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Abstract

RNA binding proteins (RBPs) and non-coding RNAs (ncRNAs) are key actors in
post-transcriptional gene regulation. By being able to bind messenger RNA (mRNA)
they modulate many regulatory processes. In the last years, the increasing interest
in this level of regulation favored the development of many NGS-based experimen-
tal techniques to detect RNA-protein interactions, and the consequent release of a
considerable amount of interaction data on a growing number of eukaryotic RBPs.

Despite the continuous advances in the experimental procedures, these tech-
niques are still far from fully uncovering, on their own, the global RNA-protein
interaction system. For instance, the available interaction data still covers a small
fraction (less than 10%) of the known human RBPs. Moreover, experimentally
determined interactions are often noisy and cell-line dependent. Importantly, ob-
taining genome-wide experimental evidence of combinatorial interactions of RBPs
is still an experimental challenge.

Machine learning approaches are able to learn from the data and generalize the
information contained in them. This might give useful insights to help the inves-
tigation of the post-transcriptional regulation. In this work, three machine learn-
ing contributions are proposed. They aim at addressing the three above-mentioned
shortcomings of the experimental techniques, to help researchers unveiling some yet
uncharacterized aspects of post-transcriptional gene regulation.

The first contribution is RNAcommender, a tool capable of suggesting RNA tar-
gets to unexplored RBPs at a genome-wide level. RNAcommender is a recommender
system that propagates the available interaction data, considering biologically rele-
vant aspects of the RNA-protein interactions, such as protein domains and RNA
predicted secondary structure.

The second contribution is ProtScan, a tool that models RNA-protein interac-
tions at a single-nucleotide resolution. Learning models from experimentally deter-
mined interactions allows to denoise the data and to make predictions of the RBP
binding preferences in conditions that are different from those of the experiment.

The third and last contribution is PTRcombiner, a tool that unveils the combina-

torial aspects of post-transcriptional gene regulation. It extracts clusters of mRNA

co-regulators from the interaction annotations, and it automatically provides a bio-

logical analysis that might supply a functional characterization of the set of mRNAs

targeted by a cluster of co-regulators, as well as of the binding dynamics of different

RBPs belonging to the same cluster.

Keywords: post-transcriptional gene regulation, RNA-protein interac-
tions, recommender systems, kernel machines, matrix factorization.
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Chapter 1

Introduction

In this first chapter, I give the motivation of my research work, and introduce

the main contributions of this thesis. I also provide a basic explanation of

the structure of the manuscript.

1.1 Motivation

Proteins are responsible for the majority of processes taking place in all

prokaryotic and eukaryotic cells. Proteins are produced according to the

central dogma of molecular biology (Crick et al., 1970), that explains how

they are synthesized through gene transcription and translation. The first

process (i.e. transcription) copies a portion of DNA into a messenger RNA

(mRNA); while the second one (i.e. translation) translates the information

carried by the mRNA into functional proteins. Numerous regulatory steps

occur to control the amount of proteins expressed in a cell. Albeit tran-

scriptional control has been well studied and characterized, only in the last

years, post-transcriptional regulation called for attention. Importantly, the

evidence of a widespread uncoupling between transcriptome (the product

of transcription) and proteome (the product of translation) supports the

presence of a post-transcriptional regulatory mechanism (Vogel et al., 2010;

Tebaldi et al., 2012).

In this work I focus on the study of eukaryotic (mainly human) post-

transcriptional regulation. At this level of regulation, proteins and non-

coding RNAs (ncRNAs) may regulate mRNA metabolism acting as trans-

1
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factors on the mRNA. Among these, RNA binding proteins (RBPs) and

micro RNAs (miRNAs), that are able to bind mRNA molecules and mod-

ulate several regulatory processes, are the most studied actors of post-

transcriptional regulation. In eukaryotes, each mRNA undergoes a series

of post-transcriptional steps before being translated into a functional pro-

tein. These include mRNA processing (capping, polyadenylation and splic-

ing), transport, storage, translation and degradation. Elucidating the basic

mechanisms of post-transcriptional control is fundamental to gain a full un-

derstanding of how gene expression is regulated at different levels. Such

knowledge is crucial to understand how defects in post-transcriptional reg-

ulation can lead to numerous genetic disorders (Modic et al., 2013) and

cancer (Farazi et al., 2011).

The understanding of RNA-protein interactions is an essential point for

studying post-transcriptional regulation. For this reason, genome-wide ex-

perimental techniques have been developed for detecting interactions (March-

ese et al., 2016) both in vitro (Ray et al., 2009; Lambert et al., 2014) and

in vivo (Ule et al., 2003; Granneman et al., 2009; Hafner et al., 2010; König

et al., 2010; Kudla et al., 2011; Van Nostrand et al., 2016). The coupling of in

vivo techniques based on crosslinking, such as CLIP (Ule et al., 2003; Hafner

et al., 2010; König et al., 2010; Van Nostrand et al., 2016), CRAC (Granne-

man et al., 2009) and CLASH (Kudla et al., 2011), with next generation

sequencing, allowed the identification of RBP-RNA interactions genome-

wide. These techniques, by exploiting substitutions and/or deletions in the

RNA sequences, allow to precisely pinpoint the interaction sites. Together,

all these techniques, enabled the generation of an unprecendented source of

information for the study of post-transcriptional gene regulation.

Despite the continuous advances in the experimental procedures, these

techniques are still far from fully uncovering, on their own, the global RNA-

protein interaction network. In the scope of this thesis, I want to underline

three main shortcomings of the data produced by these experimental tech-

niques. First, the available interaction data still covers quite a small fraction

of the known RBPs. Considering human RNA-protein interaction data, the

RNA interactome is currently available for less than 10% of the known 1542

manually curated collection of RBPs (Gerstberger et al., 2014). This lack

of information is not only related to the cost and time of obtaining these

data, but also to experimental problems. For example, the unavailability
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of reliable antibodies against certain RBPs, or specific chemical properties

of the interaction that complicate the crosslinking make obtaining reliable

information of RBP-RNA interaction a challenge. Second, experimentally

determined interactions are often noisy and cell-line dependent. Even for

RBPs with experimentally determined interactomes, the information is still

far from being fully accurate (Marchese et al., 2016). Due to the depen-

dency of these techniques on expression levels and cell lines, some interac-

tions might be missed (false negatives). Additionally, cell stress conditions,

that in some cases are induced by the experimental procedures themselves,

might produce some technical artifacts that are then mistakenly detected

(false positives). Third, these techniques individuate the binding sites of

a single RBP of interest in each experiment. An exception might be rep-

resented by gPAR-CLIP (Baltz et al., 2012) that allowed to determine the

mRNA-bound proteome and its global occupancy profile. Anyhow, gPAR-

CLIP does not allow to match binding sites with specific RBPs, therefore it

does not give precise information usable to understand how multiple RBPs

target the same mRNAs. Even if the combinatorial interaction of multi-

ple RBPs with the mRNA has been well hypothesized and in some cases

confirmed (Blaxall et al., 2002; Landthaler et al., 2008), obtaining genome-

wide experimental evidence of combinatorial interaction of RBPs is still an

experimental challenge.

In conclusion, the increasing interest in post-transcriptional regulation of

gene expression stimulated the constant release of new experimental data,

paving the way for transdisciplinary research and empowering the coop-

eration between biologists and computer scientists. Moreover, techniques

capable of learning from the data, such as machine learning approaches,

are able to generalize the information contained in the data and might give

useful insights to help the investigation of post-transcriptional regulation.

1.2 Contributions

With the purpose of helping researchers to unveil some yet uncharacterized

aspects of the post-transcriptional gene regulation, in this thesis I propose

three machine learning contributions aimed at addressing the three above-

mentioned shortcomings of CLIP techniques.

RNAcommender was developed with the aim of generating more com-
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plete overviews of RNA-protein interactions. This tool helps with the pre-

diction of genuine RNA targets for uncharacterized RBPs. RNAcommender

propagates the interaction information (available from experimental data),

considering biologically relevant aspects of the RNA-protein interactions,

such as the RBP domain composition and the RNA predicted secondary

structure.

Even when the interaction information is available, it is often subject

to noise and dependent on the specific cell line in which the experiment

was performed. For these reasons the second contribution is ProtScan, a

tool that accurately models RNA-protein interactions. ProtScan is based

on kernel methods and consensus voting, and it exploits the information

obtained with CLIP techniques to build generalized models of the binding

preference of RBPs. Learning generalized models from experimentally ob-

tained data allows to reduce the noise and to make predictions of the RBP

binding preferences in conditions that are different from those used in the

specific experiment (e.g. different cell lines with respect to the one used in

the experiment). To give an example, Ferrarese et al. (2014) investigated

the role of the splice factor PTBP1 in differential splicing of the tumor

suppressor gene ANXA7 in glioblastoma. Although there was strong bio-

logical evidence for PTBP1 directly binding ANXA7, no binding site was

found in a publicly available CLIP-seq dataset for PTBP1. Instead, only a

generalized in silico model trained on publicly available data was capable

to generalize the information and predict PTBP1 binding sites which were

then experimentally validated to affect ANXA7 splicing regulation.

The third and last contribution aims at unveiling the combinatorial as-

pects of the post-transcriptional gene regulation. Although CLIP techniques

are able to determine all RNA interactors for a given RBP, they do not

directly provide any information on the combinatorial interaction of multi-

ple RBPs (e.g. cooperative interaction of two RBPs in binding the same

mRNAs). For this reason, a computational tool named PTRcombiner is

proposed. It extracts clusters of mRNA co-regulators from interaction data.

PTRcombiner employs a pattern set mining technique based on Boolean

matrix factorization to extract the clusters of co-regulator RBPs. Addition-

ally, it provides a biological analysis of the extracted clusters that might

suggest some aspects of the functional characterization of the set of mRNAs

targeted by a cluster of regulators, and of the binding dynamics of different
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RBPs that belong to the same cluster.

1.3 Structure of the thesis

In this chapter I introduced the main focus of my research work. The rest

of the thesis is organized as follows. Chapter 2 introduces the related topics

in biology, i.e. the key concepts in post-transcriptional gene regulation, and

the experimental techniques to detect RNA-protein interactions. Chapter 3

describes the machine learning and data mining techniques that are related

to the three research contributions of this thesis: recommender systems,

kernel machines, and pattern set mining. Chapter 4 illustrates RNAcom-

mender, the recommender system for predicting RNA-protein interactions

for uncharacterized RBPs. The work presented in Chapter 4 has already

been published in:

Corrado G., Tebaldi T., Costa F., Frasconi P. and Passerini A. (2016).

RNAcommender: genome-wide recommendation of RNA-protein inter-

actions. Bioinformatics, 32(23), pp. 3627-3634

Chapter 5 discusses ProtScan, a tool for modeling RNA-protein interactions

from the available experimental data. The work presented in Chapter 5 has

been submitted and it is currently under peer review:

Corrado G., Uhl M., Backofen R., Passerini A. and Costa F. ProtScan:

modeling and prediction of RNA-protein interactions. Bioinformatics

Chapter 6 presents PTRcombiner, a data mining tool for unveiling the com-

binatorial aspects of post-transcriptional gene regulation. The work pre-

sented in Chapter 6 has already been published in:

Corrado G., Tebaldi T., Bertamini G., Costa F., Quattrone A., Viero

G., and Passerini A. (2014). PTRcombiner: mining combinatorial reg-

ulation of gene expression from post-transcriptional interaction maps.

BMC Genomics, 15(1)

Finally, in Chapter 7 I discuss in detail the final remarks related to the work

presented in this thesis.

1.4 Personal contributions

I am first author of the published paper presented in Chapter 4. I prepared

the data used in the work, contributed to the development of the model,

implemented the tool, performed the experimental validation, performed
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the comparison with related work, and contributed to the writing of the

manuscript.

I am first author of the submitted paper presented in Chapter 5. I con-

tributed to the preparation of the data used in the work, contributed to the

development of the model, implemented the tool, performed the experimen-

tal validation, performed the comparison with related work, and contributed

to the writing of the manuscript.

I am co-first author of the published paper presented in Chapter 6. I

contributed to the modification of the method, contributed to the implemen-

tation the tool, performed the experimental validation, performed the com-

parison with related work, and contributed to the writing of the manuscript.



Chapter 2

Biological Background

In this chapter I introduce the biological topics related to my research work.

First, I present the central dogma of molecular biology, together with the

basics of the transcription and translation. Then, I focus on the post-

transcriptional controls and the RNA-protein interactions. Finally, I dis-

cuss the experimental techniques, based on crosslinking and next generation

sequencing, to detect RNA-protein interactions.

2.1 The flux of genetic information

In this section, I first introduce the central dogma of molecular biology that

states how the information flows through DNA, RNA and proteins, and

then I explain the two main processes through which functional proteins are

synthesized, i.e. transcription and translation.

Proteins are extremely important for all living cells. In order to produce

functional proteins, the information contained in the protein coding genes

of the DNA is copied, through a process named transcription, into messen-

ger RNAs (mRNAs). The transcription process also copies the information

contained in other genes into non-coding RNAs (ncRNAs). While ncRNAs

are per se functional, mRNA molecules encode functional proteins, which

are generated through a process referred to as translation.

7
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Transcription Translation

DNA RNA Protein

Replication

Figure 2.1: Illustration of the flow of information in the central dogma of
molecular biology.

2.1.1 The central dogma

The flow of information through DNA, RNA and proteins was first intro-

duced by Crick in 1958 and then refined in Crick et al. (1970) in the so

called central dogma of molecular biology. The basic version of the central

dogma, the one hypothesized in 1958 and shown in Figure 2.1, states that

the information contained in the DNA can flow from DNA to DNA, from

DNA to RNA, and from RNA to proteins. The first process is named DNA

replication and it allows cells to duplicate their entire genome, while the sec-

ond process, named transcription, makes an RNA copy of sections of DNA

that are referred to as genes. Genes encode the information for synthesizing

several types of RNA molecules that exert different tasks. Lastly, the in-

formation contained in mRNAs flows to proteins, through a process named

translation.

Here, I describe transcription and translation that are processes sub-

jected to transcriptional and post-transcriptional regulation of gene expres-

sion.

2.1.2 Transcription

In eukaryotes, transcription occurs within the nucleus, where DNA is pack-

aged into nucleosomes and high order chromatin structures. It consists of

three stages: initiation, elongation, and termination.

RNA polymerases are the enzymes that drive transcription. In eukary-

otic cells, three types of RNA polymerases are present, each with distinct

roles and properties. RNA polymerase I (Pol I, Pol A) is responsible for the

transcription of all large ribosomal RNAs (rRNAs). RNA polymerase II (Pol

II, Pol B), located in a specialized compartment of the nucleus called the
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Figure 6-16  Molecular Biology of the Cell (© Garland Science 2008) 

Eukaryotic transcription 
initiation 

Figure 6-16  Molecular Biology of the Cell (© Garland Science 2008) 

Eukaryotic transcription 
initiation 

Figure 2.2: RNA polymerase II transcription preinitiation complex (Alberts
et al., 2002). The transcription factor II D (TFIID) complex binds, though
the TATA binding protein (TBP), to the TATA box in the core promoter of
the gene. Then, the transcription factor II B (TFIIB) binds to stabilize the
complex. TBIIB also recruits RNA polymerase II and other transcription
factors (TFIIE, TFIIF) that help to stabilize the complex. TFIIH promotes
the creation of the transcription bubble.

nucleolus, catalyzes the transcription of all messenger RNAs (mRNAs), and

ncRNAs such as micro RNAs (miRNAs), small nuclear RNAs (snRNAs),

small nucleolar RNAs (snoRNAs) and small interfering RNAs (siRNAs).

Finally, RNA polymerase III (Pol III, Pol B), located in the nucleus and

in the nucleolus, is in charge of transcribing transfer RNAs (tRNAs), and

other small non-coding RNAs (including the small 5S rRNA).

Transcription initiation requires an RNA polymerase and a set of mul-

tiple general transcription factors to form a transcription preinitiation com-

plex (Figure 2.2). General transcription factors are a group of proteins

involved in transcription initiation and regulation. DNA contains promoter

regions that are extremely important for the transcription initiation. Pro-

moter regions can be highly conserved (core promoters) and therefore pro-

mote the initiation of transcription for many genes (e.g. TATA box), or

located outside core promoter regions. Enhancers and silencers bind tran-

scriptional activators or repressors to increase or decrease transcription. An

additional type of these cis-acting elements are the insulators that blocks the

interaction between enhancers and promoters to inhibit their subsequent in-

teractions. After the RNA polymerase and the transcription factors have

bound the DNA, the newly formed complex opens the two DNA strands and
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positions the template strand in the active site of the RNA polymerase.

After that, the transcription enters in its elongation phase. At this step,

RNA polymerases acquire enzymes, named elongation factors, that catalyze

the unwinding of the DNA double strand and the scanning of the template

strand by the RNA polymerases. For every DNA base pair separated by the

progressing RNA polymerase, one hybrid DNA-RNA base pair is instantly

formed. Then, the two DNA strands rejoin at the end of the transcrip-

tion bubble while the single-stranded RNA emerges alone. Elongating RNA

polymerase II is also associated with a set of factors (such as P-TEFb,

SPT5 and TAF-SF1) required for mRNA processing, capping, splicing, and

polyadenylation. The 5’-end of the mRNA is capped as soon as it emerges

from the exit channel of the polymerase. Then intronic sequences, that do

not carry information for assembling proteins, are removed by splicing. Fi-

nally, mRNA is cleaveged and then polyadenylation adds a poly(A) tail to

its 3’-end.

The last stage is transcription termination, where the complete RNA

transcript dissociates and the RNA polymerase is released from the DNA

template strand. The termination process varies for each of the three types

of RNA polymerases. Pol I and Pol II undergo a factor-dependent termi-

nation, where specific transcription termination factors associate with the

RNA polymerase to dissociate it from the DNA template strand. Pol I tran-

scribes large rRNAs, when it reads through termination sites the rRNA is

cleaved by enzymes. Pol II is associated with the transcription of mRNAs.

For Pol II, CPSF (cleavage and polyadenylation specificity factor) and CSTF

(cleavage stimulation factor) recruit other proteins to carry out RNA cleav-

age and polyadenylation. Differently, Pol III terminates the transcription

without the involvement of additional factors, because it directly recognizes

the termination signal in the sequence of the template strand.

During transcription several levels of control act both locally, to turn on

or off individual genes in response to specific needs of the cell, and globally,

to maintain the gene expression pattern that shapes cell identity (epigenetic

regulation). Transcription initiation is, in particular, the primary level of

transcriptional regulation, because targeting the initial step is more energy

efficient for the cell. Transcription initiation is regulated by cis-acting ele-

ments (enhancers, silencers, insulators) present in the regulatory regions of

the DNA, and sequence-specific trans-acting factors that act as activators or
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repressors. Still, gene transcription can also be regulated after the initiation

phase by targeting the elongation of the RNA polymerases. Also transcrip-

tion termination can be interpreted as a level of control, because the factors

associated with transcription termination indirectly determine the rate of

re-initiation.

2.1.3 Translation of mRNAs

After transcription and mRNA processing, mRNAs are exported from the

nucleus into the cytoplasm, where they can be translated, by ribosomes, into

functional proteins. The general structure of mature mRNA (processed)

in the cytoplasm is shown in Figure 2.3a. At the two extremities there

are the 5’ cap (red) that was added during capping, and the poly(A) tail

(grey) that was added during polyadenylation. The coding sequence (CDS)

(green) contains the actual information needed to assemble the proteins.

The nucleotide chain of the CDS determines the amino acid composition of

a protein. The code is read in blocks of 3 nucleotides, called codons, and

each codon specifies the amino acid that needs to be added on the growing

polypeptide chain. Finally, there are two untranslated regions (UTRs) that

are sections of the mRNA, at the extremities of the CDS, that are not

translated, namely 5’ UTR (yellow) and 3’ UTR (pink). Their role is mainly

associated to regulation processes.

If the main actors of transcription are the transcription factors and the

RNA polymerases, in translation the key role is played by ribosomes and

transfer RNAs (tRNAs). A ribosome is a large complex composed of riboso-

mal RNAs (rRNAs) and ribosomal proteins. Figure 2.3b shows a cartoon of

an eukaryotic ribosome (also known as 80S ribosome). Eukaryotic ribosomes

are composed of two unequal subunits, named small subunit (40S) and large

subunit (60S), that assemble to form an 80S ribosome. Ribosomes contain

three active sites, named E-, P-, and A-site, where mRNA and tRNAs are

located during mRNA translation. tRNAs have a distinctive folded struc-

ture with three hairpin loops (Figure 2.3c), one of which contains a sequence

called the anticodon. Anticodons match their complementary codons on the

mRNA. Each tRNA has its corresponding amino acid (that corresponds to

the one encoded by the matched codon) attached to its end.

Translation can be divided in four main steps: initiation, elongation,

termination and recycling. Differently from transcription (that occurs in
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Cap 5’ UTR Coding sequence (CDS) 3’ UTR Poly(A) 
tail

5’ 3’

start stop

(a) mRNA structure.

(b) Ribosomal subunits and
ribosomal active sites.

(c) tRNA structure.

Figure 2.3: Structures of the mRNA, the ribosome, and the tRNA.

the nucleus), translation takes place in the cytoplasm.

Transcription initiation starts with the translation initiation factor eIF4,

that is a large protein complex composed of multiple subunits, binding to

the 5’ cap of the mRNA. eIF4 also binds, through one of its subunits, to the

poly(A)-binding proteins bound to the poly(A) tail of the mRNA, inducing

a circularization of the molecule. At the same time, another initiation factor

(eIF3) binds to the small ribosomal subunit and loads it on the circularized

mRNA at the beginning of the 5’ UTR. Then, the complex formed by the

small ribosomal subunit and the initiation factors starts scanning the mRNA

until it finds a start codon (AUG), that represents the beginning of the CDS.

The AUG codon is recognized by a unique tRNA carrying a methionine

amino acid that will be removed from the assembled protein. The recognition

of the start codon is also catalyzed by the initiation factor eIF2. At this

point, the large ribosomal subunit binds to this complex, causing the release

of the initiation factors. The 80S ribosome is now assembled around the

mRNA (Figure 2.4a).

During the elongation phase amino acids are brought together and joined

to form a polypeptide chain. This process is directed by elongation factors

and it can be divided in three steps, summarized in Figure 2.4b, that are
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Figure 2.4: Steps of the translation of mRNA.
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repeated until a stop codon (that marks the end of the CDS) is encountered.

First, a tRNA enters the A-site of the ribosome. This tRNA has the com-

plementary anticodon to the codon in the A-site. Now, two tRNA molecules

are side by side in the P- and A-sites of the ribosome, and their amino acids

are next to each other. Second, rRNA of the ribosome catalyzes the bond

formation between the two adjacent amino acids. The amino acid carried

by the tRNA in the P-site is attached to the amino acid of the tRNA in the

A-site, and the growing protein chain is temporarily held by the tRNA in

the A-site. Third and last, the ribosome and the mRNA slide relative to

each other. The tRNA that was in the P-site is shifted into the E-site, the

tRNA that was in the A-site is transferred into the P-site. This situates a

new codon in the A-site and the growing polypeptide chain in the P-site.

The tRNA in the E-site exits the ribosome, and then the steps of elongation

may repeat.

Translation terminates when one of the three stop codons (UAA, UAG

and UGA) enters the A-site of the ribosome. The stop codons are not

recognized by any tRNA, but by release factors. When, the release factors

enter the ribosome, they catalyze: the breaking of the bond between the

growing polypeptide chain and the tRNA that holds it, the release of the

polypeptide chain from the ribosome, and the dissociation of the ribosomes

subunits that are now free to associate again and translate another mRNA

or the same mRNA another time (ribosome reciclying) (Figure 2.4c).

2.2 Post-transcriptional gene regulation

In many mammals it is possible to observe a profound uncoupling between

transcriptome (the product of transcription) and proteome (the product

of translation) (Tebaldi et al., 2012), suggesting a widespread presence of

gene expression controls also at a post-transcriptional level (Vogel et al.,

2010). For this reason, while transcriptional control has been well stud-

ied and characterized, a new level of control of gene expression, named

post-transcriptional regulation, called for attention. Here RNA-binding

proteins and ncRNAs (mostly miRNAs) bind mRNAs to regulate their

translation and/or degradation. Furthermore, the involvement of aberrant

RBPs, or the synthesis of malfunctioning proteins due to failures in the

post-transcriptional regulation steps, often cohorts with the development of
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diseases (Glisovic et al., 2008).

2.2.1 Splicing

The pre-mRNA splicing reaction is a fundamental step in the regulation of

eukaryotic gene expression. Almost all mammalian genes produce multi-

ple mRNA alternative isoforms through alterations in the choice of splice

sites. Pre-mRNA contains exons and introns that are delineated by the 5’

splice site at the beginning of an intron and the 3’ splice site at its end.

Alternative splicing involves changes in the choice of the splice sites by the

splicing machinery with the help of splicing factors (as RBPs). During splic-

ing, introns are excised and exons are ligated. The process is catalyzed by

a large ribonucleoprotein (RNP) complex called spliceosome, that assem-

bles onto splice sites (or splice junctions). Although several processes alter

spliceosome assembly and affect the splice site choice, the best understood

alterations in splicing are defined by RBPs that bind to the pre-mRNA and

boost or inhibit the spliceosome assembly. Although each regulatory protein

can affect many different RNA targets, each transcript is usually targeted

by multiple regulators (Vuong et al., 2016).

Even small alterations of the relative spliceosome assembly rates can

largely influence the choice of the splicing pattern in a transcript. Through

the combinatorial assembly of multiple alternatively spliced exons, genes can

produce tens of mRNA isoforms. These isoforms allow to produce proteins

of different structures and functions, or to affect mRNA localization, trans-

lation or degradation. For example, the broad class of the heterogeneous

nuclear ribonucleoproteins (hnRNPs) is strongly associated to the regula-

tion of the splicing machinery. Defective hnRNPs or alterations in their

expression level has been associated to a plethora of diseased cellular states,

including amyotrophic lateral sclerosis (ALS), Alzheimer’s disease and can-

cer (Geuens et al., 2016). Alternative splicing also plays a critical role in

both neuronal development and the function of mature neurons. For this

reason, the misregulation of splicing is implicated in multiple neurological

disorders (Vuong et al., 2016).
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Figure 2.5: Overview of the post-transcriptional gene regulation pathways
in eukaryotes (Gerstberger et al., 2014).
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Figure 2.6: Regulation of an alternative exon by RNA-binding pro-
teins (Vuong et al., 2016). Trans-acting RNA-binding proteins (RBPs) in-
teract with cis-sequence elements in the precursor mRNA to facilitate or
inhibit the assembly of the spliceosomal machinery at nearby splice sites.
The 5’ splice site is initially bound by U1 small nuclear ribonucleoprotein
(snRNP). The U2 snRNP recognizes the branchpoint and is recruited by
the U2AF proteins that are bound between the branchpoint and the 3’
splice site. Binding of U1 and U2 allows recognition of an exon in a process
called exon definition. An alternative splicing event frequently involves mul-
tiple competing weak splice sites that are subject to dynamic regulation by
neighbouring cis-elements. These cis-elements include intronic and exonic
splicing enhancers (ISE and ESE) and intronic and exonic splicing silencers
(ISS and ESS) that recruit activator or repressor RBPs, respectively. These
RBPs collectively influence splice site recognition or splice site pairing within
the spliceosome. The levels and activity of these trans-acting RBPs control
the choice of splice sites for many different transcripts. Activator RBPs
binding to enhancer elements are shown as arrows, and repressors binding
to silencer elements are shown as inhibitory arrows. Constitutive flanking
exons are shown in light green and the alternative exon is shown in dark
green.

2.2.2 Polyadenylation

During nuclear mRNA processing, all mRNAs acquire a poly(A) tail of

approximately 250–300 adenosine residues in length. Although the addition

of a poly(A) tail seems to occur by default, the successive control of its

length is highly regulated both in the nucleus and in the cytoplasm, being

responsible for the regulation of the stability, transport and translation of

mature transcripts.

Poly(A) tails of cytoplasmic mRNA act in synergy with the 5’ cap to aid

the translation initiation through the stabilization of the closed loop formed

by the translation initiation factor eIF4, providing a general (non–mRNA-

specific) way of translational regulation (Craig et al., 1998). On the other

hand, mRNA-specific translational control is determined by cis-acting regu-
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latory sequences, that are mainly present in the 5’ and 3’ UTRs. These mo-

tifs form mRNA-specific ribonucleoprotein complexes (mRNPs), including

microribonucleoprotein particles (miRNPs), mRNPs for deadenylation and

cytoplasmic polyadenylation complexes, that dynamically vary the length

of the poly(A) tail. The length of the poly(A) tail is strongly related to the

degree of mRNA translation (Beilharz and Preiss, 2007). The linear view of

poly(A) tail length regulation, in which all the mRNAs are polyadenylated

during mRNA processing in the nucleus and subsequently deadenylated as

the first step towards degradation, indicates only some of the regulatory

functions that involve poly(A) tails.

A much more dynamic view of poly(A) tail acquisition, shortening and

lengthening better explains the role of the poly(A) tail in the regulation

of gene expression. Even though nuclear polyadenylation is a default pro-

cess, the position at which the 3’ UTR of mRNA is cleaved and polyadeny-

lated is highly regulated for numerous transcripts (alternative polyadenyla-

tion) (Tian and Manley, 2017). The choice of the cleavage point determines

the regulatory signals that will be present in the 3’ UTRs of mature tran-

scripts. During stabilization of the translationally silent transcripts, these

regulatory signals present in the 3’ UTR will mediate mRNA deadenylation

by forming deadenylation mRNPs. Translationally inactive mRNPs may ac-

cumulate in the cytoplasm, to be quickly reactivated by cytoplasmic poly(A)

tail elongation when their encoded proteins are needed (Di Giammartino

et al., 2011).

2.2.3 Export

Before mRNAs can be translated into proteins they must be processed to

become mature transcripts, and then be exported from the nucleus to the

cytoplasm, by crossing through the nuclear pore complexes (NPCs). This

process is mediated by transport factors such as the conserved nuclear RNA

export factor 1 (NXF1) and its cofactor p15 that, together, bind and ex-

port mature mRNAs. Transport through a NPC is accomplished by sur-

mounting the permeability barrier that is created by nuclear pore proteins

called FG-nucleoporins. In addition to the export factor and its cofactor,

mRNA export involves two complexes that recognize mRNAs while they are

still being transcribed: transcription-export complex (TREX) and TREX-

2. After transcription and processing, cargo mRNAs from both TREX and
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TREX-2 are transferred to NXF1–p15, that directly interacts with the FG-

nucleoporins and mediates the transit through the NPC.

Although it is possible that the majority of mRNAs are exported through

bulk export pathways, the selectivity of mRNA export has been recently

shown (Wickramasinghe and Laskey, 2015). Diverse biological processes,

including gene expression (Wickramasinghe et al., 2014), can be regulated

by selective mRNA export and, in the majority of these cases, the selectivity

is mediated by components of the TREX and TREX-2 complexes. More-

over, there is growing evidence that malfunctions of the mRNA export may

contribute to the development of cancer (Culjkovic-Kraljacic and Borden,

2013).

Wickramasinghe and Laskey (2015) hypothesized that the mRNA ex-

port selectivity may be linked to the coordinate activity of the production

of functionally related proteins by mRNP complexes in post-transcriptional

RNA regulons. Functionally related genes that are preferentially transcribed

in certain cell states may be (post-transcriptionally) regulated by specific

RBPs that recognize sequence elements that are conserved among the mR-

NAs (Keene, 2007).

2.2.4 Storage and degradation

mRNA decay can be divided into two broad classes. The first represents the

mechanisms of quality control that eliminate the production of potentially

toxic proteins, while the second includes the mechanisms that lengthen or

shorten mRNA half-life for the purpose of changing the abundance of func-

tional proteins. The cytoplasmic decay machinery consists of different types

of ribonucleolytic activities, that are combinatorially used depending on

the mRNA substrate and cellular conditions. These activities mediate de-

capping, 5’-to-3’ exonucleolytic decay, deadenylation, 3’-to-5’ exonucleolytic

decay or endonucleolytic cleavage (Schoenberg and Maquat, 2012).

Proteins and ncRNAs associated with mRNAs can influence the rate

of mRNA decay in two ways. Directly, by promoting or precluding decay

factor binding, and indirectly by influencing the cellular location and/or

translational status of the mRNA. For example, by recruiting deadenylases

onto target mRNAs through TNRC6A–C proteins, miRNAs can promote

mRNA destabilization (Rehwinkel et al., 2005).

Cell state and environmental conditions (e.g. stress conditions) require
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rapid adaptations of gene expression. For this reason, RBPs can promote the

formation of membrane-less organelles, such as stress granules and processing-

bodies (P-bodies). Stress granules and P-bodies are associated with mRNA

storage and degradation, respectively, and they are produced in response

to different types of environmental conditions (Giménez-Barcons and Dı́ez,

2011).

Imprecise assembly or disassembly of stress-granules and P-bodies can

threaten cell stability. In diseased states, mutated RBPs contained in such

assemblies are associated with elevate structural disorder, and by conse-

quence with high risk misfolding and formation of toxic protein aggregates,

especially in neurons. Many motor-neuron diseases are connected to the ac-

cumulation of disordered RBPs, e.g. TDP43 in amyotrophic lateral sclerosis

(ALS), or Ataxia 1 in Ataxia (Bossy-Wetzel et al., 2004).

2.2.5 Translation

Although the ribosome has always been perceived as a remarkable molecu-

lar machine for reading and translating the genetic code of mRNAs, recent

studies have discovered significant functional specificity of many core ribo-

somal proteins and unveiled greater gene regulatory potential by the ribo-

some (Xue and Barna, 2012). Accordingly, heterogeneity in the composition

of the ribosome provides a platform for extensive diversity in ribosome activ-

ity and/or function, paving the way for a level of translational control played

by the ribosomal core proteins. For example, it has been shown that a single

core ribosomal protein, RPL38, indirectly helps to establish the mammalian

body plan by selectively facilitating the translation of subsets of Hox mR-

NAs, genes critically required for formation of the body plan (Xue et al.,

2015). In addition to ribosomal core proteins, several additional proteins

(associated with ribosomal activity) have been identified as exerting a spe-

cific type of regulation of translation. One notorious example is the fragile-X

mental retardation protein (FMRP), that that represses mRNA translation

by directly binding to the ribosome (Chen et al., 2014). Moreover, a lack

of FMRP is associated with the Fragile X syndrome (FXS) (Verkerk et al.,

1991; Richter et al., 2015).

ncRNAs are also involved in translational regulation. In fact, many

studies on different organisms and conducted with different methods have

suggested that miRNAs inhibit the initiation step of translation (Braun
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et al., 2012; Fabian and Sonenberg, 2012). This repression of the translation

initiation step is also supported by more recent genome-wide analyses of

endogenous miRNA targets (Eichhorn et al., 2014).

Diverse arrays of cis-regulatory elements (mRNA sequence motifs or

structural elements) have been described to control translation in a spe-

cific and coordinated fashion. These regulatory elements, embedded in

mRNAs (often in the 5’ and 3’ UTRs), act as critical regulatory plat-

forms. These hidden RNA regulons may interface with innumerable RBPs

to perform translational regulation. As revealed by the studies of RPL38-

mediated translation of Hox mRNAs, cis-regulatory elements such as the

TIE and IRES-like elements are just beginning to be characterized (Xue

et al., 2015). Moreover, 5’ UTRs encode different cis-regulatory elements,

such as AUGs (uAUGs) (Calvo et al., 2009), upstream open reading frames

(uORFs) (Wethmar et al., 2010), and IRES (Arcondéguy et al., 2013). These

are cis-acting regulatory elements (sequence motifs or structural elements)

that are usually located in the UTRs.

2.2.6 Cooperation and competition of trans-acting factors

I presented many types of post-transcriptional controls, with relevant ex-

amples from the literature. From these examples, it is clear that many reg-

ulatory tasks are exerted by RBPs and ncRNAs. Cis-regulatory elements

interact with trans-acting factors (RBPs and miRNAs) to mediate post-

transcriptional regulation processes. A simple mechanism (and still not well

understood) to express more regulatory paths is to deploy, at the same time,

multiple trans-acting factors in a combinatorial way.

Since the publication of the idea of RNA regulons (Keene, 2007), that

shows how multiple mRNAs are co-regulated by one or more sequence-

specific RBPs, some examples of multiple trans-acting factor activity have

been identified. This multiple interactions can either be cooperative or com-

petitive. Cooperative interactions involve protein-protein interactions that

can attach the RNA bound by one RBP to another ribonucleoprotein (e.g.

spliceosome assembly). Another type of cooperative interactions happens

when two RBPs sandwich the RNA forming a protein-RNA-protein com-

plex. This type of cooperative interaction has been observed in the context

of large macromolecules like the exon junction complex (Hennig and Sat-

tler, 2015). Competitive and cooperative trans-factor activity has also been
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identified, involving both RBPs and miRNAs (Gerstberger et al., 2014).

For example, ELAVL1 competes with miRNAs in regulating a large set of

mRNA targets (Kim et al., 2009), while PUM proteins cooperate with miR-

221 and/or miR-222 to destabilize the CDKN1B mRNA (Galgano et al.,

2008; Jiang et al., 2013)

2.3 RNA-protein interactions

As pointed out in Section 2.2, after transcription, mRNA is subjected to

several processes that actively contribute to the fate of the mRNA tran-

script, i.e. polyadenylation, splicing, export, translation, and stability. All

these processes are mediated by RNA binding proteins (RBPs) and non-

coding RNAs, that, by interacting with the mRNA, promote or suppress

post-transcriptional steps that lead to the degradation of mRNAs, repress

translation, transport or boost the synthesis of proteins. Moreover, malfunc-

tions in these processes are often associated with diseases. For these reasons,

unraveling RNA-protein interactions should provide a solid foundation for

understanding post-transcriptional gene regulation, and sketching targeted

solutions to treat many diseases.

2.3.1 Complexity of RNA-protein interactions

Recently, a census of 1,542 human RBPs has been identified by Gerstberger

et al. (2014). Some of them are ubiquitously expressed, while others are

expressed exclusively in particular tissues. Many RBPs contain canonical

RNA-binding domains (RBDs). Each protein might contain multiple re-

peats of the same RBD or combinations of different RBDs. The most fre-

quently occurring RBD is the RNA recognition motif (RRM). While other

well characterized RBDs are KH, DEAD, zinc-fingers, dsrm and many others

(Figure 2.7a). However, RNA binding activity is not restricted to proteins

containing RBDs. In fact, considerable association with RNA activity have

been imputed to several metabolic enzymes lacking canonical RBDs (Baltz

et al., 2012; Castello et al., 2012). For this reason, the number of proteins

that interact with RNA will likely to grow in the near future.

In eukaryotic cells, RNAs outnumber RBPs. According to Ensembl (Aken

et al., 2016) the human genome encondes more than 20,000 different protein
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(a) Presence of frequent RBDs in human
genes (Gerstberger et al., 2014).

(b) Major classes of eukaryotic
RNAs (Jankowsky and Harris, 2015).

Figure 2.7: RNA binding domains in RBPs and types of RNA molecules.

coding genes. Moreover, alternative splicing and other post-transcriptional

modifications of RNAs increase the diversity of mRNA.

Different types of RNA are drastically altered in concentration. Usually,

rRNAs cover around 80-85% of the cellular RNA mass, followed by tRNAs

with 10-13% and by mRNAs with 3-5%, leaving to the other types of RNA

less than the 2% of the total RNA mass (Figure 2.7b).

RNAs can be bound by multiple RBPs at the same time. Proteins can

bind simultaneously, subsequently, consecutively or in a mutually exclusive

fashion. At the same time, most proteins are able to bind multiple RNAs.

Considering this scenario and the collection of proteins and RNAs expressed

in living cells, the number of possible RNA-protein interactions is utterly

large. Moreover, RNAs can also interact with each other, e.g. miRNAs

interact with mRNAs to regulate translational efficiency.

RNA-protein interactions can be considered as a massive set of interde-

pendent interactions. Each RNA-protein interaction is governed by inherent

affinity for the RNA site, concentration of the protein and the RNA, the

competition among other proteins to bind the RNA, and the competition

from other RNAs to associate with the protein. Although, the interplay

of many RBPs can completely alter the RNA-binding patterns. For this

reason, target selection for an RBP rarely complies to simple rules.

The modeling of RNA-protein interaction is an ambitious goal that will

deeply help the understanding of post-transcriptional gene regulation, and

a critical step towards this goal is the quantitative determination of RNA-

protein interactions by experimental techniques.
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2.3.2 Methods to study RNA-protein interactions

RNA-protein interactions play a key role in post-transcriptional regulation

of gene expression. Therefore, determining such interactions represents an

essential step in the investigation of the complex regulatory system of the

gene expression. Experimental techniques to study RNA-protein interac-

tions can be categorized in two broad classes: low-throughput and high-

throughput techniques. Low-throughput techniques allow to test interac-

tions between a single RBP (or a specific domain of the RBP) and a single

transcript (or part of it). For example: X-ray analysis of co-crystallized

RNA-protein complexes (Ke and Doudna, 2004), electrophoretic mobility

shift assay (EMSA) (Hellman and Fried, 2007), and nuclear magnetic reso-

nance spectroscopy (NMR) (Dominguez et al., 2011). High-throughput tech-

niques, e.g. UV crosslinking and immunoprecipitation (CLIP) (Ule et al.,

2003), allow the individuation, with a single experiment, of the genome-wide

RNA interactome of an RBP. Often, low-throughput techniques are used to

further validate some of the interactions resulted from high-throughput ap-

proaches.

In this work I mainly focus on high-throughput techniques for RNA-

protein interaction detection. These techniques can be further divided into

two classes, i.e. in vitro and in vivo. The former screens synthetic RNAs

9-10 nucleotide long in a controlled environment. The latter involves com-

plex RNA molecules that are present in living cells. Testing interactions in

vitro produces affinity profiles for a protein, or an RNA binding domain,

towards some artificial short RNA fragments, while in vivo RNA-protein

interactions are known to be substantially affected by competitive or co-

operative interactions that involve other proteins. These protein-protein

interactions might significantly alter the binding affinity obtained from in

vitro experiments (Hennig and Sattler, 2015; Marchese et al., 2016).

2.3.2.1 High-throughput in vitro methods

A famous in vitro technique is systematic evolution of ligands by exponential

enrichment (SELEX) (Ellington and Szostak, 1990). In SELEX an RBP or

a single RNA binding domain is evaluated against a library of fixed-length,

single-stranded RNAs with largely random sequences. Unbound RNAs are

removed from the pool by washing, while the bound ones are amplified by
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PCR. This process is iterated until convergence, i.e. the set of washed RNAs

is null or, at least, negligible. One possible pitfall of SELEX is the produc-

tion, during amplification, of PCR artifacts. RNAcompete (Ray et al., 2009)

and Bind-n-seq (Lambert et al., 2014) extend SELEX by substituting PCR

amplification with microarray analysis and next generation sequencing, re-

spectively. Another method, HiTS-RAP (Tome et al., 2014) also permits

the quantitative determination of association and dissociation constants.

2.3.2.2 High-throughput in vivo methods

RNA immunoprecipitation (RIP) (Tenenbaum et al., 2000) purifies RNAs

associated to a protein in living cells by employing protein-specific antibod-

ies and detecting the target RNAs by microarray (RIP-chip) or sequencing

(RIP-seq). One limitation of RIP is the inability to precisely locate the

coordinates of the nucleotides that are interacting with the protein. More-

over, the mRNAs identified as putative target of the RBP of interest can

be associated to other proteins that, through protein-protein interaction,

are bound to the protein of interest. In this case the mRNAs are not di-

rect target of the RBP of interest. In addition, a postlysis reassortments

of RNA-protein interaction is possible as demonstrated by the fact that

co-immunoprecipitation does not always recapitulate the in vivo state of ri-

bonucleoprotein complexes. This artifact was found for the association of

HuR with its target mRNA c-fos that largely result from reassociation of

molecules subsequent to cell lysis (Mili and Steitz, 2004).

The introduction of crosslinking and digestion methods, allowed the

identification of regions of the RNA that are protected from nuclease di-

gestion by the protein. This new family of experimental techniques takes

the name of CLIP (crosslinking and immunoprecipitation) (Ule et al., 2003).

Several CLIP variants have been released in the past years. First, HITS-

CLIP (Licatalosi et al., 2008; Chi et al., 2009) applied high-throughput

sequencing to individuate the RNA residues of the crosslinked fragments.

PAR-CLIP (Hafner et al., 2010) boosted the crosslinking efficiency by in-

troducing ribonucleoside analogs in the sample, while iCLIP (König et al.,

2010) allowed the individuation of crosslinking sites at a nucleotide resolu-

tion. Finally, eCLIP (Van Nostrand et al., 2016) reduced the presence of

PCR duplicates in the sequenced RNAs, lowering the false discovery rate

of interacting RNA fragments. Also CRAC (Granneman et al., 2009) and
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CLASH (Kudla et al., 2011) employ UV crosslinking, but instead of using

immunoprecipitation they adopt affinity purification of tagged proteins to

increase the specificity of the results. CRAC and CLASH also provided the

first demonstration that deletions can be used to map the crosslinking site.

2.4 CLIP techniques

As mentioned in Section 2.3.2, many experimental techniques for detecting

RNA-protein interactions have been developed. In this work, I focus on high-

throughput approaces based on next generation sequencing. Crosslinking

and immunoprecipitation (CLIP), CRAC and CLASH, coupled with high-

throughput sequencing allow the genome wide discovery of RNA-protein

interactions. The breakthrough of these techniques is the ability of localizing

the RNA residues interacting with the protein.

2.4.1 CLIP variants

The first CLIP approach was presented in Ule et al. (2003) in combina-

tion with high-throughput sequencing. After the success of HITS-CLIP (Li-

catalosi et al., 2008; Chi et al., 2009), many variants of the method have

been developed. PAR-CLIP (Hafner et al., 2010) introduces ribonucleoside

analogs, usually 4-thiouridine (4SU), to boost crosslinking efficiency. The

addition of 4SU results in thymine (T) to cytosine (C) conversions during

the retro-transcription step, indicating the presence of a protein binding

site. iCLIP (König et al., 2010) is a protocol designed to obtain informa-

tion on protein binding sites at a single nucleotide resolution. While in

HITS-CLIP the reverse transcriptase is expected to read past the crosslink-

ing site, in iCLIP the amino acids crosslinked to the RNA are expected

to work as road block, which frequently results in termination of reverse

transcription. These stop sites provide valuable information regarding the

crosslinked region, and allow a more accurate localization of the crosslink-

ing site. eCLIP (Van Nostrand et al., 2016) is a novel, faster and more

accurate CLIP technique, that significantly reduces the presence of PCR

duplicates in the sequenced reads. eCLIP introduces some modifications of

the iCLIP protocol to improve the library preparation of RNA fragments.

For example: separate ligation of two adapter sequences instead or RNA cir-

cularization which results in much higher RNA fragment recovery, and the
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inclusion of a size-matched input control (SMInput) which enables efficient

background normalization. irCLIP (Zarnegar et al., 2016) adopts the RNA

circularization of iCLIP, but instead it employs the TGIRT enzyme in the

retrotranscription to improve the efficiency of the reaction. CRAC (Granne-

man et al., 2009) and CLASH (Kudla et al., 2011), adopt tandem affinity

purification of tagged proteins instead of immunoprecipitation. Moreover,

CLASH also adopts intermolecular RNA-RNA ligation. The key steps and

the main differences among these methods are summarized in Figure 2.8.

All CLIP variants, CRAC and CLASH terminate with high-throughput

sequencing (Figure 2.8). These protocols produce a cDNA library of the

crosslinked RNAs linked to 5’ and 3’ adapters, i.e. uninformative RNA

sequences that are attached to the begin and end of the crosslinked RNA

due to protocol specific reasons. These sequence-specific adapters are first

ligated to the RNA before the retrotranscription is performed. Then a

sequence specific primer is hybridized to the 3’ adapter followed by the

addition of the reverse transcriptase.

These techniques overcome the main disadvantages of RIP by introduc-

ing three major improvements with respect to the RIP protocol. First,

they apply UV irradiation to create covalent bonds between the protein and

the RNA, allowing stringent purification and, consequently, an increased

signal-to-noise ratio. Second, RNase is used to digest the unbound parts of

RNA preserving only the protein binding sites. Last, an accurate purifica-

tion (multiple washings, SDS-PAGE and blotting) allowed the elimination

of non-specific proteins for the antibody and of not-crosslinked RNAs, de-

creasing the background signal.

Despite the improvements introduced by these techniques, they are still

far from being 100% accurate. A large bottleneck is represented by the low

RNA output efficiency. For example, the crosslinking efficiency of HITS-

CLIP is approximatively between 1 and 5%. Although, PAR-CLIP intro-

duces 4SU to improve crosslinking efficiency, its performance varies among

different RBPs. Moreover, 4SU is toxic to most organisms at the concen-

trations used for the PAR-CLIP experiments (Kemény-Beke et al., 2006).

The problem of toxicity, induced by the experimental procedures themselves,

might produce some technical artifacts that are then mistakenly detected.

In some recent work, the use of extremely short 4tU labeling allowed the

individuation of the genome-wide RNA processing kinetics (Barrass et al.,
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Figure 2.8: Schematic workflow of CLIP and differences of each method.
Adapted from Zhang et al. (2015) and Van Nostrand et al. (2016). First,
the cells are irradiated with UV light in order to form covalent bonds be-
tween proteins and RNAs. PAR-CLIP uses 4SU and higher UV wavelength
to improve crosslinking. Second, the cells are lysed and RNase is added
to the lysis buffer to digest unbound RNA, preserving RNA-protein com-
plexes. Third, using the convenient antibody for the protein of interest,
the complexes are immunoprecipitated to separate the complexes that in-
volve the protein of interest from all the others. CLASH adopts tandem
affinity purification, where the second step (nickel beads) is done under
completely denaturing conditions to reduce background. Fourth, the RNAs
of the RNA-protein complexes are radiolabeled (except for eCLIP) and the
samples are denatured, separated by SDS-PAGE, and blotted in order to vi-
sualize the complexes and cut the corresponding bands. Then, the selected
bands are incubated with proteinase K, that digests the protein and allows
the release of crosslinked RNA fragments. The RNAs are linked to adapters
and reverse-transcribed, and, finally, the cDNA is amplified by PCR and
sequenced with high-throughput techniques.
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2015).

2.4.2 Computational analysis of CLIP data

From the sequenced data to the binding sites of a protein, the data must

undergo some steps that are performed in silico.

First, the adapter sequences must be removed. One useful library that

allows, among other things, the removal of adapters is FASTX-Toolkit1 from

the Hannon Lab. Another tool, specifically developed for trimming adapters

from reads sequenced with Illimina technology, is Trimmomatic (Bolger

et al., 2014).

Second, the crosslinked RNA fragments are aligned to the reference

genome. This step of the analysis pipeline is the most computationally ex-

pensive. During the alignment, millions of short (less than 100 nucleotides)

RNA sequences require to be aligned to very long genomes, e.g. the hu-

man genome is 3 billion nucleotides long, or entire transcriptomes of tens of

thousands of mature mRNAs. An efficient alignment tool is Bowtie (Lang-

mead et al., 2009). By using Burrows-Wheeler indices of the genome, it

allows extremely fast alignment keeping a small memory footprint. Bowtie

2 (Langmead and Salzberg, 2012) and TopHat2 also allow to consider splice

junction in the alignment of reads. Kallisto (Bray et al., 2016) is an align-

ment tool based on the idea of probabilistic pseudoalignment for rapidly

determining the compatibility of reads with targets, without the need for

alignment.

Last, peak extraction is performed to spot the parts of the genome with

a significant enriched binding sites. Different tools have been developed

for calling peaks in samples obtained from different CLIP variants. PARa-

lyzer (Corcoran et al., 2011) exploits T-C conversions in PAR-CLIP data to

identify binding sites, Piranha (Uren et al., 2012) uses reverse transcription

stop sites of iCLIP to identify crosslinking regions with a single nucleotide

precision, and CLIPper3 is developed for eCLIP to maximize the accuracy

of the called peaks for this novel protocol.

1FASTX-Toolkit is available at http://hannonlab.cshl.edu/fastx toolkit/
2TopHat is available at https://ccb.jhu.edu/software/tophat/
3CLIPper is available at https://github.com/YeoLab/clipper

http://hannonlab.csh l.edu/fastx_toolkit/
https://ccb.jhu.edu/software/topha t/
https://github.com/YeoLab/clipper


Chapter 2. Biological Background 30

2.4.3 Databases

The growing popularity of post-transcriptional gene regulation research is

charming more and more research laboratories around the world to produce

valuable data. Together with this growth of the data, the retrieval of all the

information became less and less straightforward. For this reason, databases

that collect the available RNA-protein interaction information started to be

released. In some cases, they aggregate highly heterogeneous data, produced

by different laboratories, using different organisms, experimental techniques,

library preparation procedures, sequencing platforms and analysis pipelines.

doRiNa (a database of RNA interactions in post-transcriptional regula-

tion) (Blin et al., 2015) aggregates interaction information in human, mouse,

worm, and fly. It includes both protein-mRNA and miRNA-mRNA interac-

tions. For each experiment it is possible to download a BED file annotating

the experimentally determined binding regions.

iCount (Curk et al., 2011) aggregates data obtained from the analysis,

with a dedicated pipeline, of iCLIP experiments. It contains interaction

information for human RBPs, obtained in different cell lines and tissues.

CLIPdb (Yang et al., 2015) represents the first effort to aggregate data

produced with HITS-CLIP, PAR-CLIP and iCLIP, processing the sequenced

reads with the same analysis pipeline. The database includes results of

experiments performed in different cell lines of multiple organism (human,

mouse, worm and yeast). In its newest version, named POSTAR (Hu et al.,

2016), it also includes information regarding RNA secondary structures,

disease-associated variants, gene expression and function.

AURA (Atlas of UTR Regulatory Activity) (Dassi et al., 2014) incor-

porates, among other things, the interactions of RBPs and miRNAs with

UTRs, which are the untranslated regions of the mRNA, for both human

and mouse. Its light version contains one single text file that annotates all

the interactions, from all experimental techniques and for both human and

mouse.

ENCODE was born in 2004 as the encyclopedia of DNA elements (Con-

sortium et al., 2004). With the increasing interest of post-transcriptional

controls, it started to also include experiments addressing RNA-protein

interactions (Sloan et al., 2016). To date, ENCODE contains human in-

teraction information, regarding hundreds of RBPs, obtained in the same

laboratory, with the same technique (eCLIP), and analyzed using the same
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pipeline. Moreover, for each RBP, the published results involve two technical

replicates, and sometimes also different cell lines.

The release of CLIP data, broadly encouraged transdisciplinary research,

empowering cooperation between biologists and computer scientists. Com-

putational techniques can prove valuable tools for the analysis of the newly

released data. Moreover, techniques capable of learning from the data, such

as machine learning approaches, are able to generalize the information con-

tained in the data and might give useful insights to help the investigation

of post-transcriptional regulation.
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Machine Learning

Background

In this chapter I introduce the machine learning topics related to my research

work. First, I present recommender systems, then I describe kernel methods,

and last I illustrate pattern set mining.

Some of the topics, i.e. string kernels, Neighborhood Subgraph Pairwise

Distance Kernel, Boolean matrix factorization, are described in a more for-

mal fashion. The main reason is that these contributions are used as is in

my research work. Other topics (e.g. recommender systems) are discussed

in a less formal way. The idea is to give an overview of the research topics to

provide the reader with the tools to better understand the models developed

in my research work and presented in the next chapters.

3.1 Recommender systems

The concepts introduced in this section are extracted from Shapira et al.

(2011) and Aggarwal (2016).

Recommender systems are techniques devoted at providing suggestions

of useful items to a user. The suggestions provided by a recommender system

(or recommendations) aim at assisting the users in various decision-making

processes. Some notable examples are: what items to buy, what music to

listen to, or what news to read. Recommender systems are important assets

32
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when dealing with the information overload online users are subjected to.

Nowadays, recommender systems serve as one of the most dominant infor-

mation discovery tools on the web. Several research efforts have been spent

in developing such systems, and in the past 10 years many recommendation

techniques have also been successfully deployed in commercial environments.

The recommendation problem can be described as producing an edu-

cated guess, based on the available information, of the response of a user

to new items, suggesting items that are unknown to the user for which the

predicted response is high. User-item responses (or ratings) can be nu-

merical values (e.g., 1–5 stars), ordinal values (e.g., strongly agree, agree,

neutral, disagree, strongly disagree), or binary values (e.g., like/dislike or

interested/not interested). Moreover, ratings can be obtained explicitly, for

example through ratings/reviews submitted by users in the system, or im-

plicitly, for example from the purchase history.

The rest of the section is organized as follows: first I introduce the

main classes of recommender systems, and then I explore in a more de-

tailed fashion such classes that include neighborhood-based collaborative

filtering techniques, model-based collaborative filtering techniques, content-

based recommender systems, and hybrid recommender systems.

3.1.1 Classes of recommendation techniques

Recommendation approaches, that are commonly used in a plethora of ap-

plications, aim at suggesting personalized recommendations for each user.

Personalized approaches can be divided in content-based and collaborative

filtering methods, as well as hybrid techniques that blend these two types

of methods.

Content-based approaches (Balabanović and Shoham, 1997; Billsus and

Pazzani, 2000) identify the common aspects of items that have been posi-

tively rated by a user, and then recommend to the user new items that share

these aspects. Recommender systems based on content usually suffer from

two problems: limited content analysis and over-specialization (Shardanand

and Maes, 1995). Limited content analysis arises when there is scarce in-

formation on the users or the content of the items. For example, in some

cases, the accurate content of items may be challenging to obtain for some

classes of items (e.g. music or images), or in other cases the content of an

item is insufficient to determine its quality. Differently, over-specialization
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comes as a side effect of the approach used in content-based systems, where

high predicted ratings for some items are issued when these items are sim-

ilar to the ones liked by the user. Over-specialization happens when only

highly interrelated items, that are often already obvious to the users, are

recommended.

Instead of relying on content information, collaborative filtering ap-

proaches exploit rating information of other users and items in the system.

The underlying idea is that the rating of a target user for a new item is likely

to be analogous to the one of another user, if both users have rated other

items in a similar way. Similarly, the target user is likely to rate two items in

a comparable fashion, if other users have given similar ratings to these two

items. Collaborative filtering techniques surmount some of the limitations

of content-based approaches. For instance, items that suffer from limited

content information can still be recommended through the feedback of other

users. Moreover, in collaborative filtering, the quality of items is evaluated

by peer users, instead of relying on content that may be a bad indicator

of quality. Finally, collaborative filtering approaches can recommend items

with very different content, provided that other users have already demon-

strated interest for these different items.

Collaborative filtering techniques can be arranged in two general classes

named neighborhood- and model-based methods. In neighborhood-based

collaborative filtering (Adomavicius and Tuzhilin, 2005), the available user-

item ratings are directly used to infer ratings for new items. This can be done

in a user-based or item-based fashion. User-based systems (Shardanand and

Maes, 1995; Konstan et al., 1997) evaluate the interest of a target user for

an item using the ratings for this item by users that have similar rating

patterns (neighbors). On the other hand, item-based approaches (Linden

et al., 2003; Deshpande and Karypis, 2004) predict the rating of a user

for an item based on the ratings of the user for similar items, where the

similarity of two items is defined by the amount of users that have rated

these items in a similar way. Differently from neighborhood-based systems,

that perform the prediction directly from the stored ratings, model-based

approaches (Takács et al., 2008, 2009) use the ratings to learn a predictive

model. Important aspects of both users and items are captured by a set of

model parameters, that are learned from the available ratings and later used

to predict new user-item responses.
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Finally, hybrid recommendation approaches combine characteristics of

multiple recommendation techniques. For example, hybridized models usu-

ally achieve better performance than content-based or collaborative filtering

approaches. The combination can happen in various ways, for instance,

by aggregating their individual predictions into a single more robust one,

or by introducing content information into a collaborative filtering model.

Several studies have demonstrated that hybrid recommendation approaches

provide more accurate recommendations than pure content-based or collab-

orative methods, especially when few ratings are available (Adomavicius and

Tuzhilin, 2005).

3.1.2 Neighborhood-based collaborative filtering

Neighborhood-based methods rely on either user-user or item-item similar-

ity to make recommendations from the available ratings. The concept of

neighbor requires the determination of either similar users or similar items.

3.1.2.1 User-based neighborhood models

I start by discussing the user-based method, where user-based neighborhoods

are defined in order to spot users in the system that are similar to the target

user for whom the rating predictions want to be computed. In this setting,

the similarity function (sim(u, v)) is based on the previous ratings specified

by the users, taking into account user specific biases such as different scales

of ratings, or item interaction discrepancies.

Let R be the n×m rating matrix where rui represents the rating given

by the user u to the item i. Then Iu denotes the set of items rated by the

user u, and given users u and v, Iu ∩ Iv represents the set of items rated

by both users. Usually rating matrices are sparse, implying in most of the

cases that Iu ∩ Iv = ∅.

A simple similarity function between two users u and v can be computed

by the cosine function of the raw ratings of the users defined by

sim(u, v) = RawCosine(u, v) =

∑
i∈Iu∩Iv rui · rvi√∑

i∈Iu∩Iv r
2
ui ·
√∑

i∈Iu∩Iv r
2
vi

(3.1)

However, different users might be biased towards liking most items,

whereas other users might be biased towards not liking most of the items
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(Breese et al., 1998). In order to address this bias, the user-specific mean

rating µu is defined. It evaluates the average rating given by a user to all

the items he/she has rated as

µu =

∑
i∈Iu rui

|Iu|
∀u ∈ {1, . . . , n} (3.2)

Then, by introducing mean ratings into Equation 3.1, the Pearson correla-

tion coefficient between users u and v can be defined as

sim(u, v) = Pearson(u, v) =

∑
i∈Iu∩Iv(rui − µu) · (rvi − µv)√∑

i∈Iu∩Iv(rui − µu)2 ·
√∑

i∈Iu∩Iv(rvi − µv)2

(3.3)

The traditional definition of Pearson(u, v) requires µu and µv to be com-

puted only over the items in Iu∩Iv. However, it is reasonably common (and

computationally less expensive) to compute each µu just once for each user

u, according to Equation 3.2.

One way of defining the neighbors of the target user would be to select

the k users with the highest similarity to the target one. However, since

the most similar k users might not have rated a specific item of interest for

the target user, the closest k users are selected separately for each predicted

item, such that each of these k users have specified a rating for that item.

Let Pu(i) be the set of the k nearest users to target user u, who have specified

a rating for item i. The weighted average of these ratings can be used to

predict the rating for that item. Again, there is the problem that different

users may provide ratings on different scales, and therefore mean-centered

ratings are used. They are computed by

sui = rui − µu ∀u ∈ {1, . . . , n} (3.4)

obtaining a overall neighborhood-based prediction function defined as

r̂ui = µu +

∑
v∈Pu(i) sim(u, v) · svi∑
v∈Pu(i) |sim(u, v)| (3.5)

One variant of the above mentioned prediction function, includes the

use of the Z-score zui instead of the mean-centered ratings sui (Howe and

Forbes, 2008). The Z-score further divides sui by the standard deviation σu
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of the observed ratings of the user u:

σu =

√∑
i∈Iu(rui − µu)2

|Iu| − 1
∀u ∈ {1, . . . , n} (3.6)

then the standardized rating is computed as

zui =
rui − µu
σu

=
sui
σu

(3.7)

obtaining a prediction function defined as

r̂ui = µu + σu

∑
v∈Pu(i) sim(u, v) · zvi∑
v∈Pu(i) |sim(u, v)| (3.8)

One problem with the Z-score is that the predicted ratings might frequently

lie outside the range of the admissible ratings. Nevertheless, they can still

be used to rank the items in order of desirability for a particular user.

Another modification that can be brought inside the prediction function,

involves the so called amplified similarity, where

sim(u, v) = Pearson(u, v)α (3.9)

with α > 1 it is possible to amplify the importance of the similarity in the

weighting of Equation 3.5 and 3.8.

3.1.2.2 Item-based neighborhood models

In item-based models, neighborhoods are constructed in terms of items

rather than users. Therefore, similarities are computed between items. This

time, before computing the item similarities the rows of the rating matrix

R are centered to a zero mean. Similarly, to the user-based case, the ratings

are mean-centered with respect to µi by computing

sui = rui − µi ∀i ∈ {1, . . . ,m} (3.10)

Let Ui be the set of users that have rated the item i. Given items i and j,

Ui ∩ Uj represents the set of users that have rated both items. Then, the
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Pearson correlation between the items i and j is defined as follows

sim(i, j) = Pearson(i, j) =

∑
u∈Ui∩Uj

sui · suj√∑
u∈Ui∩Uj

s2
ui ·
√∑

u∈Ui∩Uj
s2
uj

(3.11)

Considering the case in which there is interest in determining the rating

of the target item i of a user u. First, the k-nearest neighbors to item i

need to be computed according to Pearson correlation. Let the k-nearest

neighbors of items i, for which the user u has specified ratings, be denoted

by Qi(u). The predicted value is then defined as the weighted average value

of the raw ratings by

r̂ui =

∑
j∈Qi(u) sim(i, j) · ruj∑
j∈Qi(u) |sim(i, j)| (3.12)

The basic idea of item-based predictions is to leverage the ratings obtained

by the same user on similar items. For example, considering a movie rec-

ommendation system, the neighboring items will typically be movies of a

similar genre, and the rating history of the same user on such movies is a

very reliable predictor of the interests of that user.

3.1.2.3 Strengths and Weaknesses

Neighborhood methods are simple and intuitive approaches, and therefore

have several advantages. First, they are easy to implement and debug and

it is often easy to justify why a specific item is recommended (especially in

item-based methods). The main disadvantage of these methods is that the

offline phase is impractical in large-scale settings. For example, the user-

based method requires at least O(n2) to compute the pairwise similarity

between users, and this is computationally expensive when dealing with tens

of millions of users. Another disadvantage of these methods is their poor

resilience to sparsity. When the number of mutually rated items between

two users is small, it induces unreliable similarity values.

3.1.3 Model-based collaborative filtering

Model-based methods try to summarize the information contained in the rat-

ing data by employing machine learning techniques. Therefore, the model

building phase (or training) is performed prior to the prediction phase.
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Model-based recommender systems have three main advantages with re-

spect to neighborhood-based methods. First, the space efficiency, because

the number of parameters of the learned model is much lower than the

number of entries in the rating matrix. Second, model-based systems do

not require the preprocessing step of neighborhood-based models, that is

quadratic in either the number of users or items. Third and last, the sum-

marization process of model-based approaches is less prone to overfitting.

A plethora of machine learning approaches have been successfully ap-

plied to numerous classification and regression tasks, that represent special

cases of the collaborative filtering (or matrix completion) task. Anyhow,

machine learning models for classification and regression can be generalized

to the matrix completion task (Billsus and Pazzani, 1998). In the classifica-

tion (or regression) problem, there is a definite separation between feature

and class variables and between training and test data, while in the matrix

completion problem, these distinctions do not exist. It is not straightforward

to directly generalize data classification models to the collaborative filtering

problem, especially when the great majority of the ratings are missing. For

example, collaborative filtering models, such as latent factor models, demon-

strated effective in solving matrix completion, but they are not considered

competitive models in the context of data classification.

The flourishing interest in collaborative filtering led to the generaliza-

tion of many classification and regression techniques to the scope of ma-

trix completion. This list of machine learning approaches goes from naive

Bayes (Miyahara and Pazzani, 2000) to neural networks (Salakhutdinov

et al., 2007). However, here I focus on latent factor models, and especially

matrix factorization models, because they are strictly related to my research

work.

Latent factor models, such as matrix factorization, leverage dimensional-

ity reduction approaches to fill in the missing entries in the rating matrix. If

user-based neighborhood methods leverage user-wise correlations and item-

based neighborhood methods leverage item-wise correlations, dimensionality

reduction methods, such as matrix factorization, exploit both the user and

item correlations present in the rating matrix to create reduced representa-

tions of both users and items.
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3.1.3.1 Basics on matrix factorization

In the basic matrix factorization model, a n×m rating matrix R is factorized

(with a certain extent of approximation) into a n× k matrix U and a m× k
matrix V : R ≈ UV >. Each column of U (or V ) is named latent vector or

latent component, while each row of U (or V ) is named latent factor. Each

row ui of U is called user factor and it is composed of k entries corresponding

to the affinity of the user i towards the k concepts used to model the rating

matrix. Similarly, each row vj of v is called item factor, and it represents

the affinity of the item j towards these k concepts.

Each rating rij of the matrix R can be approximated (r̂ij) by the vector

product of the user factor of user i and the item factor of item j:

rij ≈ r̂ij = ui · vj =
k∑
s=1

uis · vjs (3.13)

Various matrix factorization methods have been proposed in the past

years, and the main differences among them lie in the constraints imposed

on U and V (e.g. non-negativity of the latent vectors) and the nature

of the objective function (e.g. minimizing the Frobenius norm). These

discrepancies define the applicability of the matrix factorization model to

different real-world scenarios.

3.1.3.2 Unconstrained matrix factorization

The fundamental matrix factorization case is the unconstrained one, where

no constraints are imposed on the factor matrices U and V . The factor

matrices U and V should be estimated such that R and UV > are as close

as possible, and this can be done by defining an optimization problem as

follows

min
U,V

J =
1

2
‖ R− UV > ‖2=

1

2

n∑
i=1

m∑
j=1

(
rij −

k∑
s=1

uis · vjs
)2

(3.14)

where ‖ · ‖2 represents the squared Frobenius norm. The smaller the objec-

tive function is, the better the approximation of the factorization R ≈ UV >
will be. Gradient descent methods may be applied to optimize such approx-

imations. Let eij be the approximation error, that is the difference between
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the entries of the matrix R and their predicted values defined by

eij = (rij − r̂ij) = (rij −
k∑
s=1

uis · vjs) (3.15)

Usually, in the context of recommender systems, the rating matrix R con-

tains several missing entries, and therefore, the objective function written in

Equation 3.14, and the error function of Equation 3.15 would be undefined.

Hence, the optimization problem, that estimates the factor matrices U and

V , needs to be rewritten accounting only for the observed entries of R. Note

that after the estimation of the optimal U and V the entire rating matrix can

be approximated in one shot (R ≈ UV >), including the previously missing

entries.

Let S = {(i, j) : rij is observed} be the set of indeces of observed ratings

in the matrix R, then the objective function for incomplete matrices, can

be computed only over the observed entries in S turning the optimization

problem into

min
U,V

J =
1

2

∑
(i,j)∈S

e2
ij =

1

2

∑
(i,j)∈S

(
rij −

k∑
s=1

uis · vjs
)2

(3.16)

In real settings, it is almost always the case that the rating matrix R

is extremely sparse, and therefore the number or ratings considered in the

model optimization is too low to avoid overfitting. A common approach

for addressing this problem is to add regularization terms to the objective

function. Regularization diminishes the propensity of the model to overfit

the data at the expense of introducing a bias in the model. The idea is to

discourage very large values of the entries of the factor matrices U and V

in order to promote stability. A regularization term, λ
2 (‖ U ‖2 + ‖ V ‖2),

is added to the objective function, where λ is the regularization parameter.
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The regularized objective function is defined as

min
U,V

J =
1

2

∑
(i,j)∈S

e2
ij +

λ

2

n∑
i=1

k∑
s=1

u2
is +

λ

2

m∑
j=1

k∑
s=1

v2
js (3.17)

=
1

2

∑
(i,j)∈S

(
rij −

k∑
s=1

uis · vjs
)2

+
λ

2

n∑
i=1

k∑
s=1

u2
is +

λ

2

m∑
j=1

k∑
s=1

v2
js

(3.18)

The model parameters, uis and vjs, are learned during the optimization.

The optimization can be performed, for example, with gradient descent tech-

niques. One needs to compute the partial derivative of J with respect to

the model variables uiq and vjq that are defined as

∂J

∂uiq
=

∑
j:(i,j)∈S

(
rij −

k∑
s=1

uis · vjs
)

(−vjq) + λuiq ∀i, q (3.19)

=
∑

j:(i,j)∈S

(eij)(−vjq) + λuiq ∀i ∈ {1, . . . , n}, q ∈ {1, . . . , k} (3.20)

∂J

∂vjq
=

∑
i:(i,j)∈S

(
rij −

k∑
s=1

uis · vjs
)

(−uiq) + λvjq ∀j, q (3.21)

=
∑

i:(i,j)∈S

(eij)(−uiq) + λvjq ∀j ∈ {1, . . . ,m}, q ∈ {1, . . . , k} (3.22)

After computing the derivatives the model parameters are updated as follows

uiq = uiq − α
∂J

∂uiq
∀i ∈ {1, . . . , n}, q ∈ {1, . . . , k} (3.23)

vjq = vjq − α
∂J

∂vjq
∀j ∈ {1, . . . ,m}, q ∈ {1, . . . , k} (3.24)

This gradient descent procedure represents one way of optimizing the objec-

tive function and therefore estimate U and V that better approximate the

rating matrix R.
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3.1.3.3 Non-negative matrix factorization

Non-negative matrix factorization (NMF) may be employed when rating

matrices are non-negative. The main advantage of this approach is not

necessarily related to the accuracy of the approximation, but to the level of

interpretability of the learned user and item latent factors. Because of the

interpretable nature of non-negative decomposition, it is easy to map these

aspects to clusters (Zhang et al., 2006).

The key difference from unconstrained matrix factorization is that the

model parameters U and V must be non-negative. Therefore, the formula-

tion of the objective function in NMF is stated as follows

min
U,V

J = 1
2 ‖ R− UV > ‖2

s.t U ≥ 0

V ≥ 0

(3.25)

Although NMF can be used for any non-negative matrix, the interpretability

advantages are mostly visible in cases in which the users can only specify

their appreciation to items, but in no way they can specify the dislike. Such

rating matrices, that represent the so called implicit feedback data, include

unary ratings matrices or matrices in which the entries correspond to the

activity frequency (that is non-negative).

A helpful aspect of the implicit feedback setting is that it is sometimes

possible to set the unspecified entries to zero, instead of treating them as

missing values. For this reason, here I address the non-negative matrix

factorization problem on a fully specified rating matrix.

As in the case of unconstrained matrix factorization, regularization terms

can be added to the objective function to improve the quality of the solution.

The basic idea is to add the penalties λ1‖U‖2
2 + λ2‖V ‖2

2 to the objective

function obtaining

min
U,V

J = 1
2 ‖ R− UV > ‖2 +1

2λ1 ‖ U ‖2 +1
2λ2 ‖ V ‖2

s.t U ≥ 0

V ≥ 0

(3.26)

where λ1 > 0 and λ2 > 0 are the regularization parameters, while ‖ · ‖2 is

the squared Frobenius norm of the model parameters.



Chapter 3. Machine Learning Background 44

3.1.4 Content-based recommender systems

Content-based recommender systems, are a different class of recommenda-

tion techniques that, differently from approaches to collaborative filtering,

deal with scenarios in which items can be represented with a descriptive set

of attributes. In some cases, when descriptions of the items are available,

only the user’s ratings on other items are sufficient to discover meaningful

recommendations (Balabanović and Shoham, 1997). Content-based recom-

mender systems attempt at matching users to items that are similar to what

the users have liked in the past. Differently from collaborative systems, that

explicitly exploit the ratings of all the users in the system, content-based rec-

ommender systems focus on the target user ratings and the characteristics

of the items liked by the user. Therefore, in content-based the contribution

of other users to the recommendations issued for the target user is deeply

marginal, if not completely absent. Summarizing, content-based systems

rely on two types of data sources: a description of the items in terms of

content-centric attributes, and a user profile that is generated from the user

feedback regarding the items in the system.

Content-based systems are particularly handy when dealing with new

items with few available ratings (item cold-start). These types of methods

enable to perform the recommendation also in such settings because they

leverage the attributes of the new items to make predictions. On the other

hand, content-based systems do not use the ratings of other users, and for

this reason they still suffer from the user cold-start problem. Furthermore,

not exploiting the ratings of other users reduces the diversity and novelty

of the recommended items. Often, the recommended items may be obvious

for the target user, or even items that the user has already consumed in

the past. This is due to the fact that recommendations will always be

driven towards items with similar attributes to the ones the target user has

consumed before.

Content-based systems are widely applied to scenarios in which a large

amount of item information is available. They work with a large variety

of item characteristics, usually encoded in unstructured data that must be

converted into standardized descriptions (e.g. keywords).
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3.1.4.1 Main components of content-based systems

Building and using a content-based systems to perform recommendation

implies three steps: the (offline) preprocessing, the (offline) learning, and

the (online) prediction. The two offline steps are used to generate a model

that is often a classification or regression model. This model is subsequently

employed in the online generation of recommendations for the users.

Preprocessing and feature extraction. Content-based systems are em-

ployed in a large variety of domains, e.g. web pages, news, music, etc. Usu-

ally, the descriptive features are extracted from heterogeneous sources and

converted into keyword-based vector-space representations of the items. The

proper extraction of the most informative features, that are strongly domain

specific, is essential for the effective operation of content-based recommender

systems.

Content-based learning of user profiles. Content-based models are

specific to a given user. Therefore, by taking into consideration the past

history of a target user (user feedback), a (user-specific) model is built to

predict item preferences of the given user. User feedbacks are used in con-

junction with the attributes of the items in order to assemble the training

data, and, subsequently, construct a learning model. This stage is often very

similar to standard classification or regression tasks, depending on whether

the user feedback is categorical (e.g. binary act of selecting an item), or

numerical (e.g. ratings or buying frequency).

Filtering and recommendation. At this step, the most of the job is

already done. In fact, the learned model from the previous step is used to

recommend items to target users. The only factor to take into account is

that recommendations are performed online, and therefore it is important

to focus on efficiency because the predictions require to be performed in real

time.

3.1.5 Hybrid recommender systems

Hybrid recommender systems combine two or more recommendation tech-

niques (e.g. collaborative filtering with content-based) in the hope of avoid-

ing the limitations of any individual approach and therefore improve the
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recommendation performance. Hybrid recommender systems have been

successfully applied to many different domains, e.g. music (Tiemann and

Pauws, 2007) or movies (Christakou et al., 2007). Here I present simple and

common techniques to obtain hybrid recommendation approaches. Anyhow

the hybridization may occur in several different ways.

Weighted. In weighted recommender systems the score of a recommended

item is computed from the results of all of the available recommendation

techniques present in the system. One simple example is the linear combi-

nation of recommendation scores. The benefit of a weighted hybrid is that

all of the contributions are aggregated in a straightforward way and it is

easy to assign to a specific recommender present in the hybrid the credit for

a good recommendation or the demerit for a bad one (and eventually adjust

the hybrid accordingly).

Switching. A switching hybrid recommender uses some criterion to switch

between recommendation techniques. For example, in a content and collab-

orative hybrid if the content-based system cannot make a recommendation

with sufficient confidence (because of a poor description of the item), then

a collaborative recommendation is attempted. Alternatively, if the content-

based system is suffering of over-specialization for a particular class of items,

then the collaborative technique may provide the ability to propose recom-

mendations that are relevant and not close in a semantic way to the items

that received a high rating. Since the switching criteria must be determined,

switching hybrids introduce additional complexity to the recommendation

model.

Mixed. This technique presents together recommendations from more than

one technique. The mixed hybrid avoids the item cold-start problem because

it is possible to rely on the content-based component to recommend new

items on the basis of their descriptions even if they have not been rated by

any user. However, this hybridization method does not elude the user cold-

start problem, since both content-based and collaborative methods require

some data about user preferences to initiate the recommendation process

for new users.
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Feature combination. A way to merge content-based and collaborative

filtering approaches is to use content-based information as additional fea-

tures data for each example and use collaborative filtering techniques over

this refined feature representation. This type of hybrid allows the system to

consider collaborative data without relying on it exclusively, reducing the

sensitivity of the system to the number of users who have rated an item.

Conversely, it enables the system to exploit information about the explicit

similarity of items that would be otherwise unintelligible in collaborative

systems.

Cascade. In this hybridization approach, one recommendation technique

is used to produce a rough ranking of candidates and successively a sec-

ond technique is used to refine the recommendation of a smaller candidate

set of items. Because the second step of cascade targets only those items

for which additional discrimination is needed, it is more efficient than, for

example, a weighted hybrid that applies all of its techniques to all items.

In addition, cascade is noise-tolerant because the ratings given by the first

recommendation technique can only be refined, but not overturned.

3.2 Kernel methods

The concepts presented in this section are extracted from Shawe-Taylor and

Cristianini (2004).

Solution based on kernel methods are composed by two main modules:

a part that computes the mapping into the embedding or the feature space,

and a machine learning algorithm able to discover useful linear patterns

in that space. These types of approaches, called kernel methods are suc-

cessful for mainly two reasons. First, they employ efficient algorithms that

detect linear relations. Second, in this section I will introduce a computa-

tional shortcut that allows to efficiently represent linear patterns in high-

dimensional spaces to provide satisfactory representational power.

The rest of the section is organized as follows. First, I present the well-

known linear regression model called ridge regression. Second, I explain

what kernels are and how they can embed non-linearly separable input fea-

tures into high-dimensional spaces where a linear separation is more likely to

exist. Then I show some mathematical properties of kernels. And finally, I
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give examples of kernels on vectorial input data as well as structured inputs

such as strings and graphs.

3.2.1 Linear regression

Consider the problem of finding a homogeneous real-valued linear function

g(x) = 〈w,x〉 = w>x =
n∑
i=1

wixi (3.27)

that represents the best interpolation of a dataset S = {(x1, y1), . . . , (xl, y`)}
of points xi ∈ Rn and corresponding labels yi ∈ R. g is a linear function,

that given the features of xi, predicts a label as close as possible to the label

yi present in the dataset (for all i’s). Namely

|y − g(x)| = |y −w>x| ≈ 0 (3.28)

In the hypothetical situation where the dataset comes from (x, g(x)), its

cardinality is equal to the number of dimensions (` = n), and all the points

are linearly independent it is possible to find w by simply solving a system

of linear equation Xw = y, where X ∈ ` × n is the matrix representing

the dataset and y is the the column vector representing the labels. In

the case the number of points in the dataset is less than the number of

dimensions, then there are different w vectors that exactly describe the

data, and usually the one at minimum norm is preferred. Conversely, when

the number of points in the dataset exceeds the number of dimensions and

there is a noise source in the generation process, then the aim should be

finding an approximate solution of the interpolation problem, usually the

one yielding minimum error. In general, a mixed situation is occurring.

Therefore, by mixing the two strategies the aim is to find w yielding small

norm and error.

Let ξ be the error of the linear function on an example, i.e. |y− g(x)| =
|ξ|. The aim is to find a function that minimizes these errors. It is usual to

account for the sum of the squared errors over the available data, which can

be defined by

L(g, S) = L(w, S) =
∑̀
i=1

ξ2 =
∑̀
i=1

(yi − g(xi))
2 (3.29)
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This well studied problem is also known as least squares approximation. Let

ξ = y −Xw, then Equation 3.29 can be rewritten as

L(w, S) =‖ ξ ‖22= (y −Xw)>(y −Xw) (3.30)

and the optimal w can be found by computing the derivatives of the loss

function with respect to the parameters w and setting them to zero

∂L(w, S)

∂w
= −2X>y + 2X>Xw = 0 (3.31)

obtaining

X>Xw = X>y (3.32)

If the inverse matrix of X>X exists the least squares problem can be solved

as

w = (X>X)−1X>y (3.33)

In the majority of the situations the problem is ill-conditioned, meaning

that X>X is not guaranteed to be invertible. In these cases, it is indicated

to search for approximate solutions, by restricting the choice of functions

through the, so called, regularization. The simplest regularization approach

is represented by seeking for functions with small norm of the w parame-

ters. Adding regularization to the loss function of Equation 3.29 gives the

notorious optimization problem called ridge regression (Hoerl and Kennard,

1970) and defined by

min
w
Lλ(w, S) = min

w
λ ‖ w ‖2 +

∑̀
i=1

(yi − g(xi))
2 (3.34)

where λ is a positive real number that controls the trade-off between norm

and loss, defining the degree of regularization.

Again the optimization problem can be solved by zeroing the derivatives

of the loss function with respect to the parameters of w obtaining

X>Xw + λw = (X>X + λIn)w = X>y (3.35)

where In is the n×n identity matrix. In this case, if λ > 0 then (X>X+λIn)
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is always invertible and the solution is given by

w = (X>X + λIn)−1X>y (3.36)

Alternatively, Equation 3.36 can be rewritten in terms of w obtaining

w = λ−1X>(y −Xw) = X>α (3.37)

demonstrating that w can be expressed as a linear combination of the data

points w =
∑`

i=1 αixi, with α = λ−1(y −Xw). Therefore:

α = λ−1(y −Xw)

⇒ λα = y −XX>α
⇒ (XX> + λIl)α = y

⇒ α = (G+ λI`)
−1y

(3.38)

where G = XX>, and Gij = 〈xi,xj〉. The prediction function is now turned

into

g(x) = 〈w,x〉 =

〈∑̀
i=1

αixi,x

〉
=
∑̀
i=1

αi〈xi,x〉 = y>(G+ λI`)
−1k (3.39)

where ki = 〈xi,x〉. Now there are two ways for optimizing the ridge regres-

sion of Equation 3.34: the primal solution that directly computes the weight

vector (Equation 3.36), and the dual solution that expresses the weights as

linear combination of the dataset points (Equation 3.38).

In the dual solution, the information contained in the dataset is given by

the inner products between pairs of examples, and it is encoded in the, so

called, Gram matrix G = XX> of size `× `. In the same way the prediction

of a new example just requires to compute the inner products of the new

example with the examples in the dataset. When the number of examples

(`) is lower than the number of the features (n), the dual formulation allows

to compute the `×` Gram matrix instead of the n×n matrix (X>X) that is

part of the primal solution to the problem. As explained in the next section

the benefits of the dual formulation of the problem are way more impactful

than just improving the efficiency in the case the number of examples is

lower than the number of features.
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3.2.2 Defining non-linear mappings: kernels

In the majority of the cases, the relations between variables in the dataset

are non-linear. Following the overall strategy, now it is time to try to map

the input variables into a new feature space where the relations of interest

can be expressed in linear form and therefore be detected with a linear

model, such as the ridge regression.

Let φ be an embedding map defined by

φ : x ∈ Rn 7−→ φ(x) ∈ RN (3.40)

where usually n < N . The purpose of φ is to turn non-linear dependencies

into linear ones, casting the dataset into Ŝ = {(φ(x1), y1), . . . , (φ(x`), y`))},
and the problem into looking for relations in the following form

|y − g(x)| = |y − 〈w, φ(x)〉| = |ξ| (3.41)

Even though the primal solution can be applied, it is usually impractical

to deal with high-dimensional N × N matrices. Considering the dual for-

mulation of the problem, only inner products between pairs of data points

〈φ(x), φ(z)〉 need to be computed. The predictive function of the dual for-

mulation g(x) = y>(G + λI`)
−1k uses the Gram matrix G = XX> that is

composed by entries Gij = 〈φ(xi), φ(xj)〉, and the vector k is composed by

entries ki = 〈φ(xi), φ(x)〉.
Sometimes, the inner products can be computed as direct function of the

input features, avoiding the explicit computation of the mapping φ. This

shortcut takes the name of kernel trick and it is performed through the so

called kernel function (Aizerman et al., 1964).

Definition 3.2.1. (Kernel) A kernel is a function κ that for all x, z ∈ X
satisfies

κ(x, z) = 〈φ(x), φ(z)〉

where φ is a mapping from X to an inner product feature space F

φ : x 7−→ φ(x) ∈ F
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3.2.3 Valid kernels

Given a set of vectors S = {x1, . . . ,x`}, the entries of the `× ` Gram matrix

G are represented by Gij = 〈xi,xj〉. When evaluating the inner products

in a feature space represented by the feature map φ (with a kernel κ) the

correspondent Gram matrix contains Gij = 〈φ(xi), φ(xj)〉 = κ(xi,xj) (also

known as kernel matrix). By definition, Gram matrices are symmetric, which

implies that Gij = Gji and that G = G>. Moreover, they contain all the

information needed to compute the pairwise distances within the points in

the dataset S.

Definition 3.2.2. (Positive semi-definite matrix) A symmetric matrix A ∈
` × ` is positive semi-definite if its eigenvalues are all non-negative, which

holds if and only if v>Av ≥ 0 for all v ∈ R`.

Proposition 3.2.1. Valid kernels are represented by Gram matrices that,

for all possible datasets, are positive semi-definite.

Proposition 3.2.2. Closure properties. Let κ1 and κ2 be valid kernels over

X ×X, X ⊆ Rn, a ∈ R+, f(·) a real valued function on X, φ : X −→ RN ,

κ3 a kernel over RN ×RN and B a symmetric positive-definite n×n matrix.

Then the following functions are valid kernels:

1. κ(x, z) = κ1(x, z) + κ2(x, z)

2. κ(x, z) = aκ1(x, z)

3. κ(x, z) = κ1(x, z)κ2(x, z)

4. κ(x, z) = f(x)f(z)

5. κ(x, z) = κ3(φ(x), φ(z))

6. κ(x, z) = x>Bz

3.2.4 Basic Kernels

In this section I provide examples of the polynomial (Boser et al., 1992) and

Gaussian kernels (Boser et al., 1992; Wahba et al., 1999). Here, I show how

basic kernels are used to compute the similarity between vectorial inputs.

As I will show in the next section, kernels are not limited to vectorial inputs,

but they can represent the similarity between structured objects like strings

and graphs.
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3.2.4.1 Polynomial kernel

Definition 3.2.3 (Polynomial kernel). Given a kernel κ1, the derived poly-

nomial kernel is defines as

κ(x, z) = p(κ1(x, z))

where p(·) is any polynomial with positive coefficients. Often, it also comes

in the following form

κd(x, z) = (〈x, z〉+R)d

defined over a vector spaceX of n dimensions, whereR and d are parameters.

By applying the binomial theorem the polynomial kernel κd can be expanded

as follows

κd(x, z) =

d∑
s=0

(
d

s

)
Rd−s〈x, z〉s (3.42)

The features corresponding to κd(x, z) are all the functions φi(x) = xi =

xi11 x
i2
2 . . . x

in
n where i = (i1, . . . , in) ∈ Nn satisfies

∑n
j=1 ij ≤ d. By induction

it is possible to show that the dimension of the feature space associated to

a polynomial kernel κd(x, z) = (〈x, z〉+R)d is
(
n+d
d

)
.

Note that the parameter R allows to control, to some extent, the relative

weightings of the different degree monomials. Then Equation 3.42 can be

written as

κd(x, z) =
d∑
s=0

asκ̂s(x, z) (3.43)

where κ̂s(x, z) is a s degree polynomial kernel and as =
(
d
s

)
Rd−s. Hence,

increasingR decreases the relative weighting of the higher order polynomials.

Finally, the polynomial kernel of degree d can be recursively computed

using the lower degree polynomial kernels:

κd(x, z) = κd−1(x, z)(〈x, z〉+R) (3.44)

3.2.4.2 Gaussian kernel

Definition 3.2.4 (Gaussian kernel). The Gaussian kernel is defined, for all

σ > 0, by

κ(x, z) = exp

(
− ‖ x− z ‖2

2σ2

)



Chapter 3. Machine Learning Background 54

Note that it is not mandatory to employ the Euclidean distance in the input

space. For example, considering a kernel κ1(x, z) with a feature mapping

φ1 into a space F1, it is still possible to create a Gaussian kernel in F1 by

recognizing that

‖ φ1(x)− φ1(z) ‖2= κ1(x,x)− 2κ1(x, z) + κ1(z, z) (3.45)

and obtaining the following Gaussian kernel

κ(x, z) = exp

(
− κ1(x,x)− 2κ1(x, z) + κ1(z, z)

2σ2

)
(3.46)

The parameter σ of the Gaussian kernel plays a role similar to the degree

d in the polynomial kernel, i.e. controlling the flexibility of the kernel. Small

σ values are similar to large values of d, producing kernel matrices that are

similar to the identity matrix. Usually, this configuration allows classifiers

to fit any type of labels promoting overfitting and, consequently, yielding

poor generalization power. On the other hand, large σ values deliberately

reduce the kernel to a constant function, introducing the impossibility to

learn any non-trivial classifier.

It is difficult to visually picture the feature space corresponding to a

Gaussian kernel. Elements of the feature space can be represented as a

function in a Hilbert space in the following way

x 7−→ φ(x) = κ(x, ·) = exp

(
‖ x− · ‖2

2σ2

)
(3.47)

with the inner product between function given by〈
l∑

i=1

αiκ(xi, ·),
l∑

j=1

βjκ(xj , ·)
〉

=
l∑

i=1

l∑
j=1

αiβjκ(xi,xj) (3.48)

Each point can be pictured as representing a new potentially orthogonal

direction, but with a higher overlap with the other directions represented

by close points in the input space.
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3.2.5 Kernels for structured data

As already mentioned in the previous section, kernels allow the computation

of a similarity measure for arbitrary complex structures. This enables the

generalization of learning tasks to these types of inputs. Here, I deal with

two particular types of structured data that are particularly relevant to the

scope of this thesis, i.e. strings and graphs. In computational biology it is

pretty common to deal with strings that represent the sequence of molecules

(e.g. RNAs and proteins). In addition, in some cases the secondary structure

of RNA molecules is taken into account, and this type of information is easy

to encode in graph form. This requires fast and accurate graph kernels.

In my research work I broadly employed string and graph kernels to

represent RNA molecules. In Chapter 5 the RNAs are represented using a

string kernel, while in Chapter 4 and 6 the RNAs are represented using a

graph kernel computed over their predicted secondary structure.

3.2.5.1 Kernels on strings

The purpose of kernels on strings is to embed two sequences in a high-

dimensional space where their similarity is reflected by the relative distance

between the high-dimensional representations.

First, I introduce the concepts of string, substring and subsequence of

symbols. The term substring refers to a string occurring contiguously within

a string, while a subsequence allows the possibility that gaps separate the

characters resulting in a non-contiguous instance within the string.

Definition 3.2.5 (String). An alphabet is a finite set Σ of |Σ| symbols. A

string s = s1 . . . s|s| is a finite sequence of symbols from Σ, including the

empty sequences that is denoted by ε and it is the only string of length 0.

Σn denotes the set of all finite strings of length n, and Σ∗ stands for the

set of all the strings defined on the alphabet Σ. Let s and t be strings,

|s| denotes the length of the string s and st is the the string obtained by

concatenating s and t (of length |st| = |s|+ |t|).

Definition 3.2.6 (Substring). A string t is a substring of s if there exist

two strings u and v (possibly empty) such that s = utv. If u = ε then t is

a prefix of s, while if v = ε t is called suffix. For 1 ≤ i ≤ j ≤ |s|, the string

s(i : j) is the substring si . . . sj of s. The substrings of length k are also

called k-grams or k-mers.
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Definition 3.2.7 (Subsequence). A string u is a subsequence of a string

s, if there exist indices i = (i1, . . . , i|u|), with 1 ≤ i1 < · · · < i|u| ≤ |s|,
such that uj = sij , for j = 1, . . . , |u|, or in short u = s(i). |i| = |u|
represents the number of indices in the subsequence, while the length l(i) of

the subsequence is i|u|− i1 +1, that is, the number of characters of s covered

by the subsequence. Conventionally, bold indices range over strictly ordered

tuples of indices, belonging to the sets

Ik = {(i1, . . . , ik) : 1 ≤ i1 < · · · < ik} ⊂ Nk, k = 0, 1, 2, . . .

All the kernels on strings presented here are explicit embedding maps

from the space of finite strings defined on an alphabet Σ to a vector space

F . The coordinates of F are indexed by a subset I of strings over Σ, that is

a subset of the input space. Depending on the case, I can be the set Σp of

strings of length p giving a vector space of dimension |Σ|p, or it can be the

infinite-dimensional space indexed by Σ∗. As usual, φ represents the feature

mapping

φ : s 7−→ (φu(s))u∈I ∈ F (3.49)

Fixed the embedding space F, there are many different maps φ to choose

from, that will produce different feature encodings of the same strings.

One intuitive way to compare two strings is to count how many contigu-

ous substrings (of a given length) they have in common. This simple way of

comparing strings has found successful application in bioinformatics (Leslie

et al., 2002, 2004). The spectrum of order p (or p-spectrum) of a sequence s

is the histogram of the frequencies of all its contiguous substrings of length

p. Given the p-spectra of two strings, a kernel can be defined as the inner

product of their p-spectra.

Definition 3.2.8 (p-spectrum kernel). The feature space F associated with

the p-spectrum kernel is indexed by I = Σp with the embeddings given by

φpu(s) = |{(v1, v2) : s = v1uv2}|, u ∈ Σp

and the associated kernel is defined as

κp(s, t) = 〈φp(s), φp(t)〉 =
∑
u∈Σp

φpu(s)φpu(t)
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The p-spectrum kernel can be recursively computed by exploiting an auxil-

iary kernel, called k-suffix, and defined by

κSk (s, t) =

{
1 if s = s1u, t = t1u, for u ∈ Σk

0 otherwise
(3.50)

Then the p-spectrum kernel can be computed by

κp(s, t) =

|s|−p+1∑
i=1

|t|−p+1∑
j=1

κSk (s(i : i+ p), t(j : j + p)) (3.51)

An extension of the p-spectrum kernel considers all contiguous and non-

contiguous subsequences of a string and it is named all-subsequences kernel.

Definition 3.2.9 (All-subsequences kernel). The feature space associated

with the embedding of all-subsequences kernel is indexed by I = Σ∗, with

the embedding given by

φu(s) = |{i : u = s(i)}|, u ∈ I

that represents the number of times a subsequence u occurs in the string s.

The associated kernel is then defined as

κ(s, t) = 〈φ(s), φ(t)〉 =
∑
u∈Σ∗

φu(s)φu(t)

The explicit computation of the all-subset embeddings requires to account

for min(
(|s|
k

)
, |Σ|k) distinct subsequences of length k, becoming infeasible for

all but the smallest k values. For this reason, the direct computation of the

kernel function is preferred, and it can be done by recursion as follows

κ(s, ε) = 1, (3.52)

κ(sa, t) = κ(s, t) +
∑
k:tk=a

κ(s, t(1 : k − 1)) (3.53)

where every string contains the empty string ε exactly once. By symmetry

of kernels the same recursive relation yields for κ(s, ta).

One adaptation of the all-subsequences kernel implies the consideration

of only subsequences of a fixed length p.

Definition 3.2.10 (Fixed length subsequence kernel). The feature space
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associated with the embedding of the fixed length subsequence kernel of

length p is indexed by Σp, with the embedding given by

φpu(s) = |{i : u = s(i)}|, u ∈ Σp

that represents the number of times a subsequence u occurs in the string s.

The associated kernel is then defined as

κp(s, t) = 〈φp(s), φp(t)〉 =
∑
u∈Σp

φpu(s)φpu(t)

Similarly to the all-subset kernel, the fixed length subsequence kernel of

length p can be recursively computed by

κ0(s, t) = 1, (3.54)

κp(s, ε) = 0, for p > 0, (3.55)

κp(sa, t) = κp(s, t) +
∑
k:tk=a

κp−1(s, t(1 : k − 1)) (3.56)

where the recursion is now defined over the prefixes of the strings, but also

over the length of the considered subsequences.

A more general kernel is the gap-weighted subsequences kernel. The

key idea behind this kernel is still to compare strings according to the sub-

sequences they contain, but instead of weighting all occurrences equally,

the degree of contiguity of the subsequence in the input string determines

how much it will contribute to the comparison. For example: the string

"gon" is a subsequence of the strings "gone", "going" and "galleon", but

for the gap-weighted subsequences kernel the occurrence in "gone" is more

important since it is contiguous, while the occurrence in "galleon" is the

weakest.

Definition 3.2.11 (Gap-weighted subsequences kernel). The feature space

associated with the embedding of the gap-weighted subsequences kernel of

length p is indexed by Σp, with the embedding given by

φpu(s) =
∑

i:u=s(i)

λl(i), u ∈ Σp

where λl(i) ∈ (0, 1) is the exponentially decaying weight parameter that
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accounts for the gaps in the occurrence of u. The associated kernel is then

defined as

κp(s, t) = 〈φp(s), φp(t)〉 =
∑
u∈Σp

φpu(s)φpu(t)

With λ = 1 the gap-weighted subsequences kernel is equivalent to the fixed

length subsequences kernel. On the other hand with λ → 0 it turns into

an approximation of the p-spectrum kernel since the relative weighting of

strings longer than p tends to zero. For these reasons, the gap-weighted

subsequences kernel can be interpreted as a hybrid version of the other two

kernels.

3.2.5.2 Kernels on graphs

Graphs are more complex structures with respect to strings. Here, I start

by giving the basic definition of graphs and the associated concepts.

Definition 3.2.12 (Graph). A graph G = (V,E) consists of two sets V and

E ⊂ V ×V . The notation V (G) and E(G) is used when G is not clear from

the context. The elements of V are called vertices and the elements of E

are called edges.

Definition 3.2.13 (Neighborhood subgraph). The distance between two

vertices u and v, is the length of the shortest path between them and it

is denoted by D(u, v). The neighborhood of radius r of a vertex v is the

set of vertices at a distance less than or equal to r from v and is denoted

by Nr(v). Given a graph G, the induced-subgraph on a set of vertices

W = {w1, . . . , wk} is a graph that has W as its vertices and it contains

every edge of G whose endpoints are in W . The neighborhood subgraph of

radius r of vertex v is the subgraph induced by the neighborhood of radius

r of v and is denoted by Nv
r .

Definition 3.2.14 (Labeled graph). A labeled graph is a graph whose ver-

tices and/or edges are labeled, possibly with repetitions, using symbols from

a finite alphabet. The function that maps the vertex/edge to the label sym-

bol is denoted by L.

Definition 3.2.15 (Graph isomorphism). Two graphs G1 = (V1, E1) and

G2 = (V2, E2) are isomorphic (G1 ' G2) if there is a bijection φ : V1 → V2

such that for any two vertices u, v ∈ V1, there is an edge uv if and only if there
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is an edge φ(u)φ(v) in G2. Moreover, two labeled graphs are isomorphic

if there is an isomorphism that preserves also the label information, i.e.

L(φ(v)) = L(v)

Since the introduction of convolution kernels in Haussler (1999), the

approach based on decomposition has been the guiding principle in kernel

design for structured objects such as graphs. According to the decompo-

sition approach, a similarity function between graphs can be obtained by

decomposing each graph into subgraphs and by constructing a valid local

kernel between the subgraphs.

Here I present the Neighborhood Subgraph Pairwise Distance Kernel

(NSPDK) (Costa and De Grave, 2010), a graph decomposition kernel that

I broadly employed in my research work. NSPDK considers the decomposi-

tion of a graph into all pairs of neighborhood subgraphs of small radius at

increasing distances.

Let Rr,d be the relation that selects all pairs of neighborhood graphs of

radius r whose roots are at distance d in a given graph G. More formally,

Rr,d(Av, Bu, G) is the relation between two rooted graphs Av, Bu and a

graph G. Rr,d(Av, Bu, G) is true if and only if both Av and Bu are in

{N r
v : v ∈ V (G)}, where Av (Bu) is isomorphic to some Nr to verify the set

inclusion, and D(u, v) = d.

Let κr,d be the decomposition kernel on the relation Rr,d

κr,d(G,G
′) =

∑
Av ,Bu∈R−1(G)
A′

v′ ,B
′
u′∈R

−1(G′)

δ(Av, A
′
v′)δ(Bu, B

′
u′) (3.57)

where δ(x, y) = 1 if x ' y, and 0 otherwise (exact match kernel). Basically,

κr,d counts the number of identical pairs of neighboring subgraphs of radius

r at distance d between two graph.

Finally the NSPDK is defines as

Kr∗,d∗(G,G
′) =

r∗∑
r=1

d∗∑
d=1

κr,d(G,G
′) (3.58)

where, for efficiency reasons, r∗ and d∗ are upper bounds on the radius and

the distance parameter respectively.

For ensuring that relations of all orders are equally weighted regardless of
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the size of the induced subgraphs the normalized version of κr,d is considered

κ̂r,d =
κr,d(G,G

′)√
κr,d(G,G)κr,d(G′, G′)

(3.59)

In Equation 3.57, NSPDK includes the exact match kernel over graphs.

This is equivalent to solving the graph isomorphism problem, that is not

known to be solvable in polynomial time. For this reason, NSPDK uses a

fast but approximate technique to compute the exact match kernel over two

finite graphs. First, a string encoding of the graphs is generated using a label

function L. Second, a unique identifier is obtained via a hashing function

from strings to natural numbers. Using this approximate technique the

isomorphism test between two graphs is reduced to a fast numerical identity

test. On the other hand, it is not possible to ensure that there will not be

cases where two non-isomorphic graphs are assigned the same identifier.

3.3 Pattern set mining

Pattern mining aims at finding useful patterns in the data. Useful patters

are represented by manageable groups of patterns that together give useful

insight about the data, show differences between different data sets, or can

be used in classification or other common machine learning tasks. A pattern

is a recurring structure that satisfies some given constraints (e.g. on the

support, on the size, etc.), defined on an enumerable and discrete entities

(e.g. item sets, graphs, sequences, trees, etc.). The most famous instance of

pattern mining is the task of frequent item set mining, that is the problem

of finding association rules between sets of items in a database of basket

transactions (Agrawal et al., 1993).

Nowadays, the world is witnessing a constant increase of the amount of

available data. Just to give an example, in 2012 the entire world produced

1.8 Zettabytes (1.8 × 1021 bytes = 1.8 × 109 GB) of data, and in 2014 the

amount of produced data was 4 Zettabytes. According to Internet Live Stats,

for every second of 2016 there was around 700 Instagram photos uploaded, 7

thousands tweets sent, 57 thousands Google searches, 60 thousands YouTube

videos viewed, and 2.5 million emails sent. This constantly growing amount

of data is reflected in both the number of available data sources, but also

the size of such databases, and especially their growth rate. Therefore, the
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identification of all the patterns in a database became a really impractical,

if not infeasible, task. For this reason modern research focuses on finding

small sets of patterns that are jointly optimal for the task at hand. This task

is called pattern set mining. The main goal of this alternate formulation to

the pattern mining task is to reduce the redundancy within the result set.

Several approaches for pattern set mining have been proposed. Here, I

focus on description-based methods, that are unsupervised techniques that

attempt at mining sets of patters that describe part of the dataset. In

pattern set mining the pattern set is selected in a way that maximizes a cer-

tain optimality criterion. Description-based methods are divided in three

main classes according the optimality criterion used to select the pattern

sets: maximal coverage, minimum description length and maximal likeli-

hood. Approaches based on maximal coverage define the quality of a set

of patterns by how much of the data it can cover in as few patterns as

possible (Geerts et al., 2004; Miettinen et al., 2008). Minimum description

length (MDL) techniques are based on the principle that a good description

should not just focus on covering/describing the data, but also take the com-

plexity of the model (i.e. the set of patterns) into account. Famous MDL

approaches are based on compression techniques (Tatti and Vreeken, 2008;

Vreeken et al., 2011). The last class, represented by maximal likelihood

techniques, aims at finding descriptions with high likelihood. Here, patterns

are specified with probabilistic models, and the methods try to find the set

of patterns that maximizes the likelihood of the data (Yan et al., 2005; Tatti

and Heikinheimo, 2008).

In the rest of the section, I describe Boolean matrix factorization (Miet-

tinen et al., 2008) because it is employed in Chapter 6.

3.3.1 Boolean matrix factorization

In Miettinen et al. (2008) the authors introduce the discrete basis prob-

lem (DBP). This represents the problem of expressing a data matrix as the

product of two factor matrices: one containing basis vectors that represent

meaningful concepts in the data and another describing how the observed

data can be expressed as combinations of the basis vectors. Classical de-

composition methods usually return real-valued matrices, that are hard to

interpret, especially when the original data is Boolean. For this reason, DBP

formulates a matrix decomposition for Boolean data.
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3.3.1.1 The discrete basis problem (DBP)

Consider an n × m binary matrix C. The rows of the matrix represent

observations and the columns represent the attributes of the dataset. For

instance, consider a course enrollment dataset where rows represent students

and columns represent courses, and Cij = 1 indicates that the i-th student

is enrolled in the j-th course. A basis vector represents a set of correlated

attributes. In the course enrollment dataset example, a basis vector corre-

sponds to a set of courses that constitute a specialization area. The DBP

formulation aims at discovering the specialization areas that are present in

the dataset, and also discovering how each student in the dataset can be

expressed by a combination of those specialization areas.

Let S and B be binary matrices of dimensions n× k and k ×m respec-

tively. The n ×m matrix P = S ◦ B represents the Boolean product of S

and B, i.e. the i-th row of P is the logical OR of the rows of B for which the

corresponding entry in the i-th row of S is 1. In a more intuitive way, S is

a usage matrix that contains information about which specialization areas

appear in each observation, and B is the basis vector matrix that contains

information about which courses appear in each specialization area.

The Discrete Basis Problem (DBP) is formally defined as follows.

Definition 3.3.1 (Discrete basis problem). Given a binary n ×m matrix

C and a positive integer k < min{n,m}, find a n× k binary matrix S and

a k ×m binary matrix B that minimize

|C − S ◦B| =
n∑
i=1

m∑
j=1

|Cij − (S ◦B)ij |

3.3.1.2 Solving DBP

DBP belongs to the class of NP-complete problems. Therefore, the exact

solution of DBP cannot be found in polynomial time with respect to the size

of the input matrix C. In Miettinen et al. (2008) a greedy algorithm, based

on Boolean matrix factorization, that approximates the solution of DBP is

proposed. The basic idea is to exploit the correlations between the columns

of the matrix C. First, the algorithm computes the pairwise associations

between columns, and then, these associations are used as candidate basis

vectors. Finally, a small set of candidate basis vectors are selected in a
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Algorithm 1: DBP solver

Input: C, k, τ , w+, w−

Output: B, S
1 for i = 1, . . . ,m do
2 ai := (1(c(i⇒ j, C) ≥ τ))mj=1;

3 B :=
[]

, S :=
[]

;
4 for l = 1, . . . k do

5 (ai, s) := argmaxai,sn×1 cover

([
B
ai

]
, [S s], C, w+, w−

)
;

6 B :=
[
B
ai

]
, S := [S s];

7 return B and S;

greedy fashion to extract to set of k bases that represent the solution of

DBP.

The DBP solver algorithm can be summarized with the pseudo-code of

Algorithm 1. From now on, a row vector of a matrix M is denoted by Mi·,

a column vector by M·j , and a matrix entry by Mij . The confidence of an

association between the i-th and the j-th column is defined by

c(i⇒ j) = 〈C·i, C·j〉/〈C·i, C·i〉 (3.60)

where 〈·, ·〉 is the vector inner product operation. An association between

columns i and j is defined τ -strong if c(i⇒ j) ≥ τ .

The first step is to compute an association matrix A ∈ m × m that

contains the pool of candidate bases. An entry Aij of the association matrix

A is equal to one if c(i ⇒ j) ≥ τ , and 0 otherwise. Each row of A is

considered as a candidate for being a basis vector, and the parameter τ

controls the level of confidence required to include an attribute to the basis

vector candidate (lines 1-2).

The k basis vectors to return are selected from the matrix A selecting the

candidate bases that maximize the coverage of the input matrix C. Initially,

B and S are empty matrices (line 3). During the iteration 1 ≤ l ≤ k, the

basis matrix B is updated in by setting the row Bl· to be the row Ai· in A
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and the column S·l to be a binary vector in order to maximize:

cover(B,S,C,w+, w−) = w+|{(i, j) : Cij = 1, (S ◦B)ij = 1}|
− w−|{(i, j) : Cij = 0, (S ◦B)ij = 1}| (3.61)

where w+ and w− are weights that are used to reward the covering of 1’s

and penalize the covering of 0’s, respectively (lines 4-6).

The greedy procedure presented here finds approximate solutions to

DBP, but it is able to do it in polynomial (quadratic) time in the size

of the input matrix C and the number of output bases. The first step of

the algorithm constructs the association matrix A, and this can be done in

O(nm2). Then, for selecting each of the k bases O(nm2) operations are re-

quired. Thus, solving DBP with this greedy algorithm has time complexity

of O(knm2).

By definition of NP-completeness, this polynomial greedy procedure

cannot always find the exact solution of DBP. In fact, there are cases in

which the algorithm is unable to find the optimal solution. One example is

represented by the case in which all 1’s in some basis vector occur in some

other basis vectors. In these cases the algorithm is unable to find the basis

vector that is contained in the other one.



Chapter 4

RNAcommender

The RNA interactome, obtained through high-throughput experimental tech-

niques, is available for a small portion of the known human RNA binding

proteins. The relevance of determining RNA-protein interactions, coupled

with the still limited availability of experimental information, pave the way

for in silico prediction of such interactions. In this chapter I introduce

RNAcommender, a tool for genome-wide recommendation of RNA-protein

interactions. The main purpose of RNAcommender is to suggest candidate

RNA targets (transcripts) for RBPs of which the RNA binding activity has

not yet been characterized or their substrates have not yet been identified.

It exploits the interaction data available from high-throughput experiments

performed on other proteins with similar domains. RNAcommender is a

recommender system, that propagates interaction information from known

RBPs to unexplored ones. It uses experimentally determined interactions

and sequence information for both proteins and mRNAs, to attempt at

completing the interaction map. For proteins with few known RNA targets

(obtained from low-throughput assays), this consists in recommending ad-

ditional interactions. For completely novel RBPs (or even presumed ones),

it suggests the entire set of interactions from scratch. This de novo predic-

tion task, also called cold start recommendation in recommender systems,

requires to turn sequence information into appropriate features that mea-

sure the similarity between proteins and between mRNAs in terms of their

binding capabilities. RNAcommender outputs a ranking of candidate RNA

targets for each RBP of interest.

66
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4.1 Related work

In Pancaldi and Bähler (2011) they employ SVMs and random forests to

predict RNA-protein interactions. They represent proteins and RNAs with

hundreds of different biological features extracted from the literature. Un-

fortunately, these features are not available for all proteins and transcripts,

limiting the applicability of the method to a subset of RNAs and RBPs.

RPIseq (Muppirala et al., 2011) and Wang et al. (2013) use sequence in-

formation to predict RNA-protein interactions. After computing RNA and

protein features, based on their sequences, RPIseq applies a random forest

classifier as well as SVM to predict the interactions. In RPI-seq, the RNAs

are represented with the normalized frequency of the 4-mer on the nucleotide

alphabet, while proteins are represented by the normalized frequency of their

conjoint triad, i.e. 3-mer in a reduced 7-letter simplified alphabet represen-

tation of the RBP amino acid sequence. In this simplified representation

the 20 amino acids are grouped in 7 categories according to the charge and

polarity of their side chains. In Wang et al. (2013), the authors use a sim-

ilar feature representation, i.e. the normalized frequency of conjoint triads

for RBPs and of 4-mer for RNAs. Differently from RPIseq, they employ a

naive Bayes (NB) and an extended naive Bayes (ENB) classifier to predict

the RNA-protein interactions. Due to its independence assumption, the NB

classifier is an effective and fast method, but the ENB yields better classi-

fication performance at the expense of the computational time. The ENB

introduces the concept of dependency, by assuming more similar features to

have a stronger correlation.

CatRapid (Bellucci et al., 2011) uses physicochemical features (such as

secondary structure, hydrogen bonding and van der Waals contributions)

of molecules to build the interaction profiles. These profiles are used to

estimate the propensity of RNA-protein interactions. CatRapid (but also

RPIseq and the approach proposed in Wang et al. (2013)) is trained on RNA-

protein interactions obtained from 3D complexes available in PDB (Rose

et al., 2015). Interactions acquired from 3D-resolved structures are clearly

more accurate than interaction maps obtained with high-throughput se-

quencing approaches, but they are much harder to determine. Moreover,

PDB complexes resolve only individual interactions between portions of

proteins (usually one or two domains) and small fragments of RNA (with
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median length of 21 nucleotides in eukaryotic cells). In general, all the

above-mentioned tools are not suitable for the genome-wide prediction of

RBP targets. The more recent CatRapid omics (Agostini et al., 2013) ex-

tends the prediction of the RNA-binding propensity at a genome-wide scale.

CatRapid omics, by precomputing the RNA features, allows (among other

things) to query a protein against the complete transcriptome of different

organisms. The limitation of CatRapid omics is that it does not allow to

make genome-wide predictions for organisms different from the ones with

precomputed RNA features.

4.2 Materials and methods

RNAcommender is a recommender system, that propagates interaction in-

formation from known RBPs to uncharacterized ones. It uses experimentally

determined interactions and sequence information for both proteins and mR-

NAs and it attempts at completing the interaction map. RNAcommender

outputs a ranking of candidate RNA targets for each RBP of interest. RNA-

commender allows the computation, from sequence information only, of both

RBP and RNA features, enabling the genome-wide prediction of RNA tar-

gets also for custom genomes.

In this section, first I present the dataset used in this work. Then, I

explain how the protein and RNA explicit features are computed. Finally, I

define the factorization model of RNAcommender.

4.2.1 Dataset

The AURA 2 database (August 2015) (Dassi et al., 2014) contains a manu-

ally curated and comprehensive catalog of experimentally determined RBP-

UTR interactions. UTRs are mRNA untranslated regions that are known

to be highly involved in the post-transcriptional regulation.

From the AURA 2 database, I selected all the interactions obtained with

high-throughput techniques, because they allow to validate RNAcommender

predictions. The selection includes 67 distinct RBPs interacting with 72,226

UTRs for a total of 502,178 interactions. RBPs with high-troughput exper-

imental evidence bind from 400 to 31,964 different UTRs, with a mean of

7,495 and a median value of 4,503, while the standard deviation is 7,711.

The less selective RBPs interact with more than 40% of the UTRs while the
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most selective ones bind less than 1% of the possible targets (the median

is around 5-10%). The interaction information was encoded in an n × m
matrix Y , where n and m are the number of RBPs and UTRs respectively:

Yij = 1 if RBP i interacts with UTR j, and 0 otherwise.

4.2.2 RBP features

The features that represent RBPs are built using domain information in-

cluded in Pfam (v. 28.0) (Finn et al., 2013) because the domain information

seizes affinities between protein structure, function and modularity at the

same time (Lunde et al., 2007).

For each RBP, its sequence is scanned against the HMM models in the

Pfam-A database, selecting all the domains that matched with e-value equal

to or lower than 1.0. For each protein domain found in the sequence, the

Fisher score of the matching subsequence is computed. The Fisher score

is obtained by computing the derivative of the subsequence log-likelihood

score with respect to all the HMM model parameters (Jaakkola et al., 2000).

Every RBP is then represented by the concatenation of the Fisher scores of

its matching subsequences with respect to their correspondent Pfam models.

When multiple subsequences of an RBP are identified as the same domain,

i.e. they matched the same Pfam HMM model, their Fisher scores are

averaged. When a Pfam domain is not encountered in a protein a zero

vector is used.

More formally, let T : {t1, . . . , tM} be the set of domain types contained

in Pfam (i.e. RRM 1, KH 1, . . . ), and D : {d1, . . . , dN} be the set of do-

mains identified in a protein p (for example, the protein FUS incorporates

an RMM 1 in position 287-365 and a zf-RanBP in position 422-453). Then,

Θ : D → T is the function that maps domains of p to the domain types of

Pfam. Let Dtj = {di : Θ(di) = tj} be the set of domains of type tj in protein

p. Let sdi be the Fisher score of domain di with respect to the HMM model

of Θ(di). Usually, if Θ(di) 6= Θ(dj) then sdi ∈ Ra, sdj ∈ Rb with a 6= b. The

averaged Fisher score with respect to a domain type tj is computed by:

stj =

{
1
|Dtj |

∑
di∈Dtj

sdi if |Dtj | > 0

0 otherwise
(4.1)

and the Fisher score of a protein p is the concatenation of the Fisher scores
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>FUS
…SSMSSGGGSGGGYGNQDQSGGGGSGGYGQQDRGGRGRGGSGGGGGGGGGGYNRSSGGYE
PRGRGGGRGGRGGMGGSDRGGFNKFGGPRDQGSRHDSEQDNSDNNT IFVQGLGENVTIE
SVADYFKQIGIIKTNKKTGQPMINLYTDRETGKLKGEATVSFDDPPSAKAAIDWFDGKEF
SGNPI KVSFATRRADFNRGGGNGRGGRGRGGPMGRGGYGGGGSGGGGRGGFPSGGGGGG
GQQ RAGDWKCPNPTCENMNFSWRNECNQCKAPKP DGPGGGPGGSHMGGNYGDDRRGGR
GGYDRGGYRGRGGDRGGFRGGRGGGDRGGFGPGKMDSRGEHRQDRRERPY

-0.68, …,-0.49

sRRM 1sRRM 1

0.00, …,0.00

sKH 1sKH 1

0.05, …,-0.53

szf�RanBPszf�RanBP

… … … …

(a) Each protein is represented by the concatenation of the Fisher scores (Jaakkola et al.,
2000) of its domains with respect to their correspondent Pfam models. Missing Pfam do-
mains are represented with a zero vector.

>uc001anp.1_3UTR
GCAGAGGGAGGCCCCCAAGAGT
GCCATTGACCAAGAGACAGCAG
ACAGCCTGCCTCCTGGGGCGTG
CCGGCACCTGCTTCAGCTACTG
CCTCCTGTATGCATGAGCCGGA
TGCTGGGCAGGATCCCTGCCTA
CGCCCGGGCCCGATTTGCGCTT
TGCCGGACTGGATGGAGTGGAG
GAGGCCCAGGCCACAGT…
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(b) The RNA secondary structure is predicted using RNAplfold (Lorenz et al., 2011), then
the feature representation is computed using the NSPDK approach that extends the notion
of k-mers (with gaps) from the domain of strings to the domain of graphs.

Figure 4.1: Computation of explicit features for RBPs and RNAs.

with respect to all Pfam domains: sp = [st1 , . . . , stM ] (Figure 4.1a).

Finally, for controlling the dimensionality of the vectors representing the

RBPs, each protein is depicted in terms of its empirical kernel map, i.e. the

similarity of a protein with respect to all the other RBPs. The similarity

between two RBPs is estimated as the normalized dot product between their

Fisher score vector representations: sim(p, q) = 〈sp, sq〉/
√
||sp|| · ||sq||.

4.2.3 RNA features

The self interacting structure of an RNA sequence plays a key role in the

understanding of protein binding processes. Although high-throughput pro-

tocols that allow to determine the RNA structure are now available (Sugi-

moto et al., 2015), there is still little experimental evidence about the fold-

ing structure of full-length RNA molecules. One has still to rely on in silico

techniques to estimate the structural behavior of such molecules from their

sequence.

In Lange et al. (2012), different secondary structure prediction methods

have been judged, concluding that local folding can be more accurate than

global approaches. In order to achieve a good balance between maximizing

the number of accurately predicted base pairs, and minimizing the effects

of incorrect long distance predictions, they recommend a maximal span of

150 nucleotides. RNAplfold (Lorenz et al., 2011) is used to estimate base
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pairs probabilities, constraining interactions to spread within a maximal

span, that makes suitable the scan of long RNA sequences. To the extent

of considering only reliable predictions, the RNAplfold locality parameter

is set to 150 nucleotides, the maximum span is reduced to 40 nucleotides

and the average base pair probability cut-off is set to 0.4. Differently from

sequence based approaches, here an explicit molecular graph is built, where

the vertices represent by the nucleotides and the edges depict the predicted

base pairs and the ribose-phosphate backbone (Figure 4.1b).

After predicting the RNA secondary structure, the Neighborhood Sub-

graph Pair Decomposition Kernel (NSPDK) approach, presented in Costa

and De Grave (2010), is used to efficiently compute a sparse feature repre-

sentation from the graph encoding. NSPDK extends the notion of counting

common gapped k-mers in a string to the domain of graphs. A unique nu-

merical identifier is given to all distinct neighborhood subgraphs using a fast

hashing technique, obtaining a sparse feature encoding. Rather than consid-

ering subsequences of length k (the k-mers), NSPDK looks at neighborhood

graphs of maximal radius R, that are defined as the subgraphs induced by

all the vertices within a given maximal distance R from a given node. To

generalize the notion of gaps, that allows components that differ in some po-

sitions to still match, NSPDK considers pairs of neighborhood graphs at a

maximal distance D as a unique entity. In this way, the matching operation

ignores all the vertices that are in between the two neighborhood graphs.

For example, consider the case marked as r=0, d=2 in Figure 4.1b, where

the ’G’ intermediate node is ignored and the feature can be matched to any

pair of vertices with labels ’A’ and ’U’ that are at a distance of 2. The full

set of features is produced considering all vertices of a graph as roots and

all possible combinations of radius and the distance values, up to the user

defined maximal values R and D. As suggested in Heyne et al. (2012) both

values are set to 2. The dimensionality of the feature space can be con-

trolled adjusting the co-domain of the hashing function that turns graphs

into integers. Small dimensionality values imply efficient memory footprint

and subsequent processing, but also a higher risk of collision, i.e. assigning

the same integer identifier to non-isomorphic subgraphs, producing a noisier

encoding. In Li and König (2010) theoretical robustness guarantees have

been shown when considering codes obtained from the lowest bits of each

hashed value. Here, only the 10 lowest bits are considered, effectively limit-
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ing the feature space dimensionality of the RNA structure encoding to 1024

(Figure 4.1b).

4.2.4 The model

The model is inspired by the matrix factorization (MF) techniques used

in collaborative filtering (Koren et al., 2009). Here RBPs represent the

users while the items are portrayed by RNAs. MF projects both RBPs

and RNAs into a latent feature space where large correlation between latent

representations of an RBP and an RNA produces a recommendation. In the

basic form of MF, learning aims at determining two low-rank matrices P and

R such that the interaction matrix Y , can be approximated by multiplying

the two low-rank matrices (Y ≈ PR>). This collaborative filtering approach

has proven effective to build recommender systems for movies (Koren et al.,

2009), but it is not applicable, as is, to this recommendation task for two

main reasons. First, the unavailability of interaction information for test

proteins introduces a severe cold start problem. This setting requires explicit

feature representations for RNAs and, most importantly, for RBPs in order

to carry out the recommendation task. Second, the number of RNAs is

much higher than the one of RBPs, which makes difficult to directly project

them both in a latent space of the same size.

Similarly to Ding et al. (2006), RNAcommender is based on trifactor-

ization, but without orthogonality constraints. An analogous trifactoriza-

tion approach has been proposed in the context of multi-relational learn-

ing (Nickel et al., 2011). The key differences of the RNAcommender model

are the addition of explicit feature representations, mediated by latent pro-

jection matrices, and the use of non-linear mappings.

The explicit feature representations for RBPs and RNAs are computed as

described in Section 4.2.2 and 4.2.3 respectively. Then, these representations

are mapped, in a non-linear fashion, into latent spaces of different sizes,

where finally a third non-linear mapping associates them. The parameters

of the three mappings are jointly tuned.

Formally speaking, let Fp ∈ Rn×lp and Fr ∈ Rm×lr be the matrices of

the explicit feature representations of RBPs and RNAs, respectively. Let

Ap ∈ Rlp×kp , Ar ∈ Rlr×kr , and B ∈ Rkp×kr denote the three factors in the
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Fp

Ap

P

Fr

Ar

R

B

Y

Kronecker

Figure 4.2: Neural network interpretation of the factorization model.

decomposition. The model is then defined by:

P = σ(FpAp) ∈ Rn×kp (4.2)

R = σ(FrAr) ∈ Rm×kr (4.3)

Ŷ = σ(PBR>) ∈ Rn×m (4.4)

where σ is the logistic function. Alternatively, the model can be interpreted

as a feedforward neural network with a Kronecker layer (second-order units)

as shown in Figure 4.2. Preliminary results suggested that the use of deeper

architectures, even with pretraining of the layers, increases the complexity

and the model training time, without introducing significant performance

improvements. Focusing on the benefit of projecting proteins and RNAs

into different latent spaces, preliminary tests associated the removal of the

Kronecker layer with worse recommendation performance.

The factorization model is trained using stochastic gradient descent to

optimize the regularized mean squared error:

min
Ap,Ar,B

∑n
i=1

∑m
j=1(Yij − Ŷij)2

n ·m + λ · r(Ap, Ar, B) (4.5)

where Y ∈ Rn×m is the interaction matrix between n proteins and m RNAs,
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and the regularization term r(Ap, Ar, B) is the normalized Frobenius norm

of the model weights:

r(Ap, Ar, B) =
||Ap||F
lp · kp

+
||Ar||F
lr · kr

+
||B||F
kp · kr

(4.6)

The normalization has the role of canceling out the dependency on the sizes

of the model factors.

4.3 Results and discussion

For testing RNAcommender I simulated both the scenarios of predicting

RNA targets for proteins on which only low-throughput analyses were per-

formed (target completion), and the full de novo recommendation for pro-

teins with no interaction information. These scenarios were simulated by

masking the information of the RBPs with high-throughput information

present in the AURA 2 human dataset (see Section 4.2.1). I performed

leave-one-protein-out experiments, training the model on the full interac-

tion information of n − 1 RBPs, and testing on the protein that was left

out. In the completion setting most of the interaction information available

was hidden, while in the de novo one I hid all the interactions. Finally, I

evaluated the consistency of the model recommended RNA targets with the

hidden interactions.

The tests were performed using a machine mounting 12 Intel R© Xeon R©

CPUs E5-2603 v3 @ 1.60GHz, and 64GB of RAM, running Linux Ubuntu

14.04 LTS. Computing the features for 67 proteins took around 30 minutes

(single-threaded computation), while computing the features for the 72,226

UTR sequences required 2.5 hours in multi-thread over the 12 CPUs. Train-

ing the model necessitated between 130 and 140 seconds per training epoch

in multi-threaded computation over all 12 CPUs. A training epoch is de-

fined as a complete pass over the training dataset, that, in total, contains

around 4.8 million examples. I estimated that multi-threaded computation

scaled the time required for training a model in an essentially linear way.

4.3.1 Protein target completion

In this section, I analyze the protein completion scenario, where the aim

is to recommend RNA targets to RBPs with little interaction information
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available. This situation usually occurs when the RBP interactors have been

experimentally determined only through low-throughput techniques. Here I

show how RNAcommender can be used to suggest targets for proteins with

few known interactions, and how the introduction of the explicit features for

both RBPs and RNAs can improve the recommendations.

Considering RBPs with high-throughput experiments, I assessed the per-

formance of RNAcommender in this setting, by masking the majority of their

known interactions. For each RBP, I disguised (during training) all known

interactions except for 15 RNA targets. This value was estimated consid-

ering the average number of known interactions annotated in the AURA 2

database for RBPs with low-throughput evidence only. In order to obtain

more reliable results, I iterated the sampling step 5 times for each RBP, and

the results report mean and standard deviation.

Since few known interactions of the test RBP were left in the training

set, it was feasible to recommend RNA targets even without employing the

explicit feature representation for RBPs and RNA targets that are presented

in Section 4.2.2 and 4.2.3. Nevertheless, the results pointed out that the use

of the explicit features produce better recommendations in terms of diversity

and serendipity. Diversity evinces the heterogeneity of the recommended

targets, measured in how many different RNA interactors are suggested

when considering different RBPs, while serendipity is a measure of how

surprising the successful recommendations are (Shani and Gunawardana,

2011). Here, I formalize the concept of serendipity of a recommended RNA

target. For each RNA j, it is possible measure its popularity as the share

of RBPs in the dataset binding to it: popj = (
∑n

i=1 Yij)/n, where n is the

number of RBPs and Y is the interaction matrix. Serendipity is inversely

proportional to the concept of popularity. A common RNA, that interacts

with all the proteins in the dataset, is less surprising than a target bound

by only few RBPs. For this reason the serendipity of an RNA j is defined

as serj = 1− popj .
In this section, the results are reported considering three different incre-

mental feature usage scenarios: no explicit features (ID.ID), explicit features

only for the RNAs (ID.FE), and explicit features for both RBPs and RNAs

(FE.FE). When explicit features were not present, the proteins and the

RNAs were identified by defining Fp = In and Fr = Im, respectively, where

Ir stands for the r-th dimensional identity matrix.
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The hyperparameters of the model were optimized using a 10-fold cross-

validation procedure. The obtained latent space sizes were kp = 5 and

kr = 50. A difference in the optimal latent space sizes was expected due

to the different dimensionality of the RBP and RNA sets. For the model

training, the stochastic gradient descent learning rate η was set to 1.0, while

the optimal value of the hyperparameter that controls the regularization

of the weights, was set to different values according to the feature usage:

λ = 10−2 for ID.ID, and λ = 10−4 for ID.FE and FE.FE. Additionally to

regularization, the model also employs an early stopping approach to better

deflect overfitting. The models were trained for 25 epochs for ID.ID, and 14

epochs for for ID.FE and FE.FE. By analyzing the optimal hyperparameters

in the three feature usage cases, the introduction of explicit features seemed

to diminish the relevance of the regularization of the model weights, and

boost the convergence speed.

For each test protein, RNAcommender computes a ranking (ranging from

0 to 1) on the RNA targets. As an indicator of the overall quality the

ranking, the Area Under the ROC curve (AUC ROC) for the three different

feature settings was measured. Although the average AUC ROC values of

the three feature usage cases were very similar: 0.76 for ID.ID and FE.FE,

0.77 for ID.FE, the diversity and serendipity of the recommended targets

were rather different.

When evaluating recommender systems, it is usual to concentrate on the

top recommendations because they represent the subset on which users will,

most likely, focus their attention. For each test case, identified by a protein

and a feature usage setting, the top 50 recommended targets were analyzed.

Figure 4.3a reports the number of different correctly recommended RNA tar-

gets in the top 50 target list of at least one protein. Clearly, the introduction

of explicit features increased the number of correct recommendations: from

60/68 (precision 0.88) in the ID.ID case, to 298/395 (precision 0.75) in the

ID.FE case and 506/697 (precision 0.73) in the FE.FE case. Although the

precision decreased, the introduction of explicit features increased the diver-

sity and, indirectly, the serendipity because the targets for different proteins

tended to be less heterogeneous. Figure 4.3b shows the box plot of the num-

ber of recommended RBPs per RNA target. Intelligibly, in the ID.ID case

less differentiated recommendations were proposed: on average an RNA was

recommended to 32 out of 67 proteins (with a median value of 38 RBPs).
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(e) Moving average of the serendipity of the RNA sequences along the
rankings produced by the three feature settings.

Figure 4.3: Analysis of the results obtained in the low-throughput comple-
tion task.
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On the other hand, the introduction of explicit features (ID.FE and FE.FE)

promoted the recommendation of very diverse targets: an RNA was recom-

mended to averagely 6 proteins in the ID.FE case and to 3 proteins in the

FE.FE case (with a median of 2 RNAs in both cases). Similarly, an increased

diversity and serendipity was observed when analyzing the functional enrich-

ments of sets of predicted targets. More specific and diverse Gene Ontology

enrichments were produced after introducing explicit feature representations

in the model, while the ID.ID scenario promoted a homogeneous set of re-

peated enrichments for each analyzed RBP (Figure 4.3c and 4.3d). In order

to show that the previous results were not influenced by the decision of an-

alyzing the first 50 recommendations, in Figure 4.3e I report the cumulative

moving average of the serendipity of the recommendations considering up to

the first 5,000 rankings. Serendipity values were averaged over all samplings

(5 per protein) of all the 67 test RBPs. Even though the serendipity (for all

three cases) increased along the rankings, the introduction of explicit fea-

tures (ID.FE and FE.FE) augmented the serendipity of the recommended

targets, by promoting less popular RNA targets than the ID.ID case.

In summary, the results presented in this section showed how RNAc-

ommender can be used to recommend targets to RBPs with few known

interactions. Although the recommendations can be done without account-

ing for the explicit features, the introduction of these features for both RBPs

and RNAs improved the serendipity and diversity of the recommendations.

4.3.2 De novo recommendation of protein targets

In this section, I analyze the capability of RNAcommender to suggest RNA

interactors to proteins without any type of interaction information. Here I

show how RNAcommender is able to successfully recommend correct RNA

targets to RBPs with zero interaction information.

The experiments were performed in a leave-one-protein-out fashion, by

masking all the interaction information for the hidden protein. In this set-

ting interaction-based propagation was not possible, because no interaction

information was available for the test protein. For this reason, recommen-

dations required to be driven by feature similarity with training proteins,

and therefore the recommendation task was infeasible for proteins with null

similarity with all other proteins in the dataset. This reduced the num-

ber of leave-one-out experiments performed in this section from 67 to 49.
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The models employed in this experimental setting were trained by using

the same cross-validated hyperparameters selected for the FE.FE case in

Section 4.3.1.

Table 4.1 reports the evaluation of the recommendations for each leave-

one-protein-out experiment. Each row includes the name of the test RBP,

the number of interacting RNA targets over the total of 72,226, the cu-

mulative similarity that accounts for the similarities with the proteins in

the dataset, the fraction of correct top 50 recommendations, the fraction of

correct top nTargets recommendations (where nTargets is the number of

actual targets of the test RBP) and finally the AUC ROC computed over

the predicted ranking. Statistically significant enrichment in the number

of correct targets in the top recommendations with respect to an equally

sized random sample is represented in boldface. Statistical significance was

defined by the Fisher exact test with α = 0.05. Considering all the 49

leave-one-out experiments, the Fisher test was statistically significant in 37

cases (precision at 50). Moreover, 46 out of 49 cases were significant when

considering the precision at nTargets. I would also like to point out that,

in many cases, the p-value of the Fisher test was many orders of magnitude

smaller than the significance threshold.

Similarity among RBPs and among RNAs drives the cold start recom-

mendation. As expected, significance of the Fisher test is associated to

RBPs with a high value of cumulative similarity (Figure 4.4a). Therefore,

the cumulative similarity should be an aspect to take into account before

attempting at recommending RNA targets for an uncharacterized RBP, be-

cause this factor seems to influence the quality of the predictions. RNAc-

ommender learns how to weight and combine known interactions from the

training proteins according to the similarities, and to use this knowledge to

recommend targets of the protein of interest.

This weighted combination is supposed to be more reliable than a simpler

approach as, for example, nearest neighbor. In nearest neighbor the test

protein predicted targets correspond to the experimental interactions of its

nearest RBP in the training set. The method showed better performance

than the nearest neighbor baseline (Table 4.2). The average AUC ROC of

RNAcommender was 0.75, against a value of 0.66 for the neighbor predictor.

RNAcommender outperformed the nearest neighbor baseline in the majority

of the comparisons, with the exception of the strongly related proteins in
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Table 4.1: Evaluation of the recommendations of RNAcommender in the
de novo setting. Test RBPs are sorted according to the precision at 50
(descending), and the number of targets (ascending). Boldface numbers in-
dicate precisions which are significantly better than what would be obtained
with an equally sized random sample according to a Fisher test (α = 0.05).

RBP nTargets cumSim Pre@50 Pre@nTargets AUCROC

TAF15 4462 1.69 1.00 0.49 0.90
FXR2 10460 1.85 1.00 0.60 0.87
LIN28B 15063 0.33 1.00 0.64 0.86
HNRNPD 15786 1.10 1.00 0.41 0.61
FMR1 iso1 16923 2.04 1.00 0.66 0.86
FMR1 iso7 18228 2.04 1.00 0.58 0.77
TIA1 19453 1.40 1.00 0.73 0.89
TIAL1 25616 1.03 1.00 0.76 0.88
AGO1 31964 0.59 0.98 0.72 0.82
EWSR1 6214 1.62 0.96 0.58 0.91
MSI1 10801 1.02 0.96 0.47 0.80
LIN28A 12821 0.33 0.96 0.64 0.88
EIF4A3 21759 0.05 0.96 0.46 0.65
RBM47 18653 −0.12 0.92 0.58 0.79
HNRNPF 4503 1.34 0.90 0.30 0.79
FUS 7577 1.74 0.86 0.53 0.87
AGO2 20761 0.40 0.86 0.69 0.85
ELAVL1 25715 1.34 0.86 0.58 0.72
DDX21 9424 0.05 0.84 0.32 0.67
ZC3H7B 12439 0.20 0.82 0.51 0.82
PCBP2 3749 0.31 0.72 0.28 0.78
FXR1 3358 1.50 0.70 0.49 0.93
YTHDF1 6648 0.26 0.70 0.37 0.81
HNRNPC 4799 0.88 0.62 0.38 0.85
RBM10 9968 0.10 0.62 0.18 0.72
HNRNPH1 4858 1.36 0.56 0.23 0.72
RBPMS 4706 0.03 0.44 0.36 0.86
IGF2BP2 9265 1.00 0.42 0.40 0.81
IGF2BP3 11429 1.15 0.38 0.39 0.75
IGF2BP1 9389 1.15 0.30 0.37 0.79
HNRNPA1 632 0.85 0.28 0.18 0.77
RBFOX2 850 0.55 0.28 0.15 0.77
HNRNPA2B1 2201 1.34 0.28 0.22 0.82
PUM2 3581 0.95 0.18 0.21 0.76
CELF1 940 0.27 0.14 0.06 0.72
QKI 1008 0.09 0.14 0.12 0.82
TARDBP 1332 0.06 0.14 0.14 0.80
STAU1 3520 0.42 0.10 0.08 0.48
YTHDF2 2108 0.26 0.04 0.19 0.85
AGO4 400 0.48 0.02 0.04 0.83
TARBP2 460 0.32 0.02 0.05 0.75
PUM1 3788 0.95 0.02 0.12 0.53
EIF3B 421 0.15 0.00 0.01 0.60
EIF3G 597 0.76 0.00 0.00 0.55
DGCR8 1600 0.27 0.00 0.06 0.63
PABPC1 2322 −0.11 0.00 0.01 0.39
U2AF2 2202 0.11 0.00 0.05 0.52
ADAR1 2210 0.02 0.00 0.08 0.70
RC3H1 2950 0.20 0.00 0.04 0.43
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(b) Box plot of the number of recommended RBPs
per RNA target.
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(c) Box plot of the AUC ROC grouped by protein
domain. The six most common domains are re-
ported, plus ”others” containing all remaining ones.

Figure 4.4: Analysis of the results obtained in the de novo prediction task.
The six most common domains are represented separately, while the other
domains are grouped together. RRM 1: RNA recognition motif 1, KH 1:
KH domain, RRM 6: RNA recognition motif 6, FXMRP1 C core: fragile
X-related 1 protein core C terminal, zf.RanBP: zn-finger in Ran binding
protein, dsrm: double-stranded RNA binding motif.



Chapter 4. RNAcommender 82

the dataset, e.g. IGFBP1, IGFBP2 and IGFBP3 or LIN28A and LIN28B.

Next, the results were analyzed in terms of domain composition of the

RBPs of the dataset. Figure 4.4b reports the percentage of significant recom-

mendations, grouping the experiments according to the test proteins domain

composition, and Figure 4.4c shows the average AUC ROC values. The first

six most frequent domains in the RBPs of the dataset are shown separately,

while all the other domains are grouped under the category ”others”. As ex-

pected, the most frequent domains are RNA binding. For approximatively

all the most frequent domains, the share of test proteins with significant

recommendations was above 75%. The only exception is represented by

proteins containing a dsrm domain (double stranded RNA binding motif):

ADAR1, DGCR8, STAU1, and TARBP2. None of these proteins was signif-

icant in terms of top 50 recommendations. Even though these RBPs share a

common domain type, their cumulative similarity is characterized by fairly

low values (Table 4.1). The low performance might be also imputed to the

quality of the training data available for these proteins. In fact, UV irra-

diation has a bias towards cross-linking proteins to single stranded RNAs.

Thus, CLIP experiments on proteins that bind to double-stranded RNA are

more likely to contain noisy information. Moreover, it is known that the

interaction of the dsrm domain with RNA is unlikely to involve the recog-

nition of specific sequences (Manche et al., 1992; Polson and Bass, 1994).

Still, multiple dsrm domains may be able to act in combination to recognize

the secondary structure of specific RNAs (e.g. STAU1) (St Johnston et al.,

1992).

Then, I classified the RBPs with respect to their Gene Ontology an-

notation. Excellent performance can be observed for RBPs located in the

”polysome” (CC), acting as ”negative regulators of translation” or involved

in ”mRNA transport” (BP) and, with ”mRNA binding” function (MF) (Fig-

ure 4.5, 4.6 and 4.7). Worse performance is related to translation initiation

factors (EIF3B, EIF3G, PABPC1) and, again, double stranded RNA bind-

ing proteins (dsrm). Taking into account the modular behavior of molecular

complexes operating in post-transcriptional gene regulation, the recommen-

dation task should be expected to be more difficult for RBPs whose RNA

interaction is mediated by other protein that belong to the complex. For

example, RNAcommneder was not able to recommend any correct target in

the top 50 for both EIF3B and EIF3G (see Table 4.1). They both belong
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Table 4.2: Comparison with the nearest neighbor baseline. For each protein:
the most similar RBP in the dataset, the AUC ROC of RNAcommender,
the AUC ROC of the nearest neighbor based recommendation are shown.
Nearest neighbor based recommendation policy is to suggest the targets of
the most similar protein.

AUC ROC
RBP Nearest RBP RNAcommender Nearest RBP

ADAR1 STAU1 0.70 0.51
AGO1 AGO4 0.82 0.51
AGO2 AGO1 0.85 0.77
AGO4 AGO1 0.83 0.75
CELF1 TIAL1 0.72 0.68
DDX21 EIF4A3 0.67 0.63
DGCR8 STAU1 0.63 0.50
EIF3B TIA1 0.60 0.47
EIF3G TIA1 0.55 0.48
EIF4A3 DDX21 0.65 0.57
ELAVL1 IGF2BP1 0.72 0.56
EWSR1 TAF15 0.91 0.72
FMR1 iso1 FMR1 iso7 0.86 0.78
FMR1 iso7 FMR1 iso1 0.77 0.77
FUS EWSR1 0.87 0.73
FXR1 FXR2 0.93 0.91
FXR2 FMR1 iso1 0.87 0.86
HNRNPA1 HNRNPA2B1 0.77 0.62
HNRNPA2B1 HNRNPA1 0.82 0.54
HNRNPC TIA1 0.85 0.78
HNRNPD HNRNPA2B1 0.61 0.52
HNRNPF HNRNPH1 0.79 0.58
HNRNPH1 HNRNPF 0.72 0.58
IGF2BP1 IGF2BP2 0.79 0.90
IGF2BP2 IGF2BP3 0.81 0.93
IGF2BP3 IGF2BP2 0.75 0.86
LIN28A LIN28B 0.88 0.98
LIN28B LIN28A 0.86 0.93
MSI1 FUS 0.80 0.60
PABPC1 HNRNPD 0.39 0.51
PCBP2 FXR1 0.78 0.54
PUM1 PUM2 0.53 0.53
PUM2 PUM1 0.76 0.53
QKI PCBP2 0.82 0.56
RBFOX2 HNRNPC 0.77 0.62
RBM10 U2AF2 0.72 0.50
RBM47 HNRNPD 0.79 0.59
RBPMS IGF2BP2 0.86 0.63
RC3H1 ZC3H7B 0.44 0.49
STAU1 TARBP2 0.49 0.52
TAF15 EWSR1 0.90 0.79
TARBP2 STAU1 0.75 0.68
TARDBP HNRNPA1 0.80 0.52
TIA1 TIAL1 0.89 0.87
TIAL1 TIA1 0.88 0.82
U2AF2 HNRNPH1 0.52 0.52
YTHDF1 YTHDF2 0.81 0.63
YTHDF2 YTHDF1 0.85 0.89
ZC3H7B RC3H1 0.82 0.50

AVG 0.75 0.66
STD 0.13 0.15



Chapter 4. RNAcommender 84

0

25

50

75

100

ne
ga

tiv
eP

re
gu

lat
ion

Po
fPt

ra
ns

lat
ion

m
RNAPtr

an
sp

or
t

RNAPsp
lic

ing

RNAPse
co

nd
ar

yPs
tru

ctu
re

Pu
nw

ind
ing

m
RNAPp

ro
ce

ss
ing

po
sit

ive
Pre

gu
lat

ion
Po

fPt
ra

ns
lat

ion

pr
e−

m
iR

NAPp
ro

ce
ss

ing

re
gu

lat
ion

Po
fPm

RNAPst
ab

ilit
y

tra
ns

lat
ion

tra
ns

lat
ion

alP
ini

tia
tio

n

%
PR

B
P

sP
w

ith
Ps

ig
ni

fic
an

tPP
re

@
50

GOPBiologicalPProcess

(a) For each GO category, the percentage of associated RBPs
with a significant enrichment of correct predictions is displayed.
GO groups are arranged from the largest to the smallest percent-
age.

0.4

0.5

0.6

0.7

0.8

0.9

pr
e−

m
iR

NAbp
ro

ce
ss

ing

ne
ga

tiv
eb

re
gu

lat
ion

bo
fbt

ra
ns

lat
ion

m
RNAbtr

an
sp

or
t

RNAbse
co

nd
ar

ybs
tru

ctu
re

bu
nw

ind
ing

RNAbsp
lic

ing

m
RNAbp

ro
ce

ss
ing

po
sit

ive
bre

gu
lat

ion
bo

fbt
ra

ns
lat

ion

tra
ns

lat
ion

re
gu

lat
ion

bo
fbm

RNAbst
ab

ilit
y

tra
ns

lat
ion

alb
ini

tia
tio

n

A
U

C
bR

O
C

(b) For each GO category, a box plot representing the AUC
ROC values of the associated RBPs is displayed. GO groups are
sorted for average AUC ROC (descending).

Figure 4.5: Classification of test RBPs according to their GO annotation
(Biological Process).
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(a) For each GO category, the percentage of associated RBPs
with a significant enrichment of correct predictions is displayed.
GO groups are arranged from the largest to the smallest percent-
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(b) For each GO category, a box plot representing the AUC
ROC values of the associated RBPs is displayed. GO groups are
sorted for average AUC ROC (descending).

Figure 4.6: Classification of test RBPs according to their GO annotation
(Cellular Component).
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(a) For each GO category, the percentage of associated RBPs
with a significant enrichment of correct predictions is displayed.
GO groups are arranged from the largest to the smallest percent-
age.
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Figure 4.7: Classification of test RBPs according to their GO annotation
(Molecular Function).
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to the eIF3 complex, the largest eukaryotic initiation factor, which is com-

posed by 13 subunits (Des Georges et al., 2015), and, the majority of these

components are not directly interacting with the mRNA or participating in

the selection of the mRNA target.

After focusing only on the top recommendations because they are rea-

sonably the most relevant for the user of RNAcommender, I also analyzed

the quality of the entire ranking produced by the tool, by measuring the

AUC ROC of the recommendations. This analysis was aimed at showing

that RNAcommender is able to learn an appropriate ranking of RNA tar-

gets for the test proteins. Table 4.1 also reports the value of the AUC ROC

computed over the entire ranking RNA targets. High AUC ROC values

were often associated to high significance of the Fisher test (e.g. TAF15,

EWSR1), while AUC ROC values close to 0.5 (that corresponds to random

recommendations) always corresponded to the lack of significance. How-

ever, for some test RBPs with non-significant test, the AUC ROC score

was substantially better with respect to the one of a random ranking (e.g.

AGO4, TARBP2). The main explanation for this result is that even though

a reasonably good rank is learned, when the amount of RNA targets of the

test RBP is very small it can be challenging to push them in the very top

predictions. In fact, a significant fraction of correct targets, for both AGO4

and TARBP2, was found in the top nTargets instead of the top 50.

Lastly, I performed a comparative analysis between the quality of the

de novo recommendations and the FE.FE target completion task presented

in Section 4.3.1. The only difference between these tasks was the number

of retained interactions in the training set for the left-out protein: 15 for

the protein completion case and none for the de novo recommendation task.

This analysis was aimed at investigating whether low-throughput interaction

information is actively contributing to the quality of the recommendations

or not. I assessed the performance difference in terms of both AUC ROC and

precision at 50. Considering that in Section 4.3.1 the 15 positive interactions

were sampled 5 times for each test protein, in order to have one value per

test RBP to compare with the ones reported in this section, I aggregated

the performance measures by computing the median value of the 5 samples.

A very small difference was registered for the mean AUC ROC value: in

the case of target completion the average AUC ROC was 0.75, while in the

de novo recommendation task it was 0.76. Also the difference in average
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precision at 50 was negligible: 0.51 for the completion case, and 0.53 for

the one presented in this section. The high level of correlation for both

AUC ROC and precision at 50 was also confirmed by a Spearman’s rank

correlation of 0.98 and 0.97 respectively. These results suggest that retaining

few interactions from low-throughput assays when training a model may not

improve the recommendation performance. The difference in performance

was not assessed for greater numbers of retained interactions in the training

set, because it would be an infeasible scenario in the real world. In fact only

the scenarios with no (novel proteins), few (low-throughput experiments) or

all (high-throughput experiments) known interactions are meaningful in the

RNA-protein interaction prediction problem.

In this section I presented an extensive analysis of the capability of RNA-

commender in suggesting RNA targets to uncharacterized proteins. The re-

sults clearly indicate that, provided that the test proteins share sufficient do-

main similarity with other RBPs that are present in the interaction dataset,

the targets of uncharacterized proteins can be predicted by the tool.

4.3.3 Recommendation for HNRNPR and SYNCRIP

Taking into account the promising results of the validation of RNAcom-

mender performed on RBPs with high-throughput experimental evidence,

the tool was used to predict the RNA interactors for RBPs lacking of such

experimental evidence. As show cases I selected HNRNPR and SYNCRIP

for two reasons: first, they have high similarity with other proteins with

high-throughput evidence in the AURA 2 dataset; and second, the RNAc-

ommender model trained on the high-throughput data produced recommen-

dations with high confidence (the top 200 recommended targets received a

prediction score higher than 0.99 out of 1.0 for both RBPs). The predicted

rankings for the two RBPs are very similar (Spearman correlation of 0.99).

This was expected considering that the two RBPs are known paralogues.

The two RBPs contain almost identical RRM 1 domains, therefore RNAc-

ommender suggested very similar targets to both RBPs.

Due to the unavailability of in vivo high-throughput information on

these RBPs, the validation of the rankings predicted by RNAcommneder

was performed using information obtained with RNAcompete (Ray et al.,

2009). According to the CISBP-RNA database (Catalog of Inferred Se-

quence Binding Preferences of RNA binding proteins) (Ray et al., 2013) both
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HNRNPR and SYNCRIP have high affinity with three RNA motifs. The

three motifs identify all the 7-mers represented, according to IUPAC codes,

by MMAAAWY, MAAAAAG and MAAAWWD. Note that MAAAAAG

represents a subset of the 7-mers represented by MAAAWWD.

For each RNA target in the predicted ranking, the count of the oc-

currence of each possible 7-mer was estimated. In order to not bias the

estimation, each count was also normalized with respect to the length of

the RNA target. Then, for each 7-mer the cumulative distribution function

(CDF) of the normalized counts was computed. The CDF of a 7-mer repre-

sents how the appearances of the 7-mer are distributed along the ranking.

A concave CDF indicates that the 7-mer appears more frequently in the

targets in the top of the ranking. Conversely, a convex CDF implies that

the 7-mer appears more frequently in the bottom of the ranking.

Figure 4.8 shows the CDFs of the appearance of 7-mers in the RNA

targets along the predicted rankings of HNRNPR and SYNCRIP. It is clear

that the occurrences of the 7-mers with high affinity with the two RBPs (Ray

et al., 2013) are more frequent in the top ranked RNA targets (CDFs in

red). Moreover, the comparison between the CDFs of the high affinity 7-

mers (red) and the ones of all the other 7-mers (blue) shows that the high

affinity 7-mers are among the most occurring 7-mers in the top RNA targets

predicted by RNAcommender.

These results indicate that, without using interaction information re-

garding HNRNPR and SYNCRIP, RNAcommender was able to infer, from

protein similarity only, the sequence affinity of the two RBPs, and to prop-

erly rank RNA targets that frequently contain such sequences.

4.4 Comparison with related work

RNAcommender proposes a new approach for predicting RNA-protein inter-

actions. As already mentioned in Section 4.1, many in silico approaches have

been developed to accomplish this task. In this section, I compare RNAcom-

mender with two state of the art methods: RPIseq (Muppirala et al., 2011)

and CatRapid omics (Agostini et al., 2013). The comparison was performed

in a scaled setting that allowed the comparison with web-based services such

as RPIseq and CatRapid omics.

Both RPIseq and CatRapid omics are available as web services only,
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(a) (b)

(c) (d)

Figure 4.8: Cumulative distribution functions (CDFs) of the appearance of
7-mers in the RNA targets along the predicted rankings of HNRNPR and
SYNCRIP. The CDFs of the interacting 7-mers, inferred from RNAcompete
experiments (Ray et al., 2013), are represented in red. The CDFs of all the
other 7-mers are represented in blue. CDFs above the diagonal represent
7-mers that are more frequently present in RNA targets in the top of the
rankings and less frequent in RNA targets in the bottom of the rankings.

and the imposed computational limitations denied an extensive comparative

analysis with RNAcommender. RPIseq has a limit of 100 RNA sequences,

while CatRapid omics has a limit of 500 sequences. However, when long

RNA sequences were given as input, I estimated CatRapid’s limit to be 50

RNA sequences. Depending on the length of the RNAs, CatRapid omics

required from 2 to 4 hours of computation in order to generate the RNA

library for 50 sequences. I also tried to generate RNA libraries for sets of

100 sequences, but in most of the cases the server timeout was reached.

Considering the mentioned limitations I was able to compare RNAcom-

mender with both RPIseq and CatRapid testing the performance in ranking

sets of 50 UTR sequences. In addition, I also compared RNAcommender
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and RPIseq on sets of 100 UTR sequences. For each test RBP I sampled at

random the 50 (100) UTR sequences maintaining the unbalance present in

the full dataset. The reason of this choice was to reproduce the scenario in

which a protein is binding a small amount of the totality of the sequences

present in the dataset. In fact, on average an RBP is interacting with less

than 10% of the UTR sequences in the AURA 2 dataset.

I repeated the sampling of the sequences 2 times for each test protein and

the results measuring the performance in terms of AUC ROC are reported

in Table 4.3 and Table 4.4. A high AUC ROC variability between the two

samples can be noted for several test proteins. This effect can be imputed

to the small size of the samples, meaning that the selected sequences might

have strongly influenced the performance. For this reason I cannot make

any statement about the protein-wise performance. However, I noted that

the average performance across all the 49 test proteins was more stable, and

that the average performance of RNAcommender, in the scaled settings, was

very similar to the one obtained on the full dataset. Considering the average

AUC ROC in this scaled setting RNAcommender seemed to outperform both

RPIseq and CatRapid.
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Table 4.3: Comparative analysis against RPIseq and CatRapid (50 seque-
ces). For RPIseq the AUC ROC is reported for both RF and SVM, for
CatRapid the best AUC ROC from the predictions that considered the
entire protein sequence, and the RNA-binding domains only is reported.
The RNA sequences were chosen at random maintaining the same positive-
negative ratio of the full dataset. Each comparison was performed on two
random samples of test sequences (s1 and s2). The AUC ROC scores ob-
tained by RNAcommneder on the full dataset are also reported (full).

RPIseq (RF) RPIseq (SVM) CatRapid RNAcommender
RBP s1 s2 s1 s2 s1 s2 s1 s2 full
ADAR1 0.70 0.89 0.27 0.66 0.86 0.52 0.88 0.69 0.70
AGO1 0.58 0.61 0.78 0.74 0.52 0.42 0.74 0.91 0.82
AGO2 0.77 0.57 0.83 0.66 0.46 0.48 0.88 0.81 0.85
AGO4 0.22 0.91 0.68 0.78 0.23 0.57 0.80 0.86 0.83
CELF1 0.23 0.17 0.45 0.27 0.16 0.71 0.46 0.57 0.72
DDX21 0.44 0.47 0.31 0.41 0.62 0.71 0.50 0.59 0.67
DGCR8 0.72 0.91 0.49 0.55 0.76 0.39 0.11 0.51 0.63
EIF3B 0.07 0.05 0.14 0.06 0.92 0.91 0.74 0.73 0.60
EIF3G 0.55 0.65 0.08 0.20 0.96 0.60 0.26 0.88 0.55
EIF4A3 0.58 0.44 0.47 0.64 0.58 0.58 0.64 0.71 0.65
ELAVL1 0.50 0.75 0.51 0.72 0.46 0.69 0.64 0.85 0.72
EWSR1 0.62 0.75 0.90 0.74 0.77 0.66 0.96 0.87 0.91
FMR1 iso1 0.58 0.42 0.63 0.76 0.68 0.57 0.85 0.85 0.86
FMR1 iso7 0.68 0.70 0.59 0.49 0.69 0.61 0.86 0.83 0.77
FUS 0.79 0.86 0.73 0.92 0.54 0.52 0.93 0.89 0.87
FXR1 0.55 0.58 0.92 0.81 0.73 0.60 1.00 0.95 0.93
FXR2 0.35 0.51 0.69 0.71 0.62 0.67 0.84 0.82 0.87
HNRNPA1 0.96 0.56 0.41 0.92 0.45 0.90 0.86 1.00 0.77
HNRNPA2B1 0.99 0.67 0.90 0.92 0.33 0.51 0.90 0.98 0.82
HNRNPC 0.48 0.58 0.51 0.53 0.70 0.38 0.89 0.72 0.85
HNRNPD 0.46 0.62 0.43 0.69 0.43 0.64 0.58 0.44 0.61
HNRNPF 0.79 0.53 0.94 0.38 0.24 0.69 0.81 0.72 0.79
HNRNPH1 0.80 0.48 0.42 0.37 0.60 0.68 0.61 0.80 0.72
IGF2BP1 0.74 0.56 0.82 0.41 0.34 0.64 0.91 0.66 0.79
IGF2BP2 0.71 0.69 0.68 0.71 0.65 0.59 0.85 0.90 0.81
IGF2BP3 0.60 0.55 0.55 0.68 0.65 0.61 0.65 0.74 0.75
LIN28A 0.72 0.75 0.84 0.68 0.55 0.67 0.88 0.94 0.88
LIN28B 0.69 0.82 0.57 0.71 0.77 0.54 0.83 0.74 0.86
MSI1 0.75 0.55 0.67 0.47 0.62 0.49 0.71 0.67 0.80
PABPC1 0.40 0.96 0.96 0.51 0.69 0.31 1.00 0.20 0.39
PCBP2 0.51 0.37 0.65 0.57 0.33 0.79 0.54 0.98 0.78
PUM1 0.56 0.30 0.46 0.48 0.58 0.61 0.51 0.73 0.53
PUM2 0.45 0.59 0.87 0.67 0.14 0.61 0.81 0.70 0.76
QKI 0.58 0.95 1.00 0.90 0.94 0.26 1.00 0.86 0.82
RBFOX2 0.88 0.88 0.93 0.39 0.86 0.46 0.80 0.35 0.77
RBM10 0.50 0.48 0.47 0.55 0.49 0.48 0.69 0.83 0.72
RBM47 0.71 0.66 0.88 0.68 0.44 0.40 0.86 0.87 0.79
RBPMS 0.40 0.72 0.74 0.94 0.56 0.21 1.00 0.91 0.86
RC3H1 0.18 0.81 0.25 0.42 — — 0.02 0.46 0.43
STAU1 0.58 0.65 0.44 0.42 0.53 0.58 0.54 0.20 0.48
TAF15 0.72 0.77 0.67 0.78 0.37 0.59 0.86 0.96 0.90
TARBP2 0.73 0.80 0.86 0.82 1.00 0.62 1.00 0.82 0.75
TARDBP 0.43 0.86 0.37 0.22 0.39 1.00 0.49 0.51 0.80
TIA1 0.69 0.71 0.73 0.85 0.63 0.70 0.81 0.89 0.89
TIAL1 0.68 0.75 0.69 0.78 0.70 0.66 0.86 0.86 0.88
U2AF2 0.47 0.19 0.45 0.24 0.98 0.96 0.27 0.56 0.52
YTHDF1 0.68 0.72 0.18 0.45 0.62 0.76 0.88 0.87 0.81
YTHDF2 0.97 0.65 0.48 0.27 0.70 1.00 0.92 0.31 0.85
ZC3H7B 0.76 0.89 0.79 0.91 — — 0.82 0.93 0.82
AVG 0.60 0.64 0.61 0.60 0.59 0.61 0.74 0.74 0.75
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Table 4.4: Comparative analysis against RPIseq and CatRapid (100 seque-
ces). For RPIseq the AUC ROC is reported for both RF and SVM. The RNA
sequences were chosen at random maintaining the same positive-negative
ratio of the full dataset. Each comparison was performed on two random
samples of test sequences (s1 and s2). The AUC ROC scores obtained by
RNAcommneder on the full dataset are also reported (full).

RPIseq (RF) RPIseq (SVM) RNAcommender
RBP s1 s2 s1 s2 s1 s2 full
ADAR1 0.43 0.55 0.65 0.74 0.71 0.70 0.70
AGO1 0.66 0.68 0.73 0.73 0.74 0.78 0.82
AGO2 0.73 0.66 0.77 0.70 0.93 0.92 0.85
AGO4 0.53 0.72 0.23 0.82 0.83 0.99 0.83
CELF1 0.93 0.98 0.84 0.74 0.46 0.87 0.72
DDX21 0.52 0.37 0.35 0.36 0.74 0.53 0.67
DGCR8 0.66 0.54 0.49 0.91 0.50 0.85 0.63
EIF3B 0.28 0.02 0.16 0.00 0.18 0.71 0.60
EIF3G 0.27 0.78 0.68 0.53 0.37 0.61 0.55
EIF4A3 0.62 0.55 0.57 0.54 0.68 0.65 0.65
ELAVL1 0.72 0.67 0.80 0.73 0.71 0.71 0.72
EWSR1 0.81 0.63 0.87 0.69 0.88 0.94 0.91
FMR1 iso1 0.68 0.62 0.70 0.72 0.85 0.92 0.86
FMR1 iso7 0.65 0.58 0.70 0.43 0.83 0.76 0.77
FUS 0.69 0.64 0.78 0.82 0.95 0.76 0.87
FXR1 0.49 0.46 0.67 0.87 0.74 0.96 0.93
FXR2 0.56 0.73 0.76 0.70 0.92 0.88 0.87
HNRNPA1 0.89 0.99 0.99 0.86 0.80 0.97 0.77
HNRNPA2B1 0.54 0.85 0.62 0.58 0.61 0.81 0.82
HNRNPC 0.72 0.62 0.79 0.60 0.95 0.86 0.85
HNRNPD 0.63 0.46 0.62 0.50 0.67 0.46 0.61
HNRNPF 0.76 0.64 0.68 0.87 0.93 0.76 0.79
HNRNPH1 0.58 0.61 0.43 0.54 0.71 0.72 0.72
IGF2BP1 0.60 0.71 0.59 0.69 0.69 0.86 0.79
IGF2BP2 0.58 0.56 0.78 0.83 0.85 0.89 0.81
IGF2BP3 0.63 0.58 0.79 0.41 0.66 0.79 0.75
LIN28A 0.66 0.75 0.55 0.74 0.94 0.90 0.88
LIN28B 0.68 0.65 0.56 0.61 0.84 0.96 0.86
MSI1 0.86 0.66 0.75 0.69 0.90 0.81 0.80
PABPC1 0.64 0.40 0.50 0.43 0.45 0.19 0.39
PCBP2 0.59 0.67 0.60 0.59 0.73 0.53 0.78
PUM1 0.40 0.41 0.45 0.53 0.45 0.55 0.53
PUM2 0.64 0.55 0.87 0.94 0.57 0.65 0.76
QKI 0.59 0.77 0.95 0.59 0.55 0.99 0.82
RBFOX2 0.80 0.50 0.31 0.83 0.46 0.86 0.77
RBM10 0.56 0.51 0.50 0.49 0.76 0.73 0.72
RBM47 0.77 0.67 0.85 0.76 0.82 0.80 0.79
RBPMS 0.67 0.75 0.82 0.68 0.98 0.93 0.86
RC3H1 0.43 0.22 0.58 0.43 0.62 0.45 0.43
STAU1 0.38 0.36 0.20 0.49 0.52 0.63 0.48
TAF15 0.72 0.69 0.83 0.76 0.98 0.88 0.90
TARBP2 0.72 0.55 0.85 0.36 0.94 0.11 0.75
TARDBP 0.67 0.69 0.91 0.59 1.00 1.00 0.80
TIA1 0.64 0.67 0.80 0.78 0.88 0.92 0.89
TIAL1 0.73 0.62 0.80 0.80 0.94 0.87 0.88
U2AF2 0.30 0.37 0.13 0.45 0.40 0.45 0.52
YTHDF1 0.65 0.65 0.43 0.51 0.77 0.79 0.81
YTHDF2 0.65 0.53 0.39 0.28 0.65 0.90 0.85
ZC3H7B 0.70 0.67 0.82 0.77 0.89 0.78 0.82
AVG 0.62 0.60 0.64 0.63 0.73 0.76 0.75
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ProtScan

Interactions determined with high-throughput techniques are noisy and cell-

line dependent. The available information is still far from being fully accu-

rate. Due to the dependency of these techniques on expression levels and

cell lines, some interactions might be missed (false negatives). Additionally,

cell stress conditions, that in some cases are induced by the experimental

procedures themselves, might produce some technical artifacts that are then

mistakenly detected (false positives). Learning generalized models from ex-

perimentally obtained data allows to denoise the information contained in

the data and to make predictions of the RBP binding preferences in condi-

tions that are different from those used in the specific experiment. In this

chapter I present a tool, named ProtScan, for precisely modeling target sites

of specific RBPs using an ensemble method based on string kernels. The key

idea is to cast the identification of target regions in long RNA sequences as a

regression task over short moving windows, where the regressed information

is the distance of the closest target site. It is well known that when trained

models in an ensemble are both individually strong and collectively diverse,

the consensus prediction is on average better than that of any individual

trained model (Hansen and Salamon, 1990; Breiman, 2001).

5.1 Related work

Multiple sequence-motif discovery tools have been proposed to detect DNA-

binding motifs of transcription factors, e.g. MEME (Bailey et al., 2009) and

94
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MatrixREDUCE (Foat et al., 2006). With the increasing interest in post-

transcriptional regulation these methods have been employed in or adapted

to the context of RNA-protein interactions (Sanford et al., 2009; Gupta

et al., 2013). MEMERIS (Hiller et al., 2006) extends MEME including RNA

accessibility information to guide the search towards single-stranded RNA

regions. RNAcontext (Kazan et al., 2010) considers accessibility information

to define in more detail the type of unpaired regions (e.g. external regions,

bulges, multiloops, hairpins and internal loops). In Kazan et al. (2010) a

comparison between RNAcontext, MEMERIS and MatrixREDUCE showed

that RNAcontext yields better performance in modeling RNAcompete data.

GraphProt (Maticzka et al., 2014) employs a graph kernel, developed

for RNA molecules, and SVM to learn sequence- and structure-based bind-

ing features of RNA-binding proteins from high-throughput experimental

data. GraphProt improved the prediction performance in comparison to

RNAcontext and MatrixREDUCE.

DeepBind (Alipanahi et al., 2015) uses deep convolutional neural net-

works (CNNs) to model RNA-protein binding patterns from, mainly, RNA-

compete data. The DeepBind approach has proven superior to several tech-

niques on different dataset, e.g. MatrixREDUCE on RNAcompete data,

and MEME on both SELEX and CHIP data.

Generally, these tools have been developed for addressing the task of the

prediction of the interactivity of RBPs with RNA sequences of hundreds of

nucleotides in length, and not to precisely locate the interaction sites in long

RNA sequences. The only exception might be represented by GraphProt

that, although being developed for the same task of the other tools, also

allows to predict nucleotide-wise interaction profiles for long RNA sequences.

In my opinion, all the mentioned tools are extremely important contributions

to the research field, but a comprehensive tool that allows precise localization

of interactions sites in entire transcriptomes was still missing. For this reason

ProtScan was developed.

5.2 Materials and methods

The ProtScan pipeline is composed of several steps that can be aggregated

into two main components: the first one models RNA-protein interactions

and is used to predict the interaction profiles, while the second identifies
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Figure 5.1: Workflow depicting the steps required for training a ProtScan
model (dashed lines) and for predicting interaction profiles using a trained
model (solid lines). The dashed box represents the peak extraction step.

binding sites as significant peaks in these profiles.

The first component estimates RNA-protein interaction profiles using a

combination of kernelized regression with consensus voting. The kernelized

regression has the task of estimating the distance of a portion of the RNA

from the closest binding site, while the consensus voting is used to aggregate

the predictions from the different regions. The regressor is trained using ex-

perimentally verified binding sites (dashed lines in Figure 5.1). First, an

informative set of fixed-length RNA fragments was selected for the train-

ing phase. Fragments are distinguished in: positive fragments, when these

are centered on a protein binding site, and negative fragments, when these

are sampled at random in RNA regions that are far from binding sites.

The fragments are further split into smaller overlapping windows, which are

transformed into sparse vectors using a kernelized approach. Each window

is annotated with its distance from the closest binding site, and a default

maximal distance for the negative windows is used. Finally, a regressor is

trained to predict the association between windows and their distance to

the closest binding site.

In the test phase, the interaction profile for a set of arbitrarily long

RNA sequences is predicted (solid lines in Figure 5.1). First, each RNA

is split into small overlapping windows. The windows are then mapped to

vectors, and their distance from the closest binding site is assessed using

the trained regressor. All distances are then aggregated in a histogram with

consensus voting. Finally, the counts are smoothed to obtain the RNA-

protein interaction profile with single-nucleotide resolution.

The second component extracts the most reliable interactions from the

predicted profiles. It can therefore be used to denoise a CLIP-seq experi-

ment, removing protocol artifacts and biases. Starting from the predicted
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profiles generated by the first component, ProtScan identifies all the peaks

and then, using the experimental evidence as control, selects peaks above a

desired significance level (dashed box in Figure 5.1).

5.2.1 Dataset

I used data obtained under the enhanced CLIP (eCLIP) (Van Nostrand

et al., 2016) protocol. BED narrowPeak files, containing the output of the

analysis pipeline of human eCLIP experiments, were downloaded from the

ENCODE project website (Sloan et al., 2016) (April 2016 release). The BED

narrowPeak files contain the genomic coordinates of RBP binding regions

and their respective fold change values, i.e. the base 2 logarithm of the

ratio between the number of aligned reads in the CLIP and the ones in the

RNAseq control library. Higher fold change values are indicative of more

reliable binding regions.

The full dataset includes 96 RBPs, with experiments performed in two

different cell lines, i.e. K562 and HepG2 (38 RBPs on both cell lines, 40

only on K562 and 18 only on HepG2). Each experiment, identified by a

protein and a cell line, was performed in two replicates. The presence of two

replicates allowed to perform quality control on the data and it allows us to

select only stable experiments. Binding sites are defined as regions with a

fold change higher than a user-defined threshold. By setting the threshold

to 2.0 and 3.0 respectively, two increasingly stringent sets of binding sites

were identified. For each set, experiments where the total number of binding

sites across the two replicates varies by more than 15% were discarded. A

subset of 46 different RBPs passed this quality control, 8 having experiments

on both cell lines, 25 only on K562 and 13 only on HepG2. When looking

at the fold change threshold, 20 RBPs pass the quality control at both

values, 22 only at 2.0 and 4 only at 3.0. This selection considers only eCLIP

experiments that contain reasonable levels of noise, removing the RBPs for

which the technique was probably unable to detect the binding sites with

fair accuracy.

The BED narrowPeak files report the binding regions in genomic co-

ordinates (hg19 assembly), but for the scope of this work the focus is on

full-length gene sequences. First, genomic coordinates were converted from

hg19 to hg38 assembly using the UCSC’s liftOver tool (Speir et al., 2016).

Afterwards, genomic coordinates were converted to gene coordinates using
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the human cDNA GTF file from Ensembl as a reference (release 84) (Yates

et al., 2016).

More formally, for each RNA sequence r the set Br of coordinates b is

defined, where b = (e−s)/2 is the center of a binding site on r that starts at

coordinate s and ends at coordinate e. If an RNA sequence r has no binding

sites, then Br = ∅.

5.2.2 RNA-protein interaction profiles

Here I detail the steps for the RNA-protein interaction profile estimator

(Figure 5.1).

5.2.2.1 Selecting training subsequences

Training subsequences are selected in order to include information surround-

ing experimentally determined binding sites (positive RNA subsequences)

as well as ”background” information from RNA portions far away from any

binding site (negative RNA subsequences). Each positive subsequence is

centered on a binding site and is extended dmax nucleotides on both sides

for a total length of 2dmax. Negative subsequences have the same length but

are centered on nucleotides more than dmax nucleotides away from the center

of any binding site. Including a huge number of negatives that overwhelms

the number of positives might cause improper training of the regressor. For

this reason, a number of negative subsequences that is proportional to the

number of positive ones (negative ratio times the number of positives) are

selected at random.

5.2.2.2 Splitting

Each sequence r of length l (when considering training subsequences l =

2dmax) is split in overlapping windows of size split window < l. Each win-

dow is identified by the position i of its central nucleotide on r. The amount

of overlap between two consecutive windows is controlled by the parame-

ter split step with split step < split window (the strict inequality ensures

overlap).
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5.2.2.3 Vectorizing

The splitting phase yields the instances for our regression task. A typical

approach to process non-vector data (such as sequences or graphs) is to em-

ploy the kernel trick. The trick consists in using an algorithm that interacts

with the input only in terms of inner product between instances. All that is

needed then is a way to efficiently define an inner product between discrete

sequences. A typical solution is offered by string kernels (Leslie et al., 2002)

that compute the fraction of common k-mers (i.e. short subsequences of

length k). Here, for representational reasons, a different approach is used.

An explicit feature mapping is computed from discrete sequences x to sparse

vectors in very high dimensional spaces Rd, where d is typically in the order

of tens of thousands. The feature construction procedure, based on Costa

and De Grave (2010), first computes φk(x) 7→ Rd that returns the histogram

of the occurrences of each k-mer in a string x. Then, exploiting a hash func-

tion h : Σ∗ 7→ N maps k-mers (short strings in a finite alphabet Σ) to the

corresponding integer codes n ∈ N in the addressable space (i.e. n < d). In

order to take into account the contribution of k-mers of different complexities

(different values of k) in a balanced way, the normalized version is consid-

ered: φ̂k(x) = φk(x)/
√
< φk(x)φk(x) >, then the vector representations for

different orders k are combined in a single vector: φC(x) =
∑C

k=0 φ̂k(x) and

finally we output the normalized result: φ̂C(x) = φC(x)/
√
< φC(x)φC(x) >.

The maximum k-mer size C, is called complexity of the vectorization.

5.2.2.4 Regression

In ProtScan a ridge regressor with squared loss and l2 regularization is em-

ployed. The training of the regressor is performed using stochastic gradient

descent (SGD). Let i be the center of a window of a RNA sequence r, then

vi is the corresponding regression value which is inversely proportional to

the distance of i from the closest binding site on sequence r, if i is a positive

window, and zero otherwise as defined by

vi =

{
max(0, 1− minb∈Br |i−b|

dmax
) if Br 6= ∅

0 otherwise
(5.1)

In the prediction step, the distance values for RNA windows of test RNA

sequences are estimated. For each test window i, the regressor predicts a
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Figure 5.2: Example of the definition of regression values. The regression
value vi is lower than vj because chunk i is farther from the target site b than
chunk j. Although chunk k is positioned upstream from the binding site b,
and chunks i and j are downstream, vi < vk < vj because the regression
values do not need to account for the relative position w.r.t. the binding
site but only for the absolute distance. Moreover, vz = 0 because z is at
dmax nucleotides from the center of the binding site b.

value v̂i. The predicted value is mapped to a distance d̂i ∈ [0, dmax] inverting

Equation 5.1:

d̂i = dmax ∗ (1− v̂i) (5.2)

Values in [0, 1] express the proximity to a binding site, where larger

values indicate a closer location. Note that Equation 5.1 assigns regression

values according to the absolute value of the distance from the most adjacent

binding site (Figure 5.2) and that it cannot recover the relative position of

the window with respect to the binding site (i.e. downstream or upstream).

Encoding directionality information using, for example, negative regression

values to indicate upstream locations yielded poor performance due to the

discontinuity at zero. As shown below, the exact location can be recovered

using a consensus voting procedure.

5.2.2.5 Consensus voting and smoothing

In test phase the predictions from all available windows are aggregated.

ProtScan builds a histogram h = (h1, . . . , hl), where l is the length of a test

RNA sequence r and hj aggregates the votes received by its j-th nucleotide.

A window i is discarded if v̂i ≤ 0 as it is predicted to be too far from a

binding site to be relevant. Otherwise, every prediction contributes two

votes, one upstream to position i− d̂i and one downstream to i+ d̂i (recall
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Figure 5.3: Example of the consensus voting approach. Under the assump-
tion that the regressor is perfectly trained (v̂c = vc for all windows c), d̂c
represents the exact distance of a window c to the closest binding site b.
From the example it is possible to notice that the votes are correctly piling
up on the binding site and spreading on the other nucleotides.

that the regressor is trained over the absolute value of the distance). Votes

for position j are thus computed as:

hj =
∑

i∈windows(r)

{
v̂i if i± d̂i = j and d̂i < dmax

0 otherwise
∀j (5.3)

Note that in Equation 5.3 each vote is weighted according to the pre-

dicted distance, i.e. the closer the voting window the higher the weight. This

is done to impose a bias whereby RNA windows that are closer to a binding

site are considered more important for the protein recognition than more

distant windows. Secondly, the vote is added to both i ± d̂i, i.e. upstream

and downstream from the window coordinate. At first glance, this seems an

issue, as one of the two votes is clearly wrong. However, votes will combine

in a constructive way only on the true location while they will incoherently

spread out in the other direction (see Figure 5.3).

Finally, Gaussian smoothing, i.e. the convolution of histogram h with a

Gaussian N (µ, σ), is applied to the histogram h to denoise it and to produce

a single-nucleotide resolution interpolated profile.
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5.2.2.6 Computational efficiency analysis

Training a ProtScan model or use a model to predict the binding profile of

an RBP over a set of RNAs yield a rather different complexity.

During training all the RNA subsequences, of size 2dmax, centered on

a protein binding site are used, plus negative ratio times the number of

binding sites negative RNA subsequences. Negative RNA subsequences have

the same size of the positive ones, i.e. 2dmax. Let n be the number of

biding sites of a protein, then in total the training of a model is performend

using n ∗ (1 + negative ratio) RNA subsequences of length 2dmax. For each

RNA sequence the splitting procedure generates l−split window
split step + 1 windows,

therefore the number of produced windows is

n ∗ (1 + negative ratio) ∗
(

2dmax − split window
split step

+ 1

)
(5.4)

These windows are then vectorized and fitted into the regressor, where the

vectorization is the time consuming step.

During prediction, all the windows of all the RNAs in the test set require

to be generated. Let m be the number of RNAs in the test set and li the

length of the i-th RNA, then the number of generated windows is

m∑
i=1

(
li − split window

split step
+ 1

)
(5.5)

These windows are then vectorized and fitted into the regressor, where the

vectorization is the time consuming step.

When entire genomes of complex organisms (e.g. Homo sapiens) are

considered, usually n ∗ (1 + negative ratio) � m and (2dmax) � li. This

implies that predicting the binding affinities for an entire genome might re-

quire up to 100 times the computation time required to to train a model on

the same genome (this estimation has been done with the default hyperpa-

rameters of ProtScan showed in Table 5.1). The efficiency of the training

procedure allows to easily train customized ProtScan models on common

multi-core machines. Using these models to test relatively small sets of RNA

sequences can also easily be achieved with limited computational resources.

While for the prediction of entire genomes it is advised to exploit the high

level of parallelization of ProtScan that allows to scale the computation, in
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an almost linear fashion, over numerous CPUs.

5.2.2.7 Hyperparameter optimization

ProtScan exhibits a relatively large set of hyperparameters, that, jointly,

guide the overall behavior of the model. The splitting hyperparameters,

split window and split step, control the size and number of splits gener-

ated by the sliding window over an RNA molecule. The regression step

necessitates to: assign regression values, that are dependent on the max-

imum distance allowed for a window to be considered close to a binding

site (dmax); vectorize RNA windows, using the string kernel guided by the

complexity hyperparameter that controls the maximum size of the consid-

ered k-mers; and fit the SGD regressor itself (7 more hyperparameters).

Finally, the smoothing step is guided by 2 hyperparameters: the mean µ

and the standard deviation σ of the Gaussian signal. An additional hy-

perparameter (negative ratio), used only in the training step, defines the

amount of negative subsequences to consider when training the regressor.

ProtScan hyperparameters are optimized using a two-fold cross valida-

tion random search approach (Bergstra and Bengio, 2012). Running the

hyperparameter optimization over 34 models for 11 different RBPs, I noted

that several optimal hyperparameter values where stable for a wide range

of RBPs. These stable parameters have been incorporated as default pa-

rameters and allow to train ProtScan, skipping the computationally expen-

sive hyperparameters optimization phase while maintaining high predictive

performance. The full list of the set default hyperparameters is shown in

Table 5.1.

5.2.3 Peak extraction

Predicted interaction profiles consist of single-nucleotide resolution signals

indicative of the RNA-protein coupling. However, the localization of signif-

icant peaks in these profiles is a non-trivial task, akin the process of peak

calling in CLIP-seq data analysis. Therefore, ProtScan includes an approach

to find significant peaks and thus sites likely bound by the RBP from the

predicted interaction profiles.

All the peaks in the predicted profiles are extracted using a variant of

the mean shift algorithm (Comaniciu and Meer, 2002). Mean shift scans
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Table 5.1: ProtScan default hyperparameters.

Context size dmax 54

split window 70
Preprocessing split step 3

negative ratio 4.3

Vectorizer complexity 3

loss squared
penalty l2
alpha 0.0001

SGD regression l1 ratio 0.5
n iter 5
eta0 0.01
power t 0.25

Smoothing µ 148
σ 48

a sequence with a fixed-length sliding window and records the maximum

value found in each window. It then iteratively repeats the procedure over

the sequence of maxima found until no further change occurs. An analogous

procedure is used to localize all the minima. After identifying all the local

maxima and minima in the profile, a candidate predicted binding site is

defined as a block b = (s, e) with coordinates (s, e) : s < e. If both s and e

are minima, a block contains no other minimum and at least one maximum.

In order to select the subset of significant binding sites among the ex-

tracted peaks, they are compared with a background distribution fit on

negative data. First, a cumulative Gaussian distribution for the maximum

is fit over the height of the blocks coming from transcripts without exper-

imental evidence of binding (negative examples). Second, each candidate

block is accepted as significant if it stays in the top θth percentile of the

distribution, with θ specified by the user. The procedure is cross validated

two-fold to avoid overfitting.

5.3 Results and discussion

In this section I analyze the potentiality of ProtScan to model and predict

RNA-protein interaction profiles at a transcriptome-wide scale.
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5.3.1 Transcriptome-wide target site modeling

ProtScan can be used to model RNA-protein interactions and to predict

interaction profiles at a transcriptome-wide scale. Here I present the results

that show how ProtScan is able to predict binding sites regions and that the

ProtScan models effectively model RBP biding preferences.

As examples I considered the two vastly studied RBPs HNRNPA1 and

FMR1. These RBPs are of broad interest because of their involvement in

different cell diseased states (Richter et al., 2015; Geuens et al., 2016). Note

that these RBPs act in different cellular compartments, i.e. the nucleus for

HNRNPA1 and the cytoplasm for FMR1. Nuclear RBPs, especially splice

factors such as HNRNPA1, interact with pre-(m)RNA that is composed of

introns and exons, while cytoplasmic RBPs such as FMR1 interact with ma-

ture RNA molecules, from which the intronic sequences have been removed

during splicing. Dealing with mature RNAs and ignoring intronic sequences

shortens the computation time required for predicting the binding profiles

of an order of magnitude.

HNRNPA1 is part of a family of ubiquitously expressed heterogeneous

nuclear ribonucleoproteins (hnRNPs). These RBPs are known to associate

with pre-(m)RNAs in the nucleus and influence their processing, as well

as other aspects of RNA metabolism and transport. HNRNPA1 is one

of the most abundant core proteins of hnRNP complexes and plays a key

role in the regulation of alternative splicing. Mutations in the HNRNPA1

gene have been observed in individuals with amyotrophic lateral sclerosis

(ALS) (Geuens et al., 2016). Here the eCLIP experiment on K562 cells

(replicate 1) was considered. The binding sites were selected using a fold

change threshold of 2.0, resulting in 4,964 interaction sites. The interaction

profiles for the entire set of human genes was predicted using a two-fold

cross-prediction procedure analogous to the one employed for peak extrac-

tion (using in turn one subset for training and the other for prediction),

obtaining an overall AUC ROC of 0.85.

Next, the significant peaks from the predicted interaction profiles were

extracted using the method proposed in Section 5.2.3. The target regions

identified by ProtScan were visualized by running a motif finder procedure

on the 5,000 peaks with the lowest p-value. An in vitro study by Burd and

Dreyfuss (1994) identified the motif UAGGG(A|U) as a consensus high affin-

ity HNRNPA1 binding site. This consensus sequence is well represented in
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the HNRNPA1 motif displayed in Figure 5.4a. The 12-mer GUUAGGGU-

UAGG occurred 63 times (exact match) in the analyzed subsequences.

Differently from HNRNPA1, FMR1 is known to associate with polysomes,

and an expansion of the CGG repeat in the 5’ UTR of the FMR1 gene is

known to cause the fragile X syndrome (FXS) (Richter et al., 2015). Here the

eCLIP experiment on K562 cells (replicate 1) was considered. The binding

sites were selected using a fold change threshold of 2.0, resulting in 26,732

interaction sites. The fact that FMR1 is usually located at polysomes in

the cytoplasm allowed to consider only mature RNAs, i.e. RNAs without

intronic sequences. In humans, alternative splicing enables the production

of more than one transcript from each gene. In order to not consider ev-

ery splice variant of each gene, the most prominent transcript was selected

through a series of hierarchical filtering steps: first the transcript support

level (TSL) that identifies well supported transcripts was considered1, then

the APPRIS annotation (Rodriguez et al., 2015) that annotates principal

splicing isoforms, followed by the GENCODE basic annotation that identi-

fies the representative transcripts of a gene, and finally the transcript length

(preferring longer transcripts). If the procedure ended up producing two or

more transcripts (which are on par on all parameters), the most prominent

transcript was selected at random among them. The selection of the most

prominent transcript for each gene allowed to significantly reduce the size

of the dataset and, therefore, to speed up the prediction of the interaction

profiles for this RBP. Cross-predicted interaction profiles achieved an AUC

ROC of 0.79.

As with HNRNPA1, the FMR1 target regions obtained from the anal-

ysis of the 5,000 peaks at lowest p-value were visualized. A PAR-CLIP

study of FMR1 target sites (Ascano et al., 2012) identified two distinct

motifs for this RBP: ACUG and UGGA. These motifs are in substantial

agreement with those extracted from the ProtScan profiles. The 7-mer

GAGCUGG (Figure 5.4b) occurred 445 times (exact match) in the consid-

ered subsequences, while the 6-mers matching the following regular expres-

sion (C|G)(C|U)(G|U)G(G|A)(A|G) (Figure 5.4c) were found 4233 times.

The sufficiently high AUC ROC scores indicate that ProtScan can be

1The Transcript Support Level (TSL) is a method to highlight the well-supported and
poorly-supported transcript models for users. The method relies on the primary data
that can support full-length transcript structure: mRNA and EST alignments supplied
by UCSC and Ensembl.
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(a) Motif for HNRNPA1.

(b) First motif for FMR1. (c) Second motif for FMR1.

Figure 5.4: Motifs for HNRNPA1 and FMR1.

used to reliably model the interaction profiles on a transcriptome-wide scale.

The agreement between the resulting motifs and those identified in ad hoc

studies (Burd and Dreyfuss, 1994; Ascano et al., 2012) further supports the

quality of the predicted interaction profiles.

In summary, these results showed the capability of ProtScan of operat-

ing at a genome-wide scale. The tool was able to accurately predict RNA

binding sites for two RBPs of broad interest that are localized in different

cell compartments, i.e. nucleus and cytoplasm. Moreover, ProtScan was

able to model the sequence preference of both RBPs.

5.4 Comparison with related work

I compared ProtScan with GraphProt (Maticzka et al., 2014) and Deep-

Bind (Alipanahi et al., 2015). Although both approaches have proven su-

perior to several state-of-the-art methods on different types of interaction

data (e.g. CLIP, RNAcompete, SELEX, CHIP), a comparison between the

two, performed on interactions obtained in vivo, was still lacking. For this

reason I compared ProtScan with these two approaches.

Both GraphProt and ProtScan are based on less complex models than

the deep CNNs used in DeepBind. Therefore training their models requires
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significantly less time in comparison to training deep CNNs employed in

DeepBind. In fact, training a DeepBind model, from RNAcompete data,

necessitates powerful hardware such as a GPU cluster. While GraphProt

and ProtScan models can be trained on human high-throughput data in few

hours on a common multi-core machine, DeepBind delivers the pretrained

models together with the software. On the other hand, trained DeepBind

models are fast in producing predictions because they only require the for-

ward pass through the traned neural network. This leads to a 10 to 20 times

faster testing procedure compared to GraphProt and Protscan, that need to

compute the features for the test RNA sequences.

Due to the inability of training custom DeepBind models, the three

methods were compared using the RBPs that are present in our dataset

(Section 5.2.1) and that have a pretrained DeepBind model. This lowered

the number of RBPs usable for the comparison to 11. For each protein,

multiple tests were performed considering different cell lines, fold change

values (to define binding sites from experimental evidence), and technical

replicates, for a total of 34 comparisons. The performance of the three ap-

proaches was analyzed on ∼ 1% of human genome (∼ 600 protein coding

and non-coding genes). The test genes were selected at random, keeping

the same ratio between bound and unbound genes that is present in the full

dataset.

For each RNA molecule in the test set, a vector of interaction scores

was computed, one score per nucleotide, representing the strength of the

predicted interaction with the test RBP. The interaction profiles of ProtScan

were computed as explained in Section 5.2.2.

Although GraphProt is mainly built to discriminate between interacting

and non-interacting RNA stretches, it also allows to predict an affinity profile

for an entire RNA molecule returning one score per nucleotide. The score of

each nucleotide is equal to the margin of the SVM classifier obtained with

the feature representation of the nucleotide. Usually, Graphprot represents

an RNA sequence with the features generated considering all the gapped

k-mers (or pairs of neighborhood subgraphs when the secondary structure

of the molecule is taken into account). Instead, the feature representation

of a nucleotide is obtained by considering only the features generated by the

k-mers (or pairs of neighborhood subgraphs) that include the nucleotide.

Differently from GraphProt, DeepBind does not allow to predict inter-
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Table 5.2: Performance comparison among GraphProt (Maticzka et al.,
2014), DeepBind (Alipanahi et al., 2015) and ProtScan considering 11 RBPs.
For each test protein multiple tests are performed taking into consideration
different cell lines (CL), fold changes (FC), and replicates (R), for a total
of 34 comparisons. For each comparison, the best score is highlighted in
boldface.

AUC ROC
RBP CL FC R GraphProt DeepBind ProtScan
FMR1 K562 2.0 1 0.83 0.63 0.88

2 0.80 0.62 0.84
GTF2F1 HepG2 2.0 1 0.71 0.56 0.80

2 0.78 0.58 0.86
3.0 1 0.72 0.56 0.79

2 0.80 0.58 0.86
HNRNPA1 HepG2 2.0 1 0.72 0.76 0.81

2 0.72 0.75 0.82
K562 2.0 1 0.72 0.77 0.80

2 0.72 0.74 0.83
3.0 1 0.71 0.77 0.77

2 0.72 0.74 0.80
HNRNPC HepG2 2.0 1 0.68 0.86 0.86

2 0.71 0.77 0.87
HNRNPK K562 3.0 1 0.81 0.86 0.89

2 0.79 0.85 0.90
IGF2BP2 K562 2.0 1 0.75 0.29 0.80

2 0.76 0.31 0.79
IGF2BP3 HepG2 2.0 1 0.66 0.35 0.85

2 0.70 0.35 0.82
KHDRBS1 K562 2.0 1 0.60 0.64 0.64

2 0.62 0.63 0.66
QKI HepG2 2.0 1 0.59 0.68 0.74

2 0.54 0.56 0.74
3.0 1 0.58 0.68 0.72

2 0.54 0.56 0.69
TARDBP K562 2.0 1 0.71 0.84 0.88

2 0.72 0.86 0.88
U2AF2 HepG2 2.0 1 0.59 0.68 0.76

2 0.59 0.68 0.72
K562 2.0 1 0.59 0.69 0.78

2 0.62 0.67 0.79
3.0 1 0.59 0.69 0.76

2 0.62 0.67 0.77
AVG 0.69 0.65 0.80
STD 0.08 0.15 0.07
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action profiles returning one score per nucleotide, but instead it returns

one score that indicates the overall interaction propensity of the entire

RNA stretch. For this reason, predicted interaction profiles for entire RNA

molecules were produced using DeepBind predictions together with a sliding

window approach similar to the one proposed in ProtScan. Given a tran-

script a sliding window procedure was applied to create many overlapping

RNA windows. Each window was scored using DeepBind and the corre-

sponding score was added to all the nucleotides belonging to the window.

By applying this procedure, a histogram that represents the interactivity

of each nucleotide in the transcript was obtained. Finally, a smoothing

procedure was applied to obtain a continuous signal. The sliding window,

and smoothing steps employed here were identical to the ones of ProtScan

(see Section 5.2.2.2 and 5.2.2.5). Moreover, for splitting the transcripts and

smoothing the prediction histograms, the same hyperparameters of ProtScan

(see Table 5.1) were used. Therefore, the only difference between the affinity

profiles predicted by ProtScan and the ones of DeepBind, was the utiliza-

tion of the RNA windows: ProtScan used them to predict the position of

the closest binding site, while DeepBind evaluated the interactivity of each

RNA window.

For each test case, Table 5.2 reports the results in terms of AUC ROC.

Also in Maticzka et al. (2014) and Alipanahi et al. (2015) the authors re-

port the results in terms of AUC ROC, but they address a different task

with respect to the one analyzed in this comparison. Both GraphProt and

DeepBind have been tested on classifying whether RNA subsequences con-

tain an RBP interaction site or not, while here the ability of the methods in

localizing the binding sites on full RNA transcripts is tested. This is a much

harder task for mainly two reasons. First, the amount of interaction scores

to account for is significantly higher: from one score per RNA sequence (or

subsequence) to one score per nucleotide. Second, when considering entire

RNA transcripts, the fraction of interacting nucleotides is usually much in-

ferior than the one of non-interacting ones, leaving a very small margin of

error if good performance wants to be achieved. Just to give an example, in

the dataset described in Section 5.2.1 the average ratio between interacting

and non-interacting nucleotides is 1 to 2500.

By showing a best AUC ROC score in all the cases (except two cases

in which it ties with DeepBind), ProtScan seems to outperform the com-
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petitors. With an average AUC ROC of 0.8, ProtScan introduces a relative

AUC ROC improvement of 35% over GraphProt, and of 43% over DeepBind.

Analyzing the pairwise comparison of the methods, ProtScan yields supe-

rior performance than GraphProt in all 34 cases, and 32 out of 34 against

DeepBind (2/34 are ties). Although GraphProt has a superior average AUC

ROC than DeepBind, the latter shows better performance than GraphProt

in 24 out of 34 cases. This is mainly due to the fact that the average

AUC ROC of DeepBind is critically penalized by the scores obtained for

the proteins IGF2BP2 and IGF2BP3. In Hafner et al. (2010) the authors

hypothesized that, due to the presence of multiple RNA-binding domains,

the proteins belonging to the IGF2BP family (IGF2BP1-3) exhibit more

complex binding patterns. For example, it has been shown that IGF2BP1

usually interacts with the RNA forming two binding sites, that can be found

at varying distances and orientations in functional target sequences (Patel

et al., 2012). Since DeepBind models are trained on RNAcompete data, they

account for local sequence motifs and their predictive performance might be

compromised for RBPs that exhibit two or more disconnected binding sites.

The explanation of the general superior performance of ProtScan might

lie in the two main differences with the competitor methods: the consen-

sus voting that produces more robust predictions, and the exploitation of

the context information to localize a protein binding site. GraphProt and

ProtScan employ a similar approach to generate the RNA features and their

models were trained from and tested on the same eCLIP derived datasets,

but interaction profiles predicted by ProtScan are more robust due to the

consensus voting step. Although the proposed extension of DeepBind com-

putes the average over a sliding window approach to produce per nucleotide

predicted interaction profiles, DeepBind directly estimates the interactivity

of each RNA window. In this way only interaction information is taken into

account. Differently, ProtScan uses the information contained in the RNA

window of the context of a binding site to localize its center.
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PTRcombiner

The progress in mapping RNA-protein and RNA-RNA interactions at a

transcriptome-wide level allowed to gain valuable information to investi-

gate post-transcriptional gene regulation. Unfortunately, the available data

does not reveal RNA molecules that could be targeted by multiple post-

transcriptional regulators simultaneously. In this chapter, I present PTR-

combiner (Post-Transcriptional Regulation combinatorial miner), an ap-

proach to mine the combinatorial nature of post-transcriptional trans-acting

factors (RBPs and miRNAs). PTRcombiner is divided into two activity

components. The first, ”mining combinatorial features” takes as input an

interaction map between trans-acting factors (RBPs and miRNAs) and mR-

NAs, and finds groups of trans-acting factors having in common a conspic-

uous number of mRNA targets. The second, ”analyzing combinatorial fea-

tures” evaluates the biological characteristics of the clusters identified by the

pattern set miner. The identification of clusters of trans-acting factors is per-

formed by factorizing, in a Boolean fashion, the interaction matrix between

trans-acting factors and mRNAs. This enables the identification of differ-

ent, and possibly overlapping, groups (clusters) of trans-acting factors that

jointly account for the majority of the interactions in the interaction map.

Although Boolean matrix factorization has been employed in data mining to

identify pattern sets, its application to computational biology, and especially

to RNA-protein interaction data analysis, is completely novel.

112
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6.1 Related work

Many computational techniques have been proposed to investigate the in-

teractions among transcription factors, mRNAs and miRNAs. Several ap-

proaches concentrate on the prediction of transcriptional networks by: mod-

eling expression levels of genes in terms of the predicted transcription fac-

tors that control their transcription rate (Bailly-Bechet et al., 2010; Asif

and Sanguinetti, 2011; Ament et al., 2012); spotting clusters of co-regulated

genes (Chesler and Langston, 2007); or, more generally inferring portions of

regulatory networks (Li et al., 2008; Karlebach and Shamir, 2008).

Surely, the automated identification of combinatorial patterns at a post-

transcriptional level would also be of paramount interest. Some efforts have

been spent in analyzing miRNA-mediated interactions, by identifying pu-

tative feed-forward loops, where a transcription factor controls the tran-

scription of a miRNA, and together they regulate the translation of a set of

target genes (Re et al., 2009; Friard et al., 2010; El Baroudi et al., 2011).

More generally, by combining the output of individual miRNA target pre-

dictors, PicTar (Krek et al., 2005) infers the combinatorial binding affinity

of a set of miRNAs on a target mRNA. Later, ComiR (Coronnello and

Benos, 2013) improved the combinatorial model by accounting for miRNA

expression levels to rebalance the single prediction scores. Even if limited to

miRNA-mRNA interactions, these methods represent the initial attempts

to unveil the combinatorial nature of post-transcriptional regulation at a

genome-wide scale. However, both approaches expect to specify in advance

the set of miRNA to be tested, limiting their applicability to the valida-

tion of putative clusters of miRNA regulators, and preventing the efficient

discovery of unknown combinatorial patterns, because a comprehensive enu-

meration of all combinations of miRNAs is computationally infeasible for all

but the smallest sets of regulators.

Under the assumption that co-expressed genes are more likely to be

functionally related, potential gene networks can be derived from tran-

scriptome expression data. Joshi et al. (2011) proposed a probabilistic ap-

proach (LeMoNe) that, by accounting for both transcriptional and post-

transcriptional regulators, infers module networks in yeast. The resulting

putative sets of regulators represent interesting hypotheses of regulatory

pathways in specific biological conditions (i.e. stress conditions). However,
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the required input for the probabilistic method are explicit translational

profiling time series.

6.2 Materials and methods

In this section, I first describe the data used in our analysis, followed by the

formal definition of the computational model used to extract the clusters of

trans-acting factors and the explanation of the analysis techniques employed

to show the quality of the extracted clusters.

6.2.1 Dataset

The AURA 2 database (July 2013) (Dassi et al., 2014) is a manually cu-

rated and comprehensive catalog of mRNA untranslated regions (UTRs)

and their regulatory annotations, including interactions with trans-acting

factors (mainly RBPs and miRNAs). The annotations come from a wide

range of experimental techniques, including CLIP, RIP, SELEX, and RNA-

compete. A subset of these techniques, represented by CLIP experiments,

allows to pinpoint RNA-protein interactions and to obtain the positional in-

formation about the region of the RNA that is bound by the RBP, while the

other methods, are only able to detect the presence of an interaction between

a transcript and a trans-acting factor without the positional information of

the specific binding site.

I considered the entire set of human interactions annotated in AURA 2,

considering both RBPs and miRNAs as trans-acting factors. The number

of UTRs bound by each trans-acting factor varies from 1 to 34,616, with

median of 13 and a mean value of 695. Figure 6.1a displays a histogram

of the number of UTR targets bound by the most interacting trans-acting

factors. On the other hand, the number of trans-acting factors bound to the

same UTR ranges from 1 to 64, with median 3 and mean 6 (the distribution

is shown in Figure 6.1b). The interaction information contained in the

AURA 2 human dataset was then encoded into a Boolean matrix Y with

67,962 rows corresponding to the number of human UTRs with at least

one annotated interaction, and 569 columns corresponding to the number of

trans-acting factors, RBPs and miRNAs, present in the dataset. Figure 6.1c

represents the interaction matrix, where Yij is equal to 1 if trans-acting factor

j interacts with UTR i, and 0 otherwise. Collectively, the selected annotated
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Figure 6.1: Interactions annotated in AURA 2 (July 2013).
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interactions are 395,395, resulting in a density of the interaction matrix of

0.01.

6.2.2 Boolean matrix factorization

The main focus of PTRcombiner is to discover clusters of co-acting trans-

acting factors. This can be accomplished by factorizing a n × m Boolean

matrix Y , representing the interaction maps in the available dataset, into two

Boolean matrices representing the basis decomposition of the matrix Y . For

example, in the AURA 2 human dataset, the interaction matrix Y contains

interactions between m trans-acting factors (either RBPs or miRNAs) and

n UTRs.

The ”mining combinatorial features” module employs the algorithm for

Boolean matrix factorization, originally presented in Miettinen et al. (2008),

for identifying clusters of trans-acting factors that bind the same set of tar-

gets. Let Y be a n×m Boolean matrix which represents trans-acting factor–

target interactions, where m is the number of trans-acting factors, and n the

number of targets. The rows of the matrix represent the observations, i.e.

the targets, while the columns represent the attributes, i.e. the trans-acting

factors. A basis vector identifies a set of correlated attributes or, in other

words, a cluster of co-acting trans-acting factors.

Let U and C be binary matrices of size n × k and m × k, respectively.

The n×m matrix U ◦C represents the Boolean product between U and C.

More intuitively, C is the cluster matrix that states the cluster composition

(in terms of trans-acting factors), and U is the usage matrix that shows how

clusters of trans-acting factors interact with single targets.

Given a binary n ×m interaction matrix Y and a positive integer k ≤
min{n,m}, the aim is to find two Boolean matrices U ∈ n×k and a C ∈ m×k
that minimize

|Y − U ◦ C>| =
n∑
i=1

m∑
j=1

|Yij − (U ◦ C>)ij | (6.1)

Finding an exact solution to Equation 6.1 is a NP-hard problem, that

requires non-polynomial time to be solved exactly. For this reason, PTR-

combiner uses an approach that finds an approximate solution to the fac-

torization problem. The solving technique, originally proposed in Miettinen
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et al. (2008) populates the cluster matrix C, and accordingly the usage

matrix U by trying to cover the interactions in the matrix Y , in a greedy

manner. The greedy approach prioritizes the covering of denser rows of the

interaction matrix, i.e. with a high proportion of ones. First, a pool of can-

didate basis vectors is computed from the association scores between pairs

of trans-acting factors. Then, k basis vectors are selected in a greedy fash-

ion. Let A′ be a m×m matrix that contains the association scores between

couples of trans-acting factors. A ∈ m×m is defined as the Boolean matrix

of the candidate basis vectors, where Aij = 1 if the association score be-

tween trans-acting factor i and trans-acting factor j is grater than a certain

threshold τ ≤ 1, and 0 otherwise.

PTRcombiner can utilize two approaches to estimate the association

score between trans-acting factors. The two association scores have dif-

ferent characteristics, that promote the the discovery of different types of

clusters of co-acting trans-acting factors. The standard version, presented

in Miettinen et al. (2008) uses an unbalanced association score, where the

association of the i-th trans-acting factor with the j-th one is computed as

y(i⇒ j) = 〈y.i,y.j〉/〈y.i,y.i〉 (〈·, ·〉 is the inner product between vectors). In

general y(i⇒ j) 6= y(j ⇒ i), resulting in an asymmetric association matrix.

The i-th row of A, that represents the i-th candidate basis vector (cluster)

is computed using the i-th trans-acting factor as seed: Aij = 1 if the per-

centage of shared targets between the i-th and the j-th trans-acting factors

is at least τ times the number of targets of the i-th trans-acting factor, and

0 otherwise. This association score is only normalized with respect to the

number of targets of the seed trans-acting factor. By consequence, trans-

acting factors with many targets are prone to have a high association scores

with most of the trans-acting factors with only few interactions, and thus to

appear in multiple clusters. This association score fosters the identification

of combinatorial interactions between trans-acting factors with heteroge-

neous degrees of specificity (e.g. RBPs and miRNAs). On the other hand,

clusters formed by only specific trans-acting factors tend to be discarded by

the greedy procedure.

In order to address this bias of the greedy technique, another association

score is proposed. The balanced association score is based on the vector

cosine similarity: y(i ⇔ j) = 〈y.i,y.j〉/
√
〈y.i,y.i〉 · 〈y.j ,y.j〉. The resulting

association matrix is symmetric and it promotes the identification of clusters
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with higher homogeneity in terms of number of targets of their trans-acting

factors.

6.2.3 Biological characterization

After finding the clusters of trans-acting factors, the ”analyzing combinato-

rial features” module allows to characterize the mined clusters. It analyzes

the RNA targets associated to a cluster of trans-acting factors, i.e. the

targets bound by all the trans-acting factors in the cluster.

6.2.3.1 Target overlap

The overlap between the targets of two different clusters is computed using

the Jaccard similarity. It is defined as the ratio between the size of the

intersection and the size of the union of two sets. This similarity measure

ranges from 0, when the two sets do not share any element, to 1, when the

two sets contain the same elements.

6.2.3.2 Functional analysis

In order to individuate the functional enrichments of a set of targets bound

by a cluster of trans-acting factors, Gene Ontology enrichment analysis is

performed with the topGO package1, using the Fisher’s exact test statistics

and the “elim” method for dealing with the GO graph structure, that prefers

more specialized nodes of the ontology. A p-value threshold of 0.05 is used to

determine the significance of over-representation. The enrichment analysis

is performed on the list of genes regulated by each cluster of trans-acting

factors. In order to compare the functional enrichments associated with

targets of single trans-acting factors with enrichments associated to targets

of clusters, the enrichment analysis is also performed on the list of genes

interacting with each single trans-acting factor of a cluster.

In addition, the semantic similarity between two lists of enriched GO

terms is computed using the GOsemsim package (Yu et al., 2010), with

Wang’s method to determine pairwise semantic similarities between GO

terms and the BMA (best-match average) method to combine the semantic

similarity scores of multiple GO terms.

1http://www.bioconductor.org/packages/2.13/bioc/html/topGO.html

http://www.bioconductor.org/packages/2.13/bioc/html/topGO.html
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6.2.4 RBP-binding site classifier

When positional interaction information is available, the ”analyzing com-

binatorial features” module permits the classification of the RNA binding

sites of the trans-acting factors in a cluster, allowing to determine whether

multiple RBPs exhibit the same RNA site affinity or not.

Information resulting from experimental techniques, is often corrupted

(to some extent) from different noise sources. The most relevant source

of noise is represented by the false negatives. A fraction of binding sites

might remain undetected due to the intrinsic dependency on cell lines, tis-

sues or environmental conditions in which the experiment was performed.

Additionally, the post-processing analysis, that include mapping and peak

detection, might increase the number of false negatives due to the burden

of dealing with splice junctions and the stringent thresholds required for a

confident detection. Therefore, computational approaches for RBP target

site modeling are helpful assets for dealing with the low signal-to-noise ratio

of the available experimental techniques. To establish whether RBPs are

likely to interact with the same RNA sites or not, first in silico models of

the preferred target sites of the different RBPs in a cluster are built, and

then a machine learning algorithm to discriminate between binding sites of

two different RBPs is trained, for all possible pairwise combinations. When

the algorithm confidently distinguishes between their binding sites, the two

RBPs are likely to have different binding affinities. On the other hand, the

incapability of performing the discrimination task points at the hypothesis

of analogous binding sites. The discrimination task is based on a kernel

machine binary classifier able to work with RNA sequences, and to compute

the similarity between base sequences in terms of their predicted secondary

structures. Since RNA-protein interactions are not solely driven by sequence

specificities, the use of structural components in this discrimination task

yields a strong biological significance.

Kernelized machine learning approaches embed a suitable similarity func-

tion, called kernel, that enables to perform learning tasks over arbitrary

data structures, like graphs. This allows the modeling of RNA secondary

structures in a natural way: with vertices representing nucleotides and edges

representing the nucleotide bonds, i.e. backbone phosphate bonds and base-

pairing bonds. As graph kernel the NSPDK (Costa and De Grave, 2010)

is employed. It generalizes the concept of (gapped) k-mers string kernels
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to graphs. Instead of measuring the fraction of common small contiguous

subsequences (k-mers) between two strings, NSPDK determines the simi-

larity between two graphs by counting the shared fraction of neighborhood

subgraphs. A neighborhood subgraph is induced by all vertices within a

specified radius from a given root vertex, where the distance between two

vertices is the length of the shortest path between the vertices. Clearly

establishing graph homomorphism is harder than spotting two equivalent

strings. In Costa and De Grave (2010) an efficient approximation based on

hashing a quasi-canonical graph representation is used.

In Heyne et al. (2012) NSPDK was applied to a represent graphs of

RNA folding structures. The leading idea was to rely not only on the RNA

minimum free energy configuration, that is commonly error prone, but to

benefit from efficient dynamic programming algorithms (Giegerich et al.,

2004) to sample multiple putative secondary structures for the given se-

quence. These multiple secondary structures consider a small number of

representatives that are both structurally diverse and energetically stable.

All the folding hypotheses of an RNA are considered simultaneously in a

comprehensive disconnected graph.

The binding site classification is accomplished merging all these ideas in

a unified framework. Given an RNA region: first, a sample of stable and

diverse folding structures is computed and encoded in a disconnected graph;

second, the graph is turned into a feature representation by the NSPDK;

and finally, feature representations of the binding sites of different RBPs are

discriminated with an SVM.

6.3 Results and discussion

In this section I present the experimental results obtained running PTR-

combiner on the AURA 2 dataset. First, the clusters of trans-acting factors

found in the AURA 2 dataset are displayed and analyzed. Then, an example

of the usage of the RBP-binding site classifier is shown. Finally, another set

of clusters is extracted from the AURA 2 database by exploiting the cosine

similarity based association score instead of the unbalanced association score

proposed in Miettinen et al. (2008).
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Figure 6.2: Exploration of the hyperparameter space. The average size (i.e.
the number of trans-acting factors members) of the identified clusters is
displayed at different combinations of k and τ values. The white dot marks
the configuration of the hyperparameters selected to extract the clusters in
the presence of recurrent trans-acting factors.

6.3.1 Mining combinatorial features

The key focus of PTRcombiner is to identify clusters of trans-acting factors

(RBPs and/or miRNAs) that bind the same set of RNA targets. The aim

was to employ Boolean matrix factorization (Section 6.2.2) on the AURA 2

human dataset (Section 6.2.1) to identify multiple overlapping clusters, that

jointly represent most of the known interactions between trans-acting fac-

tors and UTRs. In this section I show how PTRcombiner was used on the

AURA 2 dataset to extract clusters of trans-acting factors.

The greedy approach to Boolean matrix factorization has two hyperpa-

rameters: the number of clusters to return (k), and a threshold (τ) that con-

trols the amount of shared targets inside clusters. The higher the threshold,

the more targets should be shared among the trans-acting factors in order

to form a cluster. The algorithm returns a ranked list of clusters, sorted by

coverage, i.e. number of targets of the cluster.

In order to select the hyperparameter values, the average cluster size

(number of trans-acting factors) was analyzed while varying k and τ values

(Figure 6.2). I noted that, once τ was fixed, the value of k did not affect

the average cluster size, that seemed to rely only on the value of τ . The

τ value was chosen according to the average cluster size of the retrieved



Chapter 6. PTRcombiner 122

clusters. The τ value that produced an average cluster size as close as

possible to the average number of trans-acting factors bound to a single

UTR was selected. The selected value was τ = 0.6, resulting in clusters

composed of averagely 6 trans-acting factors. Since the k value did not

affect, at least in the considered hyperparameter space, the average cluster

size, the selected value was k = 25. Table 6.1 shows the clusters found

by PTRcombiner with the selected hyperparameters. The top nine clusters

are composed only by RBPs, as well as the clusters R11 to R19, R22 and

R25. The first cluster displaying co-occurrence of RBPs and miRNAs is

R10, followed by clusters R20, R21, R23 and R24. No clusters composed

uniquely of miRNAs are present in the list. Moreover, 5 out of 25 clusters

do not represent real combinations, as they are singletons composed of only

one trans-acting factor. Since, the algorithm is guided by the coverage of

the interaction matrix, a singleton cluster is extracted whenever the trans-

acting factor has a significant number of interactions, and those interactions

are not in common with any other trans-acting factor in the dataset.

As reported in Section 6.2.1, trans-acting factors have a quite different

number of UTR targets. The greedy approach for Boolean matrix factor-

ization is driven by coverage, and therefore it is inherently biased towards

the selection of clusters composed of widely interacting trans-acting fac-

tors. By analyzing the composition of the clusters reported in Table 6.1,

I observed that some trans-acting factors were almost ubiquitously present

in the clusters, e.g. the Argonaute proteins AGO1 and AGO2, and the

well-known RBP ELAVL1/HuR, occur in 19, 15 and 17 out of 25 clusters,

respectively. AGO1 and AGO2 are components of the RNA-induced si-

lencing complex (RISC), the protein complex responsible for mRNAs down-

regulation (Pasquinelli, 2012). By binding different classes of small ncR-

NAs, such as miRNAs and small interfering RNAs (siRNAs), these pro-

teins bind mRNA through sequence complementarity, and performing the

silencing of the bound targets. Given the widespread activity of AGO1 and

AGO2, it was not surprising to find them in almost all the clusters. As

depicted by the results, AGO1 and AGO2 have also been found to inter-

act with ELAVL1/HuR (Landthaler et al., 2008). The Argonaute proteins

and ELAVL1/HuR exhibit different mRNA binding affinity: AGO proteins

usually bind the edges of the UTRs, while ELAVL1/HuR binds uniformly

along UTRs, with vanishing activity in proximity of the stop codon and the
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Table 6.1: List of the inferred clusters in the presence of recurrent trans-
acting factors.

Class Cluster trans-acting factors
RBP Clust R01 AGO1, AGO2, ELAVL1, FMR1 iso1, FMR1 iso7, FXR2,

LIN28A, LIN28B, MOV10, TIA1, TIAL1, ZC3H7B
RBP Clust R02 AGO1, AGO2, ELAVL1, IGF2BP1, IGF2BP2, IGF2BP3,

TIAL1
Singleton Clust R03 AGO1

RBP Clust R04 ELAVL1, HNRNPD
RBP Clust R05 AGO1, AGO2, ELAVL1, EWSR1, FMR1 iso1, FUS, LIN28A,

LIN28B, TAF15, TIA1, TIAL1, ZC3H7B
RBP Clust R06 AGO1, ELAVL1, TIA1, TIAL1
RBP Clust R07 AGO1, FMR1 iso1, FMR1 iso7
RBP Clust R08 AGO1, AGO2, CAPRIN1, ELAVL1, FMR1 iso1, FMR1 iso7,

LIN28B, TIA1, TIAL1, ZC3H7B
RBP Clust R09 AGO1, AGO2, C22ORF28, ELAVL1, FMR1 iso1, FMR1 iso7,

LIN28B, TIA1, TIAL1, ZC3H7B
RBP-miRNA Clust R10 LIN28A, LIN28B, hsa-miR-221*

RBP Clust R11 AGO1, HNRNPH
RBP Clust R12 AGO1, AGO2, ELAVL1, FMR1 iso1, HNRNPC, TIA1, TIAL1

Singleton Clust R13 PUM1
RBP Clust R14 AGO1, AGO2, ELAVL1, FMR1 iso1, FMR1 iso7, HNRNPU,

TIA1, TIAL1
RBP Clust R15 AGO1, AGO2, ELAVL1, FMR1 iso1, FMR1 iso7, HNRNPF,

TIA1, TIAL1
RBP Clust R16 AGO1, AGO2, ELAVL1, EWSR1, FMR1 iso1, FMR1 iso7,

FXR1, FXR2, LIN28A, LIN28B, TIA1, TIAL1, ZC3H7B
RBP Clust R17 AGO1, AGO2, ELAVL1, FMR1 iso1, IGF2BP1, IGF2BP2,

IGF2BP3, PUM2, TIA1, TIAL1
Singleton Clust R18 PABPC1
Singleton Clust R19 U2AF2

RBP-miRNA Clust R20 AGO1, AGO2, ELAVL1, FMR1 iso1, IGF2BP1, IGF2BP2,
IGF2BP3, TIA1, TIAL1, hsa-miR-130a, hsa-miR-130b, hsa-
miR-148a, hsa-miR-148b, hsa-miR-301a, hsa-miR-301b

RBP-miRNA Clust R21 AGO1, AGO2, ELAVL1, FMR1 iso1, IGF2BP1, IGF2BP2,
IGF2BP3, TIA1, TIAL1, hsa-miR-15a, hsa-miR-15b, hsa-miR-
16, hsa-miR-424

Singleton Clust R22 DGCR8
RBP-miRNA Clust R23 AGO1, AGO2, ELAVL1, FMR1 iso1, IGF2BP1, IGF2BP2,

IGF2BP3, TIA1, TIAL1, hsa-miR-106b, hsa-miR-17, hsa-miR-
20a, hsa-miR-320, hsa-miR-93

RBP-miRNA Clust R24 AGO1, AGO2, ELAVL1, IGF2BP1, IGF2BP2, IGF2BP3,
TIAL1, hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e,
hsa-let-7f, hsa-let-7g, hsa-let-7i

RBP Clust R25 AGO1, AGO2, ELAVL1, FMR1 iso1, HNRNPA2B1, TIA1,
TIAL1

polyadenylation site (Lebedeva et al., 2011). ELAVL1/HuR is known to be

mostly expressed in tissues and to bind AU-rich elements in the 3’ UTRs of

numerous mRNAs (Lebedeva et al., 2011; Mukherjee et al., 2011). It has

also been shown that ELAVL1/HuR displays competitive and cooperative

interactions with miRNAs/RISC (Kim et al., 2009), and that it is part of

a complex mRNA network that coordinates gene expression (Simone and
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Keene, 2013). These findings support the theory that trans-acting factors

frequently occurring in the clusters have the highest number of interactions.

These trans-acting factors are called ”recurrent” and the respective clusters

are identified by Ri, where R stands for recurrent and i represent the cluster

number (ranging from 1 to 25).

I was also interested in spotting clusters composed of trans-acting fac-

tors with a narrower spectra of interactions and therefore less likely to occur

in the clusters. For this reason, I removed all trans-acting factors that ap-

peared in more than one cluster in Table 6.1, and ran another iteration of

the mining procedure. This second iteration focused on trans-acting factors

that appeared in maximum one of the clusters in Table 6.1, named spo-

radic trans-acting factors. Similarly to the recurrent case, I analyzed the

average cluster size while varying the hyperparameters k and τ . This time,

the optimal choice of τ was 0.4, returning clusters composed of averagely

3 trans-acting factors. This number corresponds to the average number

of sporadic trans-acting factors bound to each UTR. Sporadic clusters are

displayed in Table 6.2 and they are identified by Si, where S stands for

sporadic and i represents the cluster number (ranging from 1 to 25). The

majority of clusters (15 out of 25) are singletons. In contrast with the re-

sults obtained when recurrent factors were included, here I observed that

4 clusters are composed exclusively of miRNAs (S09, S14, S16 and S22).

Another alluring comment regards PUM2, that was found as a member of

the recurrent cluster R17, while here it is present in two distinct clusters

with different sets of miRNAs (S10 and S21). PUM2 is known to act as

a translational repressor in several organisms, being involved in dendritic

RNA localization and silencing (Vessey et al., 2006) and regulating synaptic

formation (Vessey et al., 2010). In accordance with this result, a pervasive

interaction between Pumilio proteins and the miRNA regulatory system has

been suggested (Galgano et al., 2008), indicating that, in translational reg-

ulation, the synergy between RBPs and miRNAs may be more usual than

previously thought. Recently, a computational analysis suggested that the

binding sites of particular sets of miRNA localize within 50 nucleotides from

PUM2 binding sites (Jiang et al., 2013), supporting the cooperative hypoth-

esis between PUM2 and miRNA in mRNA degradation. These discoveries

support the clusters where PUM2 acts in combination with different miR-

NAs, especially regarding hsa-miR-221 and hsa-miR-222, that are in cluster
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Table 6.2: List of the inferred clusters composed of sporadic trans-acting
factors.

Class Cluster trans-acting factors
Singleton Clust S01 HNRNPD

RBP Clust S02 CAPRIN1, FUS, FXR1, MOV10, TAF15
Singleton Clust S03 HNRNPH

RBP Clust S04 C22ORF28, CAPRIN1, MOV10
Singleton Clust S05 HNRNPC
Singleton Clust S06 HNRNPU
Singleton Clust S07 HNRNPF
Singleton Clust S08 PUM1
miRNA Clust S09 hsa-miR-15a, hsa-miR-15b, hsa-miR-16, hsa-miR-424

RBP-miRNA Clust S10 PUM2, hsa-miR-130a, hsa-miR-130b, hsa-miR-148a, hsa-miR-
148b, hsa-miR-19a, hsa-miR-19b, hsa-miR-301a, hsa-miR-301b

Singleton Clust S11 HNRNPA2B1
Singleton Clust S12 PABPC1
Singleton Clust S13 U2AF2
miRNA Clust S14 hsa-miR-106b, hsa-miR-17, hsa-miR-20a, hsa-miR-93

RBP Clust S15 MOV10, PUM2
miRNA Clust S16 hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f,

hsa-let-7g, hsa-let-7i
Singleton Clust S17 DGCR8
Singleton Clust S18 C17ORF85
Singleton Clust S19 TARDBP

RBP Clust S20 FUS, MOV10, TAF15
RBP-miRNA Clust S21 PUM2, hsa-miR-103, hsa-miR-107, hsa-miR-183, hsa-miR-221,

hsa-miR-222, hsa-miR-23b, hsa-miR-25, hsa-miR-27a, hsa-miR-
27b, hsa-miR-32, hsa-miR-92a, hsa-miR-96

miRNA Clust S22 hsa-miR-103, hsa-miR-107, hsa-miR-15a, hsa-miR-15b, hsa-miR-
16, hsa-miR-29a, hsa-miR-29b, hsa-miR-29c, hsa-miR-424

Singleton Clust S23 CELF1
Singleton Clust S24 hsa-miR-124
Singleton Clust S25 hsa-miR-1

S21 together with PUM2, and seem to conjugate with the RBP (Jiang et al.,

2013).

Even though a small fraction of the trans-acting factors is present in the

clusters (Figure 6.3a), the majority of the known interactions are covered

by the identified clusters (Figure 6.3b). The majority of the trans-acting

factors are not retained in any of the clusters because of the lack of avail-

able information. Given the novelty of the experimental techniques, it is

obvious that more information is required to exhaustively enumerate the

combinatorial features of the human post-transcriptional regulation.

6.3.2 Biological characterization

After finding the clusters of trans-acting factors, I characterized them under

a biological point of view. I evaluated their RNA targets and the respective

overlap, the enriched ontological terms and the similarity among the en-
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(a) Proportion among the number of re-
current, sporadic, and absent trans-acting
factors.

(b) Proportion among the number of in-
teractions associated with recurrent, spo-
radic, and absent trans-acting factors.

Figure 6.3: Analysis of the recurrent, sporadic and absent trans-acting fac-
tors.

riched terms. This characterization was performed only on the non-singleton

clusters.

Given the high number of RNA targets of recurrent trans-acting fac-

tors, several hundred genes are co-regulated by recurrent trans-acting fac-

tors (Figure 6.4a). On average, 2,206 genes are regulated by the first five

clusters (excluding singletons), ranging from 592 of cluster R05 to 4,724 of

cluster R06. Given their greater specificity, the number of target genes is

significantly lower when taking into account the clusters of sporadic trans-

acting factors, (Figure 6.4b). The first five non-singleton sporadic clusters

regulate averagely 442 genes, ranging from 66 of cluster S10 to 827 of cluster

S04.

Each cluster of trans-acting factors regulates a specific set of genes, here

I accounted for the overlap among target genes of different clusters. When

considering clusters obtained in presence of recurrent trans-acting factors,

the average overlap is 21% (Figure 6.4c), suggesting that PTRcombiner was

able to spot clusters of trans-acting factors that target different sets of genes.

However, in some cases the percentage of shared targets is higher, e.g. cluster

R01 and cluster R05 share 43% of their targets. This phenomenon is due to

the high overlap of trans-acting factors between the two clusters, and it can

be also observed when considering clusters R02 and R06, that share 60%

of their targets. In this extreme case, cluster R06 shares with R02 almost

all the trans-acting factors (AGO1, ELAVL1, and TIAL1). Considering the

clusters of sporadic elements the average overlap decreases to 7%, 3 times
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Figure 6.4: Biological characterization of the recurrent and sporadic clusters.
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less with respect to the previous analysis (Figure 6.4d). Here, the higher

overlap is registered between clusters S02 and S04, that have 27% of common

RNA targets. This reduced overlap supports the efficacy of repeating the

individuation of clusters considering only sporadic trans-acting factors, that

allowed to find small-sized sets of genes regulated by trans-acting factors

with a low number of annotated interactions.

In order to address the biological relevance of the mined clusters, I also

performed Gene Ontology enrichments analysis. The aim is to identify com-

mon and biologically coordinated mechanisms or processes that administer

cellular outcomes. This analysis accounts for general biological annotations

allowing to compare the clusters by the gene ontology (GO) enrichment of

their target RNAs. Figure 6.4e and 6.4f show the enrichments of the top

enriched GO terms for each cluster. The modularity of the enriched terms

scattered along the columns of the heatmap clearly indicates a high level of

diversification of molecular functions carried by the sets of genes regulated

by the different clusters. The only visible exception is represented by clus-

ters S02 and S04, that display very close enrichment signatures, mirroring

the strong similarity, in term of trans-acting factors, observed between the

two clusters.

Finally, I assessed the change in ontological enrichment between the gene

targets of all trans-acting factors belonging to a cluster and the gene targets

of the single trans-acting factors. This intra-cluster comparison enabled the

potential identification of emerging features, that are exclusively associated

to the entire cluster and not to specific trans-acting factors forming a clus-

ter. Figure 6.5 shows an example of this analysis performed on cluster S02.

The target genes associated to the cluster exhibit specific enrichments that

are not associated to any of the RBPs forming the cluster: ”cell division”

in biological process (BP), ”nuclear speck” in cellular component (CC), and

”transcription corepressor activity” in molecular function (MF). These re-

sults suggest that clusters of trans-acting factors have emergent and specific

combinatorial properties that are not usually exerted by their components

alone.

6.3.3 RBP-binding site classification

In order to give deeper insight information about the mined clusters of trans-

acting factors, in this section I show that the classification method can detail
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Figure 6.5: Intra-cluster GO enrichment analysis of cluster S02. Comparison
of the ontological enrichment between the gene targets of all trans-acting
factors belonging to the cluster and the gene targets of the single trans-
acting factors. The comparison is shown for all three Gene Ontologies:
Biological Process (BP), Cellular Component (CC), and Molecular Function
(MF). The top rows of each panel report the semantic similarity between
the enriched terms associated to single trans-acting factors and the ones
associated to the cluster.

the binding affinities of RBPs in a cluster. The basic idea is that whenever

two RBPs, belonging to the same cluster and therefore co-interacting with

the same set of RNAs, are characterized by similar binding site affinity, then

a concurrent binding, either competitive or cooperative, might occur. This

type of analysis was limited to clusters formed by only RBPs with positional

interaction information (e.g. CLIP-seq).

As an example, I analyzed the first two non-singleton clusters of sporadic

trans-acting factors, i.e. cluster S02 composed by CAPRIN1, FUS, FXR1,

MOV10, and TAF15, and cluster S04 formed by C22ORF28, CAPRIN1,

and MOV10. For each RBP, I randomly selected 2,500 RNA stretches (of

20–70 nt) from the available binding coordinates annotated in the AURA 2
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Figure 6.6: RBP site classification on cluster S02 and S04.

database. The classification performance for clusters S02 and S04 is shown

in Figure 6.6a and 6.6b, respectively. Performance was evaluated according

to the AUROCC and F1-score measures. AUROCC evaluates the quality of

a classifier while varying the threshold to decide whether a prediction should

be considered positive or not. An AUROCC value of 0.5 corresponds to the

one of the random predictor, while an AUROCC value of 1 indicates per-

fect discrimination. The F1-score is the harmonic mean between precision

and sensitivity, that trades off the two complementary measures. Analyzing

the cluster S02, the classifier was able to discriminate the binding sites of

only a subset of the RBPs in the cluster. Very good performance can be

observed for CAPRIN1 (with an average AUROCC of 0.92 and an average

F1 of 0.85) and MOV10 (with an average AUROCC and F1 of 1.0). On the

other hand, FUS and TAF15 seem to have more similar binding sites. In

fact, an AUROCC of 0.56 suggests that these proteins share similar if not

identical binding sites. Under a biological point of view, FUS and TAF15

are known paralogues, that belong to the FET family of RNA-binding pro-

teins (Andersson et al., 2008). The classification scores for cluster S04 are

generally high, suggesting that the UTR stretches that are bound by the
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three proteins in the cluster (C22ORF28, CAPRIN1 and MOV10) are dif-

ferent. Figures 6.6c and 6.6d show the distribution of the pairwise distances

between binding sites of couples of RBPs. Clearly, FUS and TAF15 have

much closer binding sites with respect to all the other couples of RBPs. Also

the distance between binding sites of FXR1 and FUS or TAF15 is low, but

still not comparable with the one between the two parologue proteins FUS

and TAF15. A large average distance can be observed for all the other cases,

confirming the good classification scores obtained with the classifier.

These use cases demonstrated how the in silico modeling of RNA-proteins

interactions can help the investigation of RBPs combinatorial effects. This

modeling approach is more resilient to noisy experimental data, since it can

recover missed interactions (false negatives). Predictive models allow more

sophisticated investigations with respect to simple analysis of the experimen-

tal evidence. For instance, a competitive effect can be hypothesized when

two RBPs exhibit a compatible binding preference, even if the experimental

data do not report overlapping interaction areas. Conversely, if the model

predicts the target regions to be sufficiently close but not overlapping, a co-

operative effect can be hypothesized, even if the experimental data cannot

resolve the distinct areas and these are therefore interpreted as overlapping.

6.3.4 Balancing the trans-acting factor sample size

In Section 6.3.1 a bias of the algorithm towards ”widely interacting” trans-

acting factors was individuated. In Section 6.2.2 an alternative balanced

association score to create the pool of possible clusters was described. The

original greedy procedure to solve Boolean matrix factorization (Miettinen

et al., 2008) constructs a pool of putative clusters by using each candidate

trans-acting factor as seed to compute its association score with other trans-

acting factors, where the association score is given by the number of shared

targets between the two trans-acting factors, normalized by the number

of targets of the seed. By definition, this unbalanced score is asymmetric

and favors the association of trans-acting factors with few interactions (that

are acting as seeds) with those with many interactions (e.g. AGO1) that

will easily share a significant fraction of targets with them. The proposed

alternative version of the association score uses cosine normalization thereby

producing a symmetric association score that weakens the presence of widely

interacting trans-acting factors in the majority of clusters.
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Figure 6.7: Biological characterization of the clusters obtained with unbal-
anced and balanced association scores.
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Table 6.3: List of the inferred clusters using the balanced association score.

Class Cluster trans-acting factors
RBP Clust B01 AGO1, AGO2, CAPRIN1, ELAVL1, EWSR1, FMR1 iso1,

FMR1 iso7, FUS, FXR2, HNRNPC, LIN28A, LIN28B, MOV10,
TAF15, TIA1, TIAL1, ZC3H7B

RBP Clust B02 IGF2BP1, IGF2BP2, IGF2BP3, PUM2, TNRC6B
RBP Clust B03 ELAVL1, HNRNPD
RBP Clust B04 AGO1, FMR1 iso7, HNRNPH, LIN28A, LIN28B, TIAL1, ZC3H7B

Singleton Clust B05 PUM1
RBP Clust B06 AGO1, AGO2, C22ORF28, CAPRIN1, ELAVL1, EWSR1,

FMR1 iso1, FMR1 iso7, FUS, FXR2, HNRNPF, HNRNPU,
LIN28A, LIN28B, MOV10, TIA1, TIAL1, ZC3H7B

miRNA Clust B07 hsa-miR-130a, hsa-miR-130b, hsa-miR-148a, hsa-miR-148b, hsa-
miR-19a, hsa-miR-19b, hsa-miR-301a, hsa-miR-301b

Singleton Clust B08 HNRNPA2B1
Singleton Clust B09 PABPC1
Singleton Clust B10 U2AF2
miRNA Clust B11 hsa-miR-103, hsa-miR-107, hsa-miR-15a, hsa-miR-15b, hsa-miR-16,

hsa-miR-22, hsa-miR-29a, hsa-miR-29b, hsa-miR-29c, hsa-miR-424
Singleton Clust B12 DGCR8
miRNA Clust B13 hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f,

hsa-let-7g, hsa-let-7i, hsa-miR-151-5p, hsa-miR-196a, hsa-miR-196b
RBP Clust B14 AGO1, AGO2, C22ORF28, CAPRIN1, ELAVL1, EWSR1,

FMR1 iso1, FMR1 iso7, FUS, FXR1, FXR2, HNRNPF, LIN28A,
LIN28B, MOV10, TAF15, TIA1, TIAL1, ZC3H7B

Singleton Clust B15 C17ORF85
Singleton Clust B16 TARDBP
Singleton Clust B17 ALKBH5
miRNA Clust B18 hsa-miR-106b, hsa-miR-130a, hsa-miR-130b, hsa-miR-148a, hsa-

miR-148b, hsa-miR-17, hsa-miR-18a, hsa-miR-20a, hsa-miR-301a,
hsa-miR-301b, hsa-miR-320, hsa-miR-93

miRNA Clust B19 hsa-miR-103, hsa-miR-107, hsa-miR-130a, hsa-miR-130b, hsa-miR-
183, hsa-miR-221, hsa-miR-222, hsa-miR-23b, hsa-miR-25, hsa-miR-
27a, hsa-miR-27b, hsa-miR-301a, hsa-miR-301b, hsa-miR-32, hsa-
miR-92a, hsa-miR-96

RBP Clust B20 IGF2BP1, IGF2BP2, IGF2BP3, PUM2, QKI
Singleton Clust B21 RBFOX2
Singleton Clust B22 CELF1
Singleton Clust B23 hsa-miR-124
miRNA Clust B24 hsa-miR-101, hsa-miR-128, hsa-miR-27a, hsa-miR-27b

Singleton Clust B25 hsa-miR-1

The balanced association score yielded an optimal τ value of 0.25 that

is rather different from the unbalanced case where τ was 0.6, because the

alternative association score strongly altered the size of the clusters at fixed τ

value. Table 6.3 reports the clusters obtained with the balanced association

score. In total, they include 88 trans-acting factors (of which 39 RBPs

and 49 miRNAs), that represent a grater share with respect to the clusters

displayed in Table 6.1 (56 trans-acting factors, of which 32 RBPs and 24

miRNAs). Even though the average cluster size is the same, the balanced

association score produced more singleton clusters and, by consequence, few

very large clusters. Intuitively, large clusters regulate smaller sets of genes as
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they need to be targeted by all trans-acting factors in the cluster. Therefore,

the number of genes associated to the clusters obtained using the unbalanced

association score (Figure 6.7a) is much higher than the one of the balanced

case (Figure 6.7b). The Jaccard similarity, measuring the trans-acting factor

overlap among clusters is lower in the balanced case (Figure 6.7c and 6.7d).

Also the Gene Ontology enrichments related to clusters from of balanced case

are more specific. In fact, the heat maps of the enriched GO terms diplay

less overlap with respect to the unbalanced case (Figure 6.7e and 6.7f).

The balanced approach tends to extract clusters formed by trans-acting

factors with a similar number of interactions, excluding, for instance, clus-

ters containing both miRNAs and RBPs that emerged from the unbalanced

approach. The two procedures allow the discovery of different types of in-

teresting combinatorial patterns present in the data.

6.4 Comparison with related work

PTRcombiner discovers post-transcriptional regulation patterns from inter-

action maps at a genome-wide level. Other previous attempts have been

made to develop automated approaches for the identification of the combi-

natorial aspects of post-transcriptional gene regulation. In this section, I

compare PTRcombiner with PicTar (Krek et al., 2005), ComiR (Coronnello

and Benos, 2013) and LeMoNe (Joshi et al., 2008, 2009) highlighting the

main differences and providing a further validation of the results obtained

by PTRcombiner.

6.4.1 PicTar and ComiR

PicTar computes the probability of multiple miRNAs binding at interim

to the same target mRNA. Albeit focusing on combinatorial interactions,

PicTar differs from PTRcombiner in many aspects. First, its domain of

exploration is limited to miRNAs only. Second, it relies on predicted inter-

actions instead of exploiting experimental data. The last and main caveat

of PicTar is that it does not allow to efficiently explore the combinatorial

space of possible clusters. In fact, it requires to specify a set of miRNA to

be jointly evaluated, that implies the necessity to try all the possible com-

binations in order to identify high rated clusters. PTRcombiner acts way

differently, by implementing an efficient mining procedure, guided by exper-
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imental data, that explores the combinatorial space of candidate clusters of

miRNAs and/or RBPs.

I analyzed miRNA clusters S09 and S14 (Table 6.2) using PicTar. I

focused only on these two clusters because they are composed of four miR-

NAs, and evaluating bigger clusters with PicTar was computationally too

expensive. For each cluster, I considered the set of its target genes, which

were the genes interacting with all miRNAs in the cluster, and computed the

PicTar interaction score with the cluster for each of the target genes. The

score was estimated by considering the maximum value of the product of

the binding scores of the single miRNAs (binding scores are taken from An-

ders et al. (2012)). Then, these cluster-target scores were compared with

those obtained by running the same procedure on the entire set of 12,713

genes found in Dorina (Anders et al., 2012). For both clusters, the differ-

ence between the scores computed on cluster-targets and on the full gene set

was statistically significant (Welch’s two samples t-test), with a confidence

of approximately 0.99. This result confirmed the relevance of the clusters

extracted from the experimental data by PTRcombiner.

ComiR is a web tool for combinatorial miRNA target prediction. It ag-

gregates, the scores of the single miRNAs, computed with different scoring

approaches. The scores are combined using an SVM that outputs the likeli-

hood that the set of miRNAs binds a specific gene. Similarly to PicTar, the

main shortcoming of ComiR is the lack of a mining procedure that proposes

putative clusters of miRNAs.

Using ComiR, I analyzed all the miRNA clusters extracted by PTRcom-

biner, i.e, S09, S14, S16, and S22 (Table 6.2). Also for ComiR, I compared

cluster-target scores with scores for the entire set of genes, that this time

were identified by all the genes in the ComiR output. For all clusters, the

statistical significance of the difference between cluster-target and general

scores was confirmed (by Welch’s two sample test), with a confidence of

approximately 1.0.

6.4.2 LeMoNe

LeMoNe is a probabilistic method for inferring regulatory module networks

from expression profiles. This approach is used in Joshi et al. (2011) for

inferring regulatory networks from both transcriptome and translatome ex-

pression profiles in yeast. LeMoNe is able to detect putative regulatory
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Table 6.4: Comparison between PTRcombiner clusters and LeMoNe clus-
ters.

PTRcombiner Components jaccard LeMoNe Components
Clust Y01 Npl3, Pab1, Pub1 1.00 Clust L66 Npl3, Pab1, Pub1
Clust Y02 Scp160, Bfr1 1.00 Clust L24 Scp160, Bfr1
Clust Y03 Npl3, Nrd1, Pab1,

Pub1
0.75 Clust L66 Npl3, Pab1, Pub1

Clust Y04 Npl3, Nsr1, Pab1 0.67 Clust L85 Pab1, Nsr1
Clust Y05 Pub1, Scp160,

Ypl184c
1.00 Clust L176 Scp160, Pub1,

Ypl184c
Clust Y06 Nab2, Npl3 1.00 Clust L38 Npl3, Nab2
Clust Y07 Khd1, Pub1 0.33 Clust L70 Hek2, Pub1
Clust Y08 Nab3, Npl3, Nrd1,

Pab1, Pub1
0.83 Clust L02 Npl3, Pab1, Nsr1,

Pub1, Nrd1, Nab3
Clust Y10 Bfr1, Pub1, Scp160 1.00 Clust L90 Scp160, Pub1, Bfr1
Clust Y11 Cbc2, Msl5, Npl3,

Pab1, Pub1
0.60 Clust L66 Npl3, Pab1, Pub1

Clust Y12 Pub1, Scp160, Sik1 0.50 Clust L90 Scp160, Pub1, Bfr1
Clust Y13 Pub1, Tdh3 0.33 Clust L70 Hek2, Pub1
Clust Y14 Pab1, Puf4 0.50 Clust L05 Gbp2, Npl3, Pab1,

Puf4
Clust Y15 Pub1, Puf2 0.33 Clust L08 Ssd1, Scp160, She2,

Pub1, Ypl184c, Puf2
Clust Y16 Pab1, Puf3 0.33 Clust L85 Pab1, Nsr1
Clust Y17 Pub1, Puf5 0.33 Clust L70 Hek2, Pub1
Clust Y18 Cbc2, Npl3, Nrd1,

Pab1, Pub1
0.60 Clust L66 Npl3, Pab1, Pub1

Clust Y19 Pub1, Vts1 0.33 Clust L32 Nrd1, Vts1
Clust Y20 Cbf5, Npl3, Nrd1,

Pab1, Pub1
0.60 Clust L66 Npl3, Pab1, Pub1

Clust Y22 Aco1, Nab2, Pub1,
Tdh3

0.75 Clust L09 Nab2, Tdh3, Aco1

Clust Y23 Nab6, Npl3, Pab1,
Pub1, Ypl184c

0.63 Clust L03 Npl3, Pab1, Puf3,
Nab6, Hrb1, Pub1,
Cbc2, Ypl184c

Clust Y24 Pub1, Puf1, Scp160 0.50 Clust L90 Scp160, Pub1, Bfr1
Clust Y25 Nce102, Nrd1, Pub1 0.50 Clust L55 Pub1, Nrd1, Ypl184c

modules that characterize specific biological conditions (i.e. stress condi-

tions), while PTRcombiner aims to achieve a more general purpose: the

individuation of combinatorial patterns from genome-wide interactions. It

was still intriguing to analyze the relationship between clusters detected by

the two methods. To compare LeMoNe with PTRcombiner, I ran PTRcom-

biner on the yeast dataset employed in Joshi et al. (2011).

The dataset contains RIP-chip experiments involving 43 RBPs and 5,118

genes, and it annotates 15,391 interactions, with the interaction matrix spar-

sity value of 0.07. PTRcombiner clusters, obtained with τ = 0.4, were in

agreement with the ones found by LeMoNe. Moreover half of the top 10

clusters found by PTRcombiner were identical to clusters found by LeMoNe

(Table 6.4).
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Conclusions

Proteins are key players in several processes occurring in living cells. They

are synthesized through the processes of transcription and translation (Crick

et al., 1970), where numerous regulatory steps occur to control the amount

of proteins expressed in a cell. The main focus of this work was on the study

of eukaryotic (mainly human) post-transcriptional regulation. RNA bind-

ing proteins (RBPs) and micro RNAs (miRNAs) bind mRNA molecules and

modulate several regulatory processes. These are the most studied actors

of post-transcriptional regulation. Since the understanding of RNA-protein

interactions is an essential point for studying post-transcriptional regula-

tion, many experimental techniques have been developed for detecting such

interactions (Marchese et al., 2016). This enabled the generation of an un-

precendented source of information for the study of the post-transcriptional

gene regulation. Despite the continuous advances in the experimental proce-

dures, these techniques are still far from fully uncovering, on their own, the

RNA-protein interaction mechanism. I underlined three shortcomings of the

data produced by these experimental techniques: first, the available interac-

tion data covers a small fraction of the known RBPs; second, experimentally

determined interactions are often noisy and cell-line dependent; and third,

these techniques do not provide information of combinatorial interaction of

RBPs with the same set of mRNAs.

Computational techniques capable of learning from the data, such as

machine learning approaches, are able to generalize the information con-

tained in the data and might give useful insights to help the investigation of
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post-transcriptional regulation. In this trandisciplinary thesis, I proposed

three machine learning contributions, that address these three mentioned

shortcomings of the data obtained with available experimental techniques.

In Chapter 4 I presented RNAcommender, a tool for recommending

RNA-protein interactions. By representing RBPs and RNAs with explicit

features that account for protein domain composition and RNA secondary

structure, and by exploiting the available experimental evidence, RNAc-

ommender enabled the recommendation of RNA targets to RBPs that lack

high-throughput experimental evidence of interaction. RNAcommender was

validated on a dataset of human RNA-protein interactions, exhibiting good

performance in ranking candidate RNA interactors for an RBP (average

AUC ROC of 0.75), and a significant enrichment in valid targets in the

top 50 predictions for 75% of the tested proteins. RNAcommender can be

a valid assistant to experimental research, especially for the investigation

of the RBPs whose RNA targets have not yet been experimentally identi-

fied or that cannot be identified with such techniques (e.g. RBPs that do

not crosslink). For sure, the high complexity of RNA regulation necessi-

tates additional efforts to improve the quality of the predictions. Although

protein-protein interactions are known to affect the recognition of RNA sub-

strates (Glisovic et al., 2008), presently RNAcommender does not account

for this type of interactions. In the future it would be interesting to modify

the model of RNAcommender in order to include protein-protein interac-

tions in the information used to recommend RNA targets.

In Chapter 5 I presented ProtScan, a tool based on consensus kernel-

ized SGD regression for effective modeling of RNA-protein interactions.

ProtScan outperformed competitor state-of-the-art methods, proving a pow-

erful tool to model and predict RNA-protein interactions on a transcriptome-

wide scale. ProtScan allows to denoise and generalize the information con-

tained in CLIP-seq experiments in order to predict interaction profiles for

RBPs at a genome-wide scale. Moreover, ProtScan includes a peak detec-

tion technique that automatically extracts predicted binding regions from

the generated interaction profiles. ProtScan is an helpful tool that should

be taken into account to post-process high-throughput experiments in order

to remove the experimental noise present in the obtained data. To further

improve the performance of ProtScan, future work might be done for in-

cluding types of information that are known to be associated with RBP
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binding. Some examples are mRNA accessibility and the presence of target

sites for regulatory entities such as miRNAs and other known competitive

or cooperative RBPs.

In Chapter 6 I presented PTRcombiner, a tool for the discovery and

analysis of post-transcriptional regulation patterns involving multiple trans-

factors. PTRcombiner was tested on experimental interaction information

between post-transcriptional trans-factors and their respective targets, ob-

tained in both human and yeast. This tool enabled the detection of groups of

regulators that share a conspicuous amount of targets; the biological char-

acterization of the clusters; and the identification of potential concurrent

binding sites for RBPs belonging to the same cluster. PTRcombiner repre-

sents an original and comprehensive attempt to implement a computational

pipeline for decoding complex post-transcriptional combinatorial rules at a

genome-wide scale. A future improvement that might be worth exploring

is the relaxation of the Boolean constraints on the input data. This would

allow to integrate information regarding expression profiles of both trans-

acting factors and target mRNAs allowing to mine combinatorial patterns

in specific experimental conditions. Moreover, the relaxation of the Boolean

constraints will allow to also deal with uncertainty of the interaction infor-

mation, such as predited interactions from tools like RNAcommender.

In conclusion, the main aim of this transdisciplinary research work was

to release tools that might assist the investigation of the post-transcriptional

gene regulation. The hope is that in the near future these research contri-

butions will prove to be valuable assistants to researchers and help to unveil

some yet uncharacterized aspects of the post-transcriptional gene regulation.
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Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining association rules between sets of items in

large databases. In Acm sigmod record, volume 22, pages 207–216. ACM.

Aizerman, A., Braverman, E. M., and Rozoner, L. (1964). Theoretical foundations of the potential

function method in pattern recognition learning. Automation and remote control, 25, 821–837.

Aken, B. L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., Banet, J. F., Billis, K., Girón,

C. G., Hourlier, T., et al. (2016). The Ensembl gene annotation system. Database, 2016, baw093.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002). Molecular Biology of

the Cell, Fourth Edition. Garland Science, 4 edition.

Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. (2015). Predicting the sequence specificities

of DNA-and RNA-binding proteins by deep learning. Nature biotechnology, 33(8), 831–838.

Ament, S. A., Blatti, C. A., Alaux, C., Wheeler, M. M., Toth, A. L., Le Conte, Y., Hunt, G. J., Guzmán-

Novoa, E., DeGrandi-Hoffman, G., Uribe-Rubio, J. L., et al. (2012). New meta-analysis tools reveal

common transcriptional regulatory basis for multiple determinants of behavior. Proceedings of the

National Academy of Sciences, 109(26), E1801–E1810.

Anders, G., Mackowiak, S. D., Jens, M., Maaskola, J., Kuntzagk, A., Rajewsky, N., Landthaler, M.,

and Dieterich, C. (2012). doRiNA: a database of RNA interactions in post-transcriptional regulation.

Nucleic acids research, 40(D1), D180–D186.

Andersson, M. K., St̊ahlberg, A., Arvidsson, Y., Olofsson, A., Semb, H., Stenman, G., Nilsson, O., and
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