
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

University of Trento
Department of Information Engineering and Computer Science

A Nomadicity-driven Negotiation

Protocol, Tactics and Strategies for

Interacting Software Agents

SAMEH ABDELNABY

Advisor:

Prof. Paolo Giorgini

Università degli Studi di Trento

January 2010

1

2

Abstract

The rising integration of pocket computing devices in our daily life duties
has taken the attention of researchers from different scientific backgrounds.
Today’s amount of software applications that bring together advanced mobile
services and literature of Artificial Intelligence (AI) is quite remarkable and
worth investigating. Cooperation, coordination and negotiation are some of
AI’s focal points wherein many of its related research efforts are strengthen-
ing the join between sophisticated research outcomes and modern life require-
ments, such as serviceability on the move.

In Distributed Artificial Intelligence (DAI), several of the research con-
ducted in Multi-Agent Systems (MASs) addresses the mutually beneficial
agreements that a group of interacting autonomous agents are expected to
reach. In our research, we look at agents as the transportable software pack-
ets that each represents a set of needs a user of a pocket computing device
demands from a remote service acquisition platform. However, when a set of
software agents attempt to reach an agreement, a certain level of cooperation
must be reached first, then, a negotiation process is carried out. Depending
on each agent’s negotiation skills and considerations, the returns of each ac-
complished agreement can either be maximized or minimized.

In this thesis, we introduce a new negotiation model, (i.e., protocol, set of
tactics, strategy), for software agents to employ while attempting to acquire
a service on behalf of users of pocket computing devices. The purpose of our
model is to maximize the benefits of the interacting agents while considering
the limitations of the communication technologies involved and, the nomadic
nature of the users they represent. We show how our model can be generically
implemented. Then, we introduce two case-studies that we have been working
on with our industrial partner and, we demonstrate these cases’ experimental
results before and after applying our negotiation model.

Keywords
[Multi-Agent Systems, Negotiation, Nomadicity, Pocket Computing Devices]

Acknowledgments

Authoring a doctoral dissertation is a long journey, longer than I expected,
and I am in debt to many who have supported me along this journey.

It is with great respect that I thank Prof. Paolo Giorgini for his help and
insight. I also would like to thank ArsLogica for sponsoring part of my PhD.

I would like to also thank members of my PhD committee for the time
and effort they spent on reviewing my work and accepting to participate in
the final ceremony: Prof. Marie-Pierre Gleizes, Prof. Andrea Omicini, and
Prof. Aldo Franco Dragoni. Thank you for everything.

I am also grateful to Prof. Bruno Beaufils and all the members of the
group of Systémes Multi-Agents et Comportements (SMAC) at the Univer-
sity of Lille 1, (a.k.a., University of Science and Technology of Lille), for
the massive amount of understanding and support during the last and most
critical phase of my PhD.

Throughout the journey, I have been fortunate to enjoy the compassion
and backing of several friends: Olga Zlydareva, Rasha Nasr, Amr Youssef,
Raian Ali, Mahmoud El-Gayyar, Sameh Ibrahim, Nasser Afify, Abdelhakim
Fraihat, and my brothers Moataz & Amr. I am grateful to all of them.

Finally, I would like to acknowledge the indispensable contribution of my
parents for without their love, sacrifices, and prayers, this research would
have never been completed: Mohamed Abdelnaby Abdalla & Ahlam Ibrhaim
Youssef, Thank You.

4

Contents

1 Introduction 11
1.1 Our Research Context . 12

1.1.1 Communications & Nomadicity 14
1.1.2 Serviceability & Agents Negotiation 16

1.2 Problem & Solution Statement 18
1.3 Early Highlights . 19

1.3.1 Reducing Exchange of Messages 19
1.3.2 Reflecting Real-life Behaviors 19
1.3.3 Building Channels of Feedback 20

1.4 Publications . 20
1.4.1 International Journals 20
1.4.2 International Conferences & Workshops 20
1.4.3 Technical Reports . 22

1.5 Structure of the Thesis . 22

2 State of the art 25
2.1 The Agent Paradigm . 25
2.2 Agent-Oriented Software Engineering (AOSE) 27
2.3 Ambient Intelligence (AmI) & Agents Negotiation 29

2.3.1 The Multidisciplinary AmI 30
2.3.2 Agent-oriented AmI development 32

2.4 Agents Negotiation in Different Contexts 34
2.4.1 Advanced Agents Negotiation in Common Settings . . 35
2.4.2 Agents Negotiation for Service Acquisition 36
2.4.3 Agents Negotiation in Wireless Networks 40

2.5 Related Work . 42
2.6 Chapter’s Summary . 44

3 The Nomadicity-driven Negotiation Model 47
3.1 The Model’s Abstract Setting 47

3.1.1 A Community, its Concern, and Sub-concerns 51

5

3.1.2 Members, Unions and Tradeoffs 52
3.1.3 Tradeoffs vs. Requests 53
3.1.4 Agents Societies and AOSE 54

3.2 The Negotiation Issue . 55
3.2.1 The Service-Centric Community 55
3.2.2 The Service-Centric Issue 57
3.2.3 Agent’s satisfaction and its Instances 58
3.2.4 Agents’ reactions to different Instance’s forms 60

3.3 The Negotiating Agents . 62
3.4 The Negotiation Protocol . 64
3.5 Negotiation Timelines . 67
3.6 Chapter’s Summary . 69

4 The Negotiation Tactics & Strategies 71
4.1 The Negotiation Tactics . 71

4.1.1 Time-based Tactics . 72
4.1.2 Connectivity Related Tactics 75

4.2 The Negotiation Strategies . 82
4.2.1 Enabling Socialability through Cooperation 84
4.2.2 Fidelity-driven Strategies 86

4.3 Chapter’s Summary . 88

5 Model Implementation 90
5.1 An Overview . 90
5.2 Model’s Implementation Circumstances & Conditions 92
5.3 The Negotiation Protocol . 95

5.3.1 Accepting a Union Formation 96
5.3.2 Rejecting a Union Formation 97
5.3.3 Pending a Union Formation 98
5.3.4 Depositing a Union Formation 100
5.3.5 The Protocol in a Nomadicity-Oriented Setting 101

5.4 The Negotiation Tactics . 106
5.4.1 Time-driven Tactics . 106
5.4.2 Connectivity-driven Tactics 110

5.5 Chapter’s Summary . 112

6 Case Studies 115
6.1 Andiamo . 115

6.1.1 Application Motivations 116
6.1.2 The Framework . 117
6.1.3 The Auction-based Negotiation 121

6

6.1.4 Rideshare System Layer 124
6.1.5 Andiamo in brief . 129

6.2 BarterCell . 129
6.2.1 BarterCell Architecture 129
6.2.2 BarterCell’s Adhoc Negotiation Algorithms 131
6.2.3 Testing BarterCell . 136
6.2.4 BarterCell’s Negotiation Evaluation 136
6.2.5 BarterCell in brief . 141

7 Experimental Results 143
7.1 Bartering On-the-go . 143

7.1.1 BarterCell: First Run 143
7.1.2 BarterCell: Second Run 145
7.1.3 BarterCell: Third Run 148
7.1.4 Our model in Bartering context 150

7.2 Carpooling On-the-go . 152
7.2.1 Andiamo: First Run 154
7.2.2 Andiamo: Second Run 155
7.2.3 Andiamo: Third Run 156
7.2.4 Our model in Carpooling context 158

7.3 Model Limitations . 161

8 Conclusions & Future Work 163
8.1 Model’s Conclusion Statement 164
8.2 Future Work . 164

Bibliography 167

7

List of Figures

1.1 Nomadicity, nomadic devices, nomadic environments and no-
mads . 15

3.1 Agents’ Society, Community, and Cluster. 48

3.2 Community’s concerns, sub-concerns and agents’ unions 49

3.3 Community’s concern, subconcerns, members, unions, requests
& tradeoffs . 51

3.4 The negotiation Issue of a service-centric community. 58

3.5 Levels of satisfaction Vs. Sets of Requests 59

3.6 Satisfaction Levels, Sets of Requests, and Sets of Tradeoffs . . 61

3.7 Key-sets Vs. Agent’s Requests Vs. Agent’s Tradeoffs: Matrix 63

3.8 An example of two agents’ service matrixes 64

3.9 Protocol’s decisions and sessions control timelines 68

5.1 Model’s Strategies, Tactics, Protocol, Users, Agents, PCDs,
Wireless Access Points, Negotiation Sessions, and the Head-
agent. 91

5.2 A sequence diagram explaining the phases existing prior to the
negotiation time . 93

5.3 An example of an SRF structure for a car-ride service. 94

5.4 Two possible samples of a combinations subsection in a car-
ride SRF . 94

5.5 A possible view of a service-oriented MAS with matching agents. 96

5.6 A situation where two negotiating agents accept the union
formation. 97

5.7 A situation where one of the negotiating agents rejects the
union formation. 98

5.8 A situation where one of the negotiating agents rejects the
union formation. 99

5.9 The sequence of actions taken by a depositor agent and its
managing MAS . 100

8

5.10 A Prometheus diagram to locate the negotiation protocol we
introduce on the environment we address 102

5.11 The Model’s Two Different Time-driven Tactics 107
5.12 Negotiating Agent Actions in Situations of Prompt Commu-

nications Channel . 110

6.1 The Three-layer Model . 117
6.2 User-Request Elaboration Process 119
6.3 A Typical Rideshare Transmission Protocol 121
6.4 Mobile-to-Service Accessability Scenario 125
6.5 Service Accessibility . 126
6.6 Pending Results Retrieval . 128
6.7 The architecture of BarterCell. 130
6.8 Simulating the number of Agents in BarterCell 137
6.9 System Load Distribution . 138
6.10 Simulating the number of items at each agent level 138
6.11 Agent Satisfaction Level . 139
6.12 Processing time representation of agent satisfaction level . . . 139
6.13 Abstract Comparison of the Different Negotiation Protocols . 140

7.1 BarterCell’s first run . 145
7.2 BarterCell’s second run . 147
7.3 BarterCell’s third run . 149
7.4 BarterCell’s three negotiation models evaluation 150
7.5 Andiamo’s first run . 155
7.6 Andiamo’s second run . 156
7.7 Andiamo’s third run . 157
7.8 Andiamo’s three negotiation models evaluation 159

9

List of Tables

2.1 Agents Negotiation in Common Settings: A Comparison . . . 37
2.2 Agents Negotiation for Service Acquisition: A Comparison . . 41

6.1 Bartering Chain Length & Creation Time 140

7.1 BarterCell’s first run: Data Sheet. 144
7.2 BarterCell’s second run: Data Sheet. 146
7.3 BarterCell’s third run: Data Sheet. 148
7.4 Andiamo’s Simulation Parameters 153

10

Chapter 1

Introduction

Pocket computing devices (PCDs), such as Smartphones and PDAs, are in-
creasingly showing the efficiency of relying on them and the importance of
obtaining them. Recent advances on pocket computing devices are part of the
communications’ revolution that made it possible to virtually carry our offices
anywhere we go. Nowadays, people are using different types of lightweight
devices that allow them to check their emails, exchange faxes, surf the Inter-
net, edit documents, do shopping, and play a role in a social network. Some
of the responsibilities scholars of this time are taking into account to advance
this revolution are summarized in making all these services interoperable, se-
cure, robust, interactive, smarter, scalable, autonomous, and lighter.

Several recent market studies, such as [1, 2], and older ones such as [3],
have showed that after the success of the Global System for Mobile commu-
nication (GSM) in late 90s, enabling cellular phones to access ”services” of
the Internet was the groundbreaking idea that positively affected the world’s
mobile phone penetration rate. Besides, particularly in [3], studies have an-
ticipated that latest market statistics - at that time - indicates that unvoiced
mobile phone services will approximately be worth USD 200b by 2010.

It is now clear that - in general - any service that can be electronically
represented to end-users will also have to be also mobilized in the very near
future. Therefore, the mobile services era that is ahead of us has made
it clear that a new age of further innovative, intelligent and sophisticated
service development techniques is required.

Agents’ deployments in industrial and profit-making applications are con-
tinually growing and, related research are relatively expanding, for an overview:
[4], [5], and [6]. Literature of Multi-Agent Systems (MAS) is witnessing the
success of delivering advanced mobile services to users of computing pocket
devices, (e.g., Kore [7], mySAM [8]). These applications apply several of
DAI’s approaches and take advantage of agent-oriented software engineering

11

methodologies to build goal and service-driven architectures that assist users
on-the-go.

In the context of this thesis, when we mention the phrase ”on-the-go”
we tend to refer to the active style of users of pocket computing devices
that make them wander from a place to another while always seeking a
connectivity to interact with a certain remote service acquisition platform.

The ability for an agent to reflect the preference and intelligence of its
user in virtual communities is making agents techniques better in increasing
the portability of nomadic users. A number of agent development frameworks
have recently included an extra feature to enable the development of mobile
applications. For example, a recent release of JADE [9] - one of the most used
Agent frameworks - has introduced limited APIs for mobile applications.

Scholars’ efforts were also directed toward the integration of agent-based
systems and peer-to-peer computing, and the returns both areas would gain
from such integration. A survey on that direction can be found in [10],
wherein the author is pointing out the frontier of these two research areas,
MAS and P2P systems, and surveying the research efforts that have been
made so far to address this issue. Moreover, in [11] an extension to that was
recently presented to address the same potential integration but throughout
lightweight computing instead. With Android [12] - that is an open source
mobile operating system running on the Linux kernel - scholars of [11] have
raised the significance of integrating JADE [9] and ANDROID [12].

From our experience at The University of Trento, we could also state that
creating a range of interactive services that are further intelligent, indepen-
dent and accessible by mobile and computer users is suitably realized through
the use of autonomous agents and Multi-Agent Systems. However, extra en-
hancements, (i.e., new negotiation protocols and tactics), were required and
will continue to change in order to meet the world’s latest technology trends
and requirements, plus, users’ behaviors.

1.1 Our Research Context

In Distributed Artificial Intelligence (DAI), a significant part of the research
conducted is focusing on increasing the level of cooperation achieved between
agents that are located in distributed environments [13]. These agents can
be perceived as the operating entities, (e.g., servers), that are randomly lo-
cated in different spaces, or the platforms running on these machines, and
recently, in our research it can also be perceived as the tiny descriptors that
are produced by computing pocket devices to wander in virtual environments
reflecting nomadic users’ preferences and needs.

12

In an intersection between two of DAI’s subtopics, Distributed Problem
Solving (DPS) [14, 15] and Multi-agent Systems (MAS) [16, 17], our main
focus comes in a place related to the quality, complexity, speed and amount of
data or services that can be offered by these distributed agents with respect
to the amount of resources utilized. Within this theme, several negotiation
strategies were proposed by scholars that mostly aimed at the construction
of a proper negotiation protocols, mechanisms, or tactics that agents may
use to reach mutually beneficial agreement. An example of that can be the
Strategic Negotiation in Multiagent Environments of Sarit Kraus [18].

The art of negotiation [19], and its attractive research arguments are
always of great scholarly interest. Different science branches, such as politi-
cal sciences and sociology, are analyzing and studying the best way humans
and countries are discussing their opinions and exchanging their ideas with
intentions to reach agreements. Several of the research activities in vari-
ous sciences have intuitively demonstrated that different situations require
different negotiation approaches to increase the potential for better overall
discussion outcomes. Similarly, computer scientists are also alarmed with
the importance of negotiation studies and explorations.

From the literature of Multi-Agent Systems (MAS), many research efforts
have been approaching differently the problem of resolving complex situations
among interacting agents by means of self-organization as presented in [20],
and others by means of argumentation [21], and also by means of cooperation
as presented in [22]. However, negotiation: another alternative for resolving
complex situations among agents, is the focus of our research work, neverthe-
less, evaluating different approaches in a Nomadicity setting such that one
we address is of great interest to us in the near future.

In multi-agent systems, several research efforts are addressing the nego-
tiation of agents in different contexts and, for different purposes. Literature
contributions, such as those of [23, 24, 18], are presenting negotiation models;
(i.e., Protocol, Tactics, Strategies), that address specific situations wherein
it is likely to have several heavyweight computing machines interacting with
each others. It is then assumed that by choosing and applying one of these
negotiation models, the interactions among all involved interacting compo-
nents will be driven to simplicity and clarity in resolving complex situations.

Existing development approaches and implementation frameworks, which
are agents-driven, are taking existing negotiation models into account they
are not necessarily addressing the current changes of light computability
and, they are likely to miss the support of Nomadicity [25], and its emerg-
ing requirements. Identifying the new requirements that take the nomadic
character of nowadays users into account is an essential task, especially after
the advances made on lightweight pocket devices and communication tech-

13

nologies. Considering these new requirements while designing a negotiation
model that controls the interactions of these nomadic entities is another chal-
lenging phase on the direction of reaching Nomadicity.

1.1.1 Communications & Nomadicity

Having a reliable means of communication are costless with respect to the
real value of the services offered to PCDs on-the-go, which encourages more
people every day to demand more of the on-the-run kind of services. It is now
evident that changes are about to happen in the way mobile phone services
are perceived and contents are delivered. Consequently, changes have to
be made on the protocols and techniques used to facilitate these foreseen
interactions of software and people.

Several of nowadays technologies are connecting a large number of users
located in various places to different services that are available in remote lo-
cations. However, the production of advanced communication architectures
and the development of service applications are two twisted industries that
are correspondingly advancing but, lately, in different speeds. The capabil-
ities of nowadays cellular phones are greater than the application utilizing
them, and limited to the interaction protocols currently available.

The vision of nomadicity [25] is increasingly bringing people’s attention
to the upcoming era of new scientific challenges. This vision has stressed the
necessity to ensure anytime anywhere access to computing and communica-
tions and, the fact that we need to look at the disconnected state of a data
demander as a common one and not an exceptional or failure. Same effort
has also highlighted some of the technical challenges that we may encounter
while architecting a nomadic-aware system. They have also approached the
understanding of nomadicity by identifying a three-element checklist. Among
others, this checklist has given special emphasis on the development of net-
work protocols specialized in nomadic interactions, which come up to our
scientific interests and to the scope of this thesis.

According to Kleinrock, [25], we are nomads by nature, and still we do
need to be always connected, reachable and reaching. The information world
is no longer seen through the traditional client / server eyes where wired PCs
are exchanging data packets with fixed servers. Tolerable computing devices
are spread in the pockets of almost every walkers of this universe. People
move from an environment to another very frequently, and at each location
they may move within a range of different spaces, and at every different end
the means of computation and communications may vary. Consequently,
technologies embedded in today’s pocket devices are encouraging the real-
ization of visionary goals and assisting the development of their supporting

14

UMTS

GPRS

WAP

Ethernet

LAN

 Telephone lineHome
User

PSTN

PC

Mac

Notebook

PDA

 W
ire

d

W
ireless

LAN

Ethernet

Cafeteria

Parking

Different Users

Library Online Services

Server of
location-based services

D
ire

ct
 H

U
B

C
on

ne
ct

io
n

From Access
Points to LAN

Metropolitan connectivity
WAP,UMTS, GPRS

Office connectivity
LeasedLine /DSL / Optical-fiber

Home connectivity
Dial-up / ISDN /ADSL

PDA

Smartphone

DigitalCamera

Several Smart
Pocket Devices GSM

Satellite

Music Player

Internet

Mobile Service Operator Content provider

Figure 1.1: Nomadicity, nomadic devices, nomadic environments and nomads

applications.

The places we stopover, the pocket devices we use, and the connections we
exploit, they all vary with respect to our schedules, motives, and interests. In
figure 1.1, we show three different settings where possibly a user of a pocket
computing device may daily experience. These scenarios or settings reflect
the diverse range of connectivity and technological solutions that might be
encountered to every one of us, and how significant it is to always use the
right protocol and techniques that fit to each of these settings separately.

For instance, at home we might use one of the commonly found Internet
connections, (i.e., Dial-up, ISDN), which are in turn rely on telephone lines
and the Public Switched Telephone Network (PSTN) to finally reach the
Internet and make use of several online services. In different time frame, we
might also be located at a university’s library and using different computing
devices, which may also have a different operating systems and computing
capability. This highlighted diversity might be normal if the available services
are to be acquired from a fixed service provider. Meaning, it does not require
major user-to-user interactions or any social interactivity.

Moreover, since a university is a wide open location with different cam-

15

puses, several technologies might be used to cover and connect different of its
locations (e.g., Bluetooth or Wi-Fi). It is also possible to find users with spe-
cial needs, (i.e., handicaps), which require particular connectivity methods
and unusual service handling approaches. Still, all these users may choose to
use a service that is location-based wherein the interaction of this location’s
members is an essential necessity to operate this offered service. A proper
software model to the implementation of such an application will be required
to capture and consider the requirements of each user and their different
means of communications.

Home users and university students may also be considered as shoppers
while walking around the city malls and shops. It is now very likely to
see shoppers that are having pocket computing devices that are capable of
establishing a connection with different networks to retrieve lots of informa-
tion and make use of many available services. Therefore, a larger range of
technologies are then used and an extended set of requirements shall be con-
sidered while designing the communication protocols linking all there users
and services together.

User of pocket computing devices are also willing to interact, cooperate
and also build their own social networks on the go. From agents perspective,
it is then expected that each software agent representing a user of PCD is
supposed to interact and cooperate. Therefore, the more agents interact
the higher is the level of community’s cooperation. Relatively, a significant
role of the negotiation protocol applied among interacting software agents is
realized.

1.1.2 Serviceability & Agents Negotiation

The negotiation language or protocol applied among software agents make
them able to understand each other and discuss their needs and eventually
achieve their objectives; interact properly. Therefore, when the interactions
of a number of software agents are at a certain level of efficiency, the chances
of their delegating users are higher to establish a desired connection or co-
operation. As a result, different negotiation protocols have been proposed
by scholars, these protocols are mostly inspired by sociological, political and
psychological studies about human negotiation in real-life situations such as
Auctions, Peace agreements and Bidding theories.

In [26] a definition was given to a negotiation protocol in multi-agent sys-
tems as ”the public rules by which agents will come to agreements, including
the kinds of deals agents can make and the sequence of offers / counter-offers
that are allowed”. Same authors have distinguished between high-level nego-
tiation protocol like those in multi-agent systems and, low-level negotiation

16

protocols like those in networks, (e.g., AppleTalk). In fact, high-level pro-
tocols are concerned with the content of the communication and not the
mechanism that these content use to transfer.

R. G. Smith, [24], has stressed the same distinction showing ARPANET
and other similar protocols at this time as examples of high-level negotiations.
He showed his standpoint by considering the high-level protocols as methods
that lead system designers to decide ”what [agents] should say to each other”.
And low-level protocols make system designers decide ”how [agents] should
talk to each other”. The Contract-Net protocol Smith presented assumes the
simultaneous operation of both; agents asking to execute tasks and agents
ready to handle it. The asking agents broadcast a call for proposals, and the
helping agents submit their offers and then one is granted the pending task.

In [27], a service-oriented negotiation model was presented to handle the
interactions of autonomous agents operating in a business process manage-
ment application, which is a client / server communications. However, Re-
search efforts to come up with a negotiation protocol that increases the ser-
viceability of agents in highly dynamic environments are few. That shall
make our research effort as one of the early steps taken on the way to tackle
such an interesting and critical topic.

Negotiation protocols, from a technical perspective, are invisible for no-
madic users; nevertheless, they play a significant role in elevating users’ de-
sires to continue relying on a particular service application. Negotiation, and
accordingly coordination, among agents differs when the assembled service
is to be delivered to computing pocket devices, (e.g., cellular phones, PDA).
Among several constraints, time, network traffic and connectivity in mobile
environments are hardly accepting the existing approaches to system entities
negotiation.

Different circumstances accompany different MAS environments, and -
depending on the situation - a specific negotiation protocol is chosen and
applied on all system agents. Time, data transfer rate, general bandwidth
constrains, bridge connection stability and security might not form great ob-
stacles in computer based MAS implementations, as much as it may cause
a failure for a certain mobile-based MAS application. Up to date, all of the
influential and advanced negotiation protocols that are used in the develop-
ment of agent-based mobile service applications are coming from computers
or servers’ environments or, databases and information systems applications.

17

1.2 Problem & Solution Statement

The problem we are addressing in this thesis can be summarized in the intro-
duction of a new agent-based negotiation model, (i.e., Protocol, Strategies,
Tactics), that considers the recently emerging nature of lightweight comput-
ing. While employed by a set of interacting software agents, our negotiation
model is expected to facilitate the agents’ mission of acquiring a service on
behalf of the specific nomadic users they represent

The idea of our negotiation model is to: 1) reduce the number of messages
exchanged among software entities that share common interest and interact
to fulfill each other’s demands; 2) increase these entities’ confidence in the
decisions they take prior to their service-driven actions; 3) advance the man-
aging application’s reliability, as well as users’ credibility, by adding a sense
of realism to the interactions occurring among the negotiating software en-
tities; and, 4) bind these interactions’ outcome to a tolerable responsiveness
time. By putting together these motivating ideas we aim for:

I. Optimizing the utilization of resources, (e.g., bandwidth), in nomadicity-
oriented settings.

II. Defining the circumstances associated with each of the decisions that
software entities are entitled to take in order to meet users’ preferences
while acquiring a service.

III. Reflecting the level of flexibility a real-life trading situations are having
on the interactions occurring among service-driven software entities.

IV. Making available a channel of feedbacks between the service benefiters
and the software entities acting on their behalves.

We approach what we aim for by means of:

STEP 1: We give the negotiating software entities a service-aware space
to state themselves. We do that by expanding the dimension of the
expressive terminology our negotiation protocol supports, (i.e., accept,
reject, pend, deposit).

STEP 2: We identify a range of decision-making strategies that the negoti-
ating entities employ before considering one of the expressions provided
by the applied negotiation protocol.

STEP 3: We provide to the negotiating entities the possibility to follow
two extra service acquisition procedures that are inspired by the trans-
actions’ suppleness of the Fleamarkets. Particularly, the situations in
which traders attempt to decrease their decisions’ risk by pending or
depositing a trade for a certain period of time.

18

STEP 4: We link all of the interactions happening among the negotiating
software entities to two different timelines in which one imposes the
times for actions, (e.g., terminate negotiation), and the other imposes
the times for decisions, (e.g., pend).

1.3 Early Highlights

In this section, we briefly link between some of the Nomadicity requirements
we discussed in section 1.1.1, our model’s objectives we mentioned earlier in
section 1.2, and how we tackled these objectives along our research work.

We would like to also stress on the fact that the number of emerging
requirements Nomadicity is brining up to our concerns is certainly higher
than what we outlined or mentioned in earlier sections. Therefore, with the
presentation of our negotiation model we did not intend to address all of the
requirements the nomadic nature of nowadays users is conveying, however,
we did intend to cover few of them.

1.3.1 Reducing Exchange of Messages

We reduced the number of exchanged messages among interacting software
agents and better utilized the resources of nomadic environment by giving
all agents the possibility to better express themselves throughout a single
action, and also defining the subsequent circumstances yielding from the use
of each action separately.

Therefore, instead of agents accepting or rejecting an offer and then
preparing counter-offers and, re-attach into a negotiation loop using the same
negotiation fashion, agents employing our model will now be able pend or
deposit a negotiation process reflecting how significant is the negotiation pro-
cess for them, how large is their time-frames, and their desire to find better
alternatives.

1.3.2 Reflecting Real-life Behaviors

In the negotiation model we propose, which we introduce further on in chap-
ter 3 and chapter 4, we detached tactics from strategies to lead agents into
the reflection of users’ real-life behavior. We perceived the set of strategies
a software agent is capable of employing as the global behaviors that each
can give this agent a specific characteristic, (i.e., Friendly, or Loyal). On the
other hand, we perceived the set of tactics we made available for an agent as

19

the number of attitudes this agent can imitate in order to support its global
behavior, (i.e., become a connection-driven or time-oriented).

1.3.3 Building Channels of Feedback

As we explained earlier in section 1.1.1, and referred to in [25]: being nomadic
require users to be faster in taking decisions because of the frequent change
of locations they go through, and the different circumstances encountered at
each location, (e.g., connectivity). The faster nomadic users are required to
decide upon a certain issue the more supporting information they demand
to ensure the correctness of their decisions, (i.e., a feedback).

In our research, we handled the high level of responsiveness nomadic users
require from their service application on-the-go by ensuring the constant
availability of a feedback that an agent is always ready to communicate with
the user it represents. We did that by linking the negotiation session an agent
is involved in with predefined timelines that requires the frequent reporting
of an agent’s current state.

Then, we made these timelines address two different situation: a) the
situation where the number of nomadic users within a service application
is tolerable and, b) the situation where the service application is jammed.
Moreover, we linked these timelines with two different tactics that agents are
permitted to employ while time is a main concern for the users they represent
while feedbacks is also addressed.

1.4 Publications

1.4.1 International Journals

• Abdel-Naby, Sameh and Giorgini, Paolo. Negotiating Service Acquisi-
tion for Users of Pocket Computing Devices. Submitted to The IEEE
Pervasive Computing.

• Abdel-Naby, Sameh and Giorgini, Paolo. A Nomadicity-driven Nego-
tiation Protocol, Tactics and Strategies for Agents’ Interactions. Sub-
mitted to The ACM Transactions on Autonomous and Adaptive Sys-
tems (TAAS).

1.4.2 International Conferences & Workshops

• Alexis Morris, Paolo Giorgini, and Sameh Abdel-Naby. Simulating
BDI-based Wireless Sensor Networks. In the Proceedings of The 2009

20

IEEE / WIC / ACM International Conferences on Intelligent Agent
Technology (IAT’09), September 15-18, Milano, Italy.

• Sameh Abdel-Naby, Paolo Giorgini, and Raian Ali. Towards Integrat-
ing Agents with Objects Tracing Systems in AmI. In the Proceedings
of the fifth European Workshop on Multi-Agent Systems (EUMAS’07),
Hammamet, Tunisia. December 13-14, 2007.

• Raian Ali, Sameh Abdel-Naby, Antonio Mana, Antonio Munoz and
Paolo Giorgini. Agent Oriented AmI Engineering. In the Proceedings
of the Ambient Intelligence Developments Conference (AmI.d 2007),
Sophia Antipolis, French Riviera, France. September 17-19, 2007.

• Abdel-Naby, Sameh. Giorgini, Paolo. and Weiss, Michael. Design
Patterns for Multiagent Systems to Elevate Pocket Device Applications.
In the 8th Annual International Workshop on Engineering Societies in
the Agents World, ESAW’07. NCSR ”Demokritos”, Athens, Greece.
October 22-24, 2007.

• Abdel-Naby, Sameh. Giorgini, Paolo. and Fante, Stefano. Increasing
Interactivity in Agent-based Advanced Pocket Device Service Appli-
cation. In the Proceedings of the Ambient Intelligence Developments
Conference (AmI.d 2007), Sophia Antipolis, French Riviera, France.
September 17-19, 2007.

• Abdel-Naby, Sameh. Giorgini, Paolo. and Fante, Stefano. Increasing
Interactivity in Agent-based Advanced Pocket Device Service Appli-
cation. In the Proceedings of the Ambient Intelligence Developments
Conference (AmI.d 2007), Sophia Antipolis, French Riviera, France.
September 17-19, 2007.

• Abdel-Naby, Sameh. Fante, Stefano and Giorgini, Paolo. Auctions
Negotiation for Mobile Rideshare Service. In the Proceeding of the
IEEE Second International Conference on Pervasive Computing and
Applications (ICPCA07), July 26-27, 2007, Birmingham, UK.

• Abdel-Naby, Sameh and Giorgini, Paolo. Sweeper-Agent Recommen-
dations Tree Early Scheme. In the Proceedings of the Ambient Intelli-
gence Developments Conference (AmI.d06), Sophia Antipolis, France.
September 20-22, 2006. Pp 147-155. (Best paper award).

• Abdel-Naby, Sameh and Giorgini, Paolo. Smart Ride Seeker Introduc-
tory Plan. In the Proceedings of the Third Starting AI Researchers’
Symposium, Riva del Garda, Italy. August 28-29, 2006. Pp 247-248.

21

• Abdel-Naby, Sameh and Giorgini, Paolo. ToothAgent: Brushing on
your Behalf. In the Proceedings of the 4th Industrial Simulation Con-
ference (ISC2006), Palermo, Italy. June 5-7, 2006. Pages 49-51.

1.4.3 Technical Reports

• Sameh Abdel-Naby, Oleksiy Chayka, and Paolo Giorgini. BarterCell:
an Agent-based Bartering Service for Users of Pocket Computing De-
vices. September 2009. Technical Report # DISI-09-053. University
of Trento, Italy.

• Sameh Abdel-Naby and Paolo Giorgini. Locating Agents in RFID Ar-
chitectures. Technical Reports # DIT-06-095. University of Trento,
Italy.

• Sameh Abdel-Naby and Paolo Giorgini. Semi-Heuristic Negotiation
Protocol for Agent-based Mobile Service Application. Technical Re-
ports # DIT- 07-004. University of Trento, Italy.

1.5 Structure of the Thesis

CHAPTER 2: explains the related state-of-the-art. Since three different
literatures are intersecting in order to construct negotiation models
similar to the one we propose, in this chapter we give a literature review
about the, 1) advanced Agents Negotiation in Common Settings, 2)
Agents’ Negotiation for Service Acquisition, and 3) Agents’ Negotiation
in Wireless Networks. In each literature, we give a comparison between
the research effort of three different groups of scholars that are most
related to our research.

CHAPTER 3: introduces the first part of our negotiation model. It starts
by formalizing the general setting wherein we expect our model to be
applied, then a description of the negotiation issue that any two inter-
acting agents are expecting to resolve. We then formally introduce our
negotiation protocol, negotiation sessions, and the negotiation time-
lines.

CHAPTER 4: introduces the second part of our negotiation model. The
set of tactics and strategies, and their sub-categories, which we believe
to have a great impact on the act of agents’ negotiation in a modern
service-acquisition environment.

22

CHAPTER 5: explains how our negotiation model can be implemented
within any agent-based service acquisition software platform. However,
within this chapter we do not restrict the implementation of our model
to any particular application; instead, we attempt to prove its broad
applicability.

CHAPTER 6: presents two case-studies we were working on with our in-
dustrial partner to provide a ridesharing and bartering services to users
of Pocket Computing Devices.

CHAPTER 7: explicitly go through the experimental results we have ob-
tained and we also emphasize the advantages of employing our model.

We conclude this thesis by outlining our future work and give a summary
of all the research and development efforts we went through during the
past four years.

23

24

Chapter 2

State of the art

Finding a proper negotiation protocol to be applied within autonomous
agents representing users of pocket computing devices in service acquisition
scenarios and domains is a new research direction. Several of the well-built
approaches already presented by scholars of Distributed Artificial Intelligence
(DAI) are not addressing the realization of advanced mobility requirements.

For instance, a commonly found consideration is always taking into ac-
count the communities of agents that perform a set of actions in situations
where their communication channels are predefined and static. However, the
literature of Multi-agent Systems (MAS) is starting to include approaches to
the design of negotiation protocols that pay particular attention to the pro-
vision and acquisition of services on-the-go. In this chapter, we discuss the
general perspective of Agent-based computing and Agent-oriented Software
Engineering, then we emphasize the relationship between Ambient Intelli-
gence and Agents Negotiation. Later in this chapter, we survey the literature
of agents negotiation from three different research perspectives.

2.1 The Agent Paradigm

The Agent Paradigm was firstly dealt with within the literature of the AI
community. Recently, and after the long hard experience of artificial in-
telligence, researchers could find other areas to exploit with great gains and
returns the agent paradigm. Agent paradigm has received a special interest in
software engineering community as a paradigm shift from the object-oriented
one [28, 29].

The shift is based on seeing the world as a society of distributed intel-
ligence units, called agents, that have characters and can decide. This way
of viewing the world differentiates itself from the object oriented one that

25

conceptually view the world as a collection of objects. Objects provide en-
capsulation of data together with the procedures related, they are used by
main well defined central control, and do not have their own autonomy.

Agent-based computing [30] is currently becoming an important research
area. This increased interest is motivated by the need for software can act
on behalf of its user, software that is able to realize the concept of agency.
Giving a definition for agent is not straightforward; there is no consensus
about the main characteristics an agent should have to deserve this name. A
well accepted definition of software agent is found in [28]:

”An agent is an encapsulated computer system that is situated in some
environment and that is capable of flexible, autonomous action in that

environment in order to meet its design objectives.”

An agent is supposed to have its own control over its state and behavior,
to percept the environment around and to affect it in turn. Being in an
environment and sensing it implies the necessity that agent can react to
environmental context changes. Moreover, agent is supposed to activate
goals without external prompt and to tailor suitable plans to achieve them.
The key characteristics an agent must have that are highly agreed upon, see
[31] for an overview, are: autonomy, proactiveity, reactivity, situatedness,
directedness, and social ability.

Being autonomous, an agent behaves independently according to the state
it encapsulates. For example, an agent, by contrast to an object, can decide
the way of how to respond to the incoming messages from other agents.
Agents interact with each other without losing control if they do not allow
that. Proactivity means that agent is able to take the initiative without
external order. Agents have goals and act in order to achieve them. This
is more complicated than reacting in timely fashion to direct environment
stimulus.

Situatedness means the ability of agent to settle in an environment that
might contain other agents, to perceive it, and to respond to changes that
happen in it. An agent might make changes and effect this environment
in turn. Directedness means that agent has a goal, this goal represents the
reason of the actions an agent has to take. An agent does not exist in vacuum;
instead it lives in a society of other collaborative or possibly competitive
groups of agents. Agents have the social ability to interact with other agents.
This interaction might be motivated by collaborative problem solving.

A long discussion can be found in the literature about what formulates
an agent and what differentiates it from an object: see [32] for an overview.
However, here, we are not concerned about such discussion, rather we believe
that using Agent as a kind of abstraction approach enables us to view the

26

world as a large organization of autonomous entities, directed by goals, able
to sense environment changes and can learn by time. In addition, agent-
driven abstraction might help us also to analyze and design complex open
systems, and presents more natural way to start with, and hopefully this will
lead to more robust and flexible software systems in correspondence.

An agent is supposed to live in a society of agents; multi-agent system
(MAS) is known as a system composed of several agents collectively capa-
ble of reaching goals that are difficult to achieve by an individual agent or
monolithic system. The relation can be alternatively competitive one, like
for example multiple agents responsible for advertising products in an open
market on behalf of different producers, or a society of agents in an e-auction.
Again, defining MAS is not that straightforward. MAS might help us de-
composing the problem into components that are able to interact and deal
with unpredictable situations that can happen in complex systems such as
those required to reach Ambient Intelligence (AmI) [33] and [34].

A MAS represents a natural way of decentralization, where there are
autonomous agents working as peers, or in teams, with their own behavior
and control. Each of these agents looks to the world from its own perspectives
and has its own goals and intentions. Such MAS is expected to work well
with open complex systems, and to scale well by time. It is one promising
computing paradigm for implementing many application domains such as e-
commerce, enterprise resource planning, and traffic control, and so on [35].
We consider AmI as a system that fits by its nature to agent and multi-agent
system paradigm as we are going to discuss later.

2.2 Agent-Oriented Software Engineering (AOSE)

Software engineering is different from other engineering disciplines in its de-
pendability on engineer skills of analyzing the problem, designing a suitable
solution, and coming up with the final system [36]. Although software engi-
neering is qualitative in nature, a serious research is being done to find more
and more scientific methods, models, and criteria that assist developing the
intended software. Problems are everywhere in software development pro-
cess, engineering a software is an engineering for abstraction. For example,
understanding precisely what a software is supposed to do and transform-
ing this knowledge into abstract models readable by both of engineers and
stakeholders is far of being easy as it seems.

According to [37, 38], large industrial software development projects has
been encountering several obstacles due to the fact that the final outcome
does not precisely meet expectations. The models used to describe software

27

requirements and design need to be compact and expressive enough to re-
place usefully the natural language. The models need therefore to be precise
enough to not lose the real concepts they are supposed to represent. The
models might be formal or transformable into formal ones, so reasoning can
be done over them with the purpose of discovering any anomalies, incom-
pleteness, or inconsistencies. Software engineering methodology is concerned
not only about inventing and using modeling languages that can express
what the system has to fulfill, and the software design, but rather it has to
provide a process model for creating such models in turn.

Software agent that persistently observes the environment, interprets it,
acts upon it, and communicate with other agents with other agent to resolve a
task, all together are the building blocks of a promising computing paradigm
for implementing open complex systems, such as Autonomic Computing [39].
AOSE methodologies, that is an influential factor in such visionary roadmap,
tend to analyze and design such kinds of complex systems in order to finally
arrive to an agent-based implementation.

There are several research groups working in developing their own AOSE
methodologies, see [29] for an overview. The orientation towards agent does
not mean that these methodologies use agency concepts and agent mentalis-
tic notions along with all phases of developing software, rather the goal is to
analyze and design in a way that leads to multi agent system. Only Tropos
[40], as an AOSE methodology, uses the notions of agent and the related
mentalistic notions from the early analysis down to the actual implementa-
tion.

For instance, the Gaia methodology presented in [41] takes agents’ roles
as the main issue of design and, with each role there is a number of linked
responsibilities, permissions, activities, and protocols that define any role-
to-role interactions. Another example for an AOSE methodology could be
the SODA methodology, which is presented in [42], where the notion of task
and the separation between individual and social issues are together playing
a fundamental role in designing agent-based systems.

As the use of computing is becoming an essential part of individuals’
daily life together with business and organizations, and as we increasingly
need to combine between different computing ends and parties, the need for
software that is dynamic, flexible, adaptable, situated is more critical. The
need for software evolution is becoming faster than software development
process itself. Solving these challenges is based to a large extent on the
way such software has to be engineered. Agent oriented software engineering
is attempting to generate methods, such as those mentioned in [43], that
enable developing a software which can resist against evolving requirements,
a software that is flexible enough to adapt and change according to the new

28

environments and requirements, the same concept as those explained in [44]
and [45].

Agent oriented software engineering (AOSE), by contrast to object ori-
ented software engineering and structured analysis and design, is not re-
stricted or deeply influenced by some existing programming paradigm, [46]
and [47] for argument discussion. Agent oriented software engineering re-
search is now taking the initiative towards programming languages and in-
frastructures that serve the concepts suitable for software development in-
stead of using those of existing programming languages in reverse unnatural
way.

Being limited to programming languages has enforced those previous soft-
ware engineering practices to focus on the solution domain, since the concepts
used are not those describing naturally requirements and problem domain.
Agent oriented software engineering is growing together with agent oriented
programming languages, (e.g., AgentSpeak [48] and Jason [49]), and also with
agent-based infrastructures, such as this one for Mobile Workforce Manage-
ment in a Service Oriented Enterprise presented in [50]Dickson. This growth
might fill the gap between problem and solution domains. Hopefully such
consistency will make software development process faster, and lead to soft-
ware can be easily evolved and maintained, and can adapt to different envi-
ronments and requirements.

2.3 Ambient Intelligence (AmI) & Agents Negotiation

It is well known that agent paradigm is a promising paradigm for implement-
ing complex open systems like e-commerce, air-traffic, enterprise resource
planning, and so on [35]. The characteristics of these domains fit well to
what agent and multi-agent systems can do. Software Agent is a software
element that realizes the concept of agency, and acts on behalf of people or
other agents.

One of the challenges that face building an AmI is the lack of models
and software engineering practice that help analyzing system requirements,
designing the system to be built, verifying and testing the implemented one,
see [51] for an overview. Until now the research is in its first stages, and the
need for suitable development methodologies has been already recognized.
For engineering AmI, we might need different software engineering methods
from those that are suitable for developing request/response systems, where
system behavior is well known and determined strictly, and where human-
computer interaction is desktop driven one. AmI shifts this way of interaction
into contextual, direct, and invisible human environment interaction, hiding

29

the computers in the background of this environment.
The disappearance of computers and coupling environment appliances

with computing devices will arise like any new technology a variety of chal-
lenges. The system domain is no longer some sort of business or organi-
zation has a clear business process and tasks. Users are no longer those
clerks or students in a library system; instead users are now those normal
people in houses, offices, campus and other daily life environment. The re-
quest/response scenario is replaced here by continuous sensitive, reactive,
intelligence surrounding computing.

2.3.1 The Multidisciplinary AmI

Approaching an ambient that is perceptive, intelligent, and active will involve
multiple disciplines to contribute creating the final scene. Several researches
are being done in AmI area, with some differences in emphasis and direction.
Multiple terminologies are being used as this research is in its first steps.
In the rest of this section, we will investigate the vision of AmI, and try to
capture a variety of disciplines that need to meet in order to achieve this
vision.

Philips vision of AmI [52] is based on shifting computers into the back-
ground, and supporting the ubiquitous computing with more awareness ca-
pabilities. The vision is based on three elements, 1) the ubiquity, which refers
to those computing devices intertwined with human environment anywhere,
and functioning anytime, 2) the transparency of such computing systems, so
they are hidden in the background, 3) and the intelligence; they should act
instead of being only responsive to human commands. Such system relieves
people of thinking about many repetitive needs and takes the initiative of
doing what should be done in the correct moment and approach.

MIT vision of AmI [53] similarly views it as an unobtrusive integration
of computing with our daily life. Such computing provides humans with
relevant information and performs necessary tasks when needed on their be-
half. Such ambient will be continuously careful, doing the suitable tasks in
a transparent, invisible and intelligent way. Traditionally, computers work
as an apparent messenger or mediator between humans and environment. In
AmI, this relation is replaced by direct non-disruptive relation between hu-
mans and the environment they are located within. In short, AmI computing
is no longer visible.

The vision of invisible disappearing computers was addressed by Weiser
[54]. The vision expected ubiquitous existence of computing and commu-
nication capabilities anytime and anywhere. AmI focuses on assisting the
intelligence and awareness of this ubiquity of interconnected computing de-

30

vices, so computing starts to take the initiative on behalf of human. AmI is
meant to orchestrate the variety of environment objects in a way they might
interoperate to do more complex tasks as well. Ubiquity of computing is the
basis an AmI is built on.

However, the terms ubiquitous computing, nomadicity, pervasive comput-
ing, ambient computing, ambient intelligence are now used interchangeably
with some differences in the context and emphasis.

AmI is now about integrating computing devices with the environment
we all live in; it is then sitting on the opposite side of virtual reality which
brings world inside computers [54]. This makes computers invisible and re-
lieves people mind of even knowing about their existence. To arrive this
point, computers has to adapt to user needs and character by contrast of the
traditional scene in which user is supposed to adapt to computer systems.
This is now of great importance because people spend increasingly more time
to interact with computing systems.

To people, it is becoming a source of stress being obligated to remem-
ber when and what and how to do tasks. With AmI, artefacts encapsulate
implicitly the role of computer mediation. Artefacts will look as they have
their own character, autonomy, and intelligence, they are more agents than
normal objects.

Consequently, AmI is by nature a multidisciplinary paradigm [55]. Dis-
tributed intelligence is needed to cover this intelligent ambient, it is now
composed of distributed intelligence units that we might call Agents. New
hardware design is needed for embedding computing devices invisibly in-
side the surrounding physical environment. AmI system is situated within
a highly dynamic environment that is open for changes, these changes need
to be sensed and interpreted in a way that is timely fashion and relevant to
what might serve user needs. The input now is coming implicitly, and con-
tinuously from a variety of sensors, cameras, and other kind of peripherals.
Such environmental information need to be modeled and reasoned about in
order to take the correct contextual decision.

Computer disappearance was considered by Weiser as one of the most
profound technology features [54]. Apart from the physical disappearance
of computing devices, there is that mental disappearance toward peace of
mind in human life. To achieve such peace of mind, the interaction between
human and computer is updated to direct interaction between human and
environment [56]. New novel ideas of interaction design have to be invented
to move from the explicit interaction to an implicit one [57]. The implicit
interaction includes the notion of implicit input known more commonly as
Context [58].

Context awareness [59, 60] is an essential feature an AmI system has to

31

tackle in order to act in adaptive and intelligent way. This context, that
might be spatio-temporal, environmental, personal, social, and so on, needs
to be modeled, captured, analyzed and reasoned about [61]. Reasoning about
context needs a model and formalization acts as a knowledge base, and en-
ables inferring more high level knowledge. For example blood pressure and
body temperature besides user current activity and location might reveal
user current mood, this mood can be provided implicitly as an input, so AmI
might take some actions as a response.

AmI is expected also to have the ability of learning and keeping track of
human historical behavior. AmI embodies a high degree of personalization
to human profiles and life styles. Software personalization is a standalone
research now, but we might hardly consider AmI as a useful system if it be-
haves in the same way with different kind of people and characters. The social
mobility of humans is another important issue an AmI application needs to
consider. People normally play more than one social role; they should be
accordingly supplied by tailored services and information considering their
social context [62].

AmI arises many social issues that need to be studied and analyzed before
AmI can get acceptance in practice. The ubiquity of computing might relieve
people mind in one hand and might have negative impacts as well. People
will feel that they lost control, and might not trust technology. People have
already lost some privacy providing that cellular phones enable other party of
at least knowing their location, and the same for using credit cards. Instead
of commanding computing, computing in AmI is supposed to control several
aspects of people everyday life.

An essential principle in this regard is that human do not feel that they
lost control, and to enable them configuring their needs in a simple way, may
be through some privacy patterns. However, we see many interesting prac-
tical domains that can benefit from AmI scenarios, such as the health care
domain, in particular those specialized of caring old people, and supporting
persons with dementia problems, where AmI might play the role of caregiver.

2.3.2 Agent-oriented AmI development

Employing the agent paradigm in implementing AmI scenarios is increasing
due to the characteristics of agents and how well they fit in the context of
AmI, as it was referred to in [63]. Examples to Agent-oriented approaches
to the development of Ambient Intelligence applications can be found in
[64, 65, 66]. Agent paradigm as a kind of abstraction is also capable of giving
a good contribution with regards to AmI systems development, including
analysis and design phases, besides the security issues. In this section we will

32

state our initial view of the agent oriented AmI engineering and securing.
As we explained previously, AmI shows a degree of complexity and multi-

ple inter-related disciplines that require using special engineering paradigm.
This need is coming from the new nature of such systems, where behavior
is not known in details, or adequately controllable. AmI is distinguished by
its dynamicity, openness, and complex inter-relations amongst environment
components.

The agent paradigm, with respect to practices from object oriented soft-
ware engineering, offers a higher level of abstraction suitable for engineering
complex systems [67]. Agent paradigm enables engineering software at the
knowledge level; at this level we talk of mental states, of beliefs instead of
machine states, of plans and actions instead of programs, of communication,
negotiation and social ability instead of direct interaction and I/O function-
alities, of goals, desires, and so on [68].

Tackling the complexity of developing complex software can be done
through some techniques such as 1) Decomposing the problem into smaller
sub-problems that can be managed more easily. 2) Using abstract models
to represent system focusing on some concepts and relations, and omitting
others unrelated. Such models should be compact and expressive in order to
usefully summarize and even formalize what can be alternatively expressed
by the natural languages. 3) Defining and managing the inter-relationships
between problem solving components as they were an organization of some
hierarchy [69].

As shown in [36], agent paradigm is not only useful as software con-
struct but rather it can be used as a new way for analyzing and designing
complex systems. Using the decomposition, abstraction and organization
techniques to tackle the complexity of such systems can be done following
agent paradigm from the early phases. Decomposing complex systems into
related subsystems, each with its own thread of control, and own objectives
to be achieved autonomously can be seen as a society of interacting agents.
Agent paradigm provides a sort of abstraction to model problem domain in
terms that are too consistent with solution domain. Subsystems are viewed
as autonomous agents, agent social ability implies the interrelation at high
level amongst those autonomous subsystems.

This interaction might model cooperation, coordination, or negotiation
amongst agents. The evolution of inter-relations between components of com-
plex systems and the different aggregation these components can be classified
at different levels of abstraction match closely to agent and multi-agent sys-
tem paradigm. As for the dynamic organization structure, agent paradigm
has the expressivity to represent these concepts due to its explicit structure
and flexible mechanisms. A methodology called Gaia [41] was developed to

33

reflect such ideas providing a methodological way for engineering some kinds
of complex systems, which is Similar to many AOSE methodologies currently
available.

Another attempt for using agent paradigm as conceptualization construct
is based on BDI agent architecture, the world is viewed as a society of actors
each has its own autonomy, and might depend on each others for task to be
performed, goal to be achieved or resource to be provided [67].

Agent beliefs are the world model at the conceptual level, agent desires
are translated into goals to be achieved, while the intention an agent might
commit is considered as a plan. The multiple plans an agent might follow
to achieve the same goal give some degree of flexibility for dealing with dif-
ferent contexts. Goals are analyzed through means-end analysis to conclude
the actual actions by which goals are achieved. These actions are the actual
requirements of the intended final software [70]. Tropos is another method-
ology was developed on the basis of these ideas, it uses agent mentalistic
notion along all the phases of software development [40].

For engineering AmI, like for example smart campus, we need to decom-
pose it into autonomous subsystems, and to abstract using knowledge level
conceptualization rather than the fine grained one used by OO which is use-
ful for predicted behavior and relatively static systems. With AmI we are
not talking about an organization with one well defined behavior, business
process, and straight control. Here the ambient is always changing and in an
unpredictable way sometimes, so we need high degree of adaptability to cope
with AmI going to serve everyday life scenarios with a lot of alternatives.
Considering AmI as complex open system, we believe that agent paradigm
and agent mentalisitc notions can contribute well for analyzing, and designing
AmI scenarios rather than only implementing them.

2.4 Agents Negotiation in Different Contexts

Getting back to the main contributing literature of this thesis: since three
different literatures are intersecting in order to construct negotiation models
similar to the one we propose, in the following subsections we give a literature
review about the, 1) advanced Agents Negotiation in Common Settings, 2)
Agents’ Negotiation for Service Acquisition, and 3) Agents’ Negotiation in
Wireless Networks. In each literature, we give a comparison between the
research effort of three different groups of scholars that are most related to
our research.

34

2.4.1 Advanced Agents Negotiation in Common Settings

In this section, we go through and also put into comparison some scholars’
contributions on the direction of introducing a proper negotiation models for
agents interacting within an environment that is static and computationally
potent.

In [26], agent’s negotiation protocols are addressed with respect to a hi-
erarchy of three abstract domains; 1) Task Oriented Domains, where agent’s
activity is a set of tasks to be achieved, 2) State Oriented Domains, where
an agent is moving from an initial state to a set of goal states, 3) Worth
Oriented Domains, where agents evaluate each potential state to identify its
level of desirability. Several examples were given to further illustrate the
different negotiation types that agents may encounter within these domains.
Even though the three domains are likely to cover all common scenarios, still
all of the protocols presented, the assumptions made, considerations and the
given examples are outlying from mobility and service oriented domains.

In [18], a particular focus was given to agents interacting in modern dis-
tributed information retrieval systems arguing that the cooperation of infor-
mation servers relatively increases with the advances made on agents nego-
tiation. Two scenarios of agent’s negotiation are considered; 1) Negotiation
about data allocation, where autonomous agents / servers are sharing doc-
uments and they need to decide how the best they could locate them. 2)
Negotiation about resource allocation, where the main focus is given to do-
mains of limited resources as well as those of unlimited ones and, agents are
bilaterally negotiating to share expensive or common resources.

Based on Rubinstein’s model for alternating offers [71], the negotiation
protocol presented in [18] is straightforward. An offer is made by one agent to
another that has to choose between accepting, rejecting or opting out of the
negotiation process. Each agent has its own utility function that evaluates
all possible negotiation results, and a strategy to decide what actions to per-
form at every expected situation. Although the negotiation of agents about
the allocation of limited resources is similar to agents interacting within a
low capacity communication network (e.g., Bluetooth Network), the limited
options each agent has in response for an offer, limiting the negotiation pro-
cess to bilateral situations and, avoiding the role of end-users in all scenarios
will make this approach inspiring but not principal to our research.

The Contract-Net protocol presented in [24] is a high-level negotiation
protocol for communicating service requests among distributed agents. R.
G. Smith considers the high-level negotiation protocols as methods that lead
system designers to decide ”what [agents] should say to each other”. And
low-level protocols make system designers decide ”how [agents] should talk to

35

each other”. The Contract-Net protocol assumes the simultaneous operation
of both; agents asking to execute tasks and agents ready to handle it. The
asking agents broadcast a call for proposals, and the helping agents submit
their offers and then one is granted the pending task, or session is closed.

Three slight drawbacks in the earlier approach;

1. Linking between high-level and low-level negotiation protocols is es-
sential when it comes to agents interacting in limited and variable re-
sources environment. For example, when users of pocket computing
devices delegate software agents to exchange and accomplish service re-
quests on-the-go, the efficiency of the negotiation protocol agents will
employ is relatively increasing with the size of bandwidth a network
utilizes, and the time it takes to transfer agent’s requests / messages
from location to another.

2. A central decision making situation may easily occur when a service
seeker initiates the call for proposals and, it receives back all of the
prospects offers and, the same gent is the only one who decides upon
the termination of the negotiation process.

3. In the Contract-Net it is always assumed that two different types of
agents are interacting (e.g., buyer and seller agents), which is not right
for us. The agent representing a user of a pocket device is taking the
selling role when there are services to be offered for others and, the
buying one when the end-user is searching for something to acquire.

With table 2.1 we conclude this subsection showing that; 1) the assump-
tions scholars are making while designing wide-ranging negotiation protocols
are coming out of particular domains influence, which make them appropri-
ate only in similar settings. 2) The examples and case studies authors used
are addressing familiar but not explicit problems when it comes to the ser-
viceability of pocket computing devices and its requirements. 3) Although
it is important for autonomous agents to maintain a level of heuristic and
collaborative performance, still the three efforts have a common acceptance
on the isolation of each negotiation process. 4) The idea of designing a new
negotiation protocol for agents representing users of pocket devices in acquir-
ing and providing services on-the-go can be considered as an expansion to
the above mentioned efforts.

2.4.2 Agents Negotiation for Service Acquisition

In this section we further tighten our literature analysis to scholars’ efforts
that are made to introduce a new negotiation models for agents interacting

36

Table 2.1: Agents Negotiation in Common Settings: A Comparison

[Smith, 1981] [Rosenschein and
Zlotkin, 1994]

[Kraus, 2001]

Agents Loosely coupled asyn-
chronous nodes containing
a number of distinct
knowledge-sources.

A program that electroni-
cally represent a person or
a machine in different en-
counters.

Intelligent computer systems
with automated behavior.

Environment Task-sharing (cooperative
task execution)

Task-oriented domains,
State-oriented domains,
worth-oriented domains.

Data & Resource Allocation

Objective Coming up with the
best way to allocate
tasks among distributed
nodes that have enough
processing capabilities.

a) Allow machines able to
make constructive agree-
ments, b) make computers
interact flexibly, represent
our interests, and compro-
mise when needed.

a) Increasing the coopera-
tion of distributed information
servers so that data are better
stored. b) Efficiently manag-
ing the use of limited resources
among agents with common in-
terests.

Assumptions Nodes are interconnected.
They communicate by
sending messages. No
memory is shared. A
low-level communication
protocol preexists to
support efficient and
reliable communication of
bit streams between nodes.

Designers are building
their agents to maximize
expected utility. Each
negotiation process is
isolated. Agents may
commit to a common
utility. The cost of each
operation an agent takes
is independent from the
agent carrying it out.

Agents always try to maximize
their utility. Agents don’t pre-
fer to opt out of a negotia-
tion. Agents are committed to
whatever results a negotiation
process will lead to. Negoti-
ation processes are neither re-
lated nor connected.

Protocol a) Managers (nodes) make
a task announcement. b)
Contractors (nodes) select
those they like, evaluate
and submit bids. c) Man-
agers evaluate bids and
make contracts with the
best fitting.

Each agent has its own
space of possible agree-
ments that they simulta-
neously propose. Agents
agree if they match utili-
ties or exceed it, and ne-
gotiation moves to another
round if not, forbidding
agents to offer lesser utility.

An offer is made by one agent
to another that has to choose
between accepting, rejecting or
opting out of the negotiation
process. The negotiation ends
if all the agents accept the offer
or if one decides to opt out.

Example A network of sensor
and data processing
nodes spread in a large
geographic area. Nodes
with high processing
capabilities are looking
for sensor nodes that
provide signal features,
and the vice-versa, until
a task called ”signal” in a
distributed sensing system
is achieved.

Two researchers collabo-
rate to photocopy chapters
out of a book taken by one
of them. Group of neigh-
bors agree to organize a
carpool. Two agents that
are trying to organize a
meeting.

a) Data and information sys-
tem component of the earth
observing system (EOSDIS) of
NASA. b) Mobile Robots sent
to Mars by NASA (i.e., sharing
limited resources).

to acquire one or more predefined services. However, these efforts were yet
considering the traditional wired environments and their requirements.

In [72] a service-oriented negotiation model for autonomous agents was
presented. Following the traditional client/server approach scholars assumed

37

that an autonomous agent is a ”client” to another serving agent ”server” that
is in turn delegated to achieve a certain goal, which is acquiring or selling
a service. It was also assumed that all agents are operating from servers
with outstanding computing capabilities and, no considerations were given
to the connection linking them. Authors have focused their research on the
reasoning model an agent will employ to identify its prospective servers, de-
ciding about whether to perform parallel or sequential negotiations, making
or accepting an offer and, abandoning a process.

Same authors have weighted their approach with respect to the British
Telecom (BT) business process of providing a quotation for designing a net-
work to provide a service to a customer. Accordingly, times to reach and
execute an agreement were both considered while identifying their negotia-
tion model. Based on a model for bilateral negotiation that was presented
in [19], authors of the service-oriented negotiation model proposed a multi-
lateral variation of it to satisfy the application domain they are interested
in, which bring it up to our curiosity as well. However, the requirements
they attempted to satisfy (i.e., privacy of information, privacy of models,
value restrictions, time restrictions and, resources restrictions) are not cover-
ing something like the end-user responsiveness time and end-user dynamicity
that are vital for agents representing users of pocket computing devices and
operating within variable connectivities.

In [73], an agent-based architecture for service discovery and negotiation
was presented. The realization of three novel requirements have motivated
the work of these authors, these requirements are; 1) Agents interactions are
not necessarily executed in one network and not only involving two types
of agents. 2) Diverse connection technologies can be utilized at different
costs, which increases the complexity of a system and enable a higher level
of end-user dynamicity. 3) A service application should automatically react
to changes as long as it is of end-user benefits. The scenario they used to
motivate their work involves three different agents. The user agent, which
is located on the portable device of the user and, it contacts a marketplace
agent that is installed at wireless hotspot location and it is responsible of
maintaining a list of available Internet Services Providers (ISPs) that each
has a representing agent called ISP agent.

An agreement is reached when the user agent succeeds to make a contract
with one of the ISP agents and retrieves a configuration file that, eventually,
the end-user installs on its pocket device to get an Internet access through
the best available ISP. The sequence of interactions among involved agents
was described but, authors did not impose any additions or intelligence to
the already existing negotiation mechanisms and, instead, this issue was left
very generic by means of FIPA Contract-Net [74] or a FIPA-EnglishAuction-

38

Protocol [75]. Therefore, agents in this situation are still using the normal
propose, refuse, and accept model. The time an agent takes to decide upon an
action, the reasoning functions it employs before a decision is taken and, the
communication channel inconsistency are all unconsidered elements through-
out this research effort.

It is also worth highlighting here that four different types of auctions are
widely considered in the literature of agents; 1) English, 2) Dutch 3) First-
price Sealed-bid, 4) Second-price Sealed-bid, (e.g., in [76]). These auction
types share the same goal, which is granting a single item (sometimes com-
binatorial) to a single agent (sometime a coalition) in a limited resources
environment. An agent may participate in an auction so one of the carried
”personal” tasks can be accomplished, or - like in cooperative systems - a
learning behavior can be implemented so agents are able to predict the future
importance of this item to another agent, which is known as commonvalue.

A multi-agent negotiation method for on-demand service composition is
presented in [77]. Agents here are expected to negotiate in order to reach
agreements about combining different services from different providers to fi-
nally meet a consumer’s expectations, which is not a handheld device user.
The negotiation process is functioning by means of messages exchanging.
When an invocation for service acquisition occurs it is assumed that all avail-
able agents are representing specific services in a network and, they receive a
message that contains a set of requirements to fulfill. If a single agent is ca-
pable of providing this service on its own it broadcasts a OK message, if not,
it transmits a Nogood message to the others asking for help. Other agents
receive this help request and review there capabilities and give a response
and so on.

Using messages exchange to negotiate the acquisition of a service between
entities located in a fixed wireline network is likely to be satisfactory. How-
ever, in a wireless network, where bandwidth and resources are expensive and
limited, this approach will add a considerable amount of traffic and, it will
increase the time a service application takes to act in response to an end-user
request. In addition, it was not observed in same author’s work any level of
end-user interactivity, which drift this effort on the machines orientation side
of negotiation’s research.

From table 2.2 we observe the following: 1) Agents are not robots in a
warehouse, distributed servers in information systems or even large network
nodes; they are a number of interacting encapsulated programs that repre-
sent an end-user interests or an organization goals. 2) Scholars approaches to
the negotiation of software agents in service-oriented domains changes from
these of resources sharing and data allocation. The focus is more into mak-
ing agents self-interested and benefits maximizers than being cooperative -

39

so that service requests are perfectly satisfied. 3) Efforts that may have in-
directly touched the requirements evolved along with the new era of mobile
serviceability are rare and not dedicated, and if any, a maximum of one or
two common issues are addressed (e.g., time and resources utilization).

2.4.3 Agents Negotiation in Wireless Networks

In this section we go through the few research efforts that were made to
improve the negotiation of agents interacting through wireless networks to
achieve delegated goals. These research efforts are the least far from the
research issues we tackle since we also consider agents negotiations across
unwired limited resources networks but for service-driven interactions.

In [78], an architecture for pervasive negotiation that uses multi-agent
and context-aware technologies is proposed. The main focus of this research
effort is to consider clients profiles, their preferences and locations so that
personalized services, promotions and offers are transmitted to their hand-
held device. In their article, authors have looked at pervasive negotiation
considering it as the ”negotiation that is conducted everywhere, at anytime,
by any devices, and by anyone” and, an example for a car driver that uses a
PDA to find the best price a nearby petrol station can offer is given. Authors
have also assumed that all of the involved devices are constantly capable of
establishing a wireless connection.

In this article, three different agents are involved in any negotiation sce-
nario, these agents are; 1) User agents that announce the preferences of the
end-users they represent and wait for responses. 2) Supplier agents that take
into consideration the preferences and context provided by a particular user
agent to compete for service provision. 3) Negotiation agents that maintain
all of the allowed negotiation strategies and mediate between the earlier two
types of agents. To allow context-aware negotiations, a Global Positioning
System (GPS) to track end-user moves is operating on top of the multi-agent
platform.

Therefore, it was also assumed by authors that all of the handheld devices
are GPS enabled and, a web browser is available on the client side of the
application to facilitate the task of profile editing and parameters change.

The negotiation mechanism proposed by these authors is mostly influ-
enced by semantic web approaches. The negotiation agent (i.e., the mediat-
ing agent) is coming up with the best fitting strategy in particular situation
by parsing a negotiation ontology. These ontology is flexible and interac-
tive so that end-users and service providers are able to present their own
negotiation conditions.

Intelligent information agents [79] are those capable of interacting with

40

Table 2.2: Agents Negotiation for Service Acquisition: A Comparison

[Faratin et al., 1998] [Bircher and Braun,
2004]

[Cao et al., 2005]

Agents Client/server software rep-
resenting an entity in ac-
quiring a service

Software that represents
an end-user interacting
with another representing
a company’s service
through a third mediating
agent.

A software entity responsible for a
choice of a service and its invoca-
tion rather than actually offering
it.

Environment Business Process Manage-
ment Application.

Interoperable Heteroge-
neous systems.

On-demand web services composi-
tion.

Objective Guiding an agent through
the initiation of an of-
fer, evaluating incoming
proposals, and generat-
ing counter proposals by
means of a comprehensive
reasoning model for service
oriented negotiation.

Realizing a marketplace for
temporary Internet service
provision through a me-
diating agent and service
agent’s interactions.

Adjusting Agents negotiation tech-
niques to bring together different
service sources and finally respond
to complex service requests made
by end-users.

Assumptions A single service is avail-
able from multiple sources.
Each agent can be either a
client or server at a time.
Agents may be required to
make trade-offs to reach
agreements. The social
context influence agent’s
behavior. Agents do not
know anything about each
other (e.g., utility func-
tion).

FIPA OS is installed on
each participating device.
A new agent has to log
its profile in the manage-
ment system and directory
facilitator of FIPA OS. At
least two wireless service
providers are available at
each hotspot.

Each agent keeps information
about a set of services. Each
service process is an independent
workflow. Service agents have
to cooperate to achieve any given
task. The knowledge of each ser-
vice agent is divided into three
parts; basic, constraints and social
knowledge. Message exchanging is
the language agents talk using 1st
sending 1st arriving.

Protocol Agents define the set of
variables they will negoti-
ate about. The negoti-
ation between two agents
starts as series of alter-
nate succession of offers
and counter offers relating
to the values of the prede-
fined variables. The nego-
tiation continues until an
agent terminates the pro-
cess or an offer is accepted
by one of them.

A user agent contacts the
local marketplace agent
asking for a list of available
service providers. It uses
the Contract-Net protocol
to make a contract with
one of the suitable service
agents. If agreed, the ser-
vice agent sends the con-
figuration file of the nego-
tiated service to the user
agent.

Each agent sets priorities and val-
ues for the service variables it oper-
ates according to local constraints.
Each agent uses an OK message
to broadcast the new values of lo-
cal variables to other agents. If
another agent agrees on these val-
ues it establishes cooperation. An
agent broadcasts a Nogood mes-
sage if it cannot satisfy a con-
straint.

Considered
Require-
ments

Privacy of information, pri-
vacy of models, value re-
strictions, time restrictions
& resources restrictions.

The interacting entities are
running on different com-
puters and connected over
the Internet. The seller
entity supports service dis-
covery, negotiation & man-
age different network con-
nectivity.

Services composition to increase
web knowledge and information
sharing. Constraints that web ser-
vices may have are all of equal im-
portance.

Example After receiving a service re-
quest, six agent types rep-
resenting six different divi-
sions in British Telecom in-
teract to produce a price
quotation

A user intends to move to
a place where several Inter-
net access providers may
grant his computing device
different services at differ-
ent costs.

Online travel planner that inte-
grates services provided by differ-
ent entities such as airline compa-
nies, hotels and credit card com-
panies, and that requires several
agents’ cooperation.

41

several distributed or heterogeneous information systems representing end-
users in obtaining data and overcoming information overload. In [80] authors
have relied on information agents, data acquisition agents and rule-based
reasoning agents to build a multi-agent system (MAS) capable of receiving
data from a legacy information system - Enterprise Resource Planning (ERP)
- and control the extracted information using AI techniques. That effort has
added the possibility of an existing information system to be customized
according to the new preferences of end-users without any re-engineering
processes.

Using ubiquitous agents, another approach was taken in [81] to allow
mobile devices to access Web Information Systems (WIS) depending on their
location. Authors have used agents to represent the goals nomadic users
would like to achieve, store the exact location and connection features of
each user and then migrate these agents to different information systems
(or other mobile devices) to find relevant data or another information agent
capable of answering user’s requests. In PUMAS, the agents negotiation was
implemented using standard distributed systems technique - message passing
and recommendations - in spite of the dynamicity of mobile users and the
limited resources of a mobile network.

2.5 Related Work

While considering the Internet as a highly dynamic environment, negotiation
protocols used in e-commerce or data allocation applications are inspired by
actual auctioning mechanisms [82], others by the notion of contracting [24]
and even politics and economics [83].

In [73], an agent-based architecture for service discovery and negotiation
was presented. The realization of three novel requirements have motivated
the work of these authors, these requirements are; 1) Agents interactions are
not necessarily executed in one network and not only involving two types
of agents. 2) Diverse connection technologies can be utilized at different
costs, which increases the complexity of a system and enable a higher level
of end-user dynamicity. 3) A service application should automatically react
to changes as long as it is of end-user benefits.

A multi-agent negotiation method for on-demand service composition is
presented in [77]. Agents here are expected to negotiate in order to reach
agreements about combining different services from different providers to fi-
nally meet a consumer’s expectations, which is not a handheld device user.
While in [78], an architecture for pervasive negotiation that uses multi-agent
and context-aware technologies is proposed. The main focus of this research

42

effort is to consider clients profiles, their preferences and locations so that
personalized services, promotions and offers are transmitted to their hand-
held device.

Coalition formation is another approach to Agents Unioning. In [84]
model for coalition formation was proposed to enable each agent to select
individually its allies. The model supports the formation of any coalition
structure, and it does not require any extra communication or central co-
ordination entity. Similarly, the definition of an optimal coalition in [85] is
based on Pareto dominance and distance weighting algorithm. Besides, in
[86] trusted kernel-based mechanism for making a coalition rather than on
efficiency of a common task solving.

In [87], a model for automated negotiation is proposed for mobile agents
to achieve complex tasks in mobile web commerce, which is repeatedly a
client to server approach. They introduced a definition of a user and pur-
chase profile that are used mainly in supporting the buying decisions prior
to actual product purchase. However, they have assumed that all the heavy
computation is performed in the fixed network, by the CallApplication, (i.e.,
one of the assumed linked applications that is responsible of communicating
product info with end users), and the agent platform. Similar to our ap-
proach, authors of this paper have considered the fact that users are always
required to be connected to the managing platform while the negotiation
taking place.

Coming from a Wireless Sensors Network (WSN) background, in [88],
they proposed an approach for developing autonomous agents that has an
economic behavior that make them able to negotiate and independently take
rational economic-driven decisions. Two sceneries for an autonomous agent
to negotiate a service were presented: 1) presents the negotiation involving
the transportation and communication services with the Adhoc network, 2)
represents the usage of the WSN to the proposed agents. However, it is clear
that no users or pocket computing devices are involved at any point of their
description and, their agent is not a software, it is a WSN node with limited
batter and computing capabilities within a network.

From Electronics, another approach to automated agents negotiation
and decision making in resources-limited environment was presented in [89].
Scholars here are perceiving a multi-agent system as a set of distributed radio
antennas of a cellular network and, by means of agents’ contracting, these
agents would share the use of resources, (e.g., bandwidth). The approach is
quite remarkable from Antennas negotiation perspective, yet, it does not ad-
dress our focal interactions of nomadic users, their delegated software agents,
pocket computing devices, communication channels, and the agents platform.

In [90], authors argue that by using reinforcement learning an agent will

43

then be capable of employing a set of strategies that respond to the op-
ponents’ with various concessions and preferences. The protocol authors
propose is of two actions, either and agent will respond giving a deadline
for reaching an agreement, or a complete rejection. The main focus of the
two experiments they explained is how an agent learn a behavior while still
keeping its functionalities at the same level of performance, which the call it:
”not breaking down”.

Here, it is also worth highlighting that: 1) most of the research efforts
we referred to in this section are of recent years, which is reflecting the
novelty of this research field - Agents Negotiation in Unwired Service Acqui-
sition Networks. 2) Since the deployment of software agents in mobile service
applications is increasing slower than those of Web applications, it is then
expected to have bigger range of improvements for online agents negotiation
than those we tackled.

2.6 Chapter’s Summary

It is clear that an increasing consideration for approaches, theories, imple-
mentation techniques, and development methodologies from the literature of
multi-agent systems in deploying practical applications can be observed. It is
also clear that the world’s focus now is shifting towards lightweight applica-
tions, mobility, and services that can be of use to users on the go. Therefore,
it is intuitively foreseen that in order for agents’ contributions to keep on in-
fluencing the implementation of modern service applications a shift towards
mobility and its supporting instruments is required.

In this chapter, we have surveyed in details the current state of the art of
agents’ negotiation. We have started from the wide notion of ubiquity and
everywhere computing while showing the significance of the agent paradigm
in between. Then we have showed and compared the most influential research
efforts on agents negotiation in ordinary computing networks, (i.e., wired
computing). Then approached agents’ literature from another angel, which
is related to the scenarios where a specific service acquisition is required.
From that aspect, after not finding much in that field, we have picked and
compared three different research contributions while highlighting the case-
studies they have relied on to address their motivations, which had nothing
to do with lightweight computing or unwired networks.

The last part of this chapter went through the state of the art of what we
believe to be very close to our research contribution; Agents negotiation in
wireless networks. Scholars’ effort on that direction are still hardly observed
even though the overall actual trend of developing multi-agent systems are

44

driving concerned developers toward mobile services development and inte-
grations.

It is also worth highlighting here the reasons we decided to produce this
thesis, which are:

1. Introduce a survey of the current state-of-the-art that links between
agents’ negotiation, service acquisition, wireless communications, and
AmI. By introducing this survey we aim at: a) highlighting the impor-
tance of considering a dedicated negotiation models for agents repre-
senting users of pocket computing devices, b) the distinction between
negotiations in wired networks and negotiations in unwired networks.

2. Explain our various practical experiences on designing, developing, and
deploying service acquisition multi-agent systems for users of pocket
computing devices.

3. Summarize the lessons learned from these earlier experiences by in-
troducing a new negotiation model for agents that represent users of
pocket computing devices. By this model we address and overcome the
obstacles encountered while putting agents’ approaches into modern
practices.

4. Referencing the results we obtained with respect to the lessons we
learned, the negotiation model we came up with, and also with respect
to the existing negotiation models. By doing that we aim at clarify-
ing the advantages and disadvantages of studying our overall research
efforts and outcomes.

45

46

Chapter 3

The Nomadicity-driven Negotiation

Model

In this chapter we introduce our negotiation model. It starts by defining the
general abstract setting wherein we expect our model to be applied then a
clear description of the negotiation issue that any two interacting agents in
the context of our research are expected to resolve. Then we characterize
the negotiation parties - Agents. We then formally introduce the negotiation
protocol and its related time management approach.

3.1 The Model’s Abstract Setting

Different communities of agents may address different concerns in which some
of these concerns may be the result of combining two or more sub-concerns.
In our research, a concern is the abstract concept a community is continually
supporting as long as certain objectives are better accomplished. Besides, a
sub-concern is a generically narrower concept of a community’s abstract con-
cern, which is satisfied whenever a specific set of objectives is being achieved.

For instance, a group of robots in a warehouse might be concerned with
placing all of the received objects in dedicated spaces, but a sub-concern
emerges when a subgroup of these robots is concerned with organizing - only
- the north part of this warehouse. A possible sub-subconcern occurs while
two robots of the north-part subgroup are concerned with organizing the red
objects only. However, robots operating in a warehouse together with the
robots operating in a nearby automobile manufacturer are forming a society
of robots.

Definition 1. A Agents Society: is a set of agents located in a space
wherein different interests’ agents are encountering.

47

As definition 1 outlines, and figure 3.1 depicts, when a group of agents
come into a common space and, within this group; a number of agents are
assigned to completing different abstract concerns, together they form what
we call an agents’ society. To better elaborate on this, we should think of
an agents’ society the same as we think of all robots in factories of a spe-
cific industrial zone. For example, the industrial zone in Milan has different
factories that each has a number of operating robot agents, therefore, all
agents in all factories of Milan are forming the Milan’s society of industrial
robot agents, even though each of these robots is having tasks with different
natures to achieve.

SOCIETY COMMUNITY CLUSTER

Figure 3.1: Agents’ Society, Community, and Cluster.

We breakdown a society into sub-societies in definition 2. So, within all
factories of Milan, robots involved in car manufacturing, and those of washing
machines production, together they are forming two different communities
of robot agents, but yet they both belong to the Milan’s society of industrial
agents. However, the classification of societies and their communities are
affected by the perspective a problem is tackled from. For instance, from a
different perspective, industrial agents of north Milan can also be considered
as a society by itself, and every set of similar robots can form a society’s
possible community. This classification can also be made according to robots
colors, types, or names, and so on.

Definition 2. A Agents Community: is a subset of an agents’ society
where a common interest is shared among all of its participants.

In a community of agents, if a group of agents come into agreement about
completing a sub-concern of their community’s abstract concern, then we
call this group an agents’ cluster, (Definition 3). For an agents’ cluster to
be formed, the achievement of a common task must be shared among this
cluster’s parties. Meaning, this cluster’s parties are uniting to achieve a task,
(e.g., two agents in a warehouse: organizing boxes). However, for a union
to occur, prospective agents must first agree on forming this union, and for
agents to agree they must negotiate. Negotiation between agents in order to
unite and become one of the possible clusters in a community is the broad
scope of our model.

48

Definition 3. An Agents Cluster: is a subset of an agents’ community
wherein all parties have came into a mutually beneficial agreement that sat-
isfies their predefined needs.

The total number of concerns a specific society addresses can be descend-
ingly placed on a pyramid of concerns. In figure 3.2, this concerns’ pyramid
has a society’s very abstract concern on top of it, then this concern’s sub-
concerns in less-abstract levels. However, these sub-concerns can also be
considered as abstract concerns for sub-communities that play different roles
inside the larger community. Depending on the size and number of respon-
sibilities a community has, breaking down the concerns into sub-concerns
can be carried on within N levels of descending abstraction, until the least
community of a society is defined.

CONCERN

sub-concern sub-concern

sub-concern sub-concern sub-concern sub-concern

sub-concern sub-concern sub-concern sub-concern sub-concern sub-concern

concern concern

concern concern concern concern

ag1 ag2 ag3 ag4 ag5 ag6

Abstraction Level I

Less Abstraction: Level II

“Bottom”

N-Levels

Unions in a community of agents

Society

C
o

m
m

u
n

it
ie

s
&

S
u

b
-c

o
m

m
u

n
it

ie
s

Clusters

Figure 3.2: Community’s concerns, sub-concerns and agents’ unions

Since the least sub-community in a chain of a larger communities is the
one that has an abstract concern and a set of indivisible sub-concerns. Then
- at the bottom of our pyramid - any set of sub-concerns that is linked to
an earlier level concern are, together, reflecting a specific community where
agents’ clusters may exist. Depending on the number of involved agents,
different sizes of clusters may exist within a community. However, in our
model we consider a specific type of clustering in which only two agents are
involved, which we call it a Union, which we define later in this section.

Example 1. A University, A Nearby Factory, and The Province.

People working for the same university may each have a different role, but

49

together they form one community that satisfies the university’s main con-
cern, which is providing education. On a higher level of abstraction, the
university’s community and the community of a nearby factory, together,
they form a new community of workers, which satisfies a different concern,
such as developing the province. However, a professor or more of the same
university may have their own community-related concerns, (e.g., become a
dean, get funds). Therefore, in a community, each played role can be asso-
ciated with new concerns that are different from the community’s concern,
but yet are subs of it, sub-concerns.

In order for this professor to satisfy his personal concern - community’s
sub-concern - a set of actions needs to be taken, (e.g., write proposals, dine
with key contacts). However, each of these actions would cost its taker
something in return. For instance, a professor would tradeoff some of his time
with the action of writing a project proposal. Since different actions are likely
required to satisfy a single concern, then the value of the tradeoff associated
with this concern is expected to increase, (e.g., lots of time), or a number
of different tradeoffs would emerge, (e.g., time and money). Therefore, a
community’s sub-concern is associated with one or more action(s), and a
cost that is equal to one or more tradeoff(s). Thus far, we could possibly say
that the set of sub-concerns a community searches to satisfy corresponds to
a set of tradeoffs members of this community are ready to do.

At a certain time, a professor’s insistence to submit a project proposal,
and his lack of tradeoffs (e.g., no enough time), may push him to negotiate
with his colleagues the idea of establishing a union. Then, the professor might
have a chance to tradeoff something that he does not lack at this particular
moment, (e.g., fund sharing). In this situation, the negotiation process a
professor would carry out is affected by a set of subsequent requests that
he previously prepared to eventually ensure the satisfaction of his personal
concern. For example, do you have a spare time? When? Do you work in
groups? Do you currently face funds problems? And so on.

Example’s Conclusions: for every community of people there is a main
concern. For every member of this community there is a number of personal
concerns, which are also sub-concerns of a community’s main concern. There
is a cost for every action taken by a member to satisfy a community’s sub-
concern. This cost is a set of tradeoffs a member will do in order to perform
this concern’s related actions. Consequently, there are two possibilities for a
community member to satisfy his concern, either 1) all tradeoffs are available
and given by this member unaccompanied, or 2) a mutually beneficial union
is established between a group of community members in order to make all

50

concern’s tradeoffs available.
Making the later possibility occur will require the existence of a negotia-

tion process between a member and a potential union partner. A member’s
decision whether to accept a union formation will depend on the responses
he receives to the requests he asks to the same union’s potential partners.
Therefore, a set of requests corresponds to the tradeoffs a member is willing
to do while taking place in a union.

concern

concern

concern

concern

concern

concern

concern
su

b

sub

Level I of
Abstraction

Level II of
Abstraction

Level III of
Abstraction

su
b

sub

sub

sub

Bottom Level of Abstraction

Sub-concern

Sub-concern

Sub-concern

Sub-concern

Sub-concern

sub

Tradeoff
1

Tradeoff
2

Tradeoff
3

Tradeoff
4

...

Request
1

Request
2

Request
3

Request
4

...

concern

Union
1

Union
2

Union
3

Union
4

...

Member
1

Member
2

Member
3

Member
4

...

Figure 3.3: Community’s concern, subconcerns, members, unions, requests &
tradeoffs

3.1.1 A Community, its Concern, and Sub-concerns

In this section we further elaborate on the relationship between a commu-
nity’s concern, its sub-concerns, members, unions, and correlated requests
and tradeoffs.

As figure 3.3 depicts, every community’s concern can be described by
means of a number of of smaller sub-concerns wherein each of these sub-
concerns can be either directly assigned to an entity that is committed to
satisfying it or, each sub-concern is in turn divided into a less-abstract set of
sub-concerns. Therefore, assuming that there are N concerns, Concerns =
{C1, ..., CN}, that are distributed among anM levels of abstraction, Levels =
{L1, ..., LM} in which every l ∈ Levels represents a class of concerns that is

51

more abstract than its subsequent one, then, elements of the Concerns are
distributed among all Levels. Therefore, the number of concerns at L1 is less
than, or equal to, the number of concerns at L2, and the number of concerns
at L2 is less than, or equal to, the number of concerns at LM .

Consequently, the top level of abstraction, L1 ∈ Levels, contains one
main concern. The bottom level of abstraction, Lb ∈ Levels, contains the set
of concerns, (i.e., sub-concerns), that cannot be broken-down. As a result,
as shown in figure 3.3, every subset of concerns are associated with one
concern of its earlier level of concerns, which is one possible bottom edge of
a concerns’ hierarchy. Hence, this bottom edge represents also a society’s
specific community, its main concern, and its members’ sub-concerns.

3.1.2 Members, Unions and Tradeoffs

Definition 4. A Union: is the agreement of two agents of the same com-
munity to fulfill part or all of each others requests.

In every community there is set of members, Members = {M1, ...,Ms}.
Every subset of Members represents a community’s possible union - Defi-
nition 4. Since in this thesis we assume that a community’s sub-concern can
be achieved by means of members’ unioning, then, all of the community’s
sub-concerns are associated with all possible unions that can are likely to be
established in a community, Unions.

Therefore, a u ∈ Unions contains a subset of two Members. Members
of every possible union will be trading off something that they have in order
to eventually satisfy the sub-concern they are assigned to. Consequently, a
set of tradeoffs is associated with all possible unions within a community.

Definition 5. A Tradeoff: is a part, or the whole, of what an agent is
ready to give in exchange of fulfilling one or more of service requirements.

In order for a member to agree about trading off one or more of his belong-
ings, and then establish a union with other members, he needs to guarantee
his share of the union benefits. Therefore, a potential union partner will
attempt to maximize his union benefits by negotiating the fulfillment of a
set of requests with the other potential partner of the same union. The re-
quests of this member, the requests of other potential union partners, and all
requests of a community’s possible unions’ partner, together, they will form
a community’s set of requests, Requests.

Definition 6. A Request: is one of the characteristics describing the gen-
eral demand an agent foresees fulfilled in a prospective union.

52

We conclude the depictions of figure 3.3 by locating a possible relationship
between a community’s sub-concern, members of this community, the union
these members may form, the tradeoffs they will make, and the requests each
member will impose in order to ensure that a union’s benefits is worth giving
a specific tradeoff. This possible set of relationships are the highlighted area
in figure 3.3.

3.1.3 Tradeoffs vs. Requests

Following the example we mentioned earlier in this chapter, (i.e., A Univer-
sity, A Nearby Factory, and The Province), we could possibly assume here
that ”providing education” is a main concern for a University. Therefore,
a set of sub-concerns can also be taking into account, (e.g., hiring enough
lecturers). The University, its main concern, and its sub-concerns, are all of
a community that is part of a bigger picture, which is a society.

Formally, this can possibly look like that: providing education can be
positioned at C3 ∈ Concerns referring to the fact that this concern is at
the third level of abstraction within a society, meaning at (L3) ∈ Levels
of abstraction. Therefore, the same university’s sub-concerns, (e.g., increase
research funds, increase classrooms), are located on the subsequent level of
abstraction, L3 + 1.

As described earlier while formalizing the model’s abstract setting, in
each community there is a set of members who share one common concern
and, also unite to resolve this concern’s sub-concerns. Then, within the
community of a university, M1 ∈ Members can be a Professor that was
assigned to satisfying the sub-concern ”Increase research funds”.

However, to better elaborate on this interconnected relations between
Members, Concerns, Requests and Tradeoffs, we will assume that M1 are
lacking the time to achieve the delegated task. Consequently, M1 attempts to
negotiate the idea of establishing a union, U1 ∈ Unions, withM2, so that the
time they both have will be enough to write a project proposal and increase
research funds. In this situation, time is tradeoff, F1, F2 ∈ Tradeoffs, both
members will have to exchange with the fact of writing a project proposal.

On the other hand, M1 and M2 cannot tradeoff their time unless union
benefits are guaranteed for each, (e.g., fund commission, promotion, PhD
students). Therefore, a community’s sub-concern is completed if M1,M2 ∈
Members fulfill their requests, {R1, R2, R3} ∈ Requests, by means of join-
ing possibly U1 ∈ Unions while F1, F2 ∈ Tradeoffs are the union conditions.

Definition 7. An Instance: is the specific concern an agent attempts to
complete by means of negotiating the establishment of a union with one of

53

the same community’s agents.

In order for us to keep our model focused on negotiation about a certain
issue, we conclude this subsection by highlighting the distinction between
any of the community’s sub-concerns and the sub-concern that a specific
agent addresses. We do that by using the word ”instance” - Definition 7
- to refer to the single concern a specific agent attempts to complete while
playing a certain role in a specific community, and ”instances” to describe
all the same agent’s concerns. Consequently, an ”instance” is a concern for
an agent but a sub-concern for its community.

3.1.4 Agents Societies and AOSE

The concept of representing agents as societies is also addressed in the liter-
ature of Agent-Oriented Software Engineering (AOSE). In [91], authors have
addressed the fact that the correct representation of multi-agent systems
should be done through the perception of agents’ societies wherein global
laws are followed to achieve proper interactions. Same scholars have also
stressed the fact that this law-driven interactions will lead to improving the
global behavior of the overall multi-agent system. Yet, the later research
effort did not address the service-centric society of nomads we focus on in
our research and, consequently, the motivating examples given are all of the
client/server field of application, (e.g., Internet Services).

Different approaches were considered to model agents societies in a given
environment. For example, in [92], relying on the Interactivist-Expectative
Theory of Agency and Learning (IETAL), authors have proposed a model
for a multiagent society based on expectancy and interaction. However, this
later approach did consider neither the notion of Service-driven interactions
nor the idea of agents Unions to fulfill mutually beneficial objectives, and
scholars here assumed that all agents of a society are equipped with sensors
that detect similar interest agents without getting into negotiations.

In [93], scholars have presented what they call the vision of open agents
societies. They perceived the notion of agents societies as ”Flexible network of
heterogeneous software processes, each individually aware of the opportunities
available to them, capable of autonomous decision making to take advantage
of them, and co-operating to meet transient needs and conditions”. Although
in addressing their vision scholars of the later article have focused on wireless
communications and technology, yet, they have highlighted a number of risks
in their approach, such as: 1) the fact that the entire vision is built upon
the existence of mutual trust between all of the society members, 2) the level
of autonomy an agent will have is complete, therefor, it is assumed that no

54

upper agents interactions, (i.e., users involvement).
Last but not least, we would like to highlight the fact that our aim from

presenting the notion of agents’ society, community, cluster, unions, and
service-centric communities is to facilitate the representation of our negotia-
tion model, and precisely reflect the mental method we followed to prepare
for our model formalization and introduction.

3.2 The Negotiation Issue

In this section, we use the broad description of the model’s setting presented
in the earlier section to identify the specific community wherein our nego-
tiation model can be applied. We define the issue which two agents of this
community are going address in their negotiation, and probably agree on
its realization. Depending on the sets of requests each negotiating agent is
seeking to fulfill, a deal between two agents can be reached under different
conditions. Therefore, we then link between an agent’s possible situations of
acceptance with its requests. We conclude this section by putting together
the sets of requests of an agent and the tradeoffs it is ready to offer and,
linking them with the different cases wherein a successful negotiation may
occur.

3.2.1 The Service-Centric Community

Definition 8. A Service-Centric Community: is the set of agents in-
teracting with the intention to fulfill the abstract objective of acquiring a
predefined service.

In our model, we consider the negotiation between two agents that are
members of the same service-centric community, which we outline in Defini-
tion 8. Therefore, all agents are aware of the community’s abstract concern
/ provided service, (e.g., dating, or ridesharing, or bartering). Depending
on the kind of service a community is concerned with, a union between two
agents reflects the completeness of a unique community’s sub-concern, (e.g.,
date(john,sara)). Therefore, a community’s sub-concern is created once an
agent is searching for a union partner so that together they fulfill each others’
requests.

In a service-centric community, we assume the existence of a central agent
that we call it a head-agent, Definition 9. This head-agent is the managing
authority of a community, (e.g., a multi-agent platform).

55

Definition 9. A Head-Agent: is the central and managing member of a
community, which is responsible of applying a community’s common regula-
tions.

For example, within a community of dating service, although all agents
are seeking to get a date and somehow pay for it, yet; the head-agent will
be responsible of putting all male agents in one category and doing the same
for all female agents. Besides, the head-agent will ensure that any male
agent that searches for a union partner is actually looking into the category
of female agents, and the vice versa. The same applies for a ridesharing
community. All ride-giver agents will be separated from ride-seeker agents,
even though both categories contain agents of the same type. By ”same type”
we mean; all agents are searching to acquire a service and give something in
return.

It is worth highlighting here that the reason in our model’s setting we
drifted toward the existence of an agents’ managing entity that is centralized,
(i.e., a head-agent (e.g., agents platform)), goes back to the fact that the
service-centric community we address in our research is more of an industry-
driven provisioning of a commercial service. Therefore, a complete control
and monitoring over the behavior and types of interactions software agents
are performing is always necessary.

Assumptions

In traditional service provisioning approach, there has been always an entity
that demands and another that supplies. These two interacting entities can
be intuitively perceived as a User and a Content Server, or a set of Supplying
Machines interacting with a set of Demanding Machines, and so on and
so forth as long as the predefined objectives of both entities are achieved
throughout their interactions.

However, to address the social ingredient of a service provisioning ap-
proach, the entity that demands and the entity that supplies should be of
the same nature to become capable of establishing mutually beneficial rela-
tionships, (e.g., a DB server & a linked Web server).

Therefore, since in our model we are focusing on the interactions of two
software agents that are virtually representing the social interactions of no-
madic users to acquire a service on their behalf. Then, the demander and
supplier here are of the same type - users, plus, the demander is also a
supplier and the vice versa, so the foreseen relationship is mutually benefi-
cial. As a result, in general, our model assumes that any possible objective
of a service-centric community can be achieved by means members getting
together - unioning.

56

Moreover, in this thesis, we consider a type of unioning that involves
the agreement of only two software agents. The reasons behind taking that
decision are: 1) it is more feasible to partition a service demand into a set
of smaller services than a user into smaller ones, (e.g., searching for three
dates can be easily divided into three similar but separate agents that seek
three different unions). 2) We are also looking forward for the one issue
many parties extension of our model instead of the current one issue two
parties approach, and the transition is doable that way than others. 3) The
case-studies that we worked on with our industrial partner are mostly of this
nature - P2P interactions.

To summarize, in a service-centric community, we assume the following:

1. A sub-concern cannot be completed by one agent. Therefore, in order
for each agent to realize any of its service instances a union with another
agent, of the same community, is required. As a result, all of the sub-
concerns a service-centric community has are completed only by means
of unions between two agents.

2. Every unioning agent is not involved in completing more than a sub-
concern at a time so that a full commitment to the current negotiation
session is achieved. Besides, since our negotiation protocol permits the
negotiation parties to pend or deposit their current negotiation session
and look for alternatives, so concurrent negotiation is anyway achieved
but in an indirect way.

3. All agents are of the same type; therefore, every agent that is willing
to provide a service is also acquiring one, which is reflecting real-life
situations between humans, (i.e., mutual beneficial agreements).

4. In order for two agents to complete a sub-concern of a service-centric
community, they both will have to consume some elements that make
them capable of completing these sub-concerns - Tradeoffs. For exam-
ple, when two robots form a union to handle the red objects; they both
accept to tradeoff their time and electrical power with completing this
sub-concern. In a ridesharing community, when agentD and agentS
form a union to complete a sub-concern, which is a car-ride; the driver
trades off the place available in his car with the money a ride seeker is
ready to pay / tradeoff.

3.2.2 The Service-Centric Issue

In a service-centric community, two negotiating agents will discuss the forma-
tion of a mutually beneficial union. Meaning, a successful negotiation should

57

Agent X Agent Y

UNION

ok
ok

which of my requests will
be fulfilled?

what tradeoffs I
will make?

g
iv

e
()

ta
k
e

()

Union?

Figure 3.4: The negotiation Issue of a service-centric community.

lead agentX to employ a number of its capabilities (Tradeoffs) in order to
satisfy a set of needs (Requests) agentY has, while agentY is doing the same
for agentX.

Therefore, as figure 3.4 depicts; for two agents to complete their instances,
they must unite. For a union to occur, agents must tradeoff something that
they are capable of providing with the completeness of these instances. In
order for two agents to agree to tradeoff something they have, they must first
be persuaded with the benefits of this prospective union while being involved
in a negotiation session - Definition 10.

Definition 10. A Negotiation Session is the time space in which two
agents are negotiating the formation of a union.

An agent gets into a negotiation session following the head-agent ’s task
of applying the community’s common rules. However, all agents of a specific
community are having their own description of the service they are searching
to acquire and what they are willing to give in return, (e.g., if I get a blond
or curly female from 20 to 25 I would give either a dinner or flower).

For every agent, this general description is broken down into a set of
requests and tradeoffs (Definition 6 & Definition 5), (e.g., hair = blond,
hair.alternative = curly, age 20, age.alternative = 25, tradeoff1=dinner,
tradeoff2=flower). Eventually, an agent negotiates with its potential union
partner the possibility to satisfy a set of requests with respect to the associ-
ated tradeoffs.

3.2.3 Agent’s satisfaction and its Instances

Depending on the nature of requests each agent in a service-centric commu-
nity is searching to fulfill, the service a community makes available to its
members may have different forms. From an agent perspective, the different

58

AGENT 50%

more than 50%
100%

sa
tis

fie
d

Requests = {R0, R1, R2, R3}when

Requests = {R0, R1', R2, R3', R4}

Requests = {R0, R1, R2', R3, R5}

Requests = {R0, R1', R2', R3'}

when

when

when

less than 50%

Requests = {}when

not satisfied

Figure 3.5: Levels of satisfaction Vs. Sets of Requests

forms a service takes correspond to different levels of satisfaction an agent
may attain while acquiring a service.

The highest level of satisfaction an agent could possibly attain is asso-
ciated with the fulfillment of a specific set of requests. The lowest level of
satisfaction an agent may reach to - not satisfied - corresponds to the situa-
tion where none of the requests’ subsets can possibility be fulfilled.

Example 2. Levels of satisfaction in a ridesharing service

In a community wherein a ridesharing service is made available throughout
its members’ interactions, we assume that there is a ride seeker agent that
is called AgentS and, the highest level of satisfaction AgentS may attain
is when a negotiation with AgentG.1 - that is a ride giver agent - leads to
forming a union in which AgentS will be: 1) picked from home, 2) at 14:30,
3) dropped by the post office, 4) with no stops in-between and, 5) the cost
is $5.

The lowest level of satisfaction AgentS may attain is when none of the
negotiations performed within the available time has led to any union for-
mation and, consequently, AgentS’s instance was not completed. AgentS
may also be 50% satisfied if a negotiation with AgentG.2 has led to union
in which a car ride with couple of stops are made in-between the departure
and the arrival points.

In our model, an agent’s instance can take different forms wherein each
reflects a different level of satisfaction an agent may attain. Reaching each of
these forms is associated with the fulfillment of a different subset of agent’s
requests. Therefore, the total number of forms and agent instance may take
correspond to a large set of different requests. The optimal form of an agent’s

59

instance, and its highest level of satisfaction, is obtained when a specific set
of requests is fulfilled; a key-set.

Definition 11. A Key-Set: is a specific subset of requests that an agent
attempts to fulfill in order to obtain the optimal form of its instance.

In figure 3.5, we use different types of circles to simplify our notion of
an instance’s different forms. The highest level of satisfaction an agent may
attain is the optimal case of an agent’s instance, which is represented by
means of a crossed-circle. For an agent’s instance to become a crossed-circle,
a set of specific requests must be fulfilled, Requests = {R0, R1, R2, R3}.
Therefore, the set of requests that leads to this particular shape is the key-set.

Following the depictions of the same figure, a number of less optimal
forms of the same agent’s instance can be obtained when different sets of
requests are relatively fulfilled. These emerging sets of requests may contain
an agent’s new types of requests or variants of the key-set requests. We use
the blank circle to symbolize the case when none of the requests are fulfilled.

However, we conclude the depictions of figure 3.5 by highlighting the
fact that any agent in a service-centric community can be either completely
satisfied, not satisfied at all, or having a level of satisfaction that is neither
optimal nor insufficient.

3.2.4 Agents’ reactions to different Instance’s forms

One or more of the items available in an agent’s list of tradeoffs is associated
with the realization of its key-set, which is in return associated with an
agent’s optimal instance’s shape. However, since an agent’s instance may
take different forms in which one is optimal, then, different sets of requests
may emerge in order to define the other instance’s forms. Plus, each of the
emerging sets of requests become linked to different tradeoffs or, variations
of the key-set ’s item of an agent’s list of tradeoffs or, combinations between
all possible tradeoffs.

Figure 3.6 depicts the relationship between each possible instance form
(agent’s levels of satisfaction),Requests subsets, andTradeoffs. We use the
crossed-circle, again, to symbolize the optimal form of an agent’s instance, the
centrally divided circle refer to 50% fulfillment of the same agent’s instance,
the circle with its bottom side vertically divided refer to a level of fulfillment
that is greater than 50% but less than 100%, and the circle with its upper
part vertically divided refer to a level of fulfillment that is greater than 0 but
less than 50%.

60

R0

R1

R2

R2'

R3

R3'

R3'’

R4

R5

R6

R6'

R6'’

R6'’’

R6'’’

F0

F1

F2

F3

F3'

F4

F4'

F4'’

Demands Possible
Variants

T
o
ta

l N
u
m

b
e
r

o
f

R
e
q
u
e
st

sA
ll P

o
ssib

le
 T

ra
d
e
o
ffs

Figure 3.6: Satisfaction Levels, Sets of Requests, and Sets of Tradeoffs

As figure 3.6 shows, the key-set = {R0, R1, R2, R3} is the one associated
with the crossed-circle (optimal instance shape), which is in turn linked to
the uppermost item of the tradeoffs - F0 ∈ Tradeoffs.

Following the depictions of figure 3.6, we then show the case in which a
less optimal condition of the same agent’s instance is linked to a subset of
requests that is not the key-set, but yet it includes some of its elements. In
addition, we show the case in which a possible instance’s form is associated
with more than one tradeoff, and the resulted set of tradeoffs includes a
variant of an already included tradeoff, (e.g., a book’s soft or hard copy).

Among other several scenarios that figure 3.6 may show, we would like to
highlight the existence of an empty circle that we involve to symbolize the
case of total incompletion of an agent’s instance, and consequently it is not
connected to any requests’ subset or associated with any tradeoffs, but yet
it is likely occurring.

Definition 12. A possible agent’s View is the combination of an agent’s
possible subset of requests plus its associated tradeoffs.

Since in our research every agent may have a number of requests and a
number of tradeoffs and, since all available requests are typically associated
with one or more tradeoff. Then, an agent may have an unspecific number
of instances in which all of them are located in-between the optimal and the
minimal forms of satisfaction.

61

Putting together any satisfaction instance, its specific set of requests,
plus their associated set of tradeoffs, we reach a particular combination that
we call it an agent’s View. According to definition 12, an agent may have
more than a single View, and these Views vary according to agent’s interests.
Consequently, an agent may succeed to find another agent that is capable of
fulfilling one of its Views.

For example, a possible View of an agent in a community where rideshare
service is applicable could be the combination of 1) a set of requests,

Requests = {start.trento, end.povo, route.nostops, time.1530}

and, 2) a set of tradeoffs,

Tradeoffs = {euro.10},

and, 3) an instance of this agents satisfaction

Satisfaction = 100%

3.3 The Negotiating Agents

In our negotiation model, there are N autonomous agents, Agents = {A1,
..., AN}. These agents are bilaterally negotiating to resolve the issue of
establishing a mutually beneficial union in order to fulfill each other’s service
requests, which we mentioned in section 3.2.2.

We reflect an agent’s requests, its instance’s forms (levels of satisfaction),
and list of tradeoffs using a matrix. This matrix’s horizontal edge repre-
sents an agent’s requests, which are in turn describe the characteristics of
the service sought, Requests = {R1, ..., RM}. The same matrix’s verti-
cal edge represents an agent’s set of tradeoffs, which is in turn describe the
characteristics of the payment, Tradeoffs = {F1, ..., FK}. The relations
between the elements of these two sets are identified through the existence
of an intersection between one another.

In this matrix, a cell wherein the initial point of its vertical column and the
initial point of its horizontal row meet exists, and we refer to it as the set-cell,
definition 13. Since r0 ∈ Requests contains the uppermost element of an
agent’s set of requests, and f0 ∈ Tradeoffs contains the uppermost element
an agent’s list of tradeoffs, then, a matrix’s set-cell is also the starting point
of the key-set a specific matrix represents.

Definition 13. A Set-Cell of an agent’s matrix is the intersection between
its r0 ∈ Requests and its f0 ∈ Tradeoffs.

62

R
0

(x
)

R
2

(f
)

R
2

(z
)

R
1

(y
)

View.1 / F0(a)

View.2 / F1(b)

View.3 / F2(c)

View.4 / F3(d)

Requests

V
ie

w
s

/T
ra

d
e

o
ffs

R
3

(q
)

R
3

(h
)

R
3

(w
)

X X X XView.5 / F3(e) X

instance form.1: agent is 100% satisfied

X XX instance form.x: agent is not satisfied

instance form.3: agent is 50% satisfied

instance form.4: agent is < 50% satisfied

instance form.2: agent is > 50% satisfied

Figure 3.7: Key-sets Vs. Agent’s Requests Vs. Agent’s Tradeoffs: Matrix

In figure 3.7, we show an example of how the set of requests and the list
of tradeoffs can be reflected on a matrix. The key-set of this matrix starts
from the set-cell located within the intersection of (R0(x), F0(a)). The key-
set and all of the matrix horizontal lines are also possible Views of an agent,
Definition 12. Therefore, each horizontal line in an agent matrix reflects a
possible tradeoff, its associated requests, and one possible negotiation View.

Following the depictions of the same figure, in this matrix, satisfying the
elements available in R0, R1, R2, and R3 are associated with the action of
trading off the value of its F0 element. Another View of the same matrix
includes a variant of the R2 element together with a variant of R3, which
are represented in the figure as repetitive R2 and R3. From the same figure
we could observe that also tradeoffs could have variants, which is the case of
F3, (e.g., 20$ or 0$). From the perspective of a service-centric community,
each of the Views and agent has is a possible instance of the community’s
concern, Definition 7.

Example 3. Bob & Alice

In a dating community of agents, agent Bob represents a male that is search-
ing for a female and, agent Alice represents a female that is searching for a
male.

In figure 3.8, agent Bob and agent Alice are both searching for dates.
Bob’s initial request is indicating the fact that he is searching for a female
date, R0(female). Bob would like his date to be either 20 years old - R1(20),
or 25 years old - R1(25). Since Bob is an understanding average height
person, he prefers his date to be either Tall, Average, or Short - R2(tall),
R2(average), or R2(short), but he likes only blonds - R3(blond).

However, Bob is willing to offer different tradeoffs in exchange of the
fulfillment of every different combination of his service requests. Meaning,

63

for every satisfied View there is a tradeoff item(s) associated with it.
A carRide - F0(carRide) - is assigned by Bob to the key-set. A dinner

- F1(Dinner) - is assigned to his date if she is 25 years old, has an average
height, and blond. A free drink - F2(freedrink) - if she is 20 years old,
has an average height, and yet a blond. Eventually, Bob will give nothing -
F4(0) - if none of his service requests are fulfilled.

On the other hand, similar to the matrix notion of agent Bob; agent Alice
has associated the fulfillment of diverse combinations of her service requests
- Views - with a list of tradeoffs that she is capable of offering. This list
contains, 1) different amounts of money, 2) tickets to watch a movie, or 3) a
free drink. Therefore, if her prospect date is a male that is between 30 and
25 years old, has either short or average height, and slim, he is most likely
to fit.

R
0

(f
e

m
a

le
)

R
2

(t
a
ll
)

R
1

(2
5
)

R
1

(2
0
)

F0(carRide)

F1(dinner)

F3(flower)

R
3

(b
lo

n
d

)

R
2

(s
h
o
rt

)

R
2

(a
v
e

ra
g
e
)

F4(0) X

AGENT(Bob)

F2(freedrink)

R
0

(m
a

le
)

R
1

(2
5
)

R
1

(2
8
)

R
1

(3
0
)

F0(50$)

F0(30$)

F1(movieTickets)

R
3

(s
li
m

)

R
2

(s
h
o
rt

)

R
2

(a
v
e

ra
g
e
)

F3(0) X

AGENT(Alice)

F2(freeDrink)

RequestsRequests
V

ie
w

s
 /

 T
ra

d
e

o
ff

s

V
ie

w
s
 /

 T
ra

d
e

o
ff

s

Figure 3.8: An example of two agents’ service matrixes

In this example, if Bob’s age, height, and weight are similar to those
of Alice’s preferences, and Alice’s characteristics are matching those Bob is
searching to fulfill, then; a negotiation between these two agents may lead to
establishing a Union. This Union is expected to satisfy a possible View of
the requests and tradeoffs that each of them has previously combined.

3.4 The Negotiation Protocol

A model for bilateral negotiations about a set of variables that is measurable
on a numeric scale - quantitative variables - was presented in [19]. One of the
main focuses of Raiffa’s model is related to two parties & multi issue states
of negotiation and their applicable value scoring system. Among several
variations of Raiffa’s model, scholars in [72] have relied on the many par-

64

ties & many issues instantiation to present a multilateral negotiation model
between autonomous agents in a service-oriented domain.

The negotiation model we present is based on another variation of Raiffa’s
model. This variation deals with the negotiation situations of two parties
one issue, which we believe to be similar to situations wherein two software
agents are negotiating the conditions of provisioning a service. According to
the framework of automated negotiation presented by scholars of [94]; fewer
are the complexes in the reasoning behind the decision making, greater is the
time saved while concluding the overall negotiation process.

The negotiation protocol we propose is straightforward. In a Negotiation
Session, an agent proposes a union formation and the prospective agent
replies using one of the following expressions: accept, reject, pend, or deposit.
Once an agent decides to propose a union formation to another agent it is
always assumed that the proposing agent fulfills - accepts - the terms of its
prospect partner.

Since time is essential to the application domains we address, in our
protocol, we attempt to minimize the agent’s reasoning time by widening
the often applied approach of alternating sequential offers presented in [71].
We expect a software agent to take less time to reason if more information
is available about its potential union partner. Equally, agents reason more
about their decisions if they observe less feedback from the objects they
interact with.

In short, rather than using just the ”agree & disagree” fashion of negoti-
ation, we give agents additional space to express themselves. Similar to our
methodology, in [18] an agent proposes a data-allocation plan to others and
they pick Yes, No, or Opt-out ; then a relative reasoning strategy is executed.

Why would an agent agree to fulfill the service request of another agent?
This is what we will come across in the strategies and tactics subsections.
For now it should be clear to us that:

1. For two negotiating agents to Accept a union formation it means that
both have agreed to fulfill a possible View of each other.

2. It is possible for the negotiation session to encounter a different scenario
where a proposal for union formation gets rejected - One agent picks
Reject. In different words, it may happen that the proposing agent
is certain about the benefits yielding of this potential union while the
rejecter is not persuaded.

3. Another occurring situation is related to the fact of an agent deciding
to Pend the negotiation process. In brief, pending a union forma-

65

tion occurs when the proposing agent is fulfilling a view of the union
necessities that is currently of no precedence to the pender agent.

Once a proposal to Pend a negotiation session is agreed upon by
a session’s parties, it is then assumed that the agent who proposed
the Pend, (i.e., the pender agent), will then start to look for better
deals elsewhere for no longer than a timeframe that is calculated in
particular way, which we explain later in Chapter 5. However, it is also
worth highlighting here, briefly, that the agent who have accepted the
Pend offer, (i.e., pended agent), will then be suspending any external
negotiation activities until further feedback is received from the pender
agent or, the permitted timeframe expires.

4. As of real world situations; there is an associated cost with every ac-
tion of depositing an object into the safe-box - Or any depositing space.
This cost increases relatively with the time an object is being deposited.
However, it is not likely true for this safe-box to be always available.
There is a time where the depositing service closes and the deposited
object is nearly ”lost”. Thus far, the Deposit service still has the ad-
vantage of allowing the depositor to weightlessly wander within an en-
vironment.

In our negotiation protocol, we introduce a depositing-like ability for
each negotiating agent. An agent will be able to Deposit a single view
of the negotiated issue for a certain period of time. Once a proposal to
Deposit a negotiation session is agreed upon by a session’s parties, it is
then assumed that the agent who proposed the Deposit will then start
to look for better deals elsewhere under two conditions:

• The specific combination of requests and their associated tradeoffs,
(i.e., an agent view or instance), that were under negotiation at
that time, are then excluded while this depositor agent is searching
for better deals,

• A time limitation is calculated and imposed on the process of
searching for better deals, if expires without a feedback, then De-
posit is considered as Accept and a union is made.

However, here the agent depositing the negotiation session will also
be entitled to look for alternative deals.

For example, in a community of agents wherein interactions are made to
acquire a service that is Dating. The acceptance of agent Bill to union with
agent Monica refers to the fact that both have agreed to go out on a date.

66

If Monica would have decided to reject Bill’s proposal to form a union that
would have referred to the fact that Bill was foreseeing a level of satisfaction
from the prospective union while Monica is not fully persuaded.

However, Bill is also allowed to Pend the formation of a union with
Monica and search for alternatives. This may occur when Bill’s optimal
level of satisfaction is only achieved if his date is Blond and, since Monica is
not, and yet time is not a constrain, then a Pend might be an option. Another
option might be taken into account by Bill is to look for alternatives while
excluding the deal reached so far with Monica from his prospective search
process - Depositing a view at Monica’s.

3.5 Negotiation Timelines

In our model, every two negotiating agents, in a community of common-
interest agents, can take decisions in certain times of the set DTime =
{dt1, ..., dtn}. We assume that another time set, RTime = {rt1, ..., rtn} is im-
posed to enforce every two negotiating agents to release their partners when
the concerned community of agents exceeds a certain number of members.
These timelines are discretely linked to each negotiation session wherein two
negotiating agents are involved.

As shown in figure 3.9, the DTime set builds a timeline of checkpoints
in which the negotiating agents are permitted to give decisions; Decision-
Timeline. In addition, the RTime set builds a timeline of other types of
checkpoint in which the negotiating agents are obliged to let their partners;
ReleaseTimeline.

Following the depictions of figure3.9, we introduce the Initializing Times-
lot (ITS), which is the time where two negotiating agents are granted an ini-
tial reasoning space to freely examine the conditions of each other, and make
a decision if doable. We represent the Termination Timeslot (TTS), which
is equal to the interval between two subsequent time checkpoints located on
the ReleaseTimeline. We also show the Decision Timeslot (DTS), which
is simply equal to the interval between two subsequent checkpoints located
on the DecisionTimeline.

For example, assuming that agent Alex and agent Zak are representing
users of pocket computing devices in a community where interactions are
made in order to acquire a specific service, for instance Meeting Organization.
Therefore, from time perspective, Alex and Zak are assigned - by the Head-
Agent - to a negotiation session wherein no decision will be required from
both within the first 5 minutes. Then, the Initializing Timeslot (ITS) = 5
minutes.

67

decide ...decidedecidedecidedecide

release ...releasereleasereleaserelease

d_t.1 d_t.2 d_t.3 d_t.4 d_t.5 d_t.6

r_t.1 r_t.2 r_t.3 r_t.4 r_t.5 r_t.6

DecisionTimeline

ReleaseTimeline

Decision Timeslot

(DTS)

Termination

Timeslot (TTS)

E
x

tr
a

 r
e

a
s

o
n

in
g

 t
im

e

(E
R

T
)

In
it

ia
li
z
in

g
 T

im
e

s
lo

t

(I
T

S
)

Figure 3.9: Protocol’s decisions and sessions control timelines

When ITS expires without Alex and Zak having made any early deci-
sions, then the head-agent will impose a request for decision to Alex and
Zak at certain sequence of times that is predefined by the managing entity
of the service, (e.g., service provider). This sequence of times is called a de-
cision timeline, and the interval between two points on this timeline is called
Decision Timeslot (DTS).

However, it is also expected that sometimes Alex and Zak are interacting
within a community of colleagues and friends that is expanding at random
times. Therefore, another timeline can be intersecting with the decision
timeline to enforce Alex and Zak to release the assigned negotiation session.
We call that later timeline the Release Timeline.

The intuition behind the introduction of the decision timeline is to in-
crease the possibility of generating a negotiation process feedback and, con-
sequently, the users these interacting agents are representing will be fed with
some useful information on-the-run. Besides, the intuition behind the intro-
duction of the release timeline - when imposed - is twofold: 1) to increase
the agents’ chances to interact with as many available entities as possible
and take the right decision accordingly, 2) to ensure that the biggest number
of agents have actually gone through negotiation sessions even though the
service provided is overloaded.

68

3.6 Chapter’s Summary

In this chapter, we started by introducing our view of an agents’ Society,
Community, and a Cluster. Then we introduced our notion of Concerns and
the fact that a concern can also be perceived as a sub-concern from less
abstract level of the society tree, and so on until a sub-concern is linked to
a member of a society that ends at that level of abstraction: then it is that
member’s concern and, therefore, his responsibility to complete. Then we
gave an example of mapping concerns onto society’s levels.

Eventually, within the context of our negotiation model, we introduced
our approach of defining a Request, a Tradeoff, and a Union between two
agents, which we linked to a Society ’s concerns and levels of abstraction
afterwards. Then, we distinguished between any Society ’s Community and a
Service-Centric Community such as the one we address in this thesis. Then,
we defined what we call the Head-Agent, which we assume to be responsible
of putting together members of a service-centric community in order to get
their service requests fulfilled.

Within a service-centric community, each member has a set of requests to
be fulfilled and in return a set of tradeoffs must be made. Therefore, we then
linked a members’ different satisfaction levels, (i.e., views), with the types of
tradeoffs he/she ready to make and, the different subset of requests that will
consequently be fulfilled. A member attempts to fulfill any of his views by
negotiating the establishment of a Union with one of the same community’s
members.

At the end of this chapter, we introduced the negotiation protocol, (i.e.,
accept, reject, pend, deposit), a member, (i.e., an agent), of this community
will be using to interact with other members of the same community in order
to reach to an agreements about a specific union establishment.

We ended the introduction of the first part of our negotiation model by
explaining the link between a community’s total number of members and
the limitations we impose on the negotiation sessions’ length. We did that
by introducing the DecisionTimeline and the ReleaseTimeline, which control
the times an agent must give a decision and the times an agent will be obliged
to release the attached negotiation session.

69

70

Chapter 4

The Negotiation Tactics & Strategies

In this chapter we further continue the introduction of our negotiation model.
It starts by formalizing the set of negotiation tactics then the strategies that
we believe to have a great impact on agents interacting in a modern service-
acquisition environment.

4.1 The Negotiation Tactics

In the context of the nomadicity-oriented setting we focus on, a tactic is the
technique an agent adopts to achieve the eventual task of acquiring a service
while matching the preferences of the end-user it represents. However, for an
agent to acquire a service a mutually beneficial union formation that involves
another service provisioning agent is needed.

Since it is expected that a number of agents located in the same ser-
vice platform can provide comparable services but under different conditions,
here; a tactic would allow an agent to pick up the right union partner that
fulfills the most of an end-user’s needs in that specific time.

The time wherein a certain tactic is adopted by an agent comes after a
negotiation session has been assigned to it by the managing MAS and, before
this agent gives a decision regarding a specific union proposal. Therefore, a
decision that an agent communicates with its prospective union partner is
affected by two factors. These factors are: 1) the circumstances a deciding
agent went through prior to the start of the current negotiation session and,
2) the union conditions that the partner of the current negotiation session
agrees upon.

In this section, we tackle the first influential factor by giving the negotiat-
ing agent the possibility to select from different tactics. Each of these tactics
is an instantiation of a group of tactics that is oriented towards a particular

71

nomadicity-driven requirement.

We hereafter introduce three different groups of tactics in which each of
them can be of use to the negotiating agent in a number of situations. How-
ever, we do acknowledge the fact that these groups and their instances can
be extended to cover additional requirements. However, with this work we
attempted to deal with as many useful scenarios as possible while considering
the common observations we collected from similarly developed nomadicity-
oriented service applications.

4.1.1 Time-based Tactics

The first group of tactics contains two main approaches that every negotiating
agent may employ one of them while deciding upon participating in forming
a union with another agent. Both tactics are related to situations where time
is an essential factor that affects the process of making a decision about a
certain union.

With the introduction of Time-based tactics we intend to emphasize the
importance of having the interactions happening among involved agents ori-
ented toward the fact that users of pocket computing devices are also time
limited. Since a transfer from one location to another is frequently occurring,
and easily made, while we are not attached to any wires, then it is highly de-
sirable in these situations to link the negotiation agents are carrying out with
the time limitations of the user himself. We approach this notion from two
sides, which are: 1) when the environment of interactions, (i.e., the commu-
nity), is relaxed from the perspective of participants numbers, and 2) when
this environment is overloaded.

In our model, the head-agent (Definition 9), is responsible of imposing
the ReleaseTimeline that we described in section 3.5. The existence of this
timeline is enforcing the negotiating agents to let go the negotiation session
they are involved in at specific times that are known to agents before they
start negotiating, RTime = {r t.1, ..., r t.n}. Whether to impose this Re-
leaseTimeline or not, it is a decision that the head-agent takes according to
the number of agents available in a community at a specific time.

These two approaches are generally targeting two abstract situations in
which one of them is involving the imposition of the ReleaseTimeline and the
other is not. These approaches are: a) common system state tactic, and b)
system overload tactic.

72

Common System State Tactic

In a service-centric community, N agents are attempting to negotiate in order
to acquire a service in exchange of providing another, then a undetermined
number of negotiation sessions - Definition 10 - are accordingly existing.

Similar to the formalization approach used in [26] to represent agents’
encounters in worth-Oriented domains (WOD), we hereafter, formally, rep-
resent a service-centric community (SCC) by means of a tuple,

〈C,Agents, Unions,Actions〉

where

• C is the set of possible community conditions, {Jammed, Tolerable},
which vary according to the number of operating agents in a community
and reflected through the existence of the ReleaseTimeline;

• Agents is the set of available agents;

• Unions is the set of possible unions in which each contain a set of
possibly satisfied two agents;

• Actions is the set of possible actions that an ai ∈ Agents may perform,
(i.e., accept, reject, pend, deposit).

Then, we represent any possible negotiation session, s ∈ Sessions, of a
service-centric community, SCC 〈C,Agents, Unions,Actions〉 as a tuple,

〈c, Ag,DTime, ITS〉

where

• c ∈ C is reflecting one of the conditions a community could possibly
experience while this negotiation session is existent;

• Ag is the set wherein the two negotiating agents and the related head-
agent of this specific session are listed;

• DTime is the set of times wherein the negotiating agents are required
to perform one of the available Actions. In our mode, this set is also
known as the DecisionTimeline, DTime = {d t.1, ..., d t.n};

• ITS is the Initializing Timeslot of this specific session in which the
starting time of the negotiation is registered.

73

Since with this tactic we intend to address the situation where the number of
agents in a community is not causing the ReleaseTimeline to be imposed
by the head-agent, then the condition of the community - c ∈ C - is always set
to Tolerable. Therefore, the sequence of times located on a certain sessions’s
DecisionTimeline are the only external obligations considered by agents
while reasoning about a specific union formation.

In our model, when two agents, Ai, Aj ∈ Agents, are discussing the
formation of u ∈ Unions by occupying a negotiation session s ∈ Sessions

while c ∈ C = Tolerable, and one of these negotiating agents decides to
follow a time-driven style of interactions, every item of the set Actions will
be performed according to the following guidelines:

- Accept: a negotiating agent instantly accepts a union formation when its
potential union partner is by default satisfying its key-set. Therefore,
if Ai(key-set) = Aj(key-set) then Ai communicates ”accept” with Aj

and waits for response.

- Reject: a negotiating agent instantly rejects a union formation when none
of the Requests that it has is matching the Requests that a potential
union partner is having. Therefor, Ai ∈ Agents rejects the formations
of a U ∈ Unions with Aj ∈ Agents if Ai(requests) 6= Aj(requests).

- Pend: situations may exist where an agent’s key-set is not precisely ful-
filled by its negotiation partner but, yet, a request or more are likely to
be in common. In such cases, depending on the time available for an
agent to acquire a service, an agent may Pend or Deposit its current
negotiation process.

Therefore, Ai may decide to Pend a union, u ∈ Unions, if the time
space - t - given to this agent to achieve its goal is equal to, or less than
the sum of ITS plus the approaching DTS; Ai(t)=< (ITS +DTS).

- Deposit: within the boundaries of the same tactic, a negotiating agent
would deposit a union when the conditions to Accept or Reject are
not valid and, the time available for this agent to acquire a service is
greater than the sum of ITS plus DTS.

System Overload Tactic

As we described earlier in section 3.5, in a service-centric community of agents
- SCC 〈C,Agents, Unions,Actions〉, the existence of the ReleaseTimeline
reflects a community’s overload - the number of operating agents has exceeded
the predefined standards of tolerability. Consequently, following the same

74

formal approach of the common system state tactic described in the earlier
subsection, we hereafter introduce a time-driven tactic for an agent to employ
while the community is overloaded.

Therefore, a negotiation session in an overloaded community will look
like this: 〈c, Ag,DTime,RT ime, ITS〉, where RTime is is the set of times
imposed by the head-agent wherein the negotiating agents are required to
release their negotiation partner. Accordingly, we assume that the condition
of the community, c ∈ C, is always set to Jammed.

As we showed earlier, within this family of tactics, time is considered only
while an agent is choosing whether to Pend or Deposit a union. Therefore,
in this specific tactic the Accept and the Reject actions are similar to those
of the common system state tactic. Since this tactic addresses the situation
when theReleaseTimeline is assumed to be always imposed, then, different
from the earlier tactic, two emerging time considerations must be taking into
account while the agent is deciding whether to Pend or Deposit a Union.

These considerations are; 1) the Extra Reasoning Time (ERT) that is
equal to the gap between a checkpoint of a DecisionTimeline and its ap-
proaching checkpoint of aReleaseTimeline and, 2) the Termination Times-
lot (TTS), which is equal to the interval between two subsequent checkpoints
located on the ReleaseTimeline.

- Pend: while Ai, Aj ∈ Agents are negotiating the formation of a union,
u ∈ Unions, Ai may decide to Pend this negotiation if the time space,
t, given to this agent to acquire the desired service is equal to, or
less than the sum of ITS plus the approaching Extra Reasoning Time
ERT; Ai’s time space =< (ITS + ERT).

- Deposit: a negotiating agent may decide to Deposit a negotiation session
if t is greater than the sum of the Initializing Timeslot (ITS) plus the
Extra Reasoning Time (ERT) and, the Termination Timeslot (TTS);
Ai’s time space > (ITS + ERT + TTS).

4.1.2 Connectivity Related Tactics

In this group of tactics, we present two different approaches for negotiating
agents to follow while considering the nature of the communication channel
they rely on to communicate feedbacks with the entities they operate on
behalf. These two approaches are aimed at addressing two situations, one
in which a group of highly reliable communication technologies is used and,
the other addresses the situation when influential limitations are observed
on the behavior of the employed technology. Namely, these approaches are:

75

1) Prompt communications channel, and 2) less responsive communications
channel.

By ”prompt communication channels” we refer to wireless connectivity
that allow end-users to send and receive service requests within a large cov-
erage, and with acceptable data transmission rate, (e.g., Wi-Fi, WiMAX).
Besides, by ”less responsive communication channels” we refer to wireless
connectivity with a number of technological obstacles, such as limited number
of concurrent connections, short-range coverage, and low-speed data trans-
mission, (e.g., IrDA, Bluetooth).

A Tactic for prompt communication channels

In a service-centric community, a set of different communication channels can
be employed by negotiating agents to communicate negotiation feedbacks
between one another, Channels = {ch1, ch2, ..., chw}. The reason agents
may need to give a feedback regarding the status of a negotiation process is
due to the fact that a specific agent might be delegated by another to acquire
a service, (e.g., a user is delegating a software agent to acquire a service).

In our model, all communication channels are divided into two subsets of
Channels. One, we call is StChannels ∈ Channels, which includes all the
communication channels that are of strong reliability - prompt communica-
tion channels. And the other, we call it LimChannels ∈ Channels, which
includes all of the limited reliability communication channels - less responsive
communication channels.

In this tactic, we look at a negotiation session, s ∈ Sessions, from the
perspective of a negotiating agent, ai ∈ Agents, that is relying on one of the
communication channels of the subset StChannels ∈ Channels to commu-
nicate a feedback with an agent/user that is on higher level of authority -
Delegating Agent.

- Accept: understandably, and in spite of an agent’s available negotiation
time or type of communication channel; within a negotiation session,
s ∈ Sessions, in which a head-agent - ah - is managing, agent ai ∈
Agents instantly accepts the formation of union u ∈ Unions with agent
aj when its key-set = aj’key-set.

- Pend & Reject: in this tactic, we consider the action of rejecting a union
formation by ai as a sub-action of Pend. The reason we do that goes
back to the fact that the availability of a reliable, and therefore commu-
nicative, channel of communication may lead the Delegating Agent of
ai to reconsider its possible views of the needed service. Consequently,

76

by this procedure we intend to expand the probability of increasing the
overall number of unions that can be formed within a community.

Therefore, within this tactic, ai ∈ Agents pends u ∈ Unions
when ai(Request) 6= aj(Requests). Then a phase, which we call it
the Post-Pend Procedure, starts in which ai calculates the pending
time and, communicate it with the head-agent. The intention here is to
let the head-agent communicate the status of this negotiation session
and the pending time with the Delegating Agent of ai hoping for a
reconsideration.

Two possible approaches are available for ai to calculate a session’s
pending time, these approaches are:

1. When the ReleaseTimeline is imposed, meaning that the society’s
is under a Jammed condition, ai’s pending time will be equal
to the interval between the dt ∈ DecisionT imeline wherein the
Pend action was taken and, the first session releasing time, rt ∈
ReleaseT imeline.

2. When the ReleaseTimeline is not imposed, meaning that the soci-
ety’s current number of agents is Tolerable, ai’s pending time will
equal to the interval between the dt ∈ DecisionT imeline wherein
ai decided to Pend the session and, the subsequent decision time
dt+ 1 ∈ DecisionT imeline.

Further to ai’s situation, there are two circumstances in which a
Reject can be communicated with aj. These circumstances are: 1)
when the pending time expires without receiving any reconsiderations
from the Delegating Agent and, 2) when the reconsiderations (Views
Modifications) are received but with no changes included.

However, when the Delegating Agent of ai reconsiders the Views
describing the different states of the negotiated service - within the
permitted pending time; then, the head-agent of the same community
resets the negotiation session that involves ai, aj ∈ Agents.

- Deposit: commonly, the Deposit option is used by a negotiating agent if
neither instant Accept nor Reject or Pend are of any use. Therefore,
ai, aj ∈ Agents are having some common requests that are likely to
take place in forming Views that are different from those forming the
Key-Set.

Since in this tactic we assume that ai is relying on a highly reliable
communication channel, (i.e., ch ∈ StChannels), then, a feedback con-
taining the status of the current negotiation session is communicated

77

with ai’s Delegating Agent. The intention behind updating the Dele-
gating Agent of ai’s status of the current negotiation session is to give
a space in which modifications on the concerned service requests can
be imposed so that agreements are reached.

Simultaneously, ai starts to follow the regular steps taken after
depositing a negotiation session, which are: 1) excluding the deposited
view, ai(views − 1), and then 2) engaging for other potential unions
within the depositing time. Once an alternative union is found, ai ends
its deposited negotiation session with aj and the newly emerged session
is then addressed.

However, if no new potential unions are found, ai waits until the
depositing time expires, if no modifications were imposed by the Del-
egating Agent, then the deposited session is concluded by forming a
union between ai&aj based on the previously deposited view.

A tactic for less responsive communication channels

In general, the existence of a less responsive channel of communication be-
tween a negotiating agent and its Delegating Agent affects the quality of in-
teractions among them. As a result, the level of autonomy of the negotiating
agent must be increased to meet the lack of feedbacks from agent’s higher-
authority. Therefore, in this tactic we minimize the number of feedbacks
sent by ai to its Delegating Agent and, we reduce the number of situations
in which a feedback from a higher authority is urgently required in order for
ai to proceed with the negotiation.

In a negotiation session, s ∈ Sessions, of a service-centric community,
SCC 〈C,Agents, Unions,Actions〉, ai, aj ∈ Agents are interacting to reach
an agreement about forming a u ∈ Unions. Assuming that ai and its Dele-
gating Agent are relying on a ch ∈ LimChannels to exchange feedbacks.

The following part shows the scenarios wherein ai Accepts, Rejects, Pends
and Deposits a negotiation session. However, here we exclude the pend ∈
Actions because, as showed in the earlier section, it gives less time to the
negotiating agent to search for better unions and it is useful only in case the
Delegating Agent reconsiders its service requests.

- Accept: In this tactic, ai tends to instantly accept the formation of a
union, u ∈ Unions, with aj if both are fulling each other’s optimum
View, which is the key-set. Formally, the condition of accepting a
union formation can be described as follows; ai’s key-set = aj’s key-set
→ ai ∪ aj.

78

- Reject: Once the head-agent puts ai & aj in a negotiation session, and in
spite of what tactic is adopted by both agents to handle this negotiation
session, if none of the requests ai holds are matching any of aj’s, then
ai rejects the session without going into extra reasoning.

Formally, this condition of rejecting a union formation can be de-
scribed as follows: ai(Requests) 6= aj(Requests) → ¬(ai ∪ aj)

- Pend: while adopting this tactic, ai can possibly pend its ongoing nego-
tiation session - s(ai, aj) ∈ Sessions, if at least one of its subset of
Requests can be satisfied by forming a union with aj, plus, the trade-
offs ai is willing to give in return are not what aj is seeking for.

Following to the action of pending a negotiation session, a new
Post-Pend phase starts. In this phase, and all through the session’s
head-agent, ai communicates a feedback about its current status with a
higher authority agent - The Delegating Agent. Different from the ear-
lier tactic, whether the feedback have reached to its Delegating Agent
or not, ai immediately starts to search for alternative unions without
waiting for modifications imposed by higher-authority.

Similar to the tactic of prompt communication channels, two dif-
ferent methods are likely to be employed by ai to calculate the time
available to search for alternative unions / session’s pending time. De-
pending on whether a community is Jammed or Tolerable, these meth-
ods are:

1. When the ReleaseTimeline is imposed, ai’s pending time will be
equal to the interval between the dt ∈ DecisionT imeline wherein
the Pend action was taken and, the first session releasing time,
rt ∈ ReleaseT imeline.

2. When the ReleaseTimeline is not imposed, ai’s pending time will
equal to the interval between the dt ∈ DecisionT imeline wherein
ai decided to Pend the session and, the subsequent decision time
dt+ 1 ∈ DecisionT imeline.

Thus far, we intend to let ai proceed with searching for alternatives nor-
mally without expecting a modification from its Delegating Agent, even
though a status feedback was sent through. Since this tactic tackles the
situation wherein ai is relying on ch ∈ LimChannels to communicate
feedbacks; therefore, it is not always true that the feedback reaches the
Delegating Agent. However, if reached, the Delegating Agent is free
to whether reconsider the combination of Tradeoffs and Requests /
Views, or ignore it.

79

At this point, the current situation may lead ai to go through one
of three different scenarios, these scenarios are:

1. The Delegating Agent receives the feedback but decides to ignore
it, or act upon it but the associated ch ∈ LimChannels was
not reliable enough. Consequently, ai will reject the prospective
u(ai, aj) ∈ Unions when the previously calculated pending time
expires.

2. The Delegating Agent succeeds to communicate new Views to ai
before the expiration of the pending time, and accordingly, ai is
updated by the community’s head-agent and, the same session is
then restarted.

3. The Delegating Agent does not receive the feedback and no actions
are accordingly communicated back to ai. However, ai finds a
potentially higher union formation while the pending time is valid.
Therefore, s(ai, aj) ∈ Sessions is terminated and new setting is
respectively imposed.

- Deposit: in this tactic, the difference between the pend and the deposit
options of agent’s Actions is summarized in the increasing number of
feedbacks ai is ready to communicate with its Delegating Agent.

In this tactic, we introduce a new notation that reflects the rela-
tionship between a negotiating agent and the higher-authority agent
that it represents. Precisely, ax →֒ ai means that ax is the Delegat-
ing Agent of ai, which makes ai the representative of ax in a specific
community. In a community, when ai, aj ∈ Agents gets into a nego-
tiation (s ∈ Sessions), ai may deposit this session if at least one of
its Views, that is not the key-set, can be fulfilled by forming a union,
u ∈ Unions, with aj.

The first feedback ai communicates with ax occurs when a deposit
action is performed. Whether this feedback reaches ax or not, ai ex-
cludes the deposited view while searching for alternatives. The de-
posited view is basically a subset of ai’s Requests and their associated
Tradeoffs - Definition 12.

Eventually, the concerned head-agent attempts to re-involve ai in
a new negotiation session as long as the depositing time is valid. Re-
calling the fact that the deposit ∈ Actions gives more time to an agent
to search for alternatives than pend, then, two methods are available
for ai to calculate the depositing time, these methods are:

80

1. When the ReleaseTimeline is imposed, ai’s depositing time will be
equal to the interval between the dt ∈ DecisionT imeline wherein
the Deposit action was taken and, the secondly encountered re-
leasing time, rt + 1 ∈ ReleaseT imeline.

2. When the ReleaseTimeline is not imposed, ai’s depositing time
will equal to the interval between the dt ∈ DecisionT imeline

wherein ai decided to Deposit the session and, the secondly en-
countered decision time dt+ 1 ∈ DecisionT imeline.

Within the depositing time, if ai gets into a new negotiation session,
and the potential union of this new negotiation fulfills ai’s key-set,
then the previously deposited session is terminated and ai instantly
accepts the union formation of the newly evolving agent. However, if
ai gets into a negotiation session that satisfies a View which is different
from the deposited one and yet not the key-set , a feedback is made
available for ax to retrieve.

Since in this tactic we focus on less responsive communication chan-
nels, ch ∈ LimChannels, so if no reconsiderations are received from ax
within the depositing time, then ai picks the union that will satisfy the
view that is associated with less-valued tradeoffs, (e.g., located within
the bottom levels of a descending list of tradeoffs).

However, a possibility that ax employs the received feedbacks, mod-
ify one or two Views, and communicate its reconsiderations back to ai.
Accordingly, this will make the head-agent terminate the current ac-
tivities of both, ai, aj ∈ Agents, and reassign both them to the same
negotiation session.

81

4.2 The Negotiation Strategies

Following the formalization approach taken in [27], we hereafter introduce
the two strategies negotiating agents may employ while reasoning about the
establishment of a union with one another. As mentioned in earlier sections,
when a union is established it indicates the fact that two negotiating agents
have come into agreement about fulfilling each other’s requests.

In our model, the goal of employing one of the proposed strategies by
any negotiation a ∈ Agents, of the service-centric environment we address,
is to maximize this agent’s benefits. In our research, maximizing an agent’s
benefit of a union is done through the confirmation of the inexistence of
better unions at the time of negotiating another potential union.

Formally, we further explain our model’s strategies from one agent side,
which is ai ∈ Agents. Therefore, after the introduction of negotiation tactics
in the previous section, a service-centric community (SCC) can be newly
represented in this section by means of a larger tuple,

〈C,Agents, Unions,Actions, Tactics〉

where

• C is the set of possible community conditions, {Jammed, Tolerable},
which vary according to the number of operating agents in a community
and reflected through the existence of the ReleaseTimeline;

• Agents is the set of available agents;

• Unions is the set of possible unions in which each contain a set of
possibly satisfied two agents;

• Actions is the set of possible actions that an ai ∈ Agents may perform,
Actions = {Accept, Reject, Pend,Deposit}.

• Tactics is the set of all possible tactics that an agent may employ while
negotiating a potential union formation.

Whether a community is Jammed or Tolerable, as explained in section
3.5, there is always a time wherein the two negotiating agents are forced to
give a decision about the currently negotiated union formation.

In SCC, and further to being assigned to a s ∈ Sessions by the com-
munity’s head-agent, when ai, aj ∈ Agents are negotiating a potential union
formation, u ∈ Unions, we refer to the time in which ai employs one of the
proposed strategies using ST. The Strategy Time (ST) of ai is the period

82

of time that starts and ends with the occurrence and the termination of the
first decision-making time of the DecisionTimeline.

Therefore, ai’s strategy regarding a specific union formation is also de-
pending on aj’s initial feedback about the same union, which aj shows by
means of Actions; accepting, rejecting, pending or depositing a negotiation
session.

In [18], a formal approach to negotiation strategies was presented wherein
a strategy is expected to help the agent, whose turn is to react on a specific
offer from a negotiating partner, to define its subsequent action. We adopt
and add on Kraus’s idea of looking at agents’ reactions to the proposed offers
as a set of functions, which made her Strategic Negotiation model capable of
maintaining each agent’s negotiation history, (i.e., Length(f1, ..., fN)), along
with the offers’ record that each agent receives while being operational, (i.e.,
Last(f1, ..., fN)).

In our model, negotiating agents are meant to represent a set of higher-
authority agents that are located within an abstract phase of the model
hierarchy, (e.g., users of pocket computing devices).

Since this abstract set of agents are - by nature - more intelligent and
having the ability to socialize more than the delegated software agents, we
hereafter tend to increase the negotiating agents’ benefits by means of two
social elements. These elements are:

1. Cooperation: a negotiating agent is considered as a social entity
within its community if it tends to exploit the data collected along
the negotiation time, (e.g., agents’ IDs, their views, timestamps), to
help encountered agents reach their goals. Therefore, agents socialize
by means of cooperating with their encountered parties, which is con-
sidered as a strategy only if it brings back some returns / maximizes
agent’s benefits.

In real world situations, people of a specific community may be moti-
vated to cooperate with each other in order reach common goals, fulfill
their job requirements, or even leave a good impression on others so
that their reputation grow bigger. The last cause is what our model
will be adopting afterwards to formally present one side of an agent’s
strategy.

2. Fidelity: a negotiating agent is also considered as a semi-social, but
better protected, entity within a community if it tends to form unions
with agent-friends rather than unknown entities.

Taking into consideration the application domain we address in our
model, mobile services vary and, in some scenarios, upper agents would

83

prefer to get their delegated agents into forming unions with well-
recognized partners. For example, in carpooling services, our studies
have been always proving that end-user would prefer to bear extra little
cost, (e.g., time, money, or even farer drop point), in favour of getting
into union with people that they previously know.

4.2.1 Enabling Socialability through Cooperation

In a negotiation session, s ∈ Sessions, when two negotiating agents, ai, aj ∈
Agents, are discussing the formation of a possible union, u ∈ Unions, the
strategies both agents are allowed to adopt vary depending on the require-
ments that the designers are attempting to fulfill while outlining the com-
munity’s core intuition and foreseen outcomes.

However, we refer to the set of strategies Agents are allowed to make
use of within any service-centric community falling within the application
domain we address - mobile services - as Strategies = {st1, ..., stg}.

In our model, in order for a negotiating agent to be a cooperative entity
within a service-centric community three main considerations must be taken
into account. These considerations are:

1. Information Acquisition: For an ai to be useful to others, (Agents−
ai) ∈ SCC, and therefore cooperative, agents within a service-centric
community must observe a benefit that is retrieved only through com-
municating with this agent. Consequently, a negotiating agent that is
in favor of this strategy must be collecting the products in which oth-
ers might be interested to buy - the information wherein other agents
might see useful.

Within a community of negotiating agents, useful information are
those used by any agent to shorten its mission of successfully forming
a mutually beneficial union. Thus far, we can basically observe that
one of the key factors a negotiating agent must obtain in order to
be cooperative is the fact of being able to acquire informations from
negotiation partners.

Similar to Kraus’s approach that we mentioned earlier; in this
model’s strategy, Length(f1, ..., fN) of ai stores its negotiation history,
(i.e., negotiators’ names, durations, ... etc). Moreover, Last(f1, ..., fN)
of ai stores the offers it receives at each time a negotiation occurs.

2. Information Distribution: The second phase of this strategy ad-
dresses the situation wherein the previously acquired information is
made useful to the acquirer. In our model, ai ∈ Agents uses the data

84

collected out of its previous encounters, which is a result of combining
AiLength(f1, ..., fN) and Last(f1, ..., fN), by making it available to its
current session’s partner.

From the four of our model’sActions, which made available for any
of the negotiation agents in s ∈ Sessions while negotiating a potential
union, u ∈ unions, Reject is the only action in which its occurrence
enables an agent to distribute, and make use of, the previously acquired
data. Reasonably, a negotiating agent will not be willing to help its
negotiation party unless a specific foreseen potential in establishing a
union vanishes.

Since our model assumes that the negotiation issue is a fixed /
service, (e.g., Dating), but has different shapes, (e.g., Young Male or
Mature Female), therefore, an agent picks the data to be passed to
its negotiation party by means of matching the conditions the current
negotiator attempted to fulfill with the previous negotiations it went
through.

To better illustrate this point, we assume that the issue, (i.e., ser-
vice), which ai and aj are negotiating is referred to as SER, while
SERshapes = {SERsh1

, ..., SERshx
} is the set of all possible shapes

that this service may take. Then, assuming that ai, aj ∈ Agents are
occupying s ∈ Sessions to negotiate the possibility of establishing
u ∈ Unions. And, ai has been already attempting to achieve its ob-
jective of acquiring a service for a while now but, for aj; this is its first
negotiation attempt.

Therefore, aj’s Length and Last are containing one negotiation at-
tempt only, which is the one involving ai itself. Accordingly, when aj
rejects ai’s acceptance to establish a union, a possibility occurs for ai to
pass on to aj some useful data that might lead to faster establishment
of a union for aj, (i.e., addresses of alternative similar agents) and, a
chance to prove cooperation for ai.

If both, ai&aj, are qualified to pass data to each other based on
their previous experiences, then both are cooperative.

3. Benefits Gaining: In our model’s strategies, we introduce the notion
of agents’ Reputation Score , which is directly connected to the posi-
tion an agent takes on the waiting-to-be-served list of the community’s
Head-agent. Every time an agent decides to pass on useful data to an-
other agent after having its prospective union rejected, a point is added
to itsReputation Score and, consequently, this agent is placed in one
position higher than the expected.

85

4.2.2 Fidelity-driven Strategies

The second strategy of our model tackles the situations that may occur in
which agents are performing in an environment that better requires the estab-
lishment of unions among agents of common interests, common preferences,
or even of previous history.

In the application domain we address, some of the services that can be
provided within a community are encouraged to be exchanged among people
of the same geographical territory, such as CarPooling. In addition, some
services are encouraged to be achieved among agents that represent users,
(i.e., higher-authority agents), of the same sex, or different sex. Besides,
some services are better acquired among agents that previously succeeded to
establish a union.

In this subsection, among other several approaches, we introduce two
possible orientations of the Fidelity Driven Strategy of our model. There
orientations are: 1) friend-based orientation and, 2) zone-based orientation.

1. Friend-based: In a friend-based strategy, the use of the previously
mentioned Length(f1, ..., fN) and Last(f1, ..., fN) are also considered.
While ai, aj ∈ Agents are assigned to an s ∈ Sessions by the com-
munity’s head-agent to negotiate the possible establishment of u ∈
Unions, a score function that we refer to as Recommend Score is
then considered by both session’s partners.

The Recommend Score returns to its performer either zero or
one, (i.e., a friend or not), according to a set of subsequent steps,
which are 1) examining the Length(f1, ..., fN) for a previous record
involving the session’s party, and if a record exists then 2) examining
the Last(f1, ..., fN) to see whether this previous negotiation has ended
up with a successful establishment of a union. While both steps, 1
and 2, are true, then the score function performer / agent considers its
session’s partner a friend.

Therefore, in our strategy we consider Ai as a friend of Aj if they
have previously succeeded to establish a union together. However, sit-
uations wherein an actual agent-friend is negotiating the establish-
ment of a union with another agent-friend although there are no signs
of previous encounters. Sense in the application domain we address
agents are likely to address end-users, therefore; With actual agent-
friend we tend to refer to the relationship that may exist between
agents of higher-authority.

In this strategy we simply consider the actual friendship among
higher-authority agents, which are the delegates of the negotiating

86

agents, all through the assumption that a field of the negotiating agents
preferences may include a predefined list of preferred union partners /
friends. Consequently, a community’s head-agent would attempt to
connect a specific negotiating agent to any of those listed in its prefer-
ences prior to the standard matching approach.

In a SCC 〈C,Agents, Unions,Actions, Tactics〉, whether the friend-
ship between two negotiating agents in s ∈ Sessions is yielding out of
the Recommend Score or a Preference-driven, an agent would
benefit from this strategy through; 1) fastening its decision if a situa-
tion in which two similar unions occur, therefore, in a Pend position,
or 2) a guarantee is required as the service agents are negotiating is
critical and a union among friends is highly recommended, (e.g., Car-
Pooling).

2. Zone-based:

In our model, we consider the virtual as well as the physical presence of
a specific community. The virtual presence of a community is reflected
through the service in which all of its members are members of its op-
eration, which we referred to earlier as the Service-Centric Community
(SCC). The physical presence of the same community is identified by
means of the geographical area in which this common service is made
available.

In-between the physical presence of a community and its virtual
space there are a set of connectors, (i.e., terminals). These terminals
helps connecting / bridging the two sides of the overall scenario; phys-
ical and virtual.

Looking at a SCC from its physical existence standpoint, there is
Terminals = {Ter1, ..., T eru}, in which each covers a piece or more
of the overall geographic space of a community. In our model, we
break-down this geographic space into zones, Zones = {Zo1, ..., Zov}.
Therefore, a ter ∈ Terminals can be associated with one or more
zo ∈ Zones and the vice versa.

In order for agents to interact, a transfer from the physical presence
of a community to its virtual one is required. Therefore, in order for
a ∈ Agents to start interacting an action by the higher-authority agents
must be performed wherein a specific ter Terminals is used.

For example, from the set of higher-authority agents, (e.g., service
users), agentX is delegating agentB of the lower-level set of agents to
achieve a specific goal. AgentX then utilizes one of the community’s two

87

presences connectors, such as ter1, to move agentB from the physical
layer to the virtual one.

Therefore, currently it became recognizable by the entire commu-
nity, including the head-agent, that agentB was introduced to the vir-
tual space of the concerned service through ter1, which is associated
with, for instance, zo1, zo3 ∈ Zones.

Employing a zone-based strategy while ai, aj ∈ Agents are assigned
to s ∈ Sessions by their community’s head-agent to negotiate the
possibility of establishing a mutually beneficial u ∈ Union, ai can un-
derstand how likely aj is far by means of a simple Vicinity Score
Function (VSF) that brings the difference between ai & a′js zones as
a result. The higher is the score the farer is the distance between ai
and aj, and consequently any time-dependent actions, or geographically
oriented decisions can be tackled.

4.3 Chapter’s Summary

Several requirements may be observed in different, or even similar situations
to those we addressed so far. The nomadic behavior of users of computing
devices is newly emerging and rapidly advancing. Therefore, we do no claim
to have covered all of the Nomadicity requirements but we do claim to have
covered a critical part of it by means of tactics and strategies that interacting
software agents may employ if considering the nomadic nature of users of
pocket computing devices is required.

In the earlier two chapters, we introduced the the negotiation model we
believe to have a positive impact on agents that represent users of pocket
computing devices and interact to acquire a service. Earlier to that we for-
malized the general abstract setting wherein we expect our model to be ap-
plied then we also gave a clear description of the negotiation issue that any
two interacting agents in the context of our research are expected to resolve.
Then we characterized the negotiation parties - Agents.

We then formally introduced the negotiation protocol and the decision
making time-lines. Then, we continued the introduction of our negotiation
model by formalizing the set of negotiation tactics and strategies that we
foresee them enhancing the communication between users of pocket comput-
ing devices and the agents representing them.

88

89

Chapter 5

Model Implementation

In this section, we describe the nomadicity-oriented negotiation model we
propose for the interacting service-driven software agents. The goal of this
model is to reach a mutually beneficial union by one agent to another while
considering the nomadic nature of the end-users they both represent. Our
model consists of three different stages that negotiating software agents con-
sider throughout their interactions.

These stages are: the negotiation protocol agents apply while performing
service-driven interactions, the tactics agents employ to plan their unions,
and the strategies they adopt to maximize their benefits. In early parts of this
chapter, we realize our model through an implementation example in which
each part of our model is abstractly explained from a service application
perspective.

5.1 An Overview

In figure 5.1, we summarize the overall negotiation model we presented in
earlier chapters with respect to users of Pocket Computing Devices (PCDs),
software agents that represent these users in acquiring a service for each other,
the head-agent that assigns these software agents to different negotiation
sessions, and the Wireless Access Points users are supposed to utilize in
order to transmit their agents to the central multi-agent platform - wherein
the head-agent is located.

Looking at the bottom part of figure 5.1, we can see a dashed line circle
where a number of users are placed. These users are all assumed to be in-
terested in acquiring a commonly known service one-the-go throughout their
PCDs. The number of users and their representing agents, plus the number
of wireless access points, are all extendable depending on the addressed sit-

90

AA

A
A

AA

AA
AA

Negotiation Protocol

accept, reject, pend, deposit

Head-agent

Possible
Negotiation

Session

Tactics

time-driven connectivity-

driven
TC2 TC1

TC3 TC4

Strategies

fidelity-driven

cooperative
ST1 ST2

Users of Pocket Computing
Devices (PCDs)

Software Agents
Representing Users of
PCDs

Wireless
Access Points

accessible to all agents

Figure 5.1: Model’s Strategies, Tactics, Protocol, Users, Agents, PCDs, Wireless
Access Points, Negotiation Sessions, and the Head-agent.

uation, therefore, we refer to any possibly to expand entity of the scenario
with a dashed line circle.

Looking at center of the same figure, we assume that two of these users
have interacted with their client applications of their PCDs, entered their
service requests and preferences, and created an agent that will then act on
behalf of these users in the virtual space wherein all other users’ agents are
supposed to meet, (i.e., the central multi-agent platform). It is now the role
of a user to communicate this agent, (i.e., click send), to the central server
by building a transmission chancel with one of the available Wireless Access
Points (WAPs).

Following the depictions of the same figure’s central part: after the trans-
mission of agents to the managing entity, (i.e., multi-agent platform), the
role of the head-agent is now to assign a negotiation session to every two
accessible agents. The method the head-agent follows to select which agent
is assigned to which session, (e.g., FIFO), can be manually designed by the
provider of the service application. Once an agent is assigned to a session, it
is then known to all session’s parties that the protocol used to interact with
each other encompasses only the following elements: accept, reject, pend,
deposit, which is our model’s negotiation protocol.

91

The upper part of figure 5.1 has on its right side the set of tactics available
for every interacting agent to utilize when a communication with the user it
represents is required. The set of strategies an agent can employ to maximize
its user’s benefits of the currently active negotiation are placed on the left
side of the same figure. Both, tactics and strategies, are accessible by all
agents while a negotiation is taking place. The central part of the upper
section of the figure is showing the set of access points and agents that can
be possible found within a context similar to that we address.

5.2 Model’s Implementation Circumstances & Conditions

Before we introduce our negotiation model from an implementation perspec-
tive we would like to bring to the reader’s attention the exact characteristics
of the environment we address.

We start by assuming the existence of a user that is interested in a
mobile service. This user reflects the service’s preferences using the pre-
installed client application available on his Pocket Computing Device
(PCD). User’s preferences are then used by the same client application to
build what we call a Service Request File (SRF). An SRF is a data file
that contains information which correlates a user to a specific service condi-
tions and requirements. A unique identification number is then given to the
produced SRF in order to distinguish it from others. Later to that, this SRF
is made available to any of the Wireless Access Points (WAPs) spread in
the addressed service-oriented environment.

Once a communication channel is established between the user’s PCD
and a WAP, the client application uses any of the supported communication
technologies, (e.g., Bluetooth or Wi-Fi), to communicate all of the pending
SRFs to a service’s central server. The server-side application is an agent-
oriented platform that offers a virtual space for a number of software agents
to interact according to predefined rules - a Multi-Agent System (MAS).
These rules are known to, and considered by all agents interested to benefit
from the service this MAS offers. The data listed in an SRF is later used by
the MAS to create a new, or update an existing software agent. This agent
is named after the ID of the SRF created by the user’s PCD.

In figure 5.2, we summarize the sequence of service invocation steps that
exist prior to the time of agents’ negotiation. In this figure we use the term
invokeService to refer to the set of actions taken by a user to start and interact
with the client-side application. We also use the term processSRF to refer
to both, creating an SRF and assigning to it an ID. Since it is technically
possible to use part of the user’s information while constructing the ID (e.g.,

92

User PCD:interface

terminals:WAP platform:MAS

invokeService()

processSRF

PCD:application

saveData()

PCD:device

searchWAPs()

establishConnection

transmitSRF

displayPending()

closeConnection

displaySent()

logConfirmation

Figure 5.2: A sequence diagram explaining the phases existing prior to the ne-
gotiation time

surname), it is then expected that this ID is unique for both the client and
server-side applications.

Any user’s SRF, in concept, does not differ from the SRFs other users
have transmitted to the central MAS. All SRFs are divided into two main
categories. These categories are: 1) the Profile: it includes the data needed
to explicitly describe a user, (e.g., age, sex, and telephone number); 2) The
Service: it includes three subsections; Desires, Givings and Combinations.
The Desires part includes a list of items a user is searching for. The Givings
part includes a list of items that a user is willing to offer in return. The
Combinations part includes the relationships connecting each of the desired
items to the givings ones.

An example of an SRF structure is shown in figure 5.3. In this example
we assume that a user ”Bob” is searching for a car-ride. Bob uses the client
application to put all of the service preferences and then clicks ”save”. The
application starts to process the saved data and puts them in the structure of
an SRF - showed in figure 5.3. From the Desires subsection, a dedicated MAS
can identify the required service and its description from the serviceName
field and its subsequent fields.

Throughout the GUI of the client application, and in the ”Budget” field,
we assume that Bob has listed three different givings that each corresponds
to a variation of the desired service. These variations are the result of putting
together the alternatives a user may give to any of the desired service pa-
rameters and, the alternatives a user may assign to the main giving item.

93

Service Request File
(SRF)

Profile Data Service Data

- name:
- surname:
- birthday:
- sex:
- tele:
...

DESIRES

GIVINGS

COMBINATIONS

- serviceName: car_ride
- departurePlace: seko_supermarket
- stops: 0~3
- startTime:13:00~13:30
- parameter3:

...

- item1: $40
- item2: $30
- item3: $20
- item4: 0

...

- serviceName.givings(all)
- departurePlace.givings {
- stops.givings { …
- startTime.givings { …

...

if (departurePlace = seko_supermarket) {
carRide.possibility = givings.item1;

} else if (departurePlaceAlternatives = place1) {

carRide.possibility = givings.all – item1;

} else {

reject;

}

Figure 5.3: An example of an SRF structure for a car-ride service.

For example, given that Bob is also ready to tradeoff his exact depar-
ture point with some cost decrease; then, the departurePlaceAlternatives is
set to another value. As shown in figure 5.3, a relationship that combines
both less money and the alternative departure place is made available in the
Combinations subsection.

.....

if (stops = 0) {

carRide = '40';

} else if (stops = 1) {

carRide = '30';

} else if (stops = 2) {

carRide = '10';

} else if (stops >= 3) {

reject.Offer;

...

.....

if (stops = 0) {

carRide = '40';

} else if (stops = 1) {

carRide = '30';

} else if (stops = 2) {

carRide = '10';

} else {

carRide = '0';

...

or

Figure 5.4: Two possible samples of a combinations subsection in a car-ride SRF

Another example of COMBINATIONS occurs when Bob cares to find a
car-ride from home to office at 13:30. In return, Bob’s givings vary from ”40”,
to ”30” and also ”10”, (USD or whatever imposed currency), depending on
the conditions accompanying the offered service. A nonstop car-ride is worth
”40” for Bob, one or two stops rides are worth ”30” and ”10”. The Service
section of Bob’s SRF will have ”car-ride” in its DESIRES subsection, ”40”
and ”30” and ”10” in its GIVINGS subsection, and the COMBINATIONS
will have something similar to what figure 5.4 depicts.

94

Eventually, a number of software agents that represent different SRFs
are becoming available on the server side of the service architecture. These
agents are expected to achieve one goal each and wirelessly feedback the users
they represent. For these agents to achieve their goals they have to rationally
interact by means of a predefined procedure that is understandable to all of
them - A Negotiation Protocol.

Once agents start to engage in a conversation and apply this procedure
they are then required to examine the negotiation’s possible outcomes, and
do the same for all other potential conversations - Negotiation Tactics.

At last, an agent needs to take a decision so that goals could possibly be
achieved and service requests are fulfilled. An agent performs its final action
in a specific process of negotiation with respect to a set of predefined policies.
These policies link together each of the negotiation protocol options to the
positivity or negativity of all tactics - Negotiation Strategies.

I is also worth highlighting here that: at certain points of our model im-
plementation, we had to distinguish between the phase wherein an agent is
being created and then transferred from the client side and, the time an agent
has actually arrived to the space wherein service-driven interactions are per-
mitted. Therefore, software agents that represent users of pocket computing
devices are not playing a role in the concerned multi-agent system unless
they have been already formed and sent by users, passed the connecting ter-
minals, and enrolled themselves for upcoming interactions. The reason we
do this distinction refers to the fact that we are addressing a nomadic service
environment wherein big part of its functionality relies on external entities,
such as users, lightweight devices, and connecting terminals.

5.3 The Negotiation Protocol

Accepting a union formation means that both the proposer and the accepter
agents will avoid additional system interactions, communicate the reached
results with the users they represent, and wait for further instructions. Re-
jecting a union formation means that both the proposer and rejecter agents
will terminate their negotiation process and search for alternatives.

Pending a union formation means that the proposer agent suspends its
search activity, and stay committed to the union the pender agent may accept
at a certain time, if it did not, the proposer agent then restarts searching for
alternatives. In the same time, the pender agent carries on its search for po-
tential union partners. Depositing a union formation will make the proposer
and depositor agents temporarily terminate their negotiation, search for bet-
ter negotiation outcomes, and keep committed to accepting the previously

95

A(SRFx)

S
e

rv
ic

e
-o

ri
e

n
te

d
 M

u
lt

i-
A

g
e

n
t

S
y

s
te

m
 (

M
A

S
)

A(SRF4)

A(SRF1)

A(SRF11)

A(SRF10) A(SRF9)

A(SRF7)

A(SRF12)

A(SRF5)

A(SRF2)

A(SRF8)

A(SRF13)

A(SRF6)

A(SRF3)

A(SRFx)

A(SRFx)

A(SRFx)

A(SRFx)

A(SRFx)A(SRFx)

A(SRFx)

A(SRFx)

A(SRFx)

A(SRFx)
A(SRFx)

A(SRF3) A(SRF7)

- DESIRES
- serviceX
- parameter1
- parameter2
- parameter3

- GIVINGS
- ABCD
- itemB
- itemC

- COMBINATIONS
- condition1
- condition2
- ...

- DESIRES
- ABCD
- parameter1
- parameter2
- …

- GIVINGS
- serviceX
- itemA
- itemB
- ...

- COMBINATIONS
- condition1
- condition2
- ...

matching agents: A(SRF3) A(SRF7)

Figure 5.5: A possible view of a service-oriented MAS with matching agents.

proposed union formation till a certain decision-making time occurs.
Later in this chapter, we demonstrate the range of tactics and strategies

that software agents employ ahead of choosing any of the four governing
expressions.

At present, in figure 5.5, we show a view of a service-oriented MAS where
software agents are being associated by matching the substances of their
Desires and Givings. MASs, in our context, play a single role before a ne-
gotiation process starts, which is matching the desires of the newly arriving
software agents’ with the givings of other accessible agents. Once a connec-
tion between two agents is established by a MAS, their negotiation process
is invoked and remains viable till a time for feedback occurs. The MAS re-
quests agents’ feedback according to two different predefined timelines that
we presented in 3.5.

5.3.1 Accepting a Union Formation

For two negotiating agents to accept a union formation it means that both
have agreed to fulfill the service requests of each other. Why would an agent
agree to fulfill the service request of another agent? This is what we will come
across in the strategies and tactics subsections. Now, in figure 5.6 we show
the procedure taken by two negotiating agents as they both agree on a union
formation. Once a MAS assigns a negotiation session for two negotiating
agents this session is then given a unique number and a system record that
relates this session with the participating agents, (e.g., the header of figure
5.6).

As we explained earlier, any negotiating agents will be granted an Ini-

96

AgentA AgentB

Accept / Propose

Accept

negotiation_session.1 (agentA.agentB)

negotiation(terminate)
alertMASalertMAS

MAS

establishConnection

sendUnionDetails

removeAgents

...

1

2

3

In this context, an agent
Proposes only what it

initially Accepts

Figure 5.6: A situation where two negotiating agents accept the union formation.

tializing Timeslot (ITS) by the managing MAS to reason about each other’s
service combinations. In spite of their location within the DecisionTime-
line we proposed earlier in this section, we assume that agents in figure 5.6
have reasoned about their decision and decided to exchange accept messages.
Then both agents terminate their current negotiation process and confirm the
union formation to the concerned MAS. Three different actions a MAS will
perform when it realizes that a negotiation session was terminated. These
steps are:

1. establishConnection: the MAS communicates with all of its con-
nected WAPs in order to establish a communication channel with the
users AgentA and AgentB are representing.

2. sendUnionDetails: the MAS communicates the union terms and de-
tails to users of AgentA to AgentB.

3. removeAgents: the MAS removes AgentA and AgentB from the list
of accessible agents.

5.3.2 Rejecting a Union Formation

According to our proposed protocol it is possible for the negotiation session
to encounter a different scenario where a proposal for union formation gets
rejected. In different words, it may happen that the proposing agent is certain
about the benefits yielding of this potential union while the rejecter is not
persuaded. In this situation, both, the proposer and the rejecter agents are
immediately enforced to start searching for alternative unions.

Unlike the ContractNet protocol [24], in our protocol if an agent receives

97

AgentX AgentY

Propose

Reject

negotiation_session.2 (agentX.agentY)

negotiation(terminate)
alertMASalertMAS

MAS

re
M

a
tc

h

m
a
tc

h
e
d

...

no
tM

at
ch

ed

reLIST

assignSESSION

Figure 5.7: A situation where one of the negotiating agents rejects the union
formation.

a reject to its proposal it cannot modify the proposal’s conditions and resend
it to the same agent again. Since a user feedback will be required to modify
the conditions of an agent’s proposal; applying this one-shot rule will reduce
the number of exchanged messages between an agent and its user. Besides,
proper bandwidth utilization is expected to be achieved.

In figure 5.7, we show the procedure carried out by the MAS in case one
of the two negotiating agents rejects the other. Once a MAS recognizes that
a negotiation session has been ineffectively terminated between two agents,
it tries to re-match these agents with all accessible agents. As mentioned
earlier in this section, the matching happens by means of fitting the desires
one software agents with the givings of other existing ones. If a match is
found then a new negotiation session is assigned; otherwise, this agent is
then listed in the list of union seekers.

In figure 5.7 we did not show the situation where no accept is given
by both agents. Since we have mentioned earlier in this section that the
negotiation session terminates immediately if one of the two agents rejects
the other, therefore, if AgentX initially rejects AgentY, there will be no
need for AgentY to react and the step where the MAS is alerted will follow
instantly.

5.3.3 Pending a Union Formation

Another occurring situation is related to the fact of an agent deciding to
pend the negotiation process. In brief, pending a union formation occurs
when the proposing agent is fulfilling a view of the union necessities that is

98

Loop

AgentC AgentD

Propose

Pend

alertMAS

...

holdTime=ERT

MAS
Agents

DB

reMATCH

alertMAS

getERT

notMatched(reMATCH)

matched(assignSession)

updateAgent

negotiation_session.3 (agentC.agentD)

Figure 5.8: A situation where one of the negotiating agents rejects the union
formation.

currently of no precedence to the pender agent.
Figure 5.8 depicts the situation where an agent decides to pend the union

formation. We use the term getERT to refer to the action taken by an
agent to calculate the new decision reasoning space. As mentioned earlier
in this section, the Extra Reasoning Time (ERT) equals to the gap between
a checkpoint of a DecisionTimeline and its approaching checkpoint of a
ReleaseTimeline.

If an agent decides to pend a potential union partner within the Initial-
izing Timeslot (ITS), then the getERT will return a total reasoning space
that is equal to the remaining time of the ITS plus the coming ERT. If an
agent decides to pend the negotiation process in a time of decisionRequest
checkpoint then the ERT will be calculated normally.

At anytime of the re-matching process, the pender agent can decide to
accept the pending union proposal and terminate the re-matching action of
the MAS. However, once the MAS is alerted with the agent’s pend decision a
particular procedure for re-matching this agent is executed accordingly. The
previously calculated ERT applies a limitation to the time a MAS spent on
re-matching. Two possible scenarios may occur here:

• New Match Found: The pender agent will be assigned to a new
negotiation session and the MAS will wait for the agent’s feedback as
long as the ERT is valid.

• No New Match Found: The MAS keeps on searching for a match

99

AgentE

Agents

DB
MAS

AgentF

Accept

Deposit

alertMAS...

calculateDecisionSpace

execludeDView

cloneAgent

alertMAS LoopreMATCH

notMatched(reMATCH)

matched(assignSession)

RenewDecisionSpace

UpdateDecision

negotiation_session.4 (agentE.agentF)

Figure 5.9: The sequence of actions taken by a depositor agent and its managing
MAS

as long as the ERT is valid, if no success it returns the pender agent to
the pending negotiation session.

Following the depictions of figure 5.8, while pended, the proposer agent is
supposed to suspend its external negotiation activities until further updates
from the pender agent side, or the expiration of the ERT. We decided to
impose this rule as a method for the proposing agent to reduce its search
activities when a high probability for union formation is found, and as an
availability assurance for pender agents.

5.3.4 Depositing a Union Formation

Different from what happens in an accept-pend situation; depositing a ne-
gotiation session here will grant the depositor agent all the required time
to ensure the unavailability of better unions. This time will completely de-
pend on the depositor agent willingness to stay searching for alternatives.
Therefore, both of the negotiating agents under a deposit circumstances are
allowed to start searching for alternative unions once their negotiation session
has been deposited.

If an agent does not find a new union and the depositing time expires,
then the deposited view will be taken as an agreed upon union proposal
by the proposer agent, and the earlier negotiation session is then concluded
successfully. On the other hand, if the depositor agent succeeds to engage in

100

a more beneficial union then; the managing MAS will impose a termination
action to the deposited negotiation session.

For example, an agent may hold a desired service X that is associated
with two different items of the Givings; G1 and G2. These two items are
the result of two different time evaluations that a user has specified in earlier
phases; T1 and T2. A possible view that an agent can deposit could be ”if
service X gets fulfilled in T2 then G2 is valid”. Recalling the Combinations
examples we have given in section 5.2, it should be clear for us the place
where views are found and their representation method.

In figure 5.9, we use the term excludeDView to refer to the action taken
by the AgentF to capture the items and conditions AgentE has previously
accepted. Since the nonexistence of any of the two agents in a negotiation
session will make this session terminated, we hereafter adopt - partially - the
idea of agent cloning presented in [95]. Partially because; the agent cloning
approach addresses situations where processing, memory and communication
loads are of agent’s interest to reduce overloading in a data allocation setting.
In our case, we do not intend to reduce an agent’s overload as much as we
are interested in the recreation of the same agent.

Eventually, a duplicate of AgentF without the captured view will be
created by the MAS and it is then entered to a new matching loop. Whether
this matching loop have resulted a successful union or not, or no matching
was actually found, the decision space of AgentF will have to be always
pushed to either termination or renewal.

5.3.5 The Protocol in a Nomadicity-Oriented Setting

We conclude this subsection by locating the negotiation protocol we intro-
duced on the environment we address. To do that, we use the Prometheus
Design Tool (PDT) introduced in [96], which is based on Prometheus ; the
Agent-oriented methodology of [97].

In figure 5.10, three main actors are involved in the process of shaping
and delivering an agent to its space of interactions. These actors are; User,
Pocket Computing Device (PCD), and WAP (Wireless Access Point). The
space of interactions is the central Multi-Agent System (MAS) where all of
the WAPs are connected to. This MAS is also considered as another system
actor with respect to its role in the overall scenario. Agents that represent
certain goals attempt to reach the MAS with an objective to interact with
one another in order to form a service partnership - Union .

As we mentioned earlier in this section, every user searching to fulfill a
specific service request is also willing to give something in return. Therefore,
the only agent we refer to in figure 5.10 is of one type - SeekerAgent - but

101

Figure 5.10: A Prometheus diagram to locate the negotiation protocol we intro-
duce on the environment we address

yet it signifies both; service seeker agent and service giver agent. An agent
is a service giver if its union partner is seeking the same service this giver
agent offers. The same agent is also a service seeker if its union partner is
giving the same service this seeker agent searches for.

Since Prometheus uses the message passing approach to express the type
of interactions occurring among system actors, we employ this approach to
abstractly describe in figure 5.10 the relations linking together all of the
environment’s actors. This sequence of messaging starts and ends at the
user side of the architecture.

The first message sent by a user to its PCD asking to invoke the client
application of the service - invocationRequest. Then the PCD, using a spe-
cific connection establishment procedure, sends a catchSRF (Service Request
File) to a WAP. In turn, The WAP transmits the user’s SRF to the central
managing MAS server using the FileTransmission message.

The MAS server communicates with the agent the number of the nego-
tiation session assigned to it and the ID of its potential union partner using
a newSessionStarted(session1,ag1,ag2) message. Each time any of the ne-
gotiating agents takes an action that requires the MAS involvement, or the
negotiation terminates, an alertMAS message is sent to the MAS. Messages
keep on taking the same way back in order to finally feedback the user with
his/her partner info.

Following the depictions of figure 5.10, a goal ”oval circle” is associated
with each actor of the system. The abstract goal of a User actor is to get a
service request satisfied. The goal of the PCD is to act on behalf of the user
when interacting with the service architecture is needed, which we call it rep-

102

resentUser. The MAS actor is responsible of matching agents, imposing the
system rules, and receiving and transmitting service requests and feedbacks
to users through the WAPs. Therefore, we have summarized all of the MAS
objectives in a superviseAgents goal symbol. The main goal of an agent is
to find a union partner so that together they establish a mutually beneficial
relationship - findUnionPartner.

A MAS actor has a database linked to it wherein all of the system agents
are stored and matched before a negotiation sessions are assigned to them.
A specific procedure is followed by the MAS in order to register an agent to
the system - registerAgent. Using this procedure, a MAS exploits the data
listed in an SRF to either create a new, or update an existing software agent.

The matching procedure followed by the MAS while putting together
agents in negotiation sessions is not showed in the diagram. However, two
parallel concepts are considered while the MAS is attempting to match newly
arrived agents with existing ones. These concepts are:

(a) Clustering organization of agents: A pre-matching step to categorize
agents of the same offered service - giving - in different groups so that
searching for potential union partners is more directed.

(b) First-come first-served: This is to ensure that the oldest agent in each
of previously categorized groups is the first to be examined for matching.

In figure 5.10, our negotiation protocol is represented as four different
actions the SeekerAgent is free to choose any of them while negotiating a
union formation. These actions are Accept, Reject, Pend, and Deposit. Each
of these actions shows a different standpoint of the seeker agent regarding
a specific union formation. The reason we give the negotiating agents these
different actions goes to our desire to reflect four different recurring situations
in nomadicity-oriented service architectures, these situations are:

1) Classic Service Acquisition: In real-world situations, when a buyer
finds a seller that offers its services at a value that is within the buyer’s
range of givings, they both enter into a conversation to discuss the terms
of the deal. The seller’s and the buyer’s acceptance regarding this deal
is affected by a set of conditions that is predefined by each of them sep-
arately. Among several examples, these conditions may include the time
available for both to reach their goals, or the quality of the offered service
with respect to its given value.

Similar to the situation above, once a MAS matches the desired service
of an agent with the offered service of another agent, and the vice versa.
An agent adopts the accept action if it is likely to run out of time and, the

103

current prospective union satisfies - at least - one of the adjoined service
conditions. Or, the partner of its current negotiation session initially
agrees on the optimal combination of the service conditions.

2) Optimistic Service Acquisition: There are situations where a seller
and a buyer may not come to agreement although both are apparently
fulfilling each other’s requests. Taking time as an influential factor; if
the expectations of a seller are higher than the estimation of the buyer,
and time is not an issue, a seller may prefer to risk the offered deal and
wait for other buyers. On the other hand, while time is still not an issue,
a buyer may reject a deal if the object he/she is searching for could be
found in different conditions and the current seller is fulfilling their most
inferior.

In an agent-oriented service application, a negotiating agent would
decide to go for the reject action if the remaining time to work on its most
favorable goal is sufficient. Besides, the partner of its current negotiation
session accepts to satisfy only a suboptimal view of the service’s adjoining
conditions. Therefore, this rejecting agent is optimistically choosing to
search for better alternatives. However, it is not guaranteed by the MAS
that another matching agent will be found soon.

3) Risk-free Service Acquisition: Situations where the buyer and/or the
seller are hesitating about a trade’s final decision may occur in a particular
context, (e.g., in a flea-market). This is usually happens when the seller
and/or the buyer are uncertain about one of the deal terms, (e.g., price,
delivery place), and neither time nor a dire need to upgrade the current
state is pushing any of them to finalize the deal. One solution for this
situation is when the buyer asks the seller - or the opposite - to put the
negotiated item on hold for some time until extra incentive for accepting
the deal appears. This is usually happens because naturally people tend
to maximize their benefits.

In the context of our research, an attempt for an agent to maximize its
benefits will be done through the Pend action. In addition, using the pend
action gives less risk for an agent to achieve its delegated goal than the
reject action. This is because a potential union formation is on hold while
a pender agent is searching for alternatives. However, as mentioned earlier
in section 5.3.3, the awaiting union formation is only valid till certain time.
Therefore, a pend action is also reflecting the agent’s necessity to satisfy
its goal on a shorter run than the Reject action.

The pend action is mostly used if the partner of the current negotiation
session fulfills a set of adjoining conditions that is not considered as an

104

optimal solution. The pend action is also used if the time remaining for
the pender agent to achieve its goal is nearly ending but yet sufficient to
look for other potential unions.

4) Objective-centric service acquisition: Another real-life situation may
occur when a buyer is persuaded by the offered item and, the seller is also
accepting the buyer’s evaluation of the negotiated item, but both are not
willing to finalize the trade instantly. This is usually happens because
either the buyer’s time to acquire a service is limited but yet permits him
to perform a little check for superior opportunities, or the seller is not
willing to risk the current offer but yet would like to add to its trading
chances (e.g., combine the negotiated item with another one in a bigger
deal). However, a buyer may apply a number of different approaches to
encourage a seller towards holding the negotiated item for a certain period
of time.

From these approaches, the instance that is of our interest is when
the seller is asking the buyer to deposit a part of the total value of the
negotiated item until the buyer returns to finalize the deal. Eventually, if
the buyer decides to acquire the item being on hold and, the seller have
not found a better deal; the trade is then normally completed. If the
buyer, in his little check for superior opportunities, found a better offer,
and the seller was not successful to find any, then the deposited part of
the value is considered as a loss to the buyer and gain for the seller. If
the buyer and the seller have both found better deals while the negotiated
item was under a deposit condition, then the earlier agreement is canceled
and the new ones take place.

The differences between a negotiating agent the pend and the deposit
actions of the negotiation protocol are:

• In spite of the total time available for an agent to acquire a ser-
vice, using the pend action allows an agent to search for alternative
unions only within a limited time, which is managed through the two
timelines a system assigns and enforce to each negotiation session.
While in situations when a deposit action is used, the time an agent
spends on finding an alternative union is continuously renewed until
the depositor agent communicates an accept action.

• Different from the pend action’s situations, if an agent that is search-
ing to acquire a service picks the deposit action of the protocol as a
response to a union acceptance, the service provisioning agent will
also be allowed to search for union alternatives.

105

Among several advantages, (e.g., addressing different agents’ commitment
levels), the main reason these differences exist goes back to our intentions
to tackle two different scenarios. These scenarios are; 1) when an agent is
having enough time to search for all possible unions but yet the managing
platform encourages fast settlements to reduce system overload, 2) when
an agent is having limited time to reach its goal but the system is yet
facilitating the possibility to find prospective unions to elevate the overall
service application performance.

5.4 The Negotiation Tactics

In [26], autonomous agents’ negotiation is tackled with respect to the domain
wherein a negotiation process is executed. As a result, three different domains
categories were presented in which each provides different negotiation tactics
that are suitable for domain-oriented encounters. These categories are: 1)
Task-oriented domains, 2) State-oriented domains, and 3) Worth-oriented do-
mains. Task-oriented domains are a subset of state-oriented domains, which
are in turn a subset of worth-oriented domains.

The work presented in [26] is motivated by the abstract notion of machine-
machine interactions and, the instance scenarios where two robots encounter
in a warehouse and interact to achieve common tasks, or two airplanes are
negotiating the landing priorities.

In [27] three families of negotiation tactics are proposed to support agents’
decisions while building a counter-offer to an already received offer. These
tactics are motivated by the British Telecom (BT) business process man-
agement applications authors were addressing at that time. These tactics
are; 1) time-dependent, 2) resource-dependent, and 3) imitative tactics. In
these tactics new values for each variable in an offer are generated by the
decision-making functions proposed in [72].

5.4.1 Time-driven Tactics

In this subsection we explain the time-driven tactics that a negotiating agent
is permitted to pick and employ while acquiring a service. As figure 5.11
represents, we show two activity diagrams wherein both are bringing together
the notion of system overload and the time available for an agent to establish
a union. Within these two diagrams, two different options accompanying
each of the abstract tactics are included. In these tactics’ options an agent’s
deposit or pend decisions are affected by the available decision time-space.

The way a decision time-space is calculated vary depending on whether

106

Agent

Accept Reject

bestFit noFit

End SessionEnd Session

Union Found

reMatch Required

[Check Union Conditions]

[Get Decision Time-Space]

[Check System Load]

Deposit Pend

t > (ITS + DTS) t =< (ITS + DTS)

else

ReleaseTimeline = 0

Update MAS

ReleaseTimeline = 1

(a) Common System State Time-driven Tac-
tic

Agent

Accept Reject

bestFit noFit

End SessionEnd Session

Union Found

reMatch Required

[Check Union Conditions]

[Get Decision Time-Space]

[Check System Load]

Deposit Pend

t =< (ITS + ERT)t > (ITS + ERT+TTS)

else

ReleaseTimeline = 1

Update MAS

ReleaseTimeline = 0

(b) System Overload Time-driven Tactic

Figure 5.11: The Model’s Two Different Time-driven Tactics

the negotiation session ReleaseTimeline is imposed by the system or not. We
assume that whenever the ReleaseTimeline - explained earlier in this section -
is imposed by the system, agents are notified that the number of participating
agents has exceeded the average amount; therefore, it is a system overload
situation. Otherwise, it is a common system state situation.

Common System State Time-driven Tactic

In figure 5.11(a), once a negotiation session is assigned to an agent by the
managing platform, the following step will be taken by each agent to check
the conditions a session’s partner applies to the union to be made. Three
different cases may be encountered, these cases are:

1. noFit, wherein none of the conditions the session’s partner applies to
imminent unions meets any of the checker agent’s requirements.

107

2. bestFit, wherein all of the conditions the session’s partner is implying
to potential unions are precisely fulfilling the checker agent’s needs.

3. else, wherein the conditions that the session’s partner applies to the
provisioning of a service are neither fitting the most to the checker
agent’s requirements nor completely intolerable.

The noFit outcome of the [Check Union Condition] process will lead a ne-
gotiating agent to a Reject activity. Similarly, the bestFit outcome of the
same process will lead a negotiating agent to an immediate Accept activity.
Eventually, whether it is an accept or reject, a sub-activity will follow to
terminate the negotiation session and, consequently, log the session’s final
outcome to the managing platform.

However, the else outcome of the [Check Union Condition] will lead a
negotiating agent to another process, which is the [Check System Load]. In
this process, an agent is basically communicating with the managing MAS
to check whether the ReleaseTimeline is imposed by the system or not.
As explained earlier in section 5.3, the existence of the ReleaseTimeline
enforces the negotiating agents to set free their current negotiation sessions
at certain times, which is a sign of system overload. In figure 5.11(a), we
address the case when the ReleaseTimeline does not exist, which will make a
negotiating agent moves to the subsequent process wherein the time available
to make a decision is calculated, [Get Decision Time-Space].

The later process will have two possible outcomes, these outcomes are:

a) t > (ITS + DTS): Here, we use t to refer to the time available for
an agent to take a decision about a specific union formation. In addi-
tion, from section 5.3, the Initializing Timeslot (ITS) is the time initially
granted to a session’s negotiating agents in order to examine the condi-
tions of each other. The Decision Timeslot (DTS) is equal to the interval
between two subsequent checkpoints located on the DecisionTimeline.

Recalling the assumption we made earlier in which each negotiating
agent has a specific time to achieve its service acquisition goal; that is
assigned to it by the delegating end-user. Therefore, if t is equal to more
than the sum of the current session’s (ITS + DTS), it will be proper for an
agent to pick the Deposit option of the negotiation protocol. The reason
deposit will be the best fit for this situation goes back to the fact that
time - here - is not a concern for both, the system and the negotiating
agent, and the alternative solution - pend - will give a meaningless time
restriction for the two negotiating agents.

b) t =< (ITS + DTS): Another possibly occurring situation while the
ReleaseTimeline is not imposed by the system is when a negotiating agent

108

is actually having limited time to achieve its service acquisition goal. In
different words, the decision time-space t available for this agent will
be equal to, or less than the sum of current session’s ITS + DTS. In this
situation, and following this time-driven tactic, it will be best for an agent
to pick the pend option of the negotiation protocol. Using the pend option
will restrict the negotiating agent attempts to find alternative unions to
a limited time while the current session’s partner will not be permitted
to do the same; therefore; a less optimal union is guaranteed.

System Overload Time-driven Tactic

Once the managing platform observes a system overload - the number of
participating agent has increased, an imposition for the ReleaseTimeline is
made to give more restriction to the time available for a negotiating agent
to reach a union formation. Yet, the use of the pend and deposit options of
the negotiation protocol is applicable.

In figure 5.11(b), we show the sequence of activities a negotiating agent
performs whenever the ReleaseTimeline is existent. The differences between
this tactic and the one explained in 5.4.1 are related to the way a decision
time-space is calculated. The process of calculating the decision time-space
here may have two possible outcomes, these outcomes are:

a) t > (ITS + ERT + TTS): here, we also use t to refer to the time
available for an agent to take a decision about a union formation. Since
two different timelines are assigned to negotiation sessions of this scenario,
a negotiating agent picks Deposit if t is greater than the sum of the
Initializing Timeslot (ITS), the Extra Reasoning Time (ERT) and, the
Termination Timeslot (TTS).

By recalling section 5.3, it should be clear that ERT is equal to the
time gap between a checkpoint of a DecisionTimeline and its approaching
checkpoint of a ReleaseTimeline. Besides, TTS is equal to the inter-
val between two subsequent checkpoints located on the ReleaseTimeline.
Therefore, the Deposit option here will give to the negotiating agent the
best possible time space to search for alternative offers.

b) t =< (ITS + ERT): Another situation that may occur here is related to
the negotiating agent time to achieve its service acquisition goal. Due to
end-users’s preferences, a negotiating agent may have a time space that is
even less than the time available throughout the two timelines attached
to its current negotiation session. Therefore, the pend option is picked
by the agent if t will be equal to, or less than the sum of the Initializing

109

Agent

Accept
bestFit

End Session

Pend
noFits

[Communicate Status]

waitForResponse

addPendingTime

End SessionpendTimeExpires

[Examine Recieved Conditions]

pendTimeValid

[Check Union Conditions]

Modified

Deposit

else

[Send Feedback][Search for Alternatives]

[Send Final Feedback]

noNewProspects

hold = DepositTime

Union Found

Update MAS

Reject
noModifications

reMatchRequired

End Session

newProspectFound

Figure 5.12: Negotiating Agent Actions in Situations of Prompt Communica-
tions Channel

Timeslot (ITS) and the Extra Reasoning Time (ERT). Eventually, an
agent will take advantage of its total available time - even though it is not
plenty - to search for better unions while a potential partner is on hold.

5.4.2 Connectivity-driven Tactics

In this subsection, we explain the set of actions a negotiating agent should
perform while considering the nature of the communications channel estab-
lished between the end-user and the service-driven MAS available. We as-
sume the existence of a classification method in which end-users relying on a
prompt communications channel are identified and, end-users who are relying
on less responsive communications channel are also identified.

By ”prompt communications channel” we refer to wireless connectivity
that allow end-users to send and receive service requests within a large cov-
erage, and with acceptable data transmission rate, (e.g., Wi-Fi, WiMAX).
In addition, by ”less responsive communications channel” we refer to wire-
less connectivity with a number of technological obstacles, such as limited
number of concurrent connections, short-range coverage, and low-speed data
transmission, (e.g., IrDA, Bluetooth).

110

Tactic for Prompt Communications Channel

Once a negotiating agent is aware of the communication technology an end-
user has used to transmit a service request, it should be uncomplicated for
an agent to decide which connectivity-driven tactic to be employed. In figure
5.12, after a negotiating agent is assigned to a specific negotiation session,
a process of checking the union conditions a session’s partner considers is
performed. Traditionally, if these conditions perfectly fulfill the needs of
the negotiating agent - bestFit - the union is accepted and the session is
terminated, and the MAS takes the responsibility of informing the end-users
with the session’s outcome. Alternatively, other two possible scenarios may
occur, these scenarios are:

a) The pend case: By recalling what figure 5.5 depicts, it should be under-
standable for us that when two negotiating agents come to a negotiation
session it is because the service a session’s partner is searching for matches
- abstractly - the service the other session’s partner is providing, and the
vice versa.

Moreover, since the connectivity involved in such scenarios are of encir-
cled area, therefore, the two negotiating agent are actually representing
people of the same area. Consequently, if none of the prospective part-
ner’s conditions fulfills any of the requirements a negotiating agent carries
- noFits, a pend activity is executed to let the end-user reconsider the
service parameters entered in earlier stages.

Once the negotiation process went on pend by an agent, the time a
session will remain pending and, the service parameters a session’s partner
have, are both passed to the MAS in order to be communicated to the
end-user, which is shown in [Communicate Status]. Eventually, the
pender agent activities will be on hold until a response is communicated
by the end-user.

Thus far, two situations may occur here: 1) if the pending time of a
pender agent expires without having its current parameters modified by
the end-user, then the negotiation session is terminated and the managing
MAS attempt to re-match this agent. 2) If the end-user decides to resend
the service request, then the received data is examined by the agent. If
the service request was modified, then this agent will have to restart the
negotiation process. If the received service request was not modified, then
this negotiation session is terminated.

b) The deposit case: Another occurring situation is when the conditions
a session’s partner is linking to any union formation are neither bestFit

111

nor noFits, but they are just partially fitting. We refer to this situation
using the else term of figure 5.12, and the consequent activity of putting
the negotiation session on Deposit.

Two parallel actions will be performed following to the Deposit ac-
tivity. These actions are: 1) the [Search for alternatives], in which
an agent will exclude the current agreed upon session’s conditions while
searching for other prospective union formations. 2) The [Send Feed-
back], wherein a negotiating agent - through the MAS - will communicate
the deposited view of the negotiation session with the represented end-
user without waiting for responses.

Then, if no new prospective unions are found, and the depositing time
is still valid, the negotiating agent holds its final decision until the de-
positing time expires and then accepts the union formation. The reason
a negotiating agent holds its final decision until the depositing time ex-
pires goes back to the probability that an end-user may communicate any
modifications to the system with respect to the feedback communicated
to him/her in the earlier phase. However, if a new prospective union is
found by the same depositor agent, the current negotiation session is ter-
minated since in our model an agent cannot be involved in two different
negotiation sessions at a time.

5.5 Chapter’s Summary

In this chapter, we mainly showed how the negotiation model we presented
in earlier chapters can be implemented. We introduced a generic implemen-
tation description as a step on the way to facilitating the integration of our
model in several of the increasingly emerging services for users of pocket
computing devices. At certain points, we emphasized our intuitions from
approaching specific situations in particular manners, (e.g., the introduction
of the Service Request File (SRF)).

In general, we described the overall environment that we foresee our model
applied within. Then, we went through users’ interactions with this environ-
ment. We have also explained our notion of accepting, rejecting, pending,
and depositing a possible union formation. Then, we employed one of the
commonly used agent-oriented methodological tools, figure 5.10, to reflect the
proposed negotiation protocol on the addressed environment. We showed our
intuition of proposing this negotiation protocol’s elements and, connected all
that to real-life examples.

To wrap this chapter up, here is a brief connecting description of all what

112

we demonstrated: we reflected the sequence of service invocation steps that
exist prior to the time of agents’ negotiation. Using a sequence diagram,
figure 5.2, we showed a nomadic user’s interactions with its Pocket Comput-
ing Device (PCD), this device’s interactions with the connecting terminals -
Wireless Access Points (WAPs), these terminals’ interactions with the agents
platform, (e.g., Jade or JACK), and all the way back.

We also showed the expected structure of the Service Request File (SRF)
we are expecting a user to manage to create through his PCD, figure 5.3.
Then, we gave an abstract intuition of the multi-agent system wherein these
earlier SRFs will be represented in software agents’ fashion, figure 5.5.

From an implementation perspective, in subsection 5.3, we also showed
how software agents can employ our negotiation protocol in four different
scenarios, accept, reject, pend, and deposit. Since every negotiation session
involves two software agents, then, in this section, we also showed the reaction
of the other negotiation party to each of our protocol actions.

In subsection 5.4, using activity diagrams, we showed how our time-based
tactics can be implemented in two scenarios: when a community is Jammed,
and when it is Tolerable. Following to that, and using the same approach,
we showed how to implement our connectivity-driven tactics, figure 5.12.

113

114

Chapter 6

Case Studies

In this chapter, we present two case-studies that we have been working on
with our industrial partner, (i.e., ARS LOGICA [98]), for the last 4 years to
provide a ridesharing service, (i.e., Andiamo), and a bartering service, (i.e.,
BarterCell), to users of Pocket Computing Devices in Trento.

Apart from these two case-studies, it is also worth highlighting here that
in our Laboratory for Mobile Applications (LaMA) [99] we attempted to
address other several needs that the environment surrounding us, (i.e., uni-
versity), has brought up to our attention. We did that by building a number
of agent-oriented software architectures that provide location-based services
to students and professors on-the-go; through wireless access points.

6.1 Andiamo

Rideshare is another service to be mobilized. The way a rideshare system
works is related to the availability of empty seats in a car and, the interest
of a user to contribute in the journey cost in exchange of occupying this
seat. The interactions made constitute reliable means of transportation for
many people in an increasing number of countries, and it is usually provided
exclusively by a third-party website that uses a web-based technique to match
service requests.

In classical agent-based rideshare systems [100], users’ desires are rep-
resented by delegated agents, and a super agent is available to match the
service requests these agents are carrying. However, several contributions
were made to the literature of rideshare systems. These contributions has
similar notions but different implementation approaches, besides, they are
not reachable by holders of lightweight devices.

Rideshare systems allow a substantial number of people to mutually bene-

115

fit from using less cars in a specific region. This would rationalize energy con-
sumption, save money, and decrease traffic jams and pollution. However, ac-
cessibility issues have prevented these architectures from being widely spread.
This rideshare system is an agent-based and it is accessible via pocket com-
puting devices. At the time of developing this application - Andiamo [101]
- we were aiming for accelerating agents’ interactions while resolving end-
user composite tasks; therefore, Auction mechanism was used as a method
of negotiation among autonomous and proactive agents.

6.1.1 Application Motivations

Apart from the fact that this PhD’s sponsor - a private sector - had demanded
from us to come up with something that is agent-based and yet of great
commercial impact, yet, there are some repetitive and related situations that
occur in our daily life. Looking at one of them, we found that using a
car to move from a place to another will increase the flexibility to schedule
appointments, reliability and comfort. We also noticed that, on the long run,
pollution and stress caused by traffic jams will badly affect our life.

If a tool is provided to match peoples’ common interests, it would increase
cooperation and simplify lots of our daily tasks. It is quite common to see
a car owner that has empty seats and commuting daily between two fixed
locations (e.g., house and work). It is also common to see commuters of
public transportations taking the same route everyday, or people trying to
move between different remote places in irregular times.

In fact, average car occupancy in the UK in 2004 is reported to be 1.59
persons/car; 1.2 for commuters and 2.1 for holiday [102], 38% of people
traveling in a car in 2004 were unaccompanied drivers, 25% were drivers
traveling with one or more passengers and 36% were passengers. And, in
Germany is even less [103]

For example, Bob and Alice are two potential system users that are lo-
cated at the train station, while John is another potential user that is located
at the bus stop nearby. Bob has arrived to the train station driving his car,
but Alice and John do not have cars. All of them are coming from different
locations and again moving to different ones, but it happens that John and
Alice destinations are located on Bob’s way to work. Moreover, the cost of
taking public transportations to reach Alice and John destinations could be
of need to Bob in exchange of offering them a ride.

Bob is now able to use his cellular phone to offer a ride to John and Alice
that were both using their smartphone or PDA to seek a ride. Intelligent
software agents are now delegated by users to seek and offer car rides, then
agree on a sharing cost, meeting points and times. According to the pre-

116

Figure 6.1: The Three-layer Model

configured level of interactivity, these agents would take decisions on behalf
of users and communicate the final results.

In a classical agent-based Rideshare system, agents’ behavior, level of
interactivity and decision making schemes may lead to disagreement and im-
precision. On the contrary, an auction mechanism can aid to resolve complex
situations; this mechanism ensures ultimate benefits gaining for both service
supplier and demander.

6.1.2 The Framework

The architecture we implemented is offering users of lightweight devices a
complete Rideshare service package, it consists of a several layers that are
combined together to form the general architecture of the running MAS. This
architecture is accessible via Bluetooth-enabled lightweight devices. We have
chosen Bluetooth as a major communication method, yet users can use SMS,
GPRS/UMTS or a Web interface to interact with the system.

Users of Andiamo can access the system through Bluetooth access points
that are directly connected to the Multi-Agent platforms. For each access
point we have an implemented Multi-Agent System wherein Personal Agents
(PA) of car owners and ride seekers interact and negotiate potential rides.

As shown in Fig. 6.1, our framework has three different layers. 1) The
agent platform, which is based on JADE framework. 2) The Multi-Agent
architecture including the Culture (IC) part. 3) The top layer is the han-
dler of user requests and the interface line, which is the Rideshare service
management method. Further on, we explain them in details.

The MAS Architecture Layer is implemented using JADE (Java

117

Agent Development framework) [9], which is a FIPA-compliant [104] frame-
work for MASs development. JADE provides: (1) an Agent Management
System that allow us to create agent containers in distributed hosts, (2) a
Directory Facilitator (DF) that provides a yellow-pages service, and (3) a
Message Transport System that handles agents communications.

This architecture layer is responsible of receiving and processing users’
requests. A one-to-one correspondence between agents and mobile devices
is established throughout this phase. Each agent is identified by a unique
Bluetooth address of the corresponding mobile device. It is possible for a
single device to have multiple PA that are initiated through diverse access
points. When a user request is received, the platform checks whether the
PA of this specific device exists. If not, a new PA is created. Each PA
communicates and interacts with other agents in the system in order to
find “partners”, the PA remains wandering until at least one user request is
fulfilled.

Interface Agents

Interface Agents (IA) employ certain techniques to provide assistance to a
user dealing with a particular computer application [105].

In Andiamo, each IA has its main features, which are; knowledge acqui-
sition, autonomy and collaboration. At this phase, IAs are managing the
creation of new service requests. These agents are recognized by the sys-
tem as ’AddNewServiceAgent’ and they receive from the preceding layer the
service request including user details parameters (Bluetooth address, user
information, and service request details). Later on, they transmit this data
to the corresponding PA and they remain in the system only to achieve this
action and then vanish.

A new agent is created for every service request. The transmission pro-
tocol between a PA and an IA is summarized in four main steps. 1) The
NewService Request that is issued by the IA and directed to the PA. 2) The
acknowledgment response from the PA. 3) NewUserInfo that is sent again
from the IA to the PA. 4) The final “accept” message from the PA to the
IA.

Personal Agent

These agents represent the system users and the work done on their behalf.
The interactions of these agents include two main parts: (1) the elabora-
tion of users’ requests, and (2) the negotiation among agents. The PA that
elaborates a request for a ride is called Seeker Agent (SA while a PA that

118

Figure 6.2: User-Request Elaboration Process

elaborates a ride offer is called Offerer Agent (OA). The mechanism used
for agents’ negotiation will be explicitly illustrated in Section 6.1.3.

Agents Interactions

In Fig. 6.2 we present the interaction protocol used by agents during the
request elaboration phase. On each platform there is a dedicated agent, called
Expert Agent (EA), which contains the System for Implicit Culture Support
(SICS) [106, 107]. The SICS consists of three components, 1) the Observer,
which uses a database of observations to store information about actions
performed by users in different situations, 2) the Inductive Module, which
analyzes the stored observations and applies data mining techniques to find
a theory about the community culture, 3) the Composer, which exploits the
observations and the theory in order to suggest actions in a given situation.

In Andiamo, the use of the IC framework (Implicit Culture Agent, Fig.
6.1) is to let the system suggests the meeting points that are frequently used
by other system users and observed by the system. More details about the
IC framework are available in [108].

After a PA receives its user’s request (step 1), it sends it to the EA (step
2). On the EA side, an observer component of the SICS extracts data from
the request and stores it in the database of user’s observed behaviors (step
3). Composer component estimates the real value for parameters if the input
is incomplete or wrong (step 4). For the elaboration process, the Composer
uses the information about the past user’s actions, obtained from Observer
and analyzed by Inductive module. Finally, the user’s PA receives back the
elaborated request (step 5), which it processes during the second phase.

119

SICS needs to gather information about users behavior. To observe user’s
behavior, EA extracts data from the requests it gets from the PA. Two other
additional sources of observation could be added. The first is the database
where the results of agent negotiations are stored. This storing takes place
every time two PAs agree on sharing a trip and send their proposals to the
database.

The EA extracts necessary information (e.g., departure, arrival place and
meeting points) from the proposals and stores them in its internal database.
The second source is the user’s feedback repository. When the ride is finished,
the user gives feedback to the other user(s). His evaluation is stored in the
mobile phone/PDA and is sent sent to the EA as soon as the user establishes
connection with the corresponding server via his mobile device.

The interaction mechanism used in Andiamo is based on the following
parameters of the trip: Request Type, Passenger Type. Departure Time, De-
parture Date, Departure Place, Departure Meeting Points. Arrival Place,
Arrival Meeting Points. Offset, User Feedback minRequested/maxOffered
Money (contribution for the ride) and Number of Seats. This applies to
OA as much as to a SA.

In Fig. 6.3 a typical Rideshare service transmission protocol is demon-
strated. The Multi-Agent platform is located to serve the interactions be-
tween an OA and a SA. A sequence of steps is taken between both, offerer
and seeker, in order to achieve a successful Rideshare agreement. In addi-
tion, the possibility to apply an automatic or a semi-automatic service mode
implies that the interaction between two agents can be, either interrupted to
prompt an inquiry to the user, or self-decision making. Following to that, we
describe the significance of negotiation and we consider its automatic service
model.

Service Publication

Within the JADE DF, every PA publishes its carried service requests. If
these requests are recognized by the system and that PA is identified, then
the service will be registered. The initial interaction starts when a SA tries
to find a OA with similar destinations, day and time of departure and with
a feedback greater than or equal to the desired value.

Then, the SA will contact every OA found by the system and conse-
quently, communicates with end-user the retrieved data. Notably, if the
value of the feedback is less than the requested value, it is possible to contact
back the user asking a permission to decrease the requested feedback value
so an agreement could be reached. The same thing happens for the time and
other similar parameters.

120

Figure 6.3: A Typical Rideshare Transmission Protocol

6.1.3 The Auction-based Negotiation

Given a set of lightweight devices that are capable of communicating a
service request with central Service Oriented Architecture (SOA) via
Distributed Access Points (DAPs), and given that these DAPs and cen-
tral servers are providing mobile users with location-based service. Here,
lightweight devices are tools to clarify users’ preferences. When user inserts
his offer/request, a particular configuration file is automatically created on
the device side. Subsequently, when a Bluetooth connection is established
with a server, the lightweight device links with the SOA and the file is trans-
ferred.

Eventually, a phase where system verification occurs is placed. The arrival
of a new agent to the server side requires the running MAS to verify whether
this agent is new and to be bootstrapped or it already exists and it means to
update the behavior of a previously running agent. A group of autonomous
agents that are delegated by several users to achieve varied tasks in different
times is formed at the server side of the architecture. Given that some of
the tasks to be achieved are complex and require agents coordination, thus
a negotiation scenario that requires agent-to-many is established.

Algorithm 1 is the algorithm used on the OA side to invoke and manage
a specific auctioning situation. From line 1 to line 3, both OA variables,
bestValue and numLoop, are initially set to ’0’. In line 4, the OA requests
the SA to start the auction by sending the value of the best offer previously
obtained during the pre-offer session. From line 5 to line 7, the OA waits

121

Offerer Agent procedure()
1: bestValue = 0 ;
2: numLoop = 0 ;
3: auctionIsOpen = true;
4: askSAToStartAuction(bestPreOffer);
5: while (auctionIsOpen) do
6: waitForOffers();
7: val = calculateBestValueOfFunction();
8: if (numLoop == 0) then
9: bestValue = val ;
10: numLoop++;
11: else
12: if (val > bestValue) then
13: bestValue = val ;
14: requireNewOfferToSeekers(bestValue);
15: numLoop++;
16: else
17: if (val <= bestValue) then
18: quitAuction();
19: informWinners();
20: end while
21: quitAuction();

Algorithm 1 The procedure taken by the Offerer Agents.

to receive new offers from all involved SAs, and a ’val’ is created as a
function to calculate the currently obtained best-offer-value.

From line 8 to line 10, if the algorithm had its first round and a ’val’
is gained, the ’bestvalue’ in line 1 is now updated with the value of ’val’
and the number of loops ’numLoop’ is incremented.

Otherwise, since it is not the first loop, from line 11 down to line 19,
the OA checks whether the ’val’ function is increasing in comparison with
the previously obtained best value or not.

If ’val’ is greater, the value obtained from the concerned SA is com-
municated with other SAs and, they are asked to communicate new offer if
applicable, then the algorithm is restarted, line 14 and line 15. If the
’val’ is less or equal to the best value previously obtained, the auction is
suspended and the best-bid SA wins (the ’bestValue’), line 17 to line

19. Finally, the algorithm terminates and the auction scenario is ended, line
20 and 21. Later to that, we explain the SA behavior in response to OA.

Algorithm 2 is used on the SA side to determine the significance of its role
in the impending auction. In line 1 and line 2, a variable ’SABestOffer’

122

Seeker Agent procedure()
1: SABestOffer = 0 ;
2: sent = false;
3: while(auctionIsOpen) do
4: sent = false;
5: bestOffer = waitForRequest(bestPreOffer);
6: decision = decideIfAcceptOrRefuse();
7: if (decision == accept) then
8: while(modificationsArePossible && !sent) do
9: newVal = reviewParameters();
10: if (newVal>SABestOffer&&newVal>bestOffer) then
11: SABestOffer = newVal ;
12: sendOffer(SABestOffer);
13: sent = true;
14: if (!sent && !modificationsArePossible) then
15: sendOffer(SABestOffer);
16: end while
17: else
18: if (decision == refuse) then
19: quitAuction();
20: end while
21: quitAuction();

Algorithm 2 The procedures taken by the Seeker Agent.

that carries the SA best offer value is created and set to ’0’. A variable
’sent’ is initially set to ’false’ and it changes to ’true’ only after a SA
has communicated his offer. From line 3 to line 6, SA holds its offer trans-
fer until a communication was received from the OA asking for an auction
participation. The SA puts the results from the evaluation function into the
’decision’ variable.

From line 7 to line 9, if the SA accepts the call for auction, a self-
revision for the holding parameters is made. This revision refers to the SA
insistent to obtain the auctioned item; therefore, it is made with the intention
to show extra negotiation flexibility. The part from line 10 and down to
line 13 refers to the comparison made by the SA to put together the newly
obtained value and the existing one. If the new value obtained is greater
than the previous one and greater than the ’bestOffer’, the future offered
value ’SABestOffer’ is set to be new one ’newVal’, and the offer is sent to
the concerned OA.

Line 14 to line 16, if the self-revision made by the SA has yielded a
disappointing result and the value gained is the same as the previous one, this

123

specific SA does not send the previous value if ’modificationArePossible’
is ’true’. The SA continues to review the carried parameters until
’modificationArePossible’ becomes ’false’ or it communicates new
best offer. If ’modificationArePossible’ stays on ’false’ and param-
eters are not sent, SA communicates same offer.

However, from line 17 to 19, if SA refuses the auction call, the al-
gorithm terminates. If the user has an inflexible behavior, the algorithm
passes the first condition on if (decision == accept) but the successive
while (modificationArePossible && !sent) return ’false’. The method
’decideIfAcceptOrRefuse’ return ’refuse’ if for instance, a SA has a lot
of time before the deadline to achieve the task; therefore, it postpone auction
participation. Finally, the algorithm is terminated and the auction scenario
is ended, line 20 and 21.

Auctioning among agents requires high level of agent-to-user interactiv-
ity and increased level of network resources consumption; therefore, agents’
intelligence appears when a repetitive scenario occurs. If system user is con-
figuring the mobile-based application to repeat the same service request on
daily or weekly basis (e.g., common in mobile news exchange service or car-
pooling), the created demanding agent would participate in system auctions
only if needed.

Once an agreement is settled between a specific supplier and a demander
at a certain price, the next time this demander agent will first look-up the
very exact supplier agent, which has potential agreement than others in early
agreement. This is due to learning agent behavior that maintains an array
that saves last successful agreement details.

6.1.4 Rideshare System Layer

In this section we describe the general architecture used for our service deliv-
ery. We start from system requirements to the various sub-components and
their interaction. The architecture is obtained by extending and customizing
ToothAgent [109] [110] Used-Books offering system that is able to communi-
cate with mobile users through a Bluetooth connection and exchange useful
information corresponding to a student’s interests located in a university.
Applying the ToothAgent architecture in our service model makes the cen-
tralized servers offer the Rideshare service instead.

System Components

• The mobile device communicates the user’s requests with the servers
and receives the results.

124

Figure 6.4: Mobile-to-Service Accessability Scenario

• The distributed servers. Each of them contains: 1) a Multi-Agent
platform with PAs each of which is representing a single user, 2) a
database where results are archived, 3) an interface responsible for
establishing connections with mobile devices and for redirecting the
users’ requests to the corresponding personal agents.

• The central services database, accessible via web. It contains in-
formation about all the servers and their properties, such as name, lo-
cation, etc. The DB also stores the information about users registered
to the system.

Fig. 6.4 illustrates the general architecture of the system and the interac-
tion among its components. The connection between the mobile device and
the server is established through Bluetooth but, as we say in Section 6.1.1, it
can be established also through SMS or GPRS/UMTS. In particular, a user’s
cellular phone communicates to the server all the requests, and then receives
back the results. The cellular phone may also receive inquiries about a possi-
ble modification in the decisions taken by system users and re-communicate
the reply with server.

Moreover, cellular phone can be used to send the partner evaluation score,
which will be reflected in the future feedback value for whoever will offer/seek
a ride. From the server side, a contact is made to the central service DB to
check the user’s information (age, feedback, etc). Later on, the server updates

125

Figure 6.5: Service Accessibility

the offerers and seekers reputation value. The central DB is responsible
for storing all the information related to specific service request and the
interactions made by its two PAs.

Service Accessibility

Three steps for a user to access the services: (1) to complete a mobile-based
identification form; (2) to run the Bluetooth application on the mobile de-
vice, and (3) to operate a certain function to activate the required service.
The application is written in Java and uses JSR-82 [111] and JSR-120 [112]
which are the Bluetooth and the Wireless Messaging API for Java. The
application starts a continuous search for Bluetooth-enabled devices in the
neighborhood and whenever it finds a server, the software on the device es-
tablishes a connection with the server (step 2) and sends the requests related
to the Rideshare services (step 3).

The request is then processed by the server and the results are sent back
to the user (step 4 -10). The mobile device stores the server’s address to keep
track of the contacted servers (see Fig. 6.4).

Fig. 6.5 shows the protocol we use for the interaction between different
components. A specific communication module on the server is responsible

126

for managing the interaction with the mobile device. This module receives
the Bluetooth address and the password from the mobile device (steps 1 and
3) and checks in the platform running on the server whether a PA is assigned
to that mobile device (step 4).

The module employs the Bluetooth address and the password to map the
mobile device with a specific PA. If there is no PA previously assigned to this
user, the communication module connects to the central services database
and verifies whether the user is registered to the system (steps 5–6). In case
of a positive response, it creates a new agent and assigns it to the mobile
device user (step 8). Then, the mobile device sends the configuration file to
the communication module (step 9), which forwards all the user requests to
the appropriate PA (step 10).

The PA then starts interacting with other agents on the platform trying
to satisfy all the user requests (step 12). In our example a PA receives one or
more requests for finding or asking rides. If the agent reaches an agreement
with another agent about their users requests it stores the results locally in
the server database (step 13). Later the results could be sent back to the
user (steps 14–18).

Pending Results Retrieval

When a connection between a server and a mobile device is established,
the communication module sends to the mobile device the IP-address of the
server (step 2 in Fig. 6.6). The mobile device stores the IP addresses of
all the visited servers in an XML file that is used later on to retrieve all
pending results. The format of the results produced by the PA may contain
the request identifier, contacts (e.g. phone number) of the users interested
to share the ride, the departure time, etc.

If the user does not want to use the SMS service, he/she receives the
results immediately in his/her mobile device, but only if he/she is still within
the Bluetooth server range. In this case, the communication module checks
the availability of the mobile device and sends across the results stored in
the internal server database by the corresponding PA.

Fig. 6.6 shows the interaction protocol of retrieving pending results via
mobile device. Considering our running example, a situation in which a user
is close to the server of the train station. After establishing the connection,
the mobile device sends the list of IP-addresses of all the previously visited
servers (e.g. university servers, city center servers, etc.) to the train station
server. The communication module of the server sends the Bluetooth MAC
address of the mobile device to all listed servers (step 3).

In turn, the communication module of each server extracts from the in-

127

Figure 6.6: Pending Results Retrieval

ternal database all the stored results related to that user and sends them
back to the requester server (steps 4–7). All the results are collected by the
communication module and finally sent to the mobile device (steps 8–10). If
the mobile device is no longer connected to the server (e.g., the user has left
the library), the retrieval process will fail and the results will be canceled.
Yet these results will still be accessible via the original servers. Therefore,
as we already said, a possibility for the server to communicate with the user
through SMSs is achievable.

Experiment Facts

We tested the system using Nokia 6630, N73, N70, 6600, Motorola v3 and
Sony-Ericsson P910 mobile phones and PC/Server equipped with generic
Bluetooth adapter. Bluetooth communications have been implemented us-
ing BlueCove [113] which is an open source implementation of the JSR-82
Bluetooth API for Java. We have tested the system on different scenar-
ios, and and in those circumstances we have involved a number of people
(students of the university, workers and citizen).

From these tests, we have obtained significant results which were stored
as reference. We notice the time to obtain an agreement between two agents
is the same for every situation. In the cases in which there are more seekers
than the seats offered by the offerers, the agents winning the auction are
always the stronger agents (i.e. the agents that offers much money, that
have an higher feedback, etc.). A limitation of this model, however, is the
lack of a monitoring process of the number of active agents in single MAS.

128

6.1.5 Andiamo in brief

In this part of the thesis we presented an implemented application of a
Mobile-based Rideshare service where Multi-Agent system and Bluetooth
and other wireless communication technologies are combined to support co-
localized communities of users. We discussed the architecture of the Multi-
Agent platform applied for our system, the specific protocols used and the
algorithms that have been implemented to realize the Agents interactions
and negotiations.

Here, we would like to highlight the fact that this application was lucky
enough to get commercial as it was bought by the Province of Trento. There-
fore, a realistic verification process of the system scalability through real-life
use and a performance test with a considerably high number of users and for
a long period of time was made feasible and currently it is a work-in-progress.

6.2 BarterCell

Bartering is a disappearing type of trade where none of the recognized mon-
etary systems are used in exchange of products or services, and only items of
similar value are exchanged. Swapping is the modern approach to replace the
ancient bartering services with websites that encourage users of computing
devices to build virtual communities and share similar interests. BarterCell
is our approach to provide users of recent and portable computing devices a
barter service on the go. Based on the location and characteristics of a spe-
cific community, BarterCell would use agents to build the chain of exchange
connecting several frequenters of the same area.

On behalf of nomadic users and through the use of computing pocket de-
vices, agents of BarterCell can efficiently operate in wireless networks, coop-
erate to resolve complex tasks and negotiate to reach Bartering agreements
while attempting to maximize their utilities. In BarterCell we introduced a
new negotiation protocol that avoids the use of mediating agents and applies
a voting-like mechanism to handle service requests of nomadic users in wire-
less networks. We examined our approach in a scenario where it is essential
for a multi-agent system to establish a chain of mutually attracted agents
seeking to fulfill different bartering desires.

6.2.1 BarterCell Architecture

The architecture of BarterCell, as shown in figure 6.7, relies on the user’s
capable pocket devices or PC to accomplish a successful bartering task. Via
the pre-installed Java application, users start by creating their own profiles

129

Figure 6.7: The architecture of BarterCell.

using simple and user-friendly interface, insert their preferences, and add
details related to the kind of items they are exchanging. If a PC is used,
the user will be asked to directly upload the saved data to a central server
which, in return, make it available to agents running on Jack [114], which is
an interactive platform for creating and executing multi-agent systems using
a component-based approach.

Currently, our system is deployed using distributed Bluetooth access
points that are all located within a specific environment (e.g., university).
Due to some technology limitations, users are asked to be present within the
coverage of any connecting spot in order to transmit their data files to the
central server. Regardless of the methods used to transmit the data, the
processing and sequence of system instructions from this point on will be the
same.

Once received from a user, the message or file content is made available to
the multi-agent system, thus it can create a delegated agent that carries the
particular characteristics of each system user. This agent is identified using
the Media Access Control (MAC) address of the device used to communicate
user’s data with the server. On behalf of users, agents start to interact,

130

cooperate and negotiation with other system actors in order to achieve the
predefined objectives in the given time frame. These objectives are related
to particular bartering services, which make them complicated and hardly
realized in real life scenario without involving sophisticated technology.

Among other benefits, JACK was chosen to handle all of the agent’s in-
teractions because of its ability to meet the requirements of large dynamic
environments, which allow programmers of agents to enrich their implemen-
tations with the possibility to compatibly access several of the system re-
sources. JACK has also made the communication language applied among
involved agents with no restrictions, which made any high-level communi-
cation protocol such as KQML [115] or FIPA ACL easily accepted by the
running architecture.

6.2.2 BarterCell’s Adhoc Negotiation Algorithms

Bartering could involve 2 or more users, if there will be some group of users
that will mutually satisfy their needs. Such groups of users and order of
items to be exchanged will be found by one of agents in the system. Let’s
call it ”main agent”. Later on we will describe why we need it, what it
does and how other agents will know which agent is the main. Negotiation
algorithm considers offered item name, price (estimated by owner), short
textual description, time to start offer, period of time to offer and type of the
item. The type is defined by user through ontology of item types. Ontology
will be predefined during localization of the system. System localization will
consider features of working environment, such as physical parameters of a
place, social characteristics of system users, etc.

In our application, people using BarterCell should have a capable mobile
device with a client application installed in it. This client will serve as in-
terface for a user to access the server-side application where our negotiation
algorithm has been implemented. First user will specify what exactly he
wants to exchange and what he wants to get from others. This information
will be stored in a personal user profile. This profile will be used by software
agents. Autonomy of agents, their ability to represent user behavior in real
life and their intelligence (that is defined by implemented algorithm) allows
having the most efficient bartering between users of the system.

Upon user request, a personal agent will be activated and algorithm 3
is starts to execute. Agent will be registered in available multiagent system
and will stay active until a suspension by its user.

The agent created uses these variables: list of demands for all agents of a
given system (cDList), list of offers for all agents of a given system (cOList),
ID of an agent that will make bartering chains (ChainMaker), most demanded

131

Service Builder procedure()
1: currentAgent = agent.ID ;
2: while (currentAgent.isAlive) do
3: cDList = cOList = currentMDItem = MOItem = ChainMaker = NIL;
4: currentChainDecision = optimalChain = NIL;
5: agentsList = get available agents();
6: for all ai ∈ {agentList - currentAgent} do
7: send(ai, currentAgent.offers, currentAgent.demands);
8: cDList = updateCommonDemandsList(ai.demands, cDList);
9: cOList = updateCommonOffersList(ai.offers, cOList);
10: end for
11: currentMDItem = findMostDemandedItem(cDList);
12: dG = findMDGivers(currentMDItem, cOList);
13: MOItem = findMostOfferedItem(cOList);
14: oS = findMOSeekers(MOItem, cDList);
15: ChainMaker = ChainMaker(cDList, cOList, currentMDItem, dG, oS);
16: if (ChainMaker == currentAgent) then
17: runChainMakerService(agentsList, cDList, cOList, currentMDItem, dG, oS);
18: else
19: T = initTimer();
20: while(agentProvidesService(ChainMaker, T))
21: optimalChain = getResults(ChainMaker, T);
22: if (currentAgent ∈ optimalChain) then
23: userCurrentDecision=sendResults(optimalChain,currentAgent.user);
24: currentChainDecision=getCommonDecision(optimalChain, agentsList, currentAgent);

25: if (currentChainDecision==”‘Yes”’) then
26: updateAgentODLists(optimalChain, currentAgent.offers, currentAgent.demands);

27: sendChainContactsToUser(optimalChain, agentsList, currentAgent.user);
28: end if
29: sendOptChainDecision(ChainMaker, currentChainDecision);
30: end if
31: end while
32: end if
33: end while

Algorithm 3 BarterCell’s Service Builder Algorithm

item in a system at a given time (currentMDItem), ID of an agent running
(currentAgent), list of all available agents (agentsList), set of agents which
offers currently most demanded item (dG) and set of agents which seeks
for currently most offered item (oS), set of agents that are able to make an
optimal bartering chain in a given system at particular time (optimalChain).

Being activated, agent will try to get information of other agents in the
system (Line 5). If all other agents will be already involved into process of
chain creation, the newly arrived agent will get ID of the system’s Chain-
Maker and notify of its desire to join to established group of agents. Chain-
Maker will finalize its ongoing computational cycle and inform all agents of

132

service finish (see ”ChainMaker Operation”). After this point all agents will
start new cycle for search of optimal bartering chain.

The new cycle of bartering chain creation will start from discovery of all
available agents in the system (Line 5) and creation of list of those agents.
For each of those agents every other agent will send its demanded and offered
items. Thus all agents of the system will have common demands list (cDList)
and common offers list (cOList) (Lines 6-10).

Based on the list of common demands each agent finds the most demanded
item in a given group of agents at given time (currentMDItem) and the
corresponding set of agents that proposes that item (Line 12). Most offered
item and agents seeking for it will be selected to further define ChainMaker
(Line 15).

If an agent finds out that it must be the ChainMaker at that time (Line
16), then it runs ”‘algorithm 4”’, accepting the role of ChainMaker and
thus providing other agents with corresponding service. If the role must
belong to another agent of the system, current agent will track responses
from ChainMaker (Lines 19-31).

Tracking of ChainMaker’s responses in addition to getting results will also
include checking for service availability (Line 20). This function is designed
for both parsing of messages from ChainMaker and checking whether it can
carry out its role. Every time a ChainMaker finishes creating an optimal
chain, it notifies both agents involved into it and those agents that will be
out of it (in order to let all agents know the state of ChainMaker).

Timer initialization (Line 19) is done to check ChainMaker’s availability
by any agent that is not interacted for a definite period of time. If an agent
will find out from response of ChainMaker that it belongs to an optimal
chain (Line 22), it will ask its user to accept or reject given chain (Line
23). If proposed chain will be rejected, it will not be selected any more
until current ChainMaker carries out its role. Newly selected ChainMaker
will start building its own list of rejected bartering chains. Having a positive
decision as for proposed optimal chain, agents will send to their users contacts
of other users whom they should contact in order to make barter (Line 27).

There is an additional algorithm - not showed here - that is used inbetween
for 2 purposes: for every agent it helps to define which agent is ChainMaker
in a given system (and thus to wait for informing from it of an optimal
bartering chain in a system) and for ChainMaker it helps to define the root
node of bartering trees. As a result, this algorithm will give ID of an agent
that must be ChainMaker in the system at time of running the algorithm.

In the second algorithm, the ChainMaker can start giving its service if it
has non-empty list of own demands (Line 3). Provided that it has the list,
ChainMaker starts new computational cycle (Lines 3-56). The cycle starts

133

with a search for new agents (Line 5) that might wait to join existing group
of agents (that are in agentsList). If there will be at least one agent waiting
to join, ChainMaker will inform all known agents of service finish (Lines 7-9).
All agents, including new, will start negotiation process from the beginning
(”BarteringService Builder”).

If there are no new agents, ChainMaker will inform all agents of a new
computational cycle, and then checks for optimal chains in queuedChains[]
(Line 16) that it has proposed during previous computational cycles (if there
were any). If at least one of user in some queued optimal chain has refused
to barter in it, the whole chain will be considered as refused and it will
never be proposed again by current ChainMaker as long as it will carry out
its role. Refused chains will be stored in a refusedChains[] set that will be
updated along with queuedChains[] every time ChainMaker gets information
of refused chain (Lines 18-22). Accepted bartering chains will simply removed
from queuedChains[] (Line 23).

After ChainMaker will have a list of available agents and a treeRootAgent,
it will start building bartering trees. Each tree will begin from treeRootA-
gent with every child, representing agent that demands at least one item
from list of its parent’s offers. While analyzing every path on such tree the
ChainMaker will find repetitions of agents, it will create a complete set of
agents that can barter between them. The shortest possible chain will be
recorded to chains[] that will consist of shortest bartering chains of 3 types
(combinations of demand types): 1) Strict; 2) Strict + Flexible; 3) Strict
+ Flexible + Potential. The shortest chain selected is built for each corre-
sponding combination (Lines 26-28).

If ChainMaker will succeed to find one shortest chain at least, it will select
the optimal from chains[] (Line 30). Optimal bartering chain will consider
its length and combination of demand types it’s based on. Considering chain
of equal length, the highest priority is given to a chain that will be based on
Strict demands while the least priority is given to a chain that will be based
on Strict + Flexible + Potential demands.

After selecting an optimal bartering chain (at particular period of time),
ChainMaker will inform all agents from that chain of being involved into
it (Line 32). Each agent in the chain will have information such as which
other agents are involved into proposed optimal chain, which items should
be exchanged and corresponding contact information of users. ChainMaker
will remove from common demands list and common offers list those items
that will be in proposed optimal chain (and will be potentially exchanged
later) (Lines 33-34).

If one of optimal chains will be refused to be executed, ChainMaker will
restore items that were involved into it (Lines 20-21). Every proposed optimal

134

1:refusedChains[] = queuedChains[] = newAgentsQueue = optimalChain = NIL;
2:treeRootAgent = currentAgent ;
3:while (currentAgent.demands ¡¿ NIL)
4: chains[] = NIL;
5: newAgentsQueue = searchNewAgents(agentsList);
6: if (newAgentsQueue ¡¿ NIL) then
7: for all ai ∈{agentsList - currentAgent} do
8: inform(ai, ”‘service finished”’);
9: end for
10: return NIL
11: else
12: for all ai ∈{agentsList - currentAgent} do
13: inform(ai, ”‘new cycle start”’);
14: end for
15: end if
16: for all chaini ∈ queuedChains[] do
17: if (hasDecision(chaini))
18: if(chaini.decision == ”‘No”’)
19: refusedChains[] = refusedChains[] + chaini;
20: cDList = restoreCommonDemandsList(chaini);
21: cOList = restoreCommonOffersList(chaini);
22: end if
23: queuedChains[] = queuedChains[] - chaini;
24: end if
25: end for
26: chains[] = findShortestChain(agentsList, treeRootAgent, refusedChains[], ”‘S”’);
27: chains[] = chains[] + findShortestChain(agentsList, treeRootAgent, refusedChains[], ”‘SF”’);
28: chains[] = chains[] + findShortestChain(agentsList, treeRootAgent, refusedChains[], ”‘SFP”’);
29: if (chains[] ¡¿ NIL)
30: optimalChain = chooseOptimalChain(chains[]);
31: for all ai ∈ optimalChain do
32: informOptChain(ai, optimalChain);
33: cDList = removeFromCommonDemandsList(ai.demands, cDList);
34: cOList = removeFromCommonOffersList(ai.offers, cOList);
35: end for
36: queuedChains[] = queuedChains[] + optimalChain;
37: for all ai ∈{agentsList - optimalChain - currentAgent} do
38: inform(ai, ”‘cycle finished”’);
39: end for
40 else
41: for all ai ∈{agentsList - currentAgent} do
42: inform(ai, ”‘no bartering chain”’);
43: end for
44: return NIL
45: end if
46: if (includesFOrPDemands(optimalChain)) then
47: if (existNextAgent(treeRootAgent, currentMDItem, cDList)) then
48: treeRootAgent = nextAgent(treeRootAgent, currentMDItem, cDList);
49: else
50: if (existNextItem(currentMDItem, cDList)) then
51: currentMDItem = nextItem(currentMDItem, cDList);
52: end if
53: end if
54: end if
55: treeRootAgent = ChainMaker(cDList, cOList, currentMDItem, dG, oS);
56:end while
57:for all ai ∈agentsList - currentAgent do
58: inform(ai, ”‘service finished”’);
59:end for

Algorithm 4 BarterCell’s ChainMaker Operationing Algorithm.

135

chain will be placed into queuedChains[] (Line 36) to further track whether it
will be accepted by users or not. Every agent that will wait for results from
ChainMaker and will not be involved into optimal chain, will get a message
”cycle finished” (Lines 37-39). This will be indicator that ChainMaker has
finished computing optimal chain, during previous computational cycle that
agent was not into it and new computational cycle will be started by the
same ChainMaker. This message will cause every agent’s timer restart to
check chain making service availability.

If ChainMaker fails to achieve a goal, it will notify all involved agents
(Lines 41-43). This message will cause the restart of negotiation process
”BarteringService Builder”. If optimal chain will consist not only of Strict
demands items then the ChainMaker tries to make it so by changing tree-
RootAgent to the next most appropriate agent (Lines 47-48). In the rest of
the algorithm, if there will not be any agent for current most demanded item,
the next most demanded item and corresponding treeRootAgent will be cho-
sen. If finished with the list of demands or a suspension message received
from its user, the ChainMaker will inform all agents of service termination.
Agents still interested in a bartering service will restart a negotiation process.

6.2.3 Testing BarterCell

To test our architecture we used a D-Link DBT-900AP Bluetooth Access
Point that is connected to the university LAN through a standard 10/100
Mbit Ethernet interface. This device offers a maximum of 20 meters connec-
tivity range with the maximal bit rate support of 723Kbps, and the possibility
to concurrently connect up to seven Bluetooth-enabled devices. The same
access point is authenticating pocket devices that have BarterCell previously
installed in it and, it works as a deliverer of the service requests and responses
from and to the central servers. On the end-user side, four competent cell
phones were used to communicate semi-adjusted bartering interests with cen-
tral servers. These devices are Nokia 6600, 6260, 6630 and XDA Mini. On
the server side, a capable PC was used with JACK 5.0 and BlueCove installed
in it.

6.2.4 BarterCell’s Negotiation Evaluation

In setting up our simulation, we chose to compare our protocol with the
Strategic Negotiation Model [18] because of its approaches to address prob-
lems encountered in distributed data networks that are likely to occur in
dynamic mobile environments. The model uses Rubinstein’s approach of
alternating offers [71].

136

Figure 6.8: Simulating the number of Agents in BarterCell

In the strategic model, there are number of agents N = A1 An, and they
are supposed to reach an accepted outcome on a delegated task within certain
predefined times that are located in a set T = 0, 1, 2. At each time slot t of
the overall process, the algorithm considers the results previously obtained
to decide whether to allow another involved agent, at period t+1, to make
a new offer. The protocol keeps on looping until an offer is accepted by all
agents and the proposed solution is then put into practice.

In our simulation environment, we have adopted and simplified the proto-
col in the following way: each agent searches for match of its every Ordered-
item with every Demanded-item of every other agent. Adopted algorithm
finishes working after each agent is able to define the other agent(s) that it
can exchange with (a chain of length max. 3 agents).

As part of our simulation setup, we also used JDots for tree building that
is object oriented software component. Each node of a tree was built with
JDots is representing an object with its own fields and methods. Our algo-
rithm works much slower with a huge amount of agents (e.g., ¿300) because
the main agent needs to build three trees. Nevertheless, while testing with
less than 200 agents, both algorithms are giving similar results in time, hav-
ing variations in quality of results and further potentialities (e.g., work with
object trees vs. dataset of matching agents pairs).

To obtain the results showed in figure 5-10, we have compared results
of this protocol implementation with those received after implementing our
(tree-based) algorithm that searched for first optimal chain of length 2. Dur-
ing the simulation we have put number of D-items to 15 and number of
O-items to 5.

Figure 6.8 shows how fast the main agent finishes searching for possible

137

Figure 6.9: System Load Distribution

Figure 6.10: Simulating the number of items at each agent level

optimal chains depending on the total number of known agents. Here, we
assumed that the number of O-items is 5 and the number of D-items is 15.

Figure 6.9 shows how fast the main agent will finish searching for all pos-
sible optimal chains depending on number of items that each agent proposes.
Total number of offered + desired items is constant (20). Peak of the graph
represents the most time consuming state when number of offered items is
equal to number of desired items. In this state the main agent has the biggest
number of possible exchange combinations. Assumptions used, Max number
of items: 20, Max number of D-items: 15, and Number of agents: 30.

Figure 6.10 shows how fast main agent will finish searching for all possible
optimal chains depending on number of items at each known agent. In Fig.

138

Figure 6.11: Agent Satisfaction Level

Figure 6.12: Processing time representation of agent satisfaction level

4, comparison Results particular case, we assumed that the number of D-
items = number of O-items, the number of D-items are only of ”Strict” type
and the number of agents is 30.

Figure 6.11 represents how many agents would be satisfied (i.e. involved
in one of optimal chains produced by main agent) until the main agent finishes
all possible chain-building processes. Depending on the trees level (depth)
the percentage of satisfaction will vary. Here, we assumed that the number
of D-items is 20 and the number of O-items is 5.

In Figure 6.12, we show the processing time representation of the simu-
lated agent satisfaction level of figure 6.11.

Once more, since we have chosen the Strategic Negotiation protocol [18]

139

Figure 6.13: Abstract Comparison of the Different Negotiation Protocols

as a benchmark to evaluate and measure the performance of our algorithm
with respect to existing ones, we have made some slight customizations for
it in order to be fulfilling the minimum requirements of our application and
thus comparable to our protocol. We first made each involved agent seeks to
match all of its O-items with other agent’s D-items.

The adopted algorithm finishes when each concerned agent has defined its
completing agent(s), which it can make the bartering with (a chain of services
exchange with a maximum length of 2 agents). Searching for the first optimal
chain of length two, in figure 6.13 we simulated agent’s satisfaction level by
comparing the results obtained after implementing the strategic negotiation
protocol to agents of BarterCell with our tree-based algorithm. We assumed
that the number of D-items is 15 and the number of O-items is 5.

The table here 6.1 compares our solution with the Strategic Negotiation
model which made it easy to see how great difference in number of required
interaction between agents is there. In our approach, interactions between
agents are virtual, the same as we showed previously in BarterCell, we use
one agent that builds chains of mutual interest agents.

Table 6.1: Bartering Chain Length & Creation Time

No of agents in a chain Strategic Negotiation algorithm Our Protocol

2 O(n4) O(n2)
3 O(n7) O(n3)
4 O(n8) O(n4)
5 O(n9) O(n5)

140

For example, for creation of a chain of length 3 it must make O(n7)
interactions between agents of a given system, (n2) (n-2) (n-2) (n-1) (n-1)
(n) where: O(n2) agents must communicate with each other to exchange the
lists of resources. O(n-2) agents will communicate with their succeeding peers
regarding resources that they can obtain from their preceding peers. O(n-2)
if there will be at least one chain of length 3, then during this communication
agent that initiated chain of resources giving will get back information of how
its chain can be executed. O(n-1) that agent will report to every agent in the
chain of coalition formation availability. O(n-1) every agent received message
of the coalition formation availability will decide whether it will be in the
coalition or not; decision will be sent to every agent of prospective coalition.
O(n) all agents will send message that will initiate their chain.

6.2.5 BarterCell in brief

In this part of the thesis we introduced BarterCell that is an software ar-
chitecture for providing location-based bartering service for users of pocket
computing devices. This application was developed to: 1) revive the idea of
bartering within members of a specific community and promoting the bene-
fits of location-based services, 2) to test an auctioning negotiation protocol
for agents representing nomadic users and interacting very actively on-the-
go, 3) motivate existing users of pocket devices, and attracting new ones to
benefit from recent advanced technologies by widening the range of services
that can be offered to them on the go.

Then we used BarterCell as an agent-based software application to ex-
amine the performance of this auctioning protocol. Then we simulated the
behavior of agents in strict situations where time and network resources are
limited. We then adjusted a negotiation protocol that existed in the litera-
ture, which is the Strategic Negotiation Model [18] and applied it to Barter-
Cell. At last, we compared the results obtained in both scenarios: Auctioning
& Strategic Negotiation.

141

142

Chapter 7

Experimental Results

In this chapter we go through the experimental results we have obtained after
applying our negotiation model on the two case-studies we have introduced
in the previous chapter of this thesis. Earlier to that; we would like to
highlight the fact that for each case-study three runs were performed wherein
a different negotiation model was implemented in each run.

7.1 Bartering On-the-go

For BarterCell [116]; as explained earlier; we have already implemented this
application twice; once using its initially proposed adhoc negotiation algo-
rithms, (i.e., ServiceBuilder & ChainMaker), and again using the Strategic
Negotiation Model of Sarit Kraus [18]. The third run of BarterCell was made
using the newly proposed negotiation model of this thesis and then; all the
three were compared.

7.1.1 BarterCell: First Run

During the first run of BarterCell there were 200 users of pocket computing
devices that are covered by a common atmosphere, (i.e., Faculty of Science),
and interested in exchanging one or two of their belongings with each other
using BarterCell client application. Each user was given the right to cre-
ate one or two agents in which each agent represents a user’s single service
request; a desired bartering deal. (all data of BarterCell’s first run is sum-
marized in 7.1).

We then fixed a set of 30 items, (e.g., watch, javaBook, cBook, iPod,
laptop), which we assumed to be likely exchangeable - Bartered - among
these 200 users. We then associated two values with each of these items;

143

Table 7.1: BarterCell’s first run: Data Sheet.

Running Time 5 Hours (18000 seconds)

Number of Users 200

Number of Agents 286

Number of Access Points 15

Type of Access Points Bluetooth (class 2)

AP’s concurrent connections 1

Available Bartered Items 30

Negotiation Model Used Adhoc (ServiceBuilder & ChainMaker)

a minimum score value, (i.e., an item cannot be bartered below it), and a
desired score value, (i.e., an item gets instantly bartered at this value or any
value greater than it).

We made BarterCell operational for 5 hours, which is equal to 18000
seconds. During this time all of the 200 users were pushed into interacting
with the system by communicating their service requests with the central
server throughout a set of 15 distributed access points; Bluetooth Terminals.

Here we are considering the Class 2 of the Bluetooth technology - Version
2.1 + Enhanced Data Rate (EDR) - that is the most common one, and it
has an approximate range of 10 meters. Here, we would like to also highlight
the fact that we prevented all access points from establishing more than one
connection at a time. Out of 200 users, 86 have decided to communicate two
agents instead of one. Therefore, the total number of BarterCell’s interacting
agents at that moment was 286 agents.

One of the very first issues we would like to highlight here is the fact
that, different from Andiamo: ”‘our second case study”’, BarterCell uses
Jack [114] as the multi-agent platform wherein interacting software agents
operate. The second issue that characterizes this run of BarterCell is the
fact that during this first run we have applied the adhoc algorithms that we
have initially used to developed this application [116], and we explained in
the previous chapter, (i.e., the ServiceBuilder & the ChainMaker).

Recalling the fact that each of the 200 users was given the possibility to
create one or two service requests - Software Agent - then, in this context we
can observe from figure 7.1 the following:

1. Out of 286 agents, the number of agents that succeeded to get into a
beneficial union is equal to 128 agents in 5 hours.

2. Starting from the 10855 seconds - approximately 180 minutes after the
service’s kick-off announcement and 2 hours before it ends - agents were

144

0 3000 6000 9000 12000 15000 18000
0

60

120

180

240

tot
al

nu
mb

er
 of

 ag
en

ts

5 hours = 300 minutes = 18000 seconds

Figure 7.1: BarterCell’s first run

unable to reach agreements and remained idle until the simulation time
ends.

3. Since the number of users involved is equal to 200, and at least each
user has made a service request, and the total number of successful
agents is 128, therefore, almost 45% of users’ requests were fulfilled.

7.1.2 BarterCell: Second Run

During the second run of BarterCell we removed the adhoc algorithms that
were initially introduced with the application - explained in earlier chapters -
and then adjusted the Strategic Negotiation Model of Sarit Kraus presented
in [18] to fit into the specific needs of BarterCell’s service acquisition scenario.

Specifically, in Kraus’s model a total focus was given to the situation
wherein bilateral negotiation between two self-interested agents is occurring.
There, it is assumed that the ”attached agent” is using a resource that the
”waiting agent” is interested to use, and accordingly the later agent invokes a
negotiation process with the earlier one. However, Kraus’s approach does not
fit into the context of BarterCell since its negotiation processes are assuming
that both agents are equal - none are holding resources - and the negotiations
are made to agree on establishing a mutually beneficial union.

145

Therefore, the first thing we had to adjust in Kraus’s negotiation model
before applying it to BarterCell was to program agents to have equal knowl-
edge of each other’s belongings, which is equal to Zero; while in Kraus’s
model it was not. The ”‘waiting agent”’ primarily knew that the required
resource has been under use by the ”‘attached agent”’.

In addition, since the bartering service addressed by BarterCell is actually
exceeding the traditional one-to-one bartering situations wherein a user of
pocket computing device is having one or two items to exchange with another
user, then an extra adjustment to Kraus’s model was required. As explained
in 6.2, BarterCell permits the creation of long chains of mutually interested
users and therefore; an agent - in most of the cases - will have to move from
a negotiation session to another while maintaining a vector of previously
encountered negotiations.

In table 7.2, we summarize the setup of the second run of BarterCell. As
shown in this table we have made BarterCell operational for 5 hours, which
is the same time of the previous run. We have imposed the same number of
users, 200 users, and also assigned to these users the same number of created
agents, 286 agents. We have also fixed the number of emulated Bluetooth
access points and the technology class they represent.

Table 7.2: BarterCell’s second run: Data Sheet.

Running Time 5 Hours (18000 seconds)

Number of Users 200

Number of Agents 286

Number of Access Points 15

Type of Access Points Bluetooth (class 2)

AP’s concurrent connections 2

Available Bartered Items 25

Negotiation Model Used Strategic Negotiation [18] (tailored)

However, since Kraus’s model intuition was not to target the service ac-
quisition scenarios of nomadic users but yet it is a very influential model,
therefore, we have given an extra programmatic functionality to these access
points in order to permit them to establish more than one concurrent con-
nection at a time. The customization of the Access Points concurrency were
directly made to the library of BlueCove JSR-82 Emulator module [113],
which is an open source implementation of the JSR-82 Bluetooth API for
Java with an additional module to simulate Bluetooth stack.

In addition, since an agent will now have to maintain a vector of all
encountered negotiations and use this maintained history to decide upon up-

146

0 3000 6000 9000 12000 15000 18000
0

60

120

180

240

tot
al

nu
mb

er
 of

 ag
en

ts

5 hours = 300 minutes = 18000 seconds

Figure 7.2: BarterCell’s second run

coming unioning, then an extra unconsidered computation time is predicted.
In order for us to address this extra computation time, in this run, we we
have also decreased the number of Bartered items so that the probability
of an item being repeated among the interacting agents is increased and,
consequently, the possibility of an agent to find a union partner is made
easier.

Figure 7.2 shows the number of successfully unioned agents with respect
to the total number of interacting ones and simulation time. From this figure
we can observe the following:

1. The number of agents that succeeded to get into a beneficial union
within the 5 hours of simulation time is equal to 146 agents from a
total number of interacting agents that is equal to 286 agents.

2. Interacting software agents in this run were able to get into beneficial
unions and carry out negotiations until the 16253 seconds of the sim-
ulation time, which is approximately 29 minutes before the simulation
ends.

3. In this run, the number of users involved was equal to 200 users and
at least each user has made a service request, and the total number of
successful agents is 146 out of 286 agents, therefore, almost 51% of the
service requests were fulfilled..

147

7.1.3 BarterCell: Third Run

During the third run of BarterCell we avoided the use of neither the adhoc
algorithms initially introduced with the application nor the tailored version
of the Strategic Negotiation Model of Sarit Kraus presented in [18]. Instead,
we have applied the negotiation model we presented in chapters 3 and 4.

We have deployed our model within BarterCell alike the generic imple-
mentation roadmap presented in chapter 5. However, since in BarterCell
the outcome might involve more than two agents coming into a single union
many parties, many issues, and our model addresses scenarios that tackle
the situation wherein two agents are negotiating the possibility to establish
a union and then instantly both terminate their activities tow parties, one
issue. Then some modifications were also required here.

Table 7.3: BarterCell’s third run: Data Sheet.

Running Time 5 Hours (18000 seconds)

Number of Users 200 users

Number of Agents 286 agents

Number of Access Points 15

Type of Access Points Bluetooth (class 2)

AP’s concurrent connections 1

Available Bartered Items 30 items

Negotiation Model Used Our Nomadicity-driven Negotiation Model

Here, we also added an extra functionality for an agent to store the pre-
viously encountered negotiations in an extendable vector that combined will
define this agent’s final chain of bartering partners.

In addition, it is also worth recalling here the distinction our model im-
poses between the Pend and Deposit conditions of the protocol. In our model,
if two agents agree on pending a union, the pend proposer will be granted the
right to search for alternatives while the pended agent will be temporarily
excluded from the available agents list until the proposer either find a better
deal or convert a pend to accept.

From a simulation perspective, it was expected, and then proven through-
out the following results, that the number of successful agents will not always
be in an ascending fashion because of this pend option. Meaning that indi-
cations for the total number of successful agents are expected to go down at
some points since it is possible for a pended agent to eventually get rejected
by the pender. This will have to make some of the interacting agents counted
as successful ones for a while, (i.e., unavailable for further negotiations), and

148

0 4000 8000 12000 16000
0

50

100

150

200

250

to
ta

l n
um

be
r o

f a
ge

nt
s

5 hours = 300 minutes = 18000 seconds

Figure 7.3: BarterCell’s third run

then again available if the prospective union at that time was not effectively
finalized.

In table 7.3 we summarize this run’s facts and assumptions. We have
made BarterCell operational for 5 hours as it was made in the previous two
runs. We have virtually assumed the existence of 200 users where 86 of these
users have decided to communicate two services requests - delegate two agents
to handle different bartering deals. We again used the java-based BlueCove
JSR-82 Emulator module [113] to impose and distribute 15 access points.

We link access points to users in a way that reflects the nomadic nature
of this users. We do that by applying a simple communication method that
assigns a different access point to a user every time a communication is
required to be done. While a single concurrent connection is permitted per
access point it is then expected that some difficulties may occur when a user
is sending over his agent or receiving back any feedbacks. In addition, in this
run we have put back the number of Bartered Items to 30 items. We removed
the adhoc algorithms experimented in the first run and Kraus’s model of the
second run, then we applied our which we introduced in chapters 3 and 4.

In figure 7.3 we show the number of agents that succeeded to reach mutu-
ally beneficial agreements - unions - while our negotiation model was applied.
From this figure we can observe the following:

1. During the 5 hours of simulation 198 agents were able to get into suc-
cessful unions, which make the total number of agents that didnt suc-

149

0 3000 6000 9000 12000 15000 18000
0

40

80

120

160

200

240

280

-- Kraus's
-- adhoc algorithm

to
ta

l n
um

be
r o

f a
ge

nt
s

5 hours = 300 minutes = 18000 seconds

-- our model

Figure 7.4: BarterCell’s three negotiation models evaluation

ceed to union equal to 88 agents.

2. In this run, agents were able to negotiate and get into successful unions
until the 17560 seconds, which is approximately the end of the simula-
tion time, (i.e., 18000).

3. The total number of users involved in this run was is equal to 200 users
and at least each user has made one service request, (i.e., delegated an
agent). The total number of successfully unioning agents is 198 out of
286 agents, therefore, almost a 70% of the users involved have got at
least one of their service requests fulfilled.

7.1.4 Our model in Bartering context

In this subsection we put together the results of BarterCell’s three different
runs and outline the advantages and disadvantages of using our negotiation
model in similar contexts. We do that by looking at the collected statistics
from three different perspectives, which are: 1) the ability for a negotia-
tion model to achieve early results, 2) the behavior of the applied negotia-
tion model along the simulation time, and 3) the total number of successful
agreements reached at the application’s process termination.

150

Early Results

Regardless of the overall outcome of the three negotiation models, we can
observe from figure 7.4 that the negotiation model presented in [18] was able
to produce the biggest number of mutual agreements earlier than the others.
If we take the simulation time from 0 to 1500 seconds we will see that the
highest number of unioned agents was achieved through the application of
Kraus’s model, (i.e., 30 agents). At the same time, the adhoc algorithm of
BarterCell was able to drive only 24 agents into successful unions while our
model that we presented in chapters 3 and 4 was able to reach to 22 agents.

In some scenarios it is highly desirable by the provider of a certain service
to reach the highest number of possible unions as early as possible rather
than achieving better results on the long run. For example, when providing a
service for users of pocket computing devices in an airport or a train station, it
is then already known that these users are likely to have a tighter time frame
within this location than others in a university or a factory. Consequently,
it might be of better performance to have a short term plans and pick the
negotiation model that achieve the highest number of early results rather
than looking at the end results. Therefore, here we can possibly say that the
advantage of using Kraus’s model in similar context is to reach early results.

Behavior

Observing the behavior of a specific negotiation model along the simulation
time makes it easier for the service provider to draw a general image of
the model prior to its deployment. Here, in this subsection, we attempt to
capture a general idea about the behavior of all three models. Following the
depictions of figure 7.4 we can observer the following:

• The adhoc algorithm used during the first run of BarterCell have showed
a several phases of idleness within the given 5 hours of simulation, (e.g.,
from 1123 seconds to the 2660 seconds), which then ended up with a
complete stoppage at early stages, (i.e., from the 10855 seconds till the
end: that led to 2 hours of no actions).

• Kraus’s negotiation model had another type of behavior to be observed,
which is related to some frequent large jumps accompanied with state of
idleness that was occurring all along the simulation time. For example,
at the 6045 seconds the total number of unioned agents was equal to 58
agents, while at the moment right after, 6046 seconds, the number of
total unioned agents was equal to 66 agents. Also the jump happened
at the 6120 seconds from 66 to 80 agents, which then lasted at this
number till the 7664 seconds - a slight idleness.

151

• Apart from the sudden drops that figure 7.4 depicts, which we ex-
plained the reason behind them earlier in this chapter, our model did
not show neither large jumps nor long moments of idleness all through
the simulation time.

Overall Outcome

The overall outcome that we can get after putting together the numbers of
successfully unioned agents reached at every different run of BarterCell is
summarized in these points:

1. The negotiation model we presented in chapters 3 and 4 is the best
fitting approach for such a service as long as a stable and a lasting
activeness are required.

2. The negotiation model proposed by Sarit Kraus in [18] is the appro-
priate in this context if early results and long periods where resources
need to be on hold are required.

3. The adhoc algorithms applied within BarterCell’s first run might be
competitive in achieving early results, however, the early complete idle-
ness encountered 2 hours to the end of the simulation may lead this
approach to a second round of improvements / modifications before
actual deployment.

7.2 Carpooling On-the-go

For Andiamo [101], we have collected the statistics of its existing Auctioning
negotiation approach that we have showed earlier in this thesis, then we have
made a re-run to Andiamo after implementing the Service-oriented Negoti-
ation Model of Sierra., et al., [27]. The third run of Andiamo has included
the implementation of the newly proposed negotiation model of this thesis
and then; all the three were compared.

Different from BarterCell, in the three runs of Andiamo we have fixed
the simulation parameters so that the same circumstances accompanying the
implementation of each negotiation model are alike.

As table 7.4 illustrates, we made Andiamo run for 3 hours (10800 sec-
onds) each time a different negotiation model was applied. During this time
300 users was instructed to communicate their software agents, (i.e., service
requests), to a central multi-agent platform, which is JADE [9].

This user-to-server communication was done as if a mediator point is
placed in-between, which are the 15 access points. These access points are

152

implemented through the BlueCove JSR-82 Emulator module [113] that is
an open source implementation of the JSR-82 Bluetooth API for Java with
an additional module to simulate Bluetooth stack. Then a customization
was made to this later module so that a single agent is transferred at a time:
AP’s concurrency = 1.

Since Andiamo is a carpooling service application, then people who are
willing to offer a car-ride are expected to participate as well as people that
are actually searching for a ride. Therefore, from the total number of 300
users, 100 users were assumed to be car ride givers and accordingly their
software agents are the Ride-giver agents mentioned in table 7.4. Out of
Andiamo’s actual deployment and experience here in Trento (IT) the number
of those looking for car rides were always greater than those willing to give
one, therefore, we have assumed that the remaining 200 users are actually
car ride seekers and, accordingly, their created agents are Ride-seeker agents.

Table 7.4: Andiamo’s Simulation Parameters

Running Time 3 Hours (10800 seconds)

Number of Users 300 users

Number of Ride-Giver Agents 205 agents

Number of Ride-Seeker Agents 200 agents

Number of Free Seats per Giver From 1 to 3 places

Number of Access Points 15 (emulated)

Type of Access Points Bluetooth (class 2)

AP’s concurrent connections 1 connection

Available Destinations 28 subsequent points

(English Alphabet)

Destinations’ Interval 20 minutes

Rides Timeframe From 10:00 To 16:00

Since a ride-giver may have more than one available seat to share with
ride-seekers then a possibility for each ride-giver to create from one to three
agents / service requests was considered in the three runs of Andiamo. Out
of the 100 users that are assumed to be responsible of communicating ride-
giver agents we have made 30 of them propagate the availability of one seat to
share, 35 ride-giver agents to will make available two seats, and the remaining
35 will search to fulfill three seats. Therefore, the total number of ride-giver
agents / negotiated seats will be equal to {30 + (35 ∗ 2) + (35 ∗ 3)} = 205
agents. The destination points, arrival time, and departure time are the same
for all of the created agents as long as they are of the same user.

We assumed that there are 28 destination available to all of the 300 users.

153

These destinations are given names as of the English Alphabet, (i.e., A, B,
C, D, ..., Z). Randomly, each user whether he is a ride giver or a seeker was
assigned a departure point that is one of these alphabet letters excluding the
Z letter. In addition, each user was also randomly assigned an arrival point
but this point must be located anywhere after the departure letter and not
before. For example, if a giver.agent was randomly assigned the departure
point D then any arrival point can be assigned to the same agent from E to
Z but neither A nor C or B can be a possible option.

The last issue that we address by the fixed simulation parameters men-
tioned in table 7.4 is the departure and arrival times. Each created agent is
given a time that is chosen randomly from the permitted timeframe, which
is anytime in-between 10:00 and 16:00. If it is a ride-giver agent then this
time will be its ride departure time and, if it is a ride-seeker agent then this
time will be its desired departure time.

Then, the arrival time or the desired arrival time for both the ride seeker
and the ride giver agents are calculated according to the number of letters
located between the departure and the arrival points, meaning that 20 min-
utes will keep on adding up for each considered destination / letter between
both the departure and the arrival points.

7.2.1 Andiamo: First Run

During Andiamo’s first run the adhoc Auctioning negotiation algorithms that
were presented in 6.1, and initially used while Andiamo was first developed,
are made active for the purpose of evaluating the overall application perfor-
mance. Since the Auctioning approach of agents negotiation was introduced
to mainly address the problem where demands are higher than the supply:
meaning that number of available seats is less than those willing to share
them.

Therefore, only for those agents representing users of one available seat,
(i.e., 30 agents), we have imposed an extra function which ensures that at
least each of these 30 seats are desired by a minimum of two ride-seeker
agents, (i.e., departure point and destination are matched).

Figure 7.5 shows the obtained results from Andiamo while the adhoc
Auctioning algorithms were applied. From this figure we can observer the
following:

1. Out of 205 available seats, the total number of seats that actually got
occupied by ride seekers is 117 seat.

2. Starting from the 4100 seconds there was no any further unions achieved

154

0 2000 4000 6000 8000 10000
0

40

80

120

160

200

Nu
mb

er
 of

 av
ail

ab
le

ca
r s

ea
ts

Simulation Time = 10800 seconds

Figure 7.5: Andiamo’s first run

between ride seekers and givers. This means that the reached 117 deals
were all achieved at the first hour and 8 minutes of the simulation.

3. Since reaching an agreement about each available seat requires the
unioning of two users - the ride giver and the ride seeker. Therefore,
the 117 seats fulfill were the result of the unioning of 234 agents.

4. Since the total number of interacting agents was 405 agents, which is
the ride-giver + the ride-seeker agents. Besides, since 234 agents were
reached into mutually beneficial unions then more than 50% of the total
number of interacting agents was led out of successful negotiation.

7.2.2 Andiamo: Second Run

During Andiamo’s second run the Service-oriented Negotiation Model of
Sierra., et al., [27] was made active instead of the adhoc Auctioning ne-
gotiation algorithms initially used by Andiamo.

In figure 7.6 we demonstrate the results obtained after making Andiamo
operational for 3 hours while the earlier mentioned negotiation model was
applied. From this figure we came to these conclusions:

1. The total number of unions reached in these 3 hours was equal to 152,
which refers to the fact that 76 seats were shared between ride givers
and ride seekers.

155

0 2000 4000 6000 8000 10000
0

40

80

120

160

200

Nu
mb

er
 of

 av
ail

ab
le

ca
r s

ea
ts

Simulation Time = 10800 seconds

Figure 7.6: Andiamo’s second run

2. At the 10183 seconds there no more unions achieved between ride seek-
ers and givers. This means that the reached 76 deals were all achieved
almost 10 minutes before the simulation ends.

3. Even though the number of successful negotiations kept on escalating
along the 3 hours of simulation, yet repetitive cases of idleness were
observed at several times, (e.g., from the 2089 to the 3374 seconds: 31
seats). Therefore, it should be wise here to assume that the state of
idleness wherein the simulation ended was another temporary situation
and more seats were about to be fulfilled if the simulation would have
lasted longer.

4. Since the total number of interacting agents in this run was 405 agents
summing up ride givers and seekers and, those went into agreements
were 152, therefore; less than 50% of the overall number of agents have
made it through by means of Sierra’s model [27].

7.2.3 Andiamo: Third Run

During Andiamo’s third run we have made active the negotiation model
we presented in chapters 3 and 4. Figure 7.7 shows the obtained results
from Andiamo while our negotiation model was applied and below are the
observation we have on these results:

156

0 2000 4000 6000 8000 10000
0

40

80

120

160

200

Nu
mb

er
 of

 av
ail

ab
le

ca
r s

ea
ts

Simulation Time = 10800 seconds

Figure 7.7: Andiamo’s third run

1. Out of 205 available seats, the total number of seats that actually got
occupied by ride seekers is 161 seat. That refers to the fact that 161
unions were reached wherein each union involve a ride-giver agent and
a ride-seeker agent. In this context it is worth highlighting that each
user may have more than a free seat to share and consequently more
than one ride-giver agent to create and, that makes the same user also
eligible for more than one union involvement.

2. In general, the number of successfully shared rides kept on increasing
all through the 3 hours of simulation. However, few short periods of
idleness can be put into consideration. For example, the period of
time from the 1454 seconds to the 1831 seconds wherein the number of
achieved unions or shared seats was always equal to 38 seats, and also
the period from 4089 seconds to 4803 seconds wherein 66 seats were
the so far achieved.

3. The 161 seats fulfilled by means of our negotiation model refers to the
fact that 322 agents were reached to mutually beneficial agreements.
Out of the 405 agents that were interacting during this run’s 3 hours the
unioned 322 agents means that more than 75% of the overall number
of agents were unioned.

4. As explained through BarterCell’s results earlier this chapter, while

157

applying our model it is recognizable that some drops in the number
of successful unions is usually encountered as for the period from 3103
to the subsequent second where the total number of shared seats, (i.e.,
successful unions), was dropped from 46 to 43 seats. These drops occur
because of the Pend option available for the negotiating agents through-
out our models negotiation protocol. In our model, if two agents agree
on pending a union, the pend proposer will be granted the right to
search for alternatives while the pended agent will be temporarily ex-
cluded from the available agents list, (i.e., programmatically counted
as unioned), until the proposer either find a better deal or convert a
pend to accept.

7.2.4 Our model in Carpooling context

In this subsection we conclude this chapter by putting together the results of
Andiamo’s three different runs and outline the advantages and disadvantages
of using our negotiation model in similar contexts. Similar to what we have
done in BarterCell, we do so by considering three different evaluation per-
spectives, which are: 1) the ability for a negotiation model to achieve early
results, 2) the behavior of the applied negotiation model along the simula-
tion time, and 3) the total number of successful agreements reached at the
application’s process termination.

Early Results

In BarterCell the results obtained of the three runs - where each had a dif-
ferent negotiation model applied - were very close when early results are con-
sidered, and our negotiation model was not the best solution to achieve that.
However, in Andiamo the situation is quite different and the results obtained
with each model in focus are dramatically varying as figure 7.8 depicts.

Taking the period of time from 1 to 2000 seconds as a benchmark for
evaluating the acquisition of early result throughout the application of each
negotiation model we come with the following conclusions:

1. At the 2000 second, Andiamo while employing its adhoc auctioning
algorithms has succeeded to put together 182 agents of ride givers and
seekers into 91 mutually beneficial deals or as we call it unions.

2. Within the same context and exact timeframe, the service-oriented
negotiation model of Sierra., et al., presented in [27] has made Andiamo
succeed to union 50 agents and reach a total number of 25 seats shared.

158

0 2000 4000 6000 8000 10000
0

40

80

120

160

200

Nu
m

be
r o

f a
va

ila
bl

e
ca

r s
ea

ts

Simulation Time = 10800 seconds

adhoc Auctioning algorithms

Service-oriented Negotiation Model

Our negotiation model

Figure 7.8: Andiamo’s three negotiation models evaluation

3. Also at the 2000 second, while the Nomadicity-driven negotiation model
we presented in chapter 3 and chapter 4 was employed by Andiamo, 32
unions that involved 62 agents were made possible.

4. Our negotiation model does not do well while obtaining highly effective
early results is a must. Since in BarterCell the same case occured, then
here we may come to a more general conclusion that is: While early
results is a major requirement of a nomadic service acquisition platform
applying our model at its current state is not the best fit.

Behavior

In this subsection we give general observations on the behavior of each nego-
tiation model along the 3 hours of simulation accompanied with reasonable
explanation for hardly understandable behaviors, if existed. Therefore, fol-
lowing the depictions of figure 7.8 we can come up with these conclusions:

1. Even though it was the first to achieve the highest number of early
unions, yet the adhoc algorithms used in the first run of Andiamo
showed a very early phase of idleness - 2 hours.

2. The service-oriented negotiation model of Sierra., et al., had another
type of behavior to observe. Several but yet short periods of idleness
were observed all along the simulation time. We believe that these
subsequent phases of short idleness are occurring because:

159

(a) The whole negotiation model was proposed for client/server soft-
ware applications wherein Scoring Functions, like those presented,
are calculated and accordingly a decision is directly communicated
to the opponent agent without a bottleneck, (i.e., Access Point).

(b) Only accept & reject were defined as the only condition of the
negotiation protocol, and since we have prohibited an agent for
re-negotiating a union formation with previously rejected agent,
therefore, a time by the head-agent to re-attach new agents into
new session was always required and it is yet not reflecting at any
part of the simulation results.

(c) The set of Imitative Tactics proposed by authors, (i.e., Relative
Tit-For-Tat, Random Absolute Tit-For-Tat), together with the
narrow flexibility of the negotiation protocol, (i.e., only accept &
reject), have made - when these tactics are used - the total number
of rejected agents increases faster than usual. Therefore, a longer
process for searching for unrejected ones was required, and at that
time the simulation remain idle until the head-agent succeeds to
assigns new negotiations sessions to newly negotiating agents.

3. As a general comment on the behavior of our negotiation model we see
it increasingly achieving a higher number of unions very stably among
all time segments. However, the sudden drops caused by the use of the
Pend option of our negotiation model yet remains a significant remark
on our model that worth highlighting here.

Overall Outcome

In overall, The negotiation model we presented in chapters 3 and 4 is an
appropriate approach for providing services for users of pocket computing
devices if no high number of early positive results is required and, also if a
long lasting responsiveness with less periods of idleness is a major concern.

The service-oriented negotiation model of Sierra., et al., presented in [27]
fits well when averagely short periods of times wherein involved resources
are required to be on hold or refreshed without the overall process being
disturbed is required. However, the overall number of achieved unions while
this model is applied in a nomadic context where bottlenecks are existing,
such as Bluetooth Access Points, is not entirely guaranteed to be high.

By far, the adhoc Auctioning algorithms applied within Andiamo’s first
run might be competitive in achieving early results. However, the early
complete idleness encountered 1 hour and 8 minutes after the start while
having a large number of agents not unioned yet is yet a drawback.

160

We believe this later highlighted idleness was caused because, as presented
in [101], the auctioning process of a seat might go on until the cost exceeds
the logical price predefined by us, and consequently the ride-seeker decides
to reject any potential union with this ride-giver. Then, it causes the head-
agent to have many available agents that assigning a negotiation session for
them is impossible because they all rejected each other earlier.

7.3 Model Limitations

1. Putting in mind that our negotiation model was motivated by the idea
of addressing the emerging vision of Nomadicity and the new require-
ments it imposes; still, our model did not address all of the negotiation
issues making a service application capable of supporting users on-the-
go. For instance, our tactics lack the understanding of nomads’ privacy,
nomadic service data accuracy, and security.

2. Considering the fact that nomadic services can be deployed within those
rapidly changing circumstances, such as in a train station, or within a
considerably less active location-based environment, such as in a uni-
versity campus. Since our negotiation model is unable to achieve a large
number of early agreements. Therefore, our model efficiency is better
reached through the location-based approach of nomadic services be-
cause it is linked to the availability of nomads within the coverage of
the concerned service application for longer periods of time.

3. We tested our negotiation model by emulating the behavior of Blue-
tooth Access Points, which is a disappearing approach to distributed
terminals, (i.e., replaced withWi-Fi, and in the future WiMAX). There-
fore, the usability of our model is directly connected to the evaluation
of its behavior from an alternative connecting technology perspective.

4. As the experimental results showed, our model escalates all along the
execution period, therefore, all of the involved resources, such as band-
width, terminal, computing servers, and agents platform, must be ded-
icated. Since the negotiation processes will never get on hold and, as
long as frequent related end-user feedbacks is a characteristic of the
model, then, our model is always fully dependent on the linked re-
sources, and this will limit the possibility for the concerned service
application architecture to run multiple types of services alongside.

161

162

Chapter 8

Conclusions & Future Work

The main contribution of this thesis is related to the introduction of a new
negotiation model, (i.e., protocol, set of tactics, strategy), for software agents
to employ while attempting to acquire a service for users on-the-go. The
purpose of our model is to maximize the benefits of the interacting agents
while considering the limitations of the communication technologies involved
and, the nomadic nature of the users they represent. We showed how our
model can be generically implemented within a service-oriented multi-agent
platform. Then, we introduced two case-studies that we have been working
on with our industrial partner and, we demonstrate these cases’ experimental
results before and after applying our negotiation model.

We started this thesis by explaining the related state-of-the-art. Since
three different literatures are intersecting in order to construct negotiation
models similar to the one we proposed, we gave a literature review about the,
1) advanced Agents Negotiation in Common Settings, 2) Agents’ Negotiation
for Service Acquisition, and 3) Agents’ Negotiation in Wireless Networks. In
each literature, we gave a comparison between the research effort of three
different groups of scholars that are most related to our research.

Then, we formally introduced our negotiation model wherein we started
by formalizing the general setting we expect our model to be applied, then, a
clear description of the negotiation issue that any two interacting agents are
expecting to resolve. We then formally introduced the negotiation protocol,
set of tactics and strategies that we believe to have a great impact on the
act of agents’ negotiation in a modern service-acquisition environment.

Then, we explained how our negotiation model can be implemented within
any agent-based service acquisition software platform. However, within this
chapter we did not restrict the implementation of our model to any particular
application; instead, we attempted to prove its broad applicability. Then, we
presented two case-studies we were working on with our industrial partner to

163

provide a ride-sharing and bartering services to users of Pocket Computing
Devices. At the end; we explicitly went through the experimental results we
have obtained and we also emphasize the advantages of employing our model
on others.

8.1 Model’s Conclusion Statement

In the context of providing services for users of pocket computing devices
on-the-go, particularly Carpooling and Bartering services, such as Andiamo
[101] and BarterCell [116], our model will perform the best if:

1. No extraordinary number of successfully matching agents is required
in early stages of the application’s operational time.

2. Resources exploited by the concerned service application while running
are dedicated and it will not get on hold or shared at any point of the
operating time.

3. So far, when Bluetooth is the only embedded technology in the access
points linking users on-the-go with the central server responsible of
provisioning the service.

4. An outstanding number of mutually beneficial unions is possibly reached
after considerable periods of times while this number is consistently es-
calating along the total operational time of the service application.

8.2 Future Work

First: We intend to further expand our range of supported Wireless Ac-
cess Points - The Bottlenecks - to cover the technologies of current days.
As we mentioned earlier in chapter 7, wherein our Experimental Results are
demonstrated, we have been always emulating the Bluetooth terminals as-
suming that these are the only possible bridges between users and the central
multi-agent platform where all the negotiations take place.

However, other technologies such as Wi-Fi and UMTS can also be em-
ulated separately or combined and, we believe that interesting results can
then be obtained. In addition, since nowadays Bluetooth access points are
hardly found in any environment, and instead Wi-Fi terminals are placed,
then integrating Wi-Fi emulators to our simulations will make the foreseen
results more realistic.

164

Second: As a subsequent step, we also intend to integrate our nomadicity-
driven negotiation model with the commercial version of Andiamo and evalu-
ate its performance while real data is available. Beside, since the University
of Trento, and in specific the Department of Information Engineering and
Computer Science, is working very closely with Andiamo’s buyer, which is
The Autonomous Province of Trento, then we expect our negotiation model
to be integrated to Andiamo’s architecture without any obstacles.

Third: a real important contribution to the literature of software agents
negotiation for service acquisition would be a simulation platform / tool
that reflects precisely the nomadic nature and obstacles of nowadays users of
pocket computing devices. This point of our future work is an actual work-
in-progress these days. A well-designed graphical user interface that allows a
user to describe the simulated nomadic environment will be included in this
simulator in a Wizard fashion.

Within this simulation tool we also intend to embed a set of recognized
negotiation models and the negotiation model we proposed in this thesis
so that different behaviors under several negotiation approaches can be ob-
served. Last but not least, since this simulator will be developed in Java,
then we will be integrating the JFreeChart [117], which is a Java chart library
that makes it easy for developers to display professional quality charts in their
applications based on the comma-separated values (CSV) files produced by
the simulator.

Fourth:, and currently our last future work intentions, is related directly
to the model’s proposed tactics and strategies. As we saw in subsections 4.1.1
and 4.1.2 where Time-based Tactics and Connectivity Related Tactics are
explained, these tactics are not covering all of the issues facing users of pocket
computing devices while acquiring services on-the-go. For example, Profit-
based Tactics for nomadic services that are supposed to generate revenues
for their users. In these tactics no considerations will be given to Time or
Resources but only Money. Therefore, we intend to look into the set of tactics
we have proposed so far with the intention to extend it.

165

166

Bibliography

[1] Dan Steinbock. The Mobile Revolution: The Making of Mobile Services
Worldwide. Kogan Page, Philadelphia, USA, January 2007.

[2] Harry Bouwman, Henny De Vos, and Timber Haaker, editors. Mobile
Service Innovation and Business Models. Springer, NL, July 2008.

[3] Jarkko Vesa. Mobile Services In The Networked Economy. IRM Press,
April 2005.

[4] Steve Munroe, Tim Miller, Roxana A. Belecheanu, Michal Pěchouček,
Peter McBurney, and Michael Luck. Crossing the agent technology
chasm: Lessons, experiences and challenges in commercial applications
of agents. The Knowledge Engineering Review, 21(4):345–392, 2006.

[5] Jez Mckean, Hayden Shorter, Michael Luck, Peter Mcburney, and
Steven Willmott. Technology diffusion: analysing the diffusion of agent
technologies. Autonomous Agents and Multi-Agent Systems, 17(3):372–
396, 2008.

[6] Nicholas R. Jennings and Barry Crabtree. The practical application of
intelligent agents and multi-agent technology. Applied Artificial Intel-
ligence, 11(5):3–4, 1997.

[7] Maurizio Bombara, Davide Cal̀ı, and Corrado Santoro. KORE: A
multi-agent system to assist museum visitors. In WOA, pages 175–
178, Villasimius, CA, Italy, September 2003.

[8] Oana Bucur, Olivier Boissier, and Philippe Beaune. A context-based
architecture for learning how to make contextualized decisions. In Pro-
ceedings of the First International Workshop on Managing Context In-
formation in Mobile and Pervasive Environments, Ayia Napa, Cyprus,
May 2005.

167

[9] Fabio Bellifemine and Giovanni Rimassa. Developing multi-agent sys-
tems with a fipa-compliant agent framework. Software - Practice &
Experience, 31(2):103–128, 2001.

[10] Manolis Koubarakis. Multi-agent systems and peer-to-peer computing:
Methods, systems, and challenges. In The 7th International Workshop
on Cooperative Information Agents, CIA 2003, pages 46–61. Springer,
August 2003.

[11] Marco Ughetti, Tiziana Trucco, and Danilo Gotta. Development of
agent-based, peer-to-peer mobile applications on android with jade. In
UBICOMM’08: Proceedings of the 2008 The Second International Con-
ference on Mobile Ubiquitous Computing, Systems, Services and Tech-
nologies, pages 287–294, Washington, DC, USA, 2008. IEEE Computer
Society.

[12] Open Handset Alliance. Android, 2007. http://www.

openhandsetalliance.com/android_overview.html.

[13] Alan H. Bond and Les Gasser. Readings in Distributed Artificial Intel-
ligence. Morgan Kaufmann Publishers, San Mateo, CA, USA, August
1988.

[14] Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Trends in
cooperative distributed problem solving. IEEE Transactions on Knowl-
edge and Data Engineering, 1(1):63–83, 1989.

[15] Edmund H. Durfee. Distributed problem solving and planning. In
EASSS’01: Selected Tutorial Papers from the 9th ECCAI Advanced
Course ACAI 2001 and Agent Link’s 3rd European Agent Systems
Summer School on Multi-Agent Systems and Applications, pages 118–
149, London, UK, 2001. Springer-Verlag.

[16] Gerhard Weiss. Multiagent Systems: A Modern Approach to Dis-
tributed Artificial Intelligence. The MIT Press, Cambridge, MA, USA,
March 1999.

[17] Michael Wooldridge. An Introduction to MultiAgent Systems. John
Wiley & Sons, New York, NY, USA, June 2002.

[18] Sarit Kraus. Strategic negotiation in multiagent environments. MIT
Press, Cambridge, MA, USA, September 2001.

168

http://www.openhandsetalliance.com/android_overview.html
http://www.openhandsetalliance.com/android_overview.html

[19] Howard Raiffa. The Art and Science of Negotiation. Belknap Press of
Harvard University Press, Cambridge, MA, USA, March 1985.

[20] Marie Pierre Gleizes, Alain Léger, Eleutherios Athanassiou, and Pierre
Glize. Abrose: Self-organization and learning in multi-agent based bro-
kerage services. In IS&N 1999: Intelligence in Services and Networks
Paving the Way for an Open Service Market, pages 41–54, Barcelona,
Spain, April 1999. Springer.

[21] Phan Minh Dung. On the acceptability of arguments and its fundamen-
tal role in nonmonotonic reasoning, logic programming and n-person
games. Artificial Intelligence., 77(2):321–357, 1995.

[22] Jim E. Doran, S. Franklin, Nicholas R. Jennings, and Timothy J. Nor-
man. On cooperation in multi-agent systems. The Knowledge Engi-
neering Review, 12(3):309–314, 1997.

[23] Gilad Zlotkin and Jeffrey S. Rosenschein. Negotiation and task sharing
among autonomous agents in cooperative domains. In Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence,
pages 912–917, San Mateo, CA, 1989. ACM.

[24] Reid G. Smith. The contract net protocol: High-level communication
and control in a distributed problem solver. IEEE Transactions on
Computers, C-29(12):1104–1113, 1981.

[25] Leonard Kleinrock. Nomadicity: Anytime, anywhere in a disconnected
world. Journal of Mobile Networks and Applications, 1:351–357, 1996.

[26] Jeffrey S. Rosenschein and Gilad Zlotkin. Rules of Encounter: Design-
ing Conventions for Automated Negotiation Among Computers. MIT
Press, Cambridge, Massachusetts, July 1994.

[27] Carles Sierra, Peyman Faratin, and Nicholas R. Jennings. A service-
oriented negotiation model between autonomous agents. In Collabora-
tion between Human and Artificial Societies, Coordination and Agent-
Based Distributed Computing, pages 201–219, London, UK, 1999.
Springer-Verlag.

[28] Michael Wooldridge. Agent-based software engineering. Software En-
gineering, 144(1):26–37, February 1997.

[29] Brian Henderson-Sellers and Paolo Giorgini. Agent-oriented method-
ologies. Idea Group Pub., Hershey, PA, USA, June 2005.

169

[30] Michael Wooldridge. Agent-based computing. Interoperable Commu-
nication Networks, 1(1):71–97, January 1998.

[31] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: The-
ory and practice. Knowledge Engineering Review, 10:115–152, 1995.

[32] Nicholas R. Jennings and Michael Wooldridge. Agent-oriented software
engineering. Artificial Intelligence, 117:277–296, 2000.

[33] Emile Aarts, Rick Harwig, and Martin Schuurmans. Ambient intelli-
gence. pages 235–250, 2002.

[34] Chen Rui, Hou Yi-bin, Huang Zhang-qin, and He Jian. Modeling
the ambient intelligence application system: concept, software, data,
and network. IEEE Transactions on Systems, Man, and Cybernetics.,
39(3):299–314, 2009.

[35] Michael Wooldridge and Nick Jennings. Intelligent agents: Theory and
practice. The Knowledge Engineering Review, 10(2):115–152, 1995.

[36] Nicholas R. Jennings. On agent-based software engineering. Artificial
Intelligence, 117(2):277–296, 2000.

[37] Tarek K. Abdel-Hamid. The slippery path to productivity improve-
ment. IEEE Software, 13:43–52, 1996.

[38] Victor R. Basili and Robert W. Reiter. A controlled experiment quan-
titatively comparing software development approaches. IEEE Trans-
actions on Software Engineering, 7(3):299–320, 1981.

[39] Jeffrey O. Kephart and David M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, Jan 2003.

[40] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and
John Mylopoulos. Tropos: An agent-oriented software development
methodology. Autonomous Agents and Multi-Agent Systems, 8(3):203–
236, 2004.

[41] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The
gaia methodology for agent-oriented analysis and design. Autonomous
Agents and Multi-Agent Systems, 3:285–312, September 2000.

[42] Andrea Omicini. Soda: Societies and infrastructures in the analysis
and design of agent-based systems. In AOSE 2000: The First In-
ternational Workshop on Agent-Oriented Software Engineering, pages
185–193. Springer, June 2000.

170

[43] Xiyun Wang and Yves Lesprance. Agent-oriented requirements en-
gineering using congolog and i*. In In Working Notes of the Agent-
Oriented Information Systems (AOIS-2001) Workshop, pages 59–78,
2001.

[44] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Land-
scape and research challenges. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 4(2):1–42, 2009.

[45] Ji Zhang and Betty H. C. Cheng. Model-based development of dy-
namically adaptive software. In ICSE ’06: Proceedings of the 28th
international conference on Software engineering, pages 371–380, New
York, NY, USA, 2006. ACM.

[46] John Mylopoulos, Lawrence Chung, and Eric Yu. From object-oriented
to goal-oriented requirements analysis. Communications of the ACM,
42(1):31–37, 1999.

[47] John Mylopoulos. Information modeling in the time of the revolution.
Information Systems, 23(3-4):127–155, 1998.

[48] Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In Rudy van Hoe, editor, Seventh European
Workshop on Modelling Autonomous Agents in a Multi-Agent World,
Eindhoven, The Netherlands, 1996.

[49] Michael Wooldridge Rafael H. Bordini, Jomi Fred Hbner. Programming
Multi-Agent Systems in AgentSpeak Using Jason. John Wiley & Sons,
October 2007.

[50] Dickson K. W. Chiu, S. C. Cheung, and Ho fung Leung. A multi-agent
infrastructure for mobile workforce management in a service oriented
enterprise. In HICSS’05: Proceedings of the 38th Annual International
Conference on System Sciences, pages 85–95, Big Island, Hawaii, USA,
January 2005. IEEE Computer Society.

[51] J. Bravo, X. Alamán, and T. Riesgo. Ubiquitous computing and am-
bient intelligence: New challenges for computing. Journal of Universal
Computer Science, 12(3):233–235, 2006.

[52] Philips Research. Ambient Intelligence Research in Expe-

rienceLab. http://www.research.philips.com/technologies/syst_

softw/ami/.

171

http://www.research.philips.com/technologies/syst_softw/ami/
http://www.research.philips.com/technologies/syst_softw/ami/

[53] MIT. Ambient Intelligence Research Group. http://ambient.
media.mit.edu/.

[54] Mark Weiser. The computer for the twenty-first century. Scientific
American, 265(3):94–104, 1991.

[55] Paolo Remagnino and Gian Luca Foresti. Ambient intelligence: A new
multidisciplinary paradigm. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, 35(1):1–6, January 2005.

[56] Norbert Streitz Paddy Nixon. The disappearing computer. Communi-
cations of the ACM, 48(3):32–35, March 2005.

[57] Albrecht Schmidt. Implicit human computer interaction through con-
text. Personal and Ubiquitous Computing, 4(2):191–199, June 2000.

[58] Albrecht Schmidt, Kofi Asante Aidoo, Antti Takaluoma, Urpo
Tuomela, Kristof Van Laerhoven, and Walter Van de Velde. Advanced
interaction in context. In HUC’99: Proceedings of the 1st interna-
tional symposium on Handheld and Ubiquitous Computing, pages 89–
101, London, UK, 1999. Springer-Verlag.

[59] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a better understanding of context
and context-awareness. In HUC’99: Proceedings of the 1st international
symposium on Handheld and Ubiquitous Computing, pages 304–307,
London, UK, 1999. Springer-Verlag.

[60] Joëlle Coutaz, James L. Crowley, Simon Dobson, and David Garlan.
Context is key. Communications of the ACM, 48(3):49–53, 2005.

[61] John Krogstie, Kalle Lyytinen, Andreas Lothe Opdahl, Barbara Per-
nici, Keng Siau, and Kari Smolander. Research areas and challenges
for mobile information systems. International Journal of Mobile Com-
munications, 2(3):220–234, 2004.

[62] Kalle Lyytinen and Youngjin Yoo. Research commentary: The next
wave of nomadic computing. Information Systems Research, 13(4):377–
388, 2002.

[63] Giovanni Acampora and Vincenzo Loia. Dynamic services for open
ambient intelligence systems. In Janusz Kacprzyk, editor, Studies in
Fuzziness and Soft Computing, pages 105–122. Springer Berlin Heidel-
berg, 2006.

172

http://ambient.media.mit.edu/
http://ambient.media.mit.edu/

[64] Richard R. Brooks. Distributed sensor networks: A multiagent perspec-
tive. International Journal of Distributed Sensor Networks, 4(3):285–
301, July 2008.

[65] Gregory M.P. OHare, M.J. OGrady, R. Collier, S. Keegan, D. OKane,
R. Tynan, and D. Marsh. Ambient intelligence through agile agents
citation. In Yang Cai, editor, Ambient Intelligence for Scientific Dis-
covery: Lecture Notes in Computer Science, pages 286–310. Springer
Berlin Heidelberg, 2005.

[66] Satoshi Kurihara, Kensuke Fukuda, Toshio Hirotsu, Shigemi Aoy-
agi, Toshihiro Takada, and Toshiharu Sugawara. Multi-agent human-
environment interaction framework for the ubiquitous environment. In
MMAS 2004: International workshop on Massively multi-agent sys-
tems. Springer, December 2004.

[67] Eric Yu. Agent orientation as a modelling paradigm. Wirtschaftsinfor-
matik, 43(3):123–132, April 2001.

[68] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and
John Mylopoulos. A knowledge level software engineering methodology
for agent oriented programming. In AGENTS’01: Proceedings of the
fifth international conference on Autonomous agents, pages 648–655,
New York, NY, USA, 2001. ACM.

[69] Grady Booch, Robert A. Maksimchuk, Michael W. Engel, Bobbi J.
Young, Jim Conallen, and Kelli A. Houston. Object-Oriented Analysis
and Design with Applications (3rd Edition). Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 2004.

[70] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-
directed requirements acquisition. Science of Computer Programming,
20(1-2):3–50, 1993.

[71] Ariel Rubinstein. Perfect equilibrium in a bargaining model. Econo-
metrica, 50(1):97–109, January 1982.

[72] Peyman Faratin, Carles Sierra, and Nicholas R. Jennings. Negotiation
decision functions for autonomous agents. International Journal of
Robotics and Autonomous Systems, 24:159–182, 1998.

[73] Erich Bircher and Torsten Braun. An agent-based architecture for ser-
vice discovery and negotiation in wireless networks. In Proceedings of

173

the 2nd International Conference on Wired/Wireless Internet Commu-
nications (WWIC 2004), pages 295–306, February 2004.

[74] FIPA TC Communication. FIPA Contract Net Interaction

Protocol Specification. Technical report, Geneva, Switzerland,
2002. The Foundation for Intelligent Physical Agents.

[75] FIPA TC Communication. FIPA English Auction Interaction

Protocol Specification. Technical report, Geneva, Switzerland,
2002. The Foundation for Intelligent Physical Agents.

[76] Anthony Chavez and Pattie Maes. Kasbah: An agent marketplace
for buying and selling goods. In The Proceedings of the first inter-
national Conference on the Practical Application of Intelligent Agents
and Multi-Agent Technology, pages 75–90, 1996.

[77] Jian Cao, Jie Wang, Shensheng Zhang, and Minglu Li. A multi-agent
negotiation based service composition method for on-demand service.
In SCC’05: Proceedings of the 2005 IEEE International Conference
on Services Computing, pages 329–332, Washington, DC, USA, 2005.
IEEE Computer Society.

[78] Ohbyung Kwon, Jong Min Shin, and Seong Woon Kim. Context-aware
multi-agent approach to pervasive negotiation support systems. Expert
Systems with Applications, 31(2):275–285, 2006.

[79] Matthias Klusch. Intelligent Information Agents: Agent-Based Infor-
mation Discovery and Management on the Internet. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, July 1999.

[80] Dionisis Kehagias, Andreas L. Symeonidis, Kyriakos C. Chatzidim-
itriou, and Pericles A. Mitkas. Information agents cooperating with
heterogenous data sources for customer-order management. In SAC’04:
Proceedings of the 2004 ACM symposium on Applied computing, pages
52–57, New York, NY, USA, 2004. ACM.

[81] Angela Carrillo-Ramos, Jérôme Gensel, Marlène Villanova-Oliver, and
Hervé Martin. Pumas: a framework based on ubiquitous agents for
accessing web information systems through mobile devices. In SAC’05:
Proceedings of the 2005 ACM symposium on Applied computing, pages
1003–1008, New York, NY, USA, 2005. ACM.

[82] Paul Klemperer. Auction theory: A guide to the literature. Journal of
Economic Surveys, 13(3):227–86, July 1999.

174

[83] Peter Cramton, Yoav Shoham, and Richard Steinberg, editors. Combi-
natorial Auctions. The MIT Press, Cambridge, Massachusetts, January
2006.

[84] Tom Wanyama and Behrouz H. Far. Negotiation coalitions in group-
choice multi-agent systems. In AAMAS’06: Proceedings of the fifth
international joint conference on Autonomous agents and multiagent
systems, pages 408–410, New York, NY, USA, 2006. ACM.

[85] Ted Scully, Michael G. Madden, and Gerard Lyons. Coalition calcu-
lation in a dynamic agent environment. In ICML’04: Proceedings of
the twenty-first international conference on Machine learning, page 93,
New York, NY, USA, 2004. ACM.

[86] Bastian Blankenburg, Rajdeep K. Dash, Sarvapali D. Ramchurn,
Matthias Klusch, and Nicholas R. Jennings. Trusted kernel-based coali-
tion formation. In AAMAS’05: Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, pages
989–996, New York, NY, USA, 2005. ACM.

[87] Fernando Menezes Matos and Edmundo R. M. Madeira. An automated
negotiation model for m-commerce using mobile agents. In ICWE’03:
Web Engineering, pages 313–328, Heidelberg, January 2003. Springer.

[88] Jeferson M. Anjos and Linnyer B. Ruiz. Service negotiation over wire-
less mesh networks : an approach based on economic agents. In IEEE
Wireless Days: WD’08: 1st IFIP, pages 1–5, November 2008.

[89] John Bigham and Lin Du. Cooperative negotiation in a multi-agent
system for real-time load balancing of a mobile cellular network. In
AAMAS’03: Proceedings of the second international joint conference
on Autonomous agents and multiagent systems, pages 568–575, NY,
USA, 2003. ACM.

[90] Shohei Yoshikawa, Takahiko Kamiryo, Yoshiaki Yasumura, and Kuni-
aki Uehara. Strategy acquisition of agents in multi-issue negotiation. In
Proceedings of the 2006 IEEE/WIC/ACM International Conference on
Web Intelligence, pages 933–939, Washington, DC, USA, 2006. IEEE
Computer Society.

[91] Franco Zambonelli, Nicholas R. Jennings, Andrea Omicini, and Michael
Wooldridge. Agent-Oriented Software Engineering for Internet Appli-
cations, pages 326–346. Springer Verlag, 2001.

175

[92] Goran Trajkovski. An Imitation-based Approach to Modeling Homoge-
nous Agents Societies (Computational Intelligence and Its Applications
Series) (Computational Intelligence and Its Applications Series). IGI
Publishing, Hershey, PA, USA, 2006.

[93] Jeremy Pitt, Abe Mamdani, and Patricia Charlton. The open agent
society and its enemies: a position statement and research programme.
Telematics and Informatics, 18(1):67–87, 2001.

[94] Nicholas R. Jennings, Peyman Faratin, Alessio R Lomuscio, Simon Par-
sons, Michael Wooldridge, and Carles Sierra. Automated negotiation:
Prospects methods and challenges. Group Decision and Negotiation,
10(2):199–215, 2001.

[95] Onn Shehory, Katia Sycara, Prasad Chalasani, and Somesh Jha. Agent
cloning: an approach to agent mobility and resource allocation. IEEE
Communications, 36:58–67, 1998.

[96] John Thangarajah, Lin Padgham, and Michael Winikoff. Prometheus
design tool. In AAMAS’05: Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, pages
127–128, New York, NY, USA, 2005. ACM.

[97] Lin Padgham and Michael Winikoff. Prometheus: A practical agent-
oriented methodology. In Brian Henderson-Sellers and Paolo Giorgini,
editors, Agent-Oriented Methodologies, chapter V, pages 107–135. IGI
Publishing, 2005.

[98] ARSLOGICA IT Laboratories. Overview, 2003. www.arslogica.it.

[99] UNITN-DISI. Laboratory for mobile applications, 2006. http://lama.
disi.unitn.it/index.php.

[100] Amit B. Kothari. Genghis - A Multiagent Carpooling System. B.Sc.
Dissertation work, submitted to the University of Bath., may 2004.

[101] Sameh Abdel-Naby, Stefano Fante, and Paolo Giorgini. Auctions ne-
gotiation for mobile rideshare service. In Proceedings of the Second
International Conference on Pervasive Computing and Applications
(ICPCA07), Birmingham, UK, July 2007. IEEE.

[102] Fermentas Inc. UK department of transport., 2006. http://

www.dft.gov.uk/pgr/statistics/datatablespublications/personal/

mainresults/nts2004/.

176

www.arslogica.it
http://lama.disi.unitn.it/index.php
http://lama.disi.unitn.it/index.php
http://www.dft.gov.uk/pgr/statistics/datatablespublications/personal/mainresults/nts2004/
http://www.dft.gov.uk/pgr/statistics/datatablespublications/personal/mainresults/nts2004/
http://www.dft.gov.uk/pgr/statistics/datatablespublications/personal/mainresults/nts2004/

[103] eNotions. Dynamische Fahrgemeinschaften., 2006.
http://www.mobilitaet21.de/infrastruktur-und-mobilitaet/

effiziente-nutzung.html?user_umm21_pi1[detail]=115&

cHash=767b343a0a.

[104] Paul O’Brien and Richard Nicol. Fipa — towards a standard for soft-
ware agents. BT Technology Journal, 16(3):51–59, 1998.

[105] Robyn Kozierok and Pattie Maes. A learning interface agent for
scheduling meetings. In IUI’93: Proceedings of the 1st international
conference on Intelligent user interfaces, pages 81–88, New York, NY,
USA, 1993. ACM.

[106] Aliaksandr Birukou, Enrico Blanzieri, and Paolo Giorgini. Implicit: an
agent-based recommendation system for web search. In AAMAS’05:
Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems, pages 618–624, New York, NY, USA,
2005. ACM.

[107] Enrico Blanzieri, Paolo Giorgini, Sabrina Recla, and Paolo Massa. In-
formation access in implicit culture framework. In CIKM ’01: Proceed-
ings of the tenth international conference on Information and knowl-
edge management, pages 565–567, New York, NY, USA, 2001. ACM.

[108] Aliaksandr Birukou, Enrico Blanzieri, Vincenzo D’Andrea, Paolo
Giorgini, Natallia Kokash, and Alessio Modena. IC-service: a service-
oriented approach to the development of recommendation systems. In
SAC’07: Proceedings of the 2007 ACM symposium on Applied comput-
ing, pages 1683–1688, New York, NY, USA, 2007. ACM.

[109] Volha Bryl, Paolo Giorgini, and Stefano Fante. Toothagent: a multi-
agent system for virtual communities support. In Proceedings of the
eighth International Bi-Conference Workshop on Agent-Oriented In-
formation Systems (AOIS-2006), Hakodate, Japan, May 2006.

[110] Volha Bryl, Paolo Giorgini, and Stefano Fante. An implemented proto-
type of bluetooth-based multi-agent system. In in Proceedings of WOA
2005: 6th AI*IA/TABOO Joint Workshop ”‘From Objects to Agents”’,
Camerino, MC, Italy, November 2005.

[111] Sun Microsystems. Java APIs for Bluetooth., 2006. http://www.
jcp.org/en/jsr/detail?id=82.

177

http://www.mobilitaet21.de/infrastruktur-und-mobilitaet/effiziente-nutzung.html?user_umm21_pi1[detail]=115&cHash=767b343a0a
http://www.mobilitaet21.de/infrastruktur-und-mobilitaet/effiziente-nutzung.html?user_umm21_pi1[detail]=115&cHash=767b343a0a
http://www.mobilitaet21.de/infrastruktur-und-mobilitaet/effiziente-nutzung.html?user_umm21_pi1[detail]=115&cHash=767b343a0a
http://www.jcp.org/en/jsr/detail?id=82
http://www.jcp.org/en/jsr/detail?id=82

[112] Sun Microsystems. Java Wireless Messaging API., 2006. http://
www.jcp.org/en/jsr/detail?id=120.

[113] BLUECOVE. Java library for bluetooth, 2007. http://sourceforge.

net/projects/bluecove/.

[114] Michael Winikoff. JACK intelligent agents: An industrial strength
platform. In Rafael H. Bordini, Mehdi Dastani, Jrgen Dix, and Amal
El Fallah Seghrouchni, editors, Multi-Agent Programming, chapter 7,
pages 175–193. Springer US, Soeul, Korea, 2005.

[115] Tim Finin, Rich Fritzson, and Don McKay. A language and proto-
col to support intelligent agent interoperability. In The Proceedings
of the CE&CALS Conference, Washington, USA, June 1992. Morgan
Kaufmann.

[116] Sameh Abdel-Naby, Oleksiy Chayka, and Paolo Giorgini. Bartercell:
an agent-based bartering service for users of pocket computing devices.
Technical report, University of Trento, September 2009. #DISI-09-053.

[117] Object Refinery Ltd. JFree.org / JFreeChart, 2005. http://www.jfree.
org/jfreechart/.

178

http://www.jcp.org/en/jsr/detail?id=120
http://www.jcp.org/en/jsr/detail?id=120
http://sourceforge.net/projects/bluecove/
http://sourceforge.net/projects/bluecove/
http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/

	Introduction
	Our Research Context
	Communications & Nomadicity
	Serviceability & Agents Negotiation

	Problem & Solution Statement
	Early Highlights
	Reducing Exchange of Messages
	Reflecting Real-life Behaviors
	Building Channels of Feedback

	Publications
	International Journals
	International Conferences & Workshops
	Technical Reports

	Structure of the Thesis

	State of the art
	The Agent Paradigm
	Agent-Oriented Software Engineering (AOSE)
	Ambient Intelligence (AmI) & Agents Negotiation
	The Multidisciplinary AmI
	Agent-oriented AmI development

	Agents Negotiation in Different Contexts
	Advanced Agents Negotiation in Common Settings
	Agents Negotiation for Service Acquisition
	Agents Negotiation in Wireless Networks

	Related Work
	Chapter's Summary

	The Nomadicity-driven Negotiation Model
	The Model's Abstract Setting
	A Community, its Concern, and Sub-concerns
	Members, Unions and Tradeoffs
	Tradeoffs vs. Requests
	Agents Societies and AOSE

	The Negotiation Issue
	The Service-Centric Community
	The Service-Centric Issue
	Agent's satisfaction and its Instances
	Agents' reactions to different Instance's forms

	The Negotiating Agents
	The Negotiation Protocol
	Negotiation Timelines
	Chapter's Summary

	The Negotiation Tactics & Strategies
	The Negotiation Tactics
	Time-based Tactics
	Connectivity Related Tactics

	The Negotiation Strategies
	Enabling Socialability through Cooperation
	Fidelity-driven Strategies

	Chapter's Summary

	Model Implementation
	An Overview
	Model's Implementation Circumstances & Conditions
	The Negotiation Protocol
	Accepting a Union Formation
	Rejecting a Union Formation
	Pending a Union Formation
	Depositing a Union Formation
	The Protocol in a Nomadicity-Oriented Setting

	The Negotiation Tactics
	Time-driven Tactics
	Connectivity-driven Tactics

	Chapter's Summary

	Case Studies
	Andiamo
	Application Motivations
	The Framework
	The Auction-based Negotiation
	Rideshare System Layer
	Andiamo in brief

	BarterCell
	BarterCell Architecture
	BarterCell's Adhoc Negotiation Algorithms
	Testing BarterCell
	BarterCell's Negotiation Evaluation
	BarterCell in brief

	Experimental Results
	Bartering On-the-go
	BarterCell: First Run
	BarterCell: Second Run
	BarterCell: Third Run
	Our model in Bartering context

	Carpooling On-the-go
	Andiamo: First Run
	Andiamo: Second Run
	Andiamo: Third Run
	Our model in Carpooling context

	Model Limitations

	Conclusions & Future Work
	Model's Conclusion Statement
	Future Work

	Bibliography

