold β. To exemplify this behaviour see Figure 6.4

(a) and (b) where we depict trees which have a d = 0.36. In this case trees are similar

in their decision nodes. In contrast, Figures 6.4 (c) and (d) show trees which have a

d = 0.60. Note, that in this case the trees show different decision nodes.

(a) (b)

(c) (d)

Figure 6.4: Learned models of different subjects: S30 (a) and its most similar S17 (b). S29 (c)
and its most similar model S05 (d).

Our second approach, threshold based, takes into account this distance with respect

to the closest model. We performed experiments varying the threshold, β, with values
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between [0, 1]. From the results we observed that trivial approaches: not using transfer or

using transfer on all subjects do not obtain the best results (62.09 and 60.61 accuracy for

β = 0 and β = 1, respectively). However, selecting the appropriate threshold of transfer

increases the accuracy (63.37 with a threshold of 0.37). Table 6.5 summarises the results

of using the threshold transfer approach (β = 0.37). In particular, it shows that accuracy

improves from 58.35 to 61.24 when models that are closer than the threshold are used.

On the other hand, when d ≥ β it is better not to use transfer learning since the models

are far from each other and this causes a negative transfer effect.

Table 6.5: Classification accuracy, ∆ transfer shows the difference between no transfer and
transfer columns. All data shows the accuracy using all original data (upper bound). The
number of initial and transferred instances is shown. The top part of the table shows the

results when the distance to the closest subject is small (< 0.37), while the bottom when it is
large (> 0.37).

Subject ID No Transfer Threshold
Trans.

∆ Transfer All data Total Inst. Trans. Inst. d(near)

S28 57.35 63.24 5.88 77.94 61 26 0.18
S10 44.89 51.02 6.13 71.42 57 31 0.27
S12 55.93 54.24 -1.69 62.71 49 31 0.32
S18 70.27 62.16 -8.11 75.67 49 18 0.32
S24 67.14 67.14 0.00 71.42 67 31 0.36
S05 70.69 65.52 -5.17 86.20 66 37 0.36
S30 42.86 53.57 10.71 78.57 66 29 0.36
S09 57.69 73.08 15.38 76.92 53 35 0.36

Avg.±
Std.dev.

58.35 ± 10.0 61.25 ± 7.1 2.89 ± 7.5 75.11 ± 6.4 58.5 ± 7.1 29.75 ± 5.4 0.31 ± 0.06

S25 85.71 83.67 -2.04 89.79 55 31 0.39
S04 81.25 71.88 -9.38 84.37 63 31 0.42
S08 57.41 50.00 -7.41 55.55 62 35 0.46
S16 61.11 62.96 1.85 74.07 59 29 0.48
S14 51.56 48.44 -3.13 82.81 63 31 0.49
S23 53.33 50.00 -3.33 58.33 67 35 0.53
S19 60.00 53.33 -6.67 90.00 59 26 0.54
S01 72.86 61.43 -11.43 78.57 73 32 0.58
S29 62.07 44.83 -17.24 79.31 62 33 0.60
S11 65.45 74.55 9.09 72.72 59 29 0.62

Avg.±
Std.dev.

65.08 ±
11.4

60.11 ± 13.0 -4.9 ± 7.3 76.55 ± 11.8 62.2 ± 4.9 31.2 ± 2.7 0.51 ± 0.08

Our third transfer learning approach is based on sampling from similar models. Thus,

our approach is to select the k closest models to our subject and sample its associated

data to obtain data to be transferred. We tried different values for the number of similar

models and we used a weighted approach to determine how many instances should be

sampled. This is based on the distance to the target model, bounded to half of number of

total instances in the source trees. For example, if the distance between trees is 0.0 (i.e.,

totally similar) and there are 100 instances in the source, 50 instances will be sampled

from that source and transferred.

We performed different experiments varying the number of similar subjects to be
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sampled from 1 to 7, results showed that, transferring information from only one subject

(the most similar one) obtained the best scores in average 63.3± 10.92 (avg. accuracy ±
std. dev.). In contrast, increasing the number of close trees decreased the accuracy to

55.26± 13.3 (using the 7 closest similar subjects).

6.2.4 Ensemble method

Finally, our last approach is based on ensembles and we tried two different approaches to

improve accuracy. First we need to select two parameters, the number of trees used in

the ensemble (counting also the target tree) and the way to combine their results. For

selecting the number of trees in the ensemble we tried ensembles with size {3, 4, . . . , 15}.
To decide how to join the results of those trees we tried two approaches. The simple voting

approach sums the results from different trees uniformly. This approach was tested with

different number of close trees. However, results did not increase, in fact the average

accuracy obtained was 49.99± 29.15.

Thus, we tried a second approach that weights their predictions based on the distance

to the target tree (recall that distance between trees is in range of [0, 1]). We evaluated

different number of trees in the ensemble from 3 to 15. However, the best scores were

obtained using 4 trees in the ensemble (3 most similar source trees and the target tree)

obtaining 72.7± 20.2. Increasing the number of trees consistently decreased the accuracy

(63.3± 22.9 with 15 trees).

6.2.5 Summary of analysis

We proposed four different transfer learning approaches to cope with scarce data. Table

6.6 summarises the results of the proposed approaches compared without transfer and

with all the original data (used as upper bound). Results show that threshold, sample

weighted and ensemble weighted approaches obtained better scores than without a trans-

fer approach. The threshold and sampling approaches obtained similar scores and the

ensemble approach obtained the best scores increasing the accuracy almost by 10% in

average.

As conclusions from the experiments we note that:

u Transfer from few, but similar, subjects was better than using more subjects which

are not close to the target model.

u Transfer using another models (ensemble approach) was better than transferring

instances.
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Table 6.6: Classification accuracies using the proposed approaches and using all original data
(upper bound).

Transfer learning approaches
Subject ID No transfer Naive Threshold Sampling

weighted
Ensemble
weighted

All data

S01 72.86 61.43 72.86 64.28 87.14 78.57
S04 81.25 71.88 81.25 65.62 73.44 84.37
S05 70.69 65.52 65.52 75.86 68.97 86.20
S08 57.41 50.00 57.41 57.40 85.19 55.55
S09 57.69 73.08 73.08 65.38 38.46 76.92
S10 44.89 51.02 51.02 55.10 63.27 71.42
S11 65.45 74.55 65.45 76.36 65.45 72.72
S12 55.93 54.24 54.24 55.93 62.71 62.71
S14 51.56 48.44 51.56 53.12 90.00 82.81
S16 61.11 62.96 61.11 62.96 90.74 74.07
S18 70.27 62.16 62.16 70.27 81.08 75.67
S19 60.00 53.33 60.00 70.00 90.00 90.00
S23 53.33 50.00 53.33 38.33 38.33 58.33
S24 67.14 67.14 67.14 70.00 70.00 71.42
S25 85.71 83.67 85.71 83.67 85.71 89.79
S28 57.35 63.24 63.24 60.29 95.59 77.94
S29 62.07 44.83 62.07 67.24 36.21 79.31
S30 42.86 53.57 53.57 48.21 66.07 78.57

Avg.±Std.dev. 62.09±11.0 60.61±10.4 63.37±9.5 63.33±10.6 71.58±18.2 75.91±9.4

6.3 Using motor activity-related behavioural features toward

unobtrusive stress recognition

In the previous sections 6.1 and 6.2 we demonstrate the importance of analysing behaviour

patterns as an objective signal that may have impact on cognitive function. This section

introduces motor activity-related behavioural features that can be extracted from a smart-

phones during phone conversation, with the view towards unobtrusive stress detection.

We used quantitative analytic methodology of motor behaviour pattern classification for

work-context, individual employees in our longitudinally collected data. The Fourier anal-

ysis of the motor activity intensity was measured during phone conversation and showed

that the relation between the high frequency range was lower in high perceived level

compared to subjects with lower perceived level.

We evaluate the performance of novel method, namely Intermediate Models that has

been used in previous research (in Section 5.5) to infer motor activity in bipolar disorder

patients. The key advantage of the proposed intermediate models approaches is to improve

the performance of supervised classifier. We build six intermediate models using the self-

reported mood states to build the final model in predicting stress.
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6.3.1 Stress modeling using Intermediate Models

In the previous Section 6.1 we reported current approaches for inferring stress that rely

mostly on self-reported questionnaires, such as the work in (Näätänen and Kiuru, 2003).

This results in problem for an effective measurement, since subjects are often affected

by a personal confidence. For example employees might have more predisposition to

report information in their favour or for the organisation than reporting their true health-

conditions. To overcome these situations smartphones are becoming useful to perform

research due to their availability, rich set of embedded sensors and their capacity to

be unobtrusive for the subjects. However, still remains an open problem how stress

can be effectively detected with the help of systems that retain an increased degree of

unobtrusiveness.

Motor activity-related behaviour (i.e., body hyperactivity, trembling, uncontrollable

movement, hand movement (Morgan III et al., 2015; Smith and Seidel, 1982)) has shown

association with perceived stress. Currently, the clinicians assess measurement of motor

activity in laboratory settings. Studies measuring level of motor activity in psychological

stress have typically used traditional monitoring with paper and pencil diaries, and ques-

tionnaires (Prasad et al., 2004). Monitoring motor activity during sleep may be measured

by actigraphs (Mezick et al., 2009) (using piezoelectric accelerometer). However, little is

known if data captured from an actigraph could provide motor activity characteristics in

perceived stress level in working environments.

Smartphones are a good candidate for monitoring motor activity behaviour patterns

in daily activities. Information from smart phones enables easier monitoring and tracking

of people than traditional methods, as most people already carry a smartphone so no

additional sensors are required. Another benefit of using this technology is that other

information (such as phone calls, location, use of social networks) can be obtained and

included. In this research, we collect data from accelerometers during phone calls to infer

motor activity changes in working employees.

To our knowledge, no research has explored until now the potential of motor activity

related behaviour features in working environments with the aim to detect stress. This is

important since, motor activity features could be acquired through the use of smartphone’s

accelerometer during phone-conversation, in a totally unobtrusive manner.

In the context of our research work, the following research questions are put forth:

u Is there a relationship between motor activity features that can be automatically

extracted from a accelerometer sensor embedded on smart phones and the self-

reported stress levels?

u Is it possible to improve stress detection by incorporating intermediate hidden vari-

ables related to the subjects’ mood, before building the final model for predicting
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stress?

The present work tries to answer both these research questions by comparing standard

stress measurement questionnaires and motor activity behaviour during phone conversa-

tions.

We performed an experimental analysis using real world data. The research includes

2 aspects:

u Using semi-supervised learning to complete the models for subjects with missing

data.

u Using Intermediate Models to predict mood variables, which are incorporated in the

final model with the aim at improving the accuracy of the predictions.

6.3.2 Intermediate models

Self-reported questionnaires acquired from participants are useful in understanding per-

ceived mood and stress. However, it is a tedious task for the user. In this research we

propose to predict the mood variables associated to the questionnaires using the data

from the smartphone to alleviate the user from this burden. We then use the predicted

mood variables with the rest of the data from the smartphones to predict the stress levels.

We call the models that predict the mood variables from the questionnaire Intermediate

Models as there are used as input for the final predictive model. Although the use of

additional variables, such as latent variables, have been previously used in the literature,

we are not aware of research that aims at building an intermediate model that can then

be used as input for the final model.

We used six variables derived from NA and PA (3 per each mood affect) to build 6

intermediate models. Furthermore, we train each classifier separately using each the self-

reported questionnaires derived from the ’Positive Mood Affect (PA)’ and the ’Negative

Mood Affect (NA)’. In the prediction stage, the intermediate models use the information

from the smartphones to predict a weighted set of mood variables based on the accuracy

of each model. Then all the data from the smartphones and the mood variables are used

as input for the final stress model.

6.3.3 Semi-supervised learning

Similar as in previous work in bipolar disorder 5.5, also in this research we consider one of

the most common methods of SSL that uses a single classifier called Self-Training (Zhu,

2006).

Our experiments have the following objectives:

u Compare the performance of different classifiers on the data.
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u Assess the effect of Intermediate Models to enhance the knowledge of perceived stress

in employees.

u Use SSL to address the problem on how to use information from unlabeled data to

enhance classification accuracy.

For all the experiments, we used Weka’s (Hall et al., 2009) classifiers with their default

parameters. We build a model for each subject and performed a 10-fold cross validation

for all the experiments; we report the average accuracy, precision, recall and f-score values

for all participants. In Figure 6.5 show the results using different classifiers. In the first

experiment we compare the performance of the classifiers based only on the labeled data

(Supervised) with the inclusion of unlabeled data using semi-supervised learning (SSL).

In the second experiment we analyse the impact of using the intermediate models, without

and with SSL.

6.3.4 Comparison of results using proposed approaches

As described in Figure 6.5 3 there are more than 2033 (27.6%) of phone conversation

without an associated stress level. To address this issue, we used SSL (Self-Training

approach) to see if we can enhance on the performance of previous result using all the

available data. As can be seen from the results presented in the Figure 6.5, adding

information from other phone conversation is improving the accuracy results for circa 4%

and around 10% improvements in terms of Precision, Recall and F-Measures.

Using subjects self-reported mood, we propose building an intermediate model ap-

proach aiming at improving the classification accuracy. For this research we train the

classifier separately using each items from ’Positive Mood Affect -PA’ and ’Negative Mood

Affect -NA’ from the questionnaire.

In our dataset, more than 2033 (27.6%) of the phone conversation did not have an

associated stress level (the user did not answer the questionnaire). To address this issue,

we used the SSL Self-Training Method described above. We followed a simple approach

where we divided the data into ten folds, where the training data was used to classify the

unlabeled data, as threshold for the confidence we used ≥ 80% for the highest classified

value. Then we used all the classified data with the original training set to produce an

extended training set. As can be seen from the results adding information from other

phone conversation is improving the accuracy results in terms of Accuracy Precision,

Recall and F-Measures for all the classifiers, in some cases as for C4.5 the improvement

is significant (nearly 10%).

By incorporating the intermediate models, a further improvement is obtained in both

3More details from accuracy comparison between methods are shown in Table A.10 and Table A.11
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Figure 6.5: Comparison in terms of accuracy using supervised learning, semi-supervised
learning (SSL), intermediate models (IM) and semi-supervised & intermediate models

(SSL+IM) with different classifiers for predicting perceived stress.
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case, without and with SSL. As it can be observed in Table A.11, the best results are

obtained by combining SSL and the intermediate models, and in particular with the

random forest classifiers.

6.4 Discussion

Using smartphones for monitoring behaviour patterns of individuals in their working en-

vironments has the potential to provide valuable insights of their health. This research

aims to do that by combining data from different sources, such as objective data mea-

surements and subjective self-reported data. The challenges that we faced in the study

arise in the integration of multiple objective and subjective data streams, the definition

of the questionnaires and the large number of missing values since data was collected in

a real-life environment from heterogeneous sources.

A common issue when dealing with health applications is the challenge of recruiting

sufficient number of participants (Xiang et al., 2013). We have faced the same challenge

in our study and furthermore we have faced issues with subject compliance leading to a

decrease in the amount of self-reported data, but also sensor data (for example, forgetting

to charge the battery). With respect to the limitations, it is important to note that we

assume that subjects in our study have an inherent degree of similarity in their behaviour

for the transfer learning method to perform well.

When we consider a higher number of subjects, we also plan to use demographics

and self-reported information related to personality to measure inter-subject similarity

and hence we expect a better performance of the transfer learning method. Another

limitation is the dissimilarity measure used to compare models. For example, it does not

take into account the splitting values inside the attributes and it is affected by the tree

size (height) (Miglio and Soffritti, 2004). Therefore, other approaches might be explored

Chipman et al., 2001; Fowlkes and Mallows, 1983; Miglio, 1996; Shannon and Banks,

1999.

Finally, one last limitation is that the participants were recruited through two different

organisations (i.e., logistic, software development) in the private sector. Thus, there will

be some limitation in transfer learning to other organisations or sectors. However, the

employees that participated in our study had heterogeneous characteristics with regard to

gender, age, marital status, and educational level, which will be an advantage in transfer

learning.

135



6.5 Chapter Summary

In this research work, we have presented an extensive analysis based on real data from 30

users in two organisations related to stress using information derived from smartphones.

We contrasted objective variables, acquired from smartphones, such as physical activity,

location, social interaction and social-activity with respect to perceived stress levels, con-

sidering several demographics (gender, age, education and marital status). Correlation

analysis was used to analyse the possibility of using smartphones derived data aiming at

predicting perceived stress levels at working environments. We addressed the problem

of missing information and scarce data to improve the prediction accuracy using self-

training as standard supervise-learning approach and transfer learning approach to find

the similarity of perceived stress. We presented improved results using our novel inter-

mediate models on top of the proposed approaches, resulting in improved performance in

accuracy. Finally, we propose analysing specific human behaviour during the phone con-

versation. Motor activity features have been extracted to classify the behaviour changes

of the subjects, which behaviour could be a result of daily perceived stress.

6.5.1 Correlation findings in stress

A summary of the most important findings in the Section 6.1.1 have been presented below:

u There is correlation between objective data such as: location information (WiFi

and Google Location data), social interaction, and information from phone calls and

SMS with subjective data that represents mood of the user (i.e., level of stress).

u Overall physical activity during lower perceived stress times throughout the entire

monitoring period was associated with higher activity. In contrast, a high perceived

stress showed lower physical activity.

u With respect to gender, men showed a more stable social interaction across the

weekdays. In contrast, women then to increase their interaction near the weekend.

u Our results suggests that the more social the subject is the more stressed he gets, this

can be explained because the subject is probably talking with colleagues about work

which increases its stress. On the other side there is negative correlation between

duration of calls and stress, the reason could be that the subject is stressed so she

has no time to spend on calls.

u Based on smartphone data it is possible to predict stress using decision trees. How-

ever, missing data is an aspect to take into account. In this work using semi-

supervised learning techniques we increased the accuracy from 67.57% to 71.73% for

predicting stress.
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And, some of the conclusions of this work are summarized:

u There is clearly a high to moderate perceived stress in most of the employees. This

confirms some of the findings on other reported studies about stress. The possible

consequences of stress motivated our work for finding unobtrusive ways to detect

it, via smartphones, and analyse in more deep the most relevant aspects related

with changes in the behaviour of employees under different stress conditions. We

believe that this is an important step towards a better understanding of behaviour

of employees under stress and to design remedy actions.

u It appears that women tend to present higher percentage levels of perceived stress.

This does not necessarily mean that they are more stressed, but at least that they

perceive it more. Whether this has to do this with higher sensitivity levels in women

than men, a biased finding due to our small sample size or to a more profound reason

related to gender, this requires further and deeper studies.

u Perceived stress varies among companies and this could be related to their working

conditions. Identifying working conditions on companies with low levels of stress

could help to establish better working policies to reduce stress among employees.

u There appears to be different behaviours in some job-related aspects in relation to

stress between men and women. Although again this needs deeper and thorough

study, if it is the case it could help to improve some working conditions based on

gender.

u The use of smartphones has become part of the daily activities of people and our

experiments showed that there are clear changes in their use (phone calls, SMSs,

apps) under different stress conditions.

u There is a clear correlation between how people behave at work (physical activity,

WiFi location, number and duration of outgoing calls and SMS, and with social

apps) and stress levels. This could be easily monitored with current smartphones,

as shown in this research, to detect possible stress levels and help to implement

corrective measures.

6.5.2 Findings using Transfer-learning in stress prediction

In the Section 6.2, we have demonstrated the importance of obtaining sufficient data in

order to predict effectively behaviour changes of the user relevant to stress. We proposed

building a reliable user-specific model from a considerable amount of data. This data

is divided into two parts: the objective data which is obtained automatically from the

device and subjective data which is generated by the person.

Data collected in this study have around 21% of missing labels, thus, in this research

work proposes techniques to address the problem of having limited data. One of those
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approaches is semi-supervised learning which uses the learned model to complete missing

values and reduce the amount of unlabeled data. Another related approach is called

transfer learning which uses information from another sources to improve the quality of a

new model. Further, we have proposed four different methods based on transfer learning to

deal with the scarcity of data. The proposed approaches are based on obtaining a distance

among models and using similar (close) models to improve the predictive accuracy. In

this work we transfer instances (sampling based approach) from another close model or

using close models from other subjects (ensemble approach). As a result, we have shown

that the weighted ensemble approach increases the accuracy by almost 10% compared

with the no-transfer approach through the experimental evaluation with real-word data

obtained from employees of two different companies.

A future exploration avenue is to use of multi-label classifiers, where a set of classes

(in this case all the variables associated with the questionnaires) can be predicted at the

same time and where dependencies between these classes can be incorporated to improve

the classification performance.

6.5.3 Motor activity findings in prediction of Stress@Work

Finally, in the Section 6.3 we presented a research work of how to predict perceived stress

of employees by analysing motor activity behavioural data during phone conversations.

We extracted several frequency domain features to analyse the motor activity-related

behaviour from different users. The results demonstrated that subjects have distinctly

different profiles of motor activity and that the results differ according to perceived stress

analysed. We assume that this methodology may have great potential for behaviour

analysis and more acceptable for the monitored subjects due to level of obtrusiveness.

Similarly, as in previous sections, we dealt with large number of unlabeled instances.

To address these issues, we proposed using semi-supervised learning techniques, which

have shown to improve the prediction level and increasing number of labeled instances.

Additionally, we also applied a novel approach to incorporate unobserved variables via

intermediate models. We evaluated experimentally the impact of using SSL, intermediate

models and both combined, using different base classifiers. The proposed approach for

creating intermediate models has been shown to increase the prediction of the stress level

of the users using the data derived from motor activity; from 61.5% using the standard

supervised methods to ≥78% after applying intermediate models and SSL.

As a future line of this work would be applying transfer learning and multi-label

supervised-learning approaches and identify similar pattern of users in different stages of

perceived level.
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Chapter 7

CONCLUSIONS

This chapter summarizes the main achievements of this research work, discusses the out-

comes of this dissertation, acknowledges the limitations and future research ideas. We

review the literature in Chapter 3 seeking the current research challenges addressing the

problem of acquiring a large amount of labeled training data in real-world monitoring sce-

narios, requiring a human effort and time to label data. The learning from literature

drew the path way which we took to build a machine learning solutions that enables ad-

dressing scarce data and unlabeled information. We validate our fundamental question of

how to extract knowledge out of unlabeled data in order to infer a human behaviour and

improve classification performance compared to conventional machine learning methods

(i.e., dropping cases entirely when they have missing ground truth).

For this thesis, our proposed approaches have considered how to address the issues of

unlabeled and scarce data in the mental-health and human behaviour fields. We propose

solutions to the challenges in both areas by introducing our novel Intermediate Models,

following the use of Semi-supervised learning and Transfer Learning approaches that can

learn effectively within this regime. Our work has considered how these approaches relates

to a challenge of human behavioural classification from smartphone collected data. We

have focused in this direction as we believe that the challenges to perform scalable clas-

sification is currently one of the most critical bottleneck of the monitoring devices using

sensing modalities.

7.1 Contributions

This PhD thesis begins to solve several open problems in machine learning and have been

applied in two healthcare domains for monitoring human wellbeing. As we discussed

earlier, collecting training labeled data are expensive, as a human annotation must take

the effort to label data, thus, it is frequently the case that labeled training data are sparse.
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We have also emphasized in earlier chapters that unlabeled data are often plentiful and is

all around us in the different forms, for example, phone recordings, web queries, metadata,

sensory, locations and others logs.

In this thesis, we propose a solution to several of the large challenges in the area ma-

chine learning by introducing our novel Intermediate Model for improving the accuracy

performance of final model, and the setting of Semi-supervised learning, Transfer Learn-

ing that can learn effectively within this regime. One of the key question in this research

work is how to extract the knowledge and efficient value out of these unlabeled resources

in a wide range of learning environments. By leveraging unlabeled data, we have demon-

strated that we go beyond the limited models that can be learned from small portion of

training sets. This research work suggest that it is highly advantageous to have SSL and

TL integrated in monitoring systems that both benefits can take advantage when new

unlabeled data becomes available.

All three methods make very different assumption about the underlying data, how-

ever. In the Chapter 5, we have demonstrated our results using Self-training method

in the data collected from the bipolar patients. Using Self-training enabled us new per-

spective to tackle missing labeled instances between psychiatric evaluation and collected

sensory data. We have demonstrated the evidence that in future monitoring in-remote

mental-disorders is no longer dependent on continues human observer or even continuous

self-reports from the patients. The results in Chapter 5 have provided an evidence that

with few labeled instances available during the learning helped us to guide the learning

models and evaluating the performance ST algorithm. In the Chapter 5, we presented per-

formance accuracy difference between supervised and semi-supervised learning methods.

The supervised methods performed slightly better (≈0.75%) to semi-supervised learning.

However, there were more than 900 phone-calls that where without associated episode

which were included into the building of final model using semi-supervised learning, re-

spectively Self-training methods. On the other hand, prediction of perceived stress using

Self-learning approach, in Chapter 6 we demonstrate the improvements of overall accu-

racy from 67.57% to 71.73%. We were able to reduce the number of missing classes from

≈20% to ≈6% and improve the knowledge of days without associated stress level.

The TL approaches also differ in their basic mode of learning relationships between the

participants in order to transfer knowledge deduced from the source labeled data to the

target unlabeled data. In Chapter 6 we have demonstrated the use of Transfer learning

posing as well new challenges in machine learning, such as mapping between the different

feature vector spaces. Using both approaches SSL and TL (as shown in Chapter 6), both

methods are shown to resolve space complexity through unlabeled data without reducing

learner accuracy. In the Chapter 6, combining both approaches, we have validated the
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proposed machine learning methods to augment a small amount of labeled data with large

amount of unlabeled data to improve classification performance.

Further, we have demonstrated Intermediate Model approach with a novel assumption

of improving the scope of standard supervised learning, semi-supervised learning, and

transfer learning by incorporating new information and allowing unlabeled data to be of

value in the learning process for building the final model. In the Chapter 5, we have

presented the results using standard supervised learning and semi-supervised learning.

The results obtained from additional information added from Intermediate Models has

been shown to improve the overall performance accuracy (from ≈73% to ≈90%). Similar,

in the Chapter 6 the proposed approach for creating intermediate models has been shown

to increase the prediction of the stress; from 61.5% using the standard supervised methods

to 71.68% after applying intermediate models and ≈78% after being combined with SSL.

To sum-up, with our studies we have evaluated the impact of these techniques in

two real studies to classify the state-mood of bipolar disorder patients and the perceived

stress of employees at work using the acquired data from smartphones. We have used

in both domains real data from subjects for several monitoring weeks on unconstrained

conditions. And in both cases the incorporation of additional information, automatically

extracted from original dataset, into the learning process, has been shown to increase the

performance of the induced models. For our scarce data problem, we can conclude that

using the proposed Intermediate Models to enrich learning and performance of models as

the best approach for our research work, because it has been shown to provide an attractive

balance of both accuracy and conceptual simplicity. Thus, we encourage researcher to

conduct similar methodological assessments to find the most suitable method of increasing

unlabeled instance for their specific datasets and measures.

Although the existing noise in the features extracted, the results achieved from IM

with SSL and TL methods have greatly improved performance over supervised learning.

The work in the Chapters 5 and Chapter 6 shows that using proposed approaches leads to

effective performance with small amount of labeled data. Combining these methods helps

to resolve fundamental Ubiquitous Computing problem on the way towards self-sufficient

autonomous systems that supervise their own learning. The findings of this research work

provides guidelines to researchers and machine learning developer who design a monitoring

systems for different domains.

The main contributions of this dissertation to the field of Ubiquitous Computing are

summarized below:

u We presented the first work to manage scarce data to monitor mental-health and

human behaviour using collected longitudinal smartphone data.

u We proposed using Self-Training algorithm as a standard semi-supervised learning
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method whose goal is to improve any existing supervised classifier when unlabeled

data is available and increase the accuracy prediction.

u We proposed a Transfer-learning approach that obtains information from another

source model to improve the predictive accuracy of the target learned model.

u Finally, we presented our novel Intermediate Models that are used as an input for

the final predictive model.

We also made contributions to the understanding of human behavior, such as:

u In healthcare, the scarce data and missing information in existing systems for mon-

itoring human behaviour are often dropped from the researchers in the field. In

contrary, we proposed machine learning models that use this scarce data which has

been shown to improve the knowledge of monitored subjects and at the same time

improving the performance accuracy.

u In bipolar disorder, we proposed extracting and analysing motor activity behaviour

in patients from two sources, such as motor intensity and voice features during the

phone conversation. To the best of our knowledge, our work is the first in the field

combing both features to predict the episodic state in bipolar disorder.

u Finally, in work-related stress, despite the methods proposed to build accurate mod-

els, we proposed new methods for extracting contextual data from smartphone raw

data and interpreting similarity or de-similarity of subjects behaviour during the

monitoring days.

All the contributions made by this research work push against the boundaries of how

researchers should design a system in the future. We have taken the first step toward

handling scarce information aiming at improving predictive models. With the proposed

approaches, we were able to provide better predictive models in understanding individuals’

behaviour, as well as observing similarities across group behaviour.

The approaches proposed for handling scarce data have instilled in us a belief, that

following these approaches may also contribute in addressing open problems that scarce

information brings to the fore. We believe that implementation of proposed approaches

and the operation of these systems need a broader perspective. Thus, we hope that the

example of recognizing behaviour-related pattern in subjects participated in our studies

represents only the beginning of how future systems can be improved. The contribution

of this thesis opens up numerous opportunities to design effective intervention for aiding

individuals wellbeing as well as improving healthcare services.

Our work in general shows how scarce information was handled enables smartphone

classification to be more robust and efficient. We hope this dissertation have provided

a motivation to researchers for seeking for better solutions to address scarce information

that can further impact classification systems in different domains.
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Finally, using the features extracted from speech and acceleration signals during the

phone conversation, we were able to classify bipolar disorder episodic states and perceived

stress level from extracted features and less obtrusive than current standards in monitoring

motor-activities. These methods can be also combined with other stream of sensory data

during phone-conversations that may help us further understand individuals behaviour.

7.2 Limitations

Thesis demonstrates the importance of employing machine-learning techniques to handle

scarce data collected from smartphone sensors to monitor behavior and mental-health.

There are, however, several issues associated with the use of proposed approaches and a

limited number of participants. Following limitations has been identified:

7.2.1 Limited number of participants

In this research work, we have a limited number of subjects that participated in the

studies. It is obvious that having larger number of subjects and acquiring continuous

data that involve long-term continuous observations of subject would increase of statistical

significance and precision accuracy.

In addition, data was collected from a specific population. In bipolar disorder, only 5

of the patients were involved in a phone conversation in different stages of disease. The

remaining patients (N=7) were either missing sensory information or involvement a phone

conversation was only in one stage of disease. Furthermore, trial period is another limi-

tation of this thesis, thus, collecting long-term continuous data of patients may increase

the knowledge of depressive or manic symptoms. In addition, bipolar disorder patients

were included at the study at the beginning of their course of treatment, which limits

investigating course of illness.

With regard to the stress predictions, there were 30 subjects from two different organ-

isations and from a specific location. This may limit the findings since perceived stress

differ from other group of population or other working environments (non-related to IT

or logistics). However, our methods has been shown to be feasible, which potential could

be carried over to other group of populations. In this thesis, we have demonstrated ap-

proaches that could address issues of scarcity information, however, we did not provide

any methodology for an efficacious intervention.

7.2.2 Feedback solutions

Data acquired from the systems was secured into the servers during the trials to protect

their privacy and they were analysed off-line. At this stage of our research, we were
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interested to evaluate proper features and algorithms. However, next stages of our re-

search, features extraction and algorithm performance should be performed directly on the

smartphones or pre-processed in a server side and provide a feedback to the participants

smartphone.

7.2.3 When to use proposed approaches?

In this thesis, Intermediate Models has been suggested to improve the performance ac-

curacy of the final model. Combining TL and SSL methods can assist in building a

self-learning system that reduces user burden for labeling their wellbeing in daily basis.

In principle, using SSL to improve a classifier C : L→ U while involving large amounts

of unlabeled data compared to having small amount of labeled instances. However, SSL

methods may fail to improve the classification performance or either fail completely when

there are no sufficient labeled classes. The reason for that is that unlabeled instances with

lower weights are included into the labeled data, thus, leads to decrease of classification

performance or amplifies noise in labeled data. Therefore, having all the classes before

building the training models.

In this research, TL approach has been applied in dataset collected from normal sub-

jects at their working environments, with the assumption that participants may perceive

similar stress. Using these methods, has been shown to improve the classification perfor-

mance for the subjects with scarce data. However, these methods are not recommended

applying in mental-disorders with different cognitive impairments. For instance, in bipo-

lar disorder patients, mood alternate between elevated and depressed over time and no

patient have similar episodic state to the others. Thus, applying transfer learning methods

may fail in state prediction.

7.3 Future research work

With the proposed methods, we aimed at handling scarce data to improve detection of

behaviour patterns in monitored participants. We truly believe that Intermediate Model

approach combined with semi-supervised learning and transfer-learning methods could

play crucial role in future effort for creating accurate predictive models including the

healthcare monitoring, especially for remote-monitoring of individuals.

However, there are several research directions that we are planning to follow in the

near future. Although the advances put forth in this research work, some issues still

remain. In the following, we briefly summarize a few of these future challenges below:
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7.3.1 Feature selections

In this research work, we have considered a large number of features, many of which were

reported as useful in the literature, however, other features could be considered as well as

using feature selection algorithms. The key question in machine learning is how to produce

the instances by a vector of features and reduce major computational difficulties that may

lead to poor prediction accuracy (Beniwal and Arora, 2012). Thus, in the monitoring

systems where real-time processing is required, applying this step in order to improve

the efficiency and effectiveness is needed. In Chapter 3, we have reviewed literature of

feature selection as an important step and the way it is used to remove redundancy and

noise from collected raw data. Many research work in a field of Ubiquitous Computing

consider this step as compulsory and selecting features with higher rank scores should

be distinctive features before feeding them to the classifier, as it shown in the review of

Mehmood et al., 2012.

However, in this research work, our analysis also discerns which features contribute

most to behaviour changes detection. In bipolar disorder, motor activity and speech fea-

tures tended to be the strongest predictors of patients episodic state. However, in future

work all the features which have no influences on the class information will be removed as

irrelevant features. In predicting stress at work, we have used several features categories,

such as location, physical activity, motor activity, social-interaction and other features.

In the Section 6.1.2.1 we have demonstrated most important features using Multiple-

regression analysis (Efroymson, 1960) to analyse how each variable category has effect

into the correlation, thus, in accuracy performance to predict stress at work. Therefore,

we will consider applying existing feature selection methods (i.e., PCA-principal compo-

nent analysis (Malhi and Gao, 2004), ICA-independent component analysis (Fortuna and

Capson, 2004), and KPCA-kernel principal component analysis (Cao et al., 2003)).

In this line, we also plan to continue to explore our work on transfer learning along

the following directions:

u We plan to apply dimensionality reduction and feature selection methods using trans-

fer learning approaches. However, there are several research issues that are needed

to be addressed, like, i) how to determine the number of the reduced dimensional-

ity, and ii) how to develop an efficient algorithm for automatic self-learning transfer

learning from scarce data similar to recent study in (Raina et al., 2007).

u Most of research work in transfer learning assumed that data from different domains

must be independent distributed. However, in real-life settings, such as prediction

content of users social networks, generally data are found often relational, which in

turn presents a major challenge to transfer learning (Kumaraswamy et al., 2015). In

future work, we plan to apply the dimensionality reduction in a relational learning
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manner, and in this way we make sure that the data in source and targeted subjects

can be relational instead of being independent distributed.

u We also plan to research the negative transfer learning issue. As shown in the

Chapter 6, when the source and target tasks are dissimilar, all the knowledge ex-

tracted from a source task did not help improve the performance of the targeted task.

Therefore, avoiding negative transfer and ensure that the safe transfer of knowledge

to targeted domain is crucial in transfer learning.

7.3.2 Future challenges using semi-supervised learning

As discussed throughout this thesis, we demonstrated the use of semi-supervised learning

methods to learn from unlabeled data. The performance of semi-supervised algorithms

may suffer if the wrong algorithm is chosen, thus, a secure semi-supervised learning algo-

rithms have to ensure their performance which is at least as well as supervised learning.

In this research work, we have analysed the performance of semi-supervised learning

algorithm (namely Self-training algorithm) for two specific domains. In order to ensure the

performance of Self-training, in this research work we used only decision trees algorithms

and all reported results that were obtained from both domains used default parameters

of classifiers. In future work, more sophisticated semi-supervised algorithms (i.e., Co-

training) with other algorithms using different parameters of classifiers, can be used to

take advantage of the available unlabeled data. Using Co-training is slightly similar to

Self-training approach, however, a critical difference from Self-training is that Co-training

uses two classifiers instead of one and operates on a different view of the same instance.

The strength of Co-training is that a classifier trained on the first view assigns predicted

labels and are given to the classifier that operates on the second view or other way around.

The main idea is that a classifier trained on the first view assigns predicted labels, which

are given to the classifier operating on the second view, and contrariwise (Blum and

Mitchell, 1998).

Using the Co-training it is expected that better results can be obtained with a careful

tuning of parameters of the classifiers. In addition, the classifier may be improve the

accuracy performance by adding intermediate model weights in different stages of model

building of co-training classification. We showed with some experiments that our Self-

training approaches combined with IM approach performs better than or comparably to

existing algorithms which are supervised in nature.

Furthermore, it is advisable to find more theoretically justified form of SSL by choosing

automatically among different classification semi-supervised algorithms. The key chal-

lenge is to determine a logic prior over classifiers of using different types of SSL learning

in order to define a proper likelihood function. Finally, future challenges using SSL are
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when researchers are able to exploit unlabeled data without being experienced in machine

learning or adapting the development of SSL into their studies.

7.3.3 Future challenges using multi-label classification

In this thesis, we proposed using IM that are generated from one variable of the self-

reported questionnaire at a time. IM proposed in this research work assumes that each

questionnaire variables can be obtained independently from the values of the other ques-

tions. In order to compare the results from proposed approach, in our future work, we

would like to explore the use of multi-label classifiers (Tsoumakas and Katakis, 2006),

where a set of classes (i.e., all the variables associated with the questionnaires) can be

predicted at the same time, and where some dependencies between them can be incorpo-

rated.

The main advantage of this method is that many binary classifiers can be readily used

to build a multi-label learning models. However, using this method ignores the underly-

ing mutual correlation among different label, however, in practice could have significant

contributions to the classification performance (Zhu et al., 2005). Another disadvantage

using multi-labeled classifier for analysis of data of individuals monitored in healthcare

using the self-reported questionnaires rates (e.g., rating their emotional status {1, .., 5})
limits defining labeling of instances related to their wellbeing (e.g., low, moderate, high)

into two binary levels {0, 1} and inter-label correlations between labeled variables.

We would also like to combine multi-label learning approach with Semi-supervised

algorithms to exploit unlabeled data information and develop more robust predictive

models. Semi-supervised multi-label learning is proposed in (Liu et al., 2006), were labeled

(l) instances (x1, y1),···,(xl, yl), and unlabeled (u) instances xl+1,···, xl+u, where each xi
= (xi1,···, xim)T is an m-dimensional feature vector and each yi = (yi1,···, yik)

T is a k -

dimensional label vector. Here, the approach assumes that the label of each instance for

each category is binary: yij∈ {0, 1} . And n = l + u are the total number of instances,

X = (x1,···, xn)T and Y = (y1,···, yn)T = (c1,···, ck).

Finally, we would also like applying TL and Ensemble approaches in the models build

from multi-label learning and exploit the performance of approach.

7.3.4 Future challenges using Transfer-learning

Following the advances in machine learning framework, we believe that the automatic self-

training models is the future of monitoring human wellbeing. Knowledge transfer across

individuals that provide different distributions is known problem in machine learning that

has not been investigated in details. In the Chapter 6, we have demonstrated using TL in

employees with low rate of labeled instances to understand their daily behaviour patterns.
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Despite the improvements, there are several open ideas that we are planing to address in

future work.

One of the aspect that could improve our work using TL is to analyse in depth other

decision trees or other classification algorithms with different parameters that could help

us in obtaining better clusters of individuals who behave similarly. Based on the clustering

assumption, we would be able to design an effective weighting scheme and achieve better

model weights. We assume that tunning decision and applying feature selection could

help us building better prediction models for new users with few data. In the future

work, we also want to test different levels of granularity for the time dimension to see

whether appear during different time intervals. A future line of research is to construct

prototype models using information from more individuals, during longer periods of time,

and with variations across different wellbeing states.

It is encouraging that combining our simple algorithms, such as Self-training and

Transfer-learning methods, as shown in the Chapters 5 and 6, we produce good results

across a individuals behaviours. With this thesis, we hope to initiate further research in

this area.

7.3.5 User feedback

One of the key role of mental-health services should be to provide meaningful aspects

of individual mental-health status, such as changes or improvements of users wellbeing.

Involving user in these services could make their lives better. As discussed in Chapter 3,

providing feedback information to users may help change bad behaviour patterns and can

be used to encourage for improving behaviours. In this research, we have been mainly

concerned with building accurate machine learning models to infer human behaviour

pattern even in scarce data. However, an obvious consequence of a good inductive models

are to develop an application to alert doctors about possible state or other warning signs

of their patients. This could be useful to follow up on the effectiveness of medication

treatments and it is critical to perform preventive measures on patients in different severe

states.

Another aspect that could improve the system providing the feedback-loop between

physicians and patients in real-time. This link between the physicians and patients it has

been suggested as an essential in an emergency situation in healthcare (Anliker et al.,

2004; Bergelson and Naydenov, 2007; Suh et al., 2011), including the intervention for

severe mental illnesses (Depp et al., 2010).

In future work, we plan applying our proposed methods to learn automatically individ-

ual or groups models to provide real-time feedback information to users with their current

state. Feedback loop methods and interaction between the physicians and patients within
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one closed system would improve the prediction accuracy by adding more knowledge to

the system. Finally, building an advanced generic model for all patients and improve

healthcare intervention from remote on a daily basis.

7.4 Final summary

To summarize this dissertation, this research work makes contribution to the field of ubiq-

uitous computing and the methods proposed advances the state of the art in healthcare

monitoring to address scarce data. The proposed methods used in this thesis contribute

to many active areas of research, including problem formulation and the application of

these ideas to real-world problems in pervasive health computing, and other challenging

domains.

All the effort required for obtaining large amount of labeled data, is clearly becom-

ing important to research for new machine learning algorithms, such as semi-supervised

learning, transfer learning approaches that can improve monitoring in real-world learning

settings. On the other hand, using these methods increases security in making restrictive

assumption about the use of unlabeled data. The work in this research work establishes

a major step in this direction, and the future work proposed here may help to grasp the

potential of unlabeled datasets.

Systems used in trials have been found to be capable for capturing human behviour

patterns in an automatic and unobtrusive manner. We believe that data collected from

the systems and the features extracted, provide useful information about individual’s

behaviour changes and their health status. Using the approaches proposed in this thesis,

it is possible to provide a feedback or alert users about their imminent bipolar episode or

high stress events. Such a system would provide healthcare professionals with additional

information derived from individuals behaviour. It is also important to emphasize that

using the Frameworks in Monarca and Turnout-BurnOut may be applicable to other

groups or disease with very little changes required.

Finally, we remain with a hope that methods proposed will become a fruitful for both

machine learning theory and practical applications in healthcare domain.
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APPENDIX
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A.2 ADDITIONAL RESULTS

– Motor Activity Results in Bipolar Disorder Patients

Table A.1: Intermediate models in supervised setting - Accuracy results from accelerometer frequency
domain features and all audio features.

Classifier p0201 p0302 p0702 p0902 p1002 Mean (±SD) All P.

AdaBoost.M1 86.91 87.18 78.15 90.02 86.8 85.81 (±4.49) 73.53
Bagging 83.22 63.68 74.17 68.81 82.74 74.52 (±8.57) 73.35
C4.5 81.54 85.04 70.86 92.72 84.77 73.10 (±7.93) 73.06
k-NN 74.16 52.99 56.95 67.57 76.65 65.66 (±10.41) 72.83
NaiveBayes 76.85 61.97 62.25 61.54 74.62 67.45 (±7.61) 72.39
RandomForest 85.91 86.75 71.52 88.57 84.77 83.50 (±6.84) 71.94
SVM 83.22 63.68 74.17 68.81 82.74 74.52 (±8.57) 72.09

In order to evaluate the robustness of the proposed approaches, we evaluate the data

extracted from motor activity of individuals in working environments. We present results

using intermediate models in supervised learning setting. The average and standard

deviations of all accuracy values from motor activity features in frequency domain and

all audio features are presented in the Table A.1. From the results is easy to note that

boosting methods has obtained better results compared to decision trees.

Table A.2: Intermediate Model and Semi-Supervised Learning - Accuracy results from
Accelerometer Frequency Domain features and all Audio features.

Classifier p0201 p0302 p0702 p0902 p1002 Mean (±SD) All P.

AdaBoost.M1 80.48 87.76 78.65 90.02 85.78 84.54 (±4.82) 84.48
Bagging 75.93 71.82 74.53 68.81 81.78 74.57 (±4.86) 70.86
C4.5 90.88 90.99 80.90 92.72 87.11 88.52 (±4.73) 88.54
k-NN 69.52 60.97 66.29 67.57 74.22 67.71 (±4.82) 66.76
NaiveBayes 71.94 68.36 59.18 61.54 74.67 67.14 (±6.63) 68.32
RandomForest 85.04 89.15 75.66 88.57 84.44 84.57 (±5.40) 83.70
SVM 75.93 71.82 74.53 68.81 81.78 74.57 (±4.86) 70.86

Further improvements has been made in semi-supervised setting, where intermediate

models improved all accuracy values from motor activity features in frequency domain

and all audio features (shown in the Table A.3). Decision trees yielded significantly better

performance level when more instances were included into classification.

We have evaluated accelerometer frequency domain and audio spectral features (shown

in Table A.3) using intermediate models in supervised learning settings and intermediate

models in semi-supervised setting (shown in Table A.4). Decision trees yielded better

accuracy using audio spectral features. In this thesis we were focused in addressing scarce
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Table A.3: Intermediate models in supervised setting - Accuracy results from accelerometer
frequency domain features and audio spectral features.

Classifier p0201 p0302 p0702 p0902 p1002 Mean (±SD) All P.

AdaBoost.M1 85.57 88.03 78.15 89.40 82.23 84.68 (±4.55) 83.92
Bagging 84.90 68.38 74.17 66.74 82.23 75.28 (±8.10) 74.14
C4.5 86.91 84.62 70.86 96.47 83.76 84.52 (±9.16) 84.32
k-NN 79.87 54.27 55.63 67.98 80.71 67.69 (±12.68) 67.30
NaiveBayes 77.18 61.54 65.56 61.95 76.65 68.58 (±7.77) 69.72
RandomForest 87.92 86.75 72.85 91.48 83.76 84.55 (±7.10) 83.34
SVM 84.90 68.38 74.17 66.74 82.23 75.28 (±8.10) 74.14

data, however, in future work we plan to select extracted features in order to improve the

classification accuracy.

Table A.4: Intermediate Models and Semi-Supervised Learning - Accuracy results from
Accelerometer Frequency Domain features and Audio Spectral features.

Classifier p0201 p0302 p0702 p0902 p1002 Mean (±SD) All P.

AdaBoost.M1 88.30 86.37 78.28 89.40 83.56 85.18 (±4.45) 85.28
Bagging 83.63 73.21 75.28 66.74 80.44 75.86 (±6.56) 77.56
C4.5 94.88 90.99 85.02 96.47 87.11 90.89 (±4.89) 90.82
k-NN 70.76 53.81 66.29 67.98 76.89 67.15 (±8.47) 66.32
NaiveBayes 78.22 68.13 70.79 61.95 74.22 70.66 (±6.17) 70.28
RandomForest 92.40 89.61 75.28 91.48 83.56 86.47 (±7.14) 85.54
SVM 83.63 73.21 75.28 66.74 80.44 75.86 (±6.56) 77.56

– Result achieved from individuals at Stress@Work
Tables A.5 and A.6 show overall information about phone-conversations and SMS’s

for entire monitoring weeks of stress. In Table A.5 we demonstrate overall phone usage

using the demographics of the individuals participated in the study. As discussed in the

Chapter 6, incoming calls where in average higher when they perceived high stress level.

Similarly, the length and number of responded SMS’s where higher in the days when they

perceived stress level.

Table A.7 presents prediction results for every subject monitored stress using the su-

pervised and semi-supervised approaches. Results suggest that using semi-supervised

settings can significantly improve the accuracy, reducing amount of scarce data and im-

proving knowledge of individuals behaviour.

In Table A.8 and Table A.6 we demonstrate further details from Pearson correlation

and multiple regression of all features extracted from our datasets. Both tables have show

high correlation of stress with the objective variables measures.

Similarly, in Table A.10 and Table A.11 we provide results achieved from motor activity
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features from individuals at working environment with the aim at predicting perceived

stress levels. Using intermediate models in semi-supervised setting has been shown to

yield the best results. In the tables we provide different set a algorithms where decision

trees have shown to perform the best accuracy.

173



T
a
b

le
A

.5
:

T
h

e
averag

e
p

h
on

e
d

u
ration

(in
m

in
u

tes),
n
u

m
b

er
of

calls
p

er
d

ay,
av

erage
len

gth
of

S
M

S
an

d
n
u

m
b

er
of

S
M

S
p

er
d

ay
b
y

d
em

ograp
h

ics
an

d
p

erceiv
ed

level
of

stress
(30-su

b
jects)

.

O
u

tg
o
in

g
C

a
lls

In
co

m
in

g
C

a
lls

M
issin

g
C

a
lls

O
u

tg
o
in

g
S

M
S

In
co

m
in

g
S

M
S

A
v
e
r
a
g
e
:

D
u

ra
tio

n
(N

u
m

be
r)

D
u

ra
tio

n
(N

u
m

be
r)

N
u

m
be

r
L

e
n

g
th

(N
u

m
be

r)
L

e
n

g
th

(N
u

m
be

r)

H
M

L
H

M
L

H
M

L
H

M
L

H
M

L

A
ge

2
6
-3

0
4
.1

(2
.0

)
3
.0

(2
.6

)
2
.1

(2
.2

)
4
.4

(1
.5

)
4
.3

(1
.7

)
4
.1

(2
.0

)
1
.3

1
.3

1
.2

7
7
.6

(9
.5

)
4
9
.5

(8
.4

)
5
9
.2

(1
1
.2

)
1
8
4
.8

(2
.3

)
3
5
6
.5

(5
.2

)
1
6
9
.6

(2
.0

)

3
1
-4

0
6
.5

(4
.1

)
6
.5

(2
.9

)
8
.1

(3
.6

)
8
.1

(2
.5

)
5
.1

(2
.1

)
7
.1

(1
.9

)
2
.3

3
.2

1
.6

9
8
.8

(2
.0

)
8
1
.7

(1
.6

)
1
1
5
.2

(1
.9

)
2
7
3
.6

(1
5
.0

)
2
0
5
.1

(5
.1

)
1
8
1
.0

(2
2
.3

)

>
4
1

9
.0

(3
.2

)
7
.4

(3
.4

)
1
0
.0

(3
.6

)
5
.5

(2
.5

)
7
.1

(2
.3

)
9
.0

(2
.5

)
2
.1

1
.9

1
.9

9
0
.4

(3
.2

)
8
0
.7

(3
.4

)
5
8
.4

(3
.6

)
4
5
1
.6

(1
.9

)
4
4
1
.0

(2
.2

)
5
0
5
.7

(2
.1

)

G
en

d
er

–
M

e
n

8
.2

(4
.4

)
8
.5

(4
.0

)
1
1
.0

(4
.5

)
1
0
.2

(2
.0

)
7
.3

(2
.3

)
9
.1

(2
.1

)
2
.7

1
.8

1
.9

1
1
5
.5

(2
.1

)
7
1
.6

(4
.0

)
7
4
.3

(2
.8

)
2
9
5
.2

(3
.3

)
2
8
8
.1

(3
.2

)
2
7
1
.5

(3
.3

)

–
W

o
m

e
n

6
.5

(2
.7

)
6
.1

(2
.7

)
6
.5

(3
.4

)
8
.4

(2
.0

)
6
.0

(2
.3

)
6
.0

(2
.1

)
1
.5

4
.5

2
.0

3
3
.0

(9
.6

)
6
1
.0

(6
.1

)
1
3
8
.8

(3
.4

)
1
7
0
.2

(1
8
.1

)
1
3
9
.3

(6
.4

)
1
4
3
.9

(1
1
.0

)

M
a

rita
l

S
ta

tu
s

–
M

a
r
r
ie

d
7
.4

(3
.8

)
7
.4

(3
.5

)
8
.0

(3
.7

)
9
.5

(2
.6

)
6
.4

(2
.2

)
7
.0

(2
.2

)
2
.4

1
.6

1
.8

8
8
.5

(1
.6

)
5
9
.9

(4
.1

)
5
8
.3

(2
.9

)
2
7
8
.9

(3
.2

)
2
1
2
.6

(2
.4

)
1
8
7
.0

(2
.3

)

–
N

e
v
e
r

M
a
r
r
ie

d
7
.3

(3
.5

)
8
.4

(3
.8

)
1
0
.5

(4
.6

)
9
.2

(2
.1

)
7
.3

(2
.7

)
9
.0

(2
.5

)
1
.5

5
.1

2
.1

4
8
.5

(1
0
.0

)
7
3
.4

(5
.6

)
1
3
0
.3

(3
.2

)
2
0
9
.4

(1
5
.6

)
2
6
4
.3

(6
.5

)
2
4
5
.9

(9
.6

)

N
u

m
ber

o
f

ch
ild

ren
N

o
n

e
6
.5

(3
.3

)
8
.2

(3
.4

)
1
0
.1

(4
.4

)
9
.3

(2
.2

)
6
.2

(2
.2

)
8
.3

(2
.4

)
1
.5

5
.0

2
.1

2
9
.7

(1
0
.7

)
5
5
.6

(6
.8

)
1
2
7
.0

(3
.0

)
1
8
3
.0

(1
7
.7

)
2
5
9
.0

(7
.3

)
2
3
1
.2

(8
.6

)

1
-2

8
.5

(4
.4

)
6
.2

(3
.4

)
6
.5

(3
.5

)
1
0
.3

(2
.8

)
6
.4

(2
.4

)
6
.4

(2
.2

)
3
.2

1
.5

1
.8

9
3
.9

(3
.2

)
4
8
.1

(1
.5

)
4
2
.2

(1
.8

)
3
4
9
.0

(4
.0

)
2
5
4
.6

(2
.9

)
1
9
8
.9

(2
.3

)

3
-4

3
.0

(2
.7

)
8
.3

(4
.4

)
9
.5

(3
.9

)
1
1
.5

(2
.0

)
4
.0

(2
.0

)
7
.5

(2
.0

)
1
.3

2
.2

1
.7

1
4
4
.4

(1
.4

)
4
7
.6

(1
.2

)
8
9
.0

(1
.2

)
1
6
6
.5

(2
.5

)
2
7
9
.0

(2
.8

)
2
1
9
.1

(2
.3

)

O
rga

n
isa

tio
n
–

A
.

6
.5

(3
.4

)
7
.4

(3
.5

)
9
.3

(3
.9

)
1
0
.4

(2
.4

)
6
.5

(2
.2

)
8
.0

(2
.1

)
2
.3

3
.9

1
.9

3
5
.6

(9
.9

)
4
0
.9

(5
.7

)
6
2
.7

(2
.8

)
2
6
1
.1

(1
2
.9

)
2
6
3
.9

(6
.5

)
2
0
1
.9

(1
3
.3

)
–

B
.

9
.3

(4
.3

)
8
.2

(3
.7

)
9
.3

(4
.2

)
6
.5

(2
.5

)
7
.1

(2
.5

)
8
.0

(2
.4

)
1
.6

1
.6

2
.0

1
1
5
.5

(1
.8

)
8
5
.5

(4
.2

)
1
0
9
.3

(3
.1

)
2
0
7
.2

(2
.7

)
2
1
8
.2

(2
.8

)
2
2
6
.9

(3
.5

)

(*
)

H
-

H
ig

h
,
M

-
M

o
d

era
te,

L
-

L
o
w

P
erceiv

ed
S

tress
L

ev
el.

174



T
ab

le
A

.6
:

O
v
er

al
l

m
ea

n
o
f

p
h

on
e

d
u

ra
ti

o
n

(i
n

m
in

u
te

s)
,

n
u

m
b

er
o
f

ca
ll

s
p

er
d

ay
,

av
er

a
g
e

le
n

g
th

o
f

S
M

S
a
n

d
n
u

m
b

er
of

S
M

S
p

er
w

ee
k
d

ay
b
y

d
em

og
ra

p
h
ic

s
a
n

d
p

er
ce

iv
ed

le
ve

l
(P

L
)

o
f

S
tr

es
s,

J
o
b
-d

em
a
n

d
,

a
n

d
J
o
b

-c
o
n
tr

o
l

(3
0
-s

u
b

je
ct

s)
.

O
u

tg
o
in

g
C

a
ll

s
In

co
m

in
g

C
a
ll

s
M

is
si

n
g

C
a
ll

s
O

u
tg

o
in

g
S

M
S

In
co

m
in

g
S

M
S

A
v
e
ra

g
e
:

D
u

ra
ti

o
n

(N
u

m
be

r)
D

u
ra

ti
o
n

(N
u

m
be

r)
N

u
m

be
r

L
e
n

g
th

(N
u

m
be

r)
L

e
n

g
th

(N
u

m
be

r)

H (P
L

)
M (P

L
)

L (P
L

)
H (P

L
)

M (P
L

)
L (P

L
)

H (P
L

)
M (P

L
)

L (P
L

)
H

(P
L

)
M (P

L
)

L
(P

L
)

H (P
L

)
M (P

L
)

L
(P

L
)

P
er

ce
iv

ed
S

tr
es

s
M

o
n

d
a
y
:

6.
4

(3
.1

)
7.

1
(3

.7
)

7.
1

(4
.2

)
1
0
.3

(2
.3

)
6
.5

(2
.5

)
6
.0

(2
.1

)
2
.4

1
.5

1
.7

4
4
.0

(6
.4

)
7
4
.8

(3
.1

)
9
3
.4

(3
.5

)
2
5
2
.8

(2
.6

)
2
4
1
.2

(7
.2

)
2
1
2
.4

(1
0
.6

)

T
u

e
sd

a
y
:

5.
0

(2
.9

)
9.

4
(3

.6
)

8.
5

(4
.3

)
9
.3

(2
.1

)
7
.2

(2
.5

)
6
.5

(2
.3

)
1
.6

1
.8

2
.0

4
7
.9

(1
0
.7

)
7
6
.1

(4
.2

)
7
7
.1

(3
.5

)
1
7
8
.4

(1
.8

)
2
4
8
.1

(3
.1

)
2
0
1
.4

(2
.9

)

W
e
d

n
e
sd

a
y
:

8.
0

(4
.3

)
8.

5
(4

.0
)

11
.2

(4
.2

)
1
2
.1

(3
.0

)
6
.3

(2
.4

)
9
.5

(2
.5

)
2
.5

5
.8

2
.2

5
0
.0

(1
2
.6

)
7
8
.6

(6
.2

)
1
4
8
.5

(2
.8

)
3
3
0
.5

(2
1
.1

)2
4
1
.5

(3
.0

)
2
3
6
.8

(1
0
.4

)

T
h
u

rs
d

a
y
:

8.
5

(4
.2

)
7.

25
(3

.8
)

9.
4

(4
.1

)
8
.4

(2
.5

)
6
.4

(2
.6

)
7
.5

(2
.6

)
1
.9

1
.7

1
.9

8
6
.3

(6
.4

)
5
6
.4

(5
.1

)
9
4
.2

(3
.1

)
2
4
1
.4

(2
.8

)
2
2
6
.9

(6
.7

)
2
4
2
.2

(3
.2

)

F
ri

d
a
y
:

9.
2

(4
.0

)
6.

2
(2

.9
)

9.
4

(3
.7

)
7
.4

(2
.1

)
7
.3

(2
.4

)
9
.4

(2
.3

)
2
.2

1
.5

1
.7

5
9
.2

(4
.1

)
4
7
.6

(5
.0

)
6
9
.3

(2
.3

)
2
0
4
.7

(2
1
.8

)2
2
1
.7

(2
.7

)
2
0
8
.8

(2
.8

)

P
er

ce
iv

ed
jo

b-
d
em

a
n

d
:

8.
1

(3
.0

)
6.

4
(3

.4
)

11
.1

(4
.1

)
7
.4

(2
.4

)
7
.5

(2
.4

)
8
.5

(2
.4

)
2
.5

1
.9

2
.0

7
3
.5

(4
.4

)
7
2
.5

(5
.8

)
1
0
6
.5

(2
.8

)
2
2
0
.0

(6
.3

)
2
1
6
.0

(6
.8

)
2
5
4
.0

(5
.9

)

P
er

ce
iv

ed
jo

b-
co

n
tr

o
l:

9.
5

(3
.5

)
7.

4
(3

.3
)

7.
3

(4
.4

)
9
.0

(2
.5

)
7
.4

(2
.4

)
6
.3

(2
.1

)
2
.1

1
.7

3
.8

9
8
.5

(3
.7

)
7
6
.0

(4
.8

)
5
7
.0

(5
.0

)
2
7
3
.6

(5
.8

)
2
0
0
.8

(4
.5

)
1
7
0
.2

(1
3
.0

)

(*
)

H
-

H
ig

h
,
M

-
M

o
d

er
at

e,
L

-
L

ow
b
y

P
er

ce
iv

ed
S

tr
es

s,
J
o
b

-D
em

a
n

d
s,

a
n

d
J
o
b

-C
o
n
tr

o
l.

175



Table A.7: Stress prediction using decision trees before and after applying a Semi-supervised
learning (SSL) approach. Overall classes represent overall number of labeled classes in

supervised learning and after performing unsupervised learning methods.

Subjects Supervised Semi-Supervised Overall Increase in
Prediction (%)

S02 87.50% 88.89% +1.39%
S03 67.24% 67.69% +0.45%
S04 67.35% 75.00% +4.53%
S05 65.31% 67.24% +1.93%
S06 86.79% 84.62% -2.17%
S07 94.74% 95.16% +0.42%
S08 62.96% 62.96% 0.00%
S09 53.85% 53.85% 0.00%
S01 61.43% 61.43% 0.00%
S10 73.47% 73.47% 0.00%
S11 33.33% 76.36% +43.03%
S12 52.54% 52.54% 0.00%
S13 41.82% 56.25% +14.43%
S14 56.45% 54.69% -1.76%
S15 76.92% 85.29% +8.37%
S16 53.70% 53.70% 0.00%
S17 53.73% 53.73% 0.00%
S18 85.29% 83.78% -1.51%
S19 50.00% 50.00% 0.00%
S20 65.51% 85.48% +19.97%
S21 84.29% 84.29% 0.00%
S22 79.10% 79.17% +0.07%
S23 51.67% 51.67% 0.00%
S24 72.86% 72.86% 0.00%
S25 80.00% 83.67% +3.67%
S26 90.38% 90.38% 0.00%
S28 52.94% 52.94% 0.00%
S29 85.37% 94.83% +9.46%
S30 64.29% 64.29% 0.00%
S27 76.19% 95.71% +19.52%

Accuracy
Mean(±SD):

67.57% (±15.60%) 71.73% (±15.25%) 4.20% (±9.52%)

Overall
Labeled

Instances:

79.97% (1465/1832) 94.00% (1722/1832) 14.03%

Precision
(%):

65.4% 68.9%

Recall (%): 68.9% 73.0%
F-Score (%): 66.0% 70.0%
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Table A.8: Pearson correlations between objective variables and Perceived Stress Level,
Negative Mood Score, Positive Mood Score, and Overall Mood Score.

Objective Variables Stress Level Negative
Mood

Positive Mood Total Mood
Score

Physical Activity Level -0.153** -0.112** 0.071** 0.116**

Cellular Locations -0.070 * -0.070* 0.033 0.065*
Sig. (2-tailed) 0.022 0.024 0.290 0.036

Nr. 1056 1056 1056 1056
Google-Maps Locations 0.051 0.017 0.079* 0.033

Sig. (2-tailed) 0.100 0.587 0.010 0.289
Nr. 1057 1057 1057 1057

Wifi Locations 0.087** 0.039 -0.120** -0.093**
Sig. (2-tailed) 0.001 0.133 0.000 0.000

Nr. 1458 1458 1458 1458

Social-Interaction 0.032 0.059* -0.142** -0.119**
Sig. (2-tailed) 0.258 0.036 0.000 0.000

Nr. 1279 1279 1279 1279
Number-Outgoing-Calls -0.980** -0.112** 0.083** 0.121**

Sig. (2-tailed) 0.001 0.000 0.006 0.000
Nr. 1121 1121 1121 1121

Number-Incoming-Calls -0.005 -0.090** -0.019 0.05
Sig. (2-tailed) 0.866 0.002 0.522 0.093

Nr. 1122 1122 1122 1122
Missed-Incoming-Call -0.006 -0.023 -0.012 0.009

Sig. (2-tailed) 0.847 0.441 0.688 0.769
Nr. 1132 1132 1132 1132

Duration-Outgoing-Call -0.098** -0.097** 0.101** 0.123**
Sig. (2-tailed) 0.006 0.007 0.005 0.123

Nr. 771 771 771 771
Duration-Incoming-Call 0.037 -0.034 0.091* 0.074*

Sig. (2-tailed) 0.313 0.354 0.013 0.044
Nr. 737 737 737 737

Number-SMS-Outgoing 0.090** -0.071* 0.004 0.05
Sig. (2-tailed) 0.002 0.888 0.016 0.092

Nr. 1132 1132 1132 1132
Number-SMS-Incoming 0.006 -0.012 -0.044 -0.016

Sig. (2-tailed) 0.850 0.683 0.143 0.590
Nr. 1126 1126 1126 1126

Length-SMS-Outgoing -0.154** -0.153** 0.106* 0.156**
Sig. (2-tailed) 0.001 0.001 0.017 0.000

Nr. 505 505 505 505
Length-SMS-Incoming 0.013 -0.028 0.088* 0.069

Sig. (2-tailed) 0.737 0.478 0.028 0.069
Nr. 623 623 623 623

Duration-Apps-System 0.008 -0.021 -0.024 0.001
Sig. (2-tailed) 0.759 0.436 0.373 0.976

Nr. 1412 1412 1412 1412
Duration-Apps-Social 0.067 0.067 -0.218** -0.161**

Sig. (2-tailed) 0.153 0.152 0.000 0.001
Nr. 460 460 460 460

Number-Apps-System -0.129** -0.181** 0.194** 0.228**
Sig. (2-tailed) 0.000 0.000 0.000 0.000

Nr. 1294 1294 1294 1294
Number-Apps-Social -0.060 -0.040 -0.004 0.024

Sig. (2-tailed) 0.203 0.399 0.936 0.610
Nr. 450 450 450 450

– Significant at the level: *ρ <0.05; **ρ <0.01.
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Table A.9: Significant results from the multiple regression using objective measurements with
respect to Stress and Total Mood Score.

Stress Total Mood Score

Objective Variables β t ρ β t ρ

Physical-Activity Levels -.0111 -5.88 0.001 -.0111 -5.88 0.001

Cellular Location -.2333 -2.29 0.022 .0376 2.10 0.036
Google-Maps Location .0685 1.65 0.100 .0077 1.06 0.289

WiFi Location .0057 3.34 0.001 -.0041 -3.58 0.001

Social Interaction (SI) .0001 1.13 0.258 -.0008 -4.28 0.001
Number-Outgoing-Calls -.0374 -3.31 0.001 .0081 4.07 0.001

Number-Incoming-Calls -.0033 -0.17 0.866 .0058 1.68 0.093
Missed-Incoming-Call -.0015 -0.19 0.847 .0004 0.29 0.769

Duration-Outgoing-Call -.0125 -2.73 0.006 .0026 3.43 0.001
Duration-Incoming-Call .0048 1.01 0.313 .0016 2.02 0.044

Number-SMS-Outgoing .0188 3.05 0.002 .0018 1.68 0.092
Number-SMS-Incoming .0003 0.19 0.850 -.0001 -0.54 0.590

Length-SMS-Outgoing -.0015 -3.49 0.001 .0003 3.55 0.001
Length-SMS-Incoming .0001 0.34 0.737 .0001 1.72 0.086

Duration-Application-System .0001 0.31 0.759 .0001 0.03 0.976
Duration-Application-Social .0001 1.43 0.153 -.0001 -3.47 0.001

Number-Application-System -.0061 -4.69 0.001 .0020 8.42 0.001
Number-Application-Social -.0189 -1.27 0.203 .0014 0.51 0.610

Significant at the level: ρ <0.05; ρ <0.01.
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Table A.10: Comparison in terms of accuracy, precision, recall and f-measure of Supervised
and Semi-supervised learning using different classifiers for predicting perceived stress.

Algorithms Supervised % SSL %

C4.5 Accuracy: (Mean±SD) 59.24 (±15.40) 68.66 (±15.53)
Precision: 58.43 68.12

Recall: 59.23 69.07
F-Measure: 58.68 68.72

Random-Forest Accuracy: (Mean±SD) 65.50 (±12.72) 69.21 (±12.91)
Precision: 61.49 65.76

Recall: 65.50 69.21
F-Measure: 61.71 65.56

Naive-Bayes Accuracy: (Mean±SD) 47.93 (±15.14%) 50.08 (±15.72)
Precision 56.04 57.00

Recall 47.88 50.09
F-Measure 47.88 49.39

AdaBoost.M1 Accuracy: (Mean±SD) 61.88 (±17.21) 63.51 (±15.57)
Precision: 54.19 54.91

Recall: 61.88 63.51
F-Measure: 56.24 56.91

SVM Accuracy: (Mean±SD) 60.59 (±16.81) 61.70 (±16.53)
Precision: 48.29 52.96

Recall: 60.59 61.71
F-Measure: 51.91 54.09

Bagging Accuracy: (Mean±SD) 64.67 (±15.15) 69.48 (±13.62)
Precision: 58.46 64.85

Recall: 64.67 69.47
F-Measure: 60.26 65.56

k-NN (1) Accuracy: (Mean±SD) 55.90 (±14.09) 56.93 (14.22)
Precision: 55.64 56.31

Recall: 55.91 56.94
F-Measure: 55.64 56.52
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Table A.11: Comparison of the supervised learning method with the Intermediate Models
(SL-IM) and SSL with the Intermediate Models (SSL-IM).

Algorithms SL & IM (%) SSL & IM (%)

C4.5 Accuracy (Mean±SD) 67.51 (±15.21) 77.24 (±16.80)
Precision: 66.20 74.43

Recall: 67.51 74.66
F-Measure: 66.47 73.81

Random-Forest Accuracy(Mean±SD): 71.68 (±12.98) 78.20 (±12.00)

Precision: 68.15 73.09
Recall: 71.49 75.45

F-Measure: 68.58 72.74

Näıve-Bayes Accuracy(Mean±SD): 57.42 (±16.02) 58.28 (±14.29)

Precision: 59.37 73.19
Recall: 55.33 74.54

F-Measure: 54.93 72.41

AdaBoost.M1 Accuracy(Mean±SD): 66.51 (±16.4) 75.18% (±16.76)

Precision: 59.82 65.14
Recall: 64.29 56.33

F-Measure: 59.95 57.36

SVM Accuracy(Mean±SD): 68.70 (±15.84) 77.11% (±15.84)

Precision: 63.42 69.03
Recall: 66.60 72.67

F-Measure: 63.62 68.89

Bagging Accuracy(Mean±SD): 68.70 (±15.80) 77.11% (±15.84)

Precision: 63.24 68.80
Recall: 66.42 68.13

F-Measure: 63.36 67.67

k-NN (1) Accuracy(Mean±SD): 63.32 (±13.53) 70.48 (±17.27)

Precision: 61.96 73.19
Recall: 62.82 74.54

F-Measure: 62.06 72.41
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