
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DIT - University of Trento

S   W S

Stefano Schivo

Advisor:

Prof. Paola Quaglia
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Imagination, not intelligence, made us human.
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Abstract

In recent years, the increasing interest on service-oriented paradigm has given rise to a series
of supporting tools and languages. In particular, COWS (Calculus for Orchestration of Web
Services) has been attracting the attention of part of the scientific community for its peculiar
effort in formalising the semantics of the de facto standard Web Services orchestration language
WS-BPEL. The purpose of the present work is to provide the tools for representing and evaluat-
ing the performance of Web Services modelled through COWS. In order to do this, a stochastic
version of COWS is proposed: such a language allows us to describe the performance of the
modelled systems and thus to represent Web Services both from the qualitative and quantitative
points of view. In particular, we provide COWS with an extension which maintains the polyadic
matching mechanism: this way, the language will still provide the capability to explicitly model
the use of session identifiers. The resulting S is then equipped with a software tool which
allows us to effectively perform model checking without incurring into the problem of state-
space explosion, which would otherwise thwart the computation efforts even when checking
relatively small models. In order to obtain this result, the proposed tool relies on the statistical
analysis of simulation traces, which allows us to deal with large state-spaces without the actual
need to completely explore them. Such an improvement in model checking performances comes
at the price of accuracy in the answers provided: for this reason, users can trade-off speed
against accuracy by modifying a series of parameters. In order to assess the efficiency of the
proposed technique, our tool is compared with a number of existing model checking softwares.

Keywords
stochastic process calculi, statistical model checking, performance evaluation, discrete-event
simulation
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Chapter 1

Introduction

1.1 The Context

In recent years the world of Web Services has been attracting the interest of part of the scientific
community because of the success of the service oriented interaction paradigm on which it is
based. A number of existing formal languages have been successfully applied for modelling
Web Services [10, 7, 34], while some others have been proposed specifically for this aim [9, 8,
17]. Among these formalisms, COWS (Calculus for Orchestration of Web Services [30]) has
been recently attracting the attention of a part of the scientific community for its peculiar effort
in formalising the semantics of the de facto standard Web Services orchestration language WS-
BPEL [6]. The calculus allows us to model different and typical aspects of services and Web
Services technologies, such as multiple start activities, receive conflicts, routing of correlated
messages, service instances and interactions among them. COWS can express the most common
workflow patterns and has been shown to encode other process and orchestration languages [30].
One of the peculiarities of COWS is its matching mechanism, through which the concept of
session identifier is modelled, effectively providing a way to correlate interactions belonging
to the same session. We will now present a brief example illustrating the polyadic matching
communication paradigm as defined in COWS. Consider the following service (i.e., COWS
process) definition, in which sub-services have been labelled for convenience:

S = p!〈m, n〉︸   ︷︷   ︸
s1

| p?〈x, y〉. s′2︸       ︷︷       ︸
s2

| p?〈x, n〉. s′3︸       ︷︷       ︸
s3

Here, three services are composed in parallel: s1 represents a service trying to send a pair
of names 〈m, n〉 via endpoint (i.e., channel) p, while s2 tries to substitute variables x and y
for the names received via a communication on endpoint p before continuing as service s′2,
and s3 is asking for a communication on endpoint p in which the second name is fixed to the
predetermined name n in order to continue as service s′3. Service s3 can be thought of as being
the continuation of a previously started service, in which the name n has been agreed as a
session identifier (i.e., it will be included in all communications between services belonging to
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1.2. THE PROBLEM CHAPTER 1. INTRODUCTION

the same session). The communication paradigm defined in COWS is based on the idea of best
matching, which means that any given sending action (which will be called from now on invoke
action) can communicate only with one of the receiving actions (named request actions) whose
parameters match the best way with the ones being sent. This means that the number of variable
substitutions generated by a communication involving invoke action p!〈m, n〉 has to be minimal
w.r.t. all request actions in the whole service. In our case this translates into the possibility to
have only one communication happening in S : the one involving services s1 and s3. In fact, the
communication between s1 and s2 would generate two substitutions (replacing x with m and y
with n), while the communication between s1 and s3 generates only one substitution (replacing
x with m and matching n with n). Thus, we can think of services s1 and s3 as belonging to the
same session, identified by name n.
As a final remark, notice that if a third request action in the form p?〈n, y〉 would have been
available, it would not have been able to participate to the communication either, because it
requires the name n to be in the first position of the tuple, while service s1 offers m as first
parameter.

1.2 The Problem

The purpose of this thesis is to provide the tools for representing and evaluating the performance
of Web Services modelled through COWS. In order to do this, a stochastic version of COWS is
required: such a language would allow dealing with the performance of the modelled systems,
thus fastening the analysis of Web Services both from the qualitative and quantitative points of
view.

Actually, a stochastic extension of COWS has already been proposed in [35], but the version
presented there is based on a monadic fragment of the language (i.e., communications allow
exchanging only one name at a time). One of the objectives of our work is to provide COWS
with an extension which keeps the polyadic matching mechanism; this will in turn allow us to
maintaining the capability to explicitly model the use of session identifiers. Moreover, while
we are confident that a monadic version of COWS would maintain the same expressivity as the
original calculus (in Appendix A we provide an encoding from COWS to its monadic fragment),
the same relation between a monadic stochastic extension of COWS and its polyadic counterpart
would be troublesome to be proven. Intuitively, at a certain point of the proof a single stochastic
execution step (in the polyadic calculus) should be matched with a series of stochastic execution
steps (in the monadic calculus). However, as a sequence of exponentially distributed delays is
not exponentially distributed itself, the rates of the two cases would not correspond, and thus
the correspondence could not be accomplished.

Once a stochastic version of COWS is available, a tool is needed in order to perform model
checking on the models generated with such a calculus. An approach common to a number
of stochastic calculi is to deduce the Continuous Time Markov Chain (CTMC [26]) from the
transition system of a given model, and then use standard numerical solution and probabilistic
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model checking methods to obtain the required performance measures. However, a common
problem which needs to be faced when generating a transition system of a process calculus term
is the so-called state-space explosion. This problem comes from the fact that the composition of
x parallel processes each with y different states in its transition system gives rise to a transition
system with at most yx states, thus requiring (as an upper bound) exponential time and resources
to be computed. A solution often applied is to generate the state-spaces of the subprocesses in
isolation, and then, taking advantage of the characteristics of some compact representation (e.g.,
in the case of stochastic calculi, Multi Terminal Binary Decision Diagrams [15] are sometimes
employed), merge the resulting transition systems, obtaining a description of the whole state-
space of the starting process using less-than-exponential time and memory resources. However,
such compositional approach cannot be applied in our case, because the stochastic calculus
presented in this thesis inherits the matching communication paradigm directly from COWS.
As illustrated before, this paradigm requires the knowledge of the complete process in order to
compute any transition. There are however other ways of mitigating the state-space explosion
problem in the case of our calculus: see for example the S lts tool by Igor Cappello [11,
12], in which the application of a congruence notion largely improves the tractability of the
problem. An objective of this work is to explore the possibility to apply a different approach to
the model checking of stochastic COWS models.

1.3 The Solution

As anticipated in Section 1.2, our work consists in the design of a stochastic extension of COWS
which maintains the polyadic communication paradigm peculiar to the calculus. The resulting
S is a stochastic calculus whose syntax adheres to the original version of COWS, to which
only minor adjustments are made in order not to obtain infinitely branching transition systems
from S models. This eventuality would in fact bar the possibility to obtain proper CTMCs
from S models. The most important extension introduced in S is the association
of a stochastic rate to each basic action of the language: these rates are the parameters of
exponentially distributed random variables each describing the duration of the associated action.
The stochastic operational semantics of S allows to obtain the possible actions available to
a starting service, while the actual rates of such actions are computed through a formula which
takes into account the communication capabilities of all entities involved in each interaction.
Even if communication actions are binary operations, involving only two distinct services, other
services can be indirectly involved into the rate computation: these are the services offering
communication endpoints defined to be in competition with the ones actually communicating.
Briefly explained, a service s1 competes with service s2 for a particular communication if s1 can
take the place of s2 in the same communication. Notice that this way of computing transition
rates is directly based on COWS communication paradigm, thus allowing us to keep intact as
much as possible the foundational ideas of COWS.

In order to avoid the problem of state-space explosion, we present a model checking tool
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which does not require to compute the whole state space of a S model; instead, it works
through a direct simulation-based approach inspired by [40] and [19]. What we do in practice
is to generate a number of simulation traces starting from a given S model, and from these
we obtain the required performance measures through statistical reasoning. In particular, the
traces are generated by iteratively applying the stochastic operational semantics to the starting
model, while the number of simulation traces needed to obtain a desired confidence is derived
from the user-defined error thresholds. These thresholds can be tuned via a trade-off between
execution time and approximation, thus allowing to obtain more precise results when time is
not an (important) issue, while allowing to get likely estimations after a few minutes (or even
seconds) of computation.

1.4 Innovative Aspects

The introduction of S allows to describe the quantitative aspects of Web Services, while
still maintaining the capabilities provided by the polyadic communication paradigm peculiar
to COWS. The proposed tool, providing a way to perform model checking on S models,
and thus derive performance measures on the modelled Web Services, allows to fully exploit
the potentials of the language without having to deal with complete state-space generation (and
thus with the problem of state-space explosion). The approach used in our tool turns out to be
even more useful than the generation of the whole transition system of a model (from which
a CTMC is then to be derived) when the number of parallel components contained the S
model at hand reaches high values. In practice, this allows us to extend the number of tractable
S models, which has already been successfully increased by the S amc tool.

The performance of the proposed tool is compared with other existing model checking tools.
In order to have a common field of comparison between our tool and existing model checking
tools, we first generate a CTMC from the S model at hand, and then give it as input to
other model checking tools. As CTMCs are the favored input language for a substantial number
of model checking tools, this choice enables us to compare our work with some of the most
widespread tools. This comparison comes at the price of running into the state-space explosion
problem while generating the CTMC, even if with greatly reduced effects, thanks to S lts.
This problem considerably increases the combined model checking time. However, the step of
CTMC generation has to be taken into account when computing the total model checking time,
as the comparisons we make are about model checking S models.

1.5 Overview of the thesis

The core of the thesis is composed of three parts, represented by Chapters 3, 4 and 5. In
Chapter 3 we will introduce S, the stochastic extension of COWS, explaining in detail its
operational semantics and the computation of stochastic rates for transition steps. Chapter 4
will deal with the S amc tool which we introduce with the aim to permit model checking
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S models. In that chapter the internals of the tool will be explained, explaining the theo-
ries on which the tool is based, and proposing some improvements which allow us to increase
its performances. Finally, Chapter 5 will show a comparison between the S amc tool and
some model checking approaches based on CTMCs, thus allowing us to make some observa-
tions regarding the most useful situations in which the tool can be employed. As usual, the core
of the thesis will be preceded by an introductory chapter in which we will explain the state of
the art. The thesis will close with Chapter 6, in which conclusions on the present work will be
drawn and some possible directions of development will be proposed. This thesis comprises
also an appendix (Appendix A), in which an encoding from COWS to its monadic fragment is
presented and shown to be operationally equivalent to the full version of the calculus. The ob-
jective of the work in Appendix A is to explain the cause of the evident complexity of the S
language, which mainly comes from the choice of maintaining a polyadic matching mechanism
when computing the stochastic rates of actions. Another appendix is included in the thesis (Ap-
pendix B), with the intent of showing a non-trivial Web Service modelled with S, ready
for input to S amc.
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Chapter 2

State of the art

In this chapter we will present two of the main languages for service-oriented modelling: WS-
BPEL [6] and BPMN [33]. Taking hint from the lack of formal definition in these languages,
we will show an attempt to remedy to their shortcomings with the process algebra COWS [30].
Furthermore, we will present a series of extensions to the COWS language, together with a tool
for the qualitative assessment of COWS models. We will then proceed with the presentation of
some methods and tools for testing quantitative properties of systems. The quantitative testing
of a system comprises the evaluation of the performances of the system after having assigned
numerical duration to the actions represented by a model. The typical quantitative reasoning
tools are based on continuous time Markov chains (CTMC, [26]), a mathematical formalism
used to represent systems with stochastic behaviour.

2.1 Web service modelling languages

2.1.1 WS-BPEL

WS-BPEL [6] (Web Services - Business Process Execution Language - sometimes called BPEL)
is the de-facto standard language for the modelling of web service orchestrations. It is an XML-
based language (as nearly all web services-related languages), to guarantee the typical benefits
of XML which are needed in the SOC ambient. However, not many WS-BPEL models can
claim a great readability, because XML documents are generally easily manageable by humans
only in the short size. In fact, although XML languages are often advertised as human readable,
this characteristic rarely finds realisation, and only automatic manipulation is actually feasible.
Thanks to a number of visual modelling tools, the actual WS-BPEL code rarely needs to be
dealt with, allowing the designers to concentrate on the orchestration and coordination of their
systems.

7
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2.1.2 BPMN

BPMN [33] (Business Process Modelling Notation) is a graphical representation for web ser-
vices orchestrations, whose purpose is to allow business-process technicians to easily model
web service interactions. The notation is equipped with an intuitive set of symbols which
represent WS-BPEL functionalities, but it suffers from lack of ontological completeness and
clarity [37]. Moreover, it has been recently pointed out that BPMN and WS-BPEL suffer from
conceptual mismatch in the representation of some control flow patterns [38]. Concluding,
we do not consider the language mature enough to come out useful in real business process
modelling, and thus it cannot be safely used as an effective visual representation of WS-BPEL
models.

2.1.3 COWS

COWS is a process calculus first introduced in [30] as an evolution of - [31], with the
aim to model service-oriented orchestrations. The language is particularly interesting because
its predecessor was created with the purpose to give a formal semantics to WS-BPEL (through
the translation presented in [31]), and more work is being carried out with the aim to obtain a
complete mapping of WS-BPEL into COWS [32]. The interest roused by COWS is also due to
its mainly web services-oriented primitives, since many of its basic constructs come from the
SOC world.

2.2 Stochastic modelling

2.2.1 Continuous-time Markov chains

Continuous-time Markov chains (CTMCs [26]) are a widely used formalism generated by the
semantics of SPAs such as Stochastic COWS, and are at the basis of performance evaluation in
many different areas.

Definition 1. A continuous time Markov chain (CTMC) is a pair C = (S ,R) where

• S is a countable set of states

• R : S × S → �>0 such that
∑

s′∈S R(s, s′) converges is a rate matrix

Taken a CTMC C = (S ,R), the exit rate for state s ∈ S is

E(s) =
∑
s′∈S

R(s, s′) < ∞

We can compute the probability to move from state s ∈ S to a state s′ ∈ S (such that
R(s, s′) > 0) before t time units using the exponential distribution function:

P[s→ s′ by t time units] = 1 − e−λt

8
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where λ = R(s, s′).
The probability that the transition s → s′ is chosen between all transitions exiting from s (that
is, the probability that the delay for going from s to s′ “finishes before” any other delay of going
from s to another state s′′ , s′) is

P[s→ s′] =
R(s, s′)

E(s)

2.3 Quantitative model checking

Probabilistic model checking of a stochastic model is the technique which allows us to measure
the quantitative aspects of the model through probabilistic reasoning. In particular, if the model
can be represented as a CTMC, a common probabilistic model checking approach allows us to
define some properties against which the model is to be checked. Such properties are defined
using a specification language suitable to the model: for example, in the case of CTMC, a
suggested property specification language is CSL (Continuous Stochastic Logic, [5]), whose
BNF grammar is presented in Table 2.1.

(state formula) Φ ::= true | false | a | ¬Φ | Φ ∧ Φ | Φ ∨ Φ |

S./θ [Φ] | P./θ [ϕ] | S=? [Φ] | P=? [ϕ]

(path formula) ϕ ::= X Φ | Φ U Φ | Φ U[tmin,tmax] Φ

Table 2.1: BNF grammar of the Continuous Stochastic Logic (CSL). Here, a is an atomic formula,
θ ∈ [0, 1], ./ ∈ {<,6, >,>} and tmin, tmax ∈ �.

The semantics of CSL formulas defines how to verify if a particular state s of the CTMC
satisfies a CSL state formula Φ (written s |= Φ), and is presented in Table 2.2.

s |= true
s 6|= false
s |= a iff a is an atomic formula evaluating to true in s
s |= ¬Φ iff s 6|= Φ

s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= P./θ [ϕ] iff Prob{π ∈ Path(s) | π |= ϕ} ./ θ

π |= X Φ iff Φ is true on the second state of π
π |= Φ1 U Φ2 iff ∃x ∈ �>0 . (π(x) |= Φ2 and ∀y ∈ [0, x) . π(y) |= Φ1)
π |= Φ1 U

[t0,t1] Φ2 iff ∃x ∈ [t0, t1] . (π(x) |= Φ2 and ∀y ∈ [t0, x) . π(y) |= Φ1)

Table 2.2: Semantics of CSL formulas. The writing s |= Φ (respectively π |= ϕ) is read “state s satisfies
state-formula Φ” (resp. “path π satisfies path-formula ϕ”), while π(t) equals to the state which in path π
is active at time t.

9
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Chapter 3

S

In this chapter we introduce a stochastic extension of COWS, which will be used in the follow-
ing as a base for the statistical model checking of Web Services.

The objective of the stochastic extension is to provide the modelling language COWS with
a way to represent also quantitative aspects of Web Services, allowing thus to test their perfor-
mance and draw inferences on the efficiency of the modelled entities. In order to do this, the
base actions of COWS are enriched with a real value, called rate. Such rates are the parameters
of exponentially distributed random variables, which model the duration of the corresponding
actions.

As we will see, maintaining the matching mechanism peculiar to COWS will be one of
the major challenges in adding stochastic capabilities to the language. This happens because
we want to make sure that the communication capabilities of individual services (which in
COWS are called “services”) are taken into account when computing the rate of an interaction
happening inside a composite service.

3.1 Stochastic semantics for COWS

S services are represented as basic activities composed following the grammar shown in
Table 3.1, and based on three countable and disjoint sets of entities: the set of names N (with
metavariables m, n, o, p,m′, n′, o′, p′), the set of variablesV (with metavariables x, y, z, x′, y′, z′)
and the set of killer labels K (with metavariables k, k′). Adhering to the conventions adopted
in [30], we shall indicate elements ofN ∪V with u, v,w, u′, v′,w′, and elements ofN ∪V∪K
with d, d′. Notice that, differently from the original version of the language, we do not consider
the class of “values” in our grammar, as in our case the management of values and expressions
would lead to a more complicated operational semantics without adding significance to the
stochastic extension.

We will indicate tuples by adding the characterising sign ˜ to the metavariables: e.g., a
tuple of input entities will be called ũ. A tuple made up by a single element can be written
as the element itself: i.e., if ũ = 〈x〉, then x can be used instead of ũ. In a similar fashion
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we set that a sequence of delimiters can be rewritten as a delimiter for a tuple of entities: i.e.,
[ d1 ][ d2 ] . . . [ dj ]s = [ d̃ ]s, where d̃ = 〈d1, d2, . . . d j〉. Furthermore, we define the (possibly
empty) delimiter tuple as

t̃ ::= ñ | ε

The writing of the form [ t̃ ]s in the residual services of rule com (cfr. Table 3.2) will be intended
as s alone if t̃ = ε, and as [ ñ ]s if t̃ = ñ. Finally, the substitution of entities in tuples is written
w̃{n/x}, and defined as the substitution of all occurrences of x in w̃ with n.

s ::= (u.u!ũ, δ) | g | s | s | {|s|} | (kill(k), λ) | [ d ]s | S(m1, . . . ,m j)
g ::= 0 | (p.o?ũ, γ). s | g + g

Table 3.1: The grammar of S.

Following a common approach in stochastic extensions [23, 36, 35], we associate a stochas-
tic delay to each basic action of the language. These delays are determined via exponentially
distributed random variables, the rates of which are included in the syntax of basic actions. The
three basic actions are invoke (u.u′!ũ, δ), request (p.o?ũ, γ) and kill (kill(k), λ), and represent re-
spectively the capacity to send an output tuple ũ through endpoint u.u′, receive an input on tuple
ũ through endpoint p, and request the termination of all (unprotected) services under the scope
of killer label k; the rates of these activities are respectively δ, γ and λ. The basic activities
are assembled through the classical combinators of parallel composition s | s, guarded choice
g + g (the classical nondeterministic choice, in which each service has to start with a request
action) and service identifier S(m1, . . . ,m j). The last allows to express recursive behaviour and
is associated to a corresponding service definition of the form S(n1, . . . , n j) = s included in the
model definition. The employment of delimiters [ d ]s allows to define the scope of entities, and
thus to delimit the extent of variable substitution, the validity of names and the limits for service
termination. An entity under the scope of a delimiter is said to be bound by that delimiter. For
example, in the service S = [ x ]((p.o?x, γ). (p.o!x, δ)) the variable x is bound by the delimiter
[ x ], while the name p is not bound. A S service S is termed closed if every entity ap-
pearing in P is bound by a delimiter. In order to delimit the effects of service termination, in
addition to killing label termination and adhering to the features present in COWS, we provide
the protection construct {| |} with the same semantics as in the original version of the language.

As the objective of this work is the automatic manipulation and model checking of S
models, we need to constrain these models to produce finitely branching transition systems. It
is for this reason that we diverge from the original syntax by using service identifiers instead
of service replication; moreover, we assume that each service identifier is guarded in a valid
starting service, i.e. it has to be contained in a service starting with a request action. In order
to avoid name captures due to variable substitutions, we require that in any valid service no
homonymy exists between both bound and free entities. This condition is supposed to hold in
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the starting service and kept valid through the use of functions s dec and l dec in rule serid (cfr.
Tables 3.2 and 3.3). These functions are directly drawn from [35] and decorate bound names
respectively in the transition label and in the residual service by adding to each entity a finite
number of zeroes as superscript.

The form of a generic transition obtained from the application of the operational semantics

rules of Tables 3.2 and 3.3 to a (closed) S service is s
ϑ(α)
−−−−→

ρ
s′. Here, α is the action label;

ρ is the rate associated to the basic action, or a pair formed by the rates of the two interacting
services if the action is a communication; and ϑ is a string of “+0” and “+1” created through the
application of rules choice0 and choice1. The last approach is drawn from the one presented
in [35] in order to distinguish between transitions which would otherwise be identical. As an
example, consider the following service:

S = (p.o!n, δ) | (p.o?n, γ). 0 + (p.o?n, γ). 0

From S , two transitions lead to the same residual:

S
+0(p.o b∅c n n)
−−−−−−−−−−−→

[γ, δ]
0 | 0 and S

+1(p.o b∅c n n)
−−−−−−−−−−−→

[γ, δ]
0 | 0.

Notice that, if we had not established a way to distinguish between the two transitions, the total
rate of the transitions labelled with p.o b∅c n n exiting from S would have been computed taking
into account only one transition, and not two, thus leading to an inconsistent representation of
the model.

In addition to the metavariable conventions mentioned before, in the operational semantics
rules we will use a, b to range over u, u′, (u), (u′) (i.e. possibly bound input entities) and h, i to
range over m, n, (m), (n) (i.e. possibly bound output names). In operational semantics labels,
we call an entity “bound” if it falls under the scope of a delimiter in the service on which the

semantics rules are being applied. For example, in the transition [ x ](p.o?x, γ). s
(p.o?(x))
−−−−−−−→

γ
s we

use (x) in the label to state that the scope of x has been opened (by applying rule open), and
thus that x is bound in the starting service.

Finally, in order not to obtain infinitely branching transition systems, we have to avoid the
use of a congruence relation within the operational semantics rules. For this reason we deal with
opening and closing of scopes with specific semantic rules: open, com and delcl. Rule open
uses the function op (see Table 3.4) to actually modify transition labels, opening the scope of
bound entities, and signaling their bound status in the resulting transition label. Rules com and
delcl handle the closing of scopes for names sent in a communication.

Notice that the given definition for rule open allows to extrude the scope of names for all
three communicating labels. This allows us to take into account also the case in which the
scope of the input variable of the request action contains the scope of the output name from the
invoke action, which in turn contains both communicating services. As an example, consider
the following service:

s = [ x ] ([ n ] ((p.o?x, γ). 0 | (p.o!n, δ1)) | (q.m!x, δ2))
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op(p.o!h̃, n) = p.o!h̃′ where h̃′ = h̃{(n)/n}

op(p.o?ã, x) = p.o?ã′ where ã′ = ã{(x)/x}

op(p.o bσc ã h̃, n) = p.o bops(σ, n)c ã h̃′ where h̃′ = h̃{(n)/n}

ops(∅, n) = ∅

ops({n/x} ] σ,m) =

 {(n)/x} ] ops(σ,m) if n = m
{n/x} ] ops(σ,m) if n , m

Table 3.4: Definition of functions op and ops used for the opening of input, output and communication
labels.

Here, the scope of n can be correctly extended via the application of rule open, generating the

transition s
ϑ(p.o b∅c x (n))
−−−−−−−−−−−→

[γ, δ1]
[ n ] (0 | 0 | (q.m!n, δ2)). The derivation of such transition is shown in

Table 3.5, where the application of rule open is marked by (∗).

−

(p.o?x, γ). 0
(p.o?x)
−−−−−−→

γ
0

−

(p.o!n, δ1)
(p.o!n)
−−−−−−→

δ1
0

(p.o?x, γ). 0 | (p.o!n, δ1)
(p.o b{n/x}c x n)
−−−−−−−−−−−−−→[γ, δ1] 0 | 0

(∗)
[ n ]((p.o?x, γ). 0 | (p.o!n, δ1))

(p.o b{(n)/x}c x (n))
−−−−−−−−−−−−−−−→[γ, δ1] 0 | 0

[ n ]((p.o?x, γ). 0 | (p.o!n, δ1)) | (q.m!x, δ2)
(p.o b{(n)/x}c x (n))
−−−−−−−−−−−−−−−→[γ, δ1] 0 | 0 | (q.m!x, δ2)

[ x ]([ n ]((p.o?x, γ). 0 | (p.o!n, δ1)) | (q.m!x, δ2))
(p.o b∅c x (n))
−−−−−−−−−−−→[γ, δ1] [ n ](0 | 0 | (q.m!n, δ2))

Table 3.5: Derivation of the example showing the application of rule open.

In the conclusion of rule com we set that the label for communication is of the form
p.o bσ′c ã h̃. Its meaning is as follows:

• p.o is the endpoint on which the communication is happening;

• σ′ is a partial function on the communication entities representing the possible substi-
tution(s) to be applied when the appropriate delimiters are encountered (see part on M
below);

• ã is the tuple of (possibly bound) input variables/names involved in the communication;

• h̃ is the tuple of (possibly bound) output names involved in the communication.
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Notice that the fact that entities in ã and h̃ are bound influences only the application of rules
delcl and delsub, being transparent to all other semantics rules.

In order to determine which names or variables are involved in an action labelled by α, we
use function d(α), which is defined in the same way as function d(α) in [30]. For example, we
have that d(p.o!〈n,m〉) = {p, n,m}, and d(p.o b{n/x} ] {m/y}c 〈x, y〉 〈n,m〉) = {n,m, x, y} (notice
the absence of p in the case of communication).

Function M (see Table 3.6) is also drawn from [30], and has been extended in order to
correctly deal with scope extrusion.

M (n, n) = (∅, ∅, ε) M (x, n) = ({n/x}, ∅, ε)

M ((x), n) = (∅, {n/x}, ε) M (x, (n)) = ({(n)/x}, ∅, ε)

M ((x), (n)) = (∅, {n/x}, n)

M (a1, h1) = (σ1
′, σ1, t̃1) M

(
ã2, h̃2

)
= (σ2

′, σ2, t̃2)

M
(
〈a1〉 :: ã2, 〈h1〉 :: h̃2

)
= (σ1

′ ] σ2
′, σ1 ] σ2, t̃1 :: t̃2)

Table 3.6: Definition of the matching function M. Here ] stands for disjoint union of substitution
functions, and :: is used for concatenating two tuples.

Notice that the return value ofM is a tuple (σ′, σ, t̃) composed by:

• σ′: the substitution(s) to be carried out as soon as the corresponding delimiter is encoun-
tered;

• σ: the substitution(s) to be carried out directly on the residual service of the communica-
tion;

• t̃: the name(s) to be restricted in the residual service.

A brief explanation of each base case tackled byM is given below:

• M (n, n): no substitution is needed, as input and output names coincide;

• M (x, n): a substitution will be performed when the delimiter for variable x will be en-
countered (rule delsub), so that the value of x will be substituted on its entire scope;

• M ((x), n): input variable x is bound (i.e. its delimiter has already been encountered, and
thus the scope of x is contained into the scope of n), so the substitution {n/x} is performed
directly on the residual service and no delimiter needs to be added;
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• M (x, (n)): output name n is bound (i.e. its scope is contained in the scope of x), so the
substitution needs to be performed when the delimiter for x is found, and that delimiter
will be substituted by a delimiter for n (rule delcl), effectively closing the scope of n;

• M ((x), (n)): both delimiters have already been encountered, so the substitution has to be
performed directly on the residual service and the scope of n needs to be closed at the
same time (so a delimiter for n is added to the residual service).

Cases in which the input name is bound (M ((n), n) andM ((n), (n))) are not considered as they
are not possible, while cases of the form M (n,m) with n , m are not defined as no match
applies.

To make notation shorter, we add a utility function for counting the number of substitutions
needed for the match of two tuples, defined as follows:

#(ã, h̃) =

 |σ′ |+ |σ | ifM
(
ã, h̃

)
= (σ′, σ, t̃)

∞ otherwise

where |σ | is the number of substitutions performed by σ.
In order to correctly check that the matching components in a communication are the best

possible, we make use of an adapted version of the predicate s ↓c
p.o,h̃

defined in [30], meaning

“service s performs a request action on endpoint p.o which matches tuple h̃ with strictly less
than c substitutions”. Finally, predicate s↓kill retains the original meaning of “service s can
perform a kill action”.

3.2 Stochastic rates

The stochastic execution step of a closed service is

s
ϑ(α)
−−−−→

ρ
s′

with either α = † or α = p.o b∅c ã h̃ (i.e., we accept as execution steps only killing and
communication actions), ϑ is as described above (cfr. Sec. 3.1), and ρ represents the rates of
the two participants to the communication or the rate of the kill action. As we will see in
this section, the computation of the rate of a communication action involves the apparent rates
of individual actions, i.e. the rates at which these actions are seen happening by an external
observer (an observer that cannot distinguish between individual actions of the same kind). The
computation of apparent rates is in turn based on the respective basic rates.

Calculating the rate of a communication

In [30] the communication between two COWS services is presented as an asynchronous, asym-
metric event. Asynchronous because invoke actions are independent services, and asymmetric
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since a request action is adapted to its corresponding invoke action through the matching func-
tionM. Following this same approach, we assume that request actions are dependent on invoke
actions: i.e., the choice of the “transmitting” invoke action determines the set of possible “re-
ceiving” request actions. This happens because the set of request actions matching with the
smallest number of substitutions (and thus eligible for communication with a given invoke ac-
tion) is different from one invoke action to another. As this concept is foundational in our
method for the computation of communication rates, we make use of an example to better ex-
plain it. Consider the service

S = [ m, n, o, x, y ]((p.q!〈m, n〉, δ1)︸            ︷︷            ︸
A

| (p.q!〈m, o〉, δ2)︸            ︷︷            ︸
B

| (p.q!〈n, o〉, δ3)︸           ︷︷           ︸
C

| (p.q?〈m, x〉, γ1). 0︸                ︷︷                ︸
D

| (p.q?〈y, o〉, γ2). 0︸               ︷︷               ︸
E

| (p.q!〈n, n〉, δ4)︸           ︷︷           ︸
F

)

Using the notation P � Q to mean that services P and Q communicate (with P sending and Q
receiving), we list below all communications made possible in S by the matching paradigm:

• A � D (matching m with m and substituting x by n)

• B � D (matching m with m and substituting x by o)

• B � E (substituting y by m and matching o with o)

• C � E (substituting y by n and matching o with o)

• (no service is able to receive F’s tuple, so F does not communicate)

We can see from the example that the choice of the invoke action also determines the set of
possible communications: when choosing to make a communication involving service A, there
is only one possible communication (A � D), and the same holds for service C (with commu-
nication C � E), while when choosing service B the possible communications are two: B �
D and B � E. Note that, as each of the two communications B � D and B � E makes one
substitution, they are equally viable from the non-stochastic point of view, while, as we will
see, the stochastic rates of the two transitions add a bias to the choice between the two actions.

The rate of a communication event is obtained by multiplying the apparent rate of the com-
munication by the probability to choose the two participants among all possible competitors for
the same communication. As mentioned before, the apparent rate of the communication is com-
puted taking into account the rates of the actions which would be considered as of the same kind
by an external observer. We will consider two actions to be indistinguishable from the point of
view of an external observer if these actions are competing to participate with the same role in
the same communication. Adopting a classical way of approximating exponential rates [23],
we take the apparent rate of a communication to be the minimum between the apparent rates of
the participating services (i.e., the communication proceeds at the speed of the “slowest” of the
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participants). So, the ideal formula for the rate of a communication between two hypothetical
services P and Q has the following form:

rate (communication) = P(P ∩ Q) · min (appRate (P) , appRate (Q)) (3.1)

where P(P ∩ Q) is the probability to have both services P and Q involved in the communica-
tion, and appRate (P) (resp. appRate (Q)) is to be intended as the apparent rate of the invoke
(request) action computed considering the whole service containing P and Q.

As we consider request actions to be dependent on invoke actions, we compute the proba-
bility to choose a pair invoke-request via the conditional probability formula:

P(P ∩ Q) = P(P) · P(Q | P)

This means that the probability to have a communication between invoke P = (p.o!ñ, δ) and
(best matching) request Q = (p.o?ũ, γ) is given by the product of the probability to have chosen
P among all possible invoke actions on endpoint p and the probability to choose Q among the
request actions made available by the choice of P (i.e., the request actions matching with P
through the minimal number of substitutions). In the example above, the probability that a
communication happens between B and D is calculated as follows:

P(B ∩ D) = P(B) · P(D | B)

=
δ2

δ1 + δ2 + δ3
·

γ1

γ1 + γ2
(3.2)

(notice that we do not take into account the rate δ4 of service F, as F cannot take part into any
communication), while the probability to choose communication between A and D is basically
the probability to choose A (as D is the only request action matching with A):

P(A ∩ D) = P(A) · P(D | A)

=
δ1

δ1 + δ2
· 1

Notice that we do not take into account the rate δ3 of service C, as C cannot communicate with
D (n , m) and thus cannot influence the communication.

Now we will explain how to compute the apparent rates of invoke and request actions in-
volved in a communication, defined as the sum of all rates of invoke (request) actions in com-
petition with the selected one. It is important to remember that we have to take into account
the communication capabilities of request and invoke actions, as the matching rules determine
which are to be considered the “competing” actions.

Apparent rate of an invoke action

The apparent rate of an invoke action taking part in a communication internal to service s is
given by the sum of the rates of all invoke actions in s able to perform a communication on the
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same endpoint on which the communication happens. Function inv (see Table 3.7) is used to
this aim. This function is applied to the whole service in which the communication happens,
and, through recursive calls of the auxiliary function inv’, sums up the rates of all unguarded
invoke actions on the given endpoint. Notice that the reference to function sumRates is used
in order to determine if the invoke action under inspection activates at least one request, so
that only actions with the actual capacity to communicate are taken into account. To this same
end, the condition ũ = ñ ensures that the invoke action can send its output tuple: indeed, the
operational semantics rule inv (cfr. Table 3.2) allows only fully instantiated output tuples to
be sent. As an example of application, referring to the example presented at the beginning of
Subsection 3.2, we show the result of the computation of the apparent rate for service B involved
in the communication B � D:

appRate (B) = δ1 + δ2 + δ3 (3.3)

Notice once more that δ4 does not appear in the sum, as service F activates no request action.

inv(s, p.o) = inv′(s, s, p.o)

inv′(s, (kill(k), λ), p.o) = inv′(s, (p′.o′?ũ, γ). s′, p.o) = inv′(s, 0, p.o) = 0

inv′(s, (p′.o′!ũ, δ), p.o) =


δ if p = p′, o = o′, ũ = ñ and

sumRates(s, ñ, p.o) , (0,∞)
0 otherwise

inv′(s, s1 | s2, p.o) = inv′(s, s1, p.o) + inv′(s, s2, p.o)

inv′(s, g1 + g2, p.o) = inv′(s, g1, p.o) + inv′(s, g2, p.o)

inv′(s, [ d ]s′, p.o) = inv′(s, s′, p.o)

inv′(s, {|s′|} , p.o) = inv′(s, s′, p.o)

inv′(s,S(m1, . . . ,m j), p.o) = inv′(s, s′{m1, . . . ,m j/n1, . . . , n j}, p.o) if S(n1, . . . , n j) = s′

Table 3.7: Definition of function inv.

Apparent rate of a request action

Definition 1. Request action (p′.o′?ũ, γ) is activated by invoke action (p.o!ñ, δ) if the communi-
cation between the services performing such actions is possible.

So, in a specific service s, an unguarded request action (p′.o′?ũ, γ) is activated by invoke
action (p.o!ñ, δ) if p = p′, o = o′ and #(ũ, ñ) is minimal w.r.t. any other unguarded request
action (p′.o′?ũ′, γ′) in s for whichM (ũ′, ñ) is defined.

Definition 2. The best-matching set for invoke action (p.o!ñ, δ) in service s is the set of all
request actions activated by invoke action (p.o!ñ, δ).
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The apparent rate of a request action (p.o?ũ, γ) involved in a communication inside service
s is calculated as follows:

• consider a set B of best-matching sets, each relative to a different unguarded invoke action
in s on endpoint p, and such that (p.o?ũ, γ) is contained in all sets in B;

• for each best-matching set S ∈ B, sum up the rates of all (request) actions contained in S;

• multiply each of such sums by the probability to select the corresponding activating invoke
action;

• sum all results obtained this way to obtain the apparent rate of (p.o?ũ, γ) in s.

Notice that we compute the apparent rate of a request action averaging it through the probabili-
ties to choose each of its activating invoke actions.

As an example to clarify the computation explained above, consider again communication
B � D from the example introduced at the beginning of Subsection 3.2. The apparent rate of
request action D depends from two best-matching sets: {D} and {D,E}, activated respectively
by A and B. The apparent rate of D results therefore as follows:

appRate (D) =
δ1

δ1 + δ2︸  ︷︷  ︸
P(A)

·γ1 +
δ2

δ1 + δ2︸  ︷︷  ︸
P(B)

·(γ1 + γ2) (3.4)

where we have highlighted the probabilities to select the activating invoke actions for each best-
matching set to which D belongs. Please notice that, as service C is incompatible with D, its
rate is not taken into account when computing P(A) and P(B), as C would not influence the
communication.

Putting together formulae (3.1), (3.2), (3.3) and (3.4), the rate of communication B � D results
as follows:

rate

(
S

ϑ(p.q b∅c 〈m,x〉 〈m,o〉)
−−−−−−−−−−−−−−−−−−→[γ1 , δ2] S ′

)
=

δ2

δ1 + δ2 + δ3
·

γ1

γ1 + γ2
· min

(
δ1 + δ2 + δ3,

δ1

δ1 + δ2
· γ1 +

δ2

δ1 + δ2
· (γ1 + γ2)

)

=
δ2

δ1 + δ2 + δ3
·

γ1

γ1 + γ2
· min

(
δ1 + δ2 + δ3,

δ1 · γ1 + δ2 · (γ1 + γ2)
δ1 + δ2

)
where S ′ = [ m, n, o, x, y ](A | 0 | C | 0 | E | F){o/x}.

Rate of a communication

Generalising from the example presented above, we can finally state the formula for the calcula-
tion of the rate of a communication happening in service s on endpoint p between the receiving
service performing request action p.o?ã and the sending service performing invoke action p.o!h̃:

rate

(
s

ϑ(p.o b∅c ã h̃)
−−−−−−−−−−→

[γ,δ]
s′
)

=
δ

inv(s, p.o)
·

γ

req(s, p.o, h̃, #(ã, h̃))
· min

(
inv(s, p.o),

aR(bms(s), p.o, ã)
aInv(s, p.o, ã)

)
(3.5)

where γ and δ are respectively the basic rate of request and invoke actions, while functions inv,
aInv, req, bms, sumRates and aR are briefly explained here below and more precisely defined
in the respective tables.

22



CHAPTER 3. SCOWS 3.2. STOCHASTIC RATES

inv(s, p.o) (cfr. Table 3.7) computes the sum of all the rates of invoke actions in s which can
perform a communication on endpoint p. The actions activating no request action are not
taken into account, as they do not influence any communication. Through this function
we compute the probability to choose action (p.o!h̃, δ) for communication inside service
s as δ

inv(s,p.o) .

req(s, p.o, h̃, c) (cfr. Table 3.8) is built in a way similar to inv, and returns the sum of all rates
of unguarded request actions in s on endpoint p matching with given tuple h̃ through ex-
actly c substitutions. These actions are the ones competing with the selected request action
(p.o?ã, γ) for the communication at hand. Such sum allows us to compute the probability
to choose that specific request action among all competitors: γ

req(s,p.o,h̃,c) . Notice that the
fact that c is minimal (and thus that the selected request action is best-matching) comes
directly from the existence of the communication transition itself.

bms(s) (cfr. Table 3.9) for each unguarded invoke action (p.o!ñ, δ) in s, returns a pair of
the form ((Γ, c), (p.o!ñ, δ)), where (Γ, c) is the result of sumRates(s, ñ, p.o) (see below),
with Γ standing for the sum of all rates of the best-matching set for action p!ñ, and c
representing the number of substitutions performed by the request actions belonging to
such best-matching set. The resulting set of pairs B = bms(s) is used in aR(B, p.o, ã) in
order to compute the apparent rate of request action p?ã as described in Subsection 3.2.

sumRates(s, ñ, p.o) (cfr. Table 3.11) analyses service s and returns a pair of numbers (Γ, c),
where Γ is the sum of the rates of all request actions in the best-matching set for invoke
action p.o!ñ and c is the number of substitutions through which these request actions
match. Notice that, by the definition of best-matching set, c is the minimal number of
substitutions with which any request action can match with p.o!ñ, and thus the sum of
these rates is the apparent rate of a request action able to communicate only with p.o!ñ.

aR(B, p.o, ã) (cfr. Table 3.10) computes the sum of the product Γ · δ for each pair of the form
((Γ, c), (p.o!ñ, δ)) in B and is used in order to compute the total apparent rate of request
action p?ã defined as the average of the apparent rate of the request action (the sum of
the rates of all request actions which could take its place in a communication) for each
invoke action activating it. The average is weighted with the probabilities to choose each
activating invoke action: e.g., the probability to choose (p.o!ñ, δ) is δ

aInv(s,p.o,ã) , where s is
the whole service.

aInv(s, p.o, ã) (cfr. Table 3.12) computes the sum of the rates of all invoke actions in s whose
best matching set contains the request action p.o?ã. Please notice that, although it behaves
similarly to inv(s, p.o), aInv uses a more specific clause when encountering an invoke
action: the corresponding rate is added to the sum only if that action activates request
action p.o?ã.
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req((kill(k), λ), p.o, h̃, c) = req((p′.o′!ũ, δ), p.o, h̃, c) = req(0, p.o, h̃, c) = 0

req((p′.o′?ũ, γ). s, p.o, h̃, c) =

 γ if p = p′, o = o′ and c = #(ũ, h̃)

0 otherwise

req(s1 | s2, p.o, h̃, c) = req(s1, p.o, h̃, c) + req(s2, p.o, h̃, c)

req(g1 + g2, p.o, h̃, c) = req(g1, p.o, h̃, c) + req(g2, p.o, h̃, c)

req([ d ]s, p.o, h̃, c) = req(s, p.o, h̃, c)

req({|s|} , p.o, h̃, c) = req(s, p.o, h̃, c)

req(S(m1, . . . ,m j), p.o, h̃, c) = req(s{m1, . . . ,m j/n1, . . . , n j}, p.o, h̃, c) if S(n1, . . . , n j) = s

Table 3.8: Definition of function req.

bms(s) = bms′(s, s)

bms′((p.o!ũ, δ), s) =

{
{(sumRates(s, ñ, p.o), (p.o!ñ, δ))} if ũ = ñ
∅ otherwise

bms′((p.o?ũ, γ). s′, s) = bms′((kill(k), λ), s) = bms′(g1 + g2, s) = bms′(0, s) = ∅

bms′(s1 | s2, s) = bms′(s1, s) ∪ bms′(s2, s)

bms′([ d ]s′, s) = bms′(s′, s)

bms′({|s|} , s) = bms′(s′, s)

bms′(S(m1, . . . ,m j), s) = bms′(s1{m1, . . . ,m j/n1, . . . , n j}, s) if S(n1, . . . , n j) = s1

Table 3.9: Definition of function bms.

aR(∅, p′.o′, ã) = 0

aR({((Γ, c), (p.o!ñ, δ))} ∪ M, p′.o′, ã) =

{
aR(M, p′.o′, ã) + Γ · δ if C
aR(M, p′.o′, ã) otherwise

where C = (p = p′ and #(ã, ñ) = c)

Table 3.10: Definition of function aR. Condition C is used in order to check whether request action under
consideration belongs to a best-matching set.
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sumRates((p′.o′?ũ, γ). s, ñ, p.o) =

 (γ, #(ũ, ñ)) if p = p′ and o = o′

(0,∞) otherwise

sumRates((p′.o′!ũ, δ), ñ, p.o) = sumRates((kill(k), λ), ñ, p.o) = sumRates(0, ñ, p.o) = (0,∞)

sumRates([ d ]s, ñ, p.o) = sumRates(s, ñ, p.o)

sumRates({|s|} , ñ, p.o) = sumRates(s, ñ, p.o)

sumRates(s1, ñ, p.o) = (γ1, c1) sumRates(s2, ñ, p.o) = (γ2, c2)

sumRates(s1 | s2, ñ, p.o) = (γ3, c3)
(∗)

sumRates(g1, ñ, p.o) = (γ1, c1) sumRates(g2, ñ, p.o) = (γ2, c2)

sumRates(g1 + g2, ñ, p.o) = (γ3, c3)
(∗)

(*) where c3 = min (c1, c2) and γ3 =


γ1 if c1 < c2

γ2 if c2 < c1

γ1 + γ2 if c1 = c2

sumRates(S(m1, . . . ,m j), ñ, p.o) = sumRates(s{m1, . . . ,m j/n1, . . . , n j}, ñ, p.o) if S(n1, . . . , n j) = s

Table 3.11: Definition of function sumRates for the calculation of the sum of rates in best-matching sets.

aInv(s, p.o, ã) = aInv′(s, s, p.o, ã)

aInv′(s, (p′.o′?ũ, γ). s′, p.o, ã) = aInv′(s, (kill(k), λ), p.o, ã) = aInv′(s, 0, p.o, ã) = 0

aInv′(s, (p′.o′!ũ, δ), p.o, ã) =


δ if p = p′ and sumRates(s, ñ, p.o) = (Γ, #(ã, ñ)),

where Γ > 0 and ũ = ñ
0 otherwise

aInv′(s, s1 | s2, p.o, ã) = aInv′(s, s1, p.o, ã) + aInv′(s, s2, p.o, ã)

aInv′(s, g1 + g2, p.o, ã) = aInv′(s, g1, p.o, ã) + aInv′(s, g2, p.o, ã)

aInv′(s, [ d ]s′, p.o, ã) = aInv′(s, s′, p.o, ã)

aInv′(s, {|s′|} , p.o, ã) = aInv′(s, s′, p.o, ã)

aInv′(s,S(m1, . . . ,m j), p.o, ã) = aInv′(s, s′{m1, . . . ,m j/n1, . . . , n j}, p.o, ã)
if S(n1, . . . , n j) = s′

Table 3.12: Definition of function aInv.
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Resuming, the rate of a stochastic execution step of a closed S service is computed as
follows:

rate
(
s ϑ(α)
−−−−→

ρ
s′
)

=


δ

inv(s,p.o) ·
γ

req(s,p.o,h̃,#(ã,h̃)) · min
(
inv(s, p.o), aR(bms(s),p.o,ã)

aInv(s,p.o,ã)

)
if α = p.o b∅c ã h̃
and ρ = [γ, δ]

ρ if α = †
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3.3 Structural congruence in S

In this section, we will introduce a notion of structural congruence in S. This congruence
is not to be applied directly in the operational semantics, as the introduction of a rule for the
application of structural congruence goes against our objective to generate finitely branching
transition systems. However, such a notion of congruence could become useful to identify
services which, although grammatically different, originate the same behaviour.

Definition 3. The structural congruence relation of S is the least congruence relation ≡
satisfying all laws in Table 3.13.

(prot1) {|0|} ≡ 0 (prot2) {|{|s|} |} ≡ {|s|}

(prot3) {|[ d ]s|} ≡ [ d ]{|s|} (delim1) [ d ]0 ≡ 0

(delim2) [ d1 ][ d2 ]s ≡ [ d2 ][ d1 ]s (delim3) s1 | [ d ]s2 ≡ [ d ](s1 | s2)

if d < fk(s2)

(parassoc) s1 | (s2 | s3) ≡ (s1 | s2) | s3 (parcomm) s1 | s2 ≡ s2 | s1

(par0) s | 0 ≡ s (cho0) (p.o?ũ, γ). s + 0 ≡ (p.o?ũ, γ). s

(chocomm) g1 + g2 ≡ g2 + g1 (choassoc) (g1 + g2) + g3 ≡ g1 + (g2 + g3)

Table 3.13: Structural congruence rules for S.

Notice that the rules are standard, with the only notable exception of a rule for idempotence
of guarded sum, which does not apply in our case: as stated before (cfr. Sec. 3.1), we wish to
distinguish between two services performing the same actions in a choice.

In [27] the authors show that the classical way of computing stochastic rates [36] for com-
munication actions is in some cases imprecise, as it does not take into account the complete
service in which the communication happens. This leads to the fact that two services differing
only in the parenthesisation of their subcomponents, as could be (P | Q) | R and P | (Q | R)
(which should be congruent by the associativity of parallel composition), give rise to transitions
with different stochastic rates: such a problem negates the congruence law for parallel associa-
tivity. Nevertheless, our language still retains the associativity of parallel composition, as the
communication rates are computed taking into account the whole service. This is due to the fact
that COWS itself, through its polyadic matching rule, requires an analysis of the whole service
before a transition is computed: the stochastic semantics follows this approach and the resulting
rate computation method preserves the congruence relation.

We can show via a proof based on the structure of the functions used in (3.5) that our way
of calculating the rate of communications is not affected by the problem presented in [27].
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Theorem 1. Given two S services P and Q such that P ≡ Q by the structural congruence

law parassoc, and such that P
ϑ1(α)
−−−−−→

ρ
P′ and Q

ϑ2(α)
−−−−−→

ρ
Q′, we have that rate

(
P

ϑ1(α)
−−−−−→

ρ
P′

)
=

rate

(
Q

ϑ2(α)
−−−−−→

ρ
Q′

)
.

Proof. As the congruence rule (assoc) states that (s1 | s2) | s3 ≡ s1 | (s2 | s3), we can suppose
that P ≡ (s1 | s2) | s3 and Q ≡ s1 | (s2 | s3). Then, there are two cases based on the form of α:

• α = †. Supposing that both P and Q have chosen the same action (kill(k), λ), we have that
ρ = λ and, by the computation of the rate for killing actions, the thesis.

• α = p.o b∅c ã h̃. In this case we have that ρ = [γ, δ] (where γ is the rate of the request
action and δ is the rate of the invoke action involved in the communication) and the rate is
computed following equation (3.5):

rate

(
P

ϑ1(α)
−−−−−→[γ,δ] P′

)
= δ
inv(P,p.o) ·

γ

req(P,p.o,h̃,#(ã,h̃))
· min

(
inv(P, p.o), aR(bms(P),p.o,ã)

aInv(P,p.o,ã)

)
.

Now, for each of the functions involved in the computation of the rate we will show that
the function preserves the associativity of parallel composition.

sumRates Given that

sumRates(s1, ñ, p.o) = (γ1, c1)
sumRates(s2, ñ, p.o) = (γ2, c2)
sumRates(s3, ñ, p.o) = (γ3, c3)

we have that

sumRates(s1 | s2, ñ, p.o) = (γ1,2, c1,2)

where c1,2 = min (c1, c2) and γ1,2 =


γ1 if c1 < c2

γ2 if c2 < c1

γ1 + γ2 if c1 = c2

sumRates((s1 | s2) | s3, ñ, p.o) = (γ, c)

where c = min
(
c1,2, c3

)
and γ =


γ1,2 if c1,2 < c3

γ3 if c3 < c1,2

γ1,2 + γ3 if c1,2 = c3

28



CHAPTER 3. SCOWS 3.3. STRUCTURAL CONGRUENCE IN SCOWS

while
sumRates(s2 | s3, ñ, p.o) = (γ2,3, c2,3)

where c2,3 = min (c2, c3) and γ2,3 =


γ2 if c2 < c3

γ3 if c3 < c2

γ2 + γ3 if c2 = c3

sumRates(s1 | (s2 | s3), ñ, p.o) = (γ′, c′)

where c′ = min
(
c1, c2,3

)
and γ′ =


γ1 if c1 < c2,3

γ2,3 if c2,3 < c1

γ1 + γ2,3 if c1 = c2,3

Noticing that

c = min (min (c1, c2) , c3) = min (c1, min (c2, c3)) = c′

and that

γ =



γ1 if c1 < c2 and c1 < c3

γ2 if c2 < c1 and c2 < c3

γ3 if c3 < c1 and c3 < c2

γ1 + γ2 if c1 = c2 < c3

γ1 + γ3 if c1 = c3 < c2

γ2 + γ3 if c2 = c3 < c1

γ1 + γ2 + γ3 if c1 = c2 = c3


= γ′

we can conclude that

sumRates((s1 | s2) | s3, ñ, p.o) = sumRates(s1 | (s2 | s3), ñ, p.o).

inv inv((s1 | s2) | s3, p.o) = inv′((s1 | s2) | s3, (s1 | s2) | s3, p.o)
= inv′((s1 | s2) | s3, s1 | s2, p.o) + inv′((s1 | s2) | s3, s3, p.o)
= inv′((s1 | s2) | s3, s1, p.o) + inv′((s1 | s2) | s3, s2, p.o) + inv′((s1 | s2) | s3, s3, p.o)

Noticing that inv’

returns a sum of integer numbers, and that in the base case where a non-zero value
is returned it invokes function sumRates on the starting process P, we rely on the
proof for sumRates to complete the case for inv.

aInv This case is dealt the same way as the previous one.

req req((s1 | s2) | s3, p.o, h̃, c) = req(s1 | s2, p.o, h̃, c) + req(s3, p.o, h̃, c)
= req(s1, p.o, h̃, c) + req(s2, p.o, h̃, c) + req(s3, p.o, h̃, c)
= req(s1, p.o, h̃, c) + req(s2 | s3, p.o, h̃, c) = req(s1 | (s2 | s3), p.o, h̃, c)

bms bms((s1 | s2) | s3) = bms′((s1 | s2) | s3, (s1 | s2) | s3)
= bms′(s1 | s2, (s1 | s2) | s3) ∪ bms′(s3, (s1 | s2) | s3)
= bms′(s1, (s1 | s2) | s3) ∪ bms′(s2, (s1 | s2) | s3) ∪ bms′(s3, (s1 | s2) | s3)

The case is similar to inv, using this time union between sets as associative operator
with ∅ as 0-element.
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aR As can be derived from the definition of aR, no reference to services is made, so the
function does not need to be taken into account.

We can then conclude that

rate

(
P

ϑ1(α)
−−−−−→

[γ,δ]
P′

)
= rate

(
Q

ϑ2(α)
−−−−−→

[γ,δ]
Q′

)
.

�

3.4 Final considerations on S

We acknowledge the work by Prandi and Quaglia [35], in which an extension to COWS is
proposed. However, S differs from the version presented in [35] because our extension is
based on a different fragment of the original language. In particular, preserving the polyadic
communication paradigm, we give more importance to the communication capabilities of ser-
vices when computing transition rates. Therefore we obtain a different (and, from the aspect of
stochastic rate computation, more precise) stochastic version of COWS. The downside of our
approach is that generating the transition system of a S model can take a time exponential
in the number of parallel services the model contains. This happens because of the notorious
problem of state space explosion, which is most evident in models of loosely coupled interact-
ing entities (as is the case of Web Services): the transition system of such a model contains a
number of states which can be up to exponential in the number of its parallel sub-models. As
the model checking of a stochastic model typically requires its translation in a more widespread
formalism such as Continuous-Time Markov Chains (CTMC) or Petri Nets, in order to perform
model checking on a S model, we would need to obtain a CTMC from it. Unfortunately
enough, this would require the entire transition system of the model to be generated: therefore,
the generation of a CTMC from a S model (and the subsequent model checking) can be-
come a troublesome task and, on models complex enough, even infeasible. As we will see in
the next chapter, model checking S models is viable trough an alternative approach.
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Chapter 4

A tool for model checking S

In the conclusion of Chapter 3 we highlighted the fact that generating a CTMC from a S
model can be a computationally costly task, as it would require the generation of the complete
transition system of the model. The main problem that the generation of a complete transition
system for a non-trivial S model would cause is the notorious state space explosion prob-
lem. This kind of problem is most evident when a model comprises a number of loosely coupled
components, as is often the case when dealing with distributed systems. The problem comes
from the observation that the transition graph of a system composed of x processes in parallel,
each of which with y states, can have (in the case that no communication happens among the
processes) up to yx states. A compositional generation of the transition system (and thus, of
the underlying CTMC) would allow to avoid the problem of state space explosion, thanks to
the fact that parallel components are considered in isolation and then merged with less-than-
exponential execution time. Unfortunately, this type of approach can not be applied in the case
of S. This is because of the name-passing matching paradigm adopted by the language,
which requires to know an entire model to calculate a single communication action, preventing
de facto any compositional approach to the transition system generation. In languages with-
out the name-passing feature such as PEPA [22], the compositional approach can be applied
and is in fact feasible: an approach of this kind is used for the generation of a CTMC from a
PEPA model in PRISM [24], which is based on MTBDD (multi-terminal binary decision dia-
grams, [15, 20]) representations. Another example of application of the same principle is the
CASPA tool [29], which generates a MTBDD representation from YAMPA, a stochastic process
calculus based on TIPP [21].

In this chapter we will present our proposed solution to the problem of model checking
S models avoiding the generation of the full transition system: S amc. This tool
distinguishes itself from the other stochastic model checking tools because it makes use of a
simulation-based approach for the verification of properties without generating the full transi-
tion system of a model. This allows us to avoid the problem of state space explosion, while still
maintaining acceptable computation time and approximation values.

The implementation language chosen for the tool is Java [1]. The reason behind this choice
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is that an integration with other tools from the SENSORIA project [2] is planned, and having a
common implementation language would greatly simplify the integration process.

4.1 Overview on the approach

In order not to generate a complete transition system, and thus avoid the state space explosion
problem, we base our model checking approach on the direct simulation of Smodels. This
means that we generate a number of simulation traces by applying the operational semantics
presented in Chapter 3 directly to S services, and then perform the computations necessary
to check the desired formula against these traces. As a single execution trace of a stochastic
model is by definition a random walk on the transition system of the model, we have to resort to
statistical reasoning in order to estimate the size of the error we make in evaluating the requested
property through a finite number of random walks. The theories behind the reasoning on which
the approach used by the S amc tool is based are the one adopted in the Ymer tool [18]
(mainly consisting of Wald’s sequential probability ratio test [39]) and the one adopted in the
APMC tool [19]. S amc differentiates from both because it is based on S models,
while the others are based on CTMCs.

The CSL [5] formulas on which we will concentrate our efforts can be expressed in one of
the following forms:

P./θ [Ψ1 U
[t0,t1] Ψ2], where ./ ∈ {<,6, >,>} and θ ∈ [0, 1] (4.1)

or
P=? [Ψ1 U

[t0,t1] Ψ2] (4.2)

and can be read respectively as “Is there a probability p ./ θ that state formula Ψ1 will hold
until, inside the time interval [t0t1], state formula Ψ2 holds?” and “What is the probability that
state formula Ψ1 will hold until, inside the time interval [t0t1], state formula Ψ2 holds?”. State
formulae Ψ1 and Ψ2 are to be intended as state labels or as formulae of type 3/4 themselves.
As we will see, the approach used in Ymer will be employed to decide the truth value of CSL
formulas of type (4.1), while the method applied in APMC will be used in the estimation of
formulas of type (4.2).

In the following subsections we will give an explanation of the theory and the observations
on which the S amc tool is based.

4.2 Statistical hypothesis testing

The approach employed in the Ymer tool is based on a theory of statistical hypothesis testing,
which we will resume here.

First of all, notice that the property P>θ [Φ U[t0,t1] Ψ] is equivalent to ¬P<θ [Φ U[t0,t1] Ψ],
and that, as the interval [0, 1] is continuous, the conditions p > θ or p > θ are indistinguishable.
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For this reason, we will explain the statistical hypothesis testing theory taking into account only
the formula P>θ [Φ U[t0,t1] Ψ] without losing generality w.r.t. the other forms described in (4.1).
The formula, which corresponds to the assertion “the probability that formula Φ U[t0,t1] Ψ is
true if tested on a random walk starting from the initial state of the given S model is at
least θ”, will be represented from now on by the hypothesis H = “p > θ”.

The hypothesis testing problem takes into account the probability to have an error in the
observation of an event, and thus to find the hypothesis to be false while it is actually true (false
negative), or to state that the property is true when it is false (false positive). We will choose
limits to the occurrence of the two types of error, and in particular we set the probability to have
a false negative (i.e., to reject H when it is true) to be at most α, and the probability to have a
false positive (i.e., to accept H when it is false) to be at most β, with α + β 6 1.

In Figure 4.1 we show the graph of the ideal testing environment, where the probability of
false negative is exactly α and the probability of false positive is exactly β. The graph presents a

Figure 4.1: The probability Lp to accept hypothesis H = “p > θ” as a function of p. Ideal case.

plot of the probability to accept hypothesis H as a function of the probability p. As can be seen,
when p < θ (and thus, the hypothesis “p > θ” is false), the probability to accept the hypothesis
equals β (as it is the probability of a false positive), while when p > θ this probability becomes
1 − α (as α is the probability to have a false negative). In the point where p = θ, we request
the probability to accept H to be both equal to 1 − α and to β. Thus, it must be that β = 1 − α,
preventing us to choose the values of α and β independently.

In order to be able to set the error probabilities α and β independently from each other, a
relaxation of the threshold becomes necessary: in particular, an indifference region is intro-
duced. This region corresponds to all values of p between two thresholds p1 and p0 for which
θ − δ = p1 < θ < p0 = θ + δ holds. The value δ determines the amplitude of the region in
which the value of the hypothesis is considered not to be reliably asserted. The introduction of
the indifference region determines a change in the hypotheses to test: we move from testing H
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against its negate to testing H0 = “p > p0” against H1 = “p 6 p1”. Maintaining the conditions
on α and β, we present in Figure 4.2 a realistic hypothesis testing case. In this case, the original

Figure 4.2: The probability Lp to accept hypothesis H0 = “p > p0” as a function of p. Real case.

hypothesis H = “p > θ” is accepted with probability at least 1 − α if p > θ + δ (because hy-
pothesis H0 is accepted), and is rejected with probability at most β if p 6 θ − δ (hypothesis H1

is accepted). If p ∈ (p1, p0), both hypotheses H0 and H1 are false, as in the indifference region
it is indifferent which of the two hypotheses is accepted. In Figure 4.2 this region is marked by
a gray area. Notice that decreasing the value of δ, and thus narrowing the indifference region, it
is possible to get closer to the ideal hypothesis testing situation of Figure 4.1.

In the next section we will present a statistical method which allows to test the described
hypothesis H with the chosen probabilities of error α and β.

4.3 The sequential probability ratio test

The sequential probability ratio test has been introduced by Wald in [39], and is a statistical test
where the number of observations is not determined a priori. Instead, the test allows to decide
whether the given hypothesis is true or false when the error evaluation crosses a predetermined
threshold. If a decision cannot be made, a new observation is made.

In our case, remembering that we have defined an indifference region between probabilities
p1 = θ − δ and p0 = θ + δ, the hypothesis to be tested at each iteration is H0 = “p > p0”, and its
converse is H1 = “p 6 p1”. After having performed the m-th observation om, a probability ratio
is computed:

R =
p1m

p0m

where pim is the probability to have obtained the (independent) observations o1, . . . , om when the
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probability to have a positive response from each observation is pi. The ratio thus obtained can
be read as a ratio between the probability to have obtained the series of observations o1, . . . , om

from a series of identical, independent experiments whose success rate is p1 and the probability
to obtain the same series of observations when the success rate is p0.

Hypothesis H0 will be accepted if R 6 B, while H1 will be accepted (thus rejecting H0) if
R > A, where A and B are such that A > B and are chosen in order to respect the limits α and
β we have established for the error probabilities. Thus, it must hold that if R 6 B, then the
probability to accept H0 while H1 actually holds is at most β, and it must also be true that if
R > A, then the probability to reject H0 when it actually holds is at most α. As there is not
a trivial way to find the values for A and B, an heuristic proposed in [39] in order to get error
estimations close to the wanted ones is to set A =

1−β
α

and B =
β

1−α .
The sequential probability ratio test has been implemented into the S amc tool for the

evaluation of CSL formulae of type (4.1). The algorithm which performs the kernel of the task
for the evaluation of such properties is illustrated in Algorithm 1, while Figure 4.3 graphically
represents two possible execution paths for the algorithm.
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Figure 4.3: Two possible execution paths of the sequential probability ratio test algorithm implemented
in S amc. The two colored lines represent the bounds defined by the parameters α and β. As the
number of samples increases, we move towards one of the two bounds: when one is crossed, the sampling
stops and the hypothesis is either accepted or rejected (i.e., the formula is either decided to be true or
false).

4.4 Probability estimation method

In the model checking of type (4.2) formulae we want to give an approximated result without
having to take into account the whole transition system of the model at hand. In order to obtain
such an approximation with a given error bound, we rely on a method presented in [19] and
based on [25].
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Algorithm 1 The algorithm used to perform the sequential probability ratio test. In order to facilitate the
understanding of the method, we present a simplified version of the algorithm. The algorithm we show
here does not consider the possibility of having probabilistic sub-formulas inside formula ϕ, nor does
take into account the cases in which θ − δ < 0 or θ + δ > 1. The actual implementation of the algorithm
provides support for both situations.

input α, β, δ, Φ = P./θ [ϕ]
p0 ← θ + δ

p1 ← θ − δ

logA← ln 1−β
α

logB← ln β
1−α

nObservations← 0
d ← 0
while logB < d ∧ d < logA do

generate a random walk σ

if σ |= ϕ then
d ← d + ln p1

p0

else
d ← d + ln 1−p1

1−p0

end if
nObservations← nObservations + 1

end while
if ./ ∈ {>,>} then

return d 6 logB
else

return d > logB
end if
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The concept underlying the method presented in [19] is that also the value of CSL formu-
lae of type (4.2) can be estimated through a series of observations on random walks over the
transition system; but, differently from the method applied to type (4.1) formulae, this approach
allows to determine the number of observations necessary to obtain the desired approximation
level before the observations are made. This allows us to make trade-offs between speed and
approximation with a deeper insight on the effects of our choices.

The error estimation tools provided by the method presented in [19] are the approximation
parameter ε and the confidence parameter δ. In particular, it can be shown that the evaluation
of the given formula on O

(
1
ε2 · log 1

δ

)
random walks brings to a probability estimation differing

from the real value by less than εwith probability 1−δ. The number of random walks necessary
to obtain the desired result is given by the following formula:

nObservations = 4 ×
log 2

δ

ε2 . (4.3)

Algorithm 2 is used in the S amc tool for the estimation of type (4.2) formulae and is in
fact the one presented in [19]. The idea on which the algorithm is based in order to compute the

Algorithm 2 The algorithm used in the S amc tool for the estimation of a CSL formula in the form
P=? [ϕ].

input δ, ε
nObservations← 4 log

(
2
δ

)
/ε2

count ← 0
for i = 1 to nObservations do

generate a random walk σ

if σ |= ϕ then
count ← count + 1

end if
end for
return count/nObservations

probability estimation P=? [ϕ] is to execute a fixed number of observations of the truth value of
the formula ϕ, counting the number of positive results. The probability that formula ϕ is true is
then computed dividing the number of positive observations by the total number of observations.

4.5 Speeding up the verification of bounded until formulae

The single observation of an event in both the approaches presented in Subsections 4.3 and 4.4
implies the verification of a path formula on a simulation trace (a random walk on the transition
system of the model). This could become a lengthy task if the path formula at hand is a (time-
bounded) until clause, because the S amc tool generates every simulation path working
directly on the S model. In fact, having to generate the set of possible candidate next
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states at each simulation step causes a degradation of performances w.r.t. the computation
of simulation paths on a CTMC model (where the whole transition system has been already
created), and such degradation is much more evident when the verification of a formula of
type (4.2) is made in a parametric way. For example, consider the formula (4.4):

Φ = P=? [Φ1 U
[t0,t1] Φ2] (4.4)

If we want to obtain a graph plotting the variation of the evaluation of Φ against the variation
of (one or both) time bounds t0 or t1, the formula Φ has to be evaluated applying the algorithm
described in Subsection 4.4 once for every different value of the varying time bound(s).

t0 = 0
t1 ∈ {0, 1, 2, . . . , 20},
ε = 0.01 (approximation)
δ = 0.1 (confidence set to 0.9)

(4.5)

Thus, if e.g. we want to plot a graph for the formula for the values set as indicated in (4.5), the
total number of simulation traces to be computed is

21 × 4 ×
log 2

δ

ε2 = 21 × 52, 042 = 1, 092, 882

which would generally require a significant amount of time to be processed. Of course, parallel
computation could be a solution to this problem, as each point of the plot can be computed by
a single CPU (or core), but we propose a solution still more efficient, based on the reuse of
already computed simulation traces for the verification of the until formula for all the variations
of the time bounds. In the case of the example, our method would compute only 52,042 simu-
lations for the generation of the graph with the given parameters. We will now present the basic
algorithm for the verification of until path formulae, then proceed with the introduction of the
modifications needed to obtain the described improvement.

4.5.1 Evaluating an until formula with constant time bounds

In order to obtain the truth value of an until path formula on a single simulation trace of the
model, an algorithm similar to Algorithm 3 is used. Notice that such algorithm performs the
checking of the formula as the generation of the trace goes along. This is a solution which
has a better average execution time w.r.t. an approach in which a complete simulation trace is
generated and then checked against the path formula. This is possible thanks to the fact that
the until formula has time bounds, which allows us to stop the generation of a trace when “the
time is up” or when a truth value for the formula has been found, even if the simulation could
proceed further. We will now give an explanation on the less trivial points of the algorithm.

The function computeTransitions (lines 5 and 27) applies the operational semantics to the
S model represented by the current state in the simulation: this allows us to obtain a set of
candidate next states, each associated to the transition leading into it.
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Algorithm 3 Verification of a bounded until formula.
1: input α, β, δ, Smodel, ϕ = Φ1 U

[tmin,tmax] Φ2

2: totalTime← 0
3: nextTime← 0
4: currState← initialState(Smodel)
5: transitions← computeTransitions(currState)
6: while ¬isEmpty(transitions) do
7: (nextState, τ)← computeNextState(transitions)
8: nextTime← totalTime + τ

9: if tmin 6 totalTime then
10: if verify(Φ2, currState, α, β, δ) then
11: return true
12: else if ¬verify(Φ1, currState, α, β, δ) then
13: return false
14: end if
15: else
16: if ¬verify(Φ1, currState, α, β, δ) then
17: return false
18: else if tmin < nextTime ∧ verify(Φ2, currState, α, β, δ) then
19: return true
20: end if
21: end if
22: currState← nextState
23: totalTime← nextTime
24: if tmax < totalTime then
25: return false
26: end if
27: transitions← computeTransitions(currState)
28: if isEmpty(transitions) then
29: return verify(Φ2, currState, α, β, δ)
30: end if
31: end while
32: return false
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The function computeNextState (line 7) makes a weighted randomised choice among all
candidate next states, returning the chosen next state and the time required to reach it. The
computation is weighted on the rates associated to the transitions leading to the given states. In
particular, the choice is made through the application of a kinetic Monte Carlo algorithm (see
Subsection 4.6.2).

The generation of the trace will end when a truth value for the formula has been found.
Another way to end the generation cycle would be the case in which no next state can be
computed, because the current state has no exiting transitions (the condition at line 6): in this
case, the formula would be evaluated as false.

The time bounds of the until formula are checked in lines 9-21. More in detail, we cover all
possible situations in the following 6 cases.

1. The current time (totalTime) is inside the interval [tmin, tmax] (line 9) and the current state
satisfies the post-condition Φ2 (line 10): in this case, the formula is true because we have
from case 3 that in each state for which totalTime < tmin the pre-condition Φ1 is fulfilled.

2. The current time is inside the interval [tmin, tmax] (line 9) and the current state does not
satisfy either of the two conditions Φ1 and Φ2 (line 16): the formula is false, because this
is the first state for which Φ1 does not hold (again, we have from case 3 that Φ1 is true for
all states before the current one) and Φ2 does not hold either.

3. The current time is before tmin: in this case, it is sufficient that formula Φ1 is verified in
the current state. If it is not the case, (line 16), the whole formula is false.

4. The current time is before tmin and formula Φ1 is true. If at the next step the total time
will be inside the interval [tmin, tmax] and formula Φ2 will be verified (line 18), then the
whole formula is true. Otherwise, the formula remains undecided and the computation
can continue.

5. If at the next step the time will exceed the upper bound tmax (line 24), the formula is false,
because even if the pre-condition Φ1 has been kept true up to the current time (by case 3),
the post-condition Φ2 has never become true during the interval [tmin, tmax].

6. If all other cases do not apply to the current situation, and the next state has no exiting
transitions (line 28), then the truth value of the whole until formula corresponds to the
truth value of the post-condition Φ2 evaluated on the next state, because at time tmax we
will still be at that same state and the only chance for the until formula to be verified is
that the post-condition turns out to be true in the last state reached before exiting from the
interval [tmin, tmax].

Notice that in cases 1, 2 and 4 the current time is guaranteed to be not after the interval
[tmin, tmax] (totalTime > tmax): this check is performed before reaching the next state (case 5).
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4.5.2 Evaluating an until formula with varying time bounds

In order to improve the execution time of the evaluation of a CSL until formula with a set
of different time bounds, we propose to reuse the same set of simulation traces for the model
checking of each variation of the formula. In the case of the evaluation of a CSL probabilistic
formula of type (4.2), this translates into generating a number of simulation traces equal to the
one obtained by formula (4.3), instead of that number multiplied by the number of variations of
the until formula.

In the example presented in formula (4.4) with the settings defined by (4.5), the idea is to
keep an ordered list of all the different values for t1. During the generation of the simulation
trace, we will change the value of t1 when its old value is not useful any more. The value of
the upper time bound t1 is considered to be not useful when the current simulation time has
crossed it (i.e., when a decision on the truth value of the current formula can be made). So,
if for example the current value for t1 is 5, the current total simulation time is 3 time units
and the next simulation step requires 2.5 time units, then at the next step the total simulation
time will be greater than t1. In that case, by the way in which Algorithm 3 is constructed, the
checking of the formula Φ1 U

[0,5] Φ2 will have surely come to an answer, either positive or
negative, and thus the simulation would terminate. Instead of terminating the simulation, we
store the result obtained with the current value of t1 and continue the checking with the next
value t1 = 6. Before computing a new simulation step, however, it is necessary to check again
the formula using the updated value for t1, in order to verify if the next value of t1 would allow
to immediately decide the truth value of the formula. This check on the changing value of t1

continues until we find a value of t1 which does not allow to directly determine the truth value
of the formula: only then we proceed to the computation of the next simulation step. If there are
no more values for t1, the simulation is terminated and all the truth values of the until formula
are returned, one for each different value of t1.

As an example application of the described approach, in Algorithm 4 we show the modifi-
cations we have introduced in order to speed up the evaluation of an until formula with different
upper time bounds. Notice that the evaluation of the path formula in this case does not generate
a single boolean value (the truth value of the formula), but an array of such values (result[]),
one for each of the different time bounds given as input.

In this version of the algorithm we need to know when the upper time bound tmax is crossed
by the value of the current time (line 27) or, more generally, when a decision has been reached
on the truth value of the formula with the current value for tmax: we keep track of this with
the flag done[tmaxIndex]. When the flag indicates that the truth value for the formula has been
decided, a new value for tmax is taken from the ordered list of available values and used in
the next iteration of the cycle in lines 12-35. Through this new cycle we keep on verifying
the truth value of the formula, remaining on the same state while a decision on it can be made
immediately; when it is not possible to make such a decision, the computation of the simulation
trace continues with the next state.

Managing the varying values for the upper time bound of the until path formula in the way
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Algorithm 4 Verification of a bounded until formula with varying upper time bound.
1: input α, β, δ, Smodel, ϕ = Φ1 U

[tmin,tmax] Φ2,
tmaxValues[]= [tmax1, tmax2, . . . , tmaxn]

2: totalTime, nextTime← 0
3: tmaxIndex← 1
4: tmax← tmaxValues[tmaxIndex]
5: done[1, . . . , n]← [false, . . . , false]
6: result[1, . . . , n]← [false, . . . , false]
7: currState← initialState(Smodel)
8: transitions← computeTransitions(currState)
9: while ¬done[n] ∧ ¬isEmpty(transitions) do

10: (nextState, τ)← computeNextState(transitions)
11: nextTime← totalTime + τ

12: repeat
13: redo← false
14: if tmin 6 totalTime then
15: if verify(Φ2, currState, α, β, δ) then
16: result[tmaxIndex]← true done[tmaxIndex]← true
17: else if ¬verify(Φ1, currState, α, β, δ) then
18: result[tmaxIndex]← false done[tmaxIndex]← true
19: end if
20: else
21: if ¬verify(Φ1, currState, α, β, δ) then
22: result[tmaxIndex]← false done[tmaxIndex]← true
23: else if tmin < nextTime ∧ verify(Φ2, currState, α, β, δ) then
24: result[tmaxIndex]← true done[tmaxIndex]← true
25: end if
26: end if
27: if ¬done[tmaxIndex] ∧ tmax < nextTime then
28: result[tmaxIndex]← false done[tmaxIndex]← true
29: end if
30: if done[tmaxIndex] then
31: tmaxIndex← tmaxIndex +1
32: tmax← tmaxValues[tmaxIndex]
33: redo← true
34: end if
35: until ¬redo
36: currState← nextState
37: totalTime← nextTime
38: transitions← computeTransitions(currState)
39: if ¬done[n] ∧ isEmpty(transitions) then
40: result[tmaxIndex, . . . , n]← verify(Φ2, currState, α, β, δ)
41: end if
42: end while
43: return result[]
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presented in Algorithm 4, we obtain all the truth values of the formula corresponding to the
different values of tmax. This way of dealing with the problem is demonstrably equivalent to
having computed a new simulation path for each value of tmax, and thus represents an improve-
ment in the performance of the tool in all the cases in which a plot of the value of a formula of
type 4.2 over varying time bounds is needed.

Finally, notice that the approach presented here can be trivially extended in order to deal
with varying values of both lower and upper time bounds.

4.6 Architecture

The tool is organised in the following modules:

• Parser for S models and CSL formulas

• Simulator engine for the generation of traces

• Model checking engine for the evaluation of formulae

• Textual user interface

• Graphical user interface

We will explain the details about each module in the following subsections.

4.6.1 Parser

The parser module handles the generation of abstract syntax tree from the model and formula
input files, and has been created through the tools JFlex [3] (for the lexical analyzer part) and
CUP [4] (for the syntax analyzer part). An example input model is shown in Table 4.1: as can be
seen, the syntax of the input language adheres to the syntax of S as presented in Chapter 3.

Table 4.2 presents two example CSL input formulas based on the model in Table 4.1. Notice
that the syntax of the formulas is self-explicative, as it is directly derived from the syntax of CSL
formulas as explained in Chapter 2, and is based on a grammar close to the one used in PRISM.

4.6.2 Simulator engine: generation of random walks

The simulation engine employed for the generation of random walks on the transition system of
a S model is based on an algorithm similar to Gillespie’s Stochastic Simulation Algorithm
(SSA, [16]), which is a randomised algorithm proved to be a sound application in a biochemical
environment where particular conditions hold. The use of the same approach in the case of
distributed system models could at first glance appear a less sound idea, but it nevertheless
makes sense, as the SSA is a Monte Carlo method for the simulation of stochastic systems, and
is in essence a Kinetic Monte Carlo algorithm [28], whose field of application varies widely.
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//Agents

Portal() =

//customer login

[vU][vP][vI](

(p#.cl#?<vU, vP, vI>,1.0).(

//lookup in the login repository

[lkey#][ndc#](

(ndc#.ndc#!<ndc#>,1.0)

|(

(ndc#.ndc#?<ndc#>,failRate).(p#.ko#!<vI>,1.0)

+ (ndc#.ndc#?<ndc#>,okRate).(p#.lok#!<vI, lkey#>,1.0)

)

)

| Portal()

)

);

Customer() =

//initialId is used to give the response to _this_ particular

//customer after the information lookup for the login.

[u#] [pwd#] [inid#](

(p#.cl#!<u#, pwd#, inid#>,1.0)

| (

//login not successful

(p#.ko#?<inid#>,1.0).nil

//login successful

//myKey is the variable that will contain the "session id" of the customer

+ [myKey](p#.lok#?<inid#,myKey>,1.0).( (myInitialId.clok#!<lok#>,1.0) )

)

);

$

//initial process

[verification#][infoUpload#][yes#][no#]( Portal() | Customer() | Customer() | Customer() )

$

//counter definitions

finished : [ 0 .. 3 ];

$

//cows actions <-> counter modifications

p# . lok# <*>: finished < 3 : (finished’ = finished + 1) ;

Table 4.1: An example input model for S amc. Notice that this is a S representation of the
example explained in detail in Section 4.7.

P =? [ true U [ 5 , 20 ] finished >= 2 ]

P >= 0.3 [ X finished > 0]

Table 4.2: Two example CSL formulas against which the model in Table 4.1 can be checked.
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The Kinetic Monte Carlo algorithm is employed in our case in a “next-state” function. This
function takes as input the current state and the corresponding exiting transitions, and outputs
a pseudo-randomly chosen next state plus the time required to make the transition from the
current to the next state. The pseudo-random decision is based on a weighted Monte Carlo
choice, using the stochastic rates of the transitions exiting from the current state as weights.
Algorithm 5 represents the steps performed in order to perform the pseudo-random choice of
the next state.

Algorithm 5 The steps performed by the simulator engine in order to compute the next-state function.
1: input currentState, transitions[]
2: totalRate← 0
3: for all ti ∈ transitions do
4: totalRate← totalRate + rate (ti) ×multiplicty(ti)
5: end for
6: generate random number p1 ∈ (0, 1]
7: find i such that

∑i−1
j=1 rate

(
t j
)
< p1 × totalRate 6

∑i
j=1 rate

(
t j
)

8: update state variables according to the actions associated to transition ti
9: nextState← targetState(ti)

10: generate random number p2 ∈ (0, 1]
11: τ← − ln p2

totalRate
12: return 〈nextState, τ〉

The algorithm chooses the next transition weighting the choice with the rates of the transi-
tions. After having generated a random number p1 from a uniform distribution in the interval
(0, 1] (line 6), the next transition is determined in a way such that the probability for each
transition t j to occur is proportional to its rate rate

(
t j

)
. In Figure 4.4 we show a graphical

representation of this step: the transition to be chosen is ti such that p1 × totalRate falls inside
the segment representing rate (ti) (line 7).

0 totalRate

Figure 4.4: Choosing the next transition step when generating a simulation trace. Please notice that
in this graphical representation we shorten the rate notation with the convention r j = rate

(
t j
)

for
j ∈ {1, 2, . . . , n}.

Finally, a pseudo-random number p2 ∈ [0, 1] is chosen and used in computing the time τ
needed in order to move from the current to the next state. The time τ is obtained by generating a
random variate (i.e., a possible outcome of a random variable) using the exponential distribution
having totalRate as parameter. Indeed, by the property of exponential distribution, the rate at
which the current state is left is the sum of the rates of all transitions exiting from it.

A random walk is obtained by iteratively applying Algorithm 5 starting with the initial state
of the model. The transitions exiting from each reached state are obtained by applying to the

45



4.6. ARCHITECTURE CHAPTER 4. SCOWS AMC

current state the operational semantics described in Chapter 3.

4.6.3 Model checking engine

The part of the tool which allows to perform the model checking of S models implements
the algorithms described in Sections 4.3, 4.4 and 4.5.

The structure of the CSL formulae is exploited in their evaluation: the model checking al-
gorithms are implemented as methods of the classes representing CSL formulae. Thus, all path
formulae allow to perform a sample action, which generates a simulation trace and produces
the boolean value resulting from the evaluation of the path formula on the trace, while state
formulae can perform either modelCheck (which decides on the truth value of the formula)
or estimateProbability (which returns an estimation on the probability of the sub-formula
to be true). The actual availability of the modelCheck and estimateProbability methods
is declared by the state formula itself and is based on its type and parameters. For exam-
ple, P>p [ϕ] allows only modelCheck to be made, while P=? [ϕ] allows us to perform only
estimateProbability.

The implementation of the model checking algorithms adds also the support for a client-
server architecture in the evaluation of path formulae, thus allowing to exploit distributed com-
puting in the evaluation of probabilistic state formulae. Basically, a path formula can act both
as a client and as a server. In the former case, the sample method keeps on calculating simula-
tion paths and sending the result of the formula evaluation to the server. In the latter case, the
server keeps a queue of client results to which truth values are added each time a new result is
received from a client, and from which truth values are extracted each time the model checking
algorithm requests a new path evaluation.

4.6.4 User interfaces

The tool provides both graphical and textual user interfaces (see Figure 4.5), the latter providing
support for both interactive and automatic operative modes.

These interfaces have been designed in order to support an user in two phases of the model
checking process:

• thanks to the interactive interface, the user can devise a CSL formula and try its eval-
uation/estimation in a restricted context in order to reach the desired trade-off between
execution time and accuracy;

• exploiting the support for execution in a shell script, the user can define a range of param-
eters for the chosen formula(e) and run them automatically one after the other.

Furthermore, the textual interface allows the user to define a client-server architecture through
which to distribute model checking on various machines.
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(a) Graphical (b) Textual

Figure 4.5: The user interfaces provided by the S amc tool.

4.7 Example: client log-in attempts

As an example application of our tool, we present a simplified model derived from a case study
developed within the SENSORIA European Project [2]. The setting for the scenario consists of
a Bank Credit Request service, which can be invoked by customers. The example presents the
login phase of the scenario, which is modelled by two services: one representing the portal and
the other representing a client (see Table 4.1).

The portal service is persistent, i.e. the service can answer to multiple requests without
terminating. This behaviour is achieved using service recursion, ensuring that all the recursive
calls are guarded in order to obtain a finitely branching transition system. In the example three
customers try to concurrently login. Each customer can attempt only once to perform the login
procedure and then its behaviour terminates.

The login procedure begins with an invocation by the customer (modelled via the Customer
agent) on the portal.customerLogin channel; the customer provides a username, a password
and a private name used to distinguish between different customer login transactions (i.e., it
represents the session identifier). The complementary request is performed by an instance of
the Portal agent, which we assume to be the only service offering this specific request.

The task to decide whether a login attempt is successful or not is performed directly by the
portal service. The choice that determines the outcome of the login attempt is made between
two possible communications over the ndc.ndc channel. In the case of a positive response, a
private name is sent from the portal service to the customer. This private name models a ses-
sion identifier, which will identify the corresponding logged customer throughout the rest of
the interactions between the customer and any additional service provided by the bank. The
private name representing the session identifier will be exchanged in any interaction that can
involve only successfully logged customers. In the model, this is achieved taking advantage
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of the matching mechanism used in the communication paradigm of the language, which has
been designed to naturally capture this behaviour. Note that, in the definition of Portal, the
basic rates for the receiving actions on ndc.ndc are not numeric values: the rates of the com-
munications are computed in a symbolic way, using f ailRate and okRate as placeholders. The
actual values for the basic rates will be defined when using the model checking software. In this
way different configurations for the same model can be used when performing model checking
analysis, without the need to modify the starting model.

We have defined a parametric CSL property (4.6) that will be checked against the considered
system:

P=? [true U[T,T] finished = N] (4.6)

which can be read as “Which is the probability to have exactly N successfully logged customers
at time T?”. Notice that the value of the variable named finished is the number of successfully
logged customers in the system. This variable is incremented in the S model when the
transition is given by a communication happening through the portal.loginOk endpoint (cfr.
Table 4.1).

The graph plotting the results of the evaluation of formula (4.6) against the model presented
in Table 4.1 with T ∈ {0, . . . , 30} and N ∈ {0, . . . , 3} is presented in Figure 4.6.
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Figure 4.6: Plot of the values obtained from the model checking of the example model against the CSL
formula P=? [true U[T,T] finished = N]. The parameters used in the simulations are ε = δ = 0.1 (thus
52, 042 simulation traces are computed).
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Chapter 5

Case studies and related work

The S amc tool presented in Chapter 4 allows us to check Web Services modelled through
S against CSL formulae without requiring to generate the complete state space underlying
the models. This is done applying simulation-based statistical methods directly on the S
models, thus allowing to completely avoid the possibility to face with the problem of state-space
explosion.

In this chapter we will evaluate the performances of the proposed model checker com-
pared with other existing model checking tools and then show an example application of the
S amc tool to a more complex case study from the SENSORIA European project [2] in-
side which our work is set.

To our knowledge, the one presented in Chapter 4 is the only model checker based on S
models. Thus, in order to obtain sensible results, we will compare the performances of our tool
with CTMC-based model checkers, where the CTMCs are obtained from S models thanks
to Igor Cappello’s S lts tool [11, 12]. This tool generates the CTMC underlying a S
model, with the objective of a subsequent employment with CTMC-based model checking tools.
The peculiar effort made by the tool allows to partially overcome the state-space explosion
problem, thanks to a structural congruence check applied to every generated state, which allows
the tool to use memory and CPU far better than it would without this approach.

We want to show when and why our tool resorting to a direct simulation method outperforms
the approaches requiring full knowledge of the underlying CTMC. We expect that approaches
based on CTMC simulation taken in isolation will often outperform our proposed method, as
the direct simulation of Smodels requires much more time than the same approach applied
to a CTMC. Whereas, when considering also the time for CTMC generation, we expect our tool
to show better performances on higher-dimensioned problems. Furthermore, even if numerical
approaches allow us to obtain exact results, they can require more resources than approximated
ones when the state-space dimension is in the order of thousands.
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5.1 Case studies

The tools will be tested in the model checking of the Smodels of two classical concurrency
theory problems: the dining philosophers and the sleeping barber. Both these problems have
variants in the number of processes considered (e.g., the number of philosophers sitting at the
table, or the number of available chairs in the barber shop): by varying these numbers we will
be able to make considerations on the impact of the number of starting parallel processes on the
execution time of the tools, and thus on the scalability of the adopted approaches.

5.1.1 The dining philosophers

The problem of the dining philosophers has first been formulated by Dijkstra in [14] in order
to explain the problems of deadlock and resource starvation in computer systems. The version
of the problem we adopt here represents a number N of philosophers sitting at a circular table,
where a plate of food is available for each philosopher. A philosopher can either think or eat,
but in order to eat he needs to acquire both a fork and a knife, which can be acquired only if
the two philosophers at his side have not acquired them themselves. In fact, there is a number
of forks and knives each equal to half the number of philosophers, and the cutlery is positioned
in an alternating way between the philosophers, following the example schema in Figure 5.1,
where 6 dining philosophers are shown. As can be seen in the figure, the philosophers need to
be alternated between right-handed and left-handed in order to correctly use the cutlery without
changing its position.

Figure 5.1: An example configuration of the dining philosophers problem, showing how 6 philosophers
would look like when placed as described.

The S model corresponding to the 6 philosophers configuration of the problem can be
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found in Table 5.1. In the model we distinguish between left-handed (service LHphil) and right-
handed (service RHphil) philosophers because, as said previously, the cutlery is positioned on
the table alternating between knife and fork. Notice also that, as will happen in the case of
the other models presented here, we use parametric rate definitions (i.e., we use r1, r2, r3,
. . . instead of actual real numbers): this will allow us to instantiate the proper rates with values
only at the moment of model checking. This way of defining rates will allow us to change
rates as desired without the need for additional computations on the model (for instance, the
recomputation of a CTMC) and is supported by all the tools used in the comparison.

The models taken into account for the tests described in the sections below comprise the
versions of the generic model where the number of philosophers is even and between 2 and
12, and the number of forks/knives is properly adapted. For example, in the model with 8
philosophers, there are also 4 forks and 4 knives.

5.1.2 The sleeping barber

The problem of the sleeping barber has been formulated by Dijkstra in [13] and aims to describe
the communication and synchronization challenges that can arise when dealing with multiple
operating system processes running concurrently. The version of the model adopted here has
four main components: the barber, a single barber chair, a waiting room with a finite number
of chairs, and a number of customers. When the barber has no work to do, he simply sits
down on his chair and sleeps. When a customer enters the shop, he first checks whether the
barber is asleep: in that case, he wakes him up and gets his hair cut; if the barber is already
working on another customer, the newcomer tries to find a place in the waiting room. If no
chair is available in the waiting room, the customer exits the shop and comes back later after
having gone for a walk; conversely, if a chair is available the customer takes a seat and waits the
barber to become free. When the barber has finished dealing with a customer, after having been
paid, he checks the waiting room for another customer: the first to answer his call is served,
the others are left to wait (he is a very exclusive and eccentric barber); in case no customers are
present in the waiting room, the barber goes back to sleep on his chair. In Table 5.2 we show the
S representation of the model as described here. In this example the number of customers
is limited to 3 and there are 2 places available in the waiting room. Notice from the model that,
thanks to the polyadic matching communication paradigm used in S, we have modelled in
an efficient way the different priorities of the passages made by a customer entering the shop:
if the barber is sleeping, the triple <me,n#,n#> is matched by the process SleepingBarber
with a single substitution; if that process is not active (i.e., the barber is not sleeping), then
one of the Chair processes can match the triple with only one more substitution (variable x by
name n#); if no chair is available, the NoChairs process will obtain the triple (matching with
three substitutions) and let the customer know that the shop is full. The checks performed by
the barber after having finished dealing with a customer are modelled in a similar way (cfr. the
possible communications on channels queue.call and barber.reply).

The models we will use in the next sections for test beds will contain a number N of cus-
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//Agents

//RHphil: right-handed philosopher

RHphil(right#, left#) =

[fork][knife]( (right#.take#?<fork>,r1) . (left#.take#?<knife>,r2) .

[eat#][food#]( (eat#.eat#!<food#>,r3) | (eat#.eat#?<food#>,r4) .

( (left#.release#!<knife>,r5) | (right#.release#!<fork>,r6) )

)

);

//LHphil: left-handed philosopher

LHphil(right#, left#) =

[knife][fork]( (left#.take#?<fork>,r7) . (right#.take#?<knife>,r8) .

[eat#][food#]( (eat#.eat#!<food#>,r9) | (eat#.eat#?<food#>,r10) .

( (right#.release#!<knife>,r11) | (left#.release#!<fork>,r12) )

)

);

Cutlery(f#) = [p#] ( (f#.take#!<p#>,r13)

| (f#.release#?<p#>,r14).Cutlery(f#) );

$

//initial process

[fork1#][knife1#][fork2#][knife2#][fork3#][knife3#][take#][release#] (

RHphil(fork1#, knife1#) | LHphil(knife1#, fork2#)

| RHphil(fork2#, knife2#) | LHphil(knife2#, fork3#)

| RHphil(fork3#, knife3#) | LHphil(knife3#, fork1#)

| Cutlery(fork1#) | Cutlery(knife1#)

| Cutlery(fork2#) | Cutlery(knife2#)

| Cutlery(fork3#) | Cutlery(knife3#)

)

$

//counter definitions

fed : [ 0 .. 6 ];

$

//cows actions <-> counter modifications

eat#.eat#<*>: fed < 6 : (fed’ = fed + 1);

Table 5.1: The problem of 6 dining philosophers modelled with S.
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tomers varying between 1 and 3, and a number of chairs varying between 0 and 2, leaving out all
models in which the number of available chairs is at least as large as the number of customers.
Thus, we will consider a model comprising 1 chair and 3 customers, but not a model in which
there are 2 chairs and 2 customers.

5.2 Selected model checkers

The tools against which the S amc tool will be compared have been chosen with the aim
to obtain a significant evaluation of the performances of our tool.

5.2.1 PRISM - Probabilistic Symbolic Model Checker

PRISM [24] is a tool allowing to adopt various model checking approaches in order to ver-
ify properties of both discrete-time (DTMC) and continuous-time Markov chains (CTMC),
and of Markov decision processes (MDP). The properties, which can be expressed in a lan-
guage incorporating temporal logics such as CSL, PCTL and LTL, can also deal with costs
and rewards defined in the systems. The tool offers support for both exact and approximate
approaches to model checking, implementing advanced techniques for symbolic state-space
handling (such as multi terminal binary decision diagrams, MTBDDS [15]) and providing an
efficient discrete-event simulator for statistical analysis of model properties. The tool imple-
ments also the approach presented in the previous chapter for model checking CSL formulas of
type P=? [Φ1 U

[t0,t1] Φ2], which is the one presented in [19], and the same one used in our tool.

5.2.2 Ymer

Ymer [40] is a software developed by H. L. S. Younes which applies the sequential probability
ratio test (SPRT, [39]) to CTMC model checking, and to which the S amc tool is partly
inspired. Ymer also implements some of the numerical approaches used in PRISM for the exact
computation of model checking results. The reason for which Ymer has been included in the
tests is to have an element of comparison for the performances of the SPRT implementation in
S amc, in order to quantify the advantages of starting from a completely known state space
(as is the case of Ymer) versus the approach of direct simulation of a process calculus.

5.3 Experimental setup

The performances of the selected tools will be tested in the model checking of the two case
studies, of which a number of variants are proposed, each sporting a different number of inter-
acting processes, in order to study the scalability of the two main approaches: complete state
space (and CTMC) generation from the S model followed by the application of one of the
available model checking techniques versus statistical reasoning on discrete-event simulation
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//Agents

IdleBarber(wakeUp#) =

(queue#.call#!<n#>,r1)

| [customerID]((barber#.reply#?<customerID>,r2) . WorkingBarber(customerID, wakeUp#)

+ (barber#.reply#?<nobodyPresent#>,r3) . SleepingBarber(wakeUp#)

);

SleepingBarber(wakeUp#) =

[customerID]((barber#.wakeUp#?<customerID, n#, n#>,r4) . WorkingBarber(customerID, wakeUp#));

WorkingBarber(customerID, wakeUp#) =

[newStyle#][money#]((customerID.cutHair#!<newStyle#, money#>,r5)

| (barber#.pay#?<money#>,r6) . IdleBarber(wakeUp#));

Chair(findChair#) =

[customerID][x]((barber#.findChair#?<customerID,x,n#>,r7) . (

(customerID.chairAvailable#!<n#>,r8)

| (queue#.call#?<n#>,r9) .

((barber#.reply#!<customerID>,r10) | Chair(findChair#))));

Customer(enterShop#) =

[me#] ((barber#.enterShop#!<me#, n#, n#>,r11)

| [newStyle][money]((me#.cutHair#?<newStyle,money>,r12) . (barber#.pay#!<money>,r13))

+ (me#.chairAvailable#?<n#>,r14) .

[newStyle][money]((me#.cutHair#?<newStyle,money>,r15) . (barber#.pay#!<money>,r16))

+ (me#.shopFull#?<n#>,r17) .

([wander#] (me#.wander#!<n>,r18) | (me#.wander#?<n>,r19) . Customer(enterShop#)));

NoChairs(checkChair#) =

[customerID][x][y]((barber#.checkChair#?<customerID,x,y>,r20) .

((customerID.shopFull#!<n#>,r21) | NoChairs(checkChair#)));

NoCustomers() =

[x]((queue#.call#?<x>,r22) . ((barber#.reply#!<nobodyPresent#>,r23) | NoCustomers()));

$

//Initial process

[doAction#][barber#][queue#][call#][reply#][chairAvailable#]

[shopFull#][n#][nobodyPresent#][cutHair#][pay#](

SleepingBarber(doAction#)

| Chair(doAction#) | Chair(doAction#) | NoChairs(doAction#) | NoCustomers()

| Customer(doAction#) | Customer(doAction#) | Customer(doAction#)

)

$

//counter definitions

cut : [ 0 .. 3 ];

$

//cows actions <-> counter modifications

me#.cutHair#<*>: cut < 3 : (cut’ = cut + 1);

Table 5.2: The problem of the sleeping barber with 2 chairs and 3 customers.
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based directly on the S model. This will allow us to better define the boundaries inside
which the employment of our tool becomes more convenient than the CTMC-based approach.

The objective of the test is the model checking of the following CSL formulae

P=? [true U[T,T] fed = N] (5.1)

P>p [true U[0,20] fed > N] (5.2)

P=? [true U[T,T] cut = N] (5.3)

P>p [true U[0,20] cut > N] (5.4)

against the dining philosophers models (formulae 5.1 and 5.2) and the sleeping barber models
(formulae 5.3 and 5.4), with parameters respectively of T ∈ {0, . . . , 40} for formulae 5.1 and 5.3,
of p ∈ {0, 0.05, 0.1, 0.15, . . . , 0.9, 0.95, 1} for formulae 5.2 and 5.4, and N ∈ {0, . . . , nPeople} for
all formulae. Here, nPeople represents the total number of people on which the counting is
based (i.e., the number of philosophers in formulae 5.1 and 5.2 and the number of customers in
formulae 5.3 and 5.4).

5.3.1 Confidence settings

As the S amc tool is an approximated model checker based on statistical reasoning, we
will need to define a standard confidence setting for the tools providing an approximated ap-
proach, in order to confront execution data obtained under the same conditions. Of course,
exact approaches do not need confidence settings.

The confidence settings we impose on approximated approaches for the evaluation of For-
mulae 5.1 and 5.3 are the approximation level of 10−2 and the confidence level of 0.9; i.e., we
require the approximated results to differ from the exact results by less than 10−2 with proba-
bility of at least 0.9. These settings will apply to the approximated engine of PRISM and to
S amc, as Ymer does not allow to deal with formulae of this type. As we have explained
in Chapter 4, further increasing the requested confidence settings would likely require much
more time to compute the results. However, there are cases in which a better approximation is
more important than execution time: in these cases a boost in performances can be gained from
parallel computing, which is supported by S amc.

For the case of Formulae 5.2 and 5.4, the approximation parameters apply only to S amc
and Ymer, as PRISM can only offer exact model checking for this kind of formulae. These
parameters are, as detailed on Chapter 4, α (the probability to have a false negative), β (the
probability of false positive) and δ (the semi-width of the indifference region centered on the
threshold p), and are all set to a value of 10−2, which allows to obtain an answer in short time
with reasonable uncertainty bounds.
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5.4 Experimental results

We will now show, for each case study, a table resuming the performance values obtained from
the different tools, and will show a graphical comparison between the approaches when they are
particularly interesting.

The parameter evaluated for the execution of the tools is the computational time required
by the tools to complete the model checking of the selected formulae. Notice that not all tools
present a result under their columns in the tables: this can depend from the fact that the tool
cannot be employed for model checking the formula at hand (as is the case of Ymer for Formu-
lae 5.1 and 5.3, and of the simulation engine of PRISM for Formulae 5.2 and 5.4), or that the
time required to complete the computation would have been beyond human limits. The latter is
the case of the dining philosophers models comprising 8 to 12 philosophers: as the S lts
tool would require too much time to produce a CTMC from the S model, Formulae 5.1
and 5.2 cannot be evaluated in these cases with the CTMC-based approaches.

All tests have been executed on a workstation equipped with an Intel (R) Pentium (R) D
3.40 GHz CPU and 2 Gigabyte of RAM, running Ubuntu Linux 9.10.

5.4.1 Dining philosophers

The peculiar formulation of the dining philosophers problem presented in Section 5.1.1 allows
us to test in particular the scalability of the tools, evidencing the difficulty of generating a
CTMC when the number of states in the transition system rapidly increases. In fact, because of
the limitation of the alternating pattern in cutlery, there must be an even number of philosophers
in every variation of the model, thus bringing forth large differences in state-space dimension
between adjacent variations.

Table 5.3 shows the computation times required by the tools to produce their output when
checking Formula 5.1 in all its variations. Notice the the time required for computing the CTMC
severely hampers the model checking possibilities of CTMC-based tools, extending to the point
of completely preventing them to be employed. In fact, the models with 8 philosophers or more
are estimated to require a time in the order of at least hundreds of years to generate a CTMC.
Remember however that the S lts tool requires a large computational effort in order to
control the state-space explosion through the application of a congruence checking to each state
of the transition system. Thanks to these checks, the memory usage is kept at lower levels than
it would have been with a naive approach, thus allowing us to obtain CTMCs for models which
would otherwise be intractable.

The case of 6 dining philosophers shows something interesting: in fact, the time required
for the computation with S amc is less than the time to perform the same operation with
the approximated approach in PRISM. This is possible thanks to the enhancements described in
Section 4.5, which allow us to reuse the same simulation traces for more than one configuration
of the formula.

Figure 5.2 shows a comparison in the execution times of the tools S amc and S lts.
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Philosophers N. of states S lts PRISM Ymer S amc
Exact Approx.

2 20 0.9 1.9 95.5 - 395.6
4 249 345.4 153.5 1871.2 - 5537.8
6 3247 523173.0 138749.0 73729.4 - 31109.4
8 - - - - - 113603.0

10 - - - - - 309769.1
12 - - - - - 719487.9

Table 5.3: Computational time results for the model checking of Formula 5.1 (times are expressed in
seconds). The two columns for PRISM correspond to the numerical (Exact) and simulation-based (Ap-
prox.) model checking approaches. Data for Ymer are not present, as the tool does not provide a method
for dealing with formulae of this type.

As can be seen from the graph, a comparison between S amc and any CTMC-based tool
would be severely biased by the time needed to compute the CTMC. It can however be noticed
that for small state-space sizes (2 and 4 philosophers) it is far more convenient to use a CTMC-
based approach.
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Figure 5.2: Graph comparing the performances of the tools S lts and S amc when applied to
the dining philosophers problem. Data for 8 philosophers and up are not available for S lts, as their
estimated computation time would be too much large to be actually computed.

The verification of Formula 5.2 shows the same differences between the CTMC-based ap-
proaches and the S amc tool. In fact, the time required to compute a CTMC represents
again the most part of the time required by the model checking process in these cases. How-
ever, an advantage of using the CTMC-based approach appears clearly at this point: when a
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number of different formulae are to be checked against the same model, the CTMC needs to be
obtained only once, and then all formulae can be checked using the favourite approach.
Notice also that the sequential probability ratio test (applied in Ymer and S amc for the
model checking of Formulae 5.2 and 5.4) adds a certain aleatority to the computational time
performances, because only the previous history of simulation traces determines the decision to
perform another observation (cfr. Figure 4.3). So, if we have been particularly “lucky”, the time
taken to reach the required error rate can be rather small: it is the case of the 10-philosophers
model in Table 5.2, which has taken S amc less time to compute than the 8-philosophers
case.

Philosophers N. of states S lts PRISM Ymer S amc
Exact Approx.

2 20 0.9 1.68 - 2.1 262.9
4 249 345.4 61.45 - 16.9 2931.0
6 3247 523173.0 50700.4 - 3390.4 20293.9
8 - - - - - 80153.8

10 - - - - - 59419.0
12 - - - - - 131238.0

Table 5.4: Computational time results for the model checking of Formula 5.2 (times are expressed in
seconds). Please notice that only the “Exact” column contains time values for PRISM, because the tool
does not provide an approximated method for checking formulae of this type. Data for S lts are the
same as in Table 5.3 because the models are the same.

5.4.2 Sleeping barber

For the sleeping barber problem, we have kept the number of parallel services at low numbers
in order to be able to get an overview of the performances of the different approaches to model
checking without running too badly into state-space explosion. As already noticed for the case
of the dining philosophers, also Table 5.5 shows that the performance difference between the
approximated approach of PRISM and the S amc tool decreases with growing state spaces;
when the states space is big enough S amc even outperforms PRISM: again, this happens
thanks to the improvement for “recycling” simulation traces presented in Section 4.5.

Table 5.6 shows the computation times required by the model checking of Formula 5.4 with
the selected tools. In this case, the comparison between CTMC-based simulation and S-
based simulation shows how much an advantage the knowledge of the full state space is w.r.t.
the generation of all possible transitions at each step of the computation of a simulation trace.
As it can be seen, the exploration of a completely known state space allows Ymer to outperform
by far the S amc tool. However, the computation of the CTMC has to be taken into account
also in this case, slightly evening out the competition: the sum of the times required by both
S lts and Ymer is not dramatically smaller than the time required by S amc.
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Chairs Customers N. of states S lts PRISM Ymer S amc
Exact Approx.

0 1 6 1.2 1.7 40.4 - 287.4
0 2 50 2.3 2.6 202.3 - 1191.7
0 3 981 295.7 1812.4 4977.2 - 4130.9
1 2 43 2.4 3.3 291.1 - 2007.7
1 3 1253 517.0 3927.1 10963.2 - 6929.4
2 3 1066 792.9 3422.7 10646.6 - 8277.0

Table 5.5: Computational time results for the model checking of Formula 5.3 (times are expressed in
seconds). The two columns for PRISM correspond to the numerical (Exact) and simulation-based (Ap-
prox.) model checking approaches. Data for Ymer are not present, as the tool does not provide a method
for dealing with formulae of this type.

Chairs Customers N. of states S lts PRISM Ymer S amc
Exact Approx.

0 1 6 1.2 2.2 - 0.8 22.9
0 2 50 2.3 2.5 - 0.7 152.1
0 3 981 295.7 872.9 - 18.0 909.0
1 2 43 2.4 2.4 - 0.9 190.0
1 3 1253 517.0 1862.1 - 30.5 1760.1
2 3 1066 792.9 1651.6 - 32.8 1170.2

Table 5.6: Computational time results for the model checking of Formula 5.4 (times are expressed in
seconds). Please notice that only the “Exact” column contains time values for PRISM, because the tool
does not provide an approximated method for formulae of this type.

59



5.4. EXPERIMENTAL RESULTS CHAPTER 5. CASE STUDIES AND RELATED WORK

Figure 5.3 shows the peculiarity of the sequential probability ratio test: when the threshold
p approaches the real probability, the computation time required to obtain an answer on the
truth value of a formula of the kind of Formula 5.4 tends to grow steeply. As can be seen in
the graph, the maximum computation time for the S amc tool corresponds to the exact
value for the formula P=? [true U[0,20] cut > 2] (i.e., the point in which Formula 5.4 changes
its truth value). For the sake of completeness, we show in Table 5.7 the values of formula
P>p [true U[0,20] cut > 2] as computed by the S amc tool.
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Figure 5.3: Comparing the execution times against the probability parameter for Formula 5.4 when
checking the sleeping barber model with 0 chairs and 3 customers. The dotted line denotes the exact
value of the formula P=? [true U[0,20] cut > 2], and thus the point in which the answer to Formula 5.4
changes.
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Value of p Result Time (s) Value of p Result Time (s)

0.00 true 0.22 0.55 false 17.04
0.05 true 1.89 0.60 false 15.06
0.10 true 8.34 0.65 false 11.64
0.15 true 9.74 0.70 false 8.90
0.20 true 23.28 0.75 false 6.24
0.25 true 23.42 0.80 false 6.87
0.30 true 80.64 0.85 false 3.64
0.35 false 309.84 0.90 false 3.35
0.40 false 59.61 0.95 false 1.88
0.45 false 34.43 1.00 false 0.22
0.50 false 28.17

Table 5.7: Values of formula P>p [true U[0,20] cut > 2] as computed by S amc, and their compu-
tation times.
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5.5 A more complex case study: the bank credit request scenario

We will now present an extended version of the example shown in Section 4.6, which will allow
us to give an idea of the employment of the S amc tool in a more suitable environment. The
example is a case study taken from the SENSORIA project, of which Table B.1 in Appendix B
shows the S model.

The model represents a service for granting loans to bank customers. When a customer
asks for a loan, the bank processes the balance and amount. If the amount is under a certain
threshold, or if the assessment on the balance is particularly favorable (class “A” assessment), an
automatic loan offer is provided to the customer. Conversely, if the request cannot be handled
automatically, the attention of a clerk is requested (assessment “B”). If the assessment is not
positive (“C”), a supervisor is asked to deal with the request instead of the clerk. Clerks and
supervisors can either accept or reject the loan request: in the former case, a loan proposal is
forwarded to the customer. When the customer receives a loan offer, he can either refuse or
accept it, ending the process. The whole process can also be terminated in any moment if the
customer decides to cancel the request.

We propose to use our tool exploiting both the model checking approaches it provides. In
this example, we check if a probability is above a certain threshold before requesting its approx-
imated value, taking advantage of the rapid convergence times when dealing with formulae in
the form P>p [ϕ], and requiring a more precise estimation only when the first survey has given
a positive result. As an example, we will test the performances of the presented case study us-
ing the probability to obtain a response from the system within 40 time units as a performance
index:

P=? [true U[0,40] finished = 1] (5.5)

The system will be tested in various configurations, each of which enhances the response time
of one of the main components by increasing the corresponding rate:

• log-in phase (rate loginDecisionRate in the model)

• balance assessment service (rate assessmentDecisionRate)

• bank clerk (rate clerkDecisionRate)

• credit supervisor (rate supDecisionRate)

When all rates are set to their base values (cfr. Table B.2), the probability to obtain a re-
sponse in the given time interval is 0.31. We will perform a preliminary test for each con-
figuration by requesting the probability of Formula 5.5 to be greater than 0.35 (i.e., we test
Formula 5.6): only when this threshold is crossed we will need to know the actual improvement
obtained from the variation, otherwise such an improvement would hardly be useful.

P>0.35 [true U[0,40] finished = 1] (5.6)
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Notice from data in Table 5.8 that the most valuable performance enhancement is obtained
by increasing the speed at which clerks evaluate a customer (for example, by taking on more
clerks), and its probability is the only one we actually needed to calculate. All other probabilities
are included only for the sake of completeness, but did not need to be calculated, as they had
failed the preliminary test. The result we obtained had to be expected, as the probability for a
customer to be evaluated by a clerk is slightly larger than the probability to get an automatic
response or to be evaluated by a supervisor, as can be inferred from the rate settings for the
assessment outcomes (rates assessmentArate, assessmentBrate and assessmentCrate).

Thanks to the proposed method, an evaluation requiring on average 8 minutes of compu-
tation can be used in order to filter out all ineffectual improvement hypotheses, thus perform-
ing the time-consuming (about 8 hours) process of probability estimation only when actually
needed.

Enhanced component Rate value Value of Formula 5.5

Log-in phase 2.0 (0.33)
Balance assessment 2.0 (0.33)
Clerk 0.8 0.41
Supervisor 1.0 (0.32)

Table 5.8: Results of the model checking on the SENSORIA finance case study. Numbers between
parentheses are the actual probability values of cases for which Formula 5.6 was evaluated as false.
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Chapter 6

Conclusions

The objectives we posed at the start of the work were to obtain an efficient way of modelling
and evaluating the performances of Web Services taking advantage of the formal foundations
provided by COWS. In order to reach the objective, we planned to divide the work into two
steps: the creation of a suitable stochastic modelling language (preferably based on COWS) and
the ideation of a way to evaluate the performance of systems modelled through such language.

S, the stochastic extension of COWS, maintains the polyadic matching communica-
tion paradigm of the original calculus, thus allowing us to model the use of session identifiers
during the course of an interaction in a service oriented environment. In order to maintain the
polyadic matching in the calculus, we had to resort to a number of supplemental calculations
when computing the rate of a transition. In fact, we need to know an entire S term in order
to decide not only which transitions are possible (which is already the case of the basic version
of the calculus), but also the stochastic rates of such transitions. This non-compositionality in
turn gives rise to some difficulties when trying to check quantitative properties of large S
models: in these cases state-space explosion can become a severe hindrance to model checking
S terms. The solution we adopted was to implement some statistical model checking ap-
proaches in the proposed S amc tool, through which the state-space explosion problem can
be avoided while still obtaining valuable performance estimations. The price of this approach is
that only approximated results can be obtained, as they are based on a finite number of random
walks on the complete state space of a S model. Also, the number of formulae which can
be dealt with is smaller than if using an approach such as the one applied in S lts [11, 12]
(e.g., steady-state analysis is not contemplated in our case). However, a positive aspect of the
proposed model checker is that an approximation threshold can be set for each evaluation, thus
allowing the user to balance between execution time and confidence levels. This feature enables
the user to perform quantitative analysis even when dealing with rather large state-spaces.

In order to obtain an estimation of the performances of S amc, we have made a com-
parison between the proposed tool and existing model checking tools based on CTMC (which
require the knowledge of the complete transition system of a S model to be computed).
The comparison has shown that, when models are sufficiently small, the generation of the state-

65



CHAPTER 6. CONCLUSIONS

space of a S model is still advisable, provided that an effort is made for reducing the
exponential explosion in the number of states, e.g. partitioning the state-space using a notion
of structural congruence (as is done in S lts). When numbers start to grow, the approach
requiring an existing model checking tool would be outperformed by S amc, as the time
needed to compute a CTMC would be larger than the time needed to perform direct simulation.

The work presented here makes use of some approaches applied before to the statistical
model checking of CTMC models, and shows that they are applicable also directly to a pro-
cess calculus. The loss in performance the direct simulation of a S model shows when
compared against the corresponding CTMC-based approach can partly be reduced if consider-
ing the proposed improvements. This allows us to put forward the application of a method of
this kind also to those other stochastic process calculi for which the computation of a complete
state-space could raise performance issues.

Future developments involve mainly extensions to the functionalities of the S amc tool.
For example, a more complete support could be added to the parametrized formulae, improving
the performances in a wider number of situations. Also, it would be advisable to extend the
support to more CSL formulae, for example adding the possibility to deal with steady-state
formulae, which allow to test the performance of a system in the long run. Finally, it would
be interesting to test the approaches used in S amc by applying them to other stochastic
process calculi.
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Appendix A

From COWS to Monadic COWS

We present an encoding from the original (polyadic) version of distributed systems modelling
language COWS to a monadic version thereof, thus limiting the number of transmitted parame-
ters to one for each communication. Through results on the operational correspondence between
COWS services and the respective encodings, we show that interactions in the language could
be expressed in a monadic form without losing expressive power, while slightly simplifying the
communication paradigm. However, the same approach could not be applied to the stochastic
version of the language, as it becomes clear from the demonstrations presented here. In fact,
the correspondence between a monadic and a polyadic stochastic versions of COWS could not
be possibly proven because of the impossibility to maintain both the polyadic matching mecha-
nism and the correct stochastic rates for every execution step without modifying the operational
semantics of the language. This impossibility has brought us to maintain the polyadic commu-
nication paradigm in our stochastic extension of COWS, which could not be further simplified
without losing expressive power w.r.t. the non-stochastic version.

A.1 COWS syntax and semantics

Here we present the syntax and semantics of the language on which we will work in the next
sessions. As our objective is to create an encoding from the polyadic to the monadic versions of
the same language, we will apply polyadic semantics also to monadic COWS, although better
fitting semantics could be built for the specific case.

The syntax of the version of COWS we will use in this paper is defined by the following
grammar:

s ::= u.u!ẽ |
∑r

i=0 pi.oi?w̃i. si | kill(k) |
s | s | {|s|} | [ d ]s | S(n1, . . . , n j) | 0

Notice that service replication ∗s has been replaced here by service definition and instan-
tiation (S(m1, . . .m j) = s and S(n1, . . . , n j)) in order to improve the readability of the en-
coding. For what concerns metavariables, we will divide all entities into three disjoint sets:
the set of names (which will be represented by identifiers starting with lower-case letters, as
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m, n, o, p,m′, n′,myName, yourName, . . . ), the set of variables (represented by identifiers all
upper-case: X, Y , X′, Y ′, MYVAR, YOURVARIABLE) and the set of killer labels (represented by
k, k′, k1, . . . ). Adhering to the conventions adopted in [30], we shall use u,w, u′,w′ as metavari-
ables for names and variables, and d, d′ for generic entities. Moreover, the class of expressions
(with metavariables e, e′, e1, . . . ) will include names, variables and (at least) arithmetic-boolean
expressions, which can be evaluated through function E. This function, taken as input a tuple
ẽ of expressions, produces a tuple ṽ of values, containing at each position i the value vi corre-
sponding to the evaluation of expression ei. The set of values (with metavariables v, v′, v1, . . . )
thus includes both names and evaluated expressions. Finally, services will be identified by
metavariables s, s′, s1, . . . , while service identifiers (used for defining recursive behaviour) will
be referred to using names like S,Service1,MyService, . . . .

The semantics for the language is defined in Table A.2. All the functions used in the seman-
tics are defined the same way as in [30], with the changes needed to adapt them to the proposed
syntax. The structural congruence relation ≡ is taken from [30], and adapted to our case (see
Table A.1).

(prot1) {|0|} ≡ 0 (prot2) {|{|s|} |} ≡ {|s|}

(prot3) {|[ d ]s|} ≡ [ d ]{|s|} (delim1) [ d ]0 ≡ 0

(delim2) [ d1 ][ d2 ]s ≡ [ d2 ][ d1 ]s (delim3) s1 | [ d ]s2 ≡ [ d ](s1 | s2)

if d < fk(s2)

(parcomm) s1 | s2 ≡ s2 | s1 (parassoc) s1 | (s2 | s3) ≡ (s1 | s2) | s3

(par0) s | 0 ≡ s

(chocomm) s1 + s2 ≡ s2 + s1 (choassoc) (s1 + s2) + s3 ≡ s1 + (s2 + s3)

(cho0) s + 0 ≡ s (choide) s + s ≡ s

Table A.1: COWS structural congruence.

A.2 Conventions used in the encoding

Here we will present some notations used in the encoding from polyadic to monadic COWS in
order to increase its readability. Notice that all these conventions are only of syntactical nature
and do not add limitations to the scope of the encoding.

• We will not always employ composite names for endpoints: i.e., we will sometimes write
endpoints in the form p instead of p.o when the use of an operation name could be avoided
without generating ambiguity.
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(kill)
−

kill(k)
†k
−→ 0

(inv)
E(ẽ) = ṽ

p!ẽ
p!ṽ
−−→ 0

(choice)
1 6 j 6 r∑r

i=1 pi?w̃i. si
p j?w̃ j
−−−−→ s j

(prot)
s
θ
−→ s′

{|s|}
θ
−→ {|s′|}

(delsub)
s

p bσ]{v′/x}c w̃ ṽ
−−−−−−−−−−−−→ s′

[ x ]s
p bσc w̃ ṽ
−−−−−−→ s′{v′/x}

(delkill)
s
†k
−→ s′

[ k ]s
†
−→ [ k ]s′

(delpass)
s
θ
−→ s′ d < d(θ) s↓kill⇒ θ = †, †k

[ d ]s
θ
−→ [ d ]s′

(com)
s1

p?w̃
−−−→ s′1 s2

p!ṽ
−−→ s′2 M (w̃, ṽ) = σ ¬(s1 | s2 ↓

|σ|
p,ṽ)

s1 | s2
p bσc w̃ ṽ
−−−−−−→ s′1 | s

′
2

(parconf)
s1

p bσc w̃ ṽ
−−−−−−→ s′1 ¬(s2 ↓

|M(w̃,ṽ)|
p,ṽ )

s1 | s2
p bσc w̃ ṽ
−−−−−−→ s′1 | s2

(parkill)
s1
†k
−→ s′1

s1 | s2
†k
−→ s′1 | halt(s2)

(parpass)
s1

θ
−→ s′1 θ , (p bσc w̃ ṽ), †k

s1 | s2
θ
−→ s′1 | s2

(cong)
s ≡ s1 s1

θ
−→ s2 s2 ≡ s′

s
θ
−→ s′

(serid)
s{m1, . . . ,m j/n1, . . . , n j}

θ
−→ s′ S(n1, . . . , n j) = s

S(m1, . . . , m j)
θ
−→ s′

Table A.2: COWS operational semantics. Notice that, in order to avoid confusion, we indicate the
function for the evaluation of expressions with E( ) rather than ~ �, which is the symbol we use for our
encoding function.
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• When making a recursive invocation of a service, we will often write all parameters which
remain equal to the formal parameters as “. . . ”. For example, consider the recursive call
to the counting process Count, where the counter n has to be increased by 1, while all
other parameters remain the same: Count(n + 1, . . . ). The employment of “. . . ” is also
extended to the usual case of a list of elements in a tuple, as in w̃ = 〈w1, . . . ,w j〉, and in a
similar way inside a service definition when a common structure is used for each element
of a tuple. For example, see the definition of process Send, where “. . . ” are used to point
out that each element of tuple w̃ is sent using P as endpoint.

• We will make frequent use of the symbol “◦” in the encoding: it stands for a parameter
which always generates a match. We could have substituted “◦” by a special name and
obtain the same result, but this could have reduced the readability of the encoding.

• Even if the semantics and congruence relation would require a renaming when a new
name has to be introduced in order to avoid entity capturing, in the execution traces of
the services defined by our encoding (see Theorems 2 and 3 further below) we will show
decorated versions of the same names. I.e., we will add a number of zeroes as superscript
in order to identify different names coming from the same definition. This method is used
in order to allow one to better understand the origin of the identifiers.

A.3 Description of the encoding

The encoding of a generic polyadic COWS service s into monadic COWS is as follows:

~s�∗ = [ lock, unlock ](~s� | Lockit()) (A.1)

The possible execution steps of a service s involve killing and communication. When a kill
action is available, there is no protocol to be followed, as the same action is performed in the
encoded service in one step. All the work in the encoding is thus for the management of the
communication steps. As can be seen from (A.1), the service named Lockit is put in parallel
with the encoded service, communicating with it through channels lock, unlock. This approach
is taken in order to ensure that there is only one instance of locking service Lockit, guaranteeing
that every encoded communication is executed as an atomic action: at each “communication
round”, an invoke action is chosen among all unguarded invoke actions via a synchronisation
on channel lock. The encoding of the chosen action will then engage a protocol at the end of
which one of these two conditions hold:

• a best-matching request action has been found and the communication has happened,
substituting all involved variables;

• no matching request action (or no request action at all) has been found
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~kill(k)� = kill(k) ~{|s|} � = {| ~s� |} ~s1 | s2� = ~s1� | ~s2� ~0� = 0

If S(n1, . . . , n j) = s then ~S(m1, . . . , m j)� = S’(m1, . . . , m j) where S’(n1, . . . , n j) = ~s�

~[ d ]s� =


[ d ] ~s� if d is a killer label
[ d, pd ](~s� | Unknown(pd)) if d is a variable
[ d, pd ](~s� | Known(pd)) o.w.

~
∑r

i=0 pi?w̃i. si� = [ k ]
(
~p0?w̃0. s0�k | · · · | ~pr?w̃r . sr�k

)
~p?w̃. s�k = [ k1, p1, cont ](p.start?〈| w̃ |〉. (p.ack!〈p1〉 | Matchw1 (p1)

| p1?〈false〉. (kill(k1) | {| ~p?w̃. s�k |} )
+ p1?〈true〉. (kill(k) | {|Receive(p1,cont)

| cont?〈◦〉. (Subs(pWα , . . . pWω , cont) | cont?〈◦〉. (unlock!〈◦〉 | ~s�))|} )))

~u!w̃� = lock?〈◦〉. [ cu ](pu!〈cu〉 | cu?〈1〉.
[ cα ](pWα !〈cα〉 | cα?〈1〉. . . .

[ k, reset, result, go, countUp, countDown, countTotal,minAdd,minGet,minDone ](
Count(0,countUp,countDown,countTotal,go,result)
| WaitReqs(u,| w̃ |,countUp,countTotal,go,reset)
| [ startSending ](

ReqChooser(result,startSending,countDown,minAdd,minGet,minDone,reset)
| Send(startSending,k))

| [ c ](Min(∞,c,minAdd,minGet,minDone) | c?〈false〉. 0)
| reset?〈◦〉. (kill(k) | {|unlock!〈◦〉 | ~u!w̃� |} ))

. . . + cα?〈2〉. (unlock!〈◦〉 | ~u!w̃�))
+ cu?〈2〉. (unlock!〈◦〉 | ~u!w̃�))

Subs(p1, . . . , pn, cont) = [ c1, c2 ](p1!〈c1〉

| c1?〈1〉.Subs(p2, . . . , pn, cont)
+ c1?〈2〉. (p1.stop!〈c2〉 | c2?〈◦〉. (Known(p1) | Subs(p2, . . . , pn, cont))))

Subs(cont) = cont!〈◦〉

Known(p) = [ C ](p?〈C〉. (Known(p) | C!〈1〉))

Unknown(p) = [ C ](p?〈C〉. (Unknown(p) | C!〈2〉)
+ p.stop?〈C〉.C!〈◦〉)

Lockit() = lock!〈◦〉 | unlock?〈◦〉. Lockit()

Table A.3: Encoding functions from polyadic COWS to monadic COWS (part 1).
Wα, . . . ,Wω are all the variables in w̃, and | w̃ | is the number of elements in tuple w̃. Notice also
that the two parts “[ cu ](pu!〈cu〉 | cu?〈1〉. ” and “+ cu?〈2〉. (unlock!〈◦〉 | ~u!w̃�))” are to be added to the
encoding of u!w̃ only if u is a variable.
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Count(n,countUp,countDown,countTotal,go,result) =

[ C,P ](
countUp.return?〈C〉. countUp.channel?〈P〉. (

Count(n + 1,. . . )
| go?〈◦〉. [ k, cUp, cTot ](CountSubs(0,cUp,cTot)

| CountMatches(k,P,result,cUp,cTot))
| C!〈◦〉)

+ countDown?〈C〉. [ p1 ](p1!〈n > 1〉
| p1?〈true〉. (Count(n − 1,. . . ) | C!〈true〉)
+ p1?〈false〉.C!〈false〉)

+ countTotal?〈C〉. (Count(n,. . . ) | C!〈n〉))

CountSubs(n,cUp,cTot) = [ P ](cUp?〈P〉. (CountSubs(n + 1,cUp,cTot) | P!〈◦〉)
+ cTot?〈P〉.P!〈n〉)

WaitReqs(u,nParams,countUp,countTotal,go,reset) =

[ P1 ](u.start!〈nParams〉 | u.ack?〈P1〉. [ c ](countUp.return!〈c〉 | countUp.channel!〈P1〉

| c?〈◦〉.WaitReqs(. . . ))
+ [ X ](u.start?〈X〉. [ c,N ](countTotal!〈c〉 | c?〈N〉.StartMatch(go,N)

+ c?〈0〉. reset!〈◦〉)))

StartMatch(go,n) = [ p ](p!〈n > 0〉
| p?〈true〉. (go!〈◦〉 | StartMatch(go,n − 1))
+ p?〈false〉. 0)

ReqChooser(result,startSending,countDown,minAdd,minGet,minDone,reset) =

[ c1,C,TOT ,CHAN ](
result?〈C〉. (C!〈c1〉 | c1.tot?〈TOT〉. c1.chan?〈CHAN〉.

[ c2 ](countDown!〈c2〉

| c2?〈true〉. (minAdd.tot!〈TOT〉 | minAdd.chan!〈CHAN〉 | minDone?〈◦〉.ReqChooser(. . . ))
+ c2?〈false〉. (minAdd.tot!〈TOT〉 | minAdd.chan!〈CHAN〉 | minDone?〈◦〉.

[ c3,MIN,P ](minGet!〈c3〉 | c3.min?〈MIN〉. c3.chan?〈P〉. (P!〈true〉 | startSending!〈P〉)
+ c3.min?〈∞〉. c3.chan?〈P〉. (P!〈false〉 | reset!〈◦〉))))))

Min(m,c,minAdd,minGet,minDone) =

[ N,C ](
minAdd.tot?〈∞〉.minAdd.chan?〈C〉. (minDone!〈◦〉 | Min(m,c,. . . ) | C!〈false〉)

+ minAdd.tot?〈N〉.minAdd.chan?〈C〉.
[ p ](p!〈N > m〉
| p?〈true〉. (minDone!〈◦〉 | Min(m,c,. . . ) | C!〈false〉)
+ p?〈false〉.

[ p2 ](p2!〈N < m〉
| p2?〈true〉. (minDone!〈◦〉 | Min(N,C,. . . ) | c!〈false〉)
+ p2?〈false〉.

[ p3, a ](p3!〈a〉
| p3?〈a〉. (minDone!〈◦〉 | Min(N,C,. . . ) | c!〈false〉)
+ p3?〈a〉. (minDone!〈◦〉 | Min(m,c,. . . ) | C!〈false〉)))))

+ minGet?〈C〉. (C.min!〈m〉 | C.chan!〈c〉)

Table A.4: Encoding functions from polyadic COWS to monadic COWS (part 2). Notice that we pass
a parameter u to service WaitReqs, as the channel on which an invoke action can happen may also be
a variable. Although the syntax does not allow to write u?w̃, we use it anyway, because the service
WaitReqs will always be called passing a name as actual parameter for u.
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HandleMatch(result,p,m,cont,k,cUp) =

[ q ](q!〈m〉 | q?〈1〉. cont!〈◦〉
+ q?〈2〉. (kill(k) | {|[ c1,C2 ](result!〈c1〉 | c1?〈C2〉. (C2.tot!〈∞〉 | C2.chan!〈p〉))|} )
+ q?〈3〉. [ c ](cUp!〈c〉 | c?〈◦〉. cont!〈◦〉))

CountMatches(k,p,result,cUp,cTot) =

[ c ](
[ M1, p1 ](p.name!〈w1〉 | p.chan!〈p1〉 | p1?〈M1〉.HandleMatch(result,p,M1,c,k,cUp) | c?〈◦〉.
[ M2, p2 ](p.name!〈w2〉 | p.chan!〈p2〉 | p2?〈M2〉.HandleMatch(result,p,M2,c,k,cUp) | c?〈◦〉.
. . .

[ Mj, pj ](p.name!〈wj〉 | p.chan!〈pj〉 | pj?〈Mj〉.HandleMatch(result,p,M j,c,k,cUp) | c?〈◦〉.
[ c2,TOT ](cTot!〈c2〉 | c2?〈TOT〉. [ c1,C2 ](result!〈c1〉

| c1?〈C2〉. (C2.tot!〈TOT〉 | C2.chan!〈p〉)))) . . . )))

Send(startSending,k) = [ P ]startSending?〈P〉. (
P!〈w1〉 | P.ack?〈◦〉. (
P!〈w2〉 | P.ack?〈◦〉. (
. . .

P!〈wj〉 | P.ack?〈◦〉.kill(k)) . . . ))

If wi ∈ V, then
Matchwi (p) =

[ Y ,P2 ](
p.name?〈Y〉. p.chan?〈P2〉. [ c1 ](pwi !〈c1〉 | c1?〈1〉. [ q ](q!〈Y〉 | q?〈wi〉. (P2!〈1〉 | Matchwi+1 (p))

+ [ Z ](q?〈Z〉.P2!〈2〉))
+ c1?〈2〉. (P2!〈3〉 | Matchwi+1 (p))))

If wi ∈ N , then
Matchwi (p) =

[ Y ,P2 ](
p.name?〈Y〉. p.chan?〈P2〉. [ q ](q!〈Y〉 | q?〈wi〉. (P2!〈1〉 | Matchwi+1 (p))

+ [ Z ](q?〈Z〉.P2!〈2〉)))

Receive(p,cont) = p?〈w1〉. (p.ack!〈◦〉 |
p?〈w2〉. (p.ack!〈◦〉 |
. . .

p?〈wj〉. (p.ack!〈◦〉 | cont!〈◦〉) . . . ))

Table A.5: Encoding functions from polyadic COWS to monadic COWS (part 3). The definition of
services CountMatches, Send, Matchwi and Receive is based on the corresponding input/output tuple
w̃ = 〈w1, . . . ,w j〉.
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In both cases, the lock is made available again through a synchronisation on channel unlock. In
the second case, the service encoding the selected invoke action is also restarted.

The first thing the encoding of invoke action u!w̃ has to do is to check whether all variables
in w̃ (and the variable possibly represented by u) have been substituted, in accordance with
the semantics of COWS, which requires an invoke action to be able to execute only if all of
its variables have been substituted. This is done by trying to contact a service of type Known
for each variable. If the service exists, it responds to the request returning a “1”, indicating
that the corresponding variable has been substituted; in the case the service does not exist, the
communication will be intercepted by a service of type Unknown: it will return a “2”, meaning
that the variable at hand has still to be substituted. In the first case, the protocol can continue
(checking the next variable, or starting the actual encoding of the communication); in the second
case, the encoding of the invoke action is restarted and the lock is handed back. Notice that it
would have not been possible to acquire the lock after having checked for the substitution of
all variables in the invoke action: if that would have been the case, there would have been
concurrency issues when two or more invoke actions would have been activated at the same
time (one could finish to check for the substitution of variables before another and get the lock,
even if theoretically both have the same right to be executed).

When the check for the substitution of all variables in the invoke action is successful, a series
of services is enabled: we will give a brief description of the task of each one here below.

- Count counter service which keeps track of the number of (unguarded) request actions
on the same channel as the invoke action. For each new participant, a new service is
spawned, which will count the substitutions generated by the communication with that
participant. Service Count is also used as a reverse-counter in order to know when all
request actions participating in the match counting service have given a response, and
thus the best-matching one can be chosen.

- WaitReqs contacts all (unguarded) request actions on the same channel as the encoded
invoke action and with the same number of parameters, counting them (through service
Count). When no more request actions are available, the matching protocol is started
through a number of synchronisations on channel go equal to the number of “registered”
request actions. If no request actions have answered the call, the encoding for invoke
action is restarted and the lock is returned.

- ReqChooser receives all matching results, and starts the actual communication with (one
of) the best-matching request action(s).

- Send performs the actual sending of all parameters in tuple w̃ to the selected best-matching
request action.

- Min calculates the minimum of a given series of numbers, each of which is stored in couple
with a channel name. When requested, the name corresponding to the minimal number is
returned. This service is used in order to select the best-matching request action.
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- reset?〈◦〉. . . . handles the cases when the encoding of the invoke service has to be reset.

The service encoding a request action p?w̃ waits to be contacted by an invoke action, and
then starts the protocol for assessing the match: services of the type Matchwi (described below)
are used for this purpose. When a negative response is obtained from the service encoding the
invoke action, the encoding of current request action is restarted; whereas a positive response
causes the actual reception of invoke parameters and the continuation with the encoding of the
residual service. As request actions can guard services in a sum (non-deterministic multiple
choice), if the service is selected for communication all other services in the sum are killed (cfr.
the encoding for sum).

Services of type Matchwi are defined differently according to the type of input entities they
have to check: if wi is a name, the service needs only to check wi to be equal to the given input;
if wi is a variable, substitution has also to be taken into account. As explained before, the actual
substitution state of a variable is obtained via services of type Known and Unknown: when
the variable has been substituted, a Known service answers, while Unknown answers when
no substitutions have been made for the variable at hand. Thus, there are three cases for the
matching of a couple output/input entities, each associated by Matchwi to a return value:

- the input entity is a name and matches with the output name: the matching service can
continue (return value 1);

- the input entity is a name but is different from the output name: the matching service is
cancelled and the request action is discarded by the invoke action protocol (return value
2);

- the input entity is a variable: the number of substitutions generated by the simulated
communication is increased and the matching service continues (return value 3).

The actions associated to the different return values of a service of type Matchwi are executed
by service HandleMatch, which in turn relies on service CountSubs in order to keep count of
the substitutions.

A.3.1 Service Min and scheduling fairness

Service Min needs a special treatment, as it can cause some scheduling problems. In fact, it
can be noticed that when two numbers received by service Min through a communication on
channel minAdd.tot are equal, the choice of which to keep as the minimum is delegated to
a non-deterministic sum; i.e., the choice is left to the hypothetical runtime scheduler of the
language. The exact semantics of the choice between more than one best-matching request
actions is that one among all of the actions is chosen at once. With the proposed approach,
however, the choice is repeated by choosing among only two of the actions at a time. This can
change the probabilities for request actions to be selected.

For example, consider the following service
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p!〈a, b, c〉 | p?〈X, b, c〉︸      ︷︷      ︸
S 1

. 0 | p?〈a,X, c〉︸      ︷︷      ︸
S 2

. 0 | p?〈a, b,X〉︸      ︷︷      ︸
S 3

. 0

If the scheduler would assign the same probability to be chosen to all (best-matching) request
actions S 1, S 2 and S 3, we would have that

P(S 1) = P(S 2) = P(S 3) =
1
3

With the current approach, the order in which the request actions are serviced will make the
difference. For example, if the encoding of invoke action p!〈a, b, c〉will service matching results
in the order A, B, C, we will obtain that

P(S 1) = P(S 2) = 1
4

P(S 3) = 1
2

It is possible to compensate for this bias, but it would lead to have a much more complicated
Min service. We have thus chosen to maintain the simpler version and concentrate on the actual
work of the encoding.

A.4 Example

We propose an example of encoding of the following service:

[ a ][ b ][ c ][ X ][ Y ](p!〈a, b, c〉 | p?〈a,X,Y〉. 0 | p?〈c,X, a〉. 0)

In Tables A.6, A.7 and A.8 we show all definitions peculiar to the service at hand. Notice that,
as explained in the previous sections, the communication which will eventually accomplish is
the one between the encodings of p!〈a, b, c〉 and p?〈a,X,Y〉. 0.
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Send(startSending,k) = [ P ]startSending?〈P〉. (P!〈a〉 | P.ack?〈◦〉. (
P!〈b〉 | P.ack?〈◦〉. (
P!〈c〉 | P.ack?〈◦〉.kill(k))))

Receive1(p,cont) = p?〈a〉. (p.ack!〈◦〉 |
p?〈X〉. (p.ack!〈◦〉 |
p?〈Y〉. (p.ack!〈◦〉 | cont!〈◦〉)))

Receive2(p,cont) = p?〈c〉. (p.ack!〈◦〉 |
p?〈X〉. (p.ack!〈◦〉 |
p?〈a〉. (p.ack!〈◦〉 | cont!〈◦〉)))

Subs(pX ,pY ,cont) = [ c1, c2 ](pX!〈c1〉

| c1?〈1〉.Subs(pY ,cont)
+ c1?〈2〉. (p1.stop!〈c2〉 | c2?〈◦〉. (Known(pX) | Subs(pY ,cont))))

Subs(pY ,cont) = [ c1, c2 ](pY !〈c1〉

| c1?〈1〉.Subs(cont)
+ c1?〈2〉. (p1.stop!〈c2〉 | c2?〈◦〉. (Known(pX) | Subs(cont))))

Subs(pX ,cont) = [ c1, c2 ](pX!〈c1〉

| c1?〈1〉.Subs(cont)
+ c1?〈2〉. (p1.stop!〈c2〉 | c2?〈◦〉. (Known(pX) | Subs(cont))))

Table A.7: Services resulting from the encoding of proposed example (Part 2).
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A.5. PROPERTIES OF THE ENCODING APPENDIX A. FROM COWS TO MONADIC COWS

A.5 Properties of the encoding

In order to prove operational correspondence between polyadic and monadic versions of COWS
(Theorems 2 and 3), we need an extended congruence relation ≡̂, which is defined as the mini-
mal congruence relation satisfying laws for ≡ plus the following law:

[ pX ](s1{n/X} | Unknown(pX) | Known(pX)) ≡̂ (s1{n/X}){n/X}S

where service substitution {n/X}S is defined on Monadic COWS by the following set of laws:

kill(k){n/X}S = kill(k) 0{n/X}S = 0 {|s|} {n/X}S = {|s{n/X}S|}

(s1 | s2){n/X}S = s1{n/X}
S | s2{n/X}

S (s1 + s2){n/X}S = s1{n/X}
S + s2{n/X}

S

If S(n1, . . . , n j) = s then S(m1, . . . , m j){n/X}S = (s{m1, . . . ,m j/n1, . . . , n j}){n/X}S

p!〈e〉{n/X}S = p!〈e〉 [ k ]s{n/X}S = [ k ](s{n/X}S)

[ m ]s{n/X}S = [ m ](s{n/X}S) if s6↓pX

(p?〈w〉. s){n/X}S = p?〈w〉. (s{n/X}S)

[ c ](pX!〈c〉 | c?〈1〉. s1 + c?〈2〉. s2){n/X}S = s1{n/X}
S

where the last law is always applied with precedence w.r.t. all other laws.
{n/X}S will be used in order to transform a service in the form ~s�{n/X} into ~s{n/X}� by removing
all pieces designed to manage the state of variable X.

Observation 1. s1 ≡ s2 implies s1 ≡̂ s2.

Proof. Comes directly from the definition of ≡̂. �

Notation 1. The writing s
α
=⇒ s′ means that:

• either s = s′

• or α = † and s
†
−→ s′

• or α = p b∅c w̃ ṽ and ∃p′, s1, . . . , st, i1, . . . , il, X, n such that

– s
α1
−→ s1

α2
−→ . . .

αt
−→ st = s′

– l = | w̃ | = | ṽ | (the number of elements in the tuples)
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– 1 < i1 < · · · < il < t

– αi1 = p′ b∅c 〈w1〉 〈v1〉,

αi2 = p′ b∅c 〈w2〉 〈v2〉,

. . . ,

αil = p′ b∅c 〈wl〉 〈vl〉.

Theorem 2. If s
α
−→ s′ then ~s�∗

α
=⇒ ≡̂ ~s′�∗.

Proof. Taken service s, we suppose that s
α
−→ s′. There are two possibilities: α = † or α =

p b∅c w̃ ṽ.

• α = †. In this case, we have that s↓kill. By construction of the encoding (in particular, for
the treatment of killing labels, parallel composition and kill actions), we also have that

~s�∗↓kill. Then, ~s�∗
†
−→ s′′. Given that ~ � is an homomorphism for | and {| |} , and that

the scope of k (where k is the killer label involved in the action
†
−→ ) in ~s�∗ includes the

same (encoded) services as in s (by the behaviour of the encoding regarding delimiters),
and that ~kill(k)� = kill(k) for every k ∈ K , we can conclude that s′′ ≡ ~s′�∗. By Obs. 1,
we have the thesis.

• α = p b∅c w̃ ṽ. In this case, rule (com) has been applied to derive the transition. Thus we
know that there exist two unguarded sub-services of s, say s1, s2, and an index j ∈ [1, r]
such that s1 ≡

∑r
i=1 pi?w̃i. si, s2 ≡ p!ẽ, p = p j, w̃ = w̃ j and E(ẽ) = ṽ. A sequence of

transitions which can be executed by ~s�∗ is the following (the transitions are numbered
for convenience):

~s�∗
lock b∅c 〈◦〉 〈◦〉
−−−−−−−−−−−→

1
−−→

(a)

∗ p.start b∅c 〈|w̃|〉 〈|ṽ|〉
−−−−−−−−−−−−−−→

2

p.ack b∅c 〈P1〉 〈p1〉
−−−−−−−−−−−−−−→

3

countU p.return b∅c 〈C〉 〈c〉
−−−−−−−−−−−−−−−−−−−→

4

countU p.channel b∅c 〈P〉 〈p1〉
−−−−−−−−−−−−−−−−−−−−−→

5

c b∅c 〈◦〉 〈◦〉
−−−−−−−−−→

6

p.start b∅c 〈X〉 〈|ṽ|〉
−−−−−−−−−−−−−−→

7

countTotal b∅c 〈C〉 〈c〉
−−−−−−−−−−−−−−−−→

8

c0 b∅c 〈N〉 〈n〉
−−−−−−−−−−→

9

p0 b∅c 〈true〉 〈true〉
−−−−−−−−−−−−−−−→

10

go b∅c 〈◦〉 〈◦〉
−−−−−−−−−−→

11

p00 b∅c 〈false〉 〈false〉
−−−−−−−−−−−−−−−−−→

12
−−→
(b)

∗ minGet b∅c 〈C〉 〈c3〉
−−−−−−−−−−−−−−→

13

c3.min b∅c 〈MIN〉 〈m〉
−−−−−−−−−−−−−−−→

14

c3.chan b∅c 〈P0〉 〈p1〉
−−−−−−−−−−−−−−−→

15

p1 b∅c 〈true〉 〈true〉
−−−−−−−−−−−−−−−→

16

†
−−→
17

startS ending b∅c 〈P00〉 〈p1〉
−−−−−−−−−−−−−−−−−−−→

18
−−→

(c)

∗

continue b∅c 〈◦〉 〈◦〉
−−−−−−−−−−−−−−→

19

unlock b∅c 〈◦〉 〈◦〉
−−−−−−−−−−−−−→

20
s′′

Notice that the given list of transitions is not completely expanded. In particular, the
following points have to be taken into account:

– Transitions labelled by (a) are present if there is any variable in s2, and represent the
decision of the substitution state of each variable. These transitions are sequences in
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the form
pW b∅c 〈C〉 〈cW 〉
−−−−−−−−−−−−→

c b∅c 〈1〉 〈1〉
−−−−−−−−−→ for each variable W in s2 (as we know, by the

fact that operational semantics allows us to derive the transition s
α
−−→ s′, that they

are all substituted).

– Transitions 2 - 6 are repeated for each unguarded request action p?w̃, generating
private channels c and p1 for internal communication.

– The value n in transition 9 is the total number of unguarded request actions (with
total number of parameters equal to | ṽ |) on p.

– Transitions 10 and 11 are repeated n times.

– Transitions labelled by (b) represent the check for matching in each request action
and the selection of the minimal-substituting request action. Their form will be left
out, but can be deduced from the corresponding parts in the encoding.

– Transition 16 represents the communication to the chosen request action pj?w̃j. s j (p1

is the private channel for the communication with that request action), starting the
actual substitution of w̃ j by ṽ.

– Transition 17 represents the termination of all non-chosen request actions in the sum
possibly present in s1.

– Transitions labelled by (c) represent the actual sending of all parameters in ṽ to the
chosen request action and is in the form

p1 b∅c 〈w j1 〉 〈v1〉

−−−−−−−−−−−−→
p1.ack0 b∅c 〈◦〉 〈◦〉
−−−−−−−−−−−−−→

p1 b∅c 〈w j2 〉 〈v2〉

−−−−−−−−−−−−→
p1.ack0 b∅c 〈◦〉 〈◦〉
−−−−−−−−−−−−−→

. . .
p1 b∅c 〈w jl 〉 〈vl〉

−−−−−−−−−−−−→
p1.ack0 b∅c 〈◦〉 〈◦〉
−−−−−−−−−−−−−→

where l, ji, . . . jl are defined in Notation 1.

By the above sequence of transitions, we have that ~s�∗
p b∅c w̃ j ṽ
======⇒ s′′.

From the previous observations on the structure of s, we have that s′ contains service s j

and that all variables W ji in w̃ j have been substituted in s′ with the corresponding values vi

in ṽ. The rest of the structure of s′ is the same as in s. This means that in ~s′�∗ there are no
services Known(W ji) nor Unknown(W ji) for the variables in w̃ j, and the substitution state
of these (already substituted) variables is checked nowhere in s′. As for s′′, we know from
the definition of the encoding that it contains a service Known(W ji) for each variable W ji

in w̃ j and the substitution state of these variables is decided in the circumstances described
by the encoding. The definition of the encoding allows us to state ~s′�∗ ≡ s′′{ṽ/w̃ j}

S, and
thus to conclude s′′ ≡̂ ~s′�∗ by definition of ≡̂.

�

Theorem 3. If ~s�∗
α1
−→ s′ then there exist α2 and s′′ such that s′

α2
=⇒ s′′ and
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• either s′′ ≡ ~s�∗

• or s′′ ≡̂ ~s1�
∗ for some s1 such that s

α2
−→ s1.

Proof. Given service s, we suppose that ~s�∗
α1
−→ s′. There are two cases.

• If ~s�∗↓kill, then α1 = † by semantics rule (delpass). By construction of ~ �, also s↓kill.

Taken α2 = † and s′′ = s′, we have that s′
†

=⇒ s′′ and s
†
−→ s1. The relation s′′ ≡ ~s1�

∗ is
shown the same way as in Theorem 2. By Obs. 1, we have the thesis.

• If ~s�∗ 6↓kill, there are two cases. If s contains no unguarded invoke action, the service is
deadlocked, and so is ~s�∗, thus the hypothesis does not apply. If, on the contrary, an
invoke action exists unguarded in s, by construction of the encoding we know that α1 =

lock b∅c 〈◦〉 〈◦〉, as the communication on channel lock is the only enabled interaction
in ~s�∗. Let the service which has interacted with Lockit (the only one offering output
lock!〈◦〉) be ~u!ẽ�. There are three possible situations regarding u!ẽ:

1. not all variables in u!ẽ have been substituted;

2. u = p, E(ẽ) = ṽ (i.e., all variables in u!ẽ have been substituted), but no unguarded
service of the form p?w̃. s2 such that | w̃ | = | ṽ | exists in s;

3. u = p, E(ẽ) = ṽ and there exists an unguarded service sreq in s such that sreq ≡ p?w̃. s2,
| w̃ | = | ṽ | and w̃ is best-matching with respect to all other available request actions
on p.

In case (1), an interaction with a service of type Unknown makes the protocol to reset the
encoding. Thus, setting α2 = unlock b∅c 〈◦〉 〈◦〉, we have s′′ ≡ ~s�∗ by construction of
the encoding, and by Obs. 1 the thesis.
In case (2), a communication labelled in the form p.start b∅c 〈X〉 〈| ṽ |〉 ends the search
for available request actions (see definition of WaitReqs). As the minimal number of
substitutions will be returned to be ∞, the encoding of u!ẽ is reset also in this case (see
ReqChooser), resulting in the same situation as in case (1).
The situation in (3) depicts the case in which a communication can happen in s between
u!ẽ and sreq. We thus set α2 = p b∅c w̃ ṽ, and s1 to be the residual of such communication.
Remembering that action lock?〈◦〉 guarding the rest of the service in ~p!ẽ� has already
been consumed in s′ and that no interaction between this subservice and any service of
type Unknown can happen (all variables in ẽ have been substituted), s′ will execute the
protocol counting the matches with ~p?w̃. sreq�k on a specific private channel p1. Once
the protocol has finished the match computation for all available request actions on p,
channel p1 will be used to send all values in ṽ to the residual of ~p?w̃. sreq�k, as it is the
best-matching. The protocol terminates with the usual communication on channel unlock.
Thus we can state s′

α2
=⇒ s′′, where s′′ differs from ~s�∗ in the following points:

– the residual of ~u!ẽ� is congruent to 0;
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– the residual of ~p?w̃. sreq�k is congruent to ~sreq�;

– for each variable Wi in w̃: Wi has been substituted on its scope by the corresponding
value vi in ṽ, and a new service of type Known(pWi) has been activated, terminating
at the same time the corresponding process of type Unknown.

Noticing that s1 differs from s in the following points:

– the residual of u!ẽ is congruent to 0;

– the residual of p?w̃. sreq is congruent to sreq;

– each variable Wi in w̃ has been substituted by the corresponding value vi in ṽ on its
scope,

we can state that s′′{ṽ′/w̃′}S ≡ ~s1�
∗, where w̃′ are all the variables in w̃ and ṽ′ are the

corresponding values in ṽ. We can thus conclude s′′ ≡̂ ~s1�
∗ by definition of ≡̂.

�
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Appendix B

S model of the SENSORIA finance
case study

Here we present the S model of the SENSORIA Finance case study, which represents
a service providing semi-automatic bank loan management. The scope of the service is to
provide a customer with an automatic loan proposal if the balance data and loan amount are
assessed favorably, and to require human intervention (as high in the bank hierarchy as the
situation requires) only in the cases for which automatic response is not allowed (i.e., borderline
cases and unfavorably evaluated financial situations). Table B.1 shows the services modelling
the behaviour of the automatic process internal to the bank, while TableB.2 shows the default
settings for the rates defined in a parametric way. Please notice that this model represents a
point of view located inside the inside the bank, and thus all human action is emulated by the
Portal service.

Finalize(id) =

(portal#.goodbye#!<id>,1.0)

;

Accept(id,creditManagement,update,desired,result,ratingData) =

(creditManagement#.generateOffer#!<id,ratingData>,1.0)

| [agreementData]

(creditReq#.generateOffer#?<id,agreementData>,1.0).

(

(portal#.offerToClient#!<id,agreementData>,1.0)

| [accepted]

(creditReq#.offerToClient#?<id,accepted>,1.0).

[if#][then#][end#]

Table B.1: S model of the financial case study (cont.).
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(

(if#.then#!<accepted>,1.0)

| (if#.then#?<false#>,1.0).

(update.desired!<false#>,1.0)

+ (if#.then#?<true#>,1.0).

( (creditManagement#.acceptOffer#!<id,accepted>,1.0)

| (portal#.acceptOffer#?<id>,1.0).

(update.desired!<false#>,1.0)

)

)

)

;

Decline(id,creditManagement,update,desired,result,ratingData) =

(creditManagement.generateDecline#!<id,ratingData>,1.0)

| [declineData]

(creditReq#.generateDecline#?<id,declineData>,1.0).

(

(portal#.declineToClient#!<id,declineData>,1.0)

| [updateDesired]

(creditReq#.declineToClient#?<id,updateDesired>,1.0).

(update.desired!<updateDesired>,1.0)

)

;

Approval(id,update,desired,result,ratingData,end,manualAcceptance) =

[if approval#][then approval#][x]

(

(if approval#.then approval#!<result>,1.0)

| ( (if approval#.then approval#?<bbb#>,1.0).

(portal#.requestClerkApproval#!<id,ratingData>,1.0)

+ (if approval#.then approval#?<x>,1.0).

(portal#.requestSupervisorApproval#!<id,ratingData>,1.0)

)

|

[approvalData]

(creditReq#.approvalresult#?<id,manualAcceptance,approvalData>,1.0).

(approval#.end!<dummy#>,1.0)

Table B.1: S model of the financial case study (cont.).
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)

;

Decision(id,creditManagement,update,desired,result,ratingData) =

[if decision#][then decision#][end#][undef#][manualAcceptance][x]

(

(if decision#.then decision#!<result>,1.0)

| ( (

(if decision#.then decision#?<aaa#>,1.0).

(

[var#][set#]

(

(var#.set#!<undef#>,1.0)

| (var#.set#?<manualAcceptance>,1.0).

(approval#.end#!<dummy#>,1.0)

)

)

)

+ (if decision#.then decision#?<x>,1.0).

Approval(id,update,desired,result,ratingData,end#,manualAcceptance)

)

| (approval#.end#?<dummy#>,1.0).

[if decision#][then decision#]( (if decision#.then decision#!<result,manualAcceptance>,1.0)

| [x1][x2][x3][x4]

(

(if decision#.then decision#?<aaa#,x1>,1.0).

Accept(id,creditManagement,update,desired,result,ratingData)

+ (if decision#.then decision#?<x2,true#>,1.0).

Accept(id,creditManagement,update,desired,result,ratingData)

+ (if decision#.then decision#?<x3,x4>,1.0).

Decline(id,creditManagement,update,desired,result,ratingData)

)

)

)

;

RatingCalculation(id,creditManagement,update,desired,loginname,firstname,lastname) =

(

Table B.1: S model of the financial case study (cont.).
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(rating#.calculateRating#!<id,loginname,firstname,lastname>,1.0)

| [result][ratingData]

(creditReq#.calculateRating#?<id,result,ratingData>,1.0).

Decision(id,creditManagement,update,desired,result,ratingData)

)

;

HandleBalanceAndSecurityData(id,creditManagement,comp,update,desired,loginname,firstname,lastname) =

[flow#][end#]

(

( (portal#.enterBalanceData#!<id>,1.0)

| [balancePackage]

(creditReq#.enterBalanceData#?<id,balancePackage>,1.0).

(

(balance#.updatebalanceRating#!<id,loginname,firstname,lastname,balancePackage>,1.0)

| (creditReq#.updatebalanceRating#?<id>,1.0). (flow#.end#!<dummy#>,1.0)

)

)

|

( (portal#.enterSecurityData#!<id>,1.0)

| [securityPackage]

(creditReq#.enterSecurityData#?<id,securityPackage>,1.0).

(

(security#.updatesecurityRating#!<id,loginname,firstname,lastname,securityPackage>,1.0)

| (creditReq#.updatesecurityRating#?<id>,1.0). (flow#.end#!<dummy#>,1.0)

)

)

| (flow#.end#?<dummy#>,1.0).

(flow#.end#?<dummy#>,1.0).

( RatingCalculation(id,creditManagement,update,desired,loginname,firstname,lastname)

)

)

;

Creation(id,creditManagement,comp,update,desired,loginname,firstname,lastname) =

[customerid][creditAmount][creditType][monthlyInstalment]

(creditReq#.createNewCreditRequest#?<id,customerid,creditAmount,creditType,monthlyInstalment>,1.0).

(

Table B.1: S model of the financial case study (cont.).
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(creditManagement.initCreditData#!<id,customerid,creditAmount,creditType,monthlyInstalment>,1.0)

| (creditReq#.initCreditData#?<id>,1.0).

(

[working#](portal#.createNewCreditRequest#!<id,working#>,1.0)

| ( HandleBalanceAndSecurityData(id,creditManagement,comp,update,desired,loginname,firstname,lastname)

)

)

)

;

Main loop(id, creditManagement, comp, update, desired, loginname, firstname, lastname) =

(repeat#.until#?<dummy#>,1.0).(

( Creation(id,creditManagement,comp,update,desired,loginname,firstname,lastname)

| ((update.desired?<true#>,1.0).

(

(kill(k loop),1.0) | { (repeat.until!<dummy#>,1.0) }

)

+ (update.desired?<false#>,1.0). Finalize(id)

)

)

| Main loop(id, creditManagement, comp, update, desired, loginname, firstname, lastname)

)

;

CompensateCreation()=

[x1][x2] (comp#.creation#?<x1,x2>,1.0).(

(comp#.x2!<dummy#>,1.0)

| CompensateCreation()

)

;

CompensateBSec()=

[x3][x4] (comp#.handleBalanceAndSecurityData#?<x3,x4>,1.0). (

(comp#.x4!<dummy#>,1.0)

| CompensateBSec()

)

;

Table B.1: S model of the financial case study (cont.).
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Main(id,creditManagement,loginname,firstname,lastname) =

( [k]

(

[repeat#][until#]

(

(repeat#.until#!<dummy#>,1.0)

|

Main loop(id, creditManagement, comp#, update#, desired#, loginname, firstname, lastname)

)

|

(creditReq#.cancel#?<id>,1.0).

( {(kill(k),1.0) | (raise#.abort#!<dummy#>,1.0)} )

)

|

(raise#.abort#?<dummy#>,1.0).

(

[end#]

( (comp#.creation#!<creation#,end#>,1.0)

| (comp#.end#?<dummy#>,1.0).

( (comp#.handleBalanceAndSecurityData!<handleBalanceAndSecurityData,end#>,1.0)

| (comp#.end#?<dummy#>,1.0).

(portal#.abortProcess#!<id>,1.0)

)

)

)

)

;

CreditRequest(customerManagement,creditManagement) =

[k][raise#]

(

[id][name][password]

(creditReq#.initialize#?<id,name,password>,1.0).

(

(customerManagement.checkUser#!<id,name,password>,1.0)

| [userOK]

(creditReq#.checkUser#?<id,userOK>,1.0).

(

Table B.1: S model of the financial case study (cont.).
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{(portal#.initialize#!<id,userOK>,1.0)}

| [if#][then#]

( (if#.then#!<userOK>,1.0)

| (if#.then#?<false#>,1.0).

( {

{(kill(k),1.0)}

|

(raise#.abort#!<dummy#>,1.0)

}

)

+ (if#.then#?<true#>,1.0).

( (customerManagement.getCustomerData#!<id,name,password>,1.0)

| [loginname][firstname][lastname]

(creditReq#.getCustomerData#?<id,loginname,firstname,lastname>,1.0).

[update#][desired#] Main(id,creditManagement,loginname,firstname,lastname)

)

)

)

| {CreditRequest(customerManagement, creditManagement)}

)

)

;

Portal(k clear) =

[id#][name#][pwd#]

(

(creditReq#.initialize#!<id#,name#,pwd#>,1.0)

| [userOK]

(portal#.initialize#?<id#,userOK>,1.0).

[if#][then#]

( (if#.then#!<userOK>,1.0)

| (if#.then#?<false#>,1.0).

(kill(k clear),1)

+ (if#.then#?<true#>,1.0).

[k]

(

[customerid#][amount#][mortgage#][instalment#](

creditReq#.createNewCreditRequest#!<id#,customerid#,amount#,mortgage#,instalment#>,1.0)

Table B.1: S model of the financial case study (cont.).
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| [working](portal#.createNewCreditRequest#?<id#,working>,1.0).

(

(portal#.enterBalanceData#?<id#>,1.0).

[balancePackage1#](creditReq#.enterBalanceData#!<id#,balancePackage1#>,1.0)

|

(portal#.enterSecurityData#?<id#>,1.0).

[securityPackage1#](creditReq#.enterSecurityData#!<id#,securityPackage1#>,1.0)

|

[agreement][declineData]

( (portal#.offerToClient#?<id#,agreement>,1.0).

[nonDet3#][choice#]

(

(nonDet3#.choice#!<dummy#>,1.0)

| (nonDet3#.choice#?<dummy#>,1.0).

(

(kill(k),1.0)

| { (creditReq#.offerToClient#!<id#,true#>,1.0)

|

(portal#.goodbye#?<id#>,1.0). (kill(k clear),1)

}

)

+ (nonDet3#.choice#?<dummy#>,1.0).

(

(kill(k),1.0)

| { (creditReq#.offerToClient#!<id#,false#>,1.0)

|

(portal#.goodbye#?<id#>,1.0). (kill(k clear),1)

}

)

)

+

(portal#.declineToClient#?<id#,declineData>,1.0).

[nonDet4#][choice#]

(

(

(kill(k),1.0)

| { (creditReq#.declineToClient#!<id#,false#>,1.0)

|

Table B.1: S model of the financial case study (cont.).
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(portal#.goodbye#?<id#>,1.0). (kill(k clear),1)

}

)

)

)

)

)

)

)

|

(

Portal for clerks()

|

Portal for supervisors()

)

;

Portal for clerks()=

[id][ratingData]

(portal#.requestClerkApproval#?<id,ratingData>,1.0).(

[nonDet5#][choice#]

( (nonDet5#.choice#!<dummy#>,clerkDecisionRate)

| (nonDet5#.choice#?<dummy#>,clerkAcceptRate).

[approvedDataByClerk#](creditReq#.approvalresult#!<id,true#,approvedDataByClerk#>,1.0)

+ (nonDet5#.choice#?<dummy#>,clerkRejectRate).

[nonApprovedDataByClerk#](creditReq#.approvalresult#!<id,false#,nonApprovedDataByClerk#>,1.0)

)

| Portal for clerks()

)

;

Portal for supervisors()=

[id][ratingData]

(portal#.requestSupervisorApproval#?<id,ratingData>,1.0).(

[nonDet6#][choice#]

( (nonDet6#.choice#!<dummy#>,supDecisionRate)

| (nonDet6#.choice#?<dummy#>,supAcceptRate).

[approvedDataBySup#](creditReq#.approvalresult#!<id,true#,approvedDataBySup#>,1.0)

Table B.1: S model of the financial case study (cont.).
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+ (nonDet6#.choice#?<dummy#>,supRejectRate).

[nonApprovedDataBySup#](creditReq#.approvalresult#!<id,false#,nonApprovedDataBySup#>,1.0)

)

| Portal for supervisors()

)

;

CustomerManagement(customerManagement) =

[id][name][password]

(customerManagement.checkUser#?<id,name,password>,1.0).

[nonDet7#][choice#]

( (nonDet7#.choice#!<dummy#>,loginDecisionRate)

| (nonDet7#.choice#?<dummy#>, loginFailRate).

(creditReq#.checkUser#!<id,false#>,1.0)

+ (nonDet7#.choice#?<dummy#>, loginOkRate).

( (creditReq#.checkUser#!<id,true#>,1.0)

|

(customerManagement.getCustomerData#?<id,name,password>,1.0).

[loginname#][firstname#][lastname#](

creditReq#.getCustomerData#!<id,loginname#,firstname#,lastname#>,1.0)

)

| {CustomerManagement(customerManagement)}

)

;

CreditManagement(creditManagement) =

[id][customerid][creditAmount][creditType][monthlyInstalment]

(creditManagement.initCreditData#?<id,customerid,creditAmount,creditType,monthlyInstalment>,1.0).

[k]

(

(creditReq#.initCreditData#!<id>,1.0)

| [ratingData]

(

(creditManagement.generateOffer#?<id,ratingData>,1.0).

( [agreementData#](creditReq#.generateOffer#!<id,agreementData#>,1.0)

| [accepted]

(creditManagement.acceptOffer#?<id,accepted>,1.0).

(portal#.acceptOffer#!<id>,1.0)

Table B.1: S model of the financial case study (cont.).
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)

+

(creditManagement.generateDecline#?<id,ratingData>,1.0).

[declineData#] (creditReq#.generateDecline#!<id,declineData#>,1.0)

)

| [customeridUpd][creditAmountUpd][creditTypeUpd][monthlyInstalmentUpd]

(

(creditManagement.removeData#?<id>,1.0).

(

(kill(k),1.0) | { (creditReq#.removeData#!<id>,1.0) }

)

+

(creditManagement.initCreditData#?<id,customeridUpd,creditAmountUpd,

creditTypeUpd,monthlyInstalmentUpd>,1.0).

(

(kill(k),1.0)

| { (creditManagement.initCreditData#!<id,customeridUpd,creditAmountUpd,

creditTypeUpd,monthlyInstalmentUpd>,1.0) }

)

)

| {CreditManagement(creditManagement)}

)

;

Calculator(calculator) =

[id][balanceRating][securityRating]

(calculator.performRatingCalculation#?<id,balanceRating>,1.0).

[nonDet8#][choice#]

(

(nonDet8#.choice#!<dummy#>,assessmentDecisionRate)

| (nonDet8#.choice#?<dummy#>,assessmentArate).

[overallatingDataAAA#](rating#.performRatingCalculation#!<id,aaa#,overallatingDataAAA#>,1.0)

+ (nonDet8#.choice#?<dummy#>,assessmentBrate).

[overallatingDataBBB#](rating#.performRatingCalculation#!<id,bbb#,overallatingDataBBB#>,1.0)

+ (nonDet8#.choice#?<dummy#>,assessmentCrate).

[overallatingDataCCC#](rating#.performRatingCalculation#!<id,ccc#,overallatingDataCCC#>,1.0)

| {Calculator(calculator)}

)

Table B.1: S model of the financial case study (cont.).
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;

Rating(calculator) =

[id][loginname][firstname][lastname]

(rating#.calculateRating#?<id,loginname,firstname,lastname>,1.0).

[balanceRating][securityRating]

(

(balance#.calculatebalanceRating#!<id,loginname,firstname,lastname>,1.0)

| (rating#.calculatebalanceRating#?<id,balanceRating>,1.0). nil

|

(

(calculator.performRatingCalculation#!<id,balanceRating>,1.0)

| [result][overallRating]

(rating#.performRatingCalculation#?<id,result,overallRating>,1.0).

(creditReq#.calculateRating#!<id,result,overallRating>,1.0)

)

| {Rating(calculator)}

)

;

BalAnalysisPersistent(id,loginname,firstname,lastname)=

(balance#.calculatebalanceRating#?<id,loginname,firstname,lastname>,1.0).(

[balanceRating#](rating#.calculatebalanceRating#!<id,balanceRating#>,1.0)

| BalAnalysisPersistent(id,loginname,firstname,lastname)

)

;

BalanceAnalysisProvider() =

[id][loginname][firstname][lastname][balancePackage]

(balance#.updatebalanceRating#?<id,loginname,firstname,lastname,balancePackage>,1.0).(

[k](

(creditReq#.updatebalanceRating#!<id>,1.0)

|

BalAnalysisPersistent(id,loginname,firstname,lastname)

| [loginnameUpd][firstnameUpd][lastnameUpd][balancePackageUpd]

(

(balance#.clearData#?<id>,1.0).

(

Table B.1: S model of the financial case study (cont.).
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(kill(k),1.0) | { (creditReq#.clearData#!<id,b>,1.0) }

)

+

(balance#.updatebalanceRating#?<id,loginnameUpd,firstnameUpd,lastnameUpd,balancePackageUpd>,1.0).

(

(kill(k),1.0)

| { (balance#.updatebalanceRating#!<id,loginnameUpd,firstnameUpd,lastnameUpd,balancePackageUpd>,1.0) }

)

)

)

| {BalanceAnalysisProvider()}

)

;

SecAnalysisPersistent(id,loginname,firstname,lastname, securityRating) =

(security#.calculatesecurityRating#?<id,loginname,firstname,lastname>,1.0).(

(rating#.calculatesecurityRating#!<id,securityRating>,1.0)

| SecAnalysisPersistent(id,loginname,firstname,lastname,securityRating)

)

;

SecurityAnalysisProvider() =

[id][loginname][firstname][lastname][securityPackage]

(security#.updatesecurityRating#?<id,loginname,firstname,lastname,securityPackage>,1.0).(

[k]

(

(creditReq#.updatesecurityRating#!<id>,1.0)

|

SecAnalysisPersistent(id,loginname,firstname,lastname, securityRating)

| [loginnameUpd][firstnameUpd][lastnameUpd][securityPackageUpd]

(

(security#.clearData#?<id>,1.0).

(

(kill(k),1.0) | { (creditReq#.clearData#!<id,s>,1.0) }

)

+

(security#.updatesecurityRating#?<id,loginnameUpd,firstnameUpd,

lastnameUpd,securityPackageUpd>,1.0).

Table B.1: S model of the financial case study (cont.).
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(

(kill(k),1.0)

| { (security#.updatesecurityRating#!<id,loginnameUpd,firstnameUpd,

lastnameUpd,securityPackageUpd>,1.0) }

)

)

)

| {SecurityAnalysisProvider()}

)

;

$

[k clear][raise#][comp#][dummy#][true#][false#]

[aaa#][bbb#][ccc#][creation#][balanceAndSecurityData#](

[customerManagement#][creditManagement#]

( CreditRequest(customerManagement#,creditManagement#)

| CustomerManagement(customerManagement#)

| CreditManagement(creditManagement#) )

|

[calculator#] ({Rating(calculator#)} | {Calculator(calculator#)} )

|

{BalanceAnalysisProvider()} | {SecurityAnalysisProvider()}

|

Portal(k clear)

)

$

finished : [0 .. 1];

$

portal#.goodbye# <id#> : finished < 2 : finished’ = 1 ;

Table B.1: S model of the financial case study (last).
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Rate Value
loginDecisionRate 1.0
loginOkRate 1.5
loginFailRate 0.3
assessmentDecisionRate 1.0
assessmentArate 0.5
assessmentBrate 1.3
assessmentCrate 0.2
clerkDecisionRate 0.2
clerkAcceptRate 0.3
clerkRejectRate 0.4
supDecisionRate 0.25
supAcceptRate 0.2
supRejectRate 0.6

Table B.2: Initial rate settings for the bank case study.
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