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Abstract

We analyze ground state properties of few-nucleons systems and 16O using

EFT(/π) (Pionless Effective Field Theory) at Leading Order (LO). This is

the first time the theory is extended to many-body nuclear systems. The

free constants of the interaction are fitted using both experimental data and

Lattice Quantum Chromo Dynamics (LQCD) results. The nuclear many-body

Schrödinger equation is solved by means of the Auxiliary Field Diffusion Monte

Carlo method. A linear optimization procedure has been used to recover the

correct structure of the ground state wavefunction. EFT(/π) as revealed to be

an appropriate theory to describe light nuclei both in nature, and in the case

where heavier quarks are used in order to make LQCD calculation feasible.

Our results are in good agreement with experiments and LQCD predictions.

In our LO calculation, 16O appears to be unstable against breakup into four
4He for the quark masses considered.
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Introduction

Nuclear physics is an extremely fascinating and complex field. During the

years, countless models and calculation methods predicted nuclear reactions

and structures with increasing precision. At the present state of art, closed-

form calculations are no longer sufficient to investigate the intriguing complex-

ity of strongly interacting few- and many-body systems. The use of numerical

computation permitted to approach problems never studied before. Nonethe-

less, the algorithms need to be constantly refined and developed to follow the

improvements of technology and the requests of increasing precision, while

decreasing the costs and control the approximations made. This increasing

ability in solving the Schrödinger equation leads to the development of more

complex theories with a sophisticated operator structures, many parameters

to be fitted and better predictions for bound states or scattering problems.

The work done in the past fifty years on nuclear potentials lead to a deeper

knowledge of the interaction itself. However, an interaction able to predict

bound- and scattering-states together and able to provide error estimations

for the theory is still far from been known. This, as well as the connection

of nuclear potential with the underlying theory which is Quantum Chromo

Dynamics (QCD), are some of the many points that still have to be inspected

and understood about nuclei.

In this thesis, we investigated the connection between low-energy Nuclear

Physics and QCD. The only known way to perform calculations in nonper-

turbative QCD is LQCD, which has been shown to be a successful technique

in predicting hadronic observables. In the past few years improvements to

this method allowed to directly compute some few-nucleon-systems like d, nn,
3H, 3He and, 4He. However, in in current calculations, it is necessary to use

unphysically large values of the quark masses. In fact, the physical values give

pion mass that are too light to be constraint in a box of dimension such to

make the computation feasible today. To overcome this problem the calcu-

lations were performed with heavy pions (mπ ∼ (300, 500, 800) MeV) which
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are easier to be accommodated in a smaller box. Nonetheless, the large cost

of the calculation makes it difficult to have a number of samples sufficient to

test the convergence of the data, in particular for larger systems. Moreover,

the absence of reference data or benchmark values for such high mπ makes

the data interpretation complicated. The usage of Contact Effective Field

Theory (EFT)s combined with few body methods can provide a systematic

procedure to check those results.

The EFT method is developed for systems of particles whose scattering-

length is large compared to their size. It consists of an expansions of the

interaction suggesting a hierarchy of the operatorial structure, depending on

the relevant Degrees of Freedom (DoF) and energy scales of the problem.

In particular, the renormalized contact EFT, also know in nuclear Physics

as pionless effective field theory (EFT(/π) ), has been used to bridge the gap

between LQCD and low-energy nuclear physics. This is motivated by the

large mass of pions, too heavy to play a dynamical role in the few-nucleon

Lagrangian. In the case of physical pion mass the long-range contribution

of pions can not be considered trivially irrelevant. However, we demonstrate

that at LO a contact interaction is enough to describe few-body systems also

with lighter pions.

In order to solve the Shröedinger in few- and many-body systems we used

the Quantum Monte Carlo (QMC) method. QMC is an ab initio method

able to calculate observables in relatively heavy nuclei with systematically

improvable precision. Three variants of the method have been used during

this work, the Variational Monte Carlo (VMC), Diffusion Monte Carlo (DMC)

and Released Path Diffusion Monte Carlo (RPDMC).

The goal of this work is to benchmark and to extend lattice calculations

to light-nuclei and heavier systems. To achieve it, we calculate observables of

α-particles and 16O nuclei. We also prove the convergence in the cut-off of the

EFT(/π) at LO, for 4He, using both experimental and LQCD data as input

for gauging the parameters. This shows the completeness of the theory at LO

and its suitability.

After this successful benchmark, we extend the calculations to 16O. This

is the first attempt to extend LQCD results in nuclei whose central density

is closer to saturation. In our study, we could not find evidence of binding

in 16O neither starting from experimental results nor using LQCD data as

input. However, the weak binding of 16O in nature suggests that more orders
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of the interaction are required in order to have an accurate description of the

system.

The work is organized as follows:

In chapter {1} we present a brief historical introduction, as well as the moti-

vations of the methodology and techniques used in this work; chapter {2} will

briefly introduce and review the relevant properties of EFT(/π) concerning our

discussion; in Chapter {3} we review LQCD data and we propose an analysis

of them in terms of T-matrix momentum poles; in Chapter {4} the method-

ological aspect of the calculations will be discussed; in Chapter {5} the results

of the method for few-body system are examined; in Chapter {6} we discuss

results obtained for 16O; Chapter {7} is devoted to conclusions. and finally

Chapter {8} contains all the data and calculations done during this work.



Contents

Contents vi

1 Motivations 3

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Effective Field Theory 9

2.1 Renormalization . . . . . . . . . . . . . . . . . . . . . . . 14

3D simple contact interaction . . . . . . . . . . . . . . 14

2.2 Contact effective field theory . . . . . . . . . . . . . . . . 18

Dimensional analysis and naive power counting . . . . 19

2.3 Short range forces in presence of poles . . . . . . . . . . 24

Contact theory and Effective Range Expansion . . . . 27

Unnaturaly large scattering length . . . . . . . . . . . 28

Short range forces in three-body systems . . . . . . . 30

2.4 Pion-less Effective Field Theory . . . . . . . . . . . . . . 33

Next To Leading Order . . . . . . . . . . . . . . . . . 36

3 LQCD calculations and T-matrix poles analysis 39

3.1 LQCD calculations . . . . . . . . . . . . . . . . . . . . . 40

3.2 T-matrix poles . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Monte Carlo Methods 51

4.1 Variational Monte Carlo . . . . . . . . . . . . . . . . . . 53

Wave function . . . . . . . . . . . . . . . . . . . . . . 55

Automatic Optimization . . . . . . . . . . . . . . . . 59

4.2 DMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Importance sampling . . . . . . . . . . . . . . . . . . 66

QMC in a nutshell . . . . . . . . . . . . . . . . . . . . 68

Alternative Green’s function implementation . . . . . 70

vi



CONTENTS vii

Sign Problem . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Auxiliary Field Diffusion Monte Carlo (AFDMC) . . . . 75

AFDMC method . . . . . . . . . . . . . . . . . . . . . 76

4.4 Release node Monte Carlo . . . . . . . . . . . . . . . . . 81

Mixed estimators . . . . . . . . . . . . . . . . . . . . . 84

5 Pionless EFT in few-body systems 87

5.1 Deuterium, dineutron and tritium . . . . . . . . . . . . . 89

5.2 Helium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Pionless EFT in many body systems 103

6.1 Oxygen and Release Phase Monte Carlo . . . . . . . . . 103

6.2 Oxygen and Linear Method . . . . . . . . . . . . . . . . 111

7 Conclusions 117

8 Tables of data 122

Bibliography 127





Acronyms

EFT(/π) Pionless Effective Field Theory

QCD Quantum Chromo Dynamics

LQCD Lattice Quantum Chromo Dynamics

DoF Degrees of Freedom

EFT Effective Field Theory

ET Effective Theory

RG Renormalization Group

LO Leading Order

NLO Next to Leading Order

LEC Low Energy Constant

ERE Effective Range Expansion

MC Monte Carlo

QMC Quantum Monte Carlo

VMC Variational Monte Carlo

DMC Diffusion Monte Carlo

GFDMC Green Function Diffusion Monte Carlo

RPDMC Released Path Diffusion Monte Carlo

AFDMC Auxiliary Field Diffusion Monte Carlo

LM Linear Method

1





1. Motivations

Nuclear potentials have a long and intriguing history, not devoid of dead ends

and incognita. The first attempt to theoretically describe nucleon forces using

subatomic particles (pions) was done by Yukawa [1] in 1935. The Yukawa

model revealed to be good in explaining NN scattering, but multi-pion ex-

changes were ambiguous and not well understood until the ’60s when heavy

mesons have been discovered [2]. New models, as the more general one-boson-

exchange [3], were developed by that time and had great success. Nonetheless,

the nuclear interaction was not yet completely understood. The theory needed

few bosons that had to be associated with multi-mesonic resonances which ex-

istence was debated. During the time required to clear out the controversy,

many other models appeared, as the Paris [4] and Bonn [5] potentials. Those

potentials were very successful in describing the phenomenology, but they gave

little help in better understanding the basis of nuclear interaction.

The development of QCD appeared to give a new fundamental compre-

hension about nuclear potentials, but physicists soon realized that QCD can

not be applied perturbatively in the low energy limit. The breakthrough

appeared in 1979 when Weinberg [6] proposed to write the most generic La-

grangian consistent with the symmetries of QCD using nucleons and pions

as DoF. The operators were organized in orders with respect to the number

of powers of a “small” quantity present in the operator coefficients accord-

ing to the dimensional analysis procedure. However, the theory showed to

be non-renormalizable order by order, i.e. compute observables still had a

dependency on an unphysical scale that can not be eliminated adding more

terms in their specific order. Later, physicists realized that the motivation of

the non-renormalizability of Weinberg power counting comes from nontrivial

contributions of iterated pions in any angular momentum channel. A later

attempt to solve the problem was made using the KSW scheme [7], which

reorders Weinberg power counting treating pions as perturbations. This ap-

proach is very successful up to the first orders of the interaction, but it fails

3



4 CHAPTER 1. MOTIVATIONS

in converging in the 3S1 two body channel [8]. The impossibility to solve this

problem with any contact interaction ratified the needs of dropping the theory

or, at least, modifying it.

At the moment nuclear physics still has to be completely understood. It

is not clear yet if it is possible to write a potential through first principles and

QCD symmetries as Weinberg intended. While phenomenological potentials,

as AV18, are still widely used due to their ability to provide quantitative

results, the chiral potential is now gaining popularity as a compromise between

the two approaches. However, this potential is still quite close in nature

to a phenomenological one since it is not completely renormalizable and it

requires to fix the cut-off to a certain value to which the whole potential (and

observables) is dependent.

In this work, we start from EFT, but without pion exchanges. We not only

explore the theory in systems in which its appropriateness is still debated, but

we attempt to prove the consistency of the EFT(/π) power counting in the few-

and many-body systems. Moreover, we use the same procedure that should

be adopted when a consistent pionfull theory will be developed.
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1.1 Motivations

In this work, we will discuss Contact Effective Potentials and their usage in

few- and many-body low-energy nuclear physics. Pionless (or contact) theory

does not treat pions explicitly as a finite range force, including their contact

interactions. This not only avoids renormalization problems of the pionfull

theory, but it also makes the interaction simpler and the power counting easier

to manage because of the few scales involved in the theory. In pionless theories,

in contrast with chiral potentials, chiral symmetry is heavily broken, and the

pion is assumed to be too heavy to play an explicit role in the interaction.

While any interaction can be reproduced with a sum of delta functions and

derivatives, the number of operators needed to reproduce observables might

not be finite, making the theory not-usable. If the theory is appropriate for the

considered system, we expect only a finite number of operators to be relevant.

All the others will be arranged in infinite groups of decreasing importance,

which are called orders of the theory or orders of the interaction. Each order

is expected to give perturbative contributions to the observables. This implies

that the free constants appearing in the potential must be determined in

an order by order sequence. The possibility to do this is ensured by the

renormalizability of the Pionless theory. Each order will then be included in

perturbation theory without changing the parameters already fitted for the

previous ones.

The nuclear interactions are not required to be fully relativistic since the

internal momenta of nucleons are rather small. This justifies the usage of a

non-relativistic many-body approach. However, pion contributions, relativis-

tic corrections, and coulomb interactions are taken into account in the contact

interactions and explicitly recovered at a higher order of the interaction. [9,

10] The pionless power counting is, in fact, a complete expansion of the in-

teraction in the spirit of the Lepage [11] contact expansion. In the following

subsections are discussed the motivations of using EFT(/π) both to describe

low-energy nuclear-physics at physical pion mass and as extension of LQCD

calculations.
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Quantity Mass [MeV]

MQCD ∼ 1000
mπ ∼ 140
mρ ∼ 780
mN ∼ 940
m∆ −mN ∼ 300
m1pe ∼ 20
mnuc ∼ 10

ann 5.4112(15) fm

Particle Be [MeV]

d ∼ 2.22
3H ∼ 8.48
4He ∼ 28.3
5He ∼ 27.5
5Li ∼ 26.6
6Li ∼ 32.0
16O ∼ 127

apn -23.7148(43) fm

Table 1.1: The relevant mass scales and binding energies considered in this
work. MQCD refers to the QCD scale which defines the nucleon scale mN . The
nuclear binding scale mnuc refers to the typical energy per particle of large
nuclei (A≥12). On the right side, the binding energy of few and many body
systems are displayed. ann and apn refers to the scattering length of proton-
neutron and neutron-neutron systems. m1pe m

2
π/mN , which we call the one-

pion exchange scale, emerges when the inverse pion Compton wavelength is
combined with the QCD mass scale.

Physical Pion mass From Tab.(1.1) it can be noticed that there is a factor

two between the typical binding energy of nuclear systems ( 10 MeV) and the

one-pion-exchange scale ( 20 MeV). Hence, it is not clear if pions should be

explicitly treated or not for the nuclear calculations. For systems with small

exchanged momenta, the pionless theory appears to be an appropriate tech-

nique, but if systems with higher exchanged moments are investigated, pions

might be required. In that case, the break-down scale of the theory will be at

the energy of the appearance of ∆ resonances, which have a difference of mass

of about ∼ 300 MeV with respect to nucleons. This can be further iterated

when increasing the energy, requiring the explicit presence of ρ and heavier

mesons in the theory. The terms in the pionless approach are ordered with

respect to an expansion parameter (ι = Q
mπ

). We can use a rough estimation

of the many-body momentum using a naive extension to A-particles of the

2-body energy-momentum dependence:

Q ≈
√

2mn
BE

A
(1.1)

that it is > 50% for Oxygen and α particles, thus we expect the LO to have

large errors that can be reduced only including the next orders of the inter-

action. However, Eq.(1.1) refers to the average momentum but does not take

into account the correlations between particles. Correlations can drastically
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Scale mπ = 300 mπ = 450 mπ = 510 mπ = 805
[MeV] MeV MeV MeV MeV

mQCD 1050 1226(12) 1320 1600(18)
mπ 300 449.9(4.6) 510 805.9(8.9)
m∆ −mN - ∼260 ∼300 ∼180
m1pe ∼90 ∼160 ∼200 ∼400
mnuc ∼10 - ∼15 ∼25

Table 1.2: Energies scales over a range of pion masses in LQCD calculations.
When present in literature, we considered the stochastic and systematic un-
certainties as an global error given by their quadratic composition.

change the convergence, that can be precisely evaluated only a posteriori,

comparing the contribution of each order of the interaction. Moreover, many

studies were performed in few-body systems such as deuterium and tritium

using EFT(/π) [10, 12–14]. Those calculations showed that the contact power

counting is successful and converges at least for the first few orders in the

interaction. In this thesis we want to study the contact theory convergence at

LO in bigger systems like 4He and 16O. The alpha particle provides the ideal

test for proving the predictive power of the theory, while 16O gives some use-

ful indications about the behavior of the theory when approaching saturation

density.

Unphysically high pion mass In this thesis, we also develop a EFT(/π) starting

from results of LQCD calculations. This was possible because of the improve-

ments of the Lattice calculations, which are now able to perform calculations

on multi-hadron systems as deuterium, double neutron, 3He and 4He. Many

groups are now extending calculations on the lattice in many nucleon systems

[NPLQCD, PACS, CalLat, HALQCD... ]. In Tab.(1.2) we are only displaying

calculations in which the two particle system results bound, and consequently

can be used to define a nontrivial low energy nuclear physics. LQCD cal-

culations are still computationally very expensive. Bound states are found

inside finite boxes whose length is pushed to infinity using the Lüsher method

[15]. This is difficult to be done when quarks are light because the interaction

length is much larger than the nucleon size, making the required length of

the box impossible to be reached. Existing calculations were made feasible

using unnaturally heavy quarks and larger than normal pion masses (mπ).

While calculations with relatively small pion-mass have been performed by



8 CHAPTER 1. MOTIVATIONS

few LQCD groups, in this work, we will focus only on the results yielding pion

masses mπ ∼ 500 MeV and mπ 800 MeV. The reason to focus on large pion

masses, besides the fact that these were the only available calculations at the

time this thesis was started, is that we are confident that pions do not play

an explicit role in the interaction. It is not clear if an extrapolation to the

physical pion mass from LQCD result is possible yet. However, the fact that

nucleons in the 3S1 channel are bound at high pion masses, but not in the

physical case, might indicate the presence of a phase transition which would

make difficult any extrapolations.

The data available up to now, shown in Tab.(1.2), shows how m1pe in-

creases with the pion mass. However, the average binding energy per nucleon

(mnuc), does not grow correspondingly. This is an evidence that the range of

the interaction related to the pion mass is indeed very short, and a pionfull

treatment is not necessary. The working goal is to use two and three particles

observables calculated by LQCD groups in order to fit a pionless theory at LO.

The potential, which requires two observables in the two-body channel and

one in the three-body, is then used to make a prediction for the four-body sys-

tem. The prediction is then compared with the four-body data from LQCD.

This procedure is not only useful as benchmark of LQCD calculations, but it

is also a consistency check for pionless theory in a framework in which it is

supposed to be the appropriate theory.

An interesting fact is evidenced by data in Tab.(1.2). It shows that the

nucleon mass is always 800 MeV higher than the pion mass. Even if, the two

masses are correlated, the motivations for this phenomena are still debated.

In order to make predictions on 4He and 16O nuclei, one has to solve the

Schrödinger equation for many-nucleon systems. We used QMC that is able

to do it, in principle, without uncontrolled approximation. It can deal with a

high number of particles (∼ 90) and calculate ground state energies with only

a statistical error that can be reduced systematically increasing the calculation

time. The different QMC techniques used in this work are described in detail

in chapter {4}.



2. Effective Field Theory

The aim of Physicists is to understand and model the nature in the simplest

and most understandable way. If we needed to know perfectly all the me-

chanics up to the smallest components of physics in order to make conclusions

on macroscopic systems, science, as we know it, would not be possible. The

existence of a qualitatively and sufficiently accurate description of gravity in

terms of spherical planets and ∼ 1
r forces allows for the development of the

Newtonian theory. The possibility to divide natural phenomena in few/many

self-consistent theories with different DoF is called separation of scales. Its

existence is not supported by any mathematical theorem, but our experience

in physics shows that it is a reasonable assumption.

Atomic physics is a clear example of the concept of separation of scales,

electrons and nuclei are the relevant DoF if phenomena as ionization are stud-

ied. The presence of a structured nucleus is irrelevant in the absorption process

of photons of few eVs. Nonetheless, if we irradiate the atomic target with suf-

ficiently high energy, transition in the nuclear structure may appear, revealing

the limits of the Born–Oppenheimer approximation. The separation of scales

is defined by the difference between the typical energy scales of the described

process (eVs) and the breakdown energy for which the theory no longer makes

sense because it lacks the correct DoF (MeV). The two ways to see the same

physical systems are elements of the Renormalization Group (RG) in which

it is possible to make transformations of DoFs (in this case the protons and

neutron become a single particle nucleus) and the interactions among them in

order to describe the same low energy observables (like ionization). The two

different set of DoF and interactions that can be used to describe the system,

and connected by the RG transformation, are called theory fixed points. They

are a mathematical representation of the energy scales that we use to divide

Physics.

The description of the macroscopic system (the atom) using microscopic

DoF (electrons and the nucleus composed of neutron and protons) is simple

9
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Figure 2.1: Artistic representation of a separation of scale.

in principle. However, it might be impossible to perform actual calculations,

because of the large number of bodies involved and the complexity of the inter-

action. The microscopic description of the macroscopic physics, for instance

the absorption of high energetic photons in the nucleus, is possible only if

the RG transformation is reversible. Usually, this is not true and the lack of

microscopic DoFs in the theory makes the description of the nucleus energy

levels very complicated or even impossible.

The key to treating a scale separation is changing the system DoFs and

remodeling the interaction between them. Effective Theory (ET) provides a

prescription to redefine an interaction changing its the theory resolution in

order to have a simpler description of the relevant system’s proprieties. The

new description of the problem might change the dynamic of the theory for

high moments, well described only by the fundamental theory. Nonetheless,

the hard dynamics (high moments contributions to observables) are assumed

to be irrelevant because of the presence of a separation of scales.

In the Wilson [16] view of RG, if the theory contains a separation of scales

one can set a breakdown cut-off Γ over which all the moments are considered

hard and below which all the moments are considered soft. If there is a gap

between theories it is irrelevant where to put Γ inside the gap.

The change of the degrees of freedom and the choice of Γ are equivalent to

set to zero all the theory components above that threshold. In fact, the reso-

lution of the theory is too small to be described as independent particles nor

their excitation or the nucleus internal structure can be correctly described.

The renormalization group flow is recovered integrating out the momenta in

the gap (left inside the soft region), up to a second arbitrary cut-off Λ < Γ,

making the interaction between the soft DoF dependent from the choice of

Λ. This shows how important it is to set Γ close to the hard threshold in

order to have more freedom in the choice of Λ. Nonetheless, if the gap is
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sufficiently large/empty the observables are not sensible to changes in Λ if it

remains inside the gap area. Since the construction of the theory integrates

out all the hard components of the interaction there is no point to increase

Λ > Γ since operators would not change further, but it is in principle possible

since Λ→∞ is not a theory singularity anymore.

The fact that any fixed point of the theory can be described by DoF

interacting by local interactions has never been proven. However, it is the

case of all known physical systems. This means that the interaction between

DoF can be expanded in terms of Dirac functions δ, as described by Lepage

[11]. When a δ function is used, the interaction will add a divergence in

the theory. This reflects the fact that a local interaction would take into

account infinite moments. A standard way to deal with this problem is the

regularization/renormalization procedure: the δ is smeared, used to calculate

observables and then pushed again to a local interaction in a second moment.

The procedure is convergent because of the introduction of Γ in the redefinition

of the DoFs. This procedure will be seen in detail in the next section.

The regularization/renormalization procedure has the same meaning as

the integration over the Wilson soft cut-off Λ. The RG flow in the Lepage

idea of renormalization can be seen changing the smeared δ cut-off inside the

theory gap or beyond. While the most intuitive way of imposing a cut-off in

momentum space is to use a sharp function, it is usually more convenient to

use a smooth function.

If it is possible to flow a hard theory to a soft one and it is possible to

define the breaking cut-off Γ the observables will become Λ-independent when

the latter is sufficiently large, and the theory is called renormalizable. If all

the operators of the new theory show such behavior, the theory is completely

renormalizable. A theory is called renormalizable order by order, if its opera-

tors can be divided into groups for which their cumulative contribution does

not depend on Λ (but any single contribution might). If the theory can not

give cut-off independent observables even summing operators, the theory is

not renormalizable and lacks predictive power. We do not know how to treat

non-renormalizable theories in order to make prediction.

The role of EFT is to find a convenient operator expansion to describe

the soft interaction. In order to have the simplest description of the problem,

the new operatorial expansion should be arranged in such a way that the

operators most contributing to the Lagrangian are as few as possible. It will
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Figure 2.2: Qualitative description of a separation of scales (like atomic photo-
absorption). The low-energy observables will be described with good precision,
but the theory can not resolve the most energetic dynamics. The break down
of the theory can occur at different energy for different observables.

be possible to recover the complete picture of the problem including all the

infinite terms of the expansion. The possibility of integrating out the majority

of the operators in the full Lagrangian in the soft momentum region makes

the study of any problem easier with respect to the complete one. In fact,

this allows to arrange operators in orders of decreasing importance for each of

them. This is impossible to do if there is no separation of scales or the DoF

are not appropriate to describe the problem. Operators whose contribution

to any observable drops when flowing from the fundamental to the low energy

theory are called irrelevant. Operators that contribute more and more are

called relevant. All the others are called to be marginal.

The position of any operator inside the hierarchy is defined by its contri-

bution to observables but also from its behavior under renormalization pro-

cedure, that can be used in order to cancel residual Λ dependencies order

by order. The ordering in presence of this kind of theory will be discussed

in more detail later, in the framework of the �π theory. The common pro-

cedure consists of initially arranging the potentials in orders with respect to

increasing powers of a small parameter which helps to have a naive idea of

the interaction, then adjust it in order to renormalize the theory. We expect

each order contribution to observables to be suppressed with respect to the

previous ones by a factor
(
m
M

)n
, where M is some scale of the fundamental

theory (e.g. the nucleon breaking energy for atomic photon-scattering) and

m is a relevant scale of the low energy theory (e.g. the ionization energy)

not know a priori. As long as there is a separation of scales in the system

such that M � m only few operators need to be included in the description,

according to the empirical statement that the soft theory should have smaller

complexity with respect the underlying one.
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While many fields in physics display an evident separation of scales, in

others, like nuclear physics, its existence is still not clear and debated. In

this case, the presence of meson exchange makes the whole picture much more

complicated and does not allow for a clear, or natural, definition of m and

M . To give a hierarchy to the operators of such theory both the naive power

counting and renormalization arguments should be used.

A classical reading on ET about the usage of point-like particles and con-

tact (δ) expansions in the limit of small energy can be found in the work of

P. Lepage in Ref.[11]. For a more formal description of the problem Wilson’s

work [16] gives a clearer description of RG in the case of scale separation. The

construction of Polchinski [17] (and the Effective Average Action for infrared

cut-offs [18]) describes the problem using smooth cut-off functions as Lepage

examples do, but in a Wilson-like approach.

MeV GeV

Separation of scales ?

production of mesons

Quantum Chromo DynamicsLow Energy Nuclear Physics

σ

Photon Energy

Figure 2.3: In nuclear/hadronic physics, the meson production at energies
between the typical scale of nuclear bound and nucleon mass makes the scales
separation less obvious.
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2.1 Renormalization

In this section, the Lepage theory of potential renormalization will be shown.

We will define a cut-off Λ in order to use a divergent theory to predict ob-

servables. The procedure is the same we will follow when EFT(/π) nuclear

potential will be introduced later in this chapter. In fact, nuclear potentials

can be re-expanded in terms of contact interactions and derivatives of the

same kind as the one described in this section.

3D simple contact interaction

The simplest example of regularization and of the necessity of introducing a

regularization procedure is the 3D-δ potential in quantum mechanics. In the

whole section, we will assume units such that: ~2

2m = 1.

The Schrödinger equation with contact interactions reads:

(
−∇2 − λδ (~x)

)
ψ (~x) = Eψ (~x) (2.1)

which, in momentum space, can be rewritten as:

(
k̂2 − E

)
ψ
(
~k
)

= λ

∫
d3q

(2π)3ψ (~q). (2.2)

Applying
(
k̂2 − E

)
to the wave function and dividing for the eigenvalues, then

integrating both sides with respect to k one finds:

1

λ��
����∫
ψ
(
~k
)
d3~k =

��
����

∫
ψ (~q)d3~q

∫
d3k

(2π)3

1(
|k|2 − E

)
1

λ
=

∫
d3k

(2π)3

1(
|k|2 − E

) =

∫ +∞

0

dk

(2π)3

k2(
|k|2 − E

) . (2.3)

In this integral we find the first appearances of divergences in the theory.

In fact, the integral can be trivially generalized to any dimension D, but it

converges only if D < 2.

To overcome the problem one needs to regularize and then renormalize

the theory. The regularization consists in truncating the integrals in order to
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make observables finite. A new parameter Λ, corresponding to the maximum

value of the momentum up which we want to perform integration is introduced

in the theory. The most natural regularization procedure consists in truncat-

ing integrals using a sharp function. Alternatively, a smearing function that

suppresses high moments can be used. Dimensional regularization is the third

option to make integrals finite. It consists in changing the integral dimension

to make expectation values finite, then restoring it in a second moment.

When the cut-off is introduced, the observables become dependent on it.

However, the cut-off is not a physical quantity, so we need to renormalize the

theory introducing a cut-off dependence in the interaction strength too.

1

λΛ
=

∫ Λ

0

dk

(2π)3

k2(
|k|2 − E

) . (2.4)

If the energy were the only relevant observable in the problem, this pro-

cedure would have no predictive power since the coupling will require an ob-

servable to be fitted and the observable will be completely defined by the

interaction. However, once λΛ is determined in this manner, it can be used to

calculate any other observable in the problem. In fact, observable estimations

will be finite and cut-off independent when the cut-off is high enough.

To prove the predictive power of this exercise, consider the scattering of

two particles with a delta potential. The Lippmann-Schwinger [19] equation

for the T-matrix between two states |~p〉 and |~p′〉:

〈~p′|T |~p〉 = 〈~p′|V |~p〉+ 〈~p′|V 1

p2 −H0 + iη
|~p〉 , (2.5)

where p2 is the particle energy and H0 is the free Hamiltonian. With the

insertion of the unitary relation:

1 =

∫
d3~q |~q〉 〈~q|, (2.6)

remarking that

H0 |~q〉 = |~q|2 |~q〉 (2.7)

and using

〈~q1|V |~q2〉 = − λ

(2π)2 (2.8)
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where q1 and q2 are momentum eigenstates, it can be written:

〈~p′|T |~p〉 = − λ

(2π)3

[
1 +

∫
d3~q

1

p2 − q2 + iη
〈~q|T |~p〉

]
(2.9)

Notice that 〈~p′|T |~p〉 does not depend from 〈~p′|. Hence we can substitute

〈~q|T |~p〉 in Eq.(2.9) with 〈~p′|T |~p〉 obtaining:

〈~p′|T |~p〉 =
1

(2π)3 [I − 1
λ

] , (2.10)

where

I =

∫
d3~q

(2π)3

1

p2 − q2 + iη
(2.11)

which is not convergent. The relation between the matrix element and the

cross section is:

σ =
8π11/2

Γ (3/2)

∣∣∣〈~p′|T |~p〉∣∣∣2 , (2.12)

where 〈~p′|T |~p〉 is finite and cut-off dependent. The energy of the system is used

to fix λΛ for each cut-off. The method of renormalization and regularization

gives a prediction of σ which is finite. The further step is to demonstrate that

observables are cut-off independent when the cut-off is high.

Eq.(2.4) for large Λ can be computed as:

1

λΛ
=

Λ−
√
|E|Arctan

(
Λ√
|E|

)
2π2

≈ 1

2π2

(
Λ−

√
|E|π

2

)
(2.13)

Which leads to:

E =

(
2Λ

π
− 4π

λΛ

)2

. (2.14)

The two previous equations show the dependence of the parameter λΛ with

respect to the cut-off Λ assuming the binding energy of the system is the fixed

observable in the theory. It can be noticed that the energy in Eq.(2.14) can

not be held finite for Λ → +∞ if λΛ is finite too. This kind of behavior is

common in contact theory and will be found also in the case of �π theory.

Eq.(2.11) can be refined if Λ→ +∞:
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IΛ =

∫ Λ

0

d3~q

(2π)3

1

p2 − q2 + iη
≈ 1

2π2

(
Λ + ip

π

2

)
. (2.15)

Inserting Eq.(2.14) and Eq.(2.15) in Eq.(2.10) then using Eq.(2.12) the cross-

section can be finally computed:

σ =
8π11/2

Γ (3/2)

1∣∣∣(2π)2
[
IΛ − 1

λΛ

]∣∣∣2 =

8π11/2

Γ (3/2)

1∣∣∣ 1
π2

[(
Λ + ipπ2

)
−
(

Λ−
√
|E|π2

)]∣∣∣2 =

4π

E − p2

(2.16)

which is cut-off independent.

This example illustrates how divergences appear even with apparently

simple potentials of standard quantum mechanics. It is, in this case, the

consequence of the extreme singularity of the interaction. The process of

regularization and renormalization changes the Hamiltonian and introduces

a cut-off dependence in the couplings. However, since the cut-off is not a

physical quantity, observables should not depend on it. In Eq.(2.10) we have

the cancellation of all the divergences, this is true for any other observable in

the problem. It should be noticed that the cancellation comes only with the

limit of Λ → +∞ when we can approximate Arctan
(

Λ/
√
|E|
)

with π/2. A

residual dependence is expected if the condition Λ� |E| is not satisfied.

Cut-off regularization is only one of the methods which can be used in

order to regularize/renormalize potentials. Other methods, as dimensional

regularization might be used instead. For more details about regularization

of deltas in three and other dimensions, as well as different regularization

method, look at Ref.[20].
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2.2 Contact effective field theory

The construction of an Effective Field Theory consists of the (re)expansion of

an underlying fundamental theory on a new set of operators. These operators

obey to the same relevant symmetries as the original interaction and act on

the relevant low-energy DoF. The resulting terms are then reordered in such

a way that they can be treated within perturbation theory according to a

suitable small parameter.

For many nucleon-systems, we want to consider processes in which

exchanged momentum between particles is much smaller than the

pion exchange mass-scale. This allows to neglect the long range part of the

pion interaction since they are too heavy to be created as off-shell particles.

To construct the effective interaction, it is sufficient to take into account

all the possible field diagrams which share the relevant symmetries with the

underlying theory. The fundamental, fully relativistic, theory which in prin-

ciple allows the description of nuclei from the first principle is QCD. Low-

energy processes in nuclear physics involve momenta small enough to justify

the use of a non-relativistic approach. Consequently, the nucleon number is

conserved and the nuclear dynamics can be described within a non-relativistic

many-body theory, while the nuclear potential needs to include only parity and

time-reversal conserving operators, and satisfy invariance under small Lorentz

boosts. All relativistic correction will be sub-leading, and appear at next to

next to leading order (N2LO), together with the Coulomb force [21, 22].

The general Lagrangian of a /π-EFT is written as [9]:

L2b = N †
(
i∂0 +

~∇2

2mN
+

~∇2

8m3
N

+ ...
)
N + C0N

†NN †N+

+
C2

8

[
N †
(←−
∇ −

−→
∇
)
NN †

(←−
∇ −

−→
∇
)
N −

−N †NN †
(←−
∇ −

−→
∇
)2
N

]
+ ... ,

(2.17)

Hence the nucleon field is redefined in such a way that the term N †mNN

is canceled. This field transformation is intuitive since nucleons are slow par-

ticles and their dynamics will not have any role in the scattering matrix. The

following description will take into account one coupling channel of the inter-
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action, while the extension to all the channel is trivial and will be considered

later.

Dimensional analysis and naive power counting

The dimensional analysis gives a naive idea about the magnitude of each

coefficient in the expansion (2.17). However, this analysis should be taken only

as an indication since correlations in the system and renormalization process

might change the order of operators drastically. Since in Natural systems [9]

there are only two mass scales, mπ and mN , which we suppose much larger

than the exchanged moments, the counting of mass powers is straightforward.

In the following, we will consider the example of nuclear systems neglecting

spin and isospin dependencies. The extension of the theory is trivially achieved

repeating the same expansion and projecting it in each spin-isospin channel

allowed by the system.

The action of the system is a dimensionless quantity, hence the Lagrangian

should have dimension D (L) =l−4 which, in units of ~ = c = 1, is m4. Con-

sidering that the Lagrangian is a dimensional quantity, any coupling constant

in the theory will have a dimension that has to be justified by the presence

of mass scales. For example, if a coupling C has dimension D (C) ≈ 1
M3 one

should expect that M3 is a combination of mπ and mN .

The fermionic field has dimension 3
2 since:

D (L) = D

(
N †

(
~∇2

2mN

)
N

)
= 4, (2.18)

where D(X) indicates the dimensionality of X. D
(

~∇2

2mN

)
= 1, and then

D (N) = 3/2. It is possible to calculate the dimensionality of all the coupling

constants in Eq.(2.17) in the same way:

D (C0) =
1

M2
(2.19)

D (C2) =
1

M4
. (2.20)

One performs the complete calculation of the mass dependence of any

diagram using the general relation
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D (Cn,D) =
(4π)N−2

MD−4
, (2.21)

where N is the number of fermionic fields attached to the operator and D

is the dimension of the relative operator. Each Low Energy Constant (LEC)

is expected to behave according to the mass scale power defined by the op-

eratorial structure, with a fine-tuning ∆n,D coming from the very particular

correlations of the system.

Cn,D = ∆n,D
(4π)N−2

MD−4
, (2.22)

Nonetheless, we expect Cn,D to be of the same magnitude as its mass

dependence. Hence ∆n,D ∼ 1, this is called naturalness condition. Natural-

ness is not strictly required by the power counting since the contribution of a

specific operator depend on the correlation of the system too. However, it is

desirable and expected if the system does not present not-trivial correlations.

It becomes clear that, in the case of contact interaction, the more derivative

powers are present in a given Lagrangian term, the more it will be demoted

in the power counting.

Coefficient Operator # of N fields Mass Power Naive Order

kinetic ( 1
2mN

) ≈ ∇2 2 M−1 LO

C0 1 4 M−2 NLO

C2 ≈ ∇2 4 M−4 N2LO

D0 1 6 M−5 N3LO

C4 ≈ ∇4 4 M−6 N4LO

The simplest EFT is a theory that does not predict any bound states

nor shallow resonances in the T-matrix. Such theory is just a free theory

with perturbations. The nucleons propagate free subjected to a small contact

potential, which is perturbative with respect to the free propagator.

As described in section {2.1}, in order to calculate the Low Energy Con-

stants (C0, C2, ...) one has to choose a few observables to be fitted. At this

point, any two-body observable, such as the scattering length at zero energy

a0, will be sufficient to fit the NLO constant C0. When the next order is

included, a new constant appears in the two-body interaction, e.g. it can be
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T = + +C0

C2 ++

+ . . .

+ + . . .

Figure 2.4: T-matrix diagrammatic expansion. The relative importance of
each contribution is driven by the mass power of vertexes. The bold vertex
represents C0, which contribute to the amplitude as 1/M2 and the empty
circles are C2 ≈ 1/M4 vertexes.

fitted with the system effective range r0. Any new diagram has to be included

according to perturbation theory and it will modify the value of the first fixed

observable (a0). To recover the correct scattering length after the new inclu-

sion, we need to add a counterterm with the same structure of the therm used

to fit the observable, but at the higher order. For example, when fitting C2

and the relative counter term C∗0 , C0 should NOT be modified. Although, C2

and C∗0 should be fitted together in order to reproduce the observables (a0

and r0). In the same way, the inclusion of more orders of the interaction will

not modify the other already fitted parameters.

It should be noticed that there are two kinds of possible expansions, one

in the power of the mass-scale in the vertexes
(
Q
M

)n
and one in the number of

loops of the diagram. The T-matrix will be calculated including the diagrams

as shown in Fig.(2.4) up to a given order:
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T (p) = −iC0 (Λ) +

− iC2
0

∫
d4l

(2π)3

 1

l[0] + p[0] − (~l+~p)
2

2mN
+ iε


 1

−l[0] + p[0] − (~l+~p)
2

2mN
+ iε

+

− iC0C2

∫
d4l

(2π)3 l
2

 1

l[0] + p[0] − (~l+~p)
2

2mN
+ iε


 1

−l[0] + p[0] − (~l+~p)
2

2mN
+ iε

+

· · · ,
(2.23)

where the integrals are performed in 4-momentums and p is the momentum

of the incoming particles in the center of mass frame. Loops can be simplified

using the residual theorem to integrate out l[0] and changing the integration

variable ~l + ~p→ ~l:

T
(n)
1loop(p) =

− iα
∫

d4l

(2π)3 l
2n

 1

l[0] + p[0] − (~l+~p)
2

2mN
+ iε


 1

−l[0] + p[0] − (~l+~p)
2

2mN
+ iε

 =

− iα
∫

d3~l

(2π)3

~l2n

~l2 − 2mNp[0] − iε
(2.24)

Where α represents the product of the LEC attached to any loop. On the

top of the power counting, one has to renormalize the theory as described in

sec.{2.1}. After the regularization, the integral becomes:

TΛ,n
1loop(p) ∼ Θ2n+1Λ2n+1, (2.25)

where n indicates the momentum power in the loop vertex. Θ is a function

depending on the regularization scheme. It can be calculated that in the

particular case of dimensional regularization with minimal subtraction Θ = 0.

We do not require the theory to be renormalizable term by term, but the

cut-off dependency should disappear when all the contribution of a given order

are included, meaning, in this case, that the theory is renormalizable is order

by order. This has important consequences in the power counting scheme

since we expect any divergent term of a given order to have the same behavior

in the cut-off when this is large. If a term of an order of the theory is missing,
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the cut-off dependency of the others will not be compensated. In this case,

the appearance of divergencies at large Λ is an effect of the missing term,

at it does not mean that the theory itself is not renormalizable. Looking

at the large cut-off behavior we have a powerful tool to understand if the

theory is complete. However, the process of promoting or demoting a term

for renormalization reasons is not an artifact of renormalization process, but

it is rather due to nontrivial correlations between particles and it should not

depend on the regularization scheme.
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2.3 Short range forces in presence of poles

Shallow	
virtual	state

Shallow	
bound	 state

𝐼𝑚(𝑘)

𝑅𝑒(𝑘)

~	𝑚*

Orders	of	 the	theory	
are	perturbative.
(The	theory	converge)

Require	infinite	orders	
To	have	the	correct	result.
(The	theory	does	not	converge)

Figure 2.5: The LO of the two-body scattering matrix has to be calculated
including all the loops in order to recover the correct pole in the complex
momentum plane.

The case of a bound system (or a system with a shallow virtual state) is

much different from the already discussed case. In nature, the two-nucleon

system shows a bound state (deuterium) with an energy of about BE(d)= 2.22

MeV, which corresponds to a binding momentum kpole =
√
MNB that is

reflected in a pole of the T-matrix. Moreover, this system has a second shallow

pole in the 3S1 channel. It is related to a virtual state and it affects the

scattering length making it much larger than the typical dimension of the

nucleon. The perturbative theory described above is not able to recreate such

poles of the T-matrix inside its range of convergence. In other words, this

means that it is not possible to recreate the poles with a contact EFT without

summing infinite diagrams.

In order to describe a system with poles in the T-matrix, we have to



2.3. SHORT RANGE FORCES IN PRESENCE OF POLES 25

promote two-body interactions, in the channels in which we have poles, to

the LO. The poles in the two-body system are in S-wave. Therefore we need

to treat the corresponding operators in a nonperturbative way as shown in

Fig.(2.6).

= + + + + . . .
T0

=T1 + + +

T0

T0

T0

T0

Figure 2.6: In the atop panel the LO contribution to the T-matrix and in
the bottom one the NLO one calculated in perturbation theory. Notice how
the LO is treated not perturbatively. Empty circles are the NLO vertex, C2,
associated to momentum square operator.

The sum of infinite diagrams is not a trivial task. However, it can be per-

formed analytically taking the loop contribution from Eq.(2.24) and recalling

that vertex contribution at LO is C0. Defining the transfer momentum as ~k:

T (0) =

CΛ
0 + CΛ

0 T
Λ
1loop

(
~k
)
CΛ

0 + CΛ
0 T

Λ
1loop

(
~k
)
CΛ

0 T
Λ
1loop

(
~k
)
CΛ

0 + ...

= CΛ
0

∞∑
i=0

CΛ
0 T

Λ
1loop

(
~k
)
=

CΛ
0

1− CΛ
0 T

Λ
1loop

(
~k
)

(2.26)

The integral (2.24) can be performed choosing a regularization. In the follow-

ing example, it has been done with a sharp cut-off regularization.

T
(0),Λ
1loop

(
~k
)

= −mN

4π

(
ik + Θ1Λ + o

(
k2

Λ

))
(2.27)
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From Eq.(2.26) and Eq.(2.27) one can calculate the LO contribution to the

T-matrix:

T (0) =
4π

mN

1

4π
mNC0

+ ik + Θ1Λ + o
(
k2

Λ

)
=

4π

mN

1

C̄Λ
0 + ik + o

(
k2

Λ

) (2.28)

Where the Λ cut-off dependency has been absorbed in the effective coupling

C̄Λ
0 :

C̄Λ
0 =

4π

mNC0
+ Θ1Λ. (2.29)

From Eq.(2.28) it is possible to find the corrections of the LO observable.

Recalling the relation: 1
1+x

x<1
=

∞∑
n=0

xn:

T (0),Λ =
4π

mN

1

C̄Λ
0 + ik

(
1 +O

(
k2

Λ

)
+ ...

)
(2.30)

where, for any finite cut-off Λ, the leading order is still affect by a correction

of order 1
Λ . Eq.(2.30) highlights how the power counting expansion will fail if

the typical exchanged momentum is higher than the used cut-off.

The contributions of sub-leading order diagrams are much easier to be eval-

uated than the LO since they are treated perturbatively as in the case of the

weakly interacting theory. New diagrams should be added to Eq.(2.28) with

the purpose of canceling residual cut-off divergences up to the corresponding

T
(n)
1loop(p) power introduced in Eq.(2.24). It is then clear that any sub-leading

loop should not be iterated more than once in order not to bring more Λ con-

tributions than those needed in order to perform renormalization. In other

words, not only it is worthless to treat sub-leading orders non-perturbatively,

but it can also be inconsistent with the renormalization scheme.
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Contact theory and Effective Range Expansion

The expansion of the potential in terms of contact interactions can be de-

scribed both in terms of a Dirac’s δ in coordinate space or in terms of power of

the center of mass momentum |~k| in momentum space. It leads to a T-matrix

expansion (Eq.(2.28)) very similar to the Effective Range Expansion (ERE)

known from elementary scattering theory:

T (k) =
2π

mN

1∣∣∣~k∣∣∣ cot (δ0)− ik
(2.31)

with

∣∣∣~k∣∣∣ cot (δ0) = − 1

a0
+

1

2
r0

∣∣∣~k∣∣∣2 + r1

∣∣∣~k∣∣∣4 + · · · (2.32)

where δ0 is the phase-shift, a0 is the scattering length at zero energy, r0 is the

effective range and depends, as r1, on the length of the interaction. In all the

systems we will discuss, the N-N scattering length is unexpectedly larger than

the typical nucleon radius both in the 1S0 and 3S1 channels. Hence, it is con-

venient to rewrite the above expansion around the momentum corresponding

to the binding energy of deuterium, which is a relevant scale of the theory:

∣∣∣~k∣∣∣ cot (δ0) = −γt +1
2ρd

(∣∣∣~k∣∣∣2 + γ2
t

)
+ω2

(∣∣∣~k∣∣∣2 + γ2
t

)2

+...

O (Q) O
(
Q2
)

O
(
Q4
) (2.33)

where γt, ρd and ω2 are expansion parameters 1. The same hierarchy in terms

of exchanged momentum can be done as in EFTs. In fact, the similarity

between Eq.(2.31) using Eq.(2.32) and Eq.(2.28) is impressive and one can

identify the low energy scattering parameters with EFT quantities at a given

order like in:
1

a0
=

4π

mNC0
+

2

π
Λ. (2.34)

This can also be compared with the example worked out in sec.{2.1} where

we fixed the scattering amplitude. Calculating the behavior of the LEC fitting

the scattering length we obtain:

1From [23]: γ1
t = 4.318946 fm, ρd = 1.764 fm and ω2 = 0.389 fm−3
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C0(Λ) =
4π

mN

1
1
a0
−ΘΛΛ

. (2.35)

It is interesting to notice that using a sharp cut-off regularization, at LO

there are no terms proportional to |k|2 in the denominator. This reflects

the fact that the contact theory is equivalent to an expansion around small

momenta and the scattering length a0 is correctly predicted at leading order

while the effective range r0 is associated to the NLO of the theory. The picture

changes if the number of shallow poles of the T-matrix is multiple. In this

case, more operators need to be promoted at LO. Nonetheless, this is not

the case as 1/a0 � r0/2 ' a0/mπ, so the effective range is sub-leading with

respect the scattering length.

Unnaturaly large scattering length

In two-body nuclear T-matrix we can notice the presence of a shallow mo-

mentum pole. His presence it is the consequence of the large scattering length

compared with the typical nucleon size. In fact, in those systems ℵ := a−1
0 ∼ Q

(Typical exchanged momentum of the system) [12], meaning that the inverse

of the scattering length enters as a new mass scale in the power counting and

the theory might require a rearrangement in the hierarchy of the operators.

The mechanism fo rwich this happens is similar to the one that determine the

need of a vertex promotion at LO when momentum poles are present in the

convergence radius of the theory discussed in sec.{2.3}. However, the peculiar

shallow character of this pole has deeper consequences in the power counting

which results perturbed beyond the LO promotion.

The description of the system is unchanged when Q� ℵ, but the power-

counting should be made in terms of
(
Q
ℵ

)n
instead of

(
Q
mπ

)n
. The picture

changes if Q ∼ ℵ because each loop in the expansion become equally impor-

tant. However, we can sum them as we did in Eq.(2.26) at LO in a new

contact interaction, whose magnitude is now ℵ dependent. This is the case

of the operator C2k
2~p′ · ~p where CΛ

2 ∼ CΛ
0

(4π)2

M2c
in the natural case. After the

Wilson sum of Eq.(2.26), a new mass dependence ℵ is added in the T-matrix

amplitude in the S-wave (obtained using Q ∼ ℵ):
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T (2),(Λ) ∝

(
1 +O

(ℵ
Λ

)3)
C̄Λ

0 − 2C
(Λ)
2 k2 + 4

(
C

2(Λ)
2 − C(Λ)

4

)
k4 + imNk

4π

(
1 + k2

2m2

) (2.36)

which is not much different from the natural one that can be extracted further

expanding Eq.(2.30):

T (2),(Λ) ∝

(
1 + o

(
k
Λ

)4)
C̄Λ

0 − 2CΛ
2 k

2 + imNk
4π

(
1 + k2

2m2

) . (2.37)

Notice that the relative order of operators has changed. The k4 terms are

promoted at o
(ℵ

Λ

)3
because of the introduction of ℵ. The promotion ap-

pears only in the channel where the shallow poles exist (S-wave). Eq.(2.36)

shows how the shape parameter appears at the same order as the first P-wave

contribution in this kind of theories. Normally CΛ
2 ∼ CΛ

0
(4π)2

M2c
and M is a

mass-scale of the theory identified as mπ. However, the presence of ℵ makes it

CΛ
2 ∼ CΛ

0 (4π)2
(

1
m2
πc

+ 1
mπℵc

)
which is of order 1

mπ
as long as ℵ is small. The

theory is then correctly described up to N2LO when promoting the P-wave

channel operators. The same procedure can be lead to the promotion and/or

demotion of other sub-leading order operators, such as relativistic corrections.
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Figure 2.7: From Ref.[24]: The shallowest three-body binding energies indi-
cated by the solid, dashed, and dash-dotted lines as a function of the momen-
tum cut-off Λ. The vertical dashed line indicates the cut-off range in which
the three-body system has exactly two bound states. The horizontal solid line
shows the energy at which the shallowest three-body state is fixed.

Short range forces in three-body systems

The three-body system in the presence of an attractive interaction is an ex-

ample of how the naive power counting unexpectedly fails already at LO. In

fact, all the observables which concern more than two-body can no longer be

properly renormalized. As it can be seen in Fig.(2.7), by increasing the cut-

off the three-body binding energy calculated using only two-body interactions

becomes increasingly bound without showing any sign of convergence. To cure

the divergence one needs to add a three-body term that compensates the Λ

dependence making observables renormalizable. Nonetheless the inclusion of

a three-body operator of contact type it is sufficient not only for the three-

body system, whose binding energy is now fixed by the new LEC, but also for

the four-body system that shows observables independent from the cut-off as
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well, as can be seen in Fig.(2.8).
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Figure 2.8: Four body binding energy in pion-less theory. The black points are
the energy using the two-body Hamiltonian fitted on deuterium and dineu-
tron. The gray points represent the Helium energy using the same two-body
Hamiltonian with the addittion of a three-body piece fitted on 3He.

This effect is unexpected since naive power counting predicts three-body

LEC to behave as D ∝ 1
M5 . However, the dynamic of the three-body system

enhance its contribution to be of the same order as the two-body interaction

at LO. This effect has been widely studied in the three-boson case, where it is

possible to show that the addiction of a three-body interaction can change the

scattering length of the attractive two-body force, leaving two-body observ-

ables unchanged. This is known as Thomas collapse found in 1935 [25]. This

is an effect similar to the Efimov effect found in 1970 [26]. The three-body

energy diverges in the presence of a zero range interaction. According to the

Efimov effect, when an attractive potential becomes close to a two-body con-

tact interaction, the bound states energy of the three-body system diverges,

while more and more virtual states turn into real bound states. In our case,

it makes the number of bound states with the same symmetry infinite in the
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limit of infinite cut-off. At the same time, as many states become real, the

deeper ones will become very bound and eventually they will exit from the

radius of convergence of the theory.

When the new LEC is fitted in order to renormalize the theory, one needs

to chose which state, among the many created by increasing the cut-off, will

be fixed by the new counterterm. If it is chosen the three-body LEC to fix

the shallower bound-state, in order to maintain the correct number of excited

states in the three-nucleon system, an infinite number of artificial states will

appear at deeper energies. Nonetheless, those states are all outside the con-

vergence radius of the theory and become an artifact of the renormalization

process without physical meaning. This procedure makes the three-body LEC

change sign when a new state becomes bound. The renormalization procedure

has then a periodic behaviour (limiting cycle) whose analytic form has been

calculated in ref. [24, 27, 28] to be

D = λ3Λ4 = c
sin (s0 ln (Λ/L3)− arctan (1/s0))

sin (s0 ln (Λ/L3) + arctan (1/s0))
, (2.38)

where c, L3 and s0 are theory dependent parameters.2 .

2s0 ≈ 1.0064 and Λ/L3 is a dimensionful parameter that determines the asymptotic
phase of the off-shell amplitude [29]
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Figure 2.9: From Ref.[24]: The three-body coupling constant λ3 as a function
of the cut-off parameter Λ. Noticed that the “Limit Cycle” of the coupling
changes sign when a new bound state appears, according with Eq.(2.38).

2.4 Pion-less Effective Field Theory

According to the dimensional analysis of Sec.{2.2} and the considerations

about shallow poles described in Sec.{2.3}, at LO the two nucleon Lagrangian

reads

L2b,c
LO = N †

(
i∂0 +

~∇2

2mN

)
N + Cc0N

†NN †N , (2.39)

where the index c refers to the spin or isospin singlet and triplet channels

(3S1 and 1S0). In the nuclear case, the two-body T-matrix has two shallow

poles, one associated with the deuterium boundstate and one with the large

scattering length of the n−n system. Hence, two operators in the Lagrangian

at LO should be included and treated non-perturbatively. Their vertexes
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are the two LO constants Cs0 and Ct0
3 (associated with the 3S1 and the 1S0

states respectively). The interaction has to be regularized and renormalized

in such a way that the Lagrangian can be transformed into an Hamiltonian

containing only local interaction, suitable to be used within coordinate defined

many-body methods. This is achieved by using an ultraviolet cut-off Λ in

momentum space and introducing the regulator function fΛ. In momentum

space, a customary choice is:

fΛ(q) =
1

Λ
√
π
e−q

2/Λ2
. (2.40)

By using the former regulator, the two-body Hamiltonian in coordinate

space reads [30]

HLO
2b =

∑
i

−
~∇2
i

2mN
+
∑
i<j

(
C1

0 + Cσσ0 ~σi · ~σj
)
e−r

2
ijΛ

2/4 . (2.41)

The specific choice of the operator corresponding to the low energy con-

stants (LECs) C1
0 and Cσσ0 , namely 1 and ~σi · ~σj can be replaced by any other

equivalent form under a Fierz transformation in SU(2) and calculated from

Cs0 and Ct0.

Since the two-body interaction is attractive in both channels, a three-body

interaction should be introduced in the Hamiltonian:

L3b,c
LO = Dc

0N
†NN †NN †N. (2.42)

As for the two-body case, there is some freedom in choosing the operator

to be included in the Hamiltonian formulation of the three-body force. For

simplicity we use a central potential derived by renormalizing the theory with

the same fΛ used in the two-body sector

HLO
3b =

∑
i<j<k

D0

∑
cyc

e−(r2
ik+r2

ij)Λ2/4, (2.43)

where
∑

cyc are cyclic permutation between particles i,j and k.

The expansions present in the theory introduce the need of several extrap-

olations that have to be kept under control. The EFT(/π) expansion introduces

a residual error of the order of the inverse of the mass-scale that has to be cor-

rected order by order. Regularization and renormalization introduce another

3note that Cs0 and Ct0 are often called C1 and C2 in papers where only interaction at LO
is used.
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source of error of order 1/Λ. At LO the regularized theory is then expected to

be affected by a systematic error of order O (1/mπ, 1/ℵ, 1/Λ). However, the

cut-off dependence can be estimated by extrapolating results to sufficiently

large cut-offs. Power counting errors are more difficult to assess and calcula-

tions at sub-leading order are required for their estimation. In order to have

an estimate of the magnitude, one could use a generalization of the two-body

momentum formula for a many-body system starting from the binding energy

BA of the A-body system

QA =

√
2mN

BA
A
, (2.44)

and taking the ratio of this quantity to some relevant mass scale of the theory.

For instance as seen in Sec.{1.1}, at mπ ∼ 800 MeV the 4He binding energy is

B4 ∼ 100 MeV[30] and the ratio with the nucleon mass QA/MN is about 0.17.

At physical mπ the binding energy per particle in 16O is not much different

from the one of 4He (about 10%). Therefore, we expect that the systematic

uncertainty due to the truncation at LO should be very similar in the two

cases.

The extrapolation in the cut-off requires particular attention if, as in the

case of coordinate defined many-body methods, it is hard to push results for

arbitrary high cut-off. However, the naturalness assumption (Eq.(2.21)) and

the known behavior with the cut-off running (Eq.(2.30)) make it possible to

have a controlled extrapolation of the result. LO observables suffer a cutoff

systematic which is removed only in the limit Λ→∞. The cut-off dependence

of an observable at leading order is given by

OΛ = O +
C0

Λ
+
C1

Λ2
+ · · · (2.45)

Where O is the observable at Λ→∞ while C0 and C1 are fitting parameters.

The number of powers of Λ needed to perform a meaningful extrapolation

is not a priori known. The standard prescription consists of truncating the

expansion when adding additional powers of 1/Λ no longer influences O. A

practical example will be discussed in detail in the case of 4He.
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Next To Leading Order

The NLO potential includes both new momentum dependent operators and

counterterms with the same structure as the LO. The first one can be fitted

on observables as the two-body effective range (r0), while momentum inde-

pendent counterterms are required in order to re-fit the observables used to

define the theory at LO. It has to be recalled that LO and NLO should be

included in perturbation theory and NLO LECs should be fitted in order to

recover both the LO and NLO observables without changing the LO ones.

Defining the interaction of two nucleons in the center of mass in which ~p

is the ingoing relative momentum, ~p′ is the outgoing one, ~q = ~p′ − ~p is the

momentum transfer and ~k = ~p′ + ~p, the NLO potential takes the form

VNLO(~p, ~p′) = C
(1)
0 + C

(1)
2

(
p2 + (p′)2

)
= C

(1)
0 + C

(1)
2

(
q2 + k2

)
. (2.46)

As in the case of LO the potential is defined in the two possible two-body

channels. The regulator fΛ is included in order to regularize/renormalize the

theory:

VNLO = fΛ(~q)
[
C

(1)
0 + C

(1)
2

(
q2 + k2

)]
. (2.47)

As for LO, it is possible to transform the potential into a coordinate de-

pendent form. This can be done with a Fourier transform of the momentum

matrix element

VNLO(~r, ~r′) =
∫ d~p

(2π)3
d~p′

(2π)3 〈~r|~p〉VNLO(~p, ~p′)fΛ(~p′ − ~p) 〈~p′|~r′〉
= 1

8

∫
d~k

(2π)3
d~q

(2π)3 e
i(~q·~x+~k·~y)VNLO(~k, ~q)fΛ(|q|)

= 1
8VNLO

(
−i~∇y,−i~∇x

) ∫ d~q
(2π)3 e

i(~q·~x)fΛ(|q|)
∫

d~k
(2π)3 e

i(~k·~y)

= 1
8VNLO

(
−i~∇y,−i~∇x

)
δΛ (~x) δ (~x)

(2.48)

where

~x =
~r − ~r′

2
and ~y =

~r + ~r′

2
. (2.49)

δΛ (~x) is the Fourier transform of fΛ, i.e. a smeared δ function.

Noticed that the derivative does no longer act on the test function when

a matrix element is calculated. In fact,
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〈ψ|VNLO|φ〉 =
∫
d~r
∫
d~r′ψ∗(~r)VNLO (~r, ~r′)φ(~r′)

=
∫
d~x
∫
d~yψ∗(~x+ ~y)

[
VNLO

(
−i~∇r,−i~∇y

)
δΛ(x)δ(~y)φ(~x− ~y)

]
.
(2.50)

The calculation is split in the center of mass and relative momentum pieces:

〈ψ|q2δΛ (~x) |φ〉 = −
∫
d~xψ∗ (~x)φ (~x)∇2

xδΛ(x)

= −
∫
d~x δ(x)

[
φ∇2ψ∗ + 2(~∇φ) · (~∇ψ∗) + ψ∗∇2φ

] (2.51)

where we used the definition of δ(~y) to remove the ~y integration.

〈ψ|k2δΛ (~x) |φ〉 = −
∫
d~x
∫
d~y ψ∗ (~x+ ~y)φ (~x− ~y)∇2

yδ(~y)

= −
∫
d~x δ(x)

[
φ∇2ψ∗ − 2(~∇φ) · (~∇ψ∗) + ψ∗∇2φ

]
.

(2.52)

Summing up with the EFT coefficients,

〈ψ|VNLO|φ〉 =

∫
d~x δΛ (~x)

[
C

(1)
0 + C

(1)
2

(
ψ∗ (~x)∇2

xφ (~x) + φ (~x)∇2
xψ
∗ (~x)

)]
.

(2.53)

This can be directly used in numerical diagonalization calculations. In

Monte Carlo (MC) method (see Chapter{4}), only diagonal matrix elements

are considered, and the relation is further simplified as

VNLO (~x) =

∫
d~x δΛ (~x)

[
C

(1)
0 + C

(1)
2 2Re

(
φ∗ (~x)∇2

xφ (~x)
)]
. (2.54)





3. LQCD calculations and

T-matrix poles analysis

In this chapter we discuss the applicability of EFT(/π) to the most recent

LQCD calculations in low-energy nuclear physics. EFT(/π) can describe a

finite number of poles of the few-body T-matrix inside its breaking-scale, and

its convergence in the effective expansion is directly related to the momentum

of the poles. Hence, to understand the theory limits at high pion-mass it is

necessary to study the pole structure of the results of LQCD calculations.

Finally, we conclude that EFT(/π) can be well applied to the large mπ cases

studied by LQCD calculations. However, some disagreement emerges when

comparing the results of LQCD calculations obtained with different procedures

and by different groups. Nonetheless, the pioneering nature of calculations,

as well as the significant statistical errors in the computed observables, makes

it difficult to draw definitive conclusions. On the other hand, an alternative

method able to benchmark the consistency of the results of LQCD calculations

would be of great help to solve controversies.

39
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CHAPTER 3. LQCD CALCULATIONS AND T-MATRIX POLES

ANALYSIS

3.1 LQCD calculations

The recent advances in the LQCD method, as well as the increasing computa-

tional power available, allow now, to simulate few nucleons systems. However,

the calculations are not trivial, and require substantial high-performance com-

puting resources and complex statistical analysis. One of the limiting factors

is the size of the box used in the calculation, that should be made arbitrarily

large in order to extract observables in the continuum limit. In fact, the cal-

culations rely on the Lüscher formula for calculating scattering observables.

Bound states are instead calculated looking at the behavior of stationary states

density in the box when its width is enlarged. This procedure is unreliable

with light quarks because the size needed to make finite size corrections negli-

gible are still too expensive for present calculations. Hence, all the calculations

have been performed using unphysical high quark mass: which fixed the pion

mass to mπ = {300, 450, 510, 805} MeV. Even if most calculations have been

for the whole baryonic octet and hyper-nuclei, in this section we will focus on

the nucleon sector that is of most interest for our purposes. A brief resume of

the available data, for different mπ’s, will follow.

Calculations at mπ ∼ 805 MeV have been performed by the NPLQCD

[31, 32], PACS-CS [33] and CalLat[34] groups. PACS-CS calculated the results

with two distinct methods, only one of which has been analyzed in this chapter.

Boundstates have been extracted from the behavior of stationary states in the

in all the cases except for CalLat calculations, where deuterium and di-neutron

binding energies are calculated from the scattering length a0 and the effective

range r0 in a similar way as we are going to do later in this section.

mπ ∼ 510 MeV data have been analyzed by PACS-CS [35] up to the four-

body sector. Moreover, the same mπ has been analyzed by HAL QCD[36]

collaboration with a different method. Their analysis consists in the estima-

tion of the interaction between hadrons as function of their relative distance.

Basically, an empirical potential is calculated from the energy of the system

in different configurations. This can be done if nucleons are sufficiently dis-

tant and can be identified as independent particles. The obtained potential

has only two-body components, that can be divided into channels and used

to make estimations of many-body observables. This approach predicts the

absence of any bound state of two nucleons and the only presence of virtual
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states.

Calculations for mπ ∼ 450 MeV have been performed by NPLQCD [37],

while the lowest mπ investigated is ∼ 300 MeV, done by PACS-CS [38, 39].

A summary of available binding energies, scattering lengths and effective

ranges can be found in Tab.(3.1). For sake of simplicity, the LQCD errors

shown in the tables have been contracted, symmetrizing and composing them

quadratically, i.e.

1.00
(

+0.02
−0.05

) (
+0.12
−0.16

)
← 1.00

(√
0.052 + 0.162

)
. (3.1)

where in the first bracket represents the asymmetric stochastic error and the

second one the asymmetric systematic error of the LQCD calculation In the

case in which the error of observables were not directly accessible it has been

calculated with standard error propagation.

In Tab.(3.1) it can be noticed that a pattern is visible in the results for

two body systems: the bindings strength and scattering lengths increase with

the pion mass. Errors in the scattering lengths are especially large, this is the

reflection of the fact that 1/a0 is close to zero and shallow poles are present

in the systems T-matrix. This would imply that the appropriate nuclear the-

ory to treat this data is EFT(/π) with shallow poles. However, the relative

strength between central values of a0 and r0 requires some precautions. At

mπ ∼ 800 many calculations are available, but only two calculations out of

three are compatible in few sigmas, PACS-CS predict a much lower binding

with respect to NPLQCD and CalLat. This might be due to the different Lat-

tice methods used. In fact, the earlier PACS-CS data have been calculated

using the quenched approximation1, while the more recent NPLQCD calcula-

tions are performed fully dynamical. However, more investigations might be

required in order to clarify this discrepancy. CalLat group finds a second, very

shallow, bound state in the 3S1 channel. It is most probably related to the

kind of analysis used to extract the states, conceptually different from the one

used by NPLQCD and PACS-CS. Nonetheless, it might indicate the missing

of a shallow bound state in NPLQCD and PACS-CS mπ ∼ 800 MeV data.

1The quenched approximation consists in neglecting the fermionic loops in the calcula-
tion.
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Last, it should be noticed that in the case of NPLQCD calculation (mπ ∼ 800

MeV, in the 3S1 channel), a0 ∼ 2r0: limit in which the T-matrix presents a

double pole.

3S1 channel

Collaboration mπ [MeV] a0 [m−1
π ] r0 [m−1

π ] Bnp [MeV] B∗np [MeV]

CALLAT[34][40] 800 9.18(40) 3.78(17) 30(3) 3.3(1.2)

NPLQCD[31][32] 800 7.45(91) 3.71(47) 19(5) -

PACS-CS[33] 800 - - 9.1(1.3) -

PACS-CS[35] 500 - - 11.5(6.1) -

NPLQCD[37] 450 -25(123) 7.8(4.1) 14(3) -

PACS-CS[38] 300 - - 14.5(2.5) -

Nature[41] 140 3.85 1.24 2.22 -

1S0 channel

Collaboration mπ [MeV] a0 [m−1
π ] r0 [m−1

π ] Bnp [MeV]

CALLAT[34][40] 800 10(1) 3.3(2) 21.8(5.8)

NPLQCD[31][32] 800 9.5(1.4) 4.6(4) 16(4)

PACS-CS[33] 800 - - 5.5(1.5)

PACS-CS[35] 500 - - 7.4(1.4)

NPLQCD[37] 450 47(165) 6.7(2.2) 12.5(4.9)

PACS-CS[38] 300 - - 8.5(1.8)

Nature[41] 140 -16.85 1.95 -

Table 3.1: Proton - neutron LQCD results in 1S0 and 3S1 channels.

Multi nucleon systems

Collaboration mπ [MeV] B3He [MeV] B4He [MeV]

NPLQCD[32] 800 53.9(10.7) 107.0(24.2)

PACS-CS[42] 800 18.2(4.5) 27.7(9.5)

PACS-CS[35] 500 20.3(4.5) 43.0(14.4)

PACS-CS[38] 300 21.7(13) 47(21)

Nature 140 7.7 28.3

Table 3.2: LQCD results for few nucleons systems.
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3.2 T-matrix poles

From Tab.(3.1) it is difficult to compare and relate scattering lengths and

binding energies in a systematic way. We propose an analysis of the data

in terms of T-matrix momentum poles, which can be calculated both from

scattering parameters and binding energies and directly compared. Moreover,

this kind of analysis is of great interest in order to understand the limits of

applicability of EFT(/π) . The large value of a0 makes evident that the zero-

energy component of the T-matrix is dominant, therefore an expansion around

the zero momenta is the most natural choice. (ERE):

T =
4π

mN

1

kcot (δ)− ik
=

4π

mN

1

− 1
a + 1

2r0k2 + · · · − ik
(3.2)

T ≈ 4π

mN

1

− 1
a + 1

2r0k2 − ik
(3.3)

which is truncated assuming the low momentum limit. Truncated T-matrix

shows two poles in the complex momentum plane:

− 1

a
+

1

2
r0k

2 − ik = 0
k=iκ−−−→ −1

a
− 1

2
r0κ

2 + iκ = 0, (3.4)

κ± =
1

r0

(
1±

√
1− 2r0

a

)
. (3.5)

These represent relevant states of the system (they might be resonances,

bound or virtual states). Reverting the equation, it is possible to write a0 and

r0 in functions of the poles:

r0 =
2

κ+ + κ−
a =

κ+ + κ−
κ+κ−

. (3.6)

In order to make meaningful comparisons, poles are also calculated from

two-body binding energies. This can be done analytically:

κBE =
√
mNBd, (3.7)

where mN and Bd are, respectively, the nucleon mass and the two-body system

binding energy. It is possible to compare Eq.(3.7) and Eq.(3.5) poles directly.

In Tab.(3.3) are shown the position of the poles for two-body systems, for the

available pion masses and data.
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3S1 channel

Collaboration mπ [MeV] κ+[mπ] κ−[mπ] κBE [mπ]

CALLAT 805 0.38(3) 0.15(1) -

NPLQCD 805 0.29(40) 0.25(35) 0.22(3)

PACS-CS 805 - - 0.15(1)

PACS-CS 510 - - 0.24(6)

NPLQCD 450 0.29(21) -0.04(15) 0.30(3)

PACS-CS 300 - - 0.41(4)

Nature 140 1.29 0.33 0.33

1S0 channel

Collaboration mπ [MeV] κ+[mπ] κ−[mπ] κBE [mπ]

CALLAT 805 0.47(4) 0.13(2) -

NPLQCD 805 0.25(12) 0.18(9) 0.20(2)

PACS-CS 805 - - 0.12(2)

PACS-CS 510 - - 0.19(2)

NPLQCD 450 0.28(13) 0.02(9) 0.28(5)

PACS-CS 300 - - 0.31(3)

Nature 140 1.08 -0.06 -

Table 3.3: Table of poles calculated using ERE (κ+/κ−) and binding momen-

tum (κBE)

The same poles are shown in Fig.(3.2) and Fig.(3.3) in order to give a

graphical and more intuitive visualization of their behavior with the pion

mass. In the plots, the poles calculated from ERE expansion (red circles)

and bound states (blue triangles) are displayed. Data of different groups but

with the same pion mass have been slightly shifted in order to have a cleaner

visualization.

The energy of the poles induced by bound states in units of mπ show much

smaller variation. The physical deuterium shows a pole at a similar momentum

than the other poles indicating a smooth transition in mπ. However, in the
1S0 channel the same pole seems to disappear at the physical pion mass. This

might suggest a nontrivial mπ dependence or a phase transition that has still

to be understood in that channel. Three-body boundstates seem to share

the same flat behavior seen in the two body case showing an invariance with

respect to mπ. On the other hand, alpha particle bounds are more fluctuating
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and difficult to be interpreted. Moreover, errors are still too large to outline

any conclusion.

Poles calculated with the ERE in the two body system are of particular

interest. In fact, it can be noticed that in the physical case we have two poles,

a shallow one and one at very large momentum. As expected, in deuterium

the shallow pole coincides with the pole calculated using the binding energy,

while the other one is at almost ∼ 1.5mπ, outside the range of convergence

of ERE and the low momentum limit. Hence, it should be concluded that it

is an unphysical pole destined to disappear with the inclusion of more ERE

orders. Other interesting data are found at mπ ∼ 450 MeV, where we have

the appearance of a bound state, a pole at the same position and a shallower

pole which do not correspond to any bound state found. The second pole in
1S0 is consistent with a virtual state. However, if it were a bound state, it

would be very close to the unitary limit. We conclude that that shallowest

pole at mπ ∼ 450 and 1S0 channel should be on the negative momentum

plane, otherwise LQCD precision is not enough to distinguish a weakly-bound

state. The affinity of the bound state and the deeper ERE pole is impressing.

This might imply that further terms of the T-matrix truncation are negligible

for this mπ. However, comparing data at mπ ∼ 450 with physical mass one,

would expect the deepest pole not to be real and the shallower to represent

a bound state. The position of the poles is also interesting because, in our

experience of T-matrix poles, the shallow state is usually more robust than

the deeper one. The behavior of poles at small mπ is still a puzzle, which

might be solved only having access to higher orders of the ERE expansion.

mπ ∼ 810 MeV is the mass where the most data are present, but they are

not always compatible. Grey dots represent the binding energies calculated by

CalLat group from scattering parameters. They have been calculated using the

same procedure as ours, with a different truncation of the T-matrix. The red

and gray results in agreement in few standard deviations, which might reflect a

partial residual dependence of the data on the shape parameter. Nonetheless,

the gray poles are in completely agreement with the bound found by NPLQCD,

but not with PACS-CS data in the 1S0 channel. If trusting the unquenched,

and more recent calculation ( NPLQCD ), the consistency of gray dots imply

that the shape parameter has still some relevance, but further contributions

to the T-matrix poles are merely perturbative.

NPLQCD finds a double pole, which central value almost perfectly agrees
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with the bound-state in both channels. The position of poles is expected since

it has been used by NPLQCD in fitting the scattering length and effective

ranges. However, ref.[43] states that it is not possible to describe double poles

using a finite range potential, and the presence of a long range potential is

hardly justifiable in a heavy pion mass context. It is also impossible that the

two poles are projections of two resonances very close to the real axis, since

they would not respect the Wigner bound[44] and the causality principle. We

have to conclude that, in order to describe the two poles using a standard

potential, the two poles should be distinct (as it is permitted by the error

bands) and their degeneracy is just a coincidence. Nonetheless, one of the

two poles might turn to be not real if more parameters are included in the

ERE, running out from the theory convergence radius or becoming unphysical

for other reasons. Should be noticed that, since the NPLQCD scattering

parameters has been extracted considering the bound state pole in the fit, their

ERE and bound poles errors can not be considered independent. This explains

the extraordinary proximity of the poles, of much less than one standard

deviation in all the cases.
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Figure 3.1: Binding energy of 3He and 4 He. See text for full description.
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Figure 3.2: 1S0 poles. See text for full description.
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Figure 3.3: 3S1 poles. See text for full description.
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The last comment on the LQCD results concerns the EFT(/π) applicability

on them. In fact, in sec.{2.3} we compared EFT(/π) and ERE claiming that

the first is equivalent to the second in the limit of small momenta. E.g. the

LO is associated to ERE truncated at a0. Hence, ERE can be truncated to

a0 only in the low momentum limit, where

| 1

a
|�| r0

2
k2 | (3.8)

| 1

a
|�| r0

2
k2 |−→| r0

2
ak2 |� 1. (3.9)

The behavior of a
2r0k

2
pm flowing with the relative value of a0 and r0 is

shown in Fig.(3.4). It can be noticed that the two poles do not satisfy the

relation (3.9) together. Hence, one concludes that the truncation at a0 might

be possible only for the shallowest pole. In other words, EFT(/π) defined as

in sec.{2.4} will be not able to describe the deepest pole, introducing a new

breaking scale at momentum k+ < mπ. The possibility of describing two poles

using EFT(/π) with no changing in the power counting appears to be compli-

cated and it is still debated. Nonetheless, it would be possible promoting a

new operator at LO as it has been done with the appearance in the theory

of the firs shallow pole. This criticality appears especially at mπ ∼ 450 MeV

(not used in this work) where the error excludes the possibility that the shal-

lowest pole refers to the bound state found, where at mπ ∼ 800 MeV the error

on the poles leave the possibility to have a deep pole and a relatively shallow

bound state. A possibility to explain the weird behavior of shallow poles is

that the shallow poles are present in the T-matrix, but they do not correspond

to any real states (they are known as shallow states). It has been proved that

this phenomenon are possible in quantum mechanics.[45–47] However, how to

discriminate a real state from a shadow one in LQCD is still unknown and

would require a deeper study of the phenomena.

Nonetheless, the success of EFT(/π) in predicting observables as well as its

renormalizability at mπ ∼ 800 MeV suggests that the powercounting at LO

as defined in sec.{2.4} is correct in the framework of this work.
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2 evaluated on the T-matrix poles. In orange the deepest pole
and in blue the shallower one. On the top panel is shown the case if a > 0
and r0 > 0. On the bottom pannel: if a < 0 and r0 > 0. r0 > a/2 case is
forbidden by Wigner bond.





4. Monte Carlo Methods

In order to understand low energy nuclear physics one has to develop and

use non relativistic models, and to make predictions to be confronted with

experiments. Hence, one should be able to solve the Schrödinger equation

for nucleons with the modeled interaction in the systems of interest. We

are mainly interested in light and medium nuclear binding energies, masses

and radii, that require a method able to make predictions for multi-nucleon,

heavily correlated, systems. We chose to use QMC, because it is an ab initio

method that can calculate, in principle, exact observables in relatively heavy

nuclei with improvable precision. Among the many QMC methods available

in the literature, in this work we chose to use prevalently AFDMC, which can

handle big systems of fermions [48, 49].

MC is a method to transform integrals in sums of functions evaluated on

samples (usually called walkers) of a distribution such that the sum converges

to the integral with a statistic error coming only from the impossibility to have

infinite samples. The absence of truncations or uncontrolled approximations

makes MC a powerful ab initio method able to perform reliable integration of

complex multiparticle systems and complex interactions with high accuracy.

VMC method is capable of computing quantum mechanical observables

from a known wave function. The variational principle is exploited to find the

system ground state, this is done minimizing the energy with respect to the

wavefunction used. The minimization procedure is done ”by hand” in most

of the nuclear MC codes, while in more recent calculations, including this

work, an automatic minimization has been implemented, allowing to have

results very close to the correct ones. The sampling procedure makes the

integration very efficient allowing to calculate multi-dimensional integrals with

fairly small errors. However, the accuracy of the method is limited by the

needs of knowing the wavefunction that has to be parametrized making the

final result dependent on what, and how many, are the parameters used.

DMC overcomes the lack of knowledge of the ground state function using

51



52 CHAPTER 4. MONTE CARLO METHODS

an imaginary time propagation of the initial walker configuration in order to

project out its high energy components. The projected wave function can

be sampled and used to compute ground-state observables of the system. In

our case, the propagation is performed in the coordinate space, but diffusions

in momentum or other basis are also possible, as shown by Configuration

Interaction Monte Carlo [50] and other methods. Since we are using EFT

potentials, which are naturally developed in momentum space, the momen-

tum basis appears to be the most natural choice. However, EFT potentials

can be easily Fourier-transformed in coordinate space. The transformation is

convenient since coordinate defined methods are not limited in the maximum

momentum of the interaction and can perform calculation even for high cut-

off. Moreover, the ab initio nature of this methods very well marries the EFT

idea of a potential from the first principles and makes QMC ideal to perform

the calculations done during this work.

DMC shows some criticalities with fermionic systems where the wave func-

tion is not positive. The propagation process does not contain any information

about the statistical nature of the particles being diffuse, hence the walkers

will soon approach the bosonic state annihilating any fermionic contribution

and spoiling the calculation. This is the so-called sign problem[51]. In or-

der to alleviate it, one introduces the fixed-phase (or constrained-path in the

case of complex Hamiltonians) procedure described later in section {4.2} and

discussed in details in the references [48, 51–54]. The constrained-path ap-

proximation mitigates the sign problem and introduces a source of systematic

errors which is difficult to be estimated.

RPDMC method unleash the constraints of the system letting the sampled

wave function to decay to the ground state. This allows to estimate the

constrained-path systematic error but reintroduces the sign problem that will

increase the calculation error exponentially.

The most common limitation of Green Function Diffusion Monte Carlo

(GFDMC), as well as other ab initio methods, is the difficulty to manage

the amount of memory required to store the degrees of freedom of the system,

which can be extremely large for a many-particle system. This kind of methods

scale, if no improvements are made, as A!.

In the following sections, a brief overview of different kinds of MC and

QMC used during this work will be given.
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4.1 Variational Monte Carlo

The expectation value of quantum mechanical observables on a trial wave

function Ψ can be rewritten as an integral. For example the expectation value

of the Hamiltonian reads:

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=

∫
Ψ∗HΨ∫
|Ψ|2

=

∫
|Ψ|2 HΨ

Ψ
, (4.1)

where |Ψ|2 can be seen as a probability distribution (we are assuming
∫
|Ψ|2 =

1). The calculation is, in general, not trivial even for simple systems. How-

ever, it can be approached using many numerical methods (as finite difference,

Numerov, ...) discretizing the integration space. The limit of the above-

mentioned methods is the number of dimensions of the integral that it is

possible to calculate. Exploiting the central limit theorem it is possible to

overcome the problem, integrating functions in a multidimensional space effi-

ciently.

We can rewrite the integral as:

I =

∫
I(x)dax =

∫
e(x)

P (x)
P (x)dax =

∫
g(x)P (x)dax, (4.2)

where e(x) is the function to be integrated and P (x) is a probability distribu-

tion of the variable x, strictly positive and normalized to one. Applying the

central limit theorem [55] the integral can be computed as

IN =
N∑

x∈P (x)

g(x)
N→∞−−−−→ I (4.3)

where IN is a normal distribution which has mean value I and variance

σ2
N =

∫
g2(x)P (x)dax

N+1 −
(∫

g(x)P (x)dax
N+1

)2
. Which can be systematically reduced

increasing statistics (σ ≈ 1/
√
N). The probability distribution of IN for large

N is

P [IN ]
N→∞

=
1√

2πσ2
N

e
− (SN−I)

2

2σ2
N . (4.4)

P (x) ≡ |Ψ|2 and g(x) ≡ HΨ
Ψ . The probability P (x) might be difficult to

sampled. One of the simplest, yet wildly used, way to do it is the Metropolis
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algorithm [56]. It consists of moving, with a random walk, a point (the walker)

in the configuration space. Then accept/reject with a probability w defined

as: [51]

w =
|ΨT (new point)|2

|ΨT (old point)|2
(4.5)

After a sufficiently large number of moves, the walker’s path will cover a set of

points distributed according to the probability P (x). The distribution used to

draw the new position from the least one (the step) does not influence the final

result and can be chosen by convenience. It is common to use a gaussian or

a flat distribution centered in the old position. However, the steps have to be

statistically uncorrelated and wide enough to cover the whole space without

sampling positions whose contribution to the integral is small. A good em-

pirical method is to ensure that the total number of rejection and acceptance

of new positions are almost the same. One of the most interesting features of

this procedure is the possibility to optimize the algorithm, parallelizing the

process moving independent walkers contemporaneously on different proces-

sors and accumulating statistics together. Estimators of local observables can

be accumulated as

EN =

N∑
x∈|Ψ|2

HΨ

Ψ
. (4.6)

MC statistical errors can be evaluated as follow:

δE =
〈
f2
〉
− 〈f〉2 . (4.7)

This equation assumes that each sample is independent of the previous one.

In order to avoid the correlation of consecutive positions extracted one from

each other, observables can be accumulated once in many steps.
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Figure 4.1: Average of the energy at each step of a 4He Variational calculation
using EFT(/π) potential and cut-off 14fm−1. The dark gray band represents
the total standard deviation of the calculation averaging all the points of
the calculation. The light gray band is the standard deviation after data
reblocking.

Wave function

The precision of VMC is limited only by the knowledge of the wave function.

Nonetheless, the local energy

ĤΨ

Ψ
= − ~2

2m

∇2Ψ

Ψ
+ V (R) (4.8)

has to be evaluated for each Walker and step using the wave function, making

it the most time-consuming part of the code. Hence it is of great interest to

optimize it. It can be seen from Eq.(4.8) that if the wavefunction is already

an eigenstate of the system the local energy ĤΨ
Ψ is a constant, each point in

the space contribute equally to the integral and the VMC error is always zero.

As a general empiric rule, as close is the used wave function to the real ground

state, as small is the calculation standard deviation.
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Figure 4.2: Error as function of the imaginary time of a 4He Variational
calculation using EFT(/π) potential and cut-off ∼2800 MeV. The dotted blue
line is a linear fit of the data. It can be noticed that the error very well
describe the expected behaviour: σ ∝ 1√

τ
.

The standard form of the wave function used in QMC calculations of light

nuclei reads

〈X|ΨT 〉 = 〈X|
( ∏
i<j<k

Uijk

)(∏
i<j

Fij

)
|Φ〉 , (4.9)

where X = {x1 . . . xA} and the generalized coordinate xi = {ri, σi, τi} repre-

sents the position, spin, and isospin variables of the i-th nucleon.

The long-range behavior of the wave function is described by the Slater

determinant

〈X|Φ〉 = A{φα1(x1), . . . , φαA(xA)} . (4.10)

The symbol A denotes the antisymmetrization operator and α denotes the

quantum numbers of the single-particle orbitals, given by

φα(x) = Rnl(r)Y``z(r̂) χssz(σ)χττz(τ) , (4.11)
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Figure 4.3: Error of the calculation with the blocking size. The correlation
between walkers decays esponentially as can be deduced by the exponential
fit (dotted line)

where Rnl(r) is the radial function, Y``z(r̂) is the spherical harmonic, and

χssz(σ) and χττz(τ) are the complex spinors describing the spin and isospin

of the single-particle state.

In both the GFMC and the latest AFDMC calculations spin-isospin de-

pendent correlations Jij and Uijk are usually adopted. However, these are

not necessary for this work. In fact, the two-body LO EFT(/π) nuclear poten-

tial considered in this work does not contain tensor or spin-orbit operators.

Moreover, the spinorial contribution of the potential is much smaller than the

central one.

Jij represent a two-particle correlation function (usually called Jas-

trow) which takes into account the consequences of an interparticle potential

to the wave function. A two-body Jastrow can be extracted solving numer-

ically the two-body problem during the calculation using a finite difference

method. With the introduction of the automatic optimization algorithm, it

resulted more convenient to express the two-body correlation function using

spline whose nodes are treated as minimization parameters.

Three body correlations are required only if a three-body interaction is

included in the propagation, as in the EFT(/π) case. The calculation of three-

body correlation is less trivial than the two-body one, but one can assume
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that his shape can be recover from the two-body in one of the follows ways:

J
(1)
3B (ri, rj , rk) = e−

∑
cyc [J2b(ri,rj)J2b(rk,rj)J2b(ri,rk)] (4.12)

J
(2)
3B (ri, rj , rk) =

∏
cyc

[J2b (ri, rj) + J2b (rk, rj) J2b + (ri, rk)] (4.13)

J
(3)
3B (ri, rj , rk) = 1−

∑
cyc

[J2b (ri, rj) J2b (rk, rj) J2b (ri, rk)] (4.14)

All the three option are equivalently viable, but empirically the most suc-

cessful was Eq.(4.14) in order to minimize the variance of the wave function.

The already expansive minimization process makes impossible to try all three

the formulas for all the systems so the last one has been used for all the

calculation here presented.

Should be mentioned that the Eq.(4.12), (4.13) and (4.14) are just three of

the possible three-body correlation function form that have been tried during

this work. However, they resulted to be the most successful.
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Automatic Optimization

In standard nuclear Variational Monte Carlo (VMC) and GFMC calcula-

tions the minimization is usually done adopting a “hand-waving” procedure,

while in more recent AFDMC calculations the stochastic reconfiguration (SR)

method [57] has been adopted. In both cases the number of variational param-

eters is reduced by first minimizing the two-body cluster contribution to the

energy per particle, as described in Refs. [58, 59]. In this work we adopt, for

the first time in a nuclear QMC calculation, the more advanced linear method

(LM) [60], which allows us to deal with a much larger number of variational

parameters.

Within the LM, at each optimization step we expand the normalized trial

wave function

|Ψ̄T (p)〉 =
|ΨT (p)〉√

〈ΨT (p)|ΨT (p)〉
(4.15)

at first order around the current set of variational parameters p0 = {p0
1, . . . , p

0
Np
},

|Ψ̄lin
T (p)〉 = |Ψ̄T (p0)〉+

Np∑
i=1

∆pi|Ψ̄i
T (p0)〉 . (4.16)

By imposing 〈ΨT (p0)|Ψ̄T (p0)〉 = 1, we ensure that

|Ψ̄i
T (p0)〉 =

∂|Ψ̄T (p)〉
∂pi

∣∣∣
p=p0

= |Ψi
T (p0)〉 − S0i|ΨT (p0)〉, (4.17)

are orthogonal to |ΨT (p0)〉. In the last equation we have introduced

|Ψi
T (p0)〉 =

∂|ΨT (p)〉
∂pi

∣∣∣
p=p0

, (4.18)

for the first derivative with respect to the i-th parameter, and the overlap

matrix is defined by S0i = 〈ΨT (p0)|Ψi
T (p0)〉. The expectation value of the

energy on the linear wave function is defined as

Elin(p) ≡
〈Ψ̄lin

T (p)|H|Ψ̄lin
T (p)〉

〈Ψ̄lin
T (p)|Ψ̄lin

T (p)〉
. (4.19)

The variation ∆p̄ of the parameters that minimizes the energy, ∇pElin(p) = 0,

corresponds to the lowest eigenvalue solution of the generalized eigenvalue

equation

H̄ ∆p = ∆E S̄∆p , (4.20)
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where H̄ and S̄ are the Hamiltonian and overlap matrices in the (Np + 1)-

dimensional basis defined by {|Ψ̄T (p0)〉, |Ψ̄1
T (p0)〉, . . . , |Ψ̄Np

T (p0)〉}. The au-

thors of Ref. [61] have shown that writing the expectation values of these

matrix elements in terms of covariances allows us to keep their statistical er-

ror under control even when they are estimated over a relatively small Monte

Carlo sample. However, since in AFDMC the derivatives of the wave func-

tion with respect to the orbital variational parameters are in general complex,

we generalized the expressions for the estimators reported in the appendix of

Ref. [61].

For a finite sample size the matrix H̄ can be ill-conditioned, spoiling

therefore the numerical inversion needed to solve the eigenvalue problem.

A practical procedure to stabilize the algorithm is to add a small positive

constant ε to the diagonal matrix elements of H̄ except for the first one,

H̄ij → H̄ij + ε(1 − δi0)δij . This procedure reduces the length of ∆p̄ and

rotates it towards the steepest-descent direction.

It has to be noted that if the wave function depends linearly upon the

variational parameters, the algorithm converges in just one iteration. However,

in our case strong nonlinearities in the variational parameters make, in some

instances, |Ψ̄lin
T (p)〉 significantly different from |Ψ̄T (p0 +∆p)〉. Accounting for

the quadratic term in the expansion as in the Newton method [61, 62] would

alleviate the problem, at the expense of having to estimate also the Hessian of

the wave function with respect to the variational parameters. An alternative

strategy consists in taking advantage of the arbitrariness of the wave-function

normalization to improve on the convergence by a suitable rescaling of the

parameter variation [60, 61]. We found that this procedure was not sufficient

to guarantee the stability of the minimization procedure. For this reason we

have implemented the following heuristic procedure. For a given value of ε,

Eq. (4.20) is solved. If the linear variation of the wave function for p = p0+∆p

is small,

|Ψ̄lin
T (p)|2

|Ψ̄T (p0)|2
= 1 +

Np∑
i,j=1

S̄ij∆p
i∆p j ≤ δ , (4.21)

a short correlated run is performed in which the energy expectation value

E(p) ≡ 〈Ψ̄T (p)|H|Ψ̄T (p)〉
〈Ψ̄T (p)|Ψ̄T (p)〉

(4.22)

is estimated along with the full variation of the wave function for a set of

possible values of ε (in our case ≈ 100 values are considered). The optimal ε
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is chosen so as to minimize E(p̄) provided that

|Ψ̄T (p̄)|2

|Ψ̄T (p0)|2
≤ δ . (4.23)

Note that, at variance with the previous expression, here in the numerator

we have the full wave function instead of its linearized approximation. In

the (rare) cases where no acceptable value of ε is found due to possibly large

statistical fluctuations in the VMC estimators, we perform an additional run

adopting the previous parameter set and a new optimization is attempted. In

our experience, this procedure proved extremely robust.

The chief advantage of the additional constraint is that it suppresses the

potential instabilities caused by the nonlinear dependence of the wave function

on the variational parameters. When using the “standard” version of the LM,

there were instances in which, despite the variation of the linear wave function

being well below the threshold of Eq.(4.21), the full wave function fluctuated

significantly more, preventing the convergence of the minimization algorithm.

As for the wave-function variation, we found that choosing δ = 0.2 guarantees

a fast and stable convergence.

The LM exhibits a much faster convergence pattern than the SR, previ-

ously used in AFDMC. In Fig. (4.4), we show the 4He variational energy

obtained for physical pion mass and Λ = 4 fm −1 as a function of the number

of optimization steps for both SR and LM. While the LM takes only ' 15

steps to converge, the SR is much slower; after 50 steps the energy is still

much above the asymptotic limit. We have observed analogous behavior for

other values of the cutoff and the pion mass. In the 16O case, the improvement

of the LM with respect to the SR is even more dramatic due to the clustering

of the wave function, which will be discussed in detail in Chapter{6}.
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Figure 4.4: Convergence pattern of the 4He variational energy at physical pion
mass and Λ =800 MeV as a function of the number of optimization steps for
the SR method (black squares) and the LM (blues circles). For comparison,
the red line indicates the AFDMC result.

4.2 DMC

DMC is based on the use of the imaginary time propagator to enhance the

ground state from any wave function which is not orthogonal to it. Taking

the time dependent Schrödinger equation:

i~∂tΨ = ĤΨ = −~2

m
∇2Ψ(~r, t) + (V (~r)− Eoff ) (~r, t), (4.24)

by making a Wick rotation (it→ τ)

− ~∂τΨ = ĤΨ = −~2

m
∇2Ψ(~r, τ) + (V (~r)− Eoff ) (~r, τ) (4.25)

we derive a classical diffusion equation. Considering the wave function as the

sum of eigenstates of the Hamiltonian

Ψ =

+∞∑
n=0

CnΨn, (4.26)

such as
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ĤΨn = εnΨn, (4.27)

and introducing imaginary time evolution operator

Ψ (τ0 + τ) = e−
Ĥτ
~ Ψ(τ0) =

+∞∑
n=0

Cne
−(

εn−ε0)τ
~ ψn, (4.28)

the high energy states will quickly disappear, the first excited state will become

negligible with respect to the ground state in a time ∆τ ' 1
E1+Egs

e−
(Ĥ−E0)τ

~ Ψ(τ0)
τ→∞−→ c0ψ0 (4.29)

The procedure is to use this propagation on an ensamble of walkers distributed

on the Hilbert space of the many-particle problem. Eq.(4.29) is divided in

imaginary time steps ∆τ . When a sufficiently large number of them has been

performed all the high energy components vanish and the algorithm samples

the ground state of the system. The path of the walkers can be used as

integration points to estimate

In =
〈Ψ|H|Ψ0〉
〈Ψ|Ψ0〉

(4.30)

It is relatively easy to explicit the propagation of a walker from an initial

point to the next one according with Eq.(4.28) for a general Hamiltonian,

Ψτ+∆τ (~r) =

∫
〈~r|e−H∆τ |~r′〉 〈~r′|Ψ〉 d~r′ =

∫
G
(
~r′ → ~r

)
Ψτ

(
~r′
)
d~r′. (4.31)

Nonetheless, the green function G
(
~r′ → ~r

)
might be complicated to be eval-

uated. The conventional way to approach the propagation is to separate,

using a Trotter expansion [63], the exponential in the kinetic and potential

contributions:

G
(
~r′ → ~r

)
= 〈~r|e−H∆τ |~r′〉 = 〈~r|e

−∆τ

(
~p2

2m
+V

)
|~r′〉 '

〈~r|e−∆τ ~p
2

2m e−∆τV )|~r′〉+O(∆τ) (4.32)

that requires ∆τ to be small. Using a Fourier Transform and solving the

kinetic Green’s function one finds
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〈~r|e−∆τ ~p
2

2m |~r′〉 → e
~2

2m(~r−~r′)
2

+O(∆τ) (4.33)

which is the probability that a new step at coordinate ~r is sampled from a

old one in ~r ′ and can be easily done sampling a Gaussian distributed ran-

dom number and shifting the walker position. It is possible to increase the

algorithm precision developing further the Trotter expansion in Eq.(4.32) [63]:

G
(
~r′ → ~r

)
= 〈~r|e−H∆τ |~r′〉 ' 〈~r|e−

∆τV (~r)
2 e−∆τ ~p

2

2m e−
∆τV (~r′)

2 |~r′〉+O(∆τ2)

(4.34)

The potential contribution can be included as a weight w attached to any

walker for the purposes of calculating the integral (4.30):

w =
(
e−∆τV e−∆τEt

)
, (4.35)

IN =

∑N
x∈W wx g(x)∑

wx
(4.36)

In the above equations, W indicates the population of walkers diffused using

the kinetic energy and Et (trial energy) is a constant needed for renormaliza-

tion purposes. This procedure leads to the propagation of many walkers whose

weights suffer large variations. In fact many of them have small weight and,

while consuming computational power, do not contribute to the integration.

A common and successful strategy consists to allow the number of walkers to

fluctuate using the so called branching process: a random number µ uniformly

distributed in the interval [0, 1] is added to the weight w

ηi = INT(w + µ), (4.37)

where INT(x) represent the integer part of x. Instead of moving each walker,

ηi copies of it are instead created at the newly drawn position. In such a way,

depending on the potential V (~r) and the trial energy Et, some configurations

will disappear and some other will replicate, resulting in the evolution of

walker population.

Trial energy: The trial energy is a parameter needed to stabilize the num-

ber of walkers. According to with Eq.(4.35), if the trial energy is too different

from the ground state energy, the population of walkers will suffer large fluc-

tuations. Walkers may all be killed if Et is too high or the population becomes
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too large if it is too low. A simple way to stabilize the number of walkers is

to adjust ET step by step along the imaginary time propagation according to

ẼT = ET +
1

δτ
ln

(
Nw

N0

)
(4.38)

where Nw is the current number of walkers and N0 is the optimal number of

walkers. After a sufficient number of steps, ET will converge at the ground

state value, stabilizing the population. This approach is useful when there

are no other indications about the energy of the system, but this dynamical

adjustments effectively adds an extra piece to the Hamiltonian, which will

affect the final result with a systematic error. A convenient method is to

adjust ET till converges, then fix it in the remains of the propagation to

find the correct ground state energy without the systematic introduced by

Eq.(4.38).
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Importance sampling

Diffusing walkers as described in the last section [51, 64] results in a very

inefficient method, since the walkers will randomly sample the space just to

be killed once they reach an unfavorable area. It is convenient to introduce a

guide function, Ψg(~r), to drive the walkers in more favorable positions for the

integration. It is also helpful to introduce a trial wavefunction ΨT (~r) on which

it is easy to calculate numerically the Hamiltonian operator. It is possible to

rewrite Eq.(4.30) as

Eψ0 =
〈ψ0|H|ΨT 〉
〈ψ0|ΨT 〉

=

∫
(ψ∗0Ψg)

(
HΨT
Ψg

)
∫
ψ0
∗ΨT

(4.39)

where this relation is exact and Ψ0 is the ground state of the system. Ψg(~r)

and ΨT (~r) are two distinct functions, but is common to use the same function

for both. However, they have different purposes: the first is meant to be the

best possible approximation of φ and the second has to be easily applied to

the Hamiltonian operator.

Importance sampling largely improves the algorithm convergence and us-

ability, but it highlights some problematics of the diffusive process. In general,

(ψ0
∗Ψg) might not be always-positive, introducing problems in sampling. This

issue, know as Sign Problem will be discussed in more detail in section {4.2}.
It is possible to use the diffusion algorithm to enhance the contribution

of (ψ0
∗Ψg) from (Ψ∗Ψg) where Ψ is represented by the walkers population.

The diffusion green-function with the importance shows some differences with

respect to Eq.(4.31), and can be written as

Ψg (~r) Ψτ+∆τ (~r) =

∫
Gg

(
~r′ → ~r

)
Ψg(~r′)Ψτ

(
~r′
)
, (4.40)

where

Gg

(
~r′ → ~r

)
G
(
~r′ → ~r

) Ψg (~r)

Ψg(~r′)
. (4.41)

Nonetheless, the kinetic part of the propagator differs from Eq.(4.33) be-

cause the inclusion of the piece
Ψg(~r)

Ψg(~r′)
which has be included in the propagator.

Expanding it around ~r′:

〈~r|e−∆τ ~p
2

2m |~r′〉 → e
~2

2m

(
~r−~r′+ 2m

~2 ∆τ
∇Ψg(~r)

Ψg(~r)

)2

+O(∆τ). (4.42)
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Figure 4.5: In the figure is shown a typical diffusion calculation, the scattered
point are the local energies of each walker at a given time. The purple dots
are the average energy with the stochastic error of each step. The calculation
thermalized after about 0.2 MeV−1.

The term 2m
~2 ∆τ

∇Ψg(~r)
Ψg(~r) is called drift and it is a pseudoforce which contributes

to push the walkers where the integrand is supposed to be more relevant

according with the guide wave function.
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QMC in a nutshell

The integral of Eq.(4.40) is transformed in a sum of local energies calculated

on points draw from the distribution (ψ0
∗Ψg).

E =
∑

x∈(Ψ0
∗Ψg)

HΨg

Ψg
(4.43)

Where the probability (ψ∗0Ψg) is sampled using the relation:

Ψg (~r) Ψτ+∆τ (~r) =

∫
G̃
(
~r′ → ~r

) Ψg (~r)

Ψg

(
~r′
)Ψg

(
~r′
)
φτ

(
~r′
)

(4.44)

G
(
~r′ → ~r

)
= 〈~r|e−H∆τ |~r′〉 = e

− ~2

2m

(
~r−~r′+2∆τ

~∇φgs
φgs

)2

e−∆τ(
V (~r)+V (~r′)

2
−ET )

(4.45)

In the following we report the numerical procedure of the DMC method:

A) Generating configurations
The N initial configurations of the multiparticle Hilbert space are sam-

pled. They can be distributed either in an equispaced grid, random, or

according to an arbitrary distribution.

The initial Trial Energy ET should be chosen to be as close as possible

to the ground state energy.

B) Moving
The kinetic energy is used to propose a new position for each walker,

the new position is sampled according to:

~r = ~r′ + ξ (4.46)

where ξ is sampled from the probability

ξ = e
− ~2

2m

(
~r−~r′+2∆τ

~∇Ψg
Ψg

)
(4.47)
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C) Branching
When the walkers reach the new position, can survive, be killed or even

branch according to probability e
−∆τ

(
V (~r)+V (~r′)

2
−ET

)
. A new random

number η ∈ [0, 1] should be drawn, the original walker is then replaced

with N of copies of himself.

N = INT

(
e
−∆τ

(
V (~r)+V (~r′)

2
−ET

)
+ η

)
(4.48)

Where INT is the function which truncate a real number to the lower

nearest natural.

D) Operator estimation

The local energy
HΦg
Φg

is calculated on the new coordinate as described

in Eq.(4.43). If a fluctuating trial energy as in Eq.(4.38) is used, it has

to be updated using the average local energy among walkers. If the local

energy is decreasing with respect to the previous steps, there are still

high-energy contribution in the wave function that the algorithm has to

suppress.

This means that additional diffusive steps have to be done before accu-

mulating relevant statistic of the ground state (goto point B until the

energy converges).

If the energy has converged, the walkers are distributed according to

(ψ∗0Ψg) and the statistic on the observables can be collected.

E) Accumulating statistics
If the local energy is stable, the energy estimator at each step n reads

〈E〉n =

∑
i≤n
∑

w∈Walkers

[
wi, w

Hφg(~rw ,i)
φg(~rw ,i)

]
∑

i≤n
∑

w∈Walkers [wi, w]
(4.49)

Where ~rw ,i is the generalized coordinate of the walker w at imaginary

time step i.

According to the central limit theorem, the energy distribution is gaus-

sian. Therefore, it is possible to estimate the variance of the energy:

σn(E) =
〈
E2
〉
n
− 〈E〉2n , (4.50)

which can be decreased iterating steps B), C) and D) as many times

as needed.
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Alternative Green’s function implementation

In the case of a problem which is best described within a discrete Hilbert space

(like the Harmonic Oscillator or plane waves), might be unfeasible to use the

full propagator of Eq.(4.34). However, the problem is greatly reduced if the

propagator is expanded as

e−H∆τ = 1−∆τH +
1

2
(∆τ)2H2 + ... (4.51)

and applied linearly. While in the coordinate space it is relatively easy to

move a walker with a random step centered on the old positions, in a discrete

space is often more convenient to drawn the new position from the ensemble

of states connected to the old one with probability

ηχold→χnew = 1−∆τ 〈χold|H|χnew〉 . (4.52)

In the previous equation χold is the starting configuration and χnew can be any

configuration of the space. A detail description of this method and a possible

solution for the related Sign Problem can be found extensively in literature:

[50, 65–71].
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Figure 4.6: The divergence of the error in a Release Node Monte Carlo when
the antisymmetric wave function disappear in 16O at mπ = 800. The his-
togram represent the number of walkers with a given energy during the imag-
inary simulation time.

Sign Problem

Above described DMC algorithm can be easily applied to bosonic systems.

However, for fermion-like systems or excited states, the diffusion procedure is

more critical since nodal surfaces are present in the wave function and (ψ∗0Ψg)

is not longer guaranteed to be real and positive. This criticality has a double

fold, on the one hand (ψ∗0Ψg) can no longer be interpreted as a probability.

On the other one, the error of the calculation will exponentially increase also

if (ψ∗0Ψg) > 0 because of the disappearance of antisymmetric contributions

in the sampled wave function. The two problems are alleviated by the fixed-

phase and constrained-path approximations that ensure (ψ∗0Ψg) > 0 and the

sampled ground state to be antisymmetric.

To understand why the error of the calculation would exponentially in-

crease when simulating fermions, it is sufficient to expand the initial wave

function in the base of the Hamiltonian eigenfunctions {ϕ}n. This contains
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both symmetric and antisymmetric components ({ϕs}n and {ϕa}n),

|Ψ〉 =
∞∑
n=0

csne
−(Esn−ET ) |ϕsn〉+

∞∑
n=0

cane
−(Ean−ET ) |ϕan〉 , (4.53)

where cn are complex coefficients. The energy of the symmetric ground state

(Es0) is always lower than the antisymmetric one (Ea0 ), therefore the only sur-

viving component after the imaginary propagation will be the symmetric one

{ϕs}n. Despite the disappearance of the fermionic contribution the estimator

observable

〈O〉 = lim
τ→+∞

∫
〈Ψg|O|~r〉φ(~r, τ)d~r∫

Ψg(~r)φ(~r, τ)d~r
(4.54)

recovers the correct expectation value if the guide wave function has the same

quantum numbers of the ground state. In other words, if the guide wave func-

tion of a fermionic ground state is antisymmetric, and has the same quantum

number of φ, any calculated observables will turn to be correct. However,

the projected contribution in Eq.(4.54) will be dominated by exponentially

increasing noise, since the antisymmetric contribution in Eq.(4.53) progres-

sively disappears, as can be seen in Fig.(4.6).

A definitive solution of this problem has still to be found. However, it can

be controlled introducing some approximations in the algorithm. In this work,

we used prevalently coordinate-defined codes, where it is possible to distin-

guish the ground state from excited states by the phase and nodal surface of

the wavefunction and one can apply two methods: the constrained-path ap-

proximation and the fixed-phase approximation to extract results for fermions.

The idea of the constrained-path approximation [72] is to constrain

the path of walkers to be in space regions where the real part of the wave-

function always has the same sign. It reflects in a modification of Eq.(4.42)

in which a real Drift is imposed. A suitable choice for it is:

vd(~r) = 2
∇Re [Ψg]

Re (Ψg)
, (4.55)

and

Re [Ψg(~r)]

Re
[
Ψg(~r′)

] > 0, (4.56)
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where ~r and ~r ′ are the coordinates configurations before and after the propa-

gation. To ensure this each walker in which Eq.(4.56) is violated will have its

weight set to zero and killed. The observables can be calculated as:

〈O〉 =

∑
r∈ΓORe [Ψg(~r)]∑
r∈ΓRe [Ψg(~r)]

(4.57)

where the points are sampled from Γ: the propagation (Ψ∗gφ) with the nodal

surface fixed (Eq.4.56).

The second possibility to work around the sign problem is the fixed phase

approximation, as proposed by Ref.[73]. A generic complex wave function can

be written as:

Ψ(~r) = |Ψ(~r)| eiϕ(~r) (4.58)

with ϕ(~r) the phase of Ψ(~r). Eq.(4.42) is rewritten as:

~vd(~r) = 2
~∇|Ψg(~r)|
|Ψg(~r)|

= 2Re

[
~∇Ψg(~r)

Ψg(~r)

]
(4.59)

To practically implement the constrained-phase approximation it suffice to

force the walkers to have the same phase as the Importance function Ψg.

However, the introduction of an extra term in the green function is needed in

order to preserve the normalization of the wave function:

e

[
− ~2

2m(~∇Ψg(~r))
2
dτ
]

(4.60)

Which can be included in the branching weight ξ exploiting the relation

Re

[
~∇2Ψg(~r)

Ψg(~r)

]
=
~∇2Ψg(~r)

Ψg(~r)
−
(
~∇Ψg(~r)

)2
. (4.61)

ξ results modified as:

ξ =
|Ψg(~r′)|
|Ψg(~r)|

Ψg(~r)

Ψg(~r′)
×

exp

{
−1

2

[
− ~

2m

∇2|Ψg(~r)|
|Ψg(~r)|

− ~
2m

∇2|Ψg(~r′)|
|Ψg(~r′)|

+
(VΨg)(~r)

2Ψg(~r)
+

(VΨg)(~r′)

2Ψg(~r′)

]}
(4.62)
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Which is only partially similar to Eq.(4.47), with a different drift choice.

Eq.(4.58) allows to rewrite the last piece of Eq.(4.62) as

|Ψg(~r′)|
|Ψg(~r)|

Ψg(~r)

Ψg(~r′)
= ei[φg(~r)−φg(~r′)] (4.63)

Observables are then calculated as:

〈O〉 =
∑
r∈Γ

Re

[
OΨg(~r)

Ψg(~r)

]
(4.64)

In which Γ = (Ψ∗gφ) with the fixed phase in order to be real and operators are

calculated using the Real part.

We have to recall that, introducing an importance function with a given

set of quantum numbers (for example fixing the total angular momentum) al-

lows to get the smallest energy corresponding to those quantum numbers, but

the constrained-path/fixed-phase is essential in order to not have exponen-

tially growing uncertainties. The constrained-path method is not guaranteed

anymore to give an upper bound to the energy, as DMC does, because of

the extra piece introduced in the Hamiltonian. Thus, the extension of DMC

to a fermionic system described by complex wavefunctions is not variational

anymore. For further details about constrained-path and fixed-phase approx-

imations can be found in the papers [53, 54, 74–76] and in the book [51].
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4.3 AFDMC

Nuclear potentials are characterized by nontrivial spin-isospin operatorial struc-

ture which can include angular and spinorial components. Their use in QMC

implies an exponential growth of the computational cost with the number

of nucleons. In fact the spin-isospin components of the wave function are

described by a many body vector of dimension Ni ·Ns where

Ns = 2A (4.65)

Ni =

(
A

Z

)
=

A!

Z!(A− Z)!
(4.66)

Deuterium is composed by one proton and one neutron, for a total of Ns = 2

and Ni = 2. So a total of 4 possible spin-isospin states. The picture changes

when inspecting bigger systems: 16O requires Ns ≈ 65000 and Ni ≈ 13000

leads to arrays that are difficultly stored or manipulated in a computer.

If we apply the operator σi · σj as in the example,

~σi · ~σj = 2
(
σ+
i σ
−
j + σ−i σ

+
j

)
+ σzi σ

z
j = 2Pijσ − 1 (4.67)

applied to the 3-body spinor (no isospin nor antisymmetrization included)

|Φ3b〉 =



ϕ↑↑↑

ϕ↑↑↓

ϕ↑↓↑

ϕ↑↓↓

ϕ↓↑↑

ϕ↓↑↓

ϕ↓↓↑

ϕ↓↓↓


(4.68)
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We obtain

~σ2 · ~σ3 |Φ3b〉 =



ϕ↑↑↑

2ϕ↑↓↑ − ϕ↑↑↓
2ϕ↑↑↓ − ϕ↑↓↑

ϕ↑↓↓

ϕ↓↑↑

2ϕ↓↓↑ − ϕ↓↑↓
2ϕ↓↑↓ − ϕ↓↓↑

ϕ↓↓↓


(4.69)

The propagation of this kind of spinor does require the application of

a huge non-symmetrical sparse matrix which is extremely computationally

expensive. It can be realized that the components written as in Eq.(4.69)

are not close with respect to the spin-isospin operators. This is caused by

the quadratic spin and isospin operators dependence in the potential. The

presence of those parts is why GFDMC can handle up to a dozen of interacting

nucleons.

AFDMC method

AFDMC [77–86] method is based to the idea of rewriting the quadratic spin

and isospin operators of the potential using the Hubbard–Stratonovich trans-

formation. Since the single particle spin-isospin space is closed with respect

to linear operators, it is possible to use single-particle spin-states, instead of

the many body-ones. This reduces the spinorial part from NsNi = A2
(
A
Z

)
to

Ni = 4A.

Dividing the potential in spin-dependent VSD and spin-independent VSI

parts:

V = VSD + VSI (4.70)

it is possible to apply the Hubbard–Stratonovich transformation to the spin-

dependent piece.

In the following, we describe how to express the quadratic part of some of

the most common spin/isospin-dependent potentials in order to directly apply
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the Hubbard–Stratonovich transformation.

Consider σi · σj term, it can be rewritten as

V σσ
SD =

∑
i<j v

σσ (~rij)~σi · ~σj
=
∑

i<j [σixσjx + σiyσjy + σizσjz] =
∑

i<j

[
~σiA

σσ
ij ~σj

]
.

(4.71)

The same can be applied applied to any other spin/isospin operator:

V ττ
SD =

∑
i<j v

ττ (~rij)~τi · ~τj
=
∑

i<j

[
~τiA

ττ
ij ~τj

] (4.72)

and
V ττσσ
SD =

∑
i<j v

ττσσ (~rij) (~τi ⊗ ~σi) · (~τj ⊗ ~σj)
=
∑

i<j

[
~τi~σiA

ττσσ
ij ~τj~σj

] (4.73)

The 3A×3A matrices Aσσ and Aττσσ as well as the A×A matrix Aττ represent

the two-body interaction. They depend on the relative coordinate (~ri − ~rj)

and their diagonal is zero (they do not contain self-interaction).

Aττij = vττ (~rij)

Aσσiα, jβ = vσσ(~rij)δαβ + vtt(~rij)
(

3r̂αij · r̂
β
ij − δαβ

)
Aσσττiα, jβ = vσσττ (~rij)δαβ + vttσσ(~rij)

(
3r̂αij · r̂

β
ij − δαβ

) (4.74)

They are real and symmetric under cartesian components. Hence they

have real eigenvalues and orthogonal eigenstates, given by

∑
j

Aττi, j Ξττn, i = ξττn Ξττn, i∑
j, β

Aσσiα, jβ Ξσσn, iα = ξσσn Ξσσn, iα∑
j, β

Aσσττiα, jβ Ξσσττn, iα = ξττσσn Ξσσττn, iα

(4.75)

It is convenient to normalize the eigenstates as follows

∑
iα

Ξcn, iαΞcm, iα = δmn (4.76)

with c = ττ, σσ, σσττ . The last equation can be used to write:
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σiα =
∑
n

∑
j,β

Ξσσn, iβσjβ

Ξσσn, iα (4.77)

and

σiα~τi =
∑
n

∑
j,β

Ξττn, iβσjβ

Ξττn, iα (4.78)

Introducing the new operators

Oσσn =
∑
j

~σj~Ξ
σσ
n,j

~Oττσσn =
∑
j

(~τj ⊗ ~σj)~Ξ
ττσσ
n,j

~Oττn =
∑
j

~τjΞ
ττ
n,j

(4.79)

Eq.(4.73) can be finally rewritten in therms of Acij eigenvectors and eigenval-

ues:

V σσ
ij =

1

2

A∑
n=1

~ξσσn · (Oσσn )2

V ττσσ
ij =

1

2

A∑
n=1

∑
α={x,y,z}

~ξττσσn ·
(
~Oττσσnα

)2

V ττ
ij =

1

2

A∑
n=1

∑
α={x,y,z}

~ξττn

(
~Oττnα

)2

(4.80)

In this way the spinorial potential is expressed to make explicit the quadratic

form of the operators, making the Hubbard–Stratonovich straightforward ap-

plicable. Using the general form of operators in Eq.(4.80) one can write

e−V
c
ij∆τ = e−

∆τ
2

∑3N
n=1 ξnO2

n =
∏
n

e−
∆τ
2
ξnO2

n +O(∆τ2) (4.81)

Quadratic dependencies can be linearized using the Hubbard–Stratonovich

introducing a new (auxiliary) field x(~x):

e−
1
2
ξO2

=
1√
2π

∫
dxe−

x2

2
+x
√
−ξO, (4.82)
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In the energy integral there are 3N operators, and an auxiliary field should

be introduced for each space coordinate of every particle:

e−V
c
ij∆τ = e−

∆τ
2

∑3N
n=1 ξnO2

n =
3N∏
n=1

[
1√
2π

∫
dxne

−x
2
n
2

+
√
−ξnδτxnOn

]
(4.83)

That can be used to propagate a single particle spinor rotating it inside the

single particle basis. It is possible to apply Eq.(4.83) analytically only in

the case of two-spinors. However, it is always possible to rotate 4-spinors

diagonalizing the rotation matrix.

The propagator of Eq.(4.34) has to be generalized to include the spin and

isospin degrees of freedom:

〈
~r′, ~s′

∣∣∣e−(H−E0)∆τ
∣∣∣~r,~s〉 =

=

(
1

4πδτ

) 3N
2

{
e

(~r−~r′)2
4δτ e−(VSI−Eoff )

3N∏
n=1

[
1√
2π

∫
dxne

−x
2
n
2

+
√
−λnδτxnOn

]}

=
1√
2π

∫ 3N∏
n=1

dxne
−x

2
n
2

(
1

4πδτ

) 3N
2

e
(~r−~r′)2

4δτ e−(VSI−Eoff )e
√
−λnδτxnOn (4.84)

The process involves the diagonalization of these spin-isospin matrices,

which increases the cost of the whole algorithm up to A3. This is still more ad-

vantageous than GFDMC which scales as 2A
(
A
Z

)
. On the other hand, AFDMC

requires more integrations than GFDMC: one for each auxiliary field xn.

Those integrals are independent with respect to the coordinate propagation

and among themselves, so they can be performed together with the diffusion

process in the spirit of the MC methods. Alternatively, the auxiliary filed can

be sampled from a Gaussian during the diffusion.
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3-body forces EFT(/π) potentials, as well as other modern phenomenolog-

ical and effective potentials, includes 3-body terms. Dealing with a central

three-body force is not an issue in the MC framework. However, if the inter-

action does include spin and isospin operators, it can become difficult to be

treated because of the spin rotations.

If a potential of contact kind is used, one can always perform a Fierz

transformation to find a favorable form of the interaction. Among the four

operators allowed only one interaction is independent since three nucleons can

be couped in only one channel. We chose a spin and isospin independent

three-body force:

V 1
3b(rijk) ∝

∑
i,j,k

[
e−

(~r2ij+~r2ik)Λ2

4 + e−
(~r2ij+~r2ij)Λ2

4 + e−
(~r2kj+~r2ik)Λ2

4

]
(4.85)

The three body potential enters in the brancing procedure exactly as the stan-

dard two-body forces and does not involves a modification to the DMC algo-

rithm. The following operatorial choice can be, and has been, implemented

within AFDMC:

V ττ
3b (rijk) ∝

∑
i,j,k

[
e
~r2ijΛ2

4 (τi · τj) + e
~r2ikΛ2

4 (τi · τk) + e
~r2kjΛ2

4 (τk · τj)

]
(4.86)

A three-body interaction which contains cyclic permutations of spinorial

many body components, can be expanded in terms of a two-particle spin-

isospin operator weighted by three particles radial functions:

V ττ
3b (rijk) =

∑
i<j<k

∑
cyc

e−
(r2ij+r2jk)Λ2

4 (~τi · ~τj + ~τi · ~τk + ~τj · ~τk)

↓

=
∑
i<j<k

∑
cyc

(
e
−(r2ij+r2jk)Λ2

4 + e
−(r2ij+r2ki)Λ2

4 + e
−(r2ik+r2jk)Λ2

4

)
~τi · ~τj

(4.87)

That can be treated with auxiliary fields as in Sec.{4.3}
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4.4 Release node Monte Carlo

In Sec.{4.2} the importance of constraint the path of the diffused function,

in order to reduce the error of the calculation, has been discussed. However,

the systematic error introduced by the procedure is difficult to be estimated.

This is especially true in nuclear physics where there are big systems and stiff

potentials. It is common for nucleons to be clusterized inside the nuclei in

weakling bound sub-systems. In this case a trial wave function built starting

from a shell model will not be an accurate description of the system. In this

situations, the constrained-path does not allow the wave function to recover

the correct clusterized structure. This results in a wrong ground-state-energy

estimation.

However, one can release the path and let the high energy components

of the wave function to vanish. This procedure is called RPDMC [87]. It is

more expensive with respect constrained-path, since, to keep the error under

control, many independent configurations are needed.

The method consists in following Eq.(4.44) for the diffusive process in the

constrained-path approximation of Eq.(4.59) but the walkers that not fulfill

[Ψg(~r)Ψg(~r
′) > 0] are not killed. This is achieved redefining the trial wave

function as

Ψ̃g =

√
Re [Ψg]

2 + ε Im [Ψg]
2 (4.88)

where the parameter ε can be changed in order to speed the convergence of

the method (we used ε ∼ 0.20). Using Ψ̃g the weights will be defined always

positive both during the branching the importance sampling. However, when

observables are accumulated, the new term

κ =
Ψg

Ψ̃g

(4.89)

should be multiplied to the observables in order to recover the correct estima-

tors.

Once the constraints are released, errors diverge quickly as shown in Fig.(4.6).

To reduce them one has to propagate a huge number of statistically indepen-

dent walkers, starting with a limited amount of walkers and propagate them

using the constrained propagator, then save the configuration, and continue
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with the unconstrained propagator until the errors are too large to have mean-

ingful observables. The stored configurations are then recovered and, few un-

constrained steps are performed to reduce auto-correlations. Finally, they are

diffused again using RPDMC and statistic accumulated.

This procedure of RPDMC can be summarized as follows:

1. Diffuse the initial wave function with the constrained propagator.

2. Save the configurations (position, weights, spinors... of walkers).

3. Propagate accumulating statistics with the unconstrained propagator

until the signal to noise ratio becomes too small.

4. Retrieve the stored configurations.

5. constrained-propagation until the new configurations are uncorrelated

with respect the saved ones.

6. repeat from point 3) until errors are small as needed.

It might happen that the errors of RPDMC are too high to give a con-

verging result, they give a good estimation of the systematic errors of the

constrained-path approximation.

In Fig.(4.7) is shown the walker energy distribution in oxygen, the data

have been calculated using EFT(/π) potential described in Sec.{2.4}, and DMC

without constrained-path approximation starting from the unconstrained wave

function. The histogram represents the number of walkers with a given en-

ergy during the imaginary simulation time. It can be noticed that the error

increases exponentially.
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Figure 4.7: Walker energy distribution in oxygen with Physical mπ and cut-off
Λ ≈ 800 MeV on the top pannel and Λ ≈ 1600 MeV on the bottom one. See
text for full description.
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Mixed estimators

Eq.(4.39) shows how to calculate Hamiltonian expectation values. However,

the knowledge of the wave function, in principle, gives the possibility of es-

timating the expectation value of operators that do not commute with the

Hamiltonian as nuclear potentials, nuclear densities, and moment distribu-

tions. All those operators should not be included in the diffusion algorithm.

The mixed estimator of a generic quantum-mechanics operators reads:

〈O〉ψ0
' 〈ψ0|O|Ψg〉
〈ψ0|Ψg〉

=

∫
(ψ∗0Ψg)

(
OΨg
Ψg

)
∫
ψ∗0Ψg

, (4.90)

If O does not commute with H, the mixed estimator does not coincide

with the ground state expectation value. However, since Ψg is supposed to

be a good approximation of it, two different perturbative expansion can be

made. The first one reads:

〈Ψg|O|Ψg〉 = 〈ψ0 + δΨ|O|ψ0 + δΨ〉 =

〈ψ0|O|Ψg〉+ 〈Ψg|O|ψ0〉+ 〈ψ0|O|ψ0〉+ 〈δΨ|O|δΨ〉 (4.91)

which, in the case of Hermitian O, becomes

〈ψ0|O|ψ0〉 = 2 〈Ψg|O|ψ0〉 − 〈Ψg|O|Ψg〉+O(δΨ) (4.92)

The term 〈Ψg|O|Ψg〉 can be calculated using VMC, while 〈Ψg|O|ψ0〉 can

be estimated using Eq.(4.90). Hence, the first method to evaluate mixed

estimators can be schematically written as:

〈O〉 = 2 〈O〉DMC − 〈O〉VMC (4.93)

The second possible expansion can be express in terms of the quotient of

the mixed and the ”Variational” expectation values.

〈Ψg|O|ψ0〉2

〈Ψg|O|Ψg〉
=
〈ψ0|O|ψ0〉2 + 2 〈ψ0|O|ψ0〉 〈ψ0|O|δΨ〉+ 〈δΨ|O|δΨ〉2

〈ψ0|O|ψ0〉+ 2 〈ψ0|O|δΨ〉+O(δΨ)

≈ 〈ψ0|O|ψ0〉 . (4.94)

It can be schematically written as

〈O〉 =
〈O〉2DMC

〈O〉VMC

. (4.95)
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Both the perturbative corrected estimators, (4.93) and (4.95) give the same

result when the trial wave function is accurate. The relevance of having an

importance function as close as possible to the ground state is crucial in this

kind of calculations. Nonetheless, the discrepancy between the Variational and

the Diffusion expectation value, as well as the difference between the result of

the two perturbation expansions, is a good check for the convergence of the

optimization procedure.





5. Pionless EFT in few-body

systems

In this chapter, the results obtained using EFT(/π) potential in few-body sys-

tems will be discussed. We performed calculation for pion mass of ∼140, 500

and 800 MeV [31–35, 37, 38, 40, 41].

The choice of observables to be used in order to fit the LEC is arbitrary.

In all the cases except for the physical mass the observables used for the fit

are BE(d), BE(n−n) and BE(3He). In the physical case, where 1S0 channel is

not bound, we used the scattering length a0(n−n). The second fit at physical

mass, has been performed using the scattering lengths in both channels in

order to test the theory behavior when a different parametrization is used.

The effective range r0 is not the best choice to fit LO LECs since it rep-

resents a correction of higher order (k2) in pionless theory making it a good

candidate for the NLO fit instead. As explained in sec.{2.4}, EFT(/π) contains

three parameters at LO: one for each of the two-body channels and one for the

three-body. The parameters have been fitted with the potential written in 3S1

an 1S0 channels, associated to deuterium and dineutron, respectively. How-

ever, spin projectors are not directly usable in AFDMC calculations. Then the

potential has been rewritten into a more convenient fashion for many-body

calculations purposes (we used the operators 1 and σi · σj in the few- and

many-body calculations).

The used potential reads:

V2B(~r1 · · ·~rA) =
∑A

i<j e
−(~rijΛ)

2

4 [ C1+ C2 (~σi · ~σj)]
↑ ↑

d and n-n BE or a

(5.1)

87
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V3B(~r1 · · ·~rA) = D1
∑A

i,j,k

∑
{cyc} e

(~r2
kj~r

2
ik)Oij

↑
BE(3H )

(5.2)

where O is one of the four possible operators of the 3-body interaction that can

be arbitrarily chosen according to the Fierz transformation. In this work, we

used both 1 and ~τi ·~τj as test of consistency for the powercounting and as an es-

timation of the LO systematics in the EFT(/π) framework. We use the gaussian

regulator e−
r2Λ2

4 in accordance with the discussion of sec.{2} and sec.{2.4}.
It should be remarked that for each pion mass and a given parametrization a

study of the cut-off dependence of the observables is required. All the calcula-

tions have been performed for multiple cut-offs (Λ = {2, 4, 6, 8} fm−1). In the

case of physical pion mass, a more extensive study of the cut-off convergence

has been done up to Λ = 20 fm−1. Convergence in the observables when the

cut-off is above the breaking scale of the theory (mπ) is expected.
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5.1 Deuterium, dineutron and tritium

As for the S-waves, two nucleons are bound only in the 3S1 channel. On the

other hand, in lattice calculations for large pion masses, 1S0 is also bound.

Besides those used to fit the LECs, all the others observables are predicted

by the theory and should converge for large cut-off within LO uncertainties.

These two-body system calculations dysplayed in Fig.(5.2).

Tab.(5.1) summarizes all the fits done during this thesis. In order to fit

the two LO LECs, the potential has been conveniently Fierz rotated. The

relation between LECs associated to the 1S0 and 3S1 channels, denoted as

CΛ
01 and CΛ

10 and (1 and ~σi · ~σj) channels is:

CΛ
01 = CΛ

1 − 3CΛ
2 →

(
1S0

)
CΛ

10 = CΛ
1 + CΛ

2 →
(

3S1

) (5.3)

The two constants can be fitted independently, then reverting Eq.(5.3) they

are transformed back in (1 and ~σi ·~σj) in order to be used in MC calculations.

The LEC are cut-off dependent, as they have to renormalize the potential

after regularization. We expect them to have a C ≈ C Λ2

mN
behavior if a sharp

cut in the maximum momentum is applied, with C of natural size according

to the EFT(/π) theory.

The same behavior is found in the case of Gaussian regularization, as

shown in Fig.(5.1), where the LECs have been rescaled as C = Cmπ
Λ2 . The

plot also highlights the natural size of the scaled LECs. Comparing the pink

double dotted and the red dashed lines in the 3S1 channel for mπ ∼ 140

MeV, it can be noticed that the LEC converges at the same value (within

the accepted uncertainty at LO, Q/mπ ∼ 25%) even when it is fitted on two

different observables. This behavior confirms the robustness of the theory,

at least in the two body sector. It is interesting to note that the same LEC

converges at the same value for all the values of the pion masses we considered.

This common behavior is surprising and deserves more investigations, but it

might indicate a class of universality shared by all the two-nucleon systems at

different pion masses.

The fact that the LECs of the two channels are very similar reflects the

closure of the T-matrix poles. However, this implies that C2 of σi ·σj is much

smaller than C1 (Eq.(5.3)), revealing an almost perfect SU(4) symmetry. In
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Figure 5.1: Normalized LECs of the two- and three-body EFT(/π) interaction
for the considered mπs. Different data for the same mπ and channel are
obtained fitting different observables. More details on text.
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the case of physical mπ the 1S0 channel is unbound and one expects the LECs

to be greater than the ones corresponding to large mπ. This is only partially

true, hence we can conclude that the position of the T-matrix poles is very

sensible to the magnitude of the rescaled constants C. The convergence of

LECs is different when they are fitted on the the binding energy with respect to

when the scattering length is used. This is expected when the renormalization

scheme changes.

We used two different operator structures for the NNN potential: a cen-

tral interaction, described in Eq.(4.85), and the isospin-dependent force of

Eq.(4.87), which we denoted as “ττ”. In order to fit the binding energy of the
3He, the diagonalization and redundant Gaussians methods have been used.

The three body coefficient, plotted as D = Dmπ
Λ4 is relatively small compared

with C(1S0) and C(3S1). This is due to the sub-leading position of the three-

body force in the naive powercounting. However, the correlation of the system

enhances the three-body force contribution to observables, making it compa-

rable with the one of the two-body potential. Convergence to the same value

is shown in the LECs at the mπ considered as in the two body system. Note

that the coefficients of the central and ττ three-body forces have different sign.

In Fig.(5.2) some of the observables on which the LECs have not been

fitted are shown. In all the cases we observe a convergent behavior. In the

physical case, we find that the deuterium binding energy is underestimated

with respect to the experimental value of 2.22 MeV. We find a convergent

scattering length in the 3S1 channel (to a0 ∼ 4.4 fm) to be compared to the

experimental value a ∼ 3.8 fm. A comparison with LQCD calculation results

is difficult since the big statistical errors of the latter (see chapter{3}).
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Figure 5.2: Two body observables not fixed by the fitting procedure calculated
with EFT(/π) at LO. It can be seen that the data converge in the limit of large
cut-off.
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mπ C10 C01 D1 D1(τ · τ)
Name [MeV]

(
1S0

) (
3S1

)
(three body) (three body)

α 140 a0(n-n) a0(p-n) BE(3He) -
β 140 a0(n-n) BE(d) BE(3He) -
γ 500 BE(n-n) BE(d) BE(3He) -
δ 800 BE(n-n) BE(d) BE(3He) -
ε 800 BE(n-n) BE(d) - BE(3He)

Table 5.1: Table of different fits.

5.2 Helium

The α particle binding energy has been calculated using AFDMC method and

EFT(/π) potentials. We used different parametrizations and different kind of

three-body potentials. The observable used for fitting the two-body LECs

are both scattering length (a0) and binding energies (BE) of the 1S0 and
3S1 channels. The three body LEC is fitted using the 3He binding energy

and both a central and an isospin dependent three-body force. In Tab.(5.1)

we summarize the observables that have been used to fit any parametrization

used in this thesis; we refer to them with Greek letters from α to ε. In Tab.(5.2)

are shown the energies of the alpha particle for every parametrization, mπ and

cut-offs considered with the relative extrapolation.

In order to remove the cut-off dependency from observables we used the

expansion described in Eq.(2.45). We found that an expansion up to 1/Λ2

suffices to extrapolate the 4He energies for mπ = 140 MeV since the addition of

a cubic term does not change substantially neither the extrapolated value nor

the best-fit coefficients. On the other hand, the extrapolations for mπ = 510

MeV and mπ = 805 MeV are less clean because of the Λ ∼ 400 MeV cut-off

that is smaller or comparable to the expected breaking scale of the theory.

Hence, in Tab.(5.2) we report both the extrapolation-fit using Eq.(2.45) done

with and without the point at smaller cut-off. The errors reported on the

extrapolations are two: the bottom one refers to the error of the fit parameters,

while the top one is the difference of the result with the one found using a

fit function up to (1/Λ)3. It has to be remarked that this cut-off sensitivity

study does not account for the EFT truncation error that has to be gauged

by means of other techniques, like those reported in Ref. [88].
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Param. α β γ δ ε
Λ mπ ∼ 140 MeV mπ ∼ 510 MeV mπ ∼ 805 MeV

2 fm−1 −24.5(1.2) −23.17(2) −31.15(2) −88.09(1) −89.2(1)
4 fm−1 −24.3(6) −23.63(3) −34.88(3) −91.40(3) −93.6(1)
6 fm−1 −25.08(27) −25.06(2) −36.89(2) −96.97(1) −99.7(3)
8 fm−1 −25.9(8) −26.04(5) −37.65(3) −101.72(3) −105.0(1.2)

→∞ −31.0
(4)
(1.8) −29.87

(10)
(5) −41.2

(2.0)
(8) −117

(7)
(3) −119

(10)
(1)

w/o 2 fm−1 −31.2
(1)
(2.7) −28.12

(2.00)
(3) −40.5

(1.0)
(3) −110

(13)
(3) −112.5

(18.0)
(1.5)

Exp. −28.30 - -
LQCD - −43.0(14.4) −107.0(24.2)

Table 5.2: Binding energies of 4He for different values of the pion mass and
the cutoff.
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Figure 5.3: Energy of 4He of the physical pion mass.

Fig.(5.3) shows the 4He binding energy at physicalmπ using the parametriza-

tion “β” of Tab.(5.1). The difference between the red and blue points lay

in the approach used to optimize VMC method. The blue dots have been

obtained using the Linear optimization procedure as described in sec.{4.1}.
The red points have been calculated without it, and using the wave-function

parametrization and three body correlations described in Sec.{4.2} and Sec.{4.3}.
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Despite the somewhat primitive importance function used in the first case, the

ground-state energy agrees within statistical errors. This is not unexpected as

the Helium ground state does not contain nodes, and, DMC is able to project

into the ground state with that wave functions. However, the more advanced

wave function found with the LM significantly reduces the statistical errors

for the same computational cost. The solid line represents the fit obtained not

including the point at Λ = 400 MeV. The curve does not change significantly

once the point is included, as can be seen comparing the solid and the dashed

lines. The extrapolation defined including Λ = 400 MeV point overbinds 4He

with respect to experiments value. However, analyzing the errors that we

expect from the theory at LO

δELO =
Q
mπ
≈

√
2mN

BE(4He)
4

mπ
' 50% = 15MeV (5.4)

it is evident that the results obtained are in agreement with the experimental

value.
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Figure 5.4: (LECs for large Λ courtesy by Betzalel Bazak) Energy of 4He in
the case of mπ = 140 MeV and different parametrization.

Fig.(5.4) displays the binding energy of 4He obtained from the parametriza-

tion “α” of Tab.(5.1) as of Fig.(5.3) (blue dots are the same data as compari-

son). To prove the convergence of the LO in the four body system the black

points extend to very large Λs.

We used the LM to optimize the variational wave function. Data show that

the four body system converges at LO even for large cut-offs. The dashed line

represents a fit done on the black points using Eq.(2.45) excluding Λ ∼ 400

MeV. The asymptotic binding-energy can be found in Tab.(5.2). Comparing

the parametrization “α” and “β” one can notice that the LO results are in

agreement within the LO uncertainty of Eq.(5.4). The results are also in

agreement with Ref.[89], which predicts the EFT four body system to be

more bound if the two-body energy instead of the scattering length is used to

fit LECs.
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Figure 5.5: Energy of 4He for the mπ = 500 MeV.

Fig.(5.5) shows the energy of 4He obtained with the parametrization “γ”

at mπ ∼ 500 MeV. The extrapolation of the curve is consistent with the LQCD

prediction of 43.0± 14.4 MeV, while according to Eq.(5.4), δELO ' 35% = 14

MeV. Including additional powers of
(

1
Λ

)
in the expansion does not change

the extrapolation results within the fitting errors. The energy shows a small

shift when the point at Λ ∼ 400 MeV is included.
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Figure 5.6: Energy of 4He for the mπ = 800 MeV.

Last, we considered mπ ∼ 800 MeV, whose 4He energy is displayed in

Fig.(5.6). Blue dots have been calculated with parametrization “δ”. The

Orange points are obtained from parametrization “ε”. Details can be found

in Ref.[30]. Even if we do not expect the same behavior for small cut-offs the

results are not far from each other. Nonetheless, the two parameterizations

should agree for large cut-off, where we found that the extrapolation values are

consistent as expected (see Tab.(5.2)). However, the result including Λ ∼ 400

MeV is not in agreement with respect to the one in which we do not include

it. This shows that Λ ∼ 400 is too small and should not be included in the

extrapolation. In this case LO error is estimated to be of order δELO ' 30% =

35 MeV. The data have a larger error than in the other pion mass considered.

This is due to the fact that fewer points are used in the fits, but also because

we expect convergence to occur at higher cut-off value compared to smaller

mπs (and breaking-momentum of the theory). Nonetheless, the results are

very well in agreement with LQCD calculation results. Yet, the magnitude of

the errors is still too large to draw any definitive conclusion, making a study

at NLO and more refined LQCD calculations necessary.
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mπ = 140 MeV.

It is interesting to study the cutoff dependence of the root-mean-square

(rms) point-nucleon radius
√
〈r2

pt〉 and the single-nucleon point density ρpt(r).

These quantities are related to the charge density, which can be extracted from

electron-nucleus scattering data, but are not observable themselves: few-body

currents and single-nucleon electromagnetic form factors have to be accounted

for. Still, one can gain some insight into the features of the ground-state wave

function by comparing results at different pion masses and cutoffs. Since nei-

ther
√
〈r2

pt〉 nor ρpt(r) commute with the Hamiltonian, the desired expectation

values on the ground-state wave function are computed by means of “mixed”

matrix elements as described in Sec.{4.4}

The results for the point-proton radius of 4He are reported in Tab.(8.1) and

Tab.(8.2). (Since Coulomb is absent in our calculation, the point-nucleon and

point-proton radii are the same.) In the physical case, the calculated radius is

much smaller than the empirical value — that is, the value extracted from the

experimental data of Ref. [90] accounting for the nucleon size, but neglecting

meson-exchange currents. A similar result,
√
〈r2

pt〉 ≈ 1 fm was obtained by the

authors of Ref. [91] using a local form of a chiral interaction. NLO and N2LO

potentials in a chiral expansion based on naive dimensional analysis [92–94]



100 CHAPTER 5. PIONLESS EFT IN FEW-BODY SYSTEMS

0.0

0.5

1.0

1.5

2.0

2.5
𝜌 p

t
[fm

−
3 ]

Λ = 2 fm−1

Λ = 4 fm−1

Λ = 6 fm−1

Λ = 8 fm−1

0.0

0.5

1.0

1.5

2.0

2.5

𝜌 p
t

[fm
−

3 ]

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

𝜌 p
t

[fm
−

3 ]

𝑟 [fm]

Figure 5.8: 4He single-nucleon point density for mπ = 140 MeV (upper panel),
mπ = 510 MeV (middle panel), and mπ = 805 MeV (lower panel), at different
values of the cutoff Λ.

bring theory into much closer agreement with the empirical value. Hence, sub-

leading terms in the EFT(/π) expansion could play a relevant role, at least for

physical values of the pion mass.

For unphysically large pion masses, where EFT(/π) is supposed to exhibit

a faster convergence, the point-proton radius is smaller than at mπ = 140

MeV. The value obtained for mπ = 510 MeV indicates a spatial extent similar

to the physical one, while 4He at mπ = 805 MeV, in comparison, seems to
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be a much more compact object. This is consistent with the behavior of the

single-nucleon point density, ρpt, displayed in Fig.(5.8). For all cutoff values,

the density corresponding to mπ = 805 MeV is appreciably narrower than

that computed for mπ = 510 MeV or mπ = 140 MeV. Focusing on Λ = 1600

MeV, ρpt has a maximum value of 11.0 fm−3 for mπ = 805 MeV, while in the

mπ = 510 MeV and mπ = 140 MeV cases the maximum values are 2.1 fm−3

and 2.2 fm−3, respectively.





6. Pionless EFT in many

body systems

6.1 Oxygen and Release Phase Monte Carlo

We chose 16O for mainly two reasons: First, because it is a doubly magic

nucleus, thereby reducing the technical difficulties related to the construction

of wave functions with the correct quantum numbers and symmetries. Sec-

ond, its central density is sufficiently high to probe saturation properties and

thereby serve as a model for even heavier nuclei. The stiffness of the interac-

tion at large cut-off, as well as the non-trivial correlations between particles,

makes the calculations particularly challenging. To successfully carry out the

study of 16O AFDMC ha been refined to significantly improve the upon the

quality of the variational wave function.

The calculations of 16O have been performed using the parametrizations

“β”, “γ” and “δ” of Tab.(5.1). The ground state energies of 16O and 4He have

been calculated using different kinds of correlations and wave functions and

are reported in chapter{8}.
The correlation used are:

• (No J3b): Two-body Jastrow and Gaussian single-particle orbitals min-

imized “by hands”.

• (Av.J3b): Two-body Jastrow and Gaussian wave functions, three body

implicit correlations calculated as the average contribution of three body

interaction to the two-body Jastrow.

103
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• (w/ J
(4.12)
3b *): Two-body correlation and Gaussian single particle or-

bitals, but three body defined according to Eq.(4.12).

• (w/ J
(4.12−4.14)
3b ): Two-body Jastrow calculated solving the two-body

Shrödinger equation and Gaussian single particle orbitals. Three body

Jastrow implemented according to Eq.(4.12-4.14).

• (LM): Using the LM minimization and spline lines for correlations and

single particle wave functions.

The calculations of ground states performed without the LM are less bound

than four alpha particles. These results can not be correct since the diffusion

process in imaginary time should project out all the excited-state components

of the wave function. The fact that there is a lower state (four separate αs)

with lower energy is sufficient to state that the results are somewhat biased

and need to be improved. During this thesis, many of the possible systematic

errors of the method, as time-step correction and statistic correlations, have

been investigated. Our conclusion is that the importance function ψg was

not a good approximation of the ground state wave function leading results

affected by severe sign problem.

Initially, ψg was built as a Slater Determinant with only two-body Jastrow

whose parameters where found using an “by hand” procedure. Single particle

orbitals were calculated using a Skyrme potential [95], fitted on physical exper-

iments, and read by the AFDMC as an input. A variational rescale parameter

was added to orbitals to better fit the observed system. The parametrization

of Skyrme orbitals is necessary because, in the case of unphysically high mπ,

the orbitals and the energy levels are unknown, while in the physical case the

wave functions changes with the RG flow.

Since the relative strength of the three-body force is as large as the two-

body potential, three-body correlations have been implemented in the code.

This has been done in two different ways. The first consists in adding of an

average of the three-body to the two-body Jastrow. This has been done esti-

mating the perturbation to the two-body correlations of a couple of particles

when a third particle it is approached to it. The second approach consists

in solving the two-body problem of the given potential and calculating the

three-body correlation as described in sec.{4.1}. Comparing the DMC results

obtained with the two methods it is possible to conclude that they do not

change much the results. In Fig.(6.1) the 16O energy obtained using only



6.1. OXYGEN AND RELEASE PHASE MONTE CARLO 105

two-body correlations (No J3b) and including explicit three-body correlations

(w/ J
(4.12)
3b *).

From the similar results obtained using different correlation emerges that

the ground state wave function structure is very different from any parametriza-

tion of Ψg, i.e. it requires nucleon clusterization. Although, all the parametriza-

tions showed a common convergence to the same results. This might imply

the presence of a resonance or an excited state of the system, in which VMC

finds a local energy minimum from which DMC is not able to project to the

ground state because of orthogonality conditions.

In order to find the ground state of 16O both in the case in which it

is bound or it consists in four weakly interacting or even free alpha parti-

cle, the RPDMC has been used. In Fig.(6.2-6.9) the energies as function of

the imaginary time during RPDMC calculations are shown. The calculations

have been performed extracting few hundred independent propagations start-

ing from different thermalized walker configurations. It should be remarked

that those calculations have been done using the parametrizations “β”, “γ”

and “δ”. Blue points represent DMC calculations with the relative stochastic

error. While the error of the calculation increases exponentially, the average

energy should still be correct. In all the figures the 4-α threshold is displayed

orange. This corresponds to the energy of four, non-interacting alpha par-

ticles calculated with the same parametrization of the potential. RPDMC

is a more computationally expensive method with respect to DMC. This is

why we choose to perform calculations only for few mπ and cut-offs values.

We chose mπ ∼140 and 800 MeV because they correspond to the cases in

which the EFT(/π) is supposed to work worst and best respectively. In the

case mπ ∼ 140 MeV, Λ ∼ 400 MeV we proceed with three kinds of analy-

sis. One starts from DMC thermalized configuration (Blue points); one using

thermalized configuration without any optimization in the wave function (not

showed because on the top of the Blue one); and one using random initial

configuration (Red points). This has been done in order to better understand

the behavior of the energy when the phase constraint is released. The energy

behavior is a clear indication of the tendency of the calculation to converge to

the 4− α threshold.
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Figure 6.1: 16O energy for different mπ and cut-offs. Black points represent
the results of AFDMC using only two-body correlations in the importance
wave function. Red points represent the results after including the three-body
correlations too. It can be noticed that the inclusion of new correlations do
not substantially change the results.

It can be noticed how RPDMC calculations reveal two very different be-

haviors. For mπ ∼800 MeV and Λ ∼400 and 800 MeV the releasing phase

pushes the energy below the four alpha threshold. For all the other cases

the final energy stays above the 4-alpha threshold but it is compatible with

it. At first sight, the analysis of mπ ∼140 MeV and α ∼1600 MeV shows

a gap in the energy after τ = 0.02 MeV−1. However, a statistical analysis
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Figure 6.3: 16O with mπ ∼ 140 MeV, Λ ∼ 1600 MeV

Figure 6.4: Oxygen energy behavior with respect the imaginary time calcu-
lated using unconstaight RPDMC for mπ ∼ 140 MeV.
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Figure 6.6: 16O with mπ ∼ 800 MeV, Λ ∼ 800 MeV

Figure 6.7: Same as Fig.(6.4) for mπ ∼ 800 MeV.
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Figure 6.8: 16O with mπ ∼ 800 MeV, Λ ∼ 1200 MeV

-500

-450

-400

-350

-300

 0  0.005  0.01  0.015  0.02  0.025  0.03

E
n
e
rg

y
 [
M

e
V

]

Imaginary time [ Mev
-1

 ]

Released-phase 
16

O energy
4-α  threshold

Figure 6.9: 16O with mπ ∼ 800 MeV, Λ ∼ 1600 MeV

Figure 6.10: Same as Fig.(6.4) for mπ ∼ 800 MeV.
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reveals the data to be compatible with the threshold within the errors. The

data imply that the theory tends to break into free or weakling-interacting

4−α’s. In most of those cases, the data do not reach the threshold before the

exponential growth of the errors. This can be explained by the fact that the

“clustered” wave function is very different from the initial trial wave function.

In the example of mπ = 800 MeV and Λ ∼ 400 and 800 MeV, we have signs

of the presence of a bound state but the statistical errors are still too large

to claim any evidence. Nonetheless, this bound state appears only for the

smallest cut-off in which we expect large regularization errors of order
(

1
Λ

)
so we claim that the state would be a regularization artifact that disappears

when Λ→ +∞.

The large statistical errors which plague RPDMC results make difficult

to draw any definitive conclusion. However, calculations indicate that the

structure of the 16O is much different than the one suggested by the shell-

model. To better understand its nature, and to obtain more reliable evidence

about the presence/absence of boundstates, we implemented the LM (see sec.

{4.1}).
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Λ mπ = 140 MeV mπ = 510 MeV mπ = 805 MeV

400 MeV −97.19(6) −116.59(8) −350.69(5)

800 MeV −92.23(14) −137.15(15) −362.92(7)

1200 MeV −97.51(14) −143.84(17) −382.17(25)

1600 MeV −100.97(20) −146.37(27) −402.24(39)

→∞ −117.5
(3.0)
(8) −156

(5)
(1) −440

(40)
(20)

4− α −119.5
(4)
(2) −165

(8)
(3) −440

(52)
(12)

Exp. −127.62 – –

Table 6.1: 16O energy for different values of the pion mass mπ and the cutoff
Λ, compared with experiment (No LQCD results exist for this nucleus.) and
the extrapolated four-alpha threshold. See main text for details.

6.2 Oxygen and Linear Method

The 16O ground-state energies calculated using the “β”, “γ” and “δ” parametriza-

tions of EFT(/π) are reported in Tab.(6.1). Those results have been obtained

using the LM and the AFDMC within the constrained-path approximation.

As we expected by RPDMC calculations, 16O appears to be unstable against

breakup into four 4He clusters in almost all the cases, even using the optimized

wave function. The only exception occurs for mπ = 140 MeV and Λ ∼400

MeV, where 16O is 4.5 MeV more bound than four 4He nuclei. In the other

cases, we miss the four-4He threshold by about 5 MeV, which is beyond our

statistical errors and reveals a lower bound on the systematic error of our

QMC method.

Even considering only statistical and extrapolation errors, the asymptotic

values of the 16O energy cannot be separated from the four-4He threshold.

The proximity of the threshold suggests that the structure of our 16O should

be clustered. Indeed, despite no explicit clustering being enforced in the trial

wave function, the linear optimization procedure arranges the two- and three-

body Jastrow correlations, as well as the orbital radial functions, in such a

way as to favor configurations characterized by four independent 4He clusters.
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Figure 6.11: 16O energy for different mπ and cut-offs. Black points represent
the 4− α threshold. Blue points represent 16O energy calculated with LM.

The single-proton density profiles displayed in Fig.(6.12) indicate that only

for the smallest Λs the nucleons are distributed according to the classic picture

of a bound wave function. In the other cases, nucleons are pushed away from

the center of the nucleus, which is basically empty. The erratic behavior

of the peak position of the density profiles as a function of the cutoff has

to be ascribed to the fact that the relative position of the four 4He clusters

is practically unaffected by the cutoff value. In fact, once the clusters are

sufficiently apart, a landscape of degenerate minima in the variational energy

emerges. Hence, the single-proton densities correspond to wave functions that,
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despite potentially significantly different, lead to almost identical variational

energies. In contrast, the width of the peaks decreases with increasing cut-

off according to with the shrinking of the individual4He clusters reported in

Tab.(8.1).

In support of the arguments about the proton density, which does not

suffice to claim the clustering, the comparison between potential expectation

values of 16O and 4He can be performed. For instance, in the mπ = 140 MeV

and Λ ∼1600 MeV case it turns out that the expectation values of the 16O

two- and three-body potentials are ' 4.05 and ' 4.16 times larger than the

corresponding values for 4He.

The same pattern is observed for all the combinations of pion mass and

cutoff where the system’s energy is compatible with the threshold. In the other

cases, for example, for Λ ∼ 400 MeV and mπ = 140 MeV, the expectation

values of the two- and three-body potentials in 16O have a different value with

respect 4He (' 4.65 and ' 6.14 times larger). This difference is a consequence

of the fact that the number of interacting pairs and triplets is larger when

clusterization does not take place.

To better visualize the clusterization of the wave function, in Fig.(6.13) we

display the position of the nucleons following the propagation of a single walker

for 5000 imaginary-timesteps, corresponding to ∆τ = 0.125 MeV−1, printed

every 10 steps. In the upper panel, concerning mπ = 140 MeV and Λ = 400

MeV, nucleons are not organized in clusters. In fact, during the imaginary

time propagation, they diffuse in the region in which the corresponding single-

nucleon density of Fig.(6.12) does not vanish. A completely different scenario

takes place at the same pion mass when Λ ∼1600 MeV: the nucleons forming

the four 4He clusters remains close to the corresponding centers of mass during

the entire imaginary time propagation. This is clear evidence of clustering.

It has to be noted that the relative position of the four clusters is not a

tetrahedron. To prove this, for each configuration we computed the moment-

of-inertia matrix as in Ref.[96]. If the 4He clusters were positioned at the

vertices of a tetrahedron, diagonalization would yield only two independent

eigenvalues. Instead, we found three distinct eigenvalues, corresponding to

an ellipsoid, another indication of the absence of interactions among nucleons

belonging to different 4He clusters.
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Figure 6.12: 16O single-nucleon point density for mπ = 140 MeV (upper
panel), mπ = 510 MeV (middle panel), and mπ = 805 MeV (lower panel), at
different values of the cutoff Λ.
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Figure 6.13: Imaginary-time diffusion with time step ∆τ = 0.125 MeV−1 of a
single walker for mπ = 140 MeV, at Λ ∼400 MeV (upper panel) and Λ ∼1600
MeV (lower panel).

The smaller relative size of the model space leads to more modest signs of

cutoff convergence for 16O than 4He, which are reflected in larger extrapola-

tion errors, especially at mπ = 805 MeV. At physical pion mass, the central

value of the extrapolated total energy is only 10% off from the experiment,

which can be bridged by statistical and extrapolation errors. This difference
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is small compared to the expected truncation error, ∼ 30%. If there is a low-

lying resonant or virtual state of 4He nuclei at LO in EFT(/π) , note that our

analysis does neither preclude nor identify such a state, it is possible that the

(perturbative) inclusion of higher-order terms up to N2LO will move the 16O

energy sufficiently for stability with respect to four 4He clusters.

For unphysical pion mass, our results can be seen as an extension of LQCD

to medium-mass nuclei, with no further assumptions about the QCD dynam-

ics. In this case, a determination of the relative position of the four-α threshold

would further require much-increased accuracy in the A = 2, 3 LQCD results

that we use as input.



7. Conclusions

One of the main challenges of current research in nuclear physics is to provide

a unified look at the nuclear regime, from QCD to heavy nuclei.

In this thesis, the nuclear QMC algorithm has been optimized to predict

observables using EFT potentials with relatively large cut-offs. Different kind

of wave function correlations have been implemented and several numerical

improvements to the used QMC method have been tested. The technique has

been exploited performing calculations at LO in nuclear systems ranging from

the deuteron to 16O.

Within this framework, we derived a contact interaction which represents

the LO of a systematic expansion of QCD. This enabled us to analyze physical

nucleons as well as simulated scenarios with increased quark masses. To over-

come the challenges associated to the solution of the Schrödinger equation,

the used MC method has been improved, first releasing the walker’s paths,

then by using a new optimization protocol of the many-body wave function

to be employed in the variational stage of the calculation.

In the first case, we manually optimized using VMC method the wave

function experimenting different correlations and single-particle wave func-

tions. The wave function obtained in this way was then diffused with and

without the constrained path approximation. The groundstate energy be-

havior of oxygen suggested a break-up in four alpha particles. However, the

uncertainties of RPDMC emerged to be too large to be conclusive, implying

that a more refined trial wave function was required.

To achieve that, an extension of the linear method has been used. The

tests performed with this method showed a much faster convergence in pa-

rameter space compared to the manual minimization but also compared with

the stochastic reconfiguration, previously adopted in nuclear QMC calcula-

tions. We used the trial wave function found with the LM as starting point

of the imaginary-time projection in AFDMC, which filters out the “exact”

117
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ground state of the Hamiltonian. This algorithm was used to predict not only

ground-state energies, but also radii, densities, and particle distributions.

Using results from LQCD simulations of few-nucleon systems we demon-

strate the consistency of EFT(/π) and LQCD for mπ ∼ (800, 500) MeV. The

agreement between the alpha binding energies calculated with two different

methodologies and choice of degrees of freedom is not, a priori, guaranteed

and shows how EFTs can be used as coherency benchmark for LQCD calcula-

tions. We also showed the consistency of the theory at LO with experimental

data for natural mπ. Therefore, we conclude that the EFT(/π) LO is complete

for those systems and the presence of a leading four-body force is not required

in EFT(/π) .

With this successful benchmark, we extended the calculations to 16O. The

extrapolated values for the 16O binding energy at all pion masses are indis-

tinguishable from the respective four-4He threshold, even considering only the

smaller statistical and extrapolation errors. In fact, for almost all cutoffs and

pion masses we considered, both using RPDMC and DMC and LM, 16O is

unstable with respect to break-up into four 4He nuclei. Our calculation of the
16O energy is the first time LQCD calculations are extended to the medium-

mass region in a model-independent way.

The calculations done using LM revealed to be able to find four α structure

also when the clusterization was not included a priori. Interestingly, mπ =

140 MeV and Λ ∼400 MeV is the only parametrization yielding a stable
16O. This suggests that the long-range structure of the interaction is deficient

at larger cutoff values and might have to be corrected, e.g. via one-pion

exchange, to guarantee the binding of heavier nuclei at LO. Alternatively,

within a pionless framework, higher-order terms could act as perturbations

to move 16O with respect to the four-4He threshold. At physical pion mass,

the central value of the total energy is just about 10% off experiment. This

is only slightly larger than the statistical and extrapolation errors, and well

within the ∼ 30% truncation of the effective theory. We cannot exclude the

possibility that agreement with data will improve with order. A comprehensive

study of the various subsystems of 16O (for example, 12C, 8Be, and 4He-4He

scattering) could determine whether a resonant or virtual shallow state at LO

is transformed into a bound state by subleading interactions, thus elucidating

the relation between clusterization and QCD.

In order to better appreciate the cluster nature of our solution for 16O, we
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have studied the radial nucleon density and the sampled probability density

for the nucleons. In both cases the occurrence of clusterization is evident.

From our results it is not possible to infer any significant correlation between

the clusters, which once more confirms the extremely weak interaction among

them within EFT(/π) . We would like to point out that localization was not

imposed in the wave function used to project out the ground state; rather, it

spontaneously arises from the optimization procedure (despite the correlations

being fully translationally invariant) and it is preserved by the subsequent

imaginary-time projection.

Current QMC (AFDMC) results have now reached an accuracy level that

allows for discussing the few-MeV energies involved in this class of phenom-

ena, which are relevant for a deeper understanding of how the systematics

in nuclear physics arises from QCD. Starting from the results of LQCD cal-

culations obtained for values of mπ smaller than the ones employed in this

work, and yet larger than the physical one, would allow us to establish the

threshold for which nuclei as large as 16O are stable against the breakup into

four 4He clusters, if such a threshold exists. To perform this analysis, it is

essential to include higher-order terms in the EFT(/π) interaction, possibly up

to N2LO, where tensor contributions appear. This also requires a substantial

improvement of the existing LQCD calculations on light nuclei, which, even

for large mπ, are currently affected by statistical errors that do not allow for

an effective constraint of the interaction parameters.





8. Tables of data
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mπ= 140 MeV
Λ [MeV]: 400 800 1200 1600

DMC -5.54(5) -8.40(5) -8.02(9) -7.92(29)
3H [MeV]

Other Experimental: -8.482 MeV

RRGM (±1 MeV) -23.2 -23.1 -23.9 -24.2

DMC (No J3b) -23.20(3) -23.68(8) -24.9(1) -26.1(1)

DMC (LM) -23.17(2) -23.63(3) -25.06(2) -26.04(5)
4He [MeV]

Other Experimental: -28.296 MeV

DMC (No J3b) -96.7(5) -57.4(8) -49.6(1.1) -47(1)

DMC (Av. J3b ) -97.0(2) -52.2(5) -49(1) -52(2)

DMC (w/ J
(4.12)
3b * ) -97.2(1) -57.9(3) -50.1(6) -46.5(9)

DMC (w/ J
(4.12)
3b ) -59(1) -50(1)

DMC (w/ J
(4.13)
3b ) -58(1) -50(1)

DMC (w/ J
(4.14)
3b ) -58.6(1.0) -52(1)

DMC (LM) -97.19(6) -92.23(14) -97.51(14) -100.97(20)

4α (LM) -93.2 -94.0(8) -100(1) -104(2)

16O [MeV]

Other Experimental: -127.619 MeV

AFDMC -273.3(6) -130(1) -84.0(1.3) -61.3(2.4)
40Ca [MeV]

Other Experimental: -342.052 MeV

mπ= 510 MeV
Λ [MeV]: 400 800 1200 1600

DMC -20.20(5) -20.35(6) -20.52(12) -25.52(12)
3H [MeV]

Other Lattice: 20.3± 4.5 MeV

RRGM (±1 MeV) -30.8 -33.3 -34.4 -34.6

DMC (No J3b) -31.21(2) -34.96(6) -36.8(1) -38.2(2)

DMC (LM) -31.15(2) -34.88(3) -36.89(2) -37.65(3)
4He [MeV]

Other Lattice: −43± 14 MeV

DMC (No J3b) -115(2) -111.6(4) -107.9(8) -103(1)

DMC (Av. J3b ) -114.6(2) -113.8(2) -109.71(4) -105.7(5)

DMC (LM) -116.59(8) -137.15(15) -143.84(17) -146.37(27)
16O [MeV]

4α (LM) -124.84(8) -139.8(2) -147.2(4) -152.8(8)

40Ca [MeV] AFDMC -270.2(1.5) -268(2) -241(2) -186(4)
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mπ= 805 MeV
Λ [MeV]: 400 800 1200 1600

DMC -53.89(2) -53.44(17) -52.99(24) -53.2(33)
3H [MeV]

Other Lattice: −53.9± 10.7

RRGM (±1 MeV) -88 -90.9 -95.6 -99.3

DMC (No J3b) -88.05(8) -91.3(1) -96.8(1) -100.8(3)

DMC (LM) -88.09(1) -91.40(3) -96.97(1) -101.72(3)
4He [MeV]

Other Experimental: -28.296 MeV

DMC (No J3b) -346.6(6) -337.8(8) -330(1) -318(1)

DMC (Av. J3b ) -346.7(7) -335(1) -326(1) -315.6(8)

DMC (w/ J
(4.12)
3b ) -355(2) -340(2) -335(2) -375(1)

DMC (LM) -350.69(5) -362.92(7) -382.17(25) -402.24(39)

4α (LM) -352.2(3) -365.2(4) -387.2(4) -403(1)

16O [MeV]

Other Experimental: -127.619 MeV

4He proton radii
Par. α β γ δ ε
Λ mπ = 140 MeV mπ = 510 MeV mπ = 805 MeV

400 MeV 1.7438(23) 1.374(4) 1.482(3) 0.898(1) 0.95
800 MeV 1.5353(19) 1.203(4) 1.133(3) 0.699(1) 0.74
1200 MeV 1.3608(18) 1.109(3) 1.035(2) 0.609(1) 0.65
1600 MeV 1.2273(21) 1.054(3) 0.976(1) 0.542(1) 0.57
1600 MeV 1.1558(26) - - - 0.51
→∞ 0.76(8) 0.86(19) 0.76(13) 0.253(55)

Exp. 1.45 – -

Table 8.1: Point proton radii of 4He for different values of the pion mass and
the cutoff. The extrapolations are performed without the point at 400 MeV.
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Λ [MeV] Be(4He) [MeV] r [fm]

400 −24.5(1.2) 1.7438(23)
600 −24.3(6) 1.5353(19)
800 −25.08(27) 1.3608(18)
1000 −25.9(8) 1.2273(21)
1200 −26.7(7) 1.1558(26)
1400 −27.3(6) 1.0682(3)
1600 −27.9(5) 1.0369(26)
1800 −28.3(7) 1.0098(15)
2000 −28.3(7) 0.9039(12)
2200 −28.7(6) 0.9834(13)
2400 −28.4(6) 0.9238(12)
2600 −28.2(7) 0.969(1)

→∞ 0.72(5) 31.0
(4)
(1.8)

w/o 400 MeV 0.76(8) 31.2
(1)
(2.7)

Table 8.2: Point proton radii of 4He for different values of the pion mass and
the cutoff. The extrapolations are performed without the point at 400 MeV.





Bibliography

1H. Yukawa, “On the Interaction of Elementary Particles I”, Proc. Phys.

Math. Soc. Jap. 17, [Prog. Theor. Phys. Suppl.1,1(1935)], 48–57 (1935) 10.

1143/PTPS.1.1.

2A. R. Erwin, R. March, W. D. Walker, and E. West, “Evidence for a pi pi

Resonance in the I = 1, J=1 State”, Phys. Rev. Lett. 6, 628–630 (1961)

10.1103/PhysRevLett.6.628.

3R. Bryan and B. L. Scott, “Nucleon-nucleon scattering from one-boson-

exchange potentials. iii. s waves included”, Phys. Rev. 177, 1435–1442 (1969)

10.1103/PhysRev.177.1435.

4M. Lacombe, B. Loiseau, J. M. Richard, R. V. Mau, J. Côté, P. Pirès, and
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