
PhD Dissertation

International Doctorate School in Information and

Communication Technologies

Department of Information Engineering and Computer Science

(DISI) - University of Trento

Security-by-Contract using Automata Modulo

Theory

Ida Sri Rejeki Siahaan

Advisor:

Prof. Fabio Massacci

University of Trento

February 2010

Abstract

Trust without control is a precarious solution to human nature. This belief has lead

to many ways for guaranteeing secure software such as statically analyzing programs to

check that they comply to the intended specifications which results in software certification.

One problem with this approach is that the current systems can only accept all or nothing

without knowing what the software is doing. Another way to complement is by run-time

monitoring such that programs are checked during execution that they comply to security

policy defined by the systems. The problem with this approach is the significant overhead

which may not be desirable for some applications.

This thesis describes a formalism, called Automata Modulo Theory, that allows us to

have model of what programs do in more precise details thus giving semantics to certifi-

cation. Automata Modulo Theory allows us to define very expressive policies with infinite

cases while keeping the task of matching computationally tractable. This representation is

suitable for formalizing systems with finitely many states but infinitely many transitions.

Automata Modulo Theory consists of a formal model, two algorithms for matching the

claims on the security behavior of a midlet (for short contract) with the desired security

behavior of a platform (for short policy), and an algorithm for optimizing policy.

The prototype implementations of Automata Modulo Theory matching using language

inclusion and simulation have been built, and the results from our experience with the

prototype implementations are also evaluated in this thesis.

Keywords

language-based security, malicious code, security and privacy policies

Acknowledgments

Prof. Fabio Massacci, for guidance and advice on research and becoming researcher.

N. Bielova, M. Dalla Torre, and S. Vogl for implementing the matching prototype. M.

Roveri, S. Toneta, and A. Cimatti for the support in the usage of the NuSMV and Math-

SAT libraries. R. Sebastiani for his insightful comments while I was beginning my work.

Anonymous reviewers for the insightful comments on our papers that helped to improve

the presentation in this thesis.

The Projects EU-FP6-IST-STREP-S3MS, EU-FP6-IP-SENSORIA, EU-FP7-IP-MASTER,

and EU-FP7-FET-IP-SecureChange for partly supporting this research.

Finally, to my family and friends for their love and support.

i

ii

Contents

1 Introduction 1

1.1 Objectives . 2

1.1.1 Security Policies . 2

1.1.2 Efficiency . 2

1.2 The Contributions of the Thesis . 3

1.3 Structure of the Thesis . 4

1.4 List of Publications . 5

2 Security by Contract 7

2.1 Security by Contract . 7

2.2 From Security by Contract to Automata Modulo Theory 10

3 Related work 13

3.1 Language-based security . 13

3.2 Mobile code security . 14

3.3 Automata for security policies . 16

3.4 Satisfiability Modulo Theories . 16

4 Automata Modulo Theory 17

4.1 Introduction . 17

4.2 Theory in Automaton Modulo Theory . 18

4.3 Automaton Modulo Theory Preliminary 20

4.4 Operations in Automaton Modulo Theory 23

4.5 On-the-fly Language Inclusion Matching 31

5 On-the-fly Matching Prototype Implementation and Experiments 37

5.1 Introduction . 37

5.2 The Architecture . 38

5.3 Design Decisions . 40

iii

5.4 List of Abbreviations . 42

5.5 Experiments on Desktop and on Device . 42

6 Simulation 47

6.1 Introduction . 47

6.2 Simulation in Automaton Modulo Theory 48

6.3 Simulation Matching . 54

7 Simulation Matching Prototype Implementation and Experiments 61

7.1 Introduction . 61

7.2 The Architecture . 62

7.3 Design Decisions . 63

7.4 Experiments on Desktop . 64

8 IRM Optimization 67

8.1 Introduction . 67

8.2 Security Models for Optimized IRM . 68

8.2.1 Rewriter on Trusted part . 69

8.2.2 Rewriter on Untrusted part . 71

8.2.3 Optimizer and Rewriter on Untrusted part 72

8.3 A Search Procedure for IRM Optimization 73

9 Conclusions and FutureWork 81

9.1 Conclusions . 81

9.2 Future Work . 83

Bibliography 85

A On-the-fly Matching Prototype Class Diagram 93

B Simulation Matching Prototype Class Diagram 95

C On-the-fly Matching Prototype Experiments 97

D Simulation Matching Prototype Experiments 99

iv

List of Tables

4.1 Theories of Interest . 19

5.1 Problems Suit . 42

5.2 Running Problem Suit 10 Times . 43

7.1 Running Problem Suit 10 Times . 64

C.1 Problems Suit . 98

C.2 Average Running Problem Suit 10 Times (s) 98

D.1 Average Running Problem Suit 10 Times (s) 100

v

List of Figures

1.1 End Users’ Distilled Security Requirements 2

2.1 Workflow in Security-by-Contract . 8

2.2 Mobile Code Components with Security-by-Contract 9

2.3 Infinite Transitions Security Policies . 11

4.1 AMT Examples . 21

4.2 Boolean Abstraction . 27

4.3 Automata Intersection . 28

5.1 On-the-fly Implementation Architecture . 39

5.2 Cumulative response time of matching algorithm on Desktop PC 44

5.3 Cumulative response time of matching on Device vs on Desktop PC 45

6.1 Symbolic vs Concrete Automaton . 52

6.2 Normalization of an automaton . 53

7.1 Simulation Implementation Architecture 62

7.2 Cumulative response time of matching algorithm on Desktop PC 65

8.1 Rewriter on Trusted part . 70

8.2 Rewriter on Untrusted part . 72

8.3 Optimizer and Rewriter on Untrusted part 73

8.4 Optimization alternatives . 74

8.5 Inline Type Examples . 75

8.6 Optimization Example . 75

A.1 On-the-fly Class Diagram . 94

B.1 Simulation Class Diagram . 96

vii

Chapter 1

Introduction

Currently security model has been based on trust. Either a program is trusted and it can

do almost everything or untrusted and thus can do almost nothing.

Trusted program can be achieved by signing mechanism from trusted third parties.

This approach leads to a vague “trust” because a signature on a piece of code only means

that the application comes from the software factory of the signatory, but there is no clear

definition of what guarantees it offers. It doesn not bind the software behavior.

Untrusted program can be dealt with the mechanism of permissions as in .NET [55] or

Java [39]. Permissions are assigned to enable execution of potentially dangerous or costly

functionality, such as starting various types of connections. The drawback of permissions is

that after assigning a permission the user has very limited control over how the permission

is used. Conditional permissions that allow and forbid use of the functionality depending

on such factors as bandwidth or the previous actions of the application itself (e.g. access

to sensitive files) are also out of reach.

The notion of Security-by-Contract (S×C) was proposed in [27, 13]. In S×C framework,

a mobile code is augmented with a claim on its security behavior (an application’s contract)

that could be matched against a mobile platform’s policy before downloading the code.

Thus, a digital signature does not just certify the origin of the code but also binds together

the code with a contract with the main goal to provide a semantics for digital signatures on

mobile code. This framework is a step in the transition from trusted code to trustworthy

code.

This thesis provides a formal model and algorithms for matching contract with policy

for realistic security scenarios.

1

USE of Costly functionalities Any invocation of paid services, such as sending text messages, using
GPRS or wireless connections, must be controllable by the user.

NETwork connectivity Any external connections made by the application can be controlled.

PRIvate information management It is necessary to control what data is accessed by the application
such as local files, PIM items or contacts from Contact List.

INTeraction with other applets This requirement makes necessary to control means of interprocess
communication, in particular sockets and memory-mapped files.

Power consumption This requirement is two-fold: it makes necessary to control the invocation of
power-consuming functionality, such as WiFi connections, and to control the battery level in course
of running the application. This can be mapped into the NET and USE categories.

EXTended functionality If the device is equipped with some advanced functionality, such as camera
or GPS receiver, its use is likely to be controlled by policies.

Figure 1.1: End Users’ Distilled Security Requirements

1.1 Objectives

1.1.1 Security Policies

Contracts and policies may vary significantly but a number of analysis of security require-

ments for mobile and ubiquitous applications [47, 77, 88] have shown that they can be

distilled in some categories (Figure 1.1). Figure 1.1 is taken from [62] by courtesy of K.

Naliuka.

From Figure 1.1 the main requirements that our formalization needs to satisfy are:

• The security policies require both safety and liveness properties.

• The mechanism for defining a general security policies (that is not platform-specific).

• The mechanism for representing an infinite structure as a finite structure for dealing

with a security policy such as only allows connections starting with “https://” that

already generates an infinite automaton.

1.1.2 Efficiency

Our goal is to provide this midlet-contract vs platform-policy matching on-the-fly (during

the actual download of the midlet), hence issues such as small memory footprint and

effective computations play a key role. The tractability limit is the complexity of the

satisfiability procedure for the background theories used to describe expressions. In the

case of language inclusion approach, the complexity is LIN − TIMEC and NLOG −

2

SPACEC-complete (Proposition 4.5.1) with an oracle to a decision procedure solver. And

in the case of simulation approach, the complexity is POL−TIMEC and LIN−SPACEC

(Proposition 6.3.2). Finally, prelimanry work in optimization of a policy with respect to

a contract has complexity still in the complexity is POL−TIMEC and LIN −SPACEC

(Proposition 8.3.1).

Out of a number of requirements studies, most of the policies of interests can be

captured by theories which only requires polynomial time decision procedures (we will

discuss details in theory in Section 4.2).

1.2 The Contributions of the Thesis

The formal model used for capturing contracts and policies is based on the novel concept

of Automata Modulo Theory (AMT). AMT generalizes the finite state automata of

model-carrying code [74] and extends Büchi Automata (BA). It is suitable for formalizing

systems with finitely many states but infinitely many transitions, by leveraging the power

of satisfiability-modulo-theory (SMT for short) decision procedures. AMT enables us to

define very expressive and customizable policies as a model for security-by-contract, by

capturing the infinite transition into finite transitions labeled as expressions in suitable

theories.

The second contribution is a decision procedure (and its complexity characterization)

for matching the mobile’s policy and the midlet’s security claims that realize the meta-

level algorithm of security-by-contract [13]. We map the problem into classical automata

theoretic construction such as product and emptiness test.

We have further customized the decision algorithm the security policy has a particular

form. For instance, if one uses security automata à la Schneider those can be mapped to

a particular form of AMT (with all accepting states and an error absorbing state) for

which particular optimizations are possible. In the original paper by Schneider security

automata specify transitions as a function of the input symbols which can be the entire

system state. Our AMT differs from security automata in this respects: transitions are

environmental parameters rather than system states. Writing policies in this way is closer

to one’s intuition.

This matching on-the-fly however requires to complement the policy of the mobile

platform and if we assume a general non-deterministic automaton this complementation

might lead to an exponential blow-up. A second problem is that in this way we need two

representations of the policy: a direct representation of the policy as an automata that

we can use for run-time monitor [81] and the complemented representation that we use

for matching.

3

Thus, we further propose to use the notion of simulation for matching the security

policy of the platform against the security claims of the midlet. Simulation is stronger

than language inclusion (i.e. less midlets will obtain a green light) but they coincide for

deterministic policies.

AMT is a general model, thus it can be used not only for matching security policies but

also in other enforcement mechanism for example Inlined Reference Monitor (IRM). IRM

is a flexible mechanism to enforce the security of untrusted applications. However, one

of the shortcomings of IRM is that it might introduce a significant overhead in otherwise

perfectly secure application. Therefore, we propose six different framework models for

IRM optimization with respect to components that are needed to be trusted or untrusted.

We also describe an approach for IRM optimization using automata modulo theory. The

key idea is that given a policy that represents the desired security behavior of a platform

to be inlined, we compute an optimized policy with respect to the (trusted) claims on the

security behavior of a application. The optimized policy is the one to be injected into the

untrusted code.

1.3 Structure of the Thesis

This thesis book consists of the following chapters:

Chapter 2 briefly introduces our context namely a framework called Security-by-Contract.

Security-by-contract [27, 13] proposed to augment mobile code with a claim on its

security behavior that can be matched against a mobile platform policy on-the-fly,

which provides semantics for digital signatures on mobile code.

Chapter 3 surveys related works in theoretical and practical realms including the state-

of-the-art of the research pertaining to this thesis.

Chapter 4 introduces our main thesis AMT and the corresponding automata opera-

tions in it. Furthermore, specific issues to be considered in AMT are also discussed

in this chapter. This work had been presented in [58, 57, 13].

Chapter 5 describes an approach for lifting finite state tools to AMT implementation

prototype. This work had been presented in [14, 15, 16].

Chapter 6 describes fair simulation for AMT with specific issues to be considered in

relation of concrete and symbolic AMT simulation. This work had been presented

in [59].

Chapter 7 describes an approach for for lifting finite state tools to AMT simulation

implementation prototype.

4

Chapter 8 describes a possible application of AMT in Inlined Reference Monitor (IRM)

optimization. This work had been presented in [60].

Chapter 9 presents future works and a concluding discussion.

1.4 List of Publications

The result of this thesis has been published in the following journals:

1. Security-by-contract on the .NET platform [26].

2. Matching in Security-by-Contract for Mobile Code [13].

The result of this thesis has been published in the following conferences or workshops:

1. Security-by-Contract: Toward a Semantics for Digital Signatures on Mobile Code

[27].

2. Matching midlet’s security claims with a platform security policy using automata

modulo theory [58].

3. Matching Policies with Security Claims of Mobile Applications [16].

4. Simulating Midlet’s Security Claims with Automata Modulo Theory [59].

5. Testing Decision Procedures for Security-by-Contract [14].

6. Security-By-Contract for the Future Internet [32].

7. Optimizing IRM with Automata Modulo Theory [60].

The result of this thesis has been published in the following refereed conferences or work-

shops without proceedings:

1. A Security-by-Contracts Architecture for Pervasive Services [57].

2. Security-By-Contract for the Future Internet ? [33].

3. Testing Decision Procedures for Security-by-Contract: Extended Abstract [15].

Other publications:

• Fast Signature Matching Using Extended Finite Automaton (XFA) [75].

5

6

Chapter 2

Security by Contract

This chapter briefly introduces a framework called Security-by-Contract as the

first motivation for proposing Automata Modulo Theory and continues with

positioning Automata Modulo Theory into this framework.

2.1 Security by Contract

Security-by-contract (S×C)[27, 13] has proposed to augment mobile code with a claim

on its security behavior that can be matched against a mobile platform policy on-the-fly,

which provides semantics for digital signatures on mobile code. In an S×C framework

[27, 13] a mobile code is augmented with a claim on its security behavior (an application’s

contract) that could be matched against a mobile platform’s policy before downloading

the code.

At development time the mobile code developers are responsible for providing a de-

scription of the security behavior that their code finally provides. Such a code might also

undergo a formal certification process by the developer’s own company, the smart card

provider, a mobile phone operator, or any other third party for which the application has

been developed. By using suitable techniques such as static analysis, monitor in-lining,

or general theorem proving, the code is certified to comply with the developer’s contract.

Subsequently, the code and the security claims are sealed together with the evidence for

compliance (either a digital signature or a proof) and shipped for deployment as shown

on Figure 2.2.

At deployment time, the target platform follows a workflow as depicted in Figure 2.1

[13]. This workflow is a modification of S×C workflow [13]) by adding optimization step.

First, the correctness of the evidence of a code is checked. Such evidence can be a trusted

signature [87] or a proof that the code satisfies the contract (one can use Proof-Carrying-

Code (PCC) techniques to check it [63]).

7

2010-02-24
Usage model 4

Check
Contract-Policy

Compliance
No

Yescorrect
?

match
?

Yes

Check
Evidence

of Contract

No

Yes

Execute

No in-lining
?

Run-time
monitoring

Optimize Policy

Inline Policy

Figure 2.1: Workflow in Security-by-Contract

When there is evidence that a contract is trustworthy, a platform checks, that the

claimed contract is compliant with the policy to enforce. If it is, then the application can

be run without further ado. It is a significant saving from in-lining a security monitor. In

case that at run-time we decide to still monitor the application, then we add a number of

checks into the application so that any undesired behavior can be immediately stopped

or corrected.

Matching succeeds, if and only if, by executing an application on the platform, every

behavior of the application that satisfies its contract also satisfies the platform’s policy.

If matching fails, but we still want to run the application, then we use either a security

monitor in-lining, or run-time enforcement of the policy (by running the application in

parallel with a reference monitor that intercepts all security relevant actions). However

with a constrained device, where CPU cycles means also battery consumption, we need

to minimize the run-time overheads as much as possible.

A contract is a formal specification of the behavior of an application for what concerns

relevant security actions for example Virtual Machine API Calls, Web Messages. By

signing the code the developer certifies that the code complies with the stated claims on

its security-relevant behavior. A policy is a formal specification of the acceptable behavior

of applications to be executed on a platform for what concerns relevant security actions.

Thus, a digital signature does not just certify the origin of the code but also bind together

the code with a contract with the main goal to provide a semantics for digital signatures

on mobile code. Therefore, this framework is a step in the transition from trusted code to

8

2009-12-28SxC device view

Figure 2.2: Mobile Code Components with Security-by-Contract

trustworthy code. Technically, a contract is a security automaton in the sense of Schneider

[43], and it specifies an upper bound on the security-relevant behavior of the application:

the sequences of security-relevant events that an application can generate are all in the

language accepted by the security automaton.

A policy covers a number of issues such as file access, network connectivity, access to

critical resources, or secure storage. A single contract can be seen as a list of disjoint

claims (for instance rules for connections). An example of a rule for sessions regarding

A Personal Information Management (PIM) and connections is shown in Example 2.1.1,

which can be one of the rules of a contract. Another example is a rule for method

invocation of a Java object as shown in Example 2.1.2. This example can be one of the

rules of a policy. Both examples describe safety properties, which are common properties

that we want to verify.

Example 2.1.1 PIM system on a phone has the ability to manage appointment books,

contact directories, etc., in electronic form. A privacy conscious user may restrict network

connectivity by stating a policy rule: “After PIM is opened no connections are allowed”.

This contract permits executing the javax.microedition.io.Connector.open() method

only if the javax.microedition.pim.PIM.openPIMList() method was never called be-

fore.

Example 2.1.2 The policy of an operator may only require that “After PIM was accessed

only secure connections can be opened”. This policy permits executing the

javax.microedition.io.Connector.open(string url) method only if the started con-

nection is a secure one i.e. url starts with “https://”.

We can have a slightly more sophisticated approach using Büchi automata [76] if we

also want to cover liveness properties as shown in the following Example 2.1.3.

9

Example 2.1.3 If the application should use all the permissions it requests then for each

permission p at least one reachable invocation of a method permitted by p must exist in the

code. For example if p is io.Connector.http then a call to method Connector.open()

must exist in the code and the url argument must start with “http”. If p is io.Connector.https

then a call to method Connector.open() must exist in the code and the url argument

must start with “https” and so on for other constraints e.g. permission for sending SMS.

2.2 From Security by Contract to Automata Modulo Theory

The security behaviors, provided by the contract and desired by the policy, can be rep-

resented as automata (shown on Figure 2.2), where transitions corresponds to invocation

of APIs as suggested by Erlingsson [28, p.59] and Sekar et al. [74]. Thus, in this thesis

we have mapped the operation of matching the midlet’s claim with platform policy into

problems in automata theory.

The first mechanism we consider to represent matching is language inclusion, such

that given two automata AC and AP representing respectively the formal specification

of a contract and of a policy, we have a match when the execution traces of the midlet

described by AC are a subset of the acceptable traces for AP . To check this property we

can complement the automaton of the policy, thus obtaining the set of traces disallowed

by the policy and check its intersection with the traces of the contract. If the intersection

is not empty, any behavior in it corresponds to a security violation.

The second mechanism we consider is the notion of simulation, such that we have

a match when every APIs invoked by AC can also be invoked by AP . In other words,

every behavior of AC is also a behavior of AP . Simulation is a stronger notion than

language inclusion as it requires that the policy allows the actions of the midlet’s contract

in a “step-by-step” fashion, whereas language inclusion looks at an execution trace as a

whole.

In the case that matching fails, but we still want to run the application, then we can

optimize the supposed to be enforced security policy. The key idea is that given a policy

that represents the desired security behavior of a platform to be inlined, we compute

an optimized policy with respect to the (trusted) claims on the security behavior of a

application. The optimized policy is the one to be injected into the untrusted code.

While this idea of representing the security-digest as an automaton is almost a decade

old [74, 28], the practical realization has been hindered by a significant technical obsta-

cle: we cannot use the naive encoding into automata for practical policies. Even the

basic policies in Example 2.1.1 and Example 2.1.2 lead to automata with infinitely many

transitions. For example an infinite automaton of Example 2.1.2 is shown on Figure 2.3a.

10

joc(”https://a”)

joc(”https://b”)

joc(”https://ω”)

joc(”xyz://...”)

joc(”http://...”)

joc(”sms://...”)

jop()

¬jop()

*

jop()
p0 p1

ep

2009-11-07

(a) An Infinite Automaton of Example 2.1.2

joc(url)
.
= javax.microedition.io.

Connector.open(url)

jop()
.
= javax.microedition.pim.

PIM.openPIMList(. . .)

(b) Abbreviations for Java APIs

Figure 2.3: Infinite Transitions Security Policies

In order to overcome this technical obstacle we have proposed a new formalization for

security policies using automata, called Automata Modulo Theory.

11

12

Chapter 3

Related work

Efforts have been made for enforcing security policies, for example by program

rewriting, static analysis, or run-time monitoring or a hybrid approach. These

works have also been applied by a variety of policy specification languages or

frameworks. However, there is a tendency either to be system dependent (plat-

form specific) or to be a general abstraction. Thus, in this chapter we survey

closely related works and discuss similarities and differences between our work

and the related efforts. Further in each subsequent chapter, we also survey

related works specific to the given chapter.

3.1 Language-based security

The security problems arising when application developers and platform owners are not

on the same (security) side are well known from the experience of Java web applications

for the desktop. The confinement of Java applets [39] is a classical solution. Indeed, to

deal with the untrusted code either .NET [55] or Java [39] can exploit the mechanism

of permissions. Permissions are assigned to enable execution of potentially dangerous

or costly functionality, such as starting various types of connections. The drawback of

permissions is that after assigning a permission the user has very limited control over how

the permission is used.

Conditional permissions that allow and forbid use of the functionality depending on

such factors as bandwidth or the previous actions of the application itself (e.g. access

to sensitive files) are also out of reach. The consequence is that either applications are

sandboxed (and thus can do almost nothing), or the user decided that they come from a

trusted source and then they can do almost everything. This approach is known as code

signing that ensures the origin of the code by trust relationship.

In order to overcome the well-known limitation of the trusted signature or sandbox a

13

number of techniques have been proposed and implemented. For example static analysis,

execution monitoring, or program rewriting. An effort to classify the security policies

enforceable by each approach with respect to computation is detailed in [43]. In static

analysis, untrusted program is checked for compliance to the security policy prior to

running it, for example static type-checkers for type-safe languages. In execution monitors,

the enforcement mechanisms operate alongside an untrusted program and prevent from

violation of the given security policy. In program rewriting, untrusted programs are

modified to satisfy the given security policy prior to their execution. The most promising

one is the notion of Inlined Reference Monitor (IRM), where program-rewriters can also be

seen as a generalization of execution monitoring. IRM works by embedding the untrusted

program with the security policies.

IRM has been implemented in several systems, for example the PoET/PSLang toolkit

[29], enforcing security policies whose transitions pattern-match event symbols using reg-

ular expressions, or Polymer [12] based on edit automata. The shortcoming of traditional

IRM is the huge overhead resulting from inlining.

Even if current version of IRM can work on rich system such as today’s smart phones,

the overhead is still too much for the next frontier of web applications: Javacards. Indeed,

the smartcard technology [61] evolved with larger memories, USB and TCP/IP support

and the development of the Next-Generation (for short NG) Java Card platform [3, 4]

with Servlet engine. This latter technology is a full fledged Java platform for embedded

Web applications and opens new Web 2.0 opportunities such as NG Java Card Web 2.0

Applications. It can also serve as an alternative to personalized applications on remote

servers so that personal data no longer needs to be transmitted to remote third-parties.

Phung et al. [69] proposed lightweight version of IRM for JavaScript that does not

modify browser or original code i.e. it adds new code only in the header of the page. An

alternative approach to IRM is by using reflection [85], where policies are implemented

as meta-objects bounded to application objects at load time, such that the code becomes

self-protecting.

3.2 Mobile code security

Security model of mobile device operating systems is usually system-centric where ap-

plications statically checked for compliance of security policies at installation time. This

approach has the limitation of the customize policies for example user-defined security

policies. Some extensions to enable application-centric have been proposed. Sekar et al.

[74] have proposed a seminal idea of Model Carrying Code (MCC). In MCC, a model of

an application and the policy of the platform are also represented using Extended Finite

14

Automata (EFA)[80]. In loading time, when the language of the model automaton is

included in the language of the security automaton then the application can be loaded.

EFA is based on finite state automata (FSA), thus it recognizes finite input. However,

it differs from FSA on the alphabet, that instead of an atomic symbol EFA has intro-

duced regular expressions over events(REEs). EFA has been implemented in a system for

intrusion detection/prevention [80].

In spite of this expressiveness, MCC has limitations of concerning only safety properties

and static expressions (it is not possible to add certain theories that may be needed to

describe realistic policies). Furthermore, MCC has not fully developed issue of contract

matching.

Later on, the Security-by-Contract (S×C) framework [27] was built upon the MCC

seminal idea. In an S×C framework [27, 13] a mobile code is augmented with a claim on

its security behavior (an application’s contract) that could be matched against a mobile

platform’s policy before downloading the code. If matching fails, then the application can

be in-lined for the policies that can be statically checked. Desmet et al. have shown that

an effective and comprehensive version of IRM can be deployed on mobile platforms [26]

in an S×C framework. In other case we can still monitor the application at run-time as

the last option.

Currently, Ongtang et al. [67] have proposed the Secure Application INTeraction

(Saint) framework as extension to the Android 1 security architecture. Saint enforces se-

curity policy at installation time by checking that an application requesting the permission

P is permitted to be installed only if the policy for acquiring P is satisfied. Furthermore,

Saint offers run-time enforcement among applications, where security policies depend on

both the caller and callee applications.

In Saint, security policies are defined as conditions that consist of two sets namely the

set of invariant conditions and the set of transient conditions. The system state of the

phone at any given time is a truth assignment for Boolean variables for each condition.

Thus the satisfiability of security policies is equals to satisfiability of conjunction of the

caller’s and callee’s conditions. This simple logic approach limits Saint such that it con-

cerns only static expressions, that is it is not possible to add certain theories that may be

needed to describe realistic policies.

AMT solves the afore mentioned problems by allowing combination of theories of

expressive policies and providing contract matching algorithms.

1Android is an mobile phone platform developed by the Google-led Open Handset Alliance (OHA). http:

//www.openhandsetalliance.com/

15

3.3 Automata for security policies

A common formalization for representing security policy is using automata. Security

automata is a seminal work in this area introduced by Schneider in [71]. In security

automata, each transition is labeled with a computable predicate instead of an atomic

symbol for infinite numbers of transitions in security policies. The class of security policies

recognized by security automata has the ability to prevent system from violation. To

extend this enforcement mechanism such that it also considers inserting or removing

unwanted behavior, Bauer et al. [10] introduced edit automata.

Security automata is implemented for security monitors in several systems, for exam-

ple the PoET/PSLang toolkit [29], that can enforce security policies whose transitions

pattern-match event symbols using regular expressions. Edit automata is implemented in

the Polymer system [11] to dynamically compose security automata. The Mobile system

[44] implements a linear decision algorithm that verifies that annotated .NET bytecode

binaries satisfy a class of policies that includes security automata and edit automata.

3.4 Satisfiability Modulo Theories

Automata Modulo Theory abstract infinite transitions into finite expression using formu-

las in Satisfiability Modulo Theories. The Satisfiability Modulo Theories (SMT) problem

focuses on the satisfiability of quantifier-free first-order formulas modulo background the-

ories (see survey on [73]). Some theories of interest are the theory of difference logic DL,

the theory EUF of Equality and Uninterpreted Functions, the quantifier-free fragment of

Linear Arithmetic over the rationals LA(Q) and that over the integers LA(Z). SMT is

an active research area with many tools developed such as Z3[25], MathSAT[18], CVC[9],

and UCLID[19]. AMT uses the same notion of “theory” as in the SMT to accommodate

expressive policies where each transition is labeled with a computable predicate in some

theories for representing infinite numbers of transitions.

16

Chapter 4

Automata Modulo Theory

In this chapter we try to provide an answer to the following question: given ex-

pressive security policies, how can we model possibly infinite computations with

finite ones ? The key idea is to abstract infinite transitions into finite expres-

sion using formulas in Satisfiability Modulo Theories and using base structure

as in Büchi Automata. This formalization is called Automata Modulo Theory.

4.1 Introduction

AMT enables matching a mobile’s policy and a midlet’s contract by mapping the prob-

lem into a variant of on-the-fly product and emptiness test from automata theory, without

symbolic manipulation procedures of zones and regions nor finite representation of equiv-

alence classes. The tractability limit is essentially the complexity of the satisfiability

procedure for the theories, called as subroutines, where most practical policies require

only polynomial time decision procedures [73](see summary in Table 4.1).

This chapter describes the theory of Automata Modulo Theory (AMT). We begin

in Section 4.2 by introducing the concept of theory in AMT . Then, Section 4.3 defines

the formalization of the automata including the concept of tuple, run and word. Section

4.3 continues with operations in AMT , namely intersection and complementation. Fi-

nally, Section 4.5 describes a decision procedure (and its complexity characterization) for

matching the mobile’s policy and the midlet’s security claims that realize the meta-level

algorithm of security-by-contract [13]. This algorithm for matching the contract with

the security policy had been implemented and in the next chapter (Chapter 5), we will

continue describing this prototype, its integration with decision solver based on MathSAT

and NuSMV, and the results of our experiments on matching.

17

4.2 Theory in Automaton Modulo Theory

The notion of theory in AMT is derived from the notion of theory in the Satisfiability

Modulo Theories (SMT) problem. The SMT problem focuses on the satisfiability of

quantifier-free first-order formulas modulo background theories [17]. Some theories of

interest for example are the theory of equality and uninterpreted functions (EUF), the

quantifier-free fragment of linear arithmetic over the rationals (LA(Q)), and over the

integers (LA(Z)), and the corresponding subtheories of difference logic both over the

rationals (DL(Q)), and over the integers (DL(Z)).

Example 4.2.1 A security policy may set limits on resources that can be captured with

constraints expressed in different theories

1. no communication allowed if the battery level falls below 30% (LA(Q) can be used);

2. no jpeg file can be downloaded with size more than 500KB while avi files can arrive

up to 1MB (LA(Z) can be used here)

3. EUF can be used when comparing a policy requiring protocol(url)=‘‘https’’

and port(url)=‘‘8080’’ with a contract claiming to use only connections where

protocol(url)=‘‘https’’ or protocol(url)=‘‘http’’. We do not need to ex-

tract a protocol from the url. It is enough that we deal with protocol and port as

uninterpreted functions and apply the theory of equality and uninterpreted functions

EUF .

The previous examples show simple security policies each uses only one kind of theory.

However, we are particularly interested in the combination of two or more theories to

accommodate complex security policies.

Example 4.2.2 A policy may allow only secure connections with limited size of down-

loads. To express this policy we combine EUF for handling protocol(url)=‘‘https’’

and LA(Z) for handling downloading a file of at most 500KB.

We use traditional first-order logic terminology [34] for defining a SMT theory. A

signature Σ consists a set of function symbols F and a set of predicate symbols P with

their arities, and a set of variables V . A 0-ary function symbol c is called a constant

and 0-ary predicate symbol B is called a Boolean atom. A Σ-term is a variable in V or

constructed from application of function symbols F to Σ-terms. If t1, . . . , tn are Σ-terms

and p is a predicate symbol then p(t1, . . . , tn) is a Σ-atom. A Σ-literal is a Σ-atom or

negation of Σ-atom. Σ-formula is defined over Σ-literals, the universal and the existential

18

Table 4.1: Theories of Interest
Theory (Non)Convex Decidability Complexity
EUF convex decidable polynomial [5]
LA(Q) convex decidable polynomial [41]
LA(Z) non-convex decidable NP-Complete [68]
DL(Q) convex decidable polynomial [21]
DL(Z) non-convex decidable NP-Complete [54]

quantifiers ∀,∃, and the boolean connectives ¬,∧. A Σ-formula is named quantifier-free

when it contains no quantifier and sentence when it contains no free variables. A Σ-theory

T is a set of first-order sentences with signature Σ.

A Σ-structure M is a model of Σ-theory T if M satisfies every sentences in T . A

Σ-structure M consists of a set D of elements as domain and an interpretation I as in

first order logic. The interpretation of an n-ary function symbol is a mapping of each

n-ary function symbol f ∈ Σ to a total function fM : Dn → D. The interpretation of a

constant symbol is a mapping of each constant c ∈ Σ to itself. The interpretation of an

n-ary predicate symbol is a mapping of each n-ary predicate symbol p ∈ Σ to a relation

pM ⊆ Dn and the interpretation of a Boolean atom is a mapping of each Boolean atom

B ∈ Σ to (>,⊥).

Let M denote a Σ-structure, φ a formula, and T a theory, all of signature Σ. We say

that φ is satisfiable in M (or φ is T -satisfiable) if there exists some assignment α which

assigns the set of variables to values in the domain such that (M, α) |= φ.

A theory T is convex [73] if all the conjunctions of literals are convex in theory T . A

conjunction of T -literals in a theory T is convex if for each disjunction (M, α) |=
∨n

i=1 ei

if and only if (M, α) |= ei for some i, where ei are equalities between variables occurring

in (M, α).

The general definition above applies the full power of SMT. For practical purposes we

make some additional restrictions.

First-order as base logic We use classical first-order logic based SMT. Extension to

a higher-order logic is possible as proposed in [53], where they introduced parametric

theories. In the sequel, we consider only quantifier-free Σ-formulas on theories T where

the T -satisfiability of conjunctions of literals is decidable by a T -solver [66].

Combination of theories is consistent Given a consistent theory T1 and a consistent

theory T2, we assume that the combination theory T := T1 ∪ T2 is also consistent and

19

there exists a T -solver for the combined theory. We are interested in T1 ∪T2-satisfiability

of Σ1 ∪ Σ2-formulas that can be generalized to combine many possibly signature-disjoint

theories T1 ∪ . . . ∪ Tn.

The Nelson-Oppen (NO) combination procedure [64] is a seminal work in this area.

NO combines decision procedures for first-order theories restricted to theories that are

stably-infinite (informally the theory that has infinite models (see [64])) and that have

disjoint signatures (Σ1 ∩ Σ2 = ∅). Tinelli-Zarba’s combination procedure [79] extends

NO for combining an arbitrary theory which maybe stably infinite with a stably infinite

theory that is also shiny. They also proposed a variant of the combination method for

combining theories having only finite models with theories that are stably finite. Ghilardi’s

combination procedure [36] extends NO for combining theories that share signature with

restriction that the theories are compatible with respect to a common sub theory in the

shared signature.

Conjunctions of formulas Given theories T1 and T2 that can be combined T := T1∪T2

and conjunctive normal form formula φ1(resp. φ2) that is satisfiable in T1 (resp. T2) then

φ1 ∧φ2 is decidable in T (not necessarily satisfiable). We do not impose restrictions as in

Proposition 3.8. in [78], thus we do not have their result, i.e. φ1 ∧ φ2 is satisfiable in T .

4.3 Automaton Modulo Theory Preliminary

Having defined the theory in AMT , in this section we continue by defining tuple, run,

and word in AMT .

An automaton in AMT is defined as a tuple of a finite set of Σ-formulas in Σ-theory

T , a finite set of states, an initial state, a labeled transition relation, and a set of accepting

states. Formally, it is given in Definition 4.3.1.

Definition 4.3.1 (Automaton Modulo Theory (AMT)) An AMT is a tuple A =

〈S, Σ, T , E , ∆, s0, F 〉, where E is a finite set of Σ-formulas in Σ-theory T , S is a finite set

of states, s0 ∈ S is the initial state, ∆ ⊆ S × E × S is a labeled transition relation, and

F ⊆ S is a set of accepting states.

Figure 4.1 shows two examples of AMT using the signature for EUF with a function

symbol p() representing the protocol type used for the opening of a url. As described in

the cited examples the first automaton forbids the opening of plain http-connections as

soon as the PIM is invoked while the second just restricts connections to be only https.

The transitions in these automata describe with an expression a potentially infinite

set of transitions: the opening of all possible urls starting with https. The automaton

20

¬Joc(url)

s1

Jop

¬Jop

*

s0

es

Joc(url)

2010-03-12

(a) AMT rule from Example 2.1.1

(Joc(url) ∧ p(url)=”https”)

t1
Jop

¬Jop

*

t0

et

Joc(url) ∧ ¬(p(url)=”https”)

Jop

2010-03-12

(b) AMT rule from Example 2.1.2

Joc(url)
.
= Joc(joc,url)

Jop
.
= Jop(jop,x1, . . . , xn)

p(url) = type
.
= url.startsWith(type)

joc
.
= javax.microedition.io.Connector.open

jop
.
= javax.microedition.pim.PIM.openPIMList

Joc,Jop are predicate symbols representing respectively joc(url),jop(x1, . . . , xn) APIs.

(c) Abbreviations for expressions

Figure 4.1: AMT Examples

modulo theory is therefore an abstraction for a concrete (but infinite) automaton. The

concrete automaton corresponds to the behavior of the actual system in terms of API

calls, value of resources and the likes.

From a formal perspective, the concrete model of an automaton modulo theory in-

tuitively corresponds to the automaton where each symbolic transition labeled with an

expression is replaced by the set of transitions corresponding to all satisfiable instantia-

tions of the expression.

In order to characterize how an automaton captures the behavior of programs we need

to define the notion of a trace. So, we start with the notion of a symbolic run which

corresponds to the traditional notion of run in automata.

Definition 4.3.2 (AMT symbolic run) Let A = 〈S, Σ, T , E , ∆, s0, F 〉 be an AMT .

A symbolic run of A is a sequence of states alternating with expressions σ = 〈s0e1s1e2s2 . . .〉,
such that:

1. s0 = s0

2. (si, ei+1, si+1) ∈ ∆ and ei+1 is T -satisfiable, that is there is some Σ-structure M a

model of Σ-theory T and there exists some assignment α such that (M, α) |= ei+1.

A finite symbolic run is denoted by 〈s0e1s1e2s2 . . . sn−1ensn〉. An infinite symbolic run

21

is denoted by 〈s0e1s1e2s2 . . .〉. A finite run is accepting if the last state goes through some

accepting state, that is sn ∈ F . An infinite run is accepting if the automaton goes through

some accepting states infinitely often.

In order to capture the actual system invocations we introduce another type of run

called concrete run which is defined over valuations that represent actual system traces.

A valuation ν consists of interpretations and assignments.

Definition 4.3.3 (AMT concrete run) Let A = 〈S, Σ, T , E , ∆, s0, F 〉 be an AMT . A

concrete run of A is a sequence of states alternating with a valuation σC = 〈s0ν1s1ν2s2 . . .〉,
such that:

1. s0 = s0

2. there exists expressions ei+1 ∈ E such that (si, ei+1, si+1) ∈ ∆ and there is some Σ-

structureM a model of Σ-theory T such that (M, αi+1) |= ei+1, where νi+1 represents

αi+1 and I(ei+1).

A finite concrete run is denoted by 〈s0ν1s1ν2s2 . . . sn−1νnsn〉. An infinite concrete run is

denoted by 〈s0ν1s1ν2s2 . . .〉. A finite run is accepting if the last state goes through some

accepting state, that is sn ∈ F . An infinite run is accepting if the automaton goes through

some accepting states infinitely often. The trace associated with σC = 〈s0ν1s1ν2s2 . . .〉 is

the sequence of valuations in the run. Thus a trace is accepting when the corresponding

run is accepting.

We use definition of run as in [30] which is slightly different from the one we use in [58],

where we use only states.

Example 4.3.1 An example of an accepting symbolic run of AMT rule from Exam-

ple 2.1.2 shown in Figure 4.1b is

p0 Jop(jop,file,permission) p1 Joc(joc,url)∧p(url)=“https′′ p1 Jop(jop,file,permission) p1 Joc(joc,url)∧p(url)=“https′′ ...

that corresponds with a non empty set of accepting concrete runs for example

p0(jop,PIM.CONTACT LIST,PIM.READ WRITE) p1 (joc,“https://www.esse3.unitn.it/′′)

p1(jop,PIM.CONTACT LIST,PIM.READ ONLY) p1 (joc,“https://online.unicreditbanca.it/login.htm′′) ...

Remark 4.3.1 A symbolic run defined in Definition 4.3.2 is interpreted by a non empty

set of concrete runs in Definition 4.3.3. This is a nature of our application domain where

security policies define AMT in symbolic level and the system to be enforced has concrete

runs. In other domains where we need the converse, namely to define symbolic runs from

concrete runs, then a symbolic run defined in Definition 4.3.2 can be considered as an

abstraction of concrete runs by Definition 4.3.3.

22

The alphabet of AMT is defined as a set of valuations V that satisfy E . A finite se-

quence of alphabet of A is called a finite word or word or trace denoted by w = 〈ν1ν2 . . . νn〉
and the length of w is denoted by |w|. An infinite sequence of alphabet of A is called

an infinite word or infinite trace is denoted by w = 〈ν1ν2 . . .〉. The set of infinite words

recognized by an automaton A, denoted by Lω(A), is the set of all accepting infinite traces

in A. Lω(A) is called the language accepted by A.

As we have noted already, the intuitive idea behind concrete runs is that they are

sequences of models of the expressions of the abstract specification of the automaton

modulo theory. In the practical setting, for example security policies over midlets, we

want to capture sequences of API calls then this general theory can be actually narrowed.

Example 4.3.2 A possible alternative is to use a predicate name corresponding to each

API call (such as joc(url, port), jop(), etc.) and then introduce a theory that specify that

predicates are mutually exclusive.

This formalization would correspond essentially to the guard-and-condition representation

of Schneider’s security automata.

Example 4.3.3 Another alternative is to use predicate API(APIsymbol, parameters)

with the first argument the API name itself as a constant symbol to identify different

methods. For example joc(url, port) is denoted as Joc(joc, url, port) and jop(x1, . . . , xn)

is denoted as Jop(jop, x1, . . . , xn) imposing each constant as unique, i.e. joc 6= jop.

Both formalizations capture the same concrete behavior in terms of API calls. Our

current implementation uses the second option as the unique name assumption was built-

in the SMT solver implementation and therefore it could be used more efficiently.

The transition relation of A may have many possible transitions for each state and

expression, i.e. A is potentially non-deterministic.

Definition 4.3.4 (Deterministic AMT) A = 〈S, Σ, T , E , ∆, s0, F 〉 is a deterministic

automaton modulo theory T , if and only if, for every s ∈ S and every s1, s2 ∈ S and

every e1, e2 ∈ E, if (s, e1, s1) ∈ ∆ and (s, e2, s2) ∈ ∆, where s1 6= s2 then the expression

(e1 ∧ e2) is unsatisfiable in the Σ-theory T .

4.4 Operations in Automaton Modulo Theory

In order to define the test for language inclusion we introduce the operation of complement

and intersection of AMT operations at the concrete level, for example API calls, and

then we give the notion of symbolic operations as in [45].

23

In this thesis we consider only the complementation of deterministic AMT , for all

security policies in our application domain are naturally deterministic because a platform

owner should have a clear idea on what to allow or disallow.

Complementation of AMT. AMT automaton can be considered as a Büchi automa-

ton where infinite transitions are represented as finite transitions. Therefore, for each

deterministic AMT automaton A there exists a (possibly nondeterministic) AMT that

accepts all the words which are not accepted by automaton A. The Ac can be constructed

in a simple approach as in [82] as follows:

Definition 4.4.1 (AMT Complementation) Given a deterministic AMT
A = 〈S, Σ, T , E , ∆, s0, F 〉 the complementAMT automaton Ac = 〈Sc, Σ, T , E , s0

c, ∆c, F c〉
is:

1. Sc = S × {0} ∪ (S − F)× {1}, s0
c = (s0, 0), F c = (S − F)× {1},

2. and for every s ∈ S and e ∈ E

((s, 0), e, s′) ∈ ∆c, s′ =

{
{(t, 0)} (s, e, t) ∈ ∆ and t ∈ F

{(t, 0), (t, 1)} (s, e, t) ∈ ∆ and t /∈ F

((s, 1), e, s′) ∈ ∆c, s′ = {(t, 1)} if (s, e, t) ∈ ∆ and t /∈ F

In order to apply complementation in Definition 4.4.1, the deterministic automata has

to be completed, meaning the sum of the transitions labels covers all the set of formulas

in E . Return to our Example 2.1.1 shown in Figure 4.1a, the automaton is already a

complete AMT .

Proposition 4.4.1 Let A be an AMT over a set of valuations V. Then a (possibly

nondeterministic) AMT Ac constructed by Definition 4.4.1 accepts all the concrete runs

which are not accepted by A, that is Ac is a complement automaton such that Lω(Ac) =

Vω − Lω(A).

Proof.

Correctness.

24

“⊇” we take an arbitrary concrete run not accepted by A that corresponds to

a word w = 〈ν1ν2ν3 . . .〉, meaning w ∈ Vω − Lω(A), so there is a unique

concrete run σC = 〈s0ν1s1ν2s2 . . .〉 of A. Hence, there is some k such that

∀i > k, si /∈ F , meaning that σc
C = 〈(s0, 0)ν1 . . . (sk, 0)νk+1(sk+1, 1) . . .〉 is an

accepting concrete run of Ac.

“⊆” we take an arbitrary concrete run accepted by Ac that corresponds to a word

w = 〈ν1ν2ν3 . . .〉, meaning that w ∈ Lω(Ac), so there is a unique concrete run

σc
C = 〈(s0, 0)ν1 . . . (sk, 0)νk+1(sk+1, 1) . . .〉 of Ac, corresponds to a concrete run

σ
′
C = 〈s0ν1 . . . skνk+1sk+1 . . .〉of A on w but this concrete run is rejecting.

Termination. This construction terminates because our states in S and formulas in E
are finite.

Complexity. The time and space complexity of the construction is linear.

2

The construction in Definition 4.4.1 can be optimized if our security policy is a pure

security automaton à la Schneider. The policy automaton for safety properties has all (but

one) accepting states. The complementation will result in only one accepting state which

is (err, 1). However, the state can be collapsed with a non accepting state (err, 0). Hence,

no need to mark states with 0 and 1; and the only accepting state is (err). Furthermore,

the complementation transitions remain as the original transitions.

Intersection of AMT. AMT automaton can be considered as a Büchi automaton where

infinite transitions are represented as finite transitions. Therefore, for AMT automata

Aa, Ab, there is an AMT Aab that accepts all the words which are accepted by both Aa,

Ab synchronously. The Aab can be constructed in a simple approach as in [82] as follows:

Definition 4.4.2 (AMT Intersection) Let 〈Sa, Σa, T a, Ea, ∆a, s0
a, F a〉 and〈

Sb, Σb, T b, Eb, ∆b, s0
b, F b

〉
be (non) deterministic AMT , the AMT intersection automa-

ton Aab = 〈S, Σ, T , E , ∆, s0, F 〉 is defined as follows:

1. E = Ea ∪ Eb, T = T a ∪ T b, Σ = Σa ∪ Σb,

2. S = Sa × Sb × {1, 2}, s0 =
〈
s0

a, s0
b, 1

〉
, F = F a × Sb × {1},

3.

∆ =

〈
(sa, sb, x), ea ∧ eb, (ta, tb, y)

〉 ∣∣∣∣∣∣∣
(sa, ea, ta) ∈ ∆a and

(sb, eb, tb) ∈ ∆b and

DecisionProcedure(ea ∧ eb) = SAT

25

y =

2 if x = 1 and sa ∈ F a or

if x = 2 and sb 6∈ F b

1 if x = 1 and sa 6∈ F a or

if x = 2 and sb ∈ F b

Proposition 4.4.2 Let Aa, Ab be AMT over a set of valuations V. Then an AMT Aab

constructed by Definition 4.4.2 accepts all the concrete runs which are accepted by Aa, Ab,

that is Aab is an intersection automaton such that Lω(Aab) = Lω(Aa) ∩ Lω(Ab).

Proof.

Correctness.
“⊇” we take an arbitrary concrete run accepted by Aab that corresponds to a word

w = 〈ν1ν2ν3 . . .〉, where for all i ≥ 1, νi satisfies (ea ∧ eb), thus νi satisfies both

ea and eb. Let the concrete run be
〈
(s0

a, s0
b, 1)ν1(s

a
1, s

b
1, x)ν2(s

a
2, s

b
2, x)ν3 . . .

〉
of Aab. This concrete run corresponds to 〈s0

aν1s
a
1ν2s

a
2ν3 . . .〉 of Aa, which is

accepted by Aa because it goes infinitely often through F a × Sb × {1} thus it

goes infinitely often through F a. And
〈
s0

bν1s
b
1ν2s

b
2ν3 . . .

〉
of Ab is also accepting

because whenever the automaton goes through an accepting state of Ab, the

marker changes to 1 again. Thus, the acceptance condition guarantees that

the run of the automaton visits accepting states of Ab infinitely often.

“⊆” we take an arbitrary concrete run 〈s0
aν1s

a
1ν2s

a
2ν3 . . .〉 accepted by Aa ,

where for all i ≥ 1, νi satisfies ea. And an arbitrary concrete run〈
s0

bν1s
b
1ν2s

b
2ν3 . . .

〉
accepted by Ab, where for all i ≥ 1, νi satisfies eb. Both

runs correspond to a word w = 〈ν1ν2ν3 . . .〉. So, there is a concrete run〈
(s0

a, s0
b, 1)ν1(s

a
1, s

b
1, x)ν2(s

a
2, s

b
2, x)ν3 . . .

〉
of Aab on w, where for all i ≥ 1, νi

satisfies (ea∧eb) and whenever the automaton goes through an accepting state,

the marker changes. Thus, the acceptance condition guarantees that the run

of the automaton visits accepting states infinitely often, since a run accepts if

and only if it goes infinitely often through F a × Sb × {1}.

Termination. This construction terminates because our states in S and formulas in E
are finite.

Complexity. The construction uses an oracle to an SMT solver to solve DecisionProcedure(ea∧
eb) = SAT , where the theory T is decidable in the complexity class C. Hence, the time

and space complexity of the construction is O(|Sa| .
∣∣Sb

∣∣ . |∆a
T | .

∣∣∆b
T
∣∣)C. 2

Intersection of automata illustrates another subtle difference with lazy satisfiability

approach (based on boolean abstraction in SMT). For example, in Figure 4.2a, classically

26

(a) Example of Boolean Abstraction

(b) AMT Product (c) Normal Product

Figure 4.2: Boolean Abstraction

we have the result of automata intersection as in Figure 4.2c, where we only have reduced

the possible results. However, in AMT , we can have more transitions, as shown in

Figure 4.2b.

Definition 4.4.2 is a general construction, as depicted on Figure 4.3a (see abbreviations

on Fig. 4.3c). However, when we consider our domain of application, namely matching

a mobile’s policy and a midlet’s contract, then the fact that we intersect a contract

automaton with a special property (i.e. it has only one non accepting state (namely the

error state)) and a complement of policy automaton which has also a special property

(i.e. it has only one accepting state that is the error state), enable us to optimize the

intersection such that we only consider correct contract transitions (shown in Figure 4.3b).

Emptiness problem of AMT . An AMT automaton A is not empty when there exists

some words accepted by A, meaning Lω(A) 6= ∅ if and only if there exists some accepting

concrete run as defined in Definition 4.3.3.

Proposition 4.4.3 Let the theory T be decidable with an oracle for the SMT problem in

the complexity class C then:

1. The non-emptiness problem for AMT is decidable in LIN − TIMEC.

27

(a) Automata Intersection without Optimization

(b) Automata Intersection with Optimization

c
.
= valid contract transition

¬c
.
= invalid contract transition

¬p
.
= invalid policy transition

shaded areas are accepting states

(c) Abbreviations

Figure 4.3: Automata Intersection

28

2. The non-emptiness problem for AMT is NLOG− SPACEC-complete.

Proof. we prove Proposition 4.4.3 by showing that Lω(A) 6= ∅ if and only if there exists

some accepting state which is connected to the initial state and also connected to itself

as in [82]. Let A = 〈S, Σ, T , E , ∆, s0, F 〉.
Correctness.
“⊇” we assume that Lω(A) 6= ∅, meaning there exists an arbitrary concrete run

σC = 〈s0ν1s1ν2s2 . . .〉 accepted by A that corresponds to a word w =

〈ν1ν2ν3 . . .〉. By Definition 4.3.3 ∀i ≥ 0 state si is directly connected to state

si+1. Thus, when i < k then si is connected to sk. Furthermore, there exists

some accepting state which is visited infinitely often, meaning that there is

some st ∈ F and there are i, k where 0 < i < k such that st = si = sk. Hence,

st is connected to the initial state s0 and also connected to itself.

“⊆” we assume that there exists some accepting state st ∈ F which is connected

to the initial state and also connected to itself. So, there is a sequence of

states 〈ss0ss1ss2 . . . ss2〉 from the initial state to ssk = st that corresponds to a

word 〈νs1νs2νs3 . . . νsk〉 and ∀i ≥ 0 state ssi is directly connected to state ssi+1.

Furthermore, there are also sequences of states 〈st0st1st2 . . . stl〉 from st0 = st

to stl = st that corresponds to a word 〈νt1νt2νt3 . . . νtl〉 and ∀i ≥ 0 state sti

is directly connected to state sti+1. Thus 〈νs1νs2νs3 . . . νsk〉〈νt1νt2νt3 . . . νtl〉ω is

accepted by A and Lω(A) 6= ∅.

Complexity. The emptiness problem of AMT can be reduced to graph reachability.

A combination of an algorithm based on Nested DFS [72] with a decision procedure for

SMT can solve this problem. The algorithm takes as input the an AMT automaton

A and starts a depth first search procedure check safety (s0) (Algorithm 1) over the

initial state s0. When an accepting state in AMT is reached, we start a new depth first

search (Algorithm 2)from the candidate state to determine whether it is in a cycle, in

other words if it is reachable from itself. If it is, then we report that the automaton is

non-empty.

When a state is first generated, it is marked as unchecked. During an unfinished search

in Algorithm 1, a state is marked as in current path. When a state has finished its

Algorithm 1 and not yet processed in Algorithm 2, then it is marked as safety checked.

Finally, a state is marked availability checked when it has been processed by both

Algorithm 1 and Algorithm 2.

This algorithm can be solved in linear time on the size of A’s states. In addition

an oracle to an SMT solver is used to solve DecisionProcedure(e) = SAT . Hence, its

complexity is LIN − TIMEC.

29

Algorithm 1 check safety(s) Procedure
Input: state s;
1: map(s) := in current path;
2: for all ((s, e, t) ∈ ∆) do
3: if (DecisionProcedure(e) = SAT) then
4: if (map(t) = in current path ∧ ((s ∈ F) ∨ (t ∈ F))) then
5: report non-empty;
6: else if (map(t) = unchecked) then
7: check safety(t);
8: if (s ∈ F) then
9: check availability(s);

10: map(s) := availability checked;
11: else
12: map(s) := safety checked;

Algorithm 2 check availability(s) Procedure
Input: state s;
1: for all ((s, e, t) ∈ ∆) do
2: if (DecisionProcedure(e) = SAT) then
3: if (map(t) = in current path) then
4: report non-empty;
5: else if (map(t) = safety checked) then
6: map(t) := availability checked

7: check availability(t);

30

The algorithm needs only a logarithmic memory, since at each step it needs to remem-

ber fewer states than the number of its total states and there are only two bits added to

each state for the marker. Also, an SMT solver is used to solve DecisionProcedure(e) =

SAT and Jones [51] showed that graph reachability problem is NLOG− SPACE-hard.

Hence, the emptiness problem of AMT is NLOG− SPACEC-complete. 2

Language inclusion problem of AMT . Language of an AMT automaton Aa is sub-

sumed by the language of an AMT automaton Ab when for all the words w = 〈ν1ν2 . . .〉
(as defined in Definition 4.3.3) accepted by Aa, w is also accepted by Ab.

Proposition 4.4.4 Let Aa, Ab be AMT over a set of valuations V. Then LAa ⊆ LAb

such that Ab accepts all the concrete runs which are accepted by Aa is decidable.

Proof. we prove Proposition 4.4.4 by showing that LAa ⊆ LAb if and only if the lan-

guage of Aa × Ab is empty that is:

LAa ⊆ LAb ⇔ LAa ∩ LAb = ∅ ⇔ LAa ∩ L
Ab = ∅ ⇔ L

Aa×Ab = ∅.

Correctness.
“⊇” we assume that there exists some concrete run which is accepted by Aa but

not by Ab. Thus, L
Aa×Ab is not empty, which is a contradiction.

“⊆” we assume that L
Aa×Ab is not empty, meaning there exists some concrete runs

accepted by Aa ×Ab. Thus, this run is accepted by both Aa and Ab. Because

Lω(Ab) = Vω − Lω(Ab), thus there exists some concrete run which is accepted

by Aa but not by Ab, which is a contradiction.

Complexity. Language inclusion problem of AMT is decidable follows from Proposi-

tion 4.4.1, Proposition 4.4.2, and Proposition 4.4.3 and derived the complexity from the

afore mentioned propositions. 2

The language inclusion problem of AMT (Proposition 4.4.4) is defined over concrete

runs, thus in AMT symbolic language inclusion coincides with concrete language inclu-

sion.

4.5 On-the-fly Language Inclusion Matching

In order to do matching between a contract with a security policy, our algorithm takes

as input two automata AC and AP representing respectively the formal specification of

a contract and of a policy. A match is obtained when the language accepted by AC

(the execution traces of the midlet) is a subset of the language accepted by AP (the

31

acceptable traces for the policy). The matching problem can be reduced to an emptiness

test: LAC ⊆ LAP ⇔ LAC ∩ LAP = ∅ ⇔ LAC ∩ L
AP = ∅ ⇔ L

AC×AP = ∅. In other words,

there is no behavior of AC which is disallowed by AP . If the intersection is not empty,

then any behavior in it corresponds to a counterexample.

Constructing the product automaton explicitly is not practical for mobile devices.

First, this can lead into an automaton too large for the mobile limited memory footprint.

Second, to construct a product automata we need software libraries for the explicit ma-

nipulation and optimizations of symbolic states, which are computationally heavy and

not available on mobile phones. Furthermore, we can exploit the explicit structure of the

contract-policy as a number of separate requirements. Hence, we use on-the-fly empti-

ness test (constructing product automaton while searching the automata). The on-the-fly

emptiness test can be lifted from the traditional algorithm by a technique from Coucuber-

tis et al. [23] while modification of this algorithm from Holzmann et al’s [48] is considered

as state-of-the-art (used in Spin [49]). Gastin et al [35] proposed two modifications to [23]

for finding faster and minimal counterexample.

Remark 4.5.1 Our algorithm is tailored particularly for contract-policy matching, as

such, it exploits a special property of AMT representing security policies, namely each

automaton has only one non accepting state (the error state). The algorithm can be

generalized by removing all specialized tests, for example on line 8 from Algorithm 3

· · · ∧ sp = errP ∧ . . . can be replaced by accepting states from AP , and reporting only

availability violation (corresponding to a non-empty automaton). This generic algorithm

corresponds to on-the-fly algorithm for model checking of BA.

We are now in the position to state our contract-policy matching’s result using lan-

guage inclusion:

Proposition 4.5.1 Let the theory T be decidable with an oracle for the SMT problem in

the complexity class C then:

1. The contract-policy matching problem for AMT using language inclusion is decid-

able in LIN − TIMEC.

2. The contract-policy matching problem for AMT using language inclusion is decid-

able in NLOG− SPACEC-complete.

Proof. We prove Proposition 4.5.1 by showing that L
AC×AP = ∅ if and only if there

exists no accepting state of AC×AP which is connected to the initial state of AC×AP and

also connected to itself where AC ×AP = A = 〈S, Σ, T , E , ∆, s0, F 〉. Let A accept all the

concrete runs which are accepted by AC and AP , that is A is an intersection automaton

32

Algorithm 3 check safety(sc, sp, x) Procedure

Input: state sc, state sp, marker x;
1: map(sc, sp, x) := in current path;
2: for all ((sc, ec, tc) ∈ ∆c) do
3: for all ((sp, ep, tp) ∈ ∆p) do
4: if (DecisionProcedure(ec ∧ ep) = SAT) then
5: y := condition(sc, sp, x, Sc, Sp)
6: if (map(tc, tp, y) = in current path ∧ ((sc ∈ Sc ∧ sp = errP ∧ x = 1) ∨ (tc ∈ Sc ∧ tp =

errP ∧ y = 1))) then
7: report policy violation;
8: else if (map(tc, tp, y) = in current path ∧ ((sc ∈ Sc ∧ sp ∈ (Sp\{errP}) ∧ x = 1) ∨ (tc ∈

Sc ∧ tp ∈ (Sp\{errP}) ∧ y = 1))) then
9: report availability violation;

10: else if (map(tc, tp, y) = unchecked) then
11: check safety(tc, tp, y);
12: if (sc ∈ Sc ∧ sp ∈ Sp ∧ x = 1) then
13: check availability(sc, sp, x);
14: map(sc, sp, x) := availability checked;
15: else
16: map(sc, sp, x) := safety checked;

Algorithm 4 check availability(sc, sp, x) Procedure

Input: state sc, state sp, marker x;
1: for all ((sc, ec, tc) ∈ ∆c) do
2: for all ((sp, ep, tp) ∈ ∆p) do
3: if (DecisionProcedure(ec ∧ ep) = SAT) then
4: y := condition(sc, sp, x, Sc, Sp)
5: if (map(tc, tp, y) = in current path) then
6: if (tp = errP) then
7: report policy violation;
8: else
9: report availability violation;

10: else if (map(tc, tp, y) = safety checked) then
11: map(tc, tp, y) := availability checked

12: check availability(tc, tp, y);

33

such that Lω(A) = Lω(AC) ∩ Lω(AP).

Correctness.

The proof is similar to Proof 4.4, however we consider the product of two automata.

“⊇” we assume that Lω(A) 6= ∅, meaning there exists an arbitrary concrete run

σC = 〈s0ν1s1ν2s2 . . .〉 accepted by A that corresponds to a word w =

〈ν1ν2ν3 . . .〉 where for all i ≥ 1, νi satisfies (ec ∧ ep), thus νi also satisfies

ec and ep. By Definition 4.3.3 ∀i ≥ 0 state si is directly connected to state

si+1. Thus, when i < k then si is connected to sk. Furthermore, there exists

some accepting state which is visited infinitely often, meaning that there is

some st ∈ F and there are i, k where 0 < i < k such that st = si = sk. Hence,

st is connected to the initial state s0 and also connected to itself.

“⊆” we assume that there exists some accepting state st ∈ F which is connected

to the initial state and also connected to itself. So, there is a sequence of

states 〈ss0ss1ss2 . . . ss2〉 from the initial state to ssk = st that corresponds to a

word 〈νs1νs2νs3 . . . νsk〉, where for all i ≥ 1, νsi satisfies (ec ∧ ep), thus νsi also

satisfies ec and ep, and ∀i ≥ 0 state ssi is directly connected to state ssi+1.

Furthermore, there are also sequences of states 〈st0st1st2 . . . stl〉 from st0 = st

to stl = st that corresponds to a word 〈νt1νt2νt3 . . . νtl〉, where for all i ≥ 1, νti

satisfies (ec∧ep), thus νti also satisfies ec and ep, and ∀i ≥ 0 state sti is directly

connected to state sti+1. Thus 〈νs1νs2νs3 . . . νsk〉〈νt1νt2νt3 . . . νtl〉ω is accepted

by A and Lω(A) 6= ∅.

Complexity. The matching between a contract with a security policy problem can be

reduced to an emptiness test of the product automaton of between a contract with a

complement of security policy. A combination of an algorithm based on Nested DFS

[72] with a decision procedure for SMT can solve this problem. The algorithm takes as

input the midlet’s claim and the mobile platform’s policy and starts a depth first search

procedure check safety (s0
C, s0

P, 1) (Algorithm 3) over the initial state (s0
C, s0

P, 1).

When an accepting state in AMT is reached, we have two cases. First, when the state

contains an error state of complemented policy (errP), then we report a security policy

violation without further ado.1 Second, the state does not contain an error state of

complemented policy (Sp\{errP}). Then, we start a new depth first search (Algorithm

4)from the candidate state to determine whether it is in a cycle, in other words if it is

reachable from itself. If it is, then we report an availability violation.

We use the same marking as in AMT emptiness check, namely when a state is first

1The Error state is a convenient mathematical tool, but the trust assumption of the matching algorithm is that

the code obeys the contract and therefore, it should never reach the error state where any action is permitted.

34

generated, it is marked as unchecked. During an unfinished search in Algorithm 3, a state

is marked as in current path. When a state has finished its Algorithm 3 and not yet

processed in Algorithm 4, then it is marked as safety checked. Finally, a state is marked

availability checked when it has been processed by both Algorithm 3 and Algorithm

4. We also apply function condition(s, t, x, F1, F2) that implements marker signing of y

given x and current states from the Definition 4.4.2 of AMT intersection.

This algorithm can be solved in linear time on the size of the number of the states of the

product. In addition an oracle to an SMT solver is used to solve DecisionProcedure(ec∧
ep) = SAT . Hence, its complexity is LIN − TIMEC.

The algorithm needs only a logarithmic memory, since at each step it needs to re-

member fewer states than the number of the total product states and there are only

two bits added to each state for the marker. Also, an SMT solver is used to solve

DecisionProcedure(ec∧ ep) = SAT and as in non-emptiness of AMT we have NLOG−
SPACE-hardness follows from Jones [51] who showed that graph reachability problem

is NLOG − SPACE-hard. Hence, the contract-policy matching problem of AMT is

NLOG− SPACEC-complete. 2

As we have shown, matching between a contract with a security policy problem can be

reduced to an emptiness test of the product automaton of a contract with a complement

of security policy: LAC ⊆ LAP ⇔ L
AC×AP = ∅. Furthermore, the set of infinite words

recognized by an automaton A, denoted by Lω(A), is the set of all accepting infinite traces

in A (w = 〈ν1ν2 . . .〉). Because the language of an automaton A is defined in concrete level,

thus the symbolic language coincides with the concrete language. Therefore, contract-

policy matching using language inclusion in symbolic and concrete notion coincides.

35

36

Chapter 5

On-the-fly Matching Prototype

Implementation and Experiments

In this chapter, we try to provide an answer to the following question: how

can we implement matching and what is the best configuration of integrat-

ing automata-based inclusion algorithm with decision procedure? To address

this issue we give possible design decisions and run experiment both on desk-

top and mobile device. We continue with detailing the running-time on the

mobile platform for one design decision only to give the reader a feeling for

how the matching algorithm with integrated decision procedure can run in real

application.

5.1 Introduction

This chapter describes the prototype implementation of contract-policy matching inAMT ,

its integration with decision solver based on MathSAT and NuSMV, and the results of

our experiments on matching.

We begin in Section 5.2 by discussing the overall implementation architecture and the

integration issues with the procedure solver NuSMV [22] integrated with its MathSAT

libraries [18]. Since our goal is to provide this midlet-contract vs platform-policy matching

on-the-fly (during the actual download of the midlet) issues like small memory footprint,

and effective computations play a key role.

Section 5.3 continues with implementation of language inclusion as emptiness test using

an on-the-fly procedure with oracle calls to the decision procedures available in NuSMV.

Therefore our design decision AMT makes reasoning about infinite transitions systems

with finite states possible without symbolic manipulation procedures of zones and regions

37

or finite representation by equivalence classes whose memory intensive characteristic is

not suitable for our application.

Our prototype was first implemented in Java and was run on a Desktop PC with

operating system Linux. Then, it had also been ported to .NET for actual detailed

profiling, namely for HTC P3600 (3G PDA phone) with ROM 128MB, RAM 64MB,

Samsung r©SC32442A processor 400MHz and operating system Microsoft r©Windows Mobile r©5.0

with Direct Push technology.

Finally, Section 5.5 presents a detailed performance analysis of the integration design

alternatives regarding the construction of expressions, the initialization of solver, and the

caching of temporary results by considering both running time and internal metrics of

various available options.

5.2 The Architecture

In this section we describe the conceptual architecture of the prototype that implements

the overall matching algorithm and supports integration with a decision procedure solver

NuSMV [22] integrated with its MathSAT libraries [18]. We provide an overview of

how the prototype is implemented to show the possible options for integration with the

solver. The contract-matching prototype takes as input a contract and a policy and checks

whether or not the contract matches the policy. The prototype architecture is depicted

in Figure 5.1. Detailed class diagram is available on Appendix A.

Our first observation is that the policy has to be deployed on the device and it is

unlikely to change frequently. The second observation is that, even if applications (and

related contracts) will change frequently and dynamically, the binding between an appli-

cation and its contract will considerable be static. If a digital signature or a proof carrying

code is used, the contract has to be shipped with the application. In the case of Java

application, this contract must be essentially included in the JAR file that represents the

application and must be directly accessible to the virtual machine that is responsible for

the matching and the enforcement of the security policy (see [81] for details).

The prototype consists of two parts, namely on-device and off-device implementations.

During off-device part execution, the contract and policy are transformed into a suitable

internal representation for the on-the-fly algorithm. The policy automaton is also com-

plemented at this step of the execution. In on-device part of the prototype the main

on-the-fly algorithm runs on the contract and policy input and make calls to the decision

procedure during its execution.

Initially, we implemented our prototype in Java platform and subsequently the ar-

chitecture remained the same for the .NET platform. Thus, we are only describing our

38

Complement
Policy

OFF-DEVICE

2010-01-04
Matching
GeneralPicture

NuSMV library

Policy
Automaton

Co-Policy
Automaton

Add
Constraints

Decision Procedure

Solve

Remove
Constraints

Declare variables

Matching algorithm

OnTheFly
emptiness

check

ON-DEVICE

Contract
Automaton

match succeed/fail

Figure 5.1: On-the-fly Implementation Architecture

architecture in Java platform. The initial algorithm transforms a contract (resp. a policy)

into a Java class, ContractAutomaton.java (resp. PolicyAutomaton.java) that can be di-

rectly manipulated by the actual algorithm responsible for the on-the-fly policy matching

(i.e. emptiness test). If the policy option is specified then the parser also performs the

complementation of the policy. Management of the variables declaration is discussed later

in Section 5.3.

Since a contract-policy matching algorithm should frequently call the decision pro-

cedure during its execution, we need a design decision for an internal representation of

AMT . We discuss this particular form of AMT in details. First, we associate a number

of variables to every edge, where method is an API call that the policy is supposed to rule,

cond - a guarded command which must be true in order for the method to be executed,

for instance a cond specifies that the url must start with the string “https”.

For further representation simplification, we follow the semantics for security automata

proposed in [8] so that we have a prioritized execution among guards: we go to the next

guard only if the guards before it have all failed. Such information is represented in

otherConds - the other guarded commands that failed before reaching the current guard

otherMethods - an expression consists of all other methods that are not supposed to rule

at the current moment.

Once contract and policy automata are made available to the main system, we can

39

run the on-the-fly procedure which has been also implemented in Java using only MIDP

libraries to guarantee portability (and we have similarly developed a .NET mobile imple-

mentation in C#).

The next stage is a non-trivial point because we need to interact with a decision pro-

cedure for solving AMT ś expressions which are defined in complex theories for example

boolean expressions and mathematical expressions. We use the solver as a black box (an

oracle) for the general algorithm that gives the answer whether the problem is satisfiable

or not. We have further decided to interface with the solver without using its internal

data structure but rather to interact with the decision procedure by using strings. While

this creates a bit of overhead for parsing, it makes it significantly easier to replace the

solver as needed.

5.3 Design Decisions

Different design decisions are made in order to decide the best configuration of integrating

automata-based inclusion algorithm with decision procedure as the problem is not trivial.

Every option of the configuration proposed below has different memory impact and this

information and results of such analysis is very important because of the resource con-

straints of mobile device. This restriction is not commonly studied in classical decision

procedure integration papers because the problem of resources is not critical.

In integrating matching algorithm with the theory solver we faced a number of design

options:

One vs Many Solver in object oriented languages is by itself an object. We could either create

only one instance of solver, relying on the solver to assert and retract expressions

on demand, or create a new instance of the solver every time we call the decision

procedure.

MUTEX SOLVER if an edge in the automaton correspond to a call to a method it is obviously

incompatible with another edge calling a different method. Such constraints could

be directly incorporated into the algorithm without the need to represent them as

boolean mutual exclusion constraints on the boolean variables representing method

invocations. In this case all the method names are declared as mutex constants at

the moment of declaring all variables, then the expression sent to the solver has the

following structure: method = name ∧ cond ∧ otherConds. Hence, if the method

names of two edges are not the same then the DecisionProcedure returns false.

MUTEX MC allows the on-the-fly algorithm to check whether method names are the same.

The DecisionProcedure is called with parameters: cond ∧ otherConds only if this

40

check is passed.

PRIORITY MC the semantics for security policy is that guards are evaluated using priority

or hence we can optimize the expressions sent to the decision procedure as lemmas.

Using the lemma, the Expression sent to the DecisionProcedure is minimized and it

has only cond.

CACHING MC Since many edges will be traversed again and again we could save time by

caching the results of the matching. The solver itself has a caching mechanism that

could be equally used (CACHING SOLVER).

While we assumed that all decision could be just taken after considering preliminary

experimental results it turned out that at least for the One vs Many decision this was not

possible. The cause is the management of garbage collection both by the Java virtual

machine and by the libraries of MathSAT/NuSMV which requires only one instance of

solver exists at time in order to interact correctly with the NuSMV library. This leads to

use a static invocation for the solver and set significant constraints on the interaction.

For example, before starting to visit all constraints to the library, all variables used in

expressions must be declared. The NuSMV library has to invoke DeclareNewBooleanVar,

DeclareNewWordVar, DeclareNewStringVar methods for declaration of boolean, integer

and string variables respectively. Only after declaring all the variables from contract

and policy expressions, the on-the-fly algorithm can actually start invoking the decision

procedure in its visit. A consequence of this rule is that with this implementation we

cannot insert edges that introduce new variables because the solver can be called only

after declaring all the variables and adding all the needed constraints.

Therefore, during the visit of the algorithm we must at first upload constraints to the

solver with the AddConstraint method of the NuSMV class and then remove them with

the RemoveConstraint.

The rest design alternatives can be implemented and tested thus giving way to the six

alternative configurations (see Fig. 5.2d) of the interactions between the solver and the

on-the-fly emptiness check algorithm.

41

Table 5.1: Problems Suit
Problem Contract Policy SC TC SP TP
P1 size 100 512 contract.pol size 10 1024 policy.pol 2 4 2 4
P2 maxKB512 contract.pol maxKB1024 policy.pol 2 4 2 4
P3 noPushRegistry contract.pol oneConnRegistry policy.pol 2 3 3 9
P4 notCreateRS contract.pol notCreateSharedRS policy.pol 2 4 2 4
P5 pimNoConn contract.pol pimSecConn policy.pol 3 7 3 9
P6 2hard contract.pol 2hard policy.pol 3 7 3 7
P7 http contract.pol https policy.pol 3 7 3 7
P8 3hard contract.pol 3hard policy.pol 3 7 3 7
P100 noSMS contract.pol 100SMS policy.pol 2 4 102 304

5.4 List of Abbreviations

In this thesis we use the following abbreviations:
SC: Number of States of Contract

TC: Number of Transitions of Contract

SP: Number of States of Policy

TP: Number of Transitions of Policy

SG: Number of States of generated Policy/Contract

ART: Average Runtime for 10 runs

5.5 Experiments on Desktop and on Device

To understand the best option we collected data on resources used, namely number of

visited states, number of visited transitions, running time for each problem in each design

alternative, and the number of solved problems against time. For sake of example we list in

Table 5.1 some sample possible combinations of policy-contract (mis)matching pairs. For

instance, the contract pimNoConn contract.pol represents Example 2.1.1 and the policy

pimSecConn policy.pol corresponds to Example 2.1.2.

With the exception of the pathological problem P100, which has been designed that

way, most problems have few states and transitions and, as we shall see in the next table

(Table 5.2 showing performance of ten times run for each problem set and each design

alternative), they also require little time for being assessed.

Notice that the number of states and transitions in the AMT for each contract and

policy in Table 5.1 is a number of reachable states and transitions. During the running of

matching algorithm there may be the case when the algorithm stops working (producing

”do not match” answer) without reaching all the states of contract and/or policy. And

this case is explicitly shown in P6, P7 and P8 examples in Table 5.2. That is why we

42

Table 5.2: Running Problem Suit 10 Times
MUTEX MC ONE INSTANCE CACHING SOLVER

Problem Desktop Mobile Result
ART (s) CRT (s) SV TV ART (s) CRT (s) SV TV

P1 2.4 2.4 2 6 4.3 4.3 2 6 Match
P2 2.4 4.8 2 6 4.1 8.4 2 6 Match
P3 2.4 7.2 3 11 3.9 12.3 3 11 Match
P4 2.4 9.6 2 6 4.0 16.3 2 6 Match
P5 4.7 14.3 3 11 4.1 20.4 3 11 Match

P6 2.9 2.9 4 4 3.8 3.8 3 6 Not Match
P7 2.8 5.7 5 7 3.8 7.6 2 4 Not Match
P8 2.9 8.6 5 7 3.8 11.4 3 6 Not Match

P100 9.3 9.3 102 307 11.3 11.3 102 307 Match

only present here the number of reachable states in Table 5.1 and number of visited states

during on-the-fly running in Table 5.2.

We run our experiments on a Desktop PC (Intel(R) Pentium(R) D CPU 3.40GHz,

3389.442MHz, 1.99GB of RAM, 2048 KB cache size) with operating system Linux version

2.6.20-16-generic, Kubuntu 7.04 (Feisty Fawn). Currently, we are also porting the appli-

cation to the mobile for actual detailed profiling, namely HTC P3600 (3G PDA phone)

with ROM 128MB, RAM 64MB, Samsung r©SC32442A processor 400MHz and operating

system Microsoft r©Windows Mobile r©5.0 with Direct Push technology.

For the sake of example we present the result obtained for alternative with MUTEX MC

ONE INSTANCE CACHING SOLVER in Table 5.2. The results for all design alternatives are mapped

into diagram shown in Figure 5.2a for matching problems and Figure 5.2c for not matching

problems. Notice that we only provide the cumulative running time that is necessary to

solve all problems. This is important because our goal is to match (or not match) all rules

in a contract with all corresponding rules in a policy. Thus, the value of the single problem

is not important except for some cases where the average output might be significantly

off due to some off scale rule.

We singled out P100 as a challenging artificial problem because it has a large number of

states compared to the others: essentially this happened because we draw an automaton

modulo theory with 100 states and which traverse from one state to another by adding 1

to the number of SMS sent.

In this case there is a difference between M1 and M5, namely 9.259 s and 9.117 s resp.,

that is M5 is better around 1.5% than M1. In order to study this in more details, we

generated more unreal problem sets: as P100 with combination of sent SMS none, 1, 10,

43

(a) Match succeeds for real policies (b) Matches among synthetic contracts and policies

(c) Match fails for real policies

M1: MUTEX MC ONE INSTANCE CACHING SOLVER

M2: MUTEX SOLVER ONE INSTANCE CACHING SOLVER

M3: PRIORITY MC ONE INSTANCE CACHING SOLVER

M4: MUTEX MC ONE INSTANCE CACHING MC

M5: MUTEX SOLVER ONE INSTANCE CACHING MC

M6: PRIORITY MC ONE INSTANCE CACHING MC

(d) Abbreviations for Configurations

Figure 5.2: Cumulative response time of matching algorithm on Desktop PC

and 100 for both contract and policy. The data of the experiment is given on Appendix C.

The generated cases cumulative running time of implementation is propositional to the

number of problems solved (see Figure 5.2b). In this case the difference among M1 until

M8 is negligible as can be seen from Figure 5.2b that the results construct almost a line.

All methods seem to perform equally well because the problems are not stressful enough

for the different configurations. This is actually a promising result for the deployment

to the resource constrained in mobile device domain. Therefore, we have implemented

the same algorithm for the mobile platform HTC P3600 (3G PDA phone). We run the

problem suit of P1-P8 and P100 with MUTEX MC ONE INSTANCE CACHING SOLVER configuration.

Table 5.2 shows the results on device, where the runtime of every single problem

running is longer than on Desktop PC. This result is obviously due to higher performance

of desktop platform. However, the cumulative time of solved problems is still manageable

for the mobile user to obtain. The algorithm’s runtime will be longer for the problems

that match (the algorithm has to run over all states until the cycle is found) than for

44

(a) Match succeeds (b) Match fails

Figure 5.3: Cumulative response time of matching on Device vs on Desktop PC

the problems that do not match (the algorithm stops working as soon as counterexample

is found). Note also that the number of visited states and transitions for the matched

problems are the same exactly because of the search all over the states; otherwise the

counterexample can be found in a different time and it does not depend on the run.

Cumulative time of problems is presented in Fig. 5.3a for matching and Figure 5.3b for

not matching.

Our current implementation uses PRIORITY MC ONE INSTANCE CACHING MC configuration. PRI-

ORITY MC is preferred because of the nature of rules in policies which is priority or, also

because MUTEX SOLVER does not allow empty methods such as ¬mi ∧¬mj which is possible

in the matching algorithm. ONE INSTANCE is chosen because of garbage collection problem.

CACHING MC is desired in order to save calls to solver for the already solved rules.

45

46

Chapter 6

Simulation

In this chapter we revisit the same question as in Chapter 4 namely: given

expressive security policies, how can we model possibly infinite computations

with finite ones? To address this issue we propose Automata Modulo Theory

simulation. The key idea is to use fair simulation which is computed using

parity game based on small progress measures.

6.1 Introduction

On the previous chapters we have seen on-the-fly matching using language inclusion and

this approach requires complementation of the policy of the mobile platform. How-

ever, matching using language inclusion as in presented in Chapter 4 has a limitation

in the structure of the policy automaton, i.e. only deterministic automaton. The con-

straint arises from the AMT complementation, where as BA complementation, the non-

deterministic complementation is complex and exponentially blow-up in the state space

[20]. Safra in [70], gives a better lower bound (2O(n log n)) for nondeterministic BA com-

plementation, however it is still exponential(see [83]). This limitation does not evolve in

matching using simulation as presented in this chapter, because using simulation approach

we can also deal with nondeterministic automata.

The notion of simulation in AMT is both fair and symbolic. The fairness in AMT
is similar to fair simulation in Büchi automata as in [46]. A system fairly simulates

another system if and only if in the simulation game, there is a strategy that matches

each fair computation of the simulated system with a fair computation of the simulating

system. Efficient algorithms for computing a variety of simulation relations on the state

space of a Büchi automaton were proposed in [30] using parity game framework, that is

based on small progress measures [52]. Another algorithm based on the notion of fair

simulation was presented in [40]. The symbolism in AMT is similar to the theory of

47

symbolic bi-simulation for the π-calculus [45]. This symbolic representation can express

the operational semantics of many value-passing processes in terms of finite symbolic

transition graphs despite the infinite underlying labeled transitions graph.

This chapter chapter consitutes the theory of simulation inAMT . We begin in Section

6.2 by introducing the concept of simulation at the concrete level, among valuations i.e.

API calls, and the notion of symbolic simulation as in [45]. Then, Section 6.3 describes a

decision procedure (and its complexity characterization) for matching the mobile’s policy

and the midlet’s security claims using simulation.

6.2 Simulation in Automaton Modulo Theory

In the sequel we will use s to denote states of the application’s contract and t to denote

state of the platform’s policy.

Definition 6.2.1 (Concrete Fair Compliance Game) Let Ac and Ap be AMT with

initial states s0 and t0 respectively. A Concrete Fair Compliance Game GC
Ac,Ap(s0, t0) is

played by two players, Contract and Policy, in rounds.

1. In the first round Contract is on the initial state s0 ∈ Sc and Policy is on the

initial state t0 ∈ Sp.

2. Contract chooses a transition 〈si, e
c
i , si+1〉 ∈ ∆c

T with a valuation νi represents αi

and I(ei) such that (M, αi) |= ec
i and moves to si+1.

3. Policy responds by a transition 〈ti, ep
i , ti+1〉 ∈ ∆p

T such that (M, αi) |= ep
i and moves

to ti+1.

The winner of the game is determined by the following rules:

• If the Contract cannot move then Policy wins.

• If the Policy cannot move then Contract wins.

• Otherwise there are two infinite concrete runs
→
s= 〈s0ν1s1ν2s2 . . .〉 and

→
t = 〈t0ν1t1ν2t2 . . .〉 respectively of Ac and Ap. If

→
s= 〈s0ν1s1ν2s2 . . .〉

is an accepting concrete run for Ac and
→
t = 〈t0ν1t1ν2t2 . . .〉 is not an accepting con-

crete run for Ap then Contract wins. In other cases, Policy wins.

Intuitively in the compliance game, the Contract tries to make a concrete move and

the Policy follows accordingly to show that the Contract move is allowed. If the Policy

cannot move then Contract is not compliant, meaning there is a move that the Policy

can not do, that is that particular action is a violation.

48

Example 6.2.1 In a game between the Contract from Figure 4.1a and the Policy from

Figure 4.1b, the Contract can choose to invoke the url http: // www. google. com and

the Policy can respond by selecting the appropriate expression which is satisfied by that

valuation.

A more complex situation occurs in the infinite case where infinite runs correspond

to liveness properties, i.e. something good will eventually happen. An example of this

property is shown in Example 2.1.3. In this case, the Contract only wins (i.e. it breaks

the Policy) when according to its view of the world there are infinitely many good things

but not for the Policy which after some initial good things is trapped in an endless

sequence of unsatisfactory states.

Example 6.2.2 In a game between the Contract and Policy from Ex.2.1.3, the Contract

can choose to invoke the url https: // sourceforge. net in a certain step after in some

previous steps it invokes permission io.Connector.https. The Policy can respond by

selecting the appropriate expression which is also satisfied by the same assignment, which

is possible in the game if Policy has requested permission io.Connector.https in some

previous steps.

The notion of concrete strategy for Policy in game GC
Ac,Ap(s0, t0) is a partial function

that determines the next move of Policy given the history of the concrete game up to a

certain point.

Definition 6.2.2 (Concrete Strategy) A partial function f : Sc×(Sp×ν×Sc)∗ → Sp

is a concrete strategy if for any sequence 〈s0ν1s1ν2 . . . siνisi+1〉 which is a valid concrete

run for Ac

• f(s0) = t0

• f(〈s0t0ν1s1 . . . sitiνi+1si+1〉) = ti+1 such that 〈ti, ep
i , ti+1〉 ∈ ∆p

T and (M, αi) |= ep
i ,

where νi represents αi and I(ei).

A concrete strategy f of a game is a Policy winning strategy if and only if whenever a

Policy selects the moves of game as in Definition 6.2.1 according to f then Policy wins.

Definition 6.2.3 (AMT Concrete Fair Simulation Relation) An automaton Ap con-

cretely fair simulates an automaton Ac if and only if there is a concrete winning strategy

for Ap we denote as Ac v Ap. We also say that Ac complies with Ap.

We have now the machinery to generalize the notion of simulation to symbolic level,

among expressions.

49

Definition 6.2.4 (AMT Fair Compliance Game) A Fair Compliance Game

GAc,Ap(s0, t0) is played by two players, Contract and Policy, in rounds.

1. In the first round Contract is on the initial state s0 ∈ Sc and Policy is on the

initial state t0 ∈ Sp.

2. Contract chooses a transition 〈si, e
c
i , si+1〉 ∈ ∆c

T such that ec
i is satisfiable and moves

to si+1.

3. Policy responds by a transition ∆p
T (ti, e

p
i , ti+1) such that (ec

i → ep
i) is valid and

moves to ti+1.

The winner of the game is determined by the rules as in Definition 6.2.1 with the difference

in run where we define run over expressions instead of assignments.

The intuition is similar to concrete game: Contract tries to make a symbolic move

and the Policy follows suit in order to show that the Contract move is allowed. If the

Policy cannot move this means that the Contract may not be compliant because there

is a symbolic move that the Policy could not do. However, as we shall see this might not

imply that at the concrete level the Contract is really non-compliant.

Definition 6.2.5 (Strategy) A partial function f : Sc × (Sp × E × Sc)∗ → Sp is a

symbolic strategy if and only if for any sequence 〈s0e
c
0s1e

c
1 . . . sie

c
isi+1〉 which is a valid

symbolic run for Ac

• f(s0) = t0

• f(〈s0t0e
c
0s1t1e

c
1 . . . sitie

c
isi+1〉) = ti+1 such that ∆p

T (ti, e
p
i , ti+1) and (ec

i → ep
i) is valid.

A strategy f of the game is a Policy winning strategy if and only if whenever a Policy

select the moves of game as in Definition 6.2.4 according to f then Policy wins.

Definition 6.2.6 (AMT Fair Simulation Relation) An automaton Ap fair simulates

an automaton Ac if and only if there is a winning strategy for Ap we denote as Ac ≤ Ap.

We also say that Ac complies with Ap.

Proposition 6.2.1 If Ac ≤ Ap is an AMT fair simulation relation then Ac v Ap is a

concrete fair simulation relation.

Proof.

Assume that Ac ≤ Ap is an AMT fair simulation relation. By Definition 6.2.6 there is a

winning strategy for Ap, such that whenever a Policy select the moves of game defined

50

in Definition 6.2.4 according to strategy f then Policy wins the game. We construct a

concrete strategy f ′ from f .

By Definition 6.2.4 there are two cases where Policy wins the game:

• Finite game: If the Contract cannot move then Policy wins.

Contract moves by choosing a transition 〈si, e
c
i , si+1〉 ∈ ∆c

T such that ec
i is satisfiable.

Contract cannot move means that there exists no valuations and by Definition 6.2.1

in concrete game Contract cannot move either.

• Infinite game: There are infinitely many j such that tj ∈ F p or there are only finitely

many i such that si ∈ F c.

The compliance game has infinitely many j such that tj ∈ F p when Policy is able

to respond infinitely often by a transition ∆p
T (tj, e

p
j , tj+1) where (ec

j → ep
j) is valid,

meaning for all αj, (M, αj) |= (ec
j → ep

j). And by Definition 6.2.1 with (M, αj) |= ep
j ,

Policy can respond by a transition
〈
tj, e

p
j , tj+1

〉
∈ ∆p

T .

Finitely many i occurs when there is some k such that ∀i > k, si /∈ F c, meaning

Contract moves by choosing a transition 〈si, e
c
i , si+1〉 ∈ ∆c

T such that ec
i is satisfiable,

i.e. there exist αi where (M, αi) |= ec
i and by Definition 6.2.1 Contract can also

move in concrete game.

It is clear that the constructed concrete strategy f ′ is a winning strategy for Ap in concrete

compliance game, hence by Definition 6.2.3 Ac v Ap. 2

In contrast to the language inclusion approach discussed in Section 4.4, where symbolic

language inclusion coincides with concrete language inclusion, and also the simulation

notions of [45], the converse of Proposition 6.2.1 does not hold in general.

Proposition 6.2.2 AMT fair simulation is stronger than AMT language inclusion.

Proof. The pair of automata in Figure 6.1b and Figure 6.1a is a simple counter example.

We can see that both automata coincide with the same concrete automaton as in Fig-

ure 6.1c. Thus in concrete level the same automaton having not just simulation but also

bi-simulation to itself. However, the symbolic AMT on Figure 6.1a cannot simulate the

symbolic AMT on Figure 6.1b. For example if we have policy represented as Figure 6.1b

and contract represented as Figure 6.1a, where both automata accept the same language

but according to simulation V ALID(e2 → e11) does not hold nor V ALID(e2 → e12),

thus we do not have simulation (see abbreviation in Figure 6.1d). 2

In order to show that AMT simulation coincides with concrete simulation we must

impose some additional syntactic constraints on the automaton.

51

2010-01-08

s1

(Joc(url) ∧ p(url)=”http”)(Joc(url) ∧ p(url)=”https”)

s0

(a) Splitting Edges

s0

s1

(Joc(url) ∧ p(url)=”https”) ∨
(Joc(url) ∧ p(url)=”http”)

2010-01-08

(b) Disjuncting Expressions

Joc(”http://a2ω”)

Joc(”https://a11”)

Joc(”https://a1ω”)

Joc(”http://a21”)
s0

s1

2010-01-08

(c) Concrete Automaton

e11
.
= (Joc(url) ∧ p(url) = “https”)

e12
.
= (Joc(url) ∧ p(url) = “http”)

e2
.
= (Joc(url) ∧ p(url) = “https”)

∨(Joc(url) ∧ p(url) = “http”)

(d) Abbreviations for expressions

Figure 6.1: Symbolic vs Concrete Automaton

Definition 6.2.7 (Normalized AMT) A = 〈S, Σ, T , E , ∆, s0, F 〉 is a normalized au-

tomaton modulo theory T if and only if for every s, s1 ∈ S there is at most one expression

e1 ∈ E such that s1 ∈ ∆T (s, e1).

For example Figure 6.1a is a normalized automaton while Figure 6.1b is not normalized.

Lemma 6.2.1 It is possible to normalize an AMT automaton A = 〈S, Σ, T , E , ∆, s0, F 〉
when theory T is convex and closed under disjunction.

Proof. A theory T is convex [73] if all the conjunctions of literals are convex in theory T .

A conjunction of T -literals in a theory T is convex if for each disjunction (M, α) |=
∨n

i=1 ei

if and only if (M, α) |= ei for some i, where ei are equalities between variables occurring

in (M, α). If a theory T is convex then we can normalize an automaton by considering

the disjunction of all expressions going to the same state.

A theory T is called closed under disjunction if disjunctions of T -formulas
∨n

i=1 ei,

where ei are T -formulas, is also a T -formula. For most theories this closure holds. An

example where the closure does not hold is when a T consists of only Horn-formulas that

allows at most one positive literal. Suppose we have two Horn-formulas e1 and e2, where

e1
.
= p1 ∧ p2 → p and e2

.
= q1 ∧ q2 → q, then e1 ∨ e2

.
= p1 ∧ p2 ∧ q1 ∧ q2 → p ∨ q which is

not a Horn-formula. 2

52

s0

s1

2010-01-08

s0

s1

nee ∨∨K1

ne1e K

(a) Automaton before normalization

s0

s1

2010-01-08

s0

s1

nee ∨∨K1

ne1e K

(b) Automaton after normalization

Figure 6.2: Normalization of an automaton

Lemma 6.2.2 Normalization preserves the determinism of an AMT .

Proof. By Definition 4.3.4 A = 〈S, Σ, T , E , ∆, s0, F 〉 is a deterministic automaton mod-

ulo theory T , if and only if, for every s ∈ S and every s1, s2 ∈ S and every e1, e2 ∈ E ,

if (s, e1, s1) ∈ ∆ and (s, e2, s2) ∈ ∆, where s1 6= s2 then the expression (e1 ∧ e2) is

unsatisfiable in the Σ-theory T .

Let (s, e1j, s1) ∈ ∆ where j ∈ {1, . . . ,m}, and let (s, e2k, s2) ∈ ∆ where k ∈ {1, . . . , n},
and s1 6= s2. Thus, each expression (e1j ∧ e2k) is unsatisfiable in the Σ-theory T . By

normalization we have (
∨m

j=1 e1j) and (
∨n

k=1 e2k), where (
∨m

j=1 e1j) ∧ (
∨n

k=1 e2k) ⇔ ∀j ∈
{1, . . . ,m},∀k ∈ {1, . . . , n}, (e1j ∧ e2k). If each expression (e1j ∧ e2k) is unsatisfiable

then (
∨m

j=1 e1j) ∧ (
∨n

k=1 e2k) is also unsatisfiable when the theory T is convex. Thus,

normalization preserves the determinism of an AMT . 2

Proposition 6.2.3 For normalized AMT if Ac v Ap is a concrete fair simulation rela-

tion then Ac ≤ Ap is an AMT fair simulation relation.

Proof.

Assume that Ac v Ap is a concrete fair simulation relation. By Definition 6.2.3 there is a

winning strategy for Ap, such that whenever a Policy select the moves of game defined

in Definition 6.2.1 according to strategy f then Policy wins the game. We construct a

concrete strategy f ′ from f .

By Definition 6.2.1 there are two cases where Policy wins the game:

• Finite game: If the Contract cannot move then Policy wins.

Contract moves by choosing a transition 〈si, e
c
i , si+1〉 ∈ ∆c

T with a valuation νi rep-

resents αi and I(ei) such that (M, αi) |= ec
i , meaning ec

i is satisfiable. Contract

cannot move means that there exists no valuations and by Definition 6.2.4 in com-

pliance game Contract cannot move either.

53

• Infinite game: There are infinitely many j such that tj ∈ F p or there are only finitely

many i such that si ∈ F c.

The concrete compliance game has infinitely many j such that tj ∈ F p when Policy

is able to respond infinitely often by a transition ∆p
T (tj, e

p
j , tj+1) where for all valua-

tions νj represents αj and I(ej) such that (M, αj) |= (ec
j → ep

j), meaning (ec
j → ep

j) is

valid. And by Definition 6.2.4 Policy can respond by a transition
〈
tj, e

p
j , tj+1

〉
∈ ∆p

T
with a valuation νj represents αj and I(ej) such that (M, αj) |= ep

j .

Finitely many i occurs when there is some k such that ∀i > k, si /∈ F c, meaning

Contract moves by choosing a transition 〈si, e
c
i , si+1〉 ∈ ∆c

T with a valuation νi rep-

resents αi and I(ei) such that (M, αi) |= ec
i and by Definition 6.2.4 Contract can

also move in concrete game.

It is clear that the constructed strategy f ′ is a winning strategy for Ap in compliance

game, hence by Definition 6.2.6 Ac ≤ Ap. 2

If automata are in normalized form then we have the following theorem from [59]:

Theorem 6.2.1 For normalized AMT Ac ≤ Ap is an AMT fair simulation if and only

if Ac v Ap is a concrete fair simulation.

Proof.

“⊇” By Proposition 6.2.1.

“⊆” If a normalization that preserves automata determinism (Lemma 6.2.2) is pos-

sible (Lemma 6.2.1), then By Proposition 6.2.3.

2

6.3 Simulation Matching

In this section we describe a different algorithm for matching from Section 4.5 that uses

the concepts of language inclusion. Here we use fair simulation for matching and adapts

the Jurdziński’s algorithm on parity games [52]. The simulation algorithm Algorithm 5

takes as input two automata AC and AP representing respectively the formal specification

of a contract and of a policy. A match is obtained when every security-relevant action

invoked by AC can also be invoked by AP . In other words, every behavior of AC is also

a behavior of AP .

At the first step (line 1) a compliance game graph G = 〈V1, V0, E, l〉 is constructed out

of automata AC and AP . A compliance game graph can be formally defined as follows:

Definition 6.3.1 (Compliance Graph) Given 〈Sc, Σc, T c, Ec, ∆c, s0
c, F c〉 and

〈Sp, Σp, T p, Ep, ∆p, s0
p, F p〉, construct a 〈V1, V0, E, l〉 as follows:

• V1= {v(sc,sp)|sc ∈ Sc, sp ∈ Sp}

54

Algorithm 5 Simulation Algorithm

Input: two AMT automata AC and AP

1: Construct compliance game graph G = 〈V1, V0, E, l〉
2: for all v ∈ V do
3: µ(v) := µnew(v) := 0
4: repeat
5: µ := µnew

6: for all v ∈ V0 do

7: µnew(v) :=

{
∞ if {µ(w)|(v, w)} = ∅
min {µ(w)|(v, w)} otherwise

8: for all v ∈ V1 do
9: maxv := max {µ(w)|(v, w) ∈ E}

10: µnew(v) :=

∞ if maxv = ∞
0 if l(v) = 0
maxv + 1 if l(v) = 1
maxv if l(v) = 2

11: until µ = µnew

12: if µ(v(s0c,s0p)) < ∞ then
13: Simulation exists

55

• V0= {v(sc,sp,ec)|sc ∈ Sc, sp ∈ Sp,∃rc.(rc, ec, sc) ∈ ∆c}

• E= {(v(sc,sp,ec), v(sc,tp))|(sp, ep, tp) ∈ ∆p ∧ V ALID(ec → ep)} ∪
{(v(sc,sp), v(tc,sp,ec))|(sc, ec, tc) ∈ ∆c}

•

l(v) =

0 if v = v(sc,sp) and sp ∈ F p

1 if v = v(sc,sp) and sc ∈ F c and sp /∈ F p

2 otherwise

A compliance graph G is the tuple 〈V1, V0, E, l〉

Intuitively the compliance level l(v) is 0 when the simulating automaton accepts, 1

when the simulated automaton accepts (but the simulating automaton has not accepted

yet) and 2 when neither of them accepts. V1 consists of v(sc,sp) where AC is on sc and

AP is on sp and it is Contract turn to move. V0 consists of v(sc,sp,ec) where AC is on sc

and AP is on sp, Contract just made a move ec and it is Policy turn to move such that

V ALID(ec → ep) by querying to an oracle for the SMT solver.

Lemma 6.3.1 Let AC =
〈
SC , ΣC , T C , EC , ∆C , s0

C , FC
〉

and AP =
〈
SP , ΣP , T P , EP , ∆P , s0

P , F P
〉

be AMT automata and let the theory T = T C ∪ T P be decidable with an oracle for the

SMT problem in the complexity class C

1. |G = 〈V1, V0, E, l〉| constructed out of automata AC and AP by Definition 6.3.1 is in

O(|Sc| . |Sp| . |∆c
T |)C

2. |l−1(1)| defined as in Definition 6.3.1 is in O(|Sc| . |Sp|)

Proof. We prove part 1 by computing the vertices and edges of 〈V1, V0, E, l〉

• |V1| is in O(|Sc| . |Sp|)

• |V0| is in O(|Sc| . |Sp| . |∆c
T |)

• |E| is in O(|Sc| . |Sp| . |∆c
T |)C because an edge exists from a node in V0 to a node in

V1 when V ALID(ec → ep) that needs a call to oracle for the SMT solver.

Thus, we can conclude that |G = 〈V1, V0, E, l〉| is in O(|Sc| . |Sp| . |∆c
T |)C

For part 2 vetices with l = (1) are contained in V1, thus |l−1(1)| is in O(|Sc| . |Sp|) 2

A compliance game P (G, v0) on G starting at v0 ∈ V is played by two players Policy

(for AP) and Contract (for AC). The game starts by placing pebble on v0. At round

i with pebble on vi, vi ∈ V0(V1), Policy (Contract resp.) plays and moves the pebble

to vi+1 such that (vi, vi+1) ∈ E. The player who cannot move loses. For infinite play

56

π = v0v1v2 . . ., the winner defined as the minimum compliance level that occurs infinitely

often, namely if the minimum compliance level is 0 or 2 then Policy wins, otherwise

Contract wins.

Next, we define a compliance measure µ : V → {x|x ≤ |l−1(1)|} ∪ {∞}. µ ranges

from 0 to |l−1(1)| because at l(v)=1 the simulated automaton (contract) accepts but the

simulating automaton (policy) has not accepted yet. Thus, progressing the measure has

the analogy of computing the pre-fixed point where the Contract remains winning and ∞
shows that the µ keeps progressing beyond this limit, meaning Contract wins the game.

If l(v) = 1, then µ(v) > µ(w), where |l−1(1)| + 1 = ∞. If l(v) = 2 or l(v) = 0, then

µ(v) ≥ µ(w).

The compliance measure for each node is the number of potential bad nodes, namely

nodes where the contract accepts but the policy does not, that it can reach. Thus, µ(v) =

∞ means that there is an infinite path where policy cannot return to compliance level

0. We slighty modify the Jurdziński progress measure [52] to compliance measure where

instead of a pair (0, x) we only use x. This is due to our observation of our domain where

we only have three priorities, namely l(v) ∈ 0, 1, 2 thus for ordering (0, x) ≥l(v) (0, x′) the

first component will not effect the ordering.

Jurdziński’s algorithm on parity games [52] defines that Policy has a winning strategy

from precisely the vertices v where after its lifting algorithm halts has µ(v) < ∞. However,

in contract-policy matching we are interested when there is a winning strategy from the

initial vertex v(s0c,s0p), depicted in Algorithm 5 as µ(v(s0c,s0p)) < ∞.

Proposition 6.3.1 Let G be a parity game constructed from two AMT automata AC

and AP constructed as in Definition 6.3.1. Policy has a winning strategy from the initial

vertex v(s0c,s0p) when Algorithm 5 halts with µ(v(s0c,s0p)) < ∞.

Proof. Correctness.

The correctness derived from Jurdziński’s algorithm on parity games [52]. Jurdziński

defined a parity game between two players where an even player (in our case Policy) wins

when the lowest priority occuring infinitely often in the play is even (in our case Policy

can return to compliance level 0 infinitely often). He proposed computing the game using

progress measure which is defined as MG = [1]×[n1 + 1] [1]×[n3 + 1]×. . .×[1]×[nd−1 + 1],

where d is the maximum priority in the game. In our setting, we slighty modify the

Jurdziński progress measure [52] to compliance measure where instead of a pair (0, x) we

only use x. As we have mentioned afore, this is due to our observation of our domain

where we only have 3 priorities, namely l(v) ∈ 0, 1, 2 thus for ordering (0, x) ≥l(v) (0, x′)

the first component will not effect the ordering.

Jurdziński reasoned that each vertex can only be lifted |MG| times. This lifting pro-

57

cedure is implemented in Algorithm 5 presented as a loop where compliance measure

progressing until reaching a pre-fixed point (µ = µnew). He also defined that Even has

a winning strategy from precisely the vertices v where after its lifting algorithm halts

has µ(v) < ∞. However, in contract-policy matching we are interested when there is a

winning strategy from the initial vertex v(s0c,s0p). Thus, in Algorithm 5 Policy wins when

µ(v(s0c,s0p)) < ∞.

Termination. This parity game terminates because each vertex can only be lifted |MG|
times.

Complexity. Lifting procedure in Jurdziński [52] has time complexity O
(∑

v∈V d.od(v).|MG|)
)

=

O(d.m.|MG|) where d is the maximum priority in the game, m the number of edges, od(v)

the degree outgoing edges from v, and V is the set of vertices in the game graph. He rea-

soned that for every vertex v with outgoing edges degree od(v) and the tuple of progress

measure has the length of maximum priority d can only be lifted |MG| times:

|MG| =
∏bd/2c

i=1 (n2i−1 + 1) ≤
(

n
bd/2c

)bd/2c

, where d is the maximum priority in the game.

In our setting, d equals to two, because our compliance measure is in {0, 1, 2}. Thus,

|MG| = [n1 + 1] = |l−1(1)| + 1 ≤ |V1| and from Lemma 6.3.1 |V1| = O(|Sc| . |Sp|). In

addition, the number of edges |E| is in O(|Sc| . |Sp| . |∆c
T |)C (from Lemma 6.3.1). Thus,

the time complexity of Algorithm 5 is O(2. |E| .|MG|)
Lifting procedure in Jurdziński [52] has space complexity O(dn) where d is the maxi-

mum priority in the game and n the number of vertices in the game graph. He reasoned

that every vertex v in the game graph only needs to keep the compliance measure, which is

a d-tuple of integers. In our setting, d equals to two because our compliance measure is in

{0, 1, 2}, however our compliance measure only use an integer x instead of a 2-tuple (0, x).

As we have mentioned afore, this is due to our observation of our domain where we only

have 3 priorities, namely l(v) ∈ 0, 1, 2 thus for ordering (0, x) ≥l(v) (0, x′) the first compo-

nent will not effect the ordering. In addition, from Lemma 6.3.1 |V1| = O(|Sc| . |Sp|) and

|V0| is in O(|Sc| . |Sp| . |∆c
T |) where the total number of vertices equals to V = |V1|+ |V0|.

Thus, the space complexity of Algorithm 5 is O(|V |). 2

We are now in the position to state our contract-policy matching’s result using fair

simulation:

Proposition 6.3.2 Let the theory T be decidable with an oracle for the SMT problem in

the complexity class C then:

58

1. The contract-policy matching problem for AMT using fair simulation is decidable

in time O(2. |E| .|MG|).

2. The contract-policy matching problem for AMT using fair simulation is decidable

in space O(|V |).

Proof. The matching between a contract with a security policy problem can be reduced

to a fair simulation between a contract with a security policy. A combination of an

algorithm based on Jurdziński’s algorithm on parity games [52] with a decision procedure

for SMT given in Algorithm 5 can solve this problem in time O(2. |E| .|MG|) and in space

O(|V |). The algorithm takes as input the midlet’s claim and the mobile platform’s policy

and constructs compliance game graph G = 〈V1, V0, E, l〉. The correctness and complexity

follow from Proposition 6.3.1. 2

59

60

Chapter 7

Simulation Matching Prototype

Implementation and Experiments

In this chapter, we try to provide an answer to the following question: how can

we implement matching using simulation and what is the best configuration

of integrating automata-based inclusion algorithm with decision procedure?

To address this issue we give possible design decisions and run experiment

on desktop as in Chapter 5. We continue with detailing the running-time on

the mobile platform for one design decision only to give the reader a feeling

how the matching algorithm with integrated decision procedure can run in real

application.

7.1 Introduction

This chapter describes the prototype implementation of contract-policy matching inAMT
using simulation, its integration with decision solver based on MathSAT and NuSMV, and

the results of our experiments on matching.

We begin in Section 7.2 by discussing the overall implementation architecture and the

integration issues with the procedure solver NuSMV [22] integrated with its MathSAT

libraries [18].

Section 7.3 continues with implementation of simulation as parity game with oracle

calls to the decision procedures available in NuSMV. Our prototype was implemented

in .NET and was run on a Desktop PC with operating system Microsoft Windows XP

Professional Version 2002 Service Pack 3.

Finally, Section 7.4 presents a detailed performance analysis of the integration design

alternatives regarding the construction of expressions, the initialization of solver, and the

61

2010-01-08
SimulationMatching
GeneralPicture

NuSMV library

Policy
Automaton

Add
Constraints

Decision Procedure

Solve

Remove
Constraints

Declare variables

Matching algorithm

Parity game
simulation

Contract
Automaton

match succeed/fail

Construct
game graph

Figure 7.1: Simulation Implementation Architecture

caching of temporary results by considering running time of various available options.

7.2 The Architecture

In this section we describe the conceptual architecture of the prototype that implements

the overall matching algorithm and supports integration with state of the art decision

procedure solver NuSMV [22] integrated with its MathSAT libraries [18]. The main aim is

to provide a concrete overview of how the prototype is implemented so that one can easily

understand the possible options for integration with the solver. The contract-matching

prototype takes as input a contract and a policy both specified in ConSpec and checks

whether or not the contract matches the policy. The source code itself is thoroughly

documented and should therefore be easy to understand. In addition, the following class

diagram should provide the reader with a good overview over the Simulation Algorithm

namespace and its classes as shown in Figure 7.1. Detailed class diagram is available on

Appendix B.

The prototype had been implemented as a Desktop version by extending the prototype

from Chapter 5. The prototype consists of only one part which is off-device implemen-

tations. At the first step of matching, a compliance game graph G = 〈V1, V0, E, l〉 is

constructed out of automata AC and AP . The main parity game algorithm runs on the

constructed game graph and makes calls to the decision procedure during its execution.

The different step from the on-the-fly implementation is that the policy automata need not

be complemented. The rest of integration issues with decision solver based on MathSAT

and NuSMV follows from on-the-fly matching implementation, for example we use the

solver as a black box (an oracle) for the general algorithm that gives the answer whether

62

the problem is satisfiable or not.

7.3 Design Decisions

As in on-the-fly matching implementation, different design decisions are made in order

to decide the best configuration of integrating automata-based inclusion algorithm with

decision procedure as the problem is not trivial. Every option of the configuration proposed

below has different memory impact and this information and results of such analysis is very

important because of the resource constraints of mobile device. In integrating matching

algorithm with the theory solver we faced a number of design options:

One vs Many Solver in object oriented languages is by itself an object. We could either create

only one instance of solver, relying on the solver to assert and retract expressions

on demand, or create a new instance of the solver every time we call the decision

procedure.

ALL INSTANCES The expression sent to the solver has the following structure: method ∧
otherMethods ∧ cond ∧ otherConds.

CACHING MC Since many edges will be traversed again and again we could save time by

caching the results of the matching. The solver itself has a caching mechanism that

could be equally used (CACHING SOLVER).

Unlike in on-the-fly matching implementation, we do not have MUTEX SOLVER, MUTEX MC,

and PRIORITY MC options instead we introduce ALL INSTANCES which is suitable for represen-

tation of only policy automaton and not the complementation of policy automaton.

As in on-the-fly matching implementation, the One vs Many option was not possible which

requires only one instance of solver exists at time in order to interact correctly with the

NuSMV library. This leads to use a static invocation for the solver and set significant

constraints on the interaction. For example, before starting to visit all constraints to the

library, all variables used in expressions must be declared. The NuSMV library has to

invoke DeclareNewBooleanVar, DeclareNewWordVar, DeclareNewStringVar methods for

declaration of boolean, integer and string variables respectively. Only after declaring all

the variables from contract and policy expressions, the simulation algorithm can actually

start invoking the decision procedure in its visit. A consequence of this rule is that with

this implementation we cannot insert edges that introduce new variables because the solver

can be called only after declaring all the variables and adding all the needed constraints.

Therefore, during the visit of the algorithm we must at first upload constraints to the

63

Table 7.1: Running Problem Suit 10 Times
ALL INSTANCES ONE INSTANCE CACHING MC

Problem ART (s) CRT (s) Result
P1 2.014 2.014 Match
P2 1.934 3.948 Match
P3 1.886 5.834 Match
P4 1.886 7.72 Match

P6 1.998 1.998 Not Match
P7 2.06 4.058 Not Match
P8 1.998 6.056 Not Match

P100 5.528 5.528 Match

solver with the AddConstraint method of the NuSMV class and then remove them with

the RemoveConstraint.

Therefore, during the visit of the algorithm we must at first upload constraints to the

solver with the AddConstraint method of the NuSMV class and then remove them with

the RemoveConstraint.

7.4 Experiments on Desktop

To understand the best option we collected data on running time for each problem in each

design alternative and the number of solved problems against time. From (Section 7.3) the

design alternatives can be implemented and tested in two alternative configurations and

we use the same problem suit as in Table5.1 for possible combinations of policy-contract

(mis)matching pairs.

We run our experiments on a Desktop PC (Intel(R) Pentium(R) D CPU 3.40GHz,

3389.442MHz, 1.99GB of RAM, 2048 KB cache size) with operating system Microsoft

Windows XP Professional Version 2002 Service Pack 3. The result is shown in Table 7.1.

For the sake of example we present the result obtained for alternative with ALL INSTANCES

ONE INSTANCE CACHING MC in Table 7.1. The results for all design alternatives are mapped into

diagram shown in Figure 7.2a for matching problems and Figure 7.2b for not matching

problems. Notice that we only provide the cumulative running time that is necessary

to solve all problems as for on-the-fly implementation experiments. This is important

because our goal is to match (or not match) all rules in a contract with all corresponding

rules in a policy. Thus, the value of the single problem is not important except for some

cases where the average output might be significantly off due to some off scale rule.

We singled out P100 as a challenging artificial problem because it has a large number of

states compared to the others: essentially this happened because we draw an automaton

64

0

1

2

3

4

5

6

7

8

9

1 2 3 4

NUMBER OF PROBLEMS SOLVED

T
IM

E
 (

s)

(a) Match succeeds for real policies

0

1

2

3

4

5

6

7

1 2 3

NUMBER OF PROBLEMS SOLVED

T
IM

E
 (

s)

(b) Match fails for real policies

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NUMBER OF PROBLEMS SOLVED

T
IM

E
 (

s)

M7
M8

(c) Matches among synthetic contracts and policies

M7: ALL INSTANCES ONE INSTANCE CACHING SOLVER

M8: ALL INSTANCES ONE INSTANCE CACHING MC

(d) Abbreviations for Configurations

Figure 7.2: Cumulative response time of matching algorithm on Desktop PC

modulo theory with 100 states and which traverse from one state to another by adding 1

to the number of SMS sent.

In this case there is a difference between M7 and M8, namely 5.387 s and 4.434 s

resp., that is M8 is better around 21.5% than M7. In order to study this anomaly in

more details, we generated more unreal problem sets: as P100 with combination of sent

SMS none, 1, 10, and 100 for both contract and policy. The data of the experiment is

given on Appendix D. The generated cases cumulative running time of implementation

is propositional to the number of problems solved (see Figure 7.2c). In this case the

difference between M7 and M8 is only around 9.8% still with M8 better than M7. This

result conforms to our intuition because M8 uses fewer calls to solver due to its caching

and thus save computations.

All methods seem to perform equally well because the problems are not stressful enough

for the different configurations. This is actually a promising result for the deployment to

65

the resource constrained in mobile device domain. However, we have not yet implemented

the same algorithm for a mobile platform.

In this chapter, we have given possible design decisions and run experiment on PC

for AMT simulation. Furthermore, we have detailed the time of the running on the

mobile platform for one design decision only to give the reader a feeling how the matching

algorithm with integrated decision procedure can run in real life and that it will take a

reasonable time. Our current implementation uses ALL INSTANCES ONE INSTANCE CACHING MC

configuration. ALL INSTANCES is preferred because of the nature of rules in policies when

an automaton is not complemented. ONE INSTANCE is chosen because of garbage collection

problem. CACHING MC is desired in order to save calls to solver for the already solved rules.

66

Chapter 8

IRM Optimization

In this chapter, we try to provide an answer to the following question: given

an untrusted code and a policy that a platform specifies to be inlined, how can

we obtain an optimized Inlined Reference Monitor ? To address this issue, we

propose six different framework models for optimization with respect to compo-

nents that are needed to be trusted or untrusted. We also describe an approach

for optimization based on automata theory. The key idea is that given a policy

that represent the desired security behavior of a platform to be inlined, we com-

pute an optimized policy with respect to the claims on the security behavior of

a application that we inject to the untrusted code.

8.1 Introduction

AMT is a general model, thus it can be used not only for matching security policies

but also in other enforcement mechanism for example Inlined Reference Monitor (IRM).

IRM is a flexible mechanism to enforce the security of untrusted applications. Even

if current version of IRM can work on rich system such as today’s smart phones, the

overhead is still too much for the next frontier of web applications: Java cards. Indeed,

the smart card technology [61] evolved with larger memories, USB and TCP/IP support

and the development of the Next-Generation (for short NG) Java Card platform [3, 4]

with Servlet engine. This latter technology is a full fledged Java platform for embedded

Web applications and opens new Web 2.0 opportunities such as NG Java Card Web 2.0

Applications. It can also serve as an alternative to personalized applications on remote

servers so that personal data no longer needs to be transmitted to remote third-parties.

Thus, optimizing redundant monitoring without compromising security is needed. The

key idea is that given a policy that represent the desired security behavior of a platform

to be inlined, we compute an optimized policy with respect to the claims on the security

67

behavior of a application (for short contract). Then, we use this optimized policy to inject

the untrusted code. In the first work [86] proposed IRM optimization for a constrained

history-based access control policy such as Chinese Wall policies using compiler optimiza-

tion approach. Unfortunately, this approach is severely limited by the expressivity of

the language: it only consider propositional conditions on policies. As a result even a

simple policy such as ”Only allows connections to urls starting with http” cannot be opti-

mized. An earlier work [50, 29] suggested to apply static program analysis as in compiler

optimization to tame the overhead of code instrumentation.

Three issues arise from the problem of IRM optimization. One issue regards the

questions of “How can we formalize the notion of optimization ?”. Our work attemps

to give a preliminary formalization using the concept of AMT . The second question is

“What is the optimal policy to be enforced with respect to the claimed applications policy?”.

In this issue, we are not interested in finding a unique minimum policy, given only the

policy itself, instead we are interested in finding the optimal policy guided by claimed

applications policy. The last issue is “Is this optimal policy computable with an efficient

algorithm ”?

This chapter attemps to answer the afore mentioned questions specifically by using

AMT formalization. We begin in Section 8.2 by identifying the different trust models

for IRM optimization, i.e. the relative position of the optimizer and the inliner with

respect to the trust border. We continue by optimization algorithm in Section 8.3 using

simulation from Chapter 6 as the basic block.

8.2 Security Models for Optimized IRM

In this section, we introduce our IRM trust models. Figure 2.1 from Chapter 2 illustrates

our general optimization workflow model. As we have already mentioned, this model is

a modification of original S×C workflow of [13]) by adding optimization step. First, a

code is analyzed in order to extract contract out of it. This can be done by trusted or

untrusted parties. If done by untrusted parties, then the claimed contract needs to be

verified whether it complies to the code. If it complies, then we simulate the contract

with the policy to verify if the policy is already enforced by the contract. On failure of

simulation, we optimize policy by discharging behaviors which are already enforced by a

contract and we inject this optimized policy to the code. The overall model consists of

the following components:

ContractExtractor and ClaimChecker The former extract policies from code based

on control flow graphs and possibly annotation existing on the code [38]. The latter is

the basic component of Proof-Carrying Code [63], where the untrusted code supplier

68

must provide with the code a safety proof that attests to the code’s safety properties.

In mobile system domain [44] implements a linear decision algorithm verifying that

annotated .NET binaries satisfy a class of policies using security and edit automata.

SimulationChecker uses fair simulation for AMT [59]. This key idea is based on

symbolic simulation [30, 52]. A system fairly simulates another system if and only if

in the simulation game, there is a strategy that matches with each fair computation

of the simulated system a fair computation of the simulating system. We can use

this techniques to decide if the update is acceptable by different notion of simulation.

Rewriter We use rewriter instead of inliner because it is not necessary to actually inline

the entire security automaton. Some example of works on rewriter are Naccio [31],

PoET/Pslang [28], and Polymer [56]. These approaches compile policy language into

plain Java and then into Java bytecode monitor which is injected into ordinary Java

bytecode by inserting calls in all the necessary places. Other rewriter uses reflection

[85] where policies are implemented as meta-objects bounded to application objects

at load time through bytecode rewriting. This approach is implemented using Kava

which provides a non-bypassable meta level. An alternative approach to rewriter is

an inliner, for example [26] that only inlines hooks to the monitor with the monitor

itself runs in a separate thread.

Optimizer can be performed by compiler optimization approach as in [86] or by our

approach described in (§8.3).

The IRM approach is facilitated by the trend toward using higher-level languages,

especially type safe languages, for software development. Not only do those languages

define application abstractions on which policies can be enforced, but they also provide

strong guarantees that can be used to ensure a secured application cannot compromise

its IRM. By leveraging these guarantees, an IRM security policy can provide a single

cohesive description of both the intent and the means by which a policy is enforced.

This potentially allows the IRM approach to give greater assurance, since enforcement

now relies on a trustworthy component of moderate size whose full specification can be

studied in isolation.

The main consideration for our models is the trade off between moving more processes

out of trusted part and the complexity of the whole process (inspired by model in [42]).

8.2.1 Rewriter on Trusted part

Model 1. In the simplest model (Figure 8.1a), the untrusted part consists of only Code.

First, the application’s contract (Contract) is extracted by ContractExtractor on

69

2010-02-19
I

Policy Contract

Optimizer

Code

ContractExtractor

SimulationChecker

OptPolicy

Yes

No

Rewriter

SafeCodeExecute

Trusted Untrusted

Execute

(a) Contract Extractor on Trusted part

2010-02-19
II

Policy
Contract

Optimizer

Code

ContractExtractor

SimulationChecker

OptPolicy

Yes
No

Rewriter

SafeCodeExecute

Trusted Untrusted

ClaimChecker

Yes

No

Execute

Rewriter

(b) Contract Extractor on Untrusted part

Figure 8.1: Rewriter on Trusted part

the trusted part. Then, a compliance of Contract to Policy is checked by Simula-

tionChecker. If the simulation succeed, then Code can be executed without further ado.

Otherwise, an an Optimizer is used to optimize Policy which gives result to OptPolicy.

Finally, the OptPolicy is injected by Rewriter which gives result an SafeCode that is

ready to be executed.

ContractExtractor extracts security relevant behaviors. Depending on Contract

representation, this extraction can be data flow analysis [6], control flow analysis [65],

abstract interpretation [24], model extraction [74], or contract extraction as in S×C[27, 13].

The feasibility depends on the available resources and environment. For example, in

mobile system when downloading an untrusted application. The memory is limited, i.e.

it is not desirable to not be able receving calls while downloading an app. The time is also

limited, because usually human expects a response in two second for asking a system to do

a certain work [1, 2], meaning the whole work-flow in Figure 8.1a. And contract extraction

is only a fraction of it. Thus, mechanisms as model extraction or contract extraction in

S×C is suitable for this domain. However, for system with sufficient resources, for example

off-line system testing before certification that allows hours of verification time, then data

flow analysis, control flow analysis, or abstract interpretation can be applied with higher

degree of confidence.

In this model, we restrict compliance check of Contract to Policy by “simulation”.

However, again it depends on Contract and Policy representation on how the “simula-

tion” is defined. In case both represented in AMT , then “simulation” is defined as fair

simulation and Algorithm 5 can be applied.

The same reasoning applies to Optimizer. This process also depends on how Contract

70

and Policy represented for example “optimization” can be performed by compiler opti-

mization approach as in [86]. In case both represented in AMT , then “optimization” is

defined in (§8.3).

The Rewriter process also depends on how OptPolicy represented. Some example

of works on rewriter are Naccio [31], PoET/Pslang [28], and Polymer [56], [85]. In case

OptPolicy represented in AMT , then hook-inliner approach as in [26], that only inlines

hooks to the monitor with the monitor itself runs in a separate thread, can be applied.

Model 2. In the second model (Figure 8.1b), ContractExtractor is positioned on

the untrusted part. The modification from Model 1 lies on an extra step where Contract

must be verified against Code. The cost of this extra step depends on the trade off between

exracting Contract and validating Contract against Code. If Contract does not comply

to Code, then optimization is not possible, thus Policy is directly inlined into Code. In

the case that Contract complies, SimulationChecker is applied and the flow goes

through as of Model 1.

Model 2 gives an advantage when the untrusted part has large resources for example

high computing ability. The idea is similar to Proof-Carrying Code[63] where the pro-

ducer provides a proof carried by an application. Some works have been developed along

this line, signature verifier in [37], or weakest precondition based annotation checker [7]

specified with ConSpec language[8].

8.2.2 Rewriter on Untrusted part

Model 3. The third model (Figure 8.2a) is similar to Model 1 but Rewriter is moved

to untrusted part. The modification from Model 1 lies on an extra step where OptPolicy

must be verified against Code. This step is needed because the Rewriter is on untrusted

part thus there exists uncertainty Rewriter really injecting OptPolicy. The cost of this

extra step depends on the trade off between injecting Code with OptPolicy and verifying

OptPolicy against Code.

Positioning Rewriter in untrusted part on Model 3 (and later on Model 4) is similar

to the approach of Hamlen’s certified IRM [44] where they use concept of type-safety in

the SafeCode.

Model 3 gives an advantage when the system is ditributed and untrusted code produc-

ers may involve in making optimization effective. For example in Yan and Fong’s work

in[86], where IRM optimization framework can be distributed with an untrusted code

producer involves in optimization.

71

2010-02-19
III

Policy Contract

Optimizer

Code

ContractExtractor

SimulationChecker

OptPolicy

Yes

No

Rewriter

SafeCode

Execute

Trusted Untrusted

ClaimChecker

Reject
No

Yes

Execute

(a) Contract Extractor on Trusted part

2010-02-19
IV

Policy

Contract

Optimizer

Code

ContractExtractor

SimulationChecker

OptPolicy

Yes

No

Rewriter

SafeCode

Execute

Trusted Untrusted

ClaimChecker

Reject

ClaimChecker
No

Yes

No

Yes

Execute

(b) Contract Extractor on Untrusted part

Figure 8.2: Rewriter on Untrusted part

Model 4. The fourth model (Figure 8.2b) is similar to Model 2 by positioning Rewriter

on untrusted part. The modification from Model 2 lies on an extra step where OptPolicy

must be verified against Code. The reasoning is the same as in Model 3.

Model 4 derives the similar advantage as Model 2 when the untrusted part has large

resources for example high computing ability and from Model 3 when the system is

ditributed and untrusted code producers may involve in making optimization effective.

However, Model 4 adds cost of extra steps both for verifying Contract against Code and

OptPolicy against Code.

8.2.3 Optimizer and Rewriter on Untrusted part

Model 5. The fifth model (Figure 8.3a) is similar to Model 3 (thus also to Model 1). In

Model 5, not only Rewriter resides on untrusted part but also Optimizer. The modifi-

cation from Model 3 lies on optimization process being done on untrusted part. However,

this does not add any extra step to the work-flow because verification of OptPolicy

against Code is adequate.

Model 5 derives the similar advantage as Model 3 when the system is ditributed and

untrusted code producers may involve in making optimization effective. Another ad-

vantage of this models is when the untrusted part has large resources for example high

computing ability for optimization without adding any extra step to the work-flow in

Model 3. Thus, compared to Model 3, Model 5 is better.

72

2010-02-19
V

Policy Contract

Optimizer

Untrusted Code

ContractExtractor

SimulationChecker

OptPolicy

Yes No

Rewriter

SafeCode

Execute

Trusted Untrusted

ClaimChecker

Reject
No

Yes

Execute

(a) Contract Extractor on Trusted part

2010-02-19
VI

Policy

Contract

Optimizer

Code

ContractExtractor

SimulationChecker

OptPolicy

Yes

No

Rewriter

SafeCode

Execute

Trusted Untrusted

ClaimChecker

Reject

ClaimChecker
No

Yes

No

Yes

Execute

(b) Contract Extractor on Untrusted part

Figure 8.3: Optimizer and Rewriter on Untrusted part

Model 6. The sixth model (Figure 8.3b) has most of the components out of the trusted

domain. In Model 6, after running the ContractExtractor, Contract is checked

against Code using the ClaimChecker. If the Contract does not comply to Code, then

Code is rejected. However, rejection might be too restrictive, thus another option is to

deploy directly the Policy object in charge on monitoring in Code by using the Rewriter

which gives result an SafeCode.

Model 6 derives the similar advantages and disadvantages as Model 4. However, Model

6 also has another advantage as in Model 5, namely when the untrusted part has large

resources for optimization without adding any extra step to the work-flow in Model 4.

Thus, compared to Model 4, Model 6 is better.

Overall the six models, the main constraint in feasibility of enforcement mechanisms to

be applied is the available resources and environment where the models are to be applied.

8.3 A Search Procedure for IRM Optimization

The first issue to be solved in the problem of IRM optimization is regarding formalization

of the notion of optimization. Our work attemps to give a preliminary formalization using

the concept of AMT . In AMT the problem of searching an optimized policy can be

stated intuitively as follows: given two automata AC and AP representing respectively

the formal specification of a contract and of a policy, we have an efficient IRM AO derived

from AP with respect to AC when:

73

2010-02-20

No-Inline

C=P C

P

C P P

C

C P

C

P

P

(a) No rewriting needed

2010-02-20

No-Inline

C=P C

P

C P P

C

C P

C

P

P

(b) Inline the whole policy

2010-02-20

No-Inline

C=P C

P

C P P

C

C P

C

P

P

(c) Inline unsimulated

policy

Figure 8.4: Optimization alternatives

1. every security-relevant event invoked by the intersection of AO and AC can also be

invoked by AP , and

2. AO has smaller or equal number of transitions or states compared to AP .

Intuitively, there are three possible cases in inlining a policy.

no-inline In this case no policy is needed to be inlined because contract complies to

policy. There two cases, the first when contract is equal to policy and the second

case is when contract subsumed by policy (Figure 8.4a).

inline-all In this case all policy needs to be inlined because contract does not comply

to policy at all. There two cases, the first when contract is completely differs from

policy and the second case is when policy is subsumed by contract (Figure 8.4b).

inline-partial In this case some policy needs to be inlined because contract complies

partially to policy. Optimization is intended to be applied to this case (Figure 8.4c).

To illustrate possible cases in inlining a policy, we give a simple example with a simple

alphabet {a, b, c, d, e, f, g, m, n} that represent security relevant behaviors. no-inline case

is shown in the first two rows in Figure 8.6 and inline-all is shown in the last two rows in

Figure 8.5.

For example we have a rule for a contract and a rule for a policy, then the optimized

rule of the policy is represented as in Figure 8.6.

The second issue is finding the optimal policy to be enforced with respect to the

claimed applications policy. Thus, we are not interested in finding a unique minimum

policy, given only the policy itself, instead we are interested in finding the optimal policy

guided by claimed applications policy. This is can be solved by Algorithm 6 which is a

modification of Algorithm 5. The idea is, during simulation game, we search for states

which are simulated from the policy initial state and set the outgoing transition as true,

meaning allowed all actions because they are already guaranteed by the contract shown

in Algorithm 6.

74

2010-02-21

Inline Alternative

Inline-type Contract Policy

C

P

C=P

d

b

c

p1p0

a

b

c

c1c0

a

ca

b

c

c1c0
b

c

p1p0

a

C P

P

C
b

c

c1c0

a

c

d

p1p0

b

c

p1p0

b

c

c1c0

a

Figure 8.5: Inline Type Examples

2010-02-21

Inline Alternative

Inline-type

Contract

C P

d

b
c2

a
c0 c1 c3 c4

e

d

f

g

Policy

Optimized
Policy

b,

n

d

p3

a,

m
p0 p1 p4 p5

e

c

f

g

b,

n

*

p3

a,
m

p0 p1

c

Figure 8.6: Optimization Example

75

Algorithm 6 Optimization Algorithm

Input: two AMT automata AC and AP

1: Construct compliance game graph G = 〈V1, V0, E, l〉
2: for all v ∈ V do
3: µ(v) := µnew(v) := 0
4: repeat
5: µ := µnew

6: for all v ∈ V0 do

7: µnew(v) :=

{
∞ if {µ(w)|(v, w)} = ∅
min {µ(w)|(v, w)} otherwise

8: for all v ∈ V1 do
9: maxv := max {µ(w)|(v, w) ∈ E}

10: µnew(v) :=

∞ if maxv = ∞
0 if l(v) = 0
maxv + 1 if l(v) = 1
maxv if l(v) = 2

11: until µ = µnew

12: if µ(v(s0c,s0p)) < ∞ then
13: Do Nothing //no-inline, because simulation exists
14: else
15: Add v0 to ToBeInlined

16: for all v ∈ (V1 − {v0}) do
17: if Reachable(v) then
18: if (µ(v) = ∞) then
19: Add v to ToBeInlined

20: else
21: Add v to SimulatedToBeInlined

22: if SimulatedToBeInlined = ∅ then
23: Inline AP //inline-all
24: else
25: for all v = v(sC ,sP) ∈ ToBeInlined do
26: Add sP , in-coming transitions of sP , and out-going transitions of sP into AO

27: Compute shortest distance from initial state to all the states called it TmpDistance

28: for all v = v(sC ,sP) ∈ SimulatedToBeInlined do
29: tmpElement.state := sP ; tmpElement.stat := Live; tmpElement.dist := TmpDistance[sP]
30: Add tmpElement.dist to TempStatus

31: OrderedSimulatedToBeInlined := Order(SimulatedToBeInlined)
32: for all tmp ∈ OrderedSimulatedToBeInlined do
33: if TempStatus[tmp.state].stat <> Kill then
34: for all tmpNextState ∈ tmp.succ do
35: Set TempStatus[tmpNextState].stat = Kill

36: Add tmp.state, in-coming transitions of tmp.state, and out-going transition of tmp.state

as * into AO

37: Inline AO //inline-partial
76

At the first step (line 1) a compliance game graph G = 〈V1, V0, E, l〉 is constructed

out of automata AC and AP . After finishing lifting compliance measure possible cases

in inlining a policy. We analyze the three possible cases in inlining a policy. First case

contract complies to policy either when contract is equal to policy or when contract

subsumed by policy and no-inline is needed (line 13). It occurs when simulation exists.

If there exists no simulation, then we collect vertices which are not simulated into

set ToBeInlined and vertices which are simulated into set SimulatedToBeInlined and

ensure that they are reachable from initial vertex (v(s0C ,s0P)) in line 17. At least one

elemet is in ToBeInlined because there exists no simulation, hence µ(v(s0c,s0p)) < ∞ and

initial vertex is added into set ToBeInlined.

Second case occurs when contract does not comply to policy at all and inline-all is

needed (line 23). It occurs when contract is completely differs from policy or when policy

is subsumed by contract (SimulatedToBeInlined = ∅).
Third case occurs when some policy needs to be inlined because contract complies

partially to policy (inline-partial. Optimization occurs in this case. First, all the states

and transitions which are not simulated, i.e. ToBeInlined, are inlined (line 25). Next, to

add simulated state with sucht that it is the nearest to the initial state, we introduce some

data structure. A an indexed table of tuple ¡state,(stat,dist)¿ called TempStatus to hold

the temporary status of states, where state is the key of the table, stat is the status of that

state with Live meaning still in process, and Kill meaning cannot be added to optimized

automaton, and dist is the shortest path from the initial state to that state. dist can be

computed using Dijkstra’s algorithm with initial state assigned 0 distance. First, all states

are set to Live meaning it is still in process. Next, for each sP in SimulatedToBeInlined

we make list of tuple ¡state,succ¿ called OrderedSimulatedToBeInlined where succ con-

sists reachable states from sP with longer distance to initial state. At each step, an

element from OrderedSimulatedToBeInlined is analyzed for possibility to insert. If the

state’s status, say sP is not Kill, then we mark all reachable states from sP as KillThen.

Then add sP , in-coming transitions of sP , and set out-going transition of sP as *, meaning

allowed all actions.

We are now in the position to state our optimization result using fair simulation:

Proposition 8.3.1 Let the theory T be decidable with an oracle for the SMT problem in

the complexity class C then:

1. The policy optimization problem for AMT using fair simulation is decidable in time

O(2. |E| .|MG|+ |Sp|2 + |Sp| . |∆p
T |).

2. The policy optimization problem for AMT using fair simulation is decidable in space

O(|V |+ |Sp|+ LOG(|Sp| . |∆p
T |)).

77

Proof. The policy optimization problem for AMT using fair simulation can be reduced

to a fair simulation between a contract with a security policy with adding processes for

constructing the optimized policy. Algorithm 6 which is a modification of Algorithm 5

can solve this problem. The algorithm takes as input the midlet’s claim and the mobile

platform’s policy and constructs compliance game graph G = 〈V1, V0, E, l〉.
Correctness.

As in proof of Proposition 6.3.1, the correctness derived from Jurdziński’s algorithm on

parity games [52]. Jurdziński defined a parity game between two players and defining

and even player (in our case Policy) wins when the lowest priority occuring infinitely

often in the play is even (in our case Policy can return to compliance level 0 infinitely

often). He proposed computing the game using progress measure which is defined as

MG = [1]× [n1 + 1] [1]× [n3 + 1]× . . .× [1]× [nd−1 + 1], where d is the maximum priority

in the game. In our setting, we slighty modify the Jurdziński progress measure [52] to

compliance measure where instead of a pair (0, x) we only use x. As we have mentioned

afore, this is due to our observation of our domain where we only have 3 priorities, namely

l(v) ∈ 0, 1, 2 thus for ordering (0, x) ≥l(v) (0, x′) the first component will not effect the

ordering.

Jurdziński reasoned that each vertex can only be lifted |MG| times. This lifting pro-

cedure is implemented in Algorithm 5 presented as a loop where compliance measure

progressing until reaching a pre-fixed point (µ = µnew). He also defined that Even has

a winning strategy from precisely the vertices v where after its lifting algorithm halts

has µ(v) < ∞. However, in contract-policy matching we are interested when there is a

winning strategy from the initial vertex v(s0c,s0p). Thus, in Algorithm 6 Policy wins when

µ(v(s0c,s0p)) < ∞.

If there exists simulation no-inline is needed (line 13). If there exists no simulation,

then we collect vertices which are not simulated into set ToBeInlined and vertices which

are simulated into set SimulatedToBeInlined and ensure that they are reachable from

initial vertex (v(s0C ,s0P)) in line 17. This solves, the second case when contract does not

comply to policy at all and inline-all is needed (line 23). Third case occurs when some

policy needs to be inlined because contract complies partially to policy (inline-partial.

Optimization occurs in this case. First, all the states and transitions which are not

simulated, i.e. ToBeInlined, are inlined (line 25).

Next, we construct TempStatus to hold the temporary status of states then all states

are set to Live meaning it is still in process. For each sP in SimulatedToBeInlined,

OrderedSimulatedToBeInlined is computed where succ consists reachable states from sP

with longer distance to initial state. At each step, an element from OrderedSimulatedToBeInlined

is analyzed for possibility to insert. If the state’s status, say sP is not Kill, then we mark

78

all reachable states from sP as KillThen. Then add sP , in-coming transitions of sP , and

set out-going transition of sP as *, meaning allowed all actions. Algorithm 6 halts either

in no-inline, or inline-all, or inline-partial has been processed.

Termination. This optimization using Algorithm 6 terminates because the parity game

terminates and each step in subprocedure if there exists no simulation (begins from line 14)

halts.

Complexity. As in proof of Proposition 6.3.1, the time complexity analysis follows as

in lifting procedure in Jurdziński [52]. Thus, the time complexity of simulation part of

Algorithm 6 is as in Algorithm 5, i.e. O(2. |E| .|MG|). Adding states from ToBeInlined

into AO has time complexity of O(|V1|) by Lemma 6.3.1, it is in O(|Sc| . |Sp|). While

adding transitions from ToBeInlined into AO has time complexity of O(|∆p
T |). Com-

puting distance in TempStatus using Dijkstra’s like algorithm has time complexity of

O(|Sp|2) if we do not consider a smart implementation of it. Computing reachable states

in OrderedSimulatedToBeInlined has time complexity of O(|Sp| . |∆p
T |). At each step,

an element from OrderedSimulatedToBeInlined is analyzed for possibility to insert. If

the state’s status, say sP is not Kill, then we mark all reachable states from sP as KillThen.

Then add sP , in-coming transitions of sP , and set out-going transition of sP as *. This

step has time complexity of O(|Sp| . |∆p
T |). Thus, the time complexity of Algorithm 6 is

O(2. |E| .|MG|+ |Sp|2 + |Sp| . |∆p
T |).

As in time complexity analysis, the space complexity follows as in lifting procedure in

Jurdziński [52] in proof of Proposition 6.3.1. Thus, the space complexity of simulation

part of Algorithm 6 is as in Algorithm 5, i.e. O(|V |), where the total number of vertices

equals to V = |V1| + |V0|. Adding states and transitions from ToBeInlined into AO has

space complexity of O(|V1|) by Lemma 6.3.1 is in O(|Sc| . |Sp|).
Computing distance in TempStatus using Dijkstra’s like algorithm has space complex-

ity of O(|Sp|). Computing reachable states in OrderedSimulatedToBeInlined has space

complexity of O(LOG(|Sp| . |∆p
T |)). At each step, an element from OrderedSimulatedToBeInlined

is analyzed for possibility to insert. If the state’s status, say sP is not Kill, then we mark

all reachable states from sP as KillThen. Then add sP , in-coming transitions of sP , and

set out-going transition of sP as *. This step has space complexity of O(LOG(|Sp| . |∆p
T |)).

Thus, the space complexity of Algorithm 6 is O(|V |+ |Sp|+ LOG(|Sp| . |∆p
T |)). 2

The third issue we can compute such an optimal policy with an efficient algorithm.

From Proposition 8.3.1 the time complexity is O(2. |E| .|MG| + |Sp|2 + |Sp| . |∆p
T |) and

space complexity is O(|V | + |Sp| + LOG(|Sp| . |∆p
T |)). Our current result has not yet

satisfied it.

79

80

Chapter 9

Conclusions and FutureWork

This thesis provides a formal model called Automata Modulo Theory (AMT)

that shows the possibility to define both safety and liveness policies in a general

way, and to perform matching of those policies efficiently with the tractability

limit in the complexity of the satisfiability procedure for the theories incorpo-

rated with the proof of correctness and completeness of our matching algorithms.

9.1 Conclusions

The security policies require both safety and liveness properties. AMT extends

Büchi Automata (BA) with edges labeled by expressions in a decidable theory. AMT
is apt to accept both finite and infinite input with acceptance condition as in BA. This

feature enables AMT to express both safety and liveness properties including renewal

properties which are not common but exist in real security policies.

The mechanism for defining a general security policies (that is not platform-specific).

AMT has edges labeled by expressions in a decidable theory. The theory can be a com-

bination of theories by taking into account its complexity. Due to the tractability limit of

AMT which is essentially the complexity of the satisfiability procedure for the theories,

called as subroutines. In our case, we have applied a signature of API theory where the

names from Java VM are used for notation e.g. javax.microedition.

The mechanism for representing an infinite structure as a finite structure. To cap-

ture realistic scenarios with potentially infinite transitions (e.g. “only connections to urls

starting with https”) AMT abstracts away these transitions as an expression in a decid-

able theory. Thus transforming an infinite system into a finite one. However, there is still

81

an open problem in finding a suitable approximation of a finite system given an infinite

one.

Efficiency. Our goal is to provide this midlet-contract vs platform-policy matching on-

the-fly (during the actual download of the midlet), hence issues such as small memory

footprint and effective computations play a key role. The tractability limit is the complex-

ity of the satisfiability procedure for the background theories used to describe expressions

with the oracle in the complexity class C, then the following results can be drawn:

• The contract-policy matching problem for AMT using language inclusion is decid-

able in LIN − TIMEC and in NLOG− SPACEC-complete (Proposition 4.5.1).

• The contract-policy matching problem for AMT using fair simulation defined in

Algorithm 5 is decidable in time O(2. |E| .|MG|) and in space O(|V |) (Proposi-

tion 6.3.2).

• The policy optimization problem for AMT using fair simulation is decidable in time

O(2. |E| .|MG| + |Sp|2 + |Sp| . |∆p
T |) and in space O(|V | + |Sp| + LOG(|Sp| . |∆p

T |))
(Proposition 8.3.1).

The feasibility of our approach was shown by developing a prototype on Linux op-

erating system which has also been ported to the mobile for actual detailed profiling,

namely HTC P3600 (3G PDA phone) and on Microsoft r©Windows Mobile r©5.0 operat-

ing system. The following conclusions can be drawn on the feasibility and efficiency of

the system based on our experimental results:

• AMT makes it possible to match the mobile’s policy and the midlet’s contract by

mapping the problem into a variant of the on-the-fly product and emptiness test from

automata theory, without symbolic manipulation procedures of zones and regions

nor finite representation of equivalence classes. The tractability limit is essentially

the complexity of the satisfiability procedure for the theories, called as subroutines,

where most practical policies require only polynomial time decision procedures [58].

• This matching using language inclusion however has a limitation in the structure of

the policy automaton (only deterministic automaton). The constraint arises from the

AMT complementation. As BA complementation, the non-deterministic comple-

mentation is complicated and demonstrates exponential blow-up in the state space

[20]. Safra in [70] gives a better lower bound (2O(n log n)) for nondeterministic BA

complementation, however it is still exponential(see [83]).

82

• The determinism constraint complies to our domain of interest because the security

policies in our application domain are naturally deterministic, as the platform owner

should have a clear idea on what to allow or disallow. Furthermore, to cope with

non-deterministic AMT , we can use the approach as in [59].

9.2 Future Work

An approach to address scalability (if our smart-phone must cope with the web applica-

tions of its internal web server) is to give up soundness of the matching and use algorithms

for simulation and testing. A challenge to be addressed is how to measure the coverage of

approximate matching. Which value should give a reasonable assurance about security?

Should it be an absolute value? Should it be in proportion of the number of possible

executions? In proportion to the likely executions? An interesting approach could be to

recall to life a neglected section on model checking by Courcoubetis et al [23] in which

they traded off a better performance of the algorithm in change for the possibility of

erring with a small probability.

A second approach is to use the contract as a model of the application in order to

generate security tests by applying techniques from Model Based Testing [84]. Losing

soundness is a major disadvantage: an application may pass all the generated tests and

still turn out to violate the contract once fielded. However, the advantages are also

important: no annotations on the application source code are needed, and the tests

generated from the contract can be easily injected in the standard platform testing phase,

thus making this approach very practical. A challenge to be addressed here is how to

measure the coverage of such security tests. When are there enough tests to give a

reasonable assurance about security?

A known problem with security automata and infinity yet to be addressed is the

encoding of policies such as “we must allow certain strings that we have seen in the past”.

If the set of strings is unbounded, then it is difficult (if not impossible) to encode it with

finite states.

Another interesting problem for future work is a scenario when the claimed security

contract is missing (as is the case for current MIDP applications). In that case, based on

the platform security policy, the “claimed” security contract could be inferred by static

analysis as an approximation automaton. If such an approximation is matched, then

monitoring the code becomes unnecessary. The feasibility of this approach depends on

the cost of inferring approximation automata on-the-fly.

83

Bibliography

[1] Response time in man-computer conversational transactions. ACM Press, 1968.

[2] The information visualizer, an information workspace. ACM Press, 1991.

[3] Card specification version 2.2. Technical report, GlobalPlatform, March 2006. Report

available at www.globalplatform.org.

[4] Confidential card content management card specification v 2.2 - amendment a.

Public Release GPC SPE 007, GlobalPlatform, October 2007. Report available at

www.globalplatform.org.

[5] W. Ackermann. Solvable Cases of the Decision Problem. North Holland Pub. Co.,

1954.

[6] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: principles, techniques, and tools.

Addison-Wesley, 1986.

[7] I. Aktug, M. Dam, and D. Gurov. Provably correct runtime monitoring. J. of Logic

and Algebraic Programming, 2009.

[8] I. Aktug and K. Naliuka. Conspec - a formal language for policy specification. In

Proc. of the 1st Int. Workshop on Run Time Enforcement for Mobile and Distributed

Systems (REM 2007), Dresden, Germany, 2007.

[9] C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating

validity checker. In Proc. of the 16th Int. Conf. on Computer Aided Verification

(CAV’04), volume 3114 of LNCS, pages 515–518. Springer-Verlag, 2004.

[10] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In Found. of

Comp. Security, 2002.

[11] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with polymer. In

Proc. of the ACM SIGPLAN 2005 Conf. on Prog. Lang. Design and Implementation,

pages 305–314. ACM Press, 2005.

85

[12] L. Bauer, J. Ligatti, and D. Walker. Edit automata: Enforcement mechanisms for

run-time security policies. Int. J. of Inform. Sec., 4(1-2):2–16, 2005.

[13] N. Bielova, N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Matching in security-

by-contract for mobile code. J. of Logic and Algebraic Programming, 78:340–358,

May-June 2009.

[14] N. Bielova, F. Massacci, and I. Siahaan. Testing decision procedures for security-by-

contract. In Joint Workshop on Found. of Comp. Sec., Automated Reasoning for Sec.

Protocol Analysis and Issues in the Theory of Sec. (FCS-ARSPA-WITS’08), 2008.

[15] N. Bielova, F. Massacci, and I. Siahaan. Testing decision procedures for security-by-

contract: Extended abstract. IEEE Symp. on Logic in Comp. Scie. and Comp. Sec.

Found. Workshop (LICS-CSF’08) short talk in joint session, June 2008.

[16] N. Bielova, M. Dalla Torre, N. Dragoni, and I. Siahaan. Matching policies with

security claims of mobile applications. In Proc. of the 3rd Int. Conf. on Availability,

Reliability and Security (ARES’08). IEEE Press, 2008.

[17] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P.v. Rossum, and

R. Sebastiani. Efficient satisfiability modulo theories via delayed theory combination.

In K. Etessami and S.K. Rajamani, editors, Proc. of the 17th Int. Conf. on Computer

Aided Verification (CAV’05), volume 3576 of LNCS, pages 335–349. Springer-Verlag,

2005.

[18] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P.v. Rossum, and

R. Sebastiani. MathSAT: Tight integration of SAT and mathematical decision pro-

cedures. J. of Autom. Reas., 35(1):265–293, 2005.

[19] R. E. Bryant, S.K. Lahiri, , and S. A. Seshia. Modeling and verifying systems using a

logic of counter arithmetic with lambda expressions and uninterpreted functions. In

Proc. of the 14th Int. Conf. on Computer Aided Verification (CAV’02), LNCS, pages

78–92. Springer-Verlag, 2002.

[20] J.R. Büchi. On a decision method in restricted second-order arithmetic. In E. Nagel

et al., editor, Int. Cong. on Logic, Methodology and Philosophy of Science, pages

1–11. Stanford University Press, 1962.

[21] B.V. Cherkassky and A.V. Goldberg. Negative-cycle detection algorithms. Mathe-

matical Programming, 85(2):277–311, 1999.

86

[22] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-

bastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model check-

ing. In Proc. of the 14th Int. Conf. on Computer Aided Verification (CAV’02), LNCS,

pages 359–364. Springer-Verlag, 2002.

[23] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algo-

rithms for the verification of temporal properties. Formal Methods in Syst. Design,

1(2-3):275–288, 1992.

[24] P. Cousot and R. Cousot. Abstract interpretation frameworks. J. of Logic and

Computation, 2(4):511–547, 1992.

[25] L. de Moura and N. Bjørner. Z3: An efficient smt solver. In Proc. of the 14th

Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’08), pages 337–340. Springer-Verlag, 2008.

[26] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Siahaan, and

D. Vanoverberghe. Security-by-contract on the .NET platform. Information Security

Tech. Rep., 13(1):25 – 32, 2008.

[27] N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract: Toward

a Semantics for Digital Signatures on Mobile Code. In Proc. of the 4th European PKI

Workshop Theory and Practice (EUROPKI’07), page 297. Springer-Verlag, 2007.

[28] U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforce-

ment. PhD thesis, Department of Computer Science, Cornell University, 2004.

[29] U. Erlingsson and F.B. Schneider. IRM enforcement of Java stack inspection. In

Proc. of the 2000 IEEE Symp. on Security and Privacy, pages 246–255, 2000.

[30] K. Etessami, T. Wilke, and R. Schuller. Fair simulation relations, parity games,

and state space reduction for büchi automata. SIAM J. on Comp., 34(5):1159–1175,

2005.

[31] D. Evans. Policy-Directed Code Safety. PhD thesis, MIT, 1999.

[32] F. Piessens F. Massacci and I. Siahaan. Security-by-contract for the future internet.

In Proc. of the 1st Future Internet Symposium (FIS 2008), LNCS, pages 29–43.

Springer-Verlag, 2008.

[33] F. Piessens F. Massacci and I. Siahaan. Security-By-Contract for the Future Internet

? In 2nd Workshop on Formal Languages and Analysis of Contract-Oriented Softw.

(FLACOS ’08), 2008.

87

[34] M. Fitting. First-order logic and automated theorem proving. Springer-Verlag, 1996.

[35] P. Gastin, B. Moro, and M. Zeitoun. Minimization of counterexamples in SPIN.

In Proc. of the 11th Int. SPIN Workshop, volume 2989 of LNCS, pages 92–108.

Springer-Verlag, 2004.

[36] S. Ghilardi. Model-theoretic methods in combined constraint satisfiability. J. of

Autom. Reas., 33(3):221–249, 2004.

[37] D. Ghindici, G. Grimaud, and I. Simplot-Ryl. An information flow verifier for small

embedded systems. In D. Sauveron et al., editor, Proc. Workshop in Information

Security Theory and Practices: Smart Cards, Mobile and Ubiquitous Computing Sys-

tems (WISTP’07), volume 4462 of LNCS, pages 189–201. Springer-Verlag, May 2007.

[38] D. Ghindici, I. Simplot-Ryl, and J.-M. Talbot. A sound analysis for secure informa-

tion flow using abstract memory graphs. In The 3rd Int. Conf. on Fundamentals of

Sw. Eng. (FSEN’09), 2009.

[39] L. Gong, G. Ellison, and M. Dageforde. Inside Java 2 Platform Security: Architec-

ture, Api Design, and Implementation. Addison-Wesley Professional, 2003.

[40] S. Gurumurthy, R. Bloem, and F. Somenzi. Fair simulation minimization. In Proc.

of the 14th Int. Conf. on Computer Aided Verification (CAV’02), pages 610–624.

Springer-Verlag, 2002.

[41] L.G. Hacijan. A polynomial algorithm in linear programming. In Dokl. Akad. Nauk

SSSR, volume 244, pages 1093–1096, 1979.

[42] K. Hamlen. Security policy enforcement by automated program-rewriting. PhD thesis,

Cornell University, 2006.

[43] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for enforce-

ment mechanisms. ACM Trans. Program. Lang. Syst., 28(1):175–205, 2006.

[44] K.W. Hamlen, G. Morrisett, and F.B. Schneider. Certified in-lined reference monitor-

ing on .net. In Proc. of the 2006 workshop on Prog. Lang. and analysis for security,

pages 7–16. ACM Press, 2006.

[45] M. Hennessy and H. Lin. Symbolic bisimulations. In MFPS’92: Selected papers of the

meeting on Math. Foundations of Programming Semantics, pages 353–389. Elsevier

Sci. Publishers B. V., 1995.

[46] T.A. Henzinger, O. Kupferman, and S.K. Rajamani. Fair simulation. In Proc. of of

the 8th Int. Conf. on Concurrency Theory, pages 273–287. ACM Press, 1997.

88

[47] M. Hilty, A. Pretschner, C. Schaefer, and T. Walter. Usage control requirements in

mobile and ubiquitous computing applications. In Proc. of the Int. Conf. on Sys.

and Net. Comm. (ICSNC 2006), pages 27–27. IEEE Press, 2006.

[48] G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In Proc.

of the 2nd Int. SPIN Workshop, pages 23–32. American Mathematical Society, 1996.

[49] G.J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-

Wesley Professional, 2004.

[50] C. Jeffery, W. Zhou, K. Templer, and M. Brazell. A lightweight architecture for

program execution monitoring. ACM SIGPLAN Notices, 33(7):67–74, 1998.

[51] N.D. Jones. Space-bounded reducibility among combinatorial problems. J. of Comp.

and Syst. Sci., 11(1):68–85, 1975.

[52] M. Jurdzinski. Small progress measures for solving parity games. In STACS ’00: Proc.

of the 17th Annual ACM Symposium on Theoretical Aspects of Computer Science,

pages 290–301. Springer-Verlag, 2000.

[53] S. Krstic, A. Goel, J. Grundy, and C. Tinelli. Combined satisfiability modulo para-

metric theories. In Proc. of the 13th Int. Conf. on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’07), volume 4424, page 602. Springer-

Verlag, 2007.

[54] S.K. Lahiri and M. Musuvathi. An efficient decision procedure for UTVPI constraints.

In Proc. of the 5th Int. Workshop on Frontiers of Combining Systems (FroCoS’05),

volume 3717. Springer-Verlag, 2005.

[55] B. LaMacchia and S. Lange. .NET Framework security. Addison Wesley, 2002.

[56] J.A. Ligatti. Policy Enforcement via Program Monitoring. PhD thesis, Princeton

University, 2006.

[57] F. Massacci, N. Dragoni, and I. Siahaan. A Security-by-Contracts Architecture for

Pervasive Services. In 1st Workshop on Formal Languages and Analysis of Contract-

Oriented Softw. (FLACOS ’07), 2007.

[58] F. Massacci and I. Siahaan. Matching midlet’s security claims with a platform secu-

rity policy using automata modulo theory. In Proc. of the 12th Nordic Workshop on

Secure IT Systems (NordSec’07), 2007.

89

[59] F. Massacci and I. Siahaan. Simulating midlet’s security claims with automata mod-

ulo theory. In Proc. of the 2008 workshop on Prog. Lang. and analysis for security,

pages 1–9, 2008.

[60] F. Massacci and I. Siahaan. Optimizing IRM with Automata Modulo Theory. In

Proc. of the 5th Int. Workshop on Security and Trust Management (STM 2009),

2009.

[61] K.E. Mayes and K. Markantonakis. Smart Cards, Tokens, Security and Applications.

Springer-Verlag, 2008.

[62] K. Naliuka. Security Run-Time Monitoring for Mobile Devices. PhD thesis, Univer-

sity of Trento, 2008.

[63] G.C. Necula. Proof-carrying code. In Proc. of the 24th ACM SIGPLAN-SIGACT

Symp. on Princ. of Prog. Lang., pages 106–119. ACM Press, 1997.

[64] G. Nelson and D.C. Oppen. Simplification by cooperating decision procedures. ACM

Transactions on Programming Languages and Systems (TOPLAS), 1(2):245–257,

1979.

[65] F. Nielson and H.R. Nielson. Flow logic for imperative objects. In Proc. of the 23rd

Int. Symp. on Math. Foundations of Comp. Scie., pages 220–228. Springer-Verlag,

1998.

[66] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories:

from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). J. of

the ACM, 53(6):937–977, 2006.

[67] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically Rich

Application-Centric Security in Android. In Proc. of the 25th Annual Comp. Sec.

Applications Conf. (ACSAC’09), 2009.

[68] C.H. Papadimitriou. On the complexity of integer programming. J. of the ACM,

28(4):765–768, 1981.

[69] P.H. Phung, D. Sands, and A. Chudnov. Lightweight Self-Protecting JavaScript. In

Proc. of the 4th ACM Symposium on Information Comp. and Comm. Sec. (ASIACCS

2009), pages 10–12, 2009.

[70] S. Safra. On the Complexity of omega-Automata. In IEEE Symp. on Found. Comp.

Science (FOCS’88), pages 319–327, White Plains, New York, USA, 1988. IEEE Press.

90

[71] F.B. Schneider. Enforceable security policies. ACM Trans. on Inf. and Syst. Security,

3(1):30–50, 2000.

[72] S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. Techni-

cal Report 2004/06, Universität Stuttgart, Fakultät Informatik, Elektrotechnik und

Informationstechnik, November 2004.

[73] R. Sebastiani. Lazy satisfiability modulo theories. J. on Satisfiability, Boolean Mod-

eling and Computation, 3:141–224, 2007.

[74] R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D.C. DuVarney. Model-

carrying code: a practical approach for safe execution of untrusted applications. In

Proc. of the 19th ACM Symp. on Operating Syst. Princ., pages 15–28. ACM Press,

2003.

[75] R. Smith, C. Estan, S. Jha, and I. Siahaan. Fast signature matching using extended

finite automaton (xfa). In Proc. of the 4th Int. Conf. on Inform. Syst. Sec. (ICISS

2008), pages 158–172, 2008.

[76] C. Talhi, N. Tawbi, and M. Debbabi. Execution monitoring enforcement under

memory-limitation constraints. Inform. and Comp., 206(2-4):158–184, 2007.

[77] MOBIUS Project Team. Framework- and application-specific security requirements.

Public Deliverable D1.2, Mobility, Ubiquity and Security - MOBIUS, 2006. Report

available at http://mobius.inria.fr.

[78] C. Tinelli and M.T. Harandi. A new correctness proof of the Nelson-Oppen combi-

nation procedure. Proc. of the 1st Int. Workshop on Frontiers of Combining Systems

(FroCoS’96), 3:103–120, 1996.

[79] C. Tinelli and C.G. Zarba. Combining nonstably infinite theories. J. of Autom.

Reas., 34(3):209–238, 2005.

[80] P. Uppuluri. Intrusion Detection/Prevention Using Behavior Specifications. PhD

thesis, Stony Brook University, 2003.

[81] D. Vanoverberghe, P. Philippaerts, L. Desmet, W. Joosen, F. Piessens, K. Naliuka,

and F. Massacci. A flexible security architecture to support third-party applications

on mobile devices. In Proc. of the 1st ACM Comp. Sec. Arch. Workshop, 2007.

[82] M. Vardi. An automata-theoretic approach to linear temporal logic. In Proc. of the

8th Banff Higher order workshop conference on Logics for concurrency : structure

versus automata, LNCS, pages 238–266. Springer-Verlag, 1996.

91

[83] M.Y. Vardi. Büchi complementation a 40-year saga, March 2006.

[84] M. Veanes, C. Campbell, W. Schulte, and N. Tillmann. Online testing with model

programs. In Proc. of the 10th Eur. Softw. Eng. Conf. held jointly with 13th ACM

SIGSOFT Int. Symp. on Found. of Softw. Eng., pages 273–282. ACM Press, 2005.

[85] I. Welch and R.J. Stroud. Using reflection as a mechanism for enforcing security

policies on compiled code. J. of Comp. Sec., 10(4):399–432, 2002.

[86] F. Yan and P. W. L. Fong. Efficient IRM Enforcement of History-Based Access

Control Policies. In Proc. of the 4th ACM Symposium on Information Comp. and

Comm. Sec. (ASIACCS 2009), pages 35–46, 2009.

[87] B.S. Yee. A sanctuary for mobile agents. In J. Vitek and C.D. Jensen, editors, Secure

Internet Programming, pages 261–273. Springer-Verlag, 1999.

[88] A. Zobel, C. Simoni, D. Piazza, X. Nunez, and D. Rodriguez. Business case and

security requirements. Public Deliverable D5.1.1, EU Project S3MS, 2006. Report

available at www.s3ms.org.

92

Appendix A

On-the-fly Matching Prototype Class

Diagram

93

Abstract Class

Fields

colorMap : ColorMap

Table_SAT : List<string>

Table_UNSAT : List<string>

Methods

CallNuSMV(SpecificBoolExp a1, SpecificBoolExp a2, string se, Flags flags) : bool

DecisionProcedure(SpecificBoolExp a1, SpecificBoolExp a2, Flags flags) : bool

DeclareEnum(string name) : void

DeclareVariables(AutomatonMTT aut, Flags flags) : void

DFSAlgorithm(AutomatonMTT aut1, AutomatonMTT aut2, Flags flags)

Flags
Class

Fields

match : MATCHINGType

Methods

Flags(EXPR_CONSTRUCTIONType exprConstruction, INITType init, CACHINGType caching)

Flags(EXPR_CONSTRUCTIONType exprConstruction, INITType init, CACHINGType caching, MATCHINGType match)

OnTheFly

DFSAlgorithm

Class

Fields

cVisitedStates : List<string>

cVisitedTransitions : List<string>

newStates : List<string>

newTransitions : List<string>

pVisitedStates : List<string>

pVisitedTransitions : List<string>

Methods

Check_availability(State s1, State s2, int x, Flags flags) : MatchResult

Check_safety(State s1, State s2, int x, Flags flags) : MatchResult

Condition(State s, State t, int x, AutomatonMTT aut1, AutomatonMTT aut2) : int

MakeExpression(Edge edge, Flags flags) : SpecificBoolExp

OnTheFly(AutomatonMTT aut1, AutomatonMTT aut2, Flags flags)

SATExpression
Class

Properties

FirstExpr { get; } : SpecificBoolExp

SecondExpr { get; } : SpecificBoolExp

Methods

SATExpression()

SATExpression(SpecificBoolExp e1, SpecificBoolExp e2)

NuSMV
Class

Fields

swigCMemOwn : bool

Methods

add_constraint(string expr) : bool

clean_constraints() : void

declare_bool_var(string name) : bool

declare_enum_var(string name, int low, int high) : bool

declare_enum_var(string name, string[] vals) : bool

declare_string_var(string name) : bool

declare_sword_var(string name, uint size) : bool

declare_uword_var(string name, uint size) : bool

Dispose() : void

NuSMV()

solve() : SolverResult

AutomatonMTT
Class

Properties

AllStates { get; set; } : List<State>

MethodNames { get; set; } : List<string>

TransitionsMap { get; set; } : Dictionary<State, StateDef>

Methods

AutomatonMTT()

AutomatonMTT(List<State> allStates, State initial, Dictionary<State, StateDef> transitionsMap, List<Edge> alphabet, List<string> methodNames)

DoComplementation() : AutomatonMTT

DoComplementOptimized() : void

SpecificBoolExp

Expression

Class

Fields

boolType : ExpBoolType

compType : CompareIntType

e1 : Expression

e2 : Expression

Methods

DeclareVariables(NuSMV ns) : void

SetNegation(bool isNegated) : SpecificBoolExp

SpecificBoolExp(bool isNegated)

SpecificBoolExp(Expression e1, Expression e2, CompareIntType t, bool isNegated)

SpecificBoolExp(Expression e1, Expression e2, ExpBoolType t, bool isNegated)

SpecificBoolExp(SpecificBoolExp exp)

SpecificBoolExp(SpecificStringExp se, string call, SpecificStringExp arg, bool isNegated)

SpecificBoolExp(string funcName, ParamList parameters)

SpecificBoolExp(string funcName, ParamList parameters, bool isNegated)

SpecificBoolExp(string label)

SpecificBoolExp(string label, bool isNegated)

SpecificBoolExp(string varName, FieldAccessExp expr)

Edge
Class

Methods

Edge()

Edge(SpecificBoolExp method, SpecificBoolExp otherMethods, SpecificBoolExp cond, SpecificBoolExp otherConds)

State
Class

Properties

Fields { get; set; } : Dictionary<string, object>

Marker { get; set; } : int

Number { get; set; } : int

States { get; set; } : List<State>

Methods

State()

State(Dictionary<string, object> fields)

State(List<State> states, Dictionary<string, object> fields)

State(List<State> states, int marker)

CACHINGType
Enum

CACHING_SOLVER

CACHING_MC

EXPR_CONSTRUCTIONType
Enum

MUTEX_SOLVER

MUTEX_MC

PRIORITY_MC

ALL_INSTANCES

INITType
Enum

ONE_INSTANCE

MANY_INSTANCES

IDisposable

ICloneable

aut1 aut2

SATList : List<SATExpression>

ns

Flags

ex

initcaching

Fla

se1 se2

InitState

Alphabet : List<Edge>

Figure A.1: On-the-fly Class Diagram

94

Appendix B

Simulation Matching Prototype

Class Diagram

95

ComplianceGraphEdge
Class

Fields

_endNode : ComplianceGraphNode

_startNode : ComplianceGraphNode

Methods

ComplianceGraphEdge(ComplianceGraphNode startNode, ComplianceGraphNode endNode)

ComplianceGraphEdgeSet
Class

Fields

_edges : Dictionary<ComplianceGraphNode, List<ComplianceGraphEdge>>

Methods

Add(ComplianceGraphEdge edge) : void

Clear() : void

ComplianceGraphEdgeSet()

GetEdgesOfNode(ComplianceGraphNode node) : List<ComplianceGraphEdge>

ComplianceGraphNode
Class

Fields

_complianceLevel : byte

_complianceMeasure : int

_contractState : State

_ID : int

_leadingEdge : Edge

_policyState : State

idCounter : int

Properties

ComplianceLevel { get; set; } : byte

ComplianceMeasure { get; set; } : int

ContractState { get; set; } : State

ID { get; } : int

PolicyState { get; set; } : State

Methods

ComplianceGraphNode()

ComplianceGraphNode(State policyState, State contractState, Edge leadingEdge, byte co…

ComplianceGraphNodeSet
Class

Fields

_cOrdered : Dictionary<State, List<ComplianceGraphNode>>

_nodesWithComplianceLevel0 : int

_nodesWithComplianceLevel1 : int

_nodesWithComplianceLevel2 : int

_pOrdered : Dictionary<State, List<ComplianceGraphNode>>

Properties

COrdered { get; set; } : Dictionary<State, List<ComplianceG…

POrdered { get; set; } : Dictionary<State, List<ComplianceG…

Methods

ComplianceGraphNodeSet()

Simulation
Class

Fields

_contractRule : Rule

_edges : ComplianceGraphEdgeSet

_flags : Flags

_policyRule : Rule

_V0 : ComplianceGraphNodeSet

_V1 : ComplianceGraphNodeSet

sdh : SimulationDebugHelper

Properties

ContractRule { get; set; } : Rule

Edges { get; set; } : ComplianceGraphEdgeSet

Flags { get; } : Flags

PolicyRule { get; set; } : Rule

V0 { get; set; } : ComplianceGraphNodeSet

V1 { get; set; } : ComplianceGraphNodeSet

Methods

CreateEdgeSet() : void

CreateNodeSetV0() : void

CreateNodeSetV1() : void

GetComplianceLevel(State pState, State cState) : byte

Simulation(Rule contractRule, Rule policyRule, Flags flags)

Valid(Edge contractEdge, Edge policyEdge) : bool

ComplianceGraph
Class

Fields

_edgeSet : ComplianceGraphEdgeSet

_nodeSetV0 : ComplianceGraphNodeSet

_nodeSetV1 : ComplianceGraphNodeSet

_startNode : ComplianceGraphNode

Methods

ComplianceGraph()

ComplianceGraph(ComplianceGraphNodeSet V0, Compli…

Edge
Class

OnTheFly

DFSAlgorithm

Class

Abstract Class

NuSMV
Class

AutomatonMTT
Class

SATExpression
Class

SpecificBoolExp

Expression

Class

State
Class

IDisposable

ICloneable

StartNode EndNode

Edges : List<ComplianceGraphEdge>

LeadingEdge

Nodes : List<ComplianceGraphNode>

_graph

_ofly

Edges

StartNode

V0 V1

aut1 aut2

SATList : List<SATExpression>

ns

InitState

Alphabet : List<Edge>

se1 se2

Figure B.1: Simulation Class Diagram

96

Appendix C

On-the-fly Matching Prototype

Experiments

97

Table C.1: Problems Suit
Problem Contract Policy
P100-100 100SMS contract.pol 100SMS policy.pol
P100-10 100SMS contract.pol 10SMS policy.pol
P100-1 100SMS contract.pol 1SMS policy.pol
P100-NO 100SMS contract.pol noSMS policy.pol

P10-100 10SMS contract.pol 100SMS policy.pol
P10-10 10SMS contract.pol 10SMS policy.pol
P10-1 10SMS contract.pol 1SMS policy.pol
P10-NO 10SMS contract.pol noSMS policy.pol

P1-100 1SMS contract.pol 100SMS policy.pol
P1-10 1SMS contract.pol 10SMS policy.pol
P1-1 1SMS contract.pol 1SMS policy.pol
P1-NO 1SMS contract.pol noSMS policy.pol

PNO-100 noSMS contract.pol 100SMS policy.pol
PNO-10 noSMS contract.pol 10SMS policy.pol
PNO-1 noSMS contract.pol 1SMS policy.pol
PNO-NO noSMS contract.pol noSMS policy.pol

Table C.2: Average Running Problem Suit 10 Times (s)
Problem M1 M2 M3 M4 M5 M6 Result
P100-100 15.219 15.478 15.19 15.335 15.219 15.187 Match
P100-10 9.468 10.086 9.355 9.372 9.391 9.429 Not Match
P100-1 8.824 8.951 8.91 8.927 8.953 8.871 Not Match
P100-NO 8.83 8.835 8.798 8.716 8.847 8.852 Not Match

P10-100 9.846 9.77 9.831 9.781 9.684 9.818 Match
P10-10 3.847 3.821 3.854 3.797 3.783 3.834 Match
P10-1 3.192 3.12 3.192 3.194 3.189 3.162 Not Match
P10-NO 3.042 3.058 3.065 3.041 3.051 3.042 Not Match

P1-100 9.309 8.714 9.308 9.329 9.187 9.234 Match
P1-10 3.286 3.286 3.271 3.301 3.241 3.275 Match
P1-1 2.444 2.446 2.462 2.432 2.457 2.423 Match
P1-NO 2.573 2.595 2.582 2.571 2.596 2.566 Not Match

PNO-100 9.259 9.16 9.211 9.202 9.117 9.122 Match
PNO-10 3.197 3.16 3.188 3.173 3.155 3.179 Match
PNO-1 2.5 2.502 2.513 2.525 2.523 2.522 Match
PNO-NO 2.427 2.386 2.395 2.38 2.405 2.379 Match

98

Appendix D

Simulation Matching Prototype

Experiments

99

Table D.1: Average Running Problem Suit 10 Times (s)
Problem M7 M8 Result
P100-100 3.668 5.528 Match
P100-10 5.465 7.259 Not Match
P100-1 9.106 7.419 Not Match
P100-NO 7.228 6.385 Not Match

P10-100 5.308 7.531 Match
P10-10 3.446 2.59 Match
P10-1 2.308 2.165 Not Match
P10-NO 2.18 2.105 Not Match

P1-100 6.184 4.696 Match
P1-10 2.26 2.15 Match
P1-1 1.918 1.886 Match
P1-NO 1.854 1.87 Not Match

PNO-100 5.387 4.434 Match
PNO-10 2.372 2.077 Match
PNO-1 1.995 1.838 Match
PNO-NO 1.822 1.838 Match

100

