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Abstract

This thesis is about the classification of the tpesteration of very high resolution (VHR) and
hyperspectral remote sensing (RS) images, whictcapable to acquire images characterized
by very high resolution from satellite and airborpktforms. In particular, these systems can
acquire VHR multispectral images characterized bgeometric resolution in the order or
smaller than one meter, and hyperspectral imagearacterized by hundreds of bands associ-
ated to narrow spectral channels. This type of ddlaws to precisely characterizing the differ-
ent materials on the ground and/or the geometrigadperties of the different objects (e.qg.,
buildings, streets, agriculture fields, etc.) iretecene under investigatiohhis remote sensed
data provide very useful information for severapkgations related to the monitoring of the
natural environment and of human structures. Howeweorder to develop real-world applica-
tions with VHR and hyperspectral data, it is neaegso define automatic techniques for an effi-
cient and effective analysis of the data. Herefaeeis our attention on RS image classification,
which is at the basis of most of the applicatioakted to environmental monitoring. Image
classification is devoted to translate the featutes represent the information present in the da-
ta in thematic maps of the land cover types accgydo the solution of a pattern recognition
problem. However, the huge amount of data assatmith VHR and hyperspectral RS images
makes the classification problem very complex &edatvailable techniques are still inadequate
to analyze these kinds of data. For this reasoa,géneral objective of this thesis is to develop
novel techniques for the analysis and the clasgifbo of VHR and hyperspectral images, in or-
der to improve the capability to automatically exdr useful information captured from these da-
ta and to exploit it in real applications. Moreovee addressed the classification of RS images
in operational conditions where the available refece labeled samples are few and/or not
completely reliable (which is quite common in masesi problems). In particular, the following
specific issues are considered in this work:

1. development of feature selection for the clasdificeof hyperspectral images, for identify-
ing a subset of the original features that exhibitshe same time high capability to dis-
criminate among the considered classes and higariance in the spatial domain of the
scene;

2. classification of RS images when the availablenirgy set is not fully reliable, i.e., some
labeled samples may be associated to the wrongmwafiion class (mislabeled patterns);

3. active learning techniques for interactive classifion of RS images.



4. definition of a protocol for accuracy assessmerthmm classification of VHR images that is
based on the analysis of both thematic and geocmatGuracy;

For each considered topic an in deep study ofiteealture is carried out and the limitations
of currently published methodologies are highlightS8tarting from this analysis, novel solutions
are theoretically developed, implemented and agpiereal RS data in order to verify their ef-
fectiveness. The obtained experimental resultsroorifie effectiveness of all the proposed tech-
nigues.

Keywords:

Very high resolution images, hyperspectral imagapgervised classification, semisupervised
classification, support vector machines, contexedeaclassification, feature selection, stationary
features, noisy training sets, active learning, maguracy assessment, thematic accuracy, geo-
metric accuracy, remote sensing.



Ringraziamenti

Il contenuto di questa tesi € il risultato dell\atg di ricerca sviluppata in tre anni presso il
laboratorio di telerilevamento dell’Universita diehto. Ringrazio sinceramente Lorenzo per a-
vermi dato la possibilita di fare il dottorato, er@vermi seguito nella mia attivita di ricerca dan
domi continuamente idee sempre nuove ed interésgauniti per I'approfondimento. Le nostre
discussioni scientifiche sono sempre risultate ramde stimolo per la mia curiosita, la mia vo-
glia di conoscere, migliorare e scoprire cose nu@uesste mi hanno aiutato a credere nel lavoro
che ho fatto anche quando i risultati erano scaaagige di raggiungere i risultati scientifici che
sono riportati in questa tesi.

Ringrazio di cuore la mamma, che in questi ansiadio mi ha sempre sostenuto moralmen-
te e spiritualmente! Con lei ho potuto condividsoecessi e momenti difficili o di incertezza. E
anche di fronte a decisioni non facili ha sempnea® che scegliessi la cosa migliore per me.
Grazie per tutte quelle volte che il venerdi serénan aspettato fino a tardi perché potessi rac-
contarti come era andata la settimana! Ringrazesgdndro e Francesca che ho sempre sentito
vicino in questi anni di studio.

Un grazie va anche a tutti i colleghi ed amici ‘&®&lLab con cui ho condiviso molto in que-
sti tre anni di studio: Francesca, Michele, Dominiklvia, Mauro, Adamo, Luca, Michele,
Swarnajyoti. Un caro pensiero va a Begiim con cua\hgo la fortuna di lavorare e condividere
momenti piacevoli durante il suo periodo di stageento.






Acknowledgments

The content of this thesis is the result of theeaesh activity developed in three years at the
Remote Sensing Laboratory of the University of Toeham sincerely grateful to Lorenzo, who
gave me the opportunity to attend the Ph.D. sclaoal,guided me in my research activity giving
constantly to me new ideas and hints about my relsdapics. Our scientific discussions were
always very interesting for me and stimulated mgiasity, my wish to learn, to improve and
discover new things. These discussions helped nbelteve in my work even when the results
were not good and helped me to reach the scientificlts reported in this document.

| would like to thank mum, who always supported merally and spiritually in all these
years of study! | could share with her my achievetseas well as the difficult and uncertain
moments. She supported me in all important decssiashing the best for me. Thank you for all
the times that you waited for me on Friday nightilurcame home so that | could tell you how |
spent the week! Thanks to Alessandro and Frandbat always felt near me in all these years
of study.

A particular thank goes to all my colleagues andnfis of RSLab: Francesca, Michele,
Dominik, Silvia, Mauro, Adamo, Luca, Michele, Swajyoti. With them | shared a lot in these
last years. A special thank goes to Begum, withrwhdad the pleasure to work with and to
spend nice moments during her internship in Trento.






Contents

IO 11 o o [ T3 1 o o PP 15
1.1 Overview on remote SENSING SYSTEIMS.....cccmaeiiiiiiiiii e 15
1.2 Overview on the last generation of remote sgnsnaging systems................ccceeee. 16

1.2.1 VHR satellites imaging SYSIEIMS ........ceeeiivcammeeeeeseeieeereeeeeeeessnnenieeeeeeeessvnneeeeeessnanns 16

1.2.2 Hyperspectral imaging SYSIEIMS ........cuviuiiiiiiiieiiiiiieieeeeieeieiesieresresreiesierrree e 19
1.3 Motivation, objectives and novel contributiarighis thesis...............cccccevveeennnnn. 20.
1.4 Structure of the TRESIS.......couiiii e 24
ST U= =T 1T Tt P 25

2. Support Vector Machine for the Classification of Renote Sensing Data.................... 27
P22 A [0 o o [FTox 1T o PP 27
2.2 Support vector machine Classifiers...... oo 29

2.2.1 Training of linear SVM - maximal margin algorithM..............ccccvvvvvviiiiiiiiiiieieiiinens 30
2.2.2 Training of linear SVM - soft margin algorithm. ..o 31
2.2.3 Training of non linear SVM - Kernel tricK. ... uveviieerieiieiiiiiiiiiiiiiiiiiiiiiinieeeeeeeeees 32
2.2.4 MUILICIasSS @rChitECLUIES ......ccoiiei e e e eeeeee it enreneeeeeeseesseaeenes 33
2.3 SVM for the classification of RS data.... e oioeeiiieiiiiiiiiieeecceii e 35
2.4 Discussion and CONCIUSION .............ut e eeeeteeeeeeise e e et e e e e e e e e eeeaeeeeannaaeeees 43
P B L= (=] (=] g o7 PP 44

3. A Novel Approach to the Selection of Spatially Inveant Features for the
Classification of Hyperspectral Images with Improvel Generalization Capability ... 49

1 700 R 1o o 11T o) o PP 49
3.2 Background on feature selection in hyperspkicti@ges...............ccocveieeeiiiieeeen, 1.5
3.2.1 Criterion fUNCHIONS ... ..uuieiiiiee ettt e ettt e e e e e e ib e e e e s aesaeeeeeae e e s e e annrnnes 52
3.2.2 SEAICH SIrAIEIES . oeviiiiiiiiiieiiiie ettt ettt 54
3.3 Proposed feature selection approach .....ccccccooooveiiiiiiiiiiii e 55
3.3.1 Supervised formulation of the proposed criteriomcion ............ccoceeveiiiiiiiiiiiiiicinnes 55
3.3.2 Semisupervised formulation of the criterion funot{@variance term estimation)......... 57
3.3.3 Proposed multiobjective Search Strat@gy ... «eeeeeeierrreeerieeeniiiiiiieereeeeseereeeeeens 59
3.4 Data set description and design of eXperiments.............ueiiiieeiiiiiiiiiinie e 60

11



3.5 EXPErimental reSUILS..........i e e 63

3.5.1 Results with the supervised method for the estonatf the invariance term ................ 63

3.5.2 Results with the semisupervised method for thenedion of the invariance term......... 65
G T I @ 1o 11153 (o) o 66
3.7 REFEIEINCES ...ttt ettt s 67

4. A Novel Context-Sensitive Semisupervised SVM Cla$&r Robust to Mislabeled

Training SAMPIES ......cee e e 71
4.1 INEFOAUCTION ... s 71
4.2 Proposed context-sensitive semisupervised SUBMM) ........ccccvevveeevereveeeeenne. 73
4.2.1 Step 1 - supervised learning and classificatiooooitext patterns ............ccccccvvveven 4.7
4.2.2 Step 2 - context-sensitive semisupervised learning...........ccccccevveeeiiicciiiiineeeevenne 75
4.2.3 MURICIASS ArChItECTUIE ........ci ittt e e e e e e e e 77
4.3 DesSign Of @XPEIMENTS. ...t eme it e et e e e e et e e e ee e e e e e 78
4.4 Experimental results: IKonos data Set.....cccevviiiiiiiiii i 80
4.4.1 Results with mislabeled training patterns uniformatided to all classes..............cc......... 81
4.4.2 Results with mislabeled training patterns conceedr@n specific classes ..................... 83
4.5 Experimental results: Landsat data Set..cu.vvieiiiiiiiiiiiiie e 86
4.5.1 Results with mislabeled training patterns uniformtided to all classes..............cc.c....... 87
4.5.2 Results with mislabeled training patterns conceedr@n a specific class...................... 90
4.6 DiScUSSION aNd CONCIUSION ........evvvetmmm e e e e e e e e e e eeeeees 92
A = (=] (=] o = 94
5. Batch Mode Active Learning Methods for the Interactve Classification of Remote
SENSING IMAGES ...t ettt e ettt e e e et e et e e e e e eeerann e eeas 97
o0t R [ 11 0T 3 Tox 1o o 97
5.2 Background on active 1€arNINg ...........uceemmmeeeeiiiiiiii e ee e 99
5.2.1 ACHVE l€AIMING PrOCESS. ...ieiiiieeiieiieie e et ieitteeereeee e s e e asstebareeeaeeesenntt e eeeeseasnreeeeeeaeeeaans 99
5.2.2 Active learning for the classification of RS data................cevvvviviiiiiiiiiieiieiiiiienenn. 101
5.3 Investigated query fUNCLIONS............uueii e 103
5.3.1 Techniques for implementing the uncertainty criterwith multiclass SVMs ............. 103
5.3.2 Techniques for implementing the diversity Criterion..............cccccceieee, 105
5.3.3 Proposed combination of uncertainty and diversishhiques generalized to multiclass
10 o 1= 0 0 PRSP PPRRER 106
5.4 Proposed novel query fUNCHION ........ ..o eeeeeeiii e 110
5.5 Data set description and design of experiments...............ccovvvvviiiinnneeeeeeennnns 112
5.5.1 Data Set deSCIPLION. .....cieiii ittt et e e e e e e e s s e ee e e s s s enreeaeeeeeas 112
5.5.2 DeSign Of EXPEIIMENTS ....uuvuiiiiiiiiiiiiiiiinmmrnreeeeeeeeaeetesieteeietesieatateaaetetaetaaaaaaa e 113
5.6 EXperimental reSUILS..............i oo 114
5.6.1 Comparison among investigated techniques genedalizéhe multiclass case ............ 114
5.6.2 Results with the proposed MCLU-ECBD teChNiqUE.cccceevvvvvvviviviiiiiiiiiiiiiiiiieiieniiininns 115
5.6.3 Comparison among the proposed AL techniques agidiiire methods....................... 117
5.6.4 Sensitivity analysis with respect to different paeder settings and strategies ............. 119
5.7 Discussion and CONCIUSION ..........oiiitmmmm e eeeieeee et e e e et e e e e e e eeaneeeenn s 123
IS T = (=] €= o L 125



6. A Novel Protocol for Accuracy Assessment in Classtiation of Very High Resolution

[ =0 T3P 129
LG A [ o o (1 Td 1T o PP 129
6.2 Background on thematic accuracy assessmetdssification maps...................... 131
6.3 Proposed protocol for accuracy assessment iR Mi&iges...........cccoeeveieiiiiiiiinnnnnn. 133
L A I =T 4 g = L o =T o o] g o [T = 133
6.3.2 GEOMELIIC €ITOr INAICES ...ieeeiieeieieiee e e e e e e s e e s e e ssee e eeeens 133
6.4 Proposed multiobjective strategy for classifiarameter optimization................... 138
6.5 EXperimental reSUILS ............oiiiiiii e 140
6.5.1 Quality assessment of classification MaPS. . e .o ioeeviiiiriieeerie e 140
6.5.2 Multiobjective strategy for the model selectionsapervised algorithms...................... 146
6.6 DiSCUSSION @Nd CONCIUSION........uuu s ettt e e et eeaaaa e 151
6.7 REFEIEINCES....ieiiiiiii it s ettt e et e e e e e et e e e e e e e eeanennnns 152
o 1od 013 (o] £ PUPPPPPRPIN 155
7.1 Summary and diSCUSSION ........ccviiuiii e e e ee e e e e e 155
7.2 Concluding remarks and future developmentS.............ccccoeveeeiiiiieeeiiiee e, 158

13






Chapter 1

1. Introduction

In this chapter we introduce this dissertation @etsng the background on remote sensing
and a review on the last generation of remote sgnsensors characterized by very high geo-
metrical and/or spectral resolution and their aggltions to environmental monitoring. We also
describe the most critical issues related to theomatic analysis and classification of the data
collected by these sensors, as well as the genestivations and objectives of this work. Fur-
thermore, we present the specific issues takenaictount in this research activity and the novel
contributions of the thesis. Finally, the structamed organization of this document is described.

1.1 Overview on remote sensing systems

With the words “Remote Sensing” (RS) we refer teeéhnology capable to collect and to in-
terpret information regarding an object withoutrigedirectly in contact with the item under in-
vestigation. In particular, in this dissertation ta&e into account the use of RS images collected
by sensors on board on aircrafts or spacecraffopfas for observing and characterizing the
Earth surface. These sensors acquire the energiedrand reflected from the Earth’s surface to
construct an image of the landscape beneath tkfenpfa[1]. Depending on the source of the en-
ergy involved in the image acquisition, two maimds of RS imaging systems can be distin-
guished: 1) passive systems and 2) active systems.

Passive (or optical) systems rely on the preseh@m @xternal illumination source, i.e., the
sun. The signal measured by the sensor is: 1kttiation coming from the sun, that is reflected
by the Earth surface and passing through the atnessparrives to the sensor; and 2) the energy
emitted by the Earth itself, because of its owngerature. The energy measured by the sensor is
usually collected in several spectral bands (thextspl range of each single band defines the
spectral resolution) and over a certain elemergaea (that defines the geometric resolution).
After that, the measure is converted into an opjmartelectric signal and recorded as digital im-
age. These sensors are usually called multispesttaainers. Sensors capable to collect the radia-
tion in hundreds of very narrow spectral bandscatied hyperspectral.

On the contrary, in active RS systems, the semself (e.g., an antenna) emits the energy (an
electromagnetic radiation) directed towards thetlEarsurface and measures the energy scat-
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Chapter 1 — Introduction

tered back to it. Radar systems, such as reallapgRAR), synthetic aperture radar (SAR), and
LIDAR are examples of active sensors. In theseesyst the time delay between emission and
return is measured to establish the location amghhef objects, and the power of the received
radiation provide information for characterizing tbbject under investigation.

In this dissertation, we focus on the analysis ical multispectral and hyperspectral im-
ages and in particular on the last generation w$@s, which can provide images characterized
by very high geometrical/spectral resolution.

1.2 Overview on the last generation of remote sensingiaging systems

In the last decade, the advances in imaging seswlsatellite technologies resulted in the
development of a new generation of systems capabéequire images characterized by very
high resolution from satellite and airborne platfisr In particular, these systems can acquire: 1)
very high resolution (VHR) multispectral images k&werized by a geometric resolution in the
order of (or smaller than) 1 m; and 2) hyperspéatnages, characterized by hundreds of bands
associated to narrow spectral channels. In theviatlg subsections we will briefly review the
last sensor advances in the field of VHR and hypeasal imaging systems, respectively.

1.2.1VHR satellites imaging systems

VHR images became available (and popular) withlgumch of commercial satellites like
Ikonos and Quickbird, with on-board multispectredusners characterized by a geometrical reso-
lution in the order of 1 m. These satellites cagquae four multispectral bands, in the visible and
near infrared spectral ranges, and a panchromaéinnel with four time higher spatial resolu-
tion. These satellites represent a significant owement in the geometric resolution with respect
to the popular Landsat satellites. Indeed, Landséhe last satellite of the Landsat program)
provides seven multispectral bands in the visibegr and thermal infrared ranges with a geo-
metric resolution of 30 m (except the thermal irdchband that has a resolution of 60 m) and a
panchromatic channel with a spatial resolution ®id The SPOT 5 satellite, the last launched
and operating satellite of the SPOT program, cauiae four multispectral bands in the ranges
of visible, near, and mid infrared with a spatesalution of 10 m (except the mid infrared band
that has a resolution of 20 m) and a panchromaiicl lwith a maximum resolution of 2.5 m. Re-
cently, a new generation of VHR satellite systerasalne available, i.e., GeoEye-1, World-
View-1 and 2, which further improve the geometesalution, providing a panchromatic chan-
nel with a resolution smaller that half meter. dtinteresting to note that the WorldView-2
satellite increase the spectral resolution othan tthe geometric resolution, by providing eight
channels instead of the common four. Moreovermertext years the quality and the availability
of this type of data are going to further incretissnks to the missions GeoEye-2 and Pleiades.
Table 1.1 reports the main characteristics of tistpopular satellite systems of the last decade
with on board multispectral scanners. Fig. 1.1 shawraph of the increase of the spatial resolu-
tion of popular satellites with on board multispatsystems since 1970.
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Table 1.1 — Main characteristics of multispecteisors on board of satellite platforms. All the sidn
ered satellites are in a polar sun-synchronous withi equatorial crossing time 10 a.m.

Satellite Sensor bands [nm] Spatial resgluﬂon Swath width| Orbit altitude vear of
(at nadir) launch
520-900 (pan) 15m
450-520 (blue) 30m
520-600 (green) 30m
Landsat7 | 050690 (red) S0m 185 km 705 km 1999
760-900 (NIR) 30m
1550-1750 (MIR 1) 30 m
10400-12500 (TIR) 60 m
2080-2350 (MIR 2) 30 m
526-900 (pan) 0.82m
445-516 (blue) 3.2m
Ikonos 505-595 (green) 11 km 681 km 1999
0.632-0.698 (red)
0.757-0.853 (NIR)
Eros A 500-900 (pan) 1.8m 14 km 480 km 200(
445-900 (pan) 0.61m
450-520 (blue) 244 m
Quickbird 520-600 (green) 16.5 km 450 km 2001
630-690 (red)
760-900 (NIR)
480-710 (pan) 25m
500-590 (green) 10 m
SPOT 5 610-680 (red) 10m 60 km 832 km 2002
780-890 (NIR) 10m
1580-1750 (MIR) 20m
Eros B 500-900 (pan) 0.7m 7 km 600 km 2006
WorldView 1| 450-900 (pan) 0.50 m 17.6 km 496 km 2007
450-900 (pan) 0.41m
450-520 (blue) 1.65m
GeoEye 1 | 520-600 (green) 15.2 km 681 km 2008

625-695 (red)
760-900 (NIR)
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Spatial resolution Year of
Satellite Sensor bands [nm] P , Swath width| Orbit altitude
(at nadir) launch
450-800 (pan) 0.46 m
400-450 (coastal) 1.84m

450-510 (blue)
510-580 (green)
WorldView 2 | 585-625 (yellow) 16.4 km 770 km 2009
630-690 (red)
705-745 (red edge)
770-895 (NIR 1)
860-1040 (NIR 2)

480-830 (pan) 0.7m
430-550 (blue) 2.8 m
Pleiades-HR 1 490-610 (green) 20 km 694 km 2010

600-720 (red)
750-950 (NIR)

480-830 (pan) 0.7m
430-550 (blue) 2.8 m
Pleiades-HR 2 490-610 (green) 20 km 694 km 2011

600-720 (red)
750-950 (NIR)
GeoEye 2 Pan 0.25m - - 2012

100 5 Landsat 1-3 —

@ © O Landsat4-5 | :
. | t
| | |
@0 | Landsat 7 |
s l SPOT 1-4 ° l
) | | |
E 10f--ccoio- @@ - @i
o i | i
5 : l :
° ; ; SPOT 5 ;
0 | | |
o | | ErosA @ |
© ! ! Eros B | Pleiades-HR 1-2
T R I I~ Ikonos o ® ﬁ“
o 1 | . . .
) : : QuickBird ) .*:
: : WorldView 1-2 !
‘ ‘ GeoEyel ' @ GeoEye 2
| | |
o1 l l l
1970 1980 1990 2000 2010 2020

Fig. 1.1 — Spatial resolution of multispectral #dtesensors

VHR images allow one the precise recognition ofshape and the geometry of the objects
present on the ground as well as the identificatibthe different land-cover classes. For these
reasons, VHR data are very important sources ofnimhtion for the development of many ap-
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plications related to the monitoring of natural eowments and human structures. Strategic ap-
plications for public administrations are relatedlie monitoring and the management of natural
resources, agriculture fields, urban areas or matyaing evacuation planning in areas with the

risk of floods or fires. Other examples of intenegtapplications are building detection and

building abuse discovering, road networks extractind road map updating.

1.2.2 Hyperspectral imaging systems

Hyperspectral sensors can acquire hundreds of Essixiated to narrow spectral channels,
allowing a dense sampling of the spectral signadfithe land-covers. At the present, the acqui-
sition of hyperspectral images can be obtained bpome platforms, or by MODIS,
CHRIS/Proba, and Hyperion systems, which are the satellites with on-board hyperspectral
sensors that acquire images in some tens or husmdfdzands. Table 1.2 reports the main recent
hyperspectral sensors and their spectral charstitsti However, among the others, in the next
years the Italian Space Agency (ASI) and the GerBace Agency (DLR) are going to launch
two new satellite missions with high resolution aggpectral sensors, called PRISMA and En-
MAP, respectively. The PRISMA sensor will combindyperspectral sensor (operating in the
spectral range 400-2500 nm with spectral resolubiohO nm) that has a geometrical resolution
of 20-30 m with a panchromatic camera capable tiae images with a geometrical resolution
of 2.5-5 m. This combination will allow one to piggly characterize both the different types of
materials on the ground as well as the shape addbmetrical properties of the objects in the
scene under investigation.

Hyperspectral images represent a very rich sourgaformation for a precise recognition
and characterization of the materials and objestthe ground. Hyperspectral images allow one
the development of important applications like tlegailed classification of forest areas, pollu-
tion monitoring, analysis of inland water and caastones, analysis of natural risks (fires,
floods, eruptions, earthquakes), etc.

Table 1.2 - Recent hyperspectral sensors and dedgiectral properties [2].

Maximum | Maximum
Sensor name Manufacturer Platform| Number Spectral | Spectral range
of Bands | Resolution
NASA Goddard
Hyperion on EO-1 Space satellite 220 10 nm 0.4 — 21n
Flight Center
MODIS NASA satellite 36 40 nm 0.4 — 1480
CHRIS Proba ESA satellite  up to 63 1.25 nm 0.41505um
NASA Jet Propulsion )
AVIRIS Lab aerial 224 10 nm 0.4 — 24Bn
HYDICE Naval Research Lab  aeria 210 7.6 nn 0.45ufh
Earth Search Sci- .
PROBE-1 aerial 128 12 nm 0.4 — 2.4n
ences Inc.
ITRES Research Lij )
CASI 550 mited aerial 288 1.9 nm 0.4 —m
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Maximum | Maximum
Sensor name Manufacturer Platform| Number Spectral | Spectral range
of Bands | Resolution
ITRES Research Lij .
CASI 1500 ) aerial 288 2.5nm 0.4 - 1.0
mited
ITRES Research Li; )
SASI 600 . aerial 100 15 nm 0.95 - 2.4
mited
ITRES Research Li; .
TASI 600 ) aerial 64 250 nm 8-—116n
mited
Integrated Spectron- .
HyMap i aerial 125 17 nm 0.4 — 21Bn
ROSIS DLR aerial 84 7.6 nm 0.43 - 04848
EPS-H (Environ-
mental Protection | GER Corporation aerial 133 0.67 nm 0.43 — b
System)
EPS-A (Environ-
mental Protection | GER Corporation aerial 31 23 nm 0.43 — 125
System)
DAIS 7915
(Digital Airborne Im-| GER Corporation aerial 79 15 nm 0.43 — 1213
aging Spectrometer
AISA Eagle Spectral Imaging aerial 244 2.3 nn 0.0.87um
AISA Eaglet Spectral Imaging aeria 200 - 0.4 todm
AISA Hawk Spectral Imaging aerial 320 8.5 nm 0.82145um
AISA Dual Spectral Imaging aerial 500 2.9 nm 0.215um
MIVIS (Multispectral
Infrared and Visible .
. Daedalus aerial 102 20 nm 0.43 — 12m
Imaging Spectrome-
ter)
AVNIR OKSI Aerial 60 10 nm 0.43-1.08n

1.3 Motivation, objectives and novel contributions of his thesis

In order to develop the applications mentionecha pirevious sections with VHR and hyper-
spectral data, it is necessary to define autonteticniques for an efficient and effective analysis
of the data. Here, we focus our attention on RSyenaassification, which is at the basis of the
development of most of the aforesaid applicati@mg] is devoted to translate the features that
represent the information present in the dataémtitic maps of the land cover types according
to the solution of a pattern recognition problenowéver, the huge amount of data associated
with VHR and hyperspectral RS images makes thesifieetion problem very complex. At the
state of the art, the most promising techniquegtferclassification of the last generation of RS
data are based on kernel methods and support veetonines [3]-[4], which revealed very ef-
fective and robust in the solution of many classifion problems. Nonetheless, the available
techniques are still inadequate to analyze thesdskbf data and further investigations are
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needed to effectively exploit VHR and hyperspecinzges for the development of real-world
applications. For this reason, the general objeabf/this thesis is to develop novel techniques
for the analysis and the classification of VHR dyperspectral images, in order to improve the
capability to automatically extract the useful imf@tion captured from these data and to exploit
it in real applications. We addressed these prablaieo considering operational conditions
where the available reference labeled sampleseaveahd/or not completely reliable (which is
quite common in many real problems). In particullae, following specific issues are considered
in this work:
a) selection of spatially invariant features foe ttlassification of hyperspectral images with
improved generalization capability;
b) classification of RS images when the availatd@ing set is not fully reliable, i.e., some la-
beled samples may be associated to the wrong iatavmclass (mislabeled patterns);
c) active learning techniques for interactive afecsgtion of RS images.
d) definition of a protocol for accuracy assessnierthe classification of VHR images that is
based on the analysis of both thematic and geareatduracy;
In order to address the abovementioned issues,aewvelaped novel approaches and tech-
niques for the analysis and classification of R&des. The main goals of these methods are
briefly described in the following.

a) A Novel approach to the selection of spatiatlyariant features for the classification of hy-
perspectral images with improved generalizationadality

Hyperspectral RS images, which are characterizea édgnse sampling of the spectral signa-
ture of different land-cover types, represent g viexh source of information for the analysis and
automatic recognition of land-cover classes. Howesgpervised classification of hyperspectral
images is a very complex methodological problem ttuenany different issues: 1) the small
value of the ratio between the number of trainiagples and the number of available spectral
channels (and thus of classifier parameters), wteshlts in the Hughes phenomenon [5]; 2) the
high correlation among training patterns taken friv® same area, which violates the required
assumption of independence of samples includebdrtraining set (thus reducing the informa-
tion conveyed to the classification algorithm bg tonsidered samples); and 3) the nonstation-
ary behavior of the spectral signatures of landec@lasses in the spatial domain of the scene,
which is due to physical factors related to gro¢ed., different soil moisture or composition),
vegetation, and atmospheric conditions. All thererfitentioned issues result in decreasing the
robustness, the generalization capability, andotrezall accuracy of classification systems used
to generate the land-cover maps.

In this thesis, we address the aforementioned enolily proposing a novel approach to fea-
ture selection that, unlike standard techniquessait identifying a subset of features that exhib-
its both high discrimination ability among the cmgsed classes and high invariance in the spa-
tial domain of the investigated scene. This apgraaémplemented by defining a novel criterion
function that is based on the evaluation of twanterl) a standard separability measure and 2) a
novel invariance measure that assesses the stéijooh features in the spatial domain. The
search algorithm, adopted for deriving the subskteatures that jointly optimize the two terms,
is based on the optimization of a multiobjectivelypem for the estimation of the Pareto-optimal
solutions [6]. For the assessment of the two tesimthe criterion function, we propose both a
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supervised and a semisupervised method that caaitématively adopted depending on the
amount of available reference data and on thejpgmntaes. The proposed approach can be inte-
grated in the design of any system for hyperspkichage classification (e.g., based on paramet-
ric or distribution-free supervised algorithms) facreasing the robustness and the generaliza-
tion capability of the classifier.

b) A novel context-sensitive semisupervised SVikidier robust to mislabeled training samples

The classification of RS images is often perfornbgdusing supervised classification algo-
rithms, which require the availability of labelednsples for the training of the classification
model. All these algorithms are sharply affectexhfrthe quality of the labeled samples used for
training the classifier, whose reliability is ofrffdamental importance for an adequate learning of
the properties of the investigated scene (and, fou®btaining accurate classification maps). In
supervised classification, the implicit assumptierthat all labels associated with training pat-
terns are correct. Unfortunately, in many real sasieis assumption does not hold, and small
amounts of training samples are associated withoagvinformation class due to errors occurred
in the phase of collection of labeled samples. lexbsamples can be derived by the following:
1) in situground truth surveys; 2) analysis of reliable refee maps; or 3) image photointerpre-
tation. In all these cases, mislabeling errorspassible. During the ground truth surveys, misla-
beling errors may occur due to imprecise geoloatibn of the positioning system; this leads to
the association of the identified land-cover lalvgh a wrong geographic coordinate and, thus,
with the wrong pixel (or region of interest) in tremotely sensed image. Similar errors may oc-
cur if the image to be classified is not preciggdpreferenced. When reference maps are used for
extracting label information, possible errors prese the maps propagate to the training set.
The case of image photointerpretation is alsooaiitias errors of the human operator may occur,
leading to a mislabeling of the corresponding @»a@l regions. Mislabeled patterns bring distort
(wrong) information to the classifier. The effedtrmisy patterns in the learning phase of a su-
pervised classifier is to introduce a bias in tkeérdtion of the decision regions, thus decreasing
the accuracy of the final classification map.

In this thesis, we address the aforementioned pnoblby the following: 1) presenting a nov-
el context-sensitive semisupervised support veatachine (C&/M) classification algorithm,
which is robust to noisy training sets, and 2) yrial the effect of noisy training patterns and of
their distribution on the classification accuradywadely used supervised and semisupervised
classifiers. The main idea behind the proposed odetlogy is to exploit the information of the
context patterns to reduce the bias effect of ti®aimeled training patterns on the definition of
the discriminating hyperplane of the SVM classifidius decreasing the sensitivity of the learn-
ing algorithm to unreliable training samples. Thisaccomplished by explicitly including the
samples belonging to the neighborhood system df &aming pattern in the definition of the
cost function used for the learning of the classififhese samples are considered by exploiting
the labels derived through a semisupervised cleasdn process (for this reason, they are called
semilabeled samples). The semilabeled contextrpatteave the effect to mitigate the bias intro-
duced by noisy patterns by adjusting the positibthe hyperplane. This strategy is defined ac-
cording to a learning procedure for the proposetM&Bthat is based on two main steps: 1) su-
pervised learning with original training samplesd aslassification of the (unlabeled) context
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patterns and 2) contextual semisupervised learbasgd on both original labeled patterns and
semilabeled context patterns according to a nav&l fuinction.

c) Batch mode active learning methods for intekatilassification of RS images

As mentioned before, automatic classification ofiR&ges is generally performed by using
supervised classification techniques, which reqthieeavailability of labeled samples for train-
ing the supervised algorithm. The amount and thdityuof the available training samples are
crucial for obtaining accurate classification mabswever, in many real world problems the
available training samples are not enough for segadte learning of the classifier. In order to
enrich the information given as input to the leagnalgorithm (and to improve classification ac-
curacy) semisupervised approaches can be adopjeuhtly exploit labeled and unlabeled sam-
ples in the training of the classifier. Semisupsed approaches based on Support Vector Ma-
chines (SVMs) have been successfully applied to dfessification of multispectral and
hyperspectral data, where the ratio between thebeurof training samples and the number of
available spectral channels is small. However,ltmrative and conceptually different approach
to improve the statistic in the learning of a cissis to iteratively expand the original traigin
set according to an interactive process that ire@l supervisor. This approach is known in the
machine learning community as active learning Pi]-pnd although marginally considered in
the RS community, can result very useful in différapplication domains. In active learning: 1)
the learning process repeatedly queries availablabeled samples to select the ones that are
expected to be the most informative for an effectearning of the classifier, 2) the supervisor
(e.g., the user) labels the selected samples atitegawith the system, and 3) the learner updates
the classification rule by retraining with the upethtraining set. Therefore, the unnecessary and
redundant labeling of non informative samples isi@ed, greatly reducing the labeling cost and
time. Moreover, active learning allows one to regltlte computational complexity of the train-
ing phase.

In this thesis we investigate different batch mdédetechniques proposed in the machine
learning literature and we properly generalize thierthe classification of RS images with mul-
ticlass problem addressed by support vector masi®€Ms). The key issue of batch mode AL
is to select sets of samples with little redundasoythat they can provide the highest possible
information to the classifier. Thus, the query fiioie adopted for selecting the batch of the most
informative samples should take into account twanneaiteria: 1) uncertainty, and 2) diversity
of samples. The uncertainty criterion is associ&tethe confidence of the supervised algorithm
in correctly classifying the considered sample,levthe diversity criterion aims at selecting a set
of unlabeled samples that are as more diverseafdishe another) as possible, thus reducing the
redundancy among the selected samples. The condriradtthe two criteria results in the selec-
tion of the potentially most informative set of gales at each iteration of the AL process. More-
over, we propose a novel query function that itdam a kernel clustering technique for assess-
ing the diversity of samples and a new strategysébdecting the most informative representative
sample from each cluster. The investigated andgs@g techniques are theoretically and ex-
perimentally compared among them and with otheradgorithms proposed in the RS literature
in the classification of VHR images and hypersgdctiata. On the basis of this comparison
some guidelines are derived on the use of AL teples for the classification of different types
of RS images.
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d) A novel protocol for accuracy assessment insifi@sition of very high resolution images

With the availability of VHR images acquired by edlite multispectral scanners, it is possi-
ble to acquire detailed information on the shape ttwe geometry of the objects present on the
ground. This detailed information can be exploigdautomatic classification systems to gener-
ate land-cover maps that exhibit a high degreeeofetrical details. The precision that the clas-
sification system can afford in the characterizatd the geometrical properties of the objects
present on the ground is particularly relevant mngnpractical applications, e.g., in urban area
mapping, building characterization, target detetticrop fields classification in precision farm-
ing, etc. In this context, a major open issue assification of VHR images is the lack of ade-
quate strategies for a precise evaluation of traditguof the produced thematic maps. The most
common accuracy assessment methodology in cleasiiic of VHR images is based on the
computation of thematic accuracy measures accotdingllected reference data. However, the
thematic accuracy alone does not result suffideneffectively characterizing the geometrical
properties of the objects recognized in a map, lmxat assesses the correctness of the land-
cover labels of sparse test pixels (or regionstdrests) that do not model the actual shape of
the objects in the scene. Thus, often maps debvyedifferent classifiers (or with different pa-
rameter values for the same classifier) that hawdas thematic accuracy exhibit significantly
different geometric properties (and thus globalliggla For this reason, in many real classifica-
tion problems the quality of the maps obtainedHh®ydlassification of VHR data is assessed also
through a visual inspection. However, this procedtan provide just a subjective evaluation of
the map quality that can not be quantified. Thuis important to develop accuracy assessment
protocols for a precise, objective, and quantigatbharacterization of the quality of thematic
maps in terms of both thematic and geometric ptaserThese protocols could be used not only
for assessing the quality of thematic maps gengrayedifferent classification systems, but also
for better driving the model selection of a singlassifier, i.e., the selection of the optimum
values for the free parameters of a supervisedjcamation algorithm.

Here, we address the abovementioned problem byopirogp a novel protocol for a precise,
automatic, and objective characterization of theueacy of thematic maps derived from VHR
images. The proposed protocol is based on the &iatuof two families of indices: 1) thematic
accuracy indices; and 2) a set of novel geometidices that assess different properties of the
objects recognized in the thematic map. The prapg@setocol can be used to: 1) objectively
characterize the thematic and geometric propediedassification maps; 2) to select the map
that better fit specific user requirements; or@)dentify the map that exhibits in average best
global properties if no specific requirements aediried. Moreover, we propose a novel ap-
proach for tuning the free parameters of supervisaskification algorithms (e.g., SVM), which
is based on the optimization of a multiobjectiveljem. The aim of this approach is to select
the parameter values that result in a classifinati@p that exhibits high geometric and thematic
accuracies.

1.4 Structure of the Thesis

This thesis is organized in seven chapters. Theeptechapter presented a brief overview on
both RS and the last generation of VHR and hypetsglesensors. In addition, it introduced the
background, the motivation and the main novel ébations of this thesis. The rest of the chap-
ters are aimed at addressing the issues introdocgzgttion 1.3, by presenting the analysis of the
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state of the art and proposing the novel techniguesapproaches developed during the Ph.D.
activity.

Chapter 2 presents an extensive and critical reaevhe use of kernel methods and in par-
ticular of support vector machines (SVMs) in thasslfication of RS data.

Chapter 3 proposes a novel approach to featuretsgidor the classification of hyperspec-
tral images that aims at selecting a subset obtiggnal features that exhibits at the same time
high capability to discriminate among the considetctasses and high invariance in the spatial
domain of the scene. This approach results in @malsust classification system with improved
generalization properties with respect to standélzatlire-selection methods.

Chapter 4 describes a novel context-sensitive sgrarsised support vector machines
(CS'VM) classifier, which is aimed at addressing clfisation problems where the available
training set is not fully reliable, i.e., some l&zk samples may be associated to the wrong in-
formation class.

Chapter 5 presents an analysis on the use of detaraing techniques for the interactive
classification of RS images and a comparison df/@dearning techniques based on SVM gen-
eralized to multiclass problems. Moreover, a napedry function for the selection of a batch of
unlabeled samples to be included in the trainingsseroposed.

Chapter 6 introduces a novel protocol for the amcyiassessment of the thematic maps ob-
tained by the classification of VHR images. Thepmsed protocol is based on the analysis of
two families of indices: 1) the traditional thentaéiccuracy indices; and 2) a set of novel geo-
metric indices that model different geometric pmbies of the objects recognized in the map.

Chapter 7 draws the conclusions of this thesistheamore, future developments of the re-
search activity are discussed.
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Chapter 2

2. Support Vector Machine for the Classification of Renote Sensing
Data

This chapter presents an extensive and criticalesgvon the use of kernel methods and in
particular of support vector machines (SVMs) fae tiassification of remote sensing (RS) data.
The chapter recalls the mathematical formulatior @he main theoretical concepts related to
SVMs, and discusses the motivations at the basieafse of SVMs in remote sensing. A review
on the main applications of SVMs in classificat@iremote sensing is given, presenting a lit-
erature survey on the use of SVMs for the anabyfsdifferent kinds of RS images. In addition,
the most recent methodological developments relatefVM-based classification techniques in
RS are illustrated by focusing on semisupervisethan adaptation, and context-sensitive ap-
proaches. Finally, the most promising research aigns on SVM in RS are identified and dis-
cussed

2.1 Introduction

In the last two decades there have been significaptovements both in the technology as-
sociated with the development of the sensors us&#bito acquire signals and images for Earth
observation (as reviewed in the previous chapted)ia the analysis techniques adopted for ex-
tracting information from these data useful for @@nal applications. The modern technology
resulted in the definition of different kinds ofnsers for Earth observation based on different
principles and with different properties. In thimntext, the challenging properties of new genera-
tion of sensors require the definition of noveladahalysis methods. In this chapter we focus our
attention on RS image classification methodologigsch are devoted to translate the features
that represent the information present in the gathematic maps representing land cover types
according to the solution of a pattern recognifwablem. In particular, we concentrate our at-
tention on supervised classification algorithmsjolbrequire the availability of labeled samples

This chapter was published as chapter 3.2 of tloé Bdandbook of Pattern Recognition and Computer
Vision”, vol. 4, edited by Prof. C.H. Chen. Authots Bruzzone, C. Persello.
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for the training of the classification model. Instltontext, the availability of last generation RS
images allowed the development of new applicatibas require the mapping of the Earth sur-
face with high geometric precision and a high legklthematic details. However, the huge
amount of data associated with these images reqiieedevelopment of sophisticated automatic
classification techniques capable to obtain aceultd-cover maps in a reasonable processing
time.

In the last decades, a great effort has been d#votexploit machine learning methods for
classification of RS images. This has been donmtbgducing the use of neural networks (NN)
in RS (with the pioneering work presented in [1) $olving many different classification tasks.
Several different paradigms and models of NN haenhused in recent years for addressing re-
mote sensing image classification problems, ranfiimm standard Multilayer Perceptron (MLP)
network [1]-[3], to Radial Basis Functions (RBF)unal network [4], [5], structured neural net-
works [6] and hybrid architectures. Also more coexpand structured architecture have been
exploited for solving specific problems, like conupal classification of multitemporal data [7],
multiple classification systems made up of neutgb@hms [8], [9], etc. All these methods
share as common property the idea to perform draileg of the classification algorithm accord-
ing to the minimization of the empirical risk, asgted to the errors on the training set. How-
ever, the last frontiers of machine learning cleas in RS are represented by methods based on
the structural risk minimization principle (whichiaavs one to effectively tune the tradeoff be-
tween empirical risk and generalization capabiligbher than on the empirical risk minimiza-
tion. The related statistical learning theory (fatated from Vapnik [10]) is at the basis of the
support vector machine (SVM) classification apploa&VM is a classification technique based
on kernel methods that has been proved very effedti solving complex classification prob-
lems in many different application domains. In thet few years, SVM gained a significant cre-
dit also in RS applications. The pioneering workGfaltieri in 1998 [11] related to the use of
SVM for classification of hyperspectral images bagn followed from several different experi-
ences of other researchers that analyzed the tieadrproperties and the empirical perform-
ances of SVM applied to different kinds of clagsifion problems [12]-[28]. The investigations
include classification of hyperspectral data [11$]f multispectral images [19]-[26], VHR im-
ages [27], as well as multisource and multisensassdication scenarios [28]-[30]. SVMs re-
vealed to be very effective classifiers and cutyethiey are among the most adequate techniques
for the analysis of last generation of RS data.

In all these cases the success of SVMs is dueetantiportant properties of this approach,
which integrated with the effectiveness of the sil&sation procedure and the elegance of the
theoretical developments, result in a very solaksification methodology in many different RS
data classification domains. As it will be explairia the following section, this mainly depends
on the fact that SVMs implement a classificatiaatgigy that exploits a margin-based “geomet-
rical” criterion rather than a purely “statisticalfiterion. In other words, SVMs do not require an
estimation of the statistical distributions of das to carry out the classification task, but they
define the classification model by exploiting tl@cept of margin maximization.

The main properties that make SVM patrticularlyaattive in RS applications can be summa-
rized as follows [31]-[33]:

» their intrinsic effectiveness with respect to ttemtial classifiers thanks to the structural risk
minimization principle, which results in high cl#&sation accuracies and very good gener-
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alization capabilities (especially in classificatiproblems defined in high dimensional fea-

ture spaces and with few training samples, whichtigpical situation in the classification of

last generation of RS images);

» the possibility to exploit the kernel trick to selmon-linear separable classification problems
by projecting the data into a high dimensional deatspace and separating the data with a
simple linear function;

» the convexity of the objective function used in tbarning of the classifier, which results in
the possibility to solve the learning process adicwy to linearly constrained quadratic pro-
gramming (QP) characterized from a unique soluian, the system cannot fall into sub-
optimal solutions associated with local minima);

» the possibility of representing the convex optirtiaa problem in a dual formulation, where
only non-zero Lagrange multipliers are necessarydifining the separation hyperplane
(which is a very important advantage in the caséafe data sets). This is related to the
property of sparseness of the solution.

Moreover, SVMs exhibit important advantages witbpect to NN approaches. Among the
others we recall: 1) higher generalization capgbdnd robustness to the Hughes phenomenon;
2) lower effort required for the model selectiorthie learning phase (i.e., they involve less con-
trol parameters and thus computational time forr thetimum values selection) and the implicit
automatic architecture definition; 3) optimality tife solution obtained by the learning algo-
rithm.

The objective of this chapter is to review theestait the art of SVM for the classification of
RS data. In particular, Section 2.2 recalls thedopsnciples of SVM for pattern classification.
Section 2.3 presents a literature survey aboutrtbst relevant papers that report studies about
the application of SVM to the classification offdifent kinds of RS images and papers that pro-
pose advanced systems based on the SVM approatiefanalysis of RS data. Along with this
state-of-the-art review, we discuss about the dperadoption of SVM for the analysis of RS
images and the direction of the future researcthimntopic. Finally, section 2.4 draws the con-
clusion of the chapter.

2.2 Support vector machine classifiers

Let us consider the problem of supervised clasdifio of a generid-dimensional image
7 of size | xJ pixel. Let us assume that a training $et{X, )} made up oN pairs(xi Y )iN=1 is
available, where¥ ={x,| x OR}Y, 0 7 is a subset of andY ={y} Y, is the corresponding set
of labels. For the sake of simplicity, since SVMe &inary classifiers, we first focus the atten-
tion on the two-class case (the general multictase will be addressed later). Accordingly, let
us assume thay, [I{ +1; -1} is the binary label of the pattexn The goal of the binary SVM is to
divide thed-dimensional feature space in two subspaces, areafth class, through a separating
hyperplaneH : y =(wX)+b=0. The final decision rule used to find the membigrsif a test
sample is based on the sign of the discriminatiomction f(x) =(w[X)+b associated to the
hyperplane. Therefore, a generic patterwill be labeled according to the following rule:

f(x)>0 = x[Oclass+1

(2.1)
f(xX) <0 = x[Oclass-1
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The training of an SVM consists in finding the pmsi of the hyperplanél, estimating the
values of the vectow and the scalab, according to the solution of an optimization gdeob.
From a geometrical point of viewy is a vector perpendicular to the hyperpl&heand thus de-
fines its orientation. The distance of tHeto the origin isb/|jw|| , while the distance of a sample
x to the hyperplane isf (x)/|w|. Let us define theunctional margin F =min{y; f (x,)}

i =1,...N and thegeometric marging = F/|w]||. The geometric margin represents the minimum
Euclidean distance between the available trainamypdes and the hyperplane.

2.2.1Training of linear SVM - maximal margin algorithm.

In the case of a linearly separable problems, ¢aening of an SVM can be performed with
the maximal margin algorithm, which consists indfitg the hyperplanél that maximizes the
geometric marginG. Rescaling the hyperplane parametersand b such that the functional
margin F =1, it turns out that the optimal hyperplane can btednined as the solution of the
following convex quadratic programming problem:

N T
min:=|w|
wb 2 (2.2)
y (w)+b]=1, Oi=1,.. N

Let H; and H, be two hyperplane parallel to the separating tplpeeH and equidistant
from it:

H:f(xX)=(wX)+b=+1

(2.3)
H,: f(X)=(wX)+b=-1

The goal of the training phase is to find the valoéw andb such that the geometric distance
betweerH; andH, is maximized with the condition that there is nmmpé& between them. Since
direct handling of inequality constraints is ditfi Lagrange theory is usually exploited by in-
troducing Lagrange multiplierg, for the quadratic optimization problem. This ledadsan al-
ternative dual representation:
N 1 N N
mﬁXi{;m TS WYaa (X X >}

=1 j=1

(2.4)
Zi'ilyiaq =0, @20, kisN

The Karush—Kuhn—Tucker (KKT) complementarity cormis provide useful information about
the structure of the solution. They state thatagpigmal solutiona” , (w',b )should satisfy:

a’ [y ((w &)+B)-1]=0, i=1...N (2.5)

This implies that only input sampl&sfor which the functional margin is one (and thedre-
fore lie closest to the hyperplane, i.e., lietdnor Hy) are associated to Lagrange multipliers
a, >0. All the other multipliersa; are zero. Hence, only these samples are involveideirex-
pression for the weight vector. It is for this reashat they are calleslipport vectorgSV). Thus
we can write thaw’ :Zilyiafxi =Y., Yo' x . Itis worth noting that the terin does not
appear in the dual problem, and should be calaila@king use of the primal constraints:
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Once the values fow andb are determined by solving the optimization probleme ge-
neric test sample is classified on the basis ofsige of the discriminant function, that can be
expressed as:

f(x)=<w5<>+b=[2 wﬁ&jmw 2 Ya (X D)+ b (2.7)

Note that the training samples appear only in tenfof dot product. This property of the dual
form will be exploited later to extend the formudett to nonlinear problems.

2.2.2Training of linear SVM - soft margin algorithm.

The maximum margin training algorithm can not bedus many real world problems where
the available training samples are not linearlyasaple because of noisy samples and outliers
(this is very common in real RS classification peohs). In these cases, the soft margin algo-
rithm is used in order to handle nonlinear separallta. This is done by defining the so called
slack variables as:

106, %), (w, b)] =& =max[0,1- y (wx ) + b)] (2.8)

Slack variables allow one to control the penaltgoasated with misclassified samples. In this
way the learning algorithm is robust to both naisé outliers present in the training set, thus re-
sulting in high generalization capability. The opitiation problem can be formulated as follows:

Ly g2 ~
mp| i +c3 ¢ 2o
y(WX)+h)21-&, £20,0i=1,.. N

where C =20 is the regularization parameter that allows onedwtrol the penalty associated to
errors (if C =c we come back to the maximal margin algorithm), #img to control the trade-
off between the number of allowed mislabeled tragnsamples and the width of the margin. If
the value ofC is too small, many errors are permitted and tlaltimg discriminant function will
poorly fit with the data; on the opposite,Gfis too large, the classifier may overfit the data
stances, thus resulting in low generalization ghil precise definition of the value of tiizpa-
rameter is crucial for the accuracy that can baiabd in the classification step and should be
derived through an accurate model selection phase.

Similarly to the case of the maximal margin aldumt the optimization problem (2.9) can be
rewritten in an equivalent dual form:

(2.10)
> ya =0, 0 <C, KisN

Note that the only difference between (2.10) and)(Z in the constraint on the multipliers
{a'i}i'i1 that for the soft margin algorithm are boundedttey paramete€. For this reason this
problem is also known as box constrained probleine. KKT conditions become in this case:
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{cn[yi(<w5<i>+b>—1+<$]:o, i=1..) 2.1

&(a -C) =0, i=1,..)

Varying the values of the multipliel{sza'i}iN=l three cases can be distinguished:

1. ifa,=0= & =0andy ((wlx)+b)=1,

2. if 0<a,<C, we have thaty ((wlx)+b)+¢& =1, but given that{, =0 we have that
yi((wkx)+b) =1;

3. ifa,=C,= y(wk)+b)+& =1, but given that, >0 we have thaty, ((w X ) + b) <1.

The KKT conditions can therefore be rewritten as:

a=0 =yf(x)=1
O<a <C=yf(x)=1 (2.12)
4,=C =y f(x)s1

+1 -1

e O Training patterns o
® © Support Vectors

Fig. 2.1. Qualitative example of a separating hyperplane inabe of a non linear separable classifica-
tion problem.

The support vectorsvith multiplier a, =C are calledbound support vectord8SV) and are as-
sociated to slack variableS = 0; the ones with & a; <C are callechon bound support vectors
(NBSV) and lie on the margin hyperplaHe or Ha (y, f(x,) =1).

2.2.3Training of non linear SVM - kernel trick.

An important improvement to the above-describechmeds consists in considering non linear
discriminant functions for separating the two imfi@ation classes. This can be obtained by trans-
forming the input data into a high dimension (Hithdeature space(x) JR® (d'>d) where
the transformed samples can be better separatachpgerplane. The main problem is to explic-
ity choose and calculate the functioh(x) JR® for each training samples. But given that the
input points in dual formulation [see (2.10)] appeathe form of inner products, we can do this
mapping in an implicit way by exploiting the so ledl kernel trick. Kernel methods provide an
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elegant and effective way of dealing with this peob by replacing the inner product in the input
space with a kernel function such that:

K6, %) =(@x )% ) i, j=1...N (2.13)

implicitly calculating the inner product in the msformed space.

@ ()

()

a) b)

Fig. 2.2. Transformation of the input data by means of a kkmetion into a high dimension feature
space. a) Input feature space; b) kernel induced high dimenf@ahaie space.

The soft margin algorithm for nonlinear functiomdae represented by the following optimi-
zation problem:

me{iai -23'> yyaa kis )}

i= i=1j=1 (2.14)
> v =0, 0 <C and ki< N
And the discrimination function becomes:
f(x) =Y ya k(x X)+b (2.15)

iosv

The condition for a function to be a valid kerreefjiven by the Mercer’s theorem [32]. The most
widely used non-linear kernel functions are théofeings [31]:

+ homogeneous polynomial functiok(x;,x;) = (x x;)°?, pOZ

+ inhomogeneous polynomial functiok(x;,X;) = (c+(x X;))?, pOZ,c=0

2
[l

* Gaussian functionk(x;,x;)=e * , o¢OR

2.2.4 Multiclass architectures

As stated in the previous section, SVMs are birdagsifiers. However, several strategies
have been proposed to address multiclass problethsSWMs. Let Q ={cqa{} be the set of
L information classes associated with the diffefantl cover types present in the study area. In
order to define a multiclass architecture basedlifferent binary classifiers, the general ap-
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proach consists of: 1) defining an ensemble ofrgictassifiers; and 2) combining them accord-
ing to some decision rules. The definition of tie@mble of binary classifiers involves the defi-
nition of a set of two-class problems, each modeligd two groupsQ, and Q, of classes. The
selection of these subsets depends on the kindprbach adopted to combine the ensemble. In
the following, we describe the two most widely atdop(parallel) multiclass strategies, i.e., the
One-Agains-Al{OAA) andOne-Against-On€OAO) strategies.

1) One-Against-Allthe one-against-all (OAA) strategy representseidndiest and one of the
most common multiclass approach used for SVMswblves a parallel architecture made up of
L SVMs, one for each class (Fig. 2.3). Each SVM es®la two-class problem defined by one in-
formation class against all the others, i.e.,

Q,=w
(2.16)
Q;=Q-w
SVM 1 f.()
{w.Q-w} i
1
| swm2 (%)
{(*)27 Q- wz} <
(7]
1] o
| swm3 (%) © .
g {w,Q-w} o w
E
=
SVM L f.(3)
{w,Q-w}
Training set

Fig. 2.3 Block diagram of th@ne-Against-Alimulticlass architecture

The winner-takes-allrule is used for the final decision, i.e., the miig class is the one corre-
sponding to the SVM with the highest output (disgniant function value).

2) One-Against-Onethe main problem of the OAA strategy is that thgcdmination be-
tween an information class and all the others oftenls to the estimation of complex discrimi-
nant functions. In addition, a problem with strgnginbalanced prior probabilities should be
solved by each SVM. The idea behind tme-against-on¢OAO) strategy is that of a different
reasoning, in which simple classification tasksraegle possible thanks to a parallel architecture
made up of a large number of SVMs. The OAO strategyplves L(L-1)/2 SVMs, which
model all possible pairwise classifications. Irstbase, each SVM carries out a binary classifica-
tion in which two information classes and w, are analyzed against each other by means of a
discriminant functionf; (x) . Consequently, the grouping becomes:
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Q,=w
{ A (2.17)
QB=a)j

Before the decision process, it is necessary topatenfor each clasg JQ a score function
D, (x), which sums the favorable and unfavorable vot@sessed for the considered class

D, (x) = ngn[fij ()] (2.18)

The final decision in the OAO strategy is takentloa basis of thevinner-takes-allrule, which
corresponds to the following maximization:

xOw = w=argmaxD, &) (2.19)
i=1,...L
SVM 1 (9
{or, w0}
)
SVM 2 f,(x)
{0} <
T @
@
< SVM 3 £, A
{(‘01'('04} <&}
=
=
) svMLLLy2 fucoa(®) |
{wL—l’wL}
T 1]
Training set

Fig. 2.4 Block diagram of th@ne-Against-Onenulticlass architecture

Other multiclass architectures proposed in theditere are the Directed Acyclic Graph SVM
(DAGSVM) [34] and different approaches based orabyjrhierarchical trees (BHT) [16], [35].

2.3 SVM for the classification of RS data

In the last decade many studies have been publiaitbe RS literature on the application of
SVM classifiers to the analysis of RS data. Table(®hich is not exhaustive) presents some re-
levant papers about the applications of SVM todlassification of RS data, providing a short
description of the study and the kind of data usedhe experimental analysis. The SVM ap-
proach has been first applied to the classificatibhyperspectral data [11], which require the
classifier to operate in large dimensional feagpaces. Supervised classification of hyperspec-
tral images is a very complex methodological probldue to many different issues, among
which we recall the typical small value of the oatietween the number of training samples and
the number of available spectral channels, whishlte in the so-called course of dimensionality
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(Hughes phenomenon) [36]. Thanks to the structisklminimization principle and the margin-
based approach, SVMs represent an effective choidbe classification of this specific kind of
data. Several papers [11]-[18] confirm the effemtiess of SVMs in the classification of hyper-
spectral images, which outperform other classifacatlgorithms both in terms of classification
accuracy and generalization ability. In particular[16] it is found that SVMs are much more
effective than other conventional nonparametrissiféers (i.e., the RBF neural networks and the
k-NN classifier) in terms of classification accuracpmputational time, stability to parameter
setting, and generalization ability. In [15], th& & approach was compared with neural net-
works and fuzzy methods on six hyperspectral imagegired with the 128-band HyMap spec-
trometer. The authors of the study concluded thd¥Syield better outcomes than neural net-
works regarding accuracy, simplicity, and robussnéss [17], SVMs were compared with other
kernel-based methods, i.e., with regularized raokelis function NN, kernel Fisher discriminant
analysis, and regularized AdaBoost. The resultsinétl on an AVIRIS data set show that
SVMs are more beneficial, yielding better resulan other kernel-based methods, ensuring
sparsity and lower computational cost.

Nevertheless, SVMs revealed adequate for the asatyanany different kinds of RS data,
i.e., multispectral imagery and SAR imagery (wiiffatent resolutions) and LIDAR data. Sev-
eral papers present a comparison between SVM dret stipervised algorithms applied to the
classification of different kinds of RS images [2[23], [25], [30]. In [20], for instance, the au-
thors compared the accuracies obtained by theifitas®n of a Landsat Thematic mapper (TM)
scene with four different supervised classifiess.,, iISVM, maximum likelihood (ML), MLP neu-
ral networks (NN), and decision tree classifier @TThe obtained results show that SVM was
in general sharply more accurate than ML and DT, more accurate than NN in most of the
cases. In [21], the SVM algorithm was applied te thassification of ASTER data acquired in
an urban area of Beer Sheva, Israel. Field vabidatshow that the classification is reliable for
urban studies with high classification accuracy[28], the SVM classifier, as well as the well-
known ML classifier and a context-based classifiased on Markov random fields, were ap-
plied to the automatic land cover classificatioradfandsat TM image taken on the Tenerife Is-
land. The authors found that SVM was more accutzde the other classification algorithms,
but the classification map was not completely $atig when investigated visually. In the ex-
perimental analysis conducted in [25], it is obsérthat SVM leaded to slightly higher classifi-
cation accuracies than (MLP) NN. For both classsfi¢he accuracy depends on factors such as
the number of hidden nodes in the case of NN, andet parameters in the case of SVM. Thus,
the model selection phase is fundamental for obtgigood results, but the training time re-
quired by the SVM is less than the one taken by NN.

SVM can be particularly effective also in the as#yof very high resolution (VHR) images.
The typical poor spectral resolution of VHR imageguires the extraction of additional features
(e.g., texture and geometric measures) to charaettre objects present in the scene under in-
vestigation and to discriminate different land-aoekasses. Different features modeling objects
at different scales are generally necessary foagequate characterization of the information
classes [27], thus resulting in classification peofis characterized by large dimensional feature
spaces (with some analogies with the problemselad the classification of hyperspectral im-
age). The study proposed in [27] points out thaWS3an be effectively applied to the classifica-
tion of VHR images using a feature extraction bltltkt aims at adaptively modeling the spatial
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context of each pixel according to a hierarchicaltilevel segmentation of the scene. A similar
approach can also be adopted for the joint classiin of SAR and optical data with SVM, as
presented in [29]. In [30], an analysis is proposadhe joint use of hyperspectral and LIDAR
data for the classification of complex forest arddse experimental results obtained in [29]-[30]
show that SVMs are effective for combining multisendata in complex classification problems
and outperforms other more traditional classifiers.

Table 2.1- Selected papers related to the application of S\ tdassification of different kinds of RS
data

Authors Description RS data
In this paper, the authors introduce SVM for the classificaifon AVIRIS (224
J. A. Gualtieri | RS data. In particular they applied SVM to hyperspectral atata spectral bands)
and S. Chettri | quired by NASA's AVIRIS sensor and the commercially avdég
and AISA (20-

[13] AISA sensor. The authors discuss the robustness of SVM to th

e
40 bands
course of dimensionality (Hughes phenomenon). )

This paper addresses the problem of the classification of-hype
spectral RS images by SVMs. The authors propose a thebretica
discussion and experimental analysis aimed at understanding and
assessing the potentialities of SVM classifiers in hypeedi
sional feature spaces. Then, they assess the effecBvain®¥Ms
. with respect to conventional feature-reduction-based approaches
F. Melgani, L. . . _ . | AVIRIS (224
and their performances in hypersubspaces of various dimensional-
Bruzzone [16] | .. i i spectral bands)
ities. To sustain such an analysis, the performances of s
compared with those of two other nonparametric classffiers
radial basis function neural networks and the K-nearest neighpor
classifier). Four different multiclass strategies araelyzed and
compared: the one-against-all, the one-against-one, and two hie
archical tree-based strategies.

=]

This paper presents the framework of kernel-based methods in the
context of hyperspectral image classification, illughigafrom a
general viewpoint the main characteristics of different kernel
G. Camps- based approaches and analyzing their properties in the hyperspAchl-RIS (224
Valls, L. Bruz- | tral domain. In particular, the performances of the followeut spectral bands)
zone [17] niques are assessed: regularized radial basis function netdral ne

works (Reg-RBFNN), standard support vector machines (SVNls),

kernel Fisher discriminant (KFD) analysis, and regularizdd-A
Boost (Reg-AB).
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Authors Description RS data
In this paper, an approach for multiclass classification bbaire
sensor data by a single SVM analysis is evaluated agasesies | .

. . . . ) Airborne The-
of classifiers that are widely used in RS, with particuégard to matic Mapper
the effect of training set size on classification accyrin addi- PP

G..M. Foody, (ATM) (11

A. Mathur [19]

tion to the SVM, the same data sets are classified usingnaiisc
nant analysis, decision tree, and multilayer perceptron neural
work. For each classification technigque, the accuracy isiypelyit
related with the size of the training set. In general, thstmccu-
rate classifications are obtained with the SVM approach.

% ectral bands,
spatial resolu-
tion of 5m)

>

C. Huang, L.S.
Davis, J.R.G.
Townshend [20]

This paper introduces the theory of SVM and provides an exp
mental evaluation of its accuracy, stability, and trainiregsiin
deriving land cover classifications from satellite imag&dSl-
gorithm is compared with other supervised algorithms: maxim
mum likelihood (ML) classifier, neural network classifiand de-
cision tree classifier.

eri-
(Spatially de-
graded) Landsat
-Thematic Map-
per (TM)

G. Zhu, D. G.
Blumberg [21]

This paper presents a study on the mapping of urban environ
using ASTER data and SVM-based classification algorithms.
case study of the classification of the area of Beer Skerea)] is

presented. Field validation shows that the classificatiosliebte

and precise.

Advanced
ments

Spaceborne
Thermal Emis-
sion and Reflec-
tance Radiome-

ter (ASTER)

P

L. Su, M. J.
Chopping, A.
Rango, J. V.
Martonchik, D.
P. C. Peters [22

This paper present a study on mapping and monitoring the de

Spectro-Radiometer (MISR) RS data. Many classificatiqres-
ments are performed to find the optimal combination of MISR
| multi-angle data for maximizing the classification accuracy.

environment using SVM for the analysis of Multi-angle Imaging

sert
Multi-angle Im-

aging Spectro-
Radiometer
(MISR)

J. Keuchel, S.
Naumann, M.
Heiler, A.
Siegmund [23]

This paper presents three different approaches to the adaseiffi
of satellites images: maximum likelihood classifier, SVN -
erated conditional model (ICM) to perform contextual clasaifi
tion using Markov random field model. The classification algo-
rithms are applied to a Landsat 5 TM image of Tenerife, the
largest of the canary Island.

Landsat 5 TM

B. Dixon, N.
Candade [25]

This paper presents a study on the comparison between SVM
NN for the classification of RS data. An experimentallgsis is
carried on Landsat 5 TM data, acquired in the South West of
ida. The obtained results confirm that SVM and NN outperforn
the traditional ML classifier. SVM classification resutightly
more accurate than NN requiring much less computationat eff

in the training phase.

and

Flor-
nLandsat 5 TM
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Authors

Description

RS data

This paper proposes a system for the classification of \\HR i

ages. The proposed system is made up of two main blocks: 1) a
feature-extraction block that aims at adaptively model pla¢iad
L. Bruzzone, L. . . . . . D
Carlin [27] context of each pixel according to a hierarchical multileegts | Quickbird
mentation of the scene and 2) a classification block based on
SVM. Experimental results obtained on VHR images confirm the
effectiveness of the proposed system.
This paper presents a strategy for the joint classificationulti-
ple segmentation levels from multisensor imagery, using SAR| a
optical data. The two data sets are separately segmerntigiiat
ent scale levels and independently classified by two Sébed )
B. Waske, S. Multitemporal

Van der Linden
[29]

classifiers. The fusion strategy is based on the applicafian
additional classifier, which takes in input the soft outpuhef
pre-classified results of the two data sets. The obtainediexpe
mental results show that the useful combination of multilevel-
multisensor data is feasible with machine learning technidkess
SVM and Random forest.

SAR data and
Landsat5 TM

M. Dalponte, L.
Bruzzone, and
D. Gianelle [30]

In this paper, the authors propose an analysis on the joint use
hyperspectral and light detection and ranging (LIDAR) data fo
the classification of complex forest areas. In gredetail, they
present: 1) an advanced system for the joint use of hypéraiped
and LIDAR data in complex classification problems; 2)rares-
tigation on the effectiveness of the very promising SVM and
Gaussian ML with leave-one-out covariance algorithm for the
analysis of forest areas characterized from a high numisgreef
cies; and 3) an analysis of the effectiveness of differiDAR

of
r
Hyperspectral
(126 spectral
bands) and LI-
DAR (mean
density of 5.6
points per
square meter)

returns and channels for increasing the classification acgub-
tained with hyperspectral images.

The RS literature related to SVM is not limitedth@ use of this approach on different data
and different application domains. Recently, madeamced SVM-based classifiers have been
developed for facing complex problems related ®loperties of RS images. A list of relevant
papers that introduced advanced techniques basg8W¥khfor the classification of RS data is re-
ported Table 2.2. These papers represent the moshtr (and in some cases on-going) research
activities in this field and give insight about ttesearch direction for the next years.

In this context, it is worth mentioning the sempswised SVM classifiers [37]-[43], which
are devised for addressing ill-posed problems citaraed by a very small ratio between the
number of available training samples and the nurobé&atures by reinforcing the learning pro-
cedure with the use of unlabeled samples. It iglwooting, that even if SVMs have very good
generalization capability, they cannot model thessification problem when very few training
samples are available (“strongly” ill-posed prob#nin these cases, the exploitation of the un-
labeled samples to enrich the information of tlaéning samples can result in a significant im-
provement in the model estimation. The first worksemisupervised SVM in RS was presented
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Chapter 2 — SVM for the Classification of RS Data

in [37], [38]. The presented semisupervised SVIWV(®) is based on transductive inference that
exploits a specific iterative algorithm which gratly searches a reliable separating hyperplane
in the kernel space with a process that incorpsrbtgh labeled and unlabeled samples in the
training phase. In [39], an®8M classification technique is proposed, wherel#zgning phase is
performed by optimizing the objective function ditlg in the primal formulation (without ex-
ploiting the dual representation that can be okthivith Lagrange multipliers). In [40], the Lap-
lacian SVM technique [41] is introduced in the R8nenunity. This technique adopts an addi-
tional regularization term on the geometry of btatheled and unlabeled samples by using the
graph Laplacian. This method follows a non-itemtbptimization procedure in contrast to most
transductive learning methods and provides outaaffge predictions in contrast to graph-based
approaches. Experimental results confirm the dffeness of 3/M techniques for solving ill-
posed RS classification problems. In genef®N\& provides higher accuracy and better gener-
alization ability than standard supervised SVMthis respect, a more detailed picture of the sta-
tus on the research on the application 3\ to hypedimensional problems can be found in
[43].

Other studies address the inclusion of the spatiatext information of the single pixel in the
SVM classification process. To this end, [44] preg®a framework for applying the maximum a
posteriori (MAP) estimation principle in remote serg image segmentation, which incorporates
contextual and geometrical information in the SVMssification process by means of Markov
random field (MRF). In [45], the use of compositerkels is introduced in remote sensing to
adopt different kernel functions for different satssof features to combine spatial and spectral
information in an effective way. In [47], a contesdnsitive semisupervised SVM is proposed,
which exploits the contextual information of thexgds during the learning phase, in order to im-
prove the robustness to possible mislabeled trgipaiterns (which are not unlikely to be pre-
sent in the reference data due to different kirfdsrmrs that may occur in the collection of la-
beled samples). For details we refer the readenapter 4 of this dissertation.

The study in [48] addresses the problem of autamagidating the land-cover maps by using
RS images periodically acquired over the same tigeged area under the hypothesis that a reli-
able ground truth is not available for all the ddeged acquisitions. The problem is modeled un-
der the domain-adaptation framework by introducingovel method designed for land-cover
map updating, which is based on a domain-adapt&idvl (DASVM) technique. Given two RS
imagesl; andl, acquired over the same area at different tinheandt,, respectively), the goal
of the DASVM is to obtain an accurate classificataf I, by exploiting the labeled training sam-
ples from reference imadeand the unlabeled samples from the new imlagéhe DASVM al-
gorithm is based on an iterative process, whiciisskey training an SVM classifier with the orig-
inal training samples of; and gradually introduces semilabeled samples, @ind erases the
original training samples. At convergence a finlassification function ruled only by semila-
beled samples at timgis obtained. In addition, the authors propose eutdr accuracy assess-
ment strategy for the validation of the resultsagi¥d by domain-adaptation classifiers when no
reference data for the considered imbgere available.

Another recent and promising approach to the aralR§$ data is associated with active
learning [49]-[50], which allows an interactive s#fication of RS images (see chapter 5). The
active learning approach is based on the iteraiiothree different conceptual steps. In the first
step the learning process queries unlabeled sarpleslect the most informative ones; in the
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second step the supervisor (e.g., the user) prewvadiabel to the selected samples interacting
with the system; and in the third step the leaupstates the classification rule by retraining with

the updated training set. In [49], it is noted tB&tMs are particularly suited to active learning

since they are characterized by a small set of@umectors (SVs) which can be easily updated
over successive learning iterations. Moreover, afrthe most efficient query functions is based

on the selection of the sample closest to the aéipgrhyperplane defined at the considered it-
eration. For additional information about recentelepments in kernel methods for the analysis
of RS images, we refer the reader to [51]. For na@w®ils on this topic we refer the reader to
chapter 5 of this thesis.

Table 2.2 — Relevant papers about advanced techniques baSe#dor the classification of RS data.

Authors Description

This paper introduces a semisupervised classification methobebblaits both
labeled and unlabeled samples for addressing ill-posed problemSwiils.
The proposed method exploit specific iterative algorithms wigicddually
search a reliable separating hyperplane in the kernel sptte wrocess that
incorporates both labeled and unlabeled samples in the training. gHeesau-
thors propose a novel modified transductive SVM classifieigded for ad-
dressing ill-posed RS problems, which has the following priggert) it is
based on a novel transductive procedure that exploits a weightategy for
unlabeled patterns, based on a time-dependent criterion;ad)aé to mitigate
the effects of suboptimal model selection (which is unavoidaliles presenc
of small-size training sets); and 3) can address multicksss.

L. Bruzzone, M. Chi,
M. Marconcini [38]

11

This paper addresses classification of hyperspectral RS imegesernel-
based methods defined in the framework of semisupervised SYAKMES. In
particular, the authors analyzed the critical problem of theoromxity of the
cost function associated with the learning phase®*¢M8 by considering dif-
M. Chi, L. Bruzzone ferent (SVMs) techniques that solve optimization directly in the ptifoemu-
[39] lation of the objective function. As the nonconvex cost funatimm be charag
terized by many local minima, different optimization tecjugis may lead t
different classification results. The presented techniquescampared witl
S*VMs implemented in the dual formulation in the context of clasgibn of
real hyperspectral remote sensing images.

(=)

This letter presents a semisupervised method based on keankines and
graph theory for RS image classification. The SVM isutagzed with the un
normalized graph Laplacian, thus leading to the Laplacian SNVAYWSVM).
| The method is tested in the challenging problems of urban monitaridg
cloud screening, in which an adequate exploitation of the wealiihlabeled
samples is critical.

L. Gomez-Chova, G.
Camps-Valls, J. Munoz
Mari, J. Calpe [40]
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Authors

Description

A. A. Farag, R. M. Mo-
hamed, A. El-Baz [44]

This paper proposes a complete framework for applying the maxinposte-
riori (MAP) estimation principle in RS image segmentatidhe MAP princi-

ple provides an estimate for the segmented image by n@amgrthe posteriof

probabilities of the classes defined in the image. The posgmobability can
be represented as the product of the class conditional pribp&I(CP) and the
class prior probability (CPP). For the CCP, a superviseaatiigh which useg
the SVM density estimation approach is proposed. For the CiHRaten,
Markov random field (MRF) is a common choice which incorporatesege
tual and geometrical information in the estimation process.

G. Camp-Valls, L. Go-
mez-Chova, J. Mufioz-
Mari, J. Vila-Francés,
and J Calpe-Maravilla
[45]

This letter presents a framework of composite kernel macharesnhanced
classification of hyperspectral images. This novel methxpdbés the proper
ties of Mercer’s kernels to construct a family of compokémels that easil
combine spatial and spectral information. This framework of cmitg kernelg
demonstrates: 1) enhanced classification accuracy asacedhjo traditiona
approaches that take into account the spectral information2rflgxibility to

balance between the spatial and spectral information icl#ssifier; and 3
computational efficiency.

M. Marconcini, G.
Camps-Valls, L. Bruz-
zone [46]

This letter presents a novel composite semisupervised SVithdospectral-+

spatial classification of hyperspectral images. In padigcuhe proposed tech
nique exploits the following: 1) unlabeled data for increasingehability of

the training phase when few training samples are available acdng)osite
kernel functions for simultaneously taking into account speend spatial in
formation included in the considered image. Experimentsechout on a hy
perspectral image pointed out the effectiveness of the rmessdechnique
which resulted in a significant increase of the clas#ific accuracy with re
spect to both supervised SVMs and progressive semisuper\ddd &ith

single kernels, as well as supervised SVMs with compositelse

=
1
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Authors

Description

L. Bruzzone, C. Persel
lo [47]
(see chapter 4)

This paper presents a novel context-sensitive semisuperSigkti(CS'VM)

classifier, which is aimed at addressing classificafwoblems where th
available training set is not fully reliable, i.e., songelad samples may be g
sociated to the wrong information class (mislabeled pattetmdike standard
context-sensitive methods, the proposed\@&classifier exploits the contex
tual information of the pixels belonging to the neighborhood Bysit each
training sample in the learning phase to improve the robssttee possiblg

mislabeled training patterns. This is achieved according tothetdesign of &

semisupervised procedure and the definition of a novel conteetmalin the
cost function associated with the learning of the classifieorder to assess tl
effectiveness of the proposed @$! and to understand the impact of the
dressed problem in real applications, the authors also prasesxtensive ex
perimental analysis carried out on training sets that inclufierefit percent;
ages of mislabeled patterns having different distribut@mmshe classes. In th
analysis they also study the robustness to mislabeledniygieitterns of som
widely used supervised and semisupervised classificationtalgar(i.e., con-
ventional SVM, progressive semisupervised SVM, Maximum Likeliheod,
k-Nearest Neighbor)

11

1)

e
nd-

D

L. Bruzzone, M. Mar-
concini [48]

In this paper, the authors address automatic updating of landroapsrby usH
ing RS images periodically acquired over the same investigaea under th
hypothesis that a reliable ground truth is not available for @lttimsidered ag
quisitions. The problem is modeled in the domain-adaptatioreframk by in-
troducing a novel method designed for land-cover map updatinghvid
based on a domain-adaptation SVM technique. In addition, a cioselar ac-
curacy assessment strategy is proposed for the validattbe odsults obtaine
by domain-adaptation classifiers when no ground-truth labels for thédeq
ered image are available.

D

(9]

ns

D. Tuia, F. Ratle, F. Par

cifici, A. Pozdnoukhov,
M. Kanevski, F. Del
Frate, D. Solimini, W. J
Emery [50]

In this paper, an active learning method is proposed foseh@-automatic se
lection of training sets in RS image classification. Thehetadds iteratively
to the current training set the unlabeled pixels for which thdigiren of an
ensemble of classifiers based on bagged training sets showuamaentropy.
This way, the algorithm selects the pixels that are thst macertain and th4
will improve the model if added in the training set. The usersked to labe

at

such pixels at each iteration.

2.4 Discussion and conclusion

In this chapter, we presented a review on SVMsha dlassification of RS data, recalling
their theoretical formulation, and discussing thetiwations at the basis of their use in RS. We
presented a literature survey about the adoptio8\¥is for the analysis of different kinds of
RS images. We observed a large variety of studibtighed on the use of SVMs for the analysis
of different kinds of RS data, which confirm that/8s represent a valuable and effective tool
for the analysis of RS data and can be used in rddferent applications in the context of RS.
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We observed that one of the most appealing prazedi SVM for the classification of RS data
is its high generalization capability and robustns the Hughes effect, which allow SVMs to
operate in large dimensional feature spaces withtfaining samples. For this reason, SVMs
represent an effective choice for the classificatd hyperspectral data. Nevertheless, the SVM
approach turned out to be particularly effectiveoah the classification of very high resolution
(VHR) images, which typically require the extractiof several additional features to character-
ize and discriminate the different land-cover admsssThus, both the classification of VHR and
hyperspectral images typically result in classifima problems characterized by large dimen-
sional feature spaces. Moreover, thanks to itgiligton-free approach and the capability to
cope with strongly non-linear problems by meanshef kernel function, SVMs are a valuable
tool also for the classification of data acquirgddifferent information sources.

In addition, we pointed out the most recent woitisut the development of advanced SVM-
based techniques for the analysis of RS data. Antloegse developments, we recall semisuper-
vised and domain-adaptation SVM, techniques base®M that exploit the spatial-context in-
formation, and active learning methods. Semisuped/iSVMs have shown to be effective in
exploiting both labeled and unlabeled samples lier learning of the classification algorithm,
further augmenting the generalization capabilitd #me robustness to the Hughes phenomenon
with respect to standard supervised SVM. Domairptd®mn SVM resulted effective for ad-
dressing the problem of automatic updating landecowaps by using RS images periodically
acquired over the same investigated area. Congmsitive techniques based on SVM have been
proposed for both regularizing the classificatioapn{exploiting the context information in the
classification phase) or for improving the robuss¢o mislabeled training samples (using the
context information in the learning phase of thgodathm). Another promising approach is ac-
tive learning, which allows one an interactive gss of RS data, by driving the user to label un-
labeled samples that are selected by a query tmas most informative.

We can conclude that the SVM approach showed teebge promising for the classification
of RS data and recent works demonstrate that S\iMbeaused as basis for the development of
advanced techniques for solving specific RS problemfor exploiting particular properties of
the RS data. However, still effort should be desgldtethe development of advanced techniques
that can effectively extract useful informationrfrahe rich and complex data acquired by the
last generation of RS sensors. Moreover, efforédgiired also for applying the SVM-based ap-
proaches developed in the research activitiesahwerld RS problems. Indeed, at the present,
the most of the real problems related to RS imdgssiication are still solved with standard
classifiers (like maximum likelihood deNN) that, even if simple, cannot guarantee theuacc
racy and generalization capabilities of SVMs in ptew problems.
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Chapter 3

3. A Novel Approach to the Selection of Spatially Invaant
Features for the Classification of Hyperspectral Inages with
Improved Generalization Capability

This chapter presents a novel approach to featetecsion for the classification of hyper-
spectral images. The proposed approach aims atsetea subset of the original set of features
that exhibits at the same time high capability imcdminate among the considered classes and
high invariance in the spatial domain of the invgsted scene. This approach results in a more
robust classification system with improved genesdlon properties with respect to standard
feature-selection methods. The feature selectiaméemplished by defining a multiobjective cri-
terion function made up of two terms: 1) a termt theeasures the class separability and 2) a
term that evaluates the spatial invariance of takested features. In order to assess the spatial
invariance of the feature subset, we propose bosupervised method (which assumes that
training samples acquired in two or more spatialigjoint areas are available) and a semisu-
pervised method (which requires only a standardntry set acquired in a single area of the
scene and takes advantage of unlabeled samplestestlien portions of the scene spatially dis-
joint from the training set). The choice for theoewised or semisupervised method depends on
the available reference data. The multiobjectivelypem is solved by an evolutionary algorithm
that estimates the set of Pareto-optimal solutidbgperiments carried out on a hyperspectral
image acquired by the Hyperion sensor on a complea confirmed the effectiveness of the
proposed approach.

3.1 Introduction

Hyperspectral remote sensing images, which areacterized by a dense sampling of the
spectral signature of the different land-cover gypepresent a very rich source of information

This chapter was published on tiiEE Transactions on Geoscience and Remote Sengihgl7, no. 9,

pp. 3180-3191.2005, September 2009. Title: “A Novel Approach to theti®aled Spatially Invariant

Features for the Classification of Hyperspectral Imageth Winproved Generalization Capability”.
Authors: L. Bruzzone, C. Persello.
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for the analysis and automatic recognition of #nedlcover classes. However, supervised classi-
fication of hyperspectral images is a very comptethodological problem due to many differ-
ent issues [1]-[5]: 1) the small value of the rdietween the number of training samples and the
number of available spectral channels (and thuslassifier parameters), which results in the
Hughes phenomenon [6]; 2) the high correlation agnvaining patterns taken from the same
area, which violates the required assumption oépeshdence of samples included in the training
set (thus reducing the information conveyed to dl@ssification algorithm by the considered
samples); and 3) the nonstationary behavior ospeetral signatures of land-cover classes in the
spatial domain of the scene, which is due to plydactors related to ground (e.qg., different soll
moisture or composition), vegetation, and atmospleanditions. All the aforementioned issues
result in decreasing the robustness, the genetializaapability, and the overall accuracy of
classification systems used to generate the landraunaps.

In order to address the abovementioned problentheimecent literature different promising
approaches have been proposed for hyperspectrgeiciassification (as presented in the previ-
ous chapter). Among the others, we recall: 1) e of supervised kernel methods (and in par-
ticular of Support Vector Machines), which are imgically robust to the Hughes phenomenon
[1],[2]; 2) the use of semisupervised learning rodththat take into account both labeled and un-
labeled samples in the learning of the classif@r §nd 3) the joint use of kernel methods and
semisupervised techniques [4],[5]. On the one h&uMs are supervised classifiers that result
in augmented generalization capability with respeatther classification methods thanks to the
structural risk minimization principle, which allewone to effectively control the tradeoff be-
tween the empirical risk and the generalizatiorpprty. On the other hand, semisupervised ap-
proaches can increase the capability of classifisadlgorithms to derive discrimination rules
that better fit with the nonstationary behaviorfeditures in the hyperspectral image under inves-
tigation, by considering also the information ofabeled samples. These classification methods
proved to be quite effective in mitigating sometloé aforementioned problems. Nevertheless,
the problem of the spatial variability of the fe&tsican be addressed (together with the sample
size problem) at a different and complementaryllewe, in the feature extraction and/or feature
selection phase. To this purpose, the feature @idraphase should aim at deriving discrimina-
tive features that are also as stationary as gdessilthe spatial domain. The feature selection
phase should aim at selecting a subset of theadlaifeatures that satisfies the following: 1) al-
lows the classifier to effectively discriminate thensidered classes, 2) contains features that
have the most invariant as possible behavior insffaial domain. In this chapter we focus on
the development of a feature-selection approadgheddentification of robust and spatially in-
variant features. It is worth noting that, althougrthe literature several feature-selection algo-
rithms have been proposed for the analysis of sygsatral data (e.g., [9]-[12]), to the authors’
knowledge, little attention has been devoted tcefloeementioned problem.

The feature-selection techniques that are mostlyideed in remote sensing generally re-
guire the definition of a criterion function andearch strategy. The criterion function is a meas-
ure of the effectiveness of the considered subisigatures, and the search strategy is an algo-
rithm that aims at efficiently finding a solutione(, a subset of features) that optimizes the
adopted criterion function. In standard featuresigbn methods [9]-[17], the criterion functions
typically adopted are statistical measures thasssthe separability of the different classes on a
given training set, but do not explicitly take irgocount the stationarity of the features (e.e, th
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variability of the spectral signature of the laralser classes). This approach may result in select-
ing a subset of features that retain very goodridiscation properties in the portion of the scene
close to the training pixels (and therefore wittniar behavior), but are not appropriate to model
the class distributions in separate portions orstiene, which may present different spectral be-
havior. Considering the typical high spatial vailiab of the spectral signature of land cover
classes in hyperspectral images, this approacleeahnto aroverfitting phenomenon in the fea-
ture-selection phase, resulting in poor generatinatapabilities of the classification system.
Note that we use here the teawverfitting with an extended meaning with respect to the conve
tional sense, which traditionally refers to the pd@enon that occur when inductive algorithms
models too closely the training data, loosing geleation capability. In this work, we observe
that there is an intrinsic spatial variability bktspectral signature of classes in the hypersgectr
image, and thus, we expect that the generalizatlity of the system is strongly affected from
this property of hyperspectral data, which is muoobre critical than in standard multispectral
images.

In this chapter we address the aforementioned @nolbly proposing a novel approach to fea-
ture selection that aims at identifying a subseteatures that exhibit both high discrimination
ability among the considered classes and high iavee in the spatial domain of the investi-
gated scene. This approach is implemented by defiminovel criterion function that is based on
the evaluation of two terms: 1) a standard seplifabieasure and 2) a novel invariance meas-
ure that assesses the stationarity of featurdseispatial domain. The search algorithm, adopted
for deriving the subsets of features that joinghfimize the two terms, is based on the optimiza-
tion of a multiobjective problem for the estimatiohthe Pareto-optimal solutions. For the as-
sessment of the two terms of the criterion functian propose both a supervised and a semisu-
pervised method that can be adopted accordinge@thount of available reference data. The
proposed approach can be integrated in the de$ignyosystem for hyperspectral image classi-
fication (e.g., based on parametric or distribufi@e supervised algorithms, kernel methods,
and semisupervised classification techniques) rforeiasing the robustness and the generaliza-
tion capability of the classifier.

This chapter is organized into six sections. The ection presents the background and a
brief overview on existing feature-selection algums for the classification of hyperspectral da-
ta. Section 3.3 presents the proposed novel apprimathe selection of features for the classifi-
cation of hyperspectral images, and two possiblthats to implement it according to the avail-
able reference data. Section 3.4 describes thaedibyperspectral data set and the design of the
experimental analysis carried out for assessingtfextiveness of the proposed approach. Sec-
tion 3.5 presents the obtained experimental resultthe considered data set. Section 3.6 draws
the conclusions of this chapter.

3.2 Background on feature selection in hyperspectral irages

The process of feature selection aims at redudirgdimensionality of the original feature
space by selecting an effective subset of the maldgieatures, while discarding the remaining
measures. Note that this approach is different ffeature transformation (extraction), which
consists in projecting the original feature spas® @ different (usually lower dimensional) fea-
ture space [9], [14], [18], [19]. In this chaptee Wocus our attention on feature selection, which
has the important advantage to preserve the pHyseaning of the selected features. Moreover,
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feature selection results in a more general apprd@an feature transformation alone by consid-
ering that the features given as input to the feaselection module can be associated with the
original spectral channels of the hyperspectralgienand/or with measures that extract informa-
tion from the original channels and from the spat@ntext of each single pixel [20], [21] (e.Q.
texture, wavelets, average of groups of contigumusds, derivatives of the spectral signature,
etc).

Let us formalize a general feature-selection pmobler the classification of a hyperspectral
imageZ, where each pixel, described by a feature vegtoi(x, x,,...,%, ) in and-dimensional
feature space, is to be assigned to one dffferent classe ={a, @, ...} . The setYis
made up of thel features in input to the feature-selection proqegsch can be the original
channels and/or measures extracted from them)P(ef), «w 0Q , be thea priori probabilities
of the land-cover classes in the considered scame,p(x|w) be the conditional probability
density functions for the feature vector given the clasg) Q. Let us further assume that a
training setT ={X,)} made up ofN pairs (x;,y) is available, whereX ={x, X,,...,Xy},
x;ORY, 0i=12,...N, is a subset af and Y ={y,, Y,..., W}, ¥,0Q, 0i=1,2,...N is the corre-
sponding set of class labels. The aim of the feasetection process is to select the most effec-
tive subse®” 0 Y of | features (witH < d), according to a criterion function and a searchts
egy. This can be obtained according to differegbaihms that broadly fall into three categories
[22]: 1) thefilter model; 2) thewrapper model; and 3) théaybrid model. The filter model is
based on general characteristics of the considtatdand filters out the most irrelevant features
without involving the classification algorithm. Ually this is accomplished according to a meas-
ure that assesses the separability among claskeswiiapper model depends on a particular
classification algorithm and exploits the classifgerformance as the criterion function. It
searches for a subset of features that optimizet¢haracy of the adopted inductive algorithm,
but it is generally computationally more expendiven the filter model. The hybrid model takes
advantage of the aforementioned two models by @&xpdotheir different evaluation criteria in
different search stages. It uses a criterion fancthat depends on the available data to identify
the subset of candidate solutions for a given catdy | and then exploits the classification al-
gorithm to select the final best subset. In thet sebsections, we focus our literature analysis on
the filter methods and only on the background cptscthat are relevant for the developed tech-
nique.

3.2.1Criterion functions

In standard filter approaches to feature selectioatypically adopted criterion functions are
based on statistical distance measures that asisesseparability among class distributions
p(x|aw), D OQ, on the basis of the available training $ebtatistical distance measures are
usually adopted as they represent practical aitierieasily approximate the Bayes error. Com-
monly adopted measures to evaluate the separalfdityeen the distributions of two classgs
anda, are [9], [14]

p(x]a)
Divergence:Div; (8) = J p(X|aw)- p(x|cq)}|n o(x|a) (3.1)
Bhattacharyya distancé, (0) = -In {_[\/ pP(x| @) p(x | )d(} (3.2)
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Jeffries-Matusita distancetM; (8) :{J[\/ p(x|@@)— p(x | )]2 d(} . (3.3)

The JM distance can be rewritten according to thatBcharyya distan® :
IM; (8) =/2{L-exp[-§ ()]} (3.4)

In multispectral and hyperspectral remote sensintages, the distributions of classes
p(X|w),w 0Q are usually modeled with Gaussian functions witamvectors; and covari-
ance matrixe<;. Under this assumption, we can write:

Div; (0) :%Tr{(zi -5) (& -5 +—;Tr{(2‘,'1—):,'1)(/1-1 Y - )T} (3.5)
(O=2- (BB (=) i 2B E
B; (8) 8(/~4 /J,)( 5 j (u /J,)+2ln[ IEiIIEJ-Ij (3.6)

whereTr{[}] is the trace of a matrix. An important drawbacktw# divergence is that its value
quadratically increases with respect to the seperdietween the mean vectors of the classes
distributions. This behavior does not reflect theessification accuracy behavior, which asymp-
totically tends to one when the class distributians perfectly separated. On the contrary, the
JM distance exhibits a behavior that saturates viherseparability between the two considered
classes increases. For this reason the JM distargemnerally preferred to either the divergence
or the Bhattacharyya distance.

The previously described measures evaluate thistgtak distance between a pair of class
distributions. In order to extend the separabititgasures to multi-class problems, a usually
adopted separability indicator is obtained by cotimguthe average distance among all pair wise
distances. Thus, a multiclass separability measamebe defined as:

L L
A(8) = 2112 P(w)P(w) § (8) (3.7)
where G, (0) is a statistical distance measure (e.g., Bhattgghalistance, Divergence, and JM
distance) between the distributioqgx |c«y) and p(x|w;) of the two classes and «j, respec-
tively, andP(«), P(w,) are the prior probabilities of the classgsand ¢ in the considered
scene.

Other measures adopted for feature selection aedban scatter matrices that allow one cha-
racterizing the variance within classes and betwdasses [14]. Using these measures, the ca-
nonical analysis aims at maximizing the ratio betwamong-class variance and within-class va-
riance, resulting in the selection of features giatultaneously exhibit both requirements, i.e.,
high among-class variance and low within-classarare. Another example of indicator that can
be adopted as criterion function is the mutual nmfation, which measures the mutual depend-
ence of two random variables. In the context ofufemselection, the mutual information can be
used to assess the capability of the considerddréeaectorx; 060 to predict the correct class
label y, 0Q, 0i=1,2,...] . To this purpose, a definition of the mutual imh@tion that considers
the discrete nature gfshould be adopted (for deeper insight on featalection based on mu-
tual information, we refer the reader to [23], [R4]
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3.2.2 Search strategies

In order to select the final subset of features dmimizes the adopted criterion function, a
search strategy is needed. The search strategyragesiepossible solutions of the feature-
selection algorithm and compares them by applyliregcriterion function as a measure of the ef-
fectiveness of each solution. An exhaustive sefoclthe optimal solution involves the evalua-
tion and comparison of the criterion function ftir @) possible combination of features. This is
an intractable problem from a computational poihview, even for low numbers of features
[17]. Thebranch and bounanethod proposed by Naredra and Fukunaga [14], iEL&]widely
used approach to compute the globally optimum swiubr monotonic criterion function with-
out explicitly exploring all possible combination$ features. Nevertheless, the computational
saving is not sufficient for treating problems witbndreds of features. Therefore, in the case of
feature selection for hyperspectral data classitina suboptimal approaches should be adopted.
Several suboptimal search strategies have beems®edpn the literature. The simplest subopti-
mal search strategies are gexjuential forward selectiofFS) and theequential backward se-
lection (SBS) techniques [16], [17]. A serious drawbackath algorithms is that they do not al-
low backtracking. In the case of the SFS algoritmce the features have been selected, they
cannot be discarded. Similarly, in the case ofSBS search technique, once the features have
been discarded, they cannot be added again taubsetsof selected features. Two effective se-
guential search methods are those proposed by @udlil [16], namely, theequential forward
floating selectionSFFS) method and tlsequential backward floating selecti¢®BFS) method.
They improve the standard SFS and SBS techniquegrmmically changing the number of fea-
tures included (SFFS) or removed (SBFS) to theetutifsselected features at each step, thus al-
lowing the reconsideration of the features includedemoved at the previous steps. Other effec-
tive strategies are those proposed in [12], whenxe gearch algorithms are presented (i.e., the
steepest asceand thefast constrained searghwhich are based on the formalization of the fea-
ture-selection problem in the framework of a disem@ptimization problem in an adequately de-
fined binary multidimensional space.

An alternative approach to the exploration of thatfire space that is relevant to this chapter,
is that based on genetic algorithms (GAs), whicpliagtion to feature-selection problems was
proposed in [25]. Genetic algorithms exploit anlagg with biology, in which a group of solu-
tions, encoded ashromosomesevolve via natural selection [26]. A standard &aArts by ran-
domly creating an initial population (with a preiefd size). Solutions are then combined via a
crossover operator to produce offspring, thus edjmanthe current population. The individuals
in the population are evaluated according to thiterawn function and the individuals that less fit
such a function are discarded to return the pojumdd its original size. A mutation operator is
generally applied in order to increase individu&kstiations. The processes of crossover, evalua-
tion, and selection are repeated for a predetedmuoenber of generations (if no other stop crite-
rion is met before) in order to reach a satisfagcsmution. Several papers confirmed the effec-
tiveness of genetic algorithms for standard feasalection approaches (e.g., [27]-[29]), also for
hyperdimensional feature space. Moreover, as ltbgilexplained later, GAs become particularly
relevant for this work as they are effective whiea ¢riterion function involves multiple concur-
rent terms, and therefore a multiobjective probleas to be optimized in order to estimate the
Pareto-optimal solutions [30], [31].
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3.3 Proposed feature selection approach

The main idea and novelty of the approach that vepgse in this chapter is to explicitly
consider in the criterion function of the featusdestion process the spatial variability of the-fea
tures (e.g., of the spectral signatures) on eauth-¢@ver class in the investigated scene together
with their discrimination capability. This results the possibility to select a subset of features
that exhibits both high capability to discriminaeong different classes and high invariance in
the spatial domain. The resulting subset of selefgatures implicitly improves the generaliza-
tion capability in the classification process, whiesults in augmented robustness and accuracy
in the classification of hyperspectral images wihkpect to feature subsets selected with stan-
dard methods. This property is particularly relewahen the considered scene is extended over
large geographical areas and/or presents conslddraia-class variability of the spectral signa-
tures.

From a formal viewpoint, the aim of the proposegrapch is to select the sub$et Yof |
features (witH < d) that optimizes a novel criterion function madeafipwo measures that char-
acterize the following: 1) the capability of thebset of features to discriminate among the con-
sidered classes i@ and 2) the spatial invariance (stationary behawbithe selected features.
The first measure can be evaluated with standattstital separability indices (as described in
the previous section). Whereas, the spatial inmaggroperty is evaluated according to a novel
invariance measure that represents an importantilcotion of this work. In particular we pro-
pose two possible methods to evaluate the invagiaf@ subset of features: 1) a supervised me-
thod and 2) a semisupervised method. The supermmstod relies on the assumption that the
available training seT is made up of two subsets of labeled pattérnsgnd T, (such that
T,OT,=T andT, n T,=0) collected on disjoint (separate) areas on theirgto This property
of the training set is exploited for assessingspatial variability of the spectral signaturesio# t
land-cover classes. We successively relax this thygsts by proposing a semisupervised method
that does not require the availability of a traguisubsefT, spatially disjoint fromT; (only a
standard training sé€f =T, acquired in a single area of the scene is neatadijakes advantage
of unlabeled samples. This second method is basednoestimation of the distributions of
classes in portions of the image separate ffpavhich is carried out by exploiting the informa-
tion captured from unlabeled pixels. The final silaf features is selected by jointly optimizing
the two concurrent terms of the criterion functidhis is done by defining a proper search strat-
egy based on the optimization of a multiobjectivelyem for deriving the subsets of features
that exhibits the best trade-off between the twacoorent objectives.

In the following subsections we present the progasgervised and semisupervised methods
for the evaluation of the criterion function. Thee describe the proposed multiobjective search
strategy for deriving the final subsets of featules exhibits both the aforementioned properties
(which can be assessed with either the supervis¢kdeosemisupervised method depending on
the available reference data).

3.3.1Supervised formulation of the proposed criterion function

Let us first assume the availability of two subs#téabeled pattern$; and T, collected on
disjoint areas on the ground (thus, representing different realizations of the class distribu-
tions). Under this assumption, we can define a honterion function that is based on two dif-
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ferent terms: a) a term that measures the clasgagpty (discrimination term); b) a term that
evaluates the spatial invariance of the invest@jé¢atures (invariance term).

a) Discrimination TermA - This term is based on a standard feature-selectitgrion func-
tion. In the proposed system we adopt the defmigiven in (3.7) where the terdy(6) evalu-
ates the average measure of distance between whlesoof class distributiong(x |« )and
p(X|w), Ow,w 0Q andi < j. This term depends on the selected subsétfeatures, and the
subset of featuresd” that maximizes this distance results in the besntial for discriminating
land-cover classes in the area modeled by theingasamples. It is important to note that the
evaluation of the above term is usually performgassuming Gaussian distributions of classes
for calculating the statistical distan&(0) . Under this assumption, also in presence of twe di
joint training sets, it is preferable to evaludte discrimination term by considering only one
subset of the training sefy(or T,). This can be explained by considering that mixapgthe two
available training subs@k andT, would result in mixing together two different rizakions of
the feature distributions, which, from a theordtiparspective, can not be correctly modeled
with Gaussian (mono-modal) distributions.

b) Invariance TermP - In order to introduce the invariance term letiust tonsider Fig. 3.1.
This figure shows a qualitative example in a 2-disienal feature space of two subsets of fea-
tures that exhibit different behavior of the sampdatracted from different portions of a scene.
The features of Fig. 3.1(a) present good capaliityeparate the class clusters and also exhibit
high invariance on the two considered training.s€t@se properties allow the supervised algo-
rithm to derive a robust classification rule, réisigl in the capability to accurately classify sam-
ples that can be localized in both the areas frdnclwvthe samples &f; and T, are extracted. On
the contrary, the features adopted in Fig. 3.1hjlet good separability properties but low in-
variance. This feature subset leads the supenaseder to derive a classification rule that is not
robust, resulting in poor classification accuracgpatially disjoint areas.
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Fig. 3.1 - Examples of feature subsets with different inméfstationary) behaviors on two disjoints set
T,andT,. (a) Feature subset that exhibits high separability anditmgiiance properties. (b) Feature
subset with high separability i but high variability betweef; andT,.

The different behavior between the feature subsdtsg. 3.1(a) and Fig. 3.1(b) can be mod-
eled by considering the distance between the chishat refer to the same land-cover class in
the two disjoint training seff; and T,. Thus, we can introduce a novel term to expliaitigas-
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ure the invariance (stationary behavior) of feawe each class in the investigated image. It can
be defined as:

L

P6) =52 P (@) P" () §7°(0) (3.8)
where S is a statistical distance measure between thaldittins p" (x|w), r =1,2 of the
class« computed orT; andT,, and P (w) represents the prior probability of the clagsn
T.,r=1,2. This term evaluates the average distance bettireedistributions of the same class
in different portions of the scene (i.e., on the wsjoint subsets of the training set). Unlike for
A(0), we expect that a good (i.e., robust) subset atufes should minimize the value B0) .
The computation oP(0) can be easily extended to more than two trainutgets if labeled data
collected on more than two disjoint regions areilaisée. In the general case, whBrspatially
disjoints training sets are available, the invacgaterm can be defined as follows:

33 P* () P () 57 (6) (3.9)

1
R a=lb>ai=1

P(O) =

The process of selection of features that joinfifiroize the discrimination terrd(0) and the
invariance termP(0) will be described in section 3.3.3.

3.3.2Semisupervised formulation of the criterion functian (invariance term estimation)

The collection of labeled training samples on twprore) spatially-disjoint areas from the
site under investigation can be difficult and/orywexpensive. This may compromise the appli-
cability of the proposed supervised method in soea classification applications. In order to
overcome this possible problem, in this sectionpn@pose a semisupervised technique to esti-
mate the invariance term defined in (3.8), whiclesloot require the availability of a disjoint
training subseT,. Here, we only assume that a training Beis available and we consider a set
of unlabeled pixel®) :{xl,xz,...,xu} 7 (subset of the original image) that should satisfy two
requirements: 1) contains samples of all the considered classels2ppamples ity should be
taken from portions of the scene separated froreettom which the training sampl&sare col-
lected. The sdt) can be defined: 1) by manually selecting clusténgixels on a portion of the
considered scene; 2) by randomly sub-sampling afspixels; or 3) by considering the whole
imageZ. It is worth noting that, in the proposed algamththe labels of classes are not required.
We only assume that the unlabeled samples arectal@ccording to a strategy that can implic-
itly consider all classes present in the scene.

The method is based on the semisupervised estimatfo the terms P (@) and
p” (X|@),wOQ, which, in this case, characterize the prior pbiliites and the conditional
probability density functions in the disjoint arearresponding to the pixels o, respectively.
The distribution of the samples lthcan be described by the following mixture model:

p“(x>=gp“(cq)w<x|cq). (3.10)

We assume thaP" (w) and p” (x| @) are not known, whilep” (x) is given from the data dis-
tribution. However, despite the expected variapilior each classy 0Q, the initial values of
both the prior probabilityP" («) and the conditional density functiop” (x |w)can be roughly
approximated by the prior and the conditional dgrfsinction inTy, i.e.,
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PP%@)=Pi(a@); P Klw )= P & k) (3.11)
The problem can be addressed by estimating themgdess vectord =[P"(w),d 1, where

=11
each componend. represents the vector of parameters that chaiaetdre density function
p” (x| @), which, given its dependence frodn, can be rewritten ag" (x|« ,d ). The com-
ponents of) can be estimated by maximizing the pseudo loditiked function L[ p (x)] de-

fined as
L[p“(X)IJ]=_IZ:1|09 _L;P“(WIJ)FV(XI%J)- (3.12)

The maximization of the log-likelihood function che obtained with the expectation maximiza-
tion (EM) algorithm [32]. The EM algorithm consigi§two main steps: an expectation step and
a maximization step. The two steps are iteratedhabthe value of the log-likelihood function
L[p”(xX)] increases at each iteration, until a local maxinmsmeached. For simplicity, let us
consider that all the classesJQ are Gaussian distributed. Under this assumptierd#nsity
function associated with each class can be completely described by the mean vegtoand

the covariance matriZ; , i =1,...L . Therefore the parameters vector to be estimatedrbes:

I=[PY () 4 2V (3.13)

It can be proven that the equations to be usetations+1 for estimating the statistical terms
associated with a generic classare the following [3], [32], [33] :

PU,S U.S(y
)=t 3 S Sl (3.14
s Pr@p e )
7 e ) (3.15)
5 P i |@)
XU pU'S(X,‘)
PR @),
=t B (3.16)
5 P (@) p(x; @)
Xt pU’S(Xj)

where the superscriptssands+1 refer to the values of the parameters atsttieand s+1-th it-
eration, respectively. The estimates of the stesisparameters that describes the classes distri-
butions in the disjoint areas are obtained stariog the initial values of the parameters [see
(3.11)] and iterating the equations (3.14)-(3.1p)ta convergence. An important aspect of the
EM algorithm concerns its convergence properties hot possible to guarantee that the algo-
rithm will converge to the global maximum of theibkelihood function, although convergence
to a local maximum can be ensured. A detailed desmn of the EM algorithm is beyond the
scope of this chapter, so we refer the readerddititrature for a more detailed analysis of such
an algorithm and its properties [3], [32]. The fimstimates obtained at convergence for each
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classw 0Q, ie., PY(@), and P’ (x|w) (which depend on the estimated parameirss’ )
can be used in place ¢ («) and p(x|w) to estimate the invariance terR(0) for each
subset of feature®8 considered. Thus, the semisupervised estimatigheoinvariance term be-
comes:

A L ~ ~
PO) =52 PH (@) (@) §(0). (3.17)
The discrimination term\(0) can be calculated as in (3.7) with no differendi wespect to the
supervised method.

It is worth noting that, depending on the adoptetdsof unlabeled pixels, the estimation of
the prior probabilities and the class conditionahsities can reflect with different degree of ac-
curacy the true values. In particular, the estiomabf the elements of the covariance matrices
ii“ , i=1,...L may become critical in some cases when the nuwmbeasses is high. Thus, in
these cases, since small fluctuations in the acgunéthe estimation of the covariance terms
iiu , 1=1,...L can strongly affect the invariance term values, élstimation of the invariance
term can be simplified: 1) by assuming that theac@mnce matrix is diagonal, 2) by considering
only the first-order statistical moment (thus negleg the second-order moments) for the evalu-
ation of the statistical distan(ﬁrlu (9).

3.3.3Proposed multiobjective search strategy

Given the proposed criterion function that is mageof the discrimination terrd(0) and
invariance termP(0) (which, depending on the available reference dza,be evaluated with
the supervised or the unsupervised methods asilbleddn the two previous subsections), we
address now the problem of defining a search glyateselect the subset (or the subsets) of fea-
tures that jointly optimizes the two defined measurTo this purpose, one can define a global
optimization function as

V(0) =A(0) + KO [P(6)] (3.18)

whereK tunes the tradeoff between discrimination abiityd invariance of the selected subset
of features, anélis monotonic decreasing function B{®) . The subse®” of | features for which
V(0) has the maximum value represents the solutionet@dnsidered problem.

Nevertheless, the aforementioned formulation ofgreblem has two drawbacks: 1) the ob-
tained criterion function is not monotonic (and gheffective search algorithms based on this
property cannot be used), and 2) the definitiof afidK (which should be carried out empiri-
cally) affects significantly the final result. Tw@&rcome these drawbacks, we modeled this prob-
lem as a multiobjective minimization problem, whéne multiobjective functiorg(@) is made
up of two different (and possibly conflicting) objeres g,(0) and g,(0), which express the
discrimination abilityA(@) among the considered classes and the spatiaiamearP(0) of the
subset of feature®, respectively. The multiobjective problem can #fere be formulated as
follows:

min{g®)}
whereg 0 )= [, 0).0, 0)= FA0)PO)]

(3.19)
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Where|6| is the cardinality of the subse@t, i.e., the number of featuréso be selected from the
d originally available. This problem is solved irder to obtain a set of Pareto-optimal solutions
O', instead of a single optimal one. In greater dedagolutiond” is said to be Pareto optimal if
it is not dominated by any other solution in thearsé space, i.e., there is no othersuch
thatg,(0) < g (0) (0i=1,2) and g;(8) < g,(8") for at least ong ([Jj =1,2). This means that
0’ is Pareto optimal if there exists no other sub§étatures® which would decrease an objec-
tive without simultaneously increasing the othee @Rig. 3.2 clarifies this concept with a graph-
ical example). The seD” of all optimal solutions is called Pareto-optinsat. The plot of the
objective function of all solutions in the Parefoimal set is called Pareto front
PF ={g0)| 00O} . Because of the complexity of the search spacexhaustive search of the
set of optimal solutiorO" is unfeasible. Thus, instead of identifying theetset of optimal solu-
tions, we aim to estimate a set of non-dominatédtisas O with objective values as close as
possible to the Pareto front. This estimation carabhieved with different multiobjective opti-
mization algorithms (e.g., multiobjective evolutaog algorithms).
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Fig. 3.2 - Example of Pareto-optimal solutions and dominated solutia two-objective search space.

The main advantage of the multiobjective approadhat it avoids to aggregate metrics cap-
turing multiple objectives into a single measure e contrary, it allows one to effectively
identify different possible tradeoffs between tteues of A(0) and P(0). This results in the
possibility to evaluate in a more flexible way th@deoffs between discrimination ability among
classes andpatial invariance of each feature subset, anddntify the subsets of features that
simultaneously exhibit both properties. In part&ulwe expect that the most robust subsets of
features (which will results in the best generdioa capability of the classification system) are
represented by the solutions that are localizesecto the knee of the estimated Pareto front (or
the solutions closest to the origin of the seapzts).

3.4 Data set description and design of experiments

In order to assess the effectiveness of the predeapiproach (with both the proposed super-
vised and semisupervised methods), we carriedematral experiments on a hyperspectral image
acquired over an extended geographical area. Wsidered a data set which is increasingly
used as a benchmark in the literature and consistata acquired by the Hyperion sensor of the
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EO-1 satellite in an area of the Okavango Deltas®ana. The Hyperion sensor on EO-1 ac-
quired the hyperspectral image with a spatial tggm of 30 m over a 7.7 km strip in 242 bands.
Uncalibrated and noisy bands that cover water altisor range of the spectrum were removed,
and the remaining 145 bands were given as inpthedeature-selection technique. For greater
details on this data set, we refer the reader4f [Bhe labeled reference samples were collected
on two different and spatially disjoint areas (Afeand Area 2), thus representing possible spa-
tial variabilities of the spectral signatures ohsdes. The samples taken on the first area were
partitioned into a training séf; and a test sefS by a random sampling (these sets represent
similar realizations of the spectral signatureslagses). Samples taken on the second area were
used to derive a training s€& and test seTS according to the same procedure used for the
samples of the first considered area (these twomeisent possible variability in class distribu-
tions with respect to the first two set§he number of labeled reference samples for eacnse
class are reported in Table 3.1. After preliminaxyperiments carried out in order to understand
the size of the subset of features that leadsdcs#uration of the classification accuracies, we
performed different experiments (with both the supped and the semisupervised methods) va-
rying the sizd of the selected subset of features in a rangedsst\@ and 14 with step 2. The ob-
tained subsets of features were used to perforntldssification with a Gaussian maximum-
likelihood (ML) classifier. The training of the Mtlassifier (estimation of Gaussian parameters
for class conditional densities) was carried oungishe training set;. We compared the classi-
fication accuracies obtained on both test 3&sand TS2performing the feature selection with
the following: 1) the proposed approach with thpesuised method for the estimation of the in-
variance term; 2) the proposed semisupervised rddtireestimating the invariance term; and 3)
a standard feature-selection technique that corssa®y the discrimination term.
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Table 3.1 - Number of training’{ andT,) and testTS andTS) patterns acquired in the two spatially
disjoint areas

Number of samples
Class Area 1 Area 2
T TS, T, TS,
Water 69 57 213 57
Hippo grass 81 81 83 18
Floodplain grassesl1 83 75 199 52
Floodplain grasses2 74 91 169 46
Reedsl 80 88 219 50
Riparian 102 109 221 48
Firescar2 93 83 215 44
Island interior 77 77 166 37
Acacia woodlands 84 67 253 61
Acacia shrublands 101 89 202 46
Acacia grasslands 184 174 243 62
Short mopane 68 85 154 27
Mixed mopane 105 128 203 65
Exposed soil 41 48 81 14
Total 1242 1252 2621 627

The experiments with the supervised feature-seleatiethod were carried out by consider-
ing the training seT; for the evaluation of the discrimination terfx{(0) and bothT; and T, for
the evaluation of the invariance tera(0) . In our implementation we adopted the JM distance
(under the Gaussian assumption for the distributibolasses) as a statistical distance measure
for both the considered terms. The second set méraxents was carried out with the proposed
semisupervised feature-selection method. In thegeranents we considered the training Bet
for the evaluation of the discriminative terf(0), while the invariance ternﬁ’(ﬂ) was esti-
mated fromT; andthe samples of,, which were used without their class label infotiora as
setU. For simplicity, we considered only the first ordeoment to evaluate the statistical dis-
tance é}“ (0) (see discussion reported in section 3.2.1). Thedstrd feature selection was per-
formed by selecting the subsets of features thaimae the JM distance on the training et
with a (mono-objective) genetic algorithm. Notettiage did not mix up the two training s&t
and T, both for training the ML classifiers and for evding the discrimination term, as the
Gaussian approximation is no more reasonable frtwo different Gaussian realizations of
each class iif; andT, (see section 3.2.1).

In order to solve the defined two-objective miniatinn problem for the proposed methods
(i.e., estimating the Pareto-optimal solutions), wglemented a modification of the “Non-
Dominated Sorting in Genetic Algorithm 11" (NSGA}I[31]. The original algorithm was modi-
fied in order to avoid solutions with multiple sefiens of the same feature. This has been ac-
complished by changing the random initializatiorthed chromosome population and by modify-
ing the crossover and mutation operators. In @l élxperiments, the population size was set
equal to 100, and the maximum number of generaggpusl to 50. The classification was car-
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ried out using all combinations of featu®sJO' that lie on the estimated Pareto front, and the
subset” that resulted in the highest accuracy on the iisfest sefTS was finally selected.
For the mono-objective genetic algorithm we adopterd same values for both the population
size and the maximum number of generations ashi@®niultiobjective genetic algorithm.

3.5 Experimental results

3.5.1Results with the supervised method for the estimain of the invariance term

We first present the experimental results obtaiwwéd the proposed supervised method that
allows us to derive important considerations atbetvalidity of the proposed approach with re-
spect to the standard one. In order to show theiimings of standard feature-selection algo-
rithms for the classification of hyperspectral ireagFig. 3.3 plots the graphs of the accuracy ob-
tained by the ML classifier on the adjoifit§) and disjoint TS) test sets versus the values of
the discrimination tern\(0) for different subset of features. For the repogeaphs we used the
solutions on the Pareto front estimated by the flretiNSGA-II algorithm applied to the mul-
tiobjective minimization problem in (3.19), in tkases of six and eight features (these two cases
are selected as examples; the other considered lek&o similar results). From this figure, it is
possible to observe that the accuracyT@ increases when the discrimination term increases,
whereas the accuracy di% increases only till a certain value and then trdases. Therefore,
the simple maximization of the discrimination tefas standard approaches do) can lead to an
overfitting phenomenon, which result in poor gefizasion capabilities, i.e., low capability to
discriminate and correctly classify the land-coskasses in areas of the scene different from that
associated with the collected training data. Tlisficms the significant variability of the spec-
tral signature of classes in hyperspectral images.

1

[N

0.9 0.9 A
5 5
3 g
S 0.7 S 0.7 4
o «
£ 0.6 - S 0.6
IS I
X X
0.5 1 0.5
0.4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.4 ‘ ‘ ‘ ‘ ‘ ‘ T T ‘
0.6317 0.6361 0.641 0.6429 0.646 0.6468 0.6473 0.6414 0.643 0.6436 0.6478 0.6484 0.649 0.6493
Discrimination term Discrimination term
——TS2 ——TS1 —e—TS2 ——TS1
(@) (b)

Fig. 3.3 — Behaviors of the kappa coefficients of accuracy otethesellS andTS versus the values of
the discrimination ternf\(0) . Cases of (a) six and (b) eight features.

The aim of the proposed approach is to overconsepifuiblem. Let us now consider Fig. 3.4
that depicts the Pareto fronts estimated by thepgmed approach (employing the modified
NSGA-II algorithm) in the cases of the selection6odnd 8 features. This figure represents the
information of the kappa coefficient of accuracyhieh is obtained by the classification of the
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test setsI'S and TS with the considered subset of featuﬁés as the color of the point, accord-
ing to the reported color scale bar. The diagramBig. 3.4 (a)-(c) show that for the classifica-
tion of TS, the solutions with higher discrimination capapillower values of-A(0) ] result in
better accuracies. This behavior reveals (as egggthat only the discrimination term is impor-
tant for selecting the most effective feature sulisethe classification of pixels acquired in a
similar area of pixels iff; (in this conditions training and test patternsrespnt the same reali-
zation of the statistical distributions of class€¥) the contrary, the diagrams in Fig. 3.4(b)-(d)
show that the most accurate solutions for the ifleagon of the spatially disjoint samples of
TS (which result in the highest kappa coefficientasturacy) are located in a middle region,
close to the knee of the estimated Pareto fronts Tbnfirms the importance of the invariance
term, and that tradeoff solutions between the tarometing objective€\(0) and P(0) should be
identified in order to select the subset of feaduteat lead to better generalization capabilities,
and thus higher classification accuracy in areathefhyperspectral image different from the

tralnlng one.
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Fig. 3.4 — Pareto fronts estimated by the proposed approactheisupervised method. (a)-(b): 6-feature
case; (c)-(d): 8-feature case. The color indicates thp&eoefficient of accuracy on (a)-{h and (b)-
(d) TS according to the reported color scale bar.

Table 3.2 reports the comparison of the classificaaccuracies obtained dig andTS by
selecting the subset of features with the propaseltiobjective supervised and semisupervised
methods, as well as the standard method. Frontahis, it is possible to observe that the ob-
tained accuracy on the disjoint test & are, in general, significantly lower that thoseamfed
on the adjoint test s@tS;, confirming the presence of consistent variabilitythe spatial domain
of the spectral signatures of the classes. Thiagrhenon severely challenges the generalization
capability of the classification system. Nevertssleve can observe that for all considered cas-
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es, the proposed multiobjective feature-selecti@thwds allowed to significantly increase the
accuracy on the test s€& with respect to the standard method, while thaigaxy on the ad-
joint test sefTS only slightly decreased. In average, the proposgersised method resulted in
an increase of the classification accuracy on tisidt test set of 21.3% with respect to the
standard approach, slightly decreasing of 4.2%atleiracy on the adjoint test set.

The obtained results clearly confirm that the psgzbapproach is effective in exploiting the
information of the two distinct available trainirsgts to select subsets of robust and invariant
features, which can improve the generalization baitias of the classification system. We fur-
ther observe that very few spectral channels (6d”ds out of the originally 145 available) are
sufficient for effectively representing and discimiatting the considered information classes, thus
significantly reducing the problems associated h#h Hughes phenomenon. The computational
cost of the proposed supervised method is companaith the cost of the standard mono-
objective algorithm. In our experiments, carried on a PC mounting an Intel Pentium D proc-
essor at 3.4 GHz and a 2 Gb DDR2 RAM, the featatection with the supervised multiobjec-
tive method took an average time of about 4 minutdsle the standard method took about 3
minutes. This is due to the fact that the evaluatibthe discrimination ternd(6) (which has to
be computed also with standard feature-selectiothaas) requires a computational cost that is
proportional toL(L -1) /2, while the introduced invariance terR{@#) has a computational cost
proportional toL. Therefore, the additional cost due to the evanabf the new term becomes
lesser and lesser when the number of classes sagea

3.5.2Results with the semisupervised method for the estation of the invariance term

Often in real applications a disjoint training Jetis not available to the user and the pro-
posed supervised method can not be used. In tlesss,cthe semisupervised approach can be
adopted. It is worth noting that from the perspexinf the semisupervised method, the super-
vised technique represents an upper bound of th@acy and generalization ability that can be
obtained (if the same samples with and withoutliabee considered). Thus, in this case the re-
sults presented in the previous section can be agéme best performances that can be obtained
on the considered samples.

As expected, the semisupervised method led to ac@s slightly smaller than the super-
vised method, but still maintained a significanpneavement with respect to the traditional ap-
proach. In average, the semisupervised methodasecethe classification accuracy ©& of
16.4% with respect to the standard feature-seleatiethod, while decreased the accuracy on
TS of 3.1%. The small decrease in the performancés respect those obtained by the super-
vised method are due to the approximate estimatidhe invariance term carried out with the
EM algorithm, which can not ensure to convergeht aptimal solution. However, the semisu-
pervised method has the very important advantageotsiderably increase the generalization
capabilities of the classification systems withpesst to the traditional approach without requir-
ing additional reference data. The computation obghis method is slightly higher with respect
to the standard method, because of the time retjbyeEM algorithm to perform the estimation
necessary to evaluate the invariance term. In xperements, the average time for the feature se-
lection with the semisupervised approach was ofialb6 minutes (15 times more than the su-
pervised method).
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Table 3.2 - Kappa Coefficient of Accuracies obtained byMheclassifier with the features selected by
the proposed supervised and semisupervised methods, and the stppdaadh

Kappa coefficient of Accuracy on Kappa coefficient of Accuracy on
Test SetTS, Test SetTS;
Number of
features Propf)sed Propo§ed Standard Propf)sed Propo§ed Standard
Semisup. | Supervised method Semisup. | Supervised method
Method method Method method
6 0.780 0.791 0.580 0.894 0.902 0.931
8 0.767 0.816 0.577 0.906 0.884 0.939
10 0.777 0.813 0.592 0.938 0.912 0.942
12 0.722 0.808 0.591 0.914 0.900 0.954
14 0.739 0.799 0.625 0.912 0.913 0.953
Average 0.757 0.805 0.593 0.913 0.902 0.944

3.6 Conclusion

In this chapter we presented a novel feature-seteapproach to the classification of hyper-
spectral images. The proposed approach aimedeattisg) subsets of features that exhibit, at the
same time, high discrimination ability and high tiainvariance, improving the robustness and
the generalization properties of the classificaBgstem with respect to standard techniques. The
feature selection was accomplished by defining &iajective criterion function that considers
the evaluation of both a standard separability nn@aand a novel term that measures the spatial
invariance of the selected features. In order s the invariance in the scene of the feature
subset we proposed both a supervised method (asguh@ availability of training samples ac-
quired in two or more spatially disjoint areas) ansemisupervised method (which requires only
a standard training set acquired in a single af¢laeoscene and exploits the information of unla-
beled pixels in portions of the scene spatiallyadns from the training areas). The multiobjec-
tive problem was solved by an evolutionary alganitfor the estimation of the set of Pareto-
optimal solutions.

Experimental results showed that the proposed fieatelection approach selected subsets of
the original features that sharply increased tlassification accuracy on disjoint test samples,
while it slightly decreased the accuracy on theiadjtest set with respect to standard methods.
This behavior confirms that the proposed approaehlts in augmented generalization capabil-
ity of the classification system. In this regard would like to stress the importance of evaluat-
ing the accuracy on a disjoint test set, becauiseallows one to estimate the accuracy in the
classification of the whole considered image. Irtipalar, the proposed supervised method is ef-
fective in exploiting the information of the twoalable training sets, and the proposed semisu-
pervised method can significantly increase the geization capabilities of the classification
system, without requiring additional reference daith respect to traditional feature-selection
algorithms. This can be achieved at the cost @faeptable additional computational time.

It is important to note that the proposed apprdadatefined in a general way, thus allowing
different possible implementations. For instanbe, discrimination and invariance terms can be
evaluated considering statistical distance meadiifeerent from those adopted in our experi-
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mental analysis, as well as, other multiobjectiy#irnization algorithms can be adopted as
search strategy for estimating the Pareto-optimait®ns. This general definition of the ap-

proach results in the possibility to further deyahg the implementation that we adopted for our
experimental analysis. As an example, as futureldgwments of this work, the proposed ap-
proach could be integrated with classification @tpons different from the adopted maximum

likelihood classifier, e.g., the Support Vector Mae and/or other kernel based classification
techniques, for further improving the accuracyhs tlassification system. In addition, we think
that the overall classification system can be friimproved by jointly exploiting the proposed

feature-selection approach and a semisupervisedifitation technique for a synergic and com-
plete exploitation of the unlabeled samples infdioma
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Chapter 4

4. A Novel Context-Sensitive Semisupervised SVM Clagsr
Robust to Mislabeled Training Samples

This chapter presents a novel context-sensitiveissgrarvised Support Vector Machine
(CS'VM) classifier, which is aimed at addressing clfisation problems where the available
training set is not fully reliable, i.e., some ld® samples may be associated to the wrong in-
formation class (mislabeled patterns). Unlike stamddcontext-sensitive methods, the proposed
CS'VM classifier exploits the contextual informatiditiee pixels belonging to the neighborhood
system of each training sample in the learning phasimprove the robustness to possible mis-
labeled training patterns. This is achieved accogdio both the design of a semisupervised pro-
cedure and the definition of a novel contextuahtan the cost function associated with the
learning of the classifier. In order to assess éfiectiveness of the proposed”Z® and to un-
derstand the impact of the addressed problem ihapplications, we also present an extensive
experimental analysis carried out on training sttat include different percentages of misla-
beled patterns having different distributions oe thasses. In the analysis we also study the ro-
bustness to mislabeled training patterns of som@elyiused supervised and semisupervised
classification algorithms (i.e., conventional SVptpgressive semisupervised SVM, Maximum
Likelihood, and k-Nearest Neighbor). Results olgdinn a very high resolution image and on a
medium resolution image confirm both the robustreasd the effectiveness of the proposed
CS'VM with respect to standard classification algonits and allow us to derive interesting con-
clusions on the effects of mislabeled patternsiffardnt classifiers.

4.1 Introduction

The classification of remote sensing images isnofterformed by using supervised classifi-
cation algorithms, which require the availabilitylabeled samples for the training of the classi-

This chapter was published on tiiEE Transactions on Geoscience and Remote Sengihgl7, no. 7,
pp. 2142-2154, July 2009. Title: “A Novel Context-Sensitive Semisigexl SVM Classifier Robust to
Mislabeled Training Samples”. Authors: L. Bruzzone, CsEkw.
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fication model. All these algorithms are sharplieated from the quality of the labeled samples
used for training the classifier, whose reliabilisyof fundamental importance for an adequate
learning of the properties of the investigated sd@md thus for obtaining accurate classification
maps). In supervised classification, the impligsamption is that all labels associated with
training patterns are correct. Unfortunately, inngaeal cases, this assumption does not hold
and small amounts of training samples are assakciaiid a wrong information class due to er-
rors occurred in the phase of collection of labedathples. Labeled samples can be derived by
the following: 1)in situ ground truth surveys; 2) analysis of reliable refee maps; or 3) image
photointerpretation. In all these cases, mislabeéirrors are possible. During the ground truth
surveys, mislabeling errors may occur due to imipeegeo-localization of the positioning sys-
tem; this leads to the association of the idemtifend-cover label with a wrong geographic co-
ordinate, and thus with the wrong pixel (or regmhinterest) in the remotely sensed image.
Similar errors may occur if the image to be clasdiis not precisely georeferenced. When refer-
ence maps are used for extracting label informagpassible errors present in the maps propa-
gate to the training set. The case of image phtmretation is also critical, as errors of the hu-
man operator may occur, leading to a mislabelintpefcorresponding pixels or regions.

Mislabeled patterns bring distort (wrong) inforneattito the classifier (in this thesis we call
themnoisy patterns). The effect of noisy patterns in thergey phase of a supervised classifier
is to introduce a bias in the definition of the idean regions, thus decreasing the accuracy of the
final classification map. We can expect two diffarsituations with respect to the distribution of
noisy samples in the training set: 1) mislabeletias may be uniformly distributed over all
considered classes, or 2) mislabeled patternspecifially affect one or a subset of the classes
of the considered classification problem. The twiéetent situations result in a different impact
on the learning phase of the classification alhong. Let us analyze the problem according to
the Bayes decision theory and to the related estsgnaf class conditional densities (likelihood)
and class prior probabilities (priors) [1]. If npisamples are uniformly distributed over classes,
the estimations of class conditional densities Itestorrupted, while the estimations of prior
probabilities are not affected from the presencenislabeled patterns. On the contrary, if noisy
samples are not uniformly distributed over clasbe# the estimations of prior probabilities and
of class conditional densities are biased from ahisled patterns. Therefore, we expect that su-
pervised algorithms, which (explicitly or implign)l consider the prior probabilities for the clas-
sification of a generic input pattern (e.g., Bagestlassifierk-Nearest Neighbotk(NN) [1]-[3])
are more sensitive to unbalanced noisy sampleshdisbns over classes than other algorithms
that take into account only the class conditioreigities (e.g., Maximum Likelihood [1], [2]).

In this chapter we address the above-mentionedigrabby the following: 1) presenting a
novel context-sensitive semisupervised SVM {@8) classification algorithm, which is robust
to noisy training sets, and 2) analyzing the eftdatoisy training patterns and of their distribu-
tion on the classification accuracy of widely usegervised and semisupervised classifiers.

The choice of developing an SVM-based classifieelated to the important advantages that
SVMs exhibit over other standard supervised algorg [4]-[8]: 1) relatively high empirical ac-
curacy and excellent generalization capabilitiggpBustness to the Hughes phenomenon [9]; 3)
convexity of the cost function used in the learnifighe classifier; 4) sparsity of the solution; 5)
possibility to use the kernel tricks for addressiog linear problems. In particular, the generali-
zation capability of SVM (induced by the minimizati of the structural risk) gives to SVM-
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based classifiers an intrinsic higher robustnes®isy training patterns than other standard algo-
rithms that are based on the empirical risk minatian principle. In this framework, we propose
an SVM-based technique for image classificatioreesly developed to improve the robustness
of standard SVM to the presence of noisy sampldkartraining set. The main idea behind the
proposed C&/M is to exploit the spatial context informationopided by the pixel belonging to
the neighborhood system of each training samplecfware called context patterns) in order to
contrast the bias effect due to the possible peese&i mislabeled training patterns. This is
achieved by both a semisupervised procedure (aimairabtain the semilabels for context pat-
terns) and the definition of a novel contextuafrten the cost function associated with the learn-
ing of the C3VM. It is worth noting that this use of the conteatinformation is completely dif-
ferent from that of traditional context-sensitivlagsifiers (e.g., [10]-[16]), where contextual
information is exploited for regularizing classditon maps in the decision phase.

Another important contribution of this work is toegent an extensive experimental analysis
to investigate and compare the robustness to naigying sets of the proposed 8 and of
other conventional classifiers. In greater detad, considered the (Gaussian) Maximum likeli-
hood (ML) classifier (which is based on a paransegstimation of the class conditional densities
and does not consider the prior probabilities ef ¢ctasses), the-NN classifier (which is based
on a distribution free local estimation of postepoobabilities that implicitly considers the class
prior probabilities); the standard SVM classifiendathe progressive semisupervised SVM
(PSVM) [17]. The five considered classification algbrns were tested on two different data
sets: 1) a very high resolution (VHR) multispecirabge acquired by the Ikonos satellite and 2)
a medium resolution multispectral image acquired_agdsat 5 Thematic Mapper. The experi-
mental analysis was carried out, considering tngirsets including different amounts of noisy
samples having different distributions over thesidered classes.

The chapter is organized into six sections. Seecti@rpresents the proposed context-sensitive
semisupervised SVM (C8M) technique. Section 4.3 describes the desigthefexperiments
carried out with different classifiers. Sectiod 4nd 4.5 illustrate the experimental results ob-
tained on the lkonos and Landsat data sets, regplgctFinally, section 4.6, after discussion,
draws the conclusion of the chapter.

4.2 Proposed context-sensitive semisupervised SVM (G8V)

Let Z denote a multispectraldimensional image of sizéxJ pixels. Let us assume that a
training set T={&,)} made up of N pairs (x;,V, )iN:l is available, where
X ={x|x OR%}N, 07 is a subset of and Y ={y}, is the corresponding set of labels. For
the sake of simplicity, since SVMs are binary dféess, we first focus the attention on the two-
class case (the general multiclass case will beeaddd later). Accordingly, let us assume that
y, O{+L; -1} is the binary label of the pattexn We also assume that a restricted amaindf
training samplex; may be associated with wrong labglsi.e., labels that do not correspond to
the actual class of the considered pixel. I%f(x) represent a local neighborhood system
(whose shape and size depend on the specific igaést image and application) of the generic
pixel x, whereM indicates the number of pixels considered in teegborhood. Generally
A,(x) is a first or second order neighborhood systeme (sEig. 4.1). Let
X ={x)| ¥ 07, (x),0x OX, j=1,...,M} be the set of (unlabeled) context pattekhsnade up
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of the pixels belonging to the neighborhofg (x;) of the generic training sampte It is worth
noting that adjacent training pixels belong to hatand X .

Ay (x) Ay(x)
32 o4 33 32
X; x| x| x
x| x | x x | x | x
%! © x| %
a) b)

Fig. 4.1 — Examples of neighborhood systems for the generic trainielgppixa) First order system
A,(X;) . b) Second order systefi,(X;).

The idea behind the proposed methodology is tooéxgie information of the context pat-
terns X to reduce the bias effect of the mislabeled training patterns on the definitionttus
discriminating hyperplane of the SVM classifierushdecreasing the sensitivity of the learning
algorithm to unreliable training samples. This e€@nplished by explicitly including the sam-
ples belonging to the neighborhood system of eeihihg pattern in the definition of the cost
function used for the learning of the classifiehe$e samples are considered by exploiting the
labels derived through a semisupervised classifiogbrocess (for this reason they are called
semilabeled samples) [18]-[20]. The semilabeledexirpatterns have the effect to mitigate the
bias introduced by noisy patterns adjusting thatiposof the hyperplane. This strategy is de-
fined according to a learning procedure for theppsed C$/M that is based on two main steps:
1) supervised learning with original training saegphnd classification of the (unlabeled) context
patterns and 2) contextual semisupervised learbasgd on both original labeled patterns and
semilabeledontext patterns according to a novel cost funcfidrese two steps are described in
detail in the following subsections.

4.2.1Step 1 - supervised learning and classification @bntext patterns

In the first step, a standard supervised SVM imé@ by using the original training s&tin
order to classify the patterns belonging to theyimeorhood system of each training pixels. The
learning is performed according to the soft magjifM algorithm, which results in the follow-
ing constrained minimization problem:

1y g2 N
— +C .
mip Sl %]
y wid(x)+b]=1-&  Oi=1...,N (4.1)
=20
wherew is a vector normal to the separation hyperplaris,a constant such thaf|wl repre-
sents the distance of the hyperplane from the mri@i(l} is a non-linear mapping functiod,

are slack variables that control the empirical (is, the number of training errors), aBd1 R}
is a regularization parameter that tunes the tfdbedween the empirical error and the complex-
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ity term (i.e., the generalization capability). Télegove minimization problem can be rewritten in
the dual formulation by using the Lagrange optiiaratheory, which leads to the following
dual representation:

N l N N

max( D a == 2,0 Y y,aa ke X )
i=1 i=1j=1

N

i=1

0<qg,<C

where a; are the Lagrange multipliers associated with thgiraal training pattern; O X", and
k(CIY is a kernel function such th&([ D)= ® (0P (0. The kernel function is used for implicitly
mapping the input data into a high dimensionaldeaspace without knowing the functi®l)
and still maintaining the convexity of the objeetivunction [6]. Oncea; (i =1,...N) are

determined, each context pattexh in the neighborhood systed,, (x,) of the training pattern
X, is associated with a semilabg! according to:

y :sgn[z yoa k(x, x!)+ b} Ox, OX, 0% 0X (4.3)
n=1

where, given‘(x):zihilyia'i k(x,x)+b, b is chosen so thaty, f(x)=1 for any i with
O<aqg,<C.

4.2.2 Step 2 - context-sensitive semisupervised learning

Taking into account the semilabels (i.e., the Ilalwditained in the previous step) of the con-
text patterns belonging £, we define the following novel context-sensitivest function for
the learning of the classifier:

W Eg) =2l +CYE + 3> Ky (4.4

wherey, are context slack variables ard (0R; are parameters that permit to weight the im-
portance of context patterns (see Fig. 4.2). Thaltieg constrained minimization problem asso-
ciated with the learning of the &M is the following:

Wrygifr)ww(w,f,z//)
y, Eﬁw@b(xi )+b] >1-¢

Y wo(x/)+b]21-¢
!,& 20

Oi=1...N (4.5)

0j=1,...M

The cost function in (4.4) contains a novel coniektterm (made up oN[M elements)
whose aim is to regularize the learning procesk waspect to the behavior of the context pat-
terns in the neighborhood of the training patterder consideration. The rationale of this term is
to balance the contribution of possibly mislabeiining samples according to the semilabeled
pixels of the neighborhood. The context slack \ses ' =/’ (Xij,yj ,w,b) depend on
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%) 04, (x,) and, accordingly, permit to directly take into @cot the contextual information in

the learning phase. They are defined as:

wi=max{ 0,5 fww(x/)+b]} Di=1..N,0j=1..M (4.6)

Label/
semilabel

+1 -1

.’@'/

e O Training patterns
@® © Context patterns
Fig. 4.2 — Example of training and related context patterns ikettmel-induced feature space.

The parameterg’ OR; weight the context patterri§ depending on the agreement of their
semilabels§' with that of the related training sample The hypothesis at the basis of the
weighting system of the context patterns is thatgixels in the same neighborhood system have
high probability to be associated to the same médron class (i.e., the labels of the pixels are
characterized by high spatial correlation). Irtisatar, ' are defined as follows:

Pa :{Kl ify, :yij

. 4.7
K, if yz¥ (4.7)

wherex; andk, are chosen from the user. The rolexpfand « ; is to define the importance of
the context patterns. In particular, it is very omjant to define the ratios &/ i =1,2 which tune
the weight of context patterns with respect toghterns of the original training set. According
to our hypothesis, in order to adequately pendlizemislabeled training patterns, it is suggested
to fix «, = k, as, in general, contextual patterns whose sentdaie in agreement with the label
of the related training pattern should be considien®re reliable than those whose semilabels
are different. The selection &f and x> can be simplified fixinga priori the ratiox, / x, =K,
thus focusing the attention only @amnor on the ratio G¢;.

It is worth noting that the novel cost function idefd in (4.4) maintains the important
property of convexity of the cost function of tharsdard SVM. This allows us to solve the prob-
lem according to quadratic programming algorithiBg. properly adjusting the Karush-Kuhn-
Tucker conditions [i.e., the necessary and sufiicanditions for solving (4.5)], we derived the
following dual bound maximization problem:
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: i=1 j=1 i=Lh=1l .\
+ 0y BRI K(%O %)
] ;;M WBB, (Xu Xh)— (4.8)
N Mo
Z(y.ai +Z”.Jﬁ'j=0
= = Oi=1...,N
O<a,<C Y
0< B <k I =5

wherea; andr; are the Lagrange multipliers associated with négtraining patterns, whilgg’
and s’ are the Lagrange multipliers associated with cdopatterns. The Lagrange multipliers
a; associated with the original labeled patternssangeriorly bounded b (they all have the
same importance). The upper bound for the Lagramgépliers 3’ associated with context pat-
terns isk/, as it comes from (4.7). Once determiredand 8’ (i =1,...N, j=1,..M ) the ge-
neric patterrx belonging to the investigated imagean be classified according to the following
decision function:

N

9:sgn{z[m (x4 3 YA A % KOX, KOE @9)

i=1

N M
where, giverf (x) :Z{yiai k(%,x)+> ¥4 K ,x)} b, b is chosen so thay, f(x,) =1 for
i=1 =1

anyi with 0<a, <C, and §' f (x/) =1 for anyi andj with 0< 8’ <«’.

It is worth noting that the proposed formulatioruicbbe empirically defined by considering
different analytical forms for the kernels assamitvith the original training samples and the
context patterns (composite kernel approach). Faogeneral perspective, this would increase
the flexibility of the method. However, as the tiag patterns and the context patterns are repre-
sented by the same feature vectors, the use ofagitagkernels (which would result in a further
increase of the number of free parameters to sbeiteaning of the classifier, and thus, in an in-
crease of the computational cost required frormibeel-selection phase) does not seem useful.

4.2.3Multiclass architecture

Let us extend the binary &AM to the solution of multiclass problems. L@t:{a)la{}
be the set oL informationclasses that characterize the considered problenforAthe conven-
tional SVM, the multiclass problem should be adseelswith a structured architecture made up
of binary classifiers. However, the properties &M lead to an important difference with re-
spect to the standard supervised SVM. This diffegeis related to thstep 2of the learning of
the C3VM. In this step we assume to be able to give @i label to all patterns in the
neighborhood system of each training pattern. éieoto satisfy this constraint, we should define
binary classification problems for each4@81 included in the multiclass architecture characte
ized from an exhaustive representation of classes.
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Let each C&/M of the multiclass architecture solve a binarpstoblem, where each pattern
should belong to one of the two clas€es or Q,, defined as proper subsets of the original set
of labels Q. The contextual semisupervised approach requis for each binary ¢8M of
the multiclass architecture, there must be an esthaurepresentation of all possible labels, i.e.,

Q,0Q,=0 (4.10)

If (4.10) is not satisfied, some semilabels of eahfpatternsx’ may not be represented in the
binary sub-problem and the context sensitive sepeistised learning can not be performed. Ac-

cording to this constraint, we propose to adophe-against-all (OAA) multiclass architecture,
which is made up df parallel C$VM, as shown in Fig. 4.3.

CS'VM 1 Jix)
f0,,Q-0,}
7

CS'VM 2 £
{0,.Q-0,}

T 1

CS'VM 3 Six)
{(n},Q—(n}}

>

Winner Takes All
>

CS'VM L 5%
{0,.Q-0,}

il

XUX

Fig. 4.3 — OAA architecture for addressing the multiclasslprolwith the proposed C8M.

Thei-th CSVM solves a binary problem defined by the informat'class{ cq} 0Q against
all the othersQ —{ cq} . In this manner all the binary sub-problems oftiolass architecture sat-
isfy (4.10). The “winner-takes-all” rule is used taking the final decision, i.e.,

w=argmax f. &) (4.11)
i=1,..L

where f,(x) represent the output of tith CSVM.

It is worth noting that other multiclass strategibat are commonly adopted with standard
SVM [such as the one-against-one (OAO)] [21], carmused with the proposed ¥ as do
not satisfy (4.10). Nevertheless, other multi-classhitectures could be specifically developed
for the CSVM approach, which should satisfy the constrairftral in (4.10).

4.3 Design of experiments

In this section, we describe the extensive expeariaigphase carried out to evaluate the ro-
bustness to the presence of noisy training sangbléee proposed C'SM and of other standard
supervised and semisupervised classification dlgos. In particular, we compare the accuracy
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(in terms of kappa coefficient [22]) obtained by firoposed C&'M with those yielded by other
classification algorithms: the progressive semisdiped SVM (P&VM) [17], the standard su-
pervised SVM, the Maximum Likelihood (ML), and tkéNearest Neighbork{NN). We carried
out different kinds of experiments by training ttiassifiers: 1) with the original training sam-
ples (with their correct labels), and 2) with diffat synthetic training sets, where mislabeled
patterns (i.e., patters with wrong labels) wereealdtb the original training set in different per-
centages (10%, 16%, 22%, 28%) with respect todta humber of training samples. In the sec-
ond kind of experiments, we manually introducedlatisled training samples considering the
particular scene under investigation and simulatemgjistic mislabeling errors (e.g., caused by
possible photointerpretation errors). The spateation of wrong samples was distributed over
the whole scene, by considering also clusters xélpiin the same neighborhood system. We
analyzed the effects of noisy training sets onclassification accuracy, in two different scenar-
ios (which simulate different kinds of mislabeliagors): a) wrong samples are uniformly added
to all the information classes (thus simulating pinesence of mislabeling errors in the training
points that does not depend on the land cover typeyrong patterns are added to one specific
class or to a subset of the considered classes ¢imulating a systematic error in the collection
of ground truth samples for specific land covereg)p

In all the experiments, for the ML classifier weoated the Gaussian function as model for
the probability density functions of the classesn€erning thek-NN classification algorithm,
we carried out several trials, varying the valu& &fbm 1 to 40 in order to identify the value that
maximizes the kappa accuracy on the test set.

For the SVM-based classifiers (881, PS'VM and standard SVM) we employed the Se-
guential Minimal Optimization (SMO) algorithm [23jwith proper modifications for the
CS'VM) and used Gaussian kernel functions (rutgdhe free parametewr that expresses the
width of the Gaussian function). All the data waoemalized to a range [0, 1] and the model se-
lection for deriving the learning parameters wasied out according to a grid-search strategy
on the basis of the kappa coefficient of accurdutgioed on the test set.

For the standard SVM, the value af2was varied in the range [fDlO], while the values
of C were concentrated in the range [20, 200] aftarsa éxploration in a wider range. For the
model selection of both the &8V and the P&/M, we considered the same values for C and
207 as for the SVM in order to have comparable resMseover, for the proposed &8V we
fixed the value ofK =k, /k, =2 and used the following values for&/ 2, 4, 6, 8, 10, 12, 14.
For the definition of the context patterns we cdaesed a first order neighborhood system. With
regard to the P§M, the value ofC*® was varied in the range [0.1,1], the oneyofvas varied
in the range [10,100], ang was varied in the range [10, 100].

For simplicity, the model selection for all the SMdAsed classifiers and thkeNN algorithm
was carried out on the basis of the kappa coeffficd accuracy computed on the test set, which
does not contain mislabeled samples. It is worttingahat this does not affect the relative re-
sults of the comparison, as the same approach sexb for all the classifiers. It is important to
observe that the proposed ®W® method does not rely on the assumption of néige-samples
in the test set for parameter settings. The usemtext patterns is effective in mitigating thesbia
effect introduced by noisy patterns even if thestd model is optimized on a noisy test set. In
this condition, we may have an absolute decreastséification accuracy, but the capability to
mitigate the effects of wrong samples on the folassification result does not change.
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In the experiments, we considered two data setsfitst one is made up of a very high geo-
metrical resolution multispectral image acquiredthg Ikonos satellite over the city of Ypen-
burg (The Netherlands); the second one is madd apntedium resolution multispectral image
acquired by the sensor Thematic Mapper of Landsattbe surroundings of the city of Trento
(Italy). The results obtained on the two data aet¢spresented in the following two sections.

4.4 Experimental results: Ikonos data set

The first considered data set is made up of tre three bands (corresponding to visible
wavelengths) of an Ikonos sub-scene of size 887419 pixels (see Fig. 4.4). The 4 m spatial
resolution spectral bands have been reported tonaspatial resolution according to the Gram-
Schmidt pansharpening procedure [24]. The availgiend truth (which included the informa-
tion classes grass, road, shadow, small-alignedibgj white-roof building, gray-roof building
and red-roof building) collected on two spatiallgjdint areas was used to derive a training set
and a test set for the considered image (see RabjeThis setup allowed us to study the gener-
alization capability of the systems by performiradidation on areas spatially disjoint from those
used in the learning of the classification algarithThis is very important because of the nonsta-
tionary behavior of the spectral signatures of sdasin the spatial domain. Starting from the
original training set, several data sets were ectaidding different percentages of mislabeled
pixels in order to simulate noisy training setslascribed in the previous section.

Fig. 4.4 - Band 3 of the Ikonos image.
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Table 4.1- Number of patterns in the training and test @ktsi0s data set).

Number of patterns
Class —
Training Set Test Set
Grass 63 537
Road 82 376
- Small-aligned 62 200
=3 White-roof 87 410
§' Gray-roof 65 336
Red-roof 19 92
Shadow 30 231

4.4.1 Results with mislabeled training patterns uniformly added to all classes

In the first set of experiments, different perceget (10%, 16%, 22%, 28%) of mislabeled
patterns (with respect to the total number of sasjpivere uniformly added to all classes of the
training set. The accuracy yielded on the tesbgeill the considered classifiers versus the per-
centage of mislabeled patterns are reported ineTdld and plotted in Fig. 4.5. As one can see,
with the original training set, the proposed”@8 exhibited higher kappa coefficient of accu-
racy than the other classifiers. In greater detfad, kappa coefficient obtained with the*@®! is
slightly higher than the ones obtained with thendsad SVM and the P8M (+1.6%), and
sharply higher than those yielded by #BIN (+6.6%) and the ML (+8%). This confirms that
the semisupervised exploitation of contextual infation of training patterns allows us increas-
ing the classification accuracy (also if their lsbare correct). In this condition, the % clas-
sifier did not increase the classification accuratyhe standard SVM. When mislabeled sam-
ples were added to the original training set, tleeueacies obtained with ML ank-NN
classifiers sharply decreased, whereas SVM-basedifiers showed to be much more robust to
“noise” (by increasing the number of mislabeled gke® the kappa accuracy decreased slowly).
In greater detail, the kappa accuracy of the Missifeer decreased of 15.9% in the case of 10%
of mislabeled samples with respect to the resukiobd in the noise-free case, while {alIN
reduced its accuracy by 5.8% in the same condiwore generally, th&-NN classifier exhib-
ited higher and more stable accuracies than themitthall the considered amounts of noisy pat-
terns. In all the considered trials, the propos&M® exhibited higher accuracy than the other
classifiers. In addition, with moderate and largenbers of mislabeled patterns (16%, 22% and
28%), it was more stable than the SVM and th&/RB In the trials with noisy training sets the
PSVM classifier slightly increased the accuracy obéai by the standard SVM.
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Table 4.2- Kappa coefficient of accuracy on the test setdiftbrent percentages of mislabeled patterns
added uniformly to the training set (Ikonos data set).

% of mislabeled Kappa Accuracy
patterns CS'VM PS*VM SVM k-NN ML
0 0.927 0.907 0.907 0.861 0.847
10 0.919 0.910 0.907 0.803 0.688
16 0.921 0.869 0.866 0.787 0.801
22 0.893 0.862 0.861 0.781 0.727
28 0.905 0.874 0.860 0.763 0.675

Kappa Accuracy

0.65 : ‘ ‘
0% 10% 16% 22% 28%
% of mislabeled samples
——CS4VM — -B— - PS3VM SVM k-NN —-© — ML ‘

Fig. 4.5 — Behavior of the kappa coefficient of accuracy onetbteset versus the percentage of misla-
beled training patterns uniformly distributed over all clagstesduced in the training set (Ikonos data
set).

In order to better analyze the results of SVM ari®iM®, we compared the average and the
minimum kappa accuracies of the binary classifieeg made up the OAA multi-class architec-
ture (see Fig. 4.6 and Table 4.3). It is possibleliserve that the average kappa accuracy of the
binary CSVMs was higher than that of the binary SVMs, antilited a more stable behavior
when the amount of noise increased. Moreover, tharacy of the class most affected by the in-
clusion of mislabeled patterns in the trainingwsas very stable with the proposed classification
algorithm, whereas it sharply decreased with theddrd SVM when large percentages of mis-
labeled patterns were included in the training Beis confirms the effectiveness of the proposed
CS'VM, which exploits the contributions of the conteatterm (and thus of contextual patterns)
for mitigating the effects introduced by the nossymples.
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Kappa Accuracy

0% 10% 16% 22% 28%

% of mislabeled samples

——CS4VM —&— SVM

Fig. 4.6 - Behavior of the average kappa coefficient ofimmy (computed on all the binary t4s and
SVMs included in the multiclass architecture) versus thegmage of mislabeled training patterns uni-
formly added to all classes (Ikonos data set).

Table 4.3 - Kappa coefficient of accuracy exhibited from tharyi CSVM and SVM that resulted in the
lowest accuracy among all binary classifiers included imthkiclass architecture versus the percentages
of mislabeled training patterns uniformly added to all ckeg¢bd®nos data set).

% of mislabeled Kappa Accuracy
patterns CS'VM SVM A(%)
0 0.783 0.756 2.7
10 0.784 0.767 1.8
16 0.757 0.738 1.9
22 0.751 0.691 6.0
28 0.755 0.509 24.6

4.4.2 Results with mislabeled training patterns concentrged on specific classes

In the second set of experiments, several samgléseoclass “grass” were added to the
original training set with the wrong label “roadi order to reach 10% and 16% of noisy pat-
terns. In addition “white-roof building” patternseve included with label “grey-roof building” to
reach 22% and 28% of noisy samples. The resultamgsification problem proved quite critical,
as confirmed by the significant decrease in thekaarcuracies yielded by the considered classi-
fication algorithms (see Fig. 4.7 and Table 4.4véttheless, also in this case, the context-based
training of the C8/M resulted in a significant increase of accuradhwespect to other classi-
fiers. The kappa accuracy of tkeNN classifier dramatically decreased when the peege of
noisy patterns increased (in the specific case88b6 &f mislabeled samples the kappa accuracy
decreased of 35.1% with respect to the originahitng set). The ML decreased its accuracy of
10.1% with 10% of noisy patterns, but exhibited @enstable behavior with respect to KalN
when the amount of noisy patterns was further smed. The standard SVM algorithm obtained
accuracies higher than those yielded byktNN and ML classifiers, while the P@M classifier
in general slightly improved the accuracy of thanstard SVM. However, with 28% of noisy
patterns, the kappa accuracy sharply decrease®29 (below the performance of ML). This
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behavior was strongly mitigated by the proposedVd8 (which exhibited a kappa accuracy of
0.820 in the same conditions).

Table 4.4 - Kappa coefficient of accuracy on the test sétdifferent percentages of mislabeled patterns
added to specific classes of the training set (Ikonossddfa

% of mislabeled Kappa Accuracy
patterns CS'VM PS*VM SVM k-NN ML
0 0.927 0.907 0.907 0.861 0.847
10 0.906 0.855 0.841 0.690 0.746
16 0.781 0.769 0.765 0.672 0.734
22 0.828 0.767 0.762 0.525 0.722
28 0.820 0.632 0.629 0.510 0.721
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¥
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0% 10% 16% 22% 28%
% of mislabeled samples
——CS4VM — —=— —PS3VM SWM k-NN ——o——ML

Fig. 4.7 — Behavior of the kappa coefficient of accuracy orstdstersus the percentage of mislabeled
training patterns concentrated on specific classes of timinigaet (Ikonos data set).

Considering the behavior of the average kappa®fbthary SVMs and C'§Ms that made
up the OAA multi-class architecture (see Fig. 4i8)s possible to note that the 68/ always
improved the accuracy of the standard SVM, andgtye between the two classifiers increased
by increasing the amount of noisy samples. In twy eritical case of 28% of mislabeled pat-
terns, the context-based learning of*@® improved the average kappa accuracy of binary
SVMs by 9.2%. Moreover, the kappa coefficient af thass with the lowest accuracy with the
proposed C8/M, even if small, was sharply higher than thattef standard SVM in all the con-
sidered trials (see Table 4.5). This behavior shitas on this data set the proposed method al-
ways improved the accuracy of the most criticabbyrclassifier.
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Kappa Accuracy

0% 10% 16% 22% 28%

% of mislabeled samples

—&—CS4VM —&— SVM

Fig. 4.8 - Behavior of the average kappa coefficient ofimay (computed on all the binary t1s and
SVMs included in the multi-class architecture) versugptreentage of mislabeled training patterns con-
centrated on specific classes (Ikonos data set).

Table 4.5- Kappa coefficient of accuracy exhibited from the pi@8'VM and SVM that resulted in the
lowest accuracy among all binary classifiers included imthkiclass architecture versus the percentages
of mislabeled training patterns concentrated on specific ddlBsmos data set).

% of mislabeled Kappa Accuracy
patterns CS'VM SVM A(%)
0 0.783 0.756 2.7
10 0.620 0.422 19.8
16 0.449 0.360 8.9
22 0.538 0.360 17.8
28 0.450 0.360 9.0

Fig. 4.9 shows the classification maps obtaineihitrg the considered classifiers with 28%
of mislabeled patterns added on specific classeads” and “grey roof buildings”) of the train-
ing set (the map obtained with the®¥®! is not reported because it is very similar tie bne
yielded with the SVM classifier). As one can seethe classification maps obtained with the
SVM, the k-NN, and the ML algorithms, many pixelstbe class grass are confused with the
class road, while white roof buildings are confuséth grey roof buildings. This effect is in-
duced by the presence of noisy training samplesctafig the aforementioned classes. In grater
detail, the SVM classifier was unable to correcdgognize the red roof buildings, while the k-
NN technique often misrecognized the shadows ptesethe scene as red roof buildings and
white roof buildings as grey roof buildings. Moreo\the thematic map obtained with the k-NN
is very noisy and fragmented (as confirmed by tve kappa coefficient of accuracy). The the-
matic map obtained with the proposed®Z® clearly appears more accurate and less affected
by the presence of mislabeled patterns.
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Fig. 4.9 — (a) True color composition of the Ikonos image. Claasifit maps obtained by the different
classifiers with the training set containing 28% of misletiglatterns added on specific classes. (b)
CS'VM. (c) SVM. (d)k-NN. (e) ML.

4.5 Experimental results: Landsat data set

The second data set consists of an image acqurdteliandsat 5 TM sensor with a GIFOV
of 30 m. The considered image has size of 141874 pixels and was taken in the surrounding
of the city of Trento (Italy) (see Fig. 4.10). Asilass classification problem (with forest, water,
urban, rock, fields, and grass classes) was detiedrding to the available ground truth col-
lected on two spatially disjoint areas and usedetdve the training and test sets (see Table 4.6).
As for the lkonos data set, this setup allowedousttidy the generalization capability of the al-
gorithms by classifying areas spatially disjoirdarfr those used in the learning of the classifier.
The important difference between this data setthedprevious one consists in the geometric
resolution, which in this case is significantly dimathan in the previous case (30 m vs. 1 m).
Similarly to the Ikonos data set, several noisintrey sets were created adding different amount
of mislabeled pixels to the original data set: lthwniform distribution over the classes and 2)
concentrated on a specific class.
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Fig. 4.10 - Band 2 of the Landsat TM multispectral image.

Table 4.6- Number of patterns in the training and test set §aanidta set).

Number of patterns

Class —
Training Set Test Set

Forest 128 538
Water 118 177
Urban 137 289
Rocks 45 51
Fields 93 140
Grass 99 227

4.5.1 Results with mislabeled training patterns uniformly added to all classes

Table 4.7 shows the accuracies obtained in thed#@tsof experiments where mislabeled pat-
terns were uniformly added to the information ofsssFig. 4.11 depicts the behavior of the
kappa accuracy versus the number of mislabeleémpatincluded in the training set for all the
considered classifiers. It is possible to obsea with the noise-free training set, the proposed
CS'WM led to the highest accuracy, slightly improvitige kappa coefficient of standard SVM
by 0.8%. The ML classifier performed very well witie noise-free training set (the kappa accu-
racy was 0.923), but decreased its accuracy t@B0wFken only 10% of mislabeled patterns were
introduced in the original training set, and its@acy further decreased to 0.691 when the mis-
labeled samples reached 16%. kH€N classifier led to lower accuracy than the MLlaiosence
of noise, but showed to be less sensitive to npayerns uniformly added to the training set,
thus exhibiting a more stable behavior. On the reopt SVM-based classification algorithms
proved to be robust to the presence of mislabetding samples. Indeed, the excellent gener-
alization capability of the SVM led to even slighthcrease the classification accuracy when a
small amount of mislabeled patterns was added ectrtining set. The F8M algorithm re-
sulted in a small improvement with respect to tMMSclassifier in the trials where mislabeled
samples were added to the training set. The kapparacy of the SVM classifier slightly de-
creased when the mislabeled samples exceeded &@&eimg its accuracy by 3% with respect to
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the noise-free case. In these cases the propos&MI8rther enhanced the robustness of SVM,
leading to kappa accuracies that were always adD®de

Table 4.7- Kappa coefficient of accuracy on test set usitigreint percentages of mislabeled patterns
added uniformly to the training set (Landsat data set).

% of mislabeled Kappa Accuracy
patterns CS'VM PS*VM SVM k-NN ML
0 0.927 0.915 0.919 0.912 0.923
10 0.930 0.935 0.931 0.905 0.778
16 0.935 0.932 0.930 0.893 0.691]
22 0.921 0.891 0.886 0.868 0.686
28 0.916 0.886 0.886 0.840 0.681]
>
g
<
S
g
X
0.65 ; ; ;
0% 10% 16% 22% 28%
% of mislabeled samples
——CS4VM — % — PS3VM SVM k-NN —6&—ML

Fig. 4.11 — Behavior of the kappa coefficient of accuractesnset versus the percentage of mislabeled
training patterns uniformly added to all classes (Landiatzt set).

This behavior is confirmed by the analysis of éiverage and minimum kappa computed on
the binary classifiers (see Fig. 4.12 and Tabl§, 4ich highlights that the C8M signifi-
cantly improved the accuracy with respect to théS8uch an improvement was more signifi-
cant when increasing the amount of noise; thusC&®M resulted in a more stable value of the
kappa coefficient with respect to the percentagmisfabeled patterns present in the training set.
It is worth noting that on this data set the pr&gb€3SVM always improved the average kappa
accuracy of the binary classifiers, even in casesra/ the global multiclass kappa coefficient of
the CSVM was slightly smaller than the one obtained wifie standard SVM. This can be ex-
plained observing that the decision strategy aasettiwith the OAA multiclass architecture in
some cases could “recover” the errors of binargsifeers by assigning the correct label to a pat-
tern when comparing the output of binary classsfidMevertheless, the increased average accu-
racy of the binary C&Ms is an important property because involves netable and reliable
classification results.
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Fig. 4.12 - Behavior of the average kappa coefficient afi@cy (computed on all the binary @#s
and SVMs included in the multiclass architecture) versupéheentage of mislabeled training patterns

10%

22%

% of mislabeled samples

—e—CS4VM

—&— SVM

uniformly added to all classes (Landsat data set).

Table 4.8— Kappa coefficient of accuracy exhibited framm@SVM and SVM that resulted in the lowest
accuracy among all binary classifiers included in the iola#ts architecture versus the percentages of

mislabeled training patterns uniformly added to all clafsaisdsat data set).

% of mislabeled Kappa Accuracy
patterns CS'VM SVM A(%)
0 0.701 0.701 0.0
10 0.701 0.701 0.0
16 0.650 0.627 2.3
22 0.650 0.579 7.1
28 0.641 0.498 14.3

Fig. 4.13 shows the classification maps obtainathitng the classifiers with 28% of misla-
beled patterns uniformly added to all the claskeas.possible to observe that the map generated
by the proposed C8M is the most accurate. In the maps yielded bySk&/, thek-NN, and
the ML algorithms several pixels are misclassifisdvater (the map obtained with the'P8 is
not reported as very similar to the SVM map). latgr detail, the map obtained with tké&IN
presents confusion between the classes water &adh,uand the classes forest and water. In the

map obtained by the ML, grass areas are often sedfwith forest.
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B B

Forest Water Urban
1 1 e
Rocks Fields Grass

Fig. 4.13 — (a) True color composition of Landsat image.gfleation maps obtained by the different
classifiers with the training set containing 28% of noisy pagteniformly added to all classes. (b)
CS'VM. (c) SVM. (d)k-NN. (e) ML.

4.5.2 Results with mislabeled training patterns concentrged on a specific class

In the second set of experiments, several sampkbe @lass “forest” were added to the class
“fields” to reach 10%, 16%, 22%, 28% of mislabepedterns with respect to the total number of
training samples. Also in this case the presencermfrs that systematically affected one class
severely impacted the performance of the supengtassification algorithms. When a low per-
centage (10%) of noisy patterns was added to ilgenat training set, all the considered classifi-
ers decreased their kappa coefficient of accurgcynbre than 12% (see Table 4.9 and Fig.
4.14). In contrast to the first set of experimeatsp the SVM algorithm suffered the presence of
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this type of noisy training set, reducing its aeayr by 18.4% (while th&-NN decreased its ac-
curacy by 20.2% and the ML by 22.5%). The semistiped approach based on the’P& was
not able to improve the accuracies of the stan8athl. The CSVM could partially recover the
accuracy of standard SVM by increasing the kapparacy by 7.4%, thus limiting the effect of
mislabeled patterns. When the amount of noisy petéurther increased, P&, SVM, ML
andk-NN classifiers did not further decrease signifibattieir kappa accuracies.

Table 4.9 - Kappa coefficient of accuracy on the test segusiaining sets with different percentages of
mislabeled patterns added to a specific class (Landsateg.

% of mislabeled Kappa Accuracy
patterns CS'vM PS*VM SVM k-NN ML
0 0.927 0.915 0.919 0.882 0.923
10 0.809 0.738 0.735 0.680 0.699
16 0.712 0.706 0.695 0.652 0.678
22 0.691 0.664 0.661 0.632 0.671
28 0.658 0.651 0.648 0.632 0.666
0.92 ¢
0.89
> 0.86 1 -
S 0.83
3 0.80 1
< 0.77 |
S 074
& 0711
0.68 -
0.65 - :
0.62 T T T .\
0% 10% 16% 22% 28%
% of mislabeled samples
——(CS4VM — % — PS3VM SVM k-NN —O©—ML

Fig. 4.14 - Behavior of the kappa coefficient of accuracyeshdet versus the percentage of mislabeled
training patterns concentrated on a specific classddatrdata set).

This behavior is confirmed from the average kapmetfcient of accuracy of the binary clas-
sifiers versus the percentage of mislabeled trgipatters (see Fig. 4.15). In this case we do not
report the results of the binary classifiers eximigi the lowest accuracy because the complexity
of the problem resulted in unreliable kappa valaesthis class (even if also in this case the
CS'VM outperformed the SVM).
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Kappa Accuracy

0.69 \ \ T
0% 10% 16% 22% 28%

% of mislabeled samples

—&—CS4VM —a&—SVM

Fig. 4.15 - Behavior of the average kappa coefficient of acgicamputed on all the binary ®&Vis
and SVMs included in the multiclass architecture) versupéheentage of mislabeled training patterns
concentrated on a specific class (Landsat data set).

4.6 Discussion and conclusion

In this chapter we have proposed a novel classificadechnique based on SVM that exploits
the contextual information in order to render tharhing of the classifier more robust to possible
mislabeled patterns present in the training set.eldheer, we have analyzed the effects of misla-
beled training samples on the classification acguad supervised algorithms, comparing the re-
sults obtained by the proposed’@B! with those yielded by a progressive semisupeiSVM
(PSVM), a standard supervised SVM, a Gaussian ML, akeNN. This analysis was carried
out varying both the percentage of mislabeled pagtand their distribution on the information
classes. The experimental results obtained on tffereht data sets (a VHR image acquired by
the lkonos satellite and a medium resolution imagguired by the Landsat 5 satellite) confirm
that the proposed ¢8M approach exhibits augmented robustness to ricégying sets with re-
spect to all the other classifiers. In greater itjetee proposed C¥M method always increased
the average kappa coefficient of accuracy of tmantyi classifiers included in the OAA multi-
class architecture with respect to the standard SNddsifier. Moreover, in many cases the
CS'VM sharply increased the accuracy on the infornmatitass that was most affected by the
mislabeled patterns introduced in the training set.

By analyzing the effects of the distribution of falseled patterns on the classes, it is possible
to conclude that errors concentrated on a classr(@ subset of classes) are much more critical
than errors uniformly distributed on all classesgteater detail, when noisy patterns were added
uniformly to all classes, we observed that the psel C$vM resulted in higher and more sta-
ble accuracies than all the other classifiers. Sipgervised SVM and the B8V exhibited rela-
tively high accuracies when a moderate amount @ynatterns was included in the training set,
but they slowly decreased their accuracy when #dregmtage of mislabeled samples increased.
On the contrary, both the ML and tkéNN classifiers are very sensitive even to the gmes of
a small amount of noisy patterns, and sharply dee® their accuracies by increasing the num-
ber of mislabeled samples. NeverthelesskthiN classifier resulted significantly more accurate
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than the ML classifier when mislabeled patternsadlguaffected the considered information
classes. When noisy patterns were concentratedspeafic class of the training set, the accura-
cies of all the considered classifiers sharply eased by increasing the amount of mislabeled
training samples. Moreover, in this case, the psedoCSVM exhibited, in general, the highest
and more stable accuracies. Nonetheless, wheruthber of mislabeled patterns increased over
a given threshold, the classification problem bezarmry critical and also the proposed tech-
nigue significantly reduced its effectiveness. Stendard SVM classifier still maintained higher
accuracies than the ML and the\N techniques. The P8M slightly increased the accuracies
of the standard SVM. Unlike the previous case kNN algorithm resulted in lower accuracies
than the ML method. This is mainly due to the fézit mislabeled patterns concentrated on a
single class (or on few classes) alter the priobabilities, thus affecting more tkeNN classi-

fier (which implicitly considers the prior probaitigs in the decision rule) than the ML tech-
nigue (which does not consider the prior probaesiof classes).

The proposed C'§M introduces some additional free parameters wétpect to the stan-
dard supervised SVM, which should be tuned in tloelehselection phase. The analysis on the
effects of the values of these parameters on #esiication results (carried out in the different
simulations described in this chapter) pointedtbat the empirical selection &€ =k, /«, =2
(which is reasonable considering the physical mmeaof this ratio) resulted in good accuracies
on both data sets. This choice allows one to retheenodel-selection phase to tune the value of
the ratio Ck; in addition to the standard SVM parameters. Nore#ise when possible, the in-
clusion of the choice of the,/«, value in the model selection would optimize theutts
achievable with the proposed approach. The optualale for the ratio G4 depends on the con-
sidered data set and the type of mislabeling erdous in general we observed that higher
weights for the context patterns (lower valuesti@r ratio Ck1) can result in better classification
accuracies when the percentage of mislabeled igipatterns increases. This confirms the im-
portance of the context term to increase the dleaibon accuracy in presence of noisy training
sets.

It is worth noting that the considered®™$! classifier slightly improved the accuracy with
respect to the standard SVM by exploiting the infation of unlabeled samples, but it could not
gain in accuracy when the amount of mislabeledepastincreased. Indeed, the®?8 is not
developed to take into account the possible presehmislabeled training patterns, which affect
the first iteration of the learning phase propagathe errors to the semilabeled samples in the
next iterations of the algorithm. On the contrahg proposed CSM is especially developed to
cope with “non fully reliable” training sets by dmping the information of pixels in the
neighborhood of the training points according tspacific weighting mechanism that penalizes
less reliable training patterns. In addition, theppsed C8/M approach is computationally less
demanding than the P@M as it requires only two steps (this choice isieldor limiting the
computational complexity and is supported from el experiments that confirmed that in-
creasing the number of iterations does not sigifily change the classification results). On the
contrary, the P&M may require a large number of iterations befamavergence.

The computational cost of the learning phase ofpteosed C&M method is slightly
higher than that required from the standard supedviSVM. This depends on both the second
step of the learning algorithm (which involves anreased number of samples, as semilabeled
context patterns are considered in the processjhengetting of the additional parameters in the
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model-selection phase. In our experiments on tbadk data set, carried out on a PC mounting
an Intel Pentium D processor at 3.4 GHz and a DOR2 RAM, the training phase of a super-
vised SVM took in average about 20 seconds, whitedne of the proposed 681 required
about 3 minutes. It is important to point out ttie additional cost of the proposed method con-
cerns only the learning phase, whereas the compughtime in the classification phase remains
unchanged.

As a final remark, it is worth stressing that prego analysis points out the dramatic effects
involved on the classification accuracy from atie&ly small percentages of mislabeled training
samples concentrated on a class (or on a subsktssks). This should be understood in order to
define adequate strategies in the design of trgidata for avoiding this kind of errors.
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Chapter 5

5. Batch Mode Active Learning Methods for the Interacive
Classification of Remote Sensing Images

This chapter investigates different batch modevackearning techniques for the classifica-
tion of remote sensing (RS) images with suppotbvegachines (SVMs). This is done by gener-
alizing to multiclass problems techniques definedhinary classifiers. The investigated tech-
niques exploit different query functions, which d@&sed on the evaluation of two criteria:
uncertainty and diversity. The uncertainty criteris associated to the confidence of the super-
vised algorithm in correctly classifying the coresied sample, while the diversity criterion aims
at selecting a set of unlabeled samples that amma® diverse (distant one another) as possible,
thus reducing the redundancy among the selecteghleamrhe combination of the two criteria
results in the selection of the potentially mobimative set of samples at each iteration of the
active learning process. Moreover, we propose ahquery function that is based on a kernel
clustering technique for assessing the diversitgashples and a new strategy for selecting the
most informative representative sample from eaaltel. The investigated and proposed tech-
niques are theoretically and experimentally compangth state-of-the-art methods adopted for
RS applications. This is accomplished by consideXHR multispectral and hyperspectral im-
ages. By this comparison we observed that the egponethod resulted in better accuracy with
respect to other investigated and state-of-themagthods on both the considered data sets. Fur-
thermore, we derived some guidelines on the dedigetive learning systems for the classifica-
tion of different types of RS images.

5.1 Introduction

Land cover classification from RS images is gemgr@drformed by using supervised classi-
fication techniques, which require the availabilifylabeled samples for training the supervised

This chapter was submitted to tHieEE Transactions on Geoscience and Remote SerfGitgy “Batch
Mode Active Learning Methods for the Interactive Classifamatbf Remote Sensing Imagesuthors:
B. Demir, C. Persello, and L. Bruzzone.
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algorithm. As we observed in the previous chapter,amount and the quality of the available
training samples are crucial for obtaining accudssification maps. However, the collection
of labeled samples is time consuming and costlg,tha available training samples are often not
enough for an adequate learning of the classifigrossible approach to address this problem is
to exploit unlabeled samples in the learning ofdlessification algorithm according to semisu-
pervised or transductive classification procediifee semisupervised approach has been widely
investigated in the recent years in the RS commyB]t[5]. A different approach to both enrich
the information given as input to the supervisedsifier and improve the statistic of the classes
is to iteratively expand the original training setording to a process that requires an interaction
between the user and the automatic recognitioresysthis approach is known in the machine
learning community as active learning (AL) andhaiigh marginally considered in the RS
community, can result very useful for different bqggtions. The AL process is conducted ac-
cording to an iterative process. At each iteratitn® most informative unlabeled samples are
chosen for a manual labeling and the superviseorition is retrained with the additional la-
beled samples. In this way, the unnecessary anthdeaht labeling of non informative samples
is avoided, greatly reducing the labeling cost am&. Moreover, AL allows one to reduce the
computational complexity of the training phase.this chapter we focus our attention on AL
methods.

In RS classification problems, the collection didéed samples for the initial training set and
the labeling of queried samples can be derivedrdoupto: 1) in situ ground surveys (which are
associate to high cost and require time), or 2)genphotointerpretation (which is cheap and
fast). The choice of the labeling strategy depemd¢he considered problem and image. For ex-
ample, we can reasonably suppose that for theifatas®n of very high resolution (VHR) im-
ages, the labeling of samples can be easily capuédby photointerpretation. Indeed, the metric
or sub-metric resolution of VHR images allows a lannexpert to identify and label the objects
on the ground and the different land-cover typeshenbasis of the inspection of real or false
color compositions. On the contrary, when medium@w) resolution multispectral images and
hyperspectral data are considered, ground surveyssaially required. Medium and low resolu-
tion images do not usually allow one to recognize abjects on the ground, and the land-cover
classes of the pixels (which may be associatedfterent materials) cannot usually be recog-
nized with high reliability by a human expert. Hypeectral data, thanks to a dense sampling of
the spectral signature, allows one characterizavgisl different land-cover classes (e.g., associ-
ated to different arboreal species) that cannaebegnized by a visual analysis of different false
color compositions. Thus, depending on both the typclassification problem and the consid-
ered type of data, the cost and time associatatiedabeling process significantly changes.
These different scenarios require the definitiomlifferent AL schemes: we expect that in cases
where photointerpretation is possible, severahitens of the labeling step may be carried out;
whereas in cases where ground truth surveys aressa, only few iterations (e.g., two or
three) of the AL process are possible.

Most of the previous studies in AL have focusedsefecting the single most informative
sample at each iteration, by assessing its unogrtg]-[12]. This can be inefficient, since the
classifier has to be retrained for each new labs#adple. Moreover, this approach is not appro-
priate for RS image classification tasks for thewamentioned reasons (both in the case of
photointerpretation and ground surveys for samgibeling). Thus, in this chapter we focus on
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batch mode active learning, where a batchhofl unlabeled samples is queried at each itera-
tion. The problem with such an approach is thasdlgcting the samples of the batch on the ba-
sis of the uncertainty only, some of the selectddes could be similar to each other, and thus
do not provide additional information for the modedating with respect to other samples in the
batch. The key issue of batch mode AL is to sedett of samples with little redundancy, so that
they can provide the highest possible informatiorthte classifier. Thus, the query function
adopted for selecting the batch of the most infaiveasamples should take into account two
main criteria: 1) uncertainty, and 2) diversitysefmples [13]-[15]. The uncertainty criterion is
associated to the confidence of the superviseditigoin correctly classifying the considered
sample, while the diversity criterion aims at sefera set of unlabeled samples that are as more
diverse (distant one another) as possible, thuscred the redundancy among the selected sam-
ples. The combination of the two criteria resuttshie selection of the potentially most informa-
tive set of samples at each iteration of the ALcpss.

The aim of this chapter is to investigate differéit techniques proposed in the machine
learning literature and to properly generalize therthe classification of RS images with multi-
class problem addressed by support vector macli#iékls). The investigated techniques use
different query functions with different strategimsassess the uncertainty and diversity criteria
in the multiclass case. Moreover, we propose a lnguwery function that is based on a kernel
clustering technique for assessing the diversitgashples and a new strategy for selecting the
most informative representative sample from eaadktet. The investigated and proposed tech-
nigues are theoretically and experimentally comgph@mong them and with other AL algorithms
proposed in the RS literature in the classificabdWVHR images and hyperspectral data. On the
basis of this comparison some guidelines are derivethe use of AL techniques for the classi-
fication of different types of RS images.

The rest the chapter is organized as follows. 8ech.2 reviews the background on AL
methods and their application to RS problems. 8edi3 presents the investigated batch mode
AL techniques and the proposed generalization ttiictass problems. Section 5.4 presents the
proposed novel query function based on kernel etisg and an original selection of cluster
most informative samples. Section 5.5 presentsléseription of the two considered VHR and
hyperspectral data sets and the design of expetsm®action 5.6 illustrates the results obtained
by the extensive experimental analysis carriedoouthe considered data sets. Finally, Section
5.7 draws the conclusion of this chapter.

5.2 Background on active learning

5.2.1 Active learning process

A general active learner can be modeled as a que(G, Q, S T, U) [6]. G is a supervised
classifier, which is trained on the labeled tragnsetT. Q is a query function used to select the
most informative unlabeled samples from a pdadf unlabeled sampleSis a supervisor who
can assign the true class label to any unlabeleglsaofU. The AL process is an iterative proc-
ess, where the supervisBinteracts with the system by iteratively labelthg most informative
samples selected by the query functi@@at each iteration. At the initial stage, an initraining
setT of few labeled samples is required for the firairting of the classifieG. After initializa-
tion, the query functio is used to select a set of sampfeisom the poolJ and the supervisor
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S assigns them the true class label. Then, thesdat®ied samples are included ift@nd the
classifierG is retrained using the updated training set. Taged loop of querying and retraining
continues for some predefined iterations or ungitap criterion is satisfied. Algorithm 1 gives a
description of a general AL process.

Algorithm 1: Active learning procedure

1. Train the classifieG with the initial training seT

2. Classify the unlabeled samples of the pdol

Repeat

3. Query a set of samples (with query funct@nfrom the poolJ
4. A label is assigned to the queried samples byupersisorS
5. Add the new labeled samples to the traininglset

6. Retrain the classifier

Until a stopping criteria is satisfied.

The query functioQ is of fundamental importance in AL techniques, haéten differ only
in their query functions. Several methods have leposed so far in the machine learning lit-
erature. A probabilistic approach to AL is presdnte[7], which is based on the estimation of
the posterior probability density function of thasses both for obtaining the classification rule
and to estimate the uncertainty of unlabeled sasnptethe two-class case, the query of the most
uncertain samples is obtained by choosing the sssmgbsest to 0.5 (half of them below and
half above this probability value). The query fuontproposed in [16] is designed to minimize
future errors, i.e., the method selects the un&behttern that, once labeled and added to the
training data, is expected to result in the lovexsdr on test samples. This approach is applied to
two regression models (i.e., weighted regressiahnaixture of Gaussians) where an optimal so-
lution for minimizing future error rates can be aibed in closed form. Unfortunately, this solu-
tion is intractable to calculate the expected erate for most classifiers without specific staist
cal models. A statistical learning approach is alsed in [17] for regression problems with
multilayer perceptron. In [18], a method is propbsieat selects the next example according to
an optimal criterion (which minimizes the expectgtbr rate on future test samples), but solves
the problem by using a sampling estimation. Twohoes$ for estimating future error rate are
presented. In the first method, the future errte is estimated by log-loss using the entropy of
the posterior class distribution on the set of belad samples. In the second method, a 0-1 loss
function using the posterior probability of the mpsobable class for a set of unlabeled samples
is used.

Another popular paradigm is given by committee-daasetive learners. The “query by com-
mittee” approach [19]-[21] is a general AL algonittthat has theoretical guarantees on the re-
duction in prediction error with the number of gaer A committee of classifiers using different
hypothesis about parameters is trained to labet afsunknown examples. The algorithm selects
the samples where the disagreement between thefidesis maximal. In [22], two query meth-
ods are proposed that combine the idea of quepphymittee and that of boosting and bagging.

An interesting category of AL approaches, whichéhgained significant success in numer-
ous real-world learning tasks, is based on theofisipport vector machines (SVMs) [8]-[14].
The SVM classifier [4]-[8] is particularly suited AL due to its intrinsic high generalization ca-
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pabilities and because its classification rule loarcharacterized by a small set of support vectors
that can be easily updated over successive leaiteéragions [12]. One of the most popular (and
effective) query heuristic for active SVM learniisgto select the data point closes to the current
separating hyperplane, which is also referred tmagin sampling (MS). This method results in
the selection of the unlabeled sample with the kiveenfidence, i.e., the maximal uncertainty
on the true information class. The query strategyppsed in [10] is based on the splitting of the
version space [10],[13]: the point which split therrent version space into two halves having
equal volumes are selected at each step, as thdikely to be the actual support vectors. Three
heuristics for approximating the above criterioa described, the simplest among them selects
the point closes to the hyperplane as in [8]. In&6 approach is proposed that estimates the un-
certainty level of each sample according to th@uuscore of a classifier and selects only those
samples whose outputs are within the uncertaintgealn [11], the authors present possible
generalizations of the active SVM approach to rolalis problems.

It is important to observe that the abovementiometdhods consider only the uncertainty of
samples, which is an optimal criterion only for $edection of one sample at each iteration. Se-
lecting a batch oh >1 samples exclusively on the basis of the uncestgmg., the distance to
the classification hyperplane) may result in thiect@n of similar (redundant) samples that do
not provide additional information. However, in mygoroblems it is necessary to speed up the
learning process by selecting batches of more timensample at each iteration. In order to ad-
dress this shortcoming, in [13] an approach isqaresd especially designed to construct batches
of samples by incorporating a diversity measuré toasiders the angles between the induced
classification hyperplanes (more details on thigraach are given in the next section). Another
approach to consider the diversity in the quercfiom is the use of clustering [14]-[15]. In [14],
an AL heuristic is presented, which explores thestering structure of samples and identifies
uncertain samples avoiding redundancy (detailkisfapproach are given in the next section). In
[25]-[26], the authors present a framework for hatwode AL that applies the Fisher information
matrix to select a number of informative exampiezutaneously.

Nevertheless, most of the abovementioned approaieedesigned for binary classification
and thus are not suitable for most of the RS diaasion problems. In this chapter, we focus on
multiclass SVM-based AL approaches that can seldetch of samples at each iteration for the
classification of RS images. The next subsectiavigdes a discussion and a review on the use of
AL for the classification of RS images.

5.2.2 Active learning for the classification of RS data

Active learning has been applied mainly to texegatization and image retrieval problems.
However, the AL approach can be adopted for treraative classification of RS images by tak-
ing into account the peculiarities of this domdm.RS problems, the supervis8ris a human
expert that can derive the land-cover type of tteman the ground associated to the selected
patterns according to the two possible strategiestified in the introduction, i.e., photointerpre-
tation and ground survey. These strategies areciassd with significantly different costs. It is
important to note that the use of photointerpretatir of ground surveys (and thus the cost) de-
pends on the considered classification problem,the type of the considered RS image, and the
set of land-cover classes. Moreover, the cost ofigdl surveys also depends on the considered
geographical area. In [27], the AL problem is fotated considering a spatially dependent label
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acquisition costs. In the present work we consillat the labeling cost mainly depends on the
type of the RS data, which affects the aforememtiolabeling strategy. For example, in case of
VHR images, often the labeling of samples can ra@ethout by photointerpretation, while in
the case of medium/low resolution multispectralgesmand hyperspectral data, ground surveys
are necessary. No particular restrictions are lsweainsidered for the definition of the initial
training sefT, since we expect that the AL process can be dtapewith few samples for each
class without affecting the convergence capabftitg initial samples can affect the number of
iterations necessary for obtaining convergenceg. d¢ol of unlabeled sampléscan be associ-
ated to the whole considered image or to a podiai (for reducing the computational time as-
sociated to the query function and/or for consigonly the areas of the scene accessible for
labeling). An important issue is related to theatality of the query function to select batches of
h>1 samples, which results to be of fundamental ingyar¢ for the adoption of AL in real-
world RS problems. It is worth to stress here thpartance of the choice of tievaluein the
design of the AL classification system, as it afethe number of iterations and thus both the
performance and the cost of the classificationesgsin general, we expect that for the classifi-
cation of VHR images (where photointerpretatiopassible), several iterations of the labeling
step may be carried out and small valueshfoan be adopted; whereas in cases where ground
truth surveys are necessary, only few iteratiorgs,(evo or three) of the AL process are possible
and largeh values are necessary.

In the RS domain, AL was applied to the detectibsubsurface targets, such as landmines
and unexploded ordnance in [29]-[30]. Some prelanyrworks about the use of AL for RS clas-
sification problems can be found in [12], [31]-[32]he technique proposed in [12] is based on
MS and selects the most uncertain sample for emembSVM in a OAA multiclass architecture
(i.e., queryingh =L samples, where is the number of classes). In [31], two batch méde
techniques for multiclass RS classification proldesme proposed. The first technique is MS by
closest support vector (MS-cSV), which consideesdimallest distance of the unlabeled samples
to theL hyperplanes (associated to théinary SVMs in a OAA multiclass architecture) he t
uncertainty value. At each iteration, the most utage unlabeled samples, which do not share
the closest SV, are added to the training set.sBleend technique, called entropy query-by bag-
ging (EQB), is based on the selection of unlabsbkauples according to the maximum disagree-
ment between a committee of classifiers. The cotemits obtained by bagging: first different
training sets (associated to different EQB predgtare drawn with replacement from the origi-
nal training data. Then, each training set is usetlain the OAA SVM architecture to predict
the different labels for each unlabeled samplealBinthe entropy of the distribution of the dif-
ferent labels associated to each sample is cadcllfat evaluate the disagreement among the
classifiers on the unlabeled samples. The sampthsmaximum entropy (i.e., those with maxi-
mum disagreement among the classifiers) are aduduetcurrent training set. In [32], an AL
technique is presented, which selects the unlatsgatple that maximizes the information gain
between the a posteriori probability distributistimated from the current training set and the
training set obtained by including that sample intdr'he information gain is measured by the
Kullback—Leibler (KL) divergence. This KL-Maximizan (KL-Max) technique can be imple-
mented with any classifier that can estimate th&grmr class probabilities. However this tech-
nigue can be used to select only one sample atiesation.
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5.3 Investigated query functions

In this section we investigate different query fiimes Q based on SVM for multiclass RS
classification problems. The investigated techrnsgaee based on standard methods; however,
some of them are presented here with modificatwaitts respect to the original version to over-
come shortcomings that would affect their applitgbto real RS problems. In particular, the
presented techniques are adapted to classificptmsiems characterized by a number of classes
L >2 (multiclass problems) and to the inclusion of echaif h>1 samples at each iteration in
the training set (for taking into account RS caaistis and limiting the AL process to few itera-
tions according to the analysis presented in tleeipus sections). The investigated query func-
tions are based on the evaluation of the unceytaind diversity criteria applied in two consecu-
tive steps. Them> h most uncertain samples are selected in the umggristep and the most
diverseh (h>1) samples among theseuncertain samples are chosen in the diversity. Jtee
ratio m/ h provides an indication on the tradeoff betweeneutainty and diversity. In this sec-
tion we present different possible implementatiéorsboth steps, focusing on the OAA multi-
class architecture.

5.3.1Techniques for implementing the uncertainty criteron with multiclass SVMs

The uncertainty criterion aims at selecting the @ams that have maximum uncertainty
among all samples in the unlabeled sample pbobince the most uncertain samples have the
lowest probability to be correctly classified, thane the most useful to be included in the train-
ing set. In this chapter, we investigate two pdsstbchniques in the framework of multiclass
SVM: a) binary-level uncertainty (which evaluategartainty at the level of binary SVM classi-
fiers), and b) multiclass-level uncertainty (whielmalysis uncertainty within the considered
OAA architecture).

Binary-level uncertainty (BLU)

The binary-level uncertainty (BLU) technique sepalsaselects a batch of the most uncertain
unlabeled samples from each binary SVM on the bafstte MS query function. In the tech-
nique adopted in [12], only the unlabeled samptse$t to the hyperplane of each binary SVM
was added to the training set at each iterati@n, (L= L). On the contrary, in the investigated
BLU technique, at each iteration the most uncertifq>1) samples are selected from each
binary SVM (instead of a single sample). In greatetail, L binary SVMs are initially trained
with the current training set and the functionatalnce f,(x), i =1,...L of each unlabeled sam-
ple xOU to the hyperplane is obtained. Then, the setqofsamples{xf}“,x?}”,...,quiL“},

i =1,2,...L closest to margin of the corresponding hyperplaresalected for each binary SVM.
Totally p=qgL samples are taken. Note thel”, j=1,2,..q, represents the selectefth

sample from thé-th SVM. Since some unlabeled samples can be seldt more than one bi-
nary SVM, the redundant samples are removed. Tihestotal numbem of selected samples
can actually be smaller thap (i.e., m<p). The set ofm most uncertain samples
{2, x3, ..., x BV} is forwarded to the diversity step. Fig. 5.1 shales architecture of the in-

m

vestigated BLU technique.

103



Chapter 5 — Batch Mode Active Learning for RS Im@gassification
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Fig. 5.1 - Multiclass architecture adopted for the BLU témphe

Multiclass-level uncertainty (MCLU)

The adopted multiclass-level uncertainty (MCLU)heicjue selects the most uncertain sam-
ples according to a confidence valog), x[OU , which is defined on the basis of their func-
tional distancd;(x), i =1,...L to theL decision boundaries of the binary SVM classifigrs
cluded in the OAA architecture [31], [33]. In thiEschnique, the distance of each sanpleU
to each hyperplane is calculated and a sétdistance value@fl(x), f,(x),...f, (x)} is obtained.
Then, the confidence valugx) can be calculated using different strategies. Hegeconsider
two strategies: 1) the minimum distance functmp (x) strategy, which is obtained by taking
the smallest distance to the hyperplanes (as absahlue), i.e., [31]

C,.n (X) :izrpzinn{ abg f(x)]} (5.1)

and 2) the difference,, (x) strategy, which considers the difference betwdenfirst largest
and the second largest distance values to the pigmers (note that, for theth binary SVM in
the OAA architecture,f,(x) 20 if x belongs toi-th class andf;(x) <0 if x belongs to the rest),
i.e, [33]

r.lmax = arg ma){ fi (( }

i=1,2,..n

arg max {fj ((} (5.2)

1712, 0

Cyr (X) = f,lmax(x) - ferax(X)
The c

.in (X) function models a simple strategy that computescitnfidence of a sample
taking into account the minimum distance to thedmpfanes evaluated on the basis of the most
uncertain binary SVM classifier. Differently, they, (X) strategy assesses the uncertainty be-
tween the two most likely classes. If this valugigh, the sampl& is assigned ta, ., with high
confidence. On the contrary, &, (X) is small, the decision for, ., is not reliable and there is a
possible conflict with the clasg,,, (i.e., the sample is very close to the boundary between
classr,. andr, ). Thus, this sample is considered uncertain anskliscted by the query

Imax

r

2max

2max
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function for better modeling the decision functionthe corresponding position of the feature
space. After that the(x) value of eachx[JU is obtained based on one of the two above-
mentioned strategies, tme samplesx}“" xyV ... x¥Y with lower c(x) are selected to be
forwarded to the diversity step. Note thd{“"” denotes the select¢dh most uncertain sample
based on the MCLU strategy. Fig. 5.2 shows theiacture of the investigated MCLU tech-

nique.

(%), £, Fu(x)}

»

{F0%), F%9), F5(x,)}

> {xyeL, e, x

U ={X, Xp.... X, }

N0
v

(%), £i(X0), s Fo (X}

»

Fig. 5.2 - Architecture adopted for the MCLU technique.

5.3.2Techniques for implementing the diversity criterion

The main idea of using diversity in AL is to seladbatch of sampleh(1) which have low
confidence values (i.e., the most uncertain ores(l, at the same time are diverse from each
other. In this chapter, we consider two diversitgthods: 1) the angle based diversity (ABD);
and 2) the clustering based diversity (CBD). Befooasidering the multiclass formulation, in
the following we recall their definitions for twdass problems.

Angle based diversity (ABD)

A possible way for measuring the diversity of unair samples is to consider the cosine an-
gle distance. It is a similarity measure betweem $amples defined in the kernel space by [13]

|0x) )| K (XX
0& x. = =
‘coS( & X; ))‘ leolex)| KO XK (X%, ) 5.3)
K (%, %;) '

O(x;,x;) =cos (\/K(Xiyxi)K(Xj X))

where ¢([)J) is a nonlinear mapping function and((1)] is the kernel function. The cosine angle
distance in the kernel space can be constructed) usily the kernel function without consider-

ing the direct knowledge of the mapping functigfi)l. The angle between two samples is small
(cosine of angle is high) if these samples areectosach other and vice versa.

)

Clustering based diversity (CBD)

Clustering techniques evaluate the distributionthef samples in a feature space and group
the similar samples into the same clusters. In,[tt@ standar&-means clustering [34] was used
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in the diversity step of binary SVM AL techniquehd aim of using clustering in the diversity
step is to consider the distribution of uncertaamples and select the cluster prototypes as they
are more sparse in the feature space (i.e., distenainother). Since the samples within the same
cluster are correlated and provide similar infolio@t a representative sample is selected for
each cluster. In [14], the sample that is closeshé corresponding cluster center (called medoid
sample) is chosen as representative sample.

5.3.3Proposed combination of uncertainty and diversity €échniques generalized to multi-
class problems

In this chapter, each uncertainty technique is doetb with one of the (binary) diversity
techniques presented in the previous section.drutitertainty step, thm most uncertain sam-
ples are selected using either MCLU or BLU. In diversity step, the most diverde< m sam-
ples are chosen based on either ABD or CBD genzedlio the multiclass case. Here, four pos-
sible combinations are investigated: 1) MCLU witB[B (denoted by MCLU-ABD), 2) BLU
with ABD (denoted by BLU-ABD), 3) MCLU with CBD (deted by MCLU-CBD), and 4)
BLU with CBD (denoted by BLU-CBD).

Combination of uncertainty with ABD for multiclass SVMs (MCLU-ABD and BLU-ABD)

In the binary AL algorithm presented in [13], thecertainty and ABD criteria are combined
based on a weighting parameter On the basis of this combination, a new sampiedkided in
the selected batck according to the following optimization problem:

t=argminA|f & J+ (-1 max——ciX)) (5.4)
Rt ! JDXA\/K(xi,xi)K(xj,xj) '

where | denotes the indices of unlabeled examples whastardie to the classification hyper-
plane is less than oné/ X represents the index of unlabeled sampldgtlwét are not contained

in X, A provides the tradeoff between uncertainty andrditye andt denotes the index of the
unlabeled sample that will be included in the bafthe cosine angle distance between each
sample ofl / X and the samples includedXnis calculated and the maximum value is taken as
the diversity value of the corresponding sampleenftthe sum of the uncertainty and diversity
values weighted byl is considered to define the combined value. THahated sample, that
minimizes such value is included ¥ This process is repeated until the cardinalit)Xc(fX|) is
equal toh. This technique guarantees that the selected eleldlsamples iX are diverse regard-
ing to their angles to all the others in the kesspce. Since the initial size ¥fis zero, the first
sample included iiX is always the most uncertain samplelofi.e., closest to the hyperplane).
We generalize this technique to multiclass archites presenting the MCLU-ABD and BLU-
ABD algorithms.
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Algorithm 2: MCLU-ABD

Inputs:

A (weighting parameter that tune the tradeoff betwacertainty and diversity)

m (number of samples selected on the basis of tineenainty)

h (batch size)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Computec(x) for each sampleJU .

2. Select the set ofm unlabeled samples with lowerc(x) value (most uncertain)
{XIACLU’ Xg/ICLUP“’an\?CLU} .

3. Initialize X to the empty set.

4. Include inX the most uncertain sample (the one that has thesic(x) value).

Repeat

5. Compute the combination of uncertainty and diigmwith the following equation formulated
for the multiclass architecture:

t=argmind Alc & J+ (-1 ) max Ko %) (5.5)
i01/x ' I K (%, % K (X, )

where | denotes the set of indices of most uncertain samples argfx) is calculated as
explained in the MCLU subsection (with,,(X) or c,, (X) strategy).

6. Include the unlabeled samplén X.

Until |[X|=h
7. The superviso adds the label to the set of sampla¥cV =480 x V=480 | x Mt 88 X

and these samples are added to the current traseiiig

It is worth noting that the main difference betwdbm) and (5.5) is that the uncertainty in

(5.5) is evaluated considering the confidence fionct(x;) instead of the functional distance

f(x,) as in the binary case.
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Algorithm 3: BLU-ABD

Inputs:

A (weighting parameter that tune the tradeoff betwassertainty and diversity)

m (number of samples selected on the basis of tineenainty)

h (batch size)

g (number of unlabeled samples selected for eacmpBEM in the BLU technique)

L (total class number)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Select theg mostuncertain samples from each of théinary SVM included in the multiclass
OAA architecture (totallyp = gL samples are obtained).

2. Remove the redundant samples and consider tioé se< p patterng{x;"", x57,..., x>}

3. Computec(x) for the set ofm samples as follows: if one sample is selected byenthan one
binary SVM, c(x) is calculated as explained in the MCLU subsec(imith c_, (X) or c,, (X)
strategy); otherwise(x) is assigned to the corresponding functional destain(x) .

4. Initialize X to the empty set.

5. Include inX the most uncertain sample (the one that has thesic(x) value).

Repeat

6. Compute the combination of uncertainty and dirgmwith the equation (5.5).

7. Include the unlabeled sampjen X.
Until |[X|=h

8. The supervisoB adds the label to the set of pattefr§-"~"*°, x2-V"#%°  x ¥ **1 00X and
these samples are added to the current training set

Combination of uncertainty with CBD for multiclass SVMs (MCLU-CBD and BLU-CBD)

The uncertainty and CBD were combined for binaryMBXL in [14]. The uncertain sam-
ples are identified according to the MS strategyelolbon their distance to the hyperplane. Then,
the standardé-means clustering is applied in the original featapace to the unlabeled samples
whose distance to the hyperplane (computed in ¢éneek space) is less than one (i.e., those that

lie in the margin) and thke=h clusters are obtained. The medoid sample of elustecis added

to X (i.e., |X| =h), labeled by the supervis&and moved to the current training set. This algo-

rithm evaluates the distribution of the uncertamsples within the margin and selects the repre-
sentative of uncertain samples based on stardarelans clustering. We extend this technique to
multiclass problems. Here we define the MCLU-CB@ &1LU-CBD algorithms.
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Algorithm 4: MCLU-CBD

Inputs:

m (number of samples selected on the basis of tineenainty)
h (batch size)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Computec(x) for each sampleJU .

2. Select the set ah unlabeled samples with lowes(x) (with c_ . (X) or c, (X) strategy)

min

value (most uncertair{(x;"*"", x}'“¥, ..., x MV}

3. Apply thek-means clustering (diversity criterion) to the s&delm most uncertain samples
with k=h.

4. Calculate then cluster medoid samplefx; Y~ x /Y80 | x MY * | one for each

cluster.

5. Initialize X to the empty set and include X the set of h patterns

MCLU-CBD MCLU- CBD MCLU- CB
{x? , X5 e X 30X

6. The supervisor S adds the label to the set ofh patterns

{XMCEUCBE  JICHU=CBD L x M PR O X and these samples are added to the current tgasein

Algorithm 5: BLU-CBD

Inputs:

m (number of samples selected on the basis of tineenainty)

h (batch size)

g (number of unlabeled samples selected for eachmpbB&M in the BLU technique)
L (total class number)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Select theg mostuncertain samples from each of thédinary SVMs included in the multi-
class OAA architecture (totallp = gL samples are obtained).
BLU BLU BLU} ]

2. Remove the redundant samples and consider tloé se< p patterns{x; —, X, , ..., X,
3. Computec(x) for the set ofm samples as follows: if one sample is selected bserthan one
binary SVM, c(x) is calculated as explained in the MCLU subsec(imith c_, (X) or c;, (X)

strategy); otherwise(x) is assigned to the corresponding functional destai(x) .

4. Apply thek-means clustering (diversity criterion) to the sée&l m most uncertain samples
(k=h).

5. Calculate thé cluster medoid samples; "% x>0 . x,**% “*% | one for each cluster.

6. Initialize X to the empty set and include ifX the set of h patterns

BLU-CBD BLU-CBD BLU- CB
{x: ) X5 ) eees X 30X

7. The supervisoB adds the label to the set lofpatterns{x;-" =", x2-V"“F0 | x> “*3 O X
and these samples are added to the current traseing
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5.4 Proposed novel query function

Clustering is an effective way to select the magéise samples considering the distribution
of uncertain samples in the diversity step of therg function. In the previous section we gener-
alized the CBD technique presented in [14] to thdtiglass case. However, some other limita-
tions can compromise its application: 1) the stashélameans clustering is applied to the original
feature space and not in the kernel space wher8\iw separating hyperplane operates, and 2)
the medoid sample of each cluster is selectedanditersity step as the corresponding cluster
representative sample (even if “more informativaeiples in that cluster could be selected).

To overcome these problems, we propose a novelduection that is based on the combi-
nation of a standard uncertainty criterion for nuldiss problems and a novel Enhanced CBD
(ECBD) technique. In the proposed query functiorCIM is used with the difference,, (x)
strategy in the uncertainty step to select tenost uncertain samples. The proposed ECBD
technique, unlike the standard CBD, works in then&kespace by applying the kerdemeans
clustering [35], [36] to then samples obtained in the uncertainty step to séfech < m most
diverse patterns. The kerneimeans clustering iteratively divides theesamples intk=h clus-
ters (C,,C,,...G) in the kernel space. At the first iteration, i@itclustersC,,C,,...C, are con-
structed assigning initial cluster labels to eaamsle [35]. In next iterations, a pseudo centre is
chosen as the cluster center (the cluster centetisei kernel space(),@(1,)...9(1,) can
not be expressed explicitly). Then the distanceawth sample from all cluster centers in the ker-
nel space is computed and each sample is assigribd hearest cluster. The Euclidean distance
betweeng(x;) and¢(4,), v=1,2,...h, is calculated as [35], [36]:

D2 (¢x,), ¢4, )) = |tx,) - o,

=K(X;, %)~

2

ﬁia<ﬂxj>,cv)axj)

éia((p(xj ),G K X, )+

IC1|2 3> 8(¢1x,).C,)00A% ), G K, X,)

ﬂXi)—

(5.6)

where 5((0(xj),Cv) shows the indicator function. Thé((p(xj),Cv)zl only if x; is assigned to
C, ., otherwised (ﬂ(xj),Cv)zo. The|C,| denotes the total number of sample<jnand is calcu-
lated as|Cv|= Tzld((p(xj),cv). As mentioned beforeg(l)] is a nonlinear mapping function
from the original feature space to a higher dimemsi space and (L)) is the kernel function.
The kernek-means algorithm can be summarized as follows [35]:

1. The initial value ofd(¢(x;),C,), i =1,2,...m, v=1,2,...h, is assigned andinitial clus-
ters {C,,C,,..G,} are obtained.

2. Theny; is assigned to the closest cluster.

1 ifD* @& )oW )<D* @k )W ) OEv

) (5.7)
0 otherwise

5((ﬂ(xi)1CV)={

3. The sample that is closesftpis selected as the pseudo cemtyeof C, .
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7, =argmind (x,) #i,) (5.8)

4. The algorithm is iterated until converge, whishachieved when samples do not change
clusters anymore.

After C,C,,...C, are obtained, unlike in the standard CBD technitjue most informa-
tive (i.e., uncertain) sample is selected as tpeesentative sample of each cluster. This sample
is defined as
XCACLU—ECBD — aq)r(g)min{cdiﬁ Q(iMCLU )} v=1,2.h (5.9)

X; JOC,

where x"“*V"F®® represents the-th sample selected using the proposed query fumdiCLU-

ECBD and is the most uncertain sample of wih cluster (i.e., the sample that has minimum
C, (X) In thev-th cluster). Totallyh samples are selected, one for each cluster, (Siay

In order to better understand the difference indékection of the representative sample of
each cluster between the query function presemigdid] (which selects the medoid sample as
cluster representative) and the proposed quentiuméwhich selects the most uncertain sample
of each cluster), Fig. 5.3 presents a qualitatkaargle. Note that, for simplicity, the example is
presented for binary SVM in order to visualize twnfidence valuec,, (x) as the functional
distance (MS is used instead of MCLU). The uncersamples are firstly selected based on MS
for both techniques, and then the diversity stegpiglied. The query function presented in [14]
selects medoid sample of each cluster (reportddue in the figure), which however is not in
agreement with the idea to select the most unces@inple in the cluster. On the contrary, the
proposed query function considers the most unecegample of each cluster (reported in red in
the figure). This is a small difference with redpecthe algorithmic implementation but a rele-
vant difference\from a theoretical viewpoint andfossible implications on results.

N

P RN

Ao \2"5

(b)

Fig. 5.3 - Comparison between the samples selected by (@Bihdechnique presented in [14], and (b)
the proposed ECBD technique.
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The proposed MCLU-ECBD algorithm can be summareaztbllows:

Algorithm 6: Proposed MCLU-ECBD

Inputs:

m (the number of samples selected on the basis wfutheertainty)
h (batch size)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Computec(x) for each samplexJU .

2. Select the set ofm unlabeled samples with lower(x) value (most uncertain)

MCLU MCLU MCLU
X Xy X, )

3. Apply the kernek-means clustering (diversity criterion) to the séd&l m most uncertain
samples withk=h.

4. Select the representative samplé™’~"“*° v=1,2,... \h (i.e., the most uncertain sample) of
each cluster according to (5.9).

5. Initialize X to the empty set and includeXnthe set of sampleg“** **°0 X , v=1,2,... ,h.

6. The supervisaB adds the label to the set of sampl&§"""**° 0 X, v=1,2,.. ,h, and these
samples are added to the current training set.

5.5 Data set description and design of experiments

5.5.1 Data set description

Two data sets were used in the experiments. Thedata set is a hyperspectral image ac-
quired on a forest area on the Mount Bondone inltdlean Alps (near the city of Trento) on
September 2007. This image consistsl613x 104¢ pixels and 63 bands with a spatial resolu-
tion of 1 m. The available labeled data (4545 sasjplvere collected during a ground survey in
summer 2007. The reader is referred to [37] foagmedetails on this dataset. The samples were
randomly divided to derive a validation &bf 455 samples (which is used for model selection)
a test seflS of 2272 samples (which is used for accuracy ass&®3, and a podP of 1818
samples. The 4 % of the samples of each classaadomly chosen fron® as initial training
samples and the rest are considered as unlabetgrlesa The land cover classes and the related
number of samples used in the experiments are shovable 5.1.

The second data set is a Quickbird multispectralgenacquired on the city of Pavia (north-
ern Italy) on June 23, 2002. This image includesftlur pan-sharpened multispectral bands and
the panchromatic channel with a spatial resolutib@.7 m. The image size #24x 102 pix-
els. The reader is referred to [1] for greater itketan this dataset. The available labeled data
(6784 samples) were collected by photointerpretafidiese samples were randomly divided to
derive a validation se¥ of 457 samples, a test sE® of 4502 samples and a pd8lof 1825
samples. According to [1], Test pixels were cokecon both homogeneous ar8& and edge
areasTS of each class. The 4 % of the samples of each rldare randomly selected as initial
training samples, and the rest are considered Ebelad samples. Table 5.2 shows the land
cover classes and the related number of samplesiusiee experiments.
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Table 5.1 - Number of samples of each clad® i andTSfor the Trento data set.

Class P vV | TS

Fagus Sylvatica 720 180900
Larix Decidua 172| 43 215
Ostrya Carpinifoliaf 160 | 40| 200
Pinus Nigra 186| 47 237
Pinus Sylvestris 340 8% 42b
Quercus Pubescens240 | 60| 300
Total 1818| 455 | 2272

Table 5.2 - Number of samples of each clad?, i, TS1land TS2for the Pavia data set.

Class P V | TS | TS,
Water 58 | 14| 154 | 61
Tree areas | 111 | 28| 273 | 118
Grass areas| 103 | 26| 206 | 115
Roads 316 | 79| 402 | 211
Shadow 230 | 57| 355 | 311
Red buildings| 734 | 184| 1040| 580
Gray buildings| 191 | 48| 250 | 177
White building| 82 | 21| 144 | 105

Total 1825| 457 | 2824 1678

5.5.2Design of experiments

In our experiments, without loosing in generalitig adopt an SVM classifier with RBF ker-
nel. The values fo€ and y parameters are selected performing a grid-seamtehselection
only at the first iteration of the AL process. lede initial experiments revealed that, if a reason-
able number of initial training samples is consederperforming the model selection at each it-
eration does not increase significantly the clésaifon accuracies at the cost of a much higher
computational burden. The MCLU step is implememntgith differentm values, defined on the
basis of the value di (i.e., m=4h, 6h, 10h), with h=5,10,40,100. In the BLU technique, the
g=h most uncertain samples are selected for each b8Mky. Thus the total number of selected
samples for all SVMs ig = gL . After removing repetitive patterns< p samples are obtained.
The value ofA used in the MCLU-ABD and the BLU-ABD [for compugin(5.5)] is varied as
A=0.3,0.5,0.6,0.. The total cluster numbdsrfor both kernek-means clustering and standard
k-means clustering is fixed to All the investigated techniques and the propdd€lU-ECBD
technique are compared with the EQB and the MS4&8kniques presented in [12]. The results
of EQB are obtained fixing the number of EQB préalis to eight and selecting bootstrap sam-
ples containing 75 % ohitial training patterns. These values have beggssted in [12]. Since
the MS-cSV technique selects diverse uncertain Emrgrcording to their distance to the SVs,
and can consider at most one sample related to®dch is not possible to defirtegreater than
the total number of SVs. For this reason we canigeoMS-cSV results for onl=5,10. Also
the results obtained by the KL-Max technique pregos [32] are provided for comparison pur-
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poses. Since the computational complexity of KL-Mamplemented with SVM is very high, in
our experiments at each iteration an unlabeled Eammghosen from a randomly selected subset
(made up of 100 samples) of the unlabeled datee Muatt the KL-Max technique can be imple-
mented with any classifier that exploits postedlarss probabilities for determining the decision
boundaries [32]. In order to implement KL-Max temfue with SVM, we converted the outputs
of each binary SVM to posterior probabilities expim the Platt’s method [39].

All experimental results are referred to the averagcuracies obtained in ten trials according
to ten initial randomly selected training sets. iissare provided as learning rate curves, which
show the average classification accuracy versusitngber of training samples used to train the
SVM classifier. In all the experiments, the sizefiahl training set|T| is fixed to 473 for the
Trento data set, and to 472 for the Pavia dataTéet.total number of iterations is given by the
ratio between the number of samples to be addeketanitial training set and the pre-defined
value ofh.

5.6 Experimental results

We carried out different kinds of experiments idarto: 1) compare the effectiveness of the
different investigated techniques that we genezdlito the multiclass case in different condi-
tions; 2) assess the effectiveness of the novel E@&R:hnique; 3) compare the investigated
methods and the proposed MCLU-ECBD technique vhightéchniques used in the RS literature;
and 4) perform a sensitivity analysis with resgedifferent parameter settings and strategies.

5.6.1 Comparison among investigated techniques generalide¢o the multiclass case

In the first set of trials, we analyze the effeetiess of the investigated techniques general-
ized to multiclass problems. As an example, Fig.campares the overall accuracies versus the
number of initial training samples obtained by ME€LU-ABD, the MCLU-CBD, the BLU-
ABD and the BLU-CBD techniques with=5, k=5 andl =0.6. In the MCLU, m=20 samples
are selected for both data sets. In the Bhtk 30and m< 40 samples are chosen for the Trento
and Pavia data sets, respectively. The confideakteevs calculated with the,, (x) strategy for
both MCLU and BLU, as preliminary tests pointed that by fixing the query function, the
C,x (X) strategy is more effective than tleg, (x) strategy in case of using MCLU, whether it
provides similar classification performance to the (x) strategy when using BLU. Fig. 5.4
shows that the MCLU-ABD technique is the most dffec on both the considered data sets.
Note that similar behaviors are obtained by usiffigrnt values of parameters (i.e1, h,A and
k). The effectiveness of the MCLU and BLU technigfmsuncertainty assessment can be ana-
lyzed by comparing the results obtained by comigiritrem with the same diversity techniques
under the same conditions (i.e., same values f@anpeters). From Fig. 5.4, one can observe that
the MCLU technique is more effective than the Bldhe selection of the most uncertain sam-
ples on both data sets (i.e., the average accarpoiwided by the MCLU-ABD are higher than
those obtained by the BLU-ABD and a similar behaisabtained with the CBD). This trend is
confirmed by using different values of parametess,(n, h,Aandk ). The ABD and CBD tech-
nigues can be compared by combining them with #meesuncertainty technique under the same
conditions (i.e., same values for parameters). Hf@n5.4, one can see that the ABD technique
is more effective than the CBD technique. The saetevior can also be observed by varying
the values of parameters (i.m, h,A andk).
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Fig. 5.4 - Overall classification accuracy obtained by the M@hd BLU uncertainty criteria when com-
bined with the ABD and CBD diversity techniques in the same tiondifor (a) Trento, and (b) Pavia
data sets. The learning curves are reported starting frorsat8@les and 87 samples for Trento and Pavia
data sets, respectively, in order to better highlight thedldifferences.

5.6.2Results with the proposed MCLU-ECBD technique

In the second set of trials, we compare the stan@&D with the proposed ECBD using the
MCLU uncertainty technique with the,, (x) strategy and fixing the same parameter values. As
an example, Fig. 5.5 shows the results obtained wit- 40,h=10,k= 1( for both data sets.
Table 5.3 (Trento data set) and Table 5.4 (Pauia skt) report the mean and standard deviation
of classification accuracies obtained on ten tnaisus different iteration numbers and different
training data siz|é'|. From the reported results, one can see that E@BBnique provides the
selection of more informative samples compared B® @echnique achieving higher accuracies
than the standard CBD algorithm for the same numbsamples. In addition, it can reach the
convergence in less iterations. These resultslaoecanfirmed in other experiments with differ-
ent values of parameters (not reported for spaost@nts).
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Fig. 5.5 - Overall classification accuracy obtained by thd_M@ncertainty criterion when combined
with the standard CBD and the proposed ECBD diversity technfqués) Trento, and (b) Pavia data
sets.
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Table 5.3 - Average classification accuracy (CA) and standiewdation (std) obtained on ten trials for
different training data sizH| and iteration numbers (Iter. Num) (Trento data set)

|T| =163 |T| =193 |T| =333
Technique (Iter.Num. 9)| (Iter. Num. 12)| (Iter. Num. 26)
CA | std CA std CA std
Proposed MCLU-ECBD | 72.78| 1.20 | 74.13 | 1.42 | 78.00 | 1.00
MCLU-CBD 7155| 1.57| 72.88 1.62 76.47 1.10

Table 5.4 - Average classification accuracy (CA) and standiewdation (std) obtained on ten trials for
different iteration numbers (Iter. Num) and training date iz (Pavia data set)

|T| =102 |T| =142 |T| =172
Technique (Iter.Num. 3)| (Iter. Num. 7)| (Iter. Num. 10)
CA std CA std CA std
Proposed MCLU-ECBD | 84.10| 1.66 | 85.66 | 1.29 | 86.23 | 1.09
MCLU-CBD 81.28| 1.77| 83.74 159 84.88 1.36

5.6.3Comparison among the proposed AL techniques and &rature methods

In the third set of trials, we compare the investiggl and proposed techniques with AL tech-
niques proposed in the RS literature. We compaeviBLU-ECBD and the MCLU-ABD tech-
niques with the MS-cSV [31], the EQB [31] and thie-Max [32] methods. According to the ac-
curacies presented in section VA, we present thalteeobtained with the MCLU, which is more
effective than the BLU. Fig. 5.6 shows the averageuracies versus the number of training
samples obtained in the caselof 5 (h=1 only for KL-Max) for both data sets. For a faom-
parison, the highest average accuracy result df eadhnique is given in the figure. Note that,
since the MCLU-CBD proved less accurate than theLMKECBD (see section V B), its results
are no more reported here. For the Trento datarsetighest accuracies for MCLU-ECBD are
obtained withm=230 (while k=5), whereas the best results for MCLU-ABD are ofetd with
A=0.6 andm=20. For the Pavia data set, the highest accuracidd@.U-ECBD are obtained
with m=20(while k=5), whereas the best results for MCLU-ABD are ot#d with A =0.6 and
m=20.

By analyzing Fig. 5.6(a) (Trento data set) one chserve that MCLU-ECBD and MCLU-
ABD results are much better than MS-cSV, EQB, KLXMasults. The accuracy value at con-
vergence of the EQB is significantly smaller thhaose of other techniques. The KL-Max accu-
racies are similar to the MS-cSV accuracies ayatmtations. However, the accuracy of the KL-
Max at convergence is smaller than those of the ME&CBD and MCLU-ABD, as well as
those of other methods. The results obtained oéwa data set [see Fig. 5.6(b)] show that the
proposed MCLU-ECBD technique leads to the highestigacies in most iteration; furthermore,
it achieves convergence in less iterations thanother techniques. The MCLU-ABD method
provides slightly lower accuracy than MCLU-ECBD;wever, it results in significantly higher
accuracies than MS-cSV, EQB as well as KL-Max témphes. KL-Max accuracy at convergence
is significantly smaller than those achieved withes techniques.

For a better comparison, additional experimentsevwearried out on both data sets varying
the values of the parameters. In all cases, werebdehat MCLU-ECBD and MCLU-ABD
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yield higher classification accuracies than theepthL techniques when smdilvalues are con-
sidered, and that the EQB technique is not effeatitien selecting a small numieof samples.
On the contrary, the accuracies of EQB are clositndse of MCLU-ECBD and MCLU-ABD
when relatively high values are considered. MS-cSV can not be usedifbrh values when
small initial training set are available since theximum number of is equal to the total num-
ber of SVs. KL-Max results can only be provided figtl and the related accuracies are smaller
than those of both MCLU-ECBD and MCLU-ABD methods.

Table 5.5 reports the computational time (in sespmdquired by MCLU-ECBD, MCLU-
ABD, MS-cSV, and EQB (for one trial) for differehtvalues, and the computational time taken
from KL-Max (related tch=1) for both data sets. In this case, the valum &dr MCLU-ECBD
and MCLU-ABD is fixed to4h for both data sets. It can be noted that MCLU-EC&fl
MCLU-ABD are fast both for small and high valueshofThe computational time of MS-cSV
and EQB is very high in the case of smalvalues, whereas it decreases by increasindithe
value. The largest computational time is obtainéth WL-Max that with an SVM classifier re-
guires the use of the Platt algorithm for computihg class posterior probabilities. All the re-
sults clearly confirm that on the two considerethdsets the proposed MCLU-ECBD is the most
effective technique in terms of both computatiar@hplexity and classification accuracy.
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Fig. 5.6 - Overall classification accuracy obtained by the MMECBD, MCLU-ABD, MS-cSV, EQB
and KL-Max techniques for (a) Trento, and (b) Pavia data Beéslearning curves are reported starting
from 178 samples and 92 samples for Trento and Pavia dateespstively, in order to better highlight

the differences.

Table 5.5 - Examples of computational time (in seconds) taken thienMCLU-ECBD, MCLU-ABD,
MS-cSV, EQB and KL-Max techniques

Data Set Technique h

1 5 10 40 100

Proposed MCLU-ECBD - 10 6 8 12
MCLU-ABD - 10 6 7 10

Trento MS-cSV - 584 452 - -
EQB - 300 148 34 12

KL-Max 72401 - - - -

Proposed MCLU-ECBD - 10 6 7 11
MCLU-ABD - 10 5 6 10

Pavia MS-cSV - 384 193 - -
EQB - 138 68 16 6

KL-Max 71380 - - - -

5.6.4 Sensitivity analysis with respect to different paraneter settings and strategies

The aim of the fourth set of trials is to analyle tonsidered AL techniques under different
parameter settings and strategies.

Analysis of the effect of the m value on the accucg of the MCLU-ABD technique

We analyzed the effect of th@ value on the classification accuracy obtained wita
MCLU-ABD technique (which is the one that exhibiténd highest accuracy among the investi-
gated standard methods that we generalized toctaslsi problems). In this technique, the equa-
tion (5.5) is calculated only for the (m=4h, 6h, 10h) most uncertain samples. The obtained
results are compared to those obtained using &beted samples, i.em:|U|. Fig. 5.7 shows
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the behavior of the overall classification accuraeysus the number of training samples ob-
tained on both data sets with parameter vatesm=20, A =0.6 and using thec,, (X) strat-

egy. Results show that the choine=|U| produces accuracies close to those obtained using
m=4h, 6h, 10h for both data sets. A similar behavior is obsenvedll the experiments carried
out with different combinations of the abovementidrparameter values. Table Sigows the
computational time taken from the MCLU-ABD technéq(for one trial) whenm=4h and
m:|U|, while h=5,10,40,100. From the table, one can observettigavalue ofm directly af-
fects the computational time of MCLU-ABD: smaili values decrease the computational time
without resulting in a considerable loss in clasatfon accuracy.
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Fig. 5.7 - Overall classification accuracy versus the nurobgaining samples obtained by the MCLU-
ABD with respect to differenin values for (a) Trento, and (b) Pavia data sets
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Table 5.6 - Examples of computational time (in seconds) takemthe MCLU-ABD technique

h
5| 10|40/ 100
4h |10/ 6] 7] 10
Ul |37|36|35| 35
4h 10| 5] 6| 10
|U| | 36| 35|34 34

Data Set| m

Trento

Pavia

Analysis of the effect of different batch size valkes

We carried out an analysis of the performancesftdrdnt AL techniques varying the value
of the batch size h by fixing the query functiors an example, Fig. 5.8 shows the accuracies
versus the number of training samples obtainedodh #ata sets adopting the proposed MCLU-
ECBD query function. The results are obtained witkk 4h and k = h. The computational time
taken from the MCLU-ECBD (related to one trial) fdifferenth values is given in Table 5.7.
From the table one can observe that the largestifgatime is obtained in the case where one
sample is selected at each iteration. The computatiime decreases by increasing lthelue.
From Fig. 5.8, one can see that for both datasséesting smalh values results in similar (or
better) classification accuracies compared to tlodsained selecting only one sample at each it-
eration. On the contrary, highvalues decrease the classification accuracy witdeareasing
the computational time if compared to sntallalues. Another interesting observation is that on
the Pavia data set, when using snmallalues, convergence is achieved with less santpées
when using large values. Note that similar behavawe obtained with the other query functions.
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Fig. 5.8 - Overall classification accuracy versus the nurobgaining samples obtained by the MCLU-
ECBD technique with differerit values for a) Trento and b) Pavia data sets

Table 5.7 - Examples of computational time (in seconds) taken fhe MCLU-ECBD technique with

respect to differertt values

150

250 300
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(b)

350

MCLU MCLU-ECBD
Data Set h h
1 10 40 100
Trento 47 6 8 12
Pavia 46 6 7 11

Analysis of the effect of different batch size valkes h on the diversity criteria

Finally, we analyze the accuracy obtained by usinlg uncertainty criteria and the combina-
tion of uncertainty with diversity criteria for drenth values. As an example, Fig. 5.9 shows
the average accuracy versus the number of trasangples obtained by MCLUnN(is fixed toh
for a fair comparison) and MCLU-ECBD witm=4h,h=5,10C and k = h. One can observe
that, as expected, using only the uncertainty rioibeprovides poor accuracies whies small,
whereas the classification performances are s@anifly improved by using both uncertainty and
diversity criteria. On the contrary, the choicecofmplex query functions is not justified when a
large batch of samples is added to the trainingtse&ch iteration (i.e., similar results can be ob
tained with and without considering diversity). $imainly depends on the intrinsic capability of
a large number of sampldsto represent patterns in different positions af fhature space.

Similar behaviors are observed with the other qfiengtions.

122




MCLU (h=5)
i MCLU-ECBD(h=5)
—o— MCLU(h=100)

—=— MCLU-ECBD(h=100) |

Classification Accuracy
\l
w
T

100 150 200 250 300 350 400 450
Number of Training Samples

(@)

87 T ' . ,/:IV“ -zo,‘l‘ - '_m’ " T .44
86| A _

84+
83
82|
81t

MCLU (h=5)
MCLU-ECBD(h=5)
—e— MCLU(h=100)

80 —=— MCLU-ECBD(h=100)
79

Classification Accuracy

100 150 200 250 300 350 400 450
Number of Training Samples
(b)
Fig. 5.9 - Overall classification accuracy versus thebmmof training samples for the uncertainty crite-

rion and the combination of uncertainty and diversity critaith differenth values: a) Trento and b)
Pavia data sets

5.7 Discussion and conclusion

In this chapter, AL in RS classification problenastbeen addressed. Query functions based
on MCLU and BLU in the uncertainty step, and ABDJa®BD in the diversity step have been
generalized to multiclass problems and experimgntampared on two different RS data sets.
Furthermore, a novel MCLU-ECBD query function haeb proposed. This query function is
based on MCLU in the uncertainty step and on ttadyars of the distribution of most uncertain
samples by means &fmeans clustering in the kernel space. Moreoveselgcts the batch of
samples at each iteration according to the ideatibn of the most uncertain sample of each
cluster.

In the experimental analysis we compared the imyatstd and proposed techniques with
state-of-the-art methods adopted in RS applicationshe classification of both a VHR multis-
pectral and a hyperspectral image. By this comparise observed that the proposed MCLU-
ECBD method resulted in higher accuracy with respeother state-of-the art methods on both
the VHR and hyperspectral data sets. It was shtvanthe proposed query function is more ef-
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fective than all the other considered techniqueteims of both computational complexity and
classification accuracies for aimyvalue. Thus, it is actually well-suited for apglions which
rely on both ground survey and image photointegti@t based labeling of unlabeled data. The
MCLU-ABD method provides slightly lower accuracyaththe MCLU-ECBD; however, it re-
sults in higher accuracies than the MS-cSV, the EQBvell as the KL-Max techniques. More-
over, we showed that: 1) the MCLU technique is nmeffective in the selection of the most un-
certain samples for multiclass problems than thé& Béchnique; 2) the,, (X) Strategy is more
precise than the_ (X) strategy to assess the confidence value in the M@ddnique; 3) it is
possible to have similar (sometimes better) clasgibn accuracies with lower computational
complexity when selecting small batcheshadamples rather than selecting only one sample at
each iteration; 4) the use of both uncertainty dinérsity criteria is necessary whéris small,
whereas higth values do not require the use of complex quergtfans; 5) the performance of
the standard CBD technique can be significantlyroapd by adopting the ECBD technique,
thanks to both the kern&means clustering and the selection of the mosenaicn sample of
each cluster instead of the medoid sample. In grad#tail, on the basis of our experiments we
can state that:

1) The proposed novel MCLU-ECBD technique showse#ient performance in terms of
classification accuracy and computational compjexitimproves the already good performance
of the standard CBD method. It is important to ribeg this technique has a computational com-
plexity suitable to the selection of batch of saespinade up of any desired number of patterns,
thus it is compatible with both photointerpretatanmd ground survey based labeling of unlabeled
data.

2) The MCLU-ABD technique provides slightly lowetassification accuracies than the
MCLU-ECBD method in most of the cases, with a samdomputational time. It can be used for
selecting a batch made up of any desired numbleisamples. Thus, also the MCLU-ABD tech-
nique is suitable for both photointerpretation gnound survey based labeling of unlabeled data.

3) The MS-cSV technique provides quite good classibn accuracies. However, the
maximum value oh that can be used is equal to the total numbeisf |[SV{ (i.e., h<|SV{
and therefore it can not be implemented for amalue). In the case of smdllvalues, the com-
putational complexity of this technique is muchhggthan that of the other investigated and
proposed techniques. This complexity decreases Whiecreases. Therefore, the MS-cSV tech-
nigue does not offer any advantage over the praptessnique.

4) The EQB technique results in poor classificattmeuracies with small values bfand
classification accuracies comparable with othehnegues with high values &f. The computa-
tional complexity of this technique is very highdase of selecting few samples, and decreases
while h increases. Although it is possible to select aegirdd number oh samples with the
EQB, it is not properly suitable for photointer@tebn applications since its high computational
complexity and poor classification performance vathallh values. It is preferable for ground
survey based labeling of unlabeled data.

5) The KL-Max technique is different from the abawentioned techniques since it is only
able to select one sample at each iteration andeamplemented with any classifier that esti-
mates a posteriori class probabilities. In our expents we converted the SVM results into
probabilities and results showed that this techmigunot effective with SVM classifiers and re-
quires very high computational complexity.
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We assessed the compatibility of the considerededhniques with the strategies to label
unlabeled samples by image photointerpretationrourgd data collection in order to provide
some guidelines to the users under different cmndit As mentioned before, in the case of VHR
images, in many applications the labeling of unlethesamples can be achieved by photointer-
pretation, which is compatible with several itavat of the AL process in which a small vatue
of samples are included in the training set at estep according to an interactive procedure of
labeling carried out by an operator. On our VHRadsgt, we observed that batcheshef5 or
10 samples can give the highest accuracies. Iedbe of hyperspectral or medium/low resolu-
tion multispectral data, expensive and time consgnground surveys are usually necessary for
the labeling process. Under this last conditiony éew iterations (two or three) of the AL proc-
ess are realistic. Thus, large batches (of e.qudimals of samples) should be considered. In this
case, we observed that sophisticated query furecaom not necessary, as with many samples of-
ten an uncertainty criterion is sufficient for abiag good accuracies. As a final remark, we
point out that in real applications, some geogregdhareas may be not accessible for ground
survey (or the process might be too expensive)sTtine definition of the podJ should be car-
ried out carefully, in order to avoid these aréssa future development, we consider to extend
the proposed method by including a spatially-depanthbeling costs, which takes into account
that traveling to a certain area involves some tyfpeosts (e.g., associated with gas or time) that
should take into account in the selection of baitichnlabeled samples [27]. In addition, we plan
to define hybrid approaches that integrate semrsigezl and AL methods in the classification
of RS images.
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Chapter 6

6. A Novel Protocol for Accuracy Assessment in Classifation of
Very High Resolution Images

This chapter presents a novel protocol for the aacy assessment of thematic maps ob-
tained by the classification of very high resolati/ HR) images. As the thematic accuracy
alone is not sufficient to adequately charactetize geometrical properties of high resolution
classification maps, we propose a protocol thatased on the analysis of two families of indi-
ces: 1) the traditional thematic accuracy indicasda?) a set of novel geometric indices that
model different geometric properties of the objeetsognized in the map. In this context, we
present a set of indices that characterize fivéedkt types of geometric errors in the classifica-
tion map: 1) over-segmentation; 2) under-segmentiatB) edge location; 4) shape distortion;
and 5) fragmentation. Moreover, we propose a nepr@gch for tuning the free parameters of
supervised classifiers on the basis of a multiadbjeacriterion function that aims at selecting the
parameter values that result in the classificatioap that jointly optimize thematic and geomet-
ric error indices. Experimental results obtained Quickbird images show the effectiveness of
the proposed protocol in selecting classificatioaps characterized by a better tradeoff between
thematic and geometric accuracy than standard pdaces based only on thematic accuracy
measures. In addition, results obtained with Supp@ctor Machines (SVM) classifiers confirm
the effectiveness of the proposed multiobjectiolenigue for the selection of free parameter val-
ues for the classification algorithm.

6.1 Introduction

With the availability of very high resolution (VHRnhages acquired by satellite multispectral
scanners (e.g., GeoEye-1, Quickbird, Ikonos, SPRT & possible to acquire detailed informa-
tion on the shape and the geometry of the objeetsept on the ground. This detailed informa-
tion can be exploited by automatic classificatigetems to generate land-cover maps that ex-

This chapter is in press on tHeEE Transactions on Geoscience and Remote SeriBitgy “A Novel
Protocol for Accuracy Assessment in Classification of VEiigh Resolution Images”. Authors: C.
Persello, L. Bruzzone.
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hibit a high degree of geometrical details. Thecigien that the classification system can afford

in the characterization of the geometrical propsrof the objects present on the ground is par-
ticularly relevant in many practical applicatioesy., in urban area mapping, building characteri-
zation, target detection, crop fields classificatio precision farming, etc.

In this context, it is necessary to further deveboph algorithms for characterizing the tex-
tural and geometric information present in VHR imggand effective classification techniques
capable to exploit these properties for increasivg classification accuracy. In the literature,
several techniques have been proposed for thefedaien of VHR images. Among the others,
we recall the use of texture, geometric featured,raorphological transformations for character-
izing the context of each single pixel, and the afselassification algorithms that can operate in
large dimensional feature spaces (e.g., SVM) [1]{fonetheless, a major open issue in classifi-
cation of VHR images is the lack of adequate sfjiatefor a precise evaluation of the quality of
the produced thematic maps. The most common agcassessment methodology in classifica-
tion of VHR images is based on the computationheihtatic accuracy measures according to
collected reference data. However, the thematiaracy alone does not result sufficient for ef-
fectively characterizing the geometrical properbéshe objects recognized in a map, because it
assesses the correctness of the land-cover labgtmrse test pixels (or regions of interests) that
do not model the actual shape of the objects irstleme. Thus, often maps derived by different
classifiers (or with different parameter values ttee same classifier) that have similar thematic
accuracy exhibit significantly different geometpooperties (and thus global quality). For this
reason, in many real classification problems thaityuof the maps obtained by the classification
of VHR data is assessed also through a visual atspe However, this procedure can provide
just a subjective evaluation of the map qualityt ten not be quantified. Thus, it is important to
develop accuracy assessment protocols for a praaigective, and quantitative characterization
of the quality of thematic maps in terms of botkrttatic and geometric properties [6]. These
protocols could be used not only for assessingyjtiadity of thematic maps generated by differ-
ent classification systems, but also for bettevidg the model selection of a single classifier,
i.e., the selection of the optimum values for tteefparameter of a supervised categorization al-
gorithm.

An important area in which some studies relatethéoaforementioned problem have been
done in the past is that of landscape ecology. Sappeoaches have been proposed in the land-
scape ecology literature to compare different map<onsidering the spatial structure of the
landscape [7] (and thus not only the thematic amm)r As an example, in [8] different compari-
son methods that consider both the spatial strecind the pixel-based overlap (i.e., the the-
matic accuracy) simultaneously are presented. Hewdliese methods are developed in a dif-
ferent framework and do not consider the particplaperties of classification maps derived
form VHR remote sensing images and the issueterkta the tuning of the free parameters of a
classifier.

In this chapter we address the abovementioned gmmobly proposing a novel protocol for a
precise, automatic, and objective characterizatioithe accuracy of thematic maps derived from
VHR images. The proposed protocol is based on wviaduation of two families of indices: 1)
thematic accuracy indices, and 2) a set of novelhrgaric indices that assess different properties
of the objects recognized in the thematic map. Areposed protocol can be used to: 1) to objec-
tively characterize the thematic and geometric erops of classification maps; 2) to select the
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map that better fit specific user requirements3)oto identify the map that exhibits in average
best global properties if no specific requiremearts defined. Moreover, we propose a novel ap-
proach for tuning the free parameters of supervidassification algorithms (e.g., SVM), which
is based on the optimization of a multiobjectiveljem. The aim of this approach is to select
the parameter values that result in a classifioati@ap that exhibits high geometric and thematic
accuracies.

The chapter is organized into six sections. The segtion presents the background on the
assessment of thematic accuracy of land-cover nigxsion 6.3 describes the proposed accu-
racy assessment protocol, and discusses the twbefsimf presented geometric and thematic in-
dices. Section 6.4 illustrates the proposed my#itive criterion for the tuning of the free pa-
rameters (model selection) of a classifier. Secidnpresents the obtained experimental results,
while section 6.6 draws the conclusion of the chapt

6.2 Background on thematic accuracy assessment of cl#gsation maps

In this section we briefly recall the main conceptsthe procedures used to assess the the-
matic accuracy of a classification map obtainecalsupervised classifier [9], [10]. In general,
two main issues should be addressed: 1) the dolteof the labeled samples for both training
and testing a supervised algorithm (which may megthe subdivision of the reference sample
set in two or more disjoint sets) and 2) the chatéhe statistical measure to evaluate the error
(or accuracy) in pattern classification.

With respect to the first issue, several resampimaghods have been proposed in the pattern
recognition and statistical literature, e.g., resiibtion, holdout, leave-one-out, cross-validation
bootstrap [11]-[14]. Holdout is one of the most alidadopted resampling strategies in remote
sensing applications. It consists in partitionihg tivailable labeled samples in two independent
sets or in directly collecting two independent s#tsamples in separate areas of the scene. One
set is used for training the classifier, the otbee for assessing the classification accuracy. In
some cases it is preferable to split the availabhaples in three sets: 1) one for training the-algo
rithm (training sej; 2) one for tuning the free parameters of thesifeer (validation se); and 3)
one for assessing the final accurams{ set Holdout is less computationally demanding with
respect to other methods (e.qg., leave-one-out dottlkcross validation) and it is particularly re-
liable when the available labeled samples are aedun two spatially disjoint portions of the
scene. Indeed, in this case it is possible to absegeneralization capability of the classifier fo
test pixels that are spatially disjoint from theesrused for the training (which may present a dif-
ferent spectral behavior). With all the mentionedampling methods, it is important to adopt a
stratified approach, i.e., the training and test ¢er each of th& folds) should contain approxi-
mately the same proportions of the class labelhasriginal data set. Otherwise imbalanced
and skewed results can be obtained.

With respect to statistical measures for accura@uation, the complete description of the
information that comes out from the comparisonhef tlassification of test samples with the ref-
erence labeled data is given by the confusion {@rematrix E. E is a square matrix of size
LxL (whereL is the number of information classes in the cargd problem) defined as:
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The generic elemeng; of the matrix denotes the number of samples classifito category
(i=1,...L) by the supervised classifier that are associaiéd labelj (j =1,...L) in the refer-
ence data set. This representation is completeeamtlividual accuracy of each category is de-
scribed along with both the errors of inclusion nfeoission errors) and errors of exclusion
(omission errors) [9]. From the confusion matrikfedent indices can be derived to summarize
the information with a scalar value. Let us consittee sum of the elements of the raow
e, = Z ,§ (which is the number of samples classified into ¢héegoryi in the classification
map), and the sum of the elements of colyme, Z . § (which is the number of samples
belonging to categoryin the reference data set). Two commonly adoptdités are the overall
accuracy QA) and the kappa coefficient of accurakggpg, defined as:
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wheree is the total number of test sampl&# represents the ratio between the number of sam-
ples that are correctly recognized by the classifin algorithm with respect to the total number
of test samples. The kappa coefficient of accura@ measure based on the difference between
the actual agreement in the confusion matrix (d&cated by the main diagonal) and the chance
agreement, which is indicated by the row and coltotals (i.e., the marginals). The kappa coef-
ficient is widely adopted as it uses also off-dia@ioelements of the error matrix, and as it com-
pensates for chance agreement. However, as panteith [15], kappa statistics has also unfa-
vorable features. The main objection to the kappefficient is that it was introduced as a
measure of agreement for two observers (see [Th}s, the kappa coefficient evaluates the de-
parture from the assumption that two observerghgatare statistically independent, rather than
a measure of classification accuracy. For thisoeais [15] it is suggested to use other measures
instead of kappa statistic, e.g., the class-averageuracy defined as:

L
Z &
CA:I—J_l ) (64)
e,

or an alternative coefficient based on KullbackHlei information. We refer the reader to [9]-
[11] for further details on accuracy assessmentqmares in remote sensing image classifica-
tion.
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It is important to point out that all the abovemenéd thematic accuracy measures do not
consider the geometrical quality of the map undeseasment and the shape of the objects pre-
sent in the scene, thus resulting in the impossitib assess the correctness of the geometry of
the objects recognized by the classification atbari This is reasonable to evaluate the quality
of classification maps obtained by medium or losotation images, where the geometry of the
objects is difficult to characterize. On the contrdor adequately assessing the quality of classi-
fication maps obtained by VHR images, it is impotteo define indices capable to evaluate the
geometrical properties of the maps, and to use together with more traditional thematic indi-
ces.

6.3 Proposed protocol for accuracy assessment in VHR imges

In this section we present the proposed protoaoafauracy assessment that is based on the
computation of both thematic and geometric indidé® proposed procedure for thematic accu-
racy assessment is a simple refinement of the madéional procedures described in the previ-
ous section, which takes into account particulapprties of the classification of VHR images.
On the contrary, the introduction of geometric a&di to characterize the properties of the ob-
jects present in VHR images is one of the mainrdaunions of the chapter. Thematic and geo-
metric indices are described in the following twabsections, respectively.

6.3.1 Thematic error indices

When VHR images are considered, we can clearlytiigemvo different contributions to the
overall thematic accuracy: 1) the accuracy obtaioechomogeneous areas, where pixels are
characterized by the spectral signature of onlyaass, and 2) the accuracy obtained on borders
of the objects and details, where pixels are aasetiwith a mixture of the spectral signatures of
different classes. These two contributions modelatiitude of a classifier to correctly classify-
ing homogeneous regions and high frequency ardasisg a more precise assessment of the
quality of the classification map. The classifioatiof mixed pixels is a difficult task wittrisp
classifiers, which should decide for the predomindass in the area associated with the pixel
(fuzzyclassifiers may be adopted in their place for @ering the contributions of the different
land-cover types to the spectral signature assatwmith each single pixel [17]). The proposed
thematic accuracy assessment consists of the atitmulof two separate indices: 1) thematic ac-
curacy on homogeneous areas, 2) thematic accuraegge areas. This is accomplished extend-
ing the holdout strategy by defining two indeperndest sets: one on homogeneous areas (pixel
“inside” objects), the other one on edge arease(pirn the boundaries of objects). This results
in the calculation of two independent confusionnas. Any index derived from the confusion
matrices (e.g., overall accuracy, kappa coefficietd.) may be adopted to calculate the accuracy
on the two separate test sets. It is worth nofirag tifferent indices provide different informa-
tion and can be used together (see the next sdoti@ndetailed discussion on the combined use
of multiple indices for the tuning of the free paueters of a supervised classifier).

6.3.2 Geometric error indices

The geometric accuracy of a classification mapelated to its precision in reproducing the
correct geometry, the shapes, and the boundariéiseobbjects (e.g., buildings, streets, fields,
etc.) present in the scene under investigatiothisxchapter, in order to quantify the geometric
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accuracy of maps characterized by very high spegsdlution, we define a set of object-based
indices (error measures) that evaluate differenhggdric properties of the objects represented in
a thematic map with respect to a reference map.eSafnthese indices are partially inspired to
the measures used in the accuracy assessmentnoérsgion maps, while others are imported
from different domains of image processing. Thesbces are computed by using a reference
map that defines the exact shape, structure aritigposf a setO ={Ol,02,...,Od} of d objects
(e.g., buildings) adequately distributed in thengcander investigation and with different proper-
ties (see the example in Fig. 6.1). Generally, mithee high resolution of VHR images, the map
of reference objects can be easily defined by phtrpretation (few objects are sufficient for a
good characterization of the properties of the mBpgase note that the labels of the classes of
the reference objects are not required for the coatipn of the geometric accuracy indices. In
this way the evaluation of the geometric propertiEthe objects recognized in the map can be
separated from the assessment of the thematicaaycuMoreover, we do not require having ref-
erence objects for all the classes consideredeirtiéssification problem, but only for the classes
for which the geometric properties are importand #ime precise shape can be easily defined
(e.g., buildings, fields, lakes, bridges, etc).

&01 <o,

.

o, &

Fig. 6.1 — Example of a map of reference objects.

Let us consider that the thematic map under asssgag®.g., obtained by an automatic algo-
rithm or by photointerpretation) is made up of & Me:{Ml, Mz,...,Mr} of r different regions
of connected pixels (with 4- or 8-connectivity)chiuthat each pixel ier , 1=1,2,...r , is asso-
ciated with the same label,, where v, is one of thel information classes in
Q={d,@,...q} . In order to calculate the geometric error meastités necessary to identify
for each objecO, in the reference map the corresponding regiohenthematic magM, . This
can be done by considering the degree of overlgppitween the pixels in the reference object
O and in the regiond/;, j=1,2,..k. The regionM; in the map with the highest overlapping
area with the objedD (i.e., with the highest number of common pixets}elected according to:

M, —aE%irDrhlAa#q N Mj‘ (6.5)
where|¢ is the cardinality of a set, and here is usedktmet the number of pixels (area) from a
region (see the example in Fig. 6.2). Given a @a@ir M, ), it is possible to calculate a set of lo-
cal geometric error measurest™ , i =1,2,...d , h=1,2,...m, that evaluate the degree of mis-
matching (in terms afn different specific geometric properties) betwewsn teference object and
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the corresponding region on the map. Global erreasureserr™, h=1,2,...m, can then be
defined on the basis of the local measures.

BEO?
XXXOo

N

N

Fig. 6.2 — Example of a reference objé&ctnd the regions on the map that overlap with it. Rellphas
the highest overlapping area withand is selected according to (6.5).

The adopted measures are: 1) over-segmentation &jrander-segmentation error, 3) edge
location error, 4) fragmentation error, and 5) €hapor.

1) Over-segmentationSimilarly to the segmentation process, this ereters to the subdivi-
sion of a single object into several distinct regian the classification map [see the example in
Fig. 6.3(a)]. The proposed local error measurebeawritten as:

0s(9, My=1- A2 M| (6.6)
o]
This measure evaluates the ratio between the @genig area of the two region®(, M,) with
respect to the area of the reference object. Téhexi®@S is defined in order to scale the output
values in the rang§0,1). The higher is the value of the error, the higisethe level of over-
segmentation of the obje@ in the considered classification map. The valuthisf error is 0 in
the optimal case where the two regions are inafgteement, while it tends to 1 in the worst case
of just one common pixel among the two regions.

2) Under-segmentationThe under-segmentation refers to the classibicagirrors that result
in group of pixels belonging to different objectséd into a single region [see the example in

Fig. 6.3(b)]. The proposed local error measureefined as:
G nM,
US(Q, l\/|)=1-| | (6.7)
Ml
Unlike the over-segmentation, the under-segmemtagioor is computed by considering the ratio
between the area of overlapping amadvlg and O,, and the area of the region on the nMp.
Also theUS error varies in the rang®,1). Value 0 of this index corresponds to perfect egre
ment betweerM; and Q,, while values close to 1 reflect a high amountiofler-segmentation
(i.e., the regionM, is much bigger than the area of overlapping betwe regionsM, and

Q).
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Fig. 6.3 — (a) Example of over-segmentation: the reilprecognized on the map is smaller than the ref-
erence objedD.. (b) Example of under-segmentation: the redipmecognized on the map is bigger than
to the reference obje€.

3) Edge location This index measures the precision of the obgelgfes recognized in the
classification map with respect to those of thaialcobject [see the example in Fig. 6.4(a)]. Let
b(Q) denote the operator that extracts the set of edgds from a generic regio®, . In this
framework, we consider the possibility to introducéolerance in the recognition of the object
borders. This can be implemented by adopting amadqeb([) that extracts the border line of
the objects with a width greater than 1 pixel (€2gor 3 pixels). The definition of the border er-
ror is given by:

b(Q) n b(M)

ED(Q,M)=1-
QM) b(Q)|

(6.8)
This error measure varies in the rarf@¢el) like the previous ones. A perfect matching in the
borders of the two region®, and O, leads to an error value equal to 0, whereas & larig-
matching among the region edges results in erfoegeclose to 1.

4) Fragmentation error The fragmentation of a classification map refershe problem of
sub-partitioning single objects into different shrabions [see the example in Fig. 6.4(b)]. In or-
der to quantitatively measure this type of erroe, define a measure based on the nunmbef
regionsM,, j=1,2,..5;, that have at least one pixel in common with tference objecO, .

For this reason, we define the $et of all the regions overlapping with the referetgect O
as:

R, ={M,.0j=12..;, O nM, £0} (6.9)
The proposed fragmentation error is then definethbyfollowing equation:
r—-1
FG(Q,M)=—"—— 6.10
@M= (6.10)

This error value is scaled in a rafi@d]. The value is 0 in the optimal case when only me
gion M, is overlapping with the reference obj&at, whereas it is 1 in the worst case where all
the pixels of the objec®, belong to different region#; on the map. The measure is normal-
ized with respect to the size (area) of the refegavbjectO, . It is worth noting that the fragmen-
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tation error is correlated with the over-segmeatagrror, but differs from the latter because it
takes into account all the regionsM; that overlap with the real obje€, instead of the area
of the single regiorM, obtained by (6.5).

5) Shape error This error is used to evaluate the shape differ&eteeen an objedd and
the corresponding regioM; on the map [see the example in Fig. 6.4(c)]. beoto character-
ize the shape of an object, several shape factors been proposed in the literature and can be
adopted (e.g., compactness, sphericity, eccentfitd]). Thus the shape error can be defined as
the absolute value of the difference in the setesteape factosf([lof the two regionsM, and
O:

SH =[sf(Q) - s | (6.11)

It is worth noting that by adopting shape factassnmalized in the range [0,1], the defined shape
error measure will vary in the same range.

On the basis of the above defined measures of &cals (i.e., errors associated with single
objects in the map), it is then possible to estingdbal behaviors of the geometric properties of
the classification map. Global error measuremeatshe obtained by averaging the local errors
over thed measurements associated with the reference olije@s i.e., a generic global error
measure characterizing propegyr™ of the map can be expressed as:

d
err®™ :EZerri”‘) : (6.12)
d =
whereert™ is a local erroh on the object. In this way we give the same weight to the errors
over thed objects, independently from their size. Other fmegdefinitions of the global meas-
ures may take into account the size of the diffeobijects, i.e.,

d
err™ :%Z|Oi|erq(h) (6.13)
i=1

or can weight differently the objects on the basispecific user-defined requirements, i.e.,

err™ :%Z/L ert™ (6.14)

wherek, i =1,2,...n are defined by the user. For example, the userspayify that geometric
errors on buildings are more important than geametrors on other objects, like streets, crop
fields or lakes. Global measures are then usedtimate different geometric properties of the
map. Combining the different global indices in agh# measure that averages geometric indices
is also possible. Nevertheless, this procedure dvegult in a measure that is difficult to under-
stand.
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Chapter 6 — A Novel Protocol for Acc