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Abstract

Forest management is an important and complex msgoghich has significant implications on the envi-
ronment (e.g. protection of biological diversityintate mitigation) and the economy (e.g. estimatbn
timber volume for commercial usage). An efficiemnagement requires a very detailed knowledge of
forest attributes such as species compositionststem volume, height, etc. Hyperspectral and LIDAR
remote sensing data can provide useful informatiothe identification of these attributes: hypeispal
data with their dense sampling of the spectral aigres are important for the classification of trege-
cies, while LIDAR data are important for the stuahyd estimation of quantitative parameters of farest
(e.g. stem height, volume).

This thesis presents novel systems for the exjiwoitaf hyperspectral and LIDAR data in forest apg

tion domain. In particular, the novel contributiotss the existing literature are on both the develent

of new systems for data processing and the anatfstbe potentialities of these data in forestny. |
greater detail the main contribution of this thesi®: i) an empirical analysis on the relationstie-
tween spectral resolution, classifier complexityl @tassification accuracy in the study of complenes$t
areas. This analysis is very important for the gasof future sensors and the better exploitatiothef
existing ones; ii) a novel system for the fusiorhyerspectral and LIDAR remote sensing data in the
classification of forest areas. The system prop@sguoits the complementary information of these da
in order to obtain accurate and precise classifieatmaps; iii) an analysis on the usefulness dedgint
LIDAR returns and channels (elevantion and intgfsit the classification of forest areas; iv) anpmi

cal analysis on the use of multireturn LIDAR datathe estimation of tree stem volume. This stady i
vestigates in detail the potentialities of variablextracted from LIDAR returns (up to four) for thsti-
mation of tree stem volume; v) a novel systemhierestimation of single tree stem diameter andmelu
with multireturn LIDAR data. A comparative analysis the use of three different variable selectia m
thods and three different estimation algorithmal& presented; vi) a system for the fusion of rsyme-

tral and LIDAR remote sensing data in the estinratd tree stem diameters. This system is able-to ex
ploit hyperspectral and LIDAR data combined andasefed: this is very important as the experimental
analysis carried out with this system shows thatehypectral data can be used for rough estimatians
stem diameters when LIDAR data are not available.

The effectiveness of all the proposed systemsnhifirroed by quantitative and qualitative experiménta

results.

Keywords:
hyperspectral images, LIDAR, classification, estiomg forestry, stem volume, stem diameter, remote

sensing.
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Chapter 1

1 Introduction and thesis overview

In this chapter an introduction to this dissertatiwill be given. In greater detail, we provide areoview
on the remote sensing technology, on forest inviestand on the main issues related to analysi®mef
est areas with remote sensing data. The main aobgscand the novel contributions of this thesisals®

briefly presented. Finally, we describe the stroetand the organization of this document.

1.1 Introduction toremote sensing

With the words “Remote Sensing” we represent aketethods and techniques able to collect and-inter
pret information regarding an object without befigectly in contact with the item under investigati
(from a remote point). Remote Sensing was born pitotography but it was with the invention of air-
planes and then of satellites that it assumed #&enimg that has nowadays. Since the second Wortd Wa
remotely sensed images were widely used in theamylifield. It was in this domain that the main ene
gies were used to develop the most efficient ahahle remote sensing systems. Since the 50s, wieen
first artificial satellites were launched, remotnsing started to be used also for civil operatians! in

the recent years it became a key technology in nrumyan activities. Thanks to the research in many
fields of electronic, informatics and signal pragieg, there are now many kinds of sensors thaakble

to acquire different types of information for a gr@umber of applications.

The remote sensing sensors can be divided intactkegories: passive and active sensors. Passive sen
sors exploits the natural solar radiation, anddrtipular they collect: i) the energy coming frohe tsun
and reflected by the Earth surface (that dependbhekind of land cover, the moisture content ajeta-

tion and soil, the mineral content of the soil,))eénd ii) the energy spontaneously emitted byEhagh.

The energy measured by the sensor is usually tefléa several spectral bands (the spectral rahge o
each single band defines the spectral resolutiothe range 0.4 — 1im, and over a certain elementary
area (that defines the geometrical resolution). fitmaber of spectral bands acquired ranges from very
few to hundreds according to the kind of sensons8es that acquire less than fifteen bands arellysua
called multispectral, while the others are callggdispectral. Considering the spatial resolutioncase
divide the passive sensors into three categodie®gry high resolution (spatial resolution of lé¢isan one
meter); ii) high resolution (spatial resolutionsaime meters); iii) medium resolution (spatial regoh of
dozen meters); and iv) low spatial resolution (spagsolution of hundreds meters).

Contrarily to passive sensors active sensors medbarradiation reflected by the Earth emitted oy t

sensor itself. There are two main kinds of acteesers which work in two different regions of thece
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CHAPTER 1

tromagnetic spectrum: i) Radio Detection and RapgRADAR) sensors; and ii) Light Detection and
Ranging (LIDAR) sensors. These sensors measutasitally the same information: i) the distance be-
tween the sensor and the target; and ii) the pafvéne returned waveform (called backscatter irarad
systems and intensity in LIDAR ones). Due to théedent working wavelengths and their specific pecu
liarities these two information are provided infelient ways and they can be used in different agptn
domains.

Almost all these sensors can be mounted on bo#flisatind aerial platforms. The main issues imgsi
satellite platforms are: i) possibility to have aisition over large area with a reduced cost; @gsibility

to have multiple acquisitions over the same ared;ii@) possibility to have high spatial resolutibat at
the cost of reducing the spectral one (and thusat@ less spectral bands). Concerning the userial ae
platforms: i) they allow to have both high spatiald spectral resolution; ii) they give the posgipilo
have immediate acquisitions in case of emergenaied;iii) usually they have a higher cost per sguar
meter compared to satellite ones.

Due to the large amount of sensors available agid different peculiarities, remote sensing camugeful

in many different applications: urban environmeagriculture, damage assessment, forestry, snow and
ice monitoring, etc. In each of these applicatieash sensor has different potentialities allowhm aser

to retrieve different information from the data.

Among the possible applications of remote sensimthis thesis we focus our attention on forestrgl an
particular on forest inventories. We focus on tywegafic topics of forest inventories: tree speaksssi-

fication, and forest attributes estimation.

1.2 Forest Inventories

Historically forestry has been concerned mainlyhvihe assessment of timber resources and the man-
agement and utilization of closed forests for thadpction of wood. Attention was occasionally given
the other aspects of forests such as the wildiiteenvironmental protection. Only in the"2€entury fo-
rests acquired a double relevance. On the one liz@yare important for timber exploitation; on tita-

er hand, they are important from an environmeniglvgoint. Many areas in the world base their econ-
omy on the exploitation of timber, which can beduser the local market as well as for exportatidin a
over the world. The timber market has to relatetarfithd a trade off with environmental protectidtar-

est areas are the ecosystem for the living hoadldfife species, and they preserve many plants dha
important for the world biodiversity. From a diféstt perspective, forests play a central role iniskaes

of greenhouse gasses and climate change, in gartinihe context of the Kyoto protocol. Carborcley

is a key point of the protocol and forests arec8yrirelated to it, in particular concerning carksincks.
Accurate estimates of carbon stocks are requiretttermine its role in the global carbon cycleesti-
mate the level of anthropogenic disturbance (aedluse/land cover change) in changes that oceurs i
that cycle, and for monitoring mitigation effortsiedto reforestation. In order to estimate the aarbo

stocks of forests, it is important to have detakedwledge of them, in particular concerning thecigs



composition, and the biomass volume. Forest invesgaare the instruments usually adopted to make
such estimations. They consist in systematic ciliecof data and information over forests for asses
ment or analysis. Usually the following are impattparameters to measure and note: species, diamete
at breast height (DBH), height, site quality, aed defects. From the data collected one can eaéctiie
number of trees per hectare, the basal area, ¢he\stlume and the value of the timber. Inventocas

be done for other reasons than just calculatingetiparameters. The timber can be cruised to determi
potential fire hazards and the risk of fire. Theules of this type of inventory can be used in preive
actions and also awareness [1].

In the 18' century when forest inventories started to beiedmut, they were done with visual inspection
of the forest areas under investigation. Largestsrevere divided into smaller sections that wer-in
vidually estimated by visual inspection. The estasavere added together to figure out the entirestts
resources. In the fcentury new relationships between diameter, heyd volume were discovered.
These relationships allowed one for a quicker @ssest of much larger forests. Thus, at the endhef t
19" century, forest inventories started to be condlitteough sample-based methods involving statistics
In the subsequent years these methods were bettdlished and more accurate methods arose in the
20" century [1]. Nowadays the most common way to cauy a forest inventory is based on random
sampling, statistics and only sometimes remoteisgn¥he area under analysis is divided into groups
characterized by forests of the same age, standuste, species, and location. Once these groufs-of
ests have been created, random sampling poiniscafar shape are distributed over them. All theilat
utes measured in these sample areas are usedntatesthrough statistical models the attributeshef
whole area. In this framework remote sensing degpecially high spatial resolution orthophoto ssedu

for the definition of the homogeneous areas in Wiiarests are divided and to draw detailed bordérs
the forest areas. Usually in the standard foresritory procedure they are not involved in thenestion
process. Only in the recent years remote sensamtedtto be a key technology in this field allowfiog-
esters to increase the accuracy of the inventdriefact the use of remote sensing data in thenesitbn

process allow one to have more accurate modethdospatial estimation of forest attributes.

1.3 Remote sensing and forestry

As stated before, remote sensing can be a verylusehnology for studying forest areas, as it pies
objective data over all the scene analyzed; moreabassification and regression techniques based o
advanced pattern recognition approaches can prewidarate estimation of species composition and dis
tribution, and the retrieval of the parameters wisfr forest inventories (e.g. stem volume, forgstic-
ture, tree heights, etc). At the present, manyetkfiit sensors are available, each with its ownlgeities
and potentialities. Concerning passive sensory, tduege from high spectral and spatial resolutien-s
sors, to low spatial and spectral resolution ohethe field of active sensors we can find Synthéper-
ture Radar (SAR) data, and LIDAR (Light Detectiordd&anging) data.
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In the past years medium resolution multispectaksrs (as the Thematic Mapper of Landsat sagllite
were widely used for the analysis and classificatb forest areas. In particular, in the literature can
find studies on both classification and forest pater estimation (e.g. [2]-[7]). Due to the diffetspec-

tral and spatial resolutions of these sensors, [iossible to find studies that analyzed the probleth
different levels of detail. Considering low spati@solution satellite sensors (e.g., NOAA AVHRR(SP
VGT, etc), in the classification field, the discrimation ability is mainly limited to the distinctiobe-
tween forested and non forested areas. As an egainR] Sedanet al. makes a land cover map of an
area in Africa, distinguishing between forested and forested areas. In the context of foresthatteis
estimation Xiaoet al. in [3] underlines how SPOT-4 VEGETATION sensor ¢enuseful for both the
classification of forest types (they distinguisivese categories of forest types), and the identificaof
distinct growing pattern of these forests.

Regarding medium resolution sensors, they incréaséevel of spatial and spectral detail of thelygsia
respect to low resolution sensors. In the litemitiis possible to find many studies with thesedki of
data. Concerning classification, interesting resift the last years have been obtained with Landsat
ETM+, like in [4] where eight different vegetatiatasses are analyzed with good results. These rsenso
can be useful also in the estimation of biophygieahmeters, as detailed in many studies in tbeatifire.

As an example, in [5] Goodenoughal. compare different methods for the estimation ophysical pa-
rameters necessary for Kyoto Protocol regulatieiséng multitemporal Landsat data. The results ob-
tained are very accurate and comparable to thdséned by ground inventories.

High geometrical resolution multispectral senserg.(Quickbird, lkonos and SPOTS5) provide more ac-
curate geometrical information thanks to their hsglatial resolution, but due to their low spectesiolu-
tion they do not give a real added value in thdyaima of forest areas. The limited number of sgctr
bands of these data does not permit a detailethetisin of tree species in a forest, even thougheso
studies are present in this field. As an exampl¢6] Kosakaet al. analyze six forest types using Quick-
bird images. Some studies exist on the possiliditgelineate tree crowns from high resolution $itdel
data, like in [7] where IKONOS data were used tbrmgdethe number and the shape of tree crowns of a
forest.

However, although interesting results have beeaindt in forest analysis with multispectral dathgw
the number of species to distinguish increasesgtiensors do not represent the best solutiordar ¢
achieve accurate results, as they acquire infoomati a relatively small number of large spectrabi-
vals. This problem can be faced with passive hygsatsal sensors that, thanks to their ability tkena
dense sampling of the spectral signature, collelttable information for an accurate and detailaddb
analysis. Concerning the estimation of biophysjalameters, these data can be used in many differen
applications, from the estimation of chlorophylhcentration to the estimation of biomass volumeaAs
example, in [8] Zarco-Tejadet al. estimate the leaf chlorophyll content in conifeygune forests using
an hyperspectral image acquired by a CASI senad9]lKalacskaet al. estimate forest biomass from

EO-1 Hyperion hyperspectral satellite imagery obtey accurate results. Regarding the classification



task, hyperspectral data have been used to soleeadalifferent problems, from the distinction ofdst
from other land covers, to the distinction of vemnilar tree species. As an example, Gooden@igii.

in [4] present an interesting analysis comparirggsfication results on a forest area obtained thitee
different sensors, two multispectral (i.e. the Lsatd/ ETM+ and the EO-1 ALI) and one hyperspectral
(i.e. the EO-1 Hyperion). The results of this studpnfirmed that with hyperspectral data (even imat
dium spatial resolution) it is possible to reachcimhigher classification accuracies with respeantd-
tispectral images. Moreover, as previously stateel great potentialities of hyperspectral datdhandlas-
sification step emerge when we have to distinguésly similar tree species. In [10], Clagk al. reached
accuracies higher than 90% in distinguishing sedeiduous tree species with HYDICE sensor; in [11],
Leckie et al. used the CASI sensor to separate five differenifemus species, obtaining promising re-
sults that demonstrate the importance of this kihdata in the classification of similar tree sgsci

Active remote sensing sensors are also widely uséafest analysis, with reference to both SAR (Syn
thetic Aperture Radar) and LIDAR systems. SAR gystare an important source of information for stu-
dies on forest environments, in particular conaegrihe estimation of biophysical parameters. SAR da
allow one to estimate a wide range of forest pataragfrom the forest structure to stem volumgl1Rj,
Mannieneret al. estimate Leaf Area Index (LAI) using ENVISAT ASAfata, reaching very low estima-
tion errors. Concerning the classification dom&AR data are mainly used for the distinction ot&ted
from non-forested areas or in problems where dlaatibn is connected with tree parameters. In [13]
Ransoret al. classify four vegetation classes in Siberia, adiogy to the age of the trees and to some ma-
cro-species: young deciduous, old deciduous, yeonger and old conifer. Only few studies are usad
the distinction of different tree species: an exkngf these kinds of studies is in [14], where &lo¢hors
classify seven different vegetation classes (mta of eight) using JPL-AIRSAR data.

An active remote sensing sensor that has beenthgeadely used in the study of forest areas is AR
This sensor is an effective instrument for the ytofdiree heights, the forest structure, the fosésin vo-
lume and all the parameters connected with thécaéidimension of the scene under analysis. Asxan e
ample, Andersemt al.in [15] analyze the potentialities of LIDAR in tlestimation of some forest can-
opy fuel parameters, finding high correlation bedwel IDAR data and the biophysical parameters
studied. In [17], Hyyppat al. estimate the stem volume using segmented firstrrétiIDAR data, obtain-
ing promising results. In the classification fieldipimgrenet al. in [16] distinguish Scots pine from Nor-
way spruce using features extracted from LIDAR ddtéch characterize their structure and shape.

In the last years, the possibility to have acqisit on the same area with different sensors exbuft
studies focused on the combined use of multisedata. In this context several papers have been pre-
sented on the joint use of multispectral (or hypecsral) images and SAR data, for both classificati
and forest attributes estimation. In [18], Hyateal. present a detailed study on the combined useusf fo
different sensors (i.e. Landsat ETM+, Quickbird,RF5SAnd LIDAR) for the analysis of the forest struc-
ture. In this work they underline that the combiomatof multispectral data (like Landsat ETM+) with

LIDAR data provides good results. Regarding thatjase of LIDAR and hyperspectral data in the analy
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sis of forest areas, at the present only few worksstigated their combined use. In the contexdlasgsi-
fication, it is possible to recall the study of @entalet al.in [19], where the joint use of these kinds of
data is considered for the separation of vegetatiasses. From this paper it emerges the importahce
LIDAR technology for the distinction of shrubs franees.

On the bassi of this overview on the use of remsetesing data for forestry applications we can carel

that many remote sensing data can be used inighis In this thesis we focus our attention onlytom

kinds of data: hyperspectral and LIDAR. These defaiesent the most advanced remote sensing sensors
that can be used in forestry and they allow one&ch the best results in the classification af sgecies

and in the estimation of forest attributes. We difie reader to the introduction of each chapteihisf

thesis for a more detailed state-of-the-art oratteyzed problems.

1.4 Objectivesof thethesis
In this thesis we present novel systems for théogation of remotely sensed data for the analg§ifor-
est areas. In particular we focus our attentiorhyperspectral and LIDAR data that, as we undeiline
the following chapters with a detailed analysigh#f literature, are of primary importance in thedst of
forest areas. Moreover, our attention is also d=¢d the use of advanced pattern recognition aad m
chine learning techniques for the exploitationt@ information contained in such data acquired fmer
est areas. Forest analysis is a wide context Hratover various aspects and themes. In this tiesfs-
cus our attention on two topics: i) the classifimatof tree species; and ii) the estimation of tsésm
attributes. In greater detail, the main novel dbaotion of this thesis can be summarized as follows
A. an empirical analysis on the relationship betwegsgcsal resolution, classifier complexity and
classification accuracy in the classification ofnpex forest areas;
B. a novel system for the fusion of hyperspectral BHRAR remote sensing data in the classifica-
tion of forest areas;
C. an empirical analysis on the use of multireturn AP data for the estimation of tree stem vol-
ume;
D. a novel system for the estimation of single treamstiameter and volume with multireturn LI-
DAR data
E. a system for the fusion of hyperspectral and LIDiRiote sensing data in the estimation of tree
stem diameters.

In the next sub-sections the main objectives anelties of this research work will be briefly dabed.



A. Empirical analysis on the relationship between spectral resolution, classifier complexity and
classification accuracy in the classification of complex forest areas
The processing of hyperspectral data is particuleomplex both from a theoretical viewpoint (e.plp
lems related to the Hughes phenomenon) and froomgutational perspective. Despite many previous
investigations have been presented in the litezabur feature reduction and feature extraction ipehny
spectral data, only few studies have analyzeddleeaf spectral resolution on the classificationuaacy
in different application domains. In this thesi® present an empirical study aimed at understarttiemg
relationship among spectral resolution, classifiemplexity, and classification accuracy obtainethwi
hyperspectral sensors for the classification oé$brareas. In particular we analyze the behavidhef
classification accuracy of different classifieragbd on different theoretical principles and charaed
by different levels of complexity) versus: i) theestral resolution of the sensor; and ii) the numife
features acquired at the highest spectral resalati@ilable with a given sensor. From the expertaien
results, important conclusions can be made abauthivice of the spectral resolution of hyperspéctra
sensors as applied to forest areas, also in reltdithe complexity of the adopted classificatioetinod-
ology. The outcome of these experiments are alplicaple in terms of directing the user towardsaen
efficient use of the current instruments (e.g. pragning of the spectral channels to be acquired) an

classification techniques in forest applicatiorsswell as in the design of future hyperspectraseen

B. A novel system for the fusion of hyperspectral and LIDAR remote sensing data in the classifica-
tion of forest areas

Hyperspectral and LIDAR remote sensing sensorsharenost used in forest application. Usually hyper-
spectral data are used for the classification m®oghile LIDAR data are used in estimation proldem
this thesis we propose an analysis on the joimicefdf hyperspectral and LIDAR data for the clasaif
tion of complex forest areas. At the time of thisrkvno studies existed in the literature that azmlfthe
possibility of the joint exploitation of these datathe forest domain. In greater detail, we présgra
novel system for the joint use of hyperspectral BIWAR data in complex classification problems;aiy
investigation on the effectiveness of the very peimg Support Vector Machines (SVM) and Gaussian
Maximum Likelihood with Leave-One-Out-Covariancga@ithm (GML-LOOC) classifiers for the analy-
sis of complex forest scenarios characterized fadmgh number of species in a multisource frameywork
ii) an analysis on the effectiveness of differeHDAR returns and channels (elevation and intendiy
increasing the classification accuracy obtainedh iigperspectral images, especially in relationh® t
discrimination of very similar classes. This noggstem can be very useful for the exploitation ygier-
spectral and LIDAR data in the classification domdifloreover, it allows us to derive interesting don

sions on the effectiveness and potentialities efjdint use of these data in the forest analysis.
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C. Empirical analysis on the use of multireturn LIDAR data for the estimation of single tree stems
volume
Small footprint LIDAR data has been shown to beeg/\accurate technology to predict stem volume. In
particular, most recent sensors can acquire meltgturns (more than 2) data at very high hit dgnal-
lowing one to have a detailed characterizationhef ¢éanopy. These data contain information about the
vertical structure of forests and trees. Howevethe literature no detailed analysis on the cbatron of
each LIDAR return to the estimation of single tetem volume has been carried out. In this thesis we
propose an empirical analysis on this topic, with gjoal to investigate the information content adte
return and to point out which are the variable$ thaximize the information of each return. In partar
our approach is as follows: individual trees arstfextracted from the LIDAR data and a seriesasf-v
ables from both the®land non-first (multiple) hits associated with eacbwn are extracted. These vari-
ables are then correlated with ground truth indigicestimates of stem volume.
The empirical analysis proposed provides usefdrinftion on the use of multireturn LIDAR data i th
estimation task. In particular, the analysis presgion the exploitation of"2and 3" return can drive fu-

ture studies on stem volume estimation with LIDA®Ra

D. A novd system for the estimation of single tree stem diameter and volume with multireturn
LIDAR data
The estimation of the tree stem attributes (lilerstliameter and volume) is a key point of foregeirio-
ries. In this thesis we present a system for ttienaton of forest stem diameters and volume aivide
ual tree level, which is based on multireturn LIDAIRta and on Support Vector Regression (SVR). The
system proposed is made up of a preprocessing moaulIDAR segmentation algorithm (aimed at re-
trieving tree crowns), a variable extraction aneéc#n procedure and an estimation phase. Thahias
derived from LIDAR data are computed from both ihiensity and elevation channels of all available
returns. Three different methods of variable s@eacare analyzed, and the sets of variables olitaane
used in the estimation phase based on a multiealimar regressor and a Support Vector Regression
(SVR) technique. The stem volume is estimated titlhapproaches: i) estimation from the LIDAR vari-
ables; and ii) estimateion obtained by combinirg drameters and heights estimated from LIDAR vari-
ables, and the species information derived frorfassdication map, in a standard height/diametels-r
tionship. Experimental results show that the syspeaposed is effective providing good accuracies in
both the stem volumes and diameters estimationedar, it provides useful information on the use of

SVR in these kinds of problems.

E. A system for the fusion of hyperspectral and LIDAR remote sensing data in the estimation of
tree stemsdiameters
As pointed out in previous subsection single trt@r@tions of stem parameters (such as height,edem

and volume) are usually carried out with systensetan LIDAR data. In recent years many forestsarea



have been covered by hyperspectral acquisitioglémsification purposes. Nevertheless, no stuthes
been carried out on the possibility to use hypeatspkdata (alone or combined with LIDAR ones)hie t
estimation of tree parameters at single tree lémehis thesis a system for the estimation of stiame-

ters with LIDAR and hyperspectral data (both sefgdysand combined in a data fusion framework) is
presented. A preliminary analysis on the effectesmof these data in the estimation process arideon
accuracy and robustness of different estimatioardtgns is presented.

The system proposed and the preliminary analysesemted are important for the application of remote
sensing in forestry. The possibility to exploit kygpectral data in the context of tree parametia-

tion is relevant in practical applications. Hypersipal data are much less expensive than LIDAR ones

and they are widely used for classification purgose

15 Structureof the Thesis

The thesis is organized into seven chapters.

The present chapter pointed out the backgroundtfaanotivations for this thesis, and highlighted th
objectives as well as the novel contributions. @éiEp2 and 3 are focused on the classificatiorodst
areas. Chapter 2 presents an empirical analysteerole of the spectral resolution and classifiem-
plexity in the classification of complex forest ase The analysis is carried out on data sets wilges at
different spectral resolution and considering trokessifiers with different levels of complexityh@pter

3 describes a novel system for the fusion of hypeasal and LIDAR data in the classification ofdst
areas. Different classifiers have been consideneldeaperiments have been carried out with varieas f
tures extracted from both hyperspectral and LIDAsfad

Chapters 4, 5 and 6 are focused on the estimatiphysical parameters of trees, in particular treght,
diameter and stem volume. In chapter 4 an anatysthe use of multireturn LIDAR data for the estima
tion of tree stem volume is presented. Many expemnis have been carried out with different predgctin
variables and different combinations of them. Ira@er 5 a novel system for the estimation of tteens
attributes with multireturn LIDAR data is present&8dfferent variable selection methods and estiorati
algorithms have been analyzed. Chapter 6 presesystam for the fusion of hyperspectral and LIDAR
data for the estimation of tree stem diametersvahdne.

In the final chapter of the thesis conclusions loe proposed systems and analysis are given. Further

more, future developments of the dissertation eeudsed.
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Chapter 2

2 Theroleof spectral resolution and classifier complexity in the

study of complex forest areas

Remote sensing hyperspectral sensors are impoatashipowerful instruments for addressing classifica-
tion problems in complex forest scenarios, as tileyw one a detailed characterization of the spaictr
behavior of the considered information classes. el@w, the processing of hyperspectral data is parti
larly complex both from a theoretical viewpointgeproblems related to the Hughes phenomenon [6])
and from a computational perspective. Despite naeyious investigations have been presented in the
literature on feature reduction and feature extrawatin hyperspectral data, only a few studies hana-
lyzed the role of spectral resolution on the clésaiion accuracy in different application domairis.
this chapter, we present an empirical study aimegnaerstanding the relationship among spectrabres
lution, classifier complexity, and classificatioocaracy obtained with hyperspectral sensors fordlas-
sification of forest areas. We considered two diffi€ test sets characterized by images acquiredrby
AISA Eagle sensor over 126 bands with a spectsadltgion of 4.6 nm, and we subsequently degraded it
spectral resolution to 9.2, 13.8, 18.4, 23, 27.8,23and 36.8 nm. A series of classification expenis
were carried out with bands at each of the degrasieectral resolutions, and bands selected withaa fe
ture selection algorithm at the highest spectraalation (4.6 nm). The classification experimenésew
carried out with three different classifiers: Suppdector Machine, Gaussian Maximum Likelihood with
Leave-One-Out-Covariance estimator, and Linear Bisimant Analysis. From the experimental results,
important conclusions can be made about the chafitke spectral resolution of hyperspectral senssrs
applied to forest areas, also in relation to themqmexity of the adopted classification methodoldgye
outcome of these experiments are also applicabterms of directing the user towards a more efficie
use of the current instruments (e.g. programminthefspectral channels to be acquired) and classsifi

tion techniques in forest applications, as wellrathe design of future hyperspectral sensors.

2.1 Introduction
In the study of forest environments, and in patéicof complex forest areas, the choice of the rsagt

able spectral and spatial resolution for clasdificeis a very important problem. Many studies hbgen

This chapter has been published Remote Sensing of Environmeyibl. 113, pp. 2345 — 2355, November 2009,
with the title:*The role of spectral resolution adldssifier complexity in the analysis of hyperdpgidmages of fo-
rest areas”. Authors: Michele Dalponte, Lorenzo&nne, Loris Vescovo and Damiano Gianelle.
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carried out on the classification of forest are@f wultispectral sensors (e.g. [1],[2]). Howevsatellite
multispectral data are usually characterized bgva dpectral resolution that decreases when theakpat
resolution increases. Despite, a relatively lowtigpaesolution can be useful in the study of péeioin
forests (or of forests characterized by the pres@fonly one tree species), often it is not slgab the
study of dense natural forests with many mixed igged hus, the requirement to have accurate magps at
high spatial resolution increases the need to uberae hyperspectral data, which can acquire image
having both high spectral and spatial resolutidrieese sensors acquire images in hundreds of spectra
channels, providing a huge amount of useful dattheranalyzed area. As an example, Dalpehtd. in

[3] studied a forest area in Italy characterized2Bydifferent classes reaching accuracies of aBOui
with hyperspectral data acquired at a spectralutien of 4.6 nm in 126 bands. In [4] Clagk al. studied
seven deciduous tree species with the HYDICE sensimg three different classifiers, reaching aaeur
cies to the order of 90%. Martat al.in [5] discriminated 11 forest classes with AVIRI&ta, obtaining

an overall kappa accuracy of 68% using 9 spectratlb.

An important property of modern hyperspectral sengsee Table 2-1 for a review of the most recent i
struments) is that they have a programmable defimdf the spectral resolution and of the distiiditof

the channels in the spectrum. This means thatjmille boundaries of each sensor and depending also
on the considered portion of the spectrum, it issgae to tune the channels acquired by the s¢ndbe
characteristics of the specific problem under agialyAs an example, it is possible to have a deseser

pling of the spectral signature in a given regibthe spectrum, and a sparser sampling in otheiens.

On the one hand, if the use of hyperspectral d&davsone to face complex classification problens,
the other hand the hyperdimensionality of the feagpace produces some drawbacks connected with the
classification algorithm to use. Indeed, only a feassification algorithms are able to fully expltie
huge amount of data provided by hyperspectral sen€me of the main problems in classification gf h
perspectral data is the Hughes phenomenon (i)e.TBis phenomenon arises when the ratio between th
number of input features (and thus of classifieap®eters) to the number of training samples is Iifial
posed problems), and so results in a decrease @fcituracy in the estimation of the classifier peters
when increasing the number of features used arglithpoor generalization ability of the classifi€his

is the case for the Gaussian Maximum Likelihoodsifger where estimations of the covariance madrice
and mean vectors are affected by a small ratiodmtwwhe number of training samples and the nuntber o
features used. Thus it becomes very critical inhtyjxgerspectral case in which the number of featisres
higher than the number of training samples for edahs, thus resulting in singular covariance roari

that cannot be used in the classification task.

Another important variable to consider in the as&lyof hyperspectral data is the “complexity” oéth
classification algorithm, which in this chapterdfined as the capability of a classifier to molighly
nonlinear decision boundaries. Usually classifigith higher complexity are potentially more effeeti
than algorithms with smaller complexity, especiddly difficult classification problems. However fe€-

tive distribution free classifiers require the esttion of a high number of parameters in the leani



phase, thus resulting intrinsically more vulneraioldhe Hughes phenomenon. In this framework, it is
very important, given a specific application, tendfy the limit of the spectral resolution overiainthe
discrimination between classes does not changdisagrtly. This limit is also determined by the ednil-

ity of the classifier to exploit features with aryeletailed characterization of the spectral sigregtand
thus it depends on the complexity of the clasdifoicaalgorithm. It is worth noting that by fixindé¢ In-
stantaneous Field Of View (IFOV) and the radioneetesolution of the sensor, a decrease in the rgpect
resolution will produce a better signal-to-noiseardSNR) on the acquired signal. This means takt-r
tively simple classifiers could take advantage dtarease in spectral resolution, especially if tannot

address the complexity of hyperdimensional clasaiion problems.

Table 2-1. Main recent hyperspectral sensors agid idlated spectral properties.

Sensor name Manufacturer Platform '\BA:r)m((ijns]’ulTumber E/I:;((imilirgns(ﬂﬁ::)tral Spectral rangeufm)
Hyperion on EO-1 E@Shfccﬁgf‘rd Space satelite 220 10 04-25
MODIS NASA satellite 36 40 0.4-143
CHRIS Proba ESA satellite 63 1.25 0.415-1.05
AVIRIS NASA Jet Propulsion Lab aerial 224 10 0.25
HYDICE Naval Research Lab aerial 210 7.6 04-25
PROBE-1 Earth Search Sciences Inc. aerial 128 12 4-0.45
CASI 550 ITRES Research Limited aerial 288 1.9 01

CASI 1500 ITRES Research Limited aerial 288 25 -01405
SASI 600 ITRES Research Limited aerial 100 15 6-245
TASI 600 ITRES Research Limited aerial 64 250 8-51
HyMap Integrated Spectronics aerial 125 17 0.55-2.
ROSIS DLR aerial 84 7.6 0.43-0.85
EPS-H GER Corporation aerial 133 0.67 0.43-125
EPS-A GER Corporation aerial 31 23 0.43-125
DAIS 7915 GER Corporation aerial 79 15 0.43-123
AISA Eagle Spectral Imaging aerial 244 23 0.4970.
AISA Eaglet Spectral Imaging aerial 200 - 04-10
AISA Hawk Spectral Imaging aerial 320 8.5 0.97432.
AISA Dual Spectral Imaging aerial 500 2.9 04-24
MIVIS Daedalus aerial 102 20 043-127
AVNIR OKSI aerial 60 10 0.43-1.03

In the literature several studies have focusedersélection of the optimal sets of hyperspectrahoels

for use in the classification phase. Of these nfanysed on the development of algorithms for thecse

tion of the optimal features, given a certain afasgion problem. In this context, we can recak tfea-

ture selection algorithms based on a search syrated)a separability measure. Common search seateg

on hyperspectral data are the Sequential ForwaratiRh Selection (i.e.[7]) and the Steepest As@ent
[8]). As a separability measure, we find the Bhattayya distance (i.e. [9][10]), the Jeffries-Matiais
distance (i.e. [11]), as well as the transformedjence distance (i.e. [12]). Other studies haadyaed
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the location of the most informative channels ia #pectrum by considering the physical meaning of
each band (e.g. [13][14]). Among them, we recadl skudy of Beckeet al.[13], where the authors ana-
lyzed different band selection methodologies arfter@int spectral resolutions on a CASI 2 image ac-

quired in 46 bands.

Despite the aforementioned papers addressing tigsésand the selection of the spectral chanfitls,
attention has been devoted to the study of theioakhip among spectral resolution and classif@n-c
plexity in forest applications. Nevertheless, giwenertain classifier it is interesting to know thgimal
spectral resolution to use in the classificatioaplex forest areas. Thus, the objective of ¢chigpter

is to present an empirical analysis on the relatigmamong spectral resolution, classifier compyeaind
classification accuracy on a complex forest areth Wiperspectral data. In particular we analyzesd th
behavior of the classification accuracy of diffdrefassifiers (based on different theoretical pphes)
versus: i) the spectral resolution of the sensod; ig the number of features acquired at a higkcspl
resolution (4.6 nm). This analysis has practicalligptions in terms of directing more efficient dipp-
tion of the current instruments (e.g. programmifthe spectral channels to be acquired) and indeyin
selection of classification techniques in foregtlmations, as well as being useful for the desifjfuture
hyperspectral sensors. Although this chapter isided on forest application, the proposed analgsis i

guite general and can be easily extended to othreauhs.

The chapter is organized into four sections. The section presents the data sets used in the,study
while the preprocessing procedures applied to #te,dind the classifiers used in the analysis ge p
sented in section 2.3. Section 2.4 illustratesdisdusses in detail the empirical results obtaif&aklly,

section 2.5 draws the conclusions of the work.

2.2 Data SetsDescription
In this study we considered two data sets relaiddrest areas with different properties. Thesa dats

are described in the following two subsections.

221 Data Set 1: Bosco della Fontana

The first data set considered is the natural resefBosco della Fontanawhich is a Floodplain forest
near the city of Mantua (ltaly), and is one of besst preserved forest relicts on the Po Plain. CEmdral
point of the area has the following coordinates: 48" 1.68” N, 10° 44’ 35.53" E. This area extends
across approximately 230 ha and its topographyniest perfectly flat. It can be considered a comple
forest area as, thanks to the absence of a signifltuman impact in the last century, it exhiltits tol-
lowing interesting properties: i) it is a very derferest area; ii) it contains a high number ofedént
species; iii) it consists of several similar treedes, includin@uercus cerrisQuercus roburandQuer-

cus rubra iv) it does not exhibit a preordered spatial westribution.



In this area 19 tree species were identified, and fand cover types were considered in the ciaasibn
procedure in order to have an exhaustive coverbgdl the classes present in the image (see Tallle 2
for a detailed description of the investigated s#&3.It is worth noting that among the 19 tree specres u
der analysis there are classes belonging to the ggmus, which have very similar spectral signature
Another important consideration with respect te ttiata set is that in the analyzed area the végetat
classes do not have the same relative frequendytha there are some dominant species @agpinus

betulus Quercus cerrisQuercus robuandQuercus rubra.

The hyperspectral image (see Figure 2-1) was aadjuin June 28th, 2006 between 9:04 AM and 9:36
AM. It consists of six partially overlapping imagasquired by an AISA Eagle sensor in 126 spectral
bands, ranging from 400 nm to 990 nm, with a spéo#isolution of about 4.6 nm and a spatial regmiut

of 1 m. The flight direction of the plane was tlaane for all the six images (from East to West) ted

flight height was approximately 750 m.

@) (b)

Figure 2-1. False color composition (channels B0ad 110) of the hyperspectral imagéotco della
Fontana(a) andval di Selladataset (b).

The reference data samples were collected durigmpand survey in autumn 2006 (approximately 540
trees). Samples were collated on field within athaphoto (with a geometrical resolution of 0.20 ah)
the area analyzed according to ground observatiMes extracted these sample points from the entire
study area, thus ensuring a precise matching battheeground observations and the aerial oneswe.g.
considered trees near roads, grassland, etc.)sdingles were collected on the basis of: i) theispec
(the reference data was exhaustive, i.e. it reptedeall the species present in the area; furthexmb
took into account the relative frequency of ea@ss); and ii) the spatial distribution (samples aaahi-
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form distribution across the scene). Starting fiadhthe points collected we draw the Region of lests

(ROIs) of the tree crowns on the mosaicked hypetspledata, and used them for the generation of the

training and test sets. This means that at eaehcbeesponds more than one pixel. The total nuraber

reference data samples (16,816 pixels) represeaieat 0.7% of the whole investigated area.

Table 2-2. Distribution of Reference Data Sampleg€ls) Among Investigated Classes of the
Bosco della Fontana dataset (in brackets the nuoflieges).

Class Name Reference Data Class Name Reference Data Class Name Reference Data
samples samples samples

Acer campestris 170 (10) Juglans regia 1573 (35) Quercus rubra 1137 (21)

Acer negundo 48 (3) Morus sp. 164 (5) Robinia pseudoacacia 1008 (40)

Alnus glutinosa 507 (27) Platanus hybrida 2048 (68) Rubus 661

Carpinus betulus 910 (68) Populus canescens 244 (5) Shadows 290

Corylus avellana 58 (6) Populus hybrida 211 (7) Snags 205 (10)

Fraxinus angustifolia 787 (28) Prunus avium 261 (19) Tilia cordata 507 (10)

Grassland 496 Quercus cerris 1796 (47) Ulmus minor 403 (17)

Juglans nigra 1283 (50) Quercus robur 2049 (63)

2.2.2 DataSet 2: Val di Sella
The second data set consideredas di Sella a forest area in the Italian Alps near the cftf@nto. The
central point of the area has the following coocatis: 46° 0' 55.06" N, 11° 25' 39.67" E. This azra

tends across approximately 1500 ha and its morglaleludes both valleys and mountains.

Differently from the first data set, in this case Wwave only 6 tree species, plus two other addition
classes, i.e. shadows and grassland (see Tabler2a3description of the investigated classes)oAis

this case the distribution of the species is randanhthe relative frequency differs among all thecses.

The hyperspectral data were acquired on July 2008y consist of twelve partially overlapping images
acquired by an AISA Eagle sensor in 126 spectratibaranging from 400 to 990 nm, with a spectral

resolution of about 4.6 nm and a spatial resolutioh m.

Table 2-3. Distribution of Reference Data Sampleg€ls) Among Investigated Classes of the
Val di Selladataset (in brackets the number of trees).

Class Name Reference Data Samples Class Name Refdbata Samples
Abies alba 179 (28) Grassland 1010

Acer pseudoplatanus 146 (20) Picea abies 314 (42)

Alnus incana 76 (7) Pinus sylvestris 239 (37)

Fagus sylvatica 604 (57) Shadows 192

The reference data samples (approximately 190)tvee® collected according to the same strategg use

for the previous data set. Starting from all thenfsocollected we draw the Region of Interests (©h



the mosaicked hyperspectral data, and we used fibrethe generation of the training and test sekés T
means that at each tree corresponds more thanixele phe total number of reference data samples

(2,760 pixels) represents about 0.2% of the whuotestigated area.

2.3 Methods

Before carrying out the analysis of the hyperspédiands, we applied some pre-processing to the im-
ages. First of all, we mosaicked the available msagn order to obtain a single image for eachyssite.

A relative radiometric normalization was appliedhe single images in order to obtain a uniform anos
image. Several algorithms have been proposeddratiire to apply these corrections (e.g. [15][1B)).
our study, we adopted a simple linear normalizatiased on the mean-standard deviation normalization
algorithm ([16]). After that, data were de-noiseidlwa simple low-pass filter. In the literature eeal
studies have pointed out the usefulness of thikimakete.g., [3][17]). In our case, given the higloget-

rical resolution of the images, the spatial degtiadacaused by the filter was acceptable given ia¢h
reduction of the noise present in the images amdettpected increase in the separability of analyzed
classes ([17]).

In our investigation we considered three supervidadsification techniques characterized by difiere
levels of complexity. There are different ways &fide the level of complexity of a classifier. lnig
study we consider empirically the level of comptgxf a classifier as its ability to define nondar de-
cision boundaries between the investigated clagdes.supervised classifiers considered are: i)r& no
linear Support Vector Machines (high complexity) a Gaussian Maximum Likelihood with Leave-One-
Out Covariance estimation (medium complexity); @&d Linear Discriminant Analysis (low complex-
ity). In the following we provide greater detads these classifiers and motivate the reasonsh&set

choices.

2.3.1 Support Vector Machine classifier

The Support Vector Machine (SVM) ([18]) is an effee distribution free classifier that has been eiyd
used in the recent years for solving hyperspectealsification problems ([19][20]). The main reagon
the choice of this classifier is associated wishpitoperties that are: i) high generalization gbdind high
classification accuracies (with respect to othémssifiers); ii) convexity of the cost function (igh al-
lows one to identify always the optimal solutioii)} effectiveness in addressing ill-posed problems
(which are quite common with hyperspectral datg)fimited effort required for architecture designd
training phase if compared to other machine legrailyorithms (such as multilayer perceptron neural

networks). The main concepts associated with nogali SVM are briefly described in the following.

Let us consider for simplicity a binary classifioat problem, characterized by a sef\ofraining samples

x={x,}N, (wherex,00%). Each pattern is a vector M features that represents the value that the
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considered pixel assumes on the considered hymrapbands. Lety ={y, }\,, ¥, 0{-1+} be the

set of related reference labels, where “+1” and &fe associated with one of the two classes invest

gated. The non-linear SVM approach consists of nmgpphe data into a higher dimensional feature

space, i.e.,P(x,) U RY (q’>>q), where the two classes are separated bfymerplane defined by a

weight vectorwOdO® (which is orthogonal to the hyperplane) and a &g (which is a scalar value
such that the ratid/|\w| represents the distance of the hyperplane froenotfigin). The functiond
represents a hon-linear transformation. The merhiedecision rule is defined according $tgr{f (x)]
where f(x) represents the discriminant function associatel thi¢ hyperplane and is written as:
f(x)=w®P(x)+b (2.1)

The optimal hyperplane is the one that minimize®st function which expresses a combination of two

criteria, i.e., margin maximization and error miigation. It is defined as:
12 S
W, =Jw["+C24, (2:2)
p=1

where the constan€ represents a regularization parameter that centh@ shape of the discriminant
function, and consequently the decision boundargnuttata are non-separable. This cost function mini-

mization is subject to the following constraints:

{yp Qwx, +b)21-&,, Op=1...Q

§,20 0p=1..Q (2.3)

where ¢, are the so called slack variables and are intedido take into account non-separable data

[21]. The above optimization problem can be refdatad through a Lagrange functional as a dual opti-
mization leading to a Quadratic Programming (QPyitsmh [18]. The final result is a discriminant func

tion conveniently expressed as a function of tha dathe original (lower) dimensional feature sgac

f(x):ZaiyiK(XivX)+b (2.4)

ios

where K [[) is a kernel function and is the subset of training samples correspondintpéononzero

Lagrange multipliers. A kernel function is a fumctithat satisfies the Mercer's theorem [22] and tha

makes it possible to avoid a direct explicit repraation of the transformation of the feature vegtoe.
K(X; ,X) =®(x; ) (X) .
It is worth noting that the Lagrange multipliens effectively weight each training sample accordiog

its importance in determining the discriminant fiimie. The training samples associated with nonzero

weights are termed support vectors. In particut@ $upport vectors whereg; =C are referred to as

bound support vector, and support vectors Witha; <C are called non bound support vectors [20].



The SVM classifier was developed to solve binaggsification problems, but it can be easily gereral
ized to multiclass problems. The two main strategiged for L class problems are:

1. One-Against-One (OAO) the L-class problem is decomposed into L(L-1ji@ary problems,
each focused on the recognition of a pair of cles8egeneric pattern is associated with the class
that receives the majority of the votes from theeenble of binary classifiers.

2. One-Against-All (OAA)- the L-class problem is decomposed into L binagblems, each fo-
cused on the recognition of one class againshalbthers. The “winner-takes-all” rule is used for
the final decision, i.e. the winning class is thee @orresponding to the SVM with the highest
output (discriminant function value). We refer tieader to [20] for greater details on SVM clas-

sifiers in remote sensing and on the related niafticstrategies.

2.3.2 Gaussian Maximum Likelihood classifier with L eave-One-Out-Covariance Estimator
(GML-LOOC)
The second classifier that we consider in thisysiad Gaussian Maximum Likelihood with Leave-One-
Out-Covariance estimator (GML-LOOC) [23]. This tedfue is based on the Gaussian Maximum Likeli-
hood (GML) classifier and is suitable for managimgerdimensional feature spaces. The GML is a pa-
rametric classifier based on the Bayesian decigieory. Differently from the SVM, this classifies-a
sumes Gaussian distributions for the class dessifiee GML-LOOC approach differs from the standard
GML in the phase of estimation of the covariancérites of the analyzed classes. In fact, whendkie r
between the number of training samples for eacts@dad the dimension of the feature space is mesgr o
the standard GML degrades its performances (Hugheeomenon). In the limit case when the number
of training samples is smaller than the numbereatures, the covariance matrices used in the dacisi
rule become singular, and thus the GML cannot feel.uk the literature several algorithms have been
developed for the estimation of a non-singular dawee matrix (e.g. [23]-[27]). In our study, weode
the algorithm proposed in [23], which is called ed@ne-Out-Covariance (LOOC) algorithm. In the fol-

lowing we give some more details on this classifier

Let x, be then-th pattern to be classifiegh, andX; (with i=1,...,L) the mean value and the covariance
matrix of thei-th investigated class, respectively, am={wl,a)2,...,wL} the set of thd. land-cover

classes in the considered classification probleme. decision rule is as follows:
XoOw, = d;(x))>di(x,) O i#] (2.5)
whered, (x,,) is computed as:
di (%) = (o =1 S 27 (x, — ;) +InfE| (2.6)

Usually the true values of the mean vectors arti@tovariance matrices are not known and theyldhou

be estimated from the training samples. When acedimumber of samples is available, the covariance
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matrices can be replaced with the common covariamateix, defined ass:lizi [28]. The LOOC
i=1

algorithm proposes a more refined way to estimatecbvariance matrices for classes characterized by
reduced number of training samples. In particutar ¢covariance matrixZiLOOC of thei-th class is esti-

mated as follows:

@L-u,)diag(X;) + U, X; O<y, <1
2% =12-U)E +(u - DS 1<y <2 (2.7)
B-v;)S+ (v, —2)diag(S) 2<y, <3

wherey; is a mixing parameter. The value of this paramisteelected according to the following proce-

dure: i) removing one sample form the training 8egomputing the mean and covariance from the re-
maining samples, iii) computing the likelihood betsample which was left out, given the mean and co
variance estimates. Each sample is removed in and,the average log likelihood is computed. The
value that maximizes the average log likelihoodakected [28]. This implementation proved to be par

ticularly effective in hyperspectral data classifion.

In our experiments we used this classifier underuhimodal Gaussian assumption for the distribution
information classes. This assumption is widely Ligdtie literature, even if a more complex and a&ieu
approach based on the decomposition of each infmmaelass in a set of unimodal Gaussian dataetass
could be used. This could be done by applyingtetirgy to the training samples of each class. Hawnev
when a high number of information classes is piegethe classification problem, this process rissul
time consuming (also because an adequate numindustérs for each class should be identified).dn a
dition, when few training samples for each classaailable, this may involve a high risk to ovetfiie
training set in the modeling of the multimodal elaBstributions. This can be particularly critizghen
hyperspectral images are considered, where a isignifspatial variability of the spectral sighatufe

each class in the image is usually present [29].

2.3.3 Linear Discriminant Analysisclassifier

The last technique that we consider is a very ®niplear discriminant analysis (LDA) classifier
([30][31]). The rationale of this classifier can bensidered as the opposite of that at the bastheof
SVM classifier. LDA projects high-dimensional fesuspaces into a low-dimensional space, with the
target to keep information classes as more sephestgossible. This transformation is obtained by m
nimizing the within-class distance and maximizidte tbetween-class distance simultaneously, thus
achieving maximum discrimination. Given its simjili¢ this classifier is less suitable to the anelyaf
hyperspectral data with respect to the previousoeven if some studies exist on the applicatioblA
techniques to hyperspectral data [32]. In the foithg we recall the main concepts associated witiALD

We refer the reader to [32] for more details.



Let us consider & classes classification problem. The idea of thssital LDA classifier is to find a lin-

ear transformatio® that project the sampbe, from the originaim-dimensional feature space to a lower

dimensional space a according to the following &qona
a=G'x OR (2.8)

wherel <m. The goal of this transformation is to choosedhiection v in the feature space along which
the distances of the class means are maximum andatiiances around these means are minimum. This

corresponds to maximize the following criterion:

.
v’ =argmax{J(v)} = argmax{ VT SeV } (2.9)
v v v S,V

w
1¢ T : 1¢ T
where §, = —Z n(w —w)(p, —p) is the between-class variancg, =—Z Zni X =X — 1) is
niz k=Li0A,
the within class variancey,; is the sample mean, ard denotes the index set for classAs the total

scatter matrix (which is the estimate of the commowariance matrix) can be written 8&=S,, +S,,

the maximization criterion becomes:

X viSv
v :argmaﬁJ(v)}:argmax{ TS —1} (2.10)
v v \Y A\

w

In this case the optimization problem maximizesttital scatter of the data while minimizing the hirit

scatter of the classes. The criterion can be rmmris follows:
G = argmax{trace{(GTSG)_1GTSbG}} (2.11)
G

The solution can be obtained by applying an eigarethposition to the matr&'S, , if S is nonsingu-
lar. Note that there exist no more thafll eigenvectors corresponding to nonzero eigensakiace the
rank of the matrixS, is bounded bk-1. Therefore, the reduced dimension of classi€®h lis at most

k-1 [33].

In this paragraph we have presented the standawl alBorithm that we have used in this chapter. In
presence of a reduced number of reference santpgepassible to use some regularization algoritbons
avoid bad estimations of the within and betweentsdag matrices. For a detailed description ofhsuc

algorithms we refer to [32].

2.3.4 Design of experiments
In order to achieve the goals of this chapter, efned two different kinds of experiments: i) arsgyof

the effects of the spectral resolution on the di@aasion accuracy; ii) analysis of the effectstbé num-
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ber of spectral channels selected with a featueeten algorithm (applied to the original band<t
resolution) on the classification accuracy. Fombibie experiments we carried out the training bfred
considered classifiers (including the model setejtand the accuracy assessment according tofaléive
cross-validation procedure. This allowed us to cmhthe analysis from a rigorous statistical pectipe.

We randomly divided the available ground-truth data five subsets, and then we adopted a fivefold
cross-validation procedure, with training samplissridbuted across the scene. The samples (pixetseo
reference data available were used as follows: 20fbe training set and 80% in the test set. Wisth
noting that the goal of this chapter was not tdyaeathe generalization ability of the classifielsit to
assess their role in managing hyperdimensionalifeapaces. Thus the choice to use a cross-validati
procedure appears to be the most suitable onedorract statistical analysis of the problem indhaive

used the same cross-validation subsets for atfldssifiers analyzed.

The SVM classifier used was based on an our owrteimgntation. We selected Gaussian RBF kernel
functions and applied a grid search strategy i@mnge between 5 and 240 forand in a range between 1
and 1000 fory. The multiclass architecture adopted was baseth@i®ne-Against-One multiclass strat-
egy. With regards to the GML-LOOC classifier we disee MultiSpec software [28], while for the LDA

we used the implementation contained in the MATLAB&nal software [34].

24 Experimental results

241 Experiment 1: analysisof therole of spectral resolution on classification accuracy

The first experiment focused on the analysis ofrtte of the spectral resolution on the classiiwmatc-
curacy by varying the classifier adopted. To depdlos analysis, we simulated data with differguecs
tral resolutions averaging contiguous spectral basfdhe acquired image. Specifically, we degratthed
resolution from 4.6 nm to 36.8 nm, using a stegd.6fnm. It is worth noting that to obtain a pre@gau-
lation of the reduction of the spectral resolutibnyould be necessary to consider the frequensyarse

of the spectral filter associated with each chanidelvever, for the purpose of our analysis, it e
sonable to approximate the frequency responseresgtart for all the channels and to use an averpge o
erator for approximating the reduction of the smdatesolution. Figure 2-2 shows the behavior & th
kappa accuracies obtained with different spectrablutions for each of the classifiers used ontiee
datasets considered. From an analysis of the figiusepossible to derive some inferences of fifiece of
changing spectral resolution upon the differenssifiers. First of all, the SVM classifier obtainkigher
accuracies than all the other classifiers fortal $pectral resolutions considered and in botld#tasets.
The difference in accuracy between SVM and theratlassifiers was higher in tl&osco della Fontana
dataset where we have a very high number of clasgesresult underlines the effectiveness of thi/S
classifier in managing complex hyperspectral cfasgion problems. LDA was not able to model the
complexity of the problem assessed with Bosco della Fontandataset. This is mainly due to the over-

simplification obtained by projecting the high dms@nal feature space in a low dimensional space.



Concerning thé&/al di Selladataset there is a small difference between tberacy provided by the SVM
and the GML-LOOC, and also LDA resulted in reasbmazcuracies (at the maximum spectral resolu-
tion the accuracies are very similar for all thassifiers). This depends on the simplicity of teeand

problem which is characterized by a small numberladses.

Bosco della Fontana Val di Sella
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Figure 2-2. Behavior of the kappa accuracy of tneyzed classifiers versus the spectral resoldton
the two datasets considered.

Secondly, it is interesting to analyze the behawiodifferent classifiers to the degrading of tipedtral
resolution. Concerning thHgosco della Fontandataset, both the SVM and LDA classifiers redutbedy
accuracy as the spectral resolution of the senasrreduced. In particular the LDA classifier wasrsg-

ly influenced by the spectral resolution. It reddic®ticeably its accuracy as the spectral resaiutie-
creased. Also the SVM classifier decreased itsracyuas the spectral resolution was reduced (approx
mately 1% from 4.6 nm to 9.2 nm, and 5% from 9.2tor86.8 nm). Despite this, the lowest accuracy of
the SVM classifier was still higher than the highascuracy of the other classifiers considered. The
GML-LOOC presented the most stable accuracy anghnticular it did not result in significant differ-
ences between the kappa accuracies obtained wbotution in the range between 4.6 and 23 nm. On
the contrary, it exhibited a slight increase inumaecy between 9.2 and 13.8 nm. Regarding\takdi
Selladataset, given the simplicity of the problem, behavior of the three classifiers was very similar.
Also in this case the LDA degraded its accuracyicady the spectral resolution, even if the degiadat

is limited with respect to the previous dataset.this dataset the performance remains acceptatbe al
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with a spectral resolution of 36.8 nm. SVM and GMDOC provided very similar results, exhibiting a
kappa accuracy always higher than 95% for all ffecsal resolution considered. It is worth notihgtt

in this case it seems that also a low spectralutien is enough to separate the considered fatasses.

Figure 2-3 shows the behavior of the class prodaceuracies versus the spectral resolution obtdged
the three classifiers analyzed on Basco della Fontandataset. Firstly, it is worth noting that the LDA
classifier always provided the lower accuracies iameduced its performances by reducing the spectr
resolution, confirming the behavior of the ovekalppa accuracy. Concerning SVM and GML-LOOC the
behavior is quite different on the different classmalyzed. In general, SVM provided the highestiac
racy on the majority and most relevant classes tomfirming the results obtained in terms of kappa
curacy. Nevertheless, as expected, some classdstedtigher accuracy on the maps produced by the
GML-LOOC classifier. This is intrinsic in the soloih of a multiclass problem, where different cléiess
obtain different accuracies on many different @asg hus, the overall accuracy remains the mosbimp

tant performance for a general estimation of tiselts in our study.

24.2 Experiment 2: effect of the number of spectral channels on the classification accur acies ob-
tained by different classifiersusing the highest spectral resolution
In this second experiment, we analyzed the effett@number of spectral channels on the classifica
accuracies obtained by different classifiers, kegphe original spectral resolution of the sensoitiis
case 4.6 nm). In particular with this experimentwanted to determine: i) if all the bands at thghbist
spectral resolution were significant, and to exanire behavior of the different classifiers witbpect to
their selection; ii) if, given a fixed humber ofris, the selection of channels at the highestugsalis
more effective than the acquisition of bands abwel resolution; and iii) the physical meaning loé¢ t
bands selected by the feature-selection algorithrow test areas. To achieve these goals, we dpplie
feature selection algorithm based on the Sequdrtialard Floating Selection search strategy [7] @md
the Jeffreys-Matusita (JM) distance [11] to theyiordl image. The JM distance was adopted as triee
lated with the Chernoff upper bound to the errabability of the Bayesian classifier. This meanat th
the feature-selection process adopted is neariynapt for the GML-LOOC classifier. Concerning the
SVM classifier, in the literature it is possible find few methods for feature selection which aspes
cially developed for such a classifier; howeverthis study we preferred to use for all the thrieesifi-
ers the same feature-selection algorithm (and tireisame set of features). This is reasonable apan
erational level as confirmed from many studies ghield in the literature that combine such an allgori
with different kinds of classifiers (including tf8/M). It is worth noting that we did not consideher
feature selection algorithms as we aim at analy#iregbehavior of the classification techniques @bns
ered versus the number of spectral channels antheémum resolution, and of comparing such results
with those obtained in the first experiment. Thtiss reasonable to consider just one referencturfea

selection algorithm rather than exploring resulitamed by different methods.
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Figure 2-3. Behavior of the Producer Accuracy vetthie spectral resolution for the classes analyzed
Bosco della Fontana dataset.

In this analysis we applied the feature selectmasto identify eight sets of bands made up oftdrae

number of features that we obtained in the prevexyseriment by reducing the spectral resolutioris Th

allowed us to make some further considerations eomg the results of the two experiments.
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Figure 2-4. Behavior of the kappa accuracy provioethe analyzed classifiers versus the number of
spectral bands at a spectral resolution of 4.6omthke two dataset considered.

Figure 2-4 shows the kappa accuracies versus tinberuof selected features in the two datasets donsi
ered obtained with the three different classifier@m these results we firstly note that none efdlassi-
fiers under investigation was significantly affettey the Hughes phenomenon. This was due to beth th
intrinsic robustness of these classifiers to ilt@d problems and the relatively high number ofresfee
data samples available. Secondly, we observedtiea®VM always obtained the highest accuracy with
respect to the other classifiers. In particulag, difference in accuracy between using 16 or 12@tsal
channels was less than 2% in both the dataset&gdeoed. This is a point that we would like to stres it
underlines the high discrimination ability of higpectral resolution hyperspetral data. Moreovezséh
results underline that with a high complexity cifiss like the SVM, it is possible to work with subset

of hyperspectral bands, thereby reducing the coatipmial costs but not the classification accurda-
ditionally, the results confirm the robustness it SVM classifier to hyperdimensional feature space
Also the LDA classifier seems to take advantagesoig features at the highest spectral resolubi@v-
ertheless, this classifier produced the lowest rmies, but its kappa coefficient increased in canspn

to the previous experiment. For the GML-LOOC clfissthe behavior was quite different as it in gethe
provided lower kappa accuracies with respect topttegious experiment. In addition, this classifier

creased its accuracy when the number of spectasngis was increased.



243 Analysisof resultsand discussion

Comparing the results of all the experiments cdraat on the two considered datasets it is possible
draw some interesting conclusions on the relatipnamong accuracy, classifier complexity and sggctr
resolution. From an analysis of Figure 2-2, itlesac that the different classifiers have differbahaviors

with respect to the spectral resolution. This uldes the complexity and the importance of our gtud

First of all, let us consider the behavior of théMclassifier in the two experiments. The abilitiythis
classifier in managing hyperspectral feature spaaoésits robustness to noisy pixels is well knowihie
literature (e.g., [20][21]). The analysis of theeoall kappa accuracies confirms these charactisti
SVM classifier provided the highest overall kappawaacy for all the spectral resolutions and it wat
significantly affected by the Hughes phenomenonrdédueer, comparing the results of the two experi-
ments, it seems that for the SVM it was bettergplyaa feature selection to the original spectaaids,
rather than reducing the spectral resolution (&g tncreasing the SNR of each spectral channbiy. T
was dependent upon on the effectiveness of the 8/dkfine effective non-linear discrimination func-
tion in the original feature space starting fromghinformation content data like the original chelsrra-
ther than from those with reduced spectral resmiutSuch a capability is due to two main reasgrthe
potentially high complexity of the decision bounglassociated with the SVM classifier; ii) high rebu
ness of the SVM classifier to the outliers, andsthw the lowest SNR present in the original spéctra

channels.

Concerning the LDA classifier, it decreased itsuaacy reducing both the number of original spectral
channels considered and the spectral resolutidheotensor. This behavior can be explained byrthe i
trinsic properties of LDA, this algorithm appliest@nsformation of the original feature space iato
space with a lower dimensionality, by maximizingsdes’ separability. It is reasonable to expedt tha
LDA performs better this transformation when moigedminant information (higher number of informa-
tive spectral channels) is available. Moreover réduced performances of this classifier in all éxe
periments considered can be recalled to the usestdndard LDA algorithm. The use of a regularized

LDA algorithm in some cases could improve the panénces [32].

The GML-LOOC classifier has a different behavioroifd our results it was possible to note that this
classifier exhibited a higher accuracy if the featteduction was carried out by decreasing thetsglec
resolution of the sensor rather than selectingmalghannels according to a feature-selectionrétgu.

As observed in experiment 1, it provided almost shme accuracies in a range of spectral resolutions
from 4.6 to 23 nm. This behavior can be explairefbiows: i) by decreasing the spectral resolutian
increased the SNR of the signal acquired in eaahnmél by introducing a low-pass spectral filterihgt
reduces the noise in the spectral domain; ii) thessian assumption of the GML-LOOC and the regu-
larization method adopted resulted in relativety@e quadratic decision boundaries that cannoegbiz
complexity of the problem modeled with the origispkctral channels. In other words, as shown \uith t
SVM classifier, the original spectral channelshat highest resolution contain the maximum amount of

information for discriminating classes, but the GMOOC classifier cannot effectively exploit these d
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ta. To illustrate this point, by comparing the esof the SVM and the GML-LOOC classifier obtained
by using 32 bands at 2 different spectral resahsti@.6 and 18.4 nm) for tigonsco della Fontandata-
set, we observe completely different behaviors: WM provided the highest accuracy at the highest
resolution considered (4.6 nm), while GML-LOOC dletl the highest accuracy at 18.4 nm.

It is worth noting that the performances of the GMDOC classifier could be increased applying a de-
composition of the information classes in clustaetadclasses. As explained previously this operadlon

lows one to avoid the possible multimodality of thisrmation classes distributions.

In order to better understand the effectivenesh@SVM classifier at the highest resolution iratien to
the specific considered forest problem, it is afgportant to analyze the physical meaning of tHected
features. Figure 2-5 shows the distribution ongpectrum of 32 spectral bands selected at therapect
resolution of 4.6 for the two datasets. All the maggions of the spectrum analyzed by the sensa &ia
important role in species classification. In theiblie range 11 bands were selected forBbeco della
Fontanadataset and 7 for tHéal di Selladataset; specifically, five and three bands wémesen in the
blue range (~400 - ~500 nm), characterized maighcdrotenoides absorption peaks [35], but also by
chlorophylla with a maximum absorption peak around 430 nm ¢adlst 435 nm was selected for the
Bosco della Fontanaataset). In the green (~500 - ~600 nm) and redtsp (~600 - ~650 nm) 5 bands
were selected. Chlorophyll has a reflectivity pegakhe green area that gives the green color to¢ige-
tation, and the reflectance is strongly linked idooophyll content [36], especially around 550 ][
Bands around 531 and 570 nm (two bands 535 andhBv8vere selected in our trials) were used in
[38][39] for PRI index calculation to estimate rdmhanges in the relative levels of xanthophyllleyc
pigments and thus serves as an estimate of phahetinlight use efficiency. Neighbouring bandghe
green region (529 and 564 nm) were proposed byiSiaradeh et el. in [40] for leaf chlorophyll conten
measurements. The red spectra region is well knimwrchlorophyll peaks absorption (chlorophtil

with a maximum absorption of ~642 nm and a bar&@#8tnm was selected).

As described by Ceccatt al. in [41] these first regions of the spectra arenprily influenced by the
pigment content and secondly by the internal stinecparameters. This aspect is more importanten th
red edge region, where 8 and 6 bands were localaetthe Bosco della Fontanaataset and theal di
Sella dataset, respectively. This region is between ~G80(the main red absorption peak of chloro-
phylls, [35][42]) and ~750 nm and ranges betweenahsorption region of the visible and the reflexti
region of the near infrared. Its position and hétrais affected by many factors including changés
chlorophyll content, leaf area index, biomass andrib status, vegetation age, plant health levahsl
seasonal patterns. The interesting issue, fromassification viewpoint, is that the exact wavelénghd
strength of the red edge depends upon the spamistdered, and thus bands in this region are iraport

for classification.
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Figure 2-5. Spectral distribution of 32 hyperspaldbands selected by the feature selection algorith
theBosco della fontandataset (a) and théal di Selladataset (b).

In the near infrared region (from ~750 to ~1000 dd)and 18 bands were selectedBosco della Fon-
tanaandVal di Selladataset, respectively. For deciduous specieso(@sdfin our study site) there is a
strong reflectance in this range (Gag¢sl, 1965). This is due to chlorophyll pigments thiag aery ab-
sorptive at visible wavelengths but are not abbBorptive at near-infrared wavelengths [44]. Trese
linked with others parameters, such as leaf stracttihat makes light scattering highly efficieritgaf
Area Index (LAI) [45], and the presence of watetthie leaf (for example in the band around 970 nm
[46]). Greater transmittance occurs when water gsenprevalent between the plant cells of leavebs an
more reflectance occurs when the spaces betweknarel more filled with air. Additionaly, the water
content can be also linked to the last three baalisted, which are usually used to compute tladifig-

position Water Bands Index [47].

2.5 Conclusions

In this chapter an experimental analysis on thatioeiship among the spectral resolution, the diassi
complexity and the classification accuracy has hesented. This analysis has focused on two comple
forest areas characterized by different numbetdasses, and can be subdivided into three pardsaily-

sis on the role of the spectral resolution on flassification accuracy versus the classifier coxipteii)
analysis of the effects on the classification aacyrof the number of spectral bands (given a feelc-

tral resolution) versus the classifier complexity; analysis of the effects on the classificatiaccuracy

of both reducing spectral resolution and selectézgures at the highest resolution given a fixechioer

of channels as input to the classifier.

The experimental analysis resulted in interestiogctusions on the relationship among the aforemen-

tioned factors. In particular, our analysis poiots that the option to acquire images at a cegpatctral
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resolution should be driven not only from the cdaesed problem, but also from the classifier usedife

data processing. Not all the classifiers were &blexploit the wide amount of data provided by hype

spectral sensors, and not all the classifiers Havsame behavior reducing the spectral resolution.

In greater detail, we verified on the considerethdat the following issues:

LDA (a simple classifier) even if obtained the heghaccuracy with a high spectral resolution, does
not achieve acceptable classification accuraciesomplex forest classification problems with a
high number of classes;

GML-LOOC (medium complexity classifier) providedghi classification accuracies in all the con-
sidered experimental setups. Moreover, from outysig it seemed that it does not take advantage
from increasing the spectral resolution over a givalue (about 23 nm on the considered data
sets);

SVM (complex classifier) fully exploited the dismination ability of channels with very high
spectral resolution. In our experiments SVM prodiddways the highest accuracies among the
considered classifiers. In addition it exhibits thest performances with the maximum spectral

resolution (4.6 nm).

As a final remark it is important to observe thag proposed analysis provides important hints en th

sensor and data analysis setup to use for clessiicof complex forest areas, as it supplies @sng

indications on the trade-off between the spectablution and the classifier complexity in the stod

such kinds of environments. It is worth noting ttias research does not want to present an exkausti

analysis of the problem, but it should be consider a starting point for future analysis on défdrar-

eas (also in relation to applications differennirforestry) and with different classifiers.
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Chapter 3

3 Fusion of hyperspectral and LIDAR remote sensing data for the

classification of complex forest areas

In this chapter we propose an analysis on the jefféct of hyperspectral and LIDAR data for thessla
fication of complex forest areas. In greater detaik present: i) an advanced system for the jobet of
hyperspectral and LIDAR data in complex classifmatproblems; ii) an investigation on the effective
ness of the very promising Support Vector Machii®sM) and Gaussian Maximum Likelihood with
Leave-One-Out-Covariance algorithm (GML-LOOC) cifisss for the analysis of complex forest sce-
narios characterized from an high number of speties multisource framework; iii) an analysis oreth
effectiveness of different LIDAR returns and chén(elevation and intensity) for increasing thesdi-
cation accuracy obtained with hyperspectral imagespecially in relation to the discrimination ofrye
similar classes. Several experiments carried outiaczomplex forest area in lItaly, provide interegtin
conclusions on the effectiveness and potentialdgfebe joint use of hyperspectral and LIDAR data a
on the accuracy of the different classificationhigiques analyzed in the proposed system. In péaticu
the elevation channel of the first LIDAR returnuisd very effective for the separation of speuwigh
similar spectral signatures but different mean hésg and the SVM classifier proved to be very robus

and accurate in the exploitation of the considamadtisource data.

3.1 Introduction

Forest preservation and management are important@nplex processes, which have significant impli-
cations on the environment (e.g. protection ofdgadal diversity, climate mitigation) and on theoge
omy (e.g. estimation of timber volume for commelrcisage). An efficient prevention and management
policy requires a detailed knowledge of speciespmsition, distribution and density. However, the as
sessment of the distribution of tree species igddorests by ground inventory is a difficult ande ex-
pensive task. Remote sensing is a very useful tdoby to perform such kind of study. This techngiog

if properly integrated with automatic processinghtéques, allows one the analysis of large areas in
fast and accurate way. Several studies have bedgrdcaut in this field, analyzing the potentiadsi of

different remote sensing sensors, including pagsiviispectral and hyperspectral sensors, as wedlca

This chapter has been published I&EE Transactions on Geoscience and Remote Sengoig46, No. 5, pp.
1416-1427, May 2008, with the title: “Fusion of leyppectral and LIDAR remote sensing data for thesification
of complex forest areas”. Authors: Michele Dalporiterenzo Bruzzone, and Damiano Gianelle.
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tive LIDAR (Light Detection And Ranging) and SARy{8hetic Aperture Radar) systems (e.g. [1]-[36]).
All these sensors, with their different peculi@s#tiand characteristics, can provide different mftdion
about the analyzed forest, allowing to reach difféitargets, such as classification of tree spewiesti-
mation of biophysical parameters.

Standard passive multispectral sensors (like themBttic Mapper of the Landsat satellites) have been
widely used in the past years for forest clasgifocaand analysis. In the literature several stsidiee pre-
sent on both classification and estimation of fopegsameters (e.g. [1]- [4]). Regarding classifmat due

to the different spectral and geometrical charattes of multispectral sensors available, it isgible to
find works that analyze the problem with differéatels of geometrical detail. Regarding low resolut
multispectral data, the analysis is generally kaitto the discrimination between forested and non-
forested areas (see for example [5]). With mediasolution sensors the level of detail can be irsgda
and thus the analysis can be focused on more gpeleifses, like in the study presented in [6] whes-

ing Landsat ETM+ images, eight different vegetatitasses are analyzed. High geometrical resolution
multispectral sensors (e.g. Quickbird, Ikonos afmD¥5) allow a more detailed geometrical analysis
considering the high spatial resolution, but duthtopoor spectral information acquired by theseses,
they do not allow a detailed analysis of tree sgechs an example, in [7] Kosaktal. analyze six forest
types using Quickbird images, and in [8] Waetdal. distinguish three kinds of mangrove using Ikonos
and Quickbird data.

However, although significant results in forestlgsia can be obtained with these kinds of datdpiast
characterized by a high number of similar tree Esecthese sensors do not allow a detailed anatysis
the different forest species, as they acquire métion in a relatively small number of bands wiige
spectral intervals. The new generation of passyiEetspectral sensors, thanks to their ability tdena
dense sampling of the spectral signature, canadstellect valuable information for a detailed slfisa-

tion and analysis of similar forest types. In parar, these data can be used in a wide rangefefett
analyses of forest environments. Several studies addressed the capability of hyperspectral daést
timate particular biophysical parameters, like obpdyll concentration or biomass volume (e.g [A})1
Concerning classification problems, hyperspectralges have been used in a wide number of forest ap-
plications, ranging from general cases focusinghendiscrimination between forest and other lang co
ers, to more detailed analysis dealing with théirdiion of different tree species (e.g. [6], [42B]). In

[6], for example, Goodenougtt al. present an interesting analysis comparing clasgifin results on a
forest area obtained with three different sendarg,multispectral (i.e. the Landsat-7 ETM+ and H{@-

1 ALI) and one hyperspectral (i.e. the EO-1 HypeYyid he results of this study confirmed that with h
perspectral data it is possible to reach much higlessification accuracies than with multispecinad
ages. In [13], Clarlet al. studied seven deciduous tree species with HYDI&Sar, using three different
classifiers, reaching accuracies in the order 869 [14], Leckieet al. used CASI hyperspectral images

to separate five different coniferous species, detating the high importance of these kinds oadat



classification of similar tree species. In [12] Miaret al. separated eleven forest classes using AVIRIS
data.

Active SAR and LIDAR remote sensing sensors are &iglely used in forest analysis. SAR system is an
important source of information for studies on &trenvironments. With SAR data it is possible th-es
mate a wide range of forest parameters, ranging structure to biophysical indexes, like forestl fue
load (e.g.[15]-[17]). In the classification domain, SAR data are maimed for the separation of for-
ested from non-forested ardds$], or in problems where classification is connectitth tree parameters.

In this context, if19] Leeet al. classify different stages of the age of coniferand deciduous trees us-
ing L-band polarimetric INSAR data. Ranseinal. [20] present a similar work, studying Siberian trees,
dividing the vegetation in four classes: young daous, old deciduous, young conifer and old conifer
[21], Saatchit al. classify seven different vegetation classes (bat total of eight) using JPL-AIRSAR
data.

The use of LIDAR sensor is increasing in the contdxorest applications. LIDAR is an effective dmf
mation source for studies related to tree heigitgst structure, biomass and all the parametetsatiea
mainly related to the vertical dimension of thersceinder analysis (e.f22]-[25]). LIDAR potentially
allows a very precise and detailed analysis oediffit forest parameters. For exampld2i5] Andersen

et al. study the potentialities of LIDAR in the estimatiof some forest canopy fuel parameters, finding
high correlation between LIDAR data and biophyspatameters. Some studies have also been done in
using LIDAR data in classification problems, infparlar in cases where a reduced number of clages
investigated, such as the case of discriminatidwézen deciduous and conifer trees (§26]-[28]). In
[26], Brennanet al. present a study with nine classes, obtaining leigssification accuracies for all
classes, and emphasizing that LIDAR data can beefézctive in the distinction between coniferomsla
deciduous trees. I[28], Holmgrenet al. identify species of individual trees using highzsiéy airborne
laser scanner data characterizing the structur¢renshape of different tree species.

The high number of remote sensing sensors availatitese last years, as well as the possibilitiyatoe
images acquired by different sensors on the sap® Aas resulted in several studies on the usaibf m
tisensor information for forest applications. Iimsthontext, many papers have been published ojoitfie
use of multispectral (or hyperspectral) images 8AR data (e.g. [29],[30]). Recently, some workséhav
also addressed the joint use of LIDAR and othéva@nd passive sensors in forest parameter estimat
problems (e.g. [31]-[34]). For example, in [34] Hyet al. describe the results of an analysis on forest
structure using four different sensors (i.e. LIDAFAR, Landsat ETM+ and Quickbird), underlining that
for the estimation of forest parameters the comtinaof LIDAR and ETM+ data achieves good accu-
racy. Concerning classification problems, Simeetadl. [35] explore the joint use of hyperspectral and
LIDAR data for the separation of vegetation classeslerlining that LIDAR can be very useful in the
separation of shrubs from trees. In [36], Leet@l. exploit hyperspectral and LIDAR data for the class
fication of urban areas, using LIDAR for the segtaéion of the scene, and then hyperspectral data fo

the classification of the resulting regions. In][3Viundt et al. present a study on the joint use of hyper-
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spectral and LIDAR data for the classification afsbrush distribution, reporting accuracies of &bou
80%. In [38] Sugumaraat al. address the joint use of hyperspectral and LIDARador the identifica-
tion of tree species in an urban environment, shgule effectiveness of LIDAR bands in the clasaHi
tion phase. Other studies exploit LIDAR data in pineprocessing phase. For example, in [39] Petrra.
use the DTM derived from LIDAR in the phase of getmne correction of hyperspectral images.

All the above-mentioned papers indicate a good ¢em@ntary relationship between hyperspectral and
LIDAR data, as they contain very different inforioat hyperspectral images provide a detailed dpscri
tion of the spectral signatures of classes, bunhfawmation on the height of ground covers; LIDARta
give detailed information about the height, butimormation on the spectral signatures. Howeverstmo
of the studies do not approach the integrationIBfAR and hyperspectral signals from a real dat#ofus
perspective, but address the problem in terms pédirsge use of these information sources in difteren
processing phases. In this scenario, at the presintvery few investigations have been carried aut
both the design of advanced classification systespsble of properly exploiting the complementary in
formation present in these data, and the possilbdijointly use LIDAR and hyperspectral data ftassi-
fication of complex forest areas in presence ofyrage species.

In this chapter we address the above issues lpogpity an advanced classification system for tihe jo
exploitation of LIDAR and hyperspectral data, anddtudying the importance of LIDAR data when
fused with hyperspectral images in solving compgtaest classification problems. The main motivation
of this work is that at the present time it is heamy more common to acquire both LIDAR and hyper-
spectral data on forest areas. Generally, these atatused separately; in particular, hyperspedats
are exploited for forest classification and LIDARtd for forest parameter estimation. However, the
availability of both data can be properly exploiiada data fusion framework both at the classiforat
and the estimation level. In this work we focus atiention on the classification problem. The nin-
tributions of this work to the literature are adws:

i. definition of an advanced system for the joint asbyperspectral and LIDAR data in classification
of complex forest areas. In particular the propasesdem can properly manage: a) the hyperdimen-
sionality of the features vector intrinsic in hygeectral data; b) the different statistical prajsrt
of hyperspectral and LIDAR data; c) the complemgntale that LIDAR data can play with re-
spect to hyperspectral data for the discriminatibsome important forest species;

ii. investigation on the effectiveness of the very geimg distribution free Support Vector Machines
(SVM) and the parametric Gaussian Maximum Likelithawith Leave-One-Out-Covariance algo-
rithm (GML-LOOC) classifiers in the analysis of cplax forest scenarios characterized by a high
number of species in a multisource framework;

iii. analysis on the effectiveness of different LIDARuras and channels (elevation and intensity) for
increasing the classification accuracy obtainedh \wigperspectral images, especially in relation to

the discrimination of very similar classes.



The proposed system was tested on a dense foeestlaracterized by a very high number of complex
tree species (i.e. 19 species). In the experimerdsgonsidered airborne hyperspectral images and LI
DAR data with a very high geometrical resolutiom{lLand a density higher than 5 points per square m
ter, respectively. The results obtained confirm ¢Rectiveness of the proposed system, and aclieve
teresting conclusions on the importance of thetjoise of LIDAR and hyperspectral data in forest
classification.

The chapter is organized into six sections. The segtion describes the data set used in our asalys
while Section 3.3 presents the problem definitiod the architecture of the proposed system, asasell
the main preprocessing techniques adopted. Theifitasion methods investigated in the proposed sys
tem are analyzed in Section 3.4. Section 3.5 de=tiand discusses the experimental results obtdtired

nally, the last section draws the conclusions isfwork.

3.2 Data Set Description

The study area selected is a complex forest sd¢&tecorresponds to the natural reserve of Besto
della Fontana”in the Po Plain near the city of Mantua (ItalyheTcentral point of the area has the fol-
lowing coordinates: 45° 12’ 1.68” N, 10° 44’ 35.58" The topography of this area is almost perfectly
flat and it extends across an area of approxim&@&@/ha. This area represents one of the bestrpeese
forest relicts on the Po Plain. Due to the absafce significant human impact in the last centuhys
area has the following interesting propertiest §antains a high number of vegetation species rtitan
twenty); ii) it consists of several similar treeesjes, includingQuercus cerrisQuercus roburandQuer-
cus rubra iii) it does not exhibit a preordered spatiaktdistribution.

We investigated 19 different tree species, to whiehadded a further four classes in order to havexa
haustive representation of land covers of the wlaoka analyzed. In total 23 classes were reprasente
(see Table 3-1 for a complete description of tlasszs investigated). It is worth noting that amitvegl9
tree species under analysis there are classesgirgoio the same family, which have very similaesp
tral signatures. Another important consideratiothwspect to this data set is that from the aealy@mrea
not all the vegetation classes have the sameweltdquency, and that there are some dominaniespec
(e.g.Carpinus betulusQuercus cerrisQuercus robuandQuercus rubra

The hyperspectral and LIDAR data (see Figure 3-devacquired simultaneously on Jun& 2806 be-
tween 9:04 AM and 9:36 AM. The hyperspectral datasest of six partially overlapping images acquired
by an AISA Eagle sensor in 126 spectral bands,ingngom 400 nm to 990 nm, with a spectral resolu-
tion of about 4.5 nm and a spatial resolution af.IThe flight direction of the plane was the saoedl

the six images (from East to West) and the flighight was consistent, at approximately 750 m. The L
DAR data were acquired by a sensor Optech ALTM 3%th a mean density of 5.6 points per square
meter. The laser pulse wavelength and the lasetitiem rate were 1064 nm and 100 kHz, respectively
The data used in our investigation refer to th&t fiour LIDAR returns: in particular the elevatiand the

intensity channels of each return. The total nunadferiDAR points per return is as follows: 20’2760
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points for the first return, 5’096'256 for the sadp 1'110°'799 for the third and 85’741 for the fturA
Digital Terrain Model (DTM) of the investigated arwith a spatial resolution of 1 m was extracteafr
the LIDAR data.

Table 3-1. Distribution of Reference Data Samphizgls) Among Investigated Classes.

Class Name sRaer;e;;E:nsce Data Class Name sRaer;e;;E:nsce Data Class Name sRae;%Fensce Data
Acer campestris 170 Juglans regia 1573 Quercus rubra 1137

Acer negundo 48 Morus sp. 164 Robinia pseudoacacia 1008

Alnus glutinosa 507 Platanus hybrida 2048 Rubus 661

Carpinus betulus 910 Populus canescens 244 Shadows 290

Corylus avellana 58 Populus hybrida 211 Snags 205

Fraxinus angustifolia 787 Prunus avium 261 Tilia cordata 507

Grassland 496 Quercus cerris 1796 Ulmus minor 403

Juglans nigra 1283 Quercus robur 2049

(b)

Figure 3-1. Example of images used in the experisae) channel 34 (550 nm) of the hyperspectral im-
age; b) Digital Canopy Model (DCM) of the analyzzéa.

The ground truth samples (approximately 550 pointsje collected with a ground survey in autumn
2006. Samples were collated on a laptop withinrimphoto (with a geometrical resolution of 20 avh)
the area analyzed according to ground observatitiesextracted these points from the entire studg ar
thus ensuring a precise matching between the grobservations and the aerial ones (e.g. we coreslder
trees near roads, grassland, etc.). The samples aedlected on the basis: i) of the species (ttoeimgp
truth is exhaustive, i.e. it represents all thecgg®epresent in the area; furthermore, it takes atcount
the relative frequency of each class); and ii)hef $patial distribution (samples have a uniforntriths-

tion all over the scene). All points where thenated to Region of Interests (ROIs) on the co-



registered hyperspectral and LIDAR data, and usethe generation of the training and test sets. {dh

tal number of ground truth samples (16816 pixedpyesents about 0.7% of the whole investigated area

3.3 Problem Definition and system ar chitecture

3.3.1 Problem definition

Generally, the analysis of large forest areas Wberspectral scanners (usually characterized &asai-
atively small FOV) requires the acquisition of dint images which are then integrated accordiray to
mosaic procedure. In this context, let us considseries oM hyperspectral images witk (i=1,...,M)
acquired in partially overlapping portions of tmweéstigated area, and a LIDAR imagdaken simulta-
neously with the hyperspectral ones. Hebe the radiometric normalized mosaic of these imageH
the corresponding noise reduced hyperspectral indagé=1,...,M), H and H,, are n-dimensional im-
ages, whera is the total number of spectral bands. Letenote the LIDAR interpolated image consist-
ing of the elevation and the intensity channeltheffirstm LIDAR returns. The total number of bands of
L is 2*m, due to the fact that for each return we have l@vationE and intensityl image (i.e.,

L =EO1). Thusk andl aremdimensional images, representing the elevationtaedntensity of the
first m LIDAR returns, respectively. Let, be theg-dimensional feature vector that representspttie
pattern in input to the classifier. Finally 8t{ w1,w,,... wk} be the set of thK land-cover classes in the
considered classification problem, withthei-th class.

As stated in the introduction, we focus on a spepifoblem: the fusion of hyperspectral and LIDA&al
for classification of trees species. To reach tgctive, we propose a system based on an artthigec
that processes both hyperspectral and LIDAR dat@piing the complementary role that these data ca
play. The architecture of the proposed system (thighabove-defined notation) is shown in Figure 812

the following we present in detail the differenttgeaof the system.

3.3.2 System architecture

The analysis of two different kinds of data (hypectral and LIDAR) requires the use of two diffdren
preprocessing schemes. For hyperspectral datardawgdo what previously described, it is necessary
mosaic various images in order to achieve covedshdgiee whole site. Before this phase, a relativiaa
metric normalization should be applied to the snighages in order to obtain a uniform mosaic image.
Several normalization algorithms have been propasditerature (e.g. [40],[41]). Since the investigd
area is almost perfectly flat, and the data wecgiged in a reduced interval of time (about 30 rtes), it

is reasonable to assume that all six hyperspeatages were taken under the same illumination eondi
tions. Therefore, and taking into account thatm ¢lassification phase we use a supervised atzsih
system, we applied a relative radiometric normébzrato the images without any specific atmospheric
correction. In greater detail, we adopted a sinipsar normalization based on the mean-standarthdev

tion algorithm [40].
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Figure 3-2. Architecture of the system developed.

After creating the mosaic, we co-registered theehypectral data to the LIDAR images, using approxi-
mately 75 ground control points (GCPs) distributedbss the entire image. In particular, to warpitine
age we selected a polynomial transformation ofitbnder and a nearest neighbor resampling of tke pi
els. The RMS error resulting after the co-regigiraphase was 0.76. The hyperspectral data were the
de-noised with a simple low-pass filter with a womdsize of 3 pixels. In the previously published lit-
erature several studies pointed out the usefuloiedss operation (e.g. [42][43]). In our case, agivthe
high geometrical resolution of the images, theiapdegradation involved by the filter is acceptahiith
respect to both the reduction of the noise preisettite images and the expected increase in clapssase
bility [42].

From a methodological viewpoint, the automatic gsial of hyperspectral data in the presence of a hig
number of forest classes is not a trivial taskpanticular, the complexity can be attributed tah@ high
computational cost; ii) the need of advanced diassion systems capable of adequately modeling the
non-linear hyperdimensional discrimination funcgamssociated with the presence of many tree species
and iii) the curse of dimensionality. In the conteksupervised classification, one of the mairficlifties

is related to the usually small ratio between thmlner of available training samples and the nunaber
features (Hughes phenomenon [44]), that makedficult (or impossible) to estimate the parametefrs
the classifier (e.g. with the Gaussian Maximum Lk@od algorithm).

A possible solution to this problem is to use auezselection technique. The rationale of thisrapph

is to reduce the number of features, by selectirgpeesentative subset of the original spectrahcbks.

A feature-selection technique is made up of a sestrategy and of a separability criterion. In libera-

ture several algorithms have been proposed for thatbe tasks. Concerning the search strategy, we ca



find optimal procedures (e.g. Branch and Bound)[48hich allow us to identify the subset of featire
that maximizes the separability criterion, or subopl ones (e.g. Sequential Forward Floating Sedact
(SFFS) [45], Steepest Ascent [46]), which find Aaptimal solution with a reduced computational cost
For our study, we adopted the SFFS algorithm, wischidely used in the literature as it providetiso
tions reasonably close to the optimal one. Reggrttie separability criterion, several measures have
been presented in the literature, including thetBlocharyya distance, Jeffries—Matusita distance and
transformed divergence [43], [47]. We selected Xb#ries-Matusita distance, which is associateth¢o
Chernoff upper bound to the Bayesian error algbémnmulticlass case [48].

For the LIDAR analysis, we rasterized the raw dataresponding to the LAS format) of all the retrn
The elevation and the intensity channels were atedénto a raster image with a spatial resolutbi

m, assigning to each pixel the mean value of paiittsin the corresponding area on the ground. Ee f
pixels with missing data in the first return weeplaced by a linear interpolation, whereas no jitier

tion was applied to the other returns. After thisge, in order to determine the height of vegetatiith
respect to the ground, we extracted the DigitaldpgiriModel (DCM) by subtracting the DTM to the ele-
vation channel of the LIDAR return. This proceduras applied to the elevation band of all four LIDAR

returns.

3.4 Classification Techniques

In the definition of the proposed system, we aredyand compared two advanced classification tech-
niques, specifically suitable to the analysis gbdrglimensional features spaces, in order to eathair
effectiveness in classifying complex forest areaa multisource framework. The first technique saa
rametric regularized Gaussian Maximum LikelihoodMIG classifier that applies the Leave-One-Out-
Covariance (LOOC) procedure [48] to the estimatibithe statistics of the classifier. The secondhtec
nique is a distribution-free machine learning dféasbased on the Support Vector Machine (SVM)][49
[50]. The main motivations for this choice areGML-LOOC and SVM have been widely used in previ-
ous studies on classification of hyperspectral ¢atg., [48]-[50]) proving their effectiveness iggerdi-
mensional feature spaces; ii) both techniquesrdarimsically able to solve ill-posed classificatiprob-
lems, in which the ratio between the number of labé training samples and the number of featwses i
relatively small (this is a typical situation withyperspectral data); iii) despite the above-memtibn
common properties, GML-LOOC and SVM represent adgsampling of two different categories of clas-
sification algorithms. GML-LOOC is a parametric sddier based on the Gaussian model for the ap-
proximation of the class distributions. It represean effective version of the widely used standdtd
classifier for the analysis of hyperspectral datee SVM classifier is a distribution-free compldassi-

fier, which is based on machine learning and thus @ompletely different theoretical backgroundhwit
respect to GML-LOOC. SVM proved to be very effeetifor classification of hyperspectral data (e.g.,
[49],[50])).

In the following we briefly recall the main propes of these classifiers.

43



CHAPTER 3

34.1 Gaussian Maximum Likelihood with L eave-One-Out-Covariance algorithm (GML-LOOC)
This algorithm belongs to the family of parametachniques, and is based on the Gaussian Maximum
Likelihood (GML) classifier. The standard GML praltee is effective when the ratio between the num-
ber of training samples and the dimension of tlauie space is relatively high, but its performadee
grades when this ratio decreases (Hughes phenonjé8pnin particular when the number of training
samples is smaller than the number of featurescdkariance matrix used in the decision rule become
singular, and thus the GML can not be used. Todathos problem, several algorithms have been devel-
oped for the estimation of a non-singular covaman@atrix (e.g. [48]-[54]). In our study, we chobe t
algorithm proposed in [48], callddeave-One-Out-Covariancg.OOC) algorithm. In the following we
give more details on this classifier.
Let x, be thep-th pattern to be classified, and; (with i=1,...,K) the mean value and the covariance ma-
trix of thei-th investigated class, respectively. The decisida is as follows:
XpOw, = dj(x,)>di(x,) 0O i#] (3.1)

whered;(x,) is computed as:

d; (Xp):(xp_ui)tzi_l(xp_ui)+|n|zi| (3.2)
Usually the true values of the mean vectors artie@tovariance matrices are not known and theyldhou

be estimated from the training samples. When acetimumber of samples is available, the covariance

K
matrices can be replaced with the common covariarateix, defined asS=%Z):i [48]. The LOOC
i=1

algorithm proposes a more refined way to estintagecbvariance matrices for classes characterized by

LOOC
izi

reduced number of training samples. In particula ¢ovariance matri of thei-th class is esti-

mated as follows:

(I-a;)diag(x)) +a,x, O<a, <1
9% @) =<2-a,)%, +(a, -1S 1<a, <2 (3.3)
B-a,)S+(a, —2)diag(S) 2<a,<3

whereg; is a mixing parameter, whose value is selectedrdatg to the following procedure: i) removing
one sample, ii) computing the mean and covariarwa the remaining samples, iii) computing the likel
hood of the sample which was left out, given theamand covariance estimates. Each sample is removed
in turn, and the average log likelihood is compufBue value that maximizes the average log likeltho

is selected [55]. This implementation has proveldgarticularly effective in hyperspectral datassifi-
catiort.

It is worth noting that since this classifier magltite class distributions according to a Gaussiaantion,

its application to multisensor data imply a Gaussipproximation of the distribution of classes ba t
stacked features vector. This approximation isaealsle from an application viewpoint, but it is migk

orous from a theoretical prospective.

! In this chapter we used the implementation cortin the MultiSpec software [55].



3.4.2 Support Vector Machine

Support Vector Machines (SVMs) are distributionefigdassifiers that overcome the aforementioned ap-
proximation of the GML-LOOC classifier. Developeg Yapnik [56], then SVM classifiers have under-
gone great development in last ten years and hega buccessfully applied to several remote sensing
problems (e.g. [49],[50]). Their success is justfifrom four main properties: i) their relativeligh clas-
sification accuracy and very good generalizatigmabdlity with respect to other classifiers; ii) thmited
effort required for architecture design and trajnpphase if compared to other machine learning algo-
rithms (such as multilayer perceptron neural nekalpriii) the convexity of the cost function thands
always the optimum solution; and iv) their effeetiess in ill-posed classification problems (proldem
with a low ratio between number of training samm@es number of features) [50]. In the following, we
briefly relate the main concepts and the mathemisgfiicmulation of SVM$&

Let us consider a binary classification problenmt Le assume that the training set consist® gkctors

X, ORY, with the corresponding target,, D{—];+1}, where “+1” and “-1” denote the labels of the

considered classes. The non-linear SVM approachistsrof mapping the data into a higher dimensional

feature space, i.e.gD(xp) ORY(g>>q), where it looks for a separation betweea thvo classes by

means of an optimal hyperplane defined by a weightor w O[] * and a biad O . In particularw is
a vector orthogonal to the separating hyperplars,a scalar value such that the rdtifjw|| represents
the distance of the hyperplane from the origin, iiedfunction® represents a non-linear transformation.
The membership decision rule is defined accordingidn[f(x)], wheref(x) represents the discriminant
function associated with the hyperplane and istanias:

f(x)=w®P(x)+b (3.4)
The optimal hyperplane is the one that minimize®st function which expresses a combination of two

criteria; margin maximization and error minimizatidt is defined as:

W(w,¢&) =%||w||2 +c§‘15p (3.5)
This cost function minimization is subject to tlildwing constraints:
Y, wx, +b)21-¢,, Op=1..Q (3.6)
and
$20 Up=1..Q 3.7
where(, are the so calleslack variablesand are defined as follows:
&y (wib))= &, =max{or-y, (witb(x,) +b)) (38)

and they are introduced to take into account npassdble data. The constabtrepresents a regulariza-

tion parameter that controls the shape of the idiscant function, and consequently the decisionnabu

2 We used our own implementation of SVM which isdzhen the SMO procedure.
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ary when data are non-separable. The above optionizparoblem can be reformulated through a La-
grange functional for which the Lagrange multigiean be found by means of a dual optimization-lead
ing to a Quadratic Programming (QP) solution [S®je final result is a discriminant function conven-

iently expressed as a function of the data in tigér@l (lower) dimensional feature space:

f(x) :Zai Y, P(x;,X) +b (3.9)

igs
where ®(;) is a kernel function an& is the subset of training samples correspondinthéononzero
Lagrange multipliers. It is worth noting that thadrange multipliers; effectively weight each training
sample according to its importance in determinhegdiscriminant function. The training samples asso

ated with nonzero weights are termsgpport vector$50]. In particular the support vectors wheteC

are referred to alsound support vectpand support vectors with < a; <C are callechon bound sup-

port vectors The kernel®(;) must satisfy the condition of Mercer's theoremtkat it corresponds to
some type of inner product in the transformed (giydimensional feature space [56].

The SVM classifier was developed to solve binagssification problems, but it can be easily extende
to multiclass problems. The two main strategiesduiee K class problems are: i) One-Against-One
(OAO) - the K-class problem is decomposed into K{K2 binary problems, each focused on the recog-
nition of a pair of classes. A generic patterngsogiated with the class that receives the majofitye
votes from the ensemble of binary classifiersQOie-Against-All (OAA) — the K-class problem is de-
composed into K binary problems, each focused em¢bognition of one class against all the othEns.
“winner-takes-all” rule is used for the final ddois, i.e. the winning class is the one correspogdinthe
SVM with the highest output (discriminant functigalue). We refer the reader to [50] for greateaiet

on SVM classifiers and on the related multiclasatsgies.

3.5 Experimental Analysisand Discussion

3.5.1 Experimental design

In order to assess the effectiveness of the pra®gsiem and to achieve the goals of this chaptede-
fined three different experiments: i) analysis lod importance of the joint use of hyperspectralgesa
and first LIDAR return on the classification of cplex forest areas; ii) analysis on the usefulnésaud-
tiple LIDAR returns and of the different informaticontained in elevation and intensity channeiy; ii
analysis on the generalization capability of thepmsed system.

For the first two experiments, we carried out t@rhing of the classifier (with the model selectiand
the accuracy assessment according tef@ld cross-validation procedure. This allowed asanalyze,
from a rigorous statistical perspective, the po#tmf the proposed system, and of the hyperspeair
LIDAR sensors, in the considered scenario. We ramgldivided the available ground truth data into 5
subsets, and we then adopted a 5-fold cross-vaidatocedure, with training samples (pixels) dlistr
uted all over the scene. The samples of grount ttata available were used as follows: 20% inthie-t
ing set (about 3300 samples) and 80% in the tégabeut 13500 samples). It is worth noting that alse



of only 20% of the ground truth samples for leagniands to result in minority classes with very few
training samples. However, this choice is reasanablit represents a typical condition of real apenal
applications.

With regards to the last experiment, we definedithiming and the test sets by considering sanfpbes
different spatially disjoint areas in order to amzal the generalization capability of the systemhwé-
spect to the variability and the non-stationarydwedr of the spectral signatures of the classeturtiner
detail, for this experiment the training and tesmples were selected purposefully avoiding thay the
share pixels belonging to the same tree crowndileéhe pixels of a tree crown are completely unigd

in only one of the two sets).

The performances of the system were assessedtyy eisor matrices. We derived the overall kappa co-
efficients from these matrices, as described bygalhonet al. in [57], and analyzed the statistic signifi-
cance of results according to the Zeta test [57].

In our experiments we used also thbearest Neighbotk{NN) classifier in order to compare the accu-
racy provided by the advanced classifiers incluidettie proposed system with a simple distributicref
classification technique. For the model selectibthe SVM classifier, we chose a Gaussian kerret-fu
tion, and applied a grid search strategy in a rdoregereen 50 and 240 f@; and in a range between 1 and
1000 fory. For thek-NN classifier, the value & varied from 1 to 29.

352 Experiment 1: analysis of the effectiveness of the proposed multisensor classification system.

Let us consider the noise reduced hyperspectral datwell as the intensity and the corrected &tmva
of the first LIDAR return. In this experiment weayze the effectiveness of first LIDAR return chals)

at first considering only the global kappa accuraayd then analyzing in greater detail the classtags
accuracies. Experiments were conducted with thieessitiers: SVM, GML-LOOC and-Nearest Neigh-
bor k-NN). We carried out different trials using 126, 40d 25 spectral channels derived according to
the feature selection algorithm. Figure 3-3 showes liehavior of the average Jeffries-Matusita degtan
versus the number of hyperspectral channels sdledgth the SFFS search strategy. It is worth noting
that the typical trend of this distance, which e saturation when the number of features useatbto
change the separability among information claséésreached saturation with about 25 features hut, i
this experiment and in the following, we also amatywhat occurred with 40 hyperspectral featurbgs T
was done for consideration of some margin on th@rmim number of input channels derived from the
feature-selection phase. This is reasonable terbatnsidering also the accuracy of minority clagbat

less affect the behavior of the average Jeffrietubita distance.
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Figure 3-3. Behavior of the average Jeffries-Matudistance versus the number of selected features.

Table 3-2. Kappa Accuracies Obtained on the Testvile Different Spectral Features and Clas-
sifiers.

Kappa Accuracy
SVM GML-LOOC k-NN

Features

25 hyperspectral bands 0.872 0.778 0.649
40 hyperspectral bands 0.879 0.782 0.666
126 hyperspectral bands 0.881 0.823 0.676

Table 3-3. Kappa Accuracies Obtained on the Tesivile Different Spectral and LIDAR Fea-
tures and Classifiers.

Features Kappa Accuracy

SVM GML-LOOC k-NN
25 hyperspectral bands + elevation and intensithefirst LIDAR return 0.885 0.809 0.698
40 hyperspectral bands + elevation and intensith@first LIDAR return 0.890 0.809 0.714
126 hyperspectral bands + elevation and intensitigeofirst LIDAR return 0.892 0.840 0.714

Table 3-2 illustrates the kappa accuracies obtawéiu different classifiers when varying the feasir
used. From the analysis of these accuracies, wentamsome important points. For the SVM classjfie
the accuracies obtained are particularly high aw®rsig the number of classes (23), and the number o
training samples per class (as shown in Tablef8rlsome classes in the training phase we have Iihly
samples). In particular, it is possible to obsethvat the SVM classifier always provided signifidgnt
higher accuracy than both thkeNN and the GML-LOOC techniques. In greater detdignks to its
strongly non-linear properties, the SVM classifodrtained with 25 features a kappa accuracy which is
higher than that obtained by the GML-LOOC techniguth all the 126 channels. These results confirm
the superior performances of the SVM techniquechviailso involves an intrinsically better generaliza

tion ability. The higher potentialities of the SVdassifier can be explained by the fact that @ istri-



bution-free technique that does not approximatedieibution of classes with any predefined st
model (the GML-LOOC assume Gaussian approximatioum) models the decision boundary on the basis
of the available training data. This results in tapability to model also strongly non-linear dasis
boundaries. Another important issue to note is ot SVM and GML-LOOC do not seem significantly
affected by the Hughes phenomenon, since the fitadgin accuracies increases with increasing the
number of features. In the case of k-NN, the kagogauracies for all the experiments were much smalle
than those obtained by the other classifiers. €oidirms thatk-NN is not able to manage hyperdimen-
sional feature spaces. This is especially true wit@sses with very few training samples are comsitle
The small kappa accuracies also illustrate the itapoe of using specific classifiers that exhibtigh
generalization ability.

Let us now analyze the effect of first LIDAR returthannels on the classification accuracy. Table 3-3
shows the accuracies obtained adding to differpattsal features subsets the elevation and intensit
channels of the first LIDAR return. Comparing tlesults of Table 3-2 and Table 3-3, reveals an asae

in kappa accuracy from 1% to 4%, which is lessviaaié for the SVM and GML-LOOC classifiers, and
more significant for the k-NN technique (which hawe does not obtain acceptable accuracies). From
these results it seems that LIDAR channels providigtively sparse information for discriminating-be
tween tree species. However, if we analyze thesddgsclass accuracies, with and without LIDAR chan-
nels, the conclusions are quite different. Tabkk Shows class-by-class accuracies obtained with the
SVM classifier adding the two LIDAR channels tofdient spectral band subsets (25 and 40). From the
analysis of the table we observe that, in gengmaly high accuracies were reached for very sintiize
species, including)uercus cerris Quercus roburand Quercus rubra Concerning the role of LIDAR
channels, we have different classification behaa@rying the number of spectral bands used. WBen 4
bands were used, an increase in classificationracgwccurs for classes characterized by a lowhteig
In particular for four of the classes the incremeas higher than 5%. The increase in classificadicru-
racy becomes more relevant when reducing the nuofdeyperspectral bands used. With 25 hyperspec-
tral channels, the accuracy increased by more 1986 for two classes, and more than 5% for seven
classes. For examplscer negundadncreased in accuracy by 13.56% adding LIDAR baod25 hyper-
spectral channels. Analyzing the confusion matrités classincreases its separability with respect to
Carpinus betulusPlatanus hybrideandQuercus robui(which are characterized by a very different mean
height with respect técer negundp It is possible to draw similar conclusions dleoothers classes that
have relevant increase in classification accurécdg. worth noting that the classes that signifibam-
crease their accuracy by introducing LIDAR featuaesthe underrepresented classes. This is theanoti
tion for the relatively small impact of this imprmmwent on the overall classification accuracy.

The Zeta test [57] was computed between kappa aciesr obtained with 40 hyperspectral bands with
and without LIDAR channels using SVM and GML-LOO(Gssifiers. All the differences in accuracy

were statistically significant at 95% of the cominte interval.
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Table 3-4. Class-by-Class Accuracy Obtained byS¥iM Classifier with LIDAR and without
LIDAR with a Different Number of Hyperspectral Chreats.

25 Hyperspectral Features

40 Hyperspectral Features

Class Name Accuracy (%) A %) Accuracy (%) A %)
LIDAR no LIDAR LIDAR no LIDAR

Acer campestris 76.76 70.29 6.47 75.59 71.03 4.56
Acer negundo 85.45 71.89 13.56 87.53 80.19 7.34
Alnus glutinosa 90.63 91.12 -0.49 91.02 90.73 0.30
Carpinus betulus 92.39 91.54 0.85 92.31 91.68 0.63
Corylus avellana 45.19 38.75 6.44 45.62 38.34 7.28
Fraxinus angustifolia 90.34 90.82 -0.48 90.25 89.83 0.41
Grassland 100.00 98.64 1.36 100.00 99.09 0.91
Juglans nigra 86.57 84.32 2.26 88.25 85.19 3.06
Juglans regia 89.67 90.40 -0.73 90.67 90.69 -0.02
Morus sp. 87.34 75.92 11.42 87.34 78.67 8.67
Platanus hybrida 89.99 90.23 -0.24 90.20 90.93 -0.73
Populus canescens 87.29 84.84 2.46 89.04 87.19 1.84
Populus hybrida 89.10 85.66 3.44 89.92 87.31 2.61
Prunus avium 79.79 72.89 6.90 80.65 76.53 412
Quercus cerris 92.87 93.07 -0.19 93.35 92.80 0.54
Quercus robur 86.49 86.91 -0.41 88.25 88.24 0.01
Quercus rubra 92.22 93.42 -1.21 91.93 93.36 -1.43
Robinia pseudacacia 88.54 85.05 3.50 88.22 84.90 3.32
Rubus 93.72 86.46 7.26 93.19 87.75 5.45
Shadows 98.02 97.93 0.09 98.28 97.84 0.43
Snags 86.34 85.98 0.37 85.61 85.85 -0.24
Tilia cordata 89.69 84.07 5.62 89.30 86.04 3.26
Ulmus minor 70.22 65.81 4.40 71.65 69.17 248

From these results, it is possible to concludefirgttLIDAR return can be very useful in the disaina-
tion of specific tree species. In addition, if LIBAchannels are available, it is convenient to use-a
duced number of spectral channels, and to addesetbhannels the LIDAR information. In this perspec
tive, on the one hand, the LIDAR channels compenga minor lost of information due to the reduced
number of spectral channels; on the other handiethdting smaller number of features allows botk-a

duction of computation time and an increase ingiyeeralization capability of the system.

3.5.3 Experiment 2: detailed analysis of the complementary information contained in LIDAR re-
turns.

In the first part of this experiment we consided@dhyperspectral bands and the two channels dirdte

LIDAR return. From the results of the previous exmpent, it is clear that these channels are ugaful

classification of complex forest areas, especifdlydiscriminating between specific tree specieke T

next step is to understand the amount of informati@sent in each channel (i.e. elevation and siten



Table 3-5. Kappa Accuracies Obtained with SVM Viagyihe First LIDAR return Channels

Used.
Features Used Kappa Accuracy
40 hyperspectral features 0.879
40 hyperspectral features + Elevation and Intertfithe First LIDAR return 0.890
40 hyperspectral features + Elevation of the FIBAR return 0.888
40 hyperspectral features + Intensity of the RitBYAR return 0.876

Table 3-5 presents the kappa accuracies obtairtbdive SVM, with either: i) 40 hyperspectral barigs,
40 hyperspectral bands plus elevation and intewgithie first LIDAR return, iii) 40 hyperspectrahbds
plus elevation of the first LIDAR return, and iv) &yperspectral bands plus intensity of the filAR
return. As it is clear from the table, the increaselassification accuracy obtained with LIDAR das
mainly due to the elevation channel, whereas ttengity channel does not give any relevant inforonmat
for the classification of the considered foresagjieslightly decreases the overall kappa accyracy

The second part of this experiment was focused wltipte LIDAR returns available in the data setdise
for this study. To analyze the information contdine these channels for the classification process,
carried out a series of trials incrementally adding first, the second, the third and the fourtturre

channels (elevation and intensity) to the 40 hypessal bands.

Table 3-6. Kappa Accuracies Obtained with SVM Viagyihe Number of LIDAR Returns Joint-
ly Used with the 40 Hyperspectral Features Selected

LIDAR Features Used Kappa Accuracy
1% Return channels 0.890
1%+ 2 Return channels 0.878
1%+ 2+ 39 Return channels 0.872

18+ 29+ 39+ 4" Return channels 0.872

Table 3-6 shows the overall kappa accuracies adaimthese trials. From these results it seentg¢ha
turns different from the first do not increase kagzcuracy. On the contrary, they result in a slogt
crease of the accuracy with respect to that yield®dg hyperspectral features plus first LIDAR ratu
channels. These results depend on the propertiagaifible multiple LIDAR returns. As described in
section 3.2, the number of pulses is differentdach return, and in particular it decreases byeamsing
the return number. This can be explained by thetfat the analyzed area is characterized by a very
dense tree crown coverage that precludes the demed secondary returns in many portions of the
scene. For this reason, during the rasterizati@s@lof the LIDAR data not all the pixels were asged
with a value. In particular, for returns 3 and 4 lwea’e many pixels with no data points. This intmekia
noise in the classification process, thus balanpiogsible advantages in the characterization otéme
opy of different species. In general, we expect thia issue should be better investigated using déh

a higher number of representative samples fromiphellteturns.
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354 Experiment 3: generalization capability of the system.

As described in section 3.5.1, with this last expent we simulate a borderline case, in which trgjn

and test samples are as disjoined as possiblealltwgs us to verify the behavior of the proposgstam
when test samples belong to a significantly diffiér@rea from the one considered for the traininghef
system. It is worth noting that in this specificseawe have some classes with a reduced number of
ground truth samples; this means that only fewegéror four) trees in the whole scene were availtnle
these classes. Thus, the exclusive assignmentreé &o the training or the test set makes grocurtt for
minority classes unrepresentative of the varigbdit the spectral signature over the scene, regpiti a

very difficult classification problem.

Table 3-7. Kappa Accuracies Obtained on Test Sibt Rifferent Classifiers Using Disjoint
Training and Test Sets.

Kappa Accuracy

SVM GML-LOOC k-NN
40 Hyperspectral Bands 0.691 0.629 0.468
40 Hyperspectral Bands + Elevation and Intensittheffirst LIDAR return 0.717 0.658 0.484

Features Used

From Table 3-7, one can see that the kappa acesrdecrease with respect to the previous experament
for all the three classifiers considered. On theti@wy, the differences in accuracies betweenwlesub-

sets of features (with and without LIDAR) remaimakt the same. The kappa accuracy of SVM was still
significantly higher than those provided by otheessifiers (i.e. 0.717 versus 0.658 and 0.484)thrre

was a large decrease with respect to those yiefdpdevious experiments. Also, the GML-LOOC sig-
nificantly decreased the kappa accuracy. Howeeexpected, the more relevant degradation was asso-
ciated with the k-NN classifier, that resulted ikappa accuracy lower than 50%. Analyzing the SVM
class-by-class accuracies, we observed that foestbminant classes, includi@arpinus betulusJug-

lans regia Platanus hypbridandQuercus rubrathe accuracies are still in the order of 85-90%.48%,
87.43%, 84.35%, and 93.47%, respectively), whasttfie minority classes we have a dramatic decrease
of accuracies. For example, fABcer campestrisPopulus hybridaPrunus aviumand Ulmus minorthe
accuracies were lower than 50% (42.86%, 30.56%8982, and 24.31%, respectively). These results
were expected in this very critical scenario (€&8])] that should be addressed by using semi-sigsetv
classification techniques (like semi-supervised SYB@]) especially developed for strongly ill-posed
problems.

The differences in kappa accuracy between triath &hd without LIDAR channels, with SVM and
GML-LOOC classifiers were also tested with the & {&7]. All the differences resulted to be statity

significant at 95% of the confidence interval.



3.6 Conclusions

In this chapter we investigated the joint use gidrgpectral and LIDAR remote sensing data for ths-c
sification of complex forest areas. We analyzed thsue by proposing a novel classification system,
based on different possible classifiers, that vedale to properly integrate multisensor informatiBrom

an analysis of the results of all the experimeatsied out using the proposed system, we can cdaclu
that in general it provided high accuracies, mamgagi an effective way the complementary infornratio
contained in hyperspectral and LIDAR data. In ggedetail, we verified that:

i. the presented system is very effective for clagsifjnyperspectral and LIDAR data, providing high
accuracy on almost all the considered forest ctafsgielded accuracies of over 90% for certain
classes);

ii. the distribution-free SVM classifier provided mukigher accuracies than the other classifiers in-
vestigated. The parametric GML-LOOC, even if lel§sative than SVM, yielded acceptable accu-
racies, whereas tHeNN technique (used for comparison) was unsuitédi¢he solution of hyper-
dimensional problems;

iii. the elevation channel of the first LIDAR return @gtiayed the most important role for increasing
the discriminability (and thus the accuracy) of theest classes by having similar spectral signa-
tures. This was due to the different average el@valf some of some forest classes;

iv. LIDAR returns that are different from the firstuet do not seem capable to improve the kappa ac-
curacy when used jointly with hyperspectral chasinklowever, this issue should be better ana-
lyzed on other data sets by considering a more afpature extraction phase;

v. in critical cases, with a large difference betw&aiming and test samples, the system based on the
SVM classifier should provide an acceptable acgurblowever, in this extreme case the perform-
ances were degraded significantly and it is recontled to use specific classification techniques
developed for ill-posed problems (e.g. semi-supei59]).

As a final remark, it is important to observe ttied proposed system and study seem particuladyaant
when considering that in several forest areas bgpierspectral and LIDAR data are acquired for sseci
classification and parameter estimation, respdgtive these situations it is important to propeirtye-
grate LIDAR data in the classification process lsea i) the use of hyperspectral and LIDAR data in-
creases the separability of tree species havindgsigpectral signatures but different heightthig intro-
duction of the first LIDAR return elevation chanqebduces, with a limited number of spectral feagur
accuracies similar to those yielded with a sigaifity higher number of features. This results ioveer
computational time and in an increase of the géimateon capability of the system.

In terms of future developments of this work we pli@nning to: i) introduce in the classificationgske
semi-supervised classifiers in order to increasegéneralization ability of the system and imprdve
modeling of the non-stationarity of the spectrghsitures of classes in the scene [58]; ii) joimtkploit
hyperspectral images and LIDAR data for the esionadf biophysical forest parameters (e.g., biomass

structure, etc.).
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Chapter 4

4 Analysison the use of multireturn LIDAR data for the

estimation of stem volume at individual treeleve

Small footprint Light Detection and Ranging (LIDA@Rta have been shown to be a very accurate tech-
nology to predict stem volume. In particular mostent sensors are able to acquire multiple return
(more than 2) data at very high hit density, allogvione to have detailed characterization of theoggn

In this chapter we utilize very high density (> ig&lper ni) LIDAR data acquired over a forest stand in
Italy.

Our approach was as follows: individual trees wérst extracted from the LIDAR data and a series of
attributes from both the®Land non-first (multiple) hits associated with kacown were then extracted.
These variables were then correlated with grounthtindividual estimates of stem volume.

Our results indicate that: i) non-first returns ameformative for the estimation of stem volumepar-
ticular the 29 return); ii) some attributes (e.g., maximum at gosver of n) better emphasize the informa-
tion content of returns different from th& respect to other metrics (e.g., minimum, meandt iéhthe
combined use of variables belonging to differemtines slightly increases the overall model accuracy
Moreover we found that the best model for stemmelestimation (adj&= 0.77, P < 0.0001, SE =
0.06) comprised four variables belonging to threurns (£, 2" and 3%).

The results of this analysis are important as theglerline the effectiveness of the use of multigtiern
LIDAR data, underling the connection between LIDAR different from the*land tree structure and

characteristics.

4.1 Introduction

Prediction of stem volume is an important goalustainable forestry, with estimates critical fottbtor-

est inventories as well as for assessing terréstirdon stocks as a key component of carbon atiogun
(i.e. [1],[2]). Although tree stem volume is gernBrastimated using ground based measurementsgea la
number of studies have demonstrated the capacitisiofj remotely sensed data for this purpose (e.g.,
[2]-[13]). There are a number of advantages ofgisamote sensing for the estimation of forest stetn
ume including the possibility to have measureméots every location in the forest, or the abilibydol-

lect data in areas difficultly accessible on theumd.

This chapter is in press dBEE Journal of Selected Topics in Applied Earths@bations and Remote Sensing,
with the title: “Analysis on the use of multipletuen LIiDAR data for the estimation of tree stem&wae”. Authors:
Michele Dalponte, Nicholas C. Coops, Lorenzo Bruez@and Damiano Gianelle.
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One remote sensing technology which has been widegstigated over the past decade to estimate for-
estry attributes is Light Detection And RanginglIR) (e.g., [2]-[13]). These investigations candie
vided into studies at stand level (e.qg., [3]-[@}Hastudies at single tree level (e.g., [2],[7]-]1 2¥ith stand
approaches consisting of estimating the stem volohgeoups of trees usually starting from circupéot

of a given radius, while single tree approachashas¢ individual stem volume of each tree.

Among these two scales of application, the majafitthe studies have focused on the stand levielcipr
pally due to the ready availability of plot levedtd from forest inventory. Moreover, in the pa#t tha-
jority of the LIDAR sensors did not acquire datahwa sufficiently high posting density to allow riple

hits per tree crown thus making single tree levetijztion of volume difficult. Naesset [3] analyztu:
effects of different sensors (Optech ALTM1233 arldTAM3100), flying altitudes (1100, 1200 and 2000
m), and pulse repetition frequencies (PRF) (33al®@ 100 kHz) on the estimation of stem volume and
mean height at stand level using dnd last return LIDAR data. The study concludeat:ti) different
sensors produce point clouds with different prapsrti) low PRFs tend to produce upward shifted-ca
opy height distributions compared to higher PRiBsall the datasets acquired in different condisaap-
pear to be suitable for the estimation of volunhe (tbest” model developed has 4@ 0.92) and mean
height, with a mean error of up to 10.7% for stestumne and 2.5% for mean height [3]. In [4] Co@ps
al. estimated the canopy structure of a Douglassfiedt with ' return LIDAR data and found high cor-
relations between field data and LIDAR derived d@a= 0.85 (P < 0.001, SE = 1.8 m) for the mean
height, and R= 0.65 (P<0.05, SE=14.1°h&") for basal area). Patenaudeal in [5] estimated the
aboveground carbon content in a number of plotsguBist and last return LIDAR data and also found
strong correlations (R=0.74, P<0.01, SE = 4.06%).ha

At the single tree scale Popesstual in [7] estimated forest volume and biomass atitldévidual tree
level using LIDAR f'return and a crown extraction algorithm with eregjing results (83% of the vari-
ance explained for the estimation of volume). Sanyi, Hyyppaet al in [9] proposed a method for the
estimation of stem volume usind feturn at single tree level, based on the segrientaf the individual
tree crowns. Bortologt al. [2] used an individual tree-based approach tionese forest biomass using 1
return LIDAR data, obtaining good results with Rigang between 0.59 and 0.82. In [10] Waatgal
proposed a procedure for the analysis of the \artanopy structure and the 3D modeling of forest.
From their analysis they derived parameters fréhreturn LIDAR data characterizing crown volume
tree diameter and height. Likewise Falkowskal in [11] proposed an automated technique for #tie e
mation of tree crowns based on spatial waveletyaisahnd accurately predicted crown diameters (R =
0.86).

In the majority of these single stem volume anayBereturn LIDAR data have been used with little in-
vestigation into the information content and apiitity of returns different from the®or the last. This
lack of investigation is principally due to the ffaleat, until recently, most sensors only recordedl re-
turns (£' and last hit); however, more recently multipleurat discrete small footprint LIDAR systems

have become available allowing multiple returnsr@ntan 2) to be recorded and subsequently analyzed



However, whilst multiple return system may have ¢hpacity to record more than 2 returns per LIDAR
pulse, numerous factors influence the number afrmst[4] including the amount of energy needed to
trigger a return, the minimum time differences ba#w two echoes, and the specific method used to de-
tect an echo. All these factors affect the minindistance between returns. For example, in the @ptec
ALTM3100 (the sensor used in this study) the minimgistance detected between tfeand the ¥ re-
turn is 2.1 m, which increases to 3.8 m for anyssgbient returns [3]. Despite these potential linoite,
multiple LIDAR returns potentially provide an inase in the information provided by these sensars, i
particular in applications such as predicting croawd stem attributes where multiple returns are ex-
pected. The goal of this chapter therefore is tangre the differences in the capacity of LIDAR puls
returns to predict individual stem volume basedtwir relative return. Our analysis is focalized Dn
single variables; ii) group of variables accordtogtheir characteristics (e.g., standard metriescgn-
tiles, etc) and returns {12, 39, and 4'); and iii) all the variables. Moreover we analyke generaliza-
tion ability of the best model developed with ass-walidation analysis.

This chapter is organized as follows: in sectidhwe describe the study area and data used; iioisect
4.3 we present our approach with a particular faouthe phase of variables extraction. Sectiorilkigk
trates the experimental results, with importantaisions on the outcomes of the experiments, aatfi

in section 4.5 we draw some conclusions.

4.2 Data set description

The focus area for this study is a 500 ha forestdstocated in the Trento Province in the nortktady in

the ltalian Alps. It has a variable topography wibrway spruce Ficea abiey and Silver Fir Abies
alba), the dominant species and subdominant specitgling Fagus sylvaticalLarix deciduaandPinus
sylvestris

The field data for this study were collected in 20Gith the relascopic technique. Fifty plots wea@a-r
domly distributed over the study area. Within eaampling point, a standard cluster of five anglanto
sampling (ACS) was used to estimate mean basalaamad the point, while the diameter at breast
height (DBH) (1.30 m) was measured for all treehidBH > 17.5 cm. For each sample plot, some tree
heights (about 4-6 of tallest trees for species e present in the central ACS) were measuréd avi
Vertex hypsometer, in order to select an accepthabight-diameter function for the estimation ofetre
volume. For trees for which only the diameter wasasured, the height was estimated using a local
height-diameter function selected using the infdromaprovided by the heights measured. The height-
diameter relationships were provided by the Fdsesvice of the Province of Trento (ltaly).

The LIDAR data were acquired on Septembd®&r2007, using an Optech ALTM 3100 laser scanneth wi

a mean density of 8.6 points per square meter.lader pulse wavelength and the PRFs were 1064 nm

and 100 kHz, respectively, with the system recardip to four returns per pulse.
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Table 4-1. Summary of the field measurements (NZyamof trees; DBH=diameter at breast

height (1.30 m); CBH=crown base height).

Characteristic Species
All Abies alba  Picea abies  Fagus sylvatica  Larix decidua  Pinus sylvestris

N 243 111 106 14 10 2

% 100 45.68 43.62 5.76 4.12 0.82

Tree Height (m) Range 11.1-37.1 13.9-36.6 1841 11.1-28.7 155-29.2 14.1-16.2
Mean 26.27 25.81 27.73 21.87 24.15 15.15
S.D 4.88 4.45 4.76 4.2 4.21 1.48

DBH (cm) Range 16-74 16-74 22-72 18 - 47 88 - 26 -34
Mean 44.68 43.71 47.56 29.71 48.8 30
S.D 11.09 9.53 11.23 8.72 9.33 5.66

CBH (m) Range 1.4-233 2.1-20.8 1.4-233 18.4 1.5-16.5 6.8-10.1
Mean 11.33 12.22 10.86 8.46 11.13 8.45
S.D 4.57 3.80 5.23 3.70 4.33 2.33

Volume (nr) Range 0.16 - 6.50 0.19 - 6.50 0.29-5.69 0224 0.63-2.90 0.33-0.66
Mean 2.01 1.95 2.3 0.8 1.7 0.5
S.D 1.12 0.99 1.2 0.61 0.76 0.23

In order eliminate the effect of the topographytloa elevation of the LIDAR hits and to retrieve the

act height of each tree it was necessary to suldi@o each LIDAR return the height of the undentyi

terrain. To this end, a Digital Terrain Model (DTMjth a spatial resolution of 1 m was generated-sta

ing from the data acquired. The DTM was providedh® company that acquired the LIDAR data. This

surface was then subtracted from all returns points

4.3 Methods
The approach followed in this chapter is shownigufe 4-1.

DTM Intensity
Z val f : y
value o , .
raw LIDAR —] DTM. > Vari ab.le > Varlal?le 7 Estimation

Subtraction Extraction I Selection |
data - ! .
1
DCM - ------ !
Y ! _’i Xarllablle 54 K

Rasterization L _Analysis

A4
Crowns Segmented
extraction Crowns

Figure 4-1. Architecture of the system adopted.

Single Tree
Stem Volume

In order to derive individual crowns we first dexdra Digital Canopy Model (DCM), which was calcu-

lated as the mean height of all first return hiithim a 1x 1 m grid.



To retrieve the individual tree crowns from the D@ applied the algorithm described in [7], imple-
mented in the software TreeVaWrhis algorithm assumes a circular shape for tbe ¢trowns and it is
based on two main steps: i) the individual treeslacated using a moving window; ii) starting frone
individual tree positions the diameter of each eraesvestimated.

As described in Popeset al.[7][8], in the first step the local maximum (LM@c¢hnique is used to locate
the tree tops. In particular this algorithm opesatgth a square window ofi xn pixels and a circular
window of variable sizes. After this step the crogiameter is identified. In this phase at first gigo-
rithm applies a median 3x3 filter in order to reélce outliers, preserving the edges. The crowmelier

is computed as the average between two values neehalong two perpendicular directions from the
tree top location. In order to describe the crowafile along these two perpendicular directions dhgo-
rithm fits them with a 4 degrees polynomial using the singular value deasitipn (SVD). The lengths
of these profiles are determined by the window,sarel they are usually double of the window sizee T
use of a % degree polynomial allows one to exploit a concsivape with three extreme values. These
values could be both local maxima and minima, dredvalues of the independent variable at extreme
functional are called critical points. The algonitinds these points, and analyzes them with avativie
analysis (first and second derivative). In paréicihe sign of the second derivative allows onlentaow if

the concavity has changed. If it happens we hagx@rd of inflection that usually occurs on the eslgéa
crown profile. The distance between these pointssesl to compute the tree crowns. The final vafue o
the crown diameter is the average between the demmeasured on the two directions.

All tree locations were overlaid onto both a 20 @rthophoto and the derived TreeVaW crown polygons.
The size of the tree crown and tree species frai¢fd data were used to ensure the individua data
matched the extracted crown information to avordrsrconnected with tree positions in the final elod
(see Table 4-1 for a detailed description of thalfground truth available). Only tree crowns whigtre
positively matched to the LIDAR data were usedhi@ analysis. Once the tree position and the diamete
of the crown were extracted, a cylinder is definggkesenting the individual tree within the dataaat

all LIDAR hits were extracted.

From each identified crown we extracted a seriegaoifables from both the elevation and the intgnsit
information of each pulse. We divided the variatdggacted into five different groups: i) “standamet-
rics”: minimum maximum meanand range value of the elevation of each return (e.g., [Hl3]); ii)
“distributional metrics”standarddeviation kurtosis skewnessoefficientof variation of the elevation of
each return (i.e. [13]), crowradius, crownareaand crownvolume(calculated as a cylinder having as
area the crown area and as height the differenweeba the DCM and the average height of tHe3 or

4™ return according to which is the last return afalié after the 5); iii) “intensity metrics”: themean
value of the intensity for each return; iv) “pertitss”: the percentiles of the elevation from tH&t8 the
95" for each return (e.g., [13]); and v) “maximtirthe maximum of each return elevation at the powe
of n (withn=0.1,....5 (e.qg., [6]).

! http://www-ssl.tamu.edu/personnel/s_popescu/Tré¢Va
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In order to assess the relationships between théRIextracted variables and the volume we utiliaed
stepwise selection procedure. This approach haslyMben used in previous research (e.g., [1][E3]y,

it is an enhancement of the forward stepwise gelecin this technique variables are added andteidle
from the model according to their significance (gef for a more detailed description).

No predictor variable was left in the model witlsignificance value of the F statistic greater tBa0t.
This value was applied instead of the most comm0B s a model with a reduced number of variables
allow us to obtain a more stable model with a higfeneralization ability.

In the estimation phase we utilized multivariateeir regression. In the analysis we used all thangt
truth points for the creation of the model. Subssgly with the best model we applied a 10-fold sros
validation analysis using 90% of the data (abo@ t2des) for the training and 10% for the test (ala3)

in order to analyze the generalization abilityloé model.

44 Results

Four sets of analysis were undertaken. First wé/aea the relationship between the LIDAR data dred t
tree heights (section 4.4.1). Secondly we focusethe stem volume estimation by analyzing its refat
ship with the extracted variables, considering easfable separately (section 4.4.2), groups ofatdes
(section 4.4.3), and all the variables togethettise 4.4.4).

441 Correlation between first return LIDAR data and tree heights.

The relationship between individual tree height remaximum of the®ireturnis shown in Table 4-2.
The overall relationship across all species is lyigignificant (adj-B = 0.91, P < 0.0001, SE = 0.3).
When stratified by species the relationship remhigbly significant (adj-R= 0.90 to 0.92).

Table 4-2. Correlation between the maximum of tfe feturn inside the crown and the tree

height.
Characteristic N RMSE adiR
All trees 243 1.44 0.91
Abies alba 111 1.38 0.90
Picea abies 106 1.54 0.90
Fagus sylvatica 14 1.26 0.91
Larix decidua 10 121 0.92

Pinus sylvestris 2

442 Regression analysisof each variable extracted in the estimation of stem volume.

The relationship between individual stem volume dredextracted LIDAR variables presented in section
3.3 is shown in Table 4-3. Results are shown fiathal reference points and for the two main spegies
sent in the investigated area.

Among the “Standard metrics” the variable which ggae to be the most highly correlated with the stem
volume is themaximum of the®*ireturn (adj-R* = 0.7, P < 0.0001, SE = 0.06). This result waggated



as the ground truth tree stem volume was compgedfanction of both height and the DBH of the stem
The second highest correlation occurs withrttaximum of the" return (adj-R of 0.69, P < 0.0001, SE
= 0.06).

Table 4-3. Variables extracted from each crowntaei adj-R relative to the volume estimation
considering all the reference points and the palivisled by species.

Return  Variable adj-R _ _ _
All Abies alba  Picea abies
Standard metrics 13 maximum 0.70 0.62 0.75
minimum 0.10 0.06 0.13
Mean 0.47 0.37 0.55
range 0.46 0.36 0.51
2nd maximum 0.69 0.62 0.74
minimum 0.02 0.01 0.03
mean 0.41 0.34 0.50
range 0.50 0.38 0.56
3 maximum 0.49 0.44 0.51
minimum 0.00 0.00 0.01
mean 0.32 0.29 0.35
range 0.45 0.40 0.45
4 maximum 0.31 0.28 0.31
minimum 0.04 0.06 0.03
mean 0.22 0.22 0.20
range 0.28 0.26 0.27
Maximunt’ 18t n=0.1, ..., 5 0.65-0.74 0.58-0.67 0.72-0.77
2nd n=0.1, ...,5 0.61-0.74 055-0.68 0.69-0.77
3 n=0.1, ...,5 0.12-0.63 0.12-0.58 0.10-0.67
4 n=0.1, ..., 5 0.19-0.32 0.18-0.33 0.18-0.32
Percentiles 1 5" to og" 0.00-0.70 0.00-0.61 0.01-0.75
2nd 5" to 98" 0.00-0.66 0.00—0.60 0.00-0.72
3 5" to 98" 0.00-0.46 0.01-0.41 0.00-0.49
4 5" to 98" 0.04-0.31 0.05-0.28 0.03-0.31
Distributional Metrics 1% standard deviation 0.47 0.38 0.44
kurtosis 0.00 0.00 0.01
skewness 0.01 0.00 0.06
coefficient of variation  0.22 0.20 0.14
2nd standard deviation 0.25 0.15 0.29
kurtosis 0.00 0.00 0.00
skewness 0.04 0.02 0.06
coefficient of variation 0.03 0.02 0.03
3 standard deviation 0.30 0.28 0.27
kurtosis 0.01 0.03 0.01
skewness 0.01 0.02 0.02
coefficient of variation 0.17 0.21 0.11
4t standard deviation 0.25 0.22 0.24
kurtosis 0.12 0.13 0.10
skewness 0.02 0.03 0.01
coefficient of variation 0.20 0.21 0.16
area 0.50 0.38 0.53
radius 0.52 0.41 0.56
cylinder volume 0.38 0.25 0.44
Intensity metrics 1% mean 0.10 0.09 0.03
2nd mean 0.00 0.03 0.00
3 mean 0.04 0.06 0.01
4t mean 0.08 0.14 0.07
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Among the “Distributional metrics” the variables sadnighly correlated with volume are thadius and
thearea however in both cases the correlation is quite (adj-R of 0.52 and 0.5, respectively).

Figure 4-2 shows a correllogram of the relationsl@tween the stem volume and the “percentiles’@das
on the four returns. Results indicate the mostiiigmt percentile is the 95for all the returns, with the
1% return the most informative (adfR 0.70, P < 0.0001, SE = 0.06), followed by tAréturn (adj-R =
0.66, P < 0.0001, SE = 0.06).

The behavior of the “maximuthmetric is shown in Figure 4-3. It is worth nothinhat these are the
variables that provide the highest levels of catieh, with a maximum of adj%of 0.74 (P < 0.0001, SE
= 0.06). In particular, for these variables ther@o difference between th& and the ¥ return. More-
over, in this case also th& 8eturn has quite high correlations, exhibiting aximum adjusted fof 0.63
(P < 0.0001, SE =0.06). This underlines the pddeaf returns different from the first.

Regarding the variables extracted from the intgriafiormation, they resulted in a very low leveliof
formation (adj-R = 0.1, P<0.0001, SE = 0.02).

From Table 4-3 it is also possible to see the biehaf adj-R for the two main species present in the
area. As these species belong to the same faméyyalues of adj-Rare quite similar for all of them,
with slightly higher values for thPicea abieswith respect to thébies alba Moreover, the values ob-

tained for these species are quite similar to tlesbtained considering all the reference points.
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Figure 4-2. Adj-R of the percentiles of the elevation of the différeturns.
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44.3 Regression analysisconsidering groups of variablesfor the estimation of tree stem volume.
Once individual correlations were assessed, weopadd regression analysis based on the groups of
variables. Table 4-4 shows the results of the sspwelection applied to different groups of vaeab
Interestingly the best model incorporates all @assf variables. This is important, as it undeditieat
the combined use of these variables increasesrtiticfive capacity of the model. Indeed the modei ¢
ated with all the returns provides always highdues of adj-R with respect to the ones generated with
only variables belonging to one return.

Concerning the “standard metrics”, the variable thas always selected is theaximum In two cases
also other variables were selected, likertirege of the 4 returnand themean of the $Lone

The model created using the “distribution metrioas the largest number of variables (6) (atFR.75,

P < 0.0001, SE = 0.06). These variables belongfterent sources fiand 4 return) and they are con-
nected also to the geometry of the traedandcylinder volumg

Among the “percentiles” the variables derived frtma £ return provides the regression model with the
highest accuracy (adj?R= 0.75, P < 0.0001, SE = 0.06); however in mosesahe ? return does
equally well (adj-R = 0.66, P < 0.0001, SE = 0.06). The model extchuti¢h all the variables (adj?R=
0.75, P < 0.0001, SE = 0.06) is made up by thre@blas belonging to the®Ireturn and one variable
from the &', even if this variable is the last one selected.

Concerning the “intensity metrics”, also in thiseahey do not provide good results, with an adjlist

of only 0.13 (P < 0.0001, SE = 0.02).

The set “maximu® included the variables that provide the highestrelations (adj-R= 0.75, P <
0.0001, SE = 0.06). In this case, it is worth ngtinat the model developed with the variables lghan

to the ' (adj-R = 0.74, P < 0.0001, SE = 0.06) and tA®(adj-R’ = 0.74, P < 0.0001, SE = 0.06) return

provide the same results, underling the effectigersd these variables, as well as also the amdunt o
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formation contained in the"@return. Moreover, also the variables extractechftbe 3 return provide
quite good correlations (adj?R 0.63, P < 0.0001, SE = 0.06).

Table 4-4. Selected models for the different setsnables for the estimation of tree stem vol-

ume.
Initial variables set Returns RMSE adi-R  N°var. Variables selected
Standard metrics All 0.60 0.72 2 maximum of tReeturn
range of the " returr
1 0.61 0.71 2 maximum
mear
2 0.6z 0.6¢ 1 maximun
3 0.8C 0.4¢ 1 maximun
4t 0.93 0.32 1 maximum
Other metrics All 0.57 0.75 6 skewness of tA@eturn
area
cylinder volume
standard deviation of thé'teturn
standard deviation of thé"4eturn
coefficient of ariation of the * returr
1 0.60 0.72 4 standard deviation
coefficient of variation
kurtosis
skewnes
2 0.78 0.52 2 standard deviation
coefficient of variatio
34 0.83 0.45 2 standard deviation
coefficient of variatio
4 0.93 0.32 2 standard deviation
coefficient of variation
Intensity metrics All 1.04 0.13 2 mean of théréturn
mean of the " returr
Percentiles All 0.57 0.75 4 fercentile of theireturn

55" percentile of the®ireturn
85" percentile of theireturn
9C™ percentile of the ™ returr

1 0.58 0.74 3 1D percentile
55" percentile
85" percentilt

2 0.6% 0.6€ 1 95" percentil:
3¢ 0.82 0.4€ 1 95" percentils
4n 0.90 0.37 3 8 percentile

15" percentile
90" percentile

Maximunt All 0.56 0.75 3 maximum of the*t the power of 2
maximum of the ?' at the power of 3.5
maximum of the % at the power of 4.2

1 0.57 0.74 1 maximum at the power of 3.2
o 0.57 0.74 1 maximum at the power of 2.9
3 0.69 0.63 2 maximum at the power of 1.1

maximum at the power of 1.4

4n 0.91 0.35 2 maximum at the power of 0.3
maximum at the power of 3.8




444 Regression analysisusing all the variables extracted for the estimation of tree stem volume.

In this final analysis we considered all the vaeabextracted from all the four returns. Table ghbws
that the model developed using all the variablestha highest correlation (adf-R 0.77, P < 0.0001, SE
= 0.06). In this case the model is made up of f@urables belonging to the'lthe 2 and the 3 return.
This is important as the selected variables reptegiferent sources of information. However, thexi-
mumvariable is always selected in all the five sétert, and also the variables of the group “maxifium
are always present. It is worth noting that anothggortant source of information for the estimatiain
volume is that associated with the “percentilesiuFe 4-4 shows the relationship between the predic
vs. observed stem volume.

As the model derived from the variables of all retuis the one that provides the highest accunaey,
decided to use it in the cross-validation analyBiige results are shown in Table 4-6.

Concerning the results on the training set, they quite similar to the ones presented in Table 4-5,

whereas for the test set there is a slight decrefase adj-R (while the RMSE remains unchanged).

Table 4-5. Selected models for the estimationed gtem volume considering all the variables

extracted.
Initial variables set Returns RMSE adi-R  N°var. Variables in the final model
All the variables extracted All 0.55 0.77 4 maximofithe £ return

maximum of the ?' return at the power of 4.8
10" percentile of theireturn
10" percentile of the $return

1t 0.56 0.75 3 maximum
standard deviation
maximum at the power of 5

o 0.58 0.74 1 maximum at the power of 3.4

3¢ 0.68 0.63 3 maximum
maximum at the power of 1.1
maximum at the power of 5

4" 0.91 0.34 2 maximum
maximum at the power of 5

Table 4-6. Results obtained with a 10-fold crod&lasion.

Variables in the final model Training Test
RMSE adj-R RMSE adj-R
maximum of the $return 0.55 0.76 0.55 0.71

maximum of the %' return at the power of 4.8
10" percentile of theireturn
10" percentile of the 8return
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Predicted Volume (nf)

Adj-R?=0.77 ]

0 1 2 3 4 5 6 7

Observed Volume (m3)

Figure 4-4. Observed volume vs. predicted volumefiche 243 trees of the ground truth

445 Analysison therelationship between the number of hits per return and the crown depth.

In this final analysis we examined if a relatiomsbiists between the number of hits per returnthad
depth of the tree crowns. Figure 4-5 shows crowpttdes. the percentage of hits on the total forradl
four returns considered. Twelve groups of crowntldeygere defined from 6 m to 28 m. Only trees with a
height between 20 and 40 m were considered. Frameaetical viewpoint we expect that as much the
crown is depth as high the possibility to have biter the I return is. In greater detail, analyzing the
specification of the sensor considered in thisystud know that the minimum distance between that fir
and the second pulse is 2.1 m, and 3.8 m for abgesjuent return [3]. This is confirmed from ourlgna
sis. In Figure 4-5 it is possible to see that there slight trend for which we have a reductiorha per-
centage of Ereturn hits, in favor to the hits belonging to ttker returns. In particular we move from an
81.5% of the I returns for the range between 6 and 8 m to 51d%he range from 26 to 28 m. Mean-
while we have an increase of tH8 &turn (from 15.8% to 34%), of th& &from 2.6% to 13%) and of the
4" one (from 0.1% to 1.9%).
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446 Discussion.
From these results it is possible to draw a nurobeonclusions on the use of LIDAR variables todice
individual stem volume and on the exploitationrdbrmation contained in the non-first returns.

In this study ground truth individual stem volumeasvestimated using an equation of the form
V = fDYH? whereV is the stem volumeD is the diameter at breast height (DBHY), is the height of
the tree, and@, y, 0 are parameters dependent on the species, theapbomal area, and the terrain

characteristics.

This equation, explain the reason for which thraugthe analysis theaximum of the®*ireturnis con-
sidered to be informative in the stem volume ediiona This variable is highly correlated with tree
height, likewise other variables such as the péilesrover the 88 The variables “maximufhin par-
ticular emerge to be highly correlated with thevstelume. This comes from the fact that in the comp
tation of the volume the height of the tree at daie power is used. This could be also a reasoithfo
efficiency on how this kind of variable emphasizles information content of thé'2and 3 return. In
particular the maximum of the2return at the power of 2.9 provides an adjusté@fr0.74, while the
maximum of the 8 return moved from a correlation of 0.49 to 0.68hatpower of 2.7.

Concerning the percentiles, many studies in thegditire used this kind of variables in the estiomati
phase (e.g, [13]). This is mainly due to the féettthigh percentage percentiles usually represettérb
the tree height with respect to the “maximum” (theximumcould be an outlier), and that the percentiles

around the 50 could be used as a measure of crowns density. aexpect a connection between the
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density of the crown and the tree stem volume,ianmrticular trees with a higher crown density dav
higher stem volume.

Moreover, from our analysis it is clear that theures different from the®lare informative in the estima-
tion of the tree stem volume. In greater detail2lfeeturn provides good results comparable to thbse o
tained with the T return. Also in this case the information contdiimethe 2% return can be related to the
crown density, and thus to the volume. The samsideration holds for the variables of tHeraturn.
Concerning the variables descriptive of the tremvar (e.g., theadius and thearea of the crown), they
are correlated with the stem volume, as confirmmechfsome literature studies (e.g., [7]).

It is worth noting that the combined use of varabbelonging to different returns allows one taéase
the estimation accuracy. In all the models devalogtarting from ensembles of variables belonging to
different returns, the stepwise selection inclugtadables extracted from almost all the returnspain-

ticular in the final model used we have variablelhbging to the %, the 2% and the 8 return.

45 Conclusions
In this chapter we have presented an analysiseaftactiveness of the use of multireturn LIDARalat
the estimation of tree stem volume at individuaétlevel. We have studied a multireturn LIDAR dsega
characterized by four returns. We have also andlgifferent kinds of variables extracted from thie d
ferent returns, deriving some interesting conclusio
1. the use of variables belonging to all the retultmas one to obtain an increase of the estimation
accuracy. In our particular case, the final bestiehés based on variables extracted from the 1
the 2% and the ' returns;
2. the variables “maximuff allow one to emphasize the information containeall the returns,
and in particular to obtain good correlations amjng the ¥ or the 3 returns;
3. there exists a correlation between the crown dapththe number of hits per return; in greater
detail increasing the crown depth the probabitithave returns different from thé increases.
As future developments of this work we plan tanplyze the effectiveness of different kinds ofafale-
selection techniques; ii) study other kinds of tioear estimators (e.g. Support Vector Regressiidh);
investigate the interaction of LIDAR data with atls®urces of information (e.g. multispectral ang@édry
spectral remote sensing images); iv) analyze tfextsfof the undetected crowns (e.g. in multilaiper
ests) on the estimation of the of stem volume negbinventories; v) study the possibility to idgntn-

formation on the dominated layers from the analgguifferent LIDAR returns in multilayer forests.
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Chapter 5

5 A system for the estimation of single tree stem diameter s and

volume using multireturn LIDAR data

Forest inventories are important tools for the mgement of forests. In this context the estimatiaihe
tree stem volume is a key issue. In this chaptepnasent a system for the estimation of forest stem
ameters and volume at individual tree level, whihbased on multireturn LIDAR data and on Support
Vector Regression (SVR). The system proposed is upadf a preprocessing module, a LIDAR segmen-
tation algorithm (aimed at retrieving tree crowna)yariable extraction and selection procedure amd
estimation procedure. The variables derived froMAR data are computed from both the intensity and
elevation channels of all available returns. Thaifferent methods of variable selection are anatyze
and the sets of variables obtained are used ireftenation phase based on a multivariate linearesg
sor and a Support Vector Regression (SVR) technifjbe stem volume is estimated with two ap-
proaches: i) estimation from the LIDAR variablesidaii) estimation obtained by combining the diame-
ters and heights estimated from LIDAR variableshwihe species information derived from a
classification map according to standard heightfdeter relationships. Experimental results show that
the system proposed is effective and provides gemdts in both the stem volume and diameter estima

tion. Moreover it provides useful information om tiise of SVR in these kinds of problems.

5.1 Introduction

In the last years forest management and protebtie became a very important task, having many im-
plications in many different fields, from the ecaomoal one (e.g. estimation of timber volume for eom
mercial usage) to the environmental one (e.g.eptimn of biological diversity). Important toolsrftor-

est management are forest inventories. These pioeedire used to measure and estimate the most
important attributes of a forest, like the speademposition, the tree stem heights, diameters eddbr
height and volume, the age, the health, etc. Antbhege attributes one of the most important is e t
stem volume. In fact, as an example, the knowlexldhis parameter drives the economical exploitatio

of a forest: a low value of stem volume per hectaeans that probably only little trees are presetitat

area and thus it is not a relevant site for timdexoitation. From the environmental viewpoint #rew-

ledge of the stem volume is important as it isteglao the carbon stored by the forest analyzedbd@@a

This chapter has been submittedE&E Transactions on Geoscience and Remote Sendinghe title: “A system
for the estimation of single tree stem diameteds alume using multireturn LIDAR data”. Authors: thiele Dal-
ponte, Lorenzo Bruzzone, and Damiano Gianelle.
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stocks are important in the context of the Kyototpeol. This protocol states that each nation bag+
duce the C@emissions under a certain threshold and this ltleidss computed taking into account also
the carbon stocks of each country. Thus, it isrohary importance to have a detailed knowledgeoof f
est stem volume at national and regional levelrdento have a precise computation of this amaduant.
this context, remote sensing is a very useful teldgy for a precise and objective analysis of foees

eas.

Nowadays, different kinds of remote sensing sensxist, with different characteristics and pecifies.

In the literature it is possible to find studieattlanalyze the estimation of stem volume with a&ctind
passive sensors. Concerning passive sensors, Windattata with different spectral and spatial teso
tions. Some studies exploited low spectral andiapagsolution data for the estimation of stem vody
like the study of Marsdeet al.in [1]. This study analyzes the relationship betw&IDVI time-series ex-
tracted from MODIS data and stand structural chiarestics (volume, dominant height, mean annual in-
crement) in Eucalyptus plantations finding goodeagnents. In [2] Muukkoneet al. use MODIS data to
estimate stem volumes in Finnish forests. The teduht they obtain are significant, as the diffiessbe-
tween the volumes of the national forest inventw@ad their estimation differs only of 3.6%. These
kinds of data allow one to make raw estimationstem volumes and are effective when the area ana-
lyzed is wide and uniformly characterized by thmedree species. If this condition is not satisfiduae

to the low spatial (and sometimes spectral) reswiuthey do not result in precise analysis of clemp
forest areas. In this case, it is better to usé Bjgatial resolution sensors that result in a naatailed
analysis. In the literature several studies exodh kind of data. In [3], Ha#t al. use Landsat ETM+
data to estimate forest volume in Canada, obtaigo@y accuracies. They find that Landsat derived fo
est volumes are statistically moderately correlatethe inventory-derived volumes with values of ad
justed R of 0.63, 0.68, and 0.70 for conifer, deciduous) amxed species, respectively. Also Lutleer

al. [4] estimate Canada forest volumes using ETM+ ,dakale in [5] Muukkoneret al. use ASTER im-
ages for the same purpose in Finland, obtainindigtiens significantly close to the municipalityvkd

mean values provided by the National Forest Inwgrb Finland.

Concerning active remote sensing sensors, in telure several studies have been presentedxhat e
ploit Synthetic Aperture RADAR (SAR) data. In [B)Vang et al. exploit high resolution polarimetric
SAR data to estimate volume of Tomakomai forestHokkaido (Japan). Experimental results on
ground-truth data collected in 2005 show an acguoh@pproximately 86% with a correlation coeffitie
of 0.91. In [8], Quifionest al. analyze the limits of the use of SAR data in thegneation of forest vol-
umes, while in [9] Metteet al. use polarimetric SAR interferometry to estimatéuwtes, analyzing the

effects of parameters tuning in the final result.

A relatively recent technology that has demonstratebe effective in precise estimations of fonest
umes is laser scanning. Light Detection and Ran@inDAR) sensors allow one to acquire precise
measures of both tree height and structure. Thassoss can be classified according to the dimension

the footprint, and according to the system use@c¢ord the data (full waveform or discrete retu@gn-



cerning the estimation of forest volumes, the madely used systems are discrete return sensothidn
context, in the literature it is possible to firtddies that exploit both large and small footptiiDAR da-

ta. In [9] Drakeet al. use large footprint LIDAR data on a neotropicahfarest, finding high correlations
(R? up to 0.94) between LIDAR metrics and abovegrobiohass. Small-footprint LIDAR data results in
a more detailed analysis, in particular at treelleVhis is a very challenging approach as it allmme to
estimate the stem volume value for each tree presdhe area under analysis. In this context,lify] [
Hyyppéaet al. estimate single trees volume using small footdtllXAR data with a segmentation based
method, achieving good results (a standard err@0§). Bortolotet al.[10] use an individual tree-based
approach to estimate forest volumes using smatpfou LIDAR data, obtaining a correlation coeféait
(R) ranging between 0.59 and 0.82.

At present the sensor that potentially seems tmbst promising for the estimation of forest volunges
small footprint LIDAR. This sensor allows one tosbaletailed and precise analysis at local levebain
ticular at individual tree level. Moreover, highrdéty LIDAR data results in very detailed analysighe
structure of the trees. However, a drawback of lighsity LIDAR data is that they should be taken by
airplane (or helicopter); thus acquiring high dgnaneasures is quite expensive. In this contegtmfan
analysis of the literature, it emerges that: i)ydiew papers exploited multireturn LIDAR data ireths-
timation of stem volume at single tree level; anpdho studies exist that exploited advanced machine
learning techniques, like Support Vector Regres§8WR), for the estimation of tree stem volumetstar
ing from LIDAR data.

The goals of this chapter are: i) to propose aesyshat, starting from small footprint multireturiDAR
data, exploits the SVR technique to derive both ttameters and volume; ii) to compare different-va
able selection techniques; iii) to compare the S¥éhnique (with two different kernel functions) kit
the standard multivariate linear estimator; andtavgompare different approaches in stem volumie est
mation. To reach these goals, we adopt a segmemiadised method that identifies single tree crowns
from LIDAR data, extracts and selects the mostatitfe variables, and at the end estimates treeadiam
ters and volume. This is accomplished accordingntarchitecture made up of the following modulgs: i

preprocessing, ii) variable extraction, iii) vatialselection, and iv) estimation.

The rest of the chapter is organized as followsSéetion 5.2 materials and methods are presented. A
first the data set used is described (Section B.arid then Section 5.2.2 presents the architeciiutiee
system adopted and the data preprocessing opexafibe segmentation algorithm is illustrated in-sec
tion 5.2.3, while section 5.2.4 and 5.2.5 presbkattechniques of variables extraction and selecfite
SVR estimator technique is described in section65.ection 5.3 reports experimental results. Binal

conclusions are drawn in section 5.4.
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5.2 Material and methods

521 Data set description

The study area analyzed in this chapter is a faigsin the Italian Alps located at Lavarone (ribarcity
of Trento) in the Trentino province (Italy). Thentel point of the area has the following coordasat
45° 57' 30.09” N, 11° 16’ 25.17” E. The topograpbiythis area is complex: it includes hill sidesdiff
ferent inclinations with an altitude that rangesnfir1200 to 1600 meters on the sea level. The agsah
size of approximately 495 ha. This site represanigpical example of Alpine forest with the preseinf

three main species (Norway Spruce, Silverdfid European Beech) and some other species like Euro-

pean Larch and Scots Pine.

Figure 5-1. Digital Canopy Model of the investighteea.

Table 5-1. Distribution of ground truth points hrettraining, test and validation sets. The species
composition of each set and the values of heigiatmBter at Breast Height (DBH) and stem
volume are also presented (N= total number of sasypl

N % Height (m) DBH (cm) Stem Volume {n
Mean  Range Mean  Range Mean Range
Training 174 100 26.2 7.5-38.1 45.2 9-90 2.34 .046-10.93
Silver Fir 74 42.5 26.3 7.5-38.0 45.8 13-90 2.37 0.05.9310
Norway Spruce 79 45.4 28.1 15.4 -37.7 49.0 25-74 2.68 0.3127
Other specie 21 12.1 19.6 11.6 —28.8 29.7 9-63 0.95 0.044 3.
Test 147 100 25.8 11.1-37.0 45.0 13-78 2.27 881067
Silver Fir 71 48.3 25.8 12.9 - 36.8 44.2 19-73 2.20 0.20%6
Norway Spruce 59 40.1 27.4 15.9-37.0 48.6 21-78 2.66 0.3+ 7
Other specie 17 11.6 20.6 11.1-29.2 36.3 13-60 1.21 0.05% 3
Validation 160 100 26.44 9.4-38.1 45.2 12-74 302. 0.05-7.21
Silver Fir 67 41.9 26.1 12.4 -35.0 43.7 16-71 2.17 0.182 6

Norway Spruce 79 49.4 28.3 9.4-38.1 49.6 9.4-38.1 2.72 0.02%
Other specie 14 8.7 17.6 12.4-245 277 14 - 44 0.53 0.10+ 1.




The LIDAR data were acquired on SeptemtférZDO?, between 11:29 AM and 12:07 AM. These data
were taken by a sensor Optech ALTM 3100EA, withemmdensity of 8.6 points per square meter for the
first return. The laser pulse wavelength and tiserlaepetition rate were 1064 nm and 100 kHz, spe

tively. The number of recorded returns for eackigailse is up to four.

Ground truth data were collected in summer 2007 .cdllected 481 points (trees) distributed in 50 sam
ple sites randomly selected across the investigatea. These points where then divided into the¢s s
training, test and validation sets. Table 5-1 shivesdistribution of the points in these sets, ghecies

composition, the values of height, the DiametéBratast Height (DBH) and the stem volume.

5.2.2 Data preprocessing and ar chitectur e of the system
Figure 5-2 presents the architecture of the sygiposed in this chapter. As described in the thtce
tion, the goal of the system is to obtain a maged stem volume by integrating the informationvited

by both multireturn LIDAR data and a classificatimap.

Regarding the preprocessing phase we have twa: s$tepsterization of the raw LIDAR data, and ijls
traction of the Digital Terrain Model (DTM) to thedevation information of the LIDAR data. The raster
zation was performed with a ground resolution of.1The average values of the different returngef t
LIDAR pulses included in a square meter were assign each pixel. Concerning the first return, [sixe
with no value were interpolated with the neareggimaor technique, while for returns different frare
first we left value 0. The rasterization was pearfed for each recorded return and for both the &tmva
and intensity values. After that, the Digital Ténrdodel (DTM) of the area considered was subticte
from the elevation image of each return. This alldws to correct the raw LIDAR elevations from the
topography of the scene. In particular subtractirgDTM from the elevation of the first LIDAR retur
we obtained the digital Canopy Height Model (CHIg@€ Figure 5-1).

The CHM was used in the segmentation phase (s¢ersé&c2.3), and then the LIDAR bands plus the
segmented image were used in the variable extraptiase (see section 5.2.4). After that, the migst s
nificant variables were selected (see section pah8 used as input to the SVR algorithm (see @ecti

5.2.6). In the following sections the main blockshe system are detailed.

In the proposed architecture hyperspectral dataised for the identification of the tree speciesath
tree. The classification map obtained from thegifesition of these data is aggregated at crowsllev
order to have an information on the species foheaown. In the rest of this study we focus ouertibn
only on the estimation part. We refer the readdd 8 for more details on the classification arebttre

adopted for the hyperspectral images.
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Figure 5-2. Architecture of the proposed system.

5.2.3 Segmentation

An important phase in the proposed system is tgmeatation. This phase drives the next steps of var
able extraction and diameter/volume estimation. fEt®nale of this step is to identify and deliresat-
dividual tree crowns. The segmentation algorithmduis this chapter is derived from the algorithra-pr
sented by Hyyppé&t al. in [10]. This algorithm, is divided into three masteps: i) prefiltering; ii) seed

point extraction; iii) seed region growing.

According to [10], in the prefiltering phase the KZhivas filtered with a convolution filter for emphzas

ing local maxima and tree crowns. The coefficidrthe filter using a 3x3 window are defined asduls:

1 21

2 4 2 (5.1)
1 2 1|/16

After this phase it is necessary to identify thedspoints, corresponding to the tree tops, froncivithe

region growing procedure start. In order to consmigy trees higher than a given value, seeds are d

fined as the local maxima higher than a certaiagholdthSeed A mobile window of a given size (de-

fined by the user) is used to detect them. As ammgte, if we consider a window of size 3x3, theepix

with coordinateq(i, j Jof the imagel is a seed if:

1. §) = argmai (x v
Milli—l'iﬂ] (5.2)
1 (i, ) >thSeed
where (i, j )is the elevation value of the pixel of coordinafeg) . At the end of this process we obtain
the set of the seed poin&= {slsN} where s, identifies then-th seed point. Figure 5-3 shows an ex-
ample of seed points extracted from a prefilteretMdmage.
The last phase consists in the seed region groandgt is aimed at the identification of the crovafishe
trees. Seed region growing starts from each seddyewths iteratively the region from the first erd

neighborhood system to tineth. A pixel | (i, j ) is added to the considered region if it satisfies condi-



tions that take into account both the dimensionthedshape of the crown. If we define the set efré

gions R :{rl,...,rN}, wherer, identifies the region around the seed pa@ntwe can write as follows:

1G,§)>P *I

D[r, +1(.j )] thDiameter (5.3)

1G,])Cr,, if {

where | is the height of the considered seed poiij(0,1], D[rn +1(, j)] is the diameter of the con-

sidered region including the new pixe(i, j , gnd thDiameter is the maximum acceptable diameter of a

region.

The algorithm stops when no pixels are added toregipn.

Figure 5-3. Example of i) seed points extractedhftbe elevation of the first LIDAR return, andri@-
gions associated with the crowns.

5.2.4 Variabledefinition

In order to make a detailed characterization ohdese, a series of variables were defined andheted
from each segmented region from the elevation atahsity channels of the four returns availableun
dataset. These variables describe the structurehendharacteristics of the trees. Table 5-2 rapart
summary of the variable extracted. As it is pogstl see, we extracted some variables connectéd wit
LIDAR points distribution among the crown (e.g.,ane maximum, minimum, etc.) and other variables
connected with the crown geometry (e.g., area,radalis). The area variable for the first LIDAR netu
represents the surface of the region in pixels|enaor the other returns represents the numbeixafip

for which a return is present. Concerning the tadius variables;adius 1is the radius of the circle with

area equal to the area of the region, whildius 2is computed aga, +a,)/4, wherea, is the length of

the region along the x axis anal, is the length of the region along the y axis.
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Each variable extracted is related to a physicafastteristic of the tree. We define five differgnbups
of variables: i) tree height; ii) crown horizongtlape; iii) crown vertical shape; iv) crown intdratiuc-
ture; and v) species. It is worth noting that wendbd know a priori which the most effective varelbbr
each characteristic is. In general, each variadaebe related to more than one characteristicalers-3

variables are divided according to their expectegsjzal meaning.

Table 5-2. Variables extracted from each segmenmgion.

Return Variable Return Variable

1% maximum 31d maximum
minimum minimum
mean mean
range range
variance variance
area area
mean intensity mean intensity

2nd maximum 4 maximum
minimum minimum
mean mean
range range
variance variance
area area

mean intensity

mean intensity

mean ¥ — mean ¥

max ' — min 3¢

mean f — mean %

mean - mean % radius 1
mean - mean # radius 2
mean 2 — mean %
mean 2¢— mean ¥
mean & — mean #
Table 5-3. Physical meaning attributed to eachatdei
Physical characteristic of the tree Variables
st H st H
Tree Height 1’St maximum 1> minimum
1> mean
st H
Crown Horizontal Shape 1 area radius 2
radius 1
1% variance mean ¥ — mean %
Crown Vertical Shape 1% range mean ¥ — mean &

max ' — min 3¢

2" maximum 4" mean
2" mean 41 minimum
2" minimum 4" variance
2" variance 4" range
2" range 4" area
2" area mean i — mean ¥

Crown Internal Structure 3 maximum mean - mean %
3% mean mean - mean ¥
3 minimum mean 2¢— mean %
3 variance mean 2°— mean %
3 range mean & — mean ¥
3% area max ' — min 3¢
4" maximum

Species 1* intensity 3 intensity

P 2" intensity 4" intensity




525 Variableselection

In problems characterized by the presence of magngially useful predicting variables an important
phase is that of the variable selection. The ingya¢ of variable selection depends on many reatuns,
most important of which are: i) the degradationh& generalization ability of the regression maosleén
increasing the number of parameters to estimgtéhei noise introduced by some variables; andhi)
high computational cost caused by a large numbénmft variables. Thus, variable selection becomes
mandatory to improve the regression results bothrims of computational complexity and generalorati
ability. The goal of this selection is to find thmallest set of variables that provide estimatexlasi (or
better) to those obtained with the whole set ofilakike variables. It is worth noting that a smaidt f

predicting variables results in a simple predictimgdel characterized by good generalization ability

In the literature it is possible to find three majpproaches to variable selection: i) the filtethods; ii)

the wrapper methods; and iii) the embedded methods.

Filter methods perform the variable selection aseprocessing step independently on the algoritbead u
for model construction. These methods are usually simple and are based on a different principta w
respect to that used in the final estimation precéhis allows one to have a quick and generattete
phase at the cost to select variables that arexpicitly optimized for the final model used. As ax-
ample, it is possible to rank the variables acewydo their correlation with the estimated parameiad
then to take arbitrary the firgtvariables. Another approach is to use a simplesesipn technique (e.g.,
a multivariate linear regression) to select thealdes and then to exploit the variables choseéhemon-

linear regression model [12].

Wrapper methods are different from the previousspas they are related to the algorithm used ireshe
timation process. The rationale of these methodis select an optimized set of variables for a gies-
timation technique. Wrapper methods are sometiraasidered “brute force” methods that require a very
high computational load, but at the same time ekltile advantage to select the set of variablesdpa
timizes the final predictive model [13]. In theiost general formulation, these methods consissingu
the prediction performances of a given estimatemihnique to assess the usefulness of variablagber s

sets of them.

Similarly to the feature selection techniques usdlthe classification, filter and wrapper methodquire

a criterion to compare the performances of thesthffit variable subsets (e.g., minimization of tleam
square error on the training set), and a searelegly. Several search strategies exist in theatiles
(e.g., Genetic Algorithms, Sequential Forward S&lac Sequential Backward Elimination, etc) [12heT
two sub-optimal methods most commonly used forrteanplicity are Sequential Forward Selection
(SFS) and Sequential Backward Elimination (SBE).

Embedded methods incorporate the variable selestiem in the training of the algorithm. This means
that the variable selection is performed duringd@@énition of the estimation model. Usually theseth-

ods require changes in the objective function efatgorithm considered, and thus they are speltifica
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developed for each predictor. In general they albme to reach better accuracies with respect tpre
vious methods, even if they are more computatigrdgimanding. Examples of these methods are deci-

sion trees (e.g., [14]) or the zero norm optimizatie.g., [15])

In this chapter we consider filter and wrapper radth As performance evaluation of the considered va
riable set we used the minimization of the MeanaBguError (MSE) on the test set. Concerning the
search strategy, we adopted a simple and fast Sgajueorward Selection (SFS) strategy for limitithg

computational complexity.

The Sequential Forward Selection (SFS) is a sulmgptsearch strategy that has been used in many pre-

vious studies in the literature. It can be sumneatin the following steps:

1. Initialization: the variablev' that provides the model with the lowest MSE onttst set is se-

lected and added to the empty W& . i is incremented by 1.

2. Insertion the variablev’ that added t&v ) results in the model with the lowest MSE on thst te
set is selected and addedu® , i.e. VI =v® 4y

3. Convergenceif i+1=M (where M is the total number of desired variables), th&p;sbther-

wise seti =i+ land return to step 2.

The set of variables that provides the best trdtibeiween the number of variabléd and the MSE is
selected. In particular, we give the priority toighle sets characterized by a low dimensionailitygrder
to obtain a model with a high generalization calitgbiThe set of variables selected is then useihust

to the considered estimator.

The training set is used to define the regressiodeh then, the test set is used in the variallecten

and model selection phases. The validation seded to evaluate the final performances of the syste

This method can be considered either a filter arapper depending on the estimator used for thecsel

tion and for the subsequent estimation.

5.2.6 Support Vector Regression
In this section we briefly summarize the main pipfes of the non linear and multivariatdnsensitive

Support Vector Regressiog-$VR) algorithm used in our estimation system.
Let {(x;,y;).i =1....T} be a training set, where 0 is thed-dimensional vector of selected input vari-
ables,y, 00O is the target tree attribute to be estimated, Bnd the number of training samples. The ra-

tionale of the SVR is to map the original variabp@ce into a higher dimensional spagg) using a non

linear transformation functio®, and to find a linear regression functiéfx) in this new space, as:



f (x) =(wie(x)) +b (5.4)
where w1 0% is the weight vectorbOO is the bias, anagwm)(x)) represents the dot product between
w and CD(x). This function should have at most deviatioftom the real targety, for all the training
samples and, at the same time, should be as ffaissible. In other words, we neglect errors smétien

¢ whereas we penalize errors larger thdsinsensitive tube).

The optimal functiorf (x) can be obtained solving the following constraingdimization problem:

min{1||W||2 +C§(‘ﬁ Ha )}

wb,é| 2
y. —(wip(x, )+b)<se+&, Ti=1..T (5.5)
(wi(x, )+b)-y, <e+&, Oi=1..T

&,& 20 Oi=1..T

The variablesé,,& are called slack variables and are used to cansfigepatterns outside of the
insensitive tube. Their values depend on the kihgemalization function adopted: linear or quadrati
(see Figure 5-4 for an example of linear penatrafunction). C represents a regularization constant
that should be tuned in the model selection phaseder to reach the best trade-off between theoimo
ness of the functionf(x) and the tolerance to the errors (due to the peteutside the-insensitive

tube).

Figure 5-4e-insensitive tube of a linear SVR with a linear glezation function (figure source: [16]).

This minimization problem can be rewritten in a ldieamulation and solved according to standard meth
ods of quadratic programming based on the Lagramggpliers. In the case of a linear penalty fuonti

we obtain the following Lagrangian function:

T

L(oz,oz*)=iyi (o —ai*)—SZ(ai va)-

i=1 i=1

iZ(ai_ai*)(aj_a?)K(xivxj) (5.6)

i=1 j=1

N

where K(Xuxj)=<¢(>ﬁ) [(x;)) is called kernel function. This function satisfiée Mercer theorem [17]

and allows us to replace the dot product amondrtresformation functior@(.). This is very important

as the kernel functions avoid the need to knowieitiyl the transformation functior(.). Common ex-

amples of kernel functions are:
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1. Linear kernel functionK(xi,xj):xi X, -

2. Gaussian kernel functiork(x_xj):exp(_‘)g - ‘2/272), whereo? is the spread of the Gaussian.

Thus, the minimization problem in the dual formidatbecomes:

ml;ax{ L (a o )}

Y(a-a)=0 (5.7)

i=1

O<a <C, Oi=1,..T
O<a <C, Oi=1,..T

The final estimation function in the original vasia space is given by:
f(X)=Z(ai_ai*)yiK(Xi’X)+b (5.8)
iy
The setU represents the set of training patterns correspgni the Lagrangian multipliers different

from zero. Only these patterns, definedsapport vector{SVs), affect the definition of the estimation
function. The Lagrangian multipliers; and a; (with i=1,...,T) allow us to define the contribution that

each SV gives to the estimation function. From enggtrical viewpoint the SVs are the training patser

outside of the-insensitive tube.

5.3 Experimental results

5.3.1 Design of experiments

In order to verify the effectiveness of the progbaechitecture and to achieve the goals of thipterave
define two main experiments. In the first one wenemte the stem diameters with the proposed system
and then combine them with both the stem heighe¢tly measured by the LIDAR) and the species in-
formation (derived from a classification map) ider to retrieve the stem volume. In the second expe
ment, we estimate directly the stem volume withpheposed system starting from the LIDAR variables.
For both the experiments we investigated threedifit variable selection methods (SFS with multivar
ate linear estimator, SFS with SVR estimator wittedr kernel function, and SFS with SVR estimator
with RBF kernel function) and different estimaté@nsultivariate linear, SVR with linear and RBF kelrne
functions).

In the learning of the SVR algorithm we performedral search for the value of the parametersC

and y of the kernel function. The values for the gridred of ¢ andC were selected on the basis of the

following empirichal equations [18]:

C:ma{

y+3p,/.|y-3p,

j (5.9)



£=3p, bg_lrﬂ (5.10)

where y is the mean value of the targets of the trainetg 8, is their standard deviation, afd the size

of the training set.

As mentioned in the data description section, weddd the available ground truth in three setsniing
(174 points), test (147 points) and validation (p@ints) sets. The training set was used for thizbie
selection and the learning of the estimation atborj the test set was used for the model seleciiod,

the validation set for the final estimation of merhance.

532 Results

Table 5-4 presents the results obtained for thenasbn of stem diameters using different variadld-
sets and different estimation algorithms. From ehesults it is possible to derive important intmas.
Firstly, let us analyze the selection methods &edselected variables. Comparing the selectiorltsesu
obtained by the different methods, one can obsiatethe two selections based on linear modelst{mul
variate linear and SVR-linear) have four variablesommon. This points out that the use of a slew s
lection procedure like the one that exploits theRSdbes not necessarily provide significantly difer
sets of variables compared to the faster techrbgsed on a multivariate linear estimator. Morepwer
can observe that half of the variables selectedeanacted from the first return, and the otherf =l
computed on the other returns. This confirms thatfirst return is the most informative measurethar

estimation of stem diameter, but that also therattteirns significantly contribute to this task.

Analyzing in deeper detail the selected variabte® can note that the variables'thaximurii and “1*
meari were selected by all the three algorithms. These variables and the variablé®minimuni are
connected with the tree height which is stronglgitesl to the stem diameter. There is then a gréwa-o
riables that is connected with the crown internaicure (‘3¢ variance, “2" meari, “2™ range, “4"
maximurf, and “4™ meari), a variable that can be linked to the crown ieaftshape (I mean — 2
meari), and one to the speciesl{‘intensity). All these variables model some characteristicthe tree
that are connected with the diameter: the heidjiiet,sppecies and the crown properties. Many of the se
lected variables can be linked to the crown intestraicture. This is due to the fact that there bam
link between the crown internal structure and klb#hhealth of the tree and the species, two fathats

affect the stem diameter.

Regarding the estimation algorithms, SVR-RBF predithe highest accuracy even if the difference with
the other estimators is small. In particular, b# three estimators provided similar results withtree
three variable sets considered. This is probabdy tduthe fact that the variables considered aeatiy
related to the diameter and thus a simple mul@ariinear estimator is enough to obtain good tesul
From the results one can also see that each estimaivided the highest accuracy when the selection

was performed on the basis of the same estimator.
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Concerning the estimation errors, it is worth ngtihat the MAE is very low, about 6 cm on an averag
value of the diameters around 45 cm. Moreover #tienation is unbiased as the mean error is aln®st z

ro in all the configurations considered.

A first conclusion that is possible to draw fronesle results is that with the considered variablessriot
necessary to use complex and non linear techniguéise estimation of stem diameters. In particutgr
using a simple linear estimator in both the phaseselection and estimation it is possible to abta-
sults comparable to that provided by SVR. Howetleg, use of a linear estimator allows us to have a

lower computational cost compared to SVR.

Figure 5-5 shows the distribution of the measuriathdters vs. the estimated ones obtained by uking t
SVR-RBF technique for both variable selection astiheation for the test and validation sets. Theeor
lation between estimated and measured diameteysod even if not excellent. The? @n the test and

validation samples considered together is of ab@a.

Table 5-4. Mean absolute error (MAE), mean squene éMSE) and coefficient of variation {R
of the estimates obtained on the test and validatits using different variable sets and esti-

mators.

Variables Selection . Test Validation
selected method Estimator MAE MSE R MAE MSE R
1% maximum _ linear 634 6899 0621 7.6 7885  0.589
1'mean SFS with -
1 intensity linear SVRlinear 629  69.03 0625 7.00 7544  0.608

st _ t' t
é,d mean —¥mean  estimator o por 630 6924 0621 698  77.90  0.595

variance

st B
L maximum linear 642 6977 0617 7.28 7971 0585
1> mean .
2" mean SFS with

ot . SVR-linear SVR-linear 6.20 67.78 0.630 7.15 78.24 0.594
1 intensity .

i estimator
3 jvariance SVR-RBF 6.35 6752 0631  7.13 79.09  0.588
2" range - : . . , ,
I maximum , linear 641 7017 0615 7.20 7945 0586
1 mean SFS with
18t minimum SVR-RBF SVR-linear 6.28 68.86 0.625 7.12 78.97 0.591
4™ maximum estimator
4 mean SVR-RBF 6.20 67.70 0.630 7.17 78.19 0.593

In order to estimate the tree stem volume we useditameters derived by the selection and estimatio
based on SVR-RBF, and the tree heights providedIDAR measurements. The estimation was carried
out by using standard height/diameter relationshipspted for the estimation of the tree stem voliime
forest inventories. These equations estimate thana combining the tree diameter, the tree height a
the species information. We considered as heighttoge the variableriaximum of the®ireturr’, as di-
ameter the one estimated with the SVR-RBF, andasias that extracted from a classification map of
the considered area. Table 5-5 and Table 5-6 shewesults obtained on the stem volume estimatien.

it is possible to see, the results in terms of MMSE and R are good, and in particular they are much
better compared to the ones of the diametersrinstef total volume it is worth noting that thesea un-

derestimation of the volume for both the test aalibation sets.
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Figure 5-5. Measured diameters vs. predicted diarméor the 307 trees of the test and validatias. se

Figure 5-6 shows the distribution of the referemokime vs. the predicted one for the test and atita
sets. It is possible to see, that tHeidRof about 0.7, with a significant increase corepto that obtained

in the diameter estimation (0.63).

Table 5-5. Mean absolute error (MAE), mean squene éMSE) and coefficient of variation {R
of the estimates obtained on the test and validat#ts for the stem volume. The estimation
was carried out with standard height/diameter imtahips using the diameters estimated
with LIDAR variables and as height the variablé' thaximum”.

MAE MSE R
Test Set 0.59 0.66 0.726
Validation Set 0.65 0.82 0.674

Table 5-6. Tree stem volume estimations obtainetherest and validation sets with the pro-
posed system (estimated volume) and with grouridateld measures (reference volume).

Reference Volume (M Estimated Volume (f)

Total Mean Total Mean
Test Set 330.676 2.250 311.647 2.120
Validation Set 368.613 2.304 350.937 2.193
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Figure 5-6. Reference volume vs. predicted voluondHe 307 trees of the test and validation sets.

Starting from the architecture of Figure 5-2, iaiso possible to estimate directly the stem voluméhis
case we did not use the information on specieeptés the classification map but we exploited chly
LIDAR variables presented in Table 5-2.

Table 5-7 shows the results obtained for the esitbmaf the stem volume with the proposed architet
by using different variable subsets and differestingators. Firstly, it is interesting to analyze selected
variables. It is worth noting that all the selent@gorithms identified the variable¢® maximurii and
“1'mean — 8 meari. The first one is the tree height, while the setone is connected with the vertical
shape of the crown. The remaining variables dfifereach selection method. In greater detail, #lecs
tion based on multivariate linear estimator choaseg variables based on th& return, and in particular
variables connected with the crown vertical shapé (mean — ¥ meari, “1% mean — 3 meari, “1%
mean — % meari and “1* variancé). The selection based on SVR with linear kerradests variables
connected with the crown vertical shapd{ fean — % meari and “1* mean — % meari) and the crown
internal structure @ minimur, and “4™ meari). The selection method that chooses the widesjgaf
variables is the one based on SVR-RBF, as it seleriables connected with the crown vertical sHape
“1% mean — § meari), the tree height (" minimuni), the crown internal structure 4" range), the
species (1* intensity) and the crown horizontal shapedtiius T).

These selections shows us that almost all the kimdsriables considered are connected with the ste
volume. In particular, some of them have a strangar relation (e.g., those connected with tréghte
and crown vertical shape), while others have alimgar relation (like the crown horizontal shapel dme
crown internal characteristics). The latter areseld only by a non linear model (SVR-RBF).

Regarding the estimation results, it is possiblelserve that also in this case the selection based
SVR-RBF combined with the SVR-RBF estimator prodidiee best results. However, in this experiment

the difference between the accuracies yielded tsytdthnique and those achieved by the other one is



relevant. On the test set, it provided good resnlterms of both MSE and’Rompared to the other con-
figurations (R is of 0.71 on the test set compared to an avesh@e55 of the other methods). This be-
havior is confirmed also on the validation set,reifehe difference is smaller. It is also worthting that

the estimations based on SVR provide always betieuracies than those based on the linear estimator
even if in some configurations the differences ratatively small (e.g., in the selection based iopdr

estimator results obtained with linear estimatat SR with linear kernel function are quite simjlar

Table 5-7. Mean absolute error (MAE), mean squena éMSE) and coefficient of variation {Rof the
estimates obtained on the test and validationusetg different variable sets and estimators.

Variables Selection . Test Validation
selected method Estimator MAE  MSE R MAE  MSE 54
1% maximum _ linear 0.69 0.87 0643  0.76 0.89 0.641
1'mean-2mean  SFS with '
Smean¥mean  linear SVR-inear  0.68 086 0652 074  0.89 0.644
st - timat
ist mean-4 mean  estimator o por 0.67 0.83 0661  0.68 0.87 0.653
variance
1% maximum linear 0.69 0.88 0.636 0.77 0.91 0.629
1% mean-% mean SFS with
4" mean SVR-lin ;
" mea _ SVR-inear  0.69 0.84 0.661  0.75 0.93 0.634
3 minimum estimator
1% mean-4' mean SVR-RBF 0.66 0.80 0.681 0.71 0.88 0.646
1°' maximum linear 0.70 0.88 0.639 0.78 0.91 0.628
1% mean-% mean SES with
15t minimum wi SVR-linear 0.68 0.85 0.651 0.74 0.92 0.637
th SVR-RBF
4" range .
" ) estimator
1% intensity SVR-RBF 0.60 0.70 0.715 0.71 0.86 0.650
radius 1

Table 5-8 reports the estimations of the volummirior the test and validation sets, compared taghe

erence ones. As one can see, the total and meaaes\ale quite similar for both the sets.

Table 5-8. Tree stem volume estimation obtainethertest and validation sets with the proposed
system (estimated volume) and with ground colleatedsures (reference volume).

Reference Volume (M Estimated Volume (f)

Total Mean Total Mean
Test Set 330.676 2.250 325.601 2.215
Validation Set 368.613 2.304 362.693 2.267

Figure 5-7 shows the distribution of the referemolime vs. the one estimated with the SVR-RBF algo-

rithm for the test and validation sets.
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Figure 5-7. Reference volume vs. predicted voluondte 307 trees of the test and validation sets.

5.3.3 Discussion

Comparing the results of the two experiments ipéssible to draw some interesting considerations.
Firstly, it is worth noting that the estimates bé tstem volume with the two methodologies preseated
accurate in both cases, with the first approackgthan stem diameters estimation) that seems & giv
better results in terms of estimation accuracy arefficient of determination (we have a higher eabi

R? on both the test and validation sets: i.e., 077@ @67 vs. 0.71 and 0.65, respectively). Thesaltees
show the effectiveness of the proposed approacé.rii&in negative point of these results can be ob-
served comparing Table 5-6 and Table 5-8. In taséms that in terms of total volume the firstrapph
underestimates more than the second one, evealiéflults are quite similar.

Another consideration strictly connected with tieyioous one emerges by comparing the estimation re-
sults of stem diameters and volumes starting frdDAR variables. It seems that the considered vari-
ables are more suitable for the estimation of stelame than diameters. In the estimation of stem di
ameters the variables selected are quite similaalfahe estimators considered; thus the resilihe
different estimators are very similar. This is tio¢ case of volume estimation, where the variabées
lected differs from an estimator to another. Intipatar SVR-RBF (a complex non linear estimator) se
lects a pool of variables with very different proaimeanings reaching higher accuracies with regpec
other estimators.

By analyzing the variables selected, one can satethiere are some variables strongly correlatet wit
both the volume and the diameter, like the onestedlto tree height. A variable belonging to thdsis
present in all selection results. This is quiteiobs as the tree height is strongly related to loiidimeter
and volume. Regarding the other variables, it sethaisthose related to the crown internal structuee

those more correlated to the diameter. In fact atroae third of the selected variables belong i® ght.



On the contrary, it seems that variables relatethéohorizontal and vertical shape of the crowmdb
provide much information in this context. Considgrithe estimation of stem volume, the situation is
quite different. In this case we have very différeariables set changing the estimator considdtad.
worth noting that the selection performed by theRSRBF provides variables belonging to every set.
Moreover, in this case the variables selected bylitrear estimator belong all to th& deturn showing

that probably these are the only variables thaelzahnear correlation with the volume.

54 Conclusion

In this chapter a system for the exploitation afcdete multireturn LIDAR data for the estimationtiefes
stem diameter and volume is presented. The systepoged is made up of four different blocks: pre-
processing, segmentation, variable extraction abecton, and estimation. We presented and analyzed
different kinds of variables extracted from LIDARtd, different variable selection algorithms arftedi

ent estimation techniques. From the experimensallt@ we can draw the following conclusions:

i. the proposed system is effective for the estimadiainee stem diameters and volumes;

i. the approach to the estimation of stem volume basdtie estimation of stem diameters seems to
be the most effective. The results in terms of MMSE and R are better if compared to the di-
rect estimation of stem volume;

iii.  the estimation accuracy is maxima when using thees@gression technique in both the phases
of variable selection and estimation;

iv.  when the relationship between the estimated vasadhd the targets can be approximated as lin-
ear, a simple estimator (like the multivariate finegressor) provides results comparable to com-
plex non-linear estimators (like SVR);

v. anon-linear regression model (like SVR with RBIFrlet function) provides always better results
when compared to other estimators (like multivarigear regression). The difference in accu-
racy is higher when there is a non linear relatijgmbetween the variables and the target;

As a future development of the proposed systenplas i) to improve the estimation of diameters-con
sidering other variables; ii) to compare the resaftthe SVR with other non-linear multivariate qaet-
ric regression techniques; iii) to analyze the iotpE the posting density (humber of LIDAR measures

per square meter) on the estimation results; ani igstimate other attributes like the biomassinva.
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Chapter 6

6 Fusion of hyperspectral and LIDAR remote sensing data for the

estimation of tree stem diameters

The estimation of stem diameters can be very usethle study of forests, as together with heigid a
tree species, it is one of the most important patens used in forest inventories. In this chapteystem
for the estimation of stem diameters with LIDAR agderspectral data (both separately and combined
in a data fusion framework) is presented. An arnialgs the effectiveness of these data in the etstima
process and on the accuracy and robustness ofdiff@stimation algorithms is presented. Experiraent

results point out the effectiveness and the progedf the proposed system.

6.1 Introduction

The study of forests and their biophysical parameite an important task that has many implications
many different fields (e.g., economy, environmeRgrests are an important source of information for
studies related to climate change and carbon bal@pgantitative studies on carbon exchange an#tstoc
have become of great importance in the recent yaagsto the rules of the Kyoto protocol that regquir
each nation to have an estimate of the €10red and exchanged by their forests.

In this context, it is important to study the stural parameters of the trees and forests, likehfight,
the stem volume, the basal area, the diametereasbheight (DBH) of the trees, etc. In particuta
stem volume is directly related to the amount of, GOred by trees. In order to compute this paraniiete
is necessary to know the DBH, the diameter andpleeies of a tree. In this study we focus our &tten
on the DBH as it is a variable that can be usedhi®restimation of various parameters of the trees.

Two types of remote sensing data have been widsdy in the last years for the study of forestsehyp
spectral and LIDAR data. Usually hyperspectral dagamainly exploited for the classification ofdst
species, while LIDAR data are mainly used for tegneation of biophysical parameters. Concerning the
estimation of stem diameters, some studies existaniterature, which are mainly based on LIDAB-si
nal processing [1]. At the present at the bestuofkmowledge no studies exist on the estimatiostemm

diameters by hyperspectral data.

This chapter has been submitted at IEEE InternaltiGeoscience and Remote Sensing Symposium 2083hweit
title: “Fusion of hyperspectral and LIDAR remotensing data for the estimation of tree stem diarnsétéwuthors:
Michele Dalponte, Lorenzo Bruzzone, and Damianaélia.
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In this scenario, the main goals of this chapter arto analyze the use of LIDAR and hyperspedeaif
(both separately and combined) for the estimatiostem diameters; ii) to develop a system for tig e
mation of stem diameters that can exploit the afemioned data both separately or in a data fusion
framework; iii) to compare the accuracy and robessnof different estimation algorithms (i.e. Suppor
Vector Regression and linear regression). Moreower study the possibility to use hyperspectral data
alone to derive rough estimations of stem diamefEns issue is very interesting as hyperspectas d
are widely used for the classification of forestaw (they provide a detailed description of spesigna-
tures of tree species), and thus it would be ingmrto understand if they are a significant infatiora

source also to estimate physical parameters dféies.

6.2 Data set Description

The data set considered in this study is a forest an Mount Bondone in the Italian Alps near tite af
Trento. The central point of the area has the Watig coordinates: 46°3'15.84"N, 10°59'59.35"E. This
area has an extension of approximately 170 ha arelevation that ranges from 200 m to 1400 m. The
area is characterized by the presence of many Hezad tree species (European Beech, Holm Oak,
Downy Oak, Common Hazel, Silver Birch, etc) and soooniferous species (Scots Pine, European
Larch, etc).

@ | ()

Figure 6-1. Example of images used in the experisier) false color composition of channels 10 (483
nm), 35 (718 nm) and 55 (911 nm) of the hyperspéatrage; b) Digital Canopy Model (DCM) of the
analyzed area.

The remotely sensed data were acquired on Septe2b&r The hyperspectral data consist of four par-
tially overlapping images acquired by an airbori8MEagle sensor in 63 spectral bands, ranging from
400 to 990 nm, with a spectral resolution of al$h@tnm and a spatial resolution of 1 m (see Figutg.

The LIDAR data were acquired by the sensor OptelchM 3100, with a mean density of 8.6 points per
square meter for the first return. The laser puwagelength and the laser repetition rate were 1064
and 100 kHz, respectively. The data used in ouestigation refer to the first four LIDAR returns. A
Digital Terrain Model (DTM) of the investigated areith a spatial resolution of 1 m was extracteair
the LIDAR data.



The reference data samples (178 trees) were cadleliring a ground survey in summer 2007. We ex-
tracted these sample points from the entire stuelg. & he samples were collected on the basis diei)
species and ii) the spatial distribution (samplageha uniform distribution across the scene). Tiesye

been divided into three sets: training (60 trekesy, (59 trees) and validation (59 trees).

6.3 Methods

6.3.1 Architecture of the proposed system

Figure 6-2 shows the general architecture of tlopgsed multisensor system for the estimation ohste
diameters. It can be divided into four main blodkdata preprocessing; ii) segmentation; iii) ahfes
extraction and selection; and iv) estimation. THeleeks are analyzed in greater detail in the fuilay.

It is worth noting that the system, with adequaneptifications, can be also used with only LIDAR or

hyperspectral data.

DEM
v
Raw LIDAR o DEM
—» >
data Rasterization Subtraction
DCM
Y
. S ted i ; o .
Segmentation cgmented, | Vanable N Varlablc |yl Estimation E_stlmated
Image Extraction Selection diameters

A

Hyperspectral Radiometric
images Normalization

[—> Mosaicking

Figure 6-2. Architecture of the proposed system.

6.3.2 Preprocessing

The preprocessing applied to LIDAR data consistetthé rasterization of the raw point cloud, andhie
computation of the Digital Canopy Model (DCM) (tbégital Elevation Model (DEM) of the area was
subtracted to the elevation information). This laicess allowed us to obtain the height of eaghlpi
with respect to the ground.

Regarding the hyperspectral data, after the apitaf a radiometric normalization, the four owgr

ping images were mosaiked in order to cover thelevarea analyzed.

6.3.3 Segmentation
An important phase in the system proposed is tgmeatation. This phase drives the next steps of var
able extraction and diameter estimation. The rat®of this step is to delineate individual treevens in

order to have diameter estimation at the tree level
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Concerning LIDAR data, the segmentation algoritheeduin this chapter is derived from the algorithm
presented by Hyyppét al.in [2]. This algorithm, is divided into three masteps: i) prefiltering; ii) seed
point extraction; iii) seed region growing.

According to [2], in the pre-filtering phase for phasizing tree crowns the DCM was filtered withoa-c
volution filter, whose coefficients are definedfakows:

1 21

2 42 (6.1)
12 1|16

The seed point extraction phase is aimed at thdtifabation of the tree tops, from which startirigetre-
gion growing procedure. Seeds are the local maximgler than a certain threshold value. They are de-
tected moving a window of a given size definedy @iser through the image. At the end of this mece

we obtain the set of the seed poists{s,...,s,}, wheres, identifies then-th point.

The last phase consists in the seed region grofeinthe identification of the crowns of the tre&ged
region growing starts from each seed and growénatively the region from the first order neighbmot

system to the-th. A pixel 1 (i, j) is added to the considered region if it satisfies tonditions that take
into account both the dimension and the shape ef dfown. If we define the set of the re-

gionskR={r,,...r,}, wherer, identifies the region around the seed pgjntve can write as follows:

1G,i)>P *I

D[fn +1(,] )] <thDiameter (6.2)

1G,j)Cr, if {

where ISn is the height of the considered seed polntis a value between 0 and I])[rn +1(, j)] is the

diameter of the considered region including the pexel | (i, j), and thDiameteris the maximum ac-

ceptable diameter of a region. The algorithm stepen none pixel is added to any region.

Regarding the segmentation of hyperspectral dateast carried out with the Definiens eCognition soft
ware (i.e., [3]), which exploits a multiresolutiaegmentation algorithm. This is a region growing ap
proach based on a heuristic optimization procedudneh locally minimizes the average heterogeneity o

image objects for a given resolution.

6.3.4 Variableextraction and selection

From each crown a series of variables were exuldtten both the LIDAR and hyperspectral data. Re-
garding the LIDAR data, we extracted from the psilsEeach return the variables reported in Tahle 6-
With respect to the hyperspectral bands, for eaeletsal channel we computed the mean value among
the pixel of each crown.

A stepwise variable selection [4] was then appt@delect subsets of the above-mentioned measenes r
levant for the proposed estimation problem. Thedin algorithm works as follows. In the initidéep,
each of the available variables is used for estigahe diameters according to a linear model, thed

the one that results in the highe$tvalue is selected. In the next steps, each ofehmaining variables is



added to those already selected. The one whicltsésithe highest increase of R included in the set
of selected variables if it meets the statisticeeagon for entry. This criterion is based on #gignificance

in the increase of the’roduced by the addition of the considered vagiabhen variables that are al-
ready in the model are evaluated for removal. Teron for removal is similar to the one for gntthe
variable whose rejection would result in the lonastrease of Rs removed. The process is iterated un-
til no selected variable meets the removal criteremd no unselected variable meets the entryrionite
The number of variables selected changes accotditite characteristics of the problem consideraetl an

to the considered entry and removal criterion.

Table 6-1. Variables extracted from LIDAR data.

Variable Variable

maximum standard deviation
minimum kurtosis

mean skewness

range coefficient of variation
maximuni with n=0.1, ..., 5 mean intensity
percentiles from the"™to the 9%'

6.4 Estimation techniques

In the estimation phase we considered two diffeestitnators: a linear multivariate estimator anmba-
linear multivariates-Insensitive Support Vector RegressierSVR) algorithm.

The linear estimator is very simple and it is aided with a low computational load. For this regsbis
widely used in the forest science domain for tharegion of stem volume and biomass. It providesdjo
results when the correlation between the targaablar and the predicting variables can be reasgnabl
approximated by linear function.

Regarding the-SVR estimator, it is an advanced machine leart@afpnique that allows one to seize
complex regression problems characterized by: m) lireear correlation between the target variabld an
the predicting variables; and ii) a reduced nundfdraining samples. It is based on the Supporttec

Machine theory and its goal is to find a functidfx) that has at most deviation from the real targets

for the training data, and at the same time idaasag possible. In other words, it does not carsélrors
if they are smaller thag, whereas it does not accept any deviation lafugend. For more details on this

estimator we refer the reader to[5],[6].

6.5 Experimental analysisand discussion

In order to achieve the goals of this chapter weiexh out three experiments for the estimationhef di-
ameters with three different sets of variablefIDAR variables; ii) hyperspectral variables; aiy LiI-
DAR and hyperspectral variables. In each of thegperments we first performed the variable selectio

phase, and then the estimation phase with a mrilitedinear estimator and an SVR estimator.
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The variables selected in the three experimentasrllows: i) 1 return range, " return skewness,
maximum of the % return at the power of 0.2, and thé"ggercentile of the SLreturn; ii) 7 hyperspectral
bands (see Figure 6-3 for the distribution in thectrum of the selected bands); iii) maximum of ifie

LIDAR return at the power of 0.2, hyperspectral dsat about 429 and 979 nm.

402 438 474 511 547 585 623 661 699 737 776 815 853 892 931 970
w avelenght (nm)

Figure 6-3. Hyperspectral bands selected.

As it is possible to observe from Figure 6-3, thecdral bands selected are strongly related tctbeac-
terization of the species of the single tree; ey are directly correlated with the stem diamdtefact

the species is one of the key features that wighhisight characterize the diameter of a tree. ifdsé
bands can be connected to chlorophyll content ®adb75, 718 and 735 nm), carotenoides content
(band at 420 nm), leaves structure, and water nofbands at 785, 815 and 834 nm) ([7],[8]). Theze
rameters change according to the species considarethus the spectral signature on the relatedsbian
useful in the species identification.

Table 6-2 presents the results obtained on tesvalidhtion sets in the three experiments. Conaogrttie
SVR estimator, we considered two kernel functidingar and RBF functions. The model selection phase
was carried out through a grid search for the @grdtion parameters C, the tube insensitive tethars

g, and the spread of the RBF kerng¢b].

Firstly, we can observe that the use of both hypatsal and LIDAR variables provides the best issul
with all the estimators considered. The MAE is oofyabout 4 cm on the test set, and of about 5em o
the validation set.

Secondly, the SVR estimator with both the lineat RBF kernel functions provides higher accuracyitha
the linear estimator with almost all the varialdets considered. Concerning the linear kernethieared
the best results using the LIDAR variables andftiseon between the hyperspectral and the LIDAR ones
The SVR with RBF kernel provided the smallest emben using only the hyperspectral variables. This
can be explained with the higher complexity (nowérity) of the regression function in the caselinch
only spectral channels are used for retrievingdibeneters of the trees.

In general, it is worth nothing that in all theagbrexperiments the performances in terms of MAEiane

ilar for all the three estimators considered, whfile R provided by the SVR estimator is slightly better

than those obtained with the linear estimator.



Concerning the different data sources the use pétspectral images results in the highest errahen
estimation process. This is reasonable, given tmeptexity of the relation between the spectral aign
tures and the diameters of the trees. Nonethelesse results can be considered interesting wheagh

estimation of stem diameters should be done andhymerspectral data are available.

Table 6-2. Results obtained on the test and vadidaets in terms of mean absolute error (MAE),
mean square error (MSE) and coefficient of variafigf) using different variable sets and

estimators.

Variables selected Estimator Test set Validation set
MAE MSE R MAE MSE R

1:;return range Linear 5.12 40.43 0.540 5.31 43.56 0.520
2" return skewness SVR -linear  4.48 33.03 0.650  5.24 40.14 0.573
(1% return maximun®)
1% return 9%' percentile SVR - RBF 4.96 38.45 0.585  5.87 50.37 0.463
420 nm hyperspectral band | .
576 nm hyperspectral band Linear 5.66 53.14 0.399 6.37 60.65 0.324
718 nm hyperspectral band )
737 nm hyperspectra] band SVR - linear 5.85 55.17 0.424 6.22 57.27 0.366
786 nm hyperspectral band
815 nm hyperspectral band  g\/g - RpF 5.78 51.33 0439  6.15 54.90 0.400
834 nm hyperspectral band
(1% return maximun®)? Linear 4.43 31.69 0.640 5.30 42.41 0.530
429 nm hyperspectral band SVR - linear 4.15 28.41 0.681 5.20 40.14 0.570
979 nm hyperspectral band gyR - RBF 4.52 32.75 0.679  4.96 41.10 0.564

6.6 Conclusion

In this chapter a system for the estimation of stéameters with hyperspectral and LIDAR data hanbe
proposed, and an empirical study on the effectisgié these different information sources in theres
tion task has been presented. Different kinds dfibées (extracted from data acquired by differsan-
sors) and different estimators have been comp&m@n the experimental results, it is possible to-co
clude that: i) the system proposed is effective thaer estimation of stem diameters; ii) LIDAR data
involve accurate estimates of tree diameters (MABbout 5 cm on the validation set); iii) the condoi
tion of hyperspectral and LIDAR data allows oneslightly increase the performances (MAE reduced on
both the test and validation sets); and iv) as ebgaehyperspectral data provide less accurate @&stins
than the LIDAR ones, but the retrieved tree diamsetge still reasonable indications of the truaugal

when only hyperspectral images are available.
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Chapter 7

7 Conclusions

This thesis investigated novel systems for theafisg/perspectral and LIDAR remote sensing datdén t
classification of forest areas and in the estinmatibtrees stem attributes. The main novel contioos of
this thesis to the literature are: i) an empirigablysis on the relationship between spectral uésal,
classifier complexity and classification accuranythe classification of complex forest areas; inavel
system for the fusion of hyperspectral and LIDARoge sensing data in the classification of forest a
eas; iii) an empirical analysis on the use of mefitirn LIDAR data for the estimation of tree steal-v
ume; iv) a novel system for the estimation of singee stem diameter and volume with multireturn LI
DAR data; and v) a system for the fusion of hypecsfal and LIDAR remote sensing data in the
estimation of tree stem diameters.
These contributions are related to each other lagg ¢an be grouped into two areas: classificatimh a
estimation in the forestry application domain. Relgay the classification, at first an empirical bsé&
on the relationship among spectral resolution,sifi@s complexity and classification accuracy haesn
carried out. This analysis is very important asititécations derived from it can be used for bdté te-
sign of new sensors, and for a more efficient Usthe existing ones. The second novel contribuiion
the classification area is a system that allowstorjeintly exploit hyperspectral and LIDAR data fihe
analysis of complex forest areas. This contribupasposes on the one hand a complete system tmat fr
raw hyperspectral and LIDAR data provides classifan maps, and on the other hand important indica-
tions on the significance of LIDAR returns in thassification process, as well as on their compleme
tary role with hyperspectral data.
Summarizing, the main conclusions that can be etedsfrom the classification part of the thesis are
i) advanced and complex classification systems (IMBare able to exploit high dimensional data
providing very high classification accuracies, vdas more standard and simpler classifiers (like
LDA) do not provide high classification accuracies;
ii) other simple classifiers (like ML) are advantageltew the spectral resolution decreases and thus
(considering the same kind of detector) the SNEhefimages increases;
iii) the proposed novel system for the fusion of hypspl and LIDAR data is effective in the classi-
fication of the considered complex forest areaiging very high classification accuracies and de-

tailed maps;

103



CHAPTER 7

Iv) the proposed classification system properly expltie complementary information contained in
hyperspectral and LIDAR data; in particular, thevaktion information provided by LIDAR data re-
sults useful in the separation of tree species diffierent mean heights but similar spectral signa-
tures;

v) LIDAR returns after the first one are not releviomtthe classification task.

Regarding the estimation part of the work, we fecusur attention on the estimation of single titeens
height, diameter and volume. Firstly, we proposempirical analysis on the use of multireturn LIDAR
data for the estimation of tree stem volume. Thisl\ is very important to understand the informatio
content of LIDAR returns and the variables mordahlé for the exploitation of this information. Fhi
analysis drives also the design of the novel systemposed in this thesis. The first system explwitil-
tireturn LIDAR data for the estimation of tree statributes, in particular tree stem diameter aod v
ume. A detailed empirical analysis has been cawigdcomparing three variable selection methods and
three estimatorslhe second system extend the previous one by cimglbémd exploiting the spectral in-
formation of hyperspectral data with the spatiébimation of LIDAR data for the estimation of steln
ameters. It fuses variables extracted from hypeisgleand LIDAR data for the estimation of treenste
diameters. This system which is based on advanigeditams can be used to exploit these data sepa-
rately and combined.

Summarizing, the main conclusions that can be etedsfrom this part of the thesis are:

i) the systems proposed are effective for the esiomati tree stem diameters, volume and height;

i) 1% 2% and & LIDAR returns are important for the estimationmefe stem volume;

lif) the estimation accuracy is maxima when using theesegression technique in both the phases of
variable selection and estimation;

Iv) the proposed system for the fusion of hyperspeatrdlLIDAR data is effective in the exploitation
of the complementary information of these data. ¢tvmbined use of variables belonging to both
sensors allows one to increase the estimation acgur

v) hyperspectral data provide low accuracy estimatafnstem diameters. Nevertheless, they can be
useful for a rough estimation of this variable lasytare less expensive than the LIDAR ones and
they can be used also for species classification.

There are various future developments for thisighiesth in the classification and in the estimatfiiefds.
In the following we point out some main ideas:

i) to consider in the classification and estimatiolwcpss, other algorithms, in particular semi-
supervised techniques. These techniques can bel isetal situation of forest studies where the
number of training samples is small.

i) to consider in the analysis also satellite VHR mpkctral images (e.g., Quickbird, GeoEye). It can

be interesting to analyze how these data can ctterigh LIDAR ones in both classification and es-



ii)

timation. In fact these data, even if they have lgsectral information, allow one to make studies a
single tree level with a lower cost compared toah@nages;

in order to use the proposed systems for foregntories of large areas, an issue that needs more
investigation is that related to their general@atability considering training and test areas\eti
from areas significantly different at regional s;al

an analysis on the most suitable point densitylDIAR data in forest analysis application, for both
classification and estimation;

the study of forest structure with LIDAR data. larficular it seems interesting to investigate the

possibility to detect single trees in dominateafbiayers.
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