
PhD Dissertation 

 

 

International Doctorate School in Information and 

Communication Technologies 

 

DIT - University of Trento 

 

 

 

 

MEMS PIEZORESISTIVE MICRO-CANTILEVER ARRAYS FOR SENSING APPLICATIONS 

 

 

 

 

Andrea Adami 

 

 

 

Advisor: 

Dr. Leandro Lorenzelli 

Fondazione Bruno Kessler (Trento) 

 

 

 

Copyright © 2010 Andrea Adami 

 



 

 



 

 

Abstract 

In several application fields there is an increasing need for a diffused on-field control of parameters able 

to diagnosis potential risks or problems in advance or in early stages in order to reduce their impact. The 

timely recognition of specific parameters is often the key for a tighter control on production processes, for 

instance in food industry, or in the development of dangerous events such as pollution or the onset of dis-

eases in humans. Diffused monitoring can be hardly performed with traditional instrumentation in spe-

cialised laboratories, due to the time required for sample collection and analysis. In all applications, one 

of the key-points for a successful solution of the problem is the availability of detectors with high-

sensitivity and selectivity to the chemical or biochemical parameters of interest. In this paradigm, MEMS 

technologies are emerging as realisation of miniaturised and portable instrumentation for agro-food, bio-

medical and material science applications with  high sensitivity and low cost.  

Among different options, cantilever micro-mechanical structures are one of the most promising technical 

solution for the realisation of MEMS detectors with high sensitivity. This thesis deals with the develop-

ment of cantilever-based sensor arrays for chemical and biological sensing and material characterisation. 

In addition to favourable sensing properties of single devices, an array configuration can be easily imple-

mented with MEMS technologies, allowing the detection of multiple species at the same time, as well as 

the implementation of reference sensors to reject both physical and chemical interfering signals. In order 

to provide the capability to operate in the field, solution providing simple system integration and high ro-

bustness of readout have been preferred, even at the price of a lower sensitivity with respect to other pos-

sibilities requiring more complex setups. In particular, piezoresistive readout has been considered as the 

best trade-off between sensitivity and system complexity, due to the easy implementation of readout sys-

tems for resistive sensors and to their high potential for integration with standard CMOS technologies. In 

this general framework, this thesis reports the activities related to the development of piezoresistive canti-

lever arrays for portable applications. In particular, modelling of devices and fabrication processes were 

performed in order to select the best design and technologies for implementation of gravimetric and stress 

sensors, as well as procedures for material characterisation. Different case-studies were chosen for the 

development of devices. In agrofood field, activity were focused on the detection of amines, used as 

markers of fish spoilage during fish supply chain, while in bio-medical field cantilever were targeted to 

the detection of specific DNA sequences for portable diagnostic systems. Finally, thin TiO2 film charac-

terisation based on micromechanical structure where implemented as a tool for analysis of deposition 

quality. All devices were fabricated by the BioMEMS research unit of FBK (Fondazione Bruno Kessler - 

Center for Materials and Microsystems, Trento), using FBK clean room facilities. 
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Chapter 1 

1. Introduction 

1.1. The context: application-oriented portable and miniaturised systems  

In several applications, there is an increasing need for a diffused on-field control of parameters able to di-

agnosis potential risks or problems in advance or in early stages in order to reduce their impact. The 

timely recognition of specific parameters is often the key for a tighter control on production processes, for 

instance in food industry, or in the development of dangerous events such as pollution or the onset of dis-

eases in humans. Diffused monitoring can be hardly performed with traditional instrumentation in spe-

cialised laboratories, due to the time required for sample collection and analysis. One of most interesting 

example of benefits coming from diffused analysis is the biomedical field, where the need for patient-

oriented healthcare systems and the high cost of hospitalization, lead to the need of moving from treat-

ment to prevention, also by means of the screening of critical parameters. This will enable the possibility 

to perform preliminary medical screening for disease prevention and for limiting the access to hospital 

structures to the cases where deeper investigation and treatments are needed. The timely detection of a 

small set of parameters might improve the prevention of diseases and improvement of the patient's quality 

of life, as well as personalised diagnosis and treatments.  

In the agrofood field, the quality control of production and supply chain are currently based on in-depth 

tests performed in centralised laboratories on a small sample of products. Miniaturised and autonomous 

systems may lead to a tighter control of the production and supply chain by performing a fast pre-

screening on a larger sample of products, able to select critical issues to be addressed with in depth analy-

ses with expensive and time consuming laboratory tests. Similarly, thin film technologies are gaining a 

huge development in several fields ranging from electronics to industrial coatings; thus, there is a clear 

interest in the development of thin film characterisation platforms, allowing the fast analysis of mechani-

cal properties of deposited films, possibly during the deposition process itself, and with low cost instru-

ments.  

These needs can be fulfilled by the rapid development of both information and MEMS technologies. Mi-

crofabrication technologies are expected to produce new low cost and widely diffused analytical proce-

dures based on portable devices, by means of integrated system providing a large number of functionality 

in small systems. In all applications, one of the key-points for a successful solution of the problem is the 

availability of detectors with high-sensitivity, selectivity and reproducibility to the chemical or biochemi-

cal parameters of interest. In order to compete with well-known and established solution, one of main fea-
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ture of new systems is the capability to perform specific tests on the field with fast response times and 

low costs; in this perspective, a fast measurement of reduced number of parameters is to be preferred to a 

straightforward ―clone‖ of laboratory instrumentation. Moreover, the detector must also provide robust-

ness and reliability for real-world applications, with low costs and easiness of use. In this paradigm, 

MEMS technologies are emerging as realisation of miniaturised and portable instrumentation for agro-

food, biomedical and material science applications with  high sensitivity and low cost. In fact, MEMS 

technologies can allow a reduction of the manufacturing cost of detectors, by taking advantage of the par-

allel manufacturing of large number of devices at the same time; furthermore, MEMS devices can be po-

tentially expanded to systems with high level of measurement parallelism. Device costs are also a key is-

sues when devices must be for ―single use‖, which is a must in application where cross-contamination 

between different measurement is a major cause of system failure and may cause severe consequences, 

such as in biomedical application.  

1.2. Thesis content and innovative aspects  

The objective of this thesis is the development and optimisation of innovative design, technologies and 

approaches for the realisation of microcantilever devices for portable systems. In particular, chemical and 

biological sensing and material characterisation were selected as case studies to evaluate the perform-

ances of this class of devices, which is one of the most promising technical solution for the realisation of 

detectors with high sensitivity. In fact, in addition to favourable sensing properties of single devices, an 

array configuration can be easily implemented with MEMS technologies, allowing the detection of multi-

ple species at the same time, as well as the implementation of reference sensors to reject both physical 

and chemical interfering signals.  

Different approaches and technologies for the realisation of high sensitivity detectors with integrated 

readout were investigated starting from the most promising approach in the literature, in order to provide 

an alternative to commonly used optical readout systems. Such high sensitivity systems are, in fact, 

poorly suitable for robust portable systems due to their complexity. After a preliminary evaluation, pie-

zoresistive readouts have been considered as the best trade-off between sensitivity and system complex-

ity, due to the easy implementation of readout systems and to their high compatibility with standard 

CMOS technologies for the integration of signal processing capabilities on-chip. On the other hand, pie-

zoresistive readouts usually have lower sensitivity than optical methods. Thus, optimised devices are 

needed in order to allow an appropriate device exploitation. The implementation strategy has been per-

formed after an analysis of mechanical and sensing properties of microcantilever, also depending of tech-

nological options for their realisation. Different approaches, dealing with both static and resonant opera-

tion, have been selected for gas sensing applications, DNA hybridisation sensing and material 

characterisation).  
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Performances of devices has been investigated by analytical and numerical modelling of both structures 

and readout elements, in order to optimise both fabrication technology and design. In particular, optimal 

implant parameters for the realisation of piezoresistors have been evaluated with process simulation per-

formed with Athena Silvaco simulation software, while ANSYS has been used to analyse the best design 

for devices and the effect of some technology-related issues, such as the effect of underetch during the re-

lease of the beams or residual stresses. Static and modal analyses of cantilever bending in different condi-

tions have been performed, in order to evaluate the mechanical performances of the device, and results 

have been compared with the experimental characterisation. 

With regard to gas sensing applications, the development has been oriented to resonant sensors, where the 

adsorption of analytes on a adsorbent layer deposited on the cantilever leads to shift of resonance fre-

quency of the structure, thus providing a gravimetric detection of analytes. The detection of amines, as 

markers of fish spoilage during transport, has been selected as a case-study for the analysis of these sen-

sors. The sensitivity of devices has been measured, with results compatible with the models. 

Cantilever structures are also suitable for bioaffinity-based applications or genomic tests, such as the de-

tection of specific Single Nucleotide Polymorphisms (SNPs) that can be used to analyse the predisposi-

tion of individuals to genetic-based diseases. In this case, measurements are usually performed in liquid 

phase, where viscous damping of structures results in a severe reduction of resonance quality factor, 

which is a key-parameter for the device detection limit. Then, cantilever working in ―bending mode‖ are 

usually preferred for these applications. In this thesis, the design and technologies have been optimised 

for this approach, which has different requirements with respect to resonant detectors. The interaction of 

target analytes with properly functionalised surfaces results in a bending of the cantilever device, which is 

usually explained by a number of mechanism ranging from electrostatic and steric interaction of mole-

cules to energy-based considerations. In the case of DNA hybridisation detection, the complexity of the 

molecule interactions and solid-liquid interfaces leads to a number of different phenomena concurring in 

the overall response. Main parameters involved in the cantilever bending during DNA hybridisation has 

been studied on the basis of physical explanations available in the literature, in order to identify the key 

issues for an efficient detection.  

Microcantilever devices can also play a role in thin film technologies, where residual stresses and mate-

rial properties need to be accurately measured. Since cantilever sensors are highly sensitive to stress, their 

use is straightforward for this application. Moreover, apart from their sensitivity, they also have other ad-

vantages on other methods for stress measurements, such as the possibility to perform on-line measure-

ments during the film deposition in an array configuration, which can be useful for combinatorial ap-

proaches for the development of thin film materials libraries. In collaboration with the Plasma Advanced 

Materials (PAM) group of the Bruno Kessler Foundation, the properties of TiO2 films deposited by sput-
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tering has been investigated as a case study for these applications. In addition to residual stress, a method 

for measuring the Young’s modulus of the deposited films has been developed, based on the measure-

ment by means of a stylus profilometer of beam stiffness increase due to TiO2 film. The optimal data 

analysis procedure has been evaluated in order to increase the efficiency of the measurement. 

In conclusion, this work describes the development of MEMS-based microcantilever devices for a range 

of different applications by evaluating the best technological implementations and optimised design. Ex-

perimental testing of realised devices demonstrated the feasibility of innovative high performance pie-

zoresistive sensors, also enabling their exploitation in large number of applications for portable analysis 

systems, which are expected to increase their diffusion in the next years. 

1.3. Structure of the Thesis 

This thesis begins with the description of the state of the art related to microcantilever sensors in Chapter 

2 “State of the art”. Starting from early development of cantilevers for Atomic Force Microscopy, an 

overview of main properties and  applications of cantilever for sensing application is presented, highlight-

ing the main results and the advantage of using this class of devices in integrated systems for portable ap-

plications (Paragraphs 2.1). Then, a more detailed analysis of technical details of devices in the literature 

is reported, focusing on aspects such as methods for read-out and actuation, advantages and disadvantages 

of resonant or static operation and functional layers (Paragraph 2.2). Being DNA detection one of the 

most demanding applications, Paragraph 2.3 is devoted to the analysis of nanomechanical interaction be-

tween DNA strands and functionalised cantilever, which must be optimised for an appropriate DNA de-

tection with cantilevers. In Paragraph 2.4, an analysis of advantages and application of cantilevers to thin 

film characterisation is presented and compared with other miniaturised structure for material characteri-

sation. Finally, in Paragraph 2.5, an overview of main technological approaches for cantilever sensors 

fabrication is reported. 

In Chapter 3 “Piezoresistive cantilever devices”, an analysis of physical properties of piezoresistive can-

tilever structure is reported, including mechanical properties (Paragraph 3.1), piezoresistive materials 

(Paragraph 3.2), general physics involved in transduction methods (Paragraph 3.3) and FBK technolo-

gies for cantilever fabrications (Paragraph 3.4). In the later paragraph, the Finite Element modelling and 

activities related to the optimisation of technologies are reported, as well as an overview of technologies 

developed by the FBK BioMEMS group. 

Chapter 4 “Development of microcantilever detectors for gravimetric sensing” reports specific model-

ling (Paragraphs 4.1 and 4.2) and design activities (Paragraph 4.3) performed to realise optimised canti-

lever sensors for gas sensing purpose. In Paragraph 4.4, the electromechanical characterisation of real-

ised devices allows the validation of modelling activities. The Paragraph 4.5 deals with the analysis of 
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properties of sensitive phthalocyanines thin films deposited by the University of Valladolid in the frame-

work of the GOODFOOD Project, and device sensitivity to amines. 

In Chapter 5 “Development of microcantilevers detectors for stress sensing”, modelling activities final-

ised to the evaluation of different technological options, selection of best approach and design optimisa-

tion are reported in Paragraphs 5.1 and 5.2, while design activities are reported in Paragraph 5.3.  

Chapter 6 “Material characterisation with micro cantilever detectors” reports the activities performed 

in collaboration with the Plasma and Advanced Materials Research Unit of FBK in the field of material 

characterisation with microcantilever devices, starting from modelling and design of devices (Paragraph 

6.1) and adopted experimental methods for Young’s Modulus and residual stress measurement on thin 

TiO2 films (Paragraph 6.2). Results reported in Paragraph 6.3 demonstrate the suitability of proposed 

methods for the characterisation of thin film structures. 

In Chapter 7 “Conclusions” main activities and results are reported and discussed. Acknowledgments, 

Bibliography and Annexes sections complete this thesis. 
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Chapter 2 

2. State of the Art 

2.1. Introduction 

The development of cantilever sensors stems from the Scanning Tunnelling Microscopy (STM) and 

Atomic Force Microscopy (AFM) techniques, in which thin cantilever structures are used for scanning the 

topography of a surface. These technologies were developed in early eighties at the IBM Research Labo-

ratory in Zurich [Binning 1982, Binning 1986] and, beside the assignment of the Nobel Prize for physics 

in 1986 for the design of the STM, they provided the scientific, technological and experimental back-

ground for the development of microfabricated devices with thin structures, useful insights of beams 

physics at micrometric scale and first actuation and readout systems. At first STM was developed to study 

the topography of conducting surfaces by measuring the tunnelling current flowing between the surface 

and a sharp tip, thus providing a high resolution imaging of the surface. In order to provide the high accu-

racy positioning of the measurement head, 3D piezoelectric stages were used to scan the surface and to 

control the tip spacing from the surface. In order to circumvent the limitation to conducting surfaces, 

AFM was developed, using a micrometric cantilever with ultra-compliant spring constant as a force sen-

sors able to measure the weak force interaction between the cantilever tip and the atoms of the surface. 

For this application, the beam is provided with a sharp tip interacting with the surface under examination; 

the interatomic force results in a deflection of the beam, which is typically measured with optical lever 

methods. Thus, in AFM, the elastic properties of the beam play the key role for the analysis and high de-

flection resolution is needed, which also apply to sensing applications described later. Moreover, while in 

the static procedure the measurement of force is related to deflection of the beam, the dynamic mode of 

operation was also developed. In this case, the tip is vibrated near its resonance frequency and frequency, 

amplitude and phase of vibration are modified by the interaction with the surface. The implementation of 

these methods led to the development of system for the actuation of beams and for the measurement of 

dynamic properties of devices, which were later applied for sensing applications using gravimetric meas-

urements. Starting from this background, first attempts to use cantilever for sensing purposes could take 

advantage of already available laboratory instrumentation and focus on the optimisation of devices, sensi-

tive layers and instrumentation for specific applications.  

In this perspective, cantilever detectors have been applied to a wide range of application fields, from gas 

sensing for safety to genomics [Ziegler 2004, Datskos 2004, Waggoner 2007], also taking advantage of 

MEMS technologies for mass production, which make them potentially low cost – high performances de-

vices [Raiteri 2001, Baller 2000, Rasmussen 2003, Datskos 2004]. Sensitivity to specific analytes can be 
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achieved by coating the beam surface with proper sensitive films, ranging from polymeric coatings 

(PEUT, Phtalocyanines, etc.) for gas sensing applications to DNA oligonucleotide probes for bioaffinity 

detection.  

In addition to the production of high performance detectors such as cantilever sensors, microfabrication 

technologies are expected to take advantage of miniaturised devices in order to integrate low cost and ef-

ficient systems providing functionalities ranging from detection to sample handling and pre-treatment. 

These systems are expected to find a wide diffusion for innovative portable tools enabling the possibility 

to perform preliminary medical screening for disease prevention or on-field analysis of parameters of in-

terest for environmental or agrofood applications. In fact, the current trend in the BioMEMS devices (i.e. 

Micro-Electro-Mechanical-Systems for biologic or biomedical applications) is oriented to low cost Mi-

crosystems, including integrated sensors with biological components [Bashir 2004], microfluidic modules 

[Linder 2007, Abgrall 2007] and signal elaboration capability. Nano-on-micro methodologies are ena-

bling the realisation of biosensors combining both functionalisation technologies (Self Assembled 

Monolayers, oligonucleotides, antigen-antibody receptors, nanostructurated materials, etc.), able to grant 

high selectivity and sensibility towards the molecules of interest, and microsystems for sample handling 

and signal read-out and treatment [Bashir 2004]. Innovative architectures for diagnostic aimed to improve 

the system integration and to optimise the signal resolution demand a deep investigations of various criti-

cal parameters in order to exploit the high selectivity of bioaffinity interactions towards the molecules of 

interest, also because of the small sample sizes (and high costs of reagents) typical in this applications. 

For instance, the use of a microfabricated detection module, coupled with a microfluidic module may lead 

to the realisation of an integrated low cost Lab-on-a-Chip (LOC) for point-of-care (POC) applications 

with sample handling functionality. In the biosensor field, cantilevers can compete with other detection 

methods including electrochemical, electromechanical, waveguide-based and Plasmon Surface Reso-

nance. Electrochemical methods such as potentiometric systems based on microelectrodes and Ion Sensi-

tive FET (ISFETs) are present in the literature, showing high sensitivity and the capability of detecting 

single-base mismatches. The FET-based devices take advantage of the intrinsic charge of DNA strands 

adsorbed on gate dielectric of a field-effect transistor in order to modulate the channel [Fritz 2002, Kim 

2004, Ingebrandt 2007]. Other methods, such as devices based on Plasmon Surface Resonance (PSR), can 

lead to high sensitivity for various bioaffinity tests, including DNA hybridisation [Abdulhaim 2008]. 

Laboratory instrumentations are already available on the market (e.g. see Biacore, www.biacore.com); 

however, due to the measurement principle, which require optical excitation and detection, often with 

precision alignments, this method is less easily implemented in integrated systems and portable devices 

[Abdulhaim 2008]. 

http://www.biacore.com/
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2.2. Cantilever sensors 

The working principle of cantilever sensors is based on analytes adsorption on sensitive surface, which  

usually leads to both an induced superficial stress and an increase of cantilever’s mass. Thus, measure-

ments can be performed according to two different methods, which are the deflection mode and the reso-

nance mode [Ziegler 2004, Datskos 2004, Waggoner 2007]. Since both methods deal with beam deflec-

tion, sometimes they can be performed contemporaneously [Battiston 2001]. The sensing materials 

deposited as functional layer on cantilevers need to either provide an high analyte bulk adsorption for 

gravimetric approaches or high surface density of analyte adsorption for stress measurements. In the first 

case, the adsorption is proportional to the thickness of the sensing film, which is typically a polymeric 

material with chemical affinity to analytes and is therefore able to provide a selective adsorption. Another 

approach for gravimetric sensing is the use of nanostructured materials with high specific surface. In this 

case, the large gas-solid surface allows using material with surface reactivity with analytes, thus avoiding 

problems related to diffusion. The typical example of this approach is the use of carbon nanotubes ad-

sorbent for sensing purposes. Both polymeric and nanostructured materials are typically lowly selective to 

specific analytes and thus array configurations are often found for the implementation of e-nose systems 

in which responses of sensors with slightly different sensitivity to analytes are combined and analysed to 

extrapolate the presence of analytes through elaboration and data mining techniques. The most commonly 

used approaches includes Principal Component Analysis (PCA), [Baller 2000, Capone 2003]. Other ap-

proaches might use a separation  methods such as gas chromatography to provide time-resolved meas-

urement of the different analytes in a mixture, thus using a non-selective detector [Chapman 2007]. With 

this approach the selectivity is provided by the pre-treatment of the sample, only requiring a high sensitiv-

ity detector. For stress-based sensing, instead, thin surface coatings such as Self Assembled Monolayers 

(SAM) of biochemical compounds are commonly used, one example being immobilised single DNA 

strands in genomic applications. A large number of biological application can be addressed by cantilever 

structures with specific functional layers, based for instance on gene – antigens interactions. The two ap-

proaches have both advantages and disadvantages and the choice is usually related to the application re-

quirements.  

In the resonance mode, resonance frequencies can be estimated by the simplified models reported in the 

literature [Ziegler 2004, Datskos 2004, Waggoner 2007], where the structure is modelled with a simple 

spring-mass oscillator. The spring constant K is related to physical and geometrical properties of the 

beam and resonance frequency f0 for the first resonance mode is related to beam stiffness, density and vi-

bration damping. The resonance frequency is also dependant on the residual stresses of materials [Ren 

2004, Zhang 2004/2]. With this approach, the sensor mass sensitivity (Sm = 1/f0·Δf/Δm) is inversely pro-

portional to beam thickness and density. Then higher sensitivities can be achieved from thin, low-density 

devices. The quality factor Q is another important parameter of the resonance, which depends on the vis-
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cous damping of the cantilever vibration. The resolution of resonance frequency detection and amplitude 

of the output signal for a given actuation are strictly related to the quality factor. Thus, the efficiency of 

resonance methods is strongly affected in liquid environments, making the deflection mode more less at-

tractive for such applications. Despite the low quality factor, resonant cantilever devices were used for 

biosensing applications in liquid environment, for instance for the detection of proteins by using an anti-

gen-antibody strategy [Lee 2004]. The resonance mode allows detection limit as low as single DNA 

molecule mass when used in ultra-high vacuum conditions, as reported by some papers [Ilic 2005, Yang 

2000]. These approaches, although interesting, can be hardly used in practical conditions for portable di-

agnostic purposes. Recently, an hybrid system has been developed, in which the liquid sample is flown 

through an hollow cantilever, thus taking advantage of the higher quality factor achievable in gas or vac-

uum conditions [Burg 2007]. In order to reduce this drawback, an improvement of the quality factor can 

be also achieved by using a feedback system for the actuation, where the signal read from the cantilever is 

fed to the actuator. This has been demonstrated to improve the read-out efficiency of orders of magnitude 

[Vidic 2003, Passian 2003], making this approach usable also in liquid phase.  

Actuation can be performed with several approaches, including integrated and discrete piezoelectric de-

vices, electrostatic and magnetic induction set-up [Lee 2004/2]. In order to provide low stiffness devices 

with  integrated actuation, an interesting approach using lateral vibration of nanomechanical beams was 

described in [Villaroya 2006], using capacitive actuation of poly-silicon beams. 

Sensitive layers for gas sensing are often implemented by using thin film polymers, such as the cantilever 

array reported in [Battiston 2001], using carboxymethylcellulose, polyvinylalcohol, polyvinylpyridine, 

polyvinylchloride, polyurethane, polystyrene, polymethylmethacrylate to detect and discriminate mixtures 

of different alcohols by the comparison of bending and resonance shift detection, coupled with data 

analysis methods. Cantilever structures have also been used to detect pollutants such as mercury [Rogers 

2003] or explosives such as trinitrotoluene (TNT), also providing an interesting tool to study their adsorp-

tion/desorption properties [Muralidharan 2003].  

Being the theoretical sensitivity mainly dependant on the beam linear density, large cantilevers are ex-

pected to provide lower resonance frequencies with the same relative variation as response to analyte ad-

sorption. In fact, some papers in the literature demonstrate the suitability of such approach for gas sensing 

[Fadel 2004]. The real device resolution is however set by the frequency detection resolution, which is in 

turn inversely proportional to quality factor. Being the quality factor mainly dependant on beam width 

(pls. see Paragraph 3.3), long and narrow beams can provide good frequency resolution. Moreover, the 

higher resonance modes have demonstrated an increase of quality factor with respect to first mode [Jin 

2006, Ghatkesar 2008, Tseytlin 2005]. With the opposite approach, the implementation of nanometric 

cantilevers for resonant detection is presented in [Li 2007], where the realisation of nanocantilevers al-
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lowed the realisation of nanosensors. The extreme miniaturisation of devices to nanoscale can reduce the 

viscous damping of beams at atmospheric pressure, thus resulting in high Q factors and resolution in op-

erative conditions. Similar technologies provided an interesting application to the realisation of nanocanti-

lever-based detectors for mass spectrometry with single molecule resolution [Roukes 2007].  

In the deflection mode, measurements are performed by monitoring the cantilever bending resulting from 

analyte-induced stress on single-side functionalised devices. The cantilever bending is related to both in-

duced stress and geometrical and physical properties of the beam, according to the well-known Stoney’s 

equation for the bending of thick substrates resulting from residual stresses in deposited thin films 

[Stoney 1909]. In accordance with this approach, the best sensitivity to an applied stress in terms of de-

flection amplitude can be achieved with devices with high compliance, which can be obtained with thin 

beams and a low elastic modulus. The drawback of high compliance structure is thermal vibrational noise 

that may limit the ultimate resolution of devices. In fact, in a damped cantilever in thermal equilibrium 

brownian motion causes a random deflection of the beam, which can be modelled with a fluctuation force 

with spectral density proportional to square root of acoustic resistance [Gabrielson 1993, Butt 1995]. 

Thus, large suspended structures are more prone to noise. The deflection methods applies to both liquid 

and gas applications, although the frequency mode is usually preferred in gas sensing because of the bet-

ter accuracy in the measurements of relative frequency shifts. Gas sensing with deflection mode cantile-

ver arrays, however, has been demonstrated by several works including [Baller 2000], in which 8 cantile-

vers covered with 8 different polymers are able to detect and discriminate alcohols and solvent mixtures 

by using a PCA approach coupled with Artificial Neural Network (ANN) algorithms. More recent work 

on the topic include for instance [Yoshikawa 2009], where different polymer (namely poly-vinyl alcohol 

(PVA), poly-ethylene imine (PEI), poly-acryl amide (PAAM), and poly-vinyl pyrrolidone (PVP)) are 

used to selectively detect vapours of volatile organic compounds including alkanes with different chain 

length from 5 (n-pentane) to 14 (n-tetradecane). Gas sensing can be performed with both thin films and 

monolayers. For instance, detection of TNT adsorbed on a polymeric layer (namely SXFA-[poly(1-(4-

hydroxy-4-trifluoromethyl-5,5,5-trifluoro)pent-1-enyl)methylsiloxane]) or thiol-based self assembled 

monolayers has been demonstrated with detection limits in the order of hundreds or tens of ppt [Pinnadu-

wage 2004, Li 2006]. The interest for such low detection limit can be found in several fields such as 

safety and security, environmental monitoring and agrofood. Due to the surface-based nature of stress de-

tection, main applications for the deflection mode can be however found in biosensor field, where meas-

urements are usually performed in liquid phase, and performances of resonance mode detection are 

strongly reduced. Main biosensor classes deals with either antigen-antibody or DNA hybridisation for ob-

taining a high selectivity to quantities of interest [Fritz 2008]. DNA detection has received great attention 

after the demonstration of single-nucleotide polymorphism (SNP) detection in [Fritz 2000], also due to 

the fast developments of genetics in biology and medicine. Thus, the need for fast and low cost analysis 

systems has led to a wide literature on the topic, reporting detection limits for DNA oligonucleotides as 
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low as 100pM [Stackowiack 2006] and 10pM in non-amplified RNA sensing [Zhang 2006]. The presence 

of concurring phenomena not related to the DNA sensing, also requires strategies for the minimisation of 

parasitic effects. A reference beam, with the same structure of the measurement beam but different func-

tionalisation, is commonly used for the rejection of spurious deformations, mainly due to thermal effect 

(i.e. deflection of the thermal bimorph structure formed by the beam material and gold adhesion layer, 

due to their different thermal expansion coefficients) or non-specific adsorption of DNA or compounds 

on the active surface. This strategy is one of the most effective for dealing with real measurements and 

the literature also demonstrate the possibility to work with a high background of non-specific molecules 

in solution, which is one of most important parameters for biosensors in real applications. The use of can-

tilever sensors using antigens-antibody interactions for the detection of proteins and bacteria is also dif-

fused in the literature. The lower stability of such molecules is one drawback of this approach [Fritz 

2008], which has not been investigated in detail in this work.  

Several read-out methods for cantilever deflection have been proposed in literature, including laser beam 

deflection, piezoresistive and piezoelectric reading, and electrostatic or electromagnetic based methods 

[Datskos 2004].  For static detection, which is usually preferred in liquid phase, optical read-out methods 

are the most commonly used, due to their high sensitivity. Nevertheless, this approach has several draw-

backs, mainly due to the system complexity to assure the collimation of the laser beam, of the cantilever 

device and the detector and to the sensitivity to opacity and beam refraction in the liquid sample. Other 

methods, such as piezoresistivity-based methods can be easily implemented in a microfabrication process 

and then it shows great advantages in term of integrability of the device, especially for portable applica-

tions [Mukhopadhyay 2005]. Alternative approaches for increasing the bending sensitivity of the electro-

mechanical structure include recent results on MOSFET stress detection, allowing both high sensitivity 

and ease of integration [Shekhawat 2006]. Piezoresistivity, which is related to a stress-induced change of 

carrier mobility in semiconductors, can be used for stress-sensing elements with different approaches 

[Creemer 2001], including resistors, diodes and field-effect transistors. Since the physical phenomenon is 

the same for the methods, usually comparable sensitivities are obtained with the three different types of 

sensing elements, although MOSFET stress detectors operated in weak inversion conditions can show 

higher sensitivity, due to channel modulation effects at the dielectric-semiconductor interface [Shekhawat 

2006, Lange 2003, Wang 1993]. Other diffused readout methods are capacitive and piezoelectric sensing. 

Capacitive sensing is particularly suitable for gas sensing, since it allows direct actuation and detection in 

resonance mode [Li-2006/2, Villarroya 2006], and it can also provide good sensitivity in static mode op-

eration. The narrow gaps between structure and readout electrode, however, can be the cause of stitching 

issues in liquid phase and an increase of damping in gas applications. Piezoelectric detection can be used 

for actuation [Minne 1995], as well for coupled actuation and sensing in resonance mode [Lee 2004/2]. 

The need for piezoelectric materials, which may be non-compatible with equipments and CMOS devices 
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are one of the strongest limits to their diffusion. In liquid phase usually the electrical insulation of such 

materials is an additional point of concern. Other approaches to device actuation may be based on mag-

netic or thermal actuation [Lange 2002, Li 2009], the latter being more suitable for low- frequencies ap-

plication due to device specific heat and heat exchange rates. 

2.3. Cantilever nanomechanic response for DNA sensing 

Although the response of static cantilever sensors to DNA hybridisation is unanimously attributed to the 

stress induced on their surface by DNA interactions, the chemical/physical explanation of the origin of 

such stresses on microcantilever structures is still not fully understood, due to the complexity of the inter-

action of DNA with the surface, electrolytes and between DNA strands on the surface. Despite a wide 

agreement on a set of different chemical / physical phenomena contributing to the cantilever deflection 

and on the importance of the grafting density of DNA and experimental conditions in general, the phe-

nomenon dominating the induced stress is different in the several papers available in the literature [Muk-

hopadhyay 2005, Liu 2003, Wu 2001, Alvarez 2004, Zhang 2008, Stachowiak 2006, Hansen 2001, 

McKendry 2002]. The different experimental conditions, in fact, can result in a change of the relative 

weight of the different phenomena involved in the overall response, which can in turn modify both the in-

tensity and the sign of the response. Then, for a successful implementation and operation of stress-based 

biosensor, a deep knowledge of nano-mechanical aspects related to DNA grafting and hybridisation is re-

quired, especially to address the detection of single nucleotide mismatch in DNA with this class of de-

vices.  

DNA strands are complex molecules with very peculiar properties. In order to understand the origin of 

cantilever deflection, some physical properties must be considered, especially in the electrical and me-

chanical domain. From the electrical point of view, DNA has an intrinsic charge related to the phosphate 

group in the chain backbone, thus resulting in an electrostatic repulsion between adjacent strands and the 

presence of solvation layers in an electrolytic solution. Both effects related to charge are affected by the 

buffer ionic strength, which can reduce the length of interaction between charges. Consequently, the can-

tilever deflection is dependent on the buffer ionic strength (and then hybridisation buffer concentration) 

[Wu 2001, Mukhopadhyay 2005]. A further secondary effect of charge is the variation of the coverage 

density achievable at different buffer concentrations, due to the previously mentioned electro-

static/solvation interaction during the immobilisation [Stachowiak 2006]. Since the variation of the graft-

ing density is unanimously considered one of the key parameters for the efficiency of nanomechanical 

sensors [Stachowiak 2006], a proper selection of the immobilisation buffer is required to obtain good sen-

sitivity, usually involving buffers with high ionic strength to reduce the electrical interactions during the 

grafting procedure. 
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Steric hindrance is one of parameter involved in nanomechanical response [McKendry 2002]. From the 

mechanical point of view, there is a significant difference between the flexible single strands of DNA and 

the more rigid double strand. A parameter commonly used to describe the rigidity of a molecular chain is 

the ―persistence length‖ ρ, which is the typical length of the molecule which can be described by a rigid 

rod rather than a fully flexible chain with a random configuration. In the case of DNA, the persistence 

length varies between 0.75nm and 50÷80nm upon hybridisation, due to the change of configuration from 

single strand to double strand. The variation of rigidity is correlated to the variation of conformational en-

tropy of the molecule, which can be used as a parameter for modelling the DNA behaviour during hy-

bridisation and calculate the related cantilever bending. Regarding ssDNA chains, it is possible to evalu-

ate the average size of the chain in solution, given the probe length N and persistence ρ in nm, by the 

gyration radius parameter Rg [Alvarez 2004]: 

Rg=(0.43 N ρ /3)
0.5

   [nm]         2.1 

This parameter is of paramount importance for evaluating the length of interaction between adjacent 

chains immobilised on a surface, due to the changes of conformation of the chain; for instance, a 27-mer 

chain has a gyration diameter 2Rg = 3.4nm [Alvarez 2004]. Then, this parameter may provide a first 

evaluation of the probe density needed in order to obtain a proper nanomechanical response. 

The different effect are usually accounted by energetic methods, where the free energy of the system is 

modelled as a sum of contribution from the different phenomena, and related to the mechanical energy 

stored by the bended beam. At least qualitative prediction of cantilever response as a function of experi-

mental conditions (probe length, coverage density, DNA target concentration, ionic strength of the reac-

tion buffer, et.) can be performed by using such models. 

DNA binding to a substrate is commonly performed by means of the very stable and selective gold-

sulphur link, which can be easily implemented by adding a thiol group to the DNA strand and a gold layer 

on the device surface. The binding energy is often accounted for an addictive bending effect during the 

DNA immobilisation. For low coverage, this is often the dominating effects, leading to a response to im-

mobilisation only, and almost no response during the hybridisation [Alvarez 2004]. In general, the immo-

bilisation produces a wide response, with a downward bending due to an equivalent compressive stress. In 

this case all the phenomena are contributing to the bending, since electrostatic repulsion, hydration and 

conformation entropy are minimised by a downward bending. When hybridisation is performed, the con-

formational term is reduced by the stiffer configuration of dsDNA, while the charge effects are increased. 

For this reason, according to the ionic strength of the buffer, the beam can bend upward if the conforma-

tional term is dominating (high ionic strength) or downward if the electrical effects higher (i.e. at low 

ionic strength). The sign and the intensity of the response to hybridisation are also depending on the graft-
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ing density but, as a rule of thumb, they can be considered to be one order of magnitude weaker than re-

sponse to immobilisation. 

Extensive characterisations of grafting density, as a function of immobilisation buffer and probe length 

have been presented in [Stachowiak 2006], showing an increasing grafting density for buffers with higher 

ionic strength, with a steep increase at low concentration due to the predominance of osmotic forces, and 

a lower variations at high ionic strength due to the predominance of hydration forces. The grafting density 

is also influenced by the length of the probes, with a reduction for longer probes. All the models and ex-

perimental results in the literature point out that probe density is one of main key point for the efficiency 

of the device. Several evaluation techniques are available for investigating the probe density and the hy-

bridisation efficiency, ranging from radio labelling (e.g. 
32

P in [Alvarez 2004]), fluorescence-based meth-

ods [Stachowiak 2006] and label free approaches such as SPR-based measurements [Alvarez 2004]. Im-

mobilisation densities around (1÷2)10
13

 molecules/cm
2
 typically provide chains near enough to give a 

significant nanomechanical response [Wu 2001], while in [Alvarez 2004] the 3 10
12

 molecules/cm
2
 den-

sity did not provide a good response. In the latter case, the average distance between molecules is around 

6 nm, which is larger than the typical length of interaction (3÷4 nm), on the contrary of results in [Wu 

2001], where the average distance is around 2.3nm. When density is low, the only option is to use low 

buffer concentration in order to extend the length of electrical interaction, while length of interaction for 

conformational terms is almost independent from these conditions. 

The hybridisation density and efficiency are of course strictly related to probe density on the substrate. 

Interestingly, at high immobilisation densities the efficiency of the hybridisation is reduced due to the 

close strand packing, which contrast the target strand from reaching the hybridisation position on the im-

mobilised probes [Stachowiak 2006], with stronger reduction for longer probes. In any case, the overall 

hybridisation density is increasing with the immobilisation density, since the reduction in the hybridisa-

tion efficiency is not high enough for overcoming the advantage of a higher number of probes on the sub-

strate. When dealing with ―nanomechanical‖ sensors, a distinction must be provided between the hybridi-

sation efficiency and sensor response, since some cases are reported [Mukhopadhyay 2005, Alvarez 

2004] in which a successful hybridisation did not correspond to a mechanical response. In these devices, 

the positive effect of high immobilisation densities is much more effective than high hybridisation effi-

ciencies on low-density ssDNA SAMs, due to the need for short strand-to-strand spacing in order to de-

velop nanomechanical responses. Thus, the hybridisation efficiency is sometimes a parameter of reduced 

importance. For instance, the presence of so-called spacers, which are additional chain inserted between 

the thiol group and the ―real‖ DNA probe, is quite common in papers, in order to improve the coverage 

density of the ssDNA probes and hybridisation efficiency. Since the presence of linkers is also contribut-

ing to the nanomechanical response of the device, a reduction of the mechanical response is reported 

[Mukhopadhyay 2005] even if the hybridisation efficiency is higher, possibly due to the presence of both 
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a ssDNA and a dsDNA section after hybridisation, thus reducing the average contributions of the interac-

tion terms.  

Furthermore, in [Stachowiak 2006], the mechanical deflection of cantilever is shown to be almost inde-

pendent from the probe length, when the immobilisation density is taken into account and target and 

probes have the same length. Thus, in this case the response of the cantilever seems to be affected by the 

probe length only indirectly because of a reduction of the grafting density for longer probes. In [Hagan 

2002, Wu 2001, Hansen 2001], however, it is shown that at fixed probe length the response to target 

strand with different lengths is different. 

When the detection of single nucleotide mismatch is required, some further aspects must be taken into ac-

count, especially related to the effect of SNP on the mechanical response of the system, and to the robust-

ness of the cantilever method in real LOC systems. In [Hansen 2001], the effect of the position of a SNP 

in the probe strands is evaluated, leading to different responses. The proposed explanation is the partial 

hybridisation happening in the region from the strand end to the position of the SNP, thus resulting in a 

mixed ss/dsDNA structure. The loose end of the target strand not hybridised produces the SNP detection 

mechanism, which is accordingly dependent on SNP position. Thus, the design of probes must be defined 

in order to position the SNP in a proper region of the probe. Furthermore, in long probes (> 16-mer) the 

sensitivity to SNP is reduced, due to the partial hybridisation of the loose target probe after the SNP with 

the remaining complementary nucleotides of the probe strand. In LOC applications, real conditions pre-

sent some additional challenges, due to the non-controlled length of DNA target strands, which can influ-

ence the mechanical response of cantilever, due to the excess region of the target strands with respect to 

the region hybridised on the probe. 

The nanomechanical response of cantilever is then related to the DNA status (single or double strand, sur-

face density, length) on the surface and the nanomechanical interactions upon hybridisation or de-

hybridisation can be detected with cantilever sensors. Some papers in the literature [Biswal 2006, Biswal 

2007] have demonstrated the possibility to detect the de-hybridisation of DNA upon the application of 

temperature sweep. The change of DNA conformation is clearly detectable as a step response superim-

posed to the linear response related to bimetallic beam behaviour of devices. De-hybridisation tempera-

ture can also provide useful insights of DNA strand nature. This approach can be considered as a 

nanomechanical study of thermodynamic properties of DNA upon hybridisation / de-hybridisation, 

which, although not widely diffused in the literature, might demonstrate a strong potential for improving 

the confidence of DNA detection with cantilevers in real applications, where the uncontrolled length of 

DNA strands to be detected may results in incorrect results. In fact, a temperature scan can potentially 

distinguish between complete or partial DNA match and binding of unspecific strand or interferents. 
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The immobilisation of DNA self-assembled layers is one of the key issues for a successful realisation of 

DNA detectors. Several chemical procedures can be used, taking advantage of the recent advances in 

technologies for microarray production. The most commonly used immobilisation chemistry is based on 

sulphur-gold covalent bonding, due to the easy availability of gold film on devices and thiolated organic 

compounds, its chemical stability and the high specificity of this chemical bonding. The need for a depo-

sition method that can be scaled to large arrays with several different functionalisation on the same chip 

leads to the evaluation of either contact or non-contact spotting techniques used for microarrays and 

ELISA system. Papers in the literature also present incubation-based deposition of sensitive layer on can-

tilever, by inserting the cantilever array in an appropriate capillary array filled with reagents [Fritz 2008].  

2.4. Cantilevers for material characterisation 

The use of thin materials for MEMS and microelectronics applications requires an in-depth knowledge of 

mechanical, electrical and morphological properties of the material, especially when working with thin 

films. In order to optimize the deposition techniques for highly reliable protective coatings in terms of 

mechanical parameters, measurement techniques able to evaluate mechanical properties are required. 

Even if commercially available instrumentations are able to perform the analysis of mechanical properties 

of materials (e.g. nanoindentation techniques, measurement based on Stoney’s formula for the evaluation 

of residual stresses on thick substrates, interferometric methods), large errors can be obtained when film 

thickness is approaching the nanometer range. Furthermore, the evaluation of material stiffness by means 

of nano-indenters is prone to large errors when thin film materials are deposited [Cai 1995, Fisher]. 

Moreover, the small dimensions, thin film materials and free-standing structures often prevent the direct 

adaptation of standard testing methods for bulk materials [Srikar 2003]. The recent advances in microfab-

rication technologies have led to the development of a range of MEMS-based devices which can be used 

in the field of thin film metrology and characterization [Yi 1999], one prominent example being micro-

cantilevers for atomic force microscopy (AFM) [Humphris 2005]. Bending and tension test may be im-

plemented in MEMS structure, where suspended beam are pulled with several methods such as integrated 

electrostatic actuators, or a pressure load applied to suspended membranes [Srikar 2003]. Resonance of 

suspended structures with controlled dimensions might be also used to define the stiffness and mass of 

materials, as commonly done for the calibration of AFM probes or thickness control during film deposi-

tion through microbalances. External load may also be applied to suspended structures through several 

laboratory instrumentation such as nanoindenters, AFM, profilometers [Weihs 1988]. Static structures 

such as lancets and suspended structures with tilted arm geometries may be used for residual stress char-

acterisation on wafer, allowing a direct evaluation of stresses by a simple optical inspection [Bagolini 

2004]. In order to increase the sensitivity of Stoney’s method for the measurement of thin film materials, 

suspended circular structures with reduced dimension can be used with optical interferometric detection 

[Tang 2007]. 
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Recently microcantilevers have also been proposed as a tool for the characterization of thin film parame-

ters such as Young’s modulus and residual stress with great resolution and accuracy [McShane 2006, He 

2005]. In the cited literature, the used approach deals with the use of profilometers (optical and stylus) for 

measuring the bending of a thin suspended structure, which is related to the stress in a thin film deposited 

on the structure. The use of a mechanical profilometer also allows the evaluation of the deformation of 

the structure for a given applied force and thus of the stiffness variation due to the deposited thin film.  

The method is based on the measurement of the deflection of a cantilever, which is coated with a thin film 

of the material to be characterized. Mechanical properties of the thin film are, in fact, responsible for the 

bending of the beam. Among various possibilities reported in the literature, optical interferometry 

[Wehrmeister 2007] and methods based on optical reflection of a collimated laser beam [Mertens 2005, 

Waggoner 2007] can provide deflection measurement with high resolution. Beam bending can also be 

measured by mechanical profilometers or AFM equipments, which, in addition, allow the evaluation of 

the structure deflection for a given applied force and thus of the stiffness variation due to the deposited 

thin film [Humphris 2005, McShane 2006]. Both AFM and optical methods usually need high precision 

alignment between instrumentation and micromachined structures, making these systems unsuitable for 

online measurements and rather complex to be setup.  

A different approach consists in the integration of the deflection sensing elements on the cantilever. Al-

though more demanding from the point of view of the cantilever fabrication, this method provides two 

major advantages: the first one is the simplification of the measurement procedure, because, in principle, 

only an electrical measurement is required and the second one is the possibility of an on-line measure-

ment during the deposition of a thin film. Different implementations for the integration of the sensing 

elements are available, such as piezoresistive, piezoelectric or capacitive [Waggoner 2007]. Piezoresistive 

approach has some benefits with respect to other methods. From the cost and system complexity perspec-

tive, large arrays of piezoresistive cantilevers can be easily integrated in microfabrication technologies, 

allowing a high degree of parallelism in measurements and a strong reduction of production costs. The 

compatibility with CMOS technologies may also enable the on-chip integration of signal conditioning and 

readout electronics [Yu 2007]. Yet, when low cost devices for single use are needed, devices with inte-

grated sensing elements can be coupled with external CMOS readout electronics to provide a compromise 

between performances and costs. Moreover, the complicated setup typical of most optical methods, using 

high-precision alignments, are not required. The method is also suitable for on-line measurement of 

stresses, while other methods cannot be easily used in an equipment for material depositions. On the other 

hand, piezoresistors usually have a lower deflection resolution with respect to methods based, for in-

stance, on optical lever detection with Position Sensitive Detectors (PSD), but resolution is still high 

enough for most of applications where residual stresses in thin film need to be measured. 



Chapter 2 State of the Art 

18 

The procedure for the data extraction must be optimized in order to increase the measurement accuracy 

and robustness and in order to overcome some practical issues. Also secondary effects, such as the influ-

ence of beam length, Poisson ratio and anticlastic effects have been studied in the literature [Butt 1995, 

Vidic 2003]. 

2.5. Cantilever technologies 

The technological approaches described in the literature provide an overview of advantages, drawbacks 

and achievable results with the piezoresistive materials described in previous paragraphs. In particular, 

approaches using thin film structures and poly-silicon resistors can be found in [Rasmussen 2003], while 

in [Mukhopadhyay 2005], silicon nitride cantilever with silicon resistors are realised. The later technol-

ogy also led to the creation of a spin-off company of the Technical University of Denmark providing 

small cantilevers arrays as well as the instrumentations for arrays functionalisation and readout (Cantion, 

www.cantion.com).  

Another common approach for realising structures with tight  control on the thickness involve the use of 

SOI (Silicon on Insulator) wafers, for both realising silicon cantilevers with implanted resistors or using 

the BOX (Buried Oxide) layer for the mechanical structure and the device layer for the realisation of the 

resistors [Rasmussen 2004, Yu 2007, Yu 2008, Choudhury 2007]. As already highlighted in the materials 

section, the doping of choice for structure with applied uniform stress is n-type [Rasmussen 2004], due to 

the higher response. Similar technologies, developed at National Competence Center for Nanoscale Sci-

ence (NCCR) in Basel and at the IBM Research Laboratory in Rüschlikon/Zurich resulted in the founda-

tion of the Concentris GMBH (www.concentris.ch), working with silicon cantilevers arrays for several 

application. Chips are similar to those presented in several scientific paper such as [Fritz 2008]. IBM also 

developed a technological platform, named ―Millipede‖, for the development of large cantilevers arrays 

for storage purposes. Heaters, thermometers, electrodes for electrostatic actuation are integrated on canti-

levers, which are used to write bits as holes on a thermoplastic polymeric layer through thermal and me-

chanical methods. Although the application is different, the 1024 cantilever chip presented in [Vettiger 

2002] demonstrated the feasibility of very large arrays and might also be applied to sensing applications. 

More recently, polymeric beams (thus with Young’s modulus orders of magnitude lower then silicon-

based materials such as crystalline Si, silicon oxide and nitride) have been realized [Calleja  2005], featur-

ing gold strain-gauges elements for deflection detection [Johansson 2005, Thaysen 2002]. Although the 

appealing mechanical properties of polymeric materials (for instance such SU-8), this approach still suffer 

of the limited choice of sensing materials that can be implemented on the device (e.g. gold strain gauges), 

usually providing really low sensitivity. Alternative implementation of piezoresistive elements with high 

compliance deals with polymeric material to either direct implementation of strain gauges using conduc-

http://www.concentris.ch/
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tive polymers [Lillemose 2008] or polymeric matrix with embedded conducting particles  [Shui 1996] or 

wires [Gammelgaard 2006]. 

More complex technological approach oriented to the integration of sensing elements and standard 

CMOS electronics have been reported. Some works [Verd 2005, Barrettino 2007] use post-processing 

steps on standard CMOS processes for realising the suspended structure, for instance by using the 

well/substrate junction as an etch stop for wet etching techniques [Barrettino 2007] or by using the stan-

dard poly-silicon layers available in standard CMOS for the realisation of the sensing elements. Since in 

this approach the thickness achievable is too high for biosensing applications and control on the etching 

procedure is somehow non optimal, latest approaches exploit CMOS processes realised directly on SOI 

wafers to ease the post processing steps needed for the realisation of micromechanical structure [Yu 2007, 

Yu 2008]. 

Regarding the general design approaches, the configuration using a double resistor reference on bulk and 

a reference cantilever is by far the most used and the reference beam is definitively needed in order to 

discriminate the real signals from the non-specific interaction in the solution [Fritz 2000]. Different 

width/length ratio of the beams can be implemented according to the selected technology, and in particu-

lar there is the possibility to realise short beams (W/L around 1) and sensing elements covering almost all 

the beam surface when using poly-Si, p-type or n-type (100) resistors [Mukhopadhyay 2005], while for n-

type (110) resistor a higher W/L ratio is required in order to minimised the sensitivity reduction at the 

root [Choudhury 2007].  
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Chapter 3 

3. Piezoresistive cantilever devices 

3.1. Mechanical properties 

In both resonance and deflection modes, the microcantilever response is related to the me-

chanical properties of the beam. In single material suspended beams, the beam stiffness S for 

a given rectangular section can be calculated as: 

3

12

1
tWES          3.1 

where E is the Young’s Modulus, t and W respectively the thickness and the width of the 

beam.  

Real devices, however, need a more complex structure in order to allow the electrical insula-

tion of sensing elements and to provide a suitable surface for the deposition of the sensitive 

layer; then, the beams usually have a multilayer rather than a single layer structure. This re-

sults in some modification of beam properties, due to different densities and mechanical prop-

erties of materials and to residual stresses. Moreover, the effect of residual stress of materials 

results in a beam bending, according to the overall momentum on the section. The mechanical 

behaviour of microcantilever structures can be described by the equations [Mallick 1993]: 

 












































0

0

kCB

BA

M

N

M

N

M

N

T

T

R

R 
      3.2 

where 0 and k0 are the mid-plane strain and warping of the multilayer, and:  
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are the loads equivalent to residual stresses of materials, NT, MT are the loads equivalent to 

thermal deformation and N, M are the external loads on the section. The components A, B 

and C of the beam stiffness are defined as:  
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Where the matrixes Q are the stiffness matrix of the materials and the [C] matrix represents 

the stiffness for the flexural deformation of the structure, which replaces the E·I stiffness term 

for monolayer structures (pls. see eq. 3.10). 

The stress distribution in the beam section, resulting from an applied momentum can be cal-

culated from the deformation of the mid-plane, as a function of the position in the section (δ). 

In each layer: 

)()( 00   kQ          3.5 

The general description of ideal stress distribution in a single layer structure is reported in 

Figure 3.1. Here, the thickness coordinate is set to zero in correspondence with the neutral 

axis for bending of the beam, which is the barycentre of the beam in this simple case. In this 

model, it is clear that sensitivity of a piezoresistive cantilever increases with thinner beams, 

while beam length and width are not affecting the sensing properties. However, in the real 

structure, the stress distribution at the interface between two layers with a discontinuity in ma-

terial properties is different in order to respect the equation of mechanical equilibrium, thus 

providing a smoother transition. In particular, a reduction of σii for respecting the continuity is 

expected, and a higher σij.  

 

Figure 3.1. Ideal stress distribution on beam section with single layer structure: x axis: thickness of the 

beam, with sensitive layer (interfaces shown in red). Stress of sensitive layer (σF, blue hatch in the 

figure) results in a stress distribution over the beam section (black hatch), with maximum stress σMAX at 

the beam surface. 
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3.2. Piezoresistive read-out 

Several read-out methods for the cantilever deflection have been proposed in literature, in-

cluding optical methods, piezoresistive and piezoelectric reading, and electrostatic or electro-

magnetic based methods. The piezoresistive method is commonly used for this purpose be-

cause it can be easily implemented in a microfabrication process and then it show great 

advantages in term of integrability of the device. In piezoresistive cantilever detector, the sen-

sitivity to stress largely depends on the materials used to realise the sensing elements. Here, 

comparison of properties for the most used materials, in particular monocrystalline silicon 

(both n-type and p-type, with different orientations), poly-silicon and gold [French 1988, 

French 2002, Gridchin 1995, Kanda 1982, Johansson 2005, Thaysen 2002] are evaluated in 

terms of sensitivity, integration and mechanical properties. This paragraph is particularly fo-

cused on sensitivity properties of materials to applied stresses, while further electro-

mechanical consideration, allowing the evaluation of overall device performances, are re-

ported in next paragraphs. 

3.2.1 Monocrystalline Si 

Monocrystalline Si is a well known piezoresistive material [French 1988, French 2002]; since 

Si resistors can be easily realised by implant on Si wafer, this approach is fully CMOS (Com-

plementary Metal Oxide Semiconductor) compatible, even if implants with low junction 

depth are required for high sensitivity devices. Monocrystalline Si resistors allow a high sen-

sitivity, with respect to both poly-Si and strain gauges. A comparison of piezoresistive coeffi-

cients πij of different materials and orientations is reported in Table 3.1, as well as the result-

ing relative resistance variation in unidirectional stress distribution (longitudinal and 

transversal with respect to resistor alignment) and in ―planar‖ stress distribution, where the 

same stress is applied in both longitudinal and transversal directions. The latest distribution is 

similar to the ideal stress distribution on an infinite beam used in static mode, where the beam 

bending is caused by the adsorption of analytes on the beam surface. In this case, n-type Si 

provides the best sensitivity with respect to p-type Si, due to the higher symmetry of p-type Si 

coefficients. n-type resistors can be realised in both <110> and <100> orientations, where the 

latter provide advantages in ―real‖ beams, where the stresses are not planar at the cantilever 

root. Further analyses of this aspect are reported in the next paragraphs. Sensitivity is depend-

ent on both doping level and temperature [Kanda 1982] (see Figure 3.2); thus careful selec-

tion of the process parameter can provide a trade-off between sensitivity and stability vs. tem-

perature. 
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Figure 3.2. Typical piezoresitance factor of monocrystalline Si (left: n-type, right: p-type) as a function 

of impurity concentration and parameterised on temperature (Figure from [Kanda 1982]). 

3.2.2 Polysilicon 

Polysilicon is a standard material in CMOS processes, Since often poly-Si is used to realise 

MOSFET gates in self-aligned CMOS; therefore, this material provides high compatibility 

with standard processes. In commercially available processes multiple poly-Si levels are often 

available. Polysilicon exhibits properties similar to monocrystalline silicon, even if the ran-

dom orientation of grains and the presence of the grain boundary reduce the piezoresistive ef-

fect [French 1988, French 2002, Gridchin 1995]. In order to reduce the negative effects of the 

presence of grain boundaries, several process parameters must be adjusted; in general, high 

doping and large grains provide the best performances for polysilicon. By using a LPCVD 

(Low Pressure Chemical Vapour Deposition) process, in the 2÷3 10
19

 cm
-3

 doping range, with 

deposition temperature in the range 560÷600°C, sensitivity is optimal and temperature de-

pendence (TCR) is minimised. For poly-Si, p-type resistors are preferred, due to their higher 

sensitivity and linearity and lower hysteresis. Typical values are reported in Table 3.1, show-

ing performances around 60÷80% of the monocrystalline Silicon. 

3.2.3 Strain gauges 

Since both implanted and poly-Si resistors are not easily integrated on polymeric devices, the 

most effective approach to the realisation of these devices is based on the deposition and pat-

terning of gold resistors, which exhibit strain-gauge effect. The sensing properties, in this case 

are far lower than piezoresistive materials, but the evaluation of overall performances must 

also take into account the lower stiffness of polymeric beams (even more than 2 orders of 

magnitude less than Silicon) [Johansson 2005, Thaysen 2002]. Thus, evaluation of this ap-

proach has been performed even if sensing properties are quite low. Usually, gold can be de-

posited by evaporation. 
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Table 3.1. Summary of material sensing properties: πij piezoresistive coefficients, Ki relative resistivity 

variation per stress units (L = longitudinal stress, T = transversal stress, P = planar stress) 

Material Orientation 
π11 

[10
-11

 Pa
-1

] 

π12 

[10
-11

 Pa
-1

] 

π44 

[10
-11

 Pa
-1

] 

KL 

[10
-11

 Pa
-1

] 

KT 

[10
-11

 Pa
-1

] 

KP 

[10
-11

 Pa
-1

] 

p-Si <110> 6.6 -1.1 138.1 72 -66 6 

n-Si 
<110> -102.2 53.4 -13.6 -31 -18 -49 

<100> -24.5 -24.5 -155.6 -102 53 -49 

poly-Si 

(typical) 
- - - - 51 -18 33 

Gold - - - - 2 -2 0 

Table 3.2. Summary of typical material mechanical properties. 

Material E [GPa] ν σR [MPa] ρ [Kg m
-3

] 

Si 

E [110] = 169 

E [100] = 130 

Gxy = 51 

Gxz = Gyz = 79 

νxy = 0.064 

νxz = νyz= 0.361 
0 2329 

poly-Si 150 0.17 - 2329 

Au 80 0.35 155 on SiO2 19280 

SU-8 4.02 0.22 16÷19 on Si 1190 

PDMS 360÷870 10
-6

 0.5 - 970 

 

In order to provide a simple but still useful model, the analytical analysis has been performed 

in a mono-dimensional beam by assuming a beam with ―infinite length‖, thus not considering 

the effect of beam root. The description is effective only at a certain distance from the beam 

root, since in real beams with finite length, the presence of a constraint at beam root modifies 

the stress distribution in a region of length approximately 1÷2 times the beam width. These 

effects will be further described in the paragraph devoted to the FE analysis of the device.  

According to the working mode, the beam deformation can be evaluated in different ways.  

3.2.4 Resistor geometrical efficiency: resistor and passivation thicknesses 

Since stress sensor is expected to detect σMAX at the beam surface, thickness of the piezoresis-

tor must be as shallow as possible. Since the stress distribution along z is linear, the geometri-

cal efficiency (εgeom) of the piezoresistor related to the ideal case of a resistor with null thick-

ness can be estimated with the approximated function (where zSUP is the distance between 

neutral axis of the beam and resistor top surface, tR is the thickness of the piezoresistor): 

supsup

sup 212

z

t

z

t
z RR

geom 


         3.6 

Thus, piezoresistor must be as thin as possible. Furthermore, the thickness of the electrical in-

sulator film over the beam modifies the neutral axis position with respect to the sensing ele-
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ment position, thus reducing the zSUP. Also in this case, efficiency is reduced. The formula can 

be used for estimating a proper trade-off between read-out efficiency and a suitable electrical 

insulation.  

3.2.5 Thermo-mechanical and electrical noise and SNR ratio 

Noise is an important parameter for piezoresistive read-out and can limit the device resolu-

tion. Different terms should be taken into account: electrical noise (Johnson and Flicker noise) 

and thermo-mechanical noise. The Johnson noise deals with thermal energy in the resistor and 

is frequency independent. The spectral power density is: 

RTkS BJ  4          [V
2
 Hz

-1
]      3.7 

The Flicker noise can be evaluated by: 

fN

V
S B

H





2

         [V
2
 Hz

-1
]      3.8 

where VB is the bias voltage, N is the total effective number of charge carriers in the piezore-

sistor, f is the frequency and α is a dimensionless parameter related to the annealing of the 

implanted resistor. Thus, electrical noise can be limited by devices with high doping or, if the 

implant dose is set by temperature or sensitivity consideration, by implant region as wide as 

possible and with a proper geometry to optimise the effective carrier number, which is related 

to the current density uniformity in the resistor.  

Thermomechanical noise must be also considered, since the thermal vibrational noise that can 

affect the measurement results and set a limit to device resolution, especially for low thick-

ness (and stiffness) and highly damped cantilevers, where the low energy of the vibration is 

easily dissipated by damping. In fact the thermo-mechanical noise is strictly related to the 

damping of the structure [Butt 1995]. The spectral density of the thermo-mechanical fluctua-

tion force depends on temperature T and drag coefficient of the structure b and can be evalu-

ated by:  

bTkF Btm  4   [N Hz
-1/2

]      3.9 

This effect is lower than piezoresistive read-out noise in structures with thickness in the mi-

cron range and resistors with resistance in the kΩ range, and becomes more effective only for 

thinner beams. 

3.3. Resonating cantilever sensors 

In resonance mode, the beam vibrates at its Eigen-frequencies, resulting in a deformation and 

stress distribution typical for each resonance mode. At first mode, the resonance frequency 
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can be estimated by the simplified models reported in the literature [Madou 2002, Raiteri 

2001, Baller 2000, Rasmussen 2003, Chen 1994, Chen 1995, Datskos 2004]. The structure 

can be considered as a simple spring-mass oscillator where the spring constant is related to 

physical and geometrical properties of the beam by the relationship: 

 
3

3

3 4

3

L

tWE

L

EI
K




         3.10 

The cantilever mass m is evaluated by the sum of the cantilever mass and the analyte ad-

sorbed mass inducing the resonance frequency shift, and it must be corrected by using a factor 

n related to the device geometry (m* = n m, where n=0.24 for rectangular beams). When the 

structure is actuated in gas environment at atmospheric pressure a further term should be 

added to the mass, to take into account the gas molecules dragged by the cantilever. The ad-

dictive mass density χ (per length unit) is evaluated by: 

 
2

2Wgas 



   [Kg m

-1
]      3.11 

For beams with thicknesses in the micron range this effect is quite low, even if it is not com-

pletely negligible. The resonance equation for the spring-mass system is:  
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zd
     3.12 

Here the damping effect has been included by means of a term proportional to the beam ve-

locity, which is an assumption suitable for small amplitude vibrations, while for large oscilla-

tion it is proportional to the square of velocity. The parameter γ is defined as the ratio of the 

drag coefficient vs. the corrected linear mass density (Eq. 3.13). In first approximation the 

drag coefficient (b) of the beam is proportional to the cantilever width, according to the prop-

erties of a cylinder moving in a viscous flow, which is a suitable model available in literature 

[Buser 1994].  
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        3.13 

Usually internal damping can be neglected in atmospheric pressure application. Finally, the 

solution of the equation (3.12) provides the resonance frequency for the first resonance f0 (for 

the undamped oscillation):  
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  [Hz]    3.14 

where E is the Young’s modulus of Silicon, and W, t and L are width, thickness and length of 

the beam. The frequency shift due to damping effect can be evaluated by 







, 
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where  is referred to the undamped oscillation and  is the corrected value. In Chapter 4 

some correction for different geometries are reported.  

The sensor sensitivity can be calculated by:  

 
 


tdm

df

f
Sm



11 0

0

   [m
2
 Kg

-1
]    3.15 

where the sum takes now into account the multilayer structure. Thus higher sensitivities can 

be achieved from thin, low density devices. Then resonance frequency depends on both mass 

increase and induced superficial stress. These effects have opposite sign, since a mass in-

crease result in a lower resonance frequency and the stress stiffening effect results in a higher 

frequency [Chen 1995]. In general: 
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       3.16 

The stiffening effect due to thin film residual stresses can be evaluated by means of FE simu-

lations (see paragraph 4.2.3). With regard to the sensitivity of the device, both m and K are 

related to sensitive layer and analyte properties, and an experimental measurement of the ana-

lyte-sensitive material interaction is needed in order to estimate the overall beam sensitivity. 

The detection limit is: 

 min

00

min
min

1
f
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f

f
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   [Kg m
-2

]    3.17 

A lower detection limit can then be obtained at high resonance frequency, and hence if mate-

rial properties and beam thickness are set by the fabrication process, short structures provide 

better resolution. A limit to the scale-down process is set by actuation and read-out methods 

reliability, as well as by fabrication process. 

Another important parameter of resonating structures is the quality factor, which depends on 

the viscous damping of the cantilever. The amplitude of the sensor output for a given actua-

tion intensity is strictly related to the quality factor, and then a Q estimation is needed in order 

to optimise the detection of the resonance frequency. The detection of the resonance fre-

quency and the amplitude of the read-out for a given actuation intensity are strictly related to 

the quality factor. Q depends on the cantilever density per length unit (beam), on the drag co-

efficient b and on the resonance frequency: 

 
b

Q beam 
 0          3.18 

Then, since both drag coefficient and linear mass density are proportional to W, in first ap-

proximation the quality factor does not depend on cantilever width, but decreases with beam 
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thickness at constant frequency. Then, in the resonance mode, higher sensitivities can be 

achieved from thin, low-density devices.  

The efficiency of resonance methods is strongly affected in liquid environments, making the 

deflection mode more suitable for such applications. However, an improvement of the quality 

factor can be achieved by using a feedback system for the actuation, where the signal read 

from the cantilever is fed to the actuator. This has been demonstrated to improve the read-out 

efficiency of orders of magnitude [Vidic 2003], making this approach usable also in liquid 

phase, although generally deflection mode can provide better performances in liquid phase. 

Actuation can be performed with several approaches, including integrated and discrete piezo-

electric devices, electrostatic and magnetic induction set-up [Vidic 2003, Lee 2004/2].  

In resonance mode, the deformation can be roughly approximated to the one obtained by ap-

plying a force on the beam tip. In this case the momentum applied on each section of the 

beam is proportional to the distance from the tip, resulting in a maximum curvature and stress 

at the beam root. This point reflects on the optimal design of readout piezoresistors, which 

must be placed in the maximum stress region. 

3.4. Static cantilever sensors 

The bending of thin beam in response to a surface stress arising from the analyte adsorption 

results in an applied load equivalent to a uniform planar stress on the beam surface. It is use-

ful to note that the effect of sensitive layer, which can be in principle unknown in the specific 

application, can be considered as the term σF tF, which is proportional to the applied momen-

tum MF= σF tF t/2, where t is the beam thickness. Then, it is not necessary to know sensitive 

layer thickness and stress separately. Thus, in the bending mode, the beam deformation can be 

obtained by integrating the curvature over the beam length (z and x longitudinal and thickness 

coordinates respectively, M applied momentum, EI bending stiffness of the beam): 

REI

M

dx

zd 1
2

2

 
         3.19 

Thus, in an ideal case, sensitivity of piezoresistive beams is not related to the beam length, 

since the applied load is uniformly distributed over the surface. Consequently, length is not a 

key design parameter, in contrast with force sensors (e.g. AFM probes) and cantilevers used 

as gravimetric sensors in resonance mode. In deflection-mode cantilevers, beam length is only 

effective in optical lever read-out methods, since the angular deflection of the beam is calcu-

lated by integrating the curvature along the beam. 

Since real beams are multilayered structure, in order to allow the electrical insulation of sens-

ing elements and to provide a suitable surface for the deposition of the sensitive layer, the de-
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scription must take into account the geometrical and mechanical properties of the section. The 

bending can be evaluated by using equivalent loads in the equation for planar structures (eq. 

3.2), where the applied loads are: 

 FFYX tNN           3.20

 
2

ttMM FFYX      

The resulting stress on the beam can be calculated according to the eq 3.5. 

Then, according to the previously described mechanical properties, the best sensitivity can be 

achieved from thin – low elastic modulus devices, even if the thermal vibrational noise in-

creases by lowering the structure stiffness [Butt 1995].  

3.5. Technologies for cantilever fabrication 

The silicon microcantilever structures were fabricated at FBK Microfabrication facilities with 

a CMOS-compatible technology using post-processing micromachining steps. The activities 

performed in this thesis for the development of technologies mainly deals with the optimisa-

tion of implant parameters through the FE simulations of processes and evaluation and opti-

misation of stress balance in multilayered  suspended structures. An overview of the used 

technology is reported for completeness in this section. Different fabrication processes will be 

described, where the first one is aimed to the realization of 10 µm-thick silicon microcantile-

vers, while the second one allows the fabrication of 2 µm-thick silicon beams developed with 

SOI (Silicon On Insulator) technology for enhanced sensitivity. Then, test structures and 

processes for optimisation of a new process for thinner beams (340nm single-crystal silicon) 

are presented. The processes were developed by taking into consideration the modelling and 

designs presented in Chapter 4, 5 and 6. 

3.5.1 Fabrication process of 10 µm-thick silicon microcantilevers 

The first fabrication process was based on n-type, 4-inch, 500-µm-thick, (100) oriented, dou-

ble polished silicon wafer, with resistivity from 8÷12 Ω cm. The p-type piezoresistors were 

realised by ion implantation through a 28nm screen oxide with parameters in Table 3.3. A 

thermal annealing of 22 minutes at 1150ºC in N2 was performed in order to diffuse and acti-

vate the implanted ion species and to recovery the crystal damage. Implant process was simu-

lated by using the ATENA (Silvaco) software. Result summary of doping profile is shown in 

Table 3.3, according to implant process simulations. The junction depth was in the range 1.42 

÷ 1.8μm. This resulted in a correction of the read-out sensitivity to bending, according to the 

linear stress distribution on the beam section including a 700nm oxide-gold total thickness on 

the 10m beams. In first approximation this effect can be taken into account by a coefficient 
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 which can be calculated by the ratio of the distance between the piezoresistor mid-plane 

and the cantilever axis, and the mid-thickness of the multilayer structure. For this process, this 

factor can be evaluated to be near 0.7, due to the quite high implant depth. The efficiency of 

the read-out also depends on doping profile. In Table 3.3, the correction coefficients for pie-

zoresistors’ properties are reported, where the π-correction factor must be applied to piezore-

sistive coefficient previously indicated to take into account the dependence on doping concen-

tration at room temperature, while ―T dependence‖ shows the temperature dependence of the 

πij coefficients. The lower doping concentration considerably enhances the temperature stabil-

ity of the device, with a low reduction of the sensitivity at room temperature. 

Table 3.3: Implant parameters and simulations results. 

Ion Energy 

[keV] 

Dose 

[at cm
-2

] 

Junction 

depth [μm] 

Sheet resistance 

[ Ω/□] 

NA 

[cm
-3

] 

π correction 

factor 

T dep. 

[°C
-1

] 

BF2 110 2 10
15

 1.86 108 3.5 10
18

 ~ 0.9 -4.4 10
-3

 

B 70 2 10
14

 1.66 407 5 10
17

 ~ 1 -6.4 10
-3

 

B 70 2 10
13

 1.42 1660 8 10
16

 1 -6.7 10
-3

 

 

Estimations of noise in piezoresistors for the different doping level are shown in Table 3.4. 

Table 3.4: Noise estimation for different doping levels 

Dose [at cm
-2

] R [Ω] N [cm
-3

] SJ [V
2
 Hz

-1
] SH @ 1Hz [V

2
] 

2 10
15

 216 6.4 10
8
 3.6 10

-18
 7.8 10

-15
 

2 10
14

 814 8 10
7
 13.5 10

-18
 61.5 10

-15
 

2 10
13

 3320 1 10
7
 55.0 10

-18
 449.1 10

-15
 

According to results, for working frequencies in the range 100 ÷ 200 kHz flicker noise can be 

neglected.  

 

Figure 3.3:  Noise power vs. frequency for different implant doses. 
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The thermomechanical noise was evaluated for the different beam geometries according to the 

equations (3.9). 

Table 3.5:  Evaluation of thermo-mechanical noise for different beam sizes. 

Geometry Ftm [N Hz
-1/2

] 

1000 x 106 x 10 7 10
-14

 

500 x 106 x10 7 10
-14

 

150 x 50 x 2 4 10
-14

 

 

Three different implant splitting were implemented in this step in order to test and evaluate 

the dependence of piezoresistive coefficients with the doping concentrations. 

Table 3.6: Implant parameters summary 

Implant Element Energy (keV) Dose [at/cm
2
] 

Boron 70 2.0 10
13

 

Boron 70 2.0 10
14

 

BF2 110 2.0 10
15

 

 

A second lithographic step was used to define the n+ regions for substrate contact realisation. 

Phosphorus was implanted, with energy 80 keV and dose 3 10
15

 at/cm
2
. The third lithographic 

step allowed the definition of the contact regions of the piezoresistors, implanted with BF2 

(energy 110 keV, dose 3 10
15

 at/cm
2
) in order to have an ohmic contact (p+ region) with the 

overhanging metal lines. The piezoresistor regions were implanted with As with a thermal an-

nealing performed at 925ºC for 15 minutes in oxygen atmosphere to diffuse and activate the 

piezoresistors and n+ and the p+ implants. The hard mask for the final wet chemical etching 

during the bulk micromachining steps was then realised on the back of the wafer with a multi-

layer stack of TEOS, LPCVD silicon nitride and LTO. The forth lithographic step defined the 

openings in the TEOS front side layer by dry etching for the metal lines to contact the pie-

zoresistors and the n
+
 regions. The deposition of the metal multilayer (Ti/TiN/Al:Si1%/Ti) 

was done by sputtering technique. A fifth lithographic mask defined the metal lines, in order 

to lead the electric signal outside the cantilevers area to the chip pads. The metal multilayer 

was passivated by a layer of silicon dioxide (LTO). This deposition was performed at low 

temperature (430ºC), in order not to damage the aluminium layer. The sixth lithographic step 

was used to define the back-side bulk micromachining etching. The seventh lithographic step 

was used to define the openings for the pad regions through the LTO passivation film. A thin 

film of gold (Cr/Au, 5/100nm thickness respectively), needed for the device functionalisation, 

was deposited and patterned on the devices by means of electron gun evaporation. To release 

the microcantilevers structures, bulk silicon was then anisotropically removed from the back-

side by wet etching with tetramethyl ammonium hydroxide in aqueous solution (TMAH 25 wt 
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%) at 90ºC, until 20µm thickness was obtained. The last etching step was performed on both 

sides in order to release the structures. 

 

Figure 3.4. Fabricated devices cross sections.  

  

  

Figure 3.5. Process photograph of devices after the beam release. Clockwise from top-left: 1500m 

beam array, detail of beams, detail of a Wheatstone bridge, 500m beam array. 

The process characterisation was performed on the test structures implemented on the design. 

Main results are reported in Table 3.7. 

Table 3.7. Results of test stripes characterization (p resistor values for splittings in Table 3.6. 

Layer Resistivity 

Aluminium wires 0.07 ± .01 Ω/□ 

Gold .45 ± .01 Ω/□ 

p+ 106 ± 10 Ω/□ 

p resistor 1940 ± 40 Ω/□, 390 ± 16 Ω/□, 1653 ± 100 Ω/□ 
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3.5.2 Fabrication process of 2 µm-thick silicon microcantilevers 

The second fabrication process was implemented on Silicon-on-Insulator (SOI) wafers with 2 

µm-thick surface layer of silicon (usually named as device layer), an underlying 0.5 µm-thick 

layer of silicon dioxide (buried oxide, BOX), and a support or ―handle‖ silicon wafer, having 

a thickness of 500 µm. As for the first process the wafer was n-type, 4-inch, (100) oriented, 

double polished, with resistivity from 8÷12 Ω cm. The BOX layer was used as an etch stop 

during the post processing steps of micromachining, thus allowing the fabrication of thin can-

tilevers with enhanced device sensitivity. Apart from piezoresistors realization, front side 

beams definition and post-processing micromaching steps, the fabrication process of the 2 

µm-thick silicon microcantilevers was similar to the previous process. Due to the reduced-

beam thickness (2 µm), implant parameters were adjusted in order not to overpass the neutral 

axis of the cantilever, lowering the efficiency of the piezoresistive transduction. 

  

Figure 3.6. Simulation of piezoresistor doping profile and net doping. (Athena Silvaco simulation 

software). 

Based on implant simulations made with ATHENA (Silvaco) software, BF2 implant with dose 

5 10
12

 at/cm
2
 and energy 80 keV was selected. The thermal annealing was performed at 975°C 

for 20 minutes in nitrogen atmosphere. The values of the simulated implant depth and sheet 

resistance were respectively 288 nm and 7383 Ω/sq. In the new process, due to the relative 

low thickness of the beams, the definition of the beam structures was realised from the front 

side with a standard dry etching step, restricting the number of the micromachining steps to 

one single back side wet etching of the handle layer, using the BOX layer as an etch stop. The 

BOX was removed with a wet etching of the silicon dioxide. 
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Figure 3.7. Cross-sections of 2 µm-thick beams. 

Table 3.8. Results of test stripes characterization. 

Layer Resistivity 

Aluminium wires 0.061 ± .007 Ω/□ 

p+ 62 ± 1 Ω/□ 

p resistor 18000 ± 6000 Ω/□ 

3.5.3 Development of 340nm beams 

In order to realise static cantilevers for biosensor applications the device thickness must be 

below 1µm due to the strict application requirements. A further reduction of beam thickness is 

then needed. SOI wafers with suitable properties were purchased from SOITEC (Table 3.9). 

Table 3.9. SOI wafers specifications 

Parameter Value Unit 

Wafer diameter 4 inch 

Doping type (device layer) P type (B) - 

Orientation (100) - 

Resistivity (device layer) 14 ÷ 22 Ω cm 

Thickness (device layer) 296 ÷ 384 nm 

BOX thickness 392 ÷ 407 nm 

 

The critical points for the realisation of piezoresistors on thin structures are the residual 

stresses balance for the realisation of flat structures, the release procedure of mechanical 

structures and the receipts for piezoresistor implantation. In order to evaluate the better tech-

nological approaches and to optimise the technological steps, performed tests are reported in 

the following paragraphs.  

3.5.3.1. Characterisation of residual stresses of materials 

Based on standard wafers, depositions of different stacks of thin film materials for the realisa-

tion of gold layers on cantilever devices were performed and residual stresses were evaluated 

by means of the Stoney’s formula after each deposition, in order to evaluate the differential 

contribution of each layer: 
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The selected thicknesses and sequence of layer and measured residual stresses are reported for 

each wafer in Table 3.10 and Figure 3.7. 

Table 3.10. Test of residual stresses: selected thicknesses and sequence of layers. 

wafer 

first layer  

(PECVD Si oxide) 

second layer  

(Cr-Au) 

both layers 

 

before  

anneal 

after  

anneal 

thickness  

[nm] 

stress  

[MPa] 

thickness  

[nm] 

stress  

[MPa] 

thickness  

[nm] 

stress  

[MPa] 

stress  

[MPa] 

POC1T/1 10.0 -350.4 23 441.6 33.0 317.0 152.3 

POC1T/2 13.7 -402.1 23 241.7 36.7 85.0 67.4 

POC1T/3 18.5 -395.7 23 349.5 41.5 49.1 91.9 

POC1T/4 24.0 -444.8 23 457.7 47.0 -205.3 -35.6 
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Figure 3.7. Overview of residual stresses of oxide and overall multilayer structure as a function of the 

Si oxide layer [nm]. Effect of gold annealing is also reported. 

On the basis of the results, the multilayer structure for the test devices has been defined to two 

possible implementations, later used for the test structure fabrication. The Cr/Au layers have 

been fixed to 23nm total thickness and oxide to 16 and 20nm in order to find the best stress 

compensation. 
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3.5.3.2. Test structures  

One test process has been focused on the steps for the definition and the release of suspended 

structure, as well as the study of mechanical properties of beams with different geometries. 

Thus, no readout has been included in the test structures. The process is based on Silicon-on-

Insulator (SOI) wafers similar to the one expected to be used for the final devices. This proc-

ess has provided test structures for the optimisation of the device functionalisation and the re-

finement of release techniques for the thin structures. The process uses three design layers 

(namely FRONT, BACK and GOLD) for the definition of the front side of cantilever arrays 

on the device layer, of the back side etching for cantilever release and of the gold adhesion 

layer on beams respectively. 

Table 3.11. Mask-set of the process  

Mask name Mask polarity Align on 

FRONT Dark field Alignment Mask 

BACK Dark field FRONT 

GOLD Dark field FRONT 

 

1) 2) 3) 

4) 5) 6) 

7) 8) 9) 

Figure 3.8. Process flow: 1.Deposition of a multilayer stack (TEOS/ LPCVD nitride / TEOS) on the 

back side. 2. Deposition of a thin PECVD oxide layer on the front side 3. Lithographic definition of 

FRONT mask and front side etching of suspended structure in the device layer. 4. Lithographic 

definition of BACK mask and hard mask etching. 5. Lithographic definition of the GOLD mask, Cr/Au 

deposition and lift-off. 6. Front side coating with protective layer. 7. Back side etch and pre-dicing of 

wafers. 8. Oxide (BOX) removal. 9. Coating removal and structure release. 
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A multilayer stack (TEOS/ LPCVD nitride / TEOS) is deposited on the back side for the reali-

sation of the back side hard mask, while a thin PECVD oxide layer is used for gold adhesion 

on the beam. A technological splitting has been implemented (16 and 20nm thickness respec-

tively) for evaluating the stress compensation of the structure, on the basis of the test process 

for stresses (POC1T). The FRONT mask is used to define the front side etching of suspended 

structure in the device layer, followed by the lithographic definition of BACK mask and hard 

mask etching. The GOLD mask is then used to define the Cr/Au layer on beams by means of 

a lift-off process. A protective coating is used to protect the suspended structure during the 

TMAH wet etching process of handle layer from the backside and BOX removal. The process 

flow is reported in Figure 3.8.  

A set of array geometries were designed, for the realisation of preliminary structures and 

functional tests. In Figure 3.9 and 3.10, the complete design on the wafer and alignment 

markers are reported, also showing the correspondence of colour codes with process layers.  

 

Figure 3.9. Top view of the whole wafer design for the test process ―POC1‖, showing the contour of 

the 4‖ wafer and useful area for devices (black circles). Details of the included devices are reported in 

the next Figures.  

 

Figure 3.10. Alignment marker for masks layers (1 front-etch, 2 back-etch, 3 gold adhesion layer) 
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Different length, dimensions, array configuration have been designed in order to evaluate the 

best design for final devices. A review of main geometries is reported below. 

 

Figure 3.11. Main devices for sensitivity tests, compliant with Protiveris
TM

 instrumentation for 

evaluation of beam deflection. Overall chip dimensions: 22400 x 5000 µm
2
. Configuration: 4 wells 

with 4 beams (300 x 150 µm
2
 each). 

 

Figure 3.12. Same device as in previous figure, with a different etching design. 

 

Figure 3.13. ―Vector type‖ devices with beams in one row, used to evaluate reproducibility of beams 

over long rows. Overall chip dimensions: 7500 x 2500 µm
2
. Configuration: single well with 28 beams 

(300 x 60 µm
2
 each). 

 

Figure 3.14. Two different ―matrix type‖ devices with different beam dimensions. Overall chip 

dimensions: 7500 x 2500 µm
2
. Configuration: upper design: 5 well with 4 beams (300 x 60 µm

2
 each), 

lower design 4 wells with different beam dimensions (600 x 600, 400 x 400, 300 x 300, 200 x 200 µm
2
 

respectively). 
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Figure 3.15. Arrays with beam length increase (wells 1 to 3: beams 100, 200, 300, 400 x 60 µm
2
 each) 

and increasing width (wells 4 and 5: beams 300 x 40, 80, 120, 180 µm
2
 each). Overall chip dimensions: 

7500 x 2500 µm
2
. Configuration: 5 well with 4 beams each. Extensions of gold pattern outside the 

beams have been introduced in order to evaluate single-drop functionalisation of surfaces, driven by 

gold wettability. 

 

Figure 3.16. Structures for front-etch test.  

Other implemented structures, strictly devoted to technological tests, are not reported here. 

A) B) 

Figure 3.17. SEM micrographs of realised devices. A): wafer 1 with 16nm PECVD oxide. B) Wafer 6 

with 20nm PECVD oxide.  

A SEM micrograph of realised devices is reported in Figure 3.17 for wafers with different ox-

ide thicknesses. In particular, wafer with lower PECVD oxide thickness showed higher up-

ward bending (wafer 1). The non perfect balancing of stress in the structure can be due to the 

slightly different thermal processing during the process with respect to the test process for 
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stresses. The process also allowed the optimisation of release procedure, involving both wet 

and dry etching steps. 

3.5.3.3. Test of piezoresistor implant process 

A second test process for the investigation and optimization of critical fabrication steps was 

set up with technological splitting in Table 3.12, especially for the evaluation of the better ap-

proach for the realisation of implanted piezoresistors with suitable sensing performances. 

Table 3.12. Summary of technological steps for implant test process 

STEP 
Wafers 

POC2T/2 POC2T/3 POC2T/5 POC2T/6 

1 Implant BF2 E=60 keV - Dose = 1 1013 - Frontside X X     

2 Implant B E=60 keV - Dose = 5 1012 - Frontside     X X 

3 Diffusion - T = 1150°C - t = 30 min (N2) X X     

4 Diffusion - T = 1000°C - t = 20 min (N2)     X X 

5 Implant As E=40 keV - Dose = 1 1014 - Frontside X X X X 

6 Diffusion - T = 890°C - t = 20 min - (N2) X X X X 

 

A correction of the substrate doping by means of a BF2 implant allowed a reduction of the 

junction depth, thus increasing the geometrical efficiency of the piezoresistors. Due to lower 

diffusivity, As was the dopant of choice for the realisation of n-type piezoresistors. The im-

plant doses and energies were chosen on the basis of preliminary process simulations realised 

with Athena Silvaco
TM

 software. Main results are reported in Figure 3.18. Experimental char-

acterisation of results was performed by means of TOF-SIMS measurement of element con-

centration in the wafer section, in order to provide a validation of the doping profiles achieved 

with the selected implant receipt. The TOF-SIMS analysis on test wafers provided, for the B-

implanted wafers, a substrate p-type doping of about 110
17

 at/cm
3
, with implanted n-type re-

sistors with doping about 8 10
18

 at/cm
3
 and junction depth about 75nm (Figure 3.19). This 

splitting was preferred because of the higher reproducibility of implanted profiles and higher 

resistor doping. The sheet resistance measurements over the wafer provide results similar to 

the simulated and acceptable uniformity over the wafer (pls. cfr. Figure 3.18 C and D). 
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A) B) 

C) D) 

Figure 3.18. Simulated doping profiles for wafer 3 (A) and wafer 5 (B), showing a junction depth 

below 100nm, and 4-probes measurement of sheet resistance over the wafer 3 (C) and wafer 5 (D), 

compared to simulated sheet resistance. 

A)  B)  

Figure 3.19. A) TOF-SIMS analysis of wafer 6 (B doping). B) wafer 3 (BF2 doping) 
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Chapter 4 

4. Development of microcantilever detectors for gravimetric sensing 

The development of microcantilever for gravimetric sensing was carried out starting from the evaluation 

of best geometries and sensing properties by means of analytic and numerical modelling. The first model 

was implemented with a simple spring-mass model, properly implemented to evaluate resonance proper-

ties and some beam issues such as the multilayer structure and damping-related effects. Sensitivity and 

resolution of the sensor calculated with this methods are presented in this chapter. Finally, finite elements 

(FE) models were developed to take into account geometrical effects, meanly related to the beam root re-

gion, and effects of residual stresses on device properties. FE analysis was also used to verify the analyti-

cal result and to optimise the design of the devices. Then, testing of fabricated devices in terms of electro-

mechanical properties and sensitivity have also been performed in order to evaluate the proper design and 

implementation of the sensors. 

4.1. Analytical modelling 

Analytical modelling was performed using the procedures described in Chapter 3 for the calculation of 

mechanical properties of multilayer structures and the simplified mass-spring model, also taking into ac-

count damping in resonance equations. On the basis of the technologies available at FBK clean room and 

described in Chapter 3, two different technological processes were taken into consideration for the reali-

sation of the devices. In the first process, based on standard wet bulk micromachining steps to release the 

suspended structure, the layer sequence of the structure was defined as Si/TEOS/LTO/Au, with respective 

thicknesses 10/0.4/0.2/0.1m. In the second fabrication process, based on Silicon-on-Insulator (SOI) wa-

fers, the layer sequence was 2/0.2/0.1/0.1m. Moreover, for the latter process, the effect of multilayer 

thickness on device performances was investigated with the set of calculations performed with a layer se-

quence 2/0.4/0.2/0.1 m. These results are marked as "thick oxide" in Table 4.1. Materials properties 

were set to values in Table 4.5, where residual stresses are data obtained during the technological process 

characterisation and Young’s modulus and density are estimated according to data available in literature. 

Properties of crystalline silicon are well-known and analysis results show low dependence on properties 

of thin film deposited on the Si beam, due to their low thickness. On the basis of analytical modelling and 

technological and design constrains, a first selection of beam geometries was performed in order to match 

the resonance frequency with the properties of the external piezoelectric actuator. In table 4.1 resonance 

properties for different geometries are shown, also including the evaluation of damping effect on reso-

nance frequency.  
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Table 4.1: Effect of gas density and damping on resonance frequency for different device geometries. 

Geometry (L, W, t) [m] 
χ 

[Kg m-1] 

f0  

[kHz] 

f0 

(with χ correction) 

f0 

(with γ correction) 
Q 

1500 x 106 x 10 2.281 10
-8

 6.039 6.015 6.014 23.1 

1000 x 106 x 10 2.281 10
-8

 13.589 13.534 13.533 34.7 

500 x 106 x 10 2.281 10
-8

 54.355 54.136 54.134 69.4 

300 x 106 x 2 (thick ox.) 2.281 10
-8

 31.919 31.493 31.478 16.1 

300 x 106 x 2 2.281 10
-8

 28.944 28.524 28.506 14.0 

200 x 50 x 2 5.075 10
-9

 65.124 64.673 64.654 20.8 

150 x 50 x 2 5.075 10
-9

 115.777 114.974 114.956 27.7 

 

In Table 4.2 the estimated sensitivity and resolution are summarized for different geometries, where the 

mass resolution is calculated as function of the frequency resolution of the measurement set-up. 

Table 4.2: Calculated sensitivity to mass and mass resolution for different beam geometry. 

Geometry (L, W, t) [m] f0 [kHz] Sm [cm
2
 g

-1
] min [g cm

-2
 Hz

-1
] 

1500 x 106 x 10 6.014 -373.8 4.4 10
-7

 

1000 x 106 x 10 13.533 -373.8 2.0 10
-7

 

500 x 106 x 10 54.134 -373.8 5.2 10
-8

 

300 x 106 x 2 (thick ox.) 31.478 -1231 2.6 10
-8

 

300 x 106 x 2 28.506 -1340 2.6 10
-8

 

200 x 50 x 2 64.654 -1361 1.1 10
-8

 

150 x 50 x 2 114.956 -1361 6.4 10
-9

 

 

In order to evaluate the sensitivity of the piezoresistive read-out, a preliminary evaluation of resistors ef-

ficiency was performed. According to the maximum efficiency of piezoresistive properties of mono-

crystalline Silicon, p-type resistor on n-doped substrate were preferred, with [110] crystallographic orien-

tation.  

Table 4.3: Typical piezoresistive properties of Silicon. 

Material (Si) π11 [Pa
-1

] π12 [Pa
-1

] π44 [Pa
-1

] 

p-type, 7.8 Ω cm 6.6 10-11 -1.1 10-11 138.1 10-11 

n-type, 11.7 Ω cm -102.2 10-11 53.4 10-11 -13.6 10-11 

 

According to literature [Kanda 1982], piezoresistive coefficients πij are expected to have the maximum 

values shown in Table 4.3 for low doping concentration in the [100] orientation, resulting in the proper-

ties in the [110] direction and its perpendicular direction (p-type silicon): 

11441211 108.71
2







 l
        [Pa

-1
]        4.1 

11441211 31.66
2







 t
         [Pa

-1
] 
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An important issue about piezoresistors is the dependence of parameters on temperature and doping. As 

reported in [Kanda 1982], these effects are correlated and maximum read-out sensitivity and temperature 

dependence are obtained for low doping. Using higher doping dose the dependence on temperature can be 

strongly reduced, but in this case also piezoresistive properties are reduced, resulting in lower read-out 

sensitivity. Different doping levels were evaluated for the fabrication process, in order to select the best 

set of process parameters. Process parameter and doping levels are reported in paragraph 3.5.  

4.1.1.1. Actuation 

An external commercial piezoelectric device was chosen for the device actuation, due to the ready avail-

ability of commercial devices. Selected component was a PL033.20 device by PI Ceramics, with the 

specifications in Table 4.4. 

Table 4.4:  Specification of the piezoelectric device. 

Code Dimensions [mm] Mass [g] f0 [kHz] C [nF] Displacement @ 100V [m] 

PL033.20 3 x 3 x 2 0.14 > 300 100 2.2 

 

Starting from actuator performances, it is possible to evaluate the ―inertial‖ actuation of the beams. The 

force at the beam barycentre for a sinusoidal actuator displacement of modulus z0 is: 

     tffzmzmF 0

2

00

'' 2sin2         4.2 

where m is the corrected beam mass and f0 and z0 are the actuation frequency and amplitude respectively. 

The maximum working frequency in operative condition of the actuator must be corrected by considering 

a spring-mass model where the device mass is added to the chip mass, which can be considered as a ―load 

mass‖. The effective maximum frequency is then approximately 200 kHz and it sets the upper limit for 

the design value of the resonance frequency of the devices. The displacement should be considered at a 

voltage lower than the maximum allowed for the device in order to reduce the device heating, which is 

the 2% of the bias power at low voltages, but can reach the 15% at 100V. The efficiency increases with 

the beam mass and the square of the actuation frequency. Typical resonance behaviour, including actua-

tion and damping, is shown in Figure 4.1.  

A feed-back system for actuation, where the signal read from the cantilever is fed to the actuator, was 

used for high resolution frequency measurements, as reported in paragraph 4.5.2. This approach allowed 

an increase of Q factor of the resonance of some order of magnitude. 
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Figure 4.1: Analytical calculation of resonance properties of cantilever for 3 V actuation voltage of the piezoelectric 

actuator. Tip displacement [m] vs. frequency [Hz]. The resonance displacement is in the ten m range. (Beam 

geometry: 1000x106x10 m (red), 500x106x10 m (black), 150x50x2m (blue)) 

4.2. Finite Element (FE) modelling 

The simulation of the device behaviour was performed by means of the ANSYS™ simulation software. 

At first static models were implemented in order to preliminarily estimate the spring constant K of the 

beam for the spring-mass analytical model, also for a comparison with theoretical equations. Then FE 

modal analyses were implemented to investigate the dynamic properties of devices. The effect of residual 

stresses in the multi-layered structure was taken into account in a preliminary static simulation by apply-

ing an equivalent thermal load and proper thermal expansion coefficients in order to evaluate the pre-

stress condition for the modal analysis. In a second set of FE simulations initial stresses where directly 

implemented in multilayered shells. Effects on the properties of the device of process parameters such as 

beam root definition by means of silicon wet etching or residual stresses were also evaluated by numeri-

cal methods. In particular the target resonance frequency was estimated in order to match the specifica-

tions of the piezoelectric device used for actuation. The structure sensitivity to mass adsorption was 

evaluated by means of modal analyses. 

4.2.1 Static analysis 

In order to implement the FE model, an approach based on shell elements was chosen to easily implement 

the multilayer section by using a small element number. The element of choice was the SHELL181, since 

it allows mechanical and modal analysis with a multilayer structure. Defined structure is summarized in 

Table 4.5 for 10 micron thickness beams, also reporting material properties. Thin films were modelled as 

isotropic materials, whereas silicon has been modelled according with an orthotropic material. Thick-

nesses were defined according to the fabrication process, residual stresses have been measured during the 

equipment tuning, while Young’s modulus (E), Poisson ratio (υ) and density () were selected from lit-
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erature data. This can result in an error of estimation of device properties, in particular with regard to the 

properties of the thin film properties, but this error was neglected due to the low thickness of these layers. 

Different geometries, previously evaluated with the analytical model (Table 4.1), were implemented for 

simulation. 

Table 4.5:  Material properties and layer sequence. 

Material Thickness [m] E [GPa] v σR [MPa] ρ [Kg m
-3

] 

Au 0.100 80 0.35 155 19280 

LTO 0.200 70 0.25 153 2200 

TEOS 0.400 70 0.25 -51 2200 

Si 10.000 

E [110] = 169 

E [100] = 130 

Gxy = 51 

Gxz = Gyz = 79 

υxy = 0.064 

υxz=υyz= 

0.361 

0 2329 

 

  

Figure 4.2: A) Static model of beam, length 150m, width 50m, Silicon thickness 2m. Multilayer structure has 

been included in the shell section definition, bulk substrate (violet region) and underetch have been included. B): 

Stress distribution for the static tip-load model, 20m underetch is included. 

Only half of the cantilever was included in the model, by using the structure symmetry in order to reduce 

the element number. Boundary conditions were set to zero displacement at beam root and symmetry con-

dition at beam axis. In the static analysis a tip load of 1μN has been set at the tip. Model and results are 

shown in Figure 4.2. 

4.2.2 Modal analysis 

The same geometries and meshes used for static analysis were also used for modal analysis, with the 

same boundary conditions and mesh. The selected solution method was the Block Lanczos method avail-

able in ANSYS solver. A static analysis was performed as a preliminary step to include residual stress ef-

fect, by means of an equivalent thermal load. Stresses on nodes calculated during the preliminary step has 

been saved to an external file and loaded in the modal analysis as pre-stress conditions before solving the 
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model. A result summary for some device geometries is reported in Table 4.6, where resonance frequen-

cies are presented for model not including stresses (f0), with stress (f0 + stress) and including a dummy 

mass to model the sensitive layer (f0 + stress and s. layer). Results for non stressed beams are compatible 

with analytical results. An overview of modal analysis results is presented in Figure 4.3 for a beam with 

150 m length and 2 m thickness. 

  

  

Figure 4.3: (Clockwise from top left) A) Modal analysis, σX stress distribution. B) Modal analysis, σY stress 

distribution. C) Modal analysis, stress distribution on cantilever axis. D) Modal analysis, τXY stress distribution  

Table 4.6: Comparison of resonance frequency [kHz] evaluated by FE for some of the devices. 

Geometry f0 f0 + stress f0 + stress and s. layer 

1000x106x10 13.542 15.617 15.559 

500x106x10 54.148 56.372 56.161 

150x50x2 114.941 143.379 141.441 

120x40x2 179.534 209.407 206.577 

100x40x2 258.557 289.300 285.392 

 

Torsional resonance modes of the structure are also present and they cannot be evaluated by using the 

symmetrical model. Tthese modes were investigated by means of a model including the complete struc-

ture (see Figure 4.4). These resonance modes are present at frequencies higher than first mode resonance. 
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In general the first torsional mode occurs as third mode for selected geometries, and then can be neglected 

in this analysis. 

 

Figure 4.4: Deformed shape for a torsional resonance mode, at 677 kHz (Beam 150m length). 

4.2.3 Stress-stiffening  

The investigation of the mechanical behaviour of the system was also aimed to the evaluation of the effect 

of residual stresses on the frequency. Effect of thin film residual stresses on resonance properties has been 

included in the simulation by means of an equivalent thermal load in preliminary static analyses. Results 

are shown in Figure 4.5 A) and B), showing the deformation of a device working at 3
rd

 resonance mode 

and the resonance frequencies vs. the residual stress of the top PECVD nitride insulation film. Since this 

deposition techniques allows the tuning of material properties by using high, low or mixed frequency 

deposition, the process parameters of the layer was then tuned in order to obtain a residual stress of the 

nitride in the range 10÷100MPa, providing three resonance modes below 200kHz. 

A)  B)  

Figure 4.5: FE modelling: A) displacement at third mode, B) effect of residual stresses. 
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4.2.4 Under-etch effect 

The effect of under-etch on resonance properties was investigated in order to estimate the effect of this 

issue related to the fabrication process. Since the release of the mechanical structure is performed by 

means of bulk wet etching, alignment inaccuracies between the mask and the crystal and variations of 

anisotropic etching ratio (Ra) may result in a under-etch at the beam root. Resonance frequency is lower 

for larger under-etch regions, due to the different mechanical properties of the beam.  

  

  

Figure 4.6: Modal analysis, stress distribution on cantilever, with 30m underetch and 10m bulk. 

The beam compliance can be approximated by the series of the beam and under-etch region compliances, 

while the total mass is substituted to the beam mass. According to the simplified spring-mass model, it 

can be evaluated as: 

2/1

3

3

0

' 11:
0

















































bb

uu

b

u

u

b

LW

LW

L

L

W

W
whereff       4.3 

The first term in the square root takes into account the K variation (1/K=1/Kb+1/Ku), while the second 

considers the mass variation. This expression fits the simulated f0 for a Wu= 2÷3 Wb, which is a rough 
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estimation of the width of the under-etch region affected by the stresses. In Table 4.7 comparison of simu-

lated and calculated under-etch effects is presented for the 150 m x 50 m x 2 m beam. 

Table 4.7: Summary of underetch effect (Beam 150m length , Wu/Wb = 3). 

Underetch [m] f0 [kHz] – (approx. expr.) f0 [kHz] - FE 

0 (143.379) 143.379 

10 131 130.433 

20 121 122.150 

30 113 116.208 

 

The stress behaviour in the beam region is quite similar to the results of the model without under-etch, but 

at cantilever root significant variations of stresses distributions occur. This effect is further discussed in 

the next paragraph, dealing with the read-out optimization. 

4.2.5 Read-out optimization 

The position of the piezoresistive read-out was evaluated for each beam geometry, in order to optimise its 

efficiency. Piezoresistive effect was evaluated by applying the πij coefficients to stress distribution ob-

tained by FE modal simulations. The extracted parameter is the distance of the read-out from the cantile-

ver root. A summary of results is shown in Table 5.8, and a sample graphs of the analysis are reported in 

Figures 4.7-4.9.  

  

Figure 4.7: Stress distribution at Si surface and respective resistivity variations calculated by means of modal 

analysis for 500x106x10 m beams.  
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Figure 4.8: Stress distribution at Si surface and respective resistivity variations calculated by means of modal 

analysis for 150x50x2m beams.  

  

Figure 4.9: Stress distribution at Si surface and respective resistivity variations calculated by means of modal 

analysis for 120x40x2m beams.  

Stresses were considered at the silicon surface, and then the efficiency factor β must be included to take 

into account the piezoresistor thickness. The presence of under-etch also modify the stress distribution on 

the structure and then optimal position of the read-out has been calculated for different under-etch values. 

Table 4.8. Optimal position of the read-out. 

Geometry [μm] Optimal position of read-out [μm] 

500 x 106 x10 21 

150 x 50 x 2 9 

120 x 50 x 2 6 

Due to the narrow width of devices with length 150 m or less, a piezoresistor bridge cannot be imple-

mented on beams. In these devices a configuration with a single resistor should be selected, with an opti-

mal length of longitudinal branches calculated according to the R/R0 parameter. 
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Sample results are shown in Figure 4.10. for beam with length 150 and 120 m.  
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A)  B)  

Figure 4.10: Configuration of piezoresistor for narrow beams, and results of calculation on simulated stress 

for beam length 150 (A) and 120m (B). 

 

Figure 4.10: C) Configuration of piezoresistor for narrow beams. 

4.2.6 Mass sensitivity and resolution 

In order to investigate the mass sensitivity of the device and to verify the results obtained by analytical 

calculations, a dummy layer was added to the multilayer structure to simulate the sensitive layer proper-

ties. Thickness has been set to 200nm, according to the typical thickness of the deposited layers, and den-

sity has been set to 1000 [Kg m
-3

], which could be a reasonable value for an organic compound. The 

resonance frequency was of course lower than for the beam without dummy layer and also sensitivity is 

affected, due to the increase of the cantilever mass.  

Shift of resonance frequency correlated to the analyte adsorption onto the sensitive layer was simulated 

by varying the material density. Results are shown in Table 4.9, where the density increase has been con-

verted to surface mass density increase for the given film thickness. 

Table 4.9. Calculated resolution and sensitivity to mass increase for different beam geometry. 

Geometry (L, W, t) [m] Sm [cm
2
 g

-1
] min [g cm

-2
 Hz

-1
] 

1000 x 106 x 10 -214 3.0 10
-7

 

500 x 106 x 10 -190 9.4 10
-8

 

150 x 50 x 2 -669 1.1 10
-8

 

120 x 40 x 2 -671 7.2 10
-9

 

100 x 40 x 2 -670 5.2 10
-9
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FE results fit quite well (Figure 4.11) with the analytical model including the sensitive layer mass, where 

the f/f variation derived from the mass spring model has been calculated by: 

SupBeam

Beam

f

f








           4.5 

 

Figure 4.11: Comparison between calculated and simulated sensitivity (graph slope) for different geometries, using 

200nm sensitive layer thickness. Lines refer to the analytical model model described in Chapter 3. 

These results should be considered as ―substrate performances‖ for mass increase detection and need to 

be integrated with the adsorbing material performances in order to evaluate the overall sensitivity of the 

sensor to specific analytes.  

According to data in literature [Datskos 1999] for different gravimetric devices such as Surface Acoustic 

Wave devices (SAW) and Quartz Microbalances (QMB), the described cantilever devices provide better 

sensitivities and comparable mass resolution. The comparison between data in the cited reference and 

proposed simulation results is shown in Table 5.10. The minimum detection limit has been calculated by 

applying the relationship fmin/f0 = 10
-6

, which is reported in literature to estimate the frequency resolu-

tion [Madou 2002, Datskos 1999]. The used value (10
-6

) can be considered as a ―worst case value‖ with 

respect to the value 10
-7

 reported in the cited references. 
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Table 4.10: Review of mass sensitivity and resolution of cantilever devices, compared with results of different 

gravimetric devices in literature. ( 
*
 Data from [Datskos 1999] ) 

Gravimetric sensor f0 [MHz] Thickness [m] Sm [cm
2
 g

-1
] min [ng cm

-2
] 

Cantilevers 0.013 - 0.258 10 - 2 214 – 670 30 – 0.5 

SAW
*
 30-300 760 151 1.2 

QMB
*
 5 500 14 10 

 

The real sensor efficiency must also consider the properties and the adsorption performance of the sensi-

tive materials, expressed in terms of [g cm
-2

 / ppmgas phase], which will be discussed in Section 4.6. Starting 

from these data, the frequency shift f vs. the analyte concentration in the gas sample will be also dis-

cussed.  

4.3. Cantilever design 

4.3.1 Design of 10µm devices 

An overview of the mask set of the 10µm-thick process is reported in Table 4.15. Several different de-

vices were implemented using this technology. The beam thickness in this process is 10m, and design 

was based on results of modelling previously described. Both single beam and beam array chips were im-

plemented. Arrays have length 500, 1000 and 1500 m with chip dimensions 9844m x 6924m. Single 

beams with different configurations of gold surface have length 1000m and chip dimensions 9344m x 

4646m. Corner compensation for the cantilever tip was not included in the design to avoid the presence 

of stressed mask patterned that can interfere with the deposition of the sensitive layers. 

Table 4.15: Layer sequence for the process. 

Layer GDSII number Polarity Type Align on Purpose 

PBODY 1 dark str.  Piezoresistor definition 

NDIODE 2 dark str. PBODY Substrate contacts 

PDIODE 3 dark str. PBODY P-Diode definition 

BACK 4 dark str. PBODY Etch window definition 

CONHO 5 dark str. PDIODE Contacts to p-diode 

METAL 6 light str. CONHO Metal definition 

VIA 7 dark str. METAL Via’s to metal 

MASS 8 light str. METAL Proof mass definition  

FRONT 9 dark str. METAL Etch window definition  
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Figure 5.16. A) Cantilever array design, beam length 500m. B) Detail of the piezoresistive bridge. Here Gold 

(MASS mask) is not shown. 

In order to reduce the temperature dependence and achieve a higher device response, a Wheatstone bridge 

configuration for the piezoresistive read-out was chosen. According to the design rules, which set mini-

mum dimensions for contacts, sensitive elements and wires, the minimum beam width is 106m. Pie-

zoresistors have dimensions 7x14 m and resistances in the order of 1kohm, depending on the implant 

dose. Position of the read-out on the beam has been set according to the FE modelling and optimization 

results. 

Gold film was patterned on the beam surface to provide suitable properties for the sensitive layer deposi-

tion. In the array chips, the gold layer of each beam has a separate contact to allow electro-deposition of 

different sensitive materials. Some devices with interdigitated wires on the beam were implemented to 

couple mass detection and electrical detection. Wires have 12m width and 10m spacing. Other de-

vices were designed with gold electrodes on half of the beam length or completely covered (Figure 4.17). 

   

Figure 4.17. A) Single beam with interdigitated contacts. B) Single beam with tip gold electrode. C) Single beam 

with complete gold electrode. 
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4.3.2 Design of 2µm devices 

The design of 2µm devices was developed for the implementation with the process described in Chapter 

4, and taking into account the results of modelling. The device configuration was similar to devices of the 

previous process, thus using a Wheatstone bridge configuration of p-type piezoresistors located near the 

beam root, apart from device ―150‖, on which small dimensions only admit the implementation of a sin-

gle resistor. Position of readout was selected according to FE modelling results. Different geometries 

were implemented in the design, the main being devices ―150‖, ―M2‖ and ―M3‖ showed in Figure 4.18. 

Dimensions were selected in order to test the performances of devices working at first, second and third 

resonance mode, with working frequencies as high as allowed by the piezoelectric actuator. A diode for 

temperature measurement was implemented in all devices. 

   

Figure 4.18. Design of 2µm devices. From left to right devices ―150‖, ―M2‖ and ―M3‖. 

An overview of geometries and configurations are reported in Table 4.16. 

Table 4.16. Overview of geometries and configurations of devices ―150‖ (first mode device), ―M2‖ (second mode 

device) and ―M3‖ (third mode device). 

Device 150 M2  M3 

Die dimensions [mm
2
] 7000 x 7600  7000 x 7600  7000 x 7600  

Front opening [mm
2
] 2400 x 600 2400 x 1000 2400 x 1000 

Beam geometry [mm
3
] 150 x 50 x 2 383 x 106 x 2 630 x 106 x 2 

Read-out 
1 resistor / beam + 

1 reference on bulk 

1 Wheatstone bridge / beam 

+ 1 reference on bulk 

1 Wheatstone bridge / beam 

+ 1 reference on bulk 

T sensing 1 diode on bulk 1 diode on bulk  1 diode on bulk  

Instances per wafer 12 5 4 
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4.4. Electro-mechanical characterisation of devices 

Preliminary characterisation of the fabricated devices was performed in order to test the dynamic behav-

iour of the cantilevers, the read-out efficiency and to validate a packaging strategy for the devices. 

The piezoelectric device and the chip under testing were clamped to a steel substrate by means of a sili-

con rubber gasket and a screw manipulator. The chip pads have been bonded to secondary pads on the 

substrate. A schematic of the system and the equivalent electrical circuit are shown in Figure 4.19.  

 

 

Figure 4.19. A) Schematic of the packaging strategy, B) Equivalent electrical circuit. 

At first, a static characterisation was performed in order to evaluate the displacement sensitivity of the 

piezoresistive read-out. The resistance of each piezoresistor of the Wheatstone bridge was measured at 

different tip displacements, applied by means of a micromanipulator. Results are shown in Figure 4.20 

and in Table 4.17. 

  

Figure 4.20. A) 1500m-length device, relative resistance variation vs. tip displacement of longitudinal resistor. B) 

1000m-length device, relative resistance variation vs. tip displacement of longitudinal and transversal resistors.  
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Table 4.17. Overview of tip displacement sensitivity of fabricated devices. 

 R R/R [m-1] 

1000m device 
Longitudinal 7.5 10

-4
 

Transversal -6.6 10
-4

 

1500m device 
Longitudinal 4.5 10

-4
 

Transversal - 

 

The results show an opposite behaviour of longitudinal and transversal resistor, as predicted by the simu-

lation results. This leads to an increased efficiency of the bridge read-out, which can be evaluated in a 

factor 2.5 improvement of the read-out response with respect to the single resistor. 

After the preliminary characterisation of the read-out sensitivity, the dynamic behaviour was investigated. 

The piezoactuator was polarised with a sinusoidal potential (5 to 20V peak-to-peak amplitude, frequency 

in the 1÷300kHz range) provided by a function generator. The piezoactuator impedance showed a phase 

shift in the 180-200kHz frequency range, due to the expected upper frequency limit of the device with 

this system configuration. 

The optical inspection of the chip during the frequency shift clearly highlighted the cantilever resonance, 

as a different light reflection on the moving beam (pls. see dark zones on beams in Figure 4.21). 

A)  B)  

Figure 4.21. A) 1500m length device, first mode resonance (4th beam from left). B) 1500m length device, third 

mode resonance (3rd beam from left). 

Then dynamic behaviour was tested by using the integrated read-out, by measuring the Wheatstone bridge 

potential with an oscilloscope. Results are summarised in Figure 4.22, where the amplitude of peaks in 

the frequency domain are plotted vs. the actuation frequency.  
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A)  B)  

Figure 4.22. A) V vs. actuation frequency characteristic of 1500m length device, showing first mode resonance 

peak. B) V vs. actuation frequency characteristic of 1000m length device, showing first and second resonance 

mode peaks. 

In Table 4.18 simulation results are compared to the experimental results. The simulation results have 

been obtained for devices without the gold layer (as the real devices were) and considering some fabrica-

tion parameters (0 ÷ 30 m underetch and 8 ÷ 10 m thickness). The experimental result error is related 

to a scattering of the resonance frequencies of the different beams on the chip, probably due to slightly 

different thicknesses across the array. In general the results fit with the expected values. 

 f [kHz] 1
st
 mode 2

nd
 mode 3

rd
 mode 

1000m device 
Simulated 11.1 ÷ 14.2 67.1 ÷ 87.2 186.9 ÷ 243.7 

Experimental 12.2 ± 0.2 73.9 ± 0.7 - 

1500m device 
Simulated 4.8 ÷ 6.4 30.1 ÷ 38.9 84.2 ÷ 108.44 

Experimental 5.2 ± 0.5 - 90 ± 5 

Table 4.18. Overview of simulated and experimental resonance frequencies. 

Preliminary tests for the investigation of the actuation and read-out performances were also performed on 

2µm non functionalised devices and compared to the results of FE modelling, in order to validate ob-

tained results. According to chip dimensions and required pin number, the package configuration has 

been implemented with a ceramic Dual In Line (DIL) package with 40 pins (NTK, IDK40F1-642ZAL), 

by using a PZT ceramic piezoelectric actuator (PL033 made by PI, C=80nF, displacement = 2.2µm @ 

100V) placed at the bottom of the chip. Actuation is provided by function generator (Tektronix AFG 

3102), allowing to provide the piezoactuator with a sinusoidal signal. Read-out amplitude has been meas-

ured with an oscilloscope (LeCroy 9354L) on a half Weathstone bridge with 5V bias potential. Result 

summary for one of the new realised devices (CL-M3, dimensions 610 x 106 x 2 µm
3
) is reported in Fig-

ure 4.23. 
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A) B) 

Figure 4.23: Electromechanical characterisation of a CL-M3 device, output response vs. actuation frequency for 

first and second resonance modes. 

The first and second mode resonance frequencies have been measured (first mode: 6.2 kHz, second mode: 

38.2 kHz) and compared to the FE simulation results, by taking into account the scattering of process pa-

rameters, such as the underetch of the realised mechanical structure and residual stress. FE results (7.1 

kHz, 42.4 kHz, 118.8 kHz for first, second and third mode) are compatible with experimental results. Dif-

ferences between experimental data and modelling can be due to damping effects and deviations of elastic 

moduli of the deposited thin films from estimated values. By using an analytical model, the frequency 

shift due to the damping, which has not been included in the FE model, has been evaluated to be in the 

100 Hz order of magnitude. Furthermore, the experimental resonance quality factor in air at 1bar pres-

sure, which is 20 for the first mode and 119 for the second mode, is also in the calculated range.  

Table 4.19. Comparison of experimental resonance properties and calculated sensitivities and resolution of devices 

fabricated with the two technologies. 

Geometry  

(L, W, t) [µm]  

f  

[kHz]  

Sm  

[cm
2
 g

-1
]  

Δρmin  

[g cm
-2 

Hz
-1

]  

Q  

(Q=1/(Δω t0))  

1000 x 106 x 10 f0: 12.4 

f1: 74.7 

-214 

-214 

3.0 10
-7

 

6 10
-8

 

147 

152 

500 x 106 x 10 f0: 56.16 -190 9.4 10
-8

 286 

150 x 50 x 2 f0: 141.4 -936 8.8 10
-9

 - 

630 x 106 x 2 f0: 6.6 

f1: 40.9 

f2: 115 

-890 

-933 

-933 

1.7 10
-7

 

2.5 10
-8

 

9.1 10
-9

 

22 

82 

96 

 

As shown in Table 4.19, the thinner devices show an increase of sensitivity and a decrease of the quality 

factor, as expected for lighter structures at room pressure. Interestingly, working at higher resonance 

mode allows an increase of quality factor of a factor 4 or better, as expected from results in the literature, 
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thus leading to performances comparable to thicker devices. Of course a higher Q allows a better fre-

quency resolution and finally a better detection limit. 

The characterisation of frequency response of functionalised devices has also been performed, in order to 

compare the resonance performances of devices with and without sensitive layers. Results are reported in 

Figure 4.24 for CL-M3 devices. 

 

Figure 4.24: Electromechanical characterisation of a functionalised CL-M3 device (device number 11), output 

response (1.5V bridge bias, gain 50) vs. actuation frequency, compared with a non-functionalised device. 

4.5. Device sensitivity 

The selection and deposition of sensitive material on cantilevers were performed by the University of 

Valladolid in the framework of the GOODFOOD Project. Here, a summary of deposition techniques and 

materials is reported for completeness. Phthalocyanines were the materials of choice, because they are 

able to interact with a variety of volatiles and they are well known sensitive materials for resistive gas 

sensors. A range of phthalocyanines, including monophthalocyanine (MPc) derivatives and sandwich type 

bisphthalocyanines (LnPc2), were deposited by ultrahigh vacuum evaporation and casting and used in the 

experimental activities. Figure 4.25 shows the SEM image of a monophthalocyanine film (ZnPc), depos-

ited onto the silicon cantilevers. The evaporated films of Phthalocyanine molecules obtained are made up 

of micro-crystallites with sizes depending on deposition parameters.  

In order to investigate the specifications required for cantilever sensor design, preliminary test on sensi-

tive materials performances were performed by means of quartz microbalance (QMB)-based characterisa-

tion setup. The method of the piezogravimetry sorption based on quartz piezoresonators can be consid-

ered as an effective method to evaluate the mass adsorption properties of sensitive layers. A set of 

different materials were tested with ammonia, dimethyl-amine (DMA) and trimethyl-amine (TMA), as a 
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set of analytes for the tests. Water vapours response has also been considered. All the measurements have 

been performed in collaboration with the BioMEMS group at the N.S. Kournakov Institute of Common 

and Inorganic Chemistry RAS in Moscow (Russia), in collaboration with the group of the Prof. Vladimir 

G. Sevastyanov. The sensors prepared for this work are listed in Table 4.20. 

Table 4.20: List of QMB devices for preliminary tests. 

 Material Deposition technique Layer structure 

LU6 LuPc2 Casting disordered 

Lu+C LuPc2 + Multi-Wall Carbon NanoTubes Casting disordered 

C Multi-Wall Carbon NanoTubes Casting disordered 

Zn4 ZnPc UHV microcrystalline 

Zn8 ZnPc UHV microcrystalline 

Zn4M ZnPc UHV microcrystalline 

 

 

Figure 4.25: SEM image of a PcZn deposited by UHV Evaporation onto the Ag electrode of a QMC 

Piezoresonators were standard crystal of AT-cut with silver electrodes using a working frequency of 8-15 

MHz. The tests of functionalised QMB sensors were carried out using express method with impulse input 

of gas sample into micro-chamber (volume 14 ml) without the application of sample accumulation. To get 

results close to real conditions of sensor operation, the measurements were carried out in the flow of hu-

mid laboratory air. Vapour analytes at known concentration were injected in a stream of the gas-carrier 

and passed through the cell with the gauge with a sample volume of 1-20 ml. Required concentrations of 

the analyte were prepared by a method of multiple dilution of saturated vapour by an injection of air in 

syringes of various capacities. Samples of gases also contained a certain amount of water vapour, thus the 

sensitivity of QMB sensors to water was also evaluated, and a compensation of the water response was 

applied during the data treatment. The sensor response was evaluated by monitoring the resonance fre-

quency shift of the quartz piezoresonator covered by the adsorbent layers. The frequency changes were 

measured with a frequencymeter Y3- with ±1Hz resolution.  

Water vapour contents of different injected solution were evaluated by considering the environmental 

laboratory conditions listed in Table 4.21.  
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Table 4.21: Room conditions for measurements 

Temperature [°C] 25 

Laboratory air relative humidity ~ 0.5 

Laboratory CO2 content [ppm] 300 

Pressure [kPa] 107.5 

 

Water partial vapour pressure at room conditions can be evaluated by: 

 
737.31][

675.1838
40221.5][log10




KT
barP         4.6 

Then the saturated vapour has a moisture content about 32000 ppm. This allows evaluating room and in-

jected samples water concentrations (Table 4.22). 

Table 4.22: Analytes properties. 

Property Ammonia Dimethylamine (DMA) 
Trimethylamine 

(TMA). 
Water Air 

Dry 

air 

Molecular weight 17 45 59 18 - - 

Boiling point[°C] -33 7 3 100 - - 

Melting point [°C] -78 -92 -120 0 - - 

CO2 [ppm] - - - - 300 300 

H2O [ppm] - - - - 15000 ÷ 16000 0 

 

Water solutions of ammonia, DMA and TMA were used as sources for injected samples. Solutions are 

summarized in Table 4.23. Species concentrations in the vapour in equilibrium with solutions were evalu-

ated, by assuming moisture content constant for pure water and amine solutions. Concentrations for am-

monia solution are quite accurate, while concentrations for DMA and TMA solutions should be consid-

ered as a rough estimation due to non-ideal properties of these solutions and require further analyses.  

Table 4.23: Analyte concentrations in solution and vapour phase. 

 Solution in water [w%] Vapour concentration [ppm] H2O vapour concentration [ppm] 

NH3 10.8 100000 32000 

DMA 31.4 250000 32000 

TMA 23.6 200000 32000 

H2O - - 32000 

 

Response to the real target analytes was evaluated in the 0-100 ppm range by considering an adsorbed 

analyte dependence on partial pressure in gas phase p: 

pb

pb
ka






1
           4.7 
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where b and k are coefficients.  

In order to evaluate the detection resolution of cantilever sensors using the described sensitive layers, the 

adsorption properties of materials at different analyte concentrations must be extracted from QMB tests.  

 

Figure 4.26: Adsorption performaces of different materials in the analyte concentration range 1 ÷ 100 ppm for 

ammonia, DMA and TMA and in the 15200 ÷ 15800 ppm range for water. 

The mass adsorption is proportional to the frequency shift of the QMB and can be evaluated by using the 

expression: 

][][103.2][ 22

0

6 


 cmg
S

m
MHzfHzf         4.8 

Then the material adsorption expressed as adsorbed mass for unit of surface at a given analyte concentra-

tion in vapour phase can be easily calculated by using the eq. (4.8). Results are shown in Table 4.24 and 

in Figure 4.26. 

Table 4.24: Analyte adsorption [g cm
-2

 ppm
-1

] for the different sensitive materials. 

 

 

Material Water sensitivity NH3 sensitivity DMA sensitivity TMA sensitivity 

1 2.90 10
-11

 1.30 10
-10

 8.70 10
-11

 -4.35 10
-11

 

2 2.90 10
-11

 7.73 10
-11

 -7.73 10
-12

 -1.93 10
-11

 

3 1.16 10
-10

 6.57 10
-10

 9.28 10
-11

 -1.26 10
-10

 

4 9.66 10
-12

 1.35 10
-10

 8.50 10
-11

 4.83 10
-11

 

5 6.44 10
-12

 7.73 10
-11

 4.64 10
-11

 2.90 10
-11

 

6 3.22 10
-12

 5.80 10
-11

 6.96 10
-11

 5.80 10
-11

 

7 3.22 10
-12

 5.80 10
-11

 3.86 10
-11

 4.83 10
-11

 

8 2.17 10
-11

 9.66 10
-12

 5.22 10
-11

 2.17 10
-11

 

9 2.90 10
-11

 1.30 10
-10

 8.70 10
-11

 -4.35 10
-11
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Furthermore, a normalisation of adsorption on layer mass was performed. Results are shown in Figure 

4.27 for the different materials. The best performances have been achieved by Lu6 layer, because of its 

low thickness compared to the other films. 

 

Figure 4.27: Normalised adsorption for the materials: adsorbed mass per square centimetre per gram of sensitive 

layer at 1ppm analyte concentration in gas phase. 

4.5.1 Estimation of cantilever performances 

By using the non-normalised adsorption properties, cantilever device sensitivities (Sc) with respect to 

analyte concentration in the gas sample (c) can be estimated by using the mass sensitivity Sm for the 

beams, calculated in the modelling section, and the sensitive layer adsorption A [g cm
-2

 ppm
-1

].  

AS
dc

dm

dm

df

fdc

df

f
S mc  0

0

0

0

11
  [ppm-1]     4.9  

Then the cantilever frequency shift for a given concentration change in the vapour phase is: 

0fS
c

f
c 




     [Hz ppm-1]     4.10 

This parameter was evaluated for two different geometries, the first being beams with 500m length, 

106m width, 10m thickness and the second 150m length, 50m width, 2m thickness. Results are 

plotted for the different material in Figure 4.28.  
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Figure 4.28: Estimation of beam properties on the basis of material testing results. Calculated frequency shift for 

1ppm analyte concentration. 

Results of sensor resolution also depend on frequency resolution, which could be preliminary estimated in 

the (0.01 ÷ 0.1 Hz) range for devices resonating at 100 ÷ 200 kHz.  

4.5.2 Sensitivity tests 

In order to test the module sensitivity to amines, preliminary measurements of the response to Am-

monia were performed at different concentrations in steady flow, using the previously described de-

vice. Starting from NH3 solution in water at different concentrations, the corresponding vapour pres-

sure can be found in literature (Table 4.25). 

Table 4.25  Calculation of NH3 concentrations in the gas phase. 

[NH3]l [w%] [NH3]g [ppm] 

0 0 

1.25 10171 

2.50 20861 

 

The device has been mounted in a chamber of small volume. Dry nitrogen has been used as carrier 

gas with 20sccm flow. Several steps of analyte and carrier gas have been fluxed in the chamber (30 

min analyte flow and 30 min carrier flow for sensor recovery).  

 

Device actuation and readout were performed by using an interface board ad hoc developed by the 

SOI Research Unit of FBK. Summarising its main properties, the system is composed by an analog 

part, which realise the cantilever interface, and a digital part which allows measuring the resonant 

frequency of the cantilever. In the analog section, a fixed 1.5 V potential is applied to the piezoelec-

tric Wheatstone bridge realised on the sensing device. The unbalanced signal, which corresponds to 
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the oscillation movement of the cantilever, is amplified with a low noise instrumentation operational 

amplifier and squared before the connection to the PLL. The PLL is opportunely dimensioned in or-

der to guarantee the lock condition in the frequency range correspondent to the resonant frequency 

variation of the used device. The output digital signal of the PLL is employed as input signal for the 

piezo microactuator driver, which output is connected to the piezoactuator. The introduction of a 

piezo microactuator driver into the control circuit to drive is needed in order to cope with the high 

capacitance of the piezoactuator (80 nF). With this configuration, the closed-loop control circuit 

maintains the cantilever oscillation at the resonant frequency. The readout circuit is interfaced to a 

PC through an FPGA, driven by a Front Panel developed in the LabVIEW ambient. The FPGA is not 

included into the feedback loop, in order to guarantee a faster response of the readout circuit to fre-

quency variations. The digital output signal of the readout circuit is obtained by buffering the output 

signal of the PLL. The signal is sent to the FPGA in order to measure the frequency by means of a 

counting system and store the data. The operating mode is set by a LabVIEW Front Panel, which al-

low monitoring the measurement results and storing the measured data on a PC in text format. The  

(2 f)/(f0) ratio of the system, which account for the frequency detection resolution of the system, 

varies from 118 10-6 to 1.2 10-6 at the different sample rates. 

 

The results of sensitivity tests to NH3 are shown in Figure 4.29. The 0 w% step has been used for the 

compensation of the water content in the delivered gas samples. 

A)  
B)  

Figure 4.29: A) Dynamical responses to different NH3 concentrations. B) Frequency shift after the compensation of 

water content. 

Experimental sensitivity results have been compared with the estimations previously reported. The 

comparison is reported in Table 4.26. 
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Table 4.26. Comparison of measured sensitivity and estimated sensitivity. 

Device: CL1000, LuPc Experimental Estimated 

NH3 sensitivity [Hz/ppm] 2.2 (±0.3) 10
-4

 (1.4 ÷ 1.9) 10
-4

 

The preliminary obtained results validate the modelling performed in order to evaluate the device 

performances. With these devices and also taking into account the frequency resolution of the elec-

tronic board (0.008 Hz), the expected detection limit is 45 ppm. By extending results to fabricated 

devices with 2µm thickness, a significant increase of the performances is expected, with a resolution 

in the ppm range.  

 

Figure 4.30: Response to water vapour of CL-M3 operated at the second resonance mode. 

The obtained results of CL-M3 devices operated at the second resonance mode indicate a sensitivity 

improvement of about one order of magnitude with respect to preliminary devices, leading to a detec-

tion limit in the ppm range. Sensitivity performances of the devices are still under testing. 

4.6. Discussion 

The development of cantilever-based sensors was presented, in order to design the device with optimum 

performances in terms of mass sensitivity and resolution of the substrates. In particular, devices were im-

plemented with two different technological processes, allowing the realisation of beams with respectively 

10 and 2 m thickness. In the first case sensitivity has been evaluated in about -190 [cm
2
 g

-1
] and resolu-

tion about 9.4 10
-8

 [g cm
-2

 Hz
-1

], while the thinner beams provide better performances, in the order of -

669 [cm
2
 g

-1
] for sensitivity and 1.1 10

-8
 [g cm

-2
 Hz

-1
] for resolution. Here resolution is expressed in terms 

of mass resolution per Hz of resolution of the resonance frequency measurement. According to data in lit-

erature for different gravimetric devices such as Surface Acoustic Wave devices (SAW) and Quartz 

Microbalances (QMB), the described cantilever devices provide better sensitivities and comparable mass 
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resolution. The resolution and sensitivity of cantilever sensors for ammines were estimated by using the 

adsorption properties of the phthalocyanines layers. The calculated resolution for devices realised by the 

first process (thicker structure) is in the order of 10-100 ppm for NH3, DMA e TMA, by using the proper-

ties of sensitive materials without thickness normalisation. Preliminary experimental characterisation 

validate the modelling results. For devices designed for the second process instead, the estimated resolu-

tion is in the order of 1-10 ppm.  
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Chapter 5 

5. Development of microcantilever detectors for stress sensing 

In this Chapter, the development of piezoresistive microcantilever arrays for stress sensing is presented, 

especially focused to the realisation of DNA sensors for biomedical applications. In particular, the pre-

sented activities deal with the modelling of sensors in order to select the most suitable geometries and 

technologies for optimised performances. Starting from the literature, analytical models of DNA sensors 

were implemented for different technological option and results were further refined with FE analysis in 

order to investigate the best configuration and to achieve the optimal performances. Then, the design of 

test structures for process optimisation was implemented, as well as the design of final cantilevers arrays. 

According to the mechanical properties of beams, bending and deflection methods differ in design, tech-

nologies and approaches for the optimization of the performances. Usually stiff and light structures are 

preferred in resonance mode, while compliant structures are better suited for the deflection mode. In fact, 

high stiffness provide high quality factor of resonance, i.e. a higher resolution in frequency measurement, 

and a lower deflection for stress-based applications. The ratio between adsorbed mass and beam density is 

proportional to sensitivity in resonance mode, while is indifferent in deflection mode. This aspect must be 

taken into account when selecting the materials and technologies to realize a cantilever structure. Differ-

ent implementation using sensing elements made of different materials and different structural materials 

were evaluated. Different aspects were considered; starting from material properties, technology suitabil-

ity, achievable sensitivity, stress distribution and the possibility to integrate the detector module in port-

able systems. 

5.1. Analytical modelling and technology comparison 

On the basis of the physical description of the detector previously reported, an analytical model of the de-

tector was implemented, in order to evaluate the performances of the detector for different fabrication 

technologies and design. Three main technological approaches were investigated: monocrystalline Si 

beams with implanted piezoresistors, thin film cantilever with poly-Si piezoresistors and polymeric beams 

with gold strain gauges. Different integration strategies can be implemented by using different materials; 

implanted resistors on single-crystal silicon and polysilicon elements are fully compatible and easily im-

plemented in CMOS processes, while gold strain gauges are suitable for the integration of sensing ele-

ments on polymeric devices [Thaysen 2002], allowing low realisation costs and beam stiffness. Further-

more, polymeric materials theoretically allow a reduction of beam stiffness, and thus an increase of 

sensitivity, because of their low elastic modulus. For deflection mode, recently polymeric beam (thus with 

Young’s modulus orders of magnitude lower then silicon-based materials such as crystalline Si, silicon 
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oxide and nitride) have been realized [Calleja 2005], featuring gold strain-gauges elements for deflection 

detection [Johansson 2005, Thaysen 2002]. Nevertheless, due to the low sensitivity of strain gauges, with 

respect to piezoresistive read-outs, the overall advantage of using polymeric beams with low material 

stiffness must be investigated, as well as the device stability in operative conditions. Furthermore, the in-

tegration of polymer-based technologies with standard technologies and CMOS readout is less easily im-

plemented with respect to other approaches. 

The model included material properties and geometry of the real section of different fabrication processes 

for the evaluation of the section properties, as well as the resonance evaluation and thermo-mechanical 

and electrical noise evaluation, in order to evaluate the response and signal-to-noise ratio related to DNA 

hybridisation. In particular, the differential response to hybridisation of strands with a single nucleotide 

mismatch was evaluated. In order to set a simple model of the beam-DNA interaction, the mechanical 

model was adapted to the devices used in [Fritz 2000], in order to evaluate the differential momentum 

arising from DNA hybridisation for the DNA concentration and probe length in the reference (Pls. see 

Table 5.1).  

Table 5.1. Summary of condition of experimental results in [Fritz] and extracted differential momentum arising 

from DNA hybridisation 

Paper: Fritz, Science 2000 

Beam material Silicon 

Beam geometry (L, W, t) [µm
3
] 500 x 100 x 1 

Beam spring constant [N m
-1

] 0.02 

DNA concentration and probe length 400nM in HB; 12-mer 

Response (tip deflection [nm]) around 60 

Differential response to single mismatch in a 12-mer strand (tip deflection [nm]) 10 

Model 

Calculated spring constant [N m
-1

] 0.02 

Differential deflection [nM] 10 

Calculated (σF tF) term [Pa m] 2 10
-3
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Figure 5.1. Variation of cantilever differential deflection in response to 12-mer probe hybridisation with single 

nucleotide mismatch at different DNA concentration, with a fitting function in red. Data extracted from [Fritz 2000] 

Table 5.2. Summary of condition of experimental results in [Mukhopadhyay 2005], based on Cantion
TM

 devices, 

and comparison with model results 

data from [Mukhopadhyay 2005] 

Beam materials and thicknesses 
Silicon nitride + poly-Si resistors (total 450nm) 

Gold 30nm 

Beam geometry (L, W, t) [µm
3
] 120 x 50 x 0.480 

Beam spring constant [N m
-1

] 0.139 

Resonance frequency [kHz] 43 

Bias of the bridge read-out configuration [V] 2.5 

DNA concentration and probe length 
1000nM in HB; 12-mer, 29-mer 

(12-mer probe + 17-mer non-matching extension) 

Response (electrical readout [µV]) 12.5 (12-mer), 28 (29-mer) 

Model: 350nm Si3N4, 50 nm poly-Si, 50nm Si3N4, 30 nm Au 

Calculated spring constant [N m
-1

] 0.150 

Calculated resonance frequency [kHz] 42 

Calculated half bridge response and resistivity variation ΔV = 12.5 [µV] (ΔR/R=10 [ppm]) (12-mer probe) 
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Since sensor response is dependent on DNA concentration [Fritz 2000], an evaluation of the response at 

different concentration can be estimated on the basis of the data in Figure 5.1. For instance, an increase of 

DNA concentration from 400nm to 1µM corresponds to an increase by a factor 1.2÷1.6 of the beam de-

flection, which is in turn proportional to the σF tF term. Thus, DNA-induced stress at 1µM concentration 

has been calculated as:  

(DNA-induced stress @ 1µM) = (data from [Fritz] @ 400nM) * 1.6    5.1 

A preliminary cross validation of the model was obtained by evaluating the response of beams in [Muk-

hopadhyay 2005] with the DNA-induced stress extracted from [Fritz] and compared with the real experi-

mental data in the reference. By implementing a structure with patterned piezoresistor and also including 

a passivation in Si3N4, response is about 12.5µV for p-type poly-Si (pls. see Table 4 for structure details). 

Due to the spread of material properties, the limited description of the device implementation in [Muk-

hopadhyay 2005] and the strength of DNA interaction with the surface (e.g. depending on buffer solution, 

probe and target length, etc.), the fitting can be considered enough accurate, at least for evaluating and 

comparing different technologies. 

After the preliminary validation of the model, different technologies were evaluated by adjusting the 

model in terms of section geometry, material properties and sensitivity of piezoresistors. A review of 

cross-sections is reported in Figure 5.2. Responses to 400nM concentration are reported, on the basis of 

the typical DNA hybridisation interaction previously calculated.  

1)  

 

 

2)  

3)  

4)  

Figure 5.2. Schematic sections for the three different fabrication processes evaluated with the analytical model 
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5.1.1.1. Approach 1: SOI-based approach:  

This approach is based on SOI (Silicon-On-Insulator) wafers (device layer 340nm) for the realization of 

thin mono-crystalline Si beams. The structure is defined by dry and wet bulk micromachining techniques, 

while the piezoresistors are directly implanted on the Si beam. n-type and p-type resistors have been 

evaluated, with a typical junction depth of 100nm, which is a reasonable trade-off between suitable proc-

ess parameters and resistor geometries. In the first approach, a 200nm SiO2 passivation layer is consid-

ered. In a more ―extreme‖ implementation, a multilayered passivation layer in SiO2 / Si3N4 is considered 

over the resistors (implant depth 80nm), with typical thickness (30 + 30) nm. In this case, a higher effi-

ciency of the read-out can be obtained. In the tables below, a summary of main results is reported for n-

type Silicon, while p-type is not performing well in planar stress conditions, as already described in the 

material section. 

Table 5.3. Main properties and modeling results of SOI-based cantilevers with n-type resistors (Type 1) 

Beam materials and thicknesses 
Silicon 340nm+ implanted n-type resistors 

(100nm) +200nm oxide + Gold 30nm 

Beam geometry (L, W, t) [µm
3
] 200 x 200 x 0.540 

Beam spring constant [N m
-1

] 0.140 

Resonance frequency [kHz] 15.0 

Bias of the bridge read-out configuration [V] 3.3 

DNA concentration and probe length 400nM in HB; 12-mer (from [Fritz 2000]) 

 

Calculated half bridge response and resistivity variation ΔV = 9.6 [µV] (ΔR/R=5.8 [ppm]) 

SNR 15.6 

Table 5.4. Main properties and modeling results of SOI-based cantilevers with n-type resistors (Type ―extreme‖) 

Beam materials and thicknesses 
Silicon 340nm+ implanted n-type resistors (80nm) 

+60nm oxide + 30nm nitride + Gold 20nm 

Beam geometry (L, W, t) [µm
3
] 200 x 200 x 0.540 

Beam spring constant [N m
-1

] 0.09 

Resonance frequency [kHz] 13 

Bias of the bridge read-out configuration [V] 3.3 

DNA concentration and probe length 400nM in HB; 12-mer (from [Fritz 2000]) 

Calculated half bridge response and resistivity variation ΔV = 12 [µV] (ΔR/R=7.5 [ppm]) 

SNR 18 
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A further structure, based on SOI beams with poly-Si resistors and 2 passivation (oxide between substrate 

and resistors, nitride over resistors, has been considered. The double passivation layer and the reduced 

poly-Si sensitivity make this approach performing worse than implanted resistors. 

Table 5.5. Main properties and modeling results of SOI-based cantilever with poly-Si resistors  

Beam materials and thicknesses 
Silicon 340nm+ 100nm oxide + p-type poly-Si resis-

tors (80nm) +100nm nitride + Gold 20nm 

Beam geometry (L, W, t) [µm
3
] 200 x 200 x 0.540 

Beam spring constant [N m
-1

] 0.28 

Resonance frequency [kHz] 20 

Bias of the bridge read-out configuration [V] 3.3 

DNA concentration and probe length 400nM in HB; 12-mer (from [Fritz 2000]) 

 
Calculated half bridge response and resistivity varia-

tion 
ΔV = 6.9 [µV] (ΔR/R=4.2 [ppm]) 

SNR 10 

5.1.1.2. Approach 2: SiO2 approach with single-crystal Si piezoresistors: 

This approach is based on SOI wafer as well, and uses dry and wet etching micromachining techniques 

for the realization of SiO2 beams from the BOX layer of the wafers. Mono-crystalline piezoresistors are 

realised by etching the device layer of the wafer, after a preliminary thinning to reduce the piezoresistor 

thickness to 80nm. In a first run, thickness of SiO2 passivation layers is fixed to 100nm (on beam). The 

thickness of the SiO2 beam is chosen in order to optimise device sensitivity in both cases.  

Table 5.6. Main properties and modeling results of BOX-based cantilevers with n-type resistors  

Beam materials and thicknesses 
400nm oxide + n-Si resistors (80nm) +100nm ni-

tride + Gold 20nm 

Beam geometry (L, W, t) [µm
3
] 200 x 200 x 0.540 

Beam spring constant [N m
-1

] 0.17 

Resonance frequency [kHz] 16.6 

Bias of the bridge read-out configuration [V] 3.3 

DNA concentration and probe length 400nM in HB; 12-mer (from [Fritz 2000]) 

 

Calculated half bridge response and resistivity variation ΔV = 8.6 [µV] (ΔR/R=5.2 [ppm]) 

SNR 12.7 
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5.1.1.3. Approach 3: SiO2 approach with poly-Si piezoresistors: 

This approach is based on Si wafer, used as substrate for the realisation of beams from a deposited thin 

SiO2 layer. Poly-Si piezoresistors with thickness 80nm and passivation (Si3N4 layer: 100nm) are also de-

posited. The thickness of the SiO2 beam is chosen in order to optimise device sensitivity (optimal for 

400nm thickness). Beam release is performed by wet and dry micromachining techniques. 

Table 5.7. Main properties and modeling results of BOX-based cantilevers with p-type poly-Si resistors 

Beam materials and thicknesses 
400nm oxide + p-type poly-Si resistors (80nm) 

+100nm nitride + Gold 20nm 

Beam geometry (L, W, t) [µm
3
] 200 x 200 x 0.540 

Beam spring constant [N m
-1

] 0.17 

Resonance frequency [kHz] 16.6 

Bias of the bridge read-out configuration [V] 3.3 

DNA concentration and probe length 400nM in HB; 12-mer (from [Fritz 2000]) 

 

Calculated half bridge response and resistivity varia-

tion 
ΔV = 6.2 [µV] (ΔR/R=3.8 [ppm]) 

SNR 9.2 

5.1.1.4. Approach 4: polymeric beams with gold strain gauges as sensing elements: 

This approach is based on Si wafer, used as substrate for the realisation of beams from a deposited poly-

meric layer (e.g. SU-8). Gold strain gauges with thickness 100nm and passivation (polymeric layer: 

200nm) are also deposited.  

Table 5.8. Main properties and modeling results of SU-8 cantilevers with gold strain gauges. 

Beam materials and thicknesses 
800nm SU-8 + gold strain gauge (100nm) +200nm 

SU-8 + Gold 20nm 

Beam geometry (L, W, t) [µm
3
] 200 x 200 x 0.540 

Beam spring constant [N m
-1

] 0.085 

Resonance frequency [kHz] 10 

Bias of the bridge read-out configuration [V] 3.3 

DNA concentration and probe length 400nM in HB; 12-mer (from [Fritz 2000]) 

 

Calculated half bridge response and resistivity varia-

tion 
ΔV = 2.4 [µV] (ΔR/R=1.5 [ppm]) 
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For both cases, the thickness of the polymeric beam has been evaluated in order to optimise the device 

sensitivity. Beam release is performed by wet and dry micromachining techniques. In this case, since pla-

nar stress cannot be efficiently detected by strain gauges, planar stress is considered as an ideal case 

where short beam are realised. Although this is a ―strong‖ assumption, leading to an overestimation of the 

response, the performances achievable with this approach are still low with respect with other approaches. 

5.1.1.5. Result discussion and selection of the technological approach 

As reported in the respective tables, the approach leading to the highest sensitivity is the SOI-based ap-

proach, despite lower stiffness of SiO2 and polymeric beams. The major issue in this case is the lower 

mechanical efficiency of the structure, due to the low beam stiffness and relatively high stiffness of Si, 

poly-Si resistors and strain gauges, resulting in a shift of the neutral axis of deflection toward the resistor. 

The shift of the neutral axis requires a higher thickness of the beam in order to produce a sufficient stress 

on the piezoresistor, reducing the advantage of materials with low stiffness. This issue, in addition to the 

lower stress sensitivity of strain gauges, makes almost worthless the stiffness reduction, especially in 

polymeric materials. Furthermore, polymeric materials usually present stability issues when exposed to 

liquid solutions, which can pose some practical issues in the specific application. By the evaluation of re-

sults coming from the analytical model, the polymeric beams have been removed from the technological 

options, while further investigations have been especially focused on the SOI-based approach using n-

type resistors. 

Another consideration regards the choice of sensing elements, pushing toward the selection of n-type re-

sistors, which are more efficient in conditions where the stress is uniform in the plane direction, rather 

than p-type, which is usually preferred for mono-axial stress detection (e.g. in cantilever used in reso-

nance mode, force detectors, etc…). More consideration will be reported in the next paragraph, dealing 

with FE modelling. 

The response level, estimated in the ppm range, leads to consideration that high sensitivity readout of pie-

zoresistors is required. Typically, in order to avoid the interference of lead wires (which are typically in 

the Ohm range for Al:1%Si wires) and increase the resolution, a Weathstone bridge configuration be-

tween four resistors can be used. Temperature effects are also compensated with this configuration. 

5.2. FE modelling 

Due to the beam root presence, the stress distribution in the area near to the substrate is different from the 

―ideal‖ condition in analytical models. For analysing these aspects, finite element (FE) analysis with AN-

SYS
TM

 were performed. On the basis of results of the analytical model of the device, reported in previous 

paragraph, the best technological approaches for the application are n-Si and poly-Si, especially when 

planar stress is applied. p-type Si has also been considered, while polymeric beams with gold strain 
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gauges have been excluded from the set of FE, due to their poor sensitivity and the general considerations 

reported in the previous paragraph.  

Beams were modelled as multilayered shells (SHELL181), in order to reduce the computational resources 

and efficiently model the structure with high aspect ratio (thickness in hundreds of nm, beam dimensions 

in hundreds of µm). Material properties and stresses coming from DNA hybridisation were the same re-

ported in the analytic model. Results of FE modelling provide a good coherence with analytical model, 

especially with regard to beam deformation and total displacement (Figure 6). 

A)  B)  

Figure 5.3. A) Deformed shape @ 400 nM DNA; B) Transversal stress @ 400nM DNA (thickness 340nm, 

length=width=100µm). 

Results of FE modelling of stresses on readout are coherent with results of the analytical modelling, as 

shown in Figure 5.4 for different type of readout elements.  

 

Figure 5.4. Comparison of response to 400nM DNA hybridisation for different sensible materials and orientation 

and with two different geometries. ―Fritz‖ data refer to [Fritz 2000], SOI to the SOI-based approach proposed  
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A few considerations can be reported here: 

 p-type Si has a very low performance with respect to n-type, especially for long beams, where 

stress distribution is almost by-axial. p-type becomes competitive in root region, although still 

with lower response than n-type <100>. 

 orientation of resistors with respect to crystallographic planes is not influent for ―long beams‖, 

while in the root region n-type <100> orientation provide an advantage in terms of sensitivity. 

<100> n-Si provides a response with integral average ΔR/R=8.1ppm over the region with length 

L=W=200µm, which represent a 1.47 increase of the response with respect to ―long beam‖ re-

gion.  

 poly-Si has a response roughly about 2/3 with respect to n-Si, although the different section (here 

not considered), in which resistors are offset from the Si beam, is reducing the disadvantages of 

this approach. 

Although the deflection is the same as the analytical model, the stress on Si surface is reduced, due to the 

―real‖ stress distribution at the Si-SiO2 interface. The geometrical efficiency of resistors must be also 

taken into account, thus reducing the readout response of a factor 0.5÷0.7, according to passivation thick-

ness and implant depth. 

5.3. Design 

Summarising the results of technological feasibility and modelling of performances, the most attractive 

solution, showing highest sensitivity to DNA hybridisation is based on SOI wafer, with device layer 

340nm and n-type piezoresistors. The device configuration will be based on arrays up to 16 elements 

composed by 2 beams (1 reference beam and 1 measurement), in a Weathstone bridge configuration. The 

use of the reference beam can provide, apart from the compensation of thermal effects and higher resolu-

tion in resistance measurements, also the compensation of possible microfluidic forces generated on the 

structures by the solutions in the measurement chamber and the rejection of biochemical ―common‖ sig-

nals not related to specific DNA hybridisation with single nucleotide mismatch. 

In the worst case, (4n + 1) contacts are required for n elements arrays, which can be reduced by using 

common contacts for bridge polarisation. A vector implementation may provide a reduced number of 

pads with respect to square arrays, since some contacts may be put to common pads. A draft design is re-

ported in Figure 5.5. 

Main device specifications 

Array dimensions 16 beam couples 

Element dimensions 300 ÷ 1000 µm
2
 

Chip dimensions 16100 x 6120 µm
2
 

Number of pads 54 
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Figure 5.5. Draft chip design and main specifications 

Typical expected specifications for the devices are: 

 the typical capacity between device layer and handle wafer (Si 500µm, floating) is 9.96e
-17

 F/µm
2
, 

which implies 10nF total capacitance with current chip dimensions 

 wires are expected to have a square resistance of 0.07 Ω/sq., with a parasitic capacitance lower 

than 0.4 fF/µm
2
 toward the substrate. Wiring to pads is expected to have typical resistance 2÷5Ω, 

and capacity lower than 40pF 

 internal wires of the Weathstone bridges with typical resistance about 1Ω, and capacity lower 

than 14pF 

 n-type piezoresistors with square resistance 2kΩ/sq., for a typical bridge element about  5÷30kΩ  

and capacity lower than 54pF. With this values, a maximum dissipation on the bridge of 1mW is 

reached above 5V bridge bias. 

 For 12-bases oligonucleotides with concentration 400nM in HB, the differential response to DNA 

sequences with a single-base mismatch is expected about ΔV = 9.6 [µV] @3.3V bias (ΔR/R=5.8 

[ppm]), while the absolute response to 12-bases oligonucleotides is expected to be 1 order of 

magnitude higher 

 The required measurement resolution must be lower than 1µV (ΔV) or 0.5ppm (ΔR/R) 

 Bridge resistors are expected to have a process spread of resistances in the order of some %, 

which reflects on the initial bridge unbalance. 
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5.4. Discussion 

Summarising, in depth evaluation of performances achievable with different technological options were 

considered for the selection of best DNA cantilever sensors. In particular, best sensitivity and SNR can be 

achieved with single crystal silicon beams, using implanted n-type piezoresistors and SOI wafer for sus-

pended structure realisation. This is due to high sensitivity of single crystal piezoresistors with respect to 

other options (poly-silicon resistors, strain gauges), which is overcoming the advantages of other ap-

proaches, such as the use of high compliance beams made of polymeric materials. The  realised design 

configuration is based on arrays with up to 16 elements composed by 2 beams each (1 reference beam and 

1 measurement), in a Weathstone bridge configuration. The use of the reference beam can provide the re-

jection of several ―common‖ signals not related to specific DNA hybridisation with single nucleotide 

mismatch. Detection of SNPs is expected, with differential signals in the order of tens µV. Devices are 

expected to be fabricated in the next period for experimental testing. 
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Chapter 6 

 

6. Material characterisation with micro cantilever detectors 

The measurement of mechanical parameters such as Young’s modulus and residual stresses of materials 

by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, 

especially when dealing with thin films, which are extensively used in microfabrication technology and 

nanotechnology. The use of piezoresistive cantilever array can also allow the on-line measurement of film 

stresses during the deposition.  

As a case study, MEMS-based piezoresistive cantilevers were realized and used for the determination of 

Young’s modulus and residual stress of thin titanium dioxide (TiO2). During the last decade titanium di-

oxide (TiO2) has drawn attention as versatile material in several different applications due to its excellent 

physical properties. It is used in optical coatings due to its high refractive and optical transmittance in the 

visible range [Zhang 2007], in microelectronics as insulation layer because of its high dielectric constant 

[Fukuda 2002], in bio-medical coatings thanks to its excellent biocompatibility [Carbone 2006], and due 

to its photocatalytic effect it can decompose and remove pollutants from its surface and can be used in re-

newable hydrogen production [Zhang 2004]. Dedicated silicon microcantilevers were designed through 

an optimization of geometrical parameters with the development of analytical as well as numerical mod-

els. Young’s modulus and residual stress of sputtered TiO2 films, deposited from a TiO2 target using an 

RF plasma discharge, were assessed by using both mechanical characterization based on scanning pro-

filometers and piezoresistive sensing elements integrated in the silicon cantilevers.  

In this chapter, the method and results of extraction of both TiO2 stiffness and residual stress on dedicated 

MEMS-based cantilevers is reported, allowing an evaluation of Young’s modulus, residual stress during 

the growth of TiO2 thin films at thicknesses ranging from a few nanometers to hundreds. Two different 

techniques are used: with the first one residual stresses and Young’s modulus were measured by scanning 

beams with a stylus profilometer, while with the second one residual stresses were measured with inte-

grated piezoresistors. The procedure for the data extraction was also optimized in order to increase the 

measurement accuracy and robustness and in order to overcome some practical issues.  

In order to implement a MEMS-based platform for material characterization and proceed with the charac-

terization of TiO2 thin films, Si-based beams with reduced dimensions (length 5001500 µm, width 

2060 µm, thickness down to 2.3 µm) were developed, allowing high resolution measurements of stiff-

ness and bending variation.  
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6.1. Modelling and design of structures for material characterisation 

The design of the microcantilevers array was done taking into account the typical residual stress of the 

materials to be characterized. The static as well dynamic mechanical features of the microcantilevers were 

studied by means of analytical and numerical models, allowing the optimization of both beam geometry 

and technological parameters for the realization of the piezoresistors. In particular, ANSYS
®
 simulations 

were used for the evaluation of mechanical properties and sensitivity, while numerical simulations of ion 

implant and diffusion steps for the read-out optimization have been performed with ATHENA
®
 (SIL-

VACO
®
) simulation software.  

Devices were designed for the characterization of stiffness of materials with a stylus profilometer and of 

electrical measurements of residual stress; they include a beam structure, and two bridge structures with 

different shape for further mechanical tests. The selected geometry and method can be easily imple-

mented with high density arrays of beams, allowing the analysis of materials with high parallelism, also 

allowing a combinatorial approach to material characterization [Ludwig  2005]. Devices were designed 

for the realisation with a technological process based on a Silicon On Insulator (SOI) approach for the re-

alisation of the suspended structures with low thickness and high dimensional control. The lower thick-

ness allows an improved sensitivity to both stresses and Young modulus. The realised geometries were 

designed for the use with the ―revolver‖ sample holder use for the film deposition. Two different devices 

were designed, including a beam structure, and two bridge structures with different shape for further me-

chanical tests. An overview of designed structures is reported in Figure 6.1 and Table 6.1. 

 

Figure 6.1. Device design of structure with different dimensions. A) Device Strint-1. B) Structures Strint-2.  

Table 6.1: Overview of geometrical dimensions of the devices for single tests. 

Device Strint-1 Strint-2 

Die dimensions [µm
2
] 7000 x 3696 7000 x 3696 

Front opening [µm
2
] 2780 x 854 1367 x 169 

Beam geometry [µm
3
] 752 x 106 x 2 138 x 106 x 2 

Bridge geometry [µm
3
] 854 x 106 x 2 169 x 106 x 2 

Geometrical intensification factor 15.09 2.52 

Read-out 1 Wheatstone bridge / structure 1 Wheatstone bridge / structure 
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The main purpose of the device Strint-1 was the characterisation of mechanical properties of combinato-

rial materials with a stylus profilometer, for which a longer scanning length allows an increase of the 

measurement resolution. The shorter structures on the device Strint-2 were focused on electrical-only 

measurements of residual stress, for which a long structure is not required. 

The triangular stress-intensifier structures were designed in order to circumvent an issue of the selected 

technology. Being the piezoresistors p-type, the best sensitivity is achieved for mono-axial stress distribu-

tions rather than bi-axial uniform stress distributions, which are found for stress sensing purposes. Thus, 

on suspended beams, piezoresistive stress sensing is not favourable in region far from the beam root, 

since they approach the ideal unconstrained condition leading to an uniform bi-axial stress distribution. 

As a result, p-type piezoresistors are only effective in beam root regions. By using a bridge structure in-

stead of a bridge, the structure deflection is prevented, resulting in a uniform stress distribution across the 

beam section in the beam direction, rather than the triangular stress distribution described in Chapter 3. 

For thin beams this stress configuration become of advantage, due to the reduced lever arm and bending 

momentum applied by the film in traditional bending detection, and the higher mean stress in the section 

in ―longitudinal sensing‖ mode. The stress distribution is, however, still bi-axial in regions far from the 

beam root. In order to increase the asymmetry of stress distribution in the two directions, a triangular-

shaped bridge has been implemented, showing an increase of sensitivity in FE models implemented. 

A)  B)  

C)  D)  

Figure 6.2. Simulation of stress intensifier structures, with thickness 340nm and 203kPa, 10nm applied film. A) 

longitudinal stress σy. B) transversal stress σx. C) vertical displacement. D) Stress distribution over the central 

symmetry axis. 
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Results of FE modelling are shown in Figure 6.2, 6.3 and 6.4 for thin beams (340nm Si structures, in ac-

cordance with process described in Chapter 3), with an applied 203kPa stress on a 10nm layer. The in-

crease of performances of p-type resistors is quite evident in the graph.  

 

Figure 6.3. Comparison of FE results: maximum stress on longitudinal (σY) and transverse (σX) directions. Ratio 1 

denotes straight bridge structures. Blue point refers to both σX and σY for beam structures in the same conditions. 

 

Figure 6.4. Comparison of calculated relative variation of resistance for p-type and n-type piezoresistors on 

intensifier as function of ratio width of readout beam vs. triangle maximum width. Conditions are same as previous 

Figure. Ratio 1 denotes straight bridge structures. Circled points refer to beam structures in the same conditions. 

In addition to the described designs, two more geometries with an array approach were implemented. Five 

beams with piezoresistive read-out were included in the first one, while the second features five beams 
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with integrated microheaters. The geometry summary of these devices is reported in Figure 6.5 and Table 

6.2. 

Figure 6.5. Device design of structure with different dimensions. A) Cantilever array with integrated piezoresistive 

read-out. B) Cantilever array with integrated microheaters.  

Table 6.2: Overview of geometrical dimensions of the array devices. 

Device uCOMBI-array uCOMBI-array-T 

Die dimensions [µm
2
] 7000 x 3896 7000 x 3896 

Front opening [µm
2
] 2780 x 854 2780 x 854 

Beam geometry [µm
3
] 752 x 106 x 2 752 x 106 x 2 

Read-out 1 Wheatstone bridge / beam - 

Notes - 1 Al resistor / beam 

Instances per wafer 3 4 

 

The microcantilevers arrays were realised with the previously described technologies, using p-type resis-

tor on n-doped substrate with [110] crystallographic orientation. p-type silicon resistors are expected to 

have the maximum piezoresistive coefficients πij values for low doping concentration in the [110] orienta-

tion (6.6, -1.1, 138.1 [10
-11

 Pa
-1

] for π11, π12 and π44 coefficients respectively). Coefficients for longitudinal 

and transversal stress with respect to the resistor orientation are 71.8 10
-11

 Pa
-1

 for stress longitudinal with 

respect to the piezoresistor and -66.31 10
-11

 Pa
-1

 in the transversal direction. High doping of resistors can 

reduce the dependence on temperature, but in this case also piezoresistive properties are reduced, result-

ing in lower read-out sensitivity [Kanda 1982]. 

6.2. Measurement method 

By scanning the surface with a stylus profilometer, with a load F, the displacement at a distance x from 

the beam root is: 
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Then, scanning the device with two different loads, the deformation at zero load and the device stiffness 

can be calculated for each position coordinate x: 

 
   

12

2112
0

,,

FF

FxFFxF
x







          6.2 

 
   

12

211 ,,

FF

FxFx
xK




 

         6.3 

By performing the measurement of the stiffness before and after the deposition, it is possible to extract 

the Young’s modulus of the material from the stiffness increase related to the additional layer deposited: 
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hsup and hinf are the distance of the upper and lower surfaces of the deposited film from the neutral plane 

for bending (1.33µm in the realized devices).  

The residual stress of the deposited film induces a beam deflection. By supposing a constant stress along 

the structure, the displacement is: 
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By using the displacement variation before and after the deposition, it is possible to calculate the related 

film stress. The stress sensitivity is then increasing for thinner beams. 

Ideally, the determination of the Young’s modulus is not directly affected by the residual stresses of mate-

rials. In fact, the Young’s modulus is calculated from the increase of beam stiffness, which is in turn cal-

culated from the differential measurement of deflection at different loads, thus compensating the curva-

ture of the beam. However, minor effects may be related to stress-stiffening of the structure, which can be 

found for high thicknesses and residual stresses of the film resulting in large displacements of the struc-

ture. Since this condition is not verified for considered TiO2 films, this effect can be neglected. 

6.3. TiO2 films 

The deposition and characterisation with laboratory equipments of the titanium dioxide films were per-

formed by the ―Plasma and Advanced Materials‖ (PAM) group of the FBK. Here, a short description of 

the techniques and results is reported for completeness. 
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The deposition of the titanium dioxide films on microcantilevers was performed by sputtering from a 

TiO2 target using a RF (13.56MHz) plasma discharge, by using an ad-hoc developed carrousel sample 

holder allowing multiple deposition of material with different properties in the same deposition run. A 

constant dc self bias on the cathode was maintained at -750 V, corresponding to an effective load of 106 

W. During the deposition the pressure was 0.05 Torr and an Ar-O2 mixture gas was used. The O2 and Ar 

concentration in the feed gas was 3% and 97%, respectively. The film was grown at a floating potential 

given by plasma and  at room temperature. Both the cathode and the sample holder were water cooled. A 

set of depositions of TiO2 films with different thicknesses was performed and film thicknesses were 

measured by using a stylus profilometer. The deposition time ranged from 25 min to 350 min, corre-

sponding to thicknesses from 38 nm to 200nm, with an almost constant deposition rate of (0.63±0.08) 

nm/min. The sputtered TiO2 thin films were characterized in terms of crystallographic structure by XRD 

technique. Measurements were performed using the Italstructures APD 2000 diffractometer in the See-

man-Bohlin geometry (grazing angle configuration). A Cu Kα (0.1540598 nm) radiation source operated 

at 40 KeV and 30 mA and at an incident angle of 3° has been used. XRD patterns were acquired in the 

25° -90° range, 0.02° step and 5 seconds of acquisition time. The film exhibited anatase structure with 

(101) preferential orientation, which is the typical crystallographic phase for coatings grown at low tem-

perature [Zhang 2002]. 

6.4. Experimental results 

The characterization of the fabricated devices was focused on the sensitivity to the bending and the meas-

urement of the curvature of the suspended beams by means of a mechanical profilometer. Mechanical 

properties of the film were calculated, starting from the results of the profilometer scanning at 1, 2 and 

5mg along the microcantilevers.  

Results are reported in Figure 6.6, as well as the extrapolated displacement at null load (0) and beam 

compliance (K
-1

). Similar results were also calculated before the film deposition. 

In order to provide a robust technique to evaluate the spring constant, especially insensitive to the align-

ment of the structure (x coordinate in the K expression), to the poorly representative region at the beam 

root showing a tri-axial stress distribution, it is more convenient to perform a linear fitting of the variable 

K
-1/3

 [He  2005]. Then, the extraction of the Young’s modulus of the film has been performed starting 

from the results of the fit: 

 
 

xBAx
C

xK 
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         6.6 

Results are reported in Figure 6.7 and Table 6.3. 
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Figure 6.6. Mechanical characterization of final devices (2µm thickness): Chip number 6, deformation at 1 and 2 

mg load, extrapolated deformation at null load (0) and beam compliance (K-1). 

 

Figure 6.7. Fitting results for K
-1/3

. Chips 4 to 7. 
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Table 6.3. Fitting results for K
-1/3

. Chips 4 to 7 and dummy samples. 

Chip Film t [nm] A [Å / mgp]
1/3

 B [(Å / mgp)
1/3

 µm
-1

] C [N m
2
] E [GPa] 

Dummy 1 0 -9.77 ± 0.07 0.1063 ± 1 10
-4

 (2.72 ± 0.01) 10
-11

 - 

Dummy 2 0 -9.75 ± 0.08 0.1033 ± 1 10
-4

 (2.96 ± 0.02) 10
-11

 - 

4 192 ± 10 -9.82 ± 0.06 0.0982 ± 1 10
-4

 (3.45 ± 0.02) 10
-11

 237 ± 42.5 

5 73.8 ± 10 -9.77 ± 0.04 0.10271 ± 0.9 10
-4

 (3.02 ± 0.02) 10
-11

 259 ± 89.6 

6 35.3 ± 10 -10.62 ± 0.02 0.10689 ± 0.5 10
-4

 (2.68 ± 0.02) 10
-11

 266 ± 171 

7 114.3 ± 10 -8.78 ± 0.07 0.0955 ± 2 10
-4

 (3.76 ± 0.02) 10
-11

 251 ± 62.8 

 

The Young’s modulus was estimated with the equation (6.4), where the stiffness variation was calculated 

against the average K of devices without deposited films, in order to evaluate the sensitivity of the 

method to the fabrication tolerances. By performing a beam calibration by measuring K of the specific 

chip before the film deposition, higher precision is expected for Young’s modulus. The accuracy of de-

flection measurement with the profilometer is quite good with respect to the total deflection in the consid-

ered application, since the total accuracy on deposited films, also including other sources of errors such as 

the film roughness, can be estimated in the tens of nanometers, against deflections typically in the mi-

crons range. Thus, the relative error on deflection can be estimated about 1%. Using different techniques 

for improving the deflection measurement can also improve the evaluation of the material properties, al-

though the improvement may be minor with respect to other sources of errors in the procedure. For in-

stance, Young’s modulus shows an increase of error bars at low film thicknesses due to film thickness 

uncertainness. In any case, other instrumentation with higher force and deflection accuracy, such AFM 

for instance, may be available to measure the Young’s modulus of materials with the proposed method. 

Optical methods (e.g. interferometric detection and laser scanning detection) cannot apply loads and can 

be used only for residual stresses measurements. 

Then, the residual stresses were calculated from the displacement variation between measurements before 

and after film deposition. Since the displacement at null load before the deposition could not be calculated 

due to experimental issues, the beam deflection 0(x), related to the TiO2 film stress, was calculated from 

profilometer scanning at 1mg, by applying the following correction for K
-1

 variation: 

     xKFxx 1

0

           6.7 

Then, fitting of the Δδ0(x) deflection after the film deposition can be performed with a strategy similar to 

the approach for the experimental K(x) measurement, allowing a high independence on alignment and 

non-ideal effects at the beam root.  
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Results are summarized in Figure 6.8 and Table 6.4, showing tensile stress states for all the samples, as 

expected for anatase-phase TiO2, especially for films with density lower than pure anatase bulk material 

[Ottermann  1996]. Furthermore, the residual stress strongly decreases when the film thickness increases. 

The stress reaches the lower value (80 MPa) for 192 nm-thick coating. Again, error bars of residual 

stresses in the Figure 6.8 (residual stress vs. film thickness) are mostly due to the accuracy of film thick-

ness, which is used to evaluate the material properties in eq. 6.4 and 6.9. This results in larger error bars at 

lower film thickness. 

 

Figure 6.8. Residual stress as a function of different film thicknesses. 

Table 6.4. Fitting of 0.5 for chips from 4 to 7 and calculated residual stresses. 

Chip A [Å
1/2

] B [Å
1/2

 µm
-1

]  [MPa] 

4 -15.5 ± 0.4 0.601 ± 1e-3 80 ± 12 

5 -3.5 ± 0.5 0.478 ± 1e-3 125 ± 32 

6 -6.7 ± 0.5 0.442 ± 1e-3 204 ± 83 

7 -13.7 ± 0.8 0.483 ± 2e-3 99 ± 20 

 

The integrated piezoresistive read-out was used in order to evaluate the residual stresses and to compare 

the results with the measurement performed with the profilometer. The resistances of the Wheatstone 

bridge, integrated on the beams, were measured before and after the deposition, in order to evaluate the 

relative resistance variation (R/R). Since the read-out output is proportional to the stress on the piezore-
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sistors, the plot of R/R was performed vs. the applied momentum (m = film tfilm W tbeam/2), which is in 

turn proportional to the stress on piezoresistors. The residual stress calculated in the previous paragraph 

was used. A linear relationship can be found, as shown in Figure 6.9. 

Here, the major source of errors bars is the initial value of resistance, which is used to evaluate the rela-

tive resistance increase. Although other approaches may be more accurate, piezoresistive detection has 

advantages in terms of cost and simplicity of the instrumentation with respect to high accuracy methods 

for measuring the curvature of a substrate and it is also suitable for on-line measurement of stress. 

 

Figure 6.9 Relative resistance variation between measurement before and after the film deposition, vs. the 

momentum applied to the structure by the residual stress in the film. 

6.5. Discussion 

MEMS-based cantilevers were designed and realized through the development of analytical as well as 

numerical models. TiO2 films with different thickness were successfully deposited on MEMS-based can-

tilevers by sputtering from a TiO2 target using an RF plasma discharge. The films were confirmed to be in 

anatase phase from XRD analysis, with (101) preferential orientation. Mechanical properties of the film 

were calculated, starting from the results of the profilometer scanning along the microcantilevers. Meas-

ured Young’s modulus of TiO2 thin films is around 250 GPa for all deposited films.   

Electrical measurements were been carried out on microcantilevers, in order to evaluate the residual 

stresses and to compare the results with the measurement performed with the profilometer. As expected, a 

linear relationship was found between applied momentum and the relative resistance variation.  

With the realized MEMS structure, the characterization of residual stress and Young’s modulus of thin 

film materials can be performed, as demonstrated by the mechanical characterization. Furthermore, the 
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integrated read-out piezoresistors can allow the on-line measurement of residual stress during the material 

deposition. This class of devices is a promising tool for material characterization, allowing an high paral-

lelism in measurement for high throughput characterization systems. Future work will deal with the ex-

perimental characterisation of the stress-intensifier structures for the electrical measurement of residual 

stresses. 

 



Chapter 7 Conclusions 

 
94 

Chapter 7 

 

7. Conclusions 

The development of several cantilever structures was performed for applications ranging from gas sens-

ing, biosensors and material characterisation. Specific requirements led to the optimisation of geometries, 

technological processes and operative conditions for each application, through the analysis of analytical 

and numerical models. The evaluated technological processes were focused on the realisation of beams 

with different thicknesses, in particular 10 and 2 m thickness with p-type piezoresistors for gas sensing 

applications and material characterisation, while a further process was studied for the implementation of 

DNA sensors with 340nm thick beams with n-type piezoresistors. Simulation and evaluation of specific 

technological aspects such as residual stress balancing and piezoresistors’ implantation parameters al-

lowed the optimisation of fabrication processes.  

Cantilever-based gas sensors were developed with optimal performances in terms of mass sensitivity and 

resolution of the substrates. For 10µm beams, sensitivity was evaluated about -190 [cm
2
 g

-1
] and mass 

resolution about 9.4 10
-8

 [g cm
-2

 Hz
-1

], while 2µm beams provided better performances, estimated in the 

order of -669 [cm
2
 g

-1
] for mass sensitivity and 1.1 10

-8
 [g cm

-2
 Hz

-1
] for resolution. Here the properties of 

the electromechanical structures are expressed in terms of mass resolution per Hz of shift of the resonance 

frequency, while overall mass resolution must also consider the specifications of the implemented readout 

electronics. The resolution and sensitivity of cantilever sensors to ammines were estimated by using the 

adsorption properties of the phthalocyanines layers. The calculated resolution for devices realised by the 

first process (thicker structure) was in the order of 10-100 ppm for NH3, DMA e TMA, by using the prop-

erties of sensitive materials without thickness normalisation. Preliminary experimental characterisation, 

providing 45ppm resolution for NH3, validated the modelling results. For devices designed for the second 

process the estimated NH3 resolution is in the order of 1-10 ppm, and experimental characterisation of the 

electromechanical properties of cantilever beams showed the improvement of performances, in terms of 

resonance quality factor, of the devices designed to work at higher-mode resonance.  

In the field of static-mode biosensors, performances achievable with different technological options were 

evaluated for the selection of best DNA cantilever sensors. In particular, according to the analysis per-

formed, the best sensitivity and SNR can be achieved with single crystal silicon beams, using implanted 

n-type piezoresistors and SOI wafer for suspended structure realisation. This is due to high sensitivity of 

single crystal piezoresistors with respect to other options (poly-silicon resistors, strain gauges), which is 

overcoming the advantages of other approaches, such as the use of high compliance beams made of 
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polymeric materials. The  designed configuration is based on arrays with up to 16 elements composed by 

2 beams each (1 reference beam and 1 measurement), in a Wheatstone bridge configuration. The use of 

the reference beam can provide the rejection of several ―common‖ signals not related to specific DNA 

hybridisation with single nucleotide mismatch. Detection of SNPs is expected, with differential signals in 

the order of tens µV. Devices are expected to be fabricated in the next period for experimental testing. 

The case study for MEMS-based cantilevers for material characterisation was the analysis of TiO2 films 

with different thickness deposited on MEMS-based cantilevers by sputtering from a TiO2 target using an 

RF plasma discharge. The characterization of residual stress and Young’s modulus of thin film materials 

was performed with the realized 2µm-thick MEMS structures, thus demonstrating the suitability of this 

approach. This class of devices is a promising tool for material characterization, allowing an high paral-

lelism in measurement for high throughput characterization systems, also enabling the on-line measure-

ment of residual stress during the material deposition by means of the integrated read-out piezoresistors. 

In conclusion, the suitability of MEMS-based piezoresistive arrays for a range of sensing applications was 

demonstrated with suitable sensitivity and selectivity. The possibility to perform measurement without the 

requirement for complex readout setups enables the use of this class of detectors for portable systems, 

which are expected to have an increasing diffusion in several fields including biomedical and agrofood 

applications. 
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