
PhD Dissertation

International Doctorate School in Information &
Communication Technologies

DIT - University of Trento

Using Formal Methods for Building more
Reliable and Secure e-voting Systems

Komminist S. Weldemariam

Advisor:

Adolfo Villafiorita (Ph.D)

Center for Information Technology (FBK-Irst)

February 2010

Acknowledgements

It would not have been possible to write this doctoral dissertation without the
help and support of the kind people around me, to only some of whom it is
possible to give particular mention here.

Above all, I am heartily thankful to my supervisor, Adolfo Villafiorita. His
encouragement, supervision and support from the preliminary to the conclud-
ing level enabled me to develop an understanding of the subject. I also would
like to say sincere thanks to Prof. Richard A. Kemmerer for hosting me at the
University of California Santa Barbara and for his consistent follow-up and
enormous feedback.

I offer my regards and blessings to all of those who supported me in any
respect during the completion of this dissertation. Particularly I would like to
thank Birhanu M. Eshete at the Fondazin Bruno Kessler for the tireless efforts
in reading and revising the English of my manuscript, as well as providing
valuable comments. I am also grateful to all ICT4G and software engineering
groups at the Fondazione Bruno Kessler for their continued moral support.
Above all, thank you Chiara Di Francescomarino and Andrea Mattioli for all
your kind help since the day I knew you.

Komminist S. Weldemariam

Abstract

Deploying a system in a safe and secure manner requires ensuring the tech-
nical and procedural levels of assurance also with respect to social and regu-
latory frameworks. This is because threats and attacks may not only derive
from pitfalls in complex security critical system, but also from ill-designed
procedures. However, existing methodologies are not mature enough to em-
brace procedural implications and the need for multidisciplinary approach
on the safe and secure operation of system. This is particularly common
in electronic voting (e-voting) systems.

This dissertation focuses along two lines. First, we propose an approach
to guarantee a reasonable security to the overall systems by performing for-
mal procedural security analysis. We apply existing techniques and define
novel methodologies and approaches for the analysis and verification of
procedural rich systems. This includes not only the definition of adequate
modeling convention, but also the definition of general techniques for the
injection of attacks, and for the transformation of process models into rep-
resentations that can be given as input to model checkers. With this it
is possible to understand and highlight how the switch to the new tech-
nological solution changes security, with the ultimate goal of defining the
procedures regulating system and system processes that ensure a sufficient
level of security for the system as well as for its procedures.

We then investigate the usage of formal methods to study and analyze
the strength and weaknesses of currently deployed (e-voting) system in
order to build the next generation (e-voting) systems. More specifically, we
show how formal verification techniques can be used to model and reason
about the security of an existing e-voting system. To do that, we reuse
the methodology propose for procedural security analysis. The practical
applicability of the approaches is demonstrated in several case studies from

the domain of public administrations in general and in e-voting system in
particular. With this it can be possible to build more secure, reliable, and
trustworthy e-voting system.

Keywords
procedural security, security assessment, electronic voting, formal
methods, specification and verification;

Contents

List of Tables v

List of Figures vii

1 Introduction 1
1.1 Motivation and Problem Statement 1
1.2 Aims and Approach . 5
1.3 Main Contributions . 7
1.4 Organization . 11

2 State of the Art 13
2.1 BPR Context . 13
2.2 Security Analysis . 20

2.2.1 Graph-Based Approach 20
2.2.2 Model-Based Approach 22

2.3 Elections and Electronic Voting 29
2.3.1 Elections and Technology 29
2.3.2 Trends in the Development of e-voting system . . . 32
2.3.3 The ProVotE e-voting system 41

3 Tool Supported Methodology for BPR 47
3.1 Challenges and Requirements of BPR in PA 47

3.1.1 Challenges of BPR in PA 48

i

3.1.2 Requirements for Process Models 52
3.2 Representing Laws in XML 55
3.3 Process Modeling Methodology 57

3.3.1 Defining Business Models Formally 57
3.3.2 The Modeling Methodology 64

3.4 A Tool for Supporting the Methodology 75
3.4.1 Intermediate Representations 76
3.4.2 VLPM Usage Scenario 78
3.4.3 Examples . 82

3.5 Summary . 87

4 Procedural Security Analysis 89
4.1 Why Procedural Security? 89
4.2 Conceptual Framework . 95

4.2.1 Framework to Understand an Asset 96
4.2.2 Asset Threats and Attacks 99

4.3 A Methodology for Procedural Security 109
4.3.1 Formal Model of Asset-flows 109
4.3.2 Model Extension 117
4.3.3 Encoding the Assets-flow models in NuSMV 118
4.3.4 Property Capturing and Model Checking 127

4.4 A Case Study . 129
4.5 Summary . 139

5 Formal Analysis by Reverse Synthesis 143
5.1 Introduction . 144
5.2 The ES&S Electronic Voting Systems 146

5.2.1 The System Components and Voting Process 146
5.2.2 Informal Description of Critical Requirements . . . 150
5.2.3 Selected Attack Scenarios 154

5.3 Reverse Synthesis Approach 158
5.4 Overview of the ASTRAL language 161
5.5 Formal Analysis of an e-voting System 162

5.5.1 Specification of the ES&S Voting Process 164
5.5.2 Critical Security Requirements 183
5.5.3 Formal Verification and Results 190

5.6 Extending the System Specification by Modeling Attack Sce-
narios . 193
5.6.1 Attack Specifications 195

5.7 Summary . 200

6 Conclusion 203
6.1 Summary and Discussion 203
6.2 Future Work . 207

Bibliography 211

A Sample Attack Specifications 237

B Publications 245

List of Tables

4.1 Accessary information as predicates. 122
4.2 Example 1: A counterexample showing the alternation of

election software at poll station. 137
4.3 Example 2: Denial of service attack counterexample. . . . 139

5.1 Number of proof obligations and number of proved critical
properties. 193

5.2 Number of reproved proof obligations after extending the
original specification with attack information. 200

v

List of Figures

2.1 Three research areas. 14

2.2 Typical Scenario of formal verification in business process
models. 17

2.3 Elections in Italy and the ProVotE system architecture. The
dotted lines represent the different phases of the voting pro-
cess: namely, pre-electoral, electoral, and post-electoral. The
boxes in bold lines represent the organizations responsible
for the process. And, the rounded rectangles represent func-
tions performed during an election. 43

2.4 The ProVotE Development Process. The figure is an activ-
ity diagram in which activities are in rounded rectangles,
whose notation are slightly adapted to make it more read-
able. The meaning of creation (“C”), reading (“R”), and
inclusion (“inc”), respectively, are that an activity creates
an artifact, it reads it, or that an artifact is contained in an-
other artifact. The empty arrowhead indicates refinement,
so that, for instance, the “Machine Life-cycle” refines the
“Voting Activities”. 44

3.1 Law elements class diagram. 56

3.2 Package structure. 67

vii

3.3 Static view: relationships between a super-process and its
sub-processes using UML. 70

3.4 Some RACIV relationships among processes and actors. . . 72
3.5 Activity diagram example. 73
3.6 Example of an article and its defined processes. 75
3.7 The internal representation of our modeling elements. . . . 76
3.8 Relationships among the modeling elements. 77
3.9 VLPM usage scenario, i.e., Law modeling process handled

by the VLPM tool. 79
3.10 Storage of Law Data. 80
3.11 Relationships among processes. 83
3.12 A simplified use case diagram for the voting process with its

direct subprocesses. 83
3.13 Example of the split function applied to Article 15, Comma 1. 86

4.1 A reference scenario for procedural security analysis 92
4.2 A class diagram depicting the characteristics of an asset. . 97
4.3 The Delete threat Action and an Example. 105
4.4 The Read Threat-action. The state of the input asset does

not change, i.e., si. 106
4.5 The Update Threat-asction. 106
4.6 The Create Threat-action. 107
4.7 A simple copy threat action. It is composed by two threat

actions: read and create. 108
4.8 Replace threat action. It is composed by two threat actions:

delete and write. Note that the composition detail is not
shown in the diagram. 109

4.9 The process of formal procedural security. 110
4.10 An asset-flow view of a business process model 111

4.11 Example of a single instance Asset-flow model in three states.112
4.12 An example of asset flows. 130
4.13 An example of extended model for Figure 4.12, where the

introduction of the attacks are colored. It shows delete and
replace threat-actions change the flow of the procedure un-
der evaluation. 131

4.14 A simple example of state transition model for content fea-
ture of electionSW. 133

4.15 An extension of Figure 4.14 due to the injection of threat-
actions. 135

5.1 Main Components of the ES&S voting machine. 148
5.2 Changing an Unattentive Voter’s Vote. 156
5.3 Canceling a Vote by Faking a Fleeing Voter. 158
5.4 The approach of Formal Specification and Verification by

Reverse Synthesis. 160
5.5 A simplified view of ES&S voting system 165
5.6 The possible states of the DRE terminal mode. 168

Chapter 1

Introduction

1.1 Motivation and Problem Statement

As our society is getting more dependent on (computer) system, security is
becoming one of the important constraints in system development. How-
ever, security is a complex non-functional requirement whose implementa-
tion requires intervention over the entire parts of a system at all levels of
detail. It is widely reported that all systems and system processes making
use of Information and Communication Technology (ICT) are exposed to
security threats in one way or another (Avizienis et al. 2004, Myagmar
et al. 2005). The security threats are meant to compromise or invalidate
the confidentiality, integrity, and availability of the systems and system
processes.

A secure and reliable system, if it exists, must satisfy its critical re-
quirements. In order to assess and certify whether a given system meets
such requirements, a security analysis or assessment is conducted. To carry
out the assessment in a systematic way, usually a methodology is devised
by attaching context information to the system under analysis. Five con-
structs are pivotal to define a methodology for security assessment of a
system: asset, threat, vulnerability, attack, and risk (Bishop 2002, Rogers
et al. 2004, Common Criteria 2007).

1

CHAPTER 1. INTRODUCTION

An asset is defined as something that has a value to the relevant organi-
zations or business firms. A vulnerability is a weakness in the architecture,
design or implementation of a system. A threat is a potential for violation
of security, which exists when there is a circumstance, capability, action,
or event that could breach security and cause harm. An attack can be
identified as the entire process allowing a threat agent to exploit a system
by the use of one or more vulnerabilities. A risk may be defined as the
probability that a damaging incident is happening (when a threat occurs
because of a vulnerability), times the potential damage. The first step in
security analysis of a system is, therefore, to define the threat model using
these key constructs. The threat model for a system describes the goals an
attacker might have, the types of attackers that might attempt to attack
the system, and the capabilities available to each type of attacker (Jones
and Ashenden 2005, Vraalsen et al. 2005, Vetterling et al. 2006).

Electronic voting (e-voting) systems are increasingly replacing the tra-
ditional paper-based voting systems, by making the voting process more
convenient and may therefore lead to improved turnout (Gritzalis 2003,
Mercuri and Camp 2004, Sastry et al. 2006, Anane et al. 2007, Bishop and
Wagner 2007). Electronic recording and counting of votes could be faster,
more accurate, and less labor intensive. However, they are fundamentally
used in environmental conditions that are quite peculiar, if not unique. In
fact, they are probably the only complex safety and security critical sys-
tems for which all these conditions are met: they run in an environment
with limited control; they are operated by people with the most diverse
training and experience; they have to be accurate, while, at the same time,
have stringent requirements related to what they can trace, to protect
secrecy and anonymity. Logistics and support, due to the geographical
distribution and time constraints of elections, add further complexity.

The advantages that e-voting systems can bring cannot be achieved

2

1.1. MOTIVATION AND PROBLEM STATEMENT

without an observable cost (e.g., risks) one of which is opening security
vulnerabilities for attackers (Mercuri 2001, Prosser et al. 2004, Bishop and
Wagner 2007, Rivest and Wack 2006, Gardner et al. 2007). In that re-
spect, recently we have seen that several currently deployed e-voting sys-
tems (mostly, the direct recording electronics (DRE) voting systems as
used in U.S.) share critical failures in their design and implementation,
which render their technical and procedural controls insufficient to guar-
antee trustworthy voting (Lambrinoudakis et al. 2003, Kohno et al. 2004,
Bryans et al. 2006, Gardner et al. 2007, Balzarotti et al. 2008). Moreover,
elections are trust situations in which the trust properties reflected both on
individual and system level, independently of the voluntary, organizational
(or the government itself) or stringent nature of the procedure. Trust in
elections could, in principle, be established, if and only if, citizens convince
about security with respect to the system and its procedures are respected
and followed correctly. The lack of trust can also render even most secure
and most reliable systems completely useless (Oostveen and den Besselaar
2004, Antoniou et al. 2007).

The introduction of a new technology and the transition to a new form
of systems changes risks and attacks that can compromise or invalidate
the security goals. Therefore, the development and verification of fair and
secure e-voting systems (in general, any system) should not only take into
account their inherent features (e.g., what kind of protection they offer to
tampering with), but also how they fit into the environment in which they
are used, namely in elections. This leads to a demand for good security risk
analysis methods, which must handle detailed analysis of technical aspects
as well as more high-level procedure or organizational level analysis.

The research question we investigate in this dissertation is the following:

How can we build more secure, reliable, and trustworthy e-voting
systems?

3

CHAPTER 1. INTRODUCTION

Typically, there are a number of established approaches to tackle the
above stated problem by modeling, specifying, and verifying a system sat-
isfies a set of properties (Fredriksen et al. 2002, Avizienis et al. 2004, Xu
and Nygard 2005, Myagmar et al. 2005, Wimmel 2005). The integrity and
assurance of a complex and safety-critical system’s correct behavior with
respect to modeling and specification can be achieved, if good engineering
practices are appropriately devised and used. With respect to this, the us-
age of formal methods has been shown to improve the security and quality
of complex systems (Kemmerer 1990, Hall 1990, Lowry and Dvorak 1998,
Heitmeyer et al. 2008). These approaches allow designers to prove, test,
or otherwise examine interesting properties of a complex process whose
behavior is specified abstractly, and then interactively refine the behav-
ioral specification to be as close to an implementation as appropriate for
a given assurance level. Unfortunately, their usage in voting in general
and in the development of e-voting solutions, in particular, is very limited
and unsatisfactory. For that matter, we are only aware of the following
works (Kremer and Ryan 2005, Campanelli et al. 2008, Delaune et al.
2009, Sturton et al. 2009, Delaune et al. 2009). These works demonstrate
the feasibility of applying formal methods for verifying voting machine
logics.

Finally, there are also some more reasons why the existing approaches
do not perform well in procedural rich scenario. If a methodology exists,
it is difficult to formally represent and analyze some peculiarities, namely
in elections. Among these peculiarities we mention the following. Mobility
of assets, assets and sensible data related to an election are handled (and
may be altered) by different actors (e.g., technicians, poll officers, electoral
officers) with different responsibilities over time and in different locations.
Evolution of assets, assets related to an election change their value over
time. The effects of an attack on an asset change dramatically according

4

1.2. AIMS AND APPROACH

to the period in which the attack is performed (e.g., tampering with an e-
voting machine after the election does not have much of an effect). Number
of instances, various electoral assets need to be replicated for running an
election. The effects of an attack may not only propagate to copies, if the
master is compromised, but may also have a different impact, depending
on the number of instances that are affected by the attack (e.g., breaking
one e-voting machine may not have a tangible effect on an election).

1.2 Aims and Approach

In this dissertation we show that it is feasible to improve a system with
acceptable security level through the use of interdisciplinary approaches of
proper engineering practices. The central concept is to intermingle different
techniques for the development of a system. In particular, we have two
main aims in this work.

The first one is aimed at providing a technique that allows to under-
stand how the switch to a new technological solution changes security, with
the ultimate goal of defining the processes regulating e-voting system that
ensure a sufficient level of security for the system as well as for its proce-
dures. Along this line, an important goal is to provide a tool supported
methodology within a general-purpose tool, to reduce the necessary effort
and experience for the security-related activities and to increase the level
of confidence in the development process. Such confidence could have been
unthinkable had not we used formal methods. The applicability of the
developed approach should also be demonstrated for various case studies
of practical relevance. In this research, the approach we propose focuses
on the definition of methodologies and techniques to model and formally
verify business processes.

The approach we propose includes not only the definition of adequate

5

CHAPTER 1. INTRODUCTION

modeling convention, but also the definition of general techniques for the
injection of attacks, and for the transformation of business processes into
representations that can be given as input to model checkers. For this
purpose, we describe a methodology related to the security assessment of
the procedures. The underlying approach that we follow lies on the in-
tersection of three areas, namely BPR, security, and formal methods. The
center of the approach is a security-enriched model of the procedure, where
security requirements to be checked are included in the form of logic. We
explain our concept using the flows of assets and processes that we rec-
ognize as workflow activities, using executable specifications. More specif-
ically, starting from the process model, first we provide formal model of
the procedures in terms of transitions system. We elaborate threat-actions
using UML diagrams and extend the model by injecting the threat-actions
at each possible execution step. The resulting model is then encoded using
the NuSMV (Cimatti et al. 2002) input language, and using the NuSMV
model checker to help us analyze the effects of attacks on the execution
of the procedures. The use of a general-purpose tool makes it possible to
communicate and share models among participating parties. As this is an
integrated part of the overall system to-be developed and to build on ex-
isting tool support and experience on the part of the lawmakers, business
analysts, and software engineers.

In contrary, the second aim at investigating on the systematic applica-
tion of formal methods for reverse synthesis of an existing e-voting system
by modeling and verifying its underlying behaviors, then also enriched with
attacks, against critical security requirements. The ultimate goal is that of
specifying generic requirements for the next generation of e-voting systems.
In this research, the approach we follow focuses on the usage of formal
methods to study and analyze the strength and weaknesses of currently
deployed e-voting machine in order to build the next generation e-voting

6

1.3. MAIN CONTRIBUTIONS

systems. We refer to this activity as reverse synthesis. More specifically, we
show how formal verification techniques can be used to model and reason
about the security of an e-voting system.

Of central importance in our approach is formulating each individual
component of the voting system for one of currently deployed e-voting sys-
tems named Election Systems & Software (ES&S) e-voting system (Inc.
ES&S 2007) as process instance in ASTRAL declarative language (Kolano
et al. 1999), along the behavioral specifications of each instances. We
specify and analyze critical security requirements about each individual
component and the system as whole. We then extend the original formal
specification by augmenting a set of transition specifications that represent
known attacks, that are needed to model the specific scenarios presented
in (McDaniel et al. 2007). Thereafter, we attempt to analyze the extended
model against the same set of critical security requirements as the original
specification should respect. We use the ASTRAL Software Development
Environment (SDE) to process the specification and to automatically gen-
erate proof obligations for the PVS analysis tool (Owre et al. 1993, SRI).

1.3 Main Contributions

The main contributions of this dissertation are summarized as methodolog-
ical contributions for both the modeling and analysis of (system) processes
and security assessment techniques, and practical contributions on the us-
age of the methodologies for the development and assessment of real world
e-voting systems.

Methodology for Procedural Security Analysis

Risks and attacks not only depend upon the security levels the new sys-
tems offer, but also occur by circumventing the controls and procedures

7

CHAPTER 1. INTRODUCTION

regulating the way in which the systems are operated. Therefore, intro-
ducing technical security mechanisms —such as (Adida 2006, Sastry et al.
2006, Yee 2007, Santin et al. 2008), to secure systems and system processes
is not sufficient in the situation where the usage of the system is (totally)
influenced by legal framework. For this reason, it is necessary to revisit the
way in which the development process are carried on, as well as the goals of
security and security threats are specified, modeled, and analyzed. To fill
this gap, we introduce what we call procedural security analysis. Since as-
set mobility, state, evolution, and the context in which asset instances are
used in electoral system are an inherent challenge, we introduce a generic
assets-centered methodology for procedural security analysis.

Interestingly, the methodology we devised allows for systematic analysis
of procedural security based on explicit reasoning on asset flows. That
is, by building models to describe the nominal procedures under analysis
and injecting possible threat-actions by assuming that any combination
of threats can be possible in all steps into such models. We also outline
encoding strategies using NuSMV input language —that it is amenable for
formal analysis allowing to reason on different properties of the procedure
on the extended model.

The benefits that the proposed methodology brings are twofold. First
all of, it helps identifying the security boundaries, that is, the conditions
under which procedures can be carried out securely. More specifically, us-
ing the NuSMV model checking facility, it is possible to understand what
are the hypotheses and conditions under which a given security goal is
achieved or breached. Secondly, it helps devising a set of requirement to
be applied both at the organizational level and on the (software) systems
used to make systems and system processes secure. This can be achieved
by analyzing the generated counterexamples by the NuSMV analysis tool,
since counterexamples provide information to try and modify the existing

8

1.3. MAIN CONTRIBUTIONS

procedures so that security breaches are taken care of. Our work takes
step forward the motivations for procedural security discussed in (Xenakis
and Macintosh 2004a, 2005a). Additionally, we believe that, such results
are foundations to familiarize actors (election officials or polling officers)
with the possible procedural threats and attacks that can happen dur-
ing elections, or otherwise anytime during the electoral phases, and thus
complement works like (Volkamer and McGaley 2007, Volkamer 2009).

Formal Methods by Reverse Synthesis

We show how formal methods can be effectively applied for the specification
and verification of an e-voting machine, using the connection of ASTRAL
SDE and the PVS analysis tool.

The two main lessons drawn from this work are:

1. Formal methods help get a better understanding of the security “bound-
aries” of e-voting systems. In the case of the ES&S, for instance,
various security requirements could not be proved without making as-
sumptions about the procedures and about the environment. Notice
that we expect this result to equally apply to other e-voting systems.
Formalizing such hypotheses helps to delineate the necessary condi-
tions for the secure use of systems.

2. Open specifications play a pivotal role for the development of more
secure e-voting systems. The formal specification of the ES&S, for
instance, required the collection of information from different sources,
such as configuration instructions, the user’s manual, and videos. The
adoption of an open-standardized specification could help simplify, ex-
tend, and generalize the results we have found to other systems. Based
on the current results, we would like to provide a generic specification
for DRE-based e-voting machines. This generic specification could

9

CHAPTER 1. INTRODUCTION

then be used as a basis for the specification and design of a new gen-
eration of an e-voting system.

Additionally, this work makes the following specific contributions: First,
this work advances the current usage scenario of formal techniques in e-
voting systems in which procedures and environmental factors also play
vital role for a correct execution of the system. Secondly, this work is
the first attempt adding on top of a system level testing and analysis of
e-voting systems, e.g., (Kohno et al. 2004, Sastry 2007, Ansari et al. 2008,
Balzarotti et al. 2008) in which complex low level engineering techniques
have been utilized for analyzing and verifying e-voting machines; all these
provide only (a relatively) low level of assurance.

Tool Supported Methodology for BPR

We elaborate a generic tool-supported methodology for BPR in public ad-
ministration for the construction of process models from domain experts
or from the laws that describe the procedures. The methodology was orig-
inally proposed in (Mattioli 2006). We extended by refining, structuring,
and adding some definitions and formalizations for some concepts. Using
the methodology, it is straightforward to obtain an unambiguous, stan-
dard, general, and objective process models about the procedures and laws
under analysis. The methodology also allows to link the laws and mod-
els in order to increase the traceability between them. Traceability helps
law makers elaborate models in collaboration with software developers or
process engineers, and understand the impact of law or process changes as
a result of interventions due to people, processes, and some kinds of tech-
nologies. When a change is made to the law, being able to identify which
processes are defined (or regulated) by the modified part of the law allows
us to modify the process model accordingly. By looking at the model, it is

10

1.4. ORGANIZATION

then possible to determine what processes “interact” with the processes af-
fected by the change in the law. The modification can then be propagated
to all the relevant processes and makes the model up to date. On the other
hand, the reengineering of processes may result in a need to modify some
parts of the law. Maintaining law-model traceability allows to automati-
cally identify which parts of the law should be amended by tracing back
to the parts of the law that originally defined the modified processes.

Evaluation using Case Studies

The methodologies along with the supportive tool have been applied in
two Italian territories that have autonomy over local elections and have
experimented a transition to e-voting. Specifically, for the modeling of the
electoral law and procedures in the Province of Trento and the laws for
the introduction of an e-voting system for a local poll in two municipalities
of the Autonomous Region of Friuli Venezia Giulia. Within the project
we have analyzed the existing laws and procedures, defined the procedures
and developed the (e-voting) system that has been used in local elections
—mainly for experimental purpose. The results of the modeling and analy-
sis led to enrich and improve the business process models by re-organizing
voting processes that define the to-be system description for ProVotE e-
voting system, and consequently for the development of the system itself,
by helping eliciting, structuring, as well as maintaining requirements for
the ProVotE e-voting system —see also in (Villafiorita et al. 2009b,a, Kom-
minist Weldemariam and Mattioli 2009). Furthermore, the ES&S e-voting
system is used to demonstrate our reverse synthesis approach.

1.4 Organization

The remaining part of the dissertation is organized as follows:

11

CHAPTER 1. INTRODUCTION

• Chapter 2 discusses an overview over the current state of research in
the following areas: BPR, security and risk analysis, formal methods,
and elections and trends in e-voting systems.

• Chapter 3 discusses a generic methodology and supportive tool for
BPR in public administration for the construction of (business) pro-
cess models.

• Chapter 4 presents the procedural security analysis and a methodology
for the modeling, encoding, and analysis through case studies.

• Chapter 5 presents the reverse synthesis approach of an e-voting sys-
tem using ASTRAL language and PVS analysis tool.

• Finally, Chapter 6 draws some lessons learned during our research
activities and outlines some possible directions for future work.

12

Chapter 2

State of the Art

The ideas in this dissertation are built upon existing works in the business
process modeling, security, and formal methods fields (see Figure 2.1). We
apply known principles and original ideas to a new and socially important
problem domain —namely, elections. In this chapter, we discuss current
trends in these fields and how they can be adopted for the development
of safe and secure e-voting system. Thus, first we review business process
modeling and analysis approaches. Second, we discuss security analysis
approaches. Finally, we overview elections and e-voting, and the current
trends on the usage and application of these fields for the development of
e-voting systems. Moreover, we provide an overview of an e-voting system
named ProVotE.

2.1 BPR Context

Business process is a set of logically related tasks performed to achieve
a defined business outcome. A process is a structured, measured set of
activities designed to produce a specified output for a particular customer
or market. It implies a strong emphasis on how work is done within an
organization. The model describing how the processes interact is called
business process model (simply, process model). Thus, Business Process

13

CHAPTER 2. STATE OF THE ART

Security

Formal
Methods

BPR

(e-)voting

Figure 2.1: Three research areas.

Reengineering (or Redesign) (BPR) is the analysis and design of workflows
and processes within and between organizations (Davenport 1993, Daven-
port and Short 1990, Malhotra 1998, William J. Kettinger 1997).

BPR helps an organization to better achieve its strategic goals by acting
on three dimensions: people (and their skills), technology, and processes.
We distinguish two kinds of process models: business architecture (as-is)
and software delivery (to-be). At a very high level and with several sim-
plifications, BPR consists of the following steps, along the line of (Wastell
et al. 1994, Valiris and Glykas 1999, Gordijn et al. 2000): modeling the
current processes (the as-is), defining goals of the re-engineering activity
(e.g., increase efficiency, reduce costs, introduce a new function), devising
new processes (the to-be), and actuate them.

Both the as-is and to-be can be represented in some textual or graphi-
cal representations. In the implementation, the as-is situation (e.g., actual
skills, processes, and systems) is the starting point that might limit the
scope of intervention. Notice that based on the requirements of the def-
inite process design, an outline of the technology components must be

14

2.1. BPR CONTEXT

made, as well as their interaction patterns. This is the architecture of the
new process. Furthermore, systems and applications have to be designed
enabling the new process to function according to its detailed design. Both
the technology architecture and the applications have to be actually con-
structed and tested. Finally, when we look at process re-engineering in
addition to the constraints, we need to take into account also the law that
regulates the goals, missions, and often, also the way in which work has to
be organized.

Several strategies have been proposed in the literature to understand,
model, and analyze business process models. Three aspects are central
in these approaches. The first is tools used for creating (business) pro-
cess models. Second, notations used to represent the modeling elements
and concepts. Third, techniques used for formally specifying and verifying
how such models respect the intended goals. For instance, various works
in the past have been proposed for modeling business processes. These
approaches span from workflow nets to event-based process chains, from
flow-charts diagrams to UML Activity diagrams (ADs) and Business Pro-
cess Execution Languages for Web Service (BPEL4WS)(Juric 2006) and
several other works such as (Jintae Lee 1993, Lehman, M. M. 1997, Hlupic
2003). In particular, (Dumas and Hofstede 2001a,b, Castela et al. 2001,
Eshuis 2002, Russell et al. 2006, Schattkowsky and Forster 2007) widely
discussed the usage of UML ADs for modeling business processes as well
as workflow modeling and specifications.

Similarly, a number of approaches focused on specifying and verifying
business process models. These include automata, process algebra, and
Petri Nets. Each equips with manual and/or automated analysis tech-
niques. Automata based approaches are common, which comprise of a
set of states, actions, transitions between states, and an initial state. La-
bels denote the transition from one state to another. The NuSMV and

15

CHAPTER 2. STATE OF THE ART

SPIN/Promela1 (Mauw et al. 1998) for instance, are derived from automata
to express system behavior in terms of transition systems. Figure 2.2 shows
a typical scenario of formal methods in business process modeling.

Petri Net (Peterson 1977) is widely applied for modeling workflow spec-
ifications. It allows identifying several basic aspects of concurrent sys-
tems/processes simply, mathematically and conceptually. For this rea-
son, it often become a topic in business process modeling for capturing
process control flows and a topic in web service process composition for
BPEL4WS (Wohed et al. 2003). In BPEL4WS, moreover, Petri Net is
specially applicable for detecting the dead path of business process models
whose preconditions are not satisfied. The application of process algebra
for process modeling is demonstrated in (Salaun et al. 2004, Salomie et al.
2007, Zhan-Haomin et al. 2008). Salaun et al. (2004) particularly discussed
the usage of process algebra to describe, compose, and verify interaction of
web services when they are composed together. General requirements for
the formalization of workflow models using process algebra can be found
in (Hofstede and Orlowska 1999). Other works also focused on integrating
formal methods —e.g., using π-calculus (Puhlmann and Weske 2005, Ma
et al. 2008) and SPIN (Holzmann 2003), with business process modeling
aimed at specifying, simulating, and verifying one’s business process mod-
els are designed. The results of the verification can be analyzed to improve
the models, thereby improving the actual business process. These tech-
niques can detect and correct errors of the models as early as possible and
in any case before implementation.

A formal model for business process modeling and design is discussed
in (Koubarakis and Plexousakis 1999, 2000), with emphasis on represent-
ing knowledge about organizations and their business processes formally,
inspired by the work presented in (Loucopoulos and Kavakli 1995). Their

1http://spinroot.com/spin/whatispin.html

16

http://spinroot.com/spin/whatispin.html

2.1. BPR CONTEXT
516 S. Morimoto

Fig. 1. Verification of business process models with automata

Petri Net. Petri Net is a framework to model concurrent systems. Petri Net
can identify many basic aspects of concurrent systems simply, mathematically
and conceptually. Therefore, many theories of concurrent systems derive from
Petri Net. Moreover, because Petri Net has easily understandable and graphical
notation, it has been widely applied.

Petri Net often become a topic in BPM and is related to capturing process
control flows [50]. Petri Net can specially detect the dead path of business process
models whose preconditions are not satisfied. The paper [9] shows how to cor-
respond all BPMN diagrams constructs into labeled Petri Net. This output
can subsequently be used to verify BPEL processes by the open source tools
BPEL2PNML and WofBPEL [41].

In the reference [36], the authors define the semantics of relation BPEL and
OWL-S [51] in terms of first-order logic. Based on this semantics they formalize
business processes in Petri Net, complete with an operational semantics. They
also develop a tool to describe and automatically verify composition of business
processes.

In the reference [17], the authors apply a Petri-net-based algebra to modeling
business processes, based on control flows.

The paper [52] proposes a Petri-net-based design and verification tool for web
service composition. The tool can visualize, create, and verify business processes.
The authors are now improving the graphical user interface which can be used
to aid the business process modeling and to edit Petri Net and BPEL in a lump.

The paper [53] introduce a Petri-net-based architectural description language,
named WS-Net, in which web-service-oriented systems can be modeled, and
presents a simple example. To handle real applications and to detect errors in
business processes, the authors are currently developing an automatic translation
tool from WSDL to WS-Net.

The paper [18] proposes a formal Petri Net semantics for BPEL which as-
sures exception handling and compensations. Moreover, the authors present the
parser which can automatically convert business process diagrams into Petri
Net. Consequently, the semantics enabled many Petri Net verification tools to
automatically analyze business processes.

In the reference[45], the authors propose a framework which can translate Orc
into colored Petri Net. Colored Petri Net has been proposed to model large scale
systems more effectively. The framework and tool deal with recursion and data

(Business) Process Model
(e.g., UML, BEPL, PNet, ...)

Intermediate representation
(e.g., SMV, Promela, ...)

Analysis Tools
(e.g., NuSMV, SPIN, ...)

Translator Analysis

Figure 2.2: Typical Scenario of formal verification in business process models.

formalization is based on the use of situation calculus (Levesque et al. 1998)
and the concurrent logic programming language ConGolog (Giacomo et al.
2000) for representing knowledge about organizations and their processes.
More specifically, their approach allows to develop the so-called enterprise
model. It comprises five interconnected sub-models to formally describe
different aspects of an organization. The core elements that constitute
the enterprise model include actors with their roles, goals, process (distin-
guished between primitive and complex actions), enterprise entities, and
constraints. A goal-oriented methodology for business process design is
also outlined for developing a new business process. The ConGolog formal
specification is developed as a set of sub-models to capture the new process
from various viewpoints. Formal verification can be carried-out to check,
for instance, whether each role responsibility is fulfilled and each constraint
is maintained by the ConGolog procedures defined for each individual role.

The usage of model checking for verifying functional requirements on
workflow specifications is discussed in (Eshuis 2002, 2006). To specify work-
flows, the author used UML ADs by defining a formal semantic for them in
order to meet the semantics of the target specification language that is suit-
able for formal analysis. Two kinds of semantics are specifically introduced
for the ADs, namely a requirements-level and an implementation-level se-
mantic (Ch. 2 and 3 Eshuis 2002). A number of translation rules have been

17

CHAPTER 2. STATE OF THE ART

defined to convert AD nodes (such as activities, objects, data and control
flows) into NuSMV input language semantics, such that functional require-
ments about the business process models can be model checked. To support
their approach, the authors present a tool in (Eshuis and Wieringa 2004),
so that the models specified in the ADs are translated into the NuSMV
input language for model checking.

An approach for the specification and verification of artifact behaviors in
business process models is presented in (Bhattacharya et al. 2007, Gerede
and Su 2007, Gerede et al. 2007). The center of the approach is the artifact-
centric operational modeling for constructing models with an appropriate
formalism. The three key constructs of the approach are business artifacts,
business work descriptions —describe the workflow activities on an artifact
by which a business role adds measurable business value to this artifact,
and repositories. These constructs define the operational modes of the
modeling, where each of the construct is represented formally. Differently
from the verification goal discussed in (Koubarakis and Plexousakis 2000),
which focuses on the use of formal methods for verifying properties about
only processes in business process of an enterprise, with this approach the
verification goal is checking whether models satisfy certain artifact prop-
erties. Examples of properties they claim to verify are reachability and
arrival of artifacts into a repository in bounded domains. The authors also
presented a logic language based on CTL named Artifact Behavior Speci-
fication Language (ABSL). ABSL allows to specify the lifecycle properties
of artifacts, where the lifecycle of an artifact type specifies the possible
sequencing of services that can be applied to an artifact of this type as it
undergoes through the business process. Yet, the same concept like above
cited with some extensions enabling to automatically construct business
processes is presented in (Deutsch et al. 2009, Fritz et al. 2009).

However, the authors (of the artifact-centered approach) did not show

18

2.1. BPR CONTEXT

how to perform automated analysis or verification nor hinted the integra-
tion of their approach with existing formal methods’ tools. Mostly their
focus is in constructing business process models with correct creation and
termination of artifacts during their lifecycle, as opposed to the paradigm
of organizing and modeling workflow or business processes around rela-
tively flat process-centric models. Additionally, they hardly speak about
security analysis.

We have discussed various works demonstrating their usage scenarios
insofar as they can used for modeling, specifying, and analyzing business
processes and workflows. Unfortunately, the attempt to model laws and
procedures, as well as to perform formal analysis in favor of the public
administration (PA) is not satisfactory. The advantages and difficulties
related to the (re-)engineering of PA can be found in (Wastell et al. 1994,
Alpar and Olbrich 2005).

In recent years, however, a number of governments have been adopted
such techniques to support their PAs. Works like (Willcocks et al. 1997,
Thaens et al. 1997, Greco et al. 2005, Lenz and Reichert 2005) particu-
larly have been discussed BPR support for public healthcare services by
identifying different levels of process support and by distinguishing among
generic process patterns. The use of BPR for better government has also
been discussed earlier by the U.S. federal government and the U.S. Depart-
ment of Defense and its use in taxation in (Review 1993). The importance
of modeling in the legal framework and documenting the knowledge about
the legal constraints within the process model itself is stated in (Alpar and
Olbrich 2005).

In particular, in (Olbrich and Simon 2008), the authors discussed an ap-
proach based on event-driven process chains and suggested how to translate
law paragraphs into process models using the Semantic Process Language
(SPL). Their main goal is to the visualization and formal modeling of a

19

CHAPTER 2. STATE OF THE ART

legally regulated process. The interesting aspect of this work is not only
the consideration of the given law when developing business process mod-
els, but also the explicit derivation of a process structure which is implic-
itly specified within the paragraphs themselves using the SPL. The SPL
enabled them to articulate language structures into executable workflow
models, using Petri Nets. The presented approach could provide means
for verifying whether process-like behavior fulfills the selected paragraphs
formally.

2.2 Security Analysis

As defined by ISO/IEC 15408 (Common Criteria 2007), threats to security
(or security threats) are potential attacks that misuse or breach the security
goals. Security threats exist when there is an opportunity, capability, ac-
tion, or event that could violate security. Security threat modeling (simply
threat modeling) and analysis are (semi)formal mechanisms for identifying,
documenting, and assessing the risks caused by security threats. In the lit-
erature, there are several approaches and techniques to perform security
analysis. These include, but are not limited to graph-based, model-based,
formal methods, and a combination of one or more of these techniques.
What is common to all, however, is that they include five key constructs
(assets, threats, attacks, vulnerabilities, and risks), during their modeling
and analysis approaches. In the following, we discuss some of existing
works in security analysis relevant to this work.

2.2.1 Graph-Based Approach

In the graph-based approach, the description of an attack is provided in
the form of graphs that describe the logical sequences and requirements
with which a malicious actor composes attack actions. The most widely

20

2.2. SECURITY ANALYSIS

used representation for attack modeling and analysis using graph-based
approach is attack tree, a term coined by Schneier (Schneier 1999, 2004).
Attack tree is a well-structured methodology for analyzing the security of
systems, subsystems, and system processes —and, it is used to capture
the sequence of attack actions and their interdependencies among them.
It provides a way to think about security, to capture and reuse knowledge
about security, and to respond to changes in security.

Quoting from (Schneier 1999):

“Security is not a product, it is a process, and attack trees form
the basis of understanding that process.”

In the attack tree, all the top-level nodes represent the ultimate goal of
the attack and each lower-level nodes represents the actual executable at-
tack action. Attack trees focus on generic description and sequences of
attacks following the AND/OR logical rules. However, a larger number of
attacks can carried out both through the exploitation of the knowledge of
the system and multi-action coordination (Steffan and Schumacher 2002).
(Braynov and Jadiwala 2003) proposed a formal model of attack trees in
terms of actions in order to understand, represent, and analyze such coordi-
nations. The model accounts for synergy and coordination among attack-
ers, by allowing specifying concerns like the actor in charge of performing
the action, the list of action preconditions, other concurrent actions, and
one or more action postconditions.

An approach to automatically generate and analyze attack graphs us-
ing formal techniques is discussed in (Sheyner et al. 2002, Sheyner 2004).
Their aim was that of examining, and eventually discovering design er-
rors using model checking technique (specifically, by using the SMV model
checking facilities) for the verification of a finite system model against a
formal correctness property specifying acceptable behaviors. Fovino and

21

CHAPTER 2. STATE OF THE ART

Masera (2006) introduced a multidimensional view of attack trees allow-
ing to attach context information to the boundary knowledge (knowledge
about the system, such as the weaknesses of the target system, security
properties of the system, and potential threats) on each attack tree. Specif-
ically, the approach distinguishes each node of the attack tree among three
main categories: operations (which represent any step operation made by
the attacker to perform the attack), vulnerabilities (which describe a vul-
nerability required to realize the attack), and assertions (which represent
assumptions, results, or requirements that characterize the attack process).
The approach could allow to use attack patterns during the assessment pro-
cess while context information is appropriate. Though yet to investigate
in practice, this approach could work best with the methodology presented
in (Daley et al. 2002).

The use of goal-orientation has been well acknowledged in (early) re-
quirement engineering for eliciting, specifying, analyzing, and document-
ing (software) system requirements (Dardenne et al. 1993, van Lamsweerde
2001). The approach is also widely adopted for security domain (van Lam-
sweerde 2004, Elahi and Yu 2007, Yu et al. 2008). The overall idea of
goal-oriented security specific modeling and analysis is to use the notion
of “goal” to represent the sequence of actions of an adversary where the
sequence ordering can be specified appropriately. In this way, it is possi-
ble to reason on the possibilities of goals satisfiability or deniability. High
level goal (i.e., from attacker’s viewpoint) is said to be satisfied when all
the subgoals have been fulfilled.

2.2.2 Model-Based Approach

In the model-based approach, a combination of a system or process model-
ing language and traditional security or risk analysis methods are intermin-
gled. More specifically, model-based is aimed at supporting a tight integra-

22

2.2. SECURITY ANALYSIS

tion between security analysis and development process, by constructing
models for the system and security threats. The approach, on one hand,
helps detecting or identifying early security problems. On the other hand,
it provides a systematic way to wave security into the development process.
Notice that we are not saying that all model-based approaches are appli-
cable for development process. To make our discussion more clear, thus,
we distinguish model-based approaches into two categories: one focuses on
security or risk analysis and/or documentation, whereas the other gives
more emphasis on security-centric development process.

With respect to the first category, there are a number of specific as
well as general approaches. The Common Criteria, CORAS, Risk Analysis
and Management Methodology (CRAMM), and Information Security (IN-
FOSCE) Assessment Methodology (IAM) are among the most widely used
ones. With respect to the second category, we mention security specific
development process, and extensions and applications of UML for security.

The Common Criteria, ISO/IEC 15408

Since 1990, work has been going on to align and develop existing national
and international schemes in one, commonly accepted framework for as-
sessing IT security. The Common Criteria (CC) (Common Criteria 2007)
represents the outcome of this work. It is an international standard for as-
sessing and validating the security of information systems. The purpose of
CC is to allow i) users to specify their security requirements, ii) developer
to specify the security attributes of their products, and iii) evaluators to
determine if products actually meet their intended behaviors. In addition,
it presents requirements for the IT systems of a product or system under
specific categories of functional requirements (related to the product) and
of assurance requirements (related to the development process). The CC
framework establishes a set of seven (where seven in the highest level) Eval-

23

CHAPTER 2. STATE OF THE ART

uation Assurance Levels (EAL) through the association of various features
with appropriate assessment methodologies, and provides a structure set
for the generation of protection profile (PP)2 for the target of evaluation.

In CC, the (security aware) development begins by providing a brief
description about the target of evaluation and its boundaries. This can
be specified either by developers or security analysts. The assets of the
target system, the potential threats, the organization security policy, and
assumptions and constraints over the operating environment of the target
of evaluation are then provided. All these are included in a well-structured
form within security target document. The process then describes the
countermeasures (in the form of security objectives), and demonstrates
that these countermeasures are sufficient to defeat specified threats. The
assurance requirements can be used as a means to build confidentiality
on the system, because they contain measures to be undertaken during
development in order to keep the risk of security threats unlikely. They
are necessary for guaranteeing the confidence that the target of evaluation
meets its security objectives.

Unfortunately, CC does not say much about methodologies and proce-
dures for specific uses. Moreover, CC leaves too much room for ambiguity
and it is difficult to find the right meaning of the security requirements
(Mellado et al. 2007). To close this gap, some approaches have been pro-
posed in the past aimed at supporting the CC both methodologically and
procedurally. For instance, a process-based framework that describes how
to wave CC requirements into the development process at different level
of details is discussed in (Vetterling et al. 2002). The authors in (Mellado
et al. 2007) proposed CC based security engineering process with main fo-
cus on the early aspects of development, to understand and later to derive

2A document typically created by users or community that identifies security functional requirements
and evaluation assurance requirements plus the trust model for a class of security critical products.

24

2.2. SECURITY ANALYSIS

security requirements.
The use of formal methods, with the goal of achieving a high level of as-

surance earlier mentioned by (Dominique Bolignano 1999). Namely, formal
methods are to be used at every stage of the development process (func-
tional, internal, and interface specifications, plus high-level and low-level
design). At the EAL5 level, which is the first level for which formal meth-
ods can be used, a formal model of the security policy has to be provided
so as to verify the consistency of the policy. At EAL7 a formal description
of security functions is required. Thus, the use of formal methods should
be considered in many cases as the best way to meet the semiformal re-
quirement that are found at lower levels (Bialas 2006, 2007). In line with
this, some attempts have been made in the usage and application of formal
methods for CC based development aimed at narrowing some of the men-
tioned gaps see, e.g. (Morimoto et al. 2006, Horie et al. 2006) (Junkil Park
2007, Morimoto et al. 2007, Heitmeyer 2009).

The CORAS framework

The CORAS methodology —first introduced in (Fredriksen et al. 2002),
and extended and applied to various applications in (Vraalsen et al. 2005,
Vetterling et al. 2006, Hogganvik 2007)— is a combination of UML mod-
eling and structured brainstorming techniques such as HazOp (Hazards
and Operability Analysis), FTA (Fault Tree Analysis), and FMEA (Fail-
ure Mode Effects Analysis)3. The methodology presents descriptions of the
target system, its context, and all relevant security features in an easily
accessible format. It has three different structures: i) The CORAS risk
modeling language, which includes both textual and graphical syntax as
well as the semantics of the methodological elements such as the concept
of actor, asset, threat agent, threat scenario, and risk; ii) The CORAS

3The bibliography references for FTA, HazOP, and FMEA can be found in (Fredriksen et al. 2002).

25

CHAPTER 2. STATE OF THE ART

method, which specifies a step-by-step description of the security analysis
process; and, iii) Tool support, a visual tool (named CORAS) for docu-
menting, maintaining, and reporting the assessment results.

The distinct angle of the CORAS approach is that of its emphasis on
security and risk assessment tightly integrated in the UML and RM-ODP4.
In particular, the issue of maintenance and reuse of assessment results
is novel and makes the approach attractive. As said before, the CC is
generic and does not provide methodology for security assessment. By
contrast, the CORAS is devoted to methodology for security assessment.
Both the CC and CORAS place emphasis on (semi-)formal specification.
However, contrary to the CC, CORAS addresses and develops concrete
specification technology addressing security assessment. The CC provides
a common set of requirements for the security functions of IT systems, as
well as a common set of requirements for assurance measures applied to
the IT functions of IT products and systems during a security evaluation.
CORAS, instead provides specific methodology for one particular kind of
assurance measure, that is, security risk assessment.

Furthermore, the important features from the CRAMM 5 approach are
incorporated in CORAS methodology, e.g., assets identification and valu-
ation. Contrary to CRAMM, however, CORAS provides analysis process
in which modeling is tightly integrated with the process, not only to doc-
ument the target system, but also to describe its context and possible
threats. Moreover, CORAS employs modeling to document the assess-
ment results from risk analysis and the assumptions on which these results
depend. Although the CORAS approach provides the mentioned benefits
(e.g., a risk document in the form of risk profile at the end of the methodol-
ogy), it does not care much about the usage and automation of systematic

4Reference Model for Open Distributed Processing http://www.rm-odp.net/
5http://www.cramm.com/

26

http://www.rm-odp.net/
http://www.cramm.com/

2.2. SECURITY ANALYSIS

threat actions and their coordination like (Braynov and Jadiwala 2003).

The NSA INFOSEC Assessment Methodology (IAM)

The National Security Agency (NSA) Information Security (INFOSCE)
Assessment Methodology (IAM) is a detailed and “systematic” method for
examining security vulnerabilities from an organization viewpoint as op-
posed to only a technical viewpoint (Rogers et al. 2004). It is not a risk
assessment methodology; instead it focuses on vulnerabilities and impact of
the information system. The security assessment process using IAM com-
prises of three mandatory phases, and each individual phase has specific
objective and output. These phases are pre-assessment, on-site activities,
and post-assessment. Within the pre-assessment, there are various activ-
ities related to refining organization objectives, understanding criticality
of organization information, identifying the system to be assessed and its
boundary, etc. By the end of the first phase, an assessment document is
produced. In the second phase of the IAM assessment (i.e., the on-site
activities), the classical interviewing process from security viewpoint with
customers is conducted. The third phase is devoted to the pre-assessment
activity, which is nothing but writing the final document of the assessment.
The methodology is accompanied by templates, which are designed by the
experiences of the NSA security team.

Needless to say that, the IAM does not specify any technique for iden-
tifying the vulnerabilities even for those specific vulnerabilities that are
from the perspective of organizational concern. Differently from CORAS
methodology, the IAM needs experts to perform the assessment includ-
ing for the on-site activities. In CORAS, this can be done using easy-
to-understand visual modeling language by both domain and non-domain
experts, during the brainstorming session.

27

CHAPTER 2. STATE OF THE ART

Security Centric Development process

In (Wimmel 2005, Jan Jürjens 2006), security specific development pro-
cess (security engineering) is presented. That is, the approach attempted
to intermingle techniques to ensure secure development of a system. In
(Wimmel 2005), in particular, the author defined a model-based develop-
ment process for security engineering, with a central idea of transforming
security-enriched model to a threat scenario by adding an intruder with
appropriate capabilities and applying formal methods for security verifica-
tion and testing on the resulting threat scenario. For creating the security-
enriched model about a system of interest, the author extended and used
the AutoFocus/Quest tool6 —a a general-purpose tool and specification
language designed for the development of distributed and embedded sys-
tems. The formal verification of security requirements is performed on the
generated threat scenario using NuSMV model checker, after the threat
scenario being transformed automatically into the NuSMV input language.

UMLsec (Jürjens 2002) is an extension of UML notations for a secure
system development, by providing means to specifying security require-
ments. The underlying basis is an abstract state machine model that for-
malizes a subset of the UML elements and extends with UMLsec specific
stereotypes. The purpose is to be able to formally verify software specifi-
cations, reduce the number of security risks, thereby making it available to
developers who may not be specialized in security. SecureUML (Lodderst-
edt et al. 2002, Basin et al. 2003) is another extension of UML, that defines
a vocabulary for annotating UML-based models with information relevant
to access control. It is based on extended reference model for Role-Based
Access Control (RBAC) (Osborn 1997), with additional support for speci-
fying authorization constraints. It combines system modeling and system

6http://autofocus.in.tum.de/index-e.html

28

http://autofocus.in.tum.de/index-e.html

2.3. ELECTIONS AND ELECTRONIC VOTING

security in a detailed level with more emphasis on RBAC. The approach
is based on first specifying system models and its security requirements
and then use tools to generate the system architecture from such specifi-
cations, thereby supporting their integration into a model-based software
development process. RBAC is also targeted in (Ray et al. 2004) where the
authors model the concept as reusable UML templates. More specifically,
by proposing a class diagram template for RBAC and use object diagram
templates to specify RBAC constraints.

2.3 Elections and Electronic Voting

It is important to review elections and electronic elections in order to pro-
vide some perspectives on the issues and processes involved. However, we
will not review the election principles (such as universal, equal, free, secret,
direct, trusted) and the majority of technologies used for elections but the
DRE technology. These concerns are thoroughly reviewed, investigated,
and presented in (Mercuri 2001, Mitrou et al. 2003, Sastry 2007, McGaley
2008, Volkamer 2009).

2.3.1 Elections and Technology

Voters in democracies around the world currently cast their vote in one of
a variety of ways. Hence, elections differ quite a bit from nation to nation,
not only with respect to the technology chosen to determine the elected
candidates (e.g., proportional, majoritarian), but also for the procedures,
the way in which votes can be cast, the organizations involved, etc. Looking
at Europe, for instance, voting ranges from cases such as that of Estonia,
in which voters can cast their vote by mail, through the internet, or by
going to the polling station, to that of countries, such as Italy, in which
the voting procedures are completely manual and voters are assigned a

29

CHAPTER 2. STATE OF THE ART

specific polling station to cast their vote. The technologies being in use
currently span from plain paper ballots to punch cards and from optical
scan to paperless technologies. Each of the technology has its own pros
and cons7.

Electronic voting systems are complex distributed systems, whose com-
ponents range from general purpose PCs to optical scanners and touch
screen devices, each running some combination of COTS components, pro-
prietary firmware, or full-fledged operating systems. The DRE voting ma-
chines are examples of e-voting systems. They are physically hardened,
preventing access to the typical PC connectors, e.g., USB ports. The de-
sign of these machines is significantly different, but they can be grouped
into three basic types —mostly on the basis of their interface evolution
(Coleman et al. 2000).

The first design essentially mimics the interface of a lever machine. In
a sense that, the entire displayed ballot is visible at once on the screen.
As opposed to the lever machine in which a voter moves levers to make
choices, with this kind of design the voter navigates from one screen to the
next by pushing a button available on the screen, which in turn triggers
an underlying electronic microswitch and turning on a small light next to
the choice. In the second design, a ballot page is displayed on a screen,
and the voter uses mechanical devices such as arrow keys and buttons to
make choices on a page and to navigate among pages. The third type is
similar to the second except that it has a touchscreen display, where the
voter makes a choice by touching the name of the candidate on the DRE
screen and casts the ballot by pressing a separate button.

What is common to all is that, after the ballot is cast the votes are di-
rectly stored internally. Moreover, most of the third type of DREs print a

7Comparison of Draft Voting Technology Standards Documents: http://votingintegrity.org/
tool/standards/default.html

30

http://votingintegrity.org/tool/standards/default.html
http://votingintegrity.org/tool/standards/default.html

2.3. ELECTIONS AND ELECTRONIC VOTING

paper ballot with the voter’s choices listed. The voter could then verify that
the ballot accurately reflected her/his choices as made on the DRE screen.
This is usually referred as Voter Verified Paper Audit Trail (VVPAT) (or
Real Time Audit Log (RTAL)). Thus, the type of DRE equipped with
printed audit trails is often called DRE-VVPAT/RTAL. VVPAT was orig-
inally suggested by Mercuri (2001). In U.S., these machines are built by
private companies, according to various state-specific standards.

DREs are particularly interesting because they simplify a number of
complex operational problems (Gritzalis 2003). Many of the reasons for the
increased adoption of DRE machines include accessibility and prevention
of voter mistakes —e.g., preventing of overvotes and feedback on under-
votes before the voter confirms to the final vote; audio interfaces to let the
visually impaired vote without assistance; the ballot management is vastly
simplified using some kinds of memory cards instead of paper; moreover,
DRE machines can save the costs associated with producing and securing
paper ballots (Evans and Paul 2004).

As the DRE technology (e-voting technology, in general) evolves, how-
ever, many open questions emerge. One of these questions is how to ensure
the security of the entire voting chain. Quoting from (Mitrou et al. 2003)

“Security primarily refers to the (technically guaranteed) respect
for secrecy and freedom, but in reality it covers the entire range
of functions and election components such as registration, eligi-
bility and authentication. The ballot being transmitted to the vote
counting equipment must be an accurate and non-modifiable copy
of the voter’s real choice, with no possibility of modification any-
where in the transmission path, in any of the intervening networks
and devices.”

This requires to understand a three-dimensional gap: the technological

31

CHAPTER 2. STATE OF THE ART

gap —that is, between hardware and software, the sociotechnical gap —
that is, between social and computer policies, and the social gap —that
is, between social policies and human behavior, as noted prior by Mercuri
(2001). This underlines the fact that e-voting systems are not just to ensure
low-level security (i.e., technical guaranteed), but also must ensure all the
non-technical (procedurally and/or environmentally guaranteed) aspects of
the system and the processes themselves. A lot of efforts are on going aimed
at improving the current trends in the development of e-voting machines.

2.3.2 Trends in the Development of e-voting system

Scientific literature on e-voting is wide and multi-disciplinary. We orga-
nize previous work in five areas: i) understanding the risks posed by the
introduction of e-voting systems in the polling stations; ii) developing re-
quirements for e-voting; iii) assessing existing systems; iv) designing novel
voting schemes, protocols and/or techniques; v) applying formal methods
for better design of voting machines.

Understanding Risks

With respect to this area, previous work focused on the representation and
effective implementation of e-voting procedures, e.g., as business processes.
Namely, using BPR for understanding what changes could be introduced
in the conventional voting procedures to allow a secure transition to elec-
tronic elections. In this area, the premier work is presented in (Xenakis
and Macintosh 2005b, 2007) where the authors investigated the need for
applying business process re-engineering to electoral process in order to
proposed a possible transition into electronic voting system.

Xenakis and Macintosh (2005b) express the need for BPR for the effec-
tive administration of e-voting specifically in the following statement:

32

2.3. ELECTIONS AND ELECTRONIC VOTING

“One can identify the need to redesign the electoral process into a
full-scale e-electoral process, delivered through simultaneous mul-
tiple technological channels, all contributing to the formation of
a unique election result. As such, the electoral process can be
considered as a “business process”. Subsequently, many of the
business management functions can be applied to it in order to
manage, control and re-engineer it.”

The PBR concept pertains to the redesign in the context of existing
business rules, such that the introduction of e-voting solution can be eval-
uated. As it is critical to define roles and responsibilities within the e-voting
process which could furnish a better understanding of who is responsible
for doing what in the different process stages to produce election result,
it is also equally important to provide systematic methodology to reason
on what can go wrong on this procedural rich workflow, instead of detect-
ing the weaknesses until well after attacks have been taken action(s). In
this regard, (Xenakis and Macintosh 2004b,c) discussed these kinds of risks
and difficulties while introducing e-voting solution. Furthermore, the same
authors in (Xenakis and Macintosh 2004a, 2005a) discussed the need for
procedural security in electronic elections and provided various examples of
procedural risks occurred during trials in UK. The approach can obviously
highlight some of the security implications of the administrative workflow
in e-voting, such as, discussed in (Lambrinoudakis et al. 2003).

The authors in (Bryl et al. 2009) presented an approach to reason on se-
curity properties of the to-be models (which are derived from as-is model)
in order to evaluate procedural alternatives in e-voting systems. In partic-
ular, using Datalog (Eiter et al. 1997) and the underlying theorem prover
they expressed and verified security concerns (such as delegation of respon-
sibility among untrusted parties, trust conflict, and so on). The aim is that
of understanding problematic trust/delegation relationships and eventually

33

CHAPTER 2. STATE OF THE ART

finding ways to adopt a solution to the detected security properties viola-
tions.

As a matter of fact, none of the existing works in this area provide
the actual low-level detail such that the realization and analysis for the
transition to e-voting is evaluated. The proposed approaches are poor in
using techniques to formally analyze what security breaches may be derived
by executing the procedures in the wrong way.

Developing requirements for e-voting

There are a variety of international documents such as European Union
(EU) Venice Commission recommendations (Council of Europe 2004) and
the U.S. Federal Election Commission (FEC) Voting Systems Standard
(VSS) (Federal Election Commission 2002, 2005), that describe a set of
principles for voting systems. These documents mainly specify high-level
abstract principles about the behaviors of each component of a voting sys-
tem should respect, as well as the related procedures. The FEC-VSS, for
instance, provides details about the standards to be used for performance
and tests of the voting machines. It also describes non-functional require-
ments (e.g., audits log features) and specifications for various hardware
components. However, these kinds of requirements often make difficult the
development and implementation of the actual e-voting system. Moreover,
the way these documents describe (security) requirements is hard to under-
stand, and sometimes they contain contradicting/conflicting requirements;
specifically, the conflict between the requirements for secrecy and accuracy.
If the e-voting system needs to be developed in a safe and secure way, there
must be an appropriate requirements definition for it.

We acknowledge the following premier contributions (Mercuri 2001, Mc-
Galey 2008, Volkamer 2009, Villafiorita et al. 2009a) with respect to re-
quirements development for e-voting system. Besides the technological

34

2.3. ELECTIONS AND ELECTRONIC VOTING

gaps that can cause threats to e-voting system, Mercuri (2001) earlier in-
dicated that the (e-)voting implementations present further difficult chal-
lenges for realization of the system due to the legal and sociocultural gaps.

McGaley (2008) expresses the lack of adequate requirements in e-voting
in the following statement:

“The lack of an adequate requirements definition for e-voting pre-
vents us from determining the quality of a given system, and is
therefore a barrier to the use of e-voting for critical elections.”

Thus, an essential activity to ensure e-voting system (any system, in
general) behaves correctly is laying down what behaving correctly means
for that system. This cannot be achieved without a proper engineering ap-
proach such as requirements engineering techniques. McGaley attempted
to address the mentioned problems by proposing a methodological ap-
proach for analyzing the root causes of the conflicts, organizational bar-
riers (or procedural barriers), and requirements for critical election. Her
approach focuses on the development of requirements for e-voting with top-
down and bottom-up strategies. The first one is aimed at developing a set
of requirements from an existing catalogue. The latter, instead is aimed at
developing of a new catalogue.

Volkamer (2009) takes forward the development of requirement cata-
logues by providing standardized, consistent, and exhaustive list of re-
quirements for e-voting systems —specifically, for stand-alone DRE and
remote e-voting systems. These requirements not only describe require-
ments that the system should meet, but also specify the corresponding
laws or regulations for the evaluation of the systems themselves. The au-
thor developed a methodology for the requirement development process.
The results of the methodology include system requirements (divided into
functional, security, usability requirements), organizational requirements,

35

CHAPTER 2. STATE OF THE ART

assurance requirements for both stand-alone DRE voting machines and re-
mote e-voting systems. Furthermore, the methodology comprises of cross
checks existing catalogues, election principles, and the possible threats.
This could allow software engineers and developers to easily understand
how their system meet these requirements. Following that, the author
proposed evaluation and certification procedure mostly for remote voting
system by complementing the CC common evaluation methodology and
also developed protection profile8 for remote voting (Ch. 6 and 7 Volka-
mer 2009).

Designing novel voting schemes and/or protocols

Prior works with respect to this area focused on the design of cryptographic
schemes, protocols, and/or techniques for better designing of voting ma-
chines. Cryptographic techniques offer the promise of verifiable voting
without needing to trust the integrity of any software in the system (Fu-
jioka et al. 1993, Karlof et al. 2005). In other words, they are meant to
augment e-voting machines and provide voters with an end-to-end guaran-
tee of the proper tabulation of their vote. In general, the ultimate goals of
these kinds of approaches include: ensuring a voter can be certain that his
vote has been recorded accurately (voter verifiability), no voter can prove
to anyone else how s/he cast (receipt freeness), an independent body can
verify that the recorded votes exactly match with the published tally after
the election (Iversen 1991, Cramer et al. 1995, Chaum 2004).

In this area, we mention the following three cryptographic schemes:
PunchScan (Carback et al. 2007, Essex et al. 2007), Prêt á Voter (Xia
et al. 2008, Ryan et al. 2009), and Scratch & Vote (Adida 2006) schemes.
What is most common to all these approaches is that they rely on the

8 The scope and definition of the PP for online voting systems can be downloaded fromhttps://www.
bsi.bund.de/cae/servlet/contentblob/480286/publicationFile/

36

https://www.bsi.bund.de/cae/servlet/contentblob/480286/publicationFile/
https://www.bsi.bund.de/cae/servlet/contentblob/480286/publicationFile/

2.3. ELECTIONS AND ELECTRONIC VOTING

underlying cryptographic principles to various degree of complexity.
PunchScan is a voting system which is easy to use by the voter as well

as by election officials while, at the same time demonstrating transparency
and reliability. It also provides public verifiability, election integrity, and
enhanced voter privacy. Scantegrity (Chaum et al. 2008, 2009) is a succes-
sor of PunchScan that meets industrial standard by providing end-to-end
verifiability of the integrity of critical steps in the voting process and elec-
tion results. Prêt á Voter (verifiable electronic elections) is a type of elec-
tronic voting system that uses paper based ballot forms that are converted
to encrypted receipts to provide security and auditability, at the same time
by keeping coercion resistant and making easy to use.

The Scratch & Vote is another cryptographic voting method proposed
by Adida (2006). It provides public election auditability using simple,
immediately deployable technology. The method combines a variety of
existing cryptographic voting ideas such as homomorphic encryption —
e.g., which allows votes to be tallied without decrypting individual votes,
the cut-and-choose at the precinct approach, and so on. Additionally,
works like (Fujioka et al. 1993, Benaloh and Tuinstra 1994, Ray et al.
2001, Santin et al. 2008) attempt to provide (maximum) secrecy and/or
anonymity for the vote and voter.

Unfortunately, we cannot say that cryptographic schemes and/or pro-
tocols address the current situation in the democratic process for several
reasons. For example, the protocols that have been proposed so far do not
yet overcome all of the barriers to their use in critical elections (McGa-
ley 2008, page 44); although DRE machines are most popular in public
elections in some U.S. states, the applicability and scope of the proposed
schemes are very limited in these machines. Moreover, as noted in (Karlof
et al. 2005), some cryptographic protocols live with some security holes,
such that sensitive information about the election can be leaked in one or

37

CHAPTER 2. STATE OF THE ART

another way.

Sastry (2007) presented the concept of “designing voting machines for
verification”. The aim of this work is that of providing techniques to help
vendors, independent testing agencies, and others verify critical security
properties DRE voting machines. The basis idea of the approach consists
of two interesting techniques. The first focuses on creating a trustworthy
vote confirmation process, where the proposed architecture splits the vote
confirmation code into a separate module whose integrity is protected us-
ing hardware isolation techniques. The second focuses on helping ensuring
a very important property in voting, that is, “None of a voter’s interactions
with the voting machine, including the final ballot, can affect any subse-
quent voter’s sessions.” (see Sastry 2007, page 31). In order to do that, the
author proposed hardware resets technique that restores the state of mod-
ules components to a consistent initial value between consecutive voters.
With this, it could be possible to eliminate the risk of privacy breaches and
ensure that all voters are treated equally by the systems.

Other works, such as (Sastry et al. 2006, Yee 2007) apply techniques
used in other domains —like pre-rendering user interface and hardware
separation— to build a higher assurance e-voting systems with accessible,
verifiable, and secure voting system. The design of a trustworthy voting
system by exploring the TPM (Trusted Platform Module) infrastructures
(e.g., PKI, hardware protection of cryptographic keys) is presented by Paul
and Tanenbaum (2009b,a). They presented a scheme that improves regis-
tration integrity, and introduced a design that prioritizes election integrity.
Their voting system has a nine-step as a whole, which takes place from an
election’s inception to its final conclusion.

Assessing exiting e-voting systems

With respect to this area, assessing existing systems, some e-voting sys-

38

2.3. ELECTIONS AND ELECTRONIC VOTING

tems currently deployed in elections have recently undergone a thorough
and independent scrutiny to evaluate their security and quality. This is
because, in the recent years, the DRE machines raised serious security
concerns. They make the election process less verifiable and greatly ex-
pand the aspects of an election for which voters must rely solely on trust.
Security vulnerabilities have been reported in each dimension of security
gap. These vulnerabilities have been practically investigated and proved by
various academic researches. This creates an enigma in the trustworthiness
of the machine and the voting process as well.

In line with this, we mention several academic researches (Jones 2003,
Kohno et al. 2004, Gardner et al. 2007, Balzarotti et al. 2008, Ansari et al.
2008), that assess both hardware and software of different forms of e-voting
machines (e.g., Diebold/Premier, ES&S, InterCivic), used in some U.S.
states. In these studies, the researchers identified serious design and im-
plementation flaws that are notable for their level of egregiousness. More
specifically, their analysis have showed that the current e-voting systems
are vulnerable to very serious attacks, as well as they have produced a cata-
logue of vulnerabilities and possible attacks. Some analyzes also suggested
a drastic change in the way in which e-voting systems are designed, devel-
oped, and tested (e.g., by identifying procedures to eliminate or mitigate
the discovered issues, by developing a precise methodology and toolsets
for the assessment). The assessment approach presented in (McDaniel
et al. 2007, Balzarotti et al. 2008) is particularly astonishing; in our opin-
ion, it can be used for other complex-security critical systems evaluation
and assessment as well as to the software testing community, see also in
(Balzarotti et al. 2010).

Applying formal methods for e-voting

The usage of formal methods in the specification and verification of e-

39

CHAPTER 2. STATE OF THE ART

voting systems is relatively new. We mention (Kremer and Ryan 2005,
Campanelli et al. 2008, Delaune et al. 2009, Sturton et al. 2009), that
present formal specification and verification of an voting system at different
level of abstractions and practicality. Clearly, these works demonstrate the
feasibility of formal verification of voting machine logic, along the line of
(Tiella et al. 2006, Villafiorita et al. 2009b, Weldemariam et al. 2009, 2010).
Although work in this area is very few, we can group the existing works into
two groups according to the level of abstractions and target of evaluation:
verifying cryptographic protocols and system behavior (i.e., the control
logic of the application software).

Related to the first group, (Kremer and Ryan 2005, Delaune et al.
2009) presented a framework for the specification and verification of three
privacy-type e-voting protocol properties. These properties are vote-privacy,
receipt-freeness, and coercion-resistance. The authors used applied π-
calculus (Abadi and Fournet 2001) to formalize these properties as ob-
servational equivalence, after being formalized the voting protocol as a set
of processes using the same formalism. In (Campanelli et al. 2008), the
authors used a CCS (Calculus of Communicating Systems) like process al-
gebra with cryptographic primitives to specify and analyze some properties
of the e-voting system they built. More specifically, they presented a small
mobile implementation of an e-voting system named M-SEAS (Mobile Se-
cure E-voting Applet System) and used formal verification technique to
validate the security property of the system. Their analysis goal is check-
ing whether their system is free from Sensus vulnerability by using the
Crypto-CCS language (Martinelli 2002) and PaMoChSA analysis tool9.

Related to the second, (Tiella et al. 2006) demonstrated the integration
of formal methods in development of the voting system. In particular, the
authors specified the behaviors of voting control logic using UML finite

9http://wwwold.iit.cnr.it/staff/fabio.martinelli/pamochsa.htm

40

http://wwwold.iit.cnr.it/staff/fabio.martinelli/pamochsa.htm

2.3. ELECTIONS AND ELECTRONIC VOTING

state machine and developed a tool named FSMC+ that automatically
generate NuSMV code corresponding to the specified finite state machine.
They performed the verification using the NuSMV model checker. Re-
cently, an approach for the design and analysis of an e-voting machine
based on combination of formal verification and systematic testing is pre-
sented by (Sturton et al. 2009). They formally verify the correctness of
each of the individual component of voting machine, as well as verifying
some crucial correctness properties of the composition of the components.
This work is targeted to the following verification goals: ensuring that each
individual component of the voting machine and their composition should
meet the specification of the individual components and their composition
respectively; voting machine should be structured to enable sound system-
atic system testing; ensuring that the voting machine must behave and
store votes according to the voters selection when configured with a par-
ticular election definition file. For each module, they construct a formal
specification that fully characterizes the intended behavior of that com-
ponent. A number of properties related to the structural and functional
aspects that the machine should satisfy are identified and specified. They
used Verilog (Thomas and Moorby 1991) —a hardware description lan-
guage for digital circuits, for the implementation of their specification and
SMV10 analysis tool and satisfiability solving (especially, the SMT solver)11

to verify that their Verilog implementation meets the specifications.

2.3.3 The ProVotE e-voting system

Based on the following archived works (Caporusso et al. 2006, Tiella et al.
2006, Villafiorita et al. 2009b,a, Komminist Weldemariam and Mattioli

10http://www.kenmcmil.com/
11The component-level specifications for some model are difficult to verify using the SMV model checker

due to large state space explosion in the SMV model checking to model check at the bit level, the authors
proposed to use the SMT solver (Sturton et al. 2009).

41

http://www.kenmcmil.com/

CHAPTER 2. STATE OF THE ART

2009), we provide an overview of the ProVotE project. The project is
sponsored by the Autonomous Province of Trento (Italy) with the goal of
evaluating the switch to electronic systems for local elections.

An Overview. Figure 2.3 shows a very high level view of election in
Italy and highlights the targets of automation of the ProVotE project.
There are two main chains of functions, voters’ management (pictured in
gray) and votes’ management. The former includes all the operations and
data for making sure that only the people with a right are given access to
voting and that each citizen can cast at most one vote. The latter, instead
includes all operations related to managing votes. These two chains of
functions, among others, provided various opportunities for automation.
In particular, the development of the e-voting and systems to automate
the recounting of the ballots produced by the e-voting machine. (The
ProVotE e-voting machine is a DRE-VVPAT.)

The ProVotE system is based on various sub-systems that address two
main process flows, mostly to implement the two main chains of functions.
These are electronic voting and verification flows. The first includes the
electronic devices responsible for automating the voting procedures. Its
main sub-systems include management system (let say, configurator), vot-
ing machine, and vote tally system. The configurator is responsible for
uploading the candidates and encryption keys (used to verify if the results
are coming from legitimate voting machine) into the e-voting system. The
voting machine is responsible for casting votes and performing adminis-
trative operations during the election (e.g., testing the voting machine,
tabulation of data). The vote tally system is responsible for aggregating
collected data and publishing provisional results.

The second flow is about verification, that is, verifying electronically
produced data. Its main sub-systems include Paper Ballot Counter and
Log analyzer. The first one is a barcode recounting system that helps

42

2.3. ELECTIONS AND ELECTRONIC VOTING

Pre Electoral Phase Electoral Phase Post Electoral Phase

Polling Station
El

ec
to

ra
l O

ffi
ce Candidates

Mngt

Voters'
Mngt

Voters'
Registration

(e-)voting

TX
system

Voters'
Data

Elected
Candidates
Computation

Provisional
Result
Publication

Recounting

Final
Result
Publication

M
un

ic
ip

al
ity

Figure 2.3: Elections in Italy and the ProVotE system architecture. The dotted lines
represent the different phases of the voting process: namely, pre-electoral, electoral, and
post-electoral. The boxes in bold lines represent the organizations responsible for the pro-
cess. And, the rounded rectangles represent functions performed during an election.

assisting poll workers, by reading barcodes printed on the ballots. The
latter is an an application used, after the election, to generate reports
about the use of a voting machine based on its log information, e.g. how
many times the machine has been started, average voting time (Villafiorita
et al. 2009a).

The ProVotE Development Process. The development of ProVotE
has proceeded in cycles, paced by experimentations and with a time-span of
about six months each. Each development cycle is a waterfall (Royce 1987),
extended and adapted to incorporate BPR, security analysis, and (formal)
verification activities. The most interesting aspect of the development is
the organization of activities within each cycle, summarized in Figure 2.4.

In particular, the following activities defined the ProVotE development

43

CHAPTER 2. STATE OF THE ART

Process
Modeling

Process
Model

Reqs.
Modeling

Voting
Activities

Machine
Lifecycle

Requirements

Design Design
Document

Core Logic
Specification

Process
Analysis

Coding

Packaging

Formal
Verification

Amendements

Verification
Results

Voting System
RC

Code
Generation

Services and
UI

System
Testing

Properties

Voting
System

Core
Logic

inc

inc

inc

C

C

C

C

R

R

RR

R

C

Figure 2.4: The ProVotE Development Process. The figure is an activity diagram in which
activities are in rounded rectangles, whose notation are slightly adapted to make it more
readable. The meaning of creation (“C”), reading (“R”), and inclusion (“inc”), respectively,
are that an activity creates an artifact, it reads it, or that an artifact is contained in another
artifact. The empty arrowhead indicates refinement, so that, for instance, the “Machine
Life-cycle” refines the “Voting Activities”.

process:

• Process Modeling. The activity in which process modeling, struc-
turing, and change management are conducted (the concern of Chap-
ter 3);

• Process Analysis. The activity in which procedural security is con-

44

2.3. ELECTIONS AND ELECTRONIC VOTING

ducted (the concern of Chapter 4);

• Requirements Modeling. The activity in which requirements are
defined and structured, using high-level statecharts and use cases.
The statecharts specify the life-cycle of the machine described earlier
and the use cases provide the usage scenarios for each of the states of
the machine’s life-cycle (e.g., the actions necessary to open the poll
site). The voting and the administration user interfaces are specified
through a statechart which describes their logic and in which each
state corresponds to a different “screenshot” of the system (see the
detail in (Villafiorita et al. 2009a));

• Design. During the design phase, the statecharts validated by the
responsible office have been detailed into executable statecharts;

• Formal Verification. The executable statecharts specification have
then been translated into the NuSMV input language, which in turn is
formally verified. The translation is done automatically using FSMC+12

(Tiella et al. 2006);

• Code Generation. After having validated the specification of the
control logic, FSMC+ has been used to generate the Java code of
the control logic of the machine (both the administration and voting
part). The Java code generated by FSMC+ was inspected by hand,
to mitigate risks related to bugs in the translator, and the source code
then compiled and packaged to produce the voting application;

• Coding (and Unit testing). The code implementing the manage-
ment of data and hardware devices and some glue code to link the user
interface was then implemented and tested using standard practices;

12http://ed.fbk.eu/fsmcp/last/

45

http://ed.fbk.eu/fsmcp/last/

CHAPTER 2. STATE OF THE ART

• Packaging and System Testing. The code generated by hand and
that produced by FSMC+ have been finally packaged together and
tested using standard techniques.

In summary, the ProVotE e-voting system is quite unique for the fol-
lowing reasons: the development methodology, which is a model-driven
integrated development based on UML; the incorporation of formal spec-
ification and verification, which is based on the state of the art model
checker; the introduction of signaling system, which displays the status of
the machine to poll workers such that the poll workers check if the voter has
completed voting process correctly or withdrew from voting; the choice of
Java and Linux operating system (customized, with specific functionality);
the incorporation of users feedback to the development of the machine, that
is, information are gathered from various (and different) experiments to get
feedback of users experiences on the machine usages and performance of
the machine.

46

Chapter 3

Tool Supported Methodology for
BPR

This chapter elaborates an approach where process models for procedures
are modeled, and changes in laws are mapped in the models in order to
highlight and review the impacts on processes and vice-versa. This al-
lows for a stricter collaboration among the different stakeholders usually
involved in BPR. Thus, we first discuss challenges of using BPR for mod-
eling process models in PA and requirements that should be followed and
respected across the modeling. We then discuss the modeling methodol-
ogy, by first presenting the business process model formally and followed
by the methodology itself. The methodology guides the identification of
the model elements and is supported by a tool named VLPM (Visual Law
and Process Modeler). Finally, we demonstrate the approach using various
examples taken from electoral procedures and laws in place in Italy.

3.1 Challenges and Requirements of BPR in PA

We discuss the main challenges of the representation, modeling, and anal-
ysis of PA processes using BPR. Following that, we discuss the minimum
requirements needed for our methodology that allows us to build (business)

47

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

process models in a convenient way.

3.1.1 Challenges of BPR in PA

New technologies and the emergence of new paradigms in the relationship
between citizens and governments are constantly challenging and question-
ing the way in which PA delivers its services. This phenomenon is as old
as governments are: the Roman Emperor Augustus had among his most
relevant reforms an improvement of the PA (Heady 1991). Traditionally, in
fact, there are three elements on which governments can operate to improve
the way in which they deliver services: people (and their skills), processes,
and technologies. In Augustus’ case, the reform was implemented through
people: he transitioned from short-term “amateurs” taken from the privi-
leged class to “paid professionalized civil servants” (Heady 1991). In recent
times, interventions always encompass all three dimensions.

A decision in (any) project preliminary phase has more relevant effects
that those delayed to the subsequent ones (Sommerville 1995). In the same
way, normative choices and changes in PA influence the law effective ap-
plicability with respect to the desired system. In principle, we distinguish
three different kinds of reengineering projects:

1. System automation level. The goal of this kind of project is introduc-
ing a new system to better support one elementary task or limited
procedure. Typically small in scope, these kinds of projects provide
limited improvements but are simple to implement, since they do not
affect neither the procedures nor the laws.

2. Departmental level. The goal of this kind of project is changing the
way in which work is performed within a functional unit, (often) to
make it more rational and efficient. These kinds of projects are more
impacting, as they require some kind of re-organization of the work,

48

3.1. CHALLENGES AND REQUIREMENTS OF BPR IN PA

often accompanied by the introduction of new ICT systems. The
impact on the laws, however, is null or minimal.

3. Inter-departmental level. The goal of this kind of project is provid-
ing a better implementation of those processes that involve different
departments or possibly change the allocation of responsibilities or
both. It is the case, for instance, of decentralization projects, where
competences are moved from central government to districts. These
kinds of projects are clearly the most impacting, since they act at all
levels, including the normative one.

The first kind of project is a “standard” software development project
for which there is a rich choice of tools, development cycles, and project
implementation alternatives. However, the other two kinds of projects
present two peculiar and closely related challenges, which root is in the
relationship between the laws and the processes that implement such laws.
These challenges are particularly common in PA domain, which are

• Laws provide the framework that constrains and limits possible choices
and alternatives in reengineering processes. Providing tools and nota-
tions can allow to explicitly model and reason about the alternatives
and constraints, and as the same time could help to develop more
efficient solutions.

• Laws and processes are intertwined as requirements and implementa-
tion are in software development processes. Providing tools to explic-
itly trace the connection between laws and process elements helps for
a more efficient and coherent management of the system. This can
help ensuring that procedures correctly implement the law, and at the
same time it could help to understand which laws might be affected
by a change in the processes.

49

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

Furthermore, interventions usually require to change part of the law.
However, in order to understand where and how to modify the law we have
to set, prepare, and validate new processes as well as to recognize the new
roles and people responsibilities. Additionally, regulating a complex system
or a new one requires to understand about the procedures to activate in
order to answer questions like who is in charge of, when the task should
be done, how to face exceptional situations, and so on. These all call a
significant reform needed to provide correct snapshot about the existing
processes and/or procedures, to propose the (re-)design and development
of a new system.

One of the tools to enact this reform is the application of BPR tech-
niques. In PA, this is an activity which involves (independently or in
collaboration) law-makers who amend laws, process designers who try to
optimize existing processes, and software developers, to support existing
processes and/or procedures with technology. Modeling facilitates the com-
munication and understanding of the actual organization among these users
and is helpful in building a shared vision between domain experts and tech-
nicians. Moreover, it provides an easier way of analysis in order to evolve
towards efficient and higher quality processes, if not pose related risks.

As discussed in the previous chapter, it is not possible to transfer e-
business solutions and development approaches directly to the PA. While
most of the existing modeling techniques were developed in order to opti-
mize supply chains or production, there are no such clear goals in modeling
public workflows (Alpar and Olbrich 2005). Moreover, unlikely from orga-
nizational or firm processes, for instance, the electoral ones are ruled by
laws and often several procedures undergo by the experience of a single ac-
tor. Thus, on one hand, it is essential to know the constraints established
by the law, but, on the other hand, it is also necessary to support the
office in charge of such processes in order to decide the changes required

50

3.1. CHALLENGES AND REQUIREMENTS OF BPR IN PA

by the new processes. However, as said before, one of the major difficulties
encountered in this domain is the strong dependency between processes
and laws. Any implementation of software delivery requires a parallel ac-
tion on both the redesigning of processes and on the introduction of law
changes. This means that the current law (in a sense: rather than the
processes), must be considered as the constraint, the engine, and the tar-
get of the reengineering activity. This link between models and laws raises
further issues related to the maintainability of the models over time, since
it is necessary to guarantee coherence of the models with the laws in order
to have the models retain their value. We argue that the situations can
reasonably be tackled by providing homogeneous and structured models
of the current processes (the business architecture), which in turn should
allow to redesign the new software delivery.

It is important, therefore, to devise methodology and tool that should
help tackling the two challenges mentioned above. In fact, we can ap-
ply techniques (e.g., goal-oriented methodology) that can help tackling
the first problem by providing precise notations and alternatives to avoid
mis-interpretation and resolve ambiguities that can arise, and by perform-
ing high-level formal reasoning. In contrast, the second challenge can be
tackled through a proper BPR approach —namely, by devising process
modeling and redesigning methodology and by developing its supporting
tool. In this chapter, thus, our focus is in the second direction to address
mentioned challenges, on top of Mattioli’s work (Mattioli 2006).

We should be clear that our main contribution in this chapter is that of
structuring of the previous methodology by providing requirements for the
model elements and their formalization. More importantly, this opens op-
portunity to perform security assessment on the procedures, for instance,
“what happens if the procedure is not followed correctly”, can be per-
formed.

51

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

3.1.2 Requirements for Process Models

The relevant elements that a process model should contain depend on sev-
eral constraints. We discuss such constraints that are needed to be con-
sidered while modeling PA processes. As a minimum requirement, process
model should be1:

1. Complete. A complete process model should contain the relevant sub-
jects, objects, activities, and constraints of PA processes that make
up the business architecture. That is, all the significant elements in
the PA processes should be mapped to elements of the model;

2. Simple. All users and, in particular, users with little or no technical
background should be able to read and understand the model. This is
essential in order, e.g., to disambiguate the interpretation of certain
norms, by using the model as a common language among users;

3. Formal. All the elements in the model should be given a precise and
unambiguous meaning in order to enable simulations and/or formal
verification, if applicable;

4. Hierarchical. General (and informal) processes are refined through
sub-processes ordered in subsequent levels of abstraction. The hierar-
chical organization is useful for presentation purposes and to keep the
model more comprehensible;

5. Maintainable. The organization of the model and of its elements
should follow precise and machine-verifiable conventions, in order to
guarantee a minimum level of quality and uniformity;

1 Notice that the requirements listed below represent a complement on the requirements that are listed
in (Alpar and Olbrich 2005).

52

3.1. CHALLENGES AND REQUIREMENTS OF BPR IN PA

6. Traceable. The organization of the model and of its elements should
allow synchronization between the model representation and the le-
gal information encoded in the model, in order to guarantee change
management between models and such information.

In the first place, models that are constructed for PA processes must
be compete —namely, they should contain the relevant subjects, objects,
activities, events and constraints of administrative processes that make
up a transaction. This includes, e.g., specifying actors who participate in
the process and their responsibilities, assets and operations on them, and
constraints in the model. Specifying actors (and their responsibilities) in
the model not only allows to describe who does what during the execution
of a process, but, more importantly in the context of modeling process in
PA domain, who manages what data and with what privileges.

As we discussed in the previous chapter, a number of techniques exist
for the modeling of business processes. Such techniques and notations
must not be too complex since PA users are usually not familiar with
modeling languages. This helps avoiding complexity, by maintaining the
readability of the models to non-domain users —making the model simple
for them but should be complete. At the same time, by creating commonly
shared visions among different people about the same process model and by
making the models suitable for future revisions. Moreover, although there
is a need to analyze PA processes on an abstract level by non-domain users,
we also need these techniques and notations to allow lower level analysis
by domain experts.

While keeping the models simple and formal, process models should
be organized as a hierarchical structure, in order to immediately furnish
some generic considerations. It is natural that, on such organization we
can distinguish two types of processes: abstract (called “containers”) and
concrete (called “executable”) processes. While higher levels in the hier-

53

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

archy represent abstract processes, the leaves represent concrete processes.
The hierarchical organization helps in browsing the model as well as helps
investigating in the real significance of abstract processes in order to reach
an agreement on their meaning and split a single complex model into a
composition of smaller ones.

In practice, in fact, most people prefer to speak about abstract pro-
cesses, such as “voting” or “counting” without knowing the detail about
their technical meaning. For a domain expert, for example, ”counting” has
a different meaning if the context is for the local or general elections its
main goal is the same but the tasks to achieving it are different. For a cit-
izen, however, it does not matter which task is, as long as the “counting”
operation just produces the final result. From requirement engineering
or software designing point of view, in contrast, “counting” for different
elections has different requirements, and consequently different implemen-
tations.

When we augment a process modeling technique to include information
on legal regulations that govern the observed processes, an important as-
pect is guaranteeing synchronization between the model representation and
the legal information, so that any change to the process can be reflected
in an equivalent amendment to this information and the other way round.
The synchronization of models facilitates their composition with other such
processes in order to form a single complete view for their end users, and
at the same time by allowing maintaining the structure of the models. The
resulting model should be able to show restrictions for the reengineering
that are set by the legal framework or other public regulations such as
laws, and at the same time by allowing traceability between the models
and change management. That is because the improvement of processes
depends on the careful analysis of them in which legal constraints must be
respected.

54

3.2. REPRESENTING LAWS IN XML

Finally, some of the peculiarities of the PA (especially, in e-voting do-
main) need specific strategies for an effective process modeling, as well as
their analysis. The formalization and maintenance of the process models
particularly crucial in that regard. Notice that there are limited works or
otherwise little said on these two points, namely on formalization of the
model and maintenance. Notice also that maintainability of models should
not be confused with the synchronization constraint though. Their differ-
ence is that the former focuses on the structure of models, in contrast, the
latter focuses on the content of the models.

3.2 Representing Laws in XML

We consider a law whose structure is hierarchical organized. In the hier-
archy of the law structure, the non-terminal nodes represents structural
divisions of the law and terminal nodes are the law paragraphs. Notice
that currently, we consider an Italian law as discussed in (Mattioli 2006,
Ciaghi et al. 2009a). In other words, for the structure of Italian legislative
texts, a law is divided in “Titles” which contain “Articles” that are divided
in “Commas” or “Paragraphs”2. Law paragraphs contain the actual text
of the law and can be further subdivided in “Letters”, which are an alpha-
betically ordered list of clauses. Figure 3.1 shows this structure of (Italian)
law representation.

Mark-up languages, and in particular XML, can provide interesting re-
sults at both ends of the legislative process: at the drafting stage, enforcing
some or all the drafting rules defined for norms; at the accessibility stage,
fostering easy and sophisticated searching and rendering tools for the pub-
lic at large. Furthermore, XML may constitute a great influence on several
other aspects of the legislative process, providing support for the consolida-

2Respectively “Articles”, “Sections” and “Clauses” in the American legal system.

55

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

tion of laws, rationalizing the legislative process, improving the referencing
and connections among the norms, etc. (Marchetti et al. 2002).

Law Title Article

Comma Letter

1..* 1..*

1..*
1..*

Figure 3.1: Law elements class diagram.

The “Normeinrete”3 project, started in 1999 by the Italian Ministry of
Justice and several other Italian public institutions, defined an XML for-
mat for Italian legislative texts that allows the marking of all the elements
constituting a law and thus facilitates electronic processing of laws (Lupo
2002, Caterina Lupo 2005). Normeinrete provides several DTDs to support
the representation of legal texts. Among these DTDs two are most relevant,
namely loose and strict DTDs. The loose DTD supports the former type
of texts, while the strict DTD supports and enforces the well-formedness
of the latter, namely the adherence to the structure depicted in figure 3.1.
Both DTDs describe a structure made of a header, an optional preamble,
a hierarchical structure (called articolato) containing the elements shown
in figure 3.1, a conclusion and a variable number of annexes. These are
complemented by the initial and final formulas of the Italian law texts
(Marchetti et al. 2002). Our tool and our methodology focus on the ar-
ticolato and therefore we will disregard the other components of the text
from now on. In addition “Normeinrete” introduces specific tags to mark
resources and entities. This results to be particularly helpful to automate
the modeling of responsibilities in processes and extracting a preliminary

3(Laws on the Net) http://www.normeinrete.it

56

http://www.normeinrete.it

3.3. PROCESS MODELING METHODOLOGY

list of used objects.
In order to univocally identify laws and their elements, “Normeinrete”

uses a URN based system (Caterina Lupo 2005, de Oliveira Lima et al.
2007). The URNs are defined as a combination of elements according to
a specific grammar. The basic elements are: the name of the promul-
gating authority, type of norm, date, number and a set of more detailed
specifications when needed (Caterina Lupo 2005).

3.3 Process Modeling Methodology

Before starting the modeling methodology, first we present formal method-
ology guidelines with respect to the the consideration we mentioned previ-
ously, independently from the UML notations.

3.3.1 Defining Business Models Formally

We introduce business process as a formal and structured model. The
model is formal in that it defines a process as a mathematical object,
which can be analyzed. The model is structured in that it permits the
hierarchical definition of a process, and that hierarchy can be exploited for
structuring the modeling and analysis of process models. A mathematical
definition for business process descriptions not only enables to obtain their
unambiguous interpretation, general, and objective model. It also provides
the basis for tool support. Namely, it can contribute to furnish checking
mechanisms and to automate the production of some kind of information by
respecting constraints imposed by a legal framework. It can also help to be
uniform across the modeling phase and prepares the ground to verify if the
methodology is correctly applied, thus enabling an efficient development
process.

We formally define the business process model as:

57

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

Definition 3.3.1 A process model is a 6-tuple 〈A,P,E,RAP , RPP , REP 〉
where

• A is a finite set of actors;

• P is a finite set of processes;

• E is a finite set of entities (or assets);

• RAP ⊆ A× P is a finite set of actor-process relationships;

• RPP ⊂ P × P is a finite set of process-process relationships;

• REP = R2
EP ∪R3

EP is a finite set of asset-process relationships where

– R2
EP is the finite set of binary relationships between a process and

an entity and,

– R3
EP ⊆ P×E×P such that (p, e, p′) ∈ R3

EP → (e, p), (e, p′) ∈ R2
EP

is the finite set of ternary relationships among a source process p,
an entity e, and a target process p′.

An actor ∈ A is responsible for a specific process or asset, and it might
be a person, a component, a technical system or a combination of them.
Notice that an actor might also be responsible for more than a process. The
responsibilities of each actor are realized as a set of roles; and, a role has
a name r ∈ R where R is the set of role identifiers (e.g., provincial chair-
person, polling officer). The assets/entities are what we focus on when
performing formal analysis of processes and, in particular, security assess-
ments of the procedures (see Chapter 4 for more detail). Additionally, the
REP is the set obtained from the union of binary and ternary relationships
because all relationships involve a process and an entity, but some of them
require a more complete description —namely, to model the scenario of
sending and receiving an entity (more description later).

58

3.3. PROCESS MODELING METHODOLOGY

In hierarchical organization, processes are distinguished into concrete
(or primitive) and abstract (or complex). Usually a process is considered
to be concrete if no decomposition will reveal any further information which
is of interest. More specifically, we define concrete and abstract processes
as:

Definition 3.3.2 A process p is said to be a leaf or a concrete process iff
@ p′ ∈ P such that (p, p′) ∈ RPP . A process p is said to be an abstract
process if it is not a leaf process.

Intuitively, the distinction between concrete and abstract processes is
made to distinguish between the fact that a concrete, or a self-defined
procedure, is immediately understandable and executable, whereas an ab-
stract process is a non-trivial composition of two or more sub-processes.
This distinction allows us to speak about an abstract process to make more
general questions, but, at the same time, preserve the opportunity to define
it in terms of more refined ones, i.e., sub-processes.

Notation 1
We write p A p′ if (p, p′) ∈ RPP for some p, p′ ∈ P ;
We write p b p′ if (p, p′) < RPP some p, p′ ∈ P ;
We write p A . . . A p′ if ∃p1, . . . ,∃pn such that p = pn A pn−1 . . . p2 A

p1 = p′.

Definition 3.3.3 Let p, p ∈ P , then

• p′ is a direct sub-process of p iff p A p′;

• p’ is a sub-process of p iff p A ... A p′;

• Conversely, p is said to be a (direct) super-process of p′.

59

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

To these basic elements, two instruments particularly useful to un-
derstand the relationships involving processes, actors, and assets are the
RACIV (responsible, accountable, consulted, informed, verified)4 respon-
sibility and the CRUD (create, read, update, and delete) matrixes, which
we borrowed (from project management and database communities respec-
tively) and extended in our modeling. The former points out the rela-
tionships among actors and processes in terms of roles undertaken by the
different participants actors, whereas the latter points out how the assets
are connected to accomplish the process’s goal. The name “stereotypes”
recall the UML profiling technique but the meaning is in a certain way
different. We can think them as labels that define the kind of an object.
The profiling consists of the following stereotypes sets:

Definition 3.3.4 The set of all stereotypes are defined as follows:

• SA : a finite set of domain-dependent stereotypes for actors A;

• SP : a finite set of domain-dependent stereotypes for processes P;

• SE: a finite set domain-dependent stereotypes for assets E;

• SAP = {responsible,accountable,consulted,informed,verifies};

• SPP = {include,extend,generalize};

• SEP = {create,read,update,delete,send,receive,use}

In addition to the standard notation borrowed from the CRUD, the set
of SEP is extended by including use, send, and receive. Intuitively, send
and receive labels need a precise asset mobility and underline a change of
ownership or control over an asset to be sent and received, respectively.

4 Also called Responsibility Assignment Matrix (RAM), often used to describe the participation by
various roles in completing tasks or deliverables for a project or business process. It is especially important
to clarify roles and responsibilities in departmental projects and processes.

60

3.3. PROCESS MODELING METHODOLOGY

They point out that the responsibility or accountability for the involved
assets is changing from the accountable actor of the source process to the
accountable actor of the destination process. This usually also implies a
physical movement of an asset. The main constraint is that suppose we
want to model the fact that from a source process p ∈ P , we send an
asset e ∈ E to a destination process p′ ∈ P . In this case, the relationship
(e, p) ∈ R2

EP specifies the connection between p and e, but it is also true
that to understand where e is sent. Thus, there exists a corresponding
process p′ ∈ P linked to e marked with the receive stereotype (e, p′) ∈ R2

EP .
That is, in fact, why previously we introduced the ternary set R3

EP , that
models the dual receive operation. The label use, instead, informs the asset
is indeed needed to perform an action. It is distinguished from read because
it does not imply the idea of data or value (legitimate) manipulation. In
short, the use label suggests that the linked asset is necessary to perform
the task but does not provide data by itself.

Example 3.3.5 The domain-dependent stereotypes for SP and SE, for the
case of electoral system can contain the following:

• SP = {local, general, single polling station, multiple polling stations};

• SE = {document, program, object(physical), file}.

The methodology suggests the above base stereotypes but other domain-
dependent ones can be added in the set.

Definition 3.3.6 Let the codomain of si does not contain empty set, ∀i ∈
{A,P,AP,EP}. Then, we define the following functions:

• sA : A→ 2SA;

• sP : P → 2SP ;

• sE : E → SE;

61

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

• sAP : RAP → 2SAP ;

• sPP : RPP → SPP ;

• sEP : R2
EP → 2SEP .

Now consider the law structure we discussed in the previous section,
which is organized hierarchical where non-terminal nodes represents struc-
tural divisions of the law and terminal nodes are the law paragraphs.

Definition 3.3.7 Let LTreei the tree of the law i and let LPi the set of
paragraphs contained in LTreei, then we define Li : P → 2LPi, where if
p ∈ P is defined in LTreei then ∅ , Li(p) ∈ 2LPi, whereas if p is undefined
Li(p) = ∅.

In the above definition, the meaning of “p ∈ P is defined′′ is that the
process p is described in LTreei and Li(p) is exactly the set of paragraphs
involved in its description.

Additionally, the models should respect certain constraints in order to
be homogeneous in representing, structuring, and composing them. A set
of constraints related to actors, processes, assets, and relationships can be
used to encode restrictions imposed on the models. Constraints can be
formally expressed like before, by using the same machinery.

Notation 2
Let x ∈ SAP . We write x(a,p) ⇔ x ∈ sAP (a, p)for some a ∈ A,p ∈P.
Let x ∈ SPP . We write x(p,p) ⇔ x = sPP (p, p′) for some p, p′ ∈ P.
Let x ∈ SEP . We write x(e,p) ⇔ x ∈ sEP (e, p) for some e ∈ E, p ∈ P .

Some constraints for SAP , SPP , SEP , and Li

The models should respect the following constraints.

62

3.3. PROCESS MODELING METHODOLOGY

Constraint 1 All actors and assets should be connected to relevant processes.
That is, ∀a ∈ A. ∃p ∈ P such that (a, p) ∈ RAP and ∀e ∈ E. ∃p ∈ P such
that (e, p) ∈ REP ;

Constraint 2 The actor-process, process-process, and asset-process relation-
ships should have their own stereotype. That is, the definitions sAP , sPP , and
sEP are total functions on RAP , RPP , and REP respectively;

Constraint 3 For each process p ∈ P in the process tree, there exists at
most an �accountable� actor. That is, ∀a, a′ ∈ A, ∀p ∈ P such that
accountable(a, p) ∧ accountable(a′, p) → a = a′;

Constraint 4 Only leaf processes can have �responsible� actors. That is,
∀a ∈ A, ∀p ∈ P such that (a, p) ∈ RAP ∧ responsible(a, p) → p is a leaf
process, that is., executable;

Constraint 5 All leaf processes should have �responsible� actors. That is,
for each leaf process p ∈ P , ∃a ∈ A such that (a, p) ∈ RAP ∧ responsible(a, p);

Constraint 6 A sub-process contains a subset of the parent process stereo-
types in RPP , i.e., ∀p, p′ ∈ P such that p A p′ → sP (p′) ⊆ sP (p);

Constraint 7 Relations with stereotype �include� in RPP means the sub-
process has the same set of the parent stereotypes, i.e., ∀p, p′ ∈ P such that
p A p′ ∧ include(p, p′) → sP (p′) = sP (p);

Constraint 8 Relations with stereotype �generalize� in RPP means the
subprocess has a proper subset of the parent stereotypes, i.e., ∀p, p′ ∈ P such
that p A p′ ∧ generalize(p, p′) → sP (p′) ⊂ sP (p);

Constraint 9 Relations with stereotype�generalize� split the super-process’
stereotypes in a collectively exhaustive way, i.e., ∀p, p′ ∈ P such that p A p′

∧ generalize(p, p′) then ∃p1 . . . ∃pn ∀i = 1 . . . n, pi , p ∧ p A pi ∧ sP (pi) ,
sP (p′) ∧ sP (p) = sP (p′) ⋃i=1...n SP (pi)

Constraint 10 For each asset-process in REP relationship whose stereotype
is �send� there exists an asset-process in REP relationship whose stereotype
is�receive� and the two processes are connected in R3

EP . Let e ∈ E, p, p′ ∈ P
such that

63

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

(p, e, p′) ∈ R3
EP → send(e, p) ∧ receive(e, p′)

(e, p) ∈ R2
EP ∧ send(e, p) → ∃p′ ∈ P such that (p, e, p′) ∈ R3

EP

(e, p′) ∈ R2
EP ∧ receive(e, p′) → ∃p ∈ P such that (p, e, p′) ∈ R3

EP ;

Constraint 11 Each sub-process has a subset of law paragraphs of its super-
process, i.e., ∀p, p′ ∈ P such that p A p′ → Li(p′) ⊆ Li(p) for each law i;

Constraint 12 The law of the super-process contains the union of the law of
its sub-processes. Let p1, . . . , pn ∈ P be all the direct sub-processes of p ∈ P ,
then Li(p) ⊇

⋃
i=1...n Li(pi).

The next section shows how we use the formal model of the business
process in the modeling methodology. Namely, we show the usage of the
formal definition for the UML models by following the methodology.

3.3.2 The Modeling Methodology

The XML representation of laws provides several advantages among which
eliminating (some) syntactic ambiguities and providing formal and auto-
mated cross-references. However, when the target of the law is the defi-
nition of the operational aspects of the PA, i.e. how the PA works, and
the target of the work is the re-engineering of processes, workflows and
workflows diagrams are more commonly used. As the size of the model in-
creases, issues concerning composition, uniformity (i.e., the same notation
is used coherently in all models) and quality of models written by different
people quickly arise.

For this reason, a modeling methodology along with modeling guidelines
which are meant to support functional analysts in defining their processes
is presented in (Mattioli 2006) and later used in (Ciaghi et al. 2009a).
The requirements and formal model discussed previously are the basis for
defining the methodology, which is the added value on top of the original
methodology as proposed by Mattioli. The methodology is organized in
the following main phases:

64

3.3. PROCESS MODELING METHODOLOGY

• Preparation phase. During which data and structure for the modeling
elements are identified and organized;

• Static process modeling phase. During which a hierarchical structure
of processes is constructed and actors are linked to processes in the
hierarchy independently from processes’ execution and their analysis;

• Dynamic modeling of processes. During which we describe the pro-
cesses workflow by emphasizing sequential and parallel activities.

The approach is based on UML notations mainly because software en-
gineers are familiar with it. Some kinds of diagrams are easily understood
by domain experts who are not conversant with software development and
it is supported by several CASE tools. Specifically, the methodology uses
the following UML diagrams: use case diagrams, which are employed to
provide the static hierarchical process organization allowing to concentrate
on processes and actors with their responsibilities; activity diagrams, which
are used to deal with the dynamic aspects of the system, rendering pro-
cesses as actions which transform assets and their state; UML actor and
object node represent an actor a ∈ A and an asset e ∈ E, respectively; and
package and class diagrams are used to represent meta level concepts.

Actors, use cases, and object nodes can be stereotyped with elements of
SA, SP , and SE respectively. The law paragraphs in LPi are represented by
means of instance specifications. Notice that the approach is not strictly
bound to UML diagrams. Similar diagrams and notations can be used as
long as they allow to represent some concepts included in the methodology
(e.g., multiplicities) and support tool extension. Additionally, the two
instruments (i.e., RACIV and the extended CRUD) discussed previously
about the relationships involving processes, actors, and assets are used.

Notice that the notation basically conforms to the approaches proposed
in the past. The added value is a set of rules and conventions that simplify

65

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

maintenance and allow to more closely match the notation to some pecu-
liarities of the electoral procedures and laws and the use of a precise and
simple methodology based on the UML notation and formal definitions. In
what following, we discuss each phase of the methodology in detail, using
the mentioned UML notations to concretize its usage and emphasize its
generality.

3.3.2.1 Preparation Phase

In this phase of the methodology, we identify and prepare the data and
structure for the process model using packages and classes diagrams. The
phase mainly comprises of the following activities:

• Actors and Assets Identification. For what concerns actors and
assets identification, we further split this activity into:

– Actors identification: aims at extracting roles, actors (humans
or organizations) and groups (e.g., offices) which are involved in
the domain under modeling and analysis and their connections
with other actors;

– Asset classes identification: types of the assets involved and
their relationship with processes and other assets;

– Assets identification: instance of assets types which are needed
to perform the different operations. This phase requires an under-
standing of the evolution in state and value of the assets —i.e.,
how they change after executing a process and if they become
less or more critic. These information, in fact, are the basis for
procedural security analysis.

• Stereotypes identification: the domain specific characterizing as-
pects and concepts are identified and agreed among all parties. Namely,

66

3.3. PROCESS MODELING METHODOLOGY

the sets Si are constructed, ∀i ∈ A,P,E,AP, PP,EP . This allows to
understand to which extent the methodology fits to specific problem
and to assess the extension points.

• Terminology identification: the domain specific glossary is col-
lected and agreed among all parties.

• Laws collection: in this activity we collect and enumerate laws which
rule or influence the domain under analysis.

(a) Structure of packages. (b) The law sub-package.

Figure 3.2: Package structure.

Figure 3.2(a) shows the main concepts organized in different packages
after the preparation phase. The law package organizes the laws regulating
the processes. Each law has its own sub-package which is hierarchically
structured in other sub-packages. Each sub-package is a non-terminal law
element (e.g., a chapter or a section of the law) while leaf elements like
law paragraphs are represented by means of instance specifications. Each
package may contain an object diagram modeling its internal structure and
the instance specifications. Title and description (e.g., the text of the law)
are attached to both terminal and non-terminal law elements. In contrary,
Figure 3.2(b) sketches the law package structure of an act and its possible
subdivision.

67

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

The actor package contains all UML actors representing roles or orga-
nizations which can contribute in the realization of some processes. It can
include one or more use case diagrams describing the relationships among
them. Each actor is described including what the actor represents (of-
fice, person, role, etc), its functions and responsibilities. One or more use
case diagrams underline relationships among actors. Possible relationships
among actors are generalization and association.

The resource class package, classes for short, holds all the asset types
used as input or output by some processes (see also Figure 4.2). A class is
the abstract definition of an asset related to a process, while the asset itself
is an instance of that class lowered in a specific context. One or more class
diagrams describe the relationships among classes using standard UML
relationships. This is meant to provide better characterization through de-
pendency, aggregation/composition, and generalization relations. Similar
to UML specification, a dependency relationship is used whenever an object
defined by a class depends on another class. Collecting all the instances
of the assets involved in some process flow is responsibility of the resource
package. It mainly contains UML ObjectNodes whose type will be one of
the classes defined in the resource classes package. During this activity,
moreover, useful characteristics about each asset can be extracted, which
in turn are also the basis for performing procedural security analysis.

Finally, the glossary package includes the domain specific terms used in
the model. They can be represented by UML classes, i.e. each word or
acronym is described by means of the UML class.

3.3.2.2 Modeling Static Perspective of Processes

At this point, we have enough information to construct the static view of
the processes (what) together with the actors (who). The static view of
the processes focuses on recognizing attributes that are independent from

68

3.3. PROCESS MODELING METHODOLOGY

their execution. UML use case diagrams are employed to elaborate this
perspective. We recall that the static perspective of processes can either
be derived from domain experts or from a law describing some procedures,
as well as if the law is documented in some form such as in XML.

The main activities in this phase include process breakdown, association
of actors and their responsibility to processes in the processes structure,
and law association with process models (see in Section 3.3.2.4). In the
process breakdown activity, using top-down analysis, processes are orga-
nized as closely as possible into a tree (but not necessarily) structure by
preforming one-to-many decompositions. Following this, the responsible
actors are associated to processes in the process hierarchy. Additionally,
law paragraphs are defined and linked to processes in the process break-
down structure.

Process Breakdown

As said previously, in the process structure represented by use cases, the
higher levels represent abstract processes while the leaves represent exe-
cutable processes or tasks. Figure 3.3(a) a generic root process p ∈ P is
decomposed in two sub-processes p1 ∈ P and p2 ∈ P , i.e., p A p1 and
p A p2. This is also called first level of the hierarchy. Sub-processes p1 and
p2 can then be further defined using one use case diagram each and by de-
composing it in order to obtain two new decomposition levels. If p can be
decomposed into p1 and p1 in p1.1 (p1.1 is a sub-process of p, p A . . . A p1.1),
then two different use case diagrams should be used.

Processes can be colored, labeling them with one or more stereotypes.
This results useful to create group of processes which go across fixed de-
composition hierarchy in order to recognize similar types of processes inside
the domain. To make an example, local elections and general elections are

69

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

P

P1 P2

<<include>><<include>>

(a) A decomposition level.

P1

P1.1 P1.2

<<extend>><<include>> condition

(b) Decomposition types.

P2

<<type A>>
P2.1

<<type B>>
P2.2

(c) Generalization.

Figure 3.3: Static view: relationships between a super-process and its sub-processes using
UML.

similar enough5 to be modeled together, but election specific processes can
be marked according to their election’s type when differentiation is needed
using �local� or �general� stereotypes, for instance. This is useful
in the subsequent development process such as to structure and maintain
requirements, as we demonstrated in (Villafiorita et al. 2009a).

Another important point for the static view of the process structure is
the relationships among processes, i.e., SPP . In particular, the SPP rela-
tionships are identified by three relationships types: decomposition, excep-
tional behavior, and generalization. We represent a normal decomposition
using the�include� stereotype relationship, by respecting also Constrain
7. Its meaning is that the sub-process is needed for the realization of its
super-process and always executed. The second kind of relationship, ex-
ceptional behavior, is mapped to the�extend� relationship. In this case,
the sub-processes are executed only if certain circumstances are verified,
for example, if a special condition holds, which can be specified on the
connection itself.

Figure 3.3(b) shows these two types of relationships. To show the fact
that, for instance, special procedures are required such as voters who re-
quire assistance to vote due to some physical impairment or inability, the
�extend� stereotype can be used. Generalization, in contrast, occurs

5As far as Italian elections are concerned.

70

3.3. PROCESS MODELING METHODOLOGY

when an abstract process needs to be refined according to a specific in-
stance (Figure 3.3(c)). The tally of results, for instance, can be thought as
an abstract process to apply the counting procedure. In that case, it has
to be refined according to the specific election type (e.g., a referendum or
an election), each one related with particular counting algorithms.

One methodological constraint for modeling with UML is to produce for
each abstract process p ∈ P a use case diagram and an activity diagram
(see Section 3.3.2.3) in order to show only the relations with its direct
sub-processes. This helps to keep the diagrams simple and to focus on one
process at a time. In addition, to better illustrate the hierarchical structure
we suggest to put the abstract process on the top of the diagram and its
sub-process under it from left to right in chronological order.

Additionally, start and end timing constraints (or other information to
include in the process description) can then also be attached to each leaf
process to explicitly define when they are supposed to be executed. In
UML, this can be carried out by means of tagged values.

Actors and Responsibilities

The next step in modeling processes from the static point of view is the
specification of participating and responsible actors (multiplicity). This
information describes who does what during the execution of a process.

After actors have been identified, it is possible to extend the hierar-
chical process structure with actors’ information. Figure 3.4 represents a
decomposition level where Actor A is accountable for the super-process and
two Actor Bs are responsible for one of its sub-processes. Notice that the
UML notations is flexible enough to allow the specification of the number
of participating actors. There are several examples where this information
is useful, for example, when two witnesses are required to sign a document.
The relationships between actors and processes can be labelled according

71

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

P

Actor A

P1 P2

<<accountable>>

Actor B

<<include>> <<include>>

<<responsible>>

2

Figure 3.4: Some RACIV relationships among processes and actors.

to the set RAP (i.e., the RACIV matrix) and some implicit assumptions
can be made to respect the constraints discussed earlier (in particular,
Constraints 3 and 4). For example, when an actor is accountable for an
abstract process, it is implicitly accountable for all of its sub-processes if
not otherwise specified, or s/he is also responsible for a sub-process if no
other responsible actor is explicitly stated.

3.3.2.3 Modeling Dynamic Perspective of Processes

In this phase of the methodology, each entity-process relationship (e, p) ∈
REP is mapped to activity diagrams. These are used to describe how
direct sub-processes are composed to generate the direct super-process.
Hence, each abstract process has to have its activity diagram that describes
the composition of its sub-processes. Furthermore, the activity diagrams
describe the processes workflow by emphasizing sequential and/or parallel
activities, using the triggering conditions identified in step one.

More specifically, given a use case model that represents the process
decomposition of a process p ∈ P , the corresponding activity diagram
is built in the following way. All the sub-processes of p are modeled as
actions with the same name of the sub-processes and connected together

72

3.3. PROCESS MODELING METHODOLOGY

using the activity diagram notation in order to describe the process flow.
In the diagram, assets are connected to the actions and each relationship
(e, p) ∈ REP is labelled by a subset of the stereotypes in SEP . Note that
the�send� and�receive� stereotypes both in SEP can be added in the
activity diagram only if there is a triple (p, e, p′) ∈ R3

ER for p, p′ ∈ P and
e ∈ E, as remarked by the Constraints 10.

Register of elector: Document
[unsigned]

Registration Vote

Deposit ballot

Invalidate ballot

Ballot: Ballot
[Blank]

Ballot: Ballot
[Voted]

Register of elector: Document
[signed]

Ballot: Ballot
[open]

Ballot: Ballot
[null]

<<read>> <<send>>

<<read>>

<<receive>>

<<update>>

<<update>>

<<update>>

<<update>>

<<update>>

anonymous ballot

Elector can be identified

Figure 3.5: Activity diagram example.

Figure 3.5 shows a simple example of activity diagram. It models the
fact that the registration of voters is checked by polling officers to know if
the voter is eligible to vote. If so, the responsibility of the blank ballot is
then transferred to the voter who votes and changes the state (and value)
of the ballot. After that, either the ballot is anonymous and cast or it
is recognizable (e.g., there is anything written to identify the voter) and
hence invalidated. If not otherwise specified, the input asset is considered
unchanged after execution. For example, the first process reads the register
of voters leaving it unchanged while the following ones updates the register
(e.g., the voter has voted). This allows to explicitly specify what action is
performed on what assets and how the asset changes its state.

Stereotypes can also be applied on the assets themselves according to
SE to highlight crosswise concepts. The methodology suggests the base
stereotypes shown in Example 3.3.5.

73

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

3.3.2.4 Linking Laws and Models

In this activity, we associate laws with processes in the process models.
More specifically, if the static perspective of processes are derived from a
law describing some procedures, then it is necessary to trace a relationship
between the process and the law. This eventually provides a strategy to
keep the model up to date with the law and in order to determine how
BPR interventions affect the original law. More specifically, a general UML
dependency can be added between the process and the law element (e.g.,
a law paragraph) contained in the law package. Namely, to associate a
subset of law paragraphs Li(p) for the process p ∈ P in the “process tree”,
each use case is linked with an object diagram —i.e., specified as packages
and instance specifications.

An example is shown in Figure 3.6. Note that the model is fully docu-
mented since all its elements contain their relevant description (extracted
from the text of the law or written by the domain experts). It is not neces-
sary to explicitly draw the relationship among processes and law divisions.
In fact, “Normeinrete” URNs can be used to link the process model with
the text of the law, since URNs univocally identify laws and their elements.
This choice is compliant with the current (Italian) law editing standards.

Maintaining law-model traceability allows to automatically identify which
parts of the law should be amended by tracing back to the parts of the
law that originally defined the modified processes Because assigning de-
pendencies between processes and laws is a laborious task, this activity is
mainly intended to be tool supported and will be discussed more in the
next section. We remark that this activity can be conducted before the
modeling of the dynamic perspectives of the process model using activity
diagrams, as discussed in Section 3.3.2.3. As a first iteration, we suggest
to follow this order. This is because, the static view of the process model

74

3.4. A TOOL FOR SUPPORTING THE METHODOLOGY

Figure 3.6: Example of an article and its defined processes.

is the basis for dynamic view, which eventually becomes the starting point
for the analysis of procedures —i.e., the procedural security analysis, a
topic of the next chapter.

3.4 A Tool for Supporting the Methodology

In order to support the methodology presented previously and to facilitate
the translation of law into a process model as well as the maintenance of
both when they change, a tool named VLPM (Visual Law and Process
Modeler) was developed. The tool is built on top of Visual Paradigm for
UML6 and it is freely available from http://ict4g.fbk.eu/vlpm/. In
the following, we describe the tool internal representation and its usage
scenario.

6 Visual Paradigm is a commercial UML modeling http://www.visual-paradigm.com/

75

http://ict4g.fbk.eu/vlpm/
http://www.visual-paradigm.com/

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

3.4.1 Intermediate Representations

Figure 3.7 shows a high-level representation of the model elements, i.e.
a metamodel for the tool. The diagram mainly shows the internal rep-
resentation of the model elements. In the diagram, a process is realized
as an observable activity executed by one or more actors. Actors can be
extracted from the text of the law or can be defined manually. Currently,
our model identifies them by means of an unambiguous identifier (extracted
from the XML file containing the law information or manually specified)
and a name. However, this could easily be extended in order to add more
features, for instance, stereotypes. In the same way as actors, assets can
be either extracted from the law or defined manually. If the assets are
extracted from the law, we then store their initial states in the model and
use our notation to define the changes that the assets undergo.

<<external files>>
LawChange

-change

<<external files>>
Law -id

-name
-properties

Asset

-laws
Model -id

-name

Actor

*

0..*

*

-workflow
LeafProcess

-name
-lawReference

Process

0..*

*

1..*

Figure 3.7: The internal representation of our modeling elements.

In addition to the modeling elements, we use a generic relationship el-
ements to create specific sub-classes of relationship as shown in Figure
3.8, which are defined separately from the elements of the model. Actor-
Actor relationships have different properties from Actor-Process relation-

76

3.4. A TOOL FOR SUPPORTING THE METHODOLOGY

ships (e.g., the allowed stereotypes) and from Process-Process (RPP) re-
lationships. The association of a process with its executing actors (i.e.,
Actor-Process, RAP , relationship) is based on the static assignments of the
responsibilities (set of roles, R) to the actors. This information can be
extracted from the law or manually assigned after the actors have been
identified. The use of an abstract relationship object allows us to create as
many types of relationship as we need, with the only requirement of defin-
ing also a suitable translation of each relationship to UML. The model
also explicitly support the Asset-Process (REP) relationships that define
the semantics for the asset flows.

-id
-from
-to
-streotype

Relationship

<<relationship>>
ProcessProcess

<<relationship>>
ActorProcess

<<relationship>>
AssetProcess

<<relationship>>
ActorActor

Figure 3.8: Relationships among the modeling elements.

The model represents the static information of the business processes,
while the dynamic properties (namely, asset transformation functions) are
defined in a specific notation. The model is associated to the laws that reg-
ulate its business processes to allow the association of a single process with
relevant law parts that define them. Notice that the law is not included
in the model. We use examples from the Italian law system retrieved us-
ing the Normeinrete project and its XML format. Although our model is
designed to support XML format for laws representation, it can be easily
extended to support other formats.

77

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

3.4.2 VLPM Usage Scenario

Typical VLPM usage scenarios are depicted in Figure 3.9. The flow of the
modeling activity is organized in the following steps:

1. A law written in natural language is marked with XML tags;

2. The user imports the law formatted in XML and VLPM generates
a skeleton of the model. The user needs to verify and complete the
generated model in order to have a reliable as-is view (i.e., a “process-
tree” view) of the law. This model can be exported in various formats
for documentation purposes;

3. The user imports an Explicit Text Amendment that modifies the law
that has been previously modeled with VLPM. The tool highlights
the impacts of the amendment on the law and on the model, allowing
the user to focus on the affected parts of the model. This greatly
simplifies the model revision process;

4. The user modifies the process model, re-engineering some processes.
At this point documentation can be generated to be shared among the
stakeholders and to compare the as-is and the to-be models. Moreover,
VLPM can be used to generate the XML skeleton of a new law that
amends the originally modeled law.

As noted above, the process of modeling a law with VLPM begins with
the generation of a UML model from a law described in XML, namely
by importing the law. Notice that not all the elements of a law can be
translated into business processes. Thus, a human intervention is needed
to choose which law elements are relevant. However, the tool allows the
user to choose which law elements will be part of the UML model. The
import procedure has been implemented as follows:

78

3.4. A TOOL FOR SUPPORTING THE METHODOLOGY

Figure 3.9: VLPM usage scenario, i.e., Law modeling process handled by the VLPM tool.

First, the XML file containing the law is parsed and a business process
is automatically generated and associated to each element of the law tree.
Actors are also identified and associated to their relevant process by looking
for XML tags that mark assets. Second, a GUI displays the tree of the law
elements, their content, the associated actors and processes. This interface
allows the user to choose which actors and which processes to include in the
UML model. By choosing a subset of actors and processes, it is possible to
study only a specific aspect of the law (e.g., all the operations of which a
certain subject is responsible). Moreover, by displaying the content of each
law element, the user can decide if it is meaningful to associate a process to
that law element. Finally, once the user is satisfied with the model layout,
VLPM generates the UML model containing all the elements of the law
and a tree of the processes. Thus, the model generated is supported by
a serialized data structure that links it to the text of the law in order
to maintain traceability (see Figure 3.10). In the figure, the intermediate

79

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

representation (i.e., Intermediate Data Structure) is the one described in
the metamodel above.

Figure 3.10: Storage of Law Data.

VLPM also allows to import explicit text amendment (in Italian “Mod-
ifica Testuale Esplicita”, also called MTE). This is a law that modifies a
part or the whole text of a “comma” or a “letter” or changes the structure
of a part of another law. The Italian law system allows several types of
changes to a law, the most important of which is called Novella. A Novella
introduces new elements in a law, by substituting some other element(s).
The current implementation of VLPM focuses on this kind of modification.

When importing a “Novella”, the tool behaves similarly to the case in
which a new law is imported. However, the parser looks for XML tags that
mark a modification. VLPM then allows the user to review the effect of
the “Novella” on the law that is being modeled. In the case of a simple
text change, they can decide how and if the processes and the relationships
with the involved actors should be modified in the model. In the case of
a MTE containing a structural change, the user is provided with the same
interface of the law import phase but can intervene only on the part that
is being modified.

When a law amendment is promulgated, it exists in parallel with the
original law. For our purposes, we need to have a Coordinated Text con-
taining the most updated version of the law. Thus, when the change is

80

3.4. A TOOL FOR SUPPORTING THE METHODOLOGY

applied, our data structure is updated so that the text it contains is mod-
ified by the amendment. From that moment onwards, the traceability will
be maintained with the Coordinated Text instead of the text of the original
law.

Change Management using VLPM

In order to perform the change management on the models, VLPM adds
two specific functions: model refinement and Law change suggestions. By
providing these two functionalities, VLPM allows a law-model-law round-
trip, facilitating the law-making process in the case of regulations for PA
procedures. More specifically, the former allows to maintain traceability
with the text of the law using specific functions. These functions are meant
to be used to give a better representation of the procedure defined by the
law and not to add or remove procedures from the actual regulation. The
latter, provides suggestions based on the new processes that cannot be
traced to any part of the text of the law. When a new process is added
to the model, VLPM generates a list of suggestions that can be used to
produce an Explicit Text Amendment (in “Normeinrete” XML format) from
the changes undergone by the model, thus allowing the law to be realigned
to the model.

We need to be clear that as of the current version, the tool only supports
the Italian laws system. However, work is in progress to make the tool
more flexible and more functional in various areas, among which will be
the support for different XML representations of laws (which are used by
VLPM for linking process and laws); more flexibility in deployment (e.g.,
by allowing integration with freely available UML tools); integration with
formal analysis techniques for simulation and verification. We are also
working on applying the approach for other legal domain by combining
with goal-oriented methodology (Villafiorita et al. 2010).

81

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

3.4.3 Examples

The organization of elections is a complex public administration (PA) pro-
cess. It spans over a time period of months, it involves several actors and
various PA offices, and it has a rich set of enforcing rules. Electoral laws
precisely define all the steps that have to be performed to run fair elections.
Failure to comply with the law may result in litigations in the simplest case
and in a threat to citizens’ fundamental rights in the worst case. In the
scope of the ProVotE project (see the previous chapter), in line with these
all, one critical aspect is defining the new electoral processes and deliver-
ing a complete solution compliant with the national and local laws. The
methodology and tool have been applied in two real case studies with in
the ProVotE project. Specifically, for the modeling of the electoral law and
procedures in the Province of Trento and the law for the introduction of an
e-voting system for a local poll in two municipalities of the Autonomous
Region of Friuli Venezia Giulia.

With respect to the first case study, the methodology was adopted to
model town and provincial elections in the Province of Trento (Italy), pro-
ducing diagrams which describe about 80 processes, 30 actors and over 90
entities, while the two main reference laws include from 80 to 100 arti-
cles each. The VLPM documentation features have been applied to make
the model available to all the stakeholders. The methodology, along with
the tool was subsequently used to re-organize voting processes in order to
support the ProVotE e-voting system development (Caporusso et al. 2006,
Villafiorita et al. 2009b).

Figure 3.11 shows a simple example of processes’ relationships RPP

taken from the Province of Trento electoral models. Figure 3.11(a) means
the process named “Election” is decomposed in two sub-processes: “Vot-
ing” and “Counting”. The third process, “Second Ballot” is linked with the

82

3.4. A TOOL FOR SUPPORTING THE METHODOLOGY

<<communal>>
<<provincial>>

Election

<<extend>><<include>>

<<communal>>
<<provincial>>

Voting

<<communal>>
<<provincial>>

Counting

<<communal>>
Second Ballot

<<include>>

<<communal>>
Return Used Materials

(communal)

<<provincial>>
Return Used Materials

(provincial)

<<communal>>
<<provincial>>

Return Used Materials

(a) Include and Extend relationships.

<<communal>>
<<provincial>>

Election

<<extend>><<include>>

<<communal>>
<<provincial>>

Voting

<<communal>>
<<provincial>>

Counting

<<communal>>
Second Ballot

<<include>>

<<communal>>
Return Used Materials

(communal)

<<provincial>>
Return Used Materials

(provincial)

<<communal>>
<<provincial>>

Return Used Materials

(b) Generalize relationship.

Figure 3.11: Relationships among processes.

�extend� relationship because it is optional and not always necessary to
complete an election. In Figure 3.11(b) the process “Return Used Material”
is common in both communal and provincial elections, but actors involved,
sub-processes or mechanisms are different according to the election type
(see also Constraints 8 and 9).

<<responsible>>
<<responsible>>

<<responsible>>

Identify VoterPreparatory
Operations

Express
choices

<<include>>

Voter

<<verifies>><<accountable>>

<<include>><<include>>

Voter Assistant official

<<communal>>
<<provincial>>

Provincial Chairperson

<<communal>>
<<provincial>>

Voting

<<communal>>
<<communal>>

Provincial Chairperson
<<communal>>
<<provincial>>

2
<<responsible>>

Party Observer

Figure 3.12: A simplified use case diagram for the voting process with its direct subpro-
cesses.

83

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

In Figure 3.11(a), we already saw the first decomposition step for the
“Election” process. Figure 3.12 shows the second decomposition level where
the “Voting” process is considered. The actor with a role “provincial chair-
person” is “accountable” for all the three sub-processes, besides his/her ac-
countability to “Voting” process, since this process is the abstract process
of the three processes. Moreover, the process “Identify Voter” on which
there are two actors that contribute to perform this task and one of them
has the multiplicity set.

With respect to the second case study, VLPM was applied to rule the
introduction of e-voting in a small municipal referendum in Friuli Venezia-
Giulia. The referendum involved about six-hundred people, who used e-
voting system with legal value. In the following we take an example of
the law from Friuli Venezia-Giulia case and show its modeling and analysis
using the VLPM. The law we consider was published on 27 July 2007 and
became effective on 8 August 2007. The original law is made of 21 articles,
organized in 3 Titles. The first step of our scenario was to add XML
tags to the original text, in order to make it compliant with the complete
“Normeinrete” DTD. Before importing the original law it was necessary
to instruct VLPM to slightly change the default structure automatically
proposed both to disable law paragraphs which do not define any process
and to associate more processes to the same law paragraph.

As an example, article 17, Comma 2, Letter a defines three atomic
and clearly distinguishable procedures: “load data”, “data aggregation”,
and “voters number verification”. Using VLPM it is possible to associate
to letter a three processes representing the three procedures. However,
Title 1 contains only general principles and rules regarding referendums
that do not define any specific procedure. Thus, they are not needed in
the processes model and VLPM can be instructed not to generate processes
out of this Title. The law was then imported and used to create a UML

84

3.4. A TOOL FOR SUPPORTING THE METHODOLOGY

process model, following the choices previously described. This model was
then used for printing the documentation and facilitating discussion among
the stakeholders of the project by providing a visual representation of the
processes.

As the election came closer and some constraints became more evident,
a “Novella” was then written, containing some changes for the original
law. In general, the following change types can be recognized. The first
type is related to changes to the text of the law which do not influence
the structure of the processes. An example of this is Article 7, Comma 2,
where the “Novella” modified a time constraint. Instead of requiring the
installation of the voting machines in polling station some day before the
election day, the new text requires them to be installed the day immediately
before the election day. Despite this being only a case study, this change
is realistic. The reason for this change could be the need for more security
in order to avoid leaving the voting machine exposed to tampering after
its installation at the polling station.

The second is related to those changes in the relationship between ac-
tors and processes. Finally, structural changes such as the subdivision
of a paragraph in letters, each one defining a particular sub-process. An
example of structural modification is in Article 17, where Comma 4 was
introduced. The comma was divided into three letters that specify three
atomic sub-procedures of the activities that the Regional Electoral Service
must perform at the end of an election. The result of this modification is
that the process associated to Comma 4 has now three new sub-processes.

The model refinement functions can be used to split the leaf processes
that do not describe elementary procedures. For example, Article 15,
Comma 1 specifies three operations and is by default associated with only
one process. It is reasonable to split the process associated to it in three
separate processes (see figure 3.13). This course of action is more compliant

85

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

polling station closing and ballot counting
preliminary operations

art15-com1

declare polling closed

verify voters number

stop voting machines

polling station closing and ballot counting
preliminary operations

<<Include>>

<<Include>>

<<Include>>

<<Include>>

Article15

Article15

Figure 3.13: Example of the split function applied to Article 15, Comma 1.

to our methodology and allows a more rigorous analysis of the procedures
associated to Comma 1.

Finally, by having a look at Article 11, Comma 3, we discovered that
it does not specify in a sufficiently detailed way the suitability check of a
voting machine. Since this is a crucial issue for both user confidence and
actual security, it is reasonable to envisage a more specific set of opera-
tions and thus create new processes that define the sequence of operations
required to verify the suitability of a voting machine (or to define more
stringent constraints). In this case, VLPM identifies the new processes as
“orphans” and suggests a “Novella” containing a structural modification in
order to include them in the law. Such a template can then be “translated”
in a more specific language.

86

3.5. SUMMARY

3.5 Summary

In this chapter, we have discussed a method for (business) process mod-
eling in public administrations. We presented the requirements, modeling
elements, and some formalization on them. We then discussed our tool
supported methodology. It comprises of preparation of the data and struc-
tures which are presented using package and class diagrams, modeling the
static perspectives of the process model (using use case diagrams), and
modeling the dynamic perspectives of the processes (using activity dia-
grams). Finally, we discussed the VLPM tool and its application with case
studies.

For what concerns the evaluation of model presentation and compre-
hensibility, the methodology allows to organize system processes in a hi-
erarchical way (as “process tree”) and attach information with it in order
to answer which are the system processes, who is accountable for them,
which resources are used, how they are related, and so on. Moreover, the
activity diagrams describe the processes workflow emphasizing sequential
and parallel activities, whose assets are needed and how their state evolve,
i.e. how they change after execution of a process.

Using the methodology, it is straightforward to link the laws and models
in order to increase the traceability between them. One of the goals of
traceability is helping law makers elaborate models in collaboration with
software developers or process engineers, and understand the impact of
law or process changes. This helps, first, to justify the existence of a
particular process by providing a reference to the parts of the law that
define it, which in turn allows us to link the process to all the constraints
in the law that regulate it. Secondly, it allows to understand the impact
of a change both in the law and in the process model. When a change
is made to the law, being able to identify which processes are defined

87

CHAPTER 3. TOOL SUPPORTED METHODOLOGY FOR BPR

(or regulated) by the modified part of the law allows us to modify the
process model accordingly. By looking at the model, it is then possible
to determine what processes “interact” with the processes affected by the
change in the law. The modification can then be propagated to all the
relevant processes and makes the model up to date. On the other hand,
the reengineering of processes may result in a need to modify some parts
of the law. Maintaining law-model traceability allows to automatically
identify which parts of the law should be amended by tracing back to the
parts of the law that originally defined the modified processes.

It is worth emphasizing that, although our description is in the context
of electoral domain, the methodology and the tool can be customized for
other domains. To that matter, we applied the methodology to model and
analyze the Italian Immigration law in (Ciaghi et al. 2009b). Namely, the
entrance procedures at the Italian border and the required documents as
defined in the 286th legislative decree of July, 25 1998 on ”Consolidated Act
of Provisions concerning immigration and the condition of third country
nationals” and in the 394th presidential decree of August, 31 1999 (with all
their changes until now).

88

Chapter 4

Procedural Security Analysis

This chapter presents a systematic approach for analyzing processes and
critical assets that hold sensitive information from the point of view of
security. Our goal is understanding how the switch to the new technology
changes risks with the ultimate goal of defining the laws and the procedures
regulating system process, that guarantee a higher level of security. We
introduce what we call procedural security and devise repeatable method-
ology to perform the analysis.

Thus, first we discuss the reason why we need procedural security and
the benefit it brings on top of technical security. Second, we present the
conceptual framework for the approach we propose. Third, we present the
methodology for procedural security analysis, by first presenting the formal
model for the procedures under analysis and followed by the methodology
itself. Finally, we demonstrate the approach using examples taken from
ProVotE e-voting system.

4.1 Why Procedural Security?

We all take actions to avoid security risks in our daily life. It may be
as simple as putting security guards or locking the office door when leav-
ing for a day up to applying sophisticated security mechanisms. For our

89

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

home computer, maybe it is sufficient to enforce good security policies and
procedures such as activating the firewall and keeping the OS updated
with relevant security patches. The situation becomes more complex and
difficult if the system is a major information system that provides criti-
cal services through several procedures for the (digital) society. This is
exactly the case of (voting and) e-voting in which the procedures are com-
plex in understanding and implementing. Even in those countries that
have adopted a high level of automation, the executions of procedures and
controls, carried out by people on (physical) assets (e.g., printouts of the
digital votes), remains a necessary and unavoidable part.

Procedures in voting system are best practices mandated locally or at
the national level. These practices are intended to ensure that a particular
election is carried out correctly and securely. Thus, they are often as
important as the technical security features of election systems, since they
elaborate and transform critical assets. In many cases, where the purpose
of the procedure is not apparent to the individual performing it and doing
something else is more convenient, it may be true that it is not often at
all. Any procedure, no matter how well crafted should be viewed at best
an imperfect mitigation, and at worst a mere suggestion. In light of this,
those setting procedures should carefully consider what happens when a
procedure is not followed, for example, once, occasionally, or frequently.

Interestingly, paper voting and the procedures regulating paper elections
are not “immune” to attacks, which can usually be carried out under the
hypothesis of multiple “failures”. For instance, if a ballot is stolen before
the election and the polling officers do not report it, it is possible to control
how voters vote in a particular polling station. Attacks on the paper system
certainly do happen, but the distributed nature of paper elections limits
their scope (McGaley 2008). In order to affect an election without being
blatant, one would have to spread any attack over many ballot boxes. Each

90

4.1. WHY PROCEDURAL SECURITY?

new ballot box requires new member of the conspiracy. The introduction
of new technologies in the polling stations changes the risks and attacks
that can compromise or invalidate an election. On the contrary, a successful
attack on e-voting system could be implemented on a wide scale by altering
the “right” asset (e.g., the voting software). The feasibility of such risks and
attacks not only depend upon the security level the new systems provide,
but also on the procedures and controls regulating the way in which the
systems are operated.

In order to ensure a sufficient level of security for systems, therefore,
there is a need for a thorough security risk analysis methodology that con-
siders procedures as part of the modeling and the analysis process. The ap-
proaches discussed, so far, e.g. as discussed in the state of the art chapter,
on security (risk) assessment said less or otherwise not effective in procedu-
rally rich systems. By procedurally rich systems, we mean that situations
in which software systems are just part of a more complex organizational
setting and in which procedures have to be executed on security-critical
assets that belong both to the digital and physical realms.

Procedural security deals with the identification, modeling, establish-
ment, and enforcement of security policies about the procedures that reg-
ulate the usage of a system and system processes. The breach of security
objectives during the execution of the procedures and indirectly to systems
and system processes, is known as threat to the procedures (or procedural
threats). We call procedural security analysis the process of understand-
ing the impact and effects of procedural threats, namely courses of actions
that can take place during the execution of the procedures, and which are
meant to alter, in an unlawful way, the assets manipulated by procedures.

The situation (reference scenario) of procedural security analysis is shown
in Figure 4.1. In the figure, the shaded actors represent a set of adversaries,
whereas the non-shaded represent trusted actors. Our target of evaluation

91

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

asset assetasset assetasset

sw systemsw system

organization

environment 1 2

3 4

0101
1011
1100

0101
1011
1100

0101
1011
1100

Figure 4.1: A reference scenario for procedural security analysis

is a (complex) organizational setting in which procedures transform and
elaborate assets. Assets may change over time while executing procedures.
The procedures and organization are meant to add value to the assets and
to protect them from attacks, which can either come from external sources
or from insiders.

In particular, we distinguish the following kinds of attacks:

1. Attacks on digital assets (item 1 and item 3 in Figure 4.1). These
kinds of attacks are meant to alter one or more of the digital assets
of an organization. Attacks can either be carried out from external
sources (the environment) or from internal sources. Opportunities
for attacks are determined by the organizational setting and by the
security provided by the digital systems.

2. Attacks on other kind of assets (item 2 and item 4 in Figure 4.1).
These attacks are meant to alter one or more of the non-digital assets
of an organization. Attacks can either be carried out from external
sources (the environment) or from internal sources or a combination
of both that forms coordinated attacks. Opportunities for attacks are

92

4.1. WHY PROCEDURAL SECURITY?

determined by the organizational settings only. The attacks may lead
to compromise digital assets as well (e.g., stealing a password)

Security assessment like (Fovino and Masera 2006, Hogganvik 2007)
usually focuses on understanding items 1 and 3, namely, types and effects of
attacks on (software) systems. We propose a tool-supported methodology
to tackle also points 2 and 4 above, namely types and effects of attacks
on assets that are not necessarily digital and that derive from the way in
which procedures are implemented and carried out.

Technical elements of the approach. In order to achieve the stated
goal, we approach the problem by reasoning about the procedures and con-
trols that regulate the usage of system we call procedural security analysis.
We do so, by proposing a customizable methodology, which is summarized
as follows:

• Step 1. Provide models of the procedures under evaluation. During
this step we provide models that describe the procedure or procedures
to be analyzed. In order to ease the task of translating the models into
executable assets flows, we stick to a subset of the UML notations.

• Step 2. Extend Model. During this step we generate extended model
from the models defined in the previous step. The extended model
is generated by injecting1 threat actions into the nominal flow of the
procedures. Thus, in the extended model, not only assets are mod-
ified according to what the procedures define, but they can also be
transformed by the (random) execution of one or more threat actions.

• Step 3. Encode the Asset Flows. During this step we derive assets-
flow in terms of executable specifications —by using the NuSMV input

1 Note that by fault injection we mean the extension of the assets-flow model with a specification of
the possible threat-actions. We adopt this terminology, which is standard in the safety analysis, even
though it may not be fully appropriate (Bozzano and Villafiorita 2007).

93

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

language, for the model obtained in the previous step. The NuSMV
model of the asset flows is based on the definition of program counters
that ensure that procedures are executed according to the specifica-
tions, and by defining one module per asset with one state variable
per asset feature. The state variables encode how features change
during the execution of the procedures. Accessory information, such
as actors responsible for the different activities can be used, e.g., to
enrich the language used to express security properties. The necessity
of modeling actors roles in NuSMV depends upon the target of the
security analysis.

• Step 4. Specify Security Properties to Model Check. During this
step we specify the (un-)desired (procedural) security properties —
namely, the security goals that have to be satisfied (unsatisfied), are
then encoded using LTL/CTL formulas, which in turn together with
the model are given as input to the NuSMV analysis tool.

• Step 5. Perform Analysis and Results Analysis. During this step we
run the model checker to perform analyses. If a property is proved
to be false, the NuSMV tool generates a counterexample which opens
up further discussion. Counterexamples of security properties encode
the sequence of actions that have to be executed in order to carry out
an attack on an asset.

Using this approach analyzing the attacks becomes similar to a model
checking problem in which the required final state of some key assets is
expressed using LTL/CTL and the counterexample generated by executing
the extended model contains the sequence of threat-actions causing the
final state not to be reached. Additionally, the model checker will take
care of pruning useless threats, namely threats which do not lead to any
successful attack. Analogously to what happens in safety analysis when

94

4.2. CONCEPTUAL FRAMEWORK

analyzing, e.g., the loss of critical functions, enhancing the procedures
results in reducing the probability of an attack or making the attack more
complex, rather than eliminating it (Manian et al. 1998, Hsiung et al. 2007,
Bozzano and Villafiorita 2007).

In particular, performing such analysis (i.e., by analyzing the counterex-
amples) has the following two benefits:

1. it helps to identify the security boundaries. That is, the conditions
under which procedures can be carried out securely. More specifically,
using the NuSMV model checking facility, it is possible to understand
what are the hypotheses and conditions under which a given security
goal is achieved or breached.

2. it helps to devise a set of requirement, to be applied both at the
organizational level and on the (software) systems used to make sys-
tems and system processes secure. This can be achieved by analyzing
the generated counterexamples by the NuSMV analysis tool, since
counterexamples provide information to try and modify the existing
procedures so that security breaches are taken care of.

In the rest of the chapter, we focus on each technical element in detail.
Subsequently, we use a subset of UML diagrams in order to highlight and
describe the domain concepts in a strict and defined way. These include
information about workflows, assets, and actors and their role when par-
ticipating to different workflow activities. Moreover, the diagrams help to
make easier the task of translating the models into executable specification.

4.2 Conceptual Framework

Before performing the modeling and formal analysis, we first need to rec-
ognize the core elements of the model under analysis. These information

95

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

include assets, processes2, and attacks. The abstraction of these facilitates
the reasoning of some properties of interest, such as the lifecycle of assets.

4.2.1 Framework to Understand an Asset

An important aspect of a methodology is “how” we characterize assets,
which contain all the sensitive information. This requires to understand
and then distinguish their structural and behavioral characteristics. Namely,
how we describe assets and their evolutions in a systematic way so that
interesting formal analysis about (un-)desired behaviors of the assets can
be carried on.

Figure 4.2 represents the main concepts we wish to model in order to
perform procedural security analysis. The starting point is a set of pro-
cesses, that are performed by actors with different roles (left hand side of
the figure). The explicit representation of actors is an important feature
of the model. In fact, it allows us to represent security breaches related
to opportunities for insiders (e.g., an actor participating in different ac-
tivities has access to all the resources needed to carry out an attack; an
actor responsible of a security-critical operation has no supervision) and
the security boundaries of the procedures (e.g., how many actors do I need
to involve to carry out at attack?).

In the figure, a process can have zero or more inputs, representing the
information that is, under some conditions, required for the execution of
the process. It can have zero or more number of outputs, the information
that the process provides to the next level. Processes use and transform
assets, which, in our representation, can either be primitive or containers,
namely, assets which may contain other assets. There can be zero or more
number of preconditions, which must all hold in order for the process to
successfully apply the transformation. The process can have one or more

2Throughout this chapter, a process and an activity (or workflow activity) can be used interchangeably.

96

4.2. CONCEPTUAL FRAMEWORK

Figure 4.2: A class diagram depicting the characteristics of an asset.

number of effects, in terms of state change over the input assets. Outputs
and effects can depend on conditions that hold true at the time performing
the process. We call features of an asset all its structural characteristics.
The features of an asset and the way in which such features are changed
by the processes correspond to the behavioral aspect. This provides a lot
of information to understand possible weaknesses of the procedures and
the impact of attacks, for instance. It should be clear that in the previous
chapter we only indicated the elements of the process models irrespective
of the security modeling and analysis.

For the analysis goals we wish to carry out, in particular, we characterize
assets with the following features: nature, value, location, content, a set of
security specific properties, and number of instances.

The nature of an asset can be primitive (such as names, symbols, key-
words, passwords, electronic ballots, and electronic data in general) or
containers, when they contain other asset or a set of assets (e.g., a mem-
ory support that can contain electronic ballots). It is immutable, namely
it cannot be changed during the execution of the procedures. The value of
an asset (which we represent qualitatively, e.g., no value, high value, etc),

97

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

allows to reason about the impact of threats (e.g., an attack to an asset
with no value does not cause any harm). The initial value of primitive as-
sets is assigned in the model by a domain analyst, and upon the execution
of an activity it may change. The value of container assets is determined
by their intrinsic value (determined by the analyst) together with the value
of the assets they contain.

In our methodology, assets are situated in a location (e.g., an electoral
office, a safe, a container asset). Asset might be placed in several loca-
tions as well as being in transition between various locations. Breaking
into a location or being able to access a container is a mean to lead an
attack against a (contained) asset (e.g., stealing a memory support con-
taining electronic ballots allows to attack the electronic ballots and can
cause a discrepancy among the election outcomes). The initial locations
are determined by the analyst and can be changed by the execution of an
activity. The location of primitive assets corresponds to the location of
the containers in which they reside. Furthermore, a container asset can be
a relative location for another container assets as well. This allows us to
speak about which kind of (sensitive) information an asset has at a certain
(discrete) point in time, which we call content of an asset. The content of
an asset can be known in advance or the execution of a workflow activity
over the asset assigns a content or set of contents to the asset —e.g., an
envelop that is used to ship the voting kits to polling station may contain
all relevant information needed to run the election, such as the election
software, PIN, etc.

We allow to characterize an asset also by means of a set of properties that
describe the current situation of the asset such as the security measures
that are enacted (e.g., a safe can be closed, a file can be stored in plain
or encrypted). While for any domain there can be domain-specific states
of the asset, we are particularly interested in security states such as open,

98

4.2. CONCEPTUAL FRAMEWORK

closed, unsigned, signed, encrypted, plain, etc.
In addition to the mentioned qualities, a number of copies (called num-

ber of instances) is particularly relevant in the electoral domain because
the same asset can be replicated many times. When printing the ballots,
for instance, copies go through different responsible people. This is also im-
portant to estimate the effects of realizing a threat against an asset before
or after a duplicating operation.

Finally, we call state of an asset the values of the features of an as-
set (i.e., value, location, number of instances, and property) at a given
instance, and we call asset-flow the sequence of states through which an
asset goes during the execution of a process. Even though an asset can have
multiple instances, we focus on how a single asset instance can evolve from
some initial state through other states as the result of workflow activity
executions. An example: the abstract concept of ballot box (class) is asso-
ciated with several instances which describe its evolution during processes
execution, for example a state change from “open” (e.g., during the voting
phase) to “closed & sealed” (e.g., right after the election is over). Also
its value changes accordingly, which is “low” when the ballot box is empty
(before the election) but which becomes “very high” after voter deposits a
marked ballot.

4.2.2 Asset Threats and Attacks

The information reported previously (along with the previous chapter) is
sufficient to describe non-trivial flows of the assets in terms of state transi-
tion systems in the nominal case —i.e, when all the assets flow as expected.
However, this is not always the case because the number of attacks con-
tinue threatening the nominal flow of systems and/or procedures either for
financial gain or political interest. Therefore, we need to identify all the
possible cases in which assets can be threatened through a proper security

99

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

analysis methodology.
The key step in security analysis is “how” we describe the attack model

(Bishop 2002, Xu and Nygard 2005). It describes the intents a malicious
actor might have (e.g., modify the election software before the election,
sabotage election result), the types of malicious actors (e.g., election offi-
cials, poll workers, messengers, or voters), the privilege to each type (of
malicious) actors (e.g., who has read/write access to a critical asset), and
the location where malicious actors can possibly implement the attack.

For our purpose, it is enough to assume Figure 4.1 as a reference model
that distills the essential characteristics of a procedural rich scenario. As
noted in the figure, we highlighted two types of assets (digital and physi-
cal assets), the attackers’ nature (from insiders or outsiders perspective),
and the environment in which the procedure transforms the assets under
analysis. In principle, an attacker might wish to pursue any kind of goals
with different attack dimension (see below). We consider the following
goals of an attacker: altering the procedure in unlawful manner to com-
promise data integrity (e.g., produce incorrect vote counts), compromising
the availability of a system causing a denial of service attack (e.g., block
some or all voters from voting in key polling site, delay the announcement
of election results), compromising the confidentiality of the system (e.g.,
allow voters to cast doubt on the legitimacy of the election results).

4.2.2.1 Attack Dimensions

It is important to give different dimensions of attacks, since it allows to
define the sequence of actions that can potentially lead to a particular
attack under consideration. Which attacks are feasible depend on the
attacker capabilities and types of attacks on the assets (on the system,
in general). Not all attacks, in fact, result in equal damage when they
considered. Looking at the consequences associated to systems and/or

100

4.2. CONCEPTUAL FRAMEWORK

procedures breach, thus, is a good way to categorize different dimensions
of attacks.

Along the lines of (Kohno et al. 2004, Balzarotti et al. 2008), we can cat-
egorize attacks along the following dimensions, mostly for e-voting systems:
detectable vs undetectable, recoverable vs unrecoverable, and preventable vs
detectable.

In the first case (detectable vs undetectable attacks), some attacks are
undetectable no matter what practices are used. In contrast, others are
detectable in principle but are unlikely to be detected by the routine prac-
tices currently in place. The potential harm caused by both classes of
attacks surpasses what one might expect by estimating their likelihood of
occurrence. For instance, the mere existence of vulnerabilities that make
likely-to-be-undetected attacks possible casts doubt on the validity of an
election. If an election system is subject to such attacks, then we can
never be certain that the election results were not corrupted by undetected
tampering. This opens every election up to question and undercuts the
finality and perceived trustworthiness of elections. Undetected attacks are
a potential menace to the democratic process: think for, e.g., undetected
alteration of the electoral results in one or more polling station. Therefore,
we consider undetectable or likely-to-be-undetected attacks to be especially
severe and especially high priority while performing the analysis.

In the second case (recoverable vs unrecoverable attacks), in some cases,
if an attack is detected, there is an easy way to recover. In contrast, other
attacks can be detected, but there may be no good recovery strategy, e.g.
short of holding a new election. In intermediate cases, recovery may be
possible but expensive. For example, recovery strategies that involve a
full manual recount impose a heavy administrative and financial burden
and will introduce delays in the finalization of the election results. Un-
fortunately, this could probably take back to the known attacks in paper

101

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

voting. Even if errors are detected and corrected, the failure again has the
potential to diminish public confidence. At the same time, detectable but
not recoverable attacks are arguably not as serious as undetectable attacks:
we can presume that most elections will not be subject to attack, and the
ability to verify that any particular election was not attacked is valuable.

In the third case (prevention vs detection attacks), there is a trade-off
between different strategies for dealing with attacks. One strategy is to
design mechanisms to prevent the attack entirely, closing the vulnerability
and rendering attack impossible. When prevention is not possible or too
costly, an attractive alternative strategy is to design mechanisms to de-
tect attacks and recover from them. Most election systems combine both
strategies, using prevention as the first line of defense along with detection
as a fallback in case the preventive barrier is breached. This combination
can provide a robust defense against attack.

Attack dimensions are further distinguished between wholesale vs retail
and casual vs sophisticated, according to the damage they can cause with
the level of granularity to implement the attacks themselves.

4.2.2.2 Asset Threats and Attacks

By assigning each asset value and location we can highlight in a model
where a threat may be implemented and how much harm it can cause.
A denial of service, for instance, could be caused by deleting a valuable
asset (an asset whose content value is not null) when the asset is in a given
location. The notation used in the previous chapter, however, does not
allow to represent the how, e.g., the flow of actions causing termination of
the procedures in some undesired state nor to reason about composition
of threats —that is, what happens if multiple assets are attacked simul-
taneously. To tackle this, we propose the concepts of asset threats and
attacks. The reference scenario and the attack dimensions discussed earlier

102

4.2. CONCEPTUAL FRAMEWORK

help defining these concepts in the following way.
We define a threat (or threat-action) to an asset as an action that alters

feature(s) of the assets or allows some actors privileges (e.g., a “read”
privilege) on some assets. That is, it is what an adversary might try to do
to an asset in a system and it is described by a sentence like “adversary
does something to the asset”. Like workflow activities, threat-actions can
transform assets or their state or both. Unlike the workflow activities,
however, they transform assets to non-nominal situation, that is, the assets
are in undesired states due to the effect of the threat-action.

To differentiate between the nominal and non-nominal behavior of as-
sets, we enlarge the set of processes and assets by distinguishing between:

• malicious processes: we identify some of the possible operations that
an adversary may conduct against an asset, and

• malicious assets: we describe all the instruments and data built or
obtained by an adversary to achieve his/her goal(s).

Malicious processes can require as input some particular assets, produce
new assets to complete other wicked activities, and modify the original as-
sets to alter the asset flow. To give an example, a sniffer could be considered
as a malicious asset needed by the adversary for capturing the password
and the result is a new malicious asset: the unauthorized password copy in
plain to use for other purposes. This further led us to distinguish between
threat-actions into:

• basic threat-actions, are usually considered to be elementary if no
decomposition will reveal any further information of interest.

• composed threat-actions, are obtained by composing actions to pro-
duce more complex behaviors.

103

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

Both basic and composed threat-actions can alter, e.g., the content of
an asset, its state or both. Some actions are just aimed to obtain other
malicious assets. However, they can trigger other more risky actions that
can directly modify the asset, namely attack actions which do not change
the current state of the asset.

Next, we discuss some examples of basic and composed threat-actions.
Specifically, four basic threat-actions: delete, read, write (or update), and
create, and two composed threat-actions: replace and copy. UML diagrams
are used to give their intuitive meaning and the stereotype “triggers” in
the diagrams underlines the fact that when a threat-action with no effect
on an asset, but it can trigger one or more threat actions to take malicious
effects. Notice that we always distinguish threat-actions from intended
actions, discussed in the previous chapter, by using the threat or threat-
action along with the action name (e.g., “delete” and “delete threat-action”
refer two different intents.)

Examples of Basic Threat-actions. The purpose of a delete threat-
action is to change the content of an asset, e.g., either by removing some
the content or by destroying the asset itself in order to modify the asset-
flow in the domain (Figure 4.3(a)). This corresponds to a partial or total
effects on the asset when applicable. In case of a partial effect, the value
of the asset is reduced by the value of the deleted quantity. In contrast,
if the action has a destroying consequence, that is, a total effect on the
asset, the state of the asset is changed to a special state called “destroyed”
state. This means that the asset (instance) cannot be further used in other
processes neither restored in some other way. Delete threat-action can
be detectable or undetectable, but the destroying effect of the threat can
results in to unrecoverable condition (i.e., detectable but not recoverable
type of attack).

Figure 4.3(b) presents an example of delete threat in which Delete takes

104

4.2. CONCEPTUAL FRAMEWORK

<<M-Action>>
delete

[si]
Asset : Asset

[sj]
Asset : Asset

number
OfInsta
nce > 0
content
~= null

number
OfInsta
nce > 0
content
~= null

(a) The Delete Threat-action. It changes
the state of the asset from si to sj .

numberOfInstance > 0
content ~= null

numberOfInstance = 0
content = null

<<M-Action>>
delete

[si]
Asset : Asset

[sj]
Asset : Asset

(b) Instance of Delete threat action.

Figure 4.3: The Delete threat Action and an Example.

as input an asset with the number of instance greater than zero and con-
tent value different from null, and when the threat-action is successful, it
resets the number of instance and the content to zero and null respectively.
For example, deleting the content of a memory support (say, a USBKey),
that contains electronic votes reduces the actual content and value of the
USBKey, and consequently it can compromise the integrity of the election
results.

The purpose of the read threat action is to obtain an intangible asset.
An adversary observes an asset (e.g., what it contains or which value is
assigned for the asset) and s/he reads the asset without altering its state.
To execute this action, a domain asset is used. Namely, it takes a domain
asset as input and returns the domain asset itself without altering the
nominal asset-flow and a (subset of) malicious asset to be used later (see
Figure 4.4). As a result, it can trigger other threat-actions, since the new
information (i.e., malicious asset) can be used as input for other threat-
actions.

An update threat-action has a goal to write a malicious asset to an
existing asset. It takes a generic asset (could be malicious) and adds or

105

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

<<M-Action>>
read

<<triggers>> <<M-Action>>
threat action

[until satisfied]

[si]
Asset : Asset

[si]
Asset : Asset

[sk]
M Asset : Asset

Figure 4.4: The Read Threat-action. The state of the input asset does not change, i.e., si.

introduces a malicious asset to the nominal asset-flow. In other words, it
can change the content, value, location, or property of an asset by writing
some malicious values onto these attributes. Notice that the input (mali-
cious) asset by itself has no direct consequences on the asset-flow, but it is
a mean to provide malicious information to update the generic asset. So, if
an adversary observes a domain asset and fills an output asset of the same
instance, then it updates that asset. This usually means that the state of
the asset is changed, that is, the asset is altered. A similar threat-action
with update is write.

<<M Action>>
update/write

[si]
Asset : Asset

M Asset : Asset

[sk]
M Asset : Asset

Figure 4.5: The Update Threat-asction.

Similarly, Figure 4.6 shows the create threat-action that builds a new
malicious asset based on the information of a domain asset. Using this
threat-action, an adversary can be capable of obtaining a new malicious

106

4.2. CONCEPTUAL FRAMEWORK

asset. An adversary may execute a read threat-action prior to executing
create threat-action, since the read provides a malicious asset. It takes
one or more assets from the domain and reintroduces the domain asset in
the asset-flow, as well as it produces a new malicious asset that simulates
the original behavior of the domain asset. Notice, however, that the cre-
ate threat-action has no consequences on the domain asset-flow unless an
adversary intercepts the nominal asset-flow with other threat-action us-
ing the resulting malicious asset. This is, in fact, what we call the copy
threat-action (see below).

<<M-Action>>
create

<<triggers>> <<M-Action>>
threat action

[until satisfied]

[si]
Asset : Asset

[si]
Asset : Asset

[si]
M Asset : Asset

Figure 4.6: The Create Threat-action.

Composed threat-actions, examples. The goal of a copy threat-action
is to produce a new copy of an asset by obtaining a malicious asset that
can be used later. It is a composed action of read and create. Namely,
after reading from an asset some (or all) its content or value, the asset
is reintroduced into the nominal asset-flow and the read data is used to
create a new malicious asset to be used later. To understand the difference
between copy and read threat-actions, consider the following example. As-
sume a system protected by a password and smartcard device: To login
with a password an adversary just needs a read threat-action and to access
a smartcard protected system s/he has to copy the smartcard device. A

107

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

similar threat-action with copy is the clone.
Replace is another example of a composed threat-action. It substitutes

an asset with other malicious asset. Replace takes as input two assets
and introduces the second asset, that is, the malicious one is introduced.
Replace action is a composed action of delete and write. That is, after
deleting from an asset some (or all) of its content or value, the resulting
malicious asset is again modified with wrong data and reintroduced in the
asset-flow (Figure 4.8). The replace threat-action can be composed by
copy, delete, and write.

<<M-Action>>
read

<<triggers>> <<M-Action>>
create

[si]
Asset : Asset

[si]
Asset : Asset

[sk]
M Asset : Asset

[si]
M Asset : Asset

Figure 4.7: A simple copy threat action. It is composed by two threat actions: read and
create.

In this way, it is possible to define more complicated threat-actions. To
provide closer formal semantic, in fact, it is possible to use first order logic
terms to denote (basic) threat-actions and provide recursive definition for
composed threat-actions like (Koubarakis and Plexousakis 2000, Braynov
and Jadiwala 2003). However, we are not interested in with this kind of
representation. Rather, we will use the NuSMV input language to encode
the threat-actions while extending the nominal assets-flow models.

Finally, to carry out an asset threat the adversary may need to execute
one or more (more elementary) threat-actions or a sequence of asset-threats
against other asset —e.g., adversary reads “password” and signs “data”.

108

4.3. A METHODOLOGY FOR PROCEDURAL SECURITY

<<M-Action>>
replace

[si]
Asset : Asset

[sj]
M Asset : Asset

[sj]
M Asset: Asset

Figure 4.8: Replace threat action. It is composed by two threat actions: delete and write.
Note that the composition detail is not shown in the diagram.

Therefore, we define an attack as a sequence of asset-threats that lead to
an undesired state, that is, one or more assets are in an undesired asset-
state.

4.3 A Methodology for Procedural Security

We developed a precise methodology to perform formal procedural security
analysis (see also Figure 4.9). In the following, we discuss each element of
the methodology in detail.

4.3.1 Formal Model of Asset-flows

The first activity in our security analysis of a procedure consists of provid-
ing models of the procedures in terms of assets-flow, which will be described
using transition systems. Such models are meant to describe the assets to
be analyzed, and are elaborated and transformed by procedures. We now
briefly describe the terminology and the construct that allow us to arrive
at executable specifications for the assets-flow.

The key elements in the model include assets, (workflow) activities,

109

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

 Model
Procedures

Encode Asset
Flows

Extend Model Encode
Properties

Perform
Analyses

 Analyze Results

Figure 4.9: The process of formal procedural security.

and transition semantics, which influence the flows. Figure 4.10 shows
high-level representation of the information and the behavioral —i.e., the
lifecycle, models of assets. Unlike the classical UML activity diagrams,
the perspective shown in the figure offers three views: workflow, assets
class, and state machine diagram views. In the workflow diagram view,
workflow activity sequences are defined. The state machine view describes
the behavior of an asset in terms of a transition system in which transitions
are enabled due to explicit execution of workflow activities. The activities
in the workflow are transformation functions that influence the behaviors
of the assets. A finite state transition diagram for each feature of an asset
constitutes the global state machine for that asset.

For instance, Figure 4.11 shows a simple example of asset-flow model for
asset instance A with three states [s1], [s2], and [s3]. The corresponding

110

4.3. A METHODOLOGY FOR PROCEDURAL SECURITY

Workflow Activity

triggers
-status
-location
-value
-content
...

Asset class and Asset flow

Figure 4.10: An asset-flow view of a business process model

finite state machine, therefore, will possibly have three sequential states
each of which corresponds to A’s current features values.

4.3.1.1 Formalization of the Models.

The above information along with the conceptual model discussed in Sec-
tion 4.2.1, are the basis for the formalization —namely, how we repre-
sent the assets structure and workflows to arrive at what we call exe-
cutable assets-flow models. The formalization allows the model to be more
amenable to formal analysis, since it removes the strategic flavor of the
business process models and shifts the focus to dynamic aspects of the
assets, and hence procedures under analysis. Our formalism borrows and
extends the approaches proposed in (Gerede and Su 2007) and (Bhat-
tacharya et al. 2007, Hull 2008). However, we differ on the interpretation
of some concepts and on the analysis goals we wish to perform. In fact, our
approach moves forward the cited works (in which the authors provide for-
mal model for business artifacts and analyze them for better construction
of business operations and processes) by complementing the their approach
with security analysis.

To begin with, we assume the following notations and their definitions.

111

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

P

[s1]
A

P

[s2]
A

[s3]
A

Figure 4.11: Example of a single instance Asset-flow model in three states.

• Tp be a set of primitive types, such as bounded integer and boolean;

• C be a set of asset classes (names);

• A be a set of attributes (names);

• IDC be a set of identifiers that describes the identifiers for each asset
class C ∈ C;

• S is a set of assets states, where each s ∈ S is a truth assignment over
the variables values.

Note that all the above sets are finite, which is essential for the model
checking process.

A type T is an element of the primitive types Tp and the class identifiers
C; namely, T = Tp ∪ C (we assume that Tp and C are disjoint).

Definition 4.3.1 An asset class signature is a triple 〈C,A, ψ〉 where C ∈
C, A ∈ A is a a set of attributes for the asset class C, and ψ : A → T is
a total function that maps each attribute of an asset into its corresponding
type.

Definition 4.3.1 represents the asset class signature that specifies assets
that are present in the domain. In the definition, besides the features of an
asset discussed previously, the specification of the attributes can comprise
of domain specific or assets specific attributes.

112

4.3. A METHODOLOGY FOR PROCEDURAL SECURITY

Notation 3 We write Σ to denote the set of all possible assets classes that
exist in the domain, including malicious assets that can be introduced by
an adversary.

Without loss of generality, we assume a fixed interpretation domain
associated to each T type. That is the domain of each type t ∈ T, denoted
Dt, is defined in the following way: if t ∈ Tp is a primitive type, then the
domain Dt is some known set of values of type (e.g., integer or boolean);
if t ∈ C an identifier type, then Dt defines existing instances of an asset
class identifier for t (i.e., Dt = IDt). We require all variables must have
their corresponding values all along their life. For undefined location and
unassigned content of an asset, we use an undefined and a null constant
values respectively. The interpretation is that the location is not known
and the content value is not either assigned yet or reset to contain null.
For instance, the content of a memory support (such as USBKey) can be
null prior to loading the election software by a responsible actor (e.g., by
a technician or an election official).

Definition 4.3.2 An asset instance is a triple 〈IDC , C, φ〉, where IDC ∈
ID is a class identifier and φ a partial function, given an instance of a class
C, that assigns each variable a ∈ AC of type t ∈ T a value in Dt (i.e.,
φ(a) = Dt(ψ(a))).

Notation 4 We use SC ⊆ S to denote all the possible states (i.e., both
nominal and non-nominal states) of an asset class C ∈ C.

An asset can have multiple instances. We denote the set of asset in-
stances by ~OC,C∈C and ~O for all instances over Σ. Duplicating the election
software for each polling station, for example, creates as the number of
polling stations instances where each of this instance can behave differ-
ently after the duplicate operation in place. As we noted previously, in

113

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

this work, we mainly focus on how a single asset instance I ∈ ~OC can
evolve from some initial state through other states. The set of variable-
value pairs for I defines the state of a given asset. The state of an asset
is, therefore, the current situation called “snapshot” of an asset instance I
and its value is the truth assignment over the variables. An asset is initial,
if all the variables are in their initial state and φ is undefined for some
attributes and final, if all the variables values do not change anymore.

Formal Model of Workflow specification. The initial values for the vari-
ables of an asset can be assigned at the time of the instance creation or
otherwise assigned by an analyst. However, only due to the execution of a
workflow activity over these variables can change the initial configuration
of the asset. Roughly speaking, a workflow activity is described by input
assets, preconditions, and effects of the activity over the assets (a similar
interpretation can be found in (Bhattacharya et al. 2007, Gerede and Su
2007, Koubarakis and Plexousakis 2000)). The effect of a workflow activity
is regarded as a change in state of the input assets. Not all assets change
their states thought, since it is not always the case that an execution of
a workflow activity enables state transition to all the input assets (e.g.,
reading the content of the election software does not change its state).

For each executable workflow activity, moreover, we specify which actors
participate in the workflow with predefined privileges or responsibilities or
both. These information —we call accessory information —not only allows
to describe who does what during the execution of an activity, but, more
importantly in the context of procedural security analysis, who manages
what data and with what privileges. Such information are static, namely
they are known before executing a workflow and are encoded in our model
to describe a workflow scenario. We, therefore, use these information along
with the activities to describe a workflow model as a deterministic finite
state machine in which the states are constructed by a set of activities and

114

4.3. A METHODOLOGY FOR PROCEDURAL SECURITY

the transitions are described by the current state and a matching condition
over the accessory information. Formally, we define the workflow model as
follows.

Definition 4.3.3 (W) A workflow model is a quadruple 〈P, s0, sf , C,∆〉
where P is a set of activities or processes (names) as in the previous chap-
ter; s0, sf ∈ P are initial and final activities of the workflow respectively;
C is guard expression over accessory information, and ∆ ⊆ P ×C×P is a
transition relation between a current activity and its successor activities in
which a transition is labelled with a condition over accessory information.

It should be clear from the context that this definition is not meant to
replace the definition of business process model discussed in the previous
chapters (i.e., Definition 3.3.1) and/or elsewhere. Rather, the definition
is meant to express the fact that there exist a set of activities within a
particular workflow, that describes a procedure under analysis, in which
by knowing the current state of the workflow, and if a condition is meet,
it should be obvious to determine the next state of the workflow. We call
an instance of a workflow model, a program counter “pc” that contains
the value of the current state (i.e., the active activity) in the workflow.
There is one program counter “pc” for each workflow model at run time.
In actual business process or workflow specification, in fact, it is possible
to have multiple activities that can run in synchronous or asynchronous
mode. In this work we focus on sequential execution of a workflow.

Formal Model of Asset-flow specification. The state of an asset is specified
by the assignments of values to variables —or simply valuations. This, in
turn allows to describe the evolution of an asset. The evolution is expressed
by the sequence of states through which an asset undergoes during the
execution of a process. It makes sense to encode the state of each variable
as a finite state machine, since the state of an asset is described by the

115

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

valuations over its variables. The workflow instances, along with some
matching conditions, define transitions for modeling the lifecycle of the
assets. Thus, an asset-flow can easily be modeled using a transition system,
that facilitate the formal analysis. We now define our notion of assets-flow
models more formally.

Definition 4.3.4 (Assets-flow model) An asset-flow model (AFM) is a
5-tuple 〈AS, I,Wπ, Cπ,∆π〉 where

• AS ∈ S is a finite set of assets’ (instances) states;

• I ⊆ AS is an initial states of the assets;

• Wπ is a set of workflow instances;

• Cπ is a set of conditions constructed over the attributes representing
the matching construct as a guard, that specify the condition must
meet for the state to be changed, along with the current activity;

• ∆π ⊆ AS ×Wπ × Cπ × AS is a transition relation between a cur-
rent state of an asset and its successor states in which a transition is
labelled with an activity and a condition.

A collection of individual AFM constitutes assets-flow models, and we
represent it by M1. Therefore, M1 is regarded as the global configuration of
the domain of interest, namely the procedures under analysis. The seman-
tic of the global configuration M1 can be interpreted in the following way.
Each m ∈ M1 is regarded as an abstract state machine, which has three
major components: a workflow activity sequence (possibly maintained in
a queue), a workflow activity dispatcher, and an activity processor. Work-
flow activities are added to the end of the activity queue. The activity
dispatcher chooses, dequeues, and provides the next “pc” (i.e., an activ-
ity) to the activity processor. Each “pc” is then used as a transformation

116

4.3. A METHODOLOGY FOR PROCEDURAL SECURITY

function that can possibly change the state of an asset by modifying or
changing one or more variables values of the asset. One state machine
per feature variable encodes the lifecycle of that state variable (e.g., see
Figure 4.14). A set of such state machines constitutes the global state
machine for the corresponding asset instance. By defining a semantic for
the state machines corresponding to each feature of an asset and linking it
with m ∈M1, therefore, we have implicitly defined how M1 behaves.

4.3.2 Model Extension

The formal model we presented earlier represent the nominal behavior of
the assets (M1) —that is, the model describing the standard procedures,
e.g., what is prescribed by the law. In order to analyze what are the possi-
ble attacks of a given (set of) procedures, we need to encode asset threats
in the nominal model and generate the extended model M2. Structurally,
in fact, there is no difference between M1 and the extended model M2.
However, the main difference lies on the assets state set and on the transi-
tions specification. This means that, the extended model possibly will have
more states than the other due to the execution of threat-actions that can
change the state of an asset into an undesired one.

On the transitions side, on the other hand, the definition did specify
the fact that transitions are triggered only by nominal workflow activities.
We need to incorporate in M2 the fact that an asset could be in any pos-
sible states and that such states can also be changed by the execution of
malicious processes. However, it is pretty straightforward from the defini-
tion we gave and by extending the definition of the workflow model (e.g.,
Definition 4.3.3) to include all the malicious processes that an adversary
might execute. Thus, in M2, assets are not only manipulated according to
what should happen in the nominal case (i.e., according to the electoral
laws), but can also be transformed by the execution of one or more assets

117

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

threat-actions.
Before providing the NuSMV encoding for M, let us materialize those

sequences of states that an asset can undergo. Not surprisingly, this corre-
sponds to a path, that shows the evolution of an asset instance. Since our
work mainly focuses in a single asset instance, thus, we speak about a path
for a single asset instance I. Each snapshot siI in the flow corresponds to
a state described by the valuations of a given asset. And, si+1

I corresponds
to the execution of a workflow activity in W (possibly with malicious pro-
cesses) to the asset features. A path in M is a finite sequence π of states,
π = s0

I , . . . , s
n
I , satisfying:

• Initiation: s0
I = sinitI ;

• Consecution: for every i = 0, 1, . . . , n the asset instance state si+1
I

corresponds to the result of applying workflow activity and threat-
actions to siI , along with the satisfaction of some boolean constraints
on the transition, if any.

4.3.3 Encoding the Assets-flow models in NuSMV

4.3.3.1 Overview of the NuSMV language

Before explaining the encoding of asset-flows modes in NuSMV, it is useful
to provide an overview about NuSMV itself.

NuSMV (Cimatti et al. 2002) is a symbolic model checker originated
from the reengineering, reimplementation, and extension of SMV (McMil-
lan 1993). The tool has been designed to be a robust, well documented,
open platform for model checking. It allows for the specification of syn-
chronous and asynchronous systems and for the verification of safety and
liveness properties expressed in temporal logics CTL (Computation Tree
Logic) and LTL (Linear Temporal Logic), using both BDD-based and SAT-
based model checker.

118

4.3. A METHODOLOGY FOR PROCEDURAL SECURITY

The NuSMV tool comes with a description language that is used to de-
scribe the (finite) fair transition system (specifically, that of Kripke tran-
sition systems) modeling the program under analysis. The description is
broken down into modules that can be composed and reused. Modules
describe initial values of variables and how they change in each step, as
well as they can have parameters which can be used to establish identities
or connections among other modules.

The type of a variable within a module can be boolean, enumerated,
finite range of integers given by <number> . . . <number>, or finite arrays.
The keyword init is used to describe the initial value of a state variable
and unspecified variables can take any value in their type as the initial
value. The next construct describes how the value of the variable changes
in one step. If the next value is unspecified, then the variable takes any
value in its type at the next step. The case statement assigns the value
associated with the first case condition that is true currently, or otherwise
1 (one) as the default case.

The language also allows to define a C-like “macros” using the DEFINE
construct. The variables defined using the DEFINE construct do not have
any effect on the state space, since they are not a real variables. Finally, the
language and the machinery have demonstrated to be adequate for several
industrial sized systems. In our case, the choice of the tool has been driven
by practical considerations (it is a tool for which we have extensive know-
how), stability (it is used by a wide community), and availability (open
source3).

4.3.3.2 Encoding the Assets-flow models

Assets-flow models M can become executable specification to allow formal
analysis through verification tools on their evolution, including their ma-

3http://nusmv.fbk.eu/

119

http://nusmv.fbk.eu/

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

licious evolution due to threat-actions. Our aim here is to represent the
model M into executable specification using NuSMV input language. We
mentioned that the NuSMV semantic is based on a state-based formalism
in which the behavior is defined by Kripke transition systems. However,
the above definition for M is an action-based formalism in which the be-
havior is defined by (a sort of) labelled transition systems. Thus, we need
to rearrange the previous definition to align with the semantic of Kripke
structure so that the encoding of NuSMV specifications can be tackled.

Definition 4.3.5 (AFM, MK) Let APs are set of atomic propositions
ranged over some boolean expressions on the valuations of the variables.
An asset flow model (AFM) is a Kripke structure over a set of atomic
propositions AP defined by a quadruple 〈ASK , IK ,∆K ,LK〉 where

• ASK is a finite set of assets (instances) states;

• IK ⊆ ASK is set of initial states;

• ∆K ⊆ ASK × ASK is a transition relation between a current state of
an asset and its successor states;

• LK : ASK → 2AP is the labeling function which returns the set of
atomic propositions which hold in a state.

Notice that the main variation between the previous definition and the
above definition is on the encoding of the transition relation. In the former
case, the transition is explicitly encoded by the workflow activity and a
condition. In contrast, in the latter case, it is specified either into the
source state of the transition as a boolean expression, or into the target
state of the transition as assignment statement(s). We should be clear that
this kind of rearrangement is not new (e.g., a similar work can be found
(Lam and Padget 2004)).

120

4.3. A METHODOLOGY FOR PROCEDURAL SECURITY

Therefore, the encoding of M in the NuSMV input language can be
treated as a problem of defining a mapping between the two structures, i.e.,
between the structure specifying the model M and the Kripke structure.

In general, the translation is performed as follows:

1. we define a module that works as the program counter, that is, it en-
codes the sequence of activities defined by the workflow. are executed
is the one defined by the workflow. The transition from one activity
state to the next is determined by the current state of the activity
and some accessory information such as role(s) (which encodes the re-
lationship between the workflow activity and actors who are assigned
to perform the execution of the workflow).

2. a module is defined for each asset that it is specified in the assets-
flow models (or specified in the process diagram). Each feature of the
asset is defined as a state variable within the module. The transition
from one asset state to the next is determined by the program counter
(which represents the execution of an action of the workflow) and some
boolean expressions over the current state of the asset;

3. we define some boolean appendage variables to capture malicious flows
of assets and the execution of threat actions to form the extended
model. That is to say, these variables help for the encoding of both
malicious assets and threat actions to derive the extended NuSMV
model. Additionally, we introduce a state variable in workflow module
to capture malicious processes.

The above general strategies are organized into a number of rules. More
specifically, the following encoding rules can be used to map M into the
NuSMV counterpart.

121

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

Rule 1 The workflow model is encoded in NuSMV as a special module, and
each workflow activity pi ∈ P for i = 1, . . . , n representing the domain ac-
tivities (i.e., processes) in W are encoded in the NuSMV input language as
a scalar variable program counter (pc) in which pi are its symbolic values.

MODULE Workflow (...)
VAR

pc : {p_1, p_2, ..., p_n};

Rule 1 defines the special module that works as the program counter. In
particular, it specifies the workflow model (W) and the declaration of state
variable pc under the module, where all domain activities in the workflow
are the scalar values of pc. The pc ensures that the order in which activities
are executed is the one defined by the workflows.

In order to determine the state transition of the program counter, we
introduce some predicates (see Table 4.1) from the business process model
presented in Chapter 3. Notice that these information can easily be in-
ferred by looking at the process diagrams. They are mainly associated
with the accessory information, such as actor-role and actor-activity (i.e.,
RAP) assignments. The table also shows the corresponding state variables
in NuSMV input language.

Predicate Meaning NuSMV variable
AssignR(a,r) assignment of actor a ∈ Actor to role

r ∈ Role
assign a r

AssignA(a,p) assignment of actor a ∈ Actor to an
activity p ∈ P

assign a p

r Active for a role r ∈ Role is active for actor a ∈ A activefor a r
ExecA(a,p) actor a ∈ A executes an activity p ∈ P exec a p

Table 4.1: Accessary information as predicates.

122

4.3. A METHODOLOGY FOR PROCEDURAL SECURITY

Rule 2 The accessory information are encoded in the NuSMV input lan-
guage within the Workflow module in the following way (see also Table
4.1):

• For each actor-role assignment, we introduce a variable assign a r.
assign a r is true iff the predicate AssignR(a,r) is true for an actor
a ∈ Actor and a role r ∈ Role, where Actor and Role are as Chapter
3;

• For each actor-process assignment, we introduce a variable assign a p.
assign a p is true iff the predicate AssignA(a,r) is true for an actor
a ∈ Actor and an activity p ∈ P ;

• For each role activation r Active for a, we define a state variable Ac-
tivefor a r;

• Similarly, we define a variable Exec a p for every actor performing an
activity, i.e., iff ExecA(a,p) is true.

Rule 2 defines accessory information for the transition relation of pc
state variable. Notice that activities can only be executed if the ac-
tivity instance in question is assigned to an actor —i.e., ExecA(a,p) ⇒
AssignA(a,p). Moreover, a group of actors can perform the same activity,
as discussed in the previous chapter.

Rule 3 For each asset instance in ~O, a NuSMV module is defined:

MODULE ASSET_NAME (...)

Rule 4 An asset with no content in M1 is mapped to a symbolic value
“null” in NuSMV. Similarly, an asset whose current location is not known
or unspecified in M1 is mapped to a symbolic value “unspecified” in NuSMV.

123

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

Rule 5 The location, representing all the possible places of an asset can be,
is encoded in the NuSMV input language as scalar variables loc in which
loci for i = 1, . . . , n and “undefined′′ are its symbolic values. The content,
representing all the contents of an asset at a particular point of time, is
encoded in the NuSMV input language as content in which contenti for
i = 1, . . . , n and “null′′ are its symbolic values. The value, representing all
security risk values for an asset, is encoded in NuSMV input language as
value in which noV alue, low, high and critical are its symbolic values.
Finally, each domain specific property of an asset in an asset-flow model
is encoded as a boolean value in NuSMV.

MODULE ASSET_NAME (...)
VAR

loc : {loc_1, loc_2, . . ., loc_n, unknown};
content : {content_1,content_2, ..., content_n, null};
value : {noValue, low, high, critical};
property_1, property_2, ... : boolean;

...

Rule 3 states that a module is defined for each asset (instance) in M1.
In Rule 5, whereas each feature of the asset is defined as a state variable
within the asset module specification. An unknown location and a null
value are both encoded by symbolic values as defined by Rule 4.

Rule 6 The transition specification for each state variable is encoded by the
current value of the program counter and some boolean expressions over the
current state of the asset. The below code shows a template for a transition
specification for each state variable.

MODULE ASSET NAME (pc, ...)
[...]

124

4.3. A METHODOLOGY FOR PROCEDURAL SECURITY

/*template for content transition encoding.*/
next(content) :=

case
pc.pc = activity & bool_expr: content_j;

[...]
1 : content

esac;
[...]

The above rule (i.e., Rule 6) encodes the transition specifications. The
transition from one asset state to the next is determined by the current
value of the pc and some condition over the current state of the asset
instance. That is, the current state of the pc —which is passed as a pa-
rameter to each asset module— along with boolean expression, bool expr,
is encoded as a boolean expression like pc.pc = activity & bool expr from
Wπ × Cπ.

Model Extension. Since all the above rules are related to the encoding
of M1, we need to provide additional rule for encoding M2. The model
extension corresponds to proving an extension in the NuSMV model with
one or more applicable attack-actions. That is, a specification of how
the assets can be in undesired states. This can be done by associating
threat-actions with variables defined inside the module per asset instance.
Moreover, the Workflow module should also need to be extended in order
to include the malicious process executions.

Note that attacks depend on what threat-actions are carried out, the
effectiveness of the analysis depends upon the injection strategy that is
chosen. It turns out that the best injection strategy consists of injecting
all possible threat-actions at all possible steps of the nominal procedures
and let the model checker to find the possible combination of the sequences
that lead to undesired state for an asset flow. Therefore, the problem of

125

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

encoding of asset threats corresponds to extending the nominal assets-flow
specification with threat actions.

In particular, the model extension can be done by using the following
strategies:

• by defining a scalar state variable to encode all the possible malicious
process within the Workflow module. Therefore, the program counter
not only can have values from nominal workflow activities but also
from possible set of malicious workflow activities;

• by defining a transition specification for each activation of a threat-
action on asset instance under the corresponding asset module in
NuSMV, where the malicious activity (i.e., the current value of the
pc) is in place for enabling the transition;

• by defining boolean variable to monitor the execution of the corre-
sponding threat-action. This variable will be true iff when the corre-
sponding threat-action takes place;

• by introducing a scalar value “garbage” for the content state variable
related to the introduction of malicious asset and a boolean variable.
This variable will be true iff a predicate associated with the action
(e.g., MAsset(t)) is true by a threat-action, say t.

The above strategies facilitate the task of model extension, by adding
a number of boolean appendage variables that are needed to capture the
malicious asset flows and the execution of threat actions to form the ex-
tended model specification in NuSMV input language. That is to say, these
variables help for the encoding of malicious processes, malicious assets, and
threat-actions to derive the extended NuSMV model. In this way, there-
fore, the model extension is performed for each applicable threat-action
against the normal flow of assets. Notice that the model extension can be

126

4.3. A METHODOLOGY FOR PROCEDURAL SECURITY

done in two ways with different abstraction levels, namely either at higher
level (i.e., at UML diagrams level) or at lower level (i.e., at the NuSMV
specification level). The list of activities executed to carry out, e.g., an
attack, we can derive the list of actors involved, simply by looking at the
UML activity diagrams.

4.3.4 Property Capturing and Model Checking

During this phase, an analyst defines (procedural) security properties that
will be used at a later stage to assess the behavior of the procedure under
analysis. More specifically, assets-flow model definition, asset attacks defi-
nition, and model extension are just a part of the verification and security
analysis process. Formal verification is carried out by defining properties
in the form of temporal specifications.

We use LTL and CTL to encode security properties. LTL allows to
specify properties related to each possible state of a system along a path
—namely, to reason on the computational path scenarios of an asset (e.g.,
“what can happen as asset travels along different locations”). By contrast,
CTL is used to specify properties related to how the state of a system can
evolve overtime along all the possible computational paths —namely, to
reason about the existence of specific states (e.g., “is there any particular
state in which an asset can be altered in an undesired way”).

In fact, the types of properties to specify depend on the goals of analysis
we wish to perform on the models. We are interested, in particular, in the
following classes of properties:

1. The Actor-Play-Role, namely the roles actors have in the execution
of the attack and the privileges they get on assets.

2. Undetected attacks, namely sequence of actions that succeed in
altering one or more assets and for which the procedures provide no

127

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

check to highlight the alteration.

3. Denial of services, namely attacks which are meant to alter one or
more assets in such a way that procedures have to be stopped. In
the optimistic case, a denial of service in an election represents a cost
and a “nuisance” for the community (as, e.g., results are delayed; the
administration needs to re-run the election). In the pessimistic case,
e.g. repeated attacks, it may represent a serious threat to democracy.

4. Reachability analysis, namely the sequence of actions leading to the
violation of a security goal, with particular respect to the execution
of asset-threats.

Once all the properties of interest are specified with respect to the anal-
ysis goals described above, the next activities are formal verification and
analysis of the results. That is to say that as long as a nominal model (M1)
or extended model (M2) is available, it is possible to verify its behavior with
respect to the desired CTL/LTL properties.

The model under analysis is checked (i.e., model checking) against the
security properties using NuSMV. And, the results of the analysis can
be used for further discussions. In the case of a system property, the
model checking engine can test validity of the property, and generate a
counterexample in case the system property is proved to be false. For
instance, if we consider a property that is required to hold for every possible
path of the asset-flow (CTL property), the model checking engine will
generate a counterexample showing one particular path along which the
property has failed. In standard situations, the counterexample will contain
the execution of one (or more) asset threat.

A counterexample in which no asset threats are executed would show an
inherent weakness in the nominal workflows or otherwise a result of poor
specification. The counterexamples of security properties encode sequences

128

4.4. A CASE STUDY

of actions that, if executed, pose a threat to security of one or more assets.
Furthermore, before calling the verification engine, it is possible to perform
constrained or random simulation and several kinds of formal verification
analyses using the facilities provided by the NuSMV engine.

4.4 A Case Study

We now demonstrate our approach in a real scenario in which part of
a complex procedure that is followed to run election in Italy. That is,
an excerpt procedure followed during the e-voting project trials using the
ProVotE e-voting machine.

Provide models of the procedures under evaluation. Figure 4.12) shows a
subset of UML diagrams that is used to model (an excerpt of) the procedure
that is followed during project trials for delivering the voting software to
the polling stations, as used in the ProVotE case.

The diagram shows how, before the election, the Electoral Office en-
crypts the e-voting software and creates a memory support which contains
the final software release. The responsible person at the Electoral Office
prepares an envelope with the PIN code (that it is used to activate the vot-
ing functions) and the memory support. We classify Electoral Office’s into
different level of technicians, for example, technician for generating encryp-
tion key and another technician for preparing the envelope. A messenger
(e.g., a police officer) takes the envelope and delivers it to the polling sta-
tion, where the polling officers, once verified that the enveloped is sealed,
opens it, insert the memory support in the voting machine, insert the PIN
and start the voting operations.

We then injected threats into the model of the procedures that it forms
the extend model. Figure 4.13 depicts the extended model resulting from
the injection of some delete and replace threat-actions in the example of

129

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

Password
[plain]

encrypt

electionSW
[plain]

electionSW
[encrypted]

loadMemSup

MemorySupport
[empty]

Envelope
[empty] MemorySupport

[loaded]

loadEnvelope

Envelope
[loaded]

open

Envelope
[loaded]

electionSW
[encrypted]

PIN
[plain]

PIN
[plain]

ship

Figure 4.12: An example of asset flows.

Figure 4.12. Note that the semantics of delete and replace actions may
slightly vary when applying them to different asset kinds. In the extended
model, we marked threat actions with the threat-action stereotype. As
noted before, the model extension (or threat injection) step is not neces-
sarily be done after the process modeling step; it can also be done after
encoding the asset flows.

NuSMV Encoding. We model the asset-flows into executable specification
using the NuSMV input language using the translation rules described

130

4.4. A CASE STUDY

Password
[plain]

encrypt

electionSW
[plain]

electionSW
[encrypted]loadMemSup

MemorySupport
[empty]

Envelope
[empty] MemorySupport

[loaded]

loadEnvelope

Envelope
[loaded]

open

Envelope
[loaded]

electionSW
[encrypted]

PIN
[plain]

PIN
[plain]

ship

<<M Process>>
encrypt

electionSW
[plain]

M electionSW
[encrypted]

<<threat-action>>
replace

<<threat-action>>
replace

<<threat-action>>
delete

<<threat-action>>
delete

PIN
[plain]

Attack 3

Attack 2

Attack 1

Figure 4.13: An example of extended model for Figure 4.12, where the introduction of
the attacks are colored. It shows delete and replace threat-actions change the flow of the
procedure under evaluation.

previously. We declared four modules corresponding to each assets in the
diagram (Figure 4.12): Password, electionSW, MemorySupport, and PIN.
The following snippet of code defines the asset type electionSW and some
of its features, named status (that is, the states in which the electionSW
can be), value (the relative weight of an asset assigned based on the criti-
cality of the asset, basically the analyst decide and assign this value), and
content (that is, the qualitative value of the electionSW can be), etc.

131

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

MODULE electionSW (...)
VAR

status : {Plain, Encrypted};
value : {NoValue, Low, High, Critical};
content : {PlainSW, EncryptedSW, SignedSW, EncryptedEnvSW,

null},
loc : {ElectoralOffice, PollingPlace, PoliceOffice,

Messenger, Undefined},

Similarly, other modules with their corresponding feature variables are
declared (e.g., MODULE Password(...), MODULE MemorySupport (...)).

There are five (domain) activities in the nominal assets-flow diagram
(see Figure 4.12), namely it contains activities encrypt, loadMemSupport,
loadEnvelope, shipEnvelope, and openEnvelope. We declare a module
called Workflow and specify state variable which have these five scalar
values. In other words, the pc state variable within the Workflow module
has five possible scalar values.

MODULE Workflow (...)
VAR

pc : {encrypt, loadMemSupport, loadEnvelope, shipEnvelope,
openEnvelope};

execute_actor2_encrypt : boolean;
execute_actor1_openEnvelope : boolean;

[...]

“Accessory” information (not strictly necessary to execute the work-
flows), such as the actors responsible for each activity, is encoded in the
model through DEFINEs in the main module, such as in the following snip-
pet:

DEFINE
ElectoralServiceActive_for_actor3 :=

132

4.4. A CASE STUDY

pc = loadMemSup || pc = loadEnvelope || [...]
POfficeActive_for_actor1 := pc = openEnvelope || [...]

Evolution of assets’ properties are encoded using state machines, which
are encoded in NuSMV with the next construct (which specifies the value
of a variable at step n + 1, given the value at step n). Notice that asset
flows are defined both in terms of the program counter (e.g., the current
step of the workflow) and the value of the asset features. Figure 4.14 shows
a model of feature content variable of electionSW where its state changes
according to the program counters and according to the current values of
some state variables; its corresponding snippet NuSMV code is also shown.

SW

eSW

eeSW

pc.pc = encrypt

pc.pc = prepareEnvelope &&
next(pc.pc) = loadEnvelope

pc.pc = decrypt
&& sw.key =
pwd.content

s3

s2

s1
pc.pc =
openEnvelope

sw : software
esw : encrypted sw
eesw : enveloped esw

Figure 4.14: A simple example of state transition model for content feature of
electionSW.

Note that in the code shown below, we have left some detail specification
for the matter of presentation purpose.

[...]
next(sw.content) := case

133

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

(pc.pc = encrypt && content = PlainSW && loc = ElectoralOfffice)
|| (content = EncryptedEnvSW && pc.pc = openEnvelope

&& POfficersActive && loc = PollingPlace)
: EncryptedSW;
(pc.pc = loadEnvelope && (TechnicianTwoActive
|| ElectoralServiceActive) && content = EncryptedSW)
: EncryptedEnvSW;
pc.pc = decrypt && POfficersActive && (status = Encrypted ||
content = EncryptedSW) && !fakeKey
: plainSW;

[...]

Model Extension. Next, we show the extension of the model according to
the diagram depicted in Figure 4.13. Threat injection (model extension)
corresponds to augmenting the state machine of the asset flow with new
transitions corresponding to the execution of threat-actions. Figure 4.15,
for instance, shows an asset flow with some threat-actions that may alter
a feature of an asset (e.g., content), in some undesired way.

The triggering of a threat-action is monitored through boolean variables
that are set to true when the action takes place, as illustrated by the
following pieces of code. We first declare one boolean variable per threat:

can_mesw, can_meesw: boolean;
can_garbageSW: boolean;
can_mPPin, can_mePPin: boolean

The above variables are initially set to false. When a variable is set
to true (either because constrained to do so by the model or, more often,
at random), a transition in the state machine encoding the asset flow is
triggered and the value of the asset flow changed according to the threat-
action (rather than to the nominal flow), as illustrated by the following
piece of code:

134

4.4. A CASE STUDY

gSW

meSW

meeSW

SW

eSW

eeSW

pc.pc =
encrypt

pc.pc = prepareEnvelope &&
next(pc.pc) = loadEnvelope

pc.pc = decrypt
&& sw.key =
key.content

s3

s2

s1
pc.pc =
openEnvelope

pc.pc = decrypt
&& sw.key !=
pwd.content

pc.pc = decrypt

malSW && pc replaceSW

s4

s5s6

meSW : malicious eSW
meeSW : malicious eeSW
gSW : garbageSW

Figure 4.15: An extension of Figure 4.14 due to the injection of threat-actions.

next(can_mesw) := case
(malSW && pc.replaceSW && next (pc.pc) = loadMemSup
&& loc = ElectoralOffice)

|| (can_meesw && pc.pc = openEnvelope && loc = PollingPlace)
:1;

1: can_mesw;
esac;

Beyond the above boolean variables, we define control flow variables
which govern the execution flow and correspond to the introduction of ma-
licious assets. For example, we have introduced a boolean variable malSW
indicating that we deal with the introduction of malicious electionSW. Due
to the fact that we do not want to restrict this variable in advance and
that on the other hand the variable should be constant during the whole
execution, we use the following trick of specifying next(malSW) := malSW
without initialization. This means that we can choose the value of malSW

135

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

for the introduction of malicious electionSW at random, but once chosen,
the value does not change anymore.

Property Capturing and Model Checking. After encoding the relevant infor-
mation of asset-flows in NuSMV, the next activity consists of capturing and
specifying the security properties using LTL/CTL. The security properties
we wish to specify are with respect to the analysis goals we discussed ear-
lier. For instance, in the example we have shown (in the extended model)
it is possible to implement at least three different attacks.

• The first one consists of replacing the software which is sent to the
polling stations. By reading the password with which the electionSW
is encrypted and substituting a modified version of the software in
the MemorySupport, it is possible for a malicious actor eventually to
deliver a modified copy of the software to the polling station.

• The second one consists of replacing the PIN. A malicious actor with
access to the PIN code may substitute the PIN which is loaded in the
envelope. Thus, a wrong PIN is delivered to the polling station which
eventually causing a denial of service —namely, the voting functions
cannot be activated by the polling officers.

• The third attack consists in deleting (or destroying) the envelope
during transportation, possibly causing another denial of service.

We show two examples of properties that allow us to highlight such attacks.

i) Verifying a property about the delivery of election software.
In this example, we want to check a generic property about the delivery
of software to the polling station. This allows us to derive the possible
sequence of threat-actions following the counterexample generated by the
NuSMV tool, if the property is proved to be false. We are interested
in checking that: “It is never the case that poll officers receive an altered

136

4.4. A CASE STUDY

election software”. In other words, this property says that election software
always remains “useful”. The property is specified in CTL as:

AG ! (sw.content = garbageSW && sw.location = pollStation
&& PollOfficersActive)

When checking the above formula in NuSMV, it proves to be false,
which is indicated by the counterexample shown in Table 4.2. Namely, it
is possible to deliver a wrong software to poll station as illustrated by the
counterexample, that is, sequence of attack-actions. In the real scenario,
the flow should be: “After the envelope is opened, immediately afterwards
the content of the software must be encrypted and the software must not be
modified”. The key point here is that, at time t2 the software is encrypted,
at the same time a malicious encrypted software is introduced (malSW) fol-
lowed by replace attack action (replaceSW) before loading the nominal
encrypted election software into the memory support. Then, at time t3
can mesw is true —that means, a maliciously encrypted software is intro-
duced and loaded into memory support after being replaced by correctly
encrypted software.

t0 t1 t2 t3 t4 . . . t9 t10 . . .

pc.pc — — encrypt loadMem preEnv . . . openEnv decrypt
sw.conten sw garbage . . .
malSW ⊥ > ⊥ . . .
replaceSW ⊥ > ⊥ . . .
sw.can mesw ⊥ > . . .
sw.can garbage ⊥ > . . .
sw.is sw > ⊥ . . .

Table 4.2: Example 1: A counterexample showing the alternation of election software at
poll station.

It is easy to derive what are the possible scenarios in which an adversary

137

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

can invalidate the election software, given the above sequence of actions in
place. From the property failure above (at time t4), we can say that after
the replace attack action takes place, the content of electionSW becomes
a garbage right after loading it into the memory support, and at time t9
and onward the software is indeed garbage (that is, it is useless). In this
way, the counterexample is used to highlight sequence of actions in which
the software has been altered during the delivery process.

ii) Verifying a property about the Denial of Service attack. In
this example, we are interested in checking a denial of service attack that
could happen in a poll station. Note that our aim here is also deriving the
possible sequence of actions that an adversary can take to cause this attack.
The property of interest is that: “It is never the case that poll officers get
denial of service due to PIN code”. Notice that the PINs are used by poll
officers to activate the voting machines to activate voting functions. This
property is expressed in CTL formula as:

AG ! (PIN.can_garbage && PIN.location = pollStation)

We give the above property to NuSMV to check that the property holds.
However, the tool generates the counterexample depicted in Table 4.3.
Upon analyzing the generated counterexample, the PIN is replaced fol-
lowing the insertion of a wrong PIN into the asset flow, which, in turns,
causes denial of service attack —namely, the poll officers unable to activate
the voting machine due to wrong PIN. The scenario is as follows, at time
t4 malicious PIN code is introduced (malSW) while the electoral office is
preparing the envelope, at the same time an adversary implements replace
attack (replacePiN) before loading the envelope with memory support
and the PIN code, eventually the PIN code is indeed useless causing the
denial of service attack

138

4.5. SUMMARY

t0 . . . t4 t5 . . . t7 . . . t10 . . .

pc.pc . . . preEnv loadEnv . . . openEnv . . .

malPiN ⊥ . . . > ⊥

replacePiN ⊥ . . . > ⊥

pinReady ⊥ . . . >

can mPPiN ⊥ > . . .

pin.can garbage ⊥ >

Table 4.3: Example 2: Denial of service attack counterexample.

The examples, although trivial, show how —by reasoning on the ex-
tended model— it is possible to explicitly represent the attacks that can
be carried out, determine what assets are needed by the attackers and
when, and who can carry the attacks. Similarly to what happens in model
checking, we do not provide any quantitative information about the likeli-
hood of the attacks. However, even in this simple case, we believe that the
output of the attacks can provide experts the information and the require-
ments to enhance the current procedures, to eliminate certain attacks or,
at least, to make them more difficult to implement.

4.5 Summary

In this chapter we have demonstrated the importance of procedural secu-
rity to tackle the security risks associated with the e-voting systems and
eventually strengthen the level of security. Since asset mobility, state, evo-
lution, and the context in which asset instances are used in e-voting are
an inherent challenge, we have developed assets-centered methodology for
procedural security analysis. The methodology can be used to analyze and
evaluate the impact of threats, and consequently to come out with a set
of (security) procedural requirements that guarantee the desired level of

139

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

protection. We presented the approach by introducing the guidelines we
follow for modeling, and encoding the electoral procedures and hinted its
usage through example.

Interestingly, the methodology we developed can allow for a system-
atic analysis of (procedural) security based on explicit reasoning on asset
flows. That is, by building a model to describe the nominal procedures
under analysis and injecting possible threat-actions by assuming that any
combination of threats can be possible in all steps into the model. We
also outlined encoding strategies using NuSMV input language —that it is
amenable for formal analysis allowing to reason on different properties of
the procedure on the extended model such as, the “actor-play-role” prin-
ciple and “reachability” of (un)desired state of an asset.

The outputs of the model analysis using model checking technique helped
us in understanding threat compositions on the asset-flow, and conse-
quently to the procedures that take place when an adversary builds threat
from the micro-level threat actions. Certain patterns can be combined to
understand the level of coordination in order to understand undetectable
attacks. For instance, an actor with privilege to read plain password and
another actor (or set of actors) with privilege to access software together
could result in replace composed attack.

Along with the approach discussed in Chapter 3, the procedural security
analysis methodology has been applied within the ProVotE project. Within
the project we have analyzed the existing laws and procedures, defined the
procedures and developed the (e-voting) system that has been used in local
elections —mainly for experimental purpose. The results of the analysis
has led to enrich and improve the business process models that define the
to-be system description for ProVotE e-voting system, and consequently
for the development of the system itself. Such results are foundations to
familiarize actors with the possible procedural threats and attacks that

140

4.5. SUMMARY

can happen in elections. Additionally, this kind of analysis and reasoning
has the potential to serve as a trust building measure in the new e-voting
processes. And yet, the methodology and the analysis are the basis for
system level reverse synthesis on currently deployed e-voting systems which
will be discussed in Chapter 5. Therefore, procedural security analysis
together with system level reverse synthesis can better serve for safe and
secure development of the next generation e-voting systems.

Representational issues. As we noted, the modeling of assets and their
flows can be done in two abstraction levels —that is, at higher level (using
UML diagrams) and at lower level (using NuSMV specification). They
have their own pros and cons. Although modeling at higher level easies
and facilitates communication with non-domain users (as demonstrated in
Chapter 3), our experience indicates that model extension at diagram level
is cumbersome and has the issue of scalability —the model becomes too
complex even with fewer number of assets, and this reduces the readability
of the assets-flow models. In contrary, lower level extension of the model
permits to perform complex analysis of the possible evolution of the as-
sets in systematic way such as by exploring the push-button technology of
model checking facilities. Well, naturally, this also suffers from a commonly
known problem in model checking —i.e., the state space explosion problem
(Clarke et al. 2000). Being aware of these issues helps choosing the right
level of abstraction while modeling and specifying the assets-flow.

Finally, it must be clear that the construction of the extended model,
whose generation can be automated, is currently performed by hand using
the methodology and the translation strategies we described. The analy-
sis approach we took, however, is very similar to that of FSAP/NuSMV-
SA (Bozzano and Villafiorita 2007), for safety analysis, whereby a system
specification is “enriched” with information about faults and analyzes are
carried out to understand the effect and impact of faults on safety require-

141

CHAPTER 4. PROCEDURAL SECURITY ANALYSIS

ments expressed in the form of LTL/CTL formulae. Analogously to what
happens in safety analysis when analyzing, e.g., the loss of a critical func-
tions, enhancing the procedures results in reducing the probability of an
attack or making the attack more complex, rather than eliminating it.

142

Chapter 5

Formal Analysis by Reverse
Synthesis

In this chapter, we show how formal methods can be effectively used for
the specification and verification of existing e-voting systems. Our aim
is targeted to help voting machine designers and others verify critical se-
curity properties in DRE voting machines. We extend the methodology
presented in the previous chapter to specify and verify also system level
requirements. More specifically —by customizing the methodology pre-
sented in the previous chapter— we specify and verify one of the currently
deployed e-voting systems named the Election Systems & Software (ES&S)
electronic voting system. We call this approach reverse synthesis since the
specification and the critical requirements are mainly derived from existing
documentations of the deployed system.

Thus, after the introduction, we describe the relevant materials for the
specification and analysis of the ES&S system: namely, the components
of the ES&S system, voting process, critical requirements that the sys-
tem must respect, as well as the known attack scenarios. We then present
the main motivation of the reverse synthesis approach and the benefits
it brings. Subsequently, we present the specification (using ASTRAL de-
scription language) and analysis (using the PVS analysis tool) of the ES&S

143

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

voting system, by first focusing on the nominal scenarios and followed by
attack scenarios’ specifications and analyzes.

5.1 Introduction

As we have mentioned several reports criticizing the trustworthiness of
DRE-based voting machines, computer security researchers have not been
able to alleviate citizens’ concerns about this critical infrastructure. The
researchers pointed out that e-voting systems often share critical failures
in their design and implementation, which render their technical and pro-
cedural controls insufficient to guarantee trustworthy voting. Moreover,
there are certain types of errors that are common in requirements specifi-
cations, and that have a negative effect on their usefulness for developing
and testing such systems.

In California, these studies resulted in the Secretary of State allowing
the use of e-voting machines only in special situations and with various
changes to the electoral procedures. Several such changes shift the imple-
mentation of security requirements from e-voting systems to poll workers.
For instance, (California Secretary of State 2007) states that

“no poll worker or other person may record the time at which
or the order in which voters vote in a polling place.”

It is quite evident that a new generation of more carefully designed and
engineered machines could move various checks currently performed by poll
workers back to hardware and software. However, the success of this new
generation of voting machines depends on our ability to capitalize from
the lessons we learned using and analyzing the systems currently deployed,
which we call a reverse synthesis approach.

To avoid confusion with other meanings, we use the following specific
meaning throughout the chapter:

144

5.1. INTRODUCTION

Reverse synthesis is a process of developing a high-level abstract
specification for existing system and applying techniques to ana-
lyze whether the specification meets its critical security require-
ments.

The specification development extracts an abstract specification from var-
ious sources that describe the behavior of the system and which is then to
be used in the proof of implication with the security requirements.

Technical elements of our approach. We focus on how the use of for-
mal techniques can help ensuring fair elections. More specifically, we derive
formal specifications along with security critical requirements for ES&S
system. The specification of the system and the critical requirements are
mainly derived from various sources. The ultimate goal, therefore, would
be a generic specification where some domain actors could easily convince
themselves about the correctness of relevant security properties. In fact,
it is a very hard task to convince about the full correctness of the system
nor by no means we are claiming we solve this problem. Rather, we focus
on the formal specification of the behaviors of the system and their veri-
fication against a subset of critical security properties. The specification
and the verification of security properties, is a step towards fostering open
specification and the (partial) verification of a voting machine. In addi-
tion, we specify attacks that have been shown to successfully compromise
the system. With this information, we extend the original specification of
the system and derive what we called the extended model. Using formal
technique, we analyze the same critical requirements do indeed hold in the
extended model.

Performing such synthesis is important for the following three reasons.

• First, it allows to discover some missing critical requirements for the
specification and/or assumptions that were not met.

145

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

• Second, it allows to derive mitigation or countermeasure strategies
when the system behaves differently than it should.

• Finally, not being able to prove the extended model would indicate
that one, or more, of the threat actions violates at least one critical
security requirement. This indicates that there must be an implemen-
tation error or an unsatisfied procedural assumption that results in
the actual system or the environment not satisfying their respective
formal specification.

5.2 The ES&S Electronic Voting Systems

A high-level overview of e-voting systems is given in Section 2.3.1. Here,
we mainly focus on the description of the ES&S voting system components
in relation to this chapter. We then describe (informally) a set of secu-
rity critical requirements for these components individually, as well as the
system as whole. The formal specification which will be shortly provided,
therefore, is based on these information.

5.2.1 The System Components and Voting Process

5.2.1.1 The Voting System Components

Our discussion of the ES&S voting system components is based on what
each component does, how each component exchanges input or output,
and the underlying assumptions made to each component with respect to
the specification stand point. More specifically, we focus on the following
components of the ES&S voting system (see also Figure 5.1):

• DRE. Direct Recording Electronic voting machine, called the iV-
otronic. It is equipped with a touch-screen where the voter casts
his or her votes. The information shown by the touch-screen changes

146

5.2. THE ES&S ELECTRONIC VOTING SYSTEMS

in real-time to match the voter’s choices. The iVotronic also stores
the audit data.

• RTAL. Real-Time Audit Log Printer (RTAL) is a continuous feed
thermal printer manufactured by FutureLogic, Inc.1 specifically for
use in DRE voting systems. It performs the function of VVPAT on
the ES&S DRE machines. It produces a paper-based record of the
choices selected by the voter. The RTAL is connected to the DRE by a
standard 9-pin RS232 serial cable, and mounted behind a transparent
plexiglass window next to the DRE. The (paper) voter’s choices are
under this transparent glass so that they cannot be modified other
than through the normal voting procedure. The main purpose of
collecting the paper records for each eligible voter is for auditing.

• PEB. The Personalized Electronic Ballot (PEB) is a palm-sized de-
vice containing a PIC microcontroller, 2MB of flash storage, a bi-
directional infrared (IR) transceiver, and battery. There are two kinds
of PEBs identified by the read-only information burned in the PIC:
their serial number, and more importantly by their PEB Kind. The
two documented PEB Kinds are supervisor and voter, which are visu-
ally differentiated by a red and blue band in the casing respectively.
It is used by the poll worker to load a ballot, initialize the next ballot,
and collect tabulated data and audit information. Each time a PEB
is inserted, its authenticity is checked by the DRE using a four-digit
code (election qualification code, EQC), which is assigned prior to
election day.

• CF Card. Compact Flash cards are used to hold files too large to fit
in the PEB flash storage as well as audio ballots and audit and results
data. The ballot data is accessed by the DRE on demand, but the

1The FutureLogic, Inc http://www.futurelogic-inc.com/

147

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

presence of the CF card is checked periodically and the DRE will not
boot without its presence. These cards are identified by their serial
number. The card must be present to open and close the terminal.
At poll closing, the audit data is automatically dumped into the card.

PEB

CF CardRTAL

DRE

Figure 5.1: Main Components of the ES&S voting machine.

148

5.2. THE ES&S ELECTRONIC VOTING SYSTEMS

5.2.1.2 The Voting Process

The full election process involves many activities beyond what a poll worker
and a voter typically experience in the polling station. Even if the exact
processes differs depending on the specific voting technology in question,
we distinguish, in particular, three major phases in the voting when using
DRE-based machines (see also Figure 2.3): pre-electoral, electoral (during
voting), and post-electoral phases. Before election day election officials
use the election management system (EMS) to set up the election. In
particular, the ballot definition files are prepared and loaded directly onto
the DREs, CF cards are installed, and printers are assigned for each DRE
machine. Moreover, the EQC is stored in the DRE so that the DRE can
authenticate, upon the insertion, a qualified PEB.

Prior to opening the polls, a poll worker unpacks and sets up the DRE
and plugs in the RTAL printer and power cables. Poll workers must also
ensure that a properly programmed CF card is installed before powering
on the DRE. A Master PEB is inserted into the terminal to load the ballot
and later to open the DRE terminal for voting. The same master PEB
must be used to close the terminal after the polls have closed. Removing
the PEB turns the terminal’s current mode to sleep mode.

Once the polls are opened, a poll worker initializes the ballot for a qual-
ified voter by inserting a supervisor PEB, which can be the same Master
PEB used to open the polls, into the machine. The terminal mode changes
from sleep to poll worker mode, the EQC code of the PEB is checked,
and the ballot is initialized, provided that the EQC of the PEB matches
with the one the terminal is configured for. The poll worker removes the
supervisor PEB and leaves the terminal for the voter.

After the ballot is activated, the machine takes the voter through each
contest. The ES&S DRE machines automatically forbid overvoting, but

149

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

not undervoting. When a voter selects or cancels a candidate for a par-
ticular contest, an appropriate indication is printed on the RTAL record.
If the voter selects a candidate, the RTAL record is marked as “Selected”
and scrolled out of sight; otherwise, it is marked as “Canceled” and scrolled
out of sight. The voter is eventually given the opportunity to review his
ballot, and if the voter commits to it (confirms it), it is recorded to local
storage. The process continues in this way for all qualified voters.

After the official poll closing time is reached and there is no qualified
voter waiting in line, the poll worker inserts the master PEB to collect and
store tabulated data, copies of the ballot image (i.e., file) and some other
information. Upon closing the terminal, the DRE firmware automatically
uploads the audit data onto the CF card. The results tape from the RTAL
is also collected. The results tape, CF card, and master PEB from each
polling place are then returned to election central.

5.2.2 Informal Description of Critical Requirements

We describe a list of security properties that the system must respect. The
security goal is that even in the presence of an adversary (see Chapter 4),
the system should meet these properties. For instance, DRE should record
the voter’s intent exactly as the voter desires. Further, an adversary should
not be able to undetectably alter the votes once they have been successfully
stored. We wish to specify these kinds of properties and validate against
the system model, as well as in the presence of threat actions corresponding
to each attack scenario, which will be discussed subsequently.

A number of requirements that the ES&S system must satisfy are enu-
merated in the ES&S system manual (Inc. ES&S 2007) (such as configura-
tion instructions and the user’s manual) and a corresponding video2, which
describes how the system works on election day. Instead of describing prop-

2http://www.essvote.com/HTML/voter outreach/ivotronic flash.html

150

5.2. THE ES&S ELECTRONIC VOTING SYSTEMS

erties such as like (Sastry 2007) (e.g., “A ballot cannot be cast without the
voter’s consent to cast it; the DRE only stores ballots that have been con-
firmed by the voter.”) or like (McGaley 2008) (e.g., “The e-voting system
shall be protected against threats to its availability including: malfunc-
tion, breakdown and denial of service attacks.”), we rearrange and split the
properties so that providing their equivalent formal specification is man-
ageable. In fact, the rearrangement we followed is the one we described in
(Villafiorita et al. 2009a). It should be clear that we are not claiming we
provide new requirement elicitation techniques nor structuring approaches.

In the following, we list the most important critical security require-
ments that the ES&S voting system must meet. The list is by no means
exhaustive, but is chosen to reflect important properties that are essential
building blocks for most DRE e-voting machines equipped with VVPAT.
Notice that the presentation of the requirements does not follow any order
of importance nor in sequel.

Requirements for the DRE.
A correctly functioning DRE must satisfy the following properties.

Property 1 The same CF card must be present throughout the voting session;

Property 2 The RTAL must be connected to the DRE throughout the voting
session;

Property 3 The DRE must authenticate the PEB using the EQC, and the
same master PEB must be used to open and close the terminal;

Property 4 Once the ballots are loaded into the DRE prior to starting the
voting process, they should not change during the entire course of the voting
process;

Property 5 The ballot presented to the voter must be complete;

Property 6 Display screens presented to the voter must accurately reflect the
ballot downloaded from the PEB and the selections made by the voters;

151

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

Property 7 The DRE terminal only allows two valid actions for the voter
until he/she reaches the final review (vote summary) screen: (1) select or
cancel a candidate on the screen, or (2) move forward or backward through the
ballot;

Property 8 For each valid voter action (i.e., starting to vote, making a select
or cancel, and finishing a vote) the DRE must enable the RTAL to record the
action on the RTAL tape accordingly;

Property 9 The DRE must automatically forbid an overvote;

Property 10 The DRE must report undervoted races, if they exist, and the
review screen must display the message “BALLOT NOT COMPLETED”;

Property 11 When the voter confirms his/her ballot, the ballot images recorded
in the local storage must correctly reflect the selections made by the voter;

In other words, Property 11 states the fact that the DRE must not
change the ballot after the voter chooses their candidates.

Property 12 The DRE terminal should start chirping if there is no input
from the voter for 10 time units since the last input but not after he/she
confirmed.

Requirements for the RTAL.
The RTAL must satisfy the following properties:

Property 13 The RTAL should scroll up a minimum distance after the sum-
mary has printed, in order to out of sight the previous vote;

Property 14 The RTAL must update the paper tape after the voter pushes
the start button, makes a choice (select or cancel), confirms a vote, or when
the poll worker rejects the ballot of a fleeing voter.

Even if Property 6 and Property 14 state different requirements, they
are meant to express the fact that the voter must have a chance to preview

152

5.2. THE ES&S ELECTRONIC VOTING SYSTEMS

(both on the DRE screen and on the RTAL window) the contents of the
ballot and accept or reject it.

Requirements for the PEB.
The PEB must satisfy the following properties:

Property 15 The election-specific secret code (EQC), which is a 32-bit (4
digit) code, must be present on a PEB and must always match with the one
stored inside the DRE; otherwise, the PEB should be rejected by the DRE
terminal whenever the poll worker attempts to insert it;

Property 16 At the end of the election, the copy of the ballot images down-
loaded from the DRE must be the same as the ballot images that were loaded
into the DRE prior to starting the election.

Requirements for the CF Card.
The CF card should satisfy the following property:

Property 17 The poll closing procedures must copy the audit information
(such as the event log) accumulated in the local storage to the CF card.

Requirements for the System as a whole. The following global prop-

erties must be ensured by the system components all together:

Property 18 No discrepancy should be observed among the following: (1) the
individual cast ballot records (or ballot images) recorded by the machines; (2)
the summary tape generated on Election Day at the close of polls on individual
machines; (3) the totals that were accumulated and reported by the DRE and
RTAL.

The above requirement can further be classified into the following re-
quirements.

Property 18. 1 The vote entries printed on the RTAL tape during and after
the election must be equal to the cast ballot records plus the rejected vote in the
DRE;

153

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

Property 18. 2 The number of fleeing voters recorded in the audit log file,
which is downloaded into the CF card, must be equal to the number of rejected
ballots printed on the RTAL tape;

Property 18. 3 The undervoted races in the audit log file, which is down-
loaded into the CF card, must be equal to the undervoted races that have been
reported on the RTAL tape.

Property 18. 4 After the voting is closed, the results downloaded into the
master PEB must be equal to the sum of the results collected from each DRE;
furthermore, it must be equal to the sum of the printed paper tapes from all
RTALs;

We want to remark that some properties documented in the ES&S elec-
tion day checklist manual —such as, while downloading the election results
from the DRE after the election is closed, the PEB should not be removed
until the download finishes and safe to remove it— are not intrinsic to the
system functionality instead they are either procedural or environmental
assumptions. To make a reasonable and, of course, provable specification,
however, one can make assumptions about those facts.

5.2.3 Selected Attack Scenarios

Next, we give a short overview of selected attack scenarios that are dis-
cussed for the ES&S system in the EVEREST report. We assume that
voters can leave the voting booth without checking the votes shown on
the confirmation screen and/or on the RTAL screen do indeed accurately
reflect their intentions. This assumption, in fact, is based on what hap-
pened in real scenario, i.e., even if the ES&S system offers (in general, any
DRE-based machines) voters the opportunity to verify their vote, some
voters leave the voting booth without completing the voting procedure3.

3However, in ProVotE e-voting system scenario #3 and scenario #4 may be detected easily by the
poll worker since the system offers a signaling system, which is installed outside the voting booth to help
assisting the poll worker whether the voter completed the voting procedure or not (see in (Villafiorita
et al. 2009b)).

154

5.2. THE ES&S ELECTRONIC VOTING SYSTEMS

Moreover, like any other voting systems, the ES&S voting system can be
subject to attack by a number of different types of attackers with different
capabilities. An attacker can be outsiders (have no special access to any of
the voting equipment), voters (have limited and partially supervised access
to voting systems during the process of casting their votes), poll workers
(have extensive access to polling place equipment), election officials (have
extensive access both to the back-end election management systems and
voting equipment), and etc.

We now present four selected attack scenarios for which we give for-
mal specification later. A sequence diagram for each corresponding attack
scenario is also sketched.

1) Changing the vote for an unattentive voter. In this scenario, the
voter proceeds with the normal voting process and the attacker intercepts
the process just before the review ballot is displayed. The attacker steals
votes by assigning them to the candidate who s/he desires to win. The
modified vote is displayed on the DRE review screen and the change is
printed on the RTAL tape. Because the voter is unattentive, s/he will not
look at the screen nor the RTAL. However, if the voter does check the
screen or the printed output and discovers that an error has been made,
s/he can recast the vote and the attacker will stop stealing votes for a
period of time. Otherwise, the attacker’s modification is stored locally
upon the voter’s confirmation (See Figure 5.2).

2) Changing the vote for a careful voter. This scenario assumes the
voters carefully cast, check the screen and printout, and confirm. However,
they are not familiar with all the details of how their votes are printed on
the RTAL tape. The attacker does not intercept the normal voting process
until after the cast ballot and confirmation screens have been shown to
the voter. At this point, the attacker changes the voter’s electronic ballot,
and the RTAL prints the modified selection. The RTAL then immediately

155

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

DRE RTALunattentive: Voter

display_review()

update_
totalVoteTallydisplay _thank_you()

Attacker

make_selection()

update_tempvote
Record

[cast_ok]

[review_ok]

print (summary_info,
 barcode)

update_tempvote
Record

[cast]
push_button()

[confirm]
push_button()

[review]
push_button()

update_screen()

print (c,r,choice)

change_vote

print (x,r,cancelled)

print (y,r,selected)

show_confirmation()

Figure 5.2: Changing an Unattentive Voter’s Vote.

prints the summary information along with the barcode.

3) Canceling or completing the vote for a fleeing voter. In this
scenario the attacker takes advantage of a fleeing voter, a voter who does
not complete the voting procedure, by intercepting the call to the routine
that enables a chirping sound, which alerts the poll worker that a voter
has fled. There are two possible scenarios depending on the voter’s vote:

1. If the fleeing voter voted against the attacker’s candidate, then the at-
tacker does nothing and lets the chirping routine perform as it should.
The poll worker then discards4 the ballot and there will be one less
vote for the undesired candidate.

2. If the fleeing voter voted for the attacker’s candidate but s/he did not
4In Ohio the votes of fleeing voters are discarded. In California, whereas the poll worker casts these

votes.

156

5.2. THE ES&S ELECTRONIC VOTING SYSTEMS

complete the voting process then the attacker completes the voting
process. This results in another vote being cast for the attacker’s
candidate.

4) Faking a fleeing voter to cancel a vote. This attack scenario is
similar to #3. However, in this case the attacker cancels the vote by making
it looks like the voter fled. In particular, if the voter did not choose the
candidate that the attacker wants, the attacker intercepts the confirmation
process and pretends to cast the ballot: the normal “thank you” screen is
displayed, but nothing is printed on the RTAL tape. After some amount of
time elapses (during which the voter most likely leaves the voting booth)
the attacker directs the system to display the confirmation screen. Then
after another reasonable amount of time has passed the attacker calls the
chirping sound routine and the machine immediately starts chirping. A
poll worker will think the voter was a fleeing voter and the ballot will be
discarded (see Figure 5.3).

In the above attack scenarios, various low level details that are not the
interest of formal specification and verification are omitted. All the descrip-
tions we give are completely from view point of formal methods. Their
corresponding formal specifications will shortly be discussed in terms of
threat actions. Moreover, these are not the only attack scenarios for ES&S
voting system. Unfortunately, not all are interesting to specify and/or an-
alyze against the model under analysis. In the contrary, for some attack
scenarios we cannot provide their corresponding formal specifications, as
they are too low-level to specify and are implementation specific in some
cases.

157

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

Pollworker DRE RTALfleeing: Voter Attacker

display_review()

display_thank_you()

make_selection()

update_tempvote
Record

[cast_ok]

[review_ok]

show_confirmation()

chirping ()

reject_vote()

print (c,r,choice)

[against_vote]
fake_confirm()

update_tempvote
Record

update_screen()

[review]
push_button()

[cast]
push_button()

[confirm]
push_button()

make_delay()

call_chirping_routine()

show_confirmation()

Figure 5.3: Canceling a Vote by Faking a Fleeing Voter.

5.3 Reverse Synthesis Approach

Fairness and security of electronic elections depend upon a careful alloca-
tion of requirements to the procedures and to the systems used. In fact,
the correct behavior of the electronic systems can be guaranteed only when
they are used according to their operating specifications. This has to be
guaranteed by the procedures and the people responsible for executing
them. For example, there is no way for an e-voting machine to prohibit
the same person from casting multiple ballots, if the poll workers enable
the machine for voting multiple times. This behavior can be prevented (or
revealed after the election) only by enforcing and verifying the procedures
that the poll workers are supposed to follow. In contrast, there are other
fundamental properties that the procedures can only partially assure. In

158

5.3. REVERSE SYNTHESIS APPROACH

this case, the e-voting systems must guarantee that these properties are
satisfied. Using the example we just made, the machine must ensure that
a voter can cast at most one vote, given that the poll workers follow the
prescribed procedures.

Analyzing such requirements and their allocation is therefore impor-
tant in two respects. First, it helps to ensure that the systems meet the
necessary reliability and dependability goals. Second, it helps to better
understand how different allocation of requirements between systems and
procedures could improve the overall security of the election process so
that we can build the next generation of e-voting machines.

However, in order to achieve these goals, we need an approach that
allows us to easily experiment and reason about, for example, different
allocations of requirements. At the same time, it has to be precise and
exhaustive, so that security and dependability consequences of any specific
choice are highlighted. Formal techniques clearly fit both needs. Our goal
in this chapter is not to show end-to-end verification nor development of the
e-voting system using formal methods. However, we wish to demonstrate
how their use can help ensuring fair elections.

Figure 5.4 depicts our approach for the reverse synthesis process. In the
figure, the “nominal” behavior refers to all the intended operations of the
system under analysis. By contrast, the “non-nominal” is meant to de-
scribe those behaviors of the system that deviate from intended operations
of the system due to attack actions. More specifically, we derive formal
specifications along with critical security requirements for the ES&S sys-
tem. The specification of the system and the security critical requirements
are mainly derived from available information sources: the EVEREST re-
port (McDaniel et al. 2007), the ES&S election day checklist and user’s
manual (Inc. ES&S 2007), a video5 that shows how the ES&S system

5http://www.essvote.com/HTML/voter outreach/ivotronic flash.html

159

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

formalizes

describe
nominal

behavior of

ES&S
Checklist
Manuals

ES&S Machine
Next Generation
Voting machine

ES&S
Operational

Videos

Model'
(ASTRAL

Specification)

EVEREST
Report

describes
non nominal
behavior of

formalizes

Formal
Specification
Generic DRE

based on

formally
specifies

behavior of

Model
(ASTRAL

Specification)

Figure 5.4: The approach of Formal Specification and Verification by Reverse Synthesis.

works on election day, and other requirements suggested in the literature
(e.g., (Mercuri 2001, Volkamer and McGaley 2007, Sastry 2007, McGaley
2008)). Using formal analysis tools, we can assess the strengths and weak-
nesses of the system. Results or feedback gained from the formal analysis
can be a basis for specifying and analyzing generic requirements from which
the next generation of voting machines can be built. The analysis tools we
use are the proof guidance strategies by Kolano (1999) and the SRI PVS
analysis tool (Owre et al. 1993, SRI).

Moreover, we believe that besides analyzing the system against its re-
quirements, it is equally important to perform analysis under malicious
circumstances where the system execution model is enriched with attack
behavior. Notice that the first model we build for the ES&S system only
specifies the intended behaviors of the system —i.e., Model in Figure 5.4.
Therefore, we should specify and extend the model with some generic at-
tacks that may defeat some behaviors of the system, and analyze the re-
sulting model against the security properties. A successful analysis on the

160

5.4. OVERVIEW OF THE ASTRAL LANGUAGE

resulting model (i.e., Model’ in Figure 5.4) can reveal important informa-
tion about the system, which in turn helps detecting missing requirements
or unwarranted assumptions about the specification we developed. In ad-
dition, this allows us to sketch countermeasure strategies to be used when
the system behaves differently than it should and to build confidence about
the system under development.

5.4 Overview of the ASTRAL language

ASTRAL (Kolano et al. 1999) is a high-level formal specification language
designed for reactive systems. The language constructs allow one to build
modularized specifications of complex systems using state machines. AS-
TRAL provides a mechanism for specifying critical system requirements as
first order formulas, and a formal proof system for proving that the system
actually meets the stated requirements. An ASTRAL specification of a
system consists of a global specification and process specifications. The
global specification contains declarations of the process instances, global
constants and non-primitive types (which may be shared by process in-
stances), and system level critical requirements.

An ASTRAL process specification presents an abstract model of what
constitutes the process (types, constants, variables), what the process does
(state transitions), and the critical requirements the process must meet.
The process being specified is thought of as being in various states, with one
state differentiated from another by the values of the state variables, which
can be changed only by means of state transitions. A transition is modeled
by entry and exit conditions, and a non-zero duration is assigned to each
entry/exit pair. Specification exceptions are handled explicitly by adding
except/exit pairs in addition to the normal entry/exit pairs. Transitions
are executed as soon as the entry conditions are satisfied assuming no other

161

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

transition for that process instance is executing.
Every ASTRAL process can export both state variables and transitions.

As a consequence, the former are readable by other processes while the
latter are executable from the external environment. Interprocess commu-
nication is accomplished by broadcasting the value of exported variables,
as well as the start and end times of exported transitions. In addition to
specifying system state (through process variables and constants) and sys-
tem evolution (through transitions), an ASTRAL specification also defines
system critical requirements and assumptions on the behavior of the envi-
ronment that interacts with the system. The behavior of the environment
is expressed by means of environment clauses, which describe assumptions
about the pattern of invocation of external transitions. Critical require-
ments are expressed by means of invariants and schedules. Invariants rep-
resent requirements that must hold in every state that may be reached from
the initial state, no matter what the behavior of the external environment
is, while schedules represent additional properties that must be satisfied
provided that the external environment behaves as assumed.

5.5 Formal Analysis of an e-voting System

As noted previously, e-voting systems resemble a real-time system which
consists of various components all working together aiming to run a correct
and trustworthy election. We turn our attention in this section in specifying
each individual component of the voting machine and their communication
for enabling formal analysis. In order to do this, we need to formalize their
behaviors and properties that we wish to prove. Thereafter, first, verify
that each individual component must meet its specification when consid-
ered separately; second, analyze what happen when these components are
all together —namely, the resulting machine must satisfy certain critical

162

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

properties that we would expect a correct voting machine to meet.
We now present the specification and verification of the ES&S voting

machine by showing a sampling of the specification that, we believe, pro-
vides the flavor of the work. To make our strategy repeatable, we follow
the following generic methodology; it is a variant of the methodology we
devised for procedural security analysis in Chapter 4.

• Specify the Voting Process. During which we specify all the nomi-
nal behaviors corresponding to each component of the machine as we
discussed in Section 5.2.1.1 using the ASTRAL specification language;

• Specify Critical Requirement. During which we specify properties
listed in Section 5.2.2, procedural requirements, as well as environ-
mental assumptions about the system operation;

• Perform Formal Analysis. During which we validate the specification
and generate proof obligations for the properties using the ASTRAL
SDE. The proof obligations are then analyzed using the PVS analysis
tool;

• Specify Attacks. During which we extend the nominal specification of
the system with attack scenarios discussed in Section 5.2.3. For each
attack scenario, we specify a sequence of threat actions which each
corresponds to a transition specification in ASTRAL;

• Repeat the analysis and analyze results.

Even if it depends on the kind of analysis we wish to do, it is sufficient
to say that the above methodology can be repeated until suitable results
obtained.

To make the specification and analysis simple but without losing gen-
erality, one DRE machine per polling station is assumed. We assume also

163

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

there is one CF Card, one RTAL, and one PEB (either master or super-
visor) per DRE machine used in the election; moreover, we assume there
is one race per screen. We do not specify and verify activities related to
pre-electoral phase. Instead, if relevant, we make assumptions about these
activities in the initial assertion of the specification that these operations
have been carefully and correctly done at the central location —i.e, at the
electoral central.

It is also worth remarking that we will not specify nor analyze usability
requirements, such as “the voting device must not display any information
about the voter’s selections outside the vote casting interface; the vote
casting interface must clearly indicate to the voter whether the voting
device is in an active state or an inactive state.” However, we consider
specifying the possible states of the machine (e.g., the machine is in the
poll worker, voter, sleep or chirping mode), since such information help
us understanding the different operations that a poll worker or a voter
experiences when interacting with the machine.

5.5.1 Specification of the ES&S Voting Process

We formulate each component of the ES&S voting system as an ASTRAL
process instance (See Figure 5.5). There is a process specification for each
process type declared in the global specification —i.e., four process types
are declared in the global specification of the ASTRAL model of the ES&S
system.

PROCESSES
the_DREs: array [1..Number_Of_DRE] of DRE_Process,
the_RTALs: array [1..Number_Of_RTAL] of RTAL_Process,
the_PBEs: array [1..Number_Of_PEB] of PEB_Process,
the_CFCards: array [1..Number_Of_Card] of CFCard_Process

The above declaration indicates that there are number Of DRE DRE in-

164

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

ES&S E-Voting System

PEB

RTAL

DREDRE

DRE

CFCard

RTAL

PEB

Insert_PEB(...)

Remove_PEB(...)
Make_Selection(..)

Push_Button (...)

Turn_DRE_On (...)

RTAL

CFCard

PEB

 Remove_CFCard

Generate_Chirping,
Reset_Button_Push,
Clear_Signal,
totalTallyCount,
Signal_Enabled,
Stored_EQC, ...

Turn_DRE_Off (...)

Print_Selection
Scroll_Forward, Tape,
tapePosition,
RTAL_State...

Download_AuditData,
SerialNumber, ...

Download_Results,
Secret_EQC,Kind ,
...

Plugin_RTAL(...)

Figure 5.5: A simplified view of ES&S voting system

stances of type DRE Process in the model, where number Of DRE is a global
positive integer constant declared in the constant declaration part, and
similarly for the other components.

We defined user defined types and constants to represent useful concerns
about the ES&S system inputs and outputs, like in the following snippet
specification:

TYPE
DRE_ID: TYPEDEF p: ID (IDTYPE(p) = DRE_Process),
PrintValue, /* unspecified type*/
Title IS SUBTYPE OF String,
Candidate_Name IS SUBTYPE of String,
DecisionType: (Selected, Canceled),
Button: (RESET, EXIT, CANCEL, CLOSE, _START, NEXT,

BACK, REVIEW, CAST, CONFIRM) ,
[...]

CONSTANT
Installed_CFCard(DRE_ID): CFCard_ID,
Plugged_In_RTAL(DRE_ID): RTAL_ID
Make_Print_VoteEntry (Name, Title, Decision): PrintValue

165

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

The DRE ID line declares DRE IDs to be exactly those ids that are process
instances of type DRE Process. The DecisionType and Button are enu-
merations, that represent, respectively, the voter’s decision on a candidate
for a given contest and the buttons that can be used to interact with the
touchscreen. In contrast, the first two constants associate each DRE with
a unique CF Card and RTAL printer, which take DRE ID as an argument
and return CFCard ID and RTAL ID respectively. Make Print VoteEntry
represents the print format on the RTAL paper tape when the voter selects
or cancels a particular candidate. In addition to printing vote selection, the
RTAL also prints start and summary information for each voting session.

5.5.1.1 Modeling the DRE Process

We now discuss the DRE Process specification in detail. The below initial
clause of the DRE model states that a CF card is inserted in the machine
and that a unique RTAL printer is attached to the DRE.

INITIAL
EXISTS f: CFCard_ID

(f = Installed_CFCard (Self)
-> Which_CFCard_Installed = f

& CFCard_Installed = TRUE
& CFCardSerialNumber =

Which_CFCard_Installed.SerialNumber)
& EXISTS rt: RTAL_ID

(rt = Plugged_In_RTAL (Self)
-> Which_RTAL_Plugged_In = rt

& RTAL_Plugged_In = TRUE)

Using the import clause in the interface section of DRE Process, the
process can import globally declared types, constants, and definitions, as
well as variables and transitions exported by other processes in the system.
For instance, Installed CFCard and Plugged In RTAL are constants de-

166

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

clared in the global specification and are imported using the import clause
of the DRE Process process. Similarly, the process can also export vari-
ables and transitions which can be used by other processes. For instance,
Which CFCard Installed below is an exported variable.

VARIABLE
NumberOfSelected (Race_Num) : Non_Negative,
totalTallyCount (Candidate_Name, Title) : Non_Negative,
Which_CFCard_Installed: CFCard_ID

The DRE machine stores vote records locally and automatically forbids
overvotes, but not undervotes. The number of candidates currently selected
for a particular race and the total number of votes for a particular candidate
in a race are modeled with the fist two variables above.

The communication between the DRE and the RTAL processes is mod-
eled by the variables:

VARIABLE
Signal_Enabled: Boolean,
Which_Signal : SignalType

where the first variable signals that the DRE is sending information to
the RTAL printer and Which Signal carries the kind of information to be
printed (e.g., is the print information a start vote session message or a vote
selection).

To model permissible operations on the DRE machine, it is also nec-
essary to capture the phases of the election and the various mode of the
terminal during election day. We use the following variables:

VARIABLE
Which_Phase: Voting_Phase,
Terminal_Mode: Mode,
DRE_State: Terminal_State,

167

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

that indicate, respectively, the phase of the election (pre-voting, during vot-
ing, and post-voting phases), the terminal mode (Figure 5.6), and the state
of the poll (opening, opened, closing, or closed). The last two variables
are only meaningful during the actual election day —i.e., Which Phase =
During Voting.

Terminal Mode
Deactivated

pollworker voter

chirping

sleeping

Figure 5.6: The possible states of the DRE terminal mode.

When a voter casts a vote, s/he is actually interacting with the system
by navigating from one screen to another using an appropriate button
(such as NEXT or BACK). We model such interaction by assigning an integer
number to each screen shown to the voter and by defining a function that
takes as input a screen number and returns the information to be displayed
and the buttons available. The variable Display of type screen, is used to
hold the state of the screen as it is to be shown to the voter while s/he
is voting. For example, if the voter is in one of the race screens then the
value of the Display contains the candidates of that race with appropriate
button(s) displayed on it.

Once we capture the relevant data structures that allow to hold infor-
mation about the DRE, the next step is modeling the behavior of the DRE
itself using ASTRAL transition specifications. Namely, each operation that
triggers behavioral change to DRE is encoded as a transition in ASTRAL.

168

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

An example of such operations is the insertion of PEB into the DRE by a
poll worker changes the current state of the DRE to some other state.

The following code models the activation of the machine for the election:

TRANSITION Turn_DRE_On
ENTRY [TIME : T_D_On_Dur]

Terminal_Mode = Deactivated
& DRE_State = Initial_State
& Which_Phase = Pre_Voting
& EXISTS cf: CFCard_ID

(cf.SerialNumber = Stored_CFCardSerialNumber
& Which_CFCard_Installed = cf & CFCard_Installed)

& ˜MachineTurnedOn
EXIT
MachineTurnedOn

The entry assertion for this transition specifies that the election is not
started (i.e., the terminal is not activated, the DRE is in its very first
state, and the current phase of election is “before election”), a properly
programmed CF Card is already installed (this is done at Election Central
and a tamper-evident security seal is usually placed over the CF slot), and
the DRE is currently off. The exit assertion for the transition indicates
that DRE machine is now turned on for the next operation.

In contrast, the transition

TRANSITION Turn_DRE_Off
ENTRY [TIME : T_D_On_Dur]

Which_Phase = Post_Voting
& Terminal_Mode = Deactivated
& EXISTS card: CFCard_ID

(card.SerialNumber = Stored_CFCardSerialNumber
& Which_CFCard_Installed = card)

& CFCard_Installed
& MachineTurnedOn

EXIT

169

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

˜MachineTurnedOn

models the effect of turning the machine off.
An ES&S DRE requires a poll worker to insert a qualified PEB device

in order to allow various operations to run the election. These operations
include loading the appropriate ballot, opening or closing polls, initializing
the ballot, collecting election results, and performing various administra-
tive tasks. We modeled all these aspects with appropriate transitions.

The following snippet specification encodes the ballot loading operation
prior to start election.

TRANSITION Insert_PEB (p: PEB_ID)
ENTRY [TIME : I_P_Dur1]

MachineTurnedOn
& Stored_EQC = p.Secret_EQC
& p.Kind = Master & ˜PEB_Inserted
& Terminal_Mode = Deactivated
& Which_Phase = Pre_Voting
& DRE_State = Initial_State & ˜Ballot_Loaded
& FORALL R: Race (

Race_Candidates (R) = EMPTY)
EXIT

Which_PEB_Inserted = p & PEB_Inserted
& (FORALL R: Race

(Race_Candidates (R) = P.Candidates_Of_Race (R)))
& Ballot_Loaded

[...]

Once the ballot is loaded while inserting the PEB, the poll worker must
remove the inserted PEB safely. This is done by calling Remove PEB tran-
sition. The result of the remove operation, in the nominal case, is changing
the state of the system to allow voting and putting the machine in sleep-
ing mode (i.e., Which Phase = during voting, DRE State = Opened, and

170

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

Terminal Mode = sleep mode). In other words, this indicates that it is
now voting time, the poll is opened for election, and the terminal mode
goes to sleep.

The initialization of a ballot when a qualified voter comes is specified
in the model by the transition

TRANSITION Initialize_Ballot
ENTRY [TIME : I_B_Dur]

DRE_State = Opened & Terminal_Mode = pollworker
& (EXISTS p: PEB_ID

(Which_PEB_Inserted = p & PEB_Inserted))
& Proceed_Ballot_Init & ˜Ballot_Initialized

EXIT
FORALL R: Race (

Displayed_Candidates (R) = { SETDEF
C: Candidate (C ISIN Race_Candidates (R)) })

& FORALL R: Race, C: Candidate
(C ISIN Displayed_Candidates (R)

& Picked (Candidate_Name (C) , Race_Title (R)) = FALSE)
& FORALL R: Race (Number_Of_Selected (R) = 0)
& Ballot_Initialized & ˜Proceed_Ballot_Init
& underVotedRaces = EMPTY

The entry conditions specify that the poll has to be opened in the poll
worker terminal mode, the PEB is inserted, and the ballot has not been
initialized for the voter who is ready to cast her/his vote. It should be
noted that the voting procedure usually allows voting after scheduled poll
closing time as long as a qualified voter is still in line. The exit condition
specifies that all the variables values from the last voter are reset —i.e.,
the Picked value for each candidate-race pair, the number of selections for
each race, and the temporary vote list are all reset. Therefore, the ballot
is ready for the next voter, and the local variable Ballot Initialized is
set to true.

171

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

There are four nominal situations in which the PEB can be removed:

1. after the poll worker loaded ballots prior to opening the DRE terminal
for voting;

2. after the poll worker initialized the ballot for the next voter during
the voting phase;

3. after the poll worker performed administrative operations (such as
after correcting the chirping terminal mode) during the voting phase;

4. after the poll worker downloaded the election results after the terminal
is closed for election.

If the Remove PEB transition has been fired because the poll worker
initialized (see below) the ballot, then the terminal mode changes to voter
mode, the current screen becomes the starting screen for the eligible voter
with a START button on it.

[...]
/*Removing the PBE after the ballot has been initialized for the voter.*/

Terminal_Mode = voter_mode & scrName = START_SCREEN & scrNumber = 0
& Screen_Buttons (scrNumber) BECOMES START_BUTTON
& Min_Display (scrNumber) BECOMES Display_Info

(Push_Start_Button_To_Start_Voting,
Screen_Buttons (scrNumber))

[...]

In a touchscreen based voting system, a voter makes a choice or changes
a previous choice by touching the candidate name on the display. In either
case, the DRE must capture and process the touch correctly. Noticed that
we assume one race per screen. In reality, however, a screen can display
more than one race. As noted before, we assigned an id (as numeric number
and name) to each screen. Our specification can be extended for multiple

172

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

races per screen, e.g., by introducing a variable with two parameters one
related to the screen number and the other related to a race id. However,
our assumption of one race per screen is sufficient for the analyses we wish
to perform.

We introduce an exported transition called Make Selection, which must
be called from external model. This transition captures the facts described
above. With this transition, the voter first interacts with the screen that
presents the ballot choices (by using Push Button transition as shown be-
low). After making their selections, control flow passes to the screen upon
calling Push Button transition that performs a limited role: presenting the
voter’s prior selections and then waiting for the voter to either choose to
modify their selections, or choose to cast and then to confirm their ballot.

TRANSITION Make_Selection (cName: Name)
ENTRY [TIME : M_S_Dur]

Which_Phase = during_voting & Terminal_Mode = voter_mode
& Race_Screen (scrNumber) & currentRace = Which_Race(scrNumber)
& Display(scrNumber) =

Display_Contest (Race_Title (currentRace),
Displayed_Candidates(currentRace),
Screen_Buttons (scrNumber))

& EXISTS C: Candidate
(C ISIN Displayed_Candidates (currentRace)

& Candidate_Name (C) = cName)
& ˜Signal_Enabled

The above code specifies the occurrence of a screen touch on a particu-
lar candidate’s name. On entry, the DRE checks that the voter is voting
during voting period, the terminal is in voter mode, the current screen
is a race screen displaying both the current race with its candidates and
the button(s) required to navigate through the screen, the touched candi-
date cName belongs to the displayed candidates, and that the DRE is not

173

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

currently sending a signal to the RTAL. We used Picked variable to de-
termine whether the candidate has been previously selected. This variable
will eventually be used to update the totalTallyCount for the selected
candidate name cName when the ballot is confirmed. The exit assertion for
the Make Selection transition is

EXIT
IF ˜Picked’ (cName,Race_Title (currentRace’)) THEN

IF Number_Of_Selected’ (currentRace’) + 1
<= Max_Choice_Per_Race (currentRace)

THEN /*over-vote is not attempted.*/
Number_Of_Selected (currentRace’) BECOMES

Number_Of_Selected’ (currentRace’) + 1
& Picked (cName, Race_Title (currentRace’)) BECOMES TRUE
& Display (scrNumber’)

BECOMES Update(Display’ (scrNumber’),cName,Marked)
& tempVoteRecord (currentRace’)

BECOMES tempVoteRecord’ (currentRace’) UNION
SETDEF C: Candidate (Candidate_Name (C) = cName)

/*set variable value for the RTAL to print.*/
& pickedName = cName & pickedValue = Selected
& Signal_Enabled & Which_Signal = Vote_Signal
& currentRace = currentRace’

ELSE /*else over-vote is attempted.*/
Min_Display (scrNumber’) BECOMES

Display_Info (OverVote_Prohibited, NoButton)
FI

ELSE /*else, cancel the previous choice.*/
Number_Of_Selected (currentRace’)

BECOMES Number_Of_Selected’ (currentRace’) - 1
& Picked (cName,Race_Title(currentRace’))

BECOMES FALSE
& Display (scrNumber’)

BECOMES Update(Display’(scrNumber’),cName,UnMarked)
& tempVoteRecord (currentRace’)

BECOMES tempVoteRecord’ (currentRace’) SET_DIFF

174

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

SETDEF C: Candidate (Candidate_Name (C) = cName)
[...]

There are two possible cases when a voter marks a candidate on the
screen:

1. Making a selection. In this case, the following scenario occurs: as
long as there is no overvote attempted the number of selections for
this candidate for the current race is incremented by one, Picked is
set to true, the current screen is updated, and cName is included in
tempVoteRecord, which will be used to display the voter’s final selec-
tion when the voter requests a preview. In addition, the exported vari-
ables pickedName, currentRace, pickedValue and Which Signal
receive new values, and the signaling variable is set to true. This in-
dicates that the RTAL can now print the selection expressed in these
exported variables. Otherwise, the voter attempted to overvote and
the DRE will display the appropriate message on the screen.

2. Canceling a previous selection. In this case, the exit assertion specifies
that the number of selected candidates for the current race is decre-
mented by one, Picked is reset to false, and cName is removed from the
tempVoteRecord. The rest of the variables are updated accordingly
and cancellation expressed in these exported variables information are
sent to the RTAL.

A voter and a poll worker interact with the screen while casting votes
and administrating the election. The encoding of how the DRE handles
these button pushes is very difficult, as it requires to understand the various
information flow corresponding to each button push activity. We encoded
all the logics related to each button push by introducing a transition called
Push Button (b : Button), which is an exported transition. It has a num-

175

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

ber of entry/exit pairs corresponding each button. Therefore, for each
button we defined the corresponding entry/exit pair.

For instance, the entry and exit assertions that corresponds to the START
button are as follows:

ENTRY
/*Case1: Start button.*/

b = START_BUTTON & b ISIN Screen_Buttons (scrNumber)
& scrName = START_SCREEN & scrNumber = 0
& ˜Button_Pushed (b) & Which_Phase = During_Voting
& Terminal_Mode = voter_mode & ˜Signal_Enabled

EXIT
Button_Pushed (b) BECOMES TRUE & scrNumber = 1
& currentRace = Which_Race (scrNumber)
& Screen_Buttons (scrNumber) BECOMES NEXT
& Display (scrNumber) BECOMES Display_Contest (

Race_Title (currentRace),
Displayed_Candidates’ (currentRace),
Screen_Buttons (scrNumber))

& voterNumber = voterNumber’ + 1
& ˜Ballot_Initialized

/* Make available for RTAL to print. */
& RTALMessage = VOTE_SESSION_STARTED
& Signal_Enabled & Which_Signal = Start_Signal

The first five conjuncts specify conditions about the button and the current
screen. They specify that the button that the voter pushed is START, the
button should be in the screen button list for the current screen, the current
screen is START SCREEN, the corresponding screen number equals zero, and
the button is not pushed. The next two conjuncts deal with election period
and the status of the DRE terminal. The election phase must be during
voting and the terminal mode is voter mode. In contrast, the exit assertion
indicates that the voter has pushed START button, the screen number is
incremented by one, the current screen displays the first race, and the only

176

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

button available to push is NEXT, the number of voters who visited the poll
is incremented by one, and since the voter is already started voting, thus,
the Ballot Initialize is reset to false. In addition, the DRE updates the
value of Signal Enabled, Which Signal, and RTALMessage to be printed
out on the paper tape.

The entry assertions for the rest of entry/exit pairs are more or less
identical to the the first five conjuncts of the start case except the button
being pushed is different in each case (with additional conjuncts if appli-
cable). The exit assertion, however, for each individual button press can
be different depending on which button was pushed.

After the voter has completed all of his/her votes, the voter has to cast
and confirm his/her choices. Once the voter touches the CAST button and
confirms the vote by touching the CONFIRM button, the DRE updates the
total tally in the exit assertion of confirm. Note that when the voter reaches
the end of the ballot, they will be prompted to press the REVIEW button.
When the REVIEW button is pressed the voter will be notified of any un-
voted, or undervoted contests or if the ballot has been left blank. The
voter has the option of reviewing their ballot (by using the BACK button)
and making any changes before casting their ballot. Pressing the CONFIRM
button will cast the ballot.

[...]
/* Store the vote locally because the voter has confirmed.*/

FORALL C: Candidate, R: Race
(C ISIN Displayed_Candidates’ (R)
& (IF

Picked’ (Candidate_Name (C) , Race_Title (R))
THEN
TotalTallyCount (C, R) = TotalTallyCount’ (C, R) + 1

ELSE
NOCHANGE (TotalTallyCount (C, R))

FI))

177

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

& (IF
Min_Display’ (scrNumber’) =
Display_Info (Ballot_Not_Completed, Screen_Buttons’(scrNumber’))

THEN
NumberOfLogEntry = NumberOfLogEntry’ + 1
& EventLog (NumberOfLogEntry) BECOMES underVotedRaces’
& underVotedRaces = underVotedRaces’
& RTALMessage = BALLOT_ACCEPTED_UNDERVOTE

ELSE
RTALMessage = BALLOT_ACCEPTED
& underVotedRaces = NoUnderVotedRace

FI)
[...]

In addition to updating the total tally, the DRE keeps track of log data
(such as undervotes races, if they exist, in underVotedRaces).

When a voter flees (it leaves without confirming the vote), the iVotronic
makes a chirping sound after reasonable time, which alerts a poll worker
to attend the terminal. This is captured by the following transition

TRANSITION Generate_Chirping
ENTRY [TIME : G_C_Dur]

((scrNumber >= 0
& scrNumber <= Number_Of_Race + 2
& Now - 10 >= Change (scrNumber))
| (Call (Make_Selection) - Call[2](Make_Selection) >=10))

& Terminal_Mode = voter_mode
EXIT

Terminal_Mode = chirping

In the ES&S voting system, the DRE is also responsible for clearing
the previous signal value and the button push, by performing the tran-
sitions Clear Signal and Clear Button Push, respectively. We omit the
discussion of the remaining transitions since they follow more or less similar
pattern with the transitions discussed so far.

178

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

5.5.1.2 Modeling the RTAL Process

The RTAL collects the output sent by DRE internally, mostly for auditing
purposes. Namely, it prints vote actions exported by the DRE on a paper
tape. In our specification, the RTAL is specified by an instance of type
RTAL Process. The paper tape contains a list of voter records, where each
individual voter record is a continuous sequence of voter actions.

These are captured by the following variables.

VARIABLE
Tape (Pos_Integer) : PrintValue,
tapePosition: Tape_Number, /*positive integer*/
RTAL_State: RTALState,
summaryPrinted: Boolean,
VoteStartPosition (Voter_Number) : Tape_Number,
VoteEndPosition (Voter_Number) : Tape_Number

The Tape variable represents the RTAL paper tape where the start infor-
mation, vote selection, and summary information are continuously printed
for each voter. After each print, the RTAL tapePosition is incremented
appropriately. The variables RTAL State and summaryPrinted, respec-
tively, are used for keeping track of the current state of the RTAL and
determining whether the summary information has been printed. This
is to know when to scroll the tape forward by some amount in order to
protect the secrecy of the previous voted ballot. Moreover, the variables
VoteStartPosition and VoteEndPosition delineate the voter record on
the paper tape. In fact, the model of the RTAL process is similar as an
array of continuous values of votes. Each time a voter makes a choice
the corresponding record is inserted into the array and at the end of each
vote confirmation empty values are appended to represent the rewinding
operation of the RTAL.

Along the above line, there are two main behaviors of RTAL that are of

179

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

interest of specification: printing actions and rewinding the printer tape for
secrecy reason, after printing the summary information on the tape. The
former is modeled by Print Selection transition. The latter, whereas is
modeled by Scroll Forward transition.

TRANSITION Print_Selection
ENTRY [TIME : P_S_Dur]

My_DRE.Plugged_In
& My_DRE.Signal_Enabled
& RTAL_State = Wait
& My_DRE.Which_Signal ˜= NoSignal

The first three conjuncts in the entry assertion specify that the RTAL has
been plugged in to the DRE, that the DRE has sent a signal, and RTAL
is waiting for the DRE signal to print. The fourth conjunct specifies what
type of information the RTAL is signaling to print.

(IF (My_DRE.Which_Signal = Start_Signal
| My_DRE.Which_Signal = Vote_Signal)

THEN
tapePosition = tapePosition’ + 1
& CutLengthCounter = CutLengthCounter’ + 1
& (IF

My_DRE.Which_Signal = Start_Signal
THEN
[...]

ELSE /*voting entry printing*/
Tape (tapePosition) BECOMES

Make_Print_VoteEntry (My_DRE.pickedName,
My_DRE.currentRace, My_DRE.pickedValue)

FI)
ELSE /*Summary printing*/

tapePosition = tapePosition’ + 3
& CutLengthCounter = CutLengthCounter’ + 3

180

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

& Tape (tapePosition - 2) =
Make_Print_Info (My_DRE.RTALMessage)

& Tape (tapePosition - 1) =
Make_Print_Undervote (My_DRE.underVotedRaces)

& Tape (tapePosition) =
Make_Print_BallotBarcode (My_DRE.BallotBarcode)

& (FORALL i: Tape_Number
(i ˜= tapePosition & i ˜= tapePosition - 1

& i ˜= tapePosition - 2
-> NOCHANGE (Tape (i))))

& VoteStartPosition (voterNumber) BECOMES
tapePosition - CutLengthCounter + 1

& VoteEndPosition (voterNumber) BECOMES tapePosition
& summaryPrinted = TRUE

FI)

After the transition is fired, depending on what signaling mode has been
received by the RTAL, the corresponding entry is printed. Notice that each
vote record is uniquely identified by a barcode, which encodes the voter’s
ballot selections in the RTAL record without revealing the identity of the
voter. This barcode is printed on the tape along with the summary infor-
mation of the vote entry. Upon the completion of printing the summary
information, the printer is also scrolled forward by calling Scroll Forward
transition.

5.5.1.3 Modeling the PEB and CF Card Processes

The PEB device is specified by an instance of type PEB Process. As men-
tioned earlier, the PEB device —in addition to being used to load the
ballot data into iVotronic terminals prior to starting the election and to
initialize a ballot when a voter comes during election— is used to transfer
election specific data between Election Central and poll locations, which

181

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

is encoded by the variables Candidates Of Race, tabulatedData, and
copyOfBallotImages.

We mentioned that according to the ES&S voting process specification,
the DRE authenticates each PEB by its four digit EQC code (encoded by
Secret EQC variable). While all PEBs are internally identical in construc-
tion, they are discernible from one another by the read-only information
burned in the PIC: their serial number, and more importantly by their
PEB kind, namely either “master” or “supervisor”. In our specification,
we only use PEB kinds to distinguish PEBs (i.e., Kind : PEBKind).

The most important aspect to specify about the behavior PEB process
is that after the terminal is closed, the poll worker uses the master PEB
to collect and store the tabulated data and copies of the “images” of the
ballots. This is specified by the transition Download Results.

[...]
/*Download the election result */

FORALL C: Candidate, R: Race
(C ISIN D.Race_Candidates (R)

-> tabulatedData (C, R, D) = D.TotalTallyCount (C, R))
&

/*Dump copy of ballot images into this PEB. */
copyOfBallotImages (D) BECOMES Download_BallotImage (
{ SETDEF Pair: Race_Candidates_Pair (

EXISTS R: Race (Pair [Contest] = R
& Pair [Nominees] = D.Race_Candidates (R))) })

[...]

On the other hand, the CF card is specified by an instance of type
CFCard Process. An audit file is saved automatically to the card (see, the
Download AuditData transition below) when the polls are closed. From
a formal specification point of view, however, we are only interested in
the audit log file, which contains the undervoted races and the number of
fleeing voters, indicated by the following variables:

182

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

VARIABLE
EventLog (Pos_Integer): Races,
numOfFleeingVoters, visitedNumberOfVoters : Non_Negative,
ADDownload_Completed: Boolean

We mentioned that there is one CF card per DRE machine used in
the election. This card is uniquely identified by its serial number —i.e.,
SerialNumber: Digit List. When the polls are closed, an audit file is
saved automatically to the CF Card. In other words, upon closing the
terminal while the master PEB is inserted, the DRE automatically enables
the CF card to save audit data. From a formal specification point of
view, however, we are only interested in the audit log file, which contains
the undervoted races and the number of fleeing voters. This activity is
modeled by Download AuditData transition.

In summary, the complete ASTRAL specification of the ES&S voting
process is approximately 1500 lines (33 pages long). We skipped a number
of descriptions about the specification of each component6.

5.5.2 Critical Security Requirements

Once we modeled the components of the ES&S system and their evolution,
we need to model what critical requirements each individual component
and the system as whole should meet, given that the assumptions about
the behavior of the system and the external environment that interacts
with the system. In particular, we specify two classes of requirements
about the ES&S voting system: environmental or procedural assumptions
and security requirements.

6 The complete ASTRAL specification of the ES&S voting machine can be downloaded at http:
//ict4g.fbk.eu/people/sisai/specs/astral-specs/ESandS_Original.spec

183

http://ict4g.fbk.eu/people/sisai/specs/astral-specs/ESandS_Original.spec
http://ict4g.fbk.eu/people/sisai/specs/astral-specs/ESandS_Original.spec

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

5.5.2.1 Environment Requirements

There are a number of behaviors we need to specify about the external en-
vironment that the e-voting system relies on. The behavior of the people
(voters, poll workers, and election officials) who interact with the system
is outside the control ES&S voting system, but it influences how the sys-
tem operates. In fact, the DRE cannot control the behavior of the voter
when s/he interacts with the screen. For example, if the voter touches
the candidate name faster then DRE can process the touches, the normal
functioning of the e-voting system may be disrupted.

In addition, the procedures that control the voting process are com-
pletely outside of the e-voting system, e.g., the poll worker has to wait
some amount of time to remove the PEB after loading the ballot, or after
activating the ballot for the next active voter. However, they are equally
important to carry out a correct and secure election. Therefore, we need
to express these concerns in order to guarantee the critical requirements
that the system should meet.

Next, we discuss some of the assumptions we made for the ES&S spec-
ification. We assume that a voter will pause for some amount of time
between subsequent screen interactions. We do not make any assumption
about the sequence of user actions, since it is very difficult to predict the
user’s action while s/he interacts with the DRE. This at least guarantees
that the selection or button push is processed by the DRE. Assumptions
about poll workers’ operations on election day also need to be made. For
instance, removing an inserted PEB during the ballot retrieving process is
dangerous, therefore, the poll worker should wait until the DRE notifies
him or her to remove the PEB.

We specified a number of environment assumptions for each components.
For example, we specified ten such assumptions for the DRE under the

184

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

process type DRE Process.

ENVIRONMENT
/*min˙pause is the minimum time between two subsequent selections */

(FORALL t: time
(Call [2] (Make_Selection, t)

-> Call (Make_Selection) - t > min_pause))
&

/*min˙pause is the minimum time between two subsequent button pushes */
(FORALL t: time

(Call [2] (f, t)
-> Call (Push_Button) - t > min_pause))

&
/*Remove˙PEB will be called after the ballot is loaded into
the DRE and Notify˙Time1 units has elapsed. */

(EXISTS t: Time, p: PEB_ID
(Now >= t + Notify_Time1 & p = past (Which_PEB_Inserted, t)

& past (PEB_Inserted, t) & past (Ballot_Loaded, t)
& past (p.Kind, t) = Master
& past (DRE_State, t) = Opening
-> Call (Remove_PEB, t + Notify_Time1)))

For instance, the above clause for DRE process states that there must be
a minimum pause between two subsequent selections and button pushes.
It also specifies the fact that the poll worker should only remove the PEB
after the loading operation has passed and Notify Time1 has elapsed. All
these facts are important to proof the critical requirements, in particular
requirements that involve exported transitions.

5.5.2.2 Security Requirements

In the ES&S voting system specification discussed earlier, the DRE must
authenticate each PEB using its four digit election qualification code,
should correctly handle vote selection (specifically, it must process and
store vote selection and alert the RTAL to scroll the paper and print the

185

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

information), and periodically check for the existence of the CF card. The
RTAL printer should also be continuously working during the election pe-
riod. All these activities are essential to maintain the integrity of the elec-
tion results. In fact, the integrity of the election results depends heavily on
the integrity of the software and firmware that runs the central EMS and
the hardware used. However, this is largely dependent upon a particular
implementation and is not in the scope of this specification. Moreover, au-
dit logs serve a vital purpose, as they can alert an auditor of suspicious or
uncommon events that occurred, which could indicate the presence of ma-
licious intent against the system. Because of this, it is critically important
that an auditor is completely confident that the information retrieved from
the audit logs is complete and accurate. Therefore, the security proper-
ties we are interested in are mainly concentrate on the integrity of election
results.

We formulated each of the critical property from Section 5.2.2 as AS-
TRAL invariants, constraints, or schedules formulas. We now present ex-
amples of critical requirements specification, mostly related to the integrity
of election results.

A Compact Flash Card is installed into the DRE terminal prior to start
election, it must be present throughout the voting process. This fact is
expressed by the local invariant of the DRE Process (Property 1):

(Change (CFCard_Installed, Now)
& ˜CFCard_Installed
-> FORALL t: Time

(t >= 0 & t < Now
& past (Stored_CFCardSerialNumber, 0) =

past (Stored_CFCardSerialNumber, t)
& past (CFCard_Installed, t)))

Specifying that all voter selects/cancels are displayed on the DRE screen

186

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

(Property 5 and 6): The following constraint expresses the fact that when
a voter selects or cancels a candidate C for a given race R, the DRE screen
must be updated accordingly:

FORALL C: Candidate, R: Race
(Fill (Picked’ (Candidate_Name (C), Race_Title(R))) = UnMarked
& Fill (Picked (Candidate_Name (C), Race_Title (R))) = Marked
& Display (scrNumber’) ˜= Display’ (scrNumber’)
-> Display (scrNumber’) =

Update (Display’ (scrNumber’), Candidate_Name (C), Marked))
& FORALL C: Candidate, R: Race

(Fill (Picked (Candidate_Name (C), Race_Title (R))) = UnMarked
& Fill (Picked’ (Candidate_Name (C), Race_Title (R))) = Marked
& Display (scrNumber’) ˜= Display’ (scrNumber’)
-> Display (scrNumber’) =

Update (Display’ (scrNumber’), Candidate_Name(C), UnMarked))

A local constraint of DRE Process which indicates the fact that at any
time the number of selections for a given race R can never be more than
the allowed number of choices (Property 9):

(FORALL R: Race
(Change (Number_Of_Selected (R) , Now)
& Number_Of_Selected (R) ˜= Number_Of_Selected’ (R)
-> Number_Of_Selected (R) <= Max_Choice_Per_Race (R)))

The fact that a DRE is chirping indicates that at least ten units have
passed since the last ballot activity. This is expressed by the following
local schedule requirement of the DRE Process (Property 11):

(Change (Terminal_Mode, Now)
& Terminal_Mode = chirping

-> Call (Make_Selection) - Call [2] (Make_Selection) >= 10
| (Now - Change (scrNumber) >= 10

& EXISTS t: Time

187

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

(t <= Now
& t > Change [2] (Terminal_Mode)
& past (Terminal_Mode, t) = voter_mode)))

which says, the mode of the terminal is set to chirping if there is no user
input to the DRE within ten time units since last last screen change or the
last call to the exported transition Make Selection by the voter.

We mentioned that the RTAL must print the corresponding voter action on
the tape (Property 14). This requirement must be expressed as a schedul-
ing requirement because the printing activity depends on the signal in-
formation sent by the DRE Process through the Signal Enabled variable.
The schedule clause for the RTAL Process consists of four conjuncts, each
corresponding to a scheduling requirement. Below, we present one of them.

(My_DRE.Signal_Enabled
& past (My_DRE.Which_Signal,

Change (My_DRE.Signal_Enabled)) = Vote_Signal
& Now - Change (My_DRE.Signal_Enabled) > Max_Print_Time

-> EXISTS t: Time
(t > Change (My_DRE.Signal_Enabled)
& t <= Now & Change (tapePosition, t)
& past (tapePosition, t) =

past (tapePosition, Now -
Change (My_DRE.Signal_Enabled)) + 1

& past (Tape (tapePosition) , t) =
Make_Print_VoteEntry (My_DRE.pickedName,

My_DRE.currentRace, My_DRE.pickedValue)))

The above code states the vote entry (i.e., a record that consists of a candi-
date, race, and value of the selection) will be printed on the RTAL tape one
tape position below the previous print if the DRE has enabled the signal,
made available the information to print, and enough time has elapsed for
the choice to be printed; we omit the start and summary conjuncts.

188

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

Specifying the integrity of the election results (Property 18.4): With this
property, we want to guarantee that, after the election is closed, the results
downloaded into the master PEB must be equal to the sum of the results
collected from each DRE. The property is specified in the global invariant
clause as

/*After election, downloaded results into the master PEB must be equal to
the results produced by all DREs. */

EXISTS p: PEB_Number
(the_PEB [p] .Kind = Master
& FORALL d: DRE_Number

(the_PEB [p].ResultDownload_Completed (the_DRE [d])
& the_DRE [d].Which_Phase = Post_Voting
& the_DRE [d].DRE_State = Closed
& FORALL C: Candidate, R: Race

(the_PEB [p].Candidates_Of_Race (R) =
the_DRE [d].Race_Candidates (R)

& C ISIN the_DRE [d].Race_Candidates (R)
-> the_PEB [p].tabulatedData (C, R, the_DRE [d]) =

the_DRE [d].TotalTallyCount (C, R))))
& /*Downloaded results in the master PEB must be equal to the
printed votes on the RTAL tape.*/

EXISTS p: PEB_Number
(the_PEB [p] .Kind = Master
& FORALL d: DRE_Number, rt: RTAL_Number

(the_RTAL [rt] = Plugged_In_RTAL (the_DRE [d])
& the_PEB [p].ResultDownload_Completed (the_DRE [d])
& the_DRE [d].Which_Phase = Post_Voting
& the_DRE [d].DRE_State = Closed
& FORALL C: Candidate, R: Race

(C ISIN the_DRE [d] .Race_Candidates (R)
-> the_PEB [p].tabulatedData (C, R, the_DRE [d])

= CountSelected (C, R, the_RTAL [rt]) -
CountCancelled (C,R, the_RTAL [rt]))))

The first conjunct of the invariant says that there exists a PEB p, such

189

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

that for every DRE d in the precinct, if p is the master PEB used in d’s
terminal to download the election results after the d terminal is closed
and the election has ended (i.e., Post Voting phase), then the election
results for each candidate C who ran for race R stored in p is exactly equal
to the total tally counted on d’s terminal for candidate C. Similarly, the
second conjunct specifies that for every RTAL printer rt and DRE d in
the precinct, if rt is the printer used by d during the voting period, then
the election result for each candidate C who ran for race R stored in p is
the difference between the total number of selected and the total number
of canceled votes printed on rt.

In the above code, the CountSelected and CountCancelled are defi-
nitions make the specification more readable. More specifically, they re-
spectively introduce predicates which are used in our specification of the
voting process to specify how many selections and cancelations have been
printed for each candidate C who ran for race R in that particular RTAL
printer rt.

This way, the requirements listed in Section 5.2.2 are converted into AS-
TRAL invariants, schedules, and constraints for each corresponding process
instance. We need to be clear that we did not convert all the requirements
to their ASTRAL equivalent in the way we describe them informally.

5.5.3 Formal Verification and Results

We used the ASTRAL and the PVS (Owre et al. 1993) analysis tool to
analyze that the specification of the ES&S system meets the critical prop-
erties articulated previously. The main goal of our analysis is to provide
the maximum assurance that the ES&S specification meets its critical re-
quirements. To do that, it is necessary to generate proof obligations for
critical requirements and prove them.

ASTRAL supports two kinds of proof obligations: correctness proofs

190

5.5. FORMAL ANALYSIS OF AN E-VOTING SYSTEM

and consistency proofs. In the former case, the critical requirements of
the system are proven to hold based on the executions of each process.
In the latter case, whereas it is proven that any assumptions made in the
system are never false. Generally, both proofs obligations are useful for the
e-voting systems in order to run a correct and secure election. However,
we particularly focus on the correctness proofs of the ES&S voting system.
We mainly attempt to prove the invariants and schedules clauses related
to the components (i.e., DRE, RTAL, PEB, and CF Card) in isolation and
the system as whole to hold at all times.

5.5.3.1 Formal Verification

Before attempting the proof with a theorem prover, we should assure that
the specification contains as few errors as possible, by performing a se-
quence of less costly steps.

Quoting from Kolano PhD thesis (Kolano 1999)

“Performing proofs within a mechanical theorem prover can take
a significant amount of time and effort. Thus, there is a large
overhead associated with finding errors in a specification. The
more errors that are present in a specification when theorem prov-
ing begins, the more times a particular proof must be attempted
before it can be completed. Thus, it is desirable to be as confident
as possible that a specification is correct before a theorem prover
is invoked.”

In ASTRAL, these steps include model checking and proof sketch construc-
tion. We applied the proof sketch construction strategies (such as proof
ordering, transition steps, global and imported variable obligations, etc)
for our purpose.

The specification of the ES&S system was first constructed and type-

191

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

checked using the ASTRAL SDE. Thereafter, we validated the specification
and generated the corresponding proof obligations for the critical require-
ments. It is important to emphasize that the generated proof obligations
are that of the intra-level proof obligations, which deal with proving that
each process level satisfies its stated critical requirements and that the
top level specification is consistent and satisfies the global requirements
. Moreover, the specification was automatically translated into its PVS
counterpart using the ASTRAL SDE, which enabled the specification to
be passed to the PVS theorem prover for verification.

Before invoking the theorem prover, the ASTRAL split engine was used
to split and classify the ASTRAL specification into collections of simpler
properties that infer the whole clause so that the proof of each property
could be tackled separately. The splitter can be invoked on any section of
an ASTRAL specification that resolves to a boolean expression. Table 5.1
shows the number of invariants, schedules, and constraints for each of the
four processes and the global invariants. It also shows the number after
they are split by the ASTRAL SDE for which we discharged the proof
commands.

5.5.3.2 Analysis Results

The assurance of the ES&S specification cannot be achieved without per-
forming system proofs within the theorem prover. So far we managed
to formally verify that the specification satisfies many of the critical re-
quirements that we discussed previously, mostly the local invariants and
constraints. The proofs were achieved by following the techniques pre-
sented in (Kolano 1999). For instance, we applied the try-untimed and
try-untimed-con proof strategies to prove some of the local invariants and
constraints of the system.

In general, the proof is carried out first by splitting the critical require-

192

5.6. EXTENDING THE SYSTEM SPECIFICATION BY MODELING ATTACK
SCENARIOS

Proof Obligations After Splitting

Invar, Constr, Sched Invar, Constr, Sched

DRE 4, 6,1 10, 9, 2

RTAL 1, 1, 3 1, 1, 3

PEB 1, 0, 1 2, 0, 1

CFCard 0, 0, 1 0, 0, 2

Global 6, 0, NA 9, 0, NA

Total 12, 7, 6 22, 10, 8

Total Proved 13,7,3

Table 5.1: Number of proof obligations and number of proved critical properties.

ments and applying the appropriate proof strategies developed to support
the analysis of ASTRAL specifications. More specifically, we have proved
13 of the 22 invariants, 3 of the 8 schedules, and 7 of the 10 constraints (see
Table 5.1). We expect that the other global and local properties can be
proved using the same or similar proof techniques and strategies.

5.6 Extending the System Specification by Modeling
Attack Scenarios

Analyzing a system in non-nominal situations —where some of its com-
ponents are not behaving in the way they should be— has always been a
challenge and, at the same time, interesting. Especially, this is common in
systems engineering when performing safety assessment of critical systems.
With this kind of assessment, usually an analyst specifies each individual
behavior of a component of the system and extends it with its undesired
behaviors in order to get what it is called extended model. Following that,

193

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

we analyze the resulting model that must satisfy certain behavioral prop-
erties that we would expect a correct system to satisfy.

We want to take a similar approach but we turn our attention to the
analysis of the same security critical properties articulated previously against
the extended model. The extended model is a combination of the origi-
nal specification of the ES&S system which was discussed previously and
attack scenarios which will shortly be discussed. More specifically, we ex-
tended the original specification with a set of transition specifications that
represent known attacks that have been shown to successfully compromise
the ES&S system. Each transition corresponds to a particular threat action
for the voting system. Thereafter, we process the extended specification
and automatically generate proof obligations related to the security re-
quirements for the PVS analysis tool using the same strategy discussed in
Section 5.5.3

In particular, we wish to prove the security properties against the ex-
tended model for the following interests:

• If all of the proof obligations were to be proved, then the system speci-
fication must be missing some critical security requirements, since the
modeled attacks were already demonstrated to be successful. There-
fore, it would be necessary to see what additional critical requirements
are needed to disallow the threat actions and keep the extended spec-
ification from being proved.

• In contrast, not being able to prove the extended specification would
indicate that one, or more, threat action violates at least one critical
security requirement. However, since we know that attacks composed
of these threat actions have been used to successfully compromise
the system, it also indicates that there could be an implementation or
specification error or an unsatisfied procedural assumption that results

194

5.6. EXTENDING THE SYSTEM SPECIFICATION BY MODELING ATTACK
SCENARIOS

in the actual system or the environment not satisfying their respective
formal specification.

5.6.1 Attack Specifications

We model the attack scenarios presented in Section 5.2.3 in terms of threat
actions expressed as ASTRAL transition specifications. The system model
is extended by augmenting the specification with new possible states that
are the result of the execution of the threat actions.

In particular, the attack scenarios are encoded to extend the original
specification of the ES&S voting system using the following strategies:

1. we define new types, variables, and constants. There are two kinds of
variables that we declare: those that provide additional information
about the state of the system (e.g., the system is now about to display
the review ballot) and those that hold information about the successful
execution of a threat action (e.g., a fleeing voter has been faked).

2. a transition is defined for each threat action, which is part of a given
attack scenario. Note that one attack scenario can be implemented
using one or more threat actions.

3. a transition may be split into two or more transitions, or a transition
may be extended with more information to specify the attack scenario.

We assume that the attacker can intercept the normal voting process
at any point. For instance, if s/he intercepts the process before the review
screen is displayed and the attack is successful, then the tempVoteRecord
variable should include the maliciously modified candidate and the Display
variable should update the screen accordingly. It is, in fact, the voter’s
task to correctly verify that what is displayed exactly matches her/his
preferences.

195

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

To represent the various kinds of voters (unattentive, careful, and flee-
ing), we introduced the following global type

TYPE
VoterType : (unattentive, careful, fleeing)

In addition, the variables

VARIABLE
vote_changed, Fleeing_Faked: Boolean,
attPickedName : Name

are declared to, respectively, hold information about whether the voter’s
vote is changed (obviously, by a successful attack action), whether the
fleeing voter is faked, and the name of the attacker’s candidate. In addition,
information about where the attacker intercepts the process to start the
threat action is encoded by the (boolean) variables review displayed and
summary sent2RTAL. Namely, they respectively hold information about the
attack action happened just before reviewing the final votes and right after
the summary data are sent to the printer.

When an attacker changes or cancels a vote, it is actually performing a
sequence of interactions with the DRE process in order to fulfill the threat
action. The successful completion of such an action eventually assigns new
values to some of the exported variables above discussed.

The following transition specifies the change vote threat action, which
appears in the sequence diagram depicted in Figure 5.2.

TRANSITION Attack_Change_Vote(vc, ac :Candidate, vType: VoterType)
ENTRY [TIME ACV_Dur]

Which_Phase = During_Voting & Terminal_Mode = voter_mode
& vType = Unattentive
& EXISTS R: Race (

vc ISIN Displayed_Candidates (R)
& ac ISIN Displayed_Candidates (R)

196

5.6. EXTENDING THE SYSTEM SPECIFICATION BY MODELING ATTACK
SCENARIOS

& vc ISIN tempVoteRecord (R)
& Picked (Candidate_Name (vc), Race_Title (R)))
& ˜Picked (Candidate_Name (ac), Race_Title (R)))

& vc ˜= ac
& EXISTS b: Button (b = REVIEW & Button_Pushed (b))
& scrName = REVIEW_SCREEN & ˜Review_Displayed & ˜Vote_Changed

EXIT
EXISTS R: Race (

vc ISIN Displayed_Candidates’ (R)
& ac ISIN Displayed_Candidates’ (R)
& vc ISIN tempVoteRecord’ (R)
& tempVoteRecord (R) BECOMES

(tempVoteRecord’ (R) SET_DIFF {vc}) UNION { ac }
& Picked (Candidate_Name (vc), Race_Title (R)) = FALSE
& Picked (Candidate_Name (ac), Race_Title (R)) = TRUE
& FORALL CN:Name, R1:Title (

((CN ˜= Candidate_Name (vc)
& CN ˜= Candidate_Name (ac))

| R1 ˜= Race_Title (R))
-> Picked (CN, R1) = Picked’ (CN,R1)) & currentRace = R)

& Signal_Enabled & Which_Signal = Vote_Signal
& pickedName = Candidate_Name (vc)
& attPickedName = Candidate_Name (ac) & Vote_Changed

The enabling condition for this threat action (i.e., for the transition) spec-
ifies that the fleeing voter is voting during election period in the voter’s
terminal mode, that there exists a race R such that the voter’s candidate
vc is in the displayed candidates list for race R for which the voter already
voted, that the attacker’s candidate ac is also a legitimate candidate con-
tained in the displayed list for the same race R and it is not selected by the
voter, and the voter desire is different from the attacker (i.e., vc ∼ = ac).
In addition the voter has already requested the review screen, currently
there is nothing shown on the REVIEW SCREEN, and there is no change of

197

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

vote at the moment.
After the threat action is successfully executed (i.e., after the transi-

tion is ended) the following holds: the voter’s selection contained in the
tempVoteRecord now contains the attacker’s choice, the Picked value is
true for ac and is FALSE for voter candidate vc. In addition, the exported
variables currentRace, pickedName, attPickedName, pickedValue and
Which Signal have new values, and the signaling variable is true. This
indicates that the RTAL can now print the modification expressed in these
exported variables. The RTAL process prints this information by execut-
ing the Print Selection transition (the details of this transition can be
found in the Appendix A).

The above modification, which is contained in the tempVoteRecord vari-
able, is also displayed on the review screen. It is worth noting that both
the review screen and what is printed on the RTAL tape report the mod-
ified selection, rather than the original one. From an attacker’s point of
view, it is better to keep the display and tape consistent, because, if an
abnormality is detected, then it is more likely to be attributed to a display
miscalibration rather than to an attack. It is possible that the voter will
detect such a change. In this case, the voter can recast his/her vote by
calling the Push Button and Make Selection transitions.

The Faking a Fleeing Voter attack is an example of a scenario that
requires several threat actions. The canceling of votes by faking a fleeing
voter has three threat actions (as depicted in the sequence diagram, see
Figure 5.3). The threat actions are specified as three transitions in the
DRE process:

1. Attack Change Vote. This is an except/exit transition that specifies
the fact that an attacker fakes a fleeing voter by pretending to com-
plete the voting process on her/his behalf. The exit assertion of this
transition will set the variable Fleeing Faked to true.

198

5.6. EXTENDING THE SYSTEM SPECIFICATION BY MODELING ATTACK
SCENARIOS

2. Attack ReDisplay. This transition specifies the fact that after some
delay (during which time the voter leaves the booth) since the voter
is successfully fooled, the attacker directs the DRE to display the
confirmation page again.

3. Attack Call ChirpingR. This specifies that after the voter has been
fooled and DelayTime has passed, the attacker resumes the normal
voting process by calling the chirping routine. This results in the poll
worker taking action according to the prescribed procedure. (This
transition is only enabled after the first two transitions have been
executed.)

We say the canceling of votes is successful only after transition #3 has
been executed. We omit the formal specifications for these threat actions,
which are specified similarly to the others described earlier.

5.6.1.1 Verifying the Extended Specification

After extending the system specification with the threat actions, the AS-
TRAL SDE is used to generate the proof obligations for the extended spec-
ification. Because there are additional transitions, there are more proofs
to be done. In addition, because some of the original transitions were split
and/or extended, the corresponding proof obligations must be reproved.
In order to prove, the requirement we followed the same procedure dis-
cussed in Section 5.5.3. However, the proofing process is very complex in
the extended model.

We have just begun the verification process for the extended specifica-
tion. We started with the proof obligations that were unchanged to assure
that they are still valid. So far, we have reproved 4 of the 13 invariants
and 2 of the 7 constraints (see Table 5.2).

199

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

Proof Obligations After Splitting

Invar, Constr, Sched Invar, Constr, Sched

DRE 4, 6,1 10, 9, 2

RTAL 1, 1, 3 1, 1, 3

PEB 1, 0, 1 2, 0, 1

CFCard 0, 0, 1 0, 0, 2

Global 6, 0, NA 9, 0, NA

Total 12, 7, 6 22, 10, 8

Total Proved 4/13,2/7,0/3

Table 5.2: Number of reproved proof obligations after extending the original specification
with attack information.

5.7 Summary

In this chapter, we have shown how formal verification techniques can be
used to model and reason about the security of e-voting systems. Our
approach consists of formulating each individual component of the voting
system as process instance in ASTRAL, specification and verification of
critical security properties about individual component and the system
as whole. On the other hand, we specified the attack scenarios that are
reported by academic studies on the security testing and analysis of such
systems. Namely, along the line of nominal behavior specification, we
model and specify attacks. We extend the specification that describe the
nominal behaviors of the system under analysis by augmenting the attack
model. Thereafter, we attempted to analyze the extended model against
the same set of critical requirements as the nominal model should meet.
The threat actions that we specified in the extended system were those
needed to model the specific scenarios presented in (McDaniel et al. 2007).

200

5.7. SUMMARY

We admit that the proof results we presented are not complete. The
reason is, when we started proving the proof obligations for the original sys-
tem specification we were slowed down due to changes in the PVS theorem
prover. We have now updated the ASTRAL environment to be consistent
with the latest version of PVS, and we plan to have all of the properties
proved in the near future.

Although our approach provides certain benefits over existing works in
the area, it is in no way a verification “silver bullet”. As with any for-
mal verification technique, it requires the use of formal languages, various
analytic tools including a theorem-proving system, and considerable skill
on understanding the various information sources as well as understanding
various components of the system. Additionally, we must be clear that
this research work does not consist of a novel specification technique nor
a novel voting system. However, it clearly shows how formal methods can
be effectively used for the specification and verification of e-voting systems
in order to guarantee the correctness of the system.

201

CHAPTER 5. FORMAL ANALYSIS BY REVERSE SYNTHESIS

202

Chapter 6

Conclusion

6.1 Summary and Discussion

The fast-paced diffusion of ICTs in numerous walks of life (e.g., public
administration) not only offers attractive benefits but also emerges with
side-issues worth considering. Deploying ICTs in a safe and secure manner
requires ensuring the technical and procedural levels of assurance with
respect to social and regulatory frameworks. However, existing remedies
are not matured enough to embrace procedural implications and the need
for multidisciplinary approach on the safe and secure operation of system.

The usage of techniques and tools (such as BPR, software engineering
and formal methods) for modeling, specifying, analyzing, as well as devel-
oping a system has been receiving much effort from several active research
groups. However, there are still many open issues for research, e.g., a
method that considers procedures as part of the analysis is absent. Note
that threats and attacks may not only derive from pitfalls in the systems,
but also from ill-designed procedures. Under this view, one must be cog-
nizant of how endowing a system with a violation of its procedures impacts
the system’s goals. These challenges, among others, motivated this work.

In spite of the potential advantages e-voting brings to the polling station
such as improved turn out, accessibility for impaired people, and improved

203

CHAPTER 6. CONCLUSION

accuracy and speed, its adoption in various countries has been slow and/or
cause of debates and controversies. One of the reasons is that e-voting
machines are complex real-time embedded systems required to operate in
a (possibly) hostile environment. Another and more relevant reason is the
poor design and implementation of (some of) the systems currently de-
ployed for elections in the US and other countries, as different studies have
reported and demonstrated. Such weaknesses expose e-voting systems, and
consequently elections, to threats and attacks, resulting in effects ranging
from a “denial of service” (e.g., stopping the election in a polling station
by sabotaging some e-voting machines) to alteration of the results (e.g., by
successfully changing votes in some key precincts). As a consequence, this
would contribute for the failure to achieve public confidence or to meet the
highest democratic standards.

The main contributions of this work are: (i) a methodology for process
modeling and the provision of tool support within a general-purpose tool
offering easy-to-understand graphical description techniques. The nota-
tions and approach basically conform to the approaches proposed in the
past, and the added value is a set of rules and conventions that simplify
maintenance; (ii) formal methods based approach for security assessment
of a system and procedures; and (iii) the demonstration of the practical ap-
plicability of the presented methodologies and the tool in socially relevant
domain, i.e., in electoral domain.

Process Modeling. The presented tool-supported methodology takes
BPR concepts as the core elements for business process modeling and anal-
ysis in favor of PA processes. It provides a systematic modeling guidance
to support functional analysts in PA. The approach, on one hand, is used
to obtain unambiguous, standard (with respect to the requirements listed
in 3.1.2), and objective process models from two views. These are static
and dynamic views, using the facilities of UML notations respectively use

204

6.1. SUMMARY AND DISCUSSION

cases and activity diagrams. On the other hand, it helps to link the models
with their legal framework (in our case: the laws from which the models are
constructed), increasing the traceability between them. With this, various
users who involve in development activity are benefited. E.g, law makers
elaborate models in collaboration with software developers or process en-
gineers, and understand the impact of law or process changes as a result
of interventions due to people, processes, and technology. The VLPM tool
is employed to support the methodology with a systematic extraction and
generation of process models (as “process-tree”) from their XML represen-
tation. The applicability of the methodology and the tool has been tested
within the ProVotE project. Notice that, even if we applied the approach
mainly in electoral domain, the methodology and the tool presented in this
work can be used in other domains with some customization effort, if ap-
plicable. For that matter, we tested their applicability by taking example
from Italian Immigration law, see in (Ciaghi et al. 2009b).

One significant limitation of the tool is that it does not provide notations
and means to represent the principles behind the procedures and to reason
about possible alternative implementation. Even from the business re-
engineering point of view, such principles represent an essential part, since
they provide the framework and the constraints for the definition of new
procedures and laws. This, in turn, “moves” part of the re-engineering
activity back to the “natural language” domain, where inconsistencies and
ambiguities might arise. Moreover, the current implementation of the tool
is based on the Italian law representation system.

Security Analysis. The proposed approach is aimed to tackle (some of)
the challenges in security analysis of processes, which we called procedural
security analysis. Our work builds upon and improves those presented in
the state of the art by widening the scope of the analysis and by taking into
account aspects related to threats, procedures, and interaction of the sys-

205

CHAPTER 6. CONCLUSION

tem with its environment. Namely, we developed a generic assets-centered
methodology for the analysis. Using the approach, we have showed how to
encode executable models describing the nominal procedures using NuSMV
input language —mainly from the dynamic view of process models— and
to extend such models with possible attacks, by assuming all possible com-
bination of attacks can be made at each execution step. We have tested the
applicability of the proposed approach using core use cases taken from the
ProVotE e-voting system. Among the advantages of the approach the pos-
sibility of reasoning about threat composition (e.g., coordinated attacks;
complex and unforeseen attacks resulting from the composition of elemen-
tary threats), and the possibility of reasoning about evolution of assets
over time.

More importantly, the benefits that the proposed approach offers are the
following. First of all, using the methodology and the machinery of NuSMV
tool, it is possible to understand what are the hypotheses and conditions
under which a given security goal is achieved or breached. One can also use
the results of the analyzes to devise requirements that make organizational
and (software) systems more secure. Finally, we believe that, such results
are foundations to familiarize actors (election officials or polling officers)
with the procedural threats and attacks that happen during elections, or
otherwise anytime during the electoral phases, by complementing works
discussed in the state of the art.

Reverse Synthesis We have showed how formal verification techniques
can be used to model and reason about the security of e-voting system.
The methodology proposed for procedural security analysis is customized
and applied in the reverse synthesis. We believe that besides analyzing
the system against its requirements, it is equally important to perform an
analysis under malicious circumstances where the system execution model
is enriched with attack behavior. This is helpful in order to detect miss-

206

6.2. FUTURE WORK

ing requirements or unwarranted assumptions about the specification we
developed. In addition, this allows to sketch counter-measure strategies to
be used when the system behaves differently than it should and to build
confidence about the system under development.

Since formal methods have been recognized as powerful and effective
approaches for improving the security and quality of complex systems (such
as in flight (software) system), drawing straight connection with this can
help making better the current development of e-voting machines. There
exist several works that have been done for a system level analysis and
testing of existing e-voting systems, mainly providing a low level assurance.
Although several points remain to be addressed, this work is an important
step towards a substantially higher assurance attempting to bridge the
missing gap.

The success of the next generation of e-voting machines depends upon
being able to capitalize from the lessons learned by using and analyzing
the systems currently deployed. The work we have presented in this dis-
sertation is one way in which we can get a better understanding of the
strengths and the weaknesses of existing systems and thus lay the founda-
tions for engineering and deploying a new generation of more secure and
robust technologies for polling stations.

6.2 Future Work

Currently, follow-up work and further evaluation of the approach in this
work are on going. In line with the stated limitations, first we will evaluate
the VLPM tool extension to customize XML standard to support schema
adopted by other nations and allow for the integration of UML tools provid-
ing standard connection “ports” to the UML (e.g., XMI). Second, we will
work on further integration of the VLPM approach with goal-based frame-

207

CHAPTER 6. CONCLUSION

work named Nomos, as it offers alternative reasoning at higher level. For
that matter, a very preliminary proposal is published in (Villafiorita et al.
2010). Finally, it would be interesting to support the approach with formal
methods. This means that adding new functionalities say, e.g., “ports” to
FSAP/NuSMV-SA (see the next paragraph also), allowing automatic gen-
eration of specification into target language (e.g., NuSMV input language),
so that formal verification can be supported.

In the procedural security analysis, some research issues remain open.
In our future work, we will consider multiple instance of an asset in the
analysis. The threat-actions considered in the cast study should be en-
riched with more threat-actions. In fact, the consideration of the threat-
actions depends on the case study we choose, thus we need to precisely
isolate generic threat-actions, such that they can be customized per the
case study chosen, if applicable. Furthermore, we are currently investi-
gating the possibility of automating the threat injection on top of the
FSAP/NuSMV-SA platform. Specifically, we plan to develop a tool in or-
der to integrate and/or extend the current usage scenario of the platform,
with emphasis on procedural security analysis. The definition of a set of
generic library of attack models corresponding to threat-actions is part of
the future work. Additionally, we will conduct further research on the pos-
sibilities of integrating our approach in the Common Criteria (Common
Criteria 2007) methodology and on the evaluation procedures discussed
in (Volkamer and McGaley 2007, Volkamer 2009).

With respect to the application of formal methods, future work moves
along the line of the two main lessons drawn from reverse synthesis ap-
proach. Based on the current results, we would like to provide a generic
specification for DRE-based e-voting machines. This generic specification
could then be used as a basis for the specification and design of a new gen-
eration of e-voting systems. Additionally, the threat actions that we have

208

6.2. FUTURE WORK

specified in the extended system were those needed to model the specific
scenarios presented in (McDaniel et al. 2007). They are a minimal sam-
pling of the possible threat actions, but they demonstrate the approach on
a real system. In the future we would like to model more general threat
actions to see if new attack scenarios or missing critical requirements can
be identified.

209

Bibliography

Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. SIGPLAN Not., 36(3):104–115, 2001. 40

Ben Adida. Advances in Cryptographic Voting Systems. PhD thesis, De-
partment of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, August 2006. 8, 36, 37

Paul Alpar and Sebastian Olbrich. Legal Requirements and Modelling of
Processes in e-Government. Electronic Journal of e-Government, 3, 2005.
19, 50, 52

Rachid Anane, Richard Freeland, and Georgios K. Theodoropoulos. e-
Voting Requirements and Implementation. E-Commerce Technology,
IEEE International Conference on, and Enterprise Computing, E-
Commerce, and E-Services, IEEE International Conference on, 0:382–
392, 2007. 2

Nirwan Ansari, Pitipatana Sakarindr, Ehsan Haghani, Chao Zhang, Ari-
daman K. Jain, and Yun Q. Shi. Evaluating Electronic Voting Systems
Equipped with Voter-Verified Paper Records. IEEE Security and Pri-
vacy, 6(3):30–39, 2008. 10, 39

A. Antoniou, C. Korakas, C. Manolopoulos, A. Panagiotaki, D. Sofotassios,
Paul G. Spirakis, and Yannis C. Stamatiou. A Trust-Centered Approach

211

BIBLIOGRAPHY

for Building E-Voting Systems. In Maria Wimmer and Hans Jochen
Scholl and Åke Grönlund, editor, EGOV, volume 4656 of Lecture Notes
in Computer Science, pages 366–377. Springer, 2007. 3

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
Basic Concepts and Taxonomy of Dependable and Secure Computing.
IEEE Transactions on Dependable and Secure Computing, 01(1):11–33,
2004. ISSN 1545-5971. 1, 4

D. Balzarotti, G. Banks, M. Cova, V. Felmetsger, R. Kemmerer,
W. Robertson, F. Valeur, , and G. Vigna. An Experience in Testing
the Security of Real-world Electronic Voting Systems. IEEE Transac-
tions on Software Engineering, 2010. 39

Davide Balzarotti, Greg Banks, Marco Cova, Viktoria Felmetsger, Richard
Kemmerer, William Robertson, Fredrik Valeur, and Giovanni Vigna. Are
Your Votes Really Counted?: Testing the Security of Real-world Elec-
tronic Voting Systems. In ISSTA ’08: Proceedings of the 2008 interna-
tional symposium on Software testing and analysis, pages 237–248, New
York, NY, USA, 2008. ACM. 3, 10, 39, 101

David A. Basin, Jürgen Doser, and Torsten Lodderstedt. Model Driven
Security for Process-Oriented Systems. In SACMAT, pages 100–109,
2003. 28

Josh Benaloh and Dwight Tuinstra. Receipt-Free Secret-Ballot Elections
(extended abstract). In STOC ’94: Proceedings of the twenty-sixth an-
nual ACM symposium on Theory of computing, pages 544–553, New
York, NY, USA, 1994. ACM. 37

Kamal Bhattacharya, Cagdas Evren Gerede, Richard Hull, Rong Liu, and
Jianwen Su. Towards Formal Analysis of Artifact-Centric Business Pro-

212

BIBLIOGRAPHY

cess Models. In Gustavo Alonso and Peter Dadam and Michael Rose-
mann, editor, BPM, volume 4714 of Lecture Notes in Computer Science,
pages 288–304. Springer, 2007. 18, 111, 114

Andrzej Bialas. Information Security Systems vs. Critical Information In-
frastructure Protection Systems - Similarities and Differences. In Pro-
ceedings of the International Conference on Dependability of Computer
Systems, pages 60–67, Washington, DC, USA, 2006. IEEE Computer
Society. 25

Andrzej Bialas. Semiformal Approach to the IT Security Development.
In Proceedings of the 2nd International Conference on Dependability of
Computer Systems, pages 3–10, Washington, DC, USA, 2007. IEEE Com-
puter Society. 25

Matt Bishop. Computer Security Art and Science. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2002. 1, 100

Matt Bishop and David Wagner. Risks of e-voting. Commun. ACM, 50
(11):120–120, 2007. 2, 3

Marco Bozzano and Adolfo Villafiorita. The FSAP/NuSMV-SA Safety
Analysis Platform. Int. J. Softw. Tools Technol. Transf., 9(1):5–24, 2007.
93, 95, 141

Sviatoslav Braynov and Murtuza Jadiwala. Representation and Analysis
of Coordinated Attacks. In FMSE ’03: Proceedings of the 2003 ACM
workshop on Formal methods in security engineering, pages 43–51, New
York, NY, USA, 2003. ACM Press. ISBN 1-58113-781-8. 21, 27, 108

J W. Bryans, B Littlewood, P Y. A. Ryan, and L Strigini. E-voting:
Dependability Requirements and Design for Dependability. In ARES
’06: Proceedings of the First International Conference on Availability,

213

BIBLIOGRAPHY

Reliability and Security, pages 988–995, Washington, DC, USA, 2006.
IEEE Computer Society. 3

Volha Bryl, Fabiano Dalpiaz, Roberta Ferrario, Andrea Mattioli, and
Adolfo Villafiorita. Evaluating Procedural Alternatives: a Case Study
in e-voting. EG, 6(2):213–231, 2009. 33

California Secretary of State. Withdrawal of approval of diebold elec-
tion systems, inc., gems 1.18.24/accuvote-tswaccuvote-os dre & optical
scan voting system and conditional re-approval of use of diebold election
systems, inc., gems 1.18.24/accuvote-tsx/accuvote-os dre & optical scan
voting system. http://www.sos.ca.gov/elections/voting systems/ttbr/
diebold 102507.pdf, October 2007. 144

Stefano Campanelli, Alessandro Falleni, Fabio Martinelli, Marinella
Petrocchi, and Anna Vaccarelli. Mobile Implementation and Formal
Verification of an e-Voting System. In Proceedings of the 2008 Third In-
ternational Conference on Internet and Web Applications and Services,
Washington, DC, USA, 2008. IEEE Computer Society. 4, 40

Letizia Caporusso, Carlo Buzzi, Giolo Fele, Pierangelo Peri, and Francesca
Sartori. Transition to Electronic Voting and Citizen Participation. In
Robert Krimmer, editor, Electronic Voting, volume 86, pages 191–200.
GI, 2006. 41, 82

Richard T. Carback, Stefan Popoveniuc, Alan T. Sherman, , and David
Chaum. Punchscan with Independent Ballot Sheets: Simplifying Ballot
Printing and Distribution with Independently Selected Ballot Halves. In
In Preproceedings of the 2007 IAVoSS Workshop on Trustworthy Elec-
tions (WOTE 2007), 2007. 36

Nuno Castela, Jose M. Tribolet, Alberto Silva, and Arminda Guerra. Busi-

214

BIBLIOGRAPHY

ness Process Modeling with UML. In ICEIS (2), pages 679–685, 2001.
citeseer.ist.psu.edu/article/castela01business.html. 15

Caterina Lupo. NormeinRete: a federative approach to on-line legislation
access. In International Conference Parliaments’ Information Manage-
ment in Africa: Challenges and Opportunities of ICTs to Strengthen
Democracy and Parliamentary Governance, Nairobi, Kenya,, February
2005. 56, 57

D. Chaum, R.T. Carback, J. Clark, A. Essex, S. Popoveniuc, R.L. Rivest,
P. Ryan, E. Shen, A.T. Sherman, and P.L Vora. Scantegrity II: End-to-
End Verifiability by Voters of Optical Scan Elections Through Confirma-
tion Codes. IEEE Transactions on Information Forensics and Security,
4(4):611–627, 2009. 37

David Chaum. Secret-Ballot Receipts: True Voter-Verifiable Elections.
IEEE Security and Privacy, 2:38–47, 2004. 36

David Chaum, Aleksander Essex, Richard Carback, Jeremy Clark, Stefan
Popoveniuc, Alan T. Sherman, and Poorvi L. Vora. Scantegrity: End-
to-End Voter-Verifiable Optical-Scan Voting. IEEE Security & Privacy,
6(3):40–46, 2008. 37

Aaron Ciaghi, Andrea Mattioli, and Adolfo Villafiorita. Vlpm: a tool
to support bpr in public administration. In Proceedings of the Third
International Conference on Digital Society (ICDS2009), pages 289–293.
IEEE Computer Society, 2009a. 55, 64

Aaron Ciaghi, Adolfo Villafiorita, Komminist Weldemariam, Andrea Mat-
tioli, and Quoc-Sang Phan. Supporting public administration with an
integrated bpr environment. In AFRICOMM 2009,. ICST, 2009b. 88,
205

215

citeseer.ist.psu.edu/article/castela01business.html

BIBLIOGRAPHY

Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. NuSMV 2: An Open Source Tool for Symbolic Model
Checking. In Computer Aided Verification, Lecture Notes in Computer
Science, pages 241–268. Springer Berlin / Heidelberg, January 2002. 6,
118

Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. The
MIT Press, 2000. 141

Kevin J. Coleman, Joseph E. Cantor, and Thomas H. Neale. Crs re-
port for congress: Presidential elections in the united states: A primer.
http://www.senate.gov/reference/resources/pdf/RL30527.pdf, April 17
2000. 30

Common Criteria. Common Criteria for Information Technology Security
Evaluation, 2007. http://www.commoncriteriaportal.org/. 1, 20, 23,
208

Council of Europe. Recommendation on legal, operational and technical
standards for e-voting. Council of Europe, September 2004. 34

Ronald J.F. Cramer, Matthew Franklin, L. A.M. Schoenmakers, and Moti
Yung. Multi-authority secret-ballot elections with linear work. Technical
report, CWI (Centre for Mathematics and Computer Science), 1995. 36

Kristopher Daley, Ryan Larson, and Jerad Dawkins. A Structural Frame-
work for Modeling Multi-Stage Network Attacks. In ICPPW ’02: Pro-
ceedings of the 2002 International Conference on Parallel Processing
Workshops, page 5, Washington, DC, USA, 2002. IEEE Computer Soci-
ety. ISBN 0-7695-1680-7. 22

216

http://www.commoncriteriaportal.org/

BIBLIOGRAPHY

Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed
requirements acquisition. Sci. Comput. Program., 20(1-2):3–50, 1993. 22

Thomas H. Davenport. Process innovation: reengineering work through
information technology. Harvard Business School Press, Boston, MA,
USA, 1993. 14

Thomas H. Davenport and James E. Short. The New Industrial Engi-
neering: Information Technology and Business Process Redesign. Sloan
Management Review, 31(4):11–27, 1990. 14

João Alberto de Oliveira Lima, Monica Palmirani, and Fabio Vitali. ’http’
or ’urn’ URIs for legal resources? how about both? In Jurix 2007
Workshop on Legislative XML, 2007. 57

Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type
properties of electronic voting protocols. J. Comput. Secur., 17(4):435–
487, 2009. 4, 40

Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. Automatic
Verification of Data-Centric Business Processes. In ICDT ’09: Proceed-
ings of the 12th International Conference on Database Theory, pages
252–267, New York, NY, USA, 2009. ACM. 18

Dominique Bolignano. Formal Methods and Security Evaluation (Invited
Talk). In TPHOLs ’99: Proceedings of the 12th International Conference
on Theorem Proving in Higher Order Logics, pages 291–292, London,
UK, 1999. Springer-Verlag. 25

Marlon Dumas and Arthur H. M. ter Hofstede. Uml activity diagrams
as a workflow specification language. In Proceedings of the 4th Inter-
national Conference on The Unified Modeling Language, Modeling Lan-

217

BIBLIOGRAPHY

guages, Concepts, and Tools, pages 76–90, London, UK, 2001a. Springer-
Verlag. 15

Marlon Dumas and Arthur H. M. ter Hofstede. UML Activity Diagrams
as a Workflow Specification Language. In Proceedings of the 4th Inter-
national Conference on The Unified Modeling Language, Modeling Lan-
guages, Concepts, and Tools, pages 76–90, London, UK, 2001b. Springer-
Verlag. ISBN 3-540-42667-1. 15

Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog.
ACM Trans. Database Syst., 22(3):364–418, 1997. 33

Golnaz Elahi and Eric S. K. Yu. A goal oriented approach for modeling
and analyzing security trade-offs. In Christine Parent and Klaus-Dieter
Schewe and Veda C. Storey and Bernhard Thalheim, editor, ER, volume
4801 of Lecture Notes in Computer Science, pages 375–390. Springer,
2007. 22

Rik Eshuis. Semantics and Verification of UML Activity Diagrams for
Workflow Modelling. PhD thesis, Centre for Telematics and Informa-
tion Technology (CTIT) University of Twente, P.O. Box 217, 7500 AE
Enschede The Netherlands, 2002. 15, 17

Rik Eshuis. Symbolic Model Checking of UML Activity Diagrams. ACM
Trans. Softw. Eng. Methodol., 15(1):1–38, 2006. 17

Rik Eshuis and Roel Wieringa. Tool Support for Verifying UML Activity
Diagrams. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
30(7), 2004. 18

Aleks Essex, Jeremy Clark, Richard Carback, and Stefan Popoveniuc.
Punchscan in practice: An E2E election case study. In In Preproceedings

218

BIBLIOGRAPHY

of the 2007 IAVoSS Workshop on Trustworthy Elections (WOTE 2007),
2007. 36

David Evans and Nathanael Paul. Election Security: Perception and Re-
ality. IEEE Security and Privacy Magazine, 2:24–31, 2004. 31

Federal Election Commission. 2002 Voting System Standards.
United States Election Assistance Commission, Available from
http://www.eac.gov/, 2002. 34

Federal Election Commission. 2005 Voluntary Voting System Guide-
lines (VVSG). United States Election Assistance Commission,
http://www.eac.gov/, 2005. 34

Igor Nai Fovino and Marcelo Masera. Through the Description of Attacks:
A Multidimensional View. In SAFECOMP 2006, Lecture Notes in Com-
puter Science, pages 15–28. Springer-Verlag, 2006. 21, 93

Rune Fredriksen, Monica Kristiansen, Bjørn Axel Gran, Ketil Stølen,
Tom Arthur Opperud, and Theodosis Dimitrakos. The CORAS Frame-
work for a Model-Based Risk Management Process. In SAFECOMP ’02,
pages 94–105, London, UK, 2002. Springer-Verlag. 4, 25

Christian Fritz, Richard Hull, and Jianwen Su. Automatic Construction of
Simple Artifact-Based Business Processes. In ICDT ’09: Proceedings of
the 12th International Conference on Database Theory, pages 225–238,
New York, NY, USA, 2009. ACM. 18

Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A Practical Secret
Voting Scheme for Large Scale Elections. In ASIACRYPT ’92: Proceed-
ings of the Workshop on the Theory and Application of Cryptographic
Techniques, pages 244–251, London, UK, 1993. Springer-Verlag. ISBN
3-540-57220-1. 36, 37

219

BIBLIOGRAPHY

Ryan Gardner, Sujata Garera, and Aviel Rubin. On the Difficulty
of Validating Voting Machine Software with Software. In EVT’07:
Proceedings of the USENIX/Accurate Electronic Voting Technology on
USENIX/Accurate Electronic Voting Technology Workshop, pages 11–11,
Berkeley, CA, USA, 2007. USENIX Association. 3, 39

Cagdas E. Gerede and Jianwen Su. Specification and Verification of Ar-
tifact Behaviors in Business Process Models. In Bernd J. Krämer and
Kwei-Jay Lin and Priya Narasimhan, editor, ICSOC, volume 4749 of
Lecture Notes in Computer Science, pages 181–192. Springer, 2007. 18,
111, 114

Cagdas E. Gerede, Kamal Bhattacharya, and Jianwen Su. Static Analysis
of Business Artifact-centric Operational Models. In SOCA ’07: Proceed-
ings of the IEEE International Conference on Service-Oriented Comput-
ing and Applications, pages 133–140, Washington, DC, USA, 2007. IEEE
Computer Society. 18

Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. Con-
Golog, a concurrent programming language based on the situation cal-
culus, 2000. 17

Jaap Gordijn, Hans Akkermans, and Hans van Vliet. Business modelling
is not process modelling. In Conceptual Modeling for E-Business and the
Web, Lecture Notes in Computer Science, pages 40–51. Springer Berlin
/ Heidelberg, 2000. 14

Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. Mining Hierarchies
of Models: From Abstract Views to Concrete Specifications. In Business
Process Management, pages 32–47, 2005. 19

Dimitris A. Gritzalis. Secure Electronic Voting. Kluwer Academic Publish-
ers, 2003. 2, 31

220

BIBLIOGRAPHY

Anthony Hall. Seven Myths of Formal Methods. IEEE Trans. Softw., 7,
1990. 4

Ferrel Heady. Public administration : a Comparative Perspective. Public
administration and public policy ; 41. Fourth edition edition, 1991. 48

Constance L. Heitmeyer. On the role of formal methods in software certifi-
cation: An experience report. Electronic Notes in Theoretical Computer
Science, 2009. 25

Constance L. Heitmeyer, Myla Archer, Elizabeth I. Leonard, and John
McLean. Applying Formal Methods to a Certifiably Secure Software
System. IEEE Trans. Software Eng., 34(1):82–98, 2008. 4

Vlatka Hlupic. Business Process Modelling Using Discrete Event Simula-
tion: Potential Benefits And Obstacles For Wider Use,. International
Journal of Simulation: Systems, Science and Technology, 7:62–67, 2003.
15

Arthur H. M.ter Hofstede and Maria E. Orlowska. On the Complexity of
Some Verification Problems in Process Control Specifications. Comput.
J., 42(5):349–359, 1999. 16

Ida Hogganvik. A Graphical Approach to Security Risk Analysis. PhD
thesis, Faculty of Mathematics and Natural Sciences, University of Oslo.,
2007. 25, 93

Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, 2003. 16

Daisuke Horie, Shoichi Morimoto, and Jingde Cheng. A Web User Interface
of the Security Requirement Management Database Based on ISO/IEC
15408. In International Conference on Computational Science (4), Lec-
ture Notes in Computer Science, pages 797–804. Springer, 2006. 25

221

BIBLIOGRAPHY

Pao-Ann Hsiung, Yean-Ru Chen, and Yen-Hung Lin. Model Checking
Safety-Critical Systems Using Safecharts. IEEE Trans. Comput., 56(5):
692–705, 2007. 95

Richard Hull. Artifact-Centric Business Process Models: Brief Survey of
Research Results and Challenges,. In OTM ’08: Proceedings of the OTM
2008 Confederated International Conferences, CoopIS, DOA, GADA, IS,
and ODBASE 2008. Part II on On the Move to Meaningful Internet
Systems,, pages 1152–1163, Berlin, Heidelberg, 2008. Springer-Verlag.
111

Inc. ES&S. Election Systems & Software: iVotronic TM Voting System.
Version 9.1.x Election Day Operations Checklist, Revision Date: January
2007. 7, 150, 159

Kenneth R. Iversen. A Cryptographic Scheme for Computerized Elections.
In CRYPTO ’91: Proceedings of the 11th Annual International Cryptol-
ogy Conference on Advances in Cryptology, pages 405–419, London, UK,
1991. Springer-Verlag. 36

Jan Jürjens. Model-based security engineering. In SECRYPT. INSTICC
Press, 2006. 28

Jintae Lee. Goal-based process analysis: a method for systematic process
redesign. In Proceedings of the Conference on Organizational Computing
Systems, COOCS 199, pages 196–201. ACM, 1993. 15

Andy Jones and Debi Ashenden. Risk Management for Computer Se-
curity: Protecting Your Network & Information Assets. Butterworth-
Heinemann, Newton, MA, USA, 2005. 2

Douglas W. Jones. The Evaluation of Voting Technology, chapter 1, pages
3–16. Advances in Information Security. Kluwer Academic, 2003. 39

222

BIBLIOGRAPHY

Jin-Young Choi Junkil Park. Formal security policy model for a common
criteria evaluation. In ICACT2007. IEEE, 2007. 25

Matjaz B. Juric. Business Process Execution Language for Web Services
BPEL and BPEL4WS 2nd Edition. Packt Publishing, 2006. ISBN
1904811817. 15

Jan Jürjens. UMLsec: Extending UML for Secure Systems Development.
In UML ’02: Proceedings of the 5th International Conference on The
Unified Modeling Language, pages 412–425, London, UK, 2002. Springer-
Verlag. 28

Chris Karlof, Naveen Sastry, and David Wagner. Cryptographic voting
protocols: a systems perspective. In Proceedings of the 14th conference
on USENIX Security Symposium, 2005. 36, 37

Richard A. Kemmerer. Integrating Formal Methods into the Development
Process. IEEE Software, 7(5):37–50, 1990. 4

Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and Dan S. Wallach.
Analysis of an Electronic Voting System. Security and Privacy, IEEE
Symposium on, 0:27, 2004. doi: {http://doi.ieeecomputersociety.org/10.
1109/SECPRI.2004.1301313}. 3, 10, 39, 101

Paul Z. Kolano, Zhe Dang, and Richard A. Kemmerer. The Design and
Analysis of Real-Time Systems Using the ASTRAL Software Develop-
ment Environment. Ann. Softw. Eng., 7(1-4):177–210, 1999. 7, 161

P.Z. Kolano. Tools and Techniques for the Design and Systematic Anal-
ysis of Real-Time Systems. PhD thesis, University of California, Santa
Barbara, 1999. 160, 191, 192

Adolfo Villafiorita Komminist Weldemariam and Andrea Mattioli. Exper-
iments and Data Analysis of Electronic Voting System. In CRiSIS ’09:

223

BIBLIOGRAPHY

Forth International Conference on Risks and Security of Internet and
Systems, pages 249–254. IEEE Computer Society, October 2009. 11, 41

M. Koubarakis and D. Plexousakis. Business Process Modelling and Design
— A Formal Model and Methodology. BT Technology Journal, 17(4):
23–35, 1999. 16

Manolis Koubarakis and Dimitris Plexousakis. A Formal Model for Busi-
ness Process Modeling and Design. In Benkt Wangler and Lars Bergman,
editor, CAiSE, Lecture Notes in Computer Science, pages 142–156.
Springer, 2000. 16, 18, 108, 114

Steve Kremer and Mark D Ryan. Analysis of an Electronic Voting Pro-
tocol in the Applied Pi-Calculus. In Mooly Sagiv, editor, Programming
Languages and Systems — Proceedings of the 14th European Symposium
on Programming (ESOP’05), Lecture Notes in Computer Science, pages
186–200, Edinburgh, U.K., April 2005. Springer. 4, 40

Vitus S.W. Lam and Julian A. Padget. Symbolic Model Checking of UML
Statechart Diagrams with an Integrated Approach. In ECBS ’04: Pro-
ceedings of the 11th IEEE International Conference and Workshop on
Engineering of Computer-Based Systems, pages 337–347. IEEE Com-
puter Society, 2004. 120

Costas Lambrinoudakis, Spyros Kokolakis, Maria Karyda, Vasilis Tsoumas,
Dimitris Gritzalis, and Sokratis Katsikas. Electronic Voting Systems:
Security Implications of the Administrative Workflow. In DEXA ’03:
Proceedings of the 14th International Workshop on Database and Ex-
pert Systems Applications, page 467, Washington, DC, USA, 2003. IEEE
Computer Society. ISBN 0-7695-1993-8. 3, 33

Lehman, M. M. Process Modelling—where next. In ICSE ’97: Proceedings

224

BIBLIOGRAPHY

of the 19th international conference on Software engineering, pages 549–
552, New York, NY, USA, 1997. ACM. 15

Richard Lenz and Manfred Reichert. IT Support for Healthcare Processes.
In Business Process Management, pages 354–363, 2005. 19

Hector J. Levesque, Fiora Pirri, and Raymond Reiter. Foundations for the
Situation Calculus. Electron. Trans. Artif. Intell., 2:159–178, 1998. 17

Torsten Lodderstedt, David A. Basin, and Jürgen Doser. SecureUML:
A UML-Based Modeling Language for Model-Driven Security. In Jean-
Marc Jézéquel, Heinrich Hußmann, and Stephen Cook, editors, UML,
volume 2460 of Lecture Notes in Computer Science, pages 426–441.
Springer, 2002. ISBN 3-540-44254-5. 28

Pericles Loucopoulos and Evangelia Kavakli. Enterprise Modelling and the
Teleological Approach to Requirements Engineering. Int. J. Cooperative
Inf. Syst., 4(1):45–79, 1995. 16

Michael Lowry and Daniel Dvorak. Analytic Verification of Flight Software.
IEEE Intelligent Systems, 13(5):45–49, 1998. 4

Caterina Lupo. Format for the electronic representation of regulatory mea-
sures through the XML markup language (In Italain). Allegato tecnico
alla Circolare 22 aprile 2002, n. AIPA/CR/40, 2002. 56

Shuailiang Ma, Li Zhang, and Jimei He. Towards Formalization and Ver-
ification of Unified Business Process Model Based on Pi Calculus. In
SERA, pages 93–101. IEEE Computer Society, 2008. 16

Yogesh Malhotra. Business process redesign: An overview. IEEE Engi-
neering Management Review, 26(3), 1998. 14

225

BIBLIOGRAPHY

Ragavan Manian, Joanne Dugan Bechta, David Coppit, and Kevin J Sul-
livan. Combining Various Solution Techniques for Dynamic Fault Tree
Analysis of Computer Systems. In HASE ’98: The 3rd IEEE Interna-
tional Symposium on High-Assurance Systems Engineering, pages 21–28,
Washington, DC, USA, 1998. IEEE Computer Society. 95

Andrea Marchetti, Fabrizio Megale, Enrico Seta, and Fabio Vitali. Us-
ing xml as a means to access legislative documents: Italian and foreign
experiences. SIGAPP Appl. Comput. Rev., 1:54–62, 2002. 56

Fabio Martinelli. Symbolic Semantics and Analysis for Crypto-CCS with
(Almost) Generic Inference Systems. In MFCS ’02: Proceedings of the
27th International Symposium on Mathematical Foundations of Com-
puter Science, pages 519–531, London, UK, 2002. Springer-Verlag. 40

Andrea Mattioli. Analisi dei Processi in Ambito di Voto Elettronico per
le Elezioni in Provincia di Trento. Master’s thesis, University of Trento,
2006. 10, 51, 55, 64

Sjouke Mauw, Radu Mateescu, and Wil Janssen. Verifying business pro-
cesses using spin. In Proceedings of the 4th. International SPIN Work-
shop, pages 21–36, 1998. 16

P. McDaniel, M. Blaze, and G. Vigna. EVEREST: Evaluation and Val-
idation of Election-Related Equipment, Standards and Testing. Ohio
Secretary of State’s EVEREST Project Report„ December 2007. 7, 39,
159, 200, 209

Margaret McGaley. E-voting: an Immature Technology in a Critical Con-
text. PhD thesis, Departement of Computer Science, National University
of Irelan, Maynooth, September 2008. 29, 34, 35, 37, 90, 151, 160

226

BIBLIOGRAPHY

Kenneth L McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, 1993. 118

Daniel Mellado, Eduardo Fernández-Medina, and Mario Piattini. A Com-
mon Criteria Based Security Requirements Engineering Process for the
Development of Secure Information Systems. Comput. Stand. Interfaces,
29(2):244–253, 2007. ISSN 0920-5489. 24

Rebecca T. Mercuri. Electronic Vote Tabulation Checks and Balances. PhD
thesis, University of Pennsylvania, 2001. 3, 29, 31, 32, 34, 35, 160

Rebecca T. Mercuri and L. Jean Camp. The Code of Elections. Commun.
ACM, 47(10):52–57, 2004. ISSN 0001-0782. 2

Lilian Mitrou, Dimitris Gritzalis, Sokratis Katsikas, and Geradl Quirch-
mayr. e-voting: Constitutional and legal requirements and their technical
reflection, chapter 4. Kluwer Academic Publishers, 2003. 29, 31

Shoichi Morimoto, Shinjiro Shigematsu, Yuichi Goto, and Jingde Cheng.
A security specification verification technique based on the international
standard ISO/IEC 15408. In SAC, pages 1802–1803. ACM, 2006. 25

Shoichi Morimoto, Shinjiro Shigematsu, Yuichi Goto, and Jingde Cheng.
Formal Verification of Security Specifications with Common Criteria. In
SAC ’07: Proceedings of the 2007 ACM symposium on Applied comput-
ing, pages 1506–1512, New York, NY, USA, 2007. ACM Press. 25

S. Myagmar, A. Lee, and W. Yurcik. Threat Modeling as a Basis for
Security Requirements. In StorageSS ’05: Proceedings of the 2005 ACM
workshop on Storage security and survivability, pages 94–102, New York,
NY, USA, 2005. ACM Press. 1, 4

Sebastian Olbrich and Carlo Simon. Process Modelling towards e-
Government — Visualization and Semantic Modelling of Legal Regu-

227

BIBLIOGRAPHY

lations as Executable Process Sets. Electronic Journal of e-Government,
6, 2008. 19

Anne-Marie Oostveen and Peter Van den Besselaar. Security as Belief
User’s Perceptions on the Security of E-Voting Systems. In Electronic
Voting in Europe, pages 73–82, 2004. 3

Sylvia Osborn. Mandatory Access Control and Role-Based Access Control
Revisited. In RBAC ’97: Proceedings of the second ACM workshop on
Role-based access control, pages 31–40, New York, NY, USA, 1997. ACM
Press. ISBN 0-89791-985-8. 28

S. Owre, N. Shankar, and J. M. Rushby. The PVS Specification Lan-
guage. Computer Science Laboratory, SRI International, Menlo Park,
CA, February 1993. 7, 160, 190

Nathanael Paul and Andrew S. Tanenbaum. The Design of a Trustworthy
Voting System. In ACSAC, pages 507–517. IEEE Computer Society,
2009a. 38

Nathanael Paul and Andrew S. Tanenbaum. Trustworthy Voting: From
Machine to System. IEEE Computer, 42(5):23–29, 2009b. 38

James L. Peterson. Petri Nets. ACM Comput. Surv., 9(3), 1977. 16

Alexander Prosser, Robert Kofler, Robert Krimmer, and Martin Karl
Unger. Security Assets in E-Voting. In Alexander Prosser and Robert
Krimmer, editors, lectronic Voting in Europe, volume 47 of LNI, pages
171–180. GI, 2004. ISBN 3-88579-376-8. 3

Frank Puhlmann and Mathias Weske. Using the i-Calculus for Formalizing
Workflow Patterns. In Business Process Management, pages 153–168,
2005. 16

228

BIBLIOGRAPHY

Indrajit Ray, Indrakshi Ray, and Natarajan Narasimhamurthi. An Anony-
mous Electronic Voting Protocol for Voting Over The Internet. In
WECWIS ’01: Proceedings of the Third International Workshop on
Advanced Issues of E-Commerce and Web-Based Information Systems
(WECWIS ’01), page 188, Washington, DC, USA, 2001. IEEE Com-
puter Society. 37

Indrakshi Ray, Robert France Na Li, and Dae-Kyoo Kim. Using UML
to Visualize Role-Based Access Control Constraints. In SACMAT ’04:
Proceedings of the ninth ACM symposium on Access control models and
technologies, pages 115–124, New York, NY, USA, 2004. ACM. 29

U.S.A. National Performance Review. Executive summary
— creating a government that works better and costs less.
http://govinfo.library.unt.edu/npr/library/nprrpt/annrpt/redtpe93,
1993. 19

Ronald L. Rivest and John P. Wack. On the notion of ”Software In-
dependence” in Voting Systems, 2006. URL http://vote.nist.gov/
SI-in-voting.pdf. 3

Russ Rogers, Greg Miles, Ed Fuller, and Ted Dykstra. Security Assessment:
Case Studies for Implementing the NSA IAM. Syngress Publishing, 2004.
1, 27

Winston W. Royce. Managing the development of large software systems:
concepts and techniques. In ICSE ’87: Proceedings of the 9th interna-
tional conference on Software Engineering, pages 328–338. IEEE Com-
puter Society Press, 1987. 43

Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Petia
Wohed. On the suitability of UML 2.0 activity diagrams for business pro-

229

http://vote.nist.gov/SI-in-voting.pdf
http://vote.nist.gov/SI-in-voting.pdf

BIBLIOGRAPHY

cess modelling. In APCCM ’06: Proceedings of the 3rd Asia-Pacific con-
ference on Conceptual modelling, pages 95–104, Darlinghurst, Australia,
Australia, 2006. Australian Computer Society, Inc. ISBN 1-920-68235-X.
15

P.Y.A. Ryan, D. Bismark, J. Heather, S. Schneider, and Zhe Xia. Prêt á
voter: a voter-verifiable voting system. IEEE Transactions on Informa-
tion Forensics and Security, 4(4), 2009. 36

Gwen Salaun, Lucas Bordeaux, and Marco Schaerf. Describing and Reason-
ing on Web Services using Process Algebra. In 43, editor, Web Services,
IEEE International Conference on, Los Alamitos, CA, USA, 2004. IEEE
Computer Society,. 16

Ioan Salomie, Tudor Cioara, Ionut Anghel, Mihaela Dinsoreanu, and Tu-
dor Ioan Salomie. Workflow Models Enhanced with Process Algebra
Verification for Industrial Business Processes. In ICCOMP’07: Proceed-
ings of the 11th WSEAS International Conference on Computers, pages
502–507, Stevens Point, Wisconsin, USA, 2007. World Scientific and En-
gineering Academy and Society (WSEAS). 16

Altair O. Santin, Regivaldo G. Costa, and Carlos A. Maziero. A Three-
Ballot-Based Secure Electronic Voting System. IEEE Security and Pri-
vacy, 6(3):14–21, 2008. 8, 37

Naveen Sastry, Tadayoshi Kohno, and David Wagner. Designing Vot-
ing Machines for Verification. In Proceedings of the 15th conference on
USENIX Security Symposium, volume Volume 15, Berkeley, CA, USA,
2006. USENIX Association. 2, 8, 38

Naveen K. Sastry. Verifying Security Properties in Electronic Voting Ma-
chines. PhD thesis, EECS Department, University of California, Berke-

230

BIBLIOGRAPHY

ley, May 2007. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/
2007/EECS-2007-61.html. 10, 29, 38, 151, 160

Tim Schattkowsky and Alexander Forster. On the pitfalls of uml 2 activity
modeling. In MISE ’07: Proceedings of the International Workshop on
Modeling in Software Engineering, page 8, Washington, DC, USA, 2007.
IEEE Computer Society. 15

B. Schneier. Attack trees. Dr. Dobb’s Journal, 1999. URL http://www.
schneier.com/paper-attacktrees-ddj-ft.html. 21

Bruce Schneier. Secrets and Lies: Digital Security in a Networked World.
John Wiley & Sons, 2004. 21

Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jean-
nette M. Wing. Automated Generation and Analysis of Attack Graphs.
In SP ’02: Proceedings of the 2002 IEEE Symposium on Security and
Privacy, page 273, Washington, DC, USA, 2002. IEEE Computer Soci-
ety. 21

Oleg Mikhail Sheyner. Scenario Graphs and Attack Graphs. PhD thesis,
Computer Science Department, Carnegie Mellon University, School of
Computer Science Computer Science Department Carnegie Mellon Uni-
versity Pittsburgh, PA, 2004. 21

Lan Sommerville. Software engineering (5th ed.). Addison Wesley Long-
man Publishing Co., Inc., 1995. 48

SRI. PVS Specification and Verification System. URL http://pvs.csl.
sri.com/. 7, 160

Jan Steffan and Markus Schumacher. Collaborative Attack Modeling. In
SAC ’02: Proceedings of the 2002 ACM symposium on Applied comput-
ing, pages 253–259, New York, NY, USA, 2002. ACM Press. 21

231

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-61.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-61.html
http://www.schneier.com/paper-attacktrees-ddj-ft.html
http://www.schneier.com/paper-attacktrees-ddj-ft.html
http://pvs.csl.sri.com/
http://pvs.csl.sri.com/

BIBLIOGRAPHY

Cynthia Sturton, Susmit Jha, Sanjit A. Seshia, and David Wagner. On
Voting Machine Design for Verification and Testability. In Ehab Al-Shaer
and Somesh Jha and Angelos D. Keromytis, editor, ACM Conference on
Computer and Communications Security, pages 463–476, 2009. 4, 40, 41

Marcel Thaens, Victor Bekkers, and Hein van Duivenboden. Business Pro-
cess Redesign and Public Administration: a Perfect Match? In Taylor,
J.A., Snellen, I.Th.M. and Zuurmond, A. (Eds.): Beyond BPR in Pub-
lic Administration: An Institutional Transformation in an Information
Age, pages 15–36. IOS Press, Amsterdam, 1997. 19

Donald E. Thomas and Philip R. Moorby. The VERILOG Hardware De-
scription Language. Kluwer Academic Publishers, Norwell, MA, USA,
1991. 41

Roberto Tiella, Adolfo Villafiorita, and Silvia Tomasi. Specification of
the Control Logic of an eVoting System in UML: the ProVotE experi-
ence. Proceedings of the 5th International Workshop on Critical Systems
Development Using Modeling Languages (CSDUML 2006), pages 84–94,
October 1 2006. ISSN 0809-1021. 40, 41, 45

George Valiris and Michalis Glykas. Critical review of existing BPR
methodologies: The need for a holistic approach. In 5, editor, Busi-
ness Process Management Journal, pages 65 – 86. MCB UP Ltd, 1999.
14

Axel van Lamsweerde. Goal-Oriented Requirements Engineering: A
Guided Tour. In 5th IEEE International Symposium on Requirements
Engineering (RE 2001), page 249, Washington, DC, USA, 2001. IEEE
Computer Society. 22

Axel van Lamsweerde. Elaborating Security Requirements by Construction
of Intentional Anti-Models. In ICSE ’04: Proceedings of the 26th Interna-

232

BIBLIOGRAPHY

tional Conference on Software Engineering, pages 148–157, Washington,
DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2163-0. 22

Monika Vetterling, Guido Wimmel, and Alexander Wisspeintner. Se-
cure Systems Development Based on the Common Criteria: the PalME
Project. SIGSOFT Softw. Eng. Notes, 27(6):129–138, 2002. ISSN 0163-
5948. 24

Monika Vetterling, Guido Wimmel, and Alexander Wisspeintner. A
Graphical Approach to Risk Identification, Motivated by Empirical In-
vestigations. Lecture Notes in Computer Science, pages 574–588, Thurs-
day, November 23 2006. ISSN 0302-9743. doi: 10.1007/11880240 40. 2,
25

Adolfo Villafiorita, Andrea Mattioli, and Komminist Weldemariam. Man-
aging Requirements for e-voting Systems: Issues and Approaches Moti-
vated by a Case Study. In RE-VOTE. IEEE Computer Society, 2009a.
11, 34, 41, 43, 45, 70, 151

Adolfo Villafiorita, Komminist Weldemariam, and Roberto Tiella. Devel-
opment, Formal Verification, and Evaluation of an E-Voting System With
VVPAT. IEEE Transactions on Information Forensics and Security, 4
(4), 2009b. 11, 40, 41, 82, 154

Adolfo Villafiorita, Komminist Weldemariam, Angelo Susi, and Alberto
Siena. Modeling and Analysis of Laws using BPR and Goal-oriented
framework. In To Appear In Proceedings of International Conference on
Technical and Legal Aspects of the e-Society (CYBERLAWS 2010). IEEE
Computer Society, 2010. 81, 208

Melanie Volkamer. Evaluation of Electronic Voting: Requirements
and Evaluation Procedures to Support Responsible Election Authorities.
Springer Publishing Company, Incorporated, 2009. 9, 29, 34, 35, 36, 208

233

BIBLIOGRAPHY

Melanie Volkamer and Margaret McGaley. Requirements and Evaluation
Procedures for eVoting. In ARES ’07: Proceedings of the The Second
International Conference on Availability, Reliability and Security, pages
895–902, Washington, DC, USA, 2007. IEEE Computer Society. 9, 160,
208

Fredrik Vraalsen, Mass Soldal Lund, Tobias Mahler, Xavier Parent, and
Ketil Stølen. Specifying Legal Risk Scenarios Using the CORAS Threat
Modelling Language. In iTrust, pages 45–60, 2005. 2, 25

David Wastell, P. White, and P. Kawalek. A Methodology for Business
Process Redesign: Experiences and Issues. Journal of Strategic Informa-
tion Systems, 3:23–40, 1994. 14, 19

Komminist Weldemariam, Richard A. Kemmerer, and Adolfo Villafiorita.
Formal Analysis of Attacks for E-voting System. In CRiSIS ’09: Forth
International Conference on Risks and Security of Internet and Systems.
IEEE, 2009. 40

Komminist Weldemariam, Richard A. Kemmerer, and Adolfo Villafiorita.
Formal Specification and Analysis of an e-Voting System. In The 5th
International Conference on Availability, Reliability and Security (ARES
2010). IEEE Computer Society, 2010. 40

Leslie Willcocks, W. Currie, and S. Jackson. Radical Re-Engineering and
Information Systems: Evidence from UK Public Services. In Proceedings
of The Fifth European Conference In Information Systems, 1997. 19

Subashish Guha William J. Kettinger, James T. C. Teng. Business Process
Change: A Study of Methodologies, Techniques, and Tools. MIS Quar-
terly, 21, 1997. URL http://www.misq.org/archivist/vol/no21/
issue1/vol21n1art3.html. 14

234

http://www.misq.org/archivist/vol/no21/issue1/vol21n1art3.html
http://www.misq.org/archivist/vol/no21/issue1/vol21n1art3.html

BIBLIOGRAPHY

Guido Oliver Wimmel. Model-Based Development of Security-Critical Sys-
tems. PhD thesis, Institut fü r Informatik der Technischen Univer-
sitä München, February 2005. 4, 28

Petia Wohed, Wil M.P. van der Aalst, Marlon Dumas, and Arthur H.M. ter
Hofstede. Analysis of web services composition languages: The case of
bpel4ws. In Conceptual Modeling (ER 2003), Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2003. 16

Alexandros Xenakis and Ann Macintosh. Procedural Security Analysis
of Electronic Voting. In ICEC ’04: Proceedings of the 6th international
conference on Electronic commerce, pages 541–546, New York, NY, USA,
2004a. ACM Press. 9, 33

Alexandros Xenakis and Ann Macintosh. Levels of Difficulty in Introducing
e-Voting. In EGOV, pages 116–121, 2004b. 33

Alexandros Xenakis and Ann Macintosh. G2G Collaboration to Support
the Deployment of e-Voting in the UK: A Discussion Paper. In EGOV,
Lecture Notes in Computer Science, pages 240–245. Springer, 2004c. 33

Alexandros Xenakis and Ann Macintosh. Procedural Security and Social
Acceptance in E-Voting. In HICSS ’05: Proceedings of the Proceedings
of the 38th Annual Hawaii International Conference on System Sciences
(HICSS’05) - Track 5, page 118.1, Washington, DC, USA, 2005a. IEEE
Computer Society. 9, 33

Alexandros Xenakis and Ann Macintosh. Using Business Process Re-
engineering (BPR) for the Effective Administration of Electronic Voting.
The Electronic Journal of e-Government, 3(2), 2005b. 32

Alexandros Xenakis and Ann Macintosh. A Methodology for the Redesign

235

BIBLIOGRAPHY

of the Electoral Process to an e-electoral process. In Int. J. Electronic
Governance, volume 1, pages 4 –16, 2007. 32

Zhe Xia, Steve A. Schneider, James Heather, and Jacques Traoré. Analysis,
Improvement and Simplification of Prêt à voter with Paillier Encryption.
In EVT’08: Proceedings of the conference on Electronic voting technol-
ogy, pages 1–15, Berkeley, CA, USA, 2008. USENIX Association. 36

Dianxiang Xu and Kendall Nygard. A Threat-Driven Approach to Mod-
eling and Verifying Secure Software. In ASE ’05: Proceedings of the
20th IEEE/ACM international Conference on Automated software engi-
neering, pages 342–346, New York, NY, USA, 2005. ACM Press. ISBN
1-59593-993-4. 4, 100

Ka-Ping Yee. Extending Prerendered-Interface Voting Software to Support
Accessibility and other ballot features. In EVT’07: Proceedings of the
USENIX Workshop on Accurate Electronic Voting Technology, pages 5–5,
Berkeley, CA, USA, 2007. USENIX Association. 8, 38

Yijun Yu, Haruhiko Kaiya, Hironori Washizaki, Yingfei Xiong, Zhenjiang
Hu, and Nobukazu Yoshioka. Enforcing a security pattern in stakeholder
goal models. In QoP ’08: Proceedings of the 4th ACM workshop on
Quality of protection, New York, NY, USA, 2008. ACM. 22

Zhan-Haomin, Yin-Guisheng, and Sun-Changsong. Process Algebra Based
for Requirement Process Reorganization. In Computer Science and
Software Engineering, International Conference on, pages 601–604, Los
Alamitos, CA, USA, 2008. IEEE Computer Society. 16

236

Appendix A

Sample Attack Specifications

The complete original specification of ES&S e-voting system can be downloaded from the http:

//ict4g.fbk.eu/people/sisai/specs/astral-specs/ESandS_Original.spec. And, the ex-

tended version of the specification can be downloaded from http://ict4g.fbk.eu/people/

sisai/specs/astral-specs/ESandS_Extended.spec

We only show few of the transitions from the extended specification for the ES&S e-voting

system. The below transitions specify the attack scenarios specified in the DRE process, as

discussed in Chapter 5.

TRANSITION Attack_Change_Vote (vc: Candidate, ac: Candidate, vType: VoterType)

ENTRY [TIME : ACV_Dur]

/*Change Vote Attack!!*/

/*This attack asssumes unattentive voter. This results in change of vote.*/

Which_Phase = During_Voting

& Terminal_mode = voter_mode

& vType = Unattentive

& EXISTS R: Race

(vc ISIN Displayed_Candidates (R)

& ac ISIN Displayed_Candidates (R)

& vc ISIN tempVoteRecord (R)

& Picked (Candidate_Name (vc) , Race_Title (R))

& ˜Picked (Candidate_Name (ac) , Race_Title (R)))

&

/*voter’s candidate is different from attacker’s candidate.*/

vc ˜= ac

& EXISTS b: Button

237

http://ict4g.fbk.eu/people/sisai/specs/astral-specs/ESandS_Original.spec
http://ict4g.fbk.eu/people/sisai/specs/astral-specs/ESandS_Original.spec
http://ict4g.fbk.eu/people/sisai/specs/astral-specs/ESandS_Extended.spec
http://ict4g.fbk.eu/people/sisai/specs/astral-specs/ESandS_Extended.spec

APPENDIX A. SAMPLE ATTACK SPECIFICATIONS

(b = REVIEW

& Button_Pushed (b))

& scrName = REVIEW_SCREEN

& ˜Review_Displayed

& ˜Vote_Changed

EXIT

EXISTS R: Race

(vc ISIN Displayed_Candidates’ (R)

& ac ISIN Displayed_Candidates’ (R)

& vc ISIN tempVoteRecord’ (R)

& tempVoteRecord (R) BECOMES (tempVoteRecord’ (R) SET_DIFF vc) UNION

ac

& Picked (Candidate_Name (vc) , Race_Title (R)) BECOMES FALSE

& Picked (Candidate_Name (ac) , Race_Title (R)) BECOMES TRUE

& currentRace = R)

&

/*enabling RTAL to print the attacker’s intension.*/

Signal_Enabled

& Which_Signal = Vote_Signal

&

/*for this candidate, print Cancelled on the RTAL tape.*/

pickedName = Candidate_Name (vc)

&

/*for this candidate, print Selected on the RTAL tape.*/

attPickedName = Candidate_Name (ac)

& Vote_Changed

EXCEPT [TIME : ACV_Dur]

/*Change Vote Attack.*/

/*This attack asssumes a Careful voter. The voter has confirmed and the Thank_You message has been

displayed.*/

Which_Phase = During_Voting

& vType = Careful

& EXISTS b: Button

(b = CONFIRM

& Button_Pushed (b))

& scrName = THANKYOU_SCREEN

& EXISTS R: Race

(vc ISIN Displayed_Candidates (R)

& ac ISIN Displayed_Candidates (R)

& Picked (Candidate_Name (vc) , Race_Title (R)))

&

/*voter candidate is different from attacker candidate */

vc ˜= ac

& Min_Display (scrNumber) = Display_Info (Thank_You, NoButton)

& ˜Summary_Sent2RTAL

& ˜Vote_Changed

& NormalVotingProcess

EXIT

EXISTS R: Race

(vc ISIN Displayed_Candidates’ (R)

& ac ISIN Displayed_Candidates’ (R)

238

& vc ISIN tempVoteRecord’ (R)

-> (Picked (Candidate_Name (vc) , Race_Title (R)) BECOMES FALSE

& Picked (Candidate_Name (ac) , Race_Title (R)) BECOMES TRUE

& currentRace = R))

&

/*enabling RTAL to print the attacker’s intension.*/

Signal_Enabled

& Which_Signal = Vote_Signal

&

/*for this candidate, print Cancelled on the RTAL tape.*/

pickedName = Candidate_Name (vc)

&

/*for this candidate, print Selected on the RTAL tape.*/

attPickedName = Candidate_Name (ac)

& Vote_Changed

EXCEPT [TIME : ACV_Dur]

/* Complete voting process attack.*/

/*This attack asssumes a fleeing voter. In this scenario the fleeing voter voted for the attacke’s

candidate*/

Which_Phase = During_Voting

& Terminal_Mode = voter_mode

& vType = Fleeing

& scrName = REVIEW_SCREEN

& scrNumber = Number_Of_Race + 1

& Now - Change (scrNumber) >= 10

& EXISTS R: Race

(vc ISIN Displayed_Candidates (R)

& ac ISIN Displayed_Candidates (R)

& Picked (Candidate_Name (vc) , Race_Title (R)))

& vc = ac

& Review_Displayed

& NormalVotingProcess

EXIT

/*the attacker calls the confirmation function and complete the process.*/

scrNumber = scrNumber’ + 2

& scrName = THANKYOU_SCREEN

& EXISTS b: Button

(b = CONFIRM

-> Button_Pushed (b) BECOMES TRUE)

& Min_Display (scrNumber) BECOMES Display_Info (Thank_You, NoButton)

&

/*The normal voting process is intrupted by the attacker and the DRE is not chirping for this voter.*/

˜NormalVotingProcess

EXCEPT [TIME : ACV_Dur]

/*Fake Voter Attack.*/

/*This attack asssumes a fleeing voter. This results in faking the fleeing voter.*/

Which_Phase = During_Voting

& Terminal_Mode = voter_mode

239

APPENDIX A. SAMPLE ATTACK SPECIFICATIONS

& vType = Fleeing

& EXISTS b: Button

(b = CONFIRM

& Button_Pushed (b))

& scrName = THANKYOU_SCREEN

& Min_Display (scrNumber) = Display_Info (Thank_You, NoButton)

& EXISTS R: Race

(vc ISIN Displayed_Candidates (R)

& ac ISIN Displayed_Candidates (R)

& Picked (Candidate_Name (vc) , Race_Title (R))

& ˜Picked (Candidate_Name (ac) , Race_Title (R)))

&

/*the voter’s candidate is different from the attacker’s candidate.*/

vc ˜= ac

& ˜Summary_Sent2RTAL

& ˜Fleeing_Faked

& Review_Displayed

EXIT

Fleeing_Faked

TRANSITION Display_ReivewPage

ENTRY [TIME : S_R_Dur]

Terminal_Mode = voter_mode

& Which_Phase = During_Voting

& DRE_State = Opened

& scrNumber = Number_Of_Race + 1

& scrName = REVIEW_SCREEN

& EXISTS b: Button

(b = REVIEW

& Button_Pushed (b))

& ˜Review_Displayed

EXIT

Review_Displayed

& Display (scrNumber’) BECOMES Display_Review ({ SETDEF c: Race_Candidates_Pair (EXISTS R: Race

(c [Contest] = R

& c [Nominees] = tempVoteRecord’ (R))) } , Screen_Buttons (scrNumber’))

TRANSITION Update_TotalTally

ENTRY [TIME : 1]

Which_Phase = During_Voting

& Min_Display (scrNumber) = Display_Info (Thank_You, NoButton)

& EXISTS b: Button

(b = CONFIRM

& Button_Pushed (b))

& scrName = THANKYOU_SCREEN

& ˜Summary_Sent2RTAL

EXIT

FORALL C: Candidate, R: Race

(C ISIN Displayed_Candidates’ (R)

& IF

Picked’ (Candidate_Name (C) , Race_Title (R))

THEN

TotalTallyCount (C, R) = TotalTallyCount’ (C, R) + 1

240

ELSE

NOCHANGE (TotalTallyCount (C, R))

FI)

& IF

Min_Display’ (scrNumber’ - 1) = Display_Info (Ballot_Not_Completed, Screen_Buttons’ (scrNumber’ - 1))

THEN

NumberOfLogEntry = NumberOfLogEntry’ + 1

& EventLog (NumberOfLogEntry) BECOMES underVotedRaces’

& underVotedRaces = underVotedRaces’

& RTALMessage = BALLOT_ACCEPTED_UNDERVOTE

ELSE

RTALMessage = BALLOT_ACCEPTED

& underVotedRaces = NoUnderVotedRace

FI

& Signal_Enabled

& Which_Signal = Summary_Signal

& BallotBarcode = BARCODE (voterNumber’)

& Terminal_Mode = sleep_mode

& scrNumber = - 1

& scrName = SETUP_SCREEN

&

/*Reset the temprary vote record. */

FORALL R: Race

(tempVoteRecord (R) = EMPTY)

& Summary_Sent2RTAL

TRANSITION Attack_ReDisplay (DelayTime: Time)

ENTRY [TIME : ACV_Dur]

Fleeing_Faked

& Now - Change (Fleeing_Faked) >= DelayTime

EXIT

/*The attacker again display the confirmation page.*/

scrNumber = scrNumber’ - 1

& scrName = CONFIRM_SCREEN

& Min_Display (scrNumber) BECOMES Display_Info (voterMessage’, BACK, CONFIRM)

TRANSITION Attack_Call_ChirpingRt

ENTRY [TIME : 1]

Which_Phase = During_Voting

& Terminal_Mode = voter_mode

& Fleeing_Faked

& scrNumber = Number_Of_Race + 2

& Now - Change (scrNumber) >= 10

EXIT

Terminal_Mode = chirping

The following transition specifies how the RTAL prints the information sent by the DRE

process. Its entry condition specifies that the DRE is connected to the RTAL, the DRE has

241

APPENDIX A. SAMPLE ATTACK SPECIFICATIONS

sent a signal to the RTAL for printing, the send signal should be in one of the permitted voting

procedures (i.e., My DRE.Which Signal = NoSignal), and the RTAL is currently in waiting

state. The exit specifies a complex conditional. It is related to the normal voting process as

carried out by legitimate voters (careful or attentive voters) and the altered voting process due

to the various attacks as discussed in the paper.

TRANSITION Print_Selection

ENTRY [TIME : P_S_Dur]

My_DRE.Plugged_In

& My_DRE.Signal_Enabled

& RTAL_State = Wait

& My_DRE.Which_Signal ˜= NoSignal

EXIT

RTAL_State = Printed

& IF

My_DRE.Which_Signal = Start_Signal

| My_DRE.Which_Signal = Vote_Signal

THEN

IF

My_DRE.Which_Signal = Start_Signal

THEN

tapePosition = tapePosition’ + 1

& CutLengthCounter = CutLengthCounter’ + 1

& voterNumber = voterNumber’ + 1

& Tape (tapePosition) BECOMES Make_Print_Info (My_DRE.RTALMessage)

ELSE

IF

My_DRE.Vote_Changed

THEN

/*Attack point.*/

tapePosition = tapePosition’ + 2

& CutLengthCounter = CutLengthCounter’ + 2

&

/*This prints the cancelation of the voter’s candidate choice.*/

Tape (tapePosition - 1) = Make_Print_VoteEntry (My_DRE.pickedName,

My_DRE.currentRace,

Cancelled)

&

/*This prints the selection of the attacker’s candidate selection.*/

Tape (tapePosition) = Make_Print_VoteEntry (My_DRE.attPickedName,

My_DRE.currentRace,

Selected)

& FORALL i: Tape_Number

(i ˜= tapePosition

& i ˜= tapePosition - 1

-> NOCHANGE (Tape (i)))

ELSE

/*Normal voter’s choice print.*/

242

tapePosition = tapePosition’ + 1

& CutLengthCounter = CutLengthCounter’ + 1

& Tape (tapePosition) BECOMES Make_Print_VoteEntry (My_DRE.pickedName,

My_DRE.currentRace,

My_DRE.pickedValue)

FI

FI

ELSE

IF

My_DRE.Vote_Changed

THEN

/*if attacked before the summary printed. This is the case for careful voter.*/

tapePosition = tapePosition’ + 5

& CutLengthCounter = CutLengthCounter’ + 5

& Tape (tapePosition - 4) BECOMES Make_Print_VoteEntry (My_DRE.pickedName,

My_DRE.currentRace,

Cancelled)

&

/*This prints the selection of the attacker’s candidate selection.*/

Tape (tapePosition - 3) BECOMES Make_Print_VoteEntry (My_DRE.attPickedName,

My_DRE.currentRace,

Selected)

&

/*followed by immediate print of the summary information and barcode.*/

Tape (tapePosition - 2) = Make_Print_Info (My_DRE.RTALMessage)

& Tape (tapePosition - 1) = Make_Print_Undervote (My_DRE.underVotedRaces)

& Tape (tapePosition) = Make_Print_BallotBarcode (My_DRE.BallotBarcode)

& FORALL i: Tape_Number

(i ˜= tapePosition

& i ˜= tapePosition - 1

& i ˜= tapePosition - 2

& i ˜= tapePosition - 3

& i ˜= tapePosition - 4

-> NOCHANGE (Tape (i)))

& VoteStartPosition (voterNumber) BECOMES tapePosition - CutLengthCounter +

1

& VoteEndPosition (voterNumber) BECOMES tapePosition

& summaryPrinted = TRUE

ELSE

tapePosition = tapePosition’ + 3

& CutLengthCounter = CutLengthCounter’ + 3

& Tape (tapePosition - 2) = Make_Print_Info (My_DRE.RTALMessage)

& Tape (tapePosition - 1) = Make_Print_Undervote (My_DRE.underVotedRaces)

& Tape (tapePosition) = Make_Print_BallotBarcode (My_DRE.BallotBarcode)

& FORALL i: Tape_Number

(i ˜= tapePosition

& i ˜= tapePosition - 1

& i ˜= tapePosition - 2

-> NOCHANGE (Tape (i)))

& VoteStartPosition (voterNumber) BECOMES tapePosition - CutLengthCounter +

1

& VoteEndPosition (voterNumber) BECOMES tapePosition

243

APPENDIX A. SAMPLE ATTACK SPECIFICATIONS

& summaryPrinted = TRUE

FI

FI

244

Appendix B

Publications

Journal

[1] Adolfo Villafiorita, Komminist Weldemariam, Roberto Tiella. Development,

Formal Verification and Evaluation of an e-voting System with VVPAT.

IEEE Transaction on Information Forensics and Security.

Book Chapter

[2] Luca Cernuzzi, Magaĺı Gonzáez, Marco Ronchetti, Adolfo Villafiorita, Kommin-

ist Weldemariam. Multi-cultural experiences in eGovernance: Case Studies

and a Roadmap. Global Strategy and Practice of e-Governance: Examples from

Around the World (Accepted for publication).

Archival Proceedings

2010

[3] Komminist Weldemariam, Richard Kemmerer, Adolfo Villafiorita. Formal

Specification and Analysis of an e-Voting System. To Appear In Proceedings

of The 5th International Conference on Availability, Reliability and Security (ARES

2010). Publisher IEEE.

245

APPENDIX B. PUBLICATIONS

[4] Komminist Weldemariam, Adolfo Villafiorita, Angelo Susi, and Alberto Siena.

Modeling and Analysis of Laws using BPR and Goal-oriented framework.

To Appear In Proceedings of International Conference on Technical and Legal As-

pects of the e-Society (CYBERLAWS 2010). Publisher IEEE.

[5] Birhanu Eshete, Andrea Mattiolli, Adolfo Villafiorita, Komminist Weldemariam.

ICT for Good: Opportunities, Challenges and the Way Forward. In Pro-

ceedings of The International Conference on Digital Society (ICDS 2010) Publisher

IEEE.

2009

[6] Aaron Ciaghi, Komminist Weldemariam, Adolfo Villafiorita, Andrea Mattioli,

Quoc-Sang Phan. Supporting Public Administration with an Integrated

BPR Environment. To Appear In Proceedings of The 1st International ICST

Conference on e-Infrastructure and e-Services for Developing Countries (AFRICOMM09).

Publisher Springer.

[7] Komminist Weldemariam, Richard Kemmerer, Adolfo Villafiorita. Formal

Analysis of Attacks for e-voting System. In Proceedings of the 4th Inter-

national Conference on Risks and Security of Internet and Systems (CRiSIS 2009).

Publisher IEEE.

[8] Komminist Weldemariam, Adolfo Villariorita, Andrea Mattioli. Experiments

and Data Analysis of Electronic Voting System. In Proceedings of the 4th

International Conference on Risks and Security of Internet and Systems (CRiSIS

2009). Publisher IEEE.

[9] Komminist Weldemariam, Andrea Mattioli, Adolfo Villafiorita. Managing Re-

quirements for e-voting Systems: Issues and Approaches Motivated by a

246

Case Study. In Proceedings of the first International Workshop on Requirements

Engineering for E-voting System, In conjunction with the 17th IEEE International

Requirements Engineering Conference. Publisher IEEE.

2008

[10] Komminist Weldemariam, Adolfo Villariorita. Formal Procedural Security

Modeling and Analysis. In Proceedings of the 3rd International Conference on

Risks and Security of Internet and Systems (CRiSIS 2008). Publisher IEEE.

[11] Komminist Weldemariam, Adolfo Villafiorita. A Methodology for Assessing

Procedural Security: A Case Study in E-Voting. In Proceedings of the

3rd International Conference on Electronic Voting (EVOTE 2008). Publisher

Springer.

[12] Komminist Weldemariam, Adolfo Villariorita. Modeling and Analysis of

Procedural Security in (e)Voting: the Trentino’s Approach and Expe-

riences. In Proceedings of the 3rd USENIX Electronic Voting Technology (EVT

2008). Publisher USENIX/ACM.

2007

[13] Komminist Weldemariam, Adolfo Villariorita. Assessing Procedural Risks

and Threats in e-Voting: Challenges and an Approach. In Proceedings of

the First Conference on E-Voting and Identity (VOTE-ID). Publisher Springer.

247

	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Aims and Approach
	1.3 Main Contributions
	1.4 Organization

	2 State of the Art
	2.1 BPR Context
	2.2 Security Analysis
	2.2.1 Graph-Based Approach
	2.2.2 Model-Based Approach

	2.3 Elections and Electronic Voting
	2.3.1 Elections and Technology
	2.3.2 Trends in the Development of e-voting system
	2.3.3 The ProVotE e-voting system

	3 Tool Supported Methodology for BPR
	3.1 Challenges and Requirements of BPR in PA
	3.1.1 Challenges of BPR in PA
	3.1.2 Requirements for Process Models

	3.2 Representing Laws in XML
	3.3 Process Modeling Methodology
	3.3.1 Defining Business Models Formally
	3.3.2 The Modeling Methodology

	3.4 A Tool for Supporting the Methodology
	3.4.1 Intermediate Representations
	3.4.2 VLPM Usage Scenario
	3.4.3 Examples

	3.5 Summary

	4 Procedural Security Analysis
	4.1 Why Procedural Security?
	4.2 Conceptual Framework
	4.2.1 Framework to Understand an Asset
	4.2.2 Asset Threats and Attacks

	4.3 A Methodology for Procedural Security
	4.3.1 Formal Model of Asset-flows
	4.3.2 Model Extension
	4.3.3 Encoding the Assets-flow models in NuSMV
	4.3.4 Property Capturing and Model Checking

	4.4 A Case Study
	4.5 Summary

	5 Formal Analysis by Reverse Synthesis
	5.1 Introduction
	5.2 The ES&S Electronic Voting Systems
	5.2.1 The System Components and Voting Process
	5.2.2 Informal Description of Critical Requirements
	5.2.3 Selected Attack Scenarios

	5.3 Reverse Synthesis Approach
	5.4 Overview of the ASTRAL language
	5.5 Formal Analysis of an e-voting System
	5.5.1 Specification of the ES&S Voting Process
	5.5.2 Critical Security Requirements
	5.5.3 Formal Verification and Results

	5.6 Extending the System Specification by Modeling Attack Scenarios
	5.6.1 Attack Specifications

	5.7 Summary

	6 Conclusion
	6.1 Summary and Discussion
	6.2 Future Work

	Bibliography
	A Sample Attack Specifications
	B Publications

