
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Engineering Business Processes with

Service Level Agreements

From Early Requirements towards Business Processes

Ganna Frankova

Advisor:

Prof. Marco Aiello

University of Groningen

March 2010

Abstract

Web services’ features of autonomy, platform-independence, readiness to be

described, published, discovered, and orchestrated are increasingly exploited

by companies to build massively distributed and loosely coupled interoper-

able applications. Enterprises not only export their functionalities as Web

services, but also develop their business process to be Web service-based.

Since services may be offered by different providers, non-functional proper-

ties, which go from execution time, costs, up to trust and security, become

of paramount importance in defining the usability and success both of ser-

vices and of Web service-based business processes. Ideally, the requestor

of a service wants guarantees over the behavior of the services involved in

the process. These guarantees are the object of service level agreements.

The objective of a company is to align the service level agreements it ne-

gotiates as much as possible with its business goals. Establishing a service

level agreement that favors the business objectives requires significant com-

mitment of resources from the enterprise side, therefore any automation

and support that can be obtained for this task is greatly beneficial for the

enterprise.

This thesis addresses the problem of engineering secure Web service-

based business processes with service level agreements from early require-

ments. The present work fills the gap between the requirements engineer-

ing methodologies and the actual generation of business processes based

on Service-Oriented Architectures with particular emphasis on the security

aspects.

We propose a methodology for deriving secure Web service-based busi-

ness processes together with service level agreements, that guarantee a cer-

tain quality of execution, from the informally specified early business re-

quirements. Starting from early requirements modelled in the Secure Tropos

formalism, we provide a set of user-guided transformations and reasoning

tools the final output of which is a set of executable Web service-based secure

business processes. Secure features of business processes are implemented

in Secure BPEL. We propose the Secure BPEL language as a specification

language for secure business process. Related service level agreements, to be

signed in order to guarantee certain quality of service, are specified by the

extended WS-Agreement. We propose an extension of the WS-Agreement

specification and supporting environment to made an agreement more ro-

bust and long lived.

To derive service level agreements, we propose a new algorithm and

we provide a prototype implementation in the constraint solving environ-

ment ECLiPSe. The implementation uses constraint programming system

to satisfy user preferences against reference business processes. The IC Hy-

brid Domain Solver is used to solve the constraint problem. We conducted

experimentation to show the feasibility of the warning strategy. In the ex-

perimentation, more than 92% of violation points are warned in advance,

and 96.5% of thrown warnings are true warnings. To show the feasibility

of the approach, we evaluated the functioning of the methodology on an e-

business banking scenario, more specifically, from a typical loan origination

process, inspired by an actual research project use case.

Keywords

[Business Process, Service Level Agreement, Requirements Engineering,

Web Service, Service-Oriented Computing]

4

Acknowledgements

It is a pleasure to thank the people who made this thesis possible.

I express my sincere gratitude to my supervisor Marco Aiello, Professor

of Distributed Information Systems at the Johann Bernoulli Institute of

the Rijksuniversiteit Groningen, who has been my supervisor since the be-

ginning of my study. He provided me with many helpful suggestions, sound

advices and continuing encouragement during the course of this work.

I also thank all my friends and colleagues for their support and advice,

for creation a friendly and joyful atmosphere, where it has been a great

pleasure for me to work.

I am very grateful to my external thesis committee members, Vincenzo

D’Andrea, Serge Chernyshenko and Pierluigi Plebani, who despite their

busy schedule found the time to read, evaluate and give valuable comments

and suggestions to improve my dissertation.

Lastly, and most importantly, I am infinitely grateful to my parents

for their unconditional love and for years of support and encouragement.

I appreciate very much everything you have done for me. I thank my

husband Matteo and my little son Daniele for their understanding, endless

patience and encouragement when it was most required. I love you very

much.

5

Contents

1 Introduction 1

1.1 Deriving Business Processes with Service Level Agreements

from Early Requirements 4

1.2 Global View on the Thesis Contributions 6

1.3 E-business Case Study . 9

1.4 Thesis Organization . 13

1.5 Published Material . 14

2 State of the Art 19

2.1 Service-Oriented Computing 19

2.2 Quality of Service for Web Services 23

2.2.1 Quality of Service Models 24

2.2.2 Service Level Agreement 26

2.2.3 Web Service Security and Trust 36

2.3 Web Service and Business Process Design 42

3 Secure Workflow Development From Early Requirements 51

3.1 From Early Requirements to Secure Workflow 52

3.1.1 Early Requirements Engineering 53

3.1.2 Late Requirements Engineering 55

3.2 Deploying a Secure BPEL Process 67

3.3 Concluding Remarks . 70

i

4 Semantics and Extensions of WS-Agreement 73

4.1 WS-Agreement . 74

4.2 What’s in an Agreement? 77

4.3 Extension of WS-Agreement 81

4.3.1 Life-Cycle and Semantics for the Extended Agreement 82

4.3.2 Framework . 91

4.4 Anticipate Violations Strategy 91

4.5 Application of the Approach: Service License Life Cycle . . 94

4.5.1 Service Level Agreement Versus Service License . . 96

4.5.2 Service License Life Cycle 98

4.6 Concluding Remarks . 102

5 Deriving Business Processes with Service Level Agreements

from Early Requirements 105

5.1 BP&SLA Methodology . 106

5.1.1 Phase 1. Early Requirements Engineering 107

5.1.2 Phase 2. Business Process Hypergraph Derivation . 112

5.1.3 Phase 3. Hierarchy of Business Processes Derivation 118

5.1.4 Phase 4. Constraint Reasoning for SLAs Derivation 122

5.2 Constraint Reasoning for SLAs Derivation 127

5.3 Concluding Remarks . 130

6 Conclusion and Perspective 131

Bibliography 135

ii

List of Figures

1.1 Loan origination workflow. 11

2.1 Main building blocks in a SOA approach based on Web ser-

vices. 21

3.1 Relations among early requirements, business process and

workflow levels. 52

3.2 Early requirements model acquisition process. 54

3.3 Actors and functional dependencies. 55

3.4 Authorization and trust. 56

3.5 Late requirements engineering. 57

3.6 Actor diagram refinement. 57

3.7 Tropos diagrams to Secure BPEL. 58

3.8 Actor identification. 59

3.9 Actor description. 60

3.10 Service invocation. 62

3.11 Response to service invocation. 62

3.12 Request security service. 64

3.13 Secure BPEL deployment. 69

4.1 WS-Agreement structure. 75

4.2 The life-cycle of a WS-Agreement. 77

4.3 Transition table for the relation between internal and exter-

nal states. 80

iii

4.4 Automaton representation of the table in Figure 4.3 80

4.5 The life-cycle of the WS-Agreement extension. 84

4.6 Experimental results. 92

4.7 Experimental results for 100 points. 93

4.8 Service license life cycle. 99

4.9 Service license versioning by modification 100

5.1 The BP&SLA Methodology. 106

5.2 Early requirements model. 109

5.3 Performance-based trust model. 111

5.4 Business process hypergraph construction. 114

5.5 Business process hypergraph. 117

5.6 Hierarchy of business processes. 120

5.7 Constraint system building. 123

5.8 tkeclipse: Main Window and Outstanding Constraints. . . 129

iv

Chapter 1

Introduction

The construction of massively distributed and loosely coupled applications

is becoming evermore a reality thanks to the introduction of Web services.

Web services are characterized by a set of technologies which cover the

issues of describing, publishing, and finding individual services, as well as

describing messaging and coordination mechanisms, quality of service pa-

rameters and many more facets tied to the realization of widely distributed

information systems.

One of the key issues in Web services is that of automatically com-

posing operations of individual services in order to build more complex

added-value functionalities typified by business processes. Every day more

and more organizations incorporate Web services as part of their business

processes [42]. The research on service composition is well under way,

while most of the focus is on functional properties of the composition, that

is, how does one automatically compose? How does one enrich the ser-

vices with semantic self-describing information? How does one discover

the available services to use for the composition? If, on the one hand, this

is crucial, on the other one, it is not enough. Non-functional properties or

quality of service [73] of the composition are also of paramount importance

in defining the usability and success of Web service-based business process.

1

When having repeated interactions with a service provider, a service

consumer might desire guarantees on the delivery of the service. These

guarantees involve both functional and non-functional properties of the

offered service over a number of invocations. The non-functional prop-

erties of a service can be agreed by the procedure of negotiation a pri-

ori between the Web service provider and consumer by explicitly defin-

ing guarantee terms in a document, specifying a Service Level Agree-

ment (SLA) [151]. Quoting business researchers: “drafting a contract

and verifying that you’re getting what you’ve paid for are real and valid

expenditures of time and money” [24]. WS-Agreement [13] is an industrial

standardized language and protocol for the establishment of service level

agreements among loosely coupled service providers and requesters. If on

the one hand, WS-Agreement is being adopted widely, on the other hand,

it lacks a precise definition of the meaning of its constructs. The protocol

does not contemplate the negotiation of the agreement itself, furthermore,

there is no checking of how close a term is to being violated and, even

more, breaking one single term of the agreement results in terminating the

whole agreement, while a more graceful degradation is desirable.

Service level agreement is a tool to pair such business partners as service

provider and consumer. The pairing as well as the process that need to

interact with certain SLAs have to be designed. Requirements engineer-

ing is being increasingly adopted as a key step in the software develop-

ment process and so new challenges and possibilities emerge. Designing

of Web service-based business processes and workflows is one of the most

thought challenging issues in requirements engineering [209]. We noticed

that there is a gap between the requirements engineering methodologies

and the actual production of software and business processes based on a

Service-Oriented Architecture. When designing a Web service-based busi-

ness process employing loosely-coupled services, one is not only interested

2

CHAPTER 1. INTRODUCTION

in guaranteeing a certain flow of work, but also in how the work will be per-

formed. This involves the consideration of non-functional properties which

go from qualities of services as execution time and availability up to trust

and security. Business processes and security issues [160] are developed

separately and often do not follow the same strategy [159]. The existing

design methodologies for Web services do not address the issue of design-

ing secure Web service-based business processes. Ideally, a designer would

like to have guarantees over the behavior of the services involved in the

process, i.e., obtain SLA of the business process. Service level agreement is

considered to be a key component in service engineering [20]. If on the one

hand, experts from the industry state that enterprise business objectives

should form the fundamental basis of the SLA [109], on the other hand,

developing an appropriate SLA supporting business goals of an enterprise

it is not a trivial task and requires great deal of design by an expert human

operator.

The present work fills the gap among the requirements engineering

methodologies and the actual generation of business processes based on

Service-Oriented Architectures. We propose the methodology for deriving

executable Web service-based secure business processes with service level

agreements from the informally specified early business requirements. The

hierarchy of business processes is expressed in WS-BPEL and the related

SLAs are specified in terms of the extended version of WS-Agreement.

The proposed extended WS-Agreement allows for early warnings before

agreement violation, and negotiation and possibly renegotiation of run-

ning agreements. As the proposed methodology focuses on security and

trust aspects, secure features business processes are implemented in the

proposed language Secure BPEL, a specification language for secure busi-

ness processes.

3

1.1. DERIVING BUSINESS PROCESSES WITH SERVICE LEVEL AGREEMENTS
FROM EARLY REQUIREMENTS

1.1 Deriving Business Processes with Service Level

Agreements from Early Requirements

This thesis deals with the issues related to engineering secure Web service-

based business processes with service level agreements from early require-

ments. Precisely, the contributions of the thesis are five-folded and respond

to the issues raised above.

1. We answer the question: “How to obtain a secure workflow from the

early requirements analysis?” We address the issue of secure Web

service-based business processes modelling based on the analysis of

early requirements, namely, Secure Tropos [95, 144], by presenting a

refinement methodology that bridges the gap between early require-

ments analysis and secure Web service-based workflows development.

2. We introduce a specification language for secure business processes

that allows the workflow engine to automatically enforce trust and del-

egation requirements. The language is a dialect of WS-BPEL v2.0 [9]

for the functional parts and which abstracts away low level imple-

mentation details from WS-Security [129] and WS-Federation [134]

specifications. The workflows are then to be distributed; the secu-

rity aspects being enforced dynamically at runtime accordingly to the

identified requirements.

3. We address the question “What’s in an Agreement?” In particular, we

propose a formal analysis of WS-Agreement by resorting to finite state

automata, we provide a set of formal rules that tie together agreement

terms and the life-cycle of an agreement.

4. From the proposed analysis, some shortcomings of the protocol be-

come evident. Most notably, the protocol does not contemplate the

4

CHAPTER 1. INTRODUCTION

negotiation of the agreement itself, furthermore, there is no checking

of how close a term is to being violated and, even more, breaking one

single term of the agreement results in terminating the whole agree-

ment, while a more graceful degradation is desirable. To overcome

these shortcomings, we propose an extension of WS-Agreement for

which we provide appropriate semantics that allows (i) early warnings

before agreement violation, and (ii) negotiation and possibly renegoti-

ation of running agreements. We conducted experimentation to show

the feasibility of the warning strategy. In the experimentation, more

than 92% of violation points are warned in advance, and 96.5% of

thrown warnings are true warnings.

5. We propose a methodology to design Web service-based business pro-

cesses together with service level agreements that guarantee a certain

quality of execution, with particular emphasis on the security aspects.

Starting from an early requirements analysis modelled in the Secure

Tropos formalism, we provide a set of user-guided transformations

and reasoning tools the final output of which is a set of processes in

the form of Secure BPEL together with a set of SLAs to be signed by

participating services. The constraint algorithm for service level agree-

ments is implemented in the constraint solving environment ECLiPSe.

The implementation uses constraint programming system to satisfy

user preferences against reference business processes. The IC Hybrid

Domain Solver is used to solve the constraint problem.

The peer-reviewed publications by the author are presented in Sec-

tion 1.5 are directly based on and are derived from the material presented

in this thesis. We refer to the works wherever appropriate through the

thesis.

5

1.2. GLOBAL VIEW ON THE THESIS CONTRIBUTIONS

1.2 Global View on the Thesis Contributions

The work proposed in the dissertation addresses the problem of engineer-

ing secure Web service-based business processes with service level agree-

ments from early requirements. The present work fills the gap between

the requirements engineering methodologies and the actual generation of

business processes based on Service-Oriented Architectures with particular

emphasis on the security aspects.

The present work proposes the methodology for designing Web service-

based business processes together with SLAs. The proposal fills the gap

that exists between the informally specified early business requirements

the user provides and the executable Web service-based business processes.

The idea is to enrich business processes with service level agreements which

are favorable for the enterprise in order to achieve its business objectives

with specific quality of service. As the activities about assignment of re-

sponsibilities on business processes need to be carefully considered from

the security point of view, the proposed methodology focuses on security

and trust aspects.

The issue of secure workflows modelling based on the analysis of early

requirements is addressed by presenting a first part of the methodology that

bridges the gap between early requirements and secure workflows for Web

services development. The methodology allows a designer of a business pro-

cess to derive the skeleton of the concrete secure business processes based

on the early requirements. Furthermore, the secure business processes are

refined in order to obtain the appropriate secure workflows.

Judging what is the appropriate service level agreement to sign after

having defined the business objectives is far from being a straightforward

task. With the second part of the proposed methodology, we provide means

to go from a high-level analysis of the business requirements all the way to

6

CHAPTER 1. INTRODUCTION

the definition of the processes to be executed and the SLAs to be signed

in order to guarantee certain quality of service.

We employ the Secure Tropos [95, 144] modelling framework and a

methodology, an extension of the well established Tropos software engineer-

ing methodology [35], to derive and analyse both functional dependencies

and security and trust requirements, i.e., early requirements engineering.

The end-user or domain expert provides informal requirements that form

the seed for developing formal processes. The output of this phase is an

early requirement model. The process of the early requirements model

acquisition starts from the early requirements, goes thought actor, func-

tional dependency, permission delegation and trust modelling and ends

with actor, functional dependency, authorization, and trust diagrams, i.e.,

the requirements model that is obtained by an expert, e.g., software en-

gineer. The model is far from being an executable entity, but rather it is

a conceptual description of the actors involved in the business, their goals

and their trust and security relations.

The first part of the proposed refinement methodology aims to obtain an

appropriate coarse grained business process and workflow at the workflow

level based on early requirements. The refinement is processed by diagrams

created in the early requirements engineering phase. The methodology

takes the components of the diagrams and derives a secure business pro-

cess constructs from them. The obtained secure business processes are de-

scribed by a specification language for secure business processes that allows

the workflow engine to automatically enforce trust and delegation require-

ments. The language we introduce is called Secure BPEL. Secure BPEL is

a dialect of BPEL for the functional parts and which abstracts away low

level implementation details from WS-Security and WS-Federation speci-

fications. The process of the diagrams refinement and coarse grained se-

cure business processes specification is late requirements engineering. Fur-

7

1.2. GLOBAL VIEW ON THE THESIS CONTRIBUTIONS

thermore, the secure business processes are refined in order to obtain the

appropriate secure workflows, i.e., detailed design. As the Secure BPEL

language is an extension of the well established WS-BPEL language [9], a

business process designer, familiar with WS-BPEL processes, simply needs

to understand the additional constructs introduced by Secure BPEL.

In the second part of the proposed refinement methodology, one navi-

gates automatically the model and asks user intervention every time that

an unambiguous choice is necessary. The results of the refinement of the

early requirements are an intermediate model necessary to perform the

reasoning on qualities of services, the business process hypergraph, and a

hierarchy of business processes, specified by Secure BPEL and ready for

execution. The business process hypergraph then is further analysed to

build a constraint problem which represents the relationships among the

various elements of the processes regarding quality of service and security

properties of the processes. By reasoning with these constraints it is possi-

ble to derive the appropriate service level agreements to be signed in order

to guarantee a certain quality of service when executing the process. Each

of the obtained SLAs is specified by the extended WS-Agreement we pro-

pose. The extension of the WS-Agreement specification and supporting

environment aims to made an agreement more robust and long lived.

The final output of the methodology is a set of executable secure busi-

ness process, in the form of Secure BPEL, together with service level agree-

ments, in the form of an extended version of WS-Agreement, to be signed

by participating services fulfilling a specific business goal.

Relating the proposal to the current Web service technologies, the pro-

posed methodology touches the following two major standards:

1) WS-BPEL is used to express the hierarchy of business processes, and

2) WS-Agreement is used to express the service level agreements.

Additionally, Secure BPEL, a specification language for secure business

8

CHAPTER 1. INTRODUCTION

processes, used in the proposal for the functional parts and abstracts away

low level implementation details from WS-Security, WS-Trust and WS-

Federation standards.

1.3 E-business Case Study

Let us now give the details of a typical loan origination process, that we use

through the thesis for demonstrating purposes. The general environment

in which the proposed scenario takes place is the e-business organization

domain. The scenario is provided by SAP1 and is a working scenario of

the IST-FP6-SERENITY project2. The running example is abstracted

from an e-business banking scenario, more specifically, from a typical loan

origination process, in the context of which the activities about assignment

of rights, roles, and tasks need to be carefully considered from a security

point of view.

Scenario description

John is a single 25 years old man who wants to buy a flat and needs a loan.

After visiting several banks, he decides to apply for a loan of 90,000 euros

to his time-proved the BBB bank.

Scene 1. John goes to the bank to ask for a loan - Peter, the pre-

processing clerk receives John, checks his identity, receives clients’s data

for identification from the Internal Computer System and matches them

with the identity of John.

Scene 2. The bank double checks the credit worthiness of John

- When the identity is checked, Peter introduces John to Maria, the post-

1Systems Applications and Products in Data Processing company, http://www.sap.com
2SERENITY (System Engineering for Security and Dependability) is a R&D project funded by the

European Union. SERENITY aims to provide security and dependability in Ambient Intelligence systems,
http://www.serenity-project.org.

9

1.3. E-BUSINESS CASE STUDY

processing clerk. Maria obtains several external (conducted by the Credit

Bureau) and internal (conducted by the Internal Computer System) ratings

in order to check the credit worthiness of the customer.

Using a Credit Bureau - The credit worthiness is checked querying

the Credit Bureau. The Credit Bureau is a third party business partner

of financial institution that processes, stores and safeguards the credit in-

formation of physical individual and industrial companies. In the case of

John, the Credit Bureau does not return any negative information about

credit worthiness and Maria continues to process John’s loan.

Using internal rating - For the internal check, the post-processing

clerk analyses results of calculation of the internal rating. The internal

credit scoring application assigns a low risk level to John’s application and

the loan origination process moves to the third phase.

Scene 3. The bank calculates the loan price - Maria queries the

Pricing Engine service to compute a price of the loan taking into account

the score. The result in terms of original price, customer segment special

conditions, customer company special conditions, asset limit for price, is

then returned to Maria. Maria is able to make a proposal to John.

Scene 4. The bank and John sign the form - If John is satisfied

by the proposed product, he is going to discuss the loan in more details

and to finalize the process. The representative of the bank may be Maria

or Caterina (the manager) according to the loan amount or the customer

type. In this case, John and Maria are involved in the negotiation and

signing of the contract.

The loan origination process is a business process that can be easily

refined to the workflow. The different steps of the loan origination case

study are depicted at the workflow diagram in Figure 1.1. The process

starts from the Customer request for a loan, the request is elaborated by

the Pre- and Post-proceeding clerks and Credit Bureau and then, if the

10

CHAPTER 1. INTRODUCTION

answer is positive, the Manager and Customer signs the contract and the

loan is provided. Several Web services are associated with the processes

such as authentication, store loan request, Credit Bureau, internal rating,

loan calculation.

Figure 1.1: Loan origination workflow.

The presented scenario leads to several challenging security issues. There

are two different security aspects here. The first one is related to intra-

organizational perspective, i.e., separation of duties [177], the second aspect

focuses on the extra-organizational point of view, i.e., authorization [3].

The first group of security issues are mainly: “Four Eyes” principle, mes-

sage confidentiality, message integrity, authentication in a non-trusted en-

vironment, logging and auditing. In this work, we focus on the human

aspects. This is a challenging issue. To prove this we refer to the French

trader who was charged by Société Générale trading loss incident in Jan-

uary 2008, the total lost value was approximately 4.9 billion euros. In

the loan origination case study, it may arise some errors and fraud if, for

11

1.3. E-BUSINESS CASE STUDY

instance, a clerk and a dishonest client collude together to steal money

of the organization. Separation of duties can be seen as a mean of pre-

venting errors and fraud through the limitation of a principal authority

by requiring more than one person to complete a task. This is sometimes

referred to as a dual control or the “Four Eyes” principal since two or more

people are needed for the execution of a critical process. The same actor

should not be assigned two different roles as post processing clerk and pre-

processing clerk in the loan origination case study. The identification of

the customer and the check of the credit worthiness should be done by two

different clerks. Nevertheless, one actor may be assigned two roles in case

he doesn’t activate them at the same time. For example, an actor should be

able to be assigned two different roles, but during two different loan orig-

ination processes. The second group of security issues are the issues this

work is focused on, the issue of authorization across domains. In the loan

origination case study, it may arise some errors and fraud, if, for instance,

a clerk uses its legitimate rights to ask for credit worthiness of principles

without their consent, in order to perform insider trading. Web service

security permits to tailor the authorization of principles thanks to policies.

However, grasping the context in which a principle makes a request is a

difficult task to automate, often leading to over-permissive policies being

deployed. In a context where clerks are interacting with banks over Web

services accesses or in similar cross-organizational scenarios, is a need to

ensure the least privilege principle. This principle refers to the concept

that all users and systems at all times should run with as few privileges as

possible. Our approach offers a mean to use augmented BPEL workflows

in order to expose the context in which the Web service operations are

performed. This approach enables on-the-fly delegation of authorization,

further reducing the privileges of principals and preventing certain fraud

scenarios.

12

CHAPTER 1. INTRODUCTION

1.4 Thesis Organization

The thesis is organized in the following way. In Chapter 2, we overview

the state of the art of the research pertaining to the thesis. First, we re-

call the main notions that appears in the thesis such as Service-Oriented

Computing, Web service, Business process/Workflow and the related stan-

dards as SOAP, UDDI, WSDL, BPEL. Then, we name works on quality

of service for Web services dimensions and metrics, models. A definition

of service level agreement and a description of the approaches aimed to

its specification, negotiation and monitoring are provided. We overview

the specifications developed in order to build secure Web services, then we

review works on trust issues for Web services. The approaches on design of

Web services and Web service-bases business processes conclude the chap-

ter. We also provide the theoretical background that is employed in the

remainder of the chapter. We present the Secure Tropos methodology that

is an enhancement of the software development methodology Tropos.

Chapter 3 answers the question is “How to obtain a secure workflow from

the early requirements?” The issue of secure workflows modelling based on

the analysis of early requirements is addressed by presenting a methodology

that bridges the gap between early requirements and secure workflows for

Web services development. We introduce a specification language for secure

business processes. At the end, the deployment of a Secure BPEL process

is described.

We answer the question “What’s in an Agreement?” by providing a

formal definition of WS-Agreement by resorting to finite state automata.

We provide a set of formal rules that tie together agreement terms and the

life-cycle of an agreement in Chapter 4. From the analysis, some short-

comings of the protocol become evident. Most notably, the protocol does

not contemplate the negotiation of the agreement itself, furthermore, there

13

1.5. PUBLISHED MATERIAL

is no checking of how close a term is to being violated and, even more,

breaking one single term of the agreement results in terminating the whole

agreement, while a more graceful degradation is desirable. To overcome

these shortcomings, we propose an extension of WS-Agreement for which

we provide appropriate semantics, that allows (i) early warnings before

agreement violation, and (ii) negotiation and possibly re-negotiation of

running agreements. Furthermore, we compare service level agreements

and service licenses. Although an agreement is rather different from a li-

cense, they both regulate the activities of collaboration services. A basic

difference is the fact that an agreement involves at least two parties, while

a license is a unilateral statement. Nevertheless, for a license to be enacted,

there must be at least a consumer of the service: this is the starting moti-

vation to relate SLA and service licenses. We apply the proposed analysis

to service licenses and propose the phases of a service license lice cycle.

In Chapter 5, we propose a methodology to design Web service-based

business processes together with service level agreements that guarantee

a certain quality of execution, with particular emphasis on the security

aspects. Starting from an early requirements analysis modelled in the

Secure Tropos formalism, we provide a set of user-guided transformations

and reasoning tools the final output of which is a set of processes in the

form of Secure BPEL together with a set of service level agreements to be

signed by participating services.

Chapter 6 summarizes the thesis work and provides an overview of new

research directions.

1.5 Published Material

The thesis is based on the peer-reviewed publications listed in the following

co-authored with Marco Aiello, Fabio Massacci, Magali Seguran, Daniele

14

CHAPTER 1. INTRODUCTION

Malfatti, Artsiom Yautsiukhin, G.R. Gangadharan and Vincenzo D’Andrea.

Part of the material of the thesis has been published as articles in var-

ious workshops, conferences and journals and as technical reports. The

work presented in the thesis is primarily concerned with the problems of

engineering secure Web service-based business processes with service level

agreements from early requirements.

We address the issue of secure workflows modelling based on the analysis

of early requirements by presenting a methodology that bridges the gap be-

tween early requirements and secure workflows development and introduce

a specification language for secure business processes, named Secure BPEL,

in [81, 82] and then described in details together with the deployment of a

Secure BPEL process in [176].

In [4, 5, 80] we provide a formal definition of an agreement and analyse

the possible evolutions of agreements and their terms over an execution.

As a result we identify a number of extensions which involve the initial

negotiation, the monitoring of running agreements, and the possibility of

re-negotiating agreements in executions. We apply the proposed analysis

to service licenses and propose the phases of a service license lice cycle

in [91].

A method that helps a service orchestrator to determine the concrete

business process providing the highest quality of service and protection

among all possible design alternatives is presented in [83] In [84, 78], we

propose a methodology to design Web service-based business processes

together with service level agreements that guarantee a certain quality of

execution, with particular emphasis on the security aspects.

In [68], we present the threefold Open Service-Oriented Architecture

approach in System, Software Architecture and Practical Implementation

levels. We define a context model that represents context information used

in the Rural Living Labs involved in the Collaboration@Rural European

15

1.5. PUBLISHED MATERIAL

project in [79]. The proposed model is based on ontologies, which offers

designers capabilities to describe and extract semantic from context infor-

mation and build reasoning process on top of them.

Furthermore, the author participated in several PhD Symposiums such

as IBM PhD Symposium at the 3rd International Conference on Service-

Oriented Computing [76] and Doctoral Consortium at the International

Conference on Web Engineering [77] where the results of the early phase

of the dissertation where presented and discussed.

[4] M. Aiello, G. Frankova, and D. Malfatti. What’s in an Agreement?

A Formal Analysis and an Extension of WS-Agreement. Technical Report

DIT-05-039, DIT, University of Trento, 2005.

[5] M. Aiello, G. Frankova, and D. Malfatti. What’s in an Agree-

ment? An Analysis and an Extension of WS-Agreement. In B. Benatallah,

F. Casati, and P. Traverso, editors, Proceedings of the Third International

Conference on Service Oriented Computing (ICSOC 2005), LNCS 3826,

pages 424–436, Amsterdam, the Netherlands, December 2005. Springer.

[68] J. Dörflingerd, G. Frankova, A. Lucientes, R. de Louw, M. Navarro,

C. Peña, C. Ralli, and T. Robles. Enhancing an Open Service Oriented Ar-

chitecture with Collaborative Functions for Rural Areas. In K-D. Thoben,

K.S. Pawar, and R. Goncalves, editors, Proceedings of the 14th Interna-

tional Conference on Concurrent Enterprising (ICE 2008), pages 1117–

1126, Lisbon, Portugal, June 2008. University of Nottingham.

[79] G. Frankova, and A. Chibani, and Y. Amirat and F. Sannicolò.

Towards Context Modeling for Cooperative Rural Living Labs. In P. Cun-

ningham and M. Cunningham, editors, Collaboration and the Knowledge

Economy: Issues, Applications, Case Studies, The eChallenges e-2008 Con-

ference, pages 625–632, Stockholm, Sweden, October 2008. IOS Press.

[76] G. Frankova. Web Service Quality Composition Modelling. In Pro-

ceedings of the IBM PhD Symposium at the Third International Conference

16

CHAPTER 1. INTRODUCTION

on Service-Oriented Computing (ICSOC 2005), 2005. IBM Research Re-

port RC23826.

[77] G. Frankova. Service Level Agreements: Web Services and Secu-

rity. In L. Baresi, P. Fraternali, and G-J. Houben, editors, Proceedings of

the Seventh International Conference on Web Engineering (ICWE 2007),

LNCS 4607, pages 556–562, Como, Italy, July 2007. Springer. Doctoral

Consortium.

[78] G. Frankova, M. Aiello, M. Séguran, F. Gilcher, S. Trabelsi, and

J. Dörflingerd. Deriving Business Processes with Service Level Agreements

from Early Requirements. 2009. Manuscript submitted to the Journal of

Systems and Software.

[80] G. Frankova, D. Malfatti, and M. Aiello. Semantics and Extensions

of WS-Agreement. Journal of Software, 1(1):23–31, July 2006.

[81] G. Frankova, F. Massacci, and M. Sèguran. From Early Require-

ments Analysis towards Secure Workflows. Technical Report DIT-07-036,

DIT, University of Trento, 2007.

[82] G. Frankova, F. Massacci, and M. Sèguran. From Early Require-

ments Analysis towards Secure Workflows. In S. Etalle and S. Marsh,

editors, Proceedings of the joint iTrust and PST Conferences on Privacy,

Trust Management and Security (IFIPTM 2008), IFIP 238, pages 407–410,

Moncton, New Brunswick, Canada, July-August 2007. Springer.

[83] G. Frankova and A. Yautsiukhin. Service and Protection Level

Agreements for Business Processes. Proceedings of the Second European

Young Researchers Workshop on Service Oriented

Computing (YR-SOC 2007), pages 38-43, Leicester, UK, June 2007.

[84] G. Frankova, A. Yautsiukhin, and M. Séguran. From Early Require-

ments to Business Processes with Service Level Agreements. Technical

Report DIT-07-037, University of Trento, 2007.

[91] G.R. Gangadharan, G. Frankova, and V. D’Andrea. Service Li-

17

1.5. PUBLISHED MATERIAL

cense Life Cycle. In W. McQuay, editor, Proceedings of the International

Symposium on Collaborative Technologies and Systems (CTS 2007), pages

150–158, Orlando, FL, USA, May 2007. IEEE Press.

[176] M. Sèguran, C. Hèbert, and G. Frankova. Secure Workflow De-

velopment From Early Requirements Analysis. In C. Pahl, S. Clarke, and

R. Eshuis, editors, Proceedings of the Sixth IEEE European Conference on

Web Services (ECOWS 2008), pages 125–134, Dublin, Ireland, November

2008. IEEE Press.

These papers are available at http://dit.unitn.it/~frankova.

18

http://dit.unitn.it/~frankova�

Chapter 2

State of the Art

Service oriented architecture, business process management and require-

ments engineering are very promising and hot topics. First, we give the

main notions that appears in the thesis such as Service-Oriented Comput-

ing, Web service, Business process/Workflow and name the related stan-

dards as SOAP, UDDI, WSDL, BPEL. Then, we name works on quality

of service for Web services dimensions and metrics, models. A definition

of service level agreement and a description of the approaches aimed to

its specification, negotiation and monitoring are provided. We overview

the specifications developed in order to build secure Web services, then

we review works on trust issues for Web services. The approaches on de-

sign of Web services and Web service-bases business processes conclude the

chapter.

2.1 Service-Oriented Computing

Today we are experiencing a major paradigm shift in the way that software

applications are designed, architected, delivered and consumed. Service-

Oriented Computing (SOC) is the computing paradigm that utilizes ser-

vices as fundamental elements to support the development of rapid, low-

cost and easy composition of distributed applications. SOC not only intro-

19

2.1. SERVICE-ORIENTED COMPUTING

duces a concept of services as as autonomous platform-independent com-

putational elements that can be described, published, discovered, orches-

trated and programmed for the purpose of developing massively distributed

interoperable applications, but also framework for service publishing, dis-

covery, binding and composition. SOC relies on the Service-Oriented Ar-

chitecture (SOA), which is a way of reorganizing software applications and

infrastructure into a set of interacting services [163]. In [68], we present the

threefold Open Service-Oriented Architecture approach in System, Soft-

ware Architecture and Practical Implementation levels.

The services encapsulate the business functionality and some form of

inter-service infrastructure is required to facilitate service interaction and

communication. Different forms of this infrastructure are possible because

services may be implemented on a single machine, distributed across a set

of computers on a local area network, or distributed more widely across sev-

eral wide area networks. A particularly interesting case in which XML stan-

dards are utilized and there is a stack of related technology that go from

the messaging up to the coordination of loosely coupled elements. These

services are called Web services [164].

A Web service is described using a standard XML-based interface de-

scription language called WSDL (Web Services Description Language) [46].

The service provider uses a WSDL document in order to specify the op-

erations a Web service provides, as well as the parameters and data types

of these operations. The description covers all the details necessary to

interact with the service, including message formats (that detail the op-

erations), transport protocols and location. The interface hides the im-

plementation details of the service, allowing it to be used independently

of the hardware or software platform on which it is implemented and also

independently of the programming language in which it is written. This

allows and encourages Web services-based applications to be loosely cou-

20

CHAPTER 2. STATE OF THE ART

pled, component-oriented, cross-technology implementations. Then, Web

services are published in UDDI (Universal Description, Discovery, and In-

tegration) registry [27] that is used to store and retrieve information on

service providers and Web services.

Figure 2.1 shows the relationship between the core elements in SOA [194].

Figure 2.1: Main building blocks in a SOA approach based on Web services.

All elements use XML including XML namespaces and XML schemas.

Arrows denote communication among the main building blocks. WSDL

is the base for SOAP server deployment and SOAP client generation.

SOAP (Simple Object Access Protocol) [102] is a network, transport, pro-

gramming language and platform neutral protocol that allows a client to

call a remote service.

Web services fulfill a specific task or a set of tasks. They can be used

alone or with other Web services to realize more complex functionalities

typified by Web service-based business processes. A business process is

21

2.1. SERVICE-ORIENTED COMPUTING

a set of interrelated tasks linked to an activity that carry out meaning-

ful business operation. Business processes vary in the level of granularity,

and the details of a business process will vary from enterprise to enterprise.

Workflows are business processes that are run in an IT environment. Work-

flow software does not create business processes, but applying workflow to

a business process brings the details of the process into focus. Workflow

provides orchestration for interactions among component Web services. A

Web service that serves as an activity in one workflow can itself consist of

a series of sequenced activities or a workflow [193].

Both business processes and workflows are described by the Business

Process Execution Language (BPEL) [9]. BPEL is an orchestration lan-

guage for Web services. It can be seen as a workflow description, where

each atomic task is a call to a Web service. BPEL is an XML-based

language, supporting common process flow patterns, such as execution of

tasks in sequence or in parallel, splits, AND and OR joins, as well as fault

handling and process compensation mechanisms. The tasks themselves are

seen as blackboxes from the BPEL engine perspective: the way the task is

executed by the service is left open to the service host. In [75], architecture

of an e-Business application using Web services composition was proposed.

The business process and the corresponding workflow for proving that the

approach is feasible was developed.

Recently, two complementing specifications for BPEL, respectively called

BPEL4People [2] and WS-HumanTask [2], were published in order to fur-

ther narrow down Web service invocation to so-called people tasks. These

specifications are useful for managing already at process design time as-

signment of tasks to specific groups of people, and the full lifecycle of task

claim, task delegation and task completion at a user level. Our work does

not specifically rely on these human-related management activities. The

concepts introduced by our approach are primarily about handling trust

22

CHAPTER 2. STATE OF THE ART

and permissions from a B2B perspective, where the permissions and dele-

gation introduced in BPEL4People are by nature intra-organizational. It

can further be noted that BPEL4People does consider security issues at

out-of-scope and thus offer no mean to deal with trust nor authorization

management.

2.2 Quality of Service for Web Services

With the term Quality of Service (QoS) we refer to the non-functional

properties of an individual service, or a composition of services. The term

is widely used in the field of networking [53, 174] and in real time issues [48].

Usually it refers to the properties of availability and performance. In the

field of Web services, the term has a wider meaning. Any non-functional

property which affects the definition and execution of a Web service falls

into the category of QoS, most notably, accessibility, integrity, reliability,

and security [142, 149, 162, 158].

Various approaches for defining QoS requirements exist. Lee et al. [130]

describes QoS requirements for Web services. Ran [169] organizes the as-

pects of QoS into categories, i.e., runtime, transaction support, configura-

tion management and cost, security. The author argues that each category

needs to have a set of quantifiable parameters or measurements. In [85],

QoS aspects are qualified by characteristics as direction and value type.

A set of measures for reliability and performance are proposed. A taxon-

omy for quality dimensions can be found in [40]. A classification of quality

dimensions with analysis on correlation between the quality attributes of

components and those of their composition is presented in [52]. While [200]

characterize possible relations between QoS metrics and business metrics.

The concept of Quality of Business metrics is introduced in [191]. The

work provides an approach that relates Quality of Service, Quality of Ex-

23

2.2. QUALITY OF SERVICE FOR WEB SERVICES

perience and Quality of Business in the Web service environment. Atzeni

and Lioy [22] overview security system assessment methods and metrics.

The work in [103] presents the effect of security requirements on the func-

tional requirements. Analysis of security requirements of business processes

of e-Commerce is presented in [123]. In [137], it is argued that networking

issues have need to be taken into account by both Web service providers

and consumers.

2.2.1 Quality of Service Models

A number of approaches to QoS models rely on extensions of the Web

Service Description Language (WSDL), e.g., [96, 184]. The main idea is

simple: provide syntax to define terms which refer to non-functional prop-

erties of operations. Given such description, one can then build a frame-

work for the dynamic selection of Web services based on QoS requirements.

On the negative side the QoS definition is tied to the individual operation,

rather to the service as a whole. Furthermore, there is no run-time support,

i.e., once a quality parameter is set, it can not be changed at execution

time. In [208, 1, 206, 19], the description of elementary service qualities

as a quality vector each component of which is a quality parameter for

the service is proposed. The authors propose to compute quality criteria

for composite services by using special aggregation functions, e.g., sum,

product. Based on the model the aggregation of numerical QoS properties

can be easily performed, but the approach does not consider the case of

non-numerical parameters. In [133] Lin et al. propose a fuzzy way to ex-

press QoS requirements. While as some QoS metrics such as response time

and invocation price can be changed at run-time, the approaches dealing

with rigidly fixed values is not appropriate. Adding a new data structure

to the UDDI model in order to take into account non-functional properties

is presented in [169]. As the description of quality of service information is

24

CHAPTER 2. STATE OF THE ART

static, i.e., it is specified for a particular service and can not be changed at

run-time: the approach does not allow to cope with the problem of run-time

support. As users rate services based on their expectations on the quality of

service and the expectations are often different, in [62] the authors propose

a quality of service management framework based on users’ expectations.

A model for expressing the non-function properties both from the service

and user perspective is proposed in [87]. The model is compliant with the

WS-Policy framework [23]. However the idea is feasible, the work does not

support negotiation of QoS between service provider and consumer. With

the simple QoS model [41] that includes three dimensions such as time, cost,

and reliability, it is possible to describe workflow components from a QoS

perspective. The model is predictive as allows computing the quality of ser-

vice for workflows automatically based on atomic task QoS attributes [41].

In our opinion, the model is very simple and should be extended to accom-

modate more QoS dimensions. An approach for defining QoS requirements

is QML [85]: a language for QoS description using XML. QML contains

a refinement mechanism allows reuse and customization of QoS contracts.

The work is focused on the usage of QML in the general context of software

design, but not Web services in particular. Maximilien and Singh [145] de-

velop an ontology-based framework for dynamic QoS-aware Web services

selection. The positive side of the approach is that it takes into account

provider’s policies and consumer preferences, but the approach does not

allow for negotiation. In addition, a semantic web approach, in which

services are searched on the basis of the quality of semantically tagged

service attributes is presented in [30]. In [8], a quality of service model of

composition which considers the information flow is described. Jureta et

al. [116] provide a survey on quality models for SOC. The authors analyse

similarities between the models proposed in the literature, review them

and integrate them into a single quality model. Priority and dependency

25

2.2. QUALITY OF SERVICE FOR WEB SERVICES

information is integrated in the proposed model. The approach is feasible

and the integration of the model to UML is needed. The use of the agent-

oriented methodology Tropos to model a wide spectrum of quality of Web

services properties is proposed in [6]. WS-Policy [23] defines a framework

and model for expressing capabilities, requirements, and general character-

istics of individual services. The application of the policy-based software

paradigm to the automated provisioning architecture is described in [18].

The authors show how the use of policies can enhance utility computing

services. In [197], a middleware-based approach for managing dynamically

changing QoS requirements of components. Non-functional capabilities

are described as policies in GlueQoS language that is an extension of WS-

Policy language. The approach supports matching, interpret and mediate

QoS requirements of clients and server sites both at deployment and run-

time. Although plenty approaches for modelling QoS for Web service exist,

in [76] we claim that current models are far from ideal with respect to the

identified requirements, and there is a lot of space for further investigation

and innovative research.

2.2.2 Service Level Agreement

Quality of service is an important concern in dynamic service composition

and selection, given that several service providers can provide similar ser-

vices with common functionality but different QoS and cost. Modelling and

measuring QoS is only one aspect of the management and procurement of

services. The other half of the picture is the negotiation of QoS aspects. A

negotiation mechanism between service consumers (i.e., an integrator or an

end-user) and service providers has to be in place to reach mutually-agreed

guarantees and establish agreements on service provisioning which include

the non-functional properties of the services. It is also important for service

providers to be able to guarantee the promised QoS at runtime [150].

26

CHAPTER 2. STATE OF THE ART

The concept of service level agreement represents expectations and obli-

gations of the partners regarding service characteristics. Though there are

many definitions of SLA in the literature, in this work we use the term ser-

vice level agreement as a machine interpretable specification of the value

of a set of selected parameters of a service, involving more than one party

(two parties in case of SLA for Web services), to assist in automation [151].

SLAs have been used for a while. At the beginning they served as general

operating procedures to buy or rent machine time on a mainframe. Nowa-

days SLAs are widely used in networking and telecommunication and as

a result they became more complex and broader in scope. A customer

can have several SLAs with different providers and a provider may have its

own SLA with other providers, each with a different set of requirements and

measurement criteria. In the world of Web services, the relations among

providers and consumers become more complex and Web services paradigm

has made SLAs more challenging. The SLAs for Web services are used to

guarantee not only network performance and uptime availability as they

do in networking, but also application performance. It is relevant because

each Web service has its own characteristics and network requirement [157].

Further, we describe key factors of involved in service level agreements,

namely, SLA specification, negotiation and monitoring [186, 151].

Service Level Agreement Specification

Several languages for specifying SLAs have been proposed, most notably,

IBM’s Web Service Level Agreement (WSLA) Language [139] focuses on

Web service interactions. The goal of WSLA is twofold: at deployment

time it helps the interacting parties to configure their resources to meet a

predefined SLA; at run time it helps the interacting parties to monitor the

performance of each other and to detect and notify violations. However, the

monitoring framework does not answer the question “How close a guarantee

27

2.2. QUALITY OF SERVICE FOR WEB SERVICES

is to being violated?”

Web Service Offering Language (WSOL) [185] focuses on Web ser-

vice interactions. The language is used to formally specify various con-

straints, management statements, and classes of services for Web services.

SLAng [124] is an XML-based language that describes QoS properties to

include in SLAs. SLAng does not focus only on Web service interactions,

but also to specify SLAs for hosting service provisioning (between container

and component providers), communication service provisioning (between

container and network service providers), etc. Although SLAng is expres-

sive enough to represent the QoS parameters included in SLA, more work is

needed on the definition of the semantics of SLAng. Web Services Agree-

ment [13] defines the interaction between a Web service provider and a

consumer, and a protocol for creating an agreement using agreement tem-

plates. The specification is described in details in Chapter 4.

The work in [186] names the main problem and suggests solutions for

correct SLA specification. Furthermore, it addresses the specification of

SLA based on three service management principles: continuity in SLA

specification, the SLA context and content, and the principle of specifying

the quality of both a service process and a service object. Sahai et al. [172]

proposes a specification language that enables definition of precise an flex-

ible SLAs. In [11] the requirements for a precise SLA specification are dis-

cussed. The authors argue that the correct definition of QoS parameters

corresponds to the establishment of an ontology between a service provider

and a consumer. This ontology should provide a definition of terms and the

semantics between them. Annotation of service level agreement templates

with semantic QoS metrics is proposed in [86] and in [112] the authors

illustrate how to specify an agreement with ontology language instead of

XML schema. With the help of ontology, the author propose the solution

of service selection problem as matching of SLAs [47]. Buscemi and Mon-

28

CHAPTER 2. STATE OF THE ART

tanari [37] present the cc-pi calculus for modelling processes able to specify

SLA contracts. The proposed language allows for resource allocation and

for joining differen SLA requirements. The notion of contract from a log-

ical perspective is presented in [26]. The authors extended intuitionistic

propositional logic with a new connective, that models contractual impli-

cation. Jin et al. in [113] focus on information collection and analysis

at the creation stage of SLA, on the relation SLA from service provider

side-IT infrastructure of the provider and the impact of the SLA the ser-

vice consumer sign on their productivity. A customer-oriented approach

for specifying service contracts is presented in [175]. The author propose

the usage of workflow concepts for designing and writing high quality ser-

vice contracts for IT services. The approach is feasible, while it should be

improved to be used for derivation of customer/oriented, but measurable

quality parameters. The notion of contracts formalization, a contract con-

struct and related function that bridges the gap between service matching

and service mapping are introduced in [16]. In [154] an extension that al-

lows the WS-Agreement specification supporting temporality is proposed.

The authors define an appropriate domain-specific language that allows to

express many temporal properties. We consider the proposal to be useful

for the re-negotiation of an agreement in our work.

Karten in his book “How to establish Service Level Agreements” [120]

provides the business point of view on how to be successful in establishing

your SLAs and names the factors that accounts for a SLA never reaches

completion or proper functioning. A method to convert the contract from

text into an electronic equivalent that can be executed and enforced is pre-

sented in [152]. The authors propose using finite state machines to describe

standardized conventional contracts. Angelov and Grefen [17] presents a

reference architecture for the development of e-contracting systems. The

architecture introduces standardized view on the systems, facilitate the de-

29

2.2. QUALITY OF SERVICE FOR WEB SERVICES

sign of logical view and allows faster development of e-contracting systems.

Service Level Agreement Negotiation

The negotiating of service agreements has a vital role in the life-cycle of a

SLA. Presently, negotiation is mainly a manual process and full or partial

automation is needed. Theoretical bases of SLA negotiation are provided

by Demirkan et al. [60] where the authors identify negotiation support sys-

tem requirements. The term negotiation is viewed as the interaction among

participants, i.e., service provider and service consumer in the context of

deriving mutual commitment. i.e., service level agreement. A negotiation

description language is introduced in [70]. The language is rather simple

as it provides a high-level description of a negotiation between parties in

service-oriented context. Hung et al. [110] propose WS-Negotiation lan-

guage, an XML language that contain three parts: negotiation message to

describe the format for messages exchanged, negotiation protocol to de-

scribes the mechanism and rules that negotiation parties should follow,

and negotiation decision making, which is an internal and private decision

process.

Gimpel et al. [94] propose PANDA - Policy-driven Automated Nego-

tiations Decision-making Approach. The approach automates decision-

making within negotiation. An automated negotiation framework based

on a finite state automata and a set of negotiation protocols is in [132].

In [119] an approach for automated SLA creation through a negotiation

from a set of service level objectives is proposed. The approach is feasible

while the question on service level objectives obtaining remains open. In

our approach the use of requirements engineering methodology solves this

problem. A protocol for dynamic SLA negotiation is proposed in [167].

The authors propose a simple extension to the WS-Agreement protocol

that facilitates the negotiation process. Hasselmeyer et al. in [106] focus

30

CHAPTER 2. STATE OF THE ART

on outsourcing the function of the provider’s negotiator to external negotia-

tion broker. The approach decreases cost of SLA negotiation, while implies

loss of control. Therefore, it is needed to state where the negotiation has

ended, independent on whether the agreement was reached or no. The

modelling of high-level policy specification for negotiation and a middle-

ware broker framework for conduction an automated-based negotiation is

presented in [210]. A scheme for negotiation of e-service under uncertainty

is proposed in [204]. The idea is that the participant who is negotiating

under uncertainly obtain an assistance from other reputable participants

who have already negotiated the same issue. A model and a protocol for

negotiating SLA over accessing resources in distributed environments are

presented in [56].

The critical issue in SLA negotiation is a common understanding of

the terms among negotiating parties, i.e., there is an ontology problem of

electronic negotiations is raised in [182]. One of the proposed solution is

to use SLA templates [171] and annotate the templates with semantic QoS

metrics [86]. Yarmolenko and Sakellariou [203] specify a SLA’s agreement

terms as functions rather than variables, constraint values or ranges. This

approach minimize the number of re-negotiations and reduce agreements

failures. An approach of SLA matching is presented in [202]. The work

syntactically matches SLAs by parsing them into syntax trees. While in

[161], the matching of providers and consumers is done by using semantic

web technologies that helps helps to achieve more accurate results.

Decision making support in SLA creation and negotiation is presented

in [136]. The authors propose using dynamic service profiles that con-

tain historical service execution data and precautionary avoid non-SLA-

conformant service behavior. The mechanisms of the COSMA approach [136]

for an integrated management of atomic and composite SLAs during the

whole life cycle is used.

31

2.2. QUALITY OF SERVICE FOR WEB SERVICES

Cappiello et al. [39] present a negotiation model to support the auto-

matic generation of SLA on-the-fly. The authors developed a model to

express Web service quality, provider capabilities, and user requirements

that is further employed in the negotiation model to generate SLA. In our

approach, we tie business processes with SLAs. We do not focus on SLA

negotiation, while we take into account early requirements provided by

the end-user, the structure of the business process and security and trust

concepts.

The issue of re-negotiation as a second or further negotiation that may

change the terms of an existing agreement1 is raised in [105]. The work

describe the protocol for re-negotiation of an agreement that can be used

with WS-Agreement. The protocol is based on the principles of contract

law [181] to make the new agreement legally compliant. The authors of

the work [64] follow the direction proposed by us in [5] proposing the in-

tegration of new functionality to the protocol that enable the parties of a

WS-Agreement to re-negotiate and modify its terms during the service pro-

vision. We consider both the proposals to be useful for the re-negotiation

of an agreement in our work.

He et al. [108] propose an agent-based framework that uses the agent’s

ability of negotiation, interaction, and cooperation to facilitate autonomous

SLA management in the context of service composition provision. Negoti-

ating a complex service is discussed in [71]. Such a negotiation deals with

uncertainty. The problem is that the whole dynamic composition fails as

a result of failure to contract one of individual services. Our approach

can not guarantee the service availability before the SLA establishment,

while it aims to avoid SLA of the whole composition failure by introducing

re-negotiation phase in the SLA life cycle.

The cost of SLA negotiation is discussed in [147]. As negotiating mul-

1Oxford English Dictionary, Second Edition, 1989.

32

CHAPTER 2. STATE OF THE ART

tiple QoS criteria is a costly process, the authors propose to consider the

advantages and disadvantages of negotiation carefully and execute multi-

step negotiation only where its cost are justifiable. One approach to keep

negotiation costs low is the supermarket approach or the take-it-or-leave-it

approach. Its name correlates with the business model of supermarkets,

where customers can only decide whether to take certain product or not.

If the customer does not find the brand (i.e. the offer) they likes, another

supermarket (i.e. the service provider) may be an option.

An approach that accomplish SLA decomposition and translates service

level objectives, specified in SLA to lower-level resource requirements for

each system involved in providing the service is presented in [44]. The work

is useful to create an efficient design to meet SLA.

A framework for automating of the Web service contract specification

and establishment is proposed in [51]. The authors propose a QoS model

that define both domain-dependent or domain-independent and negotiable

or non-negotiable QoS dimensions. The model is used in the proposed

mechanisms for service matchmaking and selection. The matchmaking

algorithm for the ranking of functionally equivalent services, which orders

services on the basic of their ability to fulfill the consumer requirements,

while maintaining the price below the specific budget. The configuration

of the negotiable part of SLA exploits the top-ranking services identified

in the matchmaking phase. The contract establishment activity produces

SLA in the WS-Agreement specification. The framework is developed to be

self-heading in reaction to faults on non-functional properties. The authors

claim that the most suitable action in this case is the service substitution.

While we consider that re-negotiation of SLA saves time and money both of

the provide and consumer. Furthermore, there is no requirements gathering

phase in the presented approach.

33

2.2. QUALITY OF SERVICE FOR WEB SERVICES

Monitoring of Service Level Agreement

Monitoring an established SLA is essential for a service consumer. Non-

functional monitoring is concerned with the statistical QoS metrics collec-

tion to evaluate wheatear a provider complies with the QoS level specified

in the SLA [151]. Fundamental concepts of non-functional SLA monitor-

ing are presented in [153] which contains a discussions on the separation of

the computation and communication infrastructure of the provider, service

points of presence and metric collection approaches. The authors propose

an architecture for QoS monitoring by third parties to ensure that the

results are trusted by both the provider and consumer. A Web Service

Level Agreement framework for defining and monitoring SLAs is presented

in [122]. The work addresses the definition of a language for SLAs spec-

ification, creation, and the implementation of a SLA compliant monitor.

Greenwood et al. [99] propose an automated and distributed SLA monitor-

ing engine that considers both provide’s and client’s side measurement of

SLA. The approach deals with the scenario where providers contract with

each other to fulfill the customer’s request.

In [55], the Agreement-Based Open Grid Service Management (OGSI-A)

model is proposed. Its aim is to integrate Grid technologies with Web ser-

vice mechanisms and to manage dynamically negotiable applications and

services, using WS-Agreement [13]. The WS-Agreement is supported by

the definition of a managing architecture: CREMONA - An Architecture

and Library for Creation and Monitoring of WS-Agreement [138].

A list of correctness requirements the most business contract should

satisfy is identified in [180]. The provided correctness requirements are

mapped into conventional safety and liveness properties. The authors de-

scribed contract by means of Finite State Machines and showed how it can

be validated using standard model checker such as Spin. Sahai et al. [173]

34

CHAPTER 2. STATE OF THE ART

propose an automated and distributed SLA monitoring engine that moni-

tors a SLA. The SLA should be specified in the proposed in [172] speci-

fication language that enables definition of precise an flexible SLAs. The

work in [65] focuses on SLAs testing. The authors proposed the use of ge-

netic algorithms to generate inputs and configurations for service-oriented

systems that cause SLA violations. Jurca et al. [115] show that indepen-

dent monitoring can be replaced by a reputation system where monitoring

is based on feedback provided by the clients. Rana et al. [170] present a

work on SLA penalties and types of violations that can occur during SLA

provisioning.

In [155], a mechanism to check the consistency of SLAs and explain WS-

Agreement inconsistencies is described. The authors map an agreement to

CSPs that enables the use of CSP solvers for consistency check and explain

inconsistencies of SLAs. The issue of compliance between WS-Agreement

templates and offers is raised in [155] by the same authors. CSP and its

solver is used to check and explain compliance of WS-AgreementḢowever,

the approach are applied not to the whole WS-Agreement but to a less

expressive subset of it.

Pro-active monitoring technique can be applied to minimize incidents

of violation detection caused by provider side. The main idea of the tech-

nique is deploying monitoring mechanisms by provider to monitor his own

resources. In this case rather reacting to violations notified by the notifi-

cation and violation service the provider prevents them. Pro-active moni-

toring on electronic contracts is presented in [201]. The work proposes an

approach to formalize electronic contracts into a set of representations to

enable automatic monitoring. The approach not only supports the detec-

tion of actual violations but also detection of imminent contract violations.

Although functional monitoring mechanism is developed, non-functional

monitoring is out of scope in the work.

35

2.2. QUALITY OF SERVICE FOR WEB SERVICES

The above approaches show that frameworks for QoS definition and

management are essential to the success of the Web service technology,

but there are a number of shortcomings that still need to be addressed.

First, a formal definition of the semantics of a SLA is missing. Second,

the frameworks should be more flexible at execution time because actual

qualities of services may change over time during execution.

2.2.3 Web Service Security and Trust

We overview the specifications developed in order to build secure Web

services, then we review works on trust issues for Web services.

WS-Security [129] specifies enhancements to SOAP messaging that

while building secure Web services can be used in order to implement

message content integrity and confidentiality. The specification provides

a general-purpose mechanism for associating security tokens with message

content. No specific type of security token is required, the specification sup-

ports multiple security token formats. WS-Security describes how to en-

code binary security tokens (e.g., X.509 certificates and Kerberos tickets),

a framework for XML-based tokens, and how to include opaque encrypted

keys. It also includes extensibility mechanisms that can be used to further

describe the characteristics of the tokens that are included with a message.

WS-Security is flexible and is designed to be used as the basic for securing

Web services within a wide variety of security models including PKI, Ker-

beros, and SSL. Specifically, WS-Security provides support for multiple

security tokens, multiple trust domains, multiple signature formats, and

multiple encryption technologies. The specification intentionally does not

describe explicit fixed security protocol. It provides three main mecha-

nisms: (i) ability to send security tokens as part of a message, (ii) message

integrity, and (iii) message confidentiality. To summarize, the focus of WS-

Security is to describe a single-message security language that provides for

36

CHAPTER 2. STATE OF THE ART

message security that may assume an established session, security context

and/or policy agreement. WS-Security can be seen as a business process

that enables application to construct secure SOAP message exchanges.

WS-Security does not address the issues of interoperability between

SOAP client and SOAP service. The standard does not specifies how a

SOAP client and a SOAP service can agree on the nature and characteris-

tics of the security tokens. WS-Security begins with the assumption that,

if one of the parties uses a particular type of security token within the

WS-Security header, then the other party will be able to interpret and

process the token. As there are multiple viable formats for security tokens

(e.g., X.509 certificates and Kerberos tickets), it is unlikely that an arbi-

trary SOAP endpoint will be expected to understand each of these options.

While the guarantee that both partners who wish to use WS-Security to

secure their SOAP messages support the security token they will be able

to understand and process is needed. We face the problem of heterogene-

ity of the security environments between which WS-Security must operate.

At this point the guarantee that there will be an intersection between the

sets of supported security token format of two different SOAP actors who

wish to use WS-Security to secure their SOAP messages is needed. There-

fore, interoperable application of WS-Security across security domains with

different security infrastructures will require either mechanisms by which

actors can come to an agreement on the nature of security token they will

use in any subsequent SOAP transactions, or mechanisms by which differ-

ent security tokens can be mapped into others, such that individual SOAP

actors can be guaranteed to receive only security tokens that they will be

able to understand and process. The following specifications support both

scenarios for addressing this interoperability issue:

WS-SecurityPolicy specifies how Web services actors can assert to po-

tential transaction partners their policies with respect to WS-Security

37

2.2. QUALITY OF SERVICE FOR WEB SERVICES

mechanisms, including their capabilities and preferences with respect

to security tokens (e.g. a SOAP service can assert “I can process X.509

certificates and SAML assertions but my first choice is SAML”) [128].

WS-Trust enables security token interoperability by defining a

request/response protocol by which SOAP actors can request of some

trusted authority that a particular security token be exchanged for

another [127].

Even if the given security token’s format is acceptable to a recipient of

a WS-Security, interoperability at the syntax level is no guarantee that the

recipient will be able to trust the token. WS-Trust [127] addresses the

issue of trust interoperability issues by defining a simple request/responce

for security token exchange. A client sends security token request to a

Security Token Service (STS), the request includes the security token that

the client is asking to be exchanged (old token). The STS responce con-

tains the exchanged token (new token). In addition to token exchange, the

WS-Trust request/response protocol is general enough to support token

issuance (the client presents a claim to the STS for the STS to authorize

through the issuance of a corresponding security token) and token valida-

tion (the client presents a token to the STS and asks that its validity be

determined). Issuance and validation can be thought of as special cases

of exchange, as both the client claim in the issuance case and the STS

validity assertion response in the validation case can be thought of as to-

kens [140]. WS-Trust supports broker trust relationships and therefore can

be used to build delegation and trust chains between partners. A seman-

tic of the main mechanisms of WS-Trust and typical protocols, relying on

these mechanisms, are modelled in [29]. The core security properties of

the specification are proved and some limitation and potential vulnerabil-

ities are discussed. Designing secure business processes is out of the scope

38

CHAPTER 2. STATE OF THE ART

of this work as it focuses at the lower level, i.e, protocols modelling and

verification. WS-Trust can be seen as a business process that enables inter-

operability between the multiple formats for security tokens (that might be

used in a WS-Security protected message) and broker trust relationships.

The WS-Federation [134] specification builds on WS-Trust specifica-

tion to allow different security realms to federate by allowing and bro-

kering trust of identities, attributes, authentication between participat-

ing Web services. Here we have several actors. Identity Provider (IP)

(which is an extension of STS) is an entity that acts as an authentica-

tion service to end requestors an data origin authentication server to ser-

vice providers. Attribute service is an entity used to obtain authorized

information about a principal to allow the sharing of data between autho-

rized entities. Pseudonym service is an entity that allows the principals

to have different aliases at differen resource/services or in different realms,

and to optionally have pseudonym change per-service or per-login. WS-

Federation allows attributes and pseudonyms to be integrated into the

token issuance mechanism to provide federated identity mapping mech-

anisms. WS-Federation can be seen as a business process that enables

federation of identity, attribute, authentication, and authorization infor-

mation.

Trust is a directional relationship between two parties that can be called

the trustor and the trustee. Trust is an essential aspect for decision on

security since it is related to belief in honesty, trustfulness, competence and

reliability [32, 43, 148]. In [97] and [98], Grandison and Sloman consider

trust as a quantified belief by a trustor with respect to the competence,

honesty, security and dependability of a trustee within a specified context.

Trust is not symmetric, so this belief by the trustor does not imply any

similar belief by the trustee. Distrust is a quantified belief by a trustor

that a trustee is incompetent, dishonest, not secure or not dependable

39

2.2. QUALITY OF SERVICE FOR WEB SERVICES

within a specified context. Gambetta [89] emphasizes the subjective level of

trust: “trust is the subjective probability by which an individual A, expects

than another individual, B, performs a given action on which its welfare

depends”. In [43], trust is considered from a cognitive point of view: trust

is a mental state based on a set of beliefs (depending on the feeling of trust

more than the trust itself). There are various reasons for distrusting agents

such as unskillfulness, unreliability and abuse. According to the authors,

trust implies that having high trust in a person is not sufficient to imply

the decision of trust, it could depend on the situation and the evaluation

of the risk [72]. In [114], Jøsang introduces the notion of decision and gives

the definition of trust as the extent to which a given party is willing to

depend on something or somebody in a given situation with a feeling of

relative security even though negative consequences are possible.

Usually, there is a level of trust associated with a trust relationship [146].

Trustworthiness is defined as a measure of level of trust that the trusting

agent has in the trusted agent. The trust level is a measure of belief

in another entity and thus it is a measure of belief in the honesty, com-

petence, security and dependability of this entity (not a measure of the

actual competence, honesty, security or dependability of a trustee) [98].

Considering trust level, we can emphasize the following two approaches.

Firstly, there might be some degrees in the trust level, i.e., so called, “[0..1]

trust level approach” that points the level of trust one entity trusts an-

other one. It means some degrees between absence and presence of trust.

In the definition given in [97] and [98], quantification is linked to the

notion of trust. Quantification reflects that a trustor can have various de-

grees of trust (distrust), which could be expressed as a numerical range

or as a discrete classification such as low, medium or high in [98] and the

work done in SULTAN (Simple Universal Logic-oriented Trust Analysis

Notation) has incorporated concepts such as experience, reputation and

40

CHAPTER 2. STATE OF THE ART

trusting propensity. SULTAN proposes an abstract, logic-oriented frame-

work designed to facilitate the specification, analysis and management of

trust relationships [97, 98]. One of the disadvantages of this “[0..1] trust

level approach” is that it is not clear how to define the exact degree of

the trust level. It is not a straightforward task to reason which option to

trust to or which alternative to distrust especially in case of the trust level

is not high. Secondly, there is the “0/1 trust level approach” that means

strictly absence/presence of trust dependencies. In [21], the authors con-

sider three trust levels: Trust, Distrust, and NTrust (i.e., neither trust nor

distrust). Trust and Distrust means 1/0 trust level, NTrust is necessary

since the requirements specification may not define any trust or distrust

relation between two specific actors. In our approach, the trust level is de-

termined from the reasoning on the presence/absence of trust dependencies

in the early requirements model. The trust level value denotes the level

of trust between the truster and the trustee on the fulfilling the business

process. The determined trust level of service providers might be employed

when there is a possibility to choose one business process from the several

alternatives suggested by different providers.

In the loan origination area, where the aim is to provide the loan to the

reliable customers, the Credit Bureau responsible for the credit worthiness

check shall be reliable. In this domain, several Credit Bureau can coexist

and so the best one shall be selected. The advantage of the “0/1 trust level

approach” is to have the possibility of choosing the best alternative, i.e.,

the right partner to work with, in case of distrust to another one.

2.3 Web Service and Business Process Design

Various approaches aimed to use requirements engineering methodologies

(and not only) in the context of Web services and Web service-bases busi-

41

2.3. WEB SERVICE AND BUSINESS PROCESS DESIGN

ness processes design.

Basic principles of Web services and business processes design are pre-

sented in [165]. While the work does not distinguish logical business pro-

cesses and their implementation. While our approach produces executable

secure business processes with SLAs.

Distante et al. [66], analyse and compare web applications design method-

ologies with regards to their support for modelling business processes. Fur-

ther, a comprehensive design model for integrated business processes in web

applications is proposed. The model is based on UWAT+, an extension

of the ubiquitous web applications design model called UWA. The pro-

posed model satisfies plenty of requirements, while it does not work with

non-functional properties and SLAs.

Lapouchnian et al. [125] propose a requirements-driven approach for

business process design. Requirements goal models are used to capture

business goals and alternative process configuration. Quality attributes

such as customer satisfaction serve as the selection criteria for choosing

among business process alternatives induced by the goal models. Exe-

cutable business processes are generated in semi-automatic way from goal

models. The approach does not focus neither on secure business processes

nor SLA building for generated business processes.

The Tropos methodology [35] is a requirements engineering methodology

that supports all analysis and design activities in the software development

process, from application domain analysis down to the system implemen-

tation. Lau and Mylopoulos [126] propose a design methodology for Web

services adapted from the Tropos methodology. The work is based on the

use of goals to determine the space of alternative solutions to satisfy the

goals. The key point is that the solutions are represented by Web services.

The generated Web services design is expected to accommodate as many

of those solutions as possible rendering the design usable by a broader class

42

CHAPTER 2. STATE OF THE ART

of applications. On the negative side, Tropos is not tailored specifically to

Web service design. Therefore the proposed methodology does not address

the issue of integration neither of Web Service Business Process Language

in order to specify actual behavior of participants in a business interaction

nor WS-Agreement Language to specify SLAs of the services. In [121],

a methodology for business requirements modelling that uses the Tropos

framework to capture the strategic goals of the enterprise is described.

The proposed methodology enables to produce concrete business processes

expressed by BPEL4WS description. The concrete business processes are

elicited from the description of business process notions with Tropos con-

cepts extended with formal annotation called Formal Tropos [88]. On the

contrary, our work aims not only to obtain business processes from an early

requirements analysis, but also to provide them with SLAs. Furthermore,

the work involves the Tropos methodology that does not support the no-

tion of trust and delegation dependencies while the Secure Tropos does.

The agent-oriented methodology Tropos is used for analysing Web service

requirements by Aiello and Giorgini in [7]. In the approach the authors do

not model every individual Web service as an agent, but rather model the

whole set of interacting services as a multi-agent system where different

dependent hard and soft goals coexist. Penserini et al. [166] address the

issue of refining the Tropos methodology and tailoring it to the design of

Web services. The Tropos design process is extended to support a revised

notion of capability that explicitly correlates actor plans with stakeholders

needs and environmental constraints. The agent capability is considered as

a service. Furthermore, the authors sketch how Tropos design-time mod-

els can support service discovery and composition by relating stakeholder

goals to sets of services available. Even if, the idea is feasible, the work

is in an early stage and there is a need for more precise mapping of agent

capability that is considered as a service. Furthermore, there is no secure

43

2.3. WEB SERVICE AND BUSINESS PROCESS DESIGN

business processes design support.

A methodological approach for deriving the software functionality from

organizational model is presented in [59]. The authors model an organi-

zation by means of BPMN and use the goal/strategy Map approach. The

work allows for organization analysis and system goals understanding in

a participative way with customers. The approach does not focus at non-

functional properties of business processes.

Modelling of Web service structural and behavioral aspects using UML [101]

is studies in several works. An approach of mapping UML activity dia-

grams into BPEL4WS is proposed in [92]. Deubler ar al. [63] introduce

aspect-oriented techniques for UML sequence diagrams modelling. The

authors propose to specify certain behavior aspects of overlapping Web

services (so called crosscutting services). Composite Web services design

using UML activity diagrams is proposed in [179]. An important feature

of the method is the transformation of WSDL [46] descriptions into UML

diagrams. While Marcos et al. [143] describe an extension of UML for

representation of WSDL specifications. In [38], UML sequence diagrams

are used for representing service-oriented business processes with time con-

straints. The work focuses on capturing main elements of WS-BPEL and

automatic translation of UML diagrams into business process execution

language. A set of software pattern primitives for process-driven SOAs

development is proposed in [207]. The primitives are specified using a pro-

posed UML2 profile for activity diagrams and the UML Object Constraint

Language (OCL) [100].

In additional, Business Process Modeling Notation (BPMN) [196], a no-

tation that is readily understandable by all business users, from the busi-

ness analysts to the technical developers, and finally, to the business people.

The use of User Requirements Notation [10] for business process modelling

is proposed by Weiss and Amyot [195]. In [33], a conceptual framework

44

CHAPTER 2. STATE OF THE ART

for designing Web service-based systems is proposed. The authors adopt

xBPEM methodology [135] for designing service-oriented systems. The

approach includes client-centered analysis, identification of functionalities

and collaboration patterns of involved Web services, service discovery and

selection. Vanderfeesten et al. [192] introduce cross-connectivity metric

that helps validating process models for understandability. A conceptual

framework called COSMO, for service modelling is presented in [168]. The

framework supports not only service modelling, but also service discovery

and composition performed at design and run time. While the work does

not consider business process modelling. The research works of Colombo et

al. [50] presents a methodological framework that supports the modelling

and formal analysis of requirements for service composition through a so-

cial and process perspective. In [118], the authors propose a goal driven

approach to service elicitation, distribution and orchestration. An archi-

tecture for managing business processes life cycle is proposed in [31].None

of these methodologies aims to support secure business processes.

We define secure Web service-based business processes as security-enhanced

Web service-based business processes [159].

Georg et al. [93] propose the use of aspects for designing a secure system.

The work illustrates how an aspect-oriented approach to modelling allows

to encapsulate the concerns of security, availability of services and timeli-

ness so they can be woven into a secure system design. The weaving strat-

egy identifies security aspects based on the kinds of possible attacks and

the mechanisms that allows the detection, prevention, and recovery from

such attacks. Haley et al. [104] represent security requirements as crosscut-

ting threat descriptions using aspect-oriented software development cross-

cutting concepts and problem frames. Security requirements are seen as

constraints on functional requirements intended to reduce the scope of vul-

nerabilities. This allows to analyse secure requirements along with other

45

2.3. WEB SERVICE AND BUSINESS PROCESS DESIGN

constraints when producing specification for the problem. Cheng et al. [45]

propose the use of security patterns for modelling and analysing secure

systems. The authors describe a collection of security patterns using a

template that addresses difficulties inherent to the development of secure-

critical systems. An approach to develop secure software with extensive

pattern-driven process is presented in [107]. Employing the patterns, it is

possible to gain insight into the issue of modelling and analysing security

concerns starting from the requirements engineering phase. An extension

of the Business Process Modeling Notation to enable a description of au-

thorization constraints is presented in the work of Wolter and Schaad [199].

On the negative site, the approaches do not support the design of software

and business processes based on a SOA.

Domingos at al. [67] proposes a methodology that allows deriving work-

flow access control information from business models. The approach adopts

the Eriksson-Penker Business Extension to UML in order to describe busi-

ness models. The obtained workflow access control information is rep-

resented as a set of rules in XML format. Unfortunately, the proposed

methodology does not address the issue of workflow development and so

usage of current standards for Web services and security. The problem of

defining and enforcing access control rules for securing service invocations

in the context of business processes is addressed in [189]. A novel secu-

rity model called EFSOC (Event-driven Framework for SOC) is proposed.

While the issue of delegation of authorization is not taken into account.

An approach for secure service composition is presented in [25]. A static

approach determines how to compose services while guaranteeing that their

execution is always secure, without resorting to any dynamic check. The

proposed primitives can enforce local security policies and invoke services

that respect given security requirements. The work does not focus on Web

services or business process design.

46

CHAPTER 2. STATE OF THE ART

Secure Tropos Framework

Secure Tropos is a formal framework and a methodology for modelling and

analysing security requirements [95, 144]. Secure Tropos is an extension of

the well established Tropos software engineering methodology [35].

Secure Tropos uses the concepts of actor and goal. Actor models an

entity that has strategic interests, i.e., goals with the system. An actor

represent a physical, social or software agent as well as its role. It might

happen that an actor does not have the capabilities to achieve his own

objectives by himself. In this case that actor has to delegate the objectives

to other actors that leads to their achievement outside the control of the

delegator. Secure Tropos supports two types of delegations. Delegation of

execution, i.e, at-least delegation, means that one actor (called delegator)

delegates to another one (called delegatee) the responsibility to execute

a service. Delegation of permission, i.e, at-most delegation, models the

transfer of entitlements from delegator to delegatee. Two types of trust

dependencies are supported. Trust of execution, i.e, at-least trust, means

that one actor (called trusted) trusts that another one (called trustee) will

at least fulfill a service. While the meaning of trust of permission, i.e, at-

most trust, is that an actor trusts that another actor will at most fulfill a

service, but will not overstep it. Trust modelling aims at identifying actors

trusting other actors for services, and actors which own the services.

From a methodological perspective, Secure Tropos is based on the idea of

building a model of the system that is incrementally refined and extended.

Specifically, goal analysis consists of refining goals and eliciting new social

relationships among actors. They are conducted from the perspective of

single actors using AND/OR decomposition. In case an actor does not have

the capabilities to achieve his own objectives or assigned responsibilities by

himself, he has to delegate them to other actors making their achievement

47

2.3. WEB SERVICE AND BUSINESS PROCESS DESIGN

outside his direct control.

Various modelling activities contribute to the acquisition of the early

requirements model, namely [95, 144]:

Actor modelling aims at identifying actors and analysing their goals.

Functional dependency modelling aims at identifying actors depend-

ing on other actors for obtaining services, and actors which are able

to provide services.

Permission delegation modelling aims at identifying actors delegating

to other actors the permission on services.

Trust modelling aims at identifying actors trusting other actors for ser-

vices, and actors which own services.

The above constructs and modelling activities allow to capture the func-

tional, security and trust requirements in a number of diagrams, namely:

Actor diagram describes objectives, entitlements and capabilities of each

actor which are also analysed using goal refinement and contribution

analysis techniques from the perspective of the actor.

Functional dependency diagram identifies the dependencies among ac-

tors, in particular, to which actor has been delegated the execution of

which services by which actor.

Authorization diagram identifies the transfers of right among actors,

in particular, to which actor has been delegated the permission, on

which services and by which actor.

Trust diagram describes the expectations of actors about the behavior

and capabilities of other actors in terms of trust of permission and

trust of execution.

48

CHAPTER 2. STATE OF THE ART

The examples of the diagrams based on the loan origination case study

can be found in Section 3.1.1.

49

2.3. WEB SERVICE AND BUSINESS PROCESS DESIGN

50

Chapter 3

Secure Workflow Development From

Early Requirements

Requirements engineering is being increasingly adopted as a key step in

the software development process and therefore new challenges and pos-

sibilities emerge. There are many requirements engineering frameworks

for modelling and analysing security requirements, such as Secure Tro-

pos [95, 144], UMLsec [117], MisuseCase [178], AntiGoals [190]. Designing

of Web services and developing of Web service-based business processes

and workflows is one of the most thought challenging issues in requirements

engineering. There are several methodologies aiming at Web services, busi-

ness processes and workflows design [165, 126, 166]. We claim that there is

a gap between the requirements engineering methodologies and the actual

production of software and business processes based on a SOA. Business

processes and security issues are developed separately and often do not

follow the same strategy [159]

The question is “How to obtain a secure workflow from the early re-

quirements?”. We address the issue of secure workflows modelling based

on the analysis of early requirements, namely, Secure Tropos, by present-

ing a methodology that bridges the gap between early requirements and

secure workflows for Web services development. We introduce a specifica-

51

3.1. FROM EARLY REQUIREMENTS TO SECURE WORKFLOW

tion language for secure business processes, which is a dialect of BPEL for

the functional parts and which abstracts away low level implementation

details from WS-Security and WS-Federation specifications. At the end,

the deployment of a Secure BPEL process is described.

3.1 From Early Requirements to Secure Workflow

A secure business process is originated by the early requirements analysis

and then is used for the development of an appropriate workflow. The

process of deriving a secure workflow from early requirements is presented

in Figure 3.1.

Figure 3.1: Relations among early requirements, business process and workflow levels.

The process includes three phases, namely, (1) early requirements engi-

neering, (2) late requirements engineering and (3) detailed design. Detailed

design is just further refinement adding more low level implementation de-

tails as a workflow is an implementation of business process.

BPEL offers constructs for orchestrating Web services into repeatable

processes. WS-Trust is an extension of WS-Policy enabling the deploy-

ment and enforcement of “trust relationships” among partners. However,

there is no way to enforce delegation requirements across Web services,

52

CHAPTER 3. SECURE WORKFLOW DEVELOPMENT FROM EARLY
REQUIREMENTS

from the workflow execution language. We chose to leverage BPEL as this

language appears as the most natural way to orchestrate independent or-

ganizations such as the different banking and Credit Bureau organizations

considered in the example in Section 1.3. BPEL does not deal with autho-

rization, trust and delegation, where Secure Tropos does. For the purpose

of developing secure workflows based on the early requirements analysis,

we propose a refinement methodology and a language Secure BPEL that

enhances the BPEL language with constructs related to Secure Tropos,

allowing the workflow engine to automatically enforce the trust and dele-

gation requirements as introduced in the problem statement. Further we

describe the phases of the process of deriving a secure workflow from early

requirements in details.

3.1.1 Early Requirements Engineering

Early requirements engineering aims to analyse stakeholder interests, how

they might be addressed or compromised by system requirements and un-

derstand the organizational context within which the system-to-be will

eventually function [205, 35]. During the early requirements analysis phase,

the domain actors and their dependencies on other actors for goals to be

fulfilled are identifed. For early requirements elicitation, one need to reason

about trust relationships and delegation of authority.

We employ the Secure Tropos modelling framework to derive and anal-

yse both functional dependencies and security and trust requirements. The

modelling activities presented in Section 2.3 contribute to the acquisition

of the early requirements model, namely actor modelling, function depen-

dency modelling, permission delegation modelling and trust modelling. A

graphical representation, i.e, diagram, build according to these modelling

activities is given respectively through the actor, functional dependency,

authorization, and trust diagrams.

53

3.1. FROM EARLY REQUIREMENTS TO SECURE WORKFLOW

The early requirements model acquisition is depicted in Figure 3.2. The

process starts from user requirements, goes thought actor, functional de-

pendency, permission delegation and trust modelling and ends with actor,

functional dependency, authorization, and trust diagrams, i.e., the require-

ments model obtaining.

Figure 3.2: Early requirements model acquisition process.

Figure 3.3 and Figure 3.4 show the examples of the diagrams based

on the loan origination case study proposed as a running example in Sec-

tion 1.3. Actor and functional dependency diagram (see Figure 3.3) de-

scribes the actors (agents, depicted as circles with straight lines, and roles,

depicted as circles with curves); some of the bank manager’s goals, depicted

as ovals; goal refinement by AND decomposition, depicted with a goal re-

finement symbol marked with AND; and the delegation of execution depen-

dencies among bank manager, pre-processing and post-processing clerks,

depicted with two lines connected by a delegation of execution (De) graph-

ical symbol.

One of the variants of authorization and trust diagram is presented in

Figure 3.4. The diagram identifies the actors, that participate, i.e, the

BBB bank and bank manager, and involved services, i.e, the launch loan

origination process goal, in delegation of permission, trust on permission

and trust of execution dependencies, depicted with two lines connected

by a delegation of permission (Dp), trust on permission (Tp) and trust of

execution (Te) graphical symbols.

54

CHAPTER 3. SECURE WORKFLOW DEVELOPMENT FROM EARLY
REQUIREMENTS

Figure 3.3: Actors and functional dependencies.

3.1.2 Late Requirements Engineering

Late requirements engineering is concerned with a definition of the func-

tional and non-functional requirements of the system-to-be [54, 35]. During

the late requirements analysis phase, the system-to-be is introduced within

its operational environment. The requirements are to be detailed, modelled

and analysed in the presence of non-functional requirements.

In this thesis the proposed refinement methodology aims to obtain an

appropriate coarse grained business process and then workflow at the work-

flow level from early requirements. The obtained in the early requirements

engineering phase early requirements model is refined by diagrams as pre-

sented in Figure 3.5. The methodology takes the components of the dia-

grams and derives a secure business process constructs from them. Then,

the secure business process is described by the proposed Secure BPEL

language.

The relevant components of actor diagram are actors, goals and spawn-

ing of dependency relationships among actors. In functional dependency

55

3.1. FROM EARLY REQUIREMENTS TO SECURE WORKFLOW

Figure 3.4: Authorization and trust.

diagram, we consider dependencies among actors that delegate or are del-

egatees of execution of services. The components of authorization diagram

are transfers of right among actors that delegate or are delegatees of permis-

sion on services. In trust diagram we consider the expectations of actors

about the behavior and capabilities of other actors in terms of trust on

permission and trust on execution.

Secure BPEL language is an extension of Web Services Business Process

Execution Language (WS-BPEL v2.0) [9] that allows for secure business

processes specification. The Secure BPEL was firstly introduced in [81, 82]

and then described in details together with the deployment of a Secure

BPEL process in [176].

The proposed language is an extension of standard business process

specification language. Hence, if a business process designer is familiar

with WS-BPEL processes, he simply needs to understand the additional

constructs introduced by Secure BPEL. We suffix each new or refined con-

struct with the keyword “S” to clearly distinguish them. At the workflow

level, the Secure BPEL process will then be refined into a combination of

56

CHAPTER 3. SECURE WORKFLOW DEVELOPMENT FROM EARLY
REQUIREMENTS

Figure 3.5: Late requirements engineering.

standard BPEL and WS-Security policy for process execution.

Presenting the proposed methodology phases, we provide details of the

Secure BPEL constructs and explain the context in which the language is

used.

Figure 3.6 presents two steps of actor diagram refinement. In first step,

partners are designed based on the actors identified in the early require-

ments engineering stage. We assume that each actor has a single root

goal that can be decomposed by AND/OR goal decomposition. Each

AND/OR goal decomposition lead to operationalization phase. The second

step considers partner and orchestration specification by the Secure BPEL

language. Operationalization is completed with additional information to

AND/OR goal decomposition on choice of sequential or parallel operation.

Figure 3.6: Actor diagram refinement.

The other diagrams refinement is done in the similar way. The idea

is that in the first step dependencies (for functional dependency and au-

57

3.1. FROM EARLY REQUIREMENTS TO SECURE WORKFLOW

thorization diagrams) or trust (for trust diagram) and choreography are

designed and in second step choreography is specified. Here we consider

that the level of goals is the level of services.

The table in Figure 3.7 presents the diagrams to Secure BPEL language

notions refinement. Considering actor diagram, the notion of actor is re-

fined into partner in Secure BPEL, a root goal is refined into business

process while AND/OR goal decomposition with delegation are refined

into orchestration. The notions of delegation of execution and delegation

of permission presented in dependency and authorization diagrams are re-

fined into choreography of services and authorization respectively. As for

trust diagram, trust on execution and permission are refined into choreog-

raphy of attestation that is further refined into attestation of integrity for

the notion of trust on execution and attestation of reporting for trust on

permission.

Figure 3.7: Tropos diagrams to Secure BPEL.

58

CHAPTER 3. SECURE WORKFLOW DEVELOPMENT FROM EARLY
REQUIREMENTS

Refining Actor Diagram

Actors identification consists in identifying all actors, i.e., agents and roles,

involved in a business process and all roles played by all the agents iden-

tified. The concept of actors at the business process level is refined as

partners and specified in Secure BPEL by the <partnerS> construct (see

Figure 3.8).

<partnersS>

<partnerS nameS = "agentName">+

roles played by agent

</partnerS>

</partnersS>

Figure 3.8: Actor identification.

To ease the language specification we provide a slight extension to

the WS-BPEL v2.0 standard by retaining the <partner> construct from

the Business Process Execution Language for Web Services (WS-BPEL

v1.1) [12]. While such extension is not necessary for actually writing down

the workflow solution (because each partner role is specified on every in-

dividual invocation), it is extremely convenient at the requirements level

because it offers a compact view of who is doing what. Further, at this

stage, we also need to identify which agent has to run which process and

hence the addition of the nameS attribute.

Each partners interaction at the business process level is specified by

the <partnerLinkS> construct1 and specifying all roles played by a part-

ner (see Figure 3.9). The role of the partner itself is indicated by the at-

tribute myRole and the role of the companion is indicated by the attribute

partnerRole within the <partnerLinkS> construct. When there is only
1As we work at a high level of abstraction, at this point some workflow details are not considered.

Most notably, we do not specify partner link types that characterizes the conversational relationship
between two partners by defining the roles played by each of the partners in the conversation.

59

3.1. FROM EARLY REQUIREMENTS TO SECURE WORKFLOW

one role, one of these attributes is omitted as appropriate. The partner is

identified by the partnerNameS attribute. Each partnerLinkS is named

and this name is used for all service interactions via that partnerLinkS.

<partnerLinksS>

<partnerLinkS name="partnerLinkName"

myRole = "myRoleName"?

partnerNameS = "agentName"?

partnerRole = "partnerRoleName"?>+

</partnerLinkS>

</partnerLinksS>

Figure 3.9: Actor description.

Example 1 According to the first scene of the loan origination case study

presented in Section 1.3, in the actor identification step, two agents (speci-

fied by the <partnersS> construct) are identified, namely, John and Peter

(the nameS attribute of the <partnerS> construct). For the partners inter-

action at the business process level (the <partnerLinkS> construct), the

agents roles are described (the myRole / partnerRole attribute within the

<partnerLinkS> construct). Partner John has a role customer. John is

a partner of Peter whose role is a pre-processing clerk. In such manner it

is possible to identify and describe all actors presented in the case study.

The concept of actor is specified in the Secure Tropos metamodel [183]

as an agent can play several roles. In Secure BPEL metamodel [81] the

concept of partner and role are specified. One secure business process can

be composed of several partners. While to each partner can be associated

one or more partner links that specify all roles played by a partner. The

role of a partner itself is specified by the myRole attribute and the role of

the companion is indicated by the partnerRole attribute.

60

CHAPTER 3. SECURE WORKFLOW DEVELOPMENT FROM EARLY
REQUIREMENTS

Structured Activities

Structured activities is a basis of orchestration specification and consist

of a sequential/parallel composition and branching statement. The notion

of sequential and parallel composition corresponds to a refinement of the

concept of AND goal decomposition. Branching statement is a refinement

of the concept of OR goal decomposition.

Sequential composition is specified by the <sequence> construct. The

construct defines a collection of activities to be performed sequentially,

in the lexical order in which they appear within the construct. Parallel

composition is specified by the <flow> construct. The construct defines

one or more activities to be performed concurrently. While branching

statement is specified by the <if> construct that is used to select exactly

one activity for execution from a set of choices.

Example 2 Following the loan origination case study presented in Sec-

tion 1.3, all the main activities are sequential. The following activities:

customer identification, check rating, calculation of the price and signature

of the contract are done in a sequential way. At the business process level,

the process defining these activities in the sequential order, is implemented

by the <sequence> construct.

In the second scene of the case study presented in Section 1.3, the process

of checking the credit worthiness is divided in two parallel subprocesses: the

external part (provided by Credit Bureau) and the internal one (based on

internal scoring). Nevertheless the internal one is stopped when the results

coming from the Credit Bureau are negative. At the business process level,

the process is implemented by the <flow> construct.

61

3.1. FROM EARLY REQUIREMENTS TO SECURE WORKFLOW

Refining Functional Dependency Diagram

Dependencies derived from a functional dependency diagram are notably

delegation of execution. The refinement process starts with abstract goals

and ends up with concrete atomic activities at the business process level,

while those activities can be further refined at the workflow level. Here we

consider that the level of goals is the level of services. Atomic activities is

a basis of choreography specification and consist of the service invocation

activities and the response to a service invocation activities.

Considering one particular dependency, invocation of a service by a

depender is specified by the <invoke> construct (see Figure 3.10).

<invoke

<partnerLink = "partnerLinkName"

operation = "operationName">

</invoke>

Figure 3.10: Service invocation.

Responding to a service invocation by a dependee is specified by the

<pick> construct (see Figure 3.11). The construct allows to block and

wait for a suitable message to arrive, i.e., a message of service invocation.

When the message arrives, the associated activity, i.e., service execution,

is performed and the pick completes.

<pick

<on message partnerLink = "agentName"

execute service

</onMessage>

</pick>

Figure 3.11: Response to service invocation.

The concept of delegation of execution at the business process level is

62

CHAPTER 3. SECURE WORKFLOW DEVELOPMENT FROM EARLY
REQUIREMENTS

refined as a process that consists of invocation of a goal (service), from one

partner, i.e., a depender and other partner’s, i.e, dependee, acceptance of

the delegation and execution of the goal.

Example 3 The concept of delegation of execution is seen in some scenes

of the loan origination case study presented in Section 1.3. In particular,

in the first scene, John as a bank customer delegates the function of pro-

cessing the loan origination to the bank. Then the bank delegates the iden-

tification of the customer to Peter, the pre-processing clerk, and delegates

the managing of the loan origination process to Maria, the post-processing

clerk. In the second scene, Maria delegates the credit worthiness check, in

particular, external rating analysing, to the Credit Bureau. At the busi-

ness process level the delegation process of credit worthiness check to the

Credit Bureau is a follows. At the delegator side, the partner Maria invokes

the operation “credit worthiness check” (by the <invoke> construct) from

the partner Credit Bureau. While at the delegatee side, the partner Credit

Bureau, the delegatee responds to a service invocation (see the <pick> con-

struct) accepting the message of service invocation and executes the “credit

worthiness check” goal.

Refining Authorization and Trust Diagrams

Interactions with partners can be more complicated than delegation of

execution represented by the atomic activities. There is a set of activities

to represent the Secure Tropos concepts of delegation of permission, trust

on execution and trust on permission at the business process level. This set

includes request/response for authentication token, authorization token,

attestation of integrity and attestation of reporting.

The concept of attestation characterizes the process of vouching for the

accuracy of information [187]. In this work we use two types of attestation,

63

3.1. FROM EARLY REQUIREMENTS TO SECURE WORKFLOW

i.e, attestation of integrity and attestation of reporting. Attestation of

integrity provides proof that an actor can be trusted to report integrity

and performed using the set or subset of the credentials associated with

the actor. Attestation of reporting is the process of attesting to the contents

of integrity reporting.

The <RequestSecurityServiceS> construct is used to request a token

for the purpose of authentication, authorization, attestation of integrity

and attestation of reporting. The syntax for the construct is presented on

Figure 3.12.

<requestSecurityServiceS>

<typeS>

typeS="Authentication|Authorization|

Attestation-Integrity|

Attestation-Reporting"

</typeS>

<purposeS>

goalName+

</purposeS>

<participantsS>+

<participantS nameS = "agentName">

<participantS>

</participantsS>

<onBehalfOfS>... </onBehalfOfS>

<usageS> ... </usageS>

</requestSecurityServiceS>

Figure 3.12: Request security service.

The following describes the attributes and elements listed above:

/requestSecurityServiceS/typeS This element describes the type of

security service requested, i.e., authentication, authorization, attes-

tation of integrity and attestation of reporting. That is, the type of

64

CHAPTER 3. SECURE WORKFLOW DEVELOPMENT FROM EARLY
REQUIREMENTS

the service that will be returned by the

<requestSecurityServiceResponseS> construct.

/requestSecurityServiceS/purposeS This element specifies the scope

for which the security service is desired, i.e., the goal to which the

service applies.

/requestSecurityServiceS/participantsS/ This element specifies the

participants sharing the security service. This attribute is used by the

requestor to clarify the actual parties involved.

/requestSecurityServiceS/participantsS/participantS This element

specifies participant (or multiple participants) that play a role in the

use of the service or who are allowed to use the service.

/requestSecurityServiceS/onBehalfOfS This element indicates that

the requestor is making the request on behalf of another.

/requestSecurityServiceS/usageS This element specifies a policy (as

defined in WS-Policy) that indicates desired settings for the requested

service such as <delegatable> true|false </delegatable>.

The <RequestSecurityServiceResponseS> construct is used to return

a security service or response to a security service request. It should

be noted that any type of parameter specified as input to a service re-

quest may be present on response in order to specify the exact parame-

ters used by the issuer. The syntax for this construct is similar to the

one presented on Figure 3.12. The only difference is in the additional

<requestedSecurityServiceS> element that is used to return the re-

quested security service.

Example 4 As we shown in the example on delegation on execution, the

concept of delegation of execution is seen in some scenes of the loan origi-

nation case study presented in Section 1.3. This example aims to show the

65

3.1. FROM EARLY REQUIREMENTS TO SECURE WORKFLOW

concept of delegation of permission by using the first scene of the case

study. The bank delegates the identification of the customer to Maria

the pre-processing clerk. At the business process level, from the delega-

tor side, the type of security services requested is authorization (specified

with the <typeS> element), the purpose is “customer identification” (by the

<purpose> element) and the participant is Peter (by the <participant>

element), see Figure 3.12. From the delegatee side, the

<requestSecurityServiceResponseS> construct is used to respond to

the security service request with the purpose (by the <purpose> element)

“customer identification” and the participant is Maria (by the

<participant> element).

Following the second scene of the case study, the post processing clerk

trusts the Credit Bureau to give trustworthy external rating, i.e, trust on

permission concept. At the business process level, from the truster side,

the type of security service requested is authentication (specified with the

<typeS> element) with the goal check external rating (with the <purpose>

element) and participant Credit Bureau (with <participant>). From the

trustee side, the

<requestSecurityServiceResponseS> construct is used to answer to the

security service request with the <purpose> check external rating and the

<participant> post-processing clerk. After this step, from the truster

side, the type of security service is attestation of integrity (specified with the

<typeS> element) with the goal check external rating (with the <purpose>

element) and participant Credit Bureau (with <participant>). From the

trustee side, the <requestSecurityServiceResponseS> is used to answer

to the security service request with the <purpose> check external rating and

the <participant> post-processing. The concept of trust on execution is

considered in the second scene of the case study. At the business process

level, the process is very similar to the one presented above for trust on

66

CHAPTER 3. SECURE WORKFLOW DEVELOPMENT FROM EARLY
REQUIREMENTS

permission. The only one difference is the type of the security service

involved, which is attestation of reporting in the second step.

Secure BPEL metamodel where the concept of activity is specified is

presented in [81]. Activity is composed of partner activity and structured

activity. Partner activity, in its turn, consists of the invoke, pick, request

security serviceS, and request security service responseS activ-

ities. While structured activity is composed of the sequence, flow, and

if activities.

3.2 Deploying a Secure BPEL Process

The example presented in Section 1.3 is about a classical loan origination

process, where each group represents a different organization, and where

each swimlane represents a different responsible authority. We have seen

that Secure BPEL offers a way to enforce the least privilege principle,

namely with respect to delegation of permissions, from the design time.

At process start, no user is given any right. The rights are being granted

according to the state of the Secure BPEL workflow and revoked upon task

or process termination or failure. WS-SecurityPolicy and/or XACML offer

means to enforce access control. Secure BPEL offers means to delegate

authorization according to workflow instances, that is, in a certain context

defined by the workflow history. The delegation of permission is imple-

mented by allowing Secure BPEL processes to alter the security policy on

the fly (or via a similar mechanism), by offering specific authorizations in

the context of the workflow execution - thus restricting the rights of the

services to a minimum.

The problems coming with the deployment of cross-organizational pro-

cesses, such as the one proposed in the example, are being addressed in

67

3.2. DEPLOYING A SECURE BPEL PROCESS

[198]. The IST-FP6-R4eGov project2, which is the project in which the

previous reference was written, chose to deploy these distributed processes

using BPEL. To secure the execution of the processes, the evaluation of

WS-Security and WS-Conversation has been presented by the project. In

this thesis work, we propose to further leverage this approach by tailoring

the policy files of each involved organization according to the Secure BPEL

process.

The late requirement engineering phase is about generating correspond-

ing BPEL files, realizing the process as described in the early requirements

model, where the delegatee’s process matches the delegator’s one in terms

of BPEL service invocation/message pick constructs.

These process chunks are then to be deployed at each organization level.

It is assumed that each of these organizations run their services under

WS-Trust. The deployment itself corresponds to a final phase, where the

Secure BPEL file of the considered organization is refined into two separate

artifacts. One of them is a standard BPEL file, to be deployed on to the

BPEL engine of the organization. The second one is a policy file, to be

used as input for the enforcement of the WS-Security protocol.

Let’s now illustrate the execution with our example, across organiza-

tions as well as inside one organization (see Figure 3.13). The natural

sequence of actions is the following: a Customer makes a request to a

Clerk organization. The latter will perform internal tasks and will in turn

ask the Credit Bureau for information. In this example, there is a possible

threat that the Clerk organization asks the Credit Bureau about sensitive

information from any customer he seeks, where the customer would have

made no request for a loan in the first place.

With the distributed Secure BPEL paradigm, by default the Credit Bu-

2R4eGov (Research for eGovernment) is a research project supported by the European Commission.
R4eGov helps tackle one of the major challenges facing eGovernment in Europe today - the ever increasing
mobility of people and transactions across and within national boundaries, http://www.r4egov.eu.

68

CHAPTER 3. SECURE WORKFLOW DEVELOPMENT FROM EARLY
REQUIREMENTS

Figure 3.13: Secure BPEL deployment.

reau forbids any request for credit worthiness check. When the Customer

instantiates his BPEL process, the corresponding workflow task will invoke

the Pre-Processing Clerk (1). At the same time a message will carry over

information to the partners of the collaboration that the Customer requests

a loan, and that this loan request will be in the end delegated to a specific

Post-Processing Clerk (2). According to this information, the Credit Bu-

reau of the collaboration will edit its WS-Security policy in order to accept

the request for wealthiness check from the Post-Processing Clerk (3). The

details about information spreading (2) is not covered in this work and

should be further researched on; it was inspired from the administrative

communication channel presented in [198] and is considered at the time

of writing as a good candidate for such dissemination.

69

3.3. CONCLUDING REMARKS

For what concerns intra-organizational aspects, the same concept can be

applied inside the Clerk organization, where separation of duties must be

enforced between the Pre-Processing Clerk and the Post-Processing Clerk.

As Secure Tropos permits the explicitation of SoD properties3, the derived

Secure BPEL process will then automatically enforce the security prop-

erty at runtime. The policy aspects in this case are enforced locally, thus

complementing the cross-organizational security aspects of the designed

process. Actual enforcement of SoD requires the security policy to rely on

to an extra component logging and spreading some of the workflow history.

3.3 Concluding Remarks

One of the most thought challenging issues in requirements engineering is

that of designing Web services and developing of business processes and

workflows for Web services. The research on Web services design is well

under way, but the existing design methodologies for Web services do not

address the issue of developing secure Web services, secure business pro-

cesses and secure workflows.

The main contribution of the current chapter is to bridge the gap be-

tween early requirements analysis and secure workflows for Web services

development. In particular, we have proposed a methodology that allows a

designer of a business process to derive the skeleton of the concrete secure

business processes based on the early requirements. Furthermore, the se-

cure business processes are refined in order to obtain the appropriate secure

workflows that can be described by the proposed specification language for

secure requirements called Secure BPEL.

By executing Secure BPEL processes through a collaborative workflow

3See Separation of Duties pattern defined in the Serenity Project: http://www.serenity-
forum.org/Work-package-1-3.html

70

CHAPTER 3. SECURE WORKFLOW DEVELOPMENT FROM EARLY
REQUIREMENTS

runtime architecture, we are able to further restrict authorization of exe-

cution down to the least privilege principle at a cross-organizational per-

spective, as well as to unify inter and intra-organizational security aspects

in a single process design. We achieved this result by introducing, via the

design of a Secure BPEL process, a context notifications to the request

at hand, where the security properties are defined at design time in the

formal model of Tropos.

71

3.3. CONCLUDING REMARKS

72

Chapter 4

Semantics and Extensions of

WS-Agreement

When having repeated interactions with a service provider, a service con-

sumer might desire guarantees on the delivery of the service. These guar-

antees involve both functional and non-functional properties of the offered

service over a number of invocations. When the guarantee terms are ex-

plicitly defined in a document, we talk about a service level agreement.

WS-Agreement is an an industry driven emerging extensible markup

based language and protocol for advertising the capabilities of providers,

creating agreements based on initial offers, and for monitoring agreement

compliance at run-time in the context of Web services. The motivations

for the design of WS-Agreement stem out of QoS concerns, especially in

the context of load balancing heavy loads on a grid of Web service enabled

hosts [74].

Though, WS-Agreement only specifies the XML syntax and the in-

tended meaning of each tag, which naturally leads to posing the question

of “What’s in an Agreement?” We answer this ques mtion by providing a

formal definition of WS-Agreement by resorting to finite state automata,

we provide a set of formal rules that tie together agreement terms and the

life-cycle of an agreement. From the analysis, some shortcomings of the

73

4.1. WS-AGREEMENT

protocol become evident. Most notably, the protocol does not contemplate

the negotiation of the agreement itself, furthermore, there is no checking of

how close a term is to being violated and, even more, breaking one single

term of the agreement results in terminating the whole agreement, while

a more graceful degradation is desirable. To overcome these shortcomings,

we propose an extension of WS-Agreement for which we provide appropri-

ate semantics, that allows (i) early warnings before agreement violation,

and (ii) negotiation and possibly re-negotiation of running agreements.

Furthermore, we compare service level agreements and service licenses.

Although an agreement is rather different from a license, they both regulate

the activities of collaboration services. A basic difference is the fact that

an agreement involves at least two parties, while a license is a unilateral

statement. Nevertheless, for a license to be enacted, there must be at least

a consumer of the service: this is the starting motivation to relate SLA

and service licenses. We apply the proposed analysis to service licenses

and propose the phases of a service license lice cycle.

4.1 WS-Agreement

In order to be successful, Web service providers have to offer and meet

guarantees related to the services they develop. Taking into account that

a guarantee depends on actual resource usage, the service consumer must

request state-dependent guarantees from the service provider. Addition-

ally, the guarantees on service quality must be monitored and service con-

sumers must be notified in case of failure of meeting the guarantees. An

agreement between a service consumer and a service provider specifies the

associated guarantees. The agreement can be formally specified using the

WS-Agreement Specification [13].

A WS-Agreement is an XML-based document containing descriptions of

74

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

the functional and non-functional properties of a service oriented applica-

tion. It consists of two main components that are the agreement Context

and the agreement Terms (see Figure 4.1). The agreement Context includes

the description of the parties involved in the agreement process, and vari-

ous metadata about the agreement. One of the most relevant components

is the duration of the agreement, that is, the time interval during which

the agreement is valid.

Figure 4.1: WS-Agreement structure.

Functional and non-functional requirements are specified in the Terms

section that is divided into Service Description Terms and Guarantee Terms.

The first provides information to define the services functionalities that will

be delivered under the agreement. An agreement may contain any number

of Service Description Terms. An agreement can refer to multiple compo-

nents of functionalities within one service, and can refer to several services.

Guarantee Terms define an assurance on service quality associated with

the service described by the Service Description Terms. An agreement

may contain zero or more Guarantee Terms. A Guarantee Term consists

75

4.1. WS-AGREEMENT

of several parts, namely:

/GuaranteeTerm/ServiceScope is the list of service names a guarantee

applies to;

/GuaranteeTerm/QualifyingCondition is an optional condition that

expresses a precondition under which a guarantee holds;

/GuaranteeTerm/ServiceLevelObjective is a condition that must be

met to satisfy the guarantee;

/GuaranteeTerm/BusinessValueList is a list of business value ele-

ments associated with a service level objective.

In [57], a definition for guarantee terms in WS-Agreement is specified

and a mechanisms for defining guarantees is provided. An agreement cre-

ation process starts when an agreement initiator sends an agreement tem-

plate to the consumer. The structure of the template is the same as that

of an agreement, but an agreement template may also contain a Creation

Constraint section, i.e., a section with constraints on possible values of

terms for creating an agreement. In [15], enabling of customizations of

terms and attributes for the agreement creation is proposed. After the

consumer completes in the template, they send it to the initiator as an

offer. The initiator decides to accept or reject the offer depending on the

availability of resource, the service cost, and other requirements monitored

by the service provider. The reply of the initiator is a confirmation or

a rejection. A draft of the Web services Agreement Negotiation Specifi-

cation can be found in [14]. WS-AgreementNegotiation is a protocol for

negotiation of agreements based on the WS-Agremeent specification.

An agreement life-cycle includes the negotiation, implementation, ter-

mination and monitoring of agreement states. Figure 4.2 shows a repre-

sentation of the life-cycle. When an agreement is implemented, it does

76

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

Figure 4.2: The life-cycle of a WS-Agreement.

not imply that it is monitored. It remains in the not observed state until

services start their execution. The semantics of the states is as follows:

• not observed: the agreement is created and is in execution, but no

service involved in the agreement is running; and

• observed: at least one service of the agreement is running;

• finished: the agreement terminates either successfully or not.

4.2 What’s in an Agreement?

The WS-Agreement specification provides XML syntax and a textual ex-

planation of what the various XML tags mean and how they should be in-

terpreted. Thank to the syntax, it is possible to prepare machine readable

agreements, but a formal notion of agreement is missing. In this section,

we formalize the notion of agreement by defining its main components.

Definition 1 (Term) A term t is a couple (s, g) with s ∈ S and g ∈ G,

where S is a set of n services and G is a set of m guarantees. T ⊆ S ×G

is the set of the terms t.

In words, a term involves the relationship between a service s and a

guarantee g, not simply a specific tag of the agreement structure. If the

service s appears in the list of services, which the guarantee g is applied

to, it means that the couple (s, g) is a term. The number of terms varies

77

4.2. WHAT’S IN AN AGREEMENT?

between 0 and n ·m, where 0 means that there is no association between

services and guarantees, and n ·m indicates the case where each guarantee

is associated with all services.

Definition 2 (Agreement) An agreement A is a tuple 〈S, G, T 〉, where

S is a set of n services, G is a set of m guarantees, and T is the set of the

terms t.

In the following analysis, it is more convenient to consider the agreement

as a set of Terms rather than a set of related services and guarantees. From

the definition of WS-Agreement, we say that an agreement can be in one

and only one of three states: not observed, observed and finished.

Definition 3 (External state) The external state Aes of an agreement

A is an element of the set {not observed, observed or finished}.

We call the above state external, as it is the observable one. We also

define an internal state of an agreement, which captures the state of the

individual terms.

Definition 4 (Internal state) The internal state Ais of an agreement A

is a sequence of terms’ states ts1, . . . , tsp of maximum size n · m, where

tsi = (ssj, gsk) represents the state of gk guarantee with respect to the state

of the sj service. Service and guarantee states range over the following

sets, respectively:

ssj ∈{not ready, ready, running, finished}, and

gsk ∈{not determined, fulfilled, violated}.

From the definition of Term, we see that services and guarantees are

related and we can define the internal state of an agreement, but it is

necessary to distinguish between terms that have the same service and

terms that have the same guarantee.

78

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

Proceeding in our goal of answering the question of what is in an agree-

ment, we define the relationship between the internal and external state

of an agreement A. First, we note that not all state combinations make

sense. For instance, it has no meaning to say that a guarantee is violated,

when a service is in a not ready state. The only admissible combinations

are the following ones:

(1) (not ready, not determined)

(2) (ready, not determined)

(3) (running, fulfilled)

(4) (running, violated)

(5) (finished, fulfilled)

(6) (finished, violated)

In theory, there are 63 possible combinations of states in which terms can

be. That is,
∑6

i=1




6

i


 all terms could be in state (1), or in state (2),. . . or

in state (6); there could be terms in states (1) and (2), (1) and (3), and

so on. But again, considering the definition of WS-Agreement in [13],

one concludes that not all 63 combinations make sense. Furthermore, it

is possible to extract the possible evolutions of these aggregated internal

states.

When an agreement is created its external state is not observed, while

all services are not ready and all guarantees are not determined, i.e.,

state (1). In the next stage some services will be ready while others will

still be not ready, i.e., there will be terms in state (1) and (2). In this

case, the external state is also not observed. Proceeding in this analysis,

one can conclude that there are 8 situations in which terms can be. We

summarize these in the table in Figure 4.3. In the table, we also present

the relation between the internal states and the external states, and the set

of transitions to go from one set of states to another. The latter transitions

79

4.2. WHAT’S IN AN AGREEMENT?

terms’ state agreement’s state transitions

A (1) not observed B

B (1)(2) not observed C E

C (1)(2)(3) observed D E F G

D (1)(2)(3)(5) observed F G

E (1)(2)(4) observed F H

F (1)(2)(3)(4)(5) observed H

G (5) finished

H (1)(2)(3)(4)(5)(6) finished

Figure 4.3: Transition table for the relation between internal and external states.

are best viewed as an automaton.

Referring to Figure 4.4, at the beginning all the terms are tied to services

which are not running (A). At some point, some services will be ready to

start (B). Services which are ready will start execution. This may result in

an immediate violation of a term (E), or in executions fulfilling the term

(C). If the latter is the case, more and more services will execute. This

may result in violations, which bring us to states (E) or (F), or in no

violation. Some services may successfully terminate execution, case (D). If

all services terminate with no violation, we end successfully in state (G).

If any service has a violation at any time, we end in state (E) or (F) and

from there, unavoidably, in state (H), which is a failure state.

Figure 4.4: Automaton representation of the table in Figure 4.3

80

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

4.3 Extension of WS-Agreement

From the semantics and formal analysis presented in Section 4.2, inspecting

the automaton provided, we note that if the agreement arrives into the

states (E) or (F) there is a non recoverable failure, and consequently an

agreement termination. Even if one single term is violated, the whole

agreement is terminated. Furthermore, when an agreement is running

there is no consideration on how the guarantee terms are fulfilled. Our

goal is to provide an extension of WS-Agreement and of its semantics in

order to make agreements more long-lived, and robust to individual term

violations.

We propose to extend WS-Agreement. On the one hand, one can

(i) anticipate violations; on the other hand, the (ii) negotiation of

the SLA should be part of its life-cycle. In particular, there is an (ii.a) ini-

tial negotiation before the execution of the services under SLA, and a

(ii.b) run-time re-negotiation which occurs in case of a recoverable vi-

olation of a term or in case the monitoring system is anticipating a possible

violation of a term. (i) In WS-Agreement guarantees of a running service

are either fulfilled or violated. Nothing is said about how a guarantee is

fulfilled. Is the guarantee close or far from being violated? Is there a trend

bringing the guarantee close to its violation? We propose to introduce a

new state for the agreement in which a warning has been issued due to the

fact that one or more guarantees are likely to be violated in the near fu-

ture. By detecting possible violations, one may intervene by modifying the

run-time conditions or might re-negotiate the guarantees which are close

to being violated. (ii) The negotiating phase occurs in two moments of

the life-cycle of the agreement. In the initial phase the service provider

and consumer, must agree on what the conditions of the agreement are.

The WS-Agreement specification does not focus on parties involved in the

81

4.3. EXTENSION OF WS-AGREEMENT

agreement process interactions leading to negotiation of QoS parameters,

at most one can use pre-compiled templates. Furthermore, during the ex-

ecution of the services under agreement, re-negotiation may occur when

conditions vary or terms are violated or could be violated in the near fu-

ture. The WS-Agreement specification does not contemplate changing an

agreement at run-time, i.e., re-negotiation. If a guarantee is not fulfilled

because of resource overload or faults in assigning available resources to

consumers, the agreement must terminate. For maintaining the service

and related supplied guarantees, it is necessary to negotiate the QoS again

and create another agreement. This approach wastes resources and com-

putational time, and increases network traffic. The goal of negotiation

terms applying is to have the chance to modify the agreement rather than

respecting the original agreement. Applying the negotiation terms means

that the services included in the agreement will be performed according to

the new guarantees.

4.3.1 Life-Cycle and Semantics for the Extended Agreement

To obtain the desired extensions, we expand the set of states in which an

agreement and a guarantee term can be and thus update the transition

system. More precisely, the definition of an agreement does not change

with respect to Definition 2, the difference lies in the fact that the set of

terms T is now extended with special negotiation terms. These terms are

defined as in Definition 1, but have a different role, i.e., they specify new

conditions that enable modification of guarantees at run-time.

To account for the new type of terms, we need to extend the definition of

external and internal state of an agreement. The external states of an ex-

tended agreement are enriched by the negotiated state, the checked state,

the warned state, the re-negotiated state, and the denied state. We say

that an agreement can be in one of nine states. not observed, observed

82

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

and finished have the same meaning as in WS-Agreement, Figure 4.5.

An agreement is in the negotiated state while the negotiation process.

From the negotiated state the agreement can go to the not observed

state if the agreement is accepted by all the parties or to come abruptly to

an end if it is rejected. An agreement is in the re-negotiated state while

the re-negotiation process. From the re-negotiated state the agreement

goes to observed. An agreement is in state checked when the monitoring

system is checking its services and guarantees. From the checked state

the agreement can go to five different states: to finished if the agreement

finishes its life-cycle; to denied if the agreement is violated and no nego-

tiation terms can be applied, the agreement must terminate; to warned if

the monitoring system issues at least one warning for at least one term;

back to observed if the agreement is fulfilled; to re-negotiated if the

agreement is fulfilled or violated and negotiation terms can be applied.

Definition 5 (Extended External state) The extended agreement ex-

ternal state Axes of an agreement A is an element of the set {negotiated,
not observed, observed, warned, checked, re-negotiated, denied or

finished}.

The transitions between states are illustrated by the automaton in Fig-

ure 4.5, which is an extension of the one presented in Figure 4.2. The

automaton represents the new evolution of an agreement where a guaran-

tee are negotiated and can be modified during the processing of a service

or a warning can be raised. When a guarantee is violated we have two sit-

uations: the first presents a recoverable violation which implies the chance

to apply negotiation terms and so the agreement is in the re-negotiated

state, the second presents a non recoverable violation which implies that

there is no suitable negotiation term for the current violated guarantee and

so the agreement must terminate. Otherwise, if a warning is raised, this

83

4.3. EXTENSION OF WS-AGREEMENT

can be ignored or the agreement can go in the re-negotiated state. Also,

when a guarantee is fulfilled, it is possible to change the current agreement

configuration, applying a negotiation term that changes the QoS.

Figure 4.5: The life-cycle of the WS-Agreement extension.

The internal state definition for the extended agreement is similar to

the internal state definition stated before, but a new state for the services

is added and three for the guarantees. A new state is stopped and is

needed to define a state of a service where its associated guarantee is un-

recoverable violated and the service must terminate or the guarantee can

be re-negotiated. It is an intermediate state. A guarantee is negotiated

while the negotiation or re-negotiation process. A guarantee can also be

warned if it is close to being violated in a given time instant. Other state

for a guarantee is the non recoverable violated state in which a guar-

antee is violated and it has no related negotiation term for the current

violation.

Definition 6 (Extended Internal state) The extended internal state

Axis of an agreement A is a sequence of terms’ states ts1, . . . , tsp of maxi-

mum size n ·m, where tsi = (ssj, gsk) represents the state of gk guarantee

with respect to the sj service. Service and guarantee states range over the

84

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

following sets, respectively:

ssj ∈{not ready, ready, running, stopped, finished}, and

gsk ∈{not determined, negotiated, fulfilled, warned, violated,

non recoverably violated}.

As for Definition 4, one notes that not all the state combinations make

sense. The only possible ones are the combinations itemized in Section 4.2

plus the following six:

(7) (ready, negotiated)

(8) (stopped, negotiated)

(9) (stopped, fulfilled)

(10) (stopped, violated)

(11) (stopped, non recoverably violated)

(12) (running, warned)

Service is ready and guarantee is negotiated, i.e., state combination (7),

while initial negotiation process. The state combinations (8), (9), (10) and

(11) determine the states when a service is stopped because a guarantee is

violated or is being re-negotiated. In state (9) a guarantee is fulfilled and we

try to improve it applying a negotiation term. In (10) and (11) a guarantee

is currently violated. In (10) the service is stopped and the guarantee is

violated but it is possible to apply a negotiation term and to preserve the

agreement again. In (11), instead, the guarantee is irrecoverably violated

and the agreement must terminate, there are not any suitable negotiation

term. State (12) represents the fact that a warning has been raised for a

running service guarantee.

An appropriate XML syntax to implement the proposed extension is

provided in [141].

Example 5 Referring to the loan origination case study introduced in Sec-

tion 1.3, we can see how the extended version of WS-Agreement behaves.

85

4.3. EXTENSION OF WS-AGREEMENT

We assume that the BBB bank and the Credit Bureau establish an agree-

ment in order to define interactions and the qualities of the service provided.

In the agreement they specify some service terms and guarantee terms for

credit worthiness check operations. Following the operation and the in-

teraction’s model stated in the WS-Agreement specification, consumer and

provider negotiate resources and qualities of the services.

For instance, besides the agreement about services and guarantees, with

the extension it is possible to add some negotiation terms that give the

freedom to change the agreement at runtime.

The main and exclusive service defined in the agreement is the execution

of credit worthiness check operation. Associated with this service we specify

two variables that are bandwidth and memory, which can be checked on the

service provider side by a monitoring system. Depending on this variable, it

is simple to identify some service’s properties like the number of operation’s

execution per minute, the number of request per minute and the service cost.

We specify the metric of the variable and in the section dedicated to the

guarantee statement we assign ranges of values that should be met to fulfill

the current agreement.

Let us consider an agreement example adapting the WS-Agreement struc-

ture to our example.

<wsrp:GetResourcePropertyResponse>1

<wsag:Name>AgreementExample</wsag:Name>2

<wsag:Context/>3

<wsag:Terms>4

<wsag:All>5

....6

<wsag:All>7

<wsag:ServiceDescriptionTerm wsag:Name="bandWidth"8

wsag:ServiceName="Operation">9

86

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

</wsag:ServiceDescriptionTerm>10

<wsag:ServiceDescriptionTerm wsag:Name="memorySize"11

wsag:ServiceName="Operation">12

</wsag:ServiceDescriptionTerm>13

</wsag:All>14

15

<wsag:ServiceProperties wsag:ServiceName="Operation">16

<wsag:VariableSet>17

<wsag:Variable wsag:Name="requestMinute"18

wsag:Metric="time:duration">19

<wsag:Location>20

...21

</wsag:Location>22

</wsag:Variable>23

<wsag:Variable wsag:Name="numberOfOperationMin"24

wsag:Metric="time:duration">25

<wsag:Location>26

...27

</wsag:Location>28

</wsag:Variable>29

<wsag:Variable wsag:Name="serviceCost"30

wsag:Metric="float">31

<wsag:Location>32

...33

</wsag:Location>34

</wsag:Variable>35

</wsag:VariableSet>36

</wsag:ServiceProperties>37

38

87

4.3. EXTENSION OF WS-AGREEMENT

<wsag:GuaranteeTerm wsag:Name="operationRequestMinute"39

Monitored="True" Negotiability="True">40

...41

<wsag:ServiceLevelObjective>42

requestMinute IS_LESS_INCLUSIVE 543

</wsag:ServiceLevelObjective>44

...45

</wsag:GuaranteeTerm>46

47

<wsag:GuaranteeTerm wsag:Name="operationMinuteCount"48

Monitored="True" Negotiability="True">49

...50

<wsag:ServiceLevelObjective>51

numberOfOperationMinute IS_MORE_INCLUSIVE 1252

</wsag:ServiceLevelObjective>53

...54

</wsag:GuaranteeTerm>55

56

<wsag:GuaranteeTerm wsag:Name="operationCost"57

Monitored="True" Negotiability="True">58

...59

<wsag:ServiceLevelObjective>60

serviceCost IS_LESS_INCLUSIVE 161

</wsag:ServiceLevelObjective>62

...63

</wsag:GuaranteeTerm>64

65

<wsag:NegotiationTerm wsag:Name="Neg1"66

Counter="2" Monitored="False">67

88

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

<wsag:GuaranteeScope>68

<wsag:GuaranteeName>69

operationMinuteCount70

</wsag:GuaranteeName>71

<wsag:GuaranteeName>72

operationCost73

</wsag:GuaranteeName>74

<wsag:GuaranteeName>75

operationRequestMinute76

</wsag:GuaranteeName>77

</wsag:GuaranteeScope>78

<NegotiationRange>79

<wsag:GuaranteeName>80

operationRequestMinute81

</wsag:GuaranteeName>82

<--! requestMinute values-->83

<Minimum>4</Minimum>84

<Maximun>6</Maximun>85

</NegotiationRange>86

<wsag:ServiceLevelObjective>87

<ServiceLevelObjectiveAssertion>88

numberOfOperationMin IS_MORE_INCLUSIVE 2489

</ServiceLevelObjectiveAssertion>90

<ServiceLevelObjectiveAssertion>91

serviceCost IS_LESS_INCLUSIVE 292

</ServiceLevelObjectiveAssertion>93

</wsag:ServiceLevelObjective>94

<wsag:BusinessValueList>95

....96

89

4.3. EXTENSION OF WS-AGREEMENT

</wsag:BusinessValueList>97

</wsag:NegotiationTerm>98

</wsag:All>99

</wsag:Terms>100

<wsrp:GetResourcePropertyResponse>101

Service consumer and service provider start their interactions taking

into account the established agreement described above. In this scenario

it is possible that the monitoring system at provider side notices that the

consumer sends more requests per minute than the number stated in the

agreement, exceeding the maximum value, 4 (defined in the guarantee at

line 43). For instance, the provider can not fulfill all the requests from

the consumer as previously agreed. Thanks to the proposed extension, it

is possible to re-negotiate the current guarantee. In the NegotiationTerms

(lines 84 to 107), there is a term referring to the current guarantee that

gives the freedom to increase the number of requests per minute up to 24,

if service cost is increased of 2 USD. Applying this negotiation term, de-

fined and agreed on by both service consumer and provider at agreement

creation’s time, the consumer will pay more, but can ask more executions

per minute: in this case an increase of performance means an increase

of service cost. Furthermore, if a monitoring system that interacts with

the agreement and service architecture anticipates violation, consumer and

provider re-negotiate the agreement in advance.

In this simple execution on the running example, we see that using

the extension it is possible to maintain the current agreement, mediating

guarantees that are likely to be violated, currently violated, and guarantee

that are widely fulfilled. Instead, using the original version the agreement

must terminate as soon as a guarantee is violated.

90

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

4.3.2 Framework

The proposed extension to WS-Agreement must be handled by an ap-

propriate framework that allows for monitoring and provides run-time re-

negotiation.

On the one hand, there must be rules specifying when and how to raise a

warning for any given guarantee. These rules should be easy to compute to

avoid overloading of the monitoring system and be fast to provide warnings.

In addition they should provide good performance in detecting as many

violations as possible generating the minimum number of false positives.

A forecasting method which enjoys this characteristics is the linear least

squares method [34]. The method of linear least squares requires a straight

line to be fitted to a set of data points such that the sum of the squares

of the vertical deviations from the points to the line is minimized. By

analysing such a parameter of the line as a slope ratio, it is possible to

predict a change over time.

On the other hand, to allow for re-negotiation of guarantee terms at

run-time the parties involved in the agreement need to be able to decide

whether a re-negotiation has been agreed upon. Before execution it must

be possible to specify negotiation terms. This can be done by using appro-

priate templates in the spirit of the original work in [138].

4.4 Anticipate Violations Strategy

We have conducted experimentation to show the feasibility of the warning

strategy. We used synthetic data. We generated a sequence of 1100 ele-

ments considered as a service guarantee for a single operation over a con-

tinuous time interval (for instance the cost of a service which should be

below the value 10). The data set and the results of the experiments are

available in [4]. The points were generated by a function that returns a

91

4.4. ANTICIPATE VIOLATIONS STRATEGY

random number greater or equal to 6.00 and less or equal to 14.00, evenly

distributed. We split the data set into two subsets. The first part of the

data set was used to decide the size of the time window and of the thresh-

old values to be used for prediction. The rest of the data was used for

evaluating the system.

To evaluate the method we consider the following performance mea-

sures: Precision is the ratio of the number of true warnings (i.e., warnings

thrown to notify violation points) to the number of total warnings (i.e.,

true warnings and false warnings). Recall is the ratio of the number of

warned violations (i.e., violation points for which a warning is issued) to

the number of total violation points. Total violation points include warned

violations and missed violations.

The table in Figure 4.6 summarizes the results of the experimentation.

The number of true and false warnings is shown in the first column. The

difference in the number of total warnings and violations is due to the fact

that more than one warning in the same time window may refer to the same

violation. The number of warned and missed violations is reported in the

second column of the table. The total sum of warnings and violations is in

the “Total” row. The last two rows present the precision and recall of the

method.

Warnings Violations

True False Warned Missed

303 11 156 13

Total 314 169

Precision 96.50%

Recall 92.31%

Figure 4.6: Experimental results.

The results of experimentation on the first 100 points of the data set is

92

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

shown in Figure 4.7. In the figure, two types of warnings, true and false,

are marked by diamonds and crosses, respectively. A warning is thrown

if the cost and tangent of the cost curve are higher then the threshold (8

for cost and 0.1 for the tangent differences). Squares represent warned

violation points, while circles indicate missed violation points.

Figure 4.7: Experimental results for 100 points.

The method shows good performance when the increase in cost is smooth

(points 8, 9, and 10), a case that normally takes place during Web services

execution. If the change in values is abrupt then the method fails to gen-

erate warnings, e.g., points 43 (cost is 6.36) and 44 (cost is 10.63). It is

difficult to find a violation point if the point is in the very beginning of the

process, within or just after the first time window (point 7). The latter

cases should be considered exceptional, in fact those occur only 13 times

in the whole experiment.

In the experimentation using the method, more than 92% of violation

points are warned in advance, and 96.5% of thrown warnings are true warn-

ings. Using bigger time windows does not improve performances, see [4]

for evidence of this fact.

93

4.5. APPLICATION OF THE APPROACH: SERVICE LICENSE LIFE CYCLE

Incidentally, we are not claiming that the proposal based on linear least

square is the best approach to provide early warning, in fact, it may turn

out that the method depends on the context in which the agreements are

established and monitored. Here we are concerned with the extension of

the protocol which contemplates the possibility of having early warnings,

the way in which these are actually issued will be designed separately for

any specific application scenario.

4.5 Application of the Approach: Service License

Life Cycle

The concept of software licensing has emerged when the production and

sale of individual software came into the market. While licensing was al-

ready present in the software world, the move to mass market software

has introduced shrink wrap licenses, the terms of which can only be read

and accepted by the consumer after using the product. With the advent

of the Internet-based marketing and distribution strategies, click wrap li-

censing (similar to shrink wrap licensing) continues as one of the universal

practices. The transformation from software as a product to software-as-a-

service [28] is the reflection of the transition of the distribution of software.

As SOC extends the concept of software-as-a-service to include the delivery

of complex business processes as a service, there arises a requirement for

developing service licensing strategies.

Similar to software licensing, service licensing is extremely important

for distribution of services. Software serves as a stand-alone application.

In contrast, the rationale behind services is making network accessible op-

erations available anywhere and anytime. While software is designed with

particular use in mind, services are designed to facilitate potential reuse.

The design of services supports loose coupling, wherein a service acquires

94

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

knowledge of another services, still remaining independent. Software is de-

signed to incorporate a set of specific functions and usually is not allowed

to be integrated with other softwares. Further, software could be restricted

by the organizational boundaries and could not communicate with other

softwares crossing the boundaries. The fundamental to service orientation

is to design services to encourage composition. Thus, the distinguishing

characteristics and nature of services prevent services directly to adopt the

licensing models of software.

A service is represented by an interface part defining the functionality

visible to the external world as a means to access the functionality and an

implementation part realizing the interface. Service interfaces, typically

described by WSDL [46], together with bindings are publicly available.

Several services might be created using the same interface, varying in their

performance. However, creating a new service by modifying an existing

service interface depends on licensing clauses of the existing service.

In case of the interface reproduction with modifications, several scenar-

ios arise as follows:

• The interface of a service could be modified by changing the name of

some operations.

• The interface of a service could be modified by some changes in the

service parameters or by some pre-processing and/or post-processing

of the service.

By distributing the services as executable, the provider does not allow

to modify the service operations. In contrast, it is also possible that a

service provider could allow the service realization to be modified. Thus,

a service provider allows the creation of another service, by modifying the

interface as well as the realization. If the interface and the realization of a

service are allowed to be copied, an independent service could be created

95

4.5. APPLICATION OF THE APPROACH: SERVICE LICENSE LIFE CYCLE

by mirroring the source code of realization and interface.

The extensiveness regarding the access and usage of a service arises

a spectrum of variable clauses of licensing. A service license intends to

describe the following objectives [58]:

• Describing the information regarding the service being licensed and

other related information such as an unique identification code, the

details of the service provider, and so on.

• Defining the extent to which the service could be used, accessed, and

value added (by composition [69] and/or by derivation [58]), on the

basis that any use outside the scope of license would constitute an

infringement.

• Explaining payment and charging terms.

• Specifying delivery terms (regarding quality of service and perfor-

mance), acceptance terms, warranties, and limiting the liability of

providers in case of failures.

• Declaring the rights over future versions and over evolved services.

Being a way to manage the rights between service consumers and service

providers, licenses design collaborative business strategies and enable a

broader usage of services.

4.5.1 Service Level Agreement Versus Service License

SLA is a container for holding technical data relating to the operation of

services that implies the objectives with regard to a service consumer [156].

Further, a SLA is a document that describes the minimum performance

criteria a provider promises to meet while delivering a service. Typically

96

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

SLA sets out the remedial action and any penalties that take effect if

performance falls below the promised standard.

Licensing [49] includes all transactions between the licensor and the

licensee in which the licensor agrees to grant the licensee the right to use

some specific contents of information for a specific tenure under predefined

terms and contracts. A service license primarily focuses on the usage and

provisioning terms of services. Being the mechanism of technology transfer,

service licensing is the method of getting financial benefits for the providers.

Optionally, a service license can include the SLA terms. Thus, a service

license is broader than the scope of SLA, protecting the rights of service

providers and service consumers.

An agreement is negotiated between the service provider and the service

consumer. In case of SLA, there are two parties, a service provider and a

service consumer. They agree on a SLA that covers a service (or a group of

services). In case of a service license, there is a service provider that plays

the main role of the licensor. There could be many service consumers (the

licensees) binded by the service license. However, a license seems as if the

licenses were not even involved in the transactions between the licensor

and the licensees1.

The agreement is terminated when either of the party terminates or

violates the agreement. If one of the partners violates the agreement, the

agreement might be re-negotiated (in case of recoverable violation). Any

modifications to the clauses of a service license result in the creation of a

new license and in some cases, could lead to the termination of the existing

license.

If a license is modified, it leads to the creation of a new version of the

license. A new invocation of a service might use the modified version of the

1With respect to the software licensing transactions there exists even the class of negotiated li-
censes [131], here, by license, we refer to the non-negotiated transactions between the consumers and
the providers.

97

4.5. APPLICATION OF THE APPROACH: SERVICE LICENSE LIFE CYCLE

license. However, the unmodified version of the license, if it is implemented

and executed by a service, will remain active and will not be overridden

by the new version.

4.5.2 Service License Life Cycle

Based on the identified differences between a SLA and a service license, we

propose a license life cycle inspired from the existing SLA life cycle.

A SLA establishment involves two parties namely, the service provider

and the service consumer. A SLA life cycle starts from the templates pro-

vision by the agreement initiator. The templates are filled by the other

party and negotiated between the provider and the consumer. The failure

in reaching an agreement between the parties might result in the termi-

nation without having an agreement. In case of a service license, though

a service provider and a consumer are involved, the license is often non-

negotiated. The licensee is bound to agree the terms of the license.

The licensing terms are defined by the provider and typically described

in the ODRL/L(S) [90] language. A service license is implemented when

it is attached to a service interface.

Every version of the license, before its implementation, could be mod-

ified by the provider by changing the license terms that leads to the next

version creation. However, a SLA can only be re-negotiated between the

parties resulting in the re-execution of the revised agreement.

The monitoring of a SLA followed by execution is a run-time activity.

The violations detected during the monitoring would raise warnings and

might call for re-negotiation. In case of a service license, monitoring is also

a post-run-time activity as the license governs the service during execution

and also the usage of the result caused by the execution of the service.

The violations found in the phases of validation during execution or mon-

itoring of a service license would cause several possible actions to manage

98

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

violations including the interruption of the service usage.

A service license life cycle (as shown in Figure 4.8) includes the phases of

creation, modification, implementation, execution/validation, monitoring,

warning, litigation, termination, and withdrawal.

Figure 4.8: Service license life cycle.

The service provider defines a license in the creation phase. The li-

censing clauses are modified by the provider in the modification phase.

The implementation phase refers to attaching the license with the given

service. The license becomes enforceable in the execution/validation

phase, associated with a particular invocation of a service. The usage of

an instance of a license associated with a particular service invocation is

monitored by the provider in the monitoring phase. The warning phase

presents the warnings caused by the violations of the licensing clauses. The

withdrawal phase denotes the end of the given version of the license from

being used. The litigation phase deals with the dispute resolutions and

decides the span of the license. The termination refers to the end of the

scope of the given instance of a license.

The life cycle of a service license obviously illustrates the two distinct but

interwined aspects of a license. The phases of creation, modification

and implementation are associated with a version of a service license. A

99

4.5. APPLICATION OF THE APPROACH: SERVICE LICENSE LIFE CYCLE

version of a service license could end by the withdrawal, leading to the

withdrawal phase. The phases associated to the version of a license are

specified by the hollowed rounded rectangles. We represent the phases of

an instance of a service license associated to a particular invocation of a

service by the shaded rounded rectangles. The phases associated with an

instance of a service license can repeat with several invocations of a service,

each time with a particular instance of the single version of the given service

license. The versions and instances of a service license are analogous to

the concept of objects and instances in object oriented programming.

The creation of a license by the service provider refers to the definition

of the scope of rights and the other related licensing clauses. A service

license could be created by the service provider before the existence of a

service. In other words, the provider could even determine the usage rights

of their forthcoming service. The clauses regarding the usage of a service

license could be decided from scratch. This can be referred as the creation

of a license from scratch (as shown in Figure 4.9 (a)). Alternatively, a

license can be created from an existing license by modifying the licensing

clauses.

Figure 4.9: Service license versioning by modification

The created license could be modified by revising certain licensing clauses.

As the license is not negotiated and there is no involvement of a consumer

100

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

at this stage, a service provider could perform the modification arbitrarily

at their own discretion. The modifications of a service license causes the

license versioning. A created license could be modified and a new version

of the license is generated (see Figure 4.9 (b)). This license can be ap-

plicable to a service and follow the phases of the license life cycle. This

version of the license could even be modified and applied to any service as

a newer version of the license. Several versions of licenses arise from the

modifications and follow the life cycle individually as a next version of the

license (as shown in Figure 4.9 (c)).

Let Lb be the modified license from the license La. Then a service

provider could implement the licensing as follows: the implemented ser-

vice (having La implemented) could continue with La itself while the forth-

coming service invocations could have Lb implemented. Here, Lb does not

override La for the service in execution. It could be even possible for the

provider to withdraw a version, say La, and could bind the services to the

newer version of the license.

A service license implementation follows the creation or modification of

the license. The implementation phase of a service license refers to the

existence of the license, but not referring to any enforcement of the license

over the usage of the service.

A service license can be withdrawn at this stage. The withdrawal of

the license could implicate the possible removal of the particular version

of the license from the service, offering the provision of the service even

without the license.

The license associated with the service automatically becomes enforce-

able when the service is provisioned. This is referred as the

execution/validation phase of a service license. The execution phase of

a service license differs from the state of SLA life cycle by embedding the

validation of licensing clauses. As the consumer uses the licensed service,

101

4.6. CONCLUDING REMARKS

the consumer is bound to agree the licensing clauses.

The violations of the licensing clauses during the phase of

execution/validation would lead to the warning phase. The violations

could be caused either by the consumer or by the provider.

The disputes arisen in the case of the warning phase would be taken

care in the litigation phase. As the process of litigation involves judicial

matters, we skip this phase as beyond the scope of this work.

On the fulfillment of the licensing clauses, the license progresses to the

state of monitoring which either could denote the satisfaction of the usage

terms or could lead to warning phase as described above if the terms are

violated. The detection of violations during the monitoring phase makes

the license to move towards the warning phase. The instance of the license

terminates as the service terminates when there is the progression from the

state of warning on agreeing the terms.

The termination of an instance of a service license does not imply the

total termination of the license as SLA termination. As there could exist

several instances of a license by several invocations of a service, the termi-

nation refers only to the detachment of the instance of the license from the

particular invocation of the service.

In [91], we illustrate a collaborative scenario of the service license life

cycle by a case study provided by the courtesy of Dnepropetrovsk Hydrom-

eteorology Regional Center, Ukraine.

4.6 Concluding Remarks

WS-Agreement is an industry based protocol for the establishment of

service level agreements among loosely coupled service providers and re-

questers. If on the one hand, WS-Agreement is being adopted widely, on

the other hand, it lacks a precise definition of the meaning of its constructs.

102

CHAPTER 4. SEMANTICS AND EXTENSIONS OF WS-AGREEMENT

In this chapter, we presented a formal definition of an WS-Agreement

by resorting to finite state automata. Furthermore, by providing a set of

formal rules that tie together agreement terms and the life-cycle of the

agreement, we identified some shortcomings of the protocol. That is, the

protocol does not support explicitly the negotiation of the agreement, there

is no monitoring of how close a term is to being violated at execution time,

and, the breaking of one single term of a running agreement results in

termination while a more graceful degradation is desirable. To overcome

these shortcomings, we proposed an extension of WS-Agreement, for which

we provided appropriate semantics. The extension considers initial nego-

tiation of an agreement, it considers the possibility of issuing warnings

before a possible term violation, and eventually re-negotiation of a run-

ning agreement. Furthermore, we have analysed SLAs and service licenses

with the goal of providing differences and similarities between the two con-

cepts. Based on our investigations, we have proposed a life cycle of service

license.

103

4.6. CONCLUDING REMARKS

104

Chapter 5

Deriving Business Processes with

Service Level Agreements from Early

Requirements

When designing a Web service-based business process employing loosely-

coupled services, one is not only interested in guaranteeing a certain flow

of work, but also in how the work will be performed. This involves the

consideration of non-functional properties which go from execution time,

costs, up to trust and security. Ideally, the requester of a service to have

guarantees over the behavior of the services involved in the process. These

guarantees are the object of SLAs.

In this chapter, we propose a methodology to design Web service-based

business processes together with service level agreements that guarantee

a certain quality of execution, with particular emphasis on the security

aspects. Starting from an early requirements analysis modelled in the

Secure Tropos formalism, we provide a set of user-guided transformations

and reasoning tools the final output of which is a set of processes in the form

of Secure BPEL together with a set of SLAs to be signed by participating

services.

105

5.1. BP&SLA METHODOLOGY

5.1 BP&SLA Methodology

Judging what is the appropriate SLA to sign after having defined the busi-

ness objectives [36] is far from being a straightforward task. With the

Business Processes with Service Level Agreements (BP&SLA) methodol-

ogy, we provide means to go from a high-level analysis of the business

requirements all the way to the definition of the processes to be executed

and the SLAs to be signed in order to guarantee certain quality of ser-

vice. The methodology consists of four main phases which are, referring

to Figure 5.1, (1) early requirements engineering, (2) business process hy-

pergraph derivation, (3) hierarchy of business processes derivation, and

(4) constraint reasoning for service level agreements derivation.

Figure 5.1: The BP&SLA Methodology.

During the first phase, the end-user or domain expert provides informal

requirements that form the seed for developing formal processes. These

early requirements are formalized following the Secure Tropos method-

ology, an extension of the well established Tropos software engineering

methodology [35]. The output of this phase is an early requirement model.

The model is far from being an executable entity, but rather it is a con-

106

CHAPTER 5. DERIVING BUSINESS PROCESSES WITH SERVICE LEVEL
AGREEMENTS FROM EARLY REQUIREMENTS

ceptual description of the actors involved in the business, their goals and

their trust and security relations. To transform the model into something

executable, in the second and third phase, one navigates automatically the

model and asks user intervention every time that an unambiguous choice

is necessary. The results of the refinement of the early requirements are

an intermediate model necessary to perform the reasoning on qualities of

services, the business process hypergraph, and a hierarchy of business pro-

cesses ready for execution, Phases 2 and 3, respectively. The business

process hypergraph then is further analysed to build a constraint problem

which represents the relationships among the various elements of the pro-

cesses regarding quality of service and security properties of the processes.

By reasoning with these constraints it is possible to derive the appropriate

SLAs to be signed in order to guarantee a certain QoS when executing

the process, Phase 4. The final output of the methodology is a hierarchy

of business processes ready for execution together with SLAs fulfilling a

specific QoS. Let us consider next each of these phases individually. We

do not only present the phases of the methodology, but also look at how

the application of the proposed methodology leads to a set of executable

business processes and SLAs. We consider the loan origination case study

proposed as a running example in Section 1.3.

5.1.1 Phase 1. Early Requirements Engineering

Early requirements engineering aims at analysing the organizational con-

text within which a system will eventually operate. During an early re-

quirements analysis the domain actors and their dependencies on other

actors for goals to be fulfilled are identified. For early requirements model

elicitation in the context of security, one needs to reason about trust rela-

tionships and delegation of authority.

We employ the Secure Tropos modelling framework [95, 144] to derive

107

5.1. BP&SLA METHODOLOGY

and analyse both functional dependencies and security and trust require-

ments.

For the acquisition of the early requirements model we employ the mod-

elling activities described in 2.3. Actor modelling is used to identify the

principal stakeholders and their objectives. It might happen that an actor

does not have the capabilities to achieve his own objectives by himself. In

this case that actor has to delegate the objectives to other actors that leads

to their achievement outside the control of the delegator. Secure Tropos

supports two types of delegations. Delegation of execution, i.e, at-least del-

egation, means that one actor delegates to another one the responsibility to

execute a service. Delegation of permission, i.e, at-most delegation, models

the transfer of entitlements from an actor to another. We use functional

dependency modelling to identify actors depending on other actors for ob-

taining services, and actors which are able to provide services. Permission

delegation modelling is used to identifying actors delegating to other ac-

tors the permission on services. Secure Tropos supports two types of trust

dependencies. Trust of execution, i.e, at-least trust, means that one actor

trusts that another one will at least fulfill a service. While the meaning

of trust of permission, i.e, at-most trust, is that an actor trusts that an-

other actor will at most fulfill a service, but will not overstep it. Trust

modelling aims at identifying actors trusting other actors for services, and

actors which own the services.

Example 6 The early requirement model for the loan origination case

study described in Section 1.3 is depicted in Figure 5.2.

The model presents the principal entities involved, (1) actors depicted

as circles and (2) interests, i.e., goals, presented as ovals. The Bank actor

has the goal to launch loan origination process. The goal is dele-

gated to the Bank manager actor. The delegation of execution is depicted

with two lines connected by a delegation of execution (De) graphical symbol.

108

CHAPTER 5. DERIVING BUSINESS PROCESSES WITH SERVICE LEVEL
AGREEMENTS FROM EARLY REQUIREMENTS

Figure 5.2: Early requirements model.

The Bank actor trust the Bank manager actor on execution of the goal. The

trust on execution is depicted with two lines connected by a trust on execu-

tion (Te) graphical symbol. In order to fulfill the goal the Bank manager ac-

tor refine it by an AND decomposition, depicted with a goal refinement sym-

bol marked with AND, into goals to receive a customer and to manage

loan origination. The Bank manager actor delegates the last goal to

the Post-processing Clerk actor. Here not only at-least delegation of

execution, but also at-most delegation of permission is used. The dele-

gation of permission is depicted with two lines connected by a delegation

of permission (Dp) graphical symbol. The Post-processing Clerk ac-

tor refines the manage loan origination goal into the internal rating

check and external rating check goals. The goal is refined by an OR

decomposition, depicted with a goal refinement symbol marked with OR.

The external rating check goal is delegated to the Credit Bureau 1

and Credit Bureau 2 actors. While the Post-processing Clerk trusts

both on delegation and on permission to the Credit Bureau 2 actor on

processing of external credit check, there is no trust relation between the ac-

109

5.1. BP&SLA METHODOLOGY

tor and the Credit Bureau 1 actor. The trust on permission is depicted

with two lines connected by a trust on permission (Tp) graphical symbol.

Performance-based Trust Model

A KPI based trustworthiness model takes into account the business objec-

tives described previously, and assigning automatically trust level values (0

or 1). This Performance-based trust model was elaborated in the context

of IST-FP7-IP-TAS3 project1 [61].

The traditional trustworthiness models deployed in famous online shops

such as Amazon or eBay are relying on a subjective rating system in which

users estimate the “quality” of the transaction over a numerical scale.

Knowing that nobody is able to formalize and explain the difference be-

tween two successive values like a transaction rewarded at 9/10 and another

one 10/10, it is not possible to estimate the correctness and the objectivity

of the trust and reputation value.

In this work, we use a less subjective trust model taking into account

the performance of each business partner according to their business ob-

jectives or to a business agreement like SLA. For example, if a business

partner does not satisfy a target in the SLA, he will be penalized. Each

trustee entity chooses the business objectives that must be satisfied by

the partners to trust. These objectives must be measurable like a set of

performance indicators, e.g., price, time, packaging, payments conditions,

QoS. After each interaction between two business partners, the trustee gets

these quantifiable values and compares it to the objectives in order to ob-

tain trust indicator values. These indicator values are then aggregated and

1TAS3 (Trusted Architecture for Securely Shared Services) is a research project funded by the Eu-
ropean Union. The TAS3 is an integrated project that aims to have a European-wide impact on
services based upon personal information, which is typically generated over a human lifetime and
therefore is collected & stored at distributed locations and used in a multitude of business processes,
http://www.tas3.eu/project.

110

CHAPTER 5. DERIVING BUSINESS PROCESSES WITH SERVICE LEVEL
AGREEMENTS FROM EARLY REQUIREMENTS

normalized in order to obtain a unified trust level value.

Figure 5.3: Performance-based trust model.

The trust model shown in Figure 5.3 is composed of three complemen-

tary layers:

Performance Indicator Values are collected and calculated after each

interaction, then compared to the business objective scale.

Business Objectives Scale are fixed by the trustee according to the per-

formance indicators related to their business objectives. An interval of

values (min and max) must be chosen for every performance indicator

in order to normalize the measured value with a [0,1] scale. The [0,1]

normalization rule is written as follow:




1 if Ki > Kmax

Ki−Kmin

Kmax−Kmin

0 if Ki < Kmin

111

5.1. BP&SLA METHODOLOGY

Where Ki is the measured performance indicator value, Kmin and

Kmax are the maximum and minimum values declared in the business

objectives scale.

Trust Level Value is the aggregation of all the normalized performance

indicators plus eventually some external values like the recommenda-

tion from other trusted entities.

In the loan origination case study, the Credit Bureau response time can

be chosen by the BBB bank as a performance indicator. According to the

bank’s business objectives the delivery delay must be comprised between

Kmin=1 day and Kmax=5 days. Using this scale we normalize the delivery

time values in order to be fitted to a [0,1] scale. For example if the delivery

time is Ki=3 days, the trust value will be 0.5.

To summarize, the performance based trust model offers the possibility

to quantify the trustworthiness values according to business objectives and

SLAs and permit to any business process component to determine which

business partner is more trustable according to an objective estimation.

Usually in traditional recommendation systems, the trustee relies on a

binary recommendation value. In the performance-based trust model the

trustee can evaluate the weight of a recommendation by accessing to the

business objective scale of the recommender.

5.1.2 Phase 2. Business Process Hypergraph Derivation

The second phase of the BP&SLA methodology is devoted to creating an

intermediate structure to reason about the business processes and their

qualities. This intermediate structure is an hypergraph, which we define

as follows.

Definition 7 A Business Process hypergraph (BP hypergraph) B is

a pair 〈B, H〉 where B is a set of business processes and H is a set of BP

112

CHAPTER 5. DERIVING BUSINESS PROCESSES WITH SERVICE LEVEL
AGREEMENTS FROM EARLY REQUIREMENTS

hyperarcs. A hyperarc is an ordered pair 〈N, t〉 from an arbitrary nonempty

set N ⊆ B (source set) to a single node t ∈ N (target node). Each hyperarc

is associated with a vector of aggregation functions

ϕ = [ϕ1〈N, t〉, ..., ϕn〈N, t〉] which calculate value of a target node taking

as arguments source nodes, with the structural activity associated, for a

particular QoS parameter .

The BP hypergraph is obtained by navigating the early requirement

model and refining it eventually resorting to user interaction. This is per-

formed algorithmically according to the procedure presented in Figure 5.4.

The algorithm takes the early requirements model SI*, the actor with

its goal and the vector of QoS parameters as an input. Each node of the

BP hypergraph is a business process that corresponds to a goal in the

early requirements model. As we consider the goals to be operational.

Each hyperarc in the BP hyperarc corresponds to the goal refinement or

delegation dependency in the early requirements model.

In the algorithm, we use the addHyperArc (sourceNode, targetNode)

function to add one hyperarc in the business process hypergraph from a

single source node to the target node. While the addHyperArcForAll

(sourceSetOfNodes, targetNode, aggregationFunction) function adds

one hyperarc in the business process hypergraph from a source set of nodes,

i.e., nodei[...] to the target node. Where aggregationFunction is a

vector of aggregation functions ϕ = [ϕ1〈N, t〉, ..., ϕn〈N, t〉] assigned to the

business process hyperarc. The aggregation functions design takes into

account the structural activity associated to the corresponding business

processes, i.e, the source set of nodes, and the QoS parameter. Each ag-

gregation function calculates the value of a target node taking as arguments

source nodes (with the structural activity associated) for a particular QoS

parameter.

113

5.1. BP&SLA METHODOLOGY

BPHC (SI*, actor, goal, QoS)
begin

if goal is not a leaf goal
currentNode = node (goal)
for each children in AND

nodei = BPHC (SI*, actor, childGoal, QoS)
interactWithUser (sequence | parallel)
if sequence

addHyperArcForAll (nodei[...], currentNode, sequence)
if parallel

addHyperArcForAll (nodei[...], currentNode, flow)
end for
for each children in OR

interactWithUser (non deterministic choice | design choice)
if non deterministic choice

nodei = BPHC (SI*, actor, childGoal, QoS)
addHyperArcForAll (nodei[...], currentNode, switch)

end if
if design choice

nodei = BPHC (SI*, actor, childGoal, QoS)
addHyperArc (nodei, currentNode)

end if
end for
for each delegated child

nodei = BPHC (SI*, actor, childGoal, QoS)
addHyperArc (nodei, currentNode)

end for
if trust dependency

trustLevel(currentNode) = 1
for each children

trustLevel(childNode) = 1
else

trustLevel(currentNode) = 0
for each children

trustLevel(childNode) = 0
return currentNode
end if
if goal is a leaf goal

return node (goal)
end if

end

Figure 5.4: Business process hypergraph construction.
114

CHAPTER 5. DERIVING BUSINESS PROCESSES WITH SERVICE LEVEL
AGREEMENTS FROM EARLY REQUIREMENTS

The concept of AND goal decomposition is refined as sequential or paral-

lel business process composition in the BP hypergraph. Sequential business

process composition corresponds to the sequence flow structural activity

and the aggregation function for sequential aggregation of QoS parameters

is applied. The parallel flow structural activity is used in case of paral-

lel business process composition and the aggregation function for parallel

aggregation of QoS parameters is applied. The concept of OR goal de-

composition in the early requirements model is refined as branching state-

ment in the BP hypergraph. If the structural activity is non-deterministic

choice, the aggregation function for choice aggregation of QoS parameters

is applied. In case of the design choice structural activity, the nodes cor-

responding to the business processes are connected by different hyperarc

with the target node. The design choice structural activity appears in case

of presence of different alternatives for the same business process, e.g., the

same business process might be delegated to different partners that have

different SLA offers.

The refinement of the concept of AND/OR goal decomposition from the

early requirements model can not be completely automated, but only sup-

ported as it happens in model-driven architectures. For instance, in case of

AND goal decomposition, the system can provide assistance in refining the

decomposition into sequence flow or parallel flow structural activity. OR

goal decomposition might be refined into non-deterministic or design choice

structural activity. While determining the proper structural activity is the

domain dependence task that involves the user interactions. In the business

process hypergraph construction algorithm we use the interactWithUser

(option1 | option2 ... | optionk) function to support the interac-

tion with the users with the aim to decide which structural activity to

apply to for a particular goal decomposition. The users determine the

proper structural activity based on the proposed options where the only

115

5.1. BP&SLA METHODOLOGY

one option has to be selected.

Each node in the BP hypergraph is assigned with a vector of QoS pa-

rameters and a Trust Level value (TL). The values of the QoS parameters

correspond to the QoS that can be achieved by the BP. The trust level value

denotes the level of trust between the truster and the trustee on the fulfill-

ing of the business process (here we employ only at-least trust). In [83], we

propose a methodology that identifies the concrete business process provid-

ing the highest quality of service and protection among all possible design

alternatives. The idea is to take into account the level of trust of service

providers and adjusts the expected quality value correspondingly. In spite

of the fact that the approach to use the notion of trust as weighting factor

is promising, the authors do not clarify how the trust values are decided.

Instead in our approach the trust level is determined from the reasoning

on the presence/absence of trust dependencies in the early requirements

model. We also take into account the performance indicator values we

introduced in Phase 1. Then, when the business process with SLA is in

place, we apply the proposed performance-based trust model in order to

determine the partner to work with when there is a possibility to choose

one business process from the several alternatives suggested by different

providers.

The problem of finding SLAs for business processes is then a problem

of reasoning on the business process hypergraph.

Example 7 The hypergraph corresponding to the case depicted in Fig-

ure 5.2 is shown in Figure 5.5. Each goal of the early requirement model

is associated with a node of the hypergraph. Each node of the hypergraph

is a business process.

The nodes Receive Customer and Manage Loan Origination are con-

nected by one hyperarc with the top node

Launch Loan Origination Process, that means that the business pro-

116

CHAPTER 5. DERIVING BUSINESS PROCESSES WITH SERVICE LEVEL
AGREEMENTS FROM EARLY REQUIREMENTS

Figure 5.5: Business process hypergraph.

cesses Receive Customer and Manage Loan Origination contribute to

satisfaction of the global goal Launch Loan Origination Process. The

dashed hyperarc leads from the delegated (here we employ only at-least del-

egation) business process Manage Loan Origination to the target one.

The nodes in the business process hypergraph are assigned with vectors

of QoS parameters and trust level values. The trust level is determined

from the reasoning on the presence/absence of at-least trust dependencies

in the early requirement model presented in Figure 5.2. A vector of ag-

gregation functions ϕ = [ϕ1〈N, t〉, ..., ϕn〈N, t〉] is assigned to the hyperarc.

The aggregation function takes into account the structural activity associ-

ated to the Receive Customer and Manage Loan Origination business

processes and the QoS parameter. The notion of sequential and parallel

composition corresponds to a refinement of the concept of AND goal decom-

position. If the structural activity is sequence flow, the aggregation function

for sequential aggregation of QoS parameters is applied. If the structural

117

5.1. BP&SLA METHODOLOGY

activity is parallel flow, the aggregation function for parallel aggregation of

QoS parameters is used.

The nodes Internal Rating Check and External rating Check are

connected by one hyperarc with the target node Manage Loan Origination.

The business process External Rating Check is delegated and is expressed

by the dashed hyperarc. A vector of aggregation functions ϕ is assigned to

the hyperarc. The aggregation function takes into account the structural

activity associated to the Internal Rating Check and External Rating

Check business processes and the QoS parameter. Branching statement is

a refinement of the concept of OR goal decomposition. If the structural

activity is non-deterministic choice, the aggregation function for choice

aggregation of QoS parameters is applied. If the structural activity is de-

sign choice, the nodes Internal Rating Check and External rating

Check are connected by different hyperarc with the target node Manage

Loan Origination.

The nodes External Rating Check (1) and External rating Check

(2) are connected by two hyperarc with the target node External Rating

Check. Both the business process External Rating Check (1) and

External rating Check (2) are delegated that is expressed by the dashed

hyperarcs.

5.1.3 Phase 3. Hierarchy of Business Processes Derivation

The third phase of the BP&SLA methodology is dedicated to hierarchy of

BPs construction. We build the hierarchy of BPs with the aim to use it

for obtaining a set of executable secure BPs. These are created following

the Secure BPEL specifications [81, 82, 176]. Secure BPEL is a dialect of

WS-BPEL for the functional parts and abstracts away low level implemen-

tation details from WS-Security and WS-Federation specifications. Secure

BPEL allows us to describe delegation (both delegation of execution and

118

CHAPTER 5. DERIVING BUSINESS PROCESSES WITH SERVICE LEVEL
AGREEMENTS FROM EARLY REQUIREMENTS

delegation of permission) and trust (both trust on execution and trust on

permission) relations among all the partners that execute sub-BPs in the

context of the global BP. Refer to Section 3.1.2 for the Secure BPEL lan-

guage specification and examples. In the hierarchy of BPs, each delegated

business process is labelled with a SLA derived in Phase 4. The hierarchy of

BPs, as well as the BP hypergraph, is derived by refining the early require-

ments model. As we build the hierarchy to obtain executable BPs with

SLAs, we must clearly determine (1) the BPs, (2) which partner proceeds

which BP, and (3) delegation and trust dependencies among the involved

partners.

For space reason, we do not report the whole algorithm for the hierarchy

of BPs construction here, but rather refer to [84] for details. The main

idea is that analogously to the BP hypergraph construction, we consider

the level of goals in the early requirements model to be the level of BPs in

the hierarchy of BPs. Furthermore, the BP(s) proceeded by one actor are

grouped and marked with the actor. We introduce the notion of actors to

render the hierarchy of BPs ready to be executable. In fact, each partner

has to know which business process to proceed.

In this work, we adopt only the Secure Tropos delegation of execution

dependencies, but not the delegation of permission ones, to label with

SLAs only the BPs that are delegated to be executed. We consider the

fact that one needs to sign a SLA with the partner only in case of transfer

of responsibilities to the partner, i.e., the business process is delegated to

the partner and the partner processes it. While if there is only a fact

of transfer of entitlements, i.e., the business process is delegated to the

partner and the partner has permissions to processes the BP, but do not

actually does it, there are no reasons for a SLA signing. Further, we employ

both at-least and at-most trust and delegation notions to implement the

relations between the actors in the hierarchical structure of BPs.

119

5.1. BP&SLA METHODOLOGY

Example 8 The hierarchy of business processes corresponding to the early

requirement model for the loan origination process is shown in Figure 5.6.

Figure 5.6: Hierarchy of business processes.

Each goal is associated with a business process, represented by a rounded-

corner rectangle in the hierarchy. Dashed rectangles are used in order to

represent the actors that proceed the business processes. In our case these

actors are the Bank, the Bank Manager, the Post-processing Clerk, the

Credit Bureau 1, and the Credit Bureau 2.

The dependencies among actors, i.e., delegation and trust, are repre-

sented as dashed and solid lines correspondingly. The Bank actor del-

egates the Launch Loan Origination Process business process to the

Bank Manager actor. The delegation of execution dependency is depicted

by dashed line marked with the delegation of execution (De) symbol. The

delegation of execution line connects the delegated business process, i.e., the

Launch Loan Origination Process business process with the delegatee,

the Bank Manager actor. The Bank actor trust the Bank Manager actor

to fulfill the Launch Loan Origination Process business process. The

120

CHAPTER 5. DERIVING BUSINESS PROCESSES WITH SERVICE LEVEL
AGREEMENTS FROM EARLY REQUIREMENTS

trust on execution dependency is depicted by line marked with the trust on

execution (Te) symbol. The trust on execution line connects the trusted

business process, i.e., the Launch Loan Origination Process business

process, with the trustee, the Bank Manager actor.

The relation among business processes proceeded by the Bank Manager

actor is defined by the structural activity associated to the Receive Customer

and Manage Loan Origination business processes. The notion of sequen-

tial and parallel composition corresponds to a refinement of the concept of

AND goal decomposition. If the structural activity is sequence flow, the

sequence relation is applied. If the structural activity is parallel flow, the

relation is the parallel one.

The relation among business processes proceeded by the Post-proceeding

Clerk actor is defined by the structural activity associated to the Internal

Rating Check and External Rating Check business processes. Branch-

ing statement is a refinement of the concept of OR goal decomposition. If

the structural activity is non-deterministic choice, the non-deterministic

choice relation is applied. If the structural activity is design choice, the

design choice relation is applied. The Bank Manager actor delegates the

Manage Loan Origination business process to the

Post-processing Clerk actor. The delegation of execution and dele-

gation of permission lines connects the delegated business process, i.e.,

the Manage Loan Origination business process with the delegatee, the

Post-processing Clerk actor. The delegation of permission dependency

is depicted by dashed line marked with the delegation of permission (Dp)

symbol. There are no trust dependencies between the Bank Manager and

the Post-processing Clerk actors on the Manage Loan Origination

business process.

The External Rating Check business process is delegated to the Credit

Bureau 1 and the Credit Bureau 2 actors. The delegation of execution

121

5.1. BP&SLA METHODOLOGY

lines connect the delegated business process, i.e., the External Rating

Check business process with the delegatee, the Credit Bureau 1 and the

Credit Bureau 2 actor. There are no trust dependencies between the

Bank Manager and the Credit Bureau 1 actors on the External Rating

Check business process. While trust on execution and trust on permis-

sion lines connects the trusted business process, i.e., the External Rating

Check business process, with the trustee, the Credit Bureau 2 actor. The

trust on permission dependency is depicted by line marked with the trust

on permission (Tp) symbol.

5.1.4 Phase 4. Constraint Reasoning for SLAs Derivation

In the last phase of the BP&SLA methodology SLAs for BPs are derived

by reasoning on the BP hypergraph. The reasoning technique we employ

in this work is constraint programming. The key idea is to state the rela-

tionships among the qualities of processes and their activities as a set of

constraints.

Formally, the Constraint Satisfaction Problem (CSP) is defined as fol-

lows [188]:

• a set of variables {x1,.., xn},
• for each variable xi a finite set Di (its domain) of possible values,

• a set of constraints, i.e., relations or expressions, restricting the values

that the variables can simultaneously take.

A solution to CSP is an assignment to the set of variables such that all

its constraints are satisfied. One may want to find an optimal solution, if

some objective function is given over CSP variables [188].

We build a constraint systems by recursively navigating the business

process hierarchy and hypergraphs. The algorithm is presented in Fig-

ure 5.7.

122

CHAPTER 5. DERIVING BUSINESS PROCESSES WITH SERVICE LEVEL
AGREEMENTS FROM EARLY REQUIREMENTS

CSPEC (BPH, node, CSP, QoSDomain)
begin

if node is not a leaf node
addToCSP (Var node ∈ QoSDomain)
if decomposition = AND

for all nodes
expr = expression (nodes, flow/sequence)

end for
addToCSP (Var node = expr)

end if
if decomposition = OR

for all nodes
if non deterministic choice

expr = exression (nodes, switch)
end if
if design choice

expr = expression (node, mult xi)
where xi = 0 or 1 and sum(xi) = 1

end if
end for
addToCSP (Var node = expr)

end if
end if
for every node

CSPEC (BPH, node, CSP, QoSDomain)
end for
if node is a leaf node

addToCSP (Var node ∈ QoSDomain)
end if

end

Figure 5.7: Constraint system building.

123

5.1. BP&SLA METHODOLOGY

The algorithm takes the BP hypergraph, the node to start with, and

the problem domain as an input, and it builds a constraint expression for

every level of the hypergraph. Intuitively, the expression represents the

quality of service for that level. For each level a new fresh variable is

added and its range is restricted to the domain of the quality of service.

Depending on what kind of children are available for that level different

kind of expressions are built. If the children are connected with AND,

the expression is built as an aggregation of the variables representing the

children nodes. In the case of choice, there are different expressions for

each child and an additional expression represents the fact that only one

child will contribute to the execution (the sum of xi).

Once the constraint expressions are built, the algorithm proceeds recur-

sively on all children. If the node is a leaf node, then one simply adds a

variable for that node and a constraint on the domain of the variable.

When the constraint system is in place, one can perform constraint

propagation to find the solution space for acceptable qualities of services.

If then one desires to have SLAs to attach to the BPs, it is simply a matter

of performing a labelling of the solution space and obtaining satisfying

values for the qualities of services. We remark that such a solution might

not exists. In this case, the result of the methodology will be a set of

processes, but with no quality guarantees.

Here we show the generation of SLAs based on given quality of service

requirements for the execution of the business process using the loan orig-

ination process presented in Section 1.3. The example is based on the real

data coming from an actual case study. In order to obtain the quality con-

straint expressions, we need to be given the domain over which the quality

of service range, e.g., integers for costs or real numbers for response time.

In the case of the proposed methodology, the QoS Domain is a vector of

QoS with corresponding possible values for the parameters. The example

124

CHAPTER 5. DERIVING BUSINESS PROCESSES WITH SERVICE LEVEL
AGREEMENTS FROM EARLY REQUIREMENTS

of the QoS Domain we consider is the following vector: [Execution Time

(ET) ∈ N, Availability (Av) ∈ N, Time to Recover after an attack (TR) ∈
N].

Several examples of the aggregation functions are presented in [111].

Here we present aggregation functions for such QoS parameters as maximal

execution time (Max ET), availability (Av) and maximal time to recover

after an attack (Max TR) for sequential, parallel and choice structural

activities are the following:

Activity Max ET Av Max TR

sequence ϕ =
∑k

p=1 pi ϕ = Πk
p=1pi ϕ =

∑k
p=1 pi

parallel ϕ =
∑k

p=1 pi ϕ = Πk
p=1pi ϕ =

∑k
p=1 pi

choice ϕ = max(p1, ..., pk) ϕ = min(p1, ..., pk) ϕ = max(p1, ..., pk)

Example 9 Next we present the quality constraint expressions obtained

for the maximal execution time parameter navigating the BP hypergraph

from Figure 5.5 following the algorithm.

Maximal Execution Time (ET)

LLO=LLO.ET+sum(RC.ET,MLO)

MLO=MLO.ET+max(IRC.ET,ERC)

ERC=ERC.ET+ERC1.ET ·x1+ERC2.ET ·x2 when xi ∈ 0, 1 and
∑

xi = 1.

Availability (Av)

LLO=LLO.Av ·Π(RC.Av,MLO)
MLO=MLO.Av · min(IRC.Av,ERC)
ERC=ERC.Av · (ERC1.Av ·x1+ERC2.Av ·x2) when xi ∈ 0, 1 and

∑
xi = 1.

Maximal Time to Recover after an attack (TR)

LLO=LLO.TR+sum(RC.TR,MLO)

MLO=MLO.+max(IRC.TR,ERC)

ERC=ERC.TR+ERC1.TR ·x1+ERC2.TR ·x2 when xi ∈ 0, 1 and
∑

xi = 1.
when LLO stands for Launch Loan Origination, RC to Receive Customer,

MLO to Manage Loan Origination, IRC to Internal Rating Check, ERC to

125

5.1. BP&SLA METHODOLOGY

External Rating Check, ERC1 and ERC2 to External Rating Check(1) and

External Rating Check(2) business processes.

The constraint propagation for maximal execution time QoS property for

the super-process in order to achieve execution time less then 35 seconds is

performed and we get the following satisfying values for the qualities of ser-

vices: ERC1.ET=2 s, ERC2.ET=4 s, ERC.ET=10 s, IRC.ET=1 s, MLO.ET=5

s, RC.ET=7 s, and LLO.ET=8 s.

The SLAs for the delegated business processes are the following.

SLA(LLO)=LLO=LLO.ET+sum(RC.ET,MLO)=8+7+19=34s

SLA(MLO)=MLO.ET+max(IRC.ET,ERC)=19s

SLA(ERC)=ERC.ET+ERC1.ET ·x1+ERC2.ET ·x2=14s

when xi ∈ 0, 1 and
∑

xi = 1

when MLO=MLO.ET+max(IRC.ET,ERC)=5+max(1,14)=19s

ERC=ERC.ET+ERC1.ET ·x1+ERC2.ET ·x2=10+2 ·x1+4 ·x2=10+4=14s

when xi ∈ 0, 1 and
∑

xi = 1.

Note that while choosing the business process among two alternatives

External Rating Check(1) and External Rating Check(2) we rely on the

trust levels of the providers Credit Bureau 1 and Credit Bureau 2 corre-

spondingly. As the trust level of Credit Bureau 1 is 0 and the one of Credit

Bureau 2 is 1, we choose the last option.

Finally, the obtained SLAs are described using the extended WS-Agreement

specification. Furthermore, the agreements might be monitored with the

option to anticipate violations and re-negotiated runtime. Refer to Chap-

ter 4 for the extended WS-Agreement specification and example.

126

CHAPTER 5. DERIVING BUSINESS PROCESSES WITH SERVICE LEVEL
AGREEMENTS FROM EARLY REQUIREMENTS

5.2 Constraint Reasoning for SLAs Derivation

As an illustration, the constraint algorithm for SLAs (in Appendix B) was

implemented in the constraint solving environment ECLiPSe 1. It is using

the IC Hybrid Domain Solver 2to solve the constraint problem, although

only the finite domain capabilities.

The basic algorithm is a typical tree walking algorithm that can be

applied to any subtree of a BPH. Constraints are applied from the leafs

up, to make the algorithm fail early if a low-level constraint cannot be

satisfied. All constraints over multiple child nodes are expressed as a user-

defined predicate.

The core algorithm is implemented in two small predicates described

below.

cspec(BPH, QoSDomain) :-

qos(BPH, QoSValue),

%constrain the QoS-Variable present in the current node

%to the solution domain

QoSValue #:: QoSDomain,

%apply the cspec_algorithm on all children

children(BPH, Children),

cspec_children(Children, QoSDomain),

%apply the function phi given for the current node

apply_fun(BPH).

cspec_children([],_). cspec_children([Head|Tail],QoSDomain):-

cspec(Head, QoSDomain),

cspec_children(Tail, QoSDomain).

1 http://www.eclipse-clp.org/
2 http://eclipse-clp.org/doc/libman/libman016.html

127

5.2. CONSTRAINT REASONING FOR SLAS DERIVATION

The algorithm expects the BPH to be supplied in Prolog term form. A

node in Prolog term form looks like this:

node(

name:mpop,

natural_name:"Manage product order process",

aggregate_function:sum_qos,

trust_level:1,

cost:20,

qos:MPOP_ET,

children:[]

)

Note the unbound qos variable that will later be constrained. cost

represents the generic cost variable depending on the scenario. In our case,

cost represents the execution time of the node. aggregate function is

the predicate that is used by apply fun to generate a constraint out of the

nodes children.

The implementation walks the BPH in postorder fashion - the predicate

cspec children is applied before apply fun. This means that walking

the tree is of linear complexity. Under the reasonable assumption that the

aggregation function is of linear complexity as well, the same is true for

the application of cspec.

The prototype mainly exposes two predicates, one for convenient and

one for programming use:

bph:solve label and print/2 builds the constraint system for a given

BPH and a Quality of Service domain. It then prints all constrained

variables. After that, a set of possible values for those variables is

computed (labelling) and printed as well.

128

CHAPTER 5. DERIVING BUSINESS PROCESSES WITH SERVICE LEVEL
AGREEMENTS FROM EARLY REQUIREMENTS

bph:solve/4 only solves the problem of building the constraint system

but does not label. It provides the user with the constrained BPH

data structure as well as the list of constraint variables present in the

BPH as a flatlist. This gives the ability to further modify the tree and

to inspect the reduced constraint system.

The easiest way to interact with the system is through the tkeclipse

interface that is provided with ECLiPSe shown in Figure 5.8. tkeclipse

allows to directly inspect the constraint system computed and provide a

good way of handling and compiling ECLiPSe modules. It requires some

knowledge about Prolog but in turn provides a good way to follow the

execution of the algorithm.

Figure 5.8: tkeclipse: Main Window and Outstanding Constraints.

Our prototype is well separated in 4 modules: data structures, aggre-

gation functions, graph loading and the algorithm implementation. It is

properly documented and easily to integrate in other work.

129

5.3. CONCLUDING REMARKS

5.3 Concluding Remarks

The SLAs an enterprise has with its service providers must support its

business goals insofar as possible. Establishing a service level agreement

that favors the business objectives requires significant commitment of re-

sources from the enterprise side, therefore any automation and support

that can be obtained for this task is greatly beneficial for the enterprise.

This chapter proposes the BP&SLA methodology for designing Web

service-based BPs with related SLAs. The proposal fills the gap that ex-

ists between the informally specified early business requirements the user

provides and the executable BP. The idea is to enrich business processes

with SLAs which are favorable for the enterprise in order to achieve its

business objectives with specific QoS. As the activities about assignment of

responsibilities on business processes need to be carefully considered from

the security point of view, the proposed methodology focuses on security

and trust aspects. The framework supports the Secure BPEL language

that allows for secure BPs specification.

To show the potential impact of the approach, we illustrate the func-

tioning of the methodology on an e-business case study inspired by an

actual research project use case. In [78], we considered the Collaborative

Procurement&Logistics use case in the Sekhukhune Rural Living Lab that

is a working scenario of the IST-FP7-IP-C@R research project2.

2C@R (Collaboration and Rural) is a R&D project funded by the European Union. The project aims
to enable people in remote and rural Europe to fully participate in the knowledge society as citizens and
as professionals, http://www.c-rural.eu.

130

Chapter 6

Conclusion and Perspective

A strong link between enterprise business processes and the company in-

comes is important. Any support in assisting business process analysts

in deriving secure business processes from early requirements analysis is

highly required. Enterprises aim to align the service level agreements as

much as possible with the business goals. This allows for better plan-

ning and reducing costs, facilitating delivery of new kind of services, and

convincing management to try new services and applications. While, devel-

opment an appropriate service level agreement supporting business goals

of an enterprise is not a trivial task, it requires significant commitment of

resources from the enterprise side. Therefore, any automation that can be

obtained for this task is greatly beneficial.

In this thesis we focused on the problem of engineering secure Web

service-based business processes with service level agreements from early

requirements.

We addressed the problem of secure Web service-based business pro-

cesses modelling based on the analysis of early requirements. We pre-

sented a refinement methodology that allows for obtaining an executable

Web service-based secure workflow from early requirements modelled in

the Secure Tropos formalism. We introduced a specification language Se-

131

cure BPEL for secure business processes that allows the workflow engine

to automatically enforce trust and delegation requirements. We filled the

gap between the requirements engineering methodologies and the actual

generation of business processes based on Service-Oriented Architectures

with particular emphasis on the security aspects.

We addressed the issue of formalization of the notion of an agreement

and proposed a formal representation for the internal and external states

of an agreement. We presented a formal analysis of WS-Agreement by

resorting to finite state automata and providing a set of formal rules that

tie together terms and the life-cycle of an agreement. Such formalization

allowed us to discover that an agreement could be made more long-lived

and robust with respect to forecoming violations. We presented the details

of the proposed extension in formal terms and evaluated the approach

through simulation experiments. In the experimentation, more than 92%

of violation points are warned in advance, and 96.5% of thrown warnings

are true warnings.

Finally, we proposed a methodology to design Web service-based busi-

ness processes together with service level agreements that guarantee a cer-

tain quality of execution, with particular emphasis on the security aspects.

Starting from an early requirements analysis modelled in the Secure Tropos

formalism, we provided a set of user-guided transformations and reasoning

tools. The final output obtained was a set of processes in the form of Secure

BPEL together with a set of service level agreements in WS-Agreement to

be signed by participating services. The constraint algorithm for SLAs was

implemented in the constraint solving environment ECLiPSe. We used the

IC Hybrid Domain Solver to solve the constraint problem. To showed the

feasibility of the approach, we evaluated the performance of the method-

ology on an e-business banking scenario, more specifically, from a typical

loan origination process, inspired by an actual research project use case.

132

CHAPTER 6. CONCLUSION AND PERSPECTIVE

The work proposed in this dissertation suggests several directions for

future investigation.

SLA Monitoring for Secure Business Process

The proposed framework provides monitoring based on the client’s goal

described in service level agreement and focuses on how the guarantee is

fulfilled. The approach predicts and notifies terms violations. However,

the framework extension for SLA monitoring of secure business process is

an open issue. The extended framework should not only answer to the

question “Is the guarantee close or far from being violated?”, but it should

also discover the components of the composition that are responsible for

the violation. Another issue for future work is the auditing of service level

agreement for secure Web service-based business processes.

“Lack of Permission” Problem in Secure Business Process

We proposed the Secure BPEL language as a specification language for

secure business process that allows the workflow engine to automatically

enforce trust and delegation requirements. While proceeding from early re-

quirements analysis towards secure workflows, we faced the so called “lack

of permission” problem. The “lack of permission” situation appears when

there is a chain of delegation of execution with no corresponding chain of

delegation of permission. Each delegator of execution delegates on exe-

cution of a goal to the corresponding delegatee. The delegatee plays the

role of delegator of execution and delegates on execution of the goal to

other delegatee, etc. When there is no corresponding chain of delegation

of permission, the root delegator of execution delegates permission of the

goal only to the leaf actor that actually executes the goal. At this point,

all the other nodes face the “lack of permission” problem: the actor has

delegation of execution, but no permission for doing it. The same holds

for trust. In the Secure BPEL language both delegation and trust are

modelled by invocations. The delegation of execution concept is modelled

133

as invocation of an operation by one partner from the other partner. The

concepts of delegation of permission/execution are modelled as different

types of security services invocation. In order to address the ”lack of per-

mission” problem, special types of invocations should be introduced. The

new invocation should allow the data to be protected, i.e., allows message

confidentiality and integrity. An issue for future investigation is the inte-

gration in the language the details of the low level secure requirements of

messages integrity and confidentiality.

Multi-Requirement Analysis for SLA Engineering

In the proposed methodology we introduce an intermediate structure

business process hypergraph for reasoning about the business processes

and their qualities. To calculate the value of a target node taking as

arguments source nodes with the structural activity associated for each QoS

parameter, we use aggregation functions. The problem of finding service

level agreements for business processes is then a problem of reasoning on

the business process hypergraph. Further research will be devoted on multi-

requirement analysis, when the focus is on several QoS parameters at the

same time. This will require the identification of a decision-making function

that selects the preferred set of attributes. Definition and validation of the

aggregation functions for more QoS requirements will be a challenge.

134

Bibliography

[1] R. Aggarwal, K. Verma, J. Miller, and W. Milnor. Constraint Driven

Web Service Composition in METEOR-S. In Proceedings of the 2004

IEEE International Conference on Services Computing, 2004.

[2] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Klopp-

mann, D. König, F. Leymann, R. Mller, G. Pfau, K. Plsser, R. Ran-

gaswamy, A. Rickayzen, M. Rowley, P. Schmidt, I. Trickovic, A. Yiu,

and M. Zeller. WS-BPEL Extension for People (BPEL4People) 1.0,

June 2007.

[3] G. Ahn and R. Sandhu. Role-based Authorization Constraints Spec-

ification. ACM Transactions on Information and System Security,

3(4):2007–226, 2000.

[4] M. Aiello, G. Frankova, and D. Malfatti. What’s in an Agreement?

A Formal Analysis and an Extension of WS-Agreement. Technical

Report DIT-05-039, DIT, University of Trento, 2005.

[5] M. Aiello, G. Frankova, and D. Malfatti. What’s in an Agreement?

An Analysis and an Extension of WS-Agreement. In Proceedings of

the Third International Conference on Service Oriented Computing,

2005.

[6] M. Aiello and P. Giorgini. Applying the Tropos Methodology for

Analysing Web Services Requirements and Reasoning about Quali-

135

BIBLIOGRAPHY

ties of Services. CEPIS Upgrade - The European journal of the in-

formatics professional, 5(4):20–26, 2004.

[7] M. Aiello and P. Giorgini. Applying the Tropos Methodology for

Analysing Web Services Requirements and Reasoning about Qual-

ities of Services. CEPIS Upgrade - The European Journal of the

Informatics Professional, 5(4):20–26, 2004.

[8] M. Aiello, F. Rosenberg, C. Platzer, A. Ciabattoni, and S. Dustdar.

QoS Composition at the Level of Part Names. In Proceedings of the

Third International Workshop on Web Services and Formal Methods,

2006.

[9] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera,

M. Ford, Y. Goland, A. Guizar, N. Kartha, K. Liu, R. Khalaf,

D. Konig, M. Marin, V. Mehta, S. Thatte, D. van der Rijn, P. Yend-

luri, and A. Yiu. Web Services Business Process Execution Language

2.0, April 2007.

[10] D. Amyot. Introduction to the User Requirements Notation: Learn-

ing by Example. Computer Networks, 43(3):285–301, 2003.

[11] S. Anderson, A. Grau, and C. Hughes. Specification and Satisfaction

of SLAs in Service Oriented Architectures. In Proceedings of the Fifth

Annual DIRC Research Conference, 2005.

[12] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-

mann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and

S. Weerawarana. Business Process Execution Language for Web Ser-

vices 1.1, May 2003.

136

BIBLIOGRAPHY

[13] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,

T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Ser-

vices Agreement Specification (WS-Agreement), March 2007.

[14] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,

J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services Agree-

ment Negotiation Specification (WS-AgreementNegotiation), 2009.

Draft.

[15] A. Andrieux, A. Dan, K. Keahey, H. Ludwig, and J. Rofrano. Ne-

gotiability Constraints in WS-Agreement. Technical report, Grid

Resource Allocation Agreement Protocol (GRAAP) Working Group

Meetings, 2004.

[16] V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou. Evolving

Services from a Contractual Perspective. In Proceedings of the 21st

International Conference on Advanced Information Systems, 2009.

[17] S. Angelov and P. Grefen. An E-contracting Reference Architecture.

The Journal of Systems and Software, 81(11):1816–1844, 2008.

[18] K. Appleby, S.B. Calo, J.R. Giles, and K.-W. Lee. Policy-based

Automated Provisioning. IBM Systems Journal, 43(1):121–135, 2004.

[19] D. Ardagna and B. Pernici. Dynamic web service composition with

qos constraints. International Journal of Business Process Integration

and Management, 1(4):233–243, 2006.

[20] A. Arsanjani, B. Hailpern, J. Martin, and P. Tarr. Web services:

Promises and compromises. Queue, 1(1):48–58, 2003.

[21] Y. Asnar, P. Giorgini, F. Massacci, and N. Zannone. From Trust

to Dependability through Risk Analysis. In Proceedings of the the

137

BIBLIOGRAPHY

Second International Conference on Availability, Reliability and Se-

curity, 2007.

[22] A. Atzeni and A. Lioy. Why to Adopt a Security Metric? A Brief Sur-

vey. In Proceedings of the First Workshop on Quality of Protection,

2005.

[23] S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-

Baker, M. Hondo, C. Kaler, D. Langworthy, A. Malhotra, A. Nadalin,

N. Nagaratnam, H. Prafullchandra M. Nottingham, C. von Riegen,

J Schlimmer, C. Sharp, and J. Shewchuk. Web Services Policy Frame-

work (WS-Policy) 1.2, April 2006.

[24] J. Bart. SLA Savvy: Five Secrets for Making Sure you Get the Most

from Your Service-Level Agreements. Network World, 1999.

[25] M. Bartoletti, P. Degano, and G.L. Ferrari. Security Issues in Service

Composition. In Proceedings of the 8th IFIP International Confer-

ence on Formal Methods for Open Object-Based Distributed Systems,

2006.

[26] M. Bartoletti and R. Zunino. A Logic for Contracts. Technical Report

DISI-09-034, DISI, University of Trento, September 2009.

[27] T. Bellwood, S. Capell, L. Clement, J. Colgrave, Dovey M.J., D. Fey-

gin, A. Hately, R. Kochman, P. Macias, M. Novotny, C. Paolucci, M.

von Riegen, T. Rogers, K. Sycara, P. Wenzel, and Z Wu. Uddi version

3.0.2, October 2004.

[28] K. Bennett, P. Layzel, D. Budgen, P. Brereton, L. Macaulay, and

M. Munro. Service-Based Software: The Future for Flexible Soft-

ware. In Proceedings of the Seventh Asia-Pacific Software Engineer-

ing Conference, 2000.

138

BIBLIOGRAPHY

[29] K. Bhargavan, R. Corin, C. Fournet, and A.D. Gordon. Secure Ses-

sions for Web Services. ACM Transactions on Information and Sys-

tem Security, 10(2), 2007.

[30] A.S. Bilgin and M.P. Singh. A DAML-Based Repository for QoS-

Aware Semantic Web Service Selection. In Proceedings of the Second

International Conference on Web Services, 2004.

[31] M. Bitsaki, O. Danylevych, W.-J. Heuvel, G. Koutras, F. Leymann,

M. Mancioppi, C. Nikolaou, and M. Papazoglou. An Architecture

for Managing the Lifecycle of Business Goals for Partners in a Ser-

vice Network. In Proceedings of the First European Conference on

Towards a Service-Based Internet, 2008.

[32] K. Blomqvist and P. St̊ahle. Building Organizational Trust. In Pro-

ceedings of the 16th Annual Conference on Industrial Marketing and

Purchasing, 2000.

[33] M.A. Bochicchio, V. D’Andrea, N. Kokash, and F. Longo. Concep-

tual Modelling of Service-Oriented Systems. In Proceedings of the

International Conference on Web Engineering Workshops, 2007.

[34] R.K. Bock and W. Krischer. The Data Analysis: Briefbook. Springer

Verlag, 1998.

[35] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopou-

los. TROPOS: An Agent-Oriented Software Development Method-

ology. Journal of Autonomous Agents and Multi-Agent Systems,

8(3):203–236, 2004.

[36] M.J. Buco, R.N. Chang, L.Z. Luan, C. Ward, J.L. Wolf, and P.S.

Yu. Utility Computing SLA Management Based upon Business Ob-

jectives. IBM Systems Journal, 43(1):159–178, 2004.

139

BIBLIOGRAPHY

[37] M.G. Buscemi and U. Montanari. CC-Pi: A Constraint-Based Lan-

guage for Specifying Service Level Agreements. In Proceedings of the

16th European Symposium on Programming, 2007.

[38] M.E. Cambronero, G. Diaz, J.J. Pardo, and V. Valero. Using UML

Diagrams to Model Real-Time Web Services. In Proceedings of the

Second International Conference on Internet and Web Applications

and Services, 2007.

[39] C. Cappiello, M. Comuzzi, and P. Plebani. On Automated Genera-

tion of Web Service Level Agreements. In Proceedings of the 19th In-

ternational Conference on Advanced Information Systems Engineer-

ing, 2007.

[40] P. Cappiello, C. amd Missier, B. Pernici, P. Plebani, and C. Batini.

QoS in Multichannel IS: The MAIS Approach. In Proceedings of

the International Workshop on Web Quality in conjunction with the

Fourth International Conference on Web Engineering, 2004.

[41] J Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality

of Service for Workflows and Web Service Processes. Journal of Web

Semantics, 1(3):281–308, 2004.

[42] F. Casati, M-C. Shan, and D. Georgakopoulos. E-Services - Guest

editorial. The VLDB Journal, 10(1), 2001.

[43] C. Castelfranchi and R. Falcone. Principles of Trust for MAS: Cogni-

tive Anatomy, Social Importance and Quantification. In Proceedings

of the Third International Conference on Multiagent Systems, 1998.

[44] Y. Chen, S. Iyer, X. Liu, D. Milojicic, and A. Sahai. Translating Ser-

vice Level Objectives to Lower Level Policies for Multi-tier Services.

Journal of Cluster Computing, 11(3):299–311, 2008.

140

BIBLIOGRAPHY

[45] B.H.C. Cheng, S. Konrad, L.A. Campbell, and R. Wassermann. Us-

ing Security Patterns to Model and Analyze Security Requirements.

In Proceedings of the IEEE Workshop on Requirements for High As-

surance Systems, 2003.

[46] R. Chinnici, J. Moreau, A. Ryman, and S. Weerawarana. Web Ser-

vices Description Language (WSDL) 1.1, June 2007.

[47] N. Chudasma and S. Chaudhary. Service Composition Using Service

Selection with WS-Agreement. In Proceedigs on the Second Bangalore

Annual Compute Conference, 2009.

[48] D.D. Clark, S. Shenker, and L. Zhang. Supporting Real-Time Appli-

cations in an Integrated Services Packet Network: Architecture and

Mechanism. In Proceedings of the 1992 ACM SIGCOMM, 1992.

[49] W. Classen. Fundamentals of Software Licensing. IDEA: The Journal

of Law and Technology, 37(1), 1996.

[50] E. Colombo, J. Mylopoulos, and P Spoletini. Modeling and Analyzing

Context-aware Composition of Services. In Proceedings of the Third

International Conference on Service-Oriented Computing, 2005.

[51] M. Comuzzi and B. Pernici. A Framework for the QoS-Based Web

Service Contracting. ACM Transaction on the Web, 3(3), 2009.

[52] I. Crnkovic, M. Larsson, and O. Preiss. Concerning Predictability

in Dependable Component-Based Systems: Classification of Qual-

ity Attributes. In Architecting Dependable Systems III, LNCS 3549.

Springer Verlag, 2005.

[53] R.L. Cruz. Quality of Service Guarantees in Virtual Circuit Switched

Networks. IEEE Journal on Selected Areas in Communications,

13(6):1048–1056, 1995.

141

BIBLIOGRAPHY

[54] L. M. Cysneiros and E. Yu. Requirements Engineering for Large-Scale

Multi-Agent Systems. In Software Engineering for Large-Scale Multi-

Agent Systems Research Issues and Practical Applications, LNCS

2603. Springer Verlag, 2003.

[55] K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and M. Xu.

Agreement-based Grid Service Management (OGSI-Agreement).

Technical report, Global Grid Forum, GRAAP-WG Author Contri-

bution, 2003.

[56] K. Czajkowski, I.T. Foster, C. Kesselman, V. Sander, and S. Tuecke.

SNAP: A Protocol for Negotiating Service Level Agreements and Co-

ordinating Resource Management in Distributed Systems. In Process-

ings of the Eighth Workshop on Job Scheduling Strategies for Parallel

Processing, 2002.

[57] A. Dan, K. Keahey, H. Ludwig, and J. Rofrano. Guarantee Terms in

WS-Agreement. Technical report, Grid Resource Allocation Agree-

ment Protocol (GRAAP) Working Group Meetings, 2004.

[58] V. D’Andrea and G.R. Gangadharan. Licensing Services: The Rising.

In Proceedings of the International Conference on Internet and Web

Applications and Services, 2006.

[59] J.L. de la Vara, J. Sánchez, and Ó. Pastor. Business Process Mod-

elling and Purpose Analysis for Requirements Analysis of Informa-

tion Systems. In Proceedings of the 20th International Conference on

Advanced Information Systems Engineering, 2008.

[60] H. Demirkan, M. Goul, and D.S. Soper. Service Level Agreement Ne-

gotiation: A Theory-based Exploratory Study as a Starting Point for

Identifying Negotiation Support System Requirements. In Proceed-

142

BIBLIOGRAPHY

ings of the 38th Hawaii International Conference on System Sciences,

2005.

[61] J. den Hartog, C. Hutter, and S. Trabelsi. Combined Trust Manage-

ment Architecture. In Proceedings of the International Conference

on Mobility, Individualisation, Socialisation and Connectivity, 2010.

[62] V. Deora, J. Shao, W.A. Gray, and N.J. Fiddian. Expectation-Based

Quality of Service Assessment. International Journal on Digital Li-

braries, 6(2):260–269, 2006.

[63] M. Deubler, M. Meisinger, S. Rittmann, and I. Kruger. Modeling

Crosscutting Services with UML Sequence Diagrams. In Proceedings

of the ACM/IEEE Eighth International Conference on Model Driven

Engineering Languages and Systems, 2005.

[64] G. Di Modica, O. Tomarchio, and L. Vita. Dynamic SLAs Man-

agement in Service Oriented Environments. Journal of Systems and

Software, 82(5):759–771, 2009.

[65] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and M. Bruno.

Search-based Testing of Service Level Agreements. In Proceedings

of the Ninth Conference on Genetic and Evolutionary Computation,

2007.

[66] D. Distante, G. Rossi, G. Canfora, and S. Tilley. A Comprehensive

Design Model for Integrating Business Processes in Web Applica-

tions. International Journal of Web Engineering and Technology,

3(1):43–72, 2007.

[67] D. Domingos, A. Rito Silva, and P. Veiga. Workflow Access Control

from a Business Perspective. In Proceedings of the Sixth International

Conference on Enterprise Information Systems, 2004.

143

BIBLIOGRAPHY

[68] J. Dörflingerd, G. Frankova, A. Lucientes, R. de Louw, M. Navarro,

C. Peña, C. Ralli, and T. Robles. Enhancing an Open Service Ori-

ented Architecture with Collaborative Functions for Rural Areas. In

Proceedings of the 14th International Conference on Concurrent En-

terprising, 2008.

[69] S. Dustdar and W. Schreiner. A Survey on Web Services Compo-

sition. International Journal of Web and Grid Services, 1(1):1–30,

2005.

[70] A. Elfatatry and P. Layzell. A Negotiation Description Language.

Software - Practice and Experience, 35(4):323–343, 2005.

[71] A. Elfatatry and P. Layzell. Negotiating in Service-Oriented Envi-

ronments. Communication of the ACM, 47(8):103–108, 2005.

[72] R. Falcone and C. Castelfranchi. Social Trust: A Cognitive Approach.

In Trust and Deception in Virtual Societies. Kluwer Academic Pub-

lishers, 2001.

[73] International Organization for Standardization. Software engineering

- Software product Quality Requirements and Evaluation (SQuaRE)

- Quality requirements, 2007. ISO/IEC 25030.

[74] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. Grid Services for

Distributed System Integration. IEEE Computer, 35(6, pages =),

2002.

[75] G. Frankova. An Application in e-Business Using Web Services”.

Master’s thesis, Computer Science Department, Applied Mathemat-

ics Faculty, Dnepropetrovsk National University, 2004.

[76] G. Frankova. Web Service Quality Composition Modelling. In Pro-

ceedings of the IBM PhD Symposium at the Third International Con-

144

BIBLIOGRAPHY

ference on Service-Oriented Computing, 2005. IBM Research Report

RC23826.

[77] G. Frankova. Service Level Agreements: Web Services and Secu-

rity. In Proceedings of the Seventh International Conference on Web

Engineering, 2007. Doctoral Consortium.

[78] G. Frankova, M. Aiello, M. Séguran, F. Gilcher, S. Trabelsi, and

J. Dörflingerd. Deriving Business Processes with Service Level Agree-

ments from Early Requirements. 2009. Manuscript submitted to the

Journal of Systems and Software.

[79] G. Frankova, A. Chibani, Y. Amirat, and F. Sannicolò. Towards

Context Modeling for Cooperative Rural Living Labs. In Collabora-

tion and the Knowledge Economy: Issues, Applications, Case Stud-

ies, The eChallenges e-2008 Conference. IOS Press, 2008.

[80] G. Frankova, D. Malfatti, and M. Aiello. Semantics and Extensions

of WS-Agreement. Journal of Software, 1(1):23–31, 2006.

[81] G. Frankova, F. Massacci, and M. Séguran. From Early Requirements

Analysis towards Secure Workflows. Technical Report DIT-07-036,

DIT, University of Trento, 2007.

[82] G. Frankova, F. Massacci, and M. Séguran. From Early Requirements

Analysis towards Secure Workflows. In Proceedings of the joint iTrust

and PST Conferences on Privacy, Trust Management and Security,

2007.

[83] G. Frankova and A. Yautsiukhin. Service and Protection Level Agree-

ments for Business Processes. European Young Researchers Work-

shop on Service Oriented Computing, 2007.

145

BIBLIOGRAPHY

[84] G. Frankova, A. Yautsiukhin, and M. Séguran. From Early Require-

ments to Business Processes with Service Level Agreements. Techni-

cal Report DIT-07-037, University of Trento, 2007.

[85] S. Frølund and J. Koistinen. Quality-of-Service Specification in Dis-

tributed Object Systems. Distributed Systems Engineering, 5(4):179–

202, 1998.

[86] H.M. Frutos, I. Kotsiopoulos, L.M.V. Gonzalez, and R.D. Merino.

Enhancing Service Selection by Semantic QoS. In Proceedings of the

Sixth European Semantic Web Conference on The Semantic Web:

Research and Applications, 2009.

[87] M.G. Fugini, P. Plebani, and F. Ramoni. A User Driven Policy Se-

lection Model. In Proceedings of the Fourth International Conference

on Service Oriented Computing, 2006.

[88] A. Fuxman, L. Liu, j. Mylopoulos, M. Pistore, M. Roveri, and

P. Traverso. Specifying and Analyzing Early Requirements in Tropos.

Requirements Engineering, 9(2):132–150, May 2004.

[89] D. Gambetta. Can We Trust Trust? In Trust: Making and Breaking

Cooperative Relations. Blackwell Publishers, 1990.

[90] G.R. Gangadharan and V. D’Andrea. Licensing Services: Formal

Analysis and Implementation. In Proceedings of the Forth Interna-

tional Conference on Service Oriented Computing, 2006.

[91] G.R. Gangadharan, G. Frankova, and V. D’Andrea. Service License

Life Cycle. In Proceedings of the International Symposium on Col-

laborative Technologies and Systems, 2007.

146

BIBLIOGRAPHY

[92] T. Gardner. UML Modelling of Automated Business Processes with

a Mapping to BPEL4WS. In Proceedings of the Second European

Workshop on Object Orientation and Web Services, 2004.

[93] G. Georg, I. Ray, and R. France. Using Aspects to Design a Secure

System. In Proceedings of the Eight IEEE International Conference

on Engineering of Complex Computer Systems, 2002.

[94] H. Gimpel, H. Ludwig, A. Dan, and B. Kearney. PANDA: Speci-

fying Policies for Automated Negotiations of Service Contracts. In

Proceedings of the First International Conference on Service Oriented

Computing, 2003.

[95] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Require-

ments Engineering for Trust Management: Model, Methodology, and

Reasoning. International Journal of Information Security, 5(4):257–

274, 2006.

[96] D. Gouscos, M. Kalikakis, and P. Georgiadis. An Approach to Mod-

eling Web Service QoS and Provision Price. In Proceedings of the

First Web Services Quality Workshop at the Fourth International

Conference on Web Information Systems Engineering, 2003.

[97] T. Grandison and M. Sloman. Specifying and Analysing Trust for

Internet Applications. In Proceedings of the Second IFIP Conference

on Towards The Knowledge Society: E-Commerce, E-Business, E-

Government, 2002.

[98] T. Grandison and M. Sloman. Trust Management Tools for Internet

Applications. In Proceedings of the First International Conference

on Trust Management, 2003.

147

BIBLIOGRAPHY

[99] D. Greenwood, G. Vitaglione, L. Keller, and M. Calisti. Service Level

Agreement Management with Adaptive Coordination. In Proceedigs

on the Second International conference on Networking and Services,

2006.

[100] Open Management Group. Object Constraint Language (OCL), Ver-

sion 2.0, May 2006.

[101] Open Management Group. Unified Modeling LanguageTM (UML),

Version 2.2, February 2009.

[102] M. Gudgin, M. Hadley, N. Mendelsohn, H.F. Moreau, J. Nielsen,

A. Karmarkar, and Y. Lafon. SOAP Version 1.2, April 2007.

[103] C.B. Haley, R. Laney, J.D. Moffett, and B. Nuseibeh. Security Re-

quirements Engineering: A Framework for Representation and Anal-

ysis. IEEE Transactions on Software Engineering, 34(1):133–153,

2008.

[104] C.B. Haley, R.C. Laney, and B. Nuseibeh. Deriving Security Re-

quirements from Crosscutting Threat Descriptions. In Proceedings

of the Third International Conference on Aspect-Oriented Software

Development, 2004.

[105] P. Hasselmeyer, B. Koller, M. Parkin, and P. Wieder. An SLA Re-

negotiation Protocol. In Proceeding of the Second Non Functional

Properties and Service Level Agreements in Service Oriented Com-

puting Workshop, 2008.

[106] P. Hasselmeyer, C. Qu, L. Schubert, B. Koller, and P. Wieder. To-

wards Autonomous Brokered SLA Negotiation. In Exploiting the

Knowledge Economy - Issues, Applications, Case Studies, volume 3.

IOS Press, 2006.

148

BIBLIOGRAPHY

[107] D. Hatebur, M. Heisel, and H. Schmidt. Analysis and Component-

based Realization of Security Requirements. In Proceedings of the

Third International Conference on Availability, Reliability and Secu-

rity, 2008.

[108] Q. He, J. Yan, R. Kowalczyk, H. Jin, and Y. Yang. Lifetime Service

Level Agreement Management with Autonomous Agents for Services

Provision. Information Sciences, 179(15):2591–2605, 2009.

[109] How to Series. SLA: Getting It Right - An Enterprise’s Business Ob-

jectives Should Form the Fundamental Basis of an SLA. Voice&Data,

March 2005.

[110] P.C.K. Hung, H. Li, and J. Jeng. WS-Negotiation: An Overview

of Research Issues. In Proceedings of the 37th Hawaii International

Conference on System Sciences, 2004.

[111] M.C. Jaeger, G. Rojec-Goldmann, and G. Mühl. QoS Aggregation in

Web Service Compositions. In Proceedings of the Seventh IEEE In-

ternational Conference on e-Technology, e-Commerce and e-Service,

2005.

[112] H. Jin and H. Wu. Semantic-enabled Specification for Web Services

Agreement. International Journal of Web Services Practices, 1(1–

2):12–20, 2005.

[113] L. Jin, V. Machiraju, and A. Sahai. Analysis on Service Level Agree-

ment of Web Services. Technical Report HPL-2002-180, Hewlett-

Packard Laboratories Palo Alto, Software Technology Laboratory,

June 2002.

149

BIBLIOGRAPHY

[114] A. Jøsang. Trust and Reputation Systems. In Foundations of Se-

curity Analysis and Design. Tutorial Lectures, LNCS 4677. Kluwer

Academic Publishers, 2007.

[115] R. Jurca, W. Binder, and B. Faltings. Reliable QoS Monitoring Based

on Client Feedback. In Proceedings of the 16th International World

Wide Web Conference, 2007.

[116] I.J. Jureta, C. Herssens, and S. Faulkner. A Comprehensive Qual-

ity Model for Service-Oriented Systems. Software Quality Journal,

17(1):65–98, 2009.

[117] J. Jürjens. Secure Systems Development with UML. Springer Verlag,

2004.

[118] R.S. Kaabi, C. Souveyet, and C. Rolland. Eliciting Service Com-

position in a Goal Driven Manner. In Proceedings of the Second

International Conference on Service Oriented Computing, 2004.

[119] H. Kaminski and M. Perry. SLA Automated Negotiation Manager for

Computing Services. In Proceedings of the The Eighth IEEE Interna-

tional Conference on E-Commerce Technology and The Third IEEE

International Conference on Enterprise Computing, E-Commerce,

and E-Services, 2006.

[120] N. Karten. How to establish Service Level Agreements. Karten As-

sosiates, 1998.

[121] R. Kazhamiakin, M. Pistore, and M. Roveri. A Framework for Inte-

grating Business Processes and Business Requirements. In Proceeding

of the the Eighth International IEEE Enterprise Distributed Object

Computing Conference, 2004.

150

BIBLIOGRAPHY

[122] A. Keller and H. Ludwig. The WSLA Framework: Specifying and

Monitoring Service Level Agreements for Web Services. Journal

of Network and Systems Management, Special Issue on E-Business

Management, 11(1):57–81, 2003.

[123] K Knorr and S. Röhrig. Security Requirements of E-Business Pro-

cesses. In Proceedings of the IFIP Conference on Towards The E-

Society: E-Commerce, E-Business, E-Government, 2001.

[124] D.D. Lamanna, J. Skene, and W. Emmerich. SLAng: A Language for

Defining Service Level Agreements. In Proceedings of the Ninth IEEE

Workshop on Future Trends of Distributed Computing Systems, 2003.

[125] A. Lapouchnian, Y. Yu, and J. Mylopoulos. Requirements-Driven

Design and Configuration Management of Business Processes. In

Proceeding of the Fifth International Conference on Business Process

Management, 2007.

[126] D. Lau and J. Mylopoulos. Designing Web Services with Tropos.

In Proceedings of the Second IEEE International Conference on Web

Services, 2004.

[127] K. Lawrence, C. Kaler, A. Nadalin, M. Goodner, M. Gudgin, A. Bar-

bir, and H. Granqvist. Web Services Trust Language (WS-Trust) 1.3,

March 2007.

[128] K. Lawrence, C. Kaler, A. Nadalin, M. Goodner, M. Gudgin, A. Bar-

bir, and H. Granqvist. WS-SecurityPolicy 1.2, July 2007.

[129] K. Lawrence, C. Kaler, A. Nadalin, R. Monzillo, and P. Hallam-

Baker. Web Services Security: SOAP Message Security 1.1 (WS-

Security), February 2006.

151

BIBLIOGRAPHY

[130] K. Lee, J. Jeon, W. Lee, S. Jeong, and S. Park. QoS for Web Ser-

vices: Requirements and Possible Approaches. W3C Working Group,

November 2003.

[131] M. Lemley, P. Menell, R. Merges, and P. Samuelson. Software and

Internet Law. Aspen Publishers, 2006.

[132] H. Li, S.Y.W. Su, and H. Lam. On Automated e-Business Negotia-

tions: Goal, Policy, Strategy, and Plans of Decision and Action. Jour-

nal of Organizational Computing and Electronic Commerce, 13(1):1–

29, 2006.

[133] M. Lin, J. Xie, H. Guo, and H. Wang. Solving QoS-Driven Web

Service Dynamic Composition as Fuzzy Constraint Satisfaction. In

Proceedings of the Seventh IEEE International Conference on e-

Technology, e-Commerce and e-Service, 2005.

[134] H. Lockhart, S. Andersen, J. Bohren, Y. Sverdlov, M. Hondo,

H. Maruyama, N. Nadalin, A. Nagaratnam, T. Boubez, K.S. Mor-

rison, C. Kaler, A. Nanda, D. Schmidt, D. Walters, H. Wilson,

L. Burch, D. Earl, S. Baja, and H. Prafullchandra. Web Services

Federation Language (WS-Federation) 1.1, December 2006.

[135] A. Longo. ”Conceptual Modelling of Business Process in Web Ap-

plication Design”. PhD thesis, University of Lecce, Innovation Engi-

neering Department, 2004.

[136] A. Ludwig and M. Kowalkiewicz. Supporting Service Level Agree-

ment Creation with Past Service Behavior Data. In Proceedings of the

First Workshop on Service Discovery and Selection in SOA Ecosys-

tems, 2009.

152

BIBLIOGRAPHY

[137] H. Ludwig. Web Services QoS: External SLAs and Internal Policies or

How do we Deliver what we Promise? In Proceedings of the First Web

Services Quality Workshop at the Fourth International Conference on

Web Information Systems Engineering, 2003.

[138] H. Ludwig, A. Dan, and R. Kearney. CREMONA: an Architecture

and Library for Creation and Monitoring of WS-Agreements. In Pro-

ceedings of the Second International Conference on Service-Oriented

Computing, 2004.

[139] H. Ludwig, A. Keller, A. Dan, R.P. King, and R. Franck. Web Service

Level Agreement (WSLA) Language Specification. Version 1.0. IBM

Corporation, January 2003.

[140] P. Madsen. WS-Trust: Interoperable Security for Web Services. June

2003.

[141] D. Malfatti. A Framework for the Monitoring of the QoS by extending

WS-Agreement. Master’s thesis, Corso di Laurea in Informatica,

Università degli Studi di Trento, 2005. In Italian.

[142] A. Mani and A. Nagarajan. Understanding Quality of Service for

Web Services. IBM DeveloperWorks Technical Paper, 2002.

[143] E. Marcos, V. de Castro, and B. Vela. Representing Web Services

with UML: A Case Study. In Proceedings of the First International

Conference on Service-Oriented Computing, 2003.

[144] F. Massacci, J. Mylopoulos, and N. Zannone. An Ontology for Secure

Socio-Technical Systems. In Handbook of Ontologies for Business

Interaction. IDEA, 2007.

153

BIBLIOGRAPHY

[145] E.M. Maximilien and M.P. Singh. A Framework and Ontology for

Dynamic Web Services Selection. IEEE Internet Computing, 8(5):84–

93, 2004.

[146] F.L. Mayer. A Brief Comparison of Two Different Environmental

Guidelines for Determining “Levels of Trust”. In Proceedings of the

Sixth Annual Computer Security Applications Conference, 1990.

[147] P. McKee, S.J. Taylor, M. Surridge, R. Lowe, and C. Ragusa. Strate-

gies for the Service Market Place. In Proceedings of the Fourth Inter-

national Workshop on Grid Economics and Business Models, 2007.

[148] D.H. McKnight and N.L. Chervany. The Meanings of Trust. Techni-

cal Report WP 96-04, University of Minnesota, MIS Research Center,

1996.

[149] D.A. Menascé. QoS Issues in Web Services. IEEE Internet Comput-

ing, 6(6):72–75, 2002.

[150] D.A. Menascé, H. Ruan, and H. Gomaa. QoS Management in

Service-Oriented Architectures. Performance Evaluation Journal,

64(7–8):646–663, 2007.

[151] C. Molina-Jimenez, J. Pruyne, and A. van Moorsel. The Role of

Agreements in IT Management Software. In Architecting Dependable

Systems III, LNCS 3549. Springer Verlag, 2005.

[152] C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and J. Warne. Run-

time Monitoring and Enforcement of Electronic Contracts. Electronic

Commerce Research and Applications, 3(2):108–125, 2004.

[153] C. Molina-Jimenez, S.K. Shrivastava, J. Crowcroft, and P. Gevros.

On the Monitoring of Contractual Service Level Agreements. In

154

BIBLIOGRAPHY

Proceedings of the First IEEE International Workshop on Electronic

Contracting, 2004.

[154] C. Müller, O. Mart’ın-D’ıaz, A. Ruiz-Cortés, M. Resinas, and

P. Fernández. Improving Temporal-Awareness of WS-Agreement. In

Proceedings of the Fifth International Conference on Service-Oriented

Computing, 2007.

[155] C. Müller, A. Ruiz-Cortés, and M. Resinas. An Initial Approach to

Explaining SLA Inconsistencies. In Proceedings of the Sixth Interna-

tional Conference on Service-Oriented Computing, 2008.

[156] N. Muller. Managing Service Level Agreements. International Jour-

nal of Network Management, 9:155–166, 1999.

[157] J. Myerson. Use SLAs in a Web Services Context. IBM Developer-

Works Technical Paper, 2002. Part 1.

[158] J. Mylopoulos, L. Chung, and B. Nixon. Representing and using non-

functional requirements: a process-oriented approach. IEEE Trans-

actions on Software Engineering, 18(6):488–497, 1992.

[159] T. Neubauer, M. Klemen, and S. x. Biffl. Secure Business Process

Management: A Roadmap. In Proceedings of the First International

Conference on Availability, Reliability and Security, 2006.

[160] B. Nuseibeh, C.B. Haley, and C. Foster. Securing the Skies: In

Requirements We Trust. Computer, 42(9):64–72, 2009.

[161] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Semantic WS-

Agreement Partner Selection. In Proceedings of the 15th International

World Wide Web Conference, 2006.

155

BIBLIOGRAPHY

[162] J. O’Sullivan, D. Edmond, and A.H.M. ter Hofstede. What’s in a Ser-

vice? Towards Accurate Description of Non-Function Service Prop-

erties. Distributed and Parallel Databases, 12(2–3):117–133, 2002.

[163] M. Papazoglou, V. D’Andrea, D. Plexousakis, P. Grefen, J. Yang,

M. Mecella, and P. Plebani. SOC: Service-Oriented Computing Man-

ifesto, 2003.

[164] M. Papazoglou and D. Georgakopoulos. Service-Oriented Computing.

Communications of the ACM, 46(10):25–28, 2003.

[165] M.P. Papazoglou and J. Yang. Design Methodology for Web Services

and Business Processes. In Proceedings of the International Workshop

on Technologies for E-Services, 2002.

[166] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. From Stakeholder

Needs to Service Requirements. In Proceeding of International Work-

shop on Service-Oriented Computing: Consequences for Engineering

Requirements, 2006.

[167] A. Pichot, O. Waldrich, W. Ziegler, and P. Wieder. Towards Dynamic

Service Level Agreement Negotiation:An Approach Based on WS-

Agreement. In Proceeding of the Fouth International Conference on

Web Information Systems and Technologies, 2008.

[168] D.A.C. Quartela, M.W.A. Steen, S. Pokraev, and M. van Sinderena.

A Conceptual Framework for Service Modelling. In Proceedings of the

Tenth IEEE International Enterprise Distributed Object Computing

Conference, 2006.

[169] S. Ran. Model for Web Services Discovery with QoS. SIGEcom

Exchanges, 4(1):1–10, 2004.

156

BIBLIOGRAPHY

[170] O. Rana, M. Warnier, T.B. Quillinan, and F. Brazier. Monitoring and

Reputation Mechanisms for Service Level Agreements. In Proceedings

of the Fifth International Workshop on Grid Economics and Business

Models, 2008.

[171] D.M. Reeves, M.P. Wellman, and B.N. Grosof. Automated Nego-

tiation from Declarative Contract Descriptions. In Computational

Intelligence, volume 18, pages 482–500, 2002.

[172] A. Sahai, A. Durante, and V. Machiraju. Towards Automated SLA

Management for Web Services. Technical Report HPL-2001-310,

Hewlett-Packard Laboratories Palo Alto, Software Technology Lab-

oratory, July 2001.

[173] A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel, F. Casati, and L.J.

Jin. Automated SLA Monitoring for Web Services. In Proceedings of

the 13th International Workshop on Distributed Systems: Operations

and Management, 2002.

[174] K. Salamatian and S. Fdida. Measurement Based Modeling of Qual-

ity of Service in the Internet: A Methodological Approach. In Pro-

ceedings of the Thyrrhenian International Workshop on Digital Com-

munications: Evolutionary Trends of the Internet, 2001.

[175] H. Schmidt. Service Contracts Based on Workflow Modeling. In

Proceedings of the 11th IFIP/IEEE International Workshop on Dis-

tributed Systems: Operations and Management: Services Manage-

ment in Intelligent Networks, 2000.

[176] M. Séguran, C. Hébert, and G. Frankova. Secure Workflow Develop-

ment From Early Requirements Analysis. In Proceedings of the Sixth

IEEE European Conference on Web Services, 2008.

157

BIBLIOGRAPHY

[177] R. Simon and M. Zurko. Separation of Duty in Role-Based Environ-

ments. In Proceedings of Computer Security Foundations Workshop,

1997.

[178] G. Sindre and A.L. Opdahl. Eliciting Security Requirements with

Misuse Cases. Requirements Engineering, 10(1):34–44, 2005.

[179] D. Skogan, R. Grønmo, and I. Solheim. Web Service Composition

in UML. In Proceedings of the Eighth International IEEE Enterprise

Distributed Object Computing Conference, 2004.

[180] E. Solaiman, C. Molina-Jimenez, and Shrivastava. S. Model Checking

Correctness Properties of Electronic Contracts. In Proceedings of the

First International Conference on Service Oriented Computing, 2003.

[181] R. Stone. Contract Law. Cavendish publishing, 2005.

[182] M. Ströbel. Engineering Electronic Negotiations. Kluwer Academic

Publishers, 2002.

[183] A. Susi, A. Perini, J. Mylopoulos, and P. Giorgini. The Tropos Meta-

model and its Use. Informatica, 29:401–408, 2005.

[184] M. Tian, A. Gramm, H. Ritter, and J. Schiller. Efficient Selection and

Monitoring of QoS-aware Web Services with the WS-QoS Framework.

In Proceedings of the IEEE/WIC/ACM International Conference on

Web Intelligence, 2004.

[185] V. Tosic. WSOL Version 1.2. Technical Report SCE-04-11, Depart-

ment of Systems and Computer Engineering, Carleton University,

July 2004.

[186] J.J.M. Trienekens, J.J. Bouman, and M. van der Zwan. Specification

of Service Level Agreements: Problems, Principles and Practices.

Software Quality Journal, 12(1):43–57, 2004.

158

BIBLIOGRAPHY

[187] Trusted Computing Group. TCG Specification Architecture

Overview Revision 1.2, April 2003.

[188] E. Tsang. Foundations of Constraint Satisfaction. Academic Press,

1995.

[189] W.-J. van den Heuvel, K. Leune, and M.P. Papazoglou. EFSOC: A

Layered Framework for Developing Secure Interactions between Web-

Services. Distributed and Parallel Databases, 18(2):115–145, 2005.

[190] A. van Lamsweerde, S. Brohez, R. De Landtsheer, and D. Janssens.

From System Goals to Intruder Anti-Goals: Attack Generation and

Resolution for Security Requirements Engineering. In Proceedings of

Workshop on Requirements for High Assurance Systems, 2003.

[191] A. van Moorsel. Metrics for the Internet Age: Quality of Experience

and Quality of Business. In Proceedings of the Fifth Performability

Workshop, 2001.

[192] I.T.P. Vanderfeesten, H.A. Reijers, J. Mendling, W.M.P. van der

Aalst, and J. Cardoso. On a Quest for Good Process Models: The

Cross-Connectivity Metric. In Proceedings of the 20th International

Conference on Advanced Information Systems Engineering, 2008.

[193] M. Virdell. Business Processes and Workflow in the Web Services

World. 2006.

[194] U. Wahli, G.G. Ochoa, S. Cocasse, and M. Muetschard. WebSphere

Version 5.1 Application Developer 5.1.1 Web Services Handbook.

IBM, February 2004.

[195] M. Weiss and D. Amyot. Business Process Modeling with URN.

International Journal of E-Business Research, 1(3):63–90, 2005.

159

BIBLIOGRAPHY

[196] S.A. White. Business Process Modeling Notation (BPMN), Version

1.1, January 2008.

[197] E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and P. Devanbu.

GlueQoS: Middleware to Sweeten Quality-of-Service Policy Interac-

tions. In Proceedings of the 26th International Conference on Soft-

ware Engineering, 2004.

[198] C. Wolter, H. Plate, and C. Ség. Collaborative Workflow Manage-

ment for eGovernment. In Proceedings of the 18th International Con-

ference on Database and Expert Systems Applications, 2007.

[199] C. Wolter and A. Schaad. Modeling of Task-Based Authorization

in BPMN. In Proceedings of the Fifth International Conference on

Business Process Management, 2007.

[200] K. Wolter and A. van Moorsel. The Relationship between Quality

of Service and Business Metrics: Monitoring, Notification and Opti-

mization. Technical Report HPL-2001-96, Hewlett-Packard Labora-

tories Palo Alto, Software Technology Laboratory, April 2001.

[201] L. Xu and M.A. Jeusfeld. Pro-active Monitoring of Electronic Con-

tracts. In Proceedings of the 16th Belgium-Netherlands Artificial In-

telligence Conference, 2004.

[202] W. Yang, H. Ludwig, and A. Dan. Compatibility Analysis of WSLA

Service Level Objectives. Technical Report RC22800 (W0305-082),

IBM Research Division, 2003.

[203] V. Yarmolenko and R. Sakellariou. Towards Increased Expressive-

ness in Service Level Agreements. Concurrency and Computation:

Practice and Experience, 19(14):1975–1990, 2007.

160

BIBLIOGRAPHY

[204] G. Yee and L. Korba. Bilateral E-services Negotiation Under Un-

certainty. In Proceedings of the Symposium on Applications and the

Internet, 2003.

[205] E. Yu. Towards Modeling and Reasoning Support for Early-Phase

Requirements Engineering. In Proceedings of the Third IEEE Inter-

national Symposium on Requirements Engineering, 1977.

[206] T. Yu and K.J. Lin. Service Selection Algorithms for Web Services

with End-to-end QoS Constraints. Journal of Information Systems

and e-Business Management, 3(2):103–126, 2005.

[207] U. Zdun, C. Hentrich, and S. Dustdar. Modeling Process-Driven and

Service-Oriented Architectures Using Patterns and Pattern Primi-

tives. ACM Transactions on the Web, 1(3), 2007.

[208] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and

H. Chang. QoS-Aware Middleware for Web Services Composition.

IEEE Transactions on Software Engineering, 30(5):311–327, 2004.

[209] O. Zimmermann, N. Schlimm, G. Waller, and M. Pestel. Analysis

and Design Techniques for Service-Oriented Development and Inte-

gration. In Proceedings of GI Jahrestagung (2), 2005.

[210] F. Zulkernine, P. Martin, C. Craddock, and K. Wilson. A Policy-

Based Middleware for Web Services SLA Negotiation. In Proceedings

of the Seventh IEEE International Conference on Web Services, 2009.

161

