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Abstract

Trust without control is a precarious solution to human nature. This belief has lead
to many ways for guaranteeing secure software such as statically analyzing programs to
check that they comply to the intended specifications which results in software certification.
One problem with this approach is that the current systems can only accept all or nothing
without knowing what the software is doing. Another way to complement is by run-time
monitoring such that programs are checked during execution that they comply to security
policy defined by the systems. The problem with this approach is the significant overhead
which may not be desirable for some applications.

This thesis describes a formalism, called Automata Modulo Theory, that allows us to
have model of what programs do in more precise details thus giving semantics to certifi-
cation. Automata Modulo Theory allows us to define very expressive policies with infinite
cases while keeping the task of matching computationally tractable. This representation is
suitable for formalizing systems with finitely many states but infinitely many transitions.
Automata Modulo Theory consists of a formal model, two algorithms for matching the
claims on the security behavior of a midlet (for short contract) with the desired security
behavior of a platform (for short policy), and an algorithm for optimizing policy.

The prototype implementations of Automata Modulo Theory matching using language
inclusion and simulation have been built, and the results from our experience with the
prototype implementations are also evaluated in this thesis.
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Chapter 1

Introduction

Currently security model has been based on trust. Either a program is trusted and it can
do almost everything or untrusted and thus can do almost nothing.

Trusted program can be achieved by signing mechanism from trusted third parties.
This approach leads to a vague “trust” because a signature on a piece of code only means
that the application comes from the software factory of the signatory, but there is no clear
definition of what guarantees it offers. It doesn not bind the software behavior.

Untrusted program can be dealt with the mechanism of permissions as in .NET [55] or
Java [39]. Permissions are assigned to enable execution of potentially dangerous or costly
functionality, such as starting various types of connections. The drawback of permissions is
that after assigning a permission the user has very limited control over how the permission
is used. Conditional permissions that allow and forbid use of the functionality depending
on such factors as bandwidth or the previous actions of the application itself (e.g. access

to sensitive files) are also out of reach.

The notion of Security-by-Contract (SxC ) was proposed in [27, 13]. In SxC framework,
a mobile code is augmented with a claim on its security behavior (an application’s contract)
that could be matched against a mobile platform’s policy before downloading the code.
Thus, a digital signature does not just certify the origin of the code but also binds together
the code with a contract with the main goal to provide a semantics for digital signatures on
mobile code. This framework is a step in the transition from trusted code to trustworthy

code.

This thesis provides a formal model and algorithms for matching contract with policy

for realistic security scenarios.



USE of Costly functionalities Any invocation of paid services, such as sending text messages, using

GPRS or wireless connections, must be controllable by the user.
NETwork connectivity Any external connections made by the application can be controlled.

PRIvate information management It is necessary to control what data is accessed by the application

such as local files, PIM items or contacts from Contact List.

INTeraction with other applets This requirement makes necessary to control means of interprocess

communication, in particular sockets and memory-mapped files.

Power consumption This requirement is two-fold: it makes necessary to control the invocation of
power-consuming functionality, such as WiFi connections, and to control the battery level in course

of running the application. This can be mapped into the NET and USE categories.

EXTended functionality If the device is equipped with some advanced functionality, such as camera

or GPS receiver, its use is likely to be controlled by policies.
Figure 1.1: End Users’ Distilled Security Requirements

1.1 Objectives

1.1.1 Security Policies

Contracts and policies may vary significantly but a number of analysis of security require-
ments for mobile and ubiquitous applications [47, 77, 88] have shown that they can be
distilled in some categories (Figure 1.1). Figure 1.1 is taken from [62] by courtesy of K.
Naliuka.

From Figure 1.1 the main requirements that our formalization needs to satisfy are:

e The security policies require both safety and liveness properties.
e The mechanism for defining a general security policies (that is not platform-specific).

e The mechanism for representing an infinite structure as a finite structure for dealing
with a security policy such as only allows connections starting with “https://” that
already generates an infinite automaton.

1.1.2 Efficiency

Our goal is to provide this midlet-contract vs platform-policy matching on-the-fly (during
the actual download of the midlet), hence issues such as small memory footprint and
effective computations play a key role. The tractability limit is the complexity of the
satisfiability procedure for the background theories used to describe expressions. In the

case of language inclusion approach, the complexity is LIN — TIME® and NLOG —



SPAC EC-complete (Proposition 4.5.1) with an oracle to a decision procedure solver. And
in the case of simulation approach, the complexity is POL—TIM E°€ and LIN —SPACE°
(Proposition 6.3.2). Finally, prelimanry work in optimization of a policy with respect to
a contract has complexity still in the complexity is POL —TIMEC and LIN — SPACE®
(Proposition 8.3.1).

Out of a number of requirements studies, most of the policies of interests can be
captured by theories which only requires polynomial time decision procedures (we will
discuss details in theory in Section 4.2).

1.2 The Contributions of the Thesis

The formal model used for capturing contracts and policies is based on the novel concept
of Automata Modulo Theory (AMT). AMT generalizes the finite state automata of
model-carrying code [74] and extends Biichi Automata (BA). It is suitable for formalizing
systems with finitely many states but infinitely many transitions, by leveraging the power
of satisfiability-modulo-theory (SMT for short) decision procedures. AM7T enables us to
define very expressive and customizable policies as a model for security-by-contract, by
capturing the infinite transition into finite transitions labeled as expressions in suitable
theories.

The second contribution is a decision procedure (and its complexity characterization)
for matching the mobile’s policy and the midlet’s security claims that realize the meta-
level algorithm of security-by-contract [13]. We map the problem into classical automata
theoretic construction such as product and emptiness test.

We have further customized the decision algorithm the security policy has a particular
form. For instance, if one uses security automata a la Schneider those can be mapped to
a particular form of AMT (with all accepting states and an error absorbing state) for
which particular optimizations are possible. In the original paper by Schneider security
automata specify transitions as a function of the input symbols which can be the entire
system state. Our AMT differs from security automata in this respects: transitions are
environmental parameters rather than system states. Writing policies in this way is closer
to one’s intuition.

This matching on-the-fly however requires to complement the policy of the mobile
platform and if we assume a general non-deterministic automaton this complementation
might lead to an exponential blow-up. A second problem is that in this way we need two
representations of the policy: a direct representation of the policy as an automata that
we can use for run-time monitor [81] and the complemented representation that we use

for matching.



Thus, we further propose to use the notion of simulation for matching the security
policy of the platform against the security claims of the midlet. Simulation is stronger
than language inclusion (i.e. less midlets will obtain a green light) but they coincide for
deterministic policies.

AMT is a general model, thus it can be used not only for matching security policies but
also in other enforcement mechanism for example Inlined Reference Monitor (IRM). IRM
is a flexible mechanism to enforce the security of untrusted applications. However, one
of the shortcomings of IRM is that it might introduce a significant overhead in otherwise
perfectly secure application. Therefore, we propose six different framework models for
IRM optimization with respect to components that are needed to be trusted or untrusted.
We also describe an approach for IRM optimization using automata modulo theory. The
key idea is that given a policy that represents the desired security behavior of a platform
to be inlined, we compute an optimized policy with respect to the (trusted) claims on the
security behavior of a application. The optimized policy is the one to be injected into the
untrusted code.

1.3 Structure of the Thesis

This thesis book consists of the following chapters:

Chapter 2 briefly introduces our context namely a framework called Security-by-Contract.
Security-by-contract [27, 13] proposed to augment mobile code with a claim on its
security behavior that can be matched against a mobile platform policy on-the-fly,
which provides semantics for digital signatures on mobile code.

Chapter 3 surveys related works in theoretical and practical realms including the state-
of-the-art of the research pertaining to this thesis.

Chapter 4 introduces our main thesis AM7 and the corresponding automata opera-
tions in it. Furthermore, specific issues to be considered in AMT are also discussed
in this chapter. This work had been presented in [58, 57, 13].

Chapter 5 describes an approach for lifting finite state tools to AM7 implementation
prototype. This work had been presented in [14, 15, 16].

Chapter 6 describes fair simulation for AM7 with specific issues to be considered in
relation of concrete and symbolic AM7 simulation. This work had been presented
in [59].

Chapter 7 describes an approach for for lifting finite state tools to AM7T simulation
implementation prototype.



Chapter 8 describes a possible application of AMT in Inlined Reference Monitor (IRM)

optimization. This work had been presented in [60].

Chapter 9 presents future works and a concluding discussion.

1.4 List of Publications

The result of this thesis has been published in the following journals:

1.

2.

Security-by-contract on the .NET platform [26].

Matching in Security-by-Contract for Mobile Code [13].

The result of this thesis has been published in the following conferences or workshops:

1.

6.

7.

Security-by-Contract: Toward a Semantics for Digital Signatures on Mobile Code
[27].

. Matching midlet’s security claims with a platform security policy using automata

modulo theory [58].

. Matching Policies with Security Claims of Mobile Applications [16].

Simulating Midlet’s Security Claims with Automata Modulo Theory [59].

. Testing Decision Procedures for Security-by-Contract [14].

Security-By-Contract for the Future Internet [32].

Optimizing IRM with Automata Modulo Theory [60].

The result of this thesis has been published in the following refereed conferences or work-

shops without proceedings:

1.

2.

3.

A Security-by-Contracts Architecture for Pervasive Services [57].
Security-By-Contract for the Future Internet ? [33].

Testing Decision Procedures for Security-by-Contract: Extended Abstract [15].

Other publications:

e Fast Signature Matching Using Extended Finite Automaton (XFA) [75].






Chapter 2
Security by Contract

This chapter briefly introduces a framework called Security-by-Contract as the
first motivation for proposing Automata Modulo Theory and continues with

positioning Automata Modulo Theory into this framework.

2.1 Security by Contract

Security-by-contract (SxC )[27, 13] has proposed to augment mobile code with a claim
on its security behavior that can be matched against a mobile platform policy on-the-fly,
which provides semantics for digital signatures on mobile code. In an SxC framework
27, 13] a mobile code is augmented with a claim on its security behavior (an application’s
contract) that could be matched against a mobile platform’s policy before downloading
the code.

At development time the mobile code developers are responsible for providing a de-
scription of the security behavior that their code finally provides. Such a code might also
undergo a formal certification process by the developer’s own company, the smart card
provider, a mobile phone operator, or any other third party for which the application has
been developed. By using suitable techniques such as static analysis, monitor in-lining,
or general theorem proving, the code is certified to comply with the developer’s contract.
Subsequently, the code and the security claims are sealed together with the evidence for
compliance (either a digital signature or a proof) and shipped for deployment as shown
on Figure 2.2.

At deployment time, the target platform follows a workflow as depicted in Figure 2.1
[13]. This workflow is a modification of SxC workflow [13]) by adding optimization step.
First, the correctness of the evidence of a code is checked. Such evidence can be a trusted
signature [87] or a proof that the code satisfies the contract (one can use Proof-Carrying-

Code (PCC) techniques to check it [63]).
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of Contract
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YeS Contract-Policy @ Yes
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Optimize Policy
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Execute <+———

Figure 2.1: Workflow in Security-by-Contract

When there is evidence that a contract is trustworthy, a platform checks, that the
claimed contract is compliant with the policy to enforce. If it is, then the application can
be run without further ado. It is a significant saving from in-lining a security monitor. In
case that at run-time we decide to still monitor the application, then we add a number of
checks into the application so that any undesired behavior can be immediately stopped
or corrected.

Matching succeeds, if and only if, by executing an application on the platform, every
behavior of the application that satisfies its contract also satisfies the platform’s policy.
If matching fails, but we still want to run the application, then we use either a security
monitor in-lining, or run-time enforcement of the policy (by running the application in
parallel with a reference monitor that intercepts all security relevant actions). However
with a constrained device, where CPU cycles means also battery consumption, we need
to minimize the run-time overheads as much as possible.

A contract is a formal specification of the behavior of an application for what concerns
relevant security actions for example Virtual Machine API Calls, Web Messages. By
signing the code the developer certifies that the code complies with the stated claims on
its security-relevant behavior. A policy is a formal specification of the acceptable behavior
of applications to be executed on a platform for what concerns relevant security actions.
Thus, a digital signature does not just certify the origin of the code but also bind together
the code with a contract with the main goal to provide a semantics for digital signatures

on mobile code. Therefore, this framework is a step in the transition from trusted code to
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Figure 2.2: Mobile Code Components with Security-by-Contract

trustworthy code. Technically, a contract is a security automaton in the sense of Schneider
[43], and it specifies an upper bound on the security-relevant behavior of the application:
the sequences of security-relevant events that an application can generate are all in the
language accepted by the security automaton.

A policy covers a number of issues such as file access, network connectivity, access to
critical resources, or secure storage. A single contract can be seen as a list of disjoint
claims (for instance rules for connections). An example of a rule for sessions regarding
A Personal Information Management (PIM) and connections is shown in Example 2.1.1,
which can be one of the rules of a contract. Another example is a rule for method
invocation of a Java object as shown in Example 2.1.2. This example can be one of the
rules of a policy. Both examples describe safety properties, which are common properties
that we want to verify.

Example 2.1.1 PIM system on a phone has the ability to manage appointment books,
contact directories, etc., in electronic form. A privacy conscious user may restrict network
connectivity by stating a policy rule: “After PIM is opened no connections are allowed”.
This contract permits executing the javaz.microedition. io.Connector.open() method
only if the javaz.microedition.pim.PIM. openPIMList () method was never called be-
fore.

Example 2.1.2 The policy of an operator may only require that “After PIM was accessed
only secure connections can be opened”. This policy permits executing the
javaz.microedition. 10.Connector.open(string url) method only if the started con-

nection is a secure one i.e. url starts with “hitps://”.

We can have a slightly more sophisticated approach using Biichi automata [76] if we

also want to cover liveness properties as shown in the following Example 2.1.3.
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Example 2.1.3 If the application should use all the permissions it requests then for each
permission p at least one reachable invocation of a method permitted by p must exist in the
code. For example if p is 10.Connector.http then a call to method Connector. open()
must exist in the code and the url argument must start with “http”. Ifp is i0.Connector.https
then a call to method Connector.open() must exist in the code and the url argument

must start with “https” and so on for other constraints e.q. permission for sending SMS.

2.2  From Security by Contract to Automata Modulo Theory

The security behaviors, provided by the contract and desired by the policy, can be rep-
resented as automata (shown on Figure 2.2), where transitions corresponds to invocation
of APIs as suggested by Erlingsson [28, p.59] and Sekar et al. [74]. Thus, in this thesis
we have mapped the operation of matching the midlet’s claim with platform policy into
problems in automata theory.

The first mechanism we consider to represent matching is language inclusion, such
that given two automata A® and A" representing respectively the formal specification
of a contract and of a policy, we have a match when the execution traces of the midlet
described by A€ are a subset of the acceptable traces for A”. To check this property we
can complement the automaton of the policy, thus obtaining the set of traces disallowed
by the policy and check its intersection with the traces of the contract. If the intersection
is not empty, any behavior in it corresponds to a security violation.

The second mechanism we consider is the notion of simulation, such that we have
a match when every APIs invoked by A® can also be invoked by A”. In other words,
every behavior of AY is also a behavior of A”. Simulation is a stronger notion than
language inclusion as it requires that the policy allows the actions of the midlet’s contract
in a “step-by-step” fashion, whereas language inclusion looks at an execution trace as a
whole.

In the case that matching fails, but we still want to run the application, then we can
optimize the supposed to be enforced security policy. The key idea is that given a policy
that represents the desired security behavior of a platform to be inlined, we compute
an optimized policy with respect to the (trusted) claims on the security behavior of a
application. The optimized policy is the one to be injected into the untrusted code.

While this idea of representing the security-digest as an automaton is almost a decade
old [74, 28], the practical realization has been hindered by a significant technical obsta-
cle: we cannot use the naive encoding into automata for practical policies. Even the
basic policies in Example 2.1.1 and Example 2.1.2 lead to automata with infinitely many

transitions. For example an infinite automaton of Example 2.1.2 is shown on Figure 2.3a.

10



joc("https://w”)

joc("https://b”)

joc("https://a”)

joc(url) = javax.microedition.io.
Connector . open(url)

joc("xyz:/l...") jop() = javax.microedition.pim.

PIM.openPIMList(...)

(a) An Infinite Automaton of Example 2.1.2 (b) Abbreviations for Java APls

Figure 2.3: Infinite Transitions Security Policies

In order to overcome this technical obstacle we have proposed a new formalization for
security policies using automata, called Automata Modulo Theory.

11
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Chapter 3

Related work

Efforts have been made for enforcing security policies, for example by program
rewriting, static analysis, or run-time monitoring or a hybrid approach. These
works have also been applied by a variety of policy specification languages or
frameworks. However, there is a tendency either to be system dependent (plat-
form specific) or to be a general abstraction. Thus, in this chapter we survey
closely related works and discuss similarities and differences between our work
and the related efforts. Further in each subsequent chapter, we also survey

related works specific to the given chapter.

3.1 Language-based security

The security problems arising when application developers and platform owners are not
on the same (security) side are well known from the experience of Java web applications
for the desktop. The confinement of Java applets [39] is a classical solution. Indeed, to
deal with the untrusted code either .NET [55] or Java [39] can exploit the mechanism
of permissions. Permissions are assigned to enable execution of potentially dangerous
or costly functionality, such as starting various types of connections. The drawback of
permissions is that after assigning a permission the user has very limited control over how
the permission is used.

Conditional permissions that allow and forbid use of the functionality depending on
such factors as bandwidth or the previous actions of the application itself (e.g. access
to sensitive files) are also out of reach. The consequence is that either applications are
sandboxed (and thus can do almost nothing), or the user decided that they come from a
trusted source and then they can do almost everything. This approach is known as code
signing that ensures the origin of the code by trust relationship.

In order to overcome the well-known limitation of the trusted signature or sandbox a

13



number of techniques have been proposed and implemented. For example static analysis,
execution monitoring, or program rewriting. An effort to classify the security policies
enforceable by each approach with respect to computation is detailed in [43]. In static
analysis, untrusted program is checked for compliance to the security policy prior to
running it, for example static type-checkers for type-safe languages. In execution monitors,
the enforcement mechanisms operate alongside an untrusted program and prevent from
violation of the given security policy. In program rewriting, untrusted programs are
modified to satisfy the given security policy prior to their execution. The most promising
one is the notion of Inlined Reference Monitor (IRM), where program-rewriters can also be
seen as a generalization of execution monitoring. IRM works by embedding the untrusted
program with the security policies.

IRM has been implemented in several systems, for example the PoOET /PSLang toolkit
[29], enforcing security policies whose transitions pattern-match event symbols using reg-
ular expressions, or Polymer [12] based on edit automata. The shortcoming of traditional
IRM is the huge overhead resulting from inlining.

Even if current version of IRM can work on rich system such as today’s smart phones,
the overhead is still too much for the next frontier of web applications: Javacards. Indeed,
the smartcard technology [61] evolved with larger memories, USB and TCP/IP support
and the development of the Next-Generation (for short NG) Java Card platform [3, 4]
with Servlet engine. This latter technology is a full fledged Java platform for embedded
Web applications and opens new Web 2.0 opportunities such as NG Java Card Web 2.0
Applications. It can also serve as an alternative to personalized applications on remote
servers so that personal data no longer needs to be transmitted to remote third-parties.

Phung et al. [69] proposed lightweight version of IRM for JavaScript that does not
modify browser or original code i.e. it adds new code only in the header of the page. An
alternative approach to IRM is by using reflection [85], where policies are implemented
as meta-objects bounded to application objects at load time, such that the code becomes
self-protecting.

3.2 Mobile code security

Security model of mobile device operating systems is usually system-centric where ap-
plications statically checked for compliance of security policies at installation time. This
approach has the limitation of the customize policies for example user-defined security
policies. Some extensions to enable application-centric have been proposed. Sekar et al.
[74] have proposed a seminal idea of Model Carrying Code (MCC). In MCC, a model of
an application and the policy of the platform are also represented using Extended Finite

14



Automata (EFA)[80]. In loading time, when the language of the model automaton is
included in the language of the security automaton then the application can be loaded.

EFA is based on finite state automata (FSA), thus it recognizes finite input. However,
it differs from FSA on the alphabet, that instead of an atomic symbol EFA has intro-
duced regular expressions over events(REEs). EFA has been implemented in a system for

intrusion detection/prevention [80].

In spite of this expressiveness, MCC has limitations of concerning only safety properties
and static expressions (it is not possible to add certain theories that may be needed to
describe realistic policies). Furthermore, MCC has not fully developed issue of contract
matching.

Later on, the Security-by-Contract (SxC ) framework [27] was built upon the MCC
seminal idea. In an SxC framework [27, 13] a mobile code is augmented with a claim on
its security behavior (an application’s contract) that could be matched against a mobile
platform’s policy before downloading the code. If matching fails, then the application can
be in-lined for the policies that can be statically checked. Desmet et al. have shown that
an effective and comprehensive version of IRM can be deployed on mobile platforms [26]
in an SXC framework. In other case we can still monitor the application at run-time as

the last option.

Currently, Ongtang et al. [67] have proposed the Secure Application INTeraction
(Saint) framework as extension to the Android ! security architecture. Saint enforces se-
curity policy at installation time by checking that an application requesting the permission
P is permitted to be installed only if the policy for acquiring P is satisfied. Furthermore,
Saint offers run-time enforcement among applications, where security policies depend on
both the caller and callee applications.

In Saint, security policies are defined as conditions that consist of two sets namely the
set of invariant conditions and the set of transient conditions. The system state of the
phone at any given time is a truth assignment for Boolean variables for each condition.
Thus the satisfiability of security policies is equals to satisfiability of conjunction of the
caller’s and callee’s conditions. This simple logic approach limits Saint such that it con-
cerns only static expressions, that is it is not possible to add certain theories that may be

needed to describe realistic policies.

AMT solves the afore mentioned problems by allowing combination of theories of
expressive policies and providing contract matching algorithms.

! Android is an mobile phone platform developed by the Google-led Open Handset Alliance (OHA). http:

//www.openhandsetalliance.com/
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3.3 Automata for security policies

A common formalization for representing security policy is using automata. Security
automata is a seminal work in this area introduced by Schneider in [71]. In security
automata, each transition is labeled with a computable predicate instead of an atomic
symbol for infinite numbers of transitions in security policies. The class of security policies
recognized by security automata has the ability to prevent system from violation. To
extend this enforcement mechanism such that it also considers inserting or removing
unwanted behavior, Bauer et al. [10] introduced edit automata.

Security automata is implemented for security monitors in several systems, for exam-
ple the PoET/PSLang toolkit [29], that can enforce security policies whose transitions
pattern-match event symbols using regular expressions. Edit automata is implemented in
the Polymer system [11] to dynamically compose security automata. The Mobile system
[44] implements a linear decision algorithm that verifies that annotated .NET bytecode
binaries satisfy a class of policies that includes security automata and edit automata.

3.4 Satisfiability Modulo Theories

Automata Modulo Theory abstract infinite transitions into finite expression using formu-
las in Satisfiability Modulo Theories. The Satisfiability Modulo Theories (SMT) problem
focuses on the satisfiability of quantifier-free first-order formulas modulo background the-
ories (see survey on [73]). Some theories of interest are the theory of difference logic DL,
the theory EUF of Equality and Uninterpreted Functions, the quantifier-free fragment of
Linear Arithmetic over the rationals £A(Q) and that over the integers LA(Z). SMT is
an active research area with many tools developed such as Z3[25], MathSAT[18], CVC|[9],
and UCLID[19]. AMT uses the same notion of “theory” as in the SMT to accommodate
expressive policies where each transition is labeled with a computable predicate in some

theories for representing infinite numbers of transitions.
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Chapter 4

Automata Modulo Theory

In this chapter we try to provide an answer to the following question: given ex-
pressive security policies, how can we model possibly infinite computations with
finite ones 7 The key idea is to abstract infinite transitions into finite expres-
sion using formulas in Satisfiability Modulo Theories and using base structure
as in Blchi Automata. This formalization is called Automata Modulo Theory.

4.1 Introduction

AMT enables matching a mobile’s policy and a midlet’s contract by mapping the prob-
lem into a variant of on-the-fly product and emptiness test from automata theory, without
symbolic manipulation procedures of zones and regions nor finite representation of equiv-
alence classes. The tractability limit is essentially the complexity of the satisfiability
procedure for the theories, called as subroutines, where most practical policies require
only polynomial time decision procedures [73](see summary in Table 4.1).

This chapter describes the theory of Automata Modulo Theory (AMT ). We begin
in Section 4.2 by introducing the concept of theory in AMT . Then, Section 4.3 defines
the formalization of the automata including the concept of tuple, run and word. Section
4.3 continues with operations in AMT, namely intersection and complementation. Fi-
nally, Section 4.5 describes a decision procedure (and its complexity characterization) for
matching the mobile’s policy and the midlet’s security claims that realize the meta-level
algorithm of security-by-contract [13]. This algorithm for matching the contract with
the security policy had been implemented and in the next chapter (Chapter 5), we will
continue describing this prototype, its integration with decision solver based on MathSAT

and NuSMV, and the results of our experiments on matching.
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4.2 Theory in Automaton Modulo Theory

The notion of theory in AMT is derived from the notion of theory in the Satisfiability
Modulo Theories (SMT) problem. The SMT problem focuses on the satisfiability of
quantifier-free first-order formulas modulo background theories [17]. Some theories of
interest for example are the theory of equality and uninterpreted functions (EUF ), the
quantifier-free fragment of linear arithmetic over the rationals (LA(Q) ), and over the
integers (LA(Z) ), and the corresponding subtheories of difference logic both over the
rationals (DL(Q) ), and over the integers (DL(Z) ).

Example 4.2.1 A security policy may set limits on resources that can be captured with

constraints expressed in different theories
1. no communication allowed if the battery level falls below 30% (LA(Q) can be used);

2. no jpeg file can be downloaded with size more than 500KB while avi files can arrive
up to IMB (LA(Z) can be used here)

3. EUF can be used when comparing a policy requiring protocol (url)=°‘https’’
and port (url)=°‘8080°’ with a contract claiming to use only connections where
protocol (url)=°‘https’’ or protocol (url)=*‘http’’. We do not need to ex-
tract a protocol from the url. It is enough that we deal with protocol and port as

uninterpreted functions and apply the theory of equality and uninterpreted functions

EUF.

The previous examples show simple security policies each uses only one kind of theory.
However, we are particularly interested in the combination of two or more theories to
accommodate complex security policies.

Example 4.2.2 A policy may allow only secure connections with limited size of down-
loads. To express this policy we combine EUF for handling protocol (url)=‘‘https’’
and LA(Z) for handling downloading a file of at most 500KB.

We use traditional first-order logic terminology [34] for defining a SMT theory. A
signature X consists a set of function symbols F and a set of predicate symbols P with
their arities, and a set of variables V. A 0O-ary function symbol ¢ is called a constant
and O-ary predicate symbol B is called a Boolean atom. A Y-term is a variable in V' or
constructed from application of function symbols F to ¥-terms. If tq,...,%, are X-terms
and p is a predicate symbol then p(¢y,...,t,) is a Y-atom. A Y-literal is a Y-atom or
negation of Y-atom. Y-formula is defined over X-literals, the universal and the existential
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Table 4.1: Theories of Interest

Theory | (Non)Convex | Decidability | Complexity
EUF convex decidable polynomial [5]
LA(Q) | convex decidable polynomial [41]
LA(Z) | non-convex decidable NP-Complete [68]
DL(Q) | convex decidable polynomial [21]
DL(Z) | non-convex decidable NP-Complete [54]

quantifiers V, 34, and the boolean connectives =, A. A Y-formula is named quantifier-free
when it contains no quantifier and sentence when it contains no free variables. A Y-theory
T is a set of first-order sentences with signature 3.

A Y-structure M is a model of ¥-theory 7 if M satisfies every sentences in 7. A
Y-structure M consists of a set D of elements as domain and an interpretation Z as in
first order logic. The interpretation of an n-ary function symbol is a mapping of each
n-ary function symbol f € ¥ to a total function f™ : D® — D. The interpretation of a
constant symbol is a mapping of each constant ¢ € ¥ to itself. The interpretation of an
n-ary predicate symbol is a mapping of each n-ary predicate symbol p € ¥ to a relation
p™ C D™ and the interpretation of a Boolean atom is a mapping of each Boolean atom
BeXto(T,L1).

Let M denote a Y-structure, ¢ a formula, and 7 a theory, all of signature ¥. We say
that ¢ is satisfiable in M (or ¢ is 7 -satisfiable) if there exists some assignment a which
assigns the set of variables to values in the domain such that (M, a) | ¢.

A theory 7 is convex [73] if all the conjunctions of literals are convex in theory 7. A
conjunction of 7-literals in a theory 7 is convex if for each disjunction (M, «a) = Vi, e;
if and only if (M, a) = e; for some i, where e; are equalities between variables occurring
in (M, a).

The general definition above applies the full power of SMT. For practical purposes we

make some additional restrictions.

First-order as base logic We use classical first-order logic based SMT. Extension to
a higher-order logic is possible as proposed in [53]|, where they introduced parametric
theories. In the sequel, we consider only quantifier-free ¥-formulas on theories 7 where
the 7-satisfiability of conjunctions of literals is decidable by a 7-solver [66].

Combination of theories is consistent Given a consistent theory 77 and a consistent

theory 75, we assume that the combination theory 7 := 77 U 75 is also consistent and
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there exists a 7 -solver for the combined theory. We are interested in 77 U 75-satisfiability
of 31 U ¥o-formulas that can be generalized to combine many possibly signature-disjoint
theories 7y U ... U7T,.

The Nelson-Oppen (NO) combination procedure [64] is a seminal work in this area.
NO combines decision procedures for first-order theories restricted to theories that are
stably-infinite (informally the theory that has infinite models (see [64])) and that have
disjoint signatures (X1 N X = @). Tinelli-Zarba’s combination procedure [79] extends
NO for combining an arbitrary theory which maybe stably infinite with a stably infinite
theory that is also shiny. They also proposed a variant of the combination method for
combining theories having only finite models with theories that are stably finite. Ghilardi’s
combination procedure [36] extends NO for combining theories that share signature with
restriction that the theories are compatible with respect to a common sub theory in the

shared signature.

Conjunctions of formulas Given theories 77 and 75 that can be combined 7 := 7, U7,
and conjunctive normal form formula ¢;(resp. ¢2) that is satisfiable in 77 (resp. 73) then
@1 A\ ¢ is decidable in 7 (not necessarily satisfiable). We do not impose restrictions as in
Proposition 3.8. in [78], thus we do not have their result, i.e. ¢; A ¢o is satisfiable in 7.

4.3 Automaton Modulo Theory Preliminary

Having defined the theory in AMT, in this section we continue by defining tuple, run,
and word in AMT.

An automaton in AMT is defined as a tuple of a finite set of X-formulas in >-theory
T, a finite set of states, an initial state, a labeled transition relation, and a set of accepting
states. Formally, it is given in Definition 4.3.1.

Definition 4.3.1 (Automaton Modulo Theory (AMT)) An AMT is a tuple A =
(S,%,7T,E,A,s0, F'), where £ is a finite set of X-formulas in X-theory T, S is a finite set
of states, so € S is the initial state, A C S x € x S is a labeled transition relation, and
F C S is a set of accepting states.

Figure 4.1 shows two examples of AMT using the signature for EUF with a function
symbol p() representing the protocol type used for the opening of a url. As described in
the cited examples the first automaton forbids the opening of plain http-connections as
soon as the PIM is invoked while the second just restricts connections to be only https.

The transitions in these automata describe with an expression a potentially infinite

set of transitions: the opening of all possible urls starting with https. The automaton
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(a) AMT rule from Example 2.1.1 (b) AMT rule from Example 2.1.2

Joc(url) = Joc(joc,url)
Jop = Jop(jop,z1,...,Tn)
p(url) = type = wurl.startsWith(type)
joc = javax.microedition.io.Connector.open
jop = javax.microedition.pim.PIM.openPIMList
Joc,Jop are predicate symbols representing respectively joc(url),jop(zi,...,zn) APIs.

(c) Abbreviations for expressions

Figure 4.1: AMT Examples

modulo theory is therefore an abstraction for a concrete (but infinite) automaton. The
concrete automaton corresponds to the behavior of the actual system in terms of API
calls, value of resources and the likes.

From a formal perspective, the concrete model of an automaton modulo theory in-
tuitively corresponds to the automaton where each symbolic transition labeled with an
expression is replaced by the set of transitions corresponding to all satisfiable instantia-
tions of the expression.

In order to characterize how an automaton captures the behavior of programs we need
to define the notion of a trace. So, we start with the notion of a symbolic run which

corresponds to the traditional notion of run in automata.

Definition 4.3.2 (AM7T symbolic run) Let A = (S,%,7,E,A,s0, F) be an AMT.
A symbolic run of A is a sequence of states alternating with expressions o = (sge181€283 .. .),
such that:

1. So = So

2. (8i,€i11,8i+1) € A and e;1q is T -satisfiable, that is there is some X-structure M a
model of X-theory T and there exists some assignment « such that (M, a) = e;11.

A finite symbolic run is denoted by (spe1S1€28s . .. Sp_1€,5,). An infinite symbolic run
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is denoted by (spe1S1€282 ...). A finite run is accepting if the last state goes through some
accepting state, that is s,, € F. An infinite run is accepting if the automaton goes through
some accepting states infinitely often.

In order to capture the actual system invocations we introduce another type of run
called concrete run which is defined over valuations that represent actual system traces.
A valuation v consists of interpretations and assignments.

Definition 4.3.3 (AM7 concrete run) Let A = (S,3,7,E,A,sg, F') be an AMT. A
concrete run of A is a sequence of states alternating with a valuation oo = (Sov181v282 . . .),
such that:

1. So = So

2. there exists expressions e; 1 € E such that (s, ei11,8i41) € A and there is some Y-
structure M a model of X-theory T such that (M, ;1) | €11, where vy represents
a;v1 and Z(ejiq).

A finite concrete run is denoted by (Sov181V282 ... Sp_1VnSn). An infinite concrete run is
denoted by (sou1811282...). A finite run is accepting if the last state goes through some
accepting state, that is s,, € F. An infinite run is accepting if the automaton goes through
some accepting states infinitely often. The trace associated with oc = (Sov181V282 . ..) i
the sequence of valuations in the run. Thus a trace is accepting when the corresponding
run s accepting.

We use definition of run as in [30] which is slightly different from the one we use in [58],
where we use only states.

Example 4.3.1 An example of an accepting symbolic run of AMT rule from Ezxam-
ple 2.1.2 shown in Figure 4.1b is

po Jop(jop,file,permission) p1 Joc(joc,url) Ap(url)="“https” p1 Jop(jop,file,permission) p1 Joc(joc,url) Ap(url)="‘https” ...

that corresponds with a non empty set of accepting concrete runs for example

po(jop,PIM.CONTACT_LIST,PIM.READ WRITE) p1 (joc,“https://www.esse3.unitn.it/’")

p1(jop, PIM.CONTACT_LIST,PIM.READ_ONLY) p1 (joc,“https://online.unicreditbanca.it/login.htm’’) ...

Remark 4.3.1 A symbolic run defined in Definition 4.3.2 is interpreted by a non empty
set of concrete runs in Definition 4.3.3. This is a nature of our application domain where
security policies define AMT in symbolic level and the system to be enforced has concrete
runs. In other domains where we need the converse, namely to define symbolic runs from
concrete runs, then a symbolic run defined in Definition 4.3.2 can be considered as an

abstraction of concrete runs by Definition 4.3.5.
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The alphabet of AMT is defined as a set of valuations V that satisfy £. A finite se-
quence of alphabet of A is called a finite word or word or trace denoted by w = (111 . .. vy)
and the length of w is denoted by |w|. An infinite sequence of alphabet of A is called
an infinite word or infinite trace is denoted by w = (15 ...). The set of infinite words
recognized by an automaton A, denoted by L, (A), is the set of all accepting infinite traces
in A. L,(A) is called the language accepted by A.

As we have noted already, the intuitive idea behind concrete runs is that they are
sequences of models of the expressions of the abstract specification of the automaton
modulo theory. In the practical setting, for example security policies over midlets, we
want to capture sequences of API calls then this general theory can be actually narrowed.

Example 4.3.2 A possible alternative is to use a predicate name corresponding to each
API call (such as joc(url,port), jop(), etc.) and then introduce a theory that specify that
predicates are mutually exclusive.

This formalization would correspond essentially to the guard-and-condition representation

of Schneider’s security automata.

Example 4.3.3 Another alternative is to use predicate API(APIsymbol, parameters)
with the first argument the API name itself as a constant symbol to identify different
methods. For example joc(url, port) is denoted as Joc(joc,url, port) and jop(xy, ..., x,)
is denoted as Jop(jop,x1,...,x,) imposing each constant as unique, i.e. joc # jop.

Both formalizations capture the same concrete behavior in terms of API calls. Our
current implementation uses the second option as the unique name assumption was built-
in the SMT solver implementation and therefore it could be used more efficiently.

The transition relation of A may have many possible transitions for each state and
expression, i.e. A is potentially non-deterministic.

Definition 4.3.4 (Deterministic AMT) A = (S,%,7,E,A,sg, F) is a deterministic
automaton modulo theory T, if and only if, for every s € S and every s1,so € S and
every ey, es € &, if (s,e1,81) € A and (s,ez,82) € A, where s; # sy then the expression
(e1 A eg) is unsatisfiable in the X-theory T .

4.4 Operations in Automaton Modulo Theory

In order to define the test for language inclusion we introduce the operation of complement
and intersection of AMT operations at the concrete level, for example API calls, and

then we give the notion of symbolic operations as in [45].
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In this thesis we consider only the complementation of deterministic AMT, for all
security policies in our application domain are naturally deterministic because a platform

owner should have a clear idea on what to allow or disallow.

Complementation of AMT. AMT automaton can be considered as a Biichi automa-
ton where infinite transitions are represented as finite transitions. Therefore, for each
deterministic AM7T automaton A there exists a (possibly nondeterministic) AM7T that
accepts all the words which are not accepted by automaton A. The A€ can be constructed
in a simple approach as in [82] as follows:

Definition 4.4.1 (AM7 Complementation) Given a deterministic AMT
A= (S%XT,E A, sg, F) the complement AMT automaton A® = (S, X, 7T, &, se%, A, F°)

18!
1. Sc=Sx{0}U(S—F)x {1}, so°=(s0,0), F=(S—F)x{l},
2. and for every s € S and e € &£

, c {(t,0)} (s,e,t) € A and t€F
((5,0),e,5) € A% 5" = { {(£,0), (1, 1)} (s,e,t) €A and t & F
((s,1),e,8)e A% s = {1} if (s,e,t) EAand t ¢ F

In order to apply complementation in Definition 4.4.1, the deterministic automata has
to be completed, meaning the sum of the transitions labels covers all the set of formulas

in £ Return to our Example 2.1.1 shown in Figure 4.1a, the automaton is already a
complete AMT .

Proposition 4.4.1 Let A be an AMT over a set of valuations V. Then a (possibly
nondeterministic) AMT A€ constructed by Definition 4.4.1 accepts all the concrete runs

which are not accepted by A, that is A is a complement automaton such that L, (A°) =
V¢ — Ly(A).

Proof.
Correctness.
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“D”  we take an arbitrary concrete run not accepted by A that corresponds to
a word w = (v1pvs...), meaning w € V¥ — L,(A), so there is a unique
concrete run oc = (Sov481V282...) of A. Hence, there is some k such that
Vi > k,s; ¢ F, meaning that of = ((s0,0)v1 ... (Sk, 0)Vkt1(Sk41,1)...) is an
accepting concrete run of A€

“C” we take an arbitrary concrete run accepted by A° that corresponds to a word
w = (V1o . . .), meaning that w € L, (A), so there is a unique concrete run
o0& = (80, 0)v1 ... (Sk, 0)Vks1(Sks1, 1) .. .) of A° corresponds to a concrete run
O'IC = (Sl - .. SkVk41Sk+1 - - -)0f A on w but this concrete run is rejecting.

Termination. This construction terminates because our states in S and formulas in €
are finite.

Complexity. The time and space complexity of the construction is linear.
O
The construction in Definition 4.4.1 can be optimized if our security policy is a pure
security automaton a la Schneider. The policy automaton for safety properties has all (but
one) accepting states. The complementation will result in only one accepting state which
is (err, 1). However, the state can be collapsed with a non accepting state (err, 0). Hence,
no need to mark states with 0 and 1; and the only accepting state is (err). Furthermore,

the complementation transitions remain as the original transitions.

Intersection of AMT. AMT automaton can be considered as a Biichi automaton where
infinite transitions are represented as finite transitions. Therefore, for AM7T automata
A Ab there is an AMT A that accepts all the words which are accepted by both A¢,
A’ synchronously. The A% can be constructed in a simple approach as in [82] as follows:

Definition 4.4.2 (AMT Intersection) Let (S X% T E% A% so%, F*) and
<Sb, ¥ Th Y AL s, Fb> be (non) deterministic AMT , the AMT intersection automa-
ton A% = (S, 3,7, &, A,so, F) is defined as follows:

1.E=E*UE, T=TUTt Y=X2UX’,
2.5 =05"x5"x{1,2}, so=(so%so’ 1), F=F"x5"x{1},
3.

(s*, e t*) € A" and
A= {((s%s"x), e A, (1 1%, y)) | (8%, et 1) € Ab and
DecisionProcedure(e® A e?) = SAT
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2 ifx=1and s* € F* or
ifr =2 and s* & F°

1 ifx=1and s* ¢ F* or
ifr =2 and s® € F?

Proposition 4.4.2 Let A%, A® be AMT over a set of valuations V. Then an AMT A®
constructed by Definition 4.4.2 accepts all the concrete runs which are accepted by A®, A,
that is A% is an intersection automaton such that L,(A%®) = L,(A%) N L, (A%).

Proof.

Correctness.
“D”  we take an arbitrary concrete run accepted by A% that corresponds to a word

w = (s .. .), where for all i > 1, v; satisfies (e A €®), thus v; satisfies both
e and €’. Let the concrete run be ((so”, so’, 1)v1(s{, 8%, 2)va(ss, sb, x)vs . ..)
of A%. This concrete run corresponds to (So%v;s¢ras$ys...) of A% which is
accepted by A® because it goes infinitely often through F¢ x S® x {1} thus it
goes infinitely often through F*. And <sobulsl{ Vashus .. > of A? is also accepting
because whenever the automaton goes through an accepting state of A°, the
marker changes to 1 again. Thus, the acceptance condition guarantees that
the run of the automaton visits accepting states of A® infinitely often.

“C” we take an arbitrary concrete run (so®vi${vasiys...) accepted by A% |
where for all ¢ > 1, y; satisfies e*. And an arbitrary concrete run
(so"1sbrashys .. .) accepted by A°, where for all ¢ > 1, v; satisfies €. Both
runs correspond to a word w = (vjerg...). So, there is a concrete run
((s0”, 80", L)11 (4, s%, x)va(sg, s, 2)vs...) of A on w, where for all i > 1, v,
satisfies (e® Ae®) and whenever the automaton goes through an accepting state,
the marker changes. Thus, the acceptance condition guarantees that the run
of the automaton visits accepting states infinitely often, since a run accepts if
and only if it goes infinitely often through F* x S® x {1}.

Termination. This construction terminates because our states in S and formulas in £

are finite.

Complexity. The construction uses an oracle to an SMT solver to solve Decision Procedure(e®* A\

e’) = SAT, where the theory 7 is decidable in the complexity class C. Hence, the time

and space complexity of the construction is O(|S|. |S?| . |A%]. [A%])C. O
Intersection of automata illustrates another subtle difference with lazy satisfiability

approach (based on boolean abstraction in SMT). For example, in Figure 4.2a, classically
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(a) Example of Boolean Abstraction
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Figure 4.2: Boolean Abstraction

we have the result of automata intersection as in Figure 4.2¢, where we only have reduced
the possible results. However, in AM7, we can have more transitions, as shown in
Figure 4.2b.

Definition 4.4.2 is a general construction, as depicted on Figure 4.3a (see abbreviations
on Fig. 4.3c¢). However, when we consider our domain of application, namely matching
a mobile’s policy and a midlet’s contract, then the fact that we intersect a contract
automaton with a special property (i.e. it has only one non accepting state (namely the
error state)) and a complement of policy automaton which has also a special property
(i.e. it has only one accepting state that is the error state), enable us to optimize the
intersection such that we only consider correct contract transitions (shown in Figure 4.3b).

Emptiness problem of AM7. An AM7T automaton A is not empty when there exists
some words accepted by A, meaning L, (A) # () if and only if there exists some accepting
concrete run as defined in Definition 4.3.3.

Proposition 4.4.3 Let the theory T be decidable with an oracle for the SMT problem in
the complexity class C then:

1. The non-emptiness problem for AMT s decidable in LIN — T1M EC.
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Figure 4.3: Automata Intersection
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2. The non-emptiness problem for AMT is NLOG — SPACEC-complete.

Proof. we prove Proposition 4.4.3 by showing that L, (A) # () if and only if there exists
some accepting state which is connected to the initial state and also connected to itself
as in [82]. Let A= (S,%,7,E,A s, F).

Correctness.
“D” we assume that L,(A) # (), meaning there exists an arbitrary concrete run

oc = (Sov1811282...) accepted by A that corresponds to a word w =
(1o .. .). By Definition 4.3.3 Vi > 0 state s; is directly connected to state
Si+1. Thus, when ¢ < k then s; is connected to s;. Furthermore, there exists
some accepting state which is visited infinitely often, meaning that there is
some s; € I' and there are i, k where 0 < ¢ < k such that s; = s; = s,. Hence,
s; 1s connected to the initial state sg and also connected to itself.

“C”  we assume that there exists some accepting state s; € F' which is connected
to the initial state and also connected to itself. So, there is a sequence of
states (Ss0Ss18s2 - - - Ss2) from the initial state to sg = s; that corresponds to a
word (Vs1Vsalss . . . Vg) and Vi > 0 state sg; is directly connected to state sg;41.
Furthermore, there are also sequences of states (sySi18e - .. Sy) from s;9 = sy
to sy = s, that corresponds to a word (vyvys...vy) and Vi > 0 state sy

is directly connected to state s 1. Thus (Vg vslss ... Vsp) (Unvipls . .. vy)” 18

accepted by A and L, (A) # 0.

Complexity. The emptiness problem of AMT can be reduced to graph reachability.
A combination of an algorithm based on Nested DFS [72] with a decision procedure for
SMT can solve this problem. The algorithm takes as input the an AMT automaton
A and starts a depth first search procedure check_safety (sop) (Algorithm 1) over the
initial state sg. When an accepting state in AM7 is reached, we start a new depth first
search (Algorithm 2)from the candidate state to determine whether it is in a cycle, in
other words if it is reachable from itself. If it is, then we report that the automaton is
non-empty.

When a state is first generated, it is marked as unchecked. During an unfinished search
in Algorithm 1, a state is marked as in_current_path. When a state has finished its
Algorithm 1 and not yet processed in Algorithm 2, then it is marked as safety_checked.
Finally, a state is marked availability_checked when it has been processed by both
Algorithm 1 and Algorithm 2.

This algorithm can be solved in linear time on the size of A’s states. In addition

an oracle to an SMT solver is used to solve DecisionProcedure(e) = SAT. Hence, its
complexity is LIN — TT1MEC.
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Algorithm 1 check safety(s) Procedure

Input: state s;
1: map(s) := in_current_path;
: for all ((s,e,t) € A) do
if (DecisionProcedure(e) = SAT) then
if (map(t) = in_current_path A ((s € F) V (t € F))) then
report non-emptys;
else if (map(t) = unchecked) then
check_safety(t);
if (s € F) then
check_availability(s);

1

11: else

=

map(s) := availability_checked,;

12 map(s) := safety_checked;

Algorithm 2 check_availability(s) Procedure

Input: state s;
1: for all ((s,e,t) € A) do
if (DecisionProcedure(e) = SAT) then

o

3 if (map(t) = in_current_path) then

4 report non-empty;

5: else if (map(t) = safety_checked) then
6 map(t) := availability_checked

7 check_availability (¢);
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The algorithm needs only a logarithmic memory, since at each step it needs to remem-
ber fewer states than the number of its total states and there are only two bits added to
each state for the marker. Also, an SMT solver is used to solve DecisionProcedure(e) =
SAT and Jones [51] showed that graph reachability problem is NLOG — SPAC E-hard.
Hence, the emptiness problem of AMT is NLOG — SPAC E®-complete. a

Language inclusion problem of AM7. Language of an AM7T automaton A® is sub-
sumed by the language of an AMT automaton A° when for all the words w = (vy...)
(as defined in Definition 4.3.3) accepted by A?, w is also accepted by A®.

Proposition 4.4.4 Let A%, A® be AMT over a set of valuations V. Then Lo C L
such that A accepts all the concrete runs which are accepted by A® is decidable.

Proof. we prove Proposition 4.4.4 by showing that £4. C L4 if and only if the lan-
guage of A* x AP is empty that is:
Laa C Lo <=>£Aaﬂﬁ_AbzwﬁﬁAaﬂﬁﬁ:(Z)ﬁﬁAaxﬁzw.

Correctness.
“D”  we assume that there exists some concrete run which is accepted by A* but

not by A°’. Thus, £ ax b 18 not empty, which is a contradiction.

“C”  we assume that £ ,, -7 is not empty, meaning there exists some concrete runs
accepted by A% x Ab. Thus, this run is accepted by both A% and Ab. Because
L, (Ab) = V¥ — L,(AY), thus there exists some concrete run which is accepted
by A® but not by A°, which is a contradiction.

Complexity. Language inclusion problem of AM7 is decidable follows from Proposi-
tion 4.4.1, Proposition 4.4.2, and Proposition 4.4.3 and derived the complexity from the
afore mentioned propositions. a

The language inclusion problem of AM7T (Proposition 4.4.4) is defined over concrete
runs, thus in AM7 symbolic language inclusion coincides with concrete language inclu-

sion.

4.5 On-the-fly Language Inclusion Matching

In order to do matching between a contract with a security policy, our algorithm takes
as input two automata A¢ and A" representing respectively the formal specification of
a contract and of a policy. A match is obtained when the language accepted by A®
(the execution traces of the midlet) is a subset of the language accepted by AP (the
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acceptable traces for the policy). The matching problem can be reduced to an emptiness
test: Lac C Lap < LacNLap =0 & LaeNLgp =0 Lo, 57 = 0. In other words,
there is no behavior of A which is disallowed by A”. If the intersection is not empty,
then any behavior in it corresponds to a counterexample.

Constructing the product automaton explicitly is not practical for mobile devices.
First, this can lead into an automaton too large for the mobile limited memory footprint.
Second, to construct a product automata we need software libraries for the explicit ma-
nipulation and optimizations of symbolic states, which are computationally heavy and
not available on mobile phones. Furthermore, we can exploit the explicit structure of the
contract-policy as a number of separate requirements. Hence, we use on-the-fly empti-
ness test (constructing product automaton while searching the automata). The on-the-fly
emptiness test can be lifted from the traditional algorithm by a technique from Coucuber-
tis et al. [23] while modification of this algorithm from Holzmann et al’s [48] is considered
as state-of-the-art (used in Spin [49]). Gastin et al [35] proposed two modifications to [23]

for finding faster and minimal counterexample.

Remark 4.5.1 Our algorithm is tailored particularly for contract-policy matching, as
such, it exploits a special property of AMT representing security policies, namely each
automaton has only one non accepting state (the error state). The algorithm can be
generalized by removing all specialized tests, for example on line 8 from Algorithm 3
AP = err®P A ... can be replaced by accepting states from AP, and reporting only
availability violation (corresponding to a non-empty automaton). This generic algorithm

corresponds to on-the-fly algorithm for model checking of BA.

We are now in the position to state our contract-policy matching’s result using lan-
guage inclusion:

Proposition 4.5.1 Let the theory T be decidable with an oracle for the SMT problem in
the complezity class C then:

1. The contract-policy matching problem for AMT wusing language inclusion is decid-
able in LIN — TIMEC.

2. The contract-policy matching problem for AMT using language inclusion is decid-
able in NLOG — SPACEC-complete.

Proof. We prove Proposition 4.5.1 by showing that £, —+ = 0 if and only if there
exists no accepting state of A¢ x AP which is connected to the initial state of A x AP and
also connected to itself where AC x AP = A = (S,%,7T,E,A,s0, F). Let A accept all the
concrete runs which are accepted by A¢ and AP that is A is an intersection automaton
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Algorithm 3 check_safety (s, s?, x) Procedure

Input: state s¢, state sP, marker x;

1:

2
3
4:
5
6

I~

10:
11:
12:
13:
14:
15:
16:

map(s¢, sP, ) ;= in_current_path;

: for all ((s%, e, t°) € A°) do

for all ((s?,€P,tP) € AP) do
if (DecisionProcedure(e® A eP) = SAT) then

y = condition(s¢, s, x, S¢, SP)

if (map(t®,tP,y) = in_current_path A ((s© € S°AsP = errP Ax = 1) V (£° € SCAtP =

err® Ay =1))) then
report policy violation;

else if (map(t°,t?,y) = in_current_path A ((s¢ € S° A sP € (SP\{errP}) A x

S° AtP € (SP\{errP}) Ay = 1))) then
report availability violation;

else if (map(t°,tP,y) = unchecked) then
check_safety (t°, P, y);

if (s“€ S°AsP € SPAz=1) then

check _availability(s¢, s?, z);

map(s¢, sP,x) ;= availability _checked,;

else

map(s¢, sP, x) ;= safety_checked;

1)V (t¢ €

Algorithm 4 check _availability(s¢, s, z) Procedure

Input: state s¢, state sP, marker x;
1: for all ((s° e t°) € A°) do

N

for all ((s?,eP,tP) € AP) do
if (DecisionProcedure(e® A eP) = SAT) then
y = condition(s¢, sP, x, S¢, SP)
if (map(t¢,tP,y) = in_current_path) then
if (t? = err?) then
report policy violation;
else

report availability violation;

else if (map(t°,tP,y) = safety_checked) then

map(t¢,tP,y) ;= availability checked
check_availability (¢, t?, y);
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such that L,(A) = L,(A®) N L,(AP).
Correctness.

The proof is similar to Proof 4.4, however we consider the product of two automata.
“2”  we assume that L,(A) # (), meaning there exists an arbitrary concrete run

oc = (Sov1811282...) accepted by A that corresponds to a word w =
(niery ...y where for all i > 1, v; satisfies (e A eP), thus v; also satisfies
e¢ and ef. By Definition 4.3.3 Vi > 0 state s; is directly connected to state
S;i+1. Thus, when ¢ < k then s; is connected to si. Furthermore, there exists
some accepting state which is visited infinitely often, meaning that there is
some s; € I and there are i, k where 0 < ¢ < k such that s; = s; = s,. Hence,
sy 1s connected to the initial state sy and also connected to itself.

“C” we assume that there exists some accepting state s; € F' which is connected
to the initial state and also connected to itself. So, there is a sequence of
states (Ss08s18s2 - - - Ss2) from the initial state to sy, = s; that corresponds to a
word (Vg Vsolss . .. vg), where for all i > 1, v,; satisfies (e€ A €P), thus vy, also
satisfies e¢ and eP, and Vi > 0 state sy is directly connected to state sg1.
Furthermore, there are also sequences of states (syS115:2 ... sy) from s, = 84
to sy = s; that corresponds to a word (v vpvys ... vy), where for all ¢ > 1, vy
satisfies (e“ AeP), thus vy, also satisfies e© and €P, and Vi > 0 state sy, is directly
connected to state syy1. Thus (VaVels ... ve) (Valiebs ... vg)” is accepted

by A and L,(A) # 0.

Complexity. The matching between a contract with a security policy problem can be
reduced to an emptiness test of the product automaton of between a contract with a
complement of security policy. A combination of an algorithm based on Nested DFS
[72] with a decision procedure for SMT can solve this problem. The algorithm takes as
input the midlet’s claim and the mobile platform’s policy and starts a depth first search
procedure check_safety (soC,soF,1) (Algorithm 3) over the initial state (soC,soF,1).
When an accepting state in AMT is reached, we have two cases. First, when the state

contains an error state of complemented policy (errﬁ), then we report a security policy
violation without further ado.! Second, the state does not contain an error state of
complemented policy (SP\{errF}). Then, we start a new depth first search (Algorithm
4)from the candidate state to determine whether it is in a cycle, in other words if it is
reachable from itself. If it is, then we report an availability violation.

We use the same marking as in AM7 emptiness check, namely when a state is first

!The Error state is a convenient mathematical tool, but the trust assumption of the matching algorithm is that

the code obeys the contract and therefore, it should never reach the error state where any action is permitted.
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generated, it is marked as unchecked. During an unfinished search in Algorithm 3, a state
is marked as in_current_path. When a state has finished its Algorithm 3 and not yet
processed in Algorithm 4, then it is marked as safety_checked. Finally, a state is marked
availability_checked when it has been processed by both Algorithm 3 and Algorithm
4. We also apply function condition(s,t, z, i, F3) that implements marker signing of y
given x and current states from the Definition 4.4.2 of AMT intersection.

This algorithm can be solved in linear time on the size of the number of the states of the
product. In addition an oracle to an SMT solver is used to solve DecisionProcedure(e® A
eP) = SAT. Hence, its complexity is LIN — TIMEF.

The algorithm needs only a logarithmic memory, since at each step it needs to re-
member fewer states than the number of the total product states and there are only
two bits added to each state for the marker. Also, an SMT solver is used to solve
DecisionProcedure(e® A eP) = SAT and as in non-emptiness of AMT we have NLOG —
SPAC E-hardness follows from Jones [51] who showed that graph reachability problem
is NLOG — SPACFE-hard. Hence, the contract-policy matching problem of AMT is
NLOG — SPAC E°-complete. O

As we have shown, matching between a contract with a security policy problem can be
reduced to an emptiness test of the product automaton of a contract with a complement
of security policy: Lsc € Lar & Lo, 57 = 0. Furthermore, the set of infinite words
recognized by an automaton A, denoted by L, (A), is the set of all accepting infinite traces
in A (w = (111s...)). Because the language of an automaton A is defined in concrete level,
thus the symbolic language coincides with the concrete language. Therefore, contract-
policy matching using language inclusion in symbolic and concrete notion coincides.
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Chapter 5

On-the-fly Matching Prototype

Implementation and Experiments

In this chapter, we try to provide an answer to the following question: how
can we implement matching and what is the best configuration of integrat-
ing automata-based inclusion algorithm with decision procedure? 7To address
this issue we give possible design decisions and run experiment both on desk-
top and mobile device. We continue with detailing the running-time on the
mobile platform for one design decision only to give the reader a feeling for
how the matching algorithm with integrated decision procedure can run in real

application.

5.1 Introduction

This chapter describes the prototype implementation of contract-policy matching in AMT,
its integration with decision solver based on MathSAT and NuSMV, and the results of
our experiments on matching.

We begin in Section 5.2 by discussing the overall implementation architecture and the
integration issues with the procedure solver NuSMV [22] integrated with its MathSAT
libraries [18]. Since our goal is to provide this midlet-contract vs platform-policy matching
on-the-fly (during the actual download of the midlet) issues like small memory footprint,
and effective computations play a key role.

Section 5.3 continues with implementation of language inclusion as emptiness test using
an on-the-fly procedure with oracle calls to the decision procedures available in NuSMV.
Therefore our design decision AM7T makes reasoning about infinite transitions systems

with finite states possible without symbolic manipulation procedures of zones and regions
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or finite representation by equivalence classes whose memory intensive characteristic is
not suitable for our application.

Our prototype was first implemented in Java and was run on a Desktop PC with
operating system Linux. Then, it had also been ported to .NET for actual detailed
profiling, namely for HTC P3600 (3G PDA phone) with ROM 128MB, RAM 64MB,
Samsung@®SC32442A processor 400MHz and operating system Microsoft® Windows Mobile®)5.0
with Direct Push technology.

Finally, Section 5.5 presents a detailed performance analysis of the integration design
alternatives regarding the construction of expressions, the initialization of solver, and the
caching of temporary results by considering both running time and internal metrics of

various available options.

5.2 The Architecture

In this section we describe the conceptual architecture of the prototype that implements
the overall matching algorithm and supports integration with a decision procedure solver
NuSMV [22] integrated with its MathSAT libraries [18]. We provide an overview of
how the prototype is implemented to show the possible options for integration with the
solver. The contract-matching prototype takes as input a contract and a policy and checks
whether or not the contract matches the policy. The prototype architecture is depicted
in Figure 5.1. Detailed class diagram is available on Appendix A.

Our first observation is that the policy has to be deployed on the device and it is
unlikely to change frequently. The second observation is that, even if applications (and
related contracts) will change frequently and dynamically, the binding between an appli-
cation and its contract will considerable be static. If a digital signature or a proof carrying
code is used, the contract has to be shipped with the application. In the case of Java
application, this contract must be essentially included in the JAR file that represents the
application and must be directly accessible to the virtual machine that is responsible for
the matching and the enforcement of the security policy (see [81] for details).

The prototype consists of two parts, namely on-device and off-device implementations.
During off-device part execution, the contract and policy are transformed into a suitable
internal representation for the on-the-fly algorithm. The policy automaton is also com-
plemented at this step of the execution. In on-device part of the prototype the main
on-the-fly algorithm runs on the contract and policy input and make calls to the decision
procedure during its execution.

Initially, we implemented our prototype in Java platform and subsequently the ar-

chitecture remained the same for the .NET platform. Thus, we are only describing our
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Figure 5.1: On-the-fly Implementation Architecture

architecture in Java platform. The initial algorithm transforms a contract (resp. a policy)
into a Java class, ContractAutomaton.java (resp. PolicyAutomaton.java) that can be di-
rectly manipulated by the actual algorithm responsible for the on-the-fly policy matching
(i.e. emptiness test). If the policy option is specified then the parser also performs the
complementation of the policy. Management of the variables declaration is discussed later
in Section 5.3.

Since a contract-policy matching algorithm should frequently call the decision pro-
cedure during its execution, we need a design decision for an internal representation of
AMT . We discuss this particular form of AMT in details. First, we associate a number
of variables to every edge, where method is an API call that the policy is supposed to rule,
cond - a guarded command which must be true in order for the method to be executed,
for instance a cond specifies that the url must start with the string “https”.

For further representation simplification, we follow the semantics for security automata
proposed in [8] so that we have a prioritized execution among guards: we go to the next
guard only if the guards before it have all failed. Such information is represented in
otherConds - the other guarded commands that failed before reaching the current guard
other Methods - an expression consists of all other methods that are not supposed to rule

at the current moment.

Once contract and policy automata are made available to the main system, we can
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run the on-the-fly procedure which has been also implemented in Java using only MIDP
libraries to guarantee portability (and we have similarly developed a .NET mobile imple-
mentation in C#).

The next stage is a non-trivial point because we need to interact with a decision pro-
cedure for solving AMT§ expressions which are defined in complex theories for example
boolean expressions and mathematical expressions. We use the solver as a black box (an
oracle) for the general algorithm that gives the answer whether the problem is satisfiable
or not. We have further decided to interface with the solver without using its internal
data structure but rather to interact with the decision procedure by using strings. While
this creates a bit of overhead for parsing, it makes it significantly easier to replace the
solver as needed.

5.3 Design Decisions

Different design decisions are made in order to decide the best configuration of integrating
automata-based inclusion algorithm with decision procedure as the problem is not trivial.
Every option of the configuration proposed below has different memory impact and this
information and results of such analysis is very important because of the resource con-
straints of mobile device. This restriction is not commonly studied in classical decision
procedure integration papers because the problem of resources is not critical.

In integrating matching algorithm with the theory solver we faced a number of design

options:

One_vs Many Solver in object oriented languages is by itself an object. We could either create
only one instance of solver, relying on the solver to assert and retract expressions
on demand, or create a new instance of the solver every time we call the decision

procedure.

MUTEX_SOLVER if an edge in the automaton correspond to a call to a method it is obviously
incompatible with another edge calling a different method. Such constraints could
be directly incorporated into the algorithm without the need to represent them as
boolean mutual exclusion constraints on the boolean variables representing method
invocations. In this case all the method names are declared as mutex constants at
the moment of declaring all variables, then the expression sent to the solver has the
following structure: method = name A cond A otherConds. Hence, if the method

names of two edges are not the same then the DecisionProcedure returns false.

MuTex Mc allows the on-the-fly algorithm to check whether method names are the same.

The DecisionProcedure is called with parameters: cond A otherConds only if this
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check is passed.

PRIORITY_.MC the semantics for security policy is that guards are evaluated using priority
or hence we can optimize the expressions sent to the decision procedure as lemmas.
Using the lemma, the Expression sent to the DecisionProcedure is minimized and it
has only cond.

CACHING MC Since many edges will be traversed again and again we could save time by
caching the results of the matching. The solver itself has a caching mechanism that
could be equally used (CACHING_SOLVER).

While we assumed that all decision could be just taken after considering preliminary
experimental results it turned out that at least for the onevs.Many decision this was not
possible. The cause is the management of garbage collection both by the Java virtual
machine and by the libraries of MathSAT /NuSMV which requires only one instance of
solver exists at time in order to interact correctly with the NuSMYV library. This leads to

use a static invocation for the solver and set significant constraints on the interaction.

For example, before starting to visit all constraints to the library, all variables used in
expressions must be declared. The NuSMV library has to invoke DeclareNewBoolean Var,
DeclareNewWordVar, DeclareNewStringVar methods for declaration of boolean, integer
and string variables respectively. Only after declaring all the variables from contract
and policy expressions, the on-the-fly algorithm can actually start invoking the decision
procedure in its visit. A consequence of this rule is that with this implementation we
cannot insert edges that introduce new variables because the solver can be called only
after declaring all the variables and adding all the needed constraints.

Therefore, during the visit of the algorithm we must at first upload constraints to the
solver with the AddConstraint method of the NuSMV class and then remove them with
the RemoveConstraint.

The rest design alternatives can be implemented and tested thus giving way to the six
alternative configurations (see Fig. 5.2d) of the interactions between the solver and the

on-the-fly emptiness check algorithm.
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Table 5.1: Problems Suit

Problem | Contract Policy SC | TC | SP | TP
P1 size_100_512_contract.pol size_10_.1024 _policy.pol 2 4 2 4
P2 maxKB512_contract.pol maxKB1024_policy.pol 2 4 2 4
P3 noPushRegistry_contract.pol | oneConnRegistry_policy.pol 2 3 3 9
P4 notCreateRS_contract.pol notCreateSharedRS_policy.pol | 2 4 2 4
P5 pimNoConn_contract.pol pimSecConn_policy.pol 3 7 3 9
P6 2hard_contract.pol 2hard_policy.pol 3 7 3 7
pP7 http_contract.pol https_policy.pol 3 7 3 7
P8 3hard_contract.pol 3hard_policy.pol 3 7 3 7
P100 noSMS_contract.pol 100SMS _policy.pol 2 4 102 | 304

5.4 List of Abbreviations

In this thesis we use the following abbreviations:
SC: Number of States of Contract
TC: Number of Transitions of Contract
SP: Number of States of Policy
TP: Number of Transitions of Policy
SG: Number of States of generated Policy /Contract
ART: Average Runtime for 10 runs

5.5 Experiments on Desktop and on Device

To understand the best option we collected data on resources used, namely number of
visited states, number of visited transitions, running time for each problem in each design
alternative, and the number of solved problems against time. For sake of example we list in
Table 5.1 some sample possible combinations of policy-contract (mis)matching pairs. For
instance, the contract pimNoConn_contract.pol represents Example 2.1.1 and the policy
pimSecConn_policy.pol corresponds to Example 2.1.2.

With the exception of the pathological problem P100, which has been designed that
way, most problems have few states and transitions and, as we shall see in the next table
(Table 5.2 showing performance of ten times run for each problem set and each design
alternative), they also require little time for being assessed.

Notice that the number of states and transitions in the AMT for each contract and
policy in Table 5.1 is a number of reachable states and transitions. During the running of
matching algorithm there may be the case when the algorithm stops working (producing
”do not match” answer) without reaching all the states of contract and/or policy. And

this case is explicitly shown in P6, P7 and P8 examples in Table 5.2. That is why we
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Table 5.2: Running Problem Suit 10 Times
MUTEX_MC ONE_INSTANCE CACHING_SOLVER

Problem Desktop Mobile Result
ART (s) [ CRT (s) [ SV [ TV | ART (s) [ CRT (s) [ SV [ TV

P1 2.4 2.4 2 4.3 4.3 2 | 6 | Match

P2 2.4 4.8 2 4.1 8.4 2 | 6 | Match

P3 2.4 7.2 3 | 1 3.9 12.3 3 | 11 | Match

P4 2.4 9.6 2 | 6 4.0 16.3 2 | 6 | Match

P5 47 14.3 3 | 1 4.1 20.4 3 | 11 [ Match

PG 2.9 2.9 4] 4 3.8 3.8 3 | 6 | Not Match
P7 2.8 5.7 5 | 7 3.8 7.6 2 | 4 | Not Match
PS8 2.9 8.6 5 | 7 3.8 11.4 3 | 6 | Not Match
P100 93 | 93 J12]307] 113 [ 113 [102]307 [ Match |

only present here the number of reachable states in Table 5.1 and number of visited states
during on-the-fly running in Table 5.2.

We run our experiments on a Desktop PC (Intel(R) Pentium(R) D CPU 3.40GHz,
3389.442MHz, 1.99GB of RAM, 2048 KB cache size) with operating system Linux version
2.6.20-16-generic, Kubuntu 7.04 (Feisty Fawn). Currently, we are also porting the appli-
cation to the mobile for actual detailed profiling, namely HTC P3600 (3G PDA phone)
with ROM 128MB, RAM 64MB, Samsung@®SC32442A processor 400MHz and operating
system Microsoft ® Windows Mobile®)5.0 with Direct Push technology.

For the sake of example we present the result obtained for alternative with MuTEX_MC
ONE_INSTANCE CACHING_SOLVER in Table 5.2. The results for all design alternatives are mapped
into diagram shown in Figure 5.2a for matching problems and Figure 5.2c for not matching
problems. Notice that we only provide the cumulative running time that is necessary to
solve all problems. This is important because our goal is to match (or not match) all rules
in a contract with all corresponding rules in a policy. Thus, the value of the single problem
is not important except for some cases where the average output might be significantly
off due to some off scale rule.

We singled out P100 as a challenging artificial problem because it has a large number of
states compared to the others: essentially this happened because we draw an automaton
modulo theory with 100 states and which traverse from one state to another by adding 1
to the number of SMS sent.

In this case there is a difference between M1 and M5, namely 9.259 s and 9.117 s resp.,
that is M5 is better around 1.5% than M1. In order to study this in more details, we
generated more unreal problem sets: as P100 with combination of sent SMS none, 1, 10,
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Figure 5.2: Cumulative response time of matching algorithm on Desktop PC

and 100 for both contract and policy. The data of the experiment is given on Appendix C.
The generated cases cumulative running time of implementation is propositional to the
number of problems solved (see Figure 5.2b). In this case the difference among M1 until
MS is negligible as can be seen from Figure 5.2b that the results construct almost a line.

All methods seem to perform equally well because the problems are not stressful enough
for the different configurations. This is actually a promising result for the deployment
to the resource constrained in mobile device domain. Therefore, we have implemented
the same algorithm for the mobile platform HTC P3600 (3G PDA phone). We run the
problem suit of P1-P8 and P100 with MUTEX_.MC ONE_INSTANCE CACHING_SOLVER configuration.

Table 5.2 shows the results on device, where the runtime of every single problem
running is longer than on Desktop PC. This result is obviously due to higher performance
of desktop platform. However, the cumulative time of solved problems is still manageable
for the mobile user to obtain. The algorithm’s runtime will be longer for the problems

that match (the algorithm has to run over all states until the cycle is found) than for
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Figure 5.3: Cumulative response time of matching on Device vs on Desktop PC

the problems that do not match (the algorithm stops working as soon as counterexample
is found). Note also that the number of visited states and transitions for the matched
problems are the same exactly because of the search all over the states; otherwise the
counterexample can be found in a different time and it does not depend on the run.

Cumulative time of problems is presented in Fig. 5.3a for matching and Figure 5.3b for

not matching.

Our current implementation uses PRIORITY_MC ONE_INSTANCE CACHING_MC configuration. PRI-
orRITY.MC is preferred because of the nature of rules in policies which is priority or, also
because MUTEX_SOLVER does not allow empty methods such as =m; A =m; which is possible

in the matching algorithm. oNEINSTANCE is chosen because of garbage collection problem.

CACHING_MC is desired in order to save calls to solver for the already solved rules.
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Chapter 6

Simulation

In this chapter we revisit the same question as in Chapter 4 namely: given
expressive security policies, how can we model possibly infinite computations
with finite ones? To address this issue we propose Automata Modulo Theory
simulation. The key idea is to use fair simulation which is computed using

parity game based on small progress measures.

6.1 Introduction

On the previous chapters we have seen on-the-fly matching using language inclusion and
this approach requires complementation of the policy of the mobile platform. How-
ever, matching using language inclusion as in presented in Chapter 4 has a limitation
in the structure of the policy automaton, i.e. only deterministic automaton. The con-
straint arises from the AMT complementation, where as BA complementation, the non-
deterministic complementation is complex and exponentially blow-up in the state space
[20]. Safra in [70], gives a better lower bound (200" °& ™)) for nondeterministic BA com-
plementation, however it is still exponential(see [83]). This limitation does not evolve in
matching using simulation as presented in this chapter, because using simulation approach
we can also deal with nondeterministic automata.

The notion of simulation in AMT is both fair and symbolic. The fairness in AMT
is similar to fair simulation in Biichi automata as in [46]. A system fairly simulates
another system if and only if in the simulation game, there is a strategy that matches
each fair computation of the simulated system with a fair computation of the simulating
system. Efficient algorithms for computing a variety of simulation relations on the state
space of a Biichi automaton were proposed in [30] using parity game framework, that is
based on small progress measures [52]. Another algorithm based on the notion of fair

simulation was presented in [40]. The symbolism in AMT is similar to the theory of
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symbolic bi-simulation for the m-calculus [45]. This symbolic representation can express
the operational semantics of many value-passing processes in terms of finite symbolic
transition graphs despite the infinite underlying labeled transitions graph.

This chapter chapter consitutes the theory of simulation in AM7T. We begin in Section
6.2 by introducing the concept of simulation at the concrete level, among valuations i.e.
API calls, and the notion of symbolic simulation as in [45]. Then, Section 6.3 describes a
decision procedure (and its complexity characterization) for matching the mobile’s policy

and the midlet’s security claims using simulation.

6.2 Simulation in Automaton Modulo Theory

In the sequel we will use s to denote states of the application’s contract and ¢ to denote
state of the platform’s policy.

Definition 6.2.1 (Concrete Fair Compliance Game) Let A° and AP be AMT with
wniatial states sq and ty respectively. A Concrete Fair Compliance Game Gic, v (S0, o) is
played by two players, Contract and Policy, in rounds.

1. In the first round Contract is on the initial state sy € S¢ and Policy s on the
initial state to € SP.

2. Contract chooses a transition (s;, €5, si+1) € AS with a valuation v; represents o
and Z(e;) such that (M, «;) = €f and moves to s; 1.

3. Policy responds by a transition (t;,e¥ t;11) € AL such that (M, ;) |= € and moves

79

to tiqq.-
The winner of the game is determined by the following rules:
e [f the Contract cannot move then Policy wins.
e [f the Policy cannot move then Contract wins.

e Otherwise there are two infinite concrete runs

= (sov1811289 . . .) and = (tovitivaty . . ) respectively of A¢ and AP. Ifgz (sov1811/283 . . .)

is an accepting concrete run for A¢ and ?: (tovitivoty . . .) is not an accepting con-

crete run for AP then Contract wins. In other cases, Policy wins.

Intuitively in the compliance game, the Contract tries to make a concrete move and
the Policy follows accordingly to show that the Contract move is allowed. If the Policy
cannot move then Contract is not compliant, meaning there is a move that the Policy

can not do, that is that particular action is a violation.
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Example 6.2.1 In a game between the Contract from Figure 4.1a and the Policy from
Figure 4.1b, the Contract can choose to invoke the url http: //www. google. com and
the Policy can respond by selecting the appropriate expression which is satisfied by that
valuation.

A more complex situation occurs in the infinite case where infinite runs correspond
to liveness properties, i.e. something good will eventually happen. An example of this
property is shown in Example 2.1.3. In this case, the Contract only wins (i.e. it breaks
the Policy) when according to its view of the world there are infinitely many good things
but not for the Policy which after some initial good things is trapped in an endless
sequence of unsatisfactory states.

Example 6.2.2 In a game between the Contract andPolicy from Fx.2.1.3, the Contract
can choose to invoke the url https: // sourceforge. net in a certain step after in some
previous steps it invokes permission io.Connector.https. The Policy can respond by
selecting the appropriate expression which is also satisfied by the same assignment, which
1s possible in the game if Policy has requested permission io.Connector.https in some

Previous steps.

The notion of concrete strategy for Policy in game Gga 0 (S0, to) is a partial function
that determines the next move of Policy given the history of the concrete game up to a

certain point.

Definition 6.2.2 (Concrete Strategy) A partial function f : S¢x (SP x v x S¢)* — SP
is a concrete strategy if for any sequence (Sov181Vs . .. SiV;S;iy1) which is a valid concrete

run for A¢
o f(s0) = to

® f(<80t01/181 .. .SitiVi+1Si+1>) = ti+1 such that <ti,€lp,ti+1> € Ag— and (M,Oéi) ): ep

77

where v; represents c; and Z(e;).

A concrete strategy f of a game is a Policy winning strategy if and only if whenever a
Policy selects the moves of game as in Definition 6.2.1 according to f then Policy wins.

Definition 6.2.3 (AM7 Concrete Fair Simulation Relation) An automaton AP con-
cretely fair simulates an automaton A€ if and only if there is a concrete winning strateqy
for AP we denote as A° T AP. We also say that A® complies with AP.

We have now the machinery to generalize the notion of simulation to symbolic level,

among expressions.
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Definition 6.2.4 (AM7 Fair Compliance Game) A Fair Compliance Game
Gl ac ar (S0, to) is played by two players, Contract and Policy, in rounds.

1. In the first round Contract is on the initial state sy € S¢ and Policy s on the
initial state ty € SP.

2. Contract chooses a transition (s;, €5, si11) € AS such that €5 is satisfiable and moves
to Si+1-

3. Policy responds by a transition Ab(t;, e t;i1) such that (ef — €¥) is wvalid and

moves to t;41.

The winner of the game is determined by the rules as in Definition 6.2.1 with the difference

i run where we define run over expressions instead of assignments.

The intuition is similar to concrete game: Contract tries to make a symbolic move
and the Policy follows suit in order to show that the Contract move is allowed. If the
Policy cannot move this means that the Contract may not be compliant because there
is a symbolic move that the Policy could not do. However, as we shall see this might not
imply that at the concrete level the Contract is really non-compliant.

Definition 6.2.5 (Strategy) A partial function f : S¢ x (S? x € x S¢)* — SP is a
symbolic strategy if and only if for any sequence (speisi€5 ... s;e5si11) which is a valid

symbolic run for A€

o f(s0) = to

o f((sotoe5siti€s ... siti€fsit1)) = tir1 such that A (t;, el tiv1) and (e§ — €) is valid.

7

A strategy f of the game is a Policy winning strategy if and only if whenever a Policy
select the moves of game as in Definition 6.2.4 according to f then Policy wins.

Definition 6.2.6 (AM7 Fair Simulation Relation) An automaton AP fair simulates
an automaton A€ if and only if there is a winning strategy for AP we denote as A¢ < AP.
We also say that A complies with AP.

Proposition 6.2.1 If A° < AP is an AMT fair simulation relation then A¢ C AP is a

concrete fair simulation relation.

Proof.
Assume that A¢ < AP is an AMT fair simulation relation. By Definition 6.2.6 there is a
winning strategy for AP, such that whenever a Policy select the moves of game defined
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in Definition 6.2.4 according to strategy f then Policy wins the game. We construct a
concrete strategy f’ from f.

By Definition 6.2.4 there are two cases where Policy wins the game:

e Finite game: If the Contract cannot move then Policy wins.
Contract moves by choosing a transition (s;, €5, s;11) € A% such that ef is satisfiable.
Contract cannot move means that there exists no valuations and by Definition 6.2.1

in concrete game Contract cannot move either.

e Infinite game: There are infinitely many j such that ¢; € F? or there are only finitely
many ¢ such that s; € F°.
The compliance game has infinitely many j such that ¢; € F? when Policy is able
to respond infinitely often by a transition A%-(Z;,e},t;,1) where (e§ — €}) is valid,
meaning for all o, (M, ;) = (e§ — €f). And by Definition 6.2.1 with (M, a;) [= €,
Policy can respond by a transition (t;,e?,t; 1) € AL
Finitely many i occurs when there is some k such that Vi > k,s; ¢ F° meaning
Contract moves by choosing a transition (s;, €5, s;11) € A% such that €f is satisfiable,
i.e. there exist oy where (M, ;) |= €f and by Definition 6.2.1 Contract can also

move in concrete game.

It is clear that the constructed concrete strategy f’is a winning strategy for AP in concrete
compliance game, hence by Definition 6.2.3 A¢ C AP. O

In contrast to the language inclusion approach discussed in Section 4.4, where symbolic
language inclusion coincides with concrete language inclusion, and also the simulation

notions of [45], the converse of Proposition 6.2.1 does not hold in general.
Proposition 6.2.2 AMT fair simulation is stronger than AMT language inclusion.

Proof. The pair of automata in Figure 6.1b and Figure 6.1a is a simple counter example.
We can see that both automata coincide with the same concrete automaton as in Fig-
ure 6.1c. Thus in concrete level the same automaton having not just simulation but also
bi-simulation to itself. However, the symbolic AM7T on Figure 6.1a cannot simulate the
symbolic AM7T on Figure 6.1b. For example if we have policy represented as Figure 6.1b
and contract represented as Figure 6.1a, where both automata accept the same language
but according to simulation VALID(e* — e'') does not hold nor VALID(e* — e'?),
thus we do not have simulation (see abbreviation in Figure 6.1d). a

In order to show that AM7 simulation coincides with concrete simulation we must
impose some additional syntactic constraints on the automaton.
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ein = (Joc(url) Ap(url) = “https”)
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________________ e2 = (Joc(url) Ap(url) = “https”)
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(c¢) Concrete Automaton (d) Abbreviations for expressions

Figure 6.1: Symbolic vs Concrete Automaton

Definition 6.2.7 (Normalized AMT) A = (S,%,7,E,A,so, F) is a normalized au-
tomaton modulo theory T if and only if for every s, s1 € S there is at most one expression
e1 € € such that s; € Ar(s,eq).

For example Figure 6.1a is a normalized automaton while Figure 6.1b is not normalized.

Lemma 6.2.1 It is possible to normalize an AMT automaton A = (S, 5,7 ,E, A, so, F)
when theory T is convexr and closed under disjunction.

Proof. A theory T is convex [73] if all the conjunctions of literals are convex in theory 7.
A conjunction of 7T-literals in a theory 7 is convex if for each disjunction (M, a) =\, e;
if and only if (M, a) = e; for some i, where e; are equalities between variables occurring
n (M, «). If a theory 7 is convex then we can normalize an automaton by considering
the disjunction of all expressions going to the same state.

A theory 7T is called closed under disjunction if disjunctions of 7-formulas \/}"_, e;,
where e; are 7-formulas, is also a 7-formula. For most theories this closure holds. An
example where the closure does not hold is when a 7 consists of only Horn-formulas that
allows at most one positive literal. Suppose we have two Horn-formulas e; and ey, where
e =pi Apy — pand ey =g Age — q, then e; Vey =pi Apa Agy A ga — pV q which is
not a Horn-formula. O
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Figure 6.2: Normalization of an automaton

Lemma 6.2.2 Normalization preserves the determinism of an AMT .

Proof. By Definition 4.3.4 A = (S, 3,7 ,&, A, sg, F') is a deterministic automaton mod-
ulo theory 7, if and only if, for every s € S and every s1,s5 € S and every ey, es € &,
if (s,e1,81) € A and (s,e9,52) € A, where s; # sy then the expression (e; A e3) is
unsatisfiable in the ¥-theory 7.

Let (s,e15,51) € A where j € {1,...,m}, and let (s, eg;, s52) € A where k € {1,...,n},
and s; # so. Thus, each expression (ej; A eg) is unsatisfiable in the 3-theory 7. By
normalization we have (\/7_, e1;) and (V. ear), where (V71 e1;) A (Vo) ear) & Vj €
{1,....m},Vk € {1,...,n},(e1; A ea). If each expression (ej; A eg) is unsatisfiable
then (VL e1;) A (Vi ear) is also unsatisfiable when the theory 7" is convex. Thus,
normalization preserves the determinism of an AMT. O

Proposition 6.2.3 For normalized AMT if A° C AP is a concrete fair simulation rela-
tion then A¢ < AP is an AMT fair simulation relation.

Proof.
Assume that A° C AP is a concrete fair simulation relation. By Definition 6.2.3 there is a
winning strategy for AP, such that whenever a Policy select the moves of game defined
in Definition 6.2.1 according to strategy f then Policy wins the game. We construct a
concrete strategy f’ from f.

By Definition 6.2.1 there are two cases where Policy wins the game:

e Finite game: If the Contract cannot move then Policy wins.
Contract moves by choosing a transition (s;, €S, s;11) € A% with a valuation v; rep-
resents «; and Z(e;) such that (M, ;) = €f, meaning ef is satisfiable. Contract
cannot move means that there exists no valuations and by Definition 6.2.4 in com-

pliance game Contract cannot move either.
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e Infinite game: There are infinitely many j such that ¢; € F? or there are only finitely
many ¢ such that s; € F°.
The concrete compliance game has infinitely many j such that t; € F? when Policy
is able to respond infinitely often by a transition A%-(¢;, e? ,t;+1) where for all valua-
tions v; represents a; and Z(e;) such that (M, a;) = (e — €} ;
valid. And by Definition 6.2.4 Policy can respond by a transition <tj, e‘?, tj+1> e AL

), meaning (e§ — ef) is
with a valuation v; represents a; and Z(e;) such that (M, a;) |= €.

Finitely many i occurs when there is some k such that Vi > k,s; ¢ F°, meaning
Contract moves by choosing a transition (s;, €5, s;11) € A% with a valuation v; rep-
resents «; and Z(e;) such that (M, «;) = €f and by Definition 6.2.4 Contract can

also move in concrete game.

It is clear that the constructed strategy f’ is a winning strategy for AP in compliance
game, hence by Definition 6.2.6 A¢ < AP. a

If automata are in normalized form then we have the following theorem from [59]:

Theorem 6.2.1 For normalized AMT A¢ < AP is an AMT fair simulation if and only

if A C AP is a concrete fair simulation.

Proof.
“D” By Proposition 6.2.1.

“C” If a normalization that preserves automata determinism (Lemma 6.2.2) is pos- O
sible (Lemma 6.2.1), then By Proposition 6.2.3.

6.3 Simulation Matching

In this section we describe a different algorithm for matching from Section 4.5 that uses
the concepts of language inclusion. Here we use fair simulation for matching and adapts
the Jurdzinski’s algorithm on parity games [52]. The simulation algorithm Algorithm 5
takes as input two automata A® and A" representing respectively the formal specification
of a contract and of a policy. A match is obtained when every security-relevant action
invoked by A® can also be invoked by A”. In other words, every behavior of A® is also
a behavior of A”.

At the first step (line 1) a compliance game graph G = (Vi, Vj, E, ) is constructed out
of automata A and A”. A compliance game graph can be formally defined as follows:

Definition 6.3.1 (Compliance Graph) Given (5S¢, 3¢ 7T¢ E¢ A s¢¢, F°) and
(SP.XP TP EP AP soP, FP), construct a (V1, Vo, E,1) as follows:

[} ‘/1: {U(sc78p)|56 & SC, Sp € Sp}
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Algorithm 5 Simulation Algorithm

Input: two AM7T automata A¢ and AF
1: Construct compliance game graph G = (V1, Vy, E, 1)
2: for allv eV do

11(v) = pnew(v) =0

4: repeat

5 = ey

6 for all v € Vj do

@

00 if {p(w)|(v,w)} =0
T {u(w) (0, ))
min {p(w)|(v,w)} otherwise
8: for all v € V; do
9: maz, := max {p(w)|(v,w) € E}
9 if max, = 0
0 if I(v) =0
10: Hnew(V) 1= 1 (v)
maz, +1 if I(v)=1
MATy if I(v) =2

11: until g = ppey
12: if u(v(sOgsOp)) < oo then

13:  Simulation exists
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o Vo= {v(se sme0)|s° € 5% P € SP,Tre (1%, e, s°) € A}

o E={((se.rccy, Vsean))| (87, €, 17) € AP AV ALID(e® — e?)} U
{(U(sc7sp), 'U(tc“gp,ec)”(sc, ec, tC) & AC}

0 if v = V(s ) and s? € FP
l(v) =4 1 ifv="0(ew and s° € F° and s ¢ FP
2 otherwise

A compliance graph G is the tuple (V1, Vy, E, 1)

Intuitively the compliance level [(v) is 0 when the simulating automaton accepts, 1
when the simulated automaton accepts (but the simulating automaton has not accepted
yet) and 2 when neither of them accepts. V) consists of v o) Where AC is on s¢ and
AP is on sP and it is Contract turn to move. Vj consists of V(se,sm,ec) Where AC is on s°
and A” is on sP, Contract just made a move e° and it is Policy turn to move such that
VALID(e® — €P) by querying to an oracle for the SMT solver.

Lemma 6.3.1 Let AY = (S¢ £¢, T £9 A% s0°, FO) and A" = <SP,EP,TP,EP,AP,SOP,FP>
be AMT automata and let the theory T = T UTYT be decidable with an oracle for the
SMT problem in the complexity class C

1. |G = (V1,Vy, E,1)| constructed out of automata A and AT by Definition 6.3.1 is in
O(|S°]. 57| |A%])¢

2. |I7Y(1)| defined as in Definition 6.3.1 is in O(|S¢| . |SP|)

Proof. We prove part 1 by computing the vertices and edges of (V1,V;, E, 1)
e [Vi|isin O(|S€|.|S?])

o [Vol is in O(]S°[.[S7[ . |AZ])

e |E|isin O(]S¢|.]S?|.]A%|)C because an edge exists from a node in V; to a node in
Vi when VALID(e¢ — €P) that needs a call to oracle for the SMT solver.

Thus, we can conclude that |G = (V4, Vo, E,1)] is in O(|S¢| . |S?| . |A%])¢
For part 2 vetices with [ = (1) are contained in V;, thus [I71(1)| is in O(]S¢|.|S?|) O
A compliance game P(G,vg) on G starting at vy € V' is played by two players Policy
(for A”) and Contract (for A“). The game starts by placing pebble on vy. At round
i with pebble on v;, v; € V4(V}), Policy (Contract resp.) plays and moves the pebble
to vi4q such that (v;,v;41) € E. The player who cannot move loses. For infinite play
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T = VgU1Vs2 . . ., the winner defined as the minimum compliance level that occurs infinitely
often, namely if the minimum compliance level is 0 or 2 then Policy wins, otherwise
Contract wins.

Next, we define a compliance measure p : V. — {z|z < |I71(1)|]} U {oo}. u ranges
from 0 to [I7'(1)] because at I(v)=1 the simulated automaton (contract) accepts but the
simulating automaton (policy) has not accepted yet. Thus, progressing the measure has
the analogy of computing the pre-fixed point where the Contract remains winning and oo
shows that the u keeps progressing beyond this limit, meaning Contract wins the game.
If I(v) = 1, then u(v) > p(w), where [[71(1)| + 1 = co. If I(v) = 2 or I(v) = 0, then
(o) = p(w).

The compliance measure for each node is the number of potential bad nodes, namely
nodes where the contract accepts but the policy does not, that it can reach. Thus, u(v) =
oo means that there is an infinite path where policy cannot return to compliance level
0. We slighty modify the Jurdziriski progress measure [52] to compliance measure where
instead of a pair (0, z) we only use x. This is due to our observation of our domain where
we only have three priorities, namely I(v) € 0,1, 2 thus for ordering (0, x) >y (0,2’) the
first component will not effect the ordering.

Jurdzinski’s algorithm on parity games [52] defines that Policy has a winning strategy
from precisely the vertices v where after its lifting algorithm halts has pu(v) < oco. However,
in contract-policy matching we are interested when there is a winning strategy from the
initial vertex v(sye sory, depicted in Algorithm 5 as f1(v(sge sor)) < 00.

Proposition 6.3.1 Let G be a parity game constructed from two AMT automata AC
and AP constructed as in Definition 6.3.1. Policy has a winning strateqy from the initial
vertex Visqge sory When Algorithm 5 halts with (1(v(sge sory) < 00.

Proof. Correctness.
The correctness derived from Jurdzinski’s algorithm on parity games [52]. Jurdziniski
defined a parity game between two players where an even player (in our case Policy) wins
when the lowest priority occuring infinitely often in the play is even (in our case Policy
can return to compliance level 0 infinitely often). He proposed computing the game using
progress measure which is defined as Mg = [1]x[ng + 1] [1] X [n3 + 1] x. .. x[1] X [ng—1 + 1],
where d is the maximum priority in the game. In our setting, we slighty modify the
Jurdziriski progress measure [52] to compliance measure where instead of a pair (0,x) we
only use x. As we have mentioned afore, this is due to our observation of our domain
where we only have 3 priorities, namely [(v) € 0, 1,2 thus for ordering (0,z) > (0,2')
the first component will not effect the ordering.

Jurdziriski reasoned that each vertex can only be lifted |M¢| times. This lifting pro-
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cedure is implemented in Algorithm 5 presented as a loop where compliance measure
progressing until reaching a pre-fixed point (@ = piney). He also defined that Even has
a winning strategy from precisely the vertices v where after its lifting algorithm halts
has p(v) < oco. However, in contract-policy matching we are interested when there is a

winning strategy from the initial vertex v(s,e sor). Thus, in Algorithm 5 Policy wins when

N(U(SOC,SOP)) < 0.

Termination. This parity game terminates because each vertex can only be lifted | M|

times.

ey d-0d(v).|Mg|)) =
O(d.m.|M¢|) where d is the maximum priority in the game, m the number of edges, od(v)

Complexity. Lifting procedure in Jurdzinski [52] has time complexity O (Z

the degree outgoing edges from v, and V is the set of vertices in the game graph. He rea-
soned that for every vertex v with outgoing edges degree od(v) and the tuple of progress

measure has the length of maximum priority d can only be lifted |Mg| times:

Ld/2]
|M¢| = H}i/fj (ngi—1+1) < (%) , where d is the maximum priority in the game.

In our setting, d equals to two, because our compliance measure is in {0, 1,2}. Thus,
|Mg| = [n1+1] = |I7}1)] + 1 < V4] and from Lemma 6.3.1 [V;] = O(|S¢|.|S?|). In
addition, the number of edges |E| is in O(]S¢|.|S?|.|A%|)¢ (from Lemma 6.3.1). Thus,
the time complexity of Algorithm 5 is O(2. |E|.|Mg|)

Lifting procedure in Jurdziniski [52] has space complexity O(dn) where d is the maxi-
mum priority in the game and n the number of vertices in the game graph. He reasoned
that every vertex v in the game graph only needs to keep the compliance measure, which is
a d-tuple of integers. In our setting, d equals to two because our compliance measure is in
{0, 1,2}, however our compliance measure only use an integer z instead of a 2-tuple (0, x).
As we have mentioned afore, this is due to our observation of our domain where we only
have 3 priorities, namely I(v) € 0, 1,2 thus for ordering (0, x) >y (0, ") the first compo-
nent will not effect the ordering. In addition, from Lemma 6.3.1 |V;| = O(|S€|.|S?|) and
Vol is in O(]S¢| . |S?| . |A%]) where the total number of vertices equals to V' = |V;| + [Vy].
Thus, the space complexity of Algorithm 5 is O(|V]). O

We are now in the position to state our contract-policy matching’s result using fair

simulation:

Proposition 6.3.2 Let the theory T be decidable with an oracle for the SMT problem in
the complezity class C then:
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1. The contract-policy matching problem for AMT wusing fair simulation is decidable
in time O(2. |E|.|Mg]).

2. The contract-policy matching problem for AMT wusing fair simulation is decidable
in space O(|V]).

Proof. The matching between a contract with a security policy problem can be reduced
to a fair simulation between a contract with a security policy. A combination of an
algorithm based on Jurdzinski’s algorithm on parity games [52] with a decision procedure
for SMT given in Algorithm 5 can solve this problem in time O(2.|E|.|M¢|) and in space
O(|V]). The algorithm takes as input the midlet’s claim and the mobile platform’s policy
and constructs compliance game graph G = (V;, Vg, E,1). The correctness and complexity
follow from Proposition 6.3.1. a

99



60



Chapter 7

Simulation Matching Prototype

Implementation and Experiments

In this chapter, we try to provide an answer to the following question: how can
we implement matching using simulation and what is the best configuration
of integrating automata-based inclusion algorithm with decision procedure?
To address this issue we give possible design decisions and run experiment
on desktop as in Chapter 5. We continue with detailing the running-time on
the mobile platform for one design decision only to give the reader a feeling
how the matching algorithm with integrated decision procedure can run in real
application.

7.1 Introduction

This chapter describes the prototype implementation of contract-policy matching in AM7T
using simulation, its integration with decision solver based on MathSAT and NuSMV, and
the results of our experiments on matching.

We begin in Section 7.2 by discussing the overall implementation architecture and the
integration issues with the procedure solver NuSMV [22] integrated with its MathSAT
libraries [18].

Section 7.3 continues with implementation of simulation as parity game with oracle
calls to the decision procedures available in NuSMV. Our prototype was implemented
in .NET and was run on a Desktop PC with operating system Microsoft Windows XP
Professional Version 2002 Service Pack 3.

Finally, Section 7.4 presents a detailed performance analysis of the integration design

alternatives regarding the construction of expressions, the initialization of solver, and the
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Figure 7.1: Simulation Implementation Architecture

caching of temporary results by considering running time of various available options.

7.2 The Architecture

In this section we describe the conceptual architecture of the prototype that implements
the overall matching algorithm and supports integration with state of the art decision
procedure solver NuSMV [22] integrated with its MathSAT libraries [18]. The main aim is
to provide a concrete overview of how the prototype is implemented so that one can easily
understand the possible options for integration with the solver. The contract-matching
prototype takes as input a contract and a policy both specified in ConSpec and checks
whether or not the contract matches the policy. The source code itself is thoroughly
documented and should therefore be easy to understand. In addition, the following class
diagram should provide the reader with a good overview over the Simulation Algorithm
namespace and its classes as shown in Figure 7.1. Detailed class diagram is available on
Appendix B.

The prototype had been implemented as a Desktop version by extending the prototype
from Chapter 5. The prototype consists of only one part which is off-device implemen-
tations. At the first step of matching, a compliance game graph G = (V,Vy, E,l) is
constructed out of automata A® and A”. The main parity game algorithm runs on the
constructed game graph and makes calls to the decision procedure during its execution.
The different step from the on-the-fly implementation is that the policy automata need not
be complemented. The rest of integration issues with decision solver based on MathSAT
and NuSMV follows from on-the-fly matching implementation, for example we use the

solver as a black box (an oracle) for the general algorithm that gives the answer whether
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the problem is satisfiable or not.

7.3 Design Decisions

As in on-the-fly matching implementation, different design decisions are made in order
to decide the best configuration of integrating automata-based inclusion algorithm with
decision procedure as the problem is not trivial. Every option of the configuration proposed
below has different memory impact and this information and results of such analysis is very
important because of the resource constraints of mobile device. In integrating matching
algorithm with the theory solver we faced a number of design options:

Onevs Many Solver in object oriented languages is by itself an object. We could either create
only one instance of solver, relying on the solver to assert and retract expressions
on demand, or create a new instance of the solver every time we call the decision

procedure.

ALLINSTANCES The expression sent to the solver has the following structure: method A
other Methods N\ cond A otherConds.

CACHING MC Since many edges will be traversed again and again we could save time by
caching the results of the matching. The solver itself has a caching mechanism that
could be equally used (CACHING_SOLVER).

Unlike in on-the-fly matching implementation, we do not have MUTEX_SOLVER, MUTEX_MC,
and PRIORITY_MC options instead we introduce ALLINSTANCES which is suitable for represen-
tation of only policy automaton and not the complementation of policy automaton.

As in on-the-fly matching implementation, the one.vs Many option was not possible which
requires only one instance of solver exists at time in order to interact correctly with the
NuSMYV library. This leads to use a static invocation for the solver and set significant
constraints on the interaction. For example, before starting to visit all constraints to the
library, all variables used in expressions must be declared. The NuSMYV library has to
invoke DeclareNewBooleanVar, DeclareNewWordVar, DeclareNewStringVar methods for
declaration of boolean, integer and string variables respectively. Only after declaring all
the variables from contract and policy expressions, the simulation algorithm can actually
start invoking the decision procedure in its visit. A consequence of this rule is that with
this implementation we cannot insert edges that introduce new variables because the solver
can be called only after declaring all the variables and adding all the needed constraints.

Therefore, during the visit of the algorithm we must at first upload constraints to the
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Table 7.1: Running Problem Suit 10 Times
ALL_INSTANCES ONE_INSTANCE CACHING_MC

Problem | ART (s) | CRT (s) | Result
P1 2.014 2.014 Match
P2 1.934 3.948 Match
P3 1.886 5.834 Match
P4 1.886 7.72 Match
P6 1.998 1.998 Not Match
pP7 2.06 4.058 Not Match
P8 1.998 6.056 Not Match
| P100 | 5528 | 5528 | Match |

solver with the AddConstraint method of the NuSMV class and then remove them with
the RemoveConstraint.

Therefore, during the visit of the algorithm we must at first upload constraints to the
solver with the AddConstraint method of the NuSMV class and then remove them with

the RemoveConstraint.

7.4 Experiments on Desktop

To understand the best option we collected data on running time for each problem in each
design alternative and the number of solved problems against time. From (Section 7.3) the
design alternatives can be implemented and tested in two alternative configurations and
we use the same problem suit as in Table5.1 for possible combinations of policy-contract
(mis)matching pairs.

We run our experiments on a Desktop PC (Intel(R) Pentium(R) D CPU 3.40GHz,
3389.442MHz, 1.99GB of RAM, 2048 KB cache size) with operating system Microsoft
Windows XP Professional Version 2002 Service Pack 3. The result is shown in Table 7.1.

For the sake of example we present the result obtained for alternative with ALLINSTANCES
ONE_INSTANCE CACHING_MC in Table 7.1. The results for all design alternatives are mapped into
diagram shown in Figure 7.2a for matching problems and Figure 7.2b for not matching
problems. Notice that we only provide the cumulative running time that is necessary
to solve all problems as for on-the-fly implementation experiments. This is important
because our goal is to match (or not match) all rules in a contract with all corresponding
rules in a policy. Thus, the value of the single problem is not important except for some
cases where the average output might be significantly off due to some off scale rule.

We singled out P100 as a challenging artificial problem because it has a large number of

states compared to the others: essentially this happened because we draw an automaton
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Figure 7.2: Cumulative response time of matching algorithm on Desktop PC

modulo theory with 100 states and which traverse from one state to another by adding 1
to the number of SMS sent.

In this case there is a difference between M7 and M8, namely 5.387 s and 4.434 s
resp., that is M8 is better around 21.5% than M7. In order to study this anomaly in
more details, we generated more unreal problem sets: as P100 with combination of sent
SMS none, 1, 10, and 100 for both contract and policy. The data of the experiment is
given on Appendix D. The generated cases cumulative running time of implementation
is propositional to the number of problems solved (see Figure 7.2c¢). In this case the
difference between M7 and MS is only around 9.8% still with M8 better than M7. This
result conforms to our intuition because M8 uses fewer calls to solver due to its caching

and thus save computations.

All methods seem to perform equally well because the problems are not stressful enough

for the different configurations. This is actually a promising result for the deployment to
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the resource constrained in mobile device domain. However, we have not yet implemented
the same algorithm for a mobile platform.

In this chapter, we have given possible design decisions and run experiment on PC
for AMT simulation. Furthermore, we have detailed the time of the running on the
mobile platform for one design decision only to give the reader a feeling how the matching
algorithm with integrated decision procedure can run in real life and that it will take a
reasonable time. Our current implementation uses ALLINSTANCES ONE_INSTANCE CACHING_MC
configuration. ALLINSTANCES is preferred because of the nature of rules in policies when
an automaton is not complemented. ONEINSTANCE is chosen because of garbage collection
problem. cacHiNG.Mc is desired in order to save calls to solver for the already solved rules.
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Chapter 8

IRM Optimization

In this chapter, we try to provide an answer to the following question: given
an untrusted code and a policy that a platform specifies to be inlined, how can
we obtain an optimized Inlined Reference Monitor ? To address this issue, we
propose six different framework models for optimization with respect to compo-
nents that are needed to be trusted or untrusted. We also describe an approach
for optimization based on automata theory. The key idea is that given a policy
that represent the desired security behavior of a platform to be inlined, we com-
pute an optimized policy with respect to the claims on the security behavior of
a application that we inject to the untrusted code.

8.1 Introduction

AMT is a general model, thus it can be used not only for matching security policies
but also in other enforcement mechanism for example Inlined Reference Monitor (IRM).
IRM is a flexible mechanism to enforce the security of untrusted applications. Even
if current version of IRM can work on rich system such as today’s smart phones, the
overhead is still too much for the next frontier of web applications: Java cards. Indeed,
the smart card technology [61] evolved with larger memories, USB and TCP/IP support
and the development of the Next-Generation (for short NG) Java Card platform [3, 4]
with Servlet engine. This latter technology is a full fledged Java platform for embedded
Web applications and opens new Web 2.0 opportunities such as NG Java Card Web 2.0
Applications. It can also serve as an alternative to personalized applications on remote
servers so that personal data no longer needs to be transmitted to remote third-parties.

Thus, optimizing redundant monitoring without compromising security is needed. The
key idea is that given a policy that represent the desired security behavior of a platform

to be inlined, we compute an optimized policy with respect to the claims on the security
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behavior of a application (for short contract). Then, we use this optimized policy to inject
the untrusted code. In the first work [86] proposed IRM optimization for a constrained
history-based access control policy such as Chinese Wall policies using compiler optimiza-
tion approach. Unfortunately, this approach is severely limited by the expressivity of
the language: it only consider propositional conditions on policies. As a result even a
simple policy such as ”Only allows connections to urls starting with http” cannot be opti-
mized. An earlier work [50, 29] suggested to apply static program analysis as in compiler
optimization to tame the overhead of code instrumentation.

Three issues arise from the problem of IRM optimization. One issue regards the
questions of “How can we formalize the notion of optimization ¢”. Our work attemps
to give a preliminary formalization using the concept of AMT . The second question is
“What is the optimal policy to be enforced with respect to the claimed applications policy?”.
In this issue, we are not interested in finding a unique minimum policy, given only the
policy itself, instead we are interested in finding the optimal policy guided by claimed
applications policy. The last issue is “Is this optimal policy computable with an efficient
algorithm 77

This chapter attemps to answer the afore mentioned questions specifically by using
AMT formalization. We begin in Section 8.2 by identifying the different trust models
for IRM optimization, i.e. the relative position of the optimizer and the inliner with
respect to the trust border. We continue by optimization algorithm in Section 8.3 using

simulation from Chapter 6 as the basic block.

8.2 Security Models for Optimized IRM

In this section, we introduce our IRM trust models. Figure 2.1 from Chapter 2 illustrates
our general optimization workflow model. As we have already mentioned, this model is
a modification of original SxC workflow of [13]) by adding optimization step. First, a
code is analyzed in order to extract contract out of it. This can be done by trusted or
untrusted parties. If done by untrusted parties, then the claimed contract needs to be
verified whether it complies to the code. If it complies, then we simulate the contract
with the policy to verify if the policy is already enforced by the contract. On failure of
simulation, we optimize policy by discharging behaviors which are already enforced by a
contract and we inject this optimized policy to the code. The overall model consists of
the following components:

ContractExtractor and ClaimChecker The former extract policies from code based
on control flow graphs and possibly annotation existing on the code [38]. The latter is

the basic component of Proof-Carrying Code [63], where the untrusted code supplier
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must provide with the code a safety proof that attests to the code’s safety properties.
In mobile system domain [44] implements a linear decision algorithm verifying that
annotated .NET binaries satisfy a class of policies using security and edit automata.

SimulationChecker uses fair simulation for AMT [59]. This key idea is based on
symbolic simulation [30, 52]. A system fairly simulates another system if and only if
in the simulation game, there is a strategy that matches with each fair computation
of the simulated system a fair computation of the simulating system. We can use
this techniques to decide if the update is acceptable by different notion of simulation.

Rewriter We use rewriter instead of inliner because it is not necessary to actually inline
the entire security automaton. Some example of works on rewriter are Naccio [31],
PoET /Pslang [28], and Polymer [56]. These approaches compile policy language into
plain Java and then into Java bytecode monitor which is injected into ordinary Java
bytecode by inserting calls in all the necessary places. Other rewriter uses reflection
[85] where policies are implemented as meta-objects bounded to application objects
at load time through bytecode rewriting. This approach is implemented using Kava
which provides a non-bypassable meta level. An alternative approach to rewriter is
an inliner, for example [26] that only inlines hooks to the monitor with the monitor
itself runs in a separate thread.

Optimizer can be performed by compiler optimization approach as in [86] or by our
approach described in (§8.3).

The IRM approach is facilitated by the trend toward using higher-level languages,
especially type safe languages, for software development. Not only do those languages
define application abstractions on which policies can be enforced, but they also provide
strong guarantees that can be used to ensure a secured application cannot compromise
its IRM. By leveraging these guarantees, an IRM security policy can provide a single
cohesive description of both the intent and the means by which a policy is enforced.
This potentially allows the IRM approach to give greater assurance, since enforcement
now relies on a trustworthy component of moderate size whose full specification can be
studied in isolation.

The main consideration for our models is the trade off between moving more processes

out of trusted part and the complexity of the whole process (inspired by model in [42]).

8.2.1 Rewriter on Trusted part

Model 1. In the simplest model (Figure 8.1a), the untrusted part consists of only Code.
First, the application’s contract (Contract) is extracted by CONTRACTEXTRACTOR on
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Figure 8.1: Rewriter on Trusted part

the trusted part. Then, a compliance of Contract to Policy is checked by SIMULA-
TIONCHECKER. If the simulation succeed, then Code can be executed without further ado.
Otherwise, an an OPTIMIZER is used to optimize Policy which gives result to OptPolicy.
Finally, the OptPolicy is injected by REWRITER which gives result an SafeCode that is
ready to be executed.

CONTRACTEXTRACTOR extracts security relevant behaviors. Depending on Contract
representation, this extraction can be data flow analysis [6], control flow analysis [65],
abstract interpretation [24], model extraction [74], or contract extraction as in SxC[27, 13].
The feasibility depends on the available resources and environment. For example, in
mobile system when downloading an untrusted application. The memory is limited, i.e.
it is not desirable to not be able receving calls while downloading an app. The time is also
limited, because usually human expects a response in two second for asking a system to do
a certain work [1, 2], meaning the whole work-flow in Figure 8.1a. And contract extraction
is only a fraction of it. Thus, mechanisms as model extraction or contract extraction in
SxC is suitable for this domain. However, for system with sufficient resources, for example
off-line system testing before certification that allows hours of verification time, then data
flow analysis, control flow analysis, or abstract interpretation can be applied with higher
degree of confidence.

In this model, we restrict compliance check of Contract to Policy by “simulation”.
However, again it depends on Contract and Policy representation on how the “simula-
tion” is defined. In case both represented in AMT, then “simulation” is defined as fair
simulation and Algorithm 5 can be applied.

The same reasoning applies to OPTIMIZER. This process also depends on how Contract
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and Policy represented for example “optimization” can be performed by compiler opti-
mization approach as in [86]. In case both represented in AMT, then “optimization” is
defined in (§8.3).

The REWRITER process also depends on how OptPolicy represented. Some example
of works on rewriter are Naccio [31], PoET/Pslang [28], and Polymer [56], [85]. In case
OptPolicy represented in AMT, then hook-inliner approach as in [26], that only inlines
hooks to the monitor with the monitor itself runs in a separate thread, can be applied.

Model 2. In the second model (Figure 8.1b), CONTRACTEXTRACTOR is positioned on
the untrusted part. The modification from Model 1 lies on an extra step where Contract
must be verified against Code. The cost of this extra step depends on the trade off between
exracting Contract and validating Contract against Code. If Contract does not comply
to Code, then optimization is not possible, thus Policy is directly inlined into Code. In
the case that Contract complies, SIMULATIONCHECKER is applied and the flow goes
through as of Model 1.

Model 2 gives an advantage when the untrusted part has large resources for example
high computing ability. The idea is similar to Proof-Carrying Code[63] where the pro-
ducer provides a proof carried by an application. Some works have been developed along
this line, signature verifier in [37], or weakest precondition based annotation checker [7]
specified with ConSpec language|8].

8.2.2 Rewriter on Untrusted part

Model 3. The third model (Figure 8.2a) is similar to Model 1 but REWRITER is moved
to untrusted part. The modification from Model 1 lies on an extra step where OptPolicy
must be verified against Code. This step is needed because the REWRITER is on untrusted
part thus there exists uncertainty REWRITER really injecting OptPolicy. The cost of this
extra step depends on the trade off between injecting Code with OptPolicy and verifying
OptPolicy against Code.

Positioning REWRITER in untrusted part on Model 3 (and later on Model 4) is similar
to the approach of Hamlen’s certified IRM [44] where they use concept of type-safety in
the SafeCode.

Model 3 gives an advantage when the system is ditributed and untrusted code produc-
ers may involve in making optimization effective. For example in Yan and Fong’s work
in[86], where IRM optimization framework can be distributed with an untrusted code

producer involves in optimization.
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Figure 8.2: Rewriter on Untrusted part

Model 4. The fourth model (Figure 8.2b) is similar to Model 2 by positioning REWRITER
on untrusted part. The modification from Model 2 lies on an extra step where OptPolicy

must be verified against Code. The reasoning is the same as in Model 3.

Model 4 derives the similar advantage as Model 2 when the untrusted part has large
resources for example high computing ability and from Model 3 when the system is
ditributed and untrusted code producers may involve in making optimization effective.
However, Model 4 adds cost of extra steps both for verifying Contract against Code and
OptPolicy against Code.

8.2.3 Optimizer and Rewriter on Untrusted part

Model 5. The fifth model (Figure 8.3a) is similar to Model 3 (thus also to Model 1). In
Model 5, not only REWRITER resides on untrusted part but also OPTIMIZER. The modifi-
cation from Model 3 lies on optimization process being done on untrusted part. However,
this does not add any extra step to the work-flow because verification of OptPolicy

against Code is adequate.

Model 5 derives the similar advantage as Model 3 when the system is ditributed and
untrusted code producers may involve in making optimization effective. Another ad-
vantage of this models is when the untrusted part has large resources for example high
computing ability for optimization without adding any extra step to the work-flow in

Model 3. Thus, compared to Model 3, Model 5 is better.
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Model 6. The sixth model (Figure 8.3b) has most of the components out of the trusted
domain. In Model 6, after running the CONTRACTEXTRACTOR, Contract is checked
against Code using the CLAIMCHECKER. If the Contract does not comply to Code, then
Code is rejected. However, rejection might be too restrictive, thus another option is to
deploy directly the Policy object in charge on monitoring in Code by using the REWRITER
which gives result an SafeCode.

Model 6 derives the similar advantages and disadvantages as Model 4. However, Model
6 also has another advantage as in Model 5, namely when the untrusted part has large
resources for optimization without adding any extra step to the work-flow in Model 4.
Thus, compared to Model 4, Model 6 is better.

Overall the six models, the main constraint in feasibility of enforcement mechanisms to
be applied is the available resources and environment where the models are to be applied.

8.3 A Search Procedure for IRM Optimization

The first issue to be solved in the problem of IRM optimization is regarding formalization
of the notion of optimization. Our work attemps to give a preliminary formalization using
the concept of AMT. In AMT the problem of searching an optimized policy can be
stated intuitively as follows: given two automata A® and A representing respectively
the formal specification of a contract and of a policy, we have an efficient IRM A© derived
from A? with respect to A¢ when:
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Figure 8.4: Optimization alternatives

1. every security-relevant event invoked by the intersection of A° and A® can also be
invoked by AF, and

2. A9 has smaller or equal number of transitions or states compared to A”.
Intuitively, there are three possible cases in inlining a policy.

no-inline In this case no policy is needed to be inlined because contract complies to
policy. There two cases, the first when contract is equal to policy and the second

case is when contract subsumed by policy (Figure 8.4a).

inline-all In this case all policy needs to be inlined because contract does not comply
to policy at all. There two cases, the first when contract is completely differs from
policy and the second case is when policy is subsumed by contract (Figure 8.4b).

inline-partial In this case some policy needs to be inlined because contract complies
partially to policy. Optimization is intended to be applied to this case (Figure 8.4c).

To illustrate possible cases in inlining a policy, we give a simple example with a simple
alphabet {a,b,c,d, e, f,g,m,n} that represent security relevant behaviors. no-inline case
is shown in the first two rows in Figure 8.6 and inline-all is shown in the last two rows in
Figure 8.5.

For example we have a rule for a contract and a rule for a policy, then the optimized
rule of the policy is represented as in Figure 8.6.

The second issue is finding the optimal policy to be enforced with respect to the
claimed applications policy. Thus, we are not interested in finding a unique minimum
policy, given only the policy itself, instead we are interested in finding the optimal policy
guided by claimed applications policy. This is can be solved by Algorithm 6 which is a
modification of Algorithm 5. The idea is, during simulation game, we search for states
which are simulated from the policy initial state and set the outgoing transition as true,
meaning allowed all actions because they are already guaranteed by the contract shown
in Algorithm 6.
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Algorithm 6 Optimization Algorithm

Input: two AMT automata A¢ and A"
1: Construct compliance game graph G = (V4,Vy, E, 1)
: for allv € V do

2

3 (V) = pnew(v) =0
4: repeat
5

6

K= Hnew
for all v € V; do
A " )=
min {p(w)|(v,w)} otherwise
8: for all v € V5 do
9: max, := maz {p(w)|(v,w) € E}
00 if max, =
100 pee0) = ° if i) =0
maz, +1 if l(v)=1
mMaz, if l(v)=2

11: until g = ey

12 if pu(v(sge,50r)) < 00 then

13: Do Nothing //no-inline, because simulation exists
14: else

15: Add vy to ToBelnlined

16:  for allv € (V3 —{v}) do

17: if Reachable(v) then

18: if (u(v) = c0) then

19: Add v to ToBelnlined

20: else

21: Add v to SimulatedT oBelnlined

22: if SimulatedToBelnlined = () then

23: Inline A //inline-all

24:  else

25: for all v = v(,c ,ry € ToBelnlined do

26: Add s”, in-coming transitions of sp, and out-going transitions of sp into A°

27: Compute shortest distance from initial state to all the states called it T'mpDistance

28: for all v = v(,o 4ry € SimulatedToBelnlined do

29: tmpElement.state := s tmpElement.stat := Live; tmpElement.dist = TmpDistance[sP]

30: Add tmpElement.dist to TempStatus

31: OrderedSimulatedT oBelnlined := Order(SimulatedT oBelnlined)

32: for all tmp € OrderedSimulatedToBelnlined do

33: if TempStatus[tmp.state].stat <> Kill then

34: for all tmpNextState € tmp.succ do

35: Set TempStatus[tmpN extState].stat = Kill

36: Add tmp.state, in-coming transitions of tmp.state, and out-going transition of tmp.state
as * into A9

37 Inline A® //inline-partial




At the first step (line 1) a compliance game graph G = (Vi, V), E, ) is constructed
out of automata A® and A”. After finishing lifting compliance measure possible cases
in inlining a policy. We analyze the three possible cases in inlining a policy. First case
contract complies to policy either when contract is equal to policy or when contract
subsumed by policy and no-inline is needed (line 13). It occurs when simulation exists.

If there exists no simulation, then we collect vertices which are not simulated into
set T'oBelnlined and vertices which are simulated into set SimulatedToBelnlined and
ensure that they are reachable from initial vertex (v(s,csor)) in line 17. At least one
elemet is in T'oBelnlined because there exists no simulation, hence f1(v(syesory) < 00 and
initial vertex is added into set ToBelnlined.

Second case occurs when contract does not comply to policy at all and inline-all is
needed (line 23). It occurs when contract is completely differs from policy or when policy
is subsumed by contract (SimulatedToBelnlined = ().

Third case occurs when some policy needs to be inlined because contract complies
partially to policy (inline-partial. Optimization occurs in this case. First, all the states
and transitions which are not simulated, i.e. ToBelnlined, are inlined (line 25). Next, to
add simulated state with sucht that it is the nearest to the initial state, we introduce some
data structure. A an indexed table of tuple jstate,(stat,dist); called TempStatus to hold
the temporary status of states, where state is the key of the table, stat is the status of that
state with Live meaning still in process, and Kill meaning cannot be added to optimized
automaton, and dist is the shortest path from the initial state to that state. dist can be
computed using Dijkstra’s algorithm with initial state assigned 0 distance. First, all states
are set to Live meaning it is still in process. Next, for each s in SimulatedToBelnlined
we make list of tuple jstate,succy, called OrderedSimulatedT oBelnlined where succ con-
sists reachable states from s® with longer distance to initial state. At each step, an
element from OrderedSimulatedToBelnlined is analyzed for possibility to insert. If the
state’s status, say s is not Kill, then we mark all reachable states from s” as KillThen.
Then add s, in-coming transitions of s, and set out-going transition of s’ as *, meaning
allowed all actions.

We are now in the position to state our optimization result using fair simulation:

Proposition 8.3.1 Let the theory T be decidable with an oracle for the SMT problem in
the complexity class C then:

1. The policy optimization problem for AMT wusing fair simulation is decidable in time
O(2.|E| .| Mg| + |S?|* + |S?| . |AL]).

2. The policy optimization problem for AMT using fair simulation is decidable in space

O(|V] + |SP| + LOG(|S?| . |A%)])).
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Proof. The policy optimization problem for AM7 using fair simulation can be reduced
to a fair simulation between a contract with a security policy with adding processes for
constructing the optimized policy. Algorithm 6 which is a modification of Algorithm 5
can solve this problem. The algorithm takes as input the midlet’s claim and the mobile
platform’s policy and constructs compliance game graph G = (V, Vg, E, ).

Correctness.

As in proof of Proposition 6.3.1, the correctness derived from Jurdzinski’s algorithm on
parity games [52]. Jurdzinski defined a parity game between two players and defining
and even player (in our case Policy) wins when the lowest priority occuring infinitely
often in the play is even (in our case Policy can return to compliance level 0 infinitely
often). He proposed computing the game using progress measure which is defined as
Mg =[1] X [ng + 1] [1] X [n3 + 1] X ... X [1] X [ng_1 + 1], where d is the maximum priority
in the game. In our setting, we slighty modify the Jurdzinski progress measure [52] to
compliance measure where instead of a pair (0, x) we only use x. As we have mentioned
afore, this is due to our observation of our domain where we only have 3 priorities, namely
l(v) € 0,1,2 thus for ordering (0,2) >;u) (0,2') the first component will not effect the
ordering.

Jurdziriski reasoned that each vertex can only be lifted |M¢| times. This lifting pro-
cedure is implemented in Algorithm 5 presented as a loop where compliance measure
progressing until reaching a pre-fixed point (g = piney). He also defined that Even has
a winning strategy from precisely the vertices v where after its lifting algorithm halts
has pu(v) < oo. However, in contract-policy matching we are interested when there is a
winning strategy from the initial vertex v(s,e sory. Thus, in Algorithm 6 Policy wins when
M(U(SOC,SOP)) < Q.

If there exists simulation no-inline is needed (line 13). If there exists no simulation,
then we collect vertices which are not simulated into set ToBelnlined and vertices which
are simulated into set SimulatedToBelnlined and ensure that they are reachable from
initial vertex (v(syc sory) in line 17. This solves, the second case when contract does not
comply to policy at all and inline-all is needed (line 23). Third case occurs when some
policy needs to be inlined because contract complies partially to policy (inline-partial.
Optimization occurs in this case. First, all the states and transitions which are not
simulated, i.e. ToBelnlined, are inlined (line 25).

Next, we construct TempStatus to hold the temporary status of states then all states
are set to Live meaning it is still in process. For each s* in SimulatedToBelnlined,
OrderedSimulatedToBelnlined is computed where succ consists reachable states from s’
with longer distance to initial state. At each step, an element from OrderedSimulatedT oBelnlined

is analyzed for possibility to insert. If the state’s status, say s” is not Kill, then we mark
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all reachable states from s” as KillThen. Then add s”, in-coming transitions of s, and
set out-going transition of s as *, meaning allowed all actions. Algorithm 6 halts either
in no-inline, or inline-all, or inline-partial has been processed.

Termination. This optimization using Algorithm 6 terminates because the parity game
terminates and each step in subprocedure if there exists no simulation (begins from line 14)
halts.

Complexity. As in proof of Proposition 6.3.1, the time complexity analysis follows as
in lifting procedure in Jurdziriski [52]. Thus, the time complexity of simulation part of
Algorithm 6 is as in Algorithm 5, i.e. O(2.|E|.|Mg|). Adding states from T'oBelnlined
into A has time complexity of O(|V;]) by Lemma 6.3.1, it is in O(|S¢|.|SP|). While
adding transitions from ToBelnlined into A® has time complexity of O(]A%|). Com-
puting distance in TempStatus using Dijkstra’s like algorithm has time complexity of
O(]S?)?) if we do not consider a smart implementation of it. Computing reachable states
in OrderedSimulatedToBelnlined has time complexity of O(]SP|.|A%|). At each step,
an element from OrderedSimulatedT oBelnlined is analyzed for possibility to insert. If
the state’s status, say s is not Kill, then we mark all reachable states from s* as KillThen.
Then add s”, in-coming transitions of s”, and set out-going transition of s” as *. This
step has time complexity of O(|S?|.|A%|). Thus, the time complexity of Algorithm 6 is
O(2. |B|.|Mg| + [S*|* + |S7| . |AF]).

As in time complexity analysis, the space complexity follows as in lifting procedure in
Jurdzinski [52] in proof of Proposition 6.3.1. Thus, the space complexity of simulation
part of Algorithm 6 is as in Algorithm 5, i.e. O(]V]), where the total number of vertices
equals to V' = |Vi| + |Vo|. Adding states and transitions from ToBelnlined into A has
space complexity of O(|V1]) by Lemma 6.3.1 is in O(]S¢|. |S?]).

Computing distance in T'empStatus using Dijkstra’s like algorithm has space complex-
ity of O(|SP|). Computing reachable states in OrderedSimulatedToBelnlined has space
complexity of O(LOG(|SP|.|A%])). At each step, an element from OrderedSimulatedToBelnlined
is analyzed for possibility to insert. If the state’s status, say s is not Kill, then we mark
all reachable states from s” as KillThen. Then add s”, in-coming transitions of s, and
set out-going transition of s as *. This step has space complexity of O(LOG(|S?|.|AL])).
Thus, the space complexity of Algorithm 6 is O(|V| + |SP| + LOG(]S?| . |A%])). O

The third issue we can compute such an optimal policy with an efficient algorithm.
From Proposition 8.3.1 the time complexity is O(2. |E|.|Mg| + |SP|* + |S?|.|AL]) and
space complexity is O(|V| + |SP| + LOG(|S?|.|AY|)). Our current result has not yet
satisfied it.
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Chapter 9

Conclusions and FutureWork

This thesis provides a formal model called Automata Modulo Theory (AMT )
that shows the possibility to define both safety and liveness policies in a general
way, and to perform matching of those policies efficiently with the tractability
limit in the complexity of the satisfiability procedure for the theories incorpo-

rated with the proof of correctness and completeness of our matching algorithms.

9.1 Conclusions

The security policies require both safety and liveness properties. AM7T extends
Biichi Automata (BA) with edges labeled by expressions in a decidable theory. AMT
is apt to accept both finite and infinite input with acceptance condition as in BA. This
feature enables AMT to express both safety and liveness properties including renewal
properties which are not common but exist in real security policies.

The mechanism for defining a general security policies (that is not platform-specific).
AMT has edges labeled by expressions in a decidable theory. The theory can be a com-
bination of theories by taking into account its complexity. Due to the tractability limit of
AMT which is essentially the complexity of the satisfiability procedure for the theories,
called as subroutines. In our case, we have applied a signature of API theory where the

names from Java VM are used for notation e.g. javax.microedition.

The mechanism for representing an infinite structure as a finite structure. To cap-
ture realistic scenarios with potentially infinite transitions (e.g. “only connections to urls
starting with https”) AM7T abstracts away these transitions as an expression in a decid-

able theory. Thus transforming an infinite system into a finite one. However, there is still
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an open problem in finding a suitable approximation of a finite system given an infinite

one.

Efficiency. Our goal is to provide this midlet-contract vs platform-policy matching on-
the-fly (during the actual download of the midlet), hence issues such as small memory
footprint and effective computations play a key role. The tractability limit is the complex-
ity of the satisfiability procedure for the background theories used to describe expressions

with the oracle in the complexity class C, then the following results can be drawn:

e The contract-policy matching problem for AM7T using language inclusion is decid-
able in LIN — TIME® and in NLOG — SPAC EC-complete (Proposition 4.5.1).

e The contract-policy matching problem for AMT using fair simulation defined in
Algorithm 5 is decidable in time O(2.|E|.|Mg|) and in space O(|V|) (Proposi-
tion 6.3.2).

e The policy optimization problem for AM7T using fair simulation is decidable in time
O(2.|E|.|Mg| + |SP|> +|S?| . |A%]) and in space O(|V] + [S?| + LOG(|S?|.|AL]))
(Proposition 8.3.1).

The feasibility of our approach was shown by developing a prototype on Linux op-
erating system which has also been ported to the mobile for actual detailed profiling,
namely HTC P3600 (3G PDA phone) and on Microsoft®@Windows Mobile®)5.0 operat-
ing system. The following conclusions can be drawn on the feasibility and efficiency of
the system based on our experimental results:

o AMT makes it possible to match the mobile’s policy and the midlet’s contract by
mapping the problem into a variant of the on-the-fly product and emptiness test from
automata theory, without symbolic manipulation procedures of zones and regions
nor finite representation of equivalence classes. The tractability limit is essentially
the complexity of the satisfiability procedure for the theories, called as subroutines,

where most practical policies require only polynomial time decision procedures [58].

e This matching using language inclusion however has a limitation in the structure of
the policy automaton (only deterministic automaton). The constraint arises from the
AMT complementation. As BA complementation, the non-deterministic comple-
mentation is complicated and demonstrates exponential blow-up in the state space
[20]. Safra in [70] gives a better lower bound (2018 ™) for nondeterministic BA

complementation, however it is still exponential(see [83]).
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e The determinism constraint complies to our domain of interest because the security
policies in our application domain are naturally deterministic, as the platform owner
should have a clear idea on what to allow or disallow. Furthermore, to cope with
non-deterministic AM7T, we can use the approach as in [59].

9.2 Future Work

An approach to address scalability (if our smart-phone must cope with the web applica-
tions of its internal web server) is to give up soundness of the matching and use algorithms
for simulation and testing. A challenge to be addressed is how to measure the coverage of
approximate matching. Which value should give a reasonable assurance about security?
Should it be an absolute value? Should it be in proportion of the number of possible
executions? In proportion to the likely executions? An interesting approach could be to
recall to life a neglected section on model checking by Courcoubetis et al [23] in which
they traded off a better performance of the algorithm in change for the possibility of
erring with a small probability.

A second approach is to use the contract as a model of the application in order to
generate security tests by applying techniques from Model Based Testing [84]. Losing
soundness is a major disadvantage: an application may pass all the generated tests and
still turn out to violate the contract once fielded. However, the advantages are also
important: no annotations on the application source code are needed, and the tests
generated from the contract can be easily injected in the standard platform testing phase,
thus making this approach very practical. A challenge to be addressed here is how to
measure the coverage of such security tests. When are there enough tests to give a
reasonable assurance about security?

A known problem with security automata and infinity yet to be addressed is the
encoding of policies such as “we must allow certain strings that we have seen in the past”.
If the set of strings is unbounded, then it is difficult (if not impossible) to encode it with
finite states.

Another interesting problem for future work is a scenario when the claimed security
contract is missing (as is the case for current MIDP applications). In that case, based on
the platform security policy, the “claimed” security contract could be inferred by static
analysis as an approximation automaton. If such an approximation is matched, then
monitoring the code becomes unnecessary. The feasibility of this approach depends on

the cost of inferring approximation automata on-the-fly.
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Figure A.1: On-the-fly Class Diagram

94




Appendix B

Simulation Matching Prototype

Class Diagram

95



ComplianceGraph =
Class
ComplianceGraphEdgeSet &
Cl
= Fields o
#* _edgeSet : ComplianceGraphEdgeSet = Fields
. i ' Edges
# _graph i —:ggzzzg? ' gg?z:;::z:g::ﬁ:ng::zz o Edg ¥ _edges : Dictionary<ComplianceGraphNode, List<ComplianceGraphEdge>>
4# _startNode : ComplianceGraphNode = Methods
= Methods % Add(ComplianceGraphEdge edge) : void
. W Clear() : void
% ComplianceGraph() g
" " "  ComplianceGraphEdgeSet()
I hi I hN Vi li...
 ComplianceGraph(ComplianceGraphiNodeSet V0, Compli W GetEdgesOfNode(ComplianceGraphNode node) : List<ComplianceGraphEdge>
= Vo st ' Edges : List<ComplianceGraphEdge> $
ComplianceGraphNodeSet [&] ComplianceGraphEdge 2]
Class Class
= Fields [= Fields
¥ _cOrdered : Dictionary<State, List<ComplianceGraphNode>> «# _endNode : ComplianceGraphNode
## _nodesWithCompliancelLevelO : int ## _startNode : ComplianceGraphNode
## _nodesWithComplianceLevell : int = Methods

4# _nodeswithComplianceLevel2 : int
#* _pOrdered : Dictionary<State, List<ComplianceGraphNode>>

% ComplianceGraphEdge(ComplianceGraphNode startNode, ComplianceGraphNode endNode)

=l Properties
% COrdered { get; set; } : Dictionary<State, List<ComplianceG... 4 StartNode “F EndNode % StartNode
j“ POrdered { get; set; } : Dictionary<State, List<ComplianceG...
= Methods ComplianceGraphNode =]
Class
% ComplianceGraphNodeSet() T
(= Fields
47 _compliancelevel : byte
¥ _complianceMeasure : int
47 _contractState : State
24 Nodes : List<ComplianceGraphNode> & D :_'”t
_leadingEdge : Edge
_policyState : State
Simulation & .4# idCounter : int
Class N (= Properties
r j ComplianceLevel { get; set; } : byte
=l Fields % ComplianceMeasure { get; set; } : int
4# _contractRule : Rule ' ContractState { get; set; } : State
7 _edges : ComplianceGraphEdgeSet 27 ID {get; }:int
4% _flags : Flags ' PolicyState { get; set; } : State
## _policyRule : Rule [= Methods
&% _V0 : ComplianceGraphNodeSet % ComplianceGraphNode()
4# _V1: ComplianceGraphNodeSet % ComplianceGraphNode(State policyState, State contractState, Edge leadingEdge, byte co...
«# sdh : SimulationDebugHelper J
[= Properties _
' ContractRule { get; set; } : Rule ' LeadingEdge = Titstte O ICloneable
5" Edges { get; set; } : ComplianceGraphEdgeSet Edge 2
“ Flags { get; } : Flags Class
4 PolicyRule { get; set; } : Rule =]

j‘ VO { get; set; } : ComplianceGraphNodeSet
% V1 { get; set; } : ComplianceGraphNodeSet

=l Methods “ Alphabet : List<Edge>
% CreateEdgeSet() : void SATExpression
" CreateNodeSetV0() : void S I " Class

IDisposable
4% CreateNodeSetv1() : void PO; AutomatonMTT

Class
¥ GetCompliancelevel(State pState, State cState) : byte a T
% Simulation(Rule contractRule, Rule policyRule, Flags flags) ¥ ns
v Valid(Edge contractEdge, Edge policyEdge) : bool
¥ autly aut2
SpecificBoolExp
Class
OnTheFly 2| -+ Expression
o _ofly | Class I » \ =
b DFSAlgorithm : DFSAlgorithm &
F H Abstract Class H
] T |
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Table C.1: Problems Suit

Problem | Contract Policy

P100-100 | 100SMS_contract.pol | 100SMS_policy.pol
P100-10 100SMS_contract.pol | 10SMS_policy.pol
P100-1 100SMS_contract.pol | 1SMS _policy.pol
P100-NO | 100SMS_contract.pol | noSMS_policy.pol
P10-100 10SMS_contract.pol | 100SMS_policy.pol
P10-10 10SMS_contract.pol | 10SMS_policy.pol
P10-1 10SMS_contract.pol 1SMS _policy.pol
P10-NO 10SMS_contract.pol | noSMS_policy.pol
P1-100 1SMS _contract.pol 100SMS _policy.pol
P1-10 1SMS_contract.pol 10SMS_policy.pol
P1-1 1SMS _contract.pol 1SMS _policy.pol
P1-NO 1SMS _contract.pol noSMS_policy.pol
PNO-100 | noSMS_contract.pol | 100SMS_policy.pol
PNO-10 noSMS_contract.pol | 10SMS_policy.pol
PNO-1 noSMS_contract.pol | 1SMS_policy.pol
PNO-NO | noSMS_contract.pol | noSMS_policy.pol

Table C.2: Average Running Problem Suit 10 Times (s)

Problem M1 M2 M3 M4 M5 M6 Result
P100-100 | 15.219 | 15.478 | 15.19 | 15.335 | 15.219 | 15.187 | Match
P100-10 9.468 | 10.086 | 9.355 | 9.372 | 9.391 | 9.429 | Not Match
P100-1 8.824 | 8.951 | 8.91 | 8.927 | 8.953 | 8.871 | Not Match
P100-NO 8.83 8.835 | 8.798 | 8.716 | 8.847 | 8.852 | Not Match
P10-100 9.846 9.77 | 9.831 | 9.781 | 9.684 | 9.818 | Match
P10-10 3.847 | 3.821 | 3.854 | 3.797 | 3.783 | 3.834 | Match
P10-1 3.192 3.12 | 3.192 | 3.194 | 3.189 | 3.162 | Not Match
P10-NO 3.042 | 3.058 | 3.065 | 3.041 | 3.051 | 3.042 | Not Match
P1-100 9.309 | 8.714 | 9.308 | 9.329 | 9.187 | 9.234 | Match
P1-10 3.286 | 3.286 | 3.271 | 3.301 | 3.241 | 3.275 | Match
P1-1 2.444 | 2.446 | 2.462 | 2.432 | 2.457 | 2.423 | Match
P1-NO 2.573 | 2.595 | 2.582 | 2.571 | 2.596 | 2.566 | Not Match
PNO-100 | 9.259 9.16 | 9.211 | 9.202 | 9.117 | 9.122 | Match
PNO-10 3.197 3.16 | 3.183 | 3.173 | 3.155 | 3.179 | Match
PNO-1 2.5 2.502 | 2.513 | 2.525 | 2.523 | 2.522 | Match
PNO-NO | 2.427 | 2.386 | 2.395 | 2.38 2.405 | 2.379 | Match
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Table D.1: Average Running Problem Suit 10 Times (s)
Problem | M7 M8 | Result
P100-100 | 3.668 | 5.528 | Match
P100-10 5.465 | 7.259 | Not Match
P100-1 9.106 | 7.419 | Not Match
P100-NO | 7.228 | 6.385 | Not Match

P10-100 5.308 | 7.531 | Match
P10-10 3.446 | 2.59 | Match
P10-1 2.308 | 2.165 | Not Match
P10-NO 2.18 | 2.105 | Not Match
P1-100 6.184 | 4.696 | Match
P1-10 2.26 | 2.15 | Match
P1-1 1.918 | 1.886 | Match
P1-NO 1.854 | 1.87 | Not Match
PNO-100 | 5.387 | 4.434 | Match
PNO-10 2.372 | 2.077 | Match
PNO-1 1.995 | 1.838 | Match
PNO-NO | 1.822 | 1.838 | Match
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