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Introduction

This thesis deals with various problems arising in deterministic control,
jumping processes and control for locomotion in fluids.
It is divided in three parts. In the first part we study possible approximations
for some optimal control problems on networks and stratified domains. In
the second part we present a decentralized routing problem over a network
and give conditions for the convergence to consensus and in the last part
we investigate different strategies to overcome the so-called scallop paradox
concerning periodic locomotion in fluid. We may see as possible links between
the three parts the following ones:

� I-II: control, networks, Hamilton-Jacobi equations (discontinuous -
multi-agent),

� I-III: optimal control, controllability, inclusion in the model of a delayed
relay although in different environment,

� I-II-III: delayed relay and Play operator as important examples of
hysteresis mathematical model which is also dedicated a section (see
Sect. 3.1).

Before explaining singularly the content of the three parts, we point out that
in the first two chapters of the thesis we review some standard results on
Hamilton-Jacobi equations, later focusing on the discontinuous ones and on
several related works. Chapter 3 is devoted to the definition of the concept
of hysteresis and related operators.
Now we give a quick overview of the three parts.

Part I- Hybrid Thermostatic approximations of junctions.

In this part of the thesis we focus on some optimal control problems on
network with junctions (see Bagagiolo-Maggistro [14]) where each edge
has its own controlled dynamics and cost. In the case of optimal control
and, in particular, of dynamic programming and Hamilton-Jacobi-Bellman
(HJB) equation, the presence of junctions is a problem. Indeed, due to the
discontinuous feature of HJB, the corresponding uniqueness of the value

vii



viii Introduction

function as solution of HJB is not in general guaranteed. The usual double-
variable technique for proving the comparison result between sub and super-
viscosity solutions cannot work in these cases because the points of minimum
and of maximum, even if very close, may belong to different arcs (the
edge of the network) for which dynamics and costs are absolutely non-
comparable (the junction, indeed). Anyway, we point out that in this
thesis the discontinuity of the Hamiltonian is always given by discontinuities
through some hypersurfaces (a point in the one dimensional case) of the state
space. That is, the Hamiltonians are anyway continuous one some connected
components. Some authors have recently studied optimal control and HJB on
networks, see for instance Achdou-Camilli-Cutr̀ı-Tchou [2], Camilli-Marchi
[36], Camilli-Marchi-Schieborn [37], Schieborn-Camilli [91], Imbert-Monneau-
Zidani [68], Achdou-Oudet-Tchou [4], Achdou-Tchou [5] (see also Chapter
2 for more details). A mean field games problem on network is studied for
example in Camilli-Carlini-Marchi [35]. We propose a different approach
that permits to overcome the above mentioned difficulty and consists in
replacing the junctions with a suitable combinations of delayed thermostats
(from now on we will use the word thermostat and relay as synonyms), each
of them characterized by a threshold parameter ε > 0. We start considering
a twofold junction problem, namely the simple situation where two half-lines
(the edges) are separated by one point (the junction) (see Figure 1). We
replace the junction, which represents a unique threshold for passing both
from one edge to the other one and vice-versa, by a delayed thermostat
consisting in two different thresholds for passing separately from one edge to
the other one and vice-versa (see Figure 1). The problem is then transformed

Figure 1: The two-fold junction and its thermostatic approximation.

in a so-called hybrid problem (continuous/discrete evolution, see for example
Goebel-Sanfelice-Teel [61]) for which the discontinuity of HJB is replaced by
some suitable mutually exchanged boundary conditions on the extreme points
of the two branches. This allows to obtain a uniqueness result for HJB for
this kind of thermostatic problem. Then, using as starting point the results
in Bagagiolo [8] (see also Bagagiolo-Danieli [12]), (where it is proved that the
value function Vε of this (and others) switching thermostatic problem is the
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unique viscosity solution of a coupled exit-time problem (see Theorem 4.1.5)),
we study the limit of the value functions Vε and of the HJB problem when the
threshold distance ε tends to zero, and hence we recover the twofold junction
situation. In Barles-Briani-Chasseigne [19], among others, a one-dimensional
twofold junction problem as the one described here above is also studied
and some possible approximations are given. Introducing a different kind of
approximation (the thermostatic one), we recover, with a different kind of
proof, similar results: we characterize the limit problem and we get that the
limit of Vε is the corresponding maximal viscosity subsolution. Before doing
this, we prove, under suitable assumptions, that the limit function Ṽ is the
unique viscosity solution of (see Theorem 4.3.1)

λV +H1(x, V ′) = 0 for x > 0,

λV +H−1(x, V ′) = 0 for x < 0,

V (0) = min
{
u0(0), Vsc(−1)(0), Vsc(1)(0)

}
.

(1)

where on the junction point (x = 0), some further dynamics are considered:
the ones given by the suitable convexification of “outward pointing” dynamics
and somehow corresponding to stable equilibria on the junction point (stable
equilibria of dynamics interpreted as forces). Note that in this simple one-
dimensional case the condition in x = 0 of the system (1) coincides with the
(regular) one in Barels-Briani-Chasseigne [19]. Hence Ṽ = U+, where U+

is the value function of the so-called regular problem in [19]. Next, we are
able to give different proof of such an equality where, using the thermostatic
approximation, we show that Ṽ is a viscosity solution and the maximal
subsolution (as in [19]) of the following Hamilton-Jacobi problem

λV +H1(x,∇V ) = 0 in {x > 0},
λV +H−1(x,∇V ) = 0 in {x < 0},
min {λV +H1, λV +H−1} ≤ 0 on x = 0,

max {λV +H1, λV +H−1} ≥ 0 on x = 0.

(2)

Afterwards, we extend the results to a threefold junction problem, namely
a junction given by three half-lines entering the same point (see Figure 2).
As in [8] we consider a thermostatic approximation and prove that the
value function of the approximating problem Vε1,ε2,ε3 is the unique viscosity
solution of a suitable exit time problem (see Proposition 4.4.4). Differently
from the twofold junction situation, the convexification of dynamics on the
junction point seems to be not more applicable (the physical interpretation
as forces equilibrium is also failing). However, inspired by the previous
thermostatic approximation, we introduce a special kind of “convexification
parameters” that somehow corresponds to the length of the time intervals that
the trajectory spends on every single branch of a “threefold” thermostatic
approximation. Here, we consider more than one way for passing to the limit
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Figure 2: The threefold junctions and its thermostatic-type approximation.

in the thermostatic approximation due to the choice of either uniform or
non-uniform switching thresholds.
In the first case, where we take as thresholds (ε, ε, ε), we characterize the
value function V of the limit problem as the unique viscosity solution of
a Dirichlet problem with a particular boundary data in the junction (see
Theorem 4.4.7). This characterization permit us to prove that V is the
uniform limit of Vε,ε,ε, the value function of the thermostatic problem (see
Theorem 4.4.8). Next we introduce a special class of test functions and give a
definition of viscosity solution for the associated Hamilton-Jacobi equations
on the network. Suitably extending them to the thermostatic approximation
(see Figure 2 right), being V the limit of Vε,ε,ε we prove that it is a viscosity
solution of the Hamilton-Jacobi-Bellman problem (Theorem 4.4.11)

λV +H1(x,∇V ) = 0 in int(R1),

λV +H2(x,∇V ) = 0 in int(R2),

λV +H3(x,∇V ) = 0 in int(R3),

min {λV +H1, λV +H2, λV +H3} ≤ 0 on x = 0,

max {λV +H1, λV +H2, λV +H3} ≥ 0 on x = 0.

(3)

Moreover, we provide the corresponding comparison result showing that V
is the maximal subsolution of (3).
After, we take into account the case with non uniform switching thresholds
(ε1, ε2, ε3). As before we characterize the value function V ∗ of the limit
problem and show that (Theorem 4.4.14)

V ∗(x, i) = lim inf
(ε1,ε2,ε3)→(0+,0+,0+)

Vε1,ε2,ε3(x, i) ∀ (x, i) ∈ Ri, i = 1, 2, 3. (4)

Also in this case we prove, under suitable assumptions, that V ∗ is a viscosity
solution and the maximal subsolution of the HJB problem (3) (see Theorem
4.4.18). Anyway we point out that the definition of viscosity solution in this
case is different from the previous one. Indeed, denoting by ϕ the test function,
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in this last case for x = 0 (the junction) the local maximum/minimum point
of V − ϕ may be consider with respect to two of the three branches only,
while in the case of uniform switching thresholds it must be considered with
respect to all the three branches. We now observe that the proven results for
the threefold junction problem may also be extended to the case of manifold
junction problem and, as we show in this thesis, also to a problem with
two threefold junction points given by a segment and four half-lines (see
Figure 4.4). Hence, in Sect. 4.5 we give a result of viscosity solution and
maximal subsolution for the latter problem.

The problem with junctions is also related to n-dimensional optimal
control problems on multi-domains, where the dynamics and costs incur
in discontinuities when crossing some fixed hypersurfaces. These kind of
problems, whose study started with Bressan-Hong [33], has been studied, in
connection with HJB, in Barles-Briani-Chasseigne [19], Barnard-Wolenski
[23], Rao-Zidani [89], Barles-Briani-Chasseigne [20], Rao-Siconolfi-Zidani [88],
Barles-Chasseigne [21], Imbert-Monneau [67] (see Chapter 2 for more details).
In this framework we study a multi-domain problem on R2 and, in line with
what has been done in the one-dimensional case, we propose a thermostatic
approximation transforming the problem in a hybrid problem (see Figure 3).
In this way the discontinuity over the line Γ = {x = 0} is replaced by proper

Figure 3: The two-domain problem and its thermostatic approximation.

mutually exchanged boundary conditions on the extreme “border lines” of
the two extended planes and it is proved that the value function Vε of the
switching thermostatic problem is the unique viscosity solution of a pair of
exit time problems (see Proposition 5.19). Then, as before we study the limit
of Vε for ε→ 0 and we get (see Theorem 5.2.7) that it uniformly converges
to a function Ṽ which, under proper assumptions is a viscosity solution of

λu+H1 (x, y,∇u) = 0 in H1,

λu+H−1 (x, y,∇u) = 0 in H−1,

min{λu+H1 (x, y,∇u) , λu+H−1 (x, y,∇u)} ≤ 0 on Γ,

max{λu+H1 (x, y,∇u) , λu+H−1 (x, y,∇u)} ≥ 0 on Γ.

(5)
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as in Barles-Briani-Chasseigne [19]. Then, building the dynamics on Γ by
the convexification of the outward pointing dynamics, we define a new Hamil-
tonian on Γ that we indicate with HT , which under suitable assumptions is
satisfied by any subsolution of (5). A result of maximal viscosity subsolution
will be the subject of a future work.
On the theory of viscosity solutions we refer to works of Crandall, Lions [48],
Crandall-Evans-Lions [50], Crandall-Ishii-Lions [51].

Part II- Decentralized feedback control in Markov Jump Processes.

In the second part of the thesis we investigate a routing problem, that
involves a population of individuals referred to as players, defined over a
network (see Bagagiolo-Bauso-Maggistro-Zoppello [13]). A similar problem
is studied in Bauso-Zhang-Papachristodoulou [26], in which the authors
consider a centralized control and a density flow for each edge dependent on
the density of the whole population. This implies that each player minimizes
a common cost functional which depends on the whole population’s density
distribution. Differently from [26], we describe a problem of jumping between
nodes instead of flowing in the edges. Moreover we consider a decentralized
control (as in Bauso et al. [25], Como et al. [46, 47]), in which the density
of each node is locally controlled. In particular each agent ignores both
controls of the far agents and the network topology. There are three distinct
approaches related to routing/jump problems. The first one consists in
controlling the probability to jump from a node to another one (or to flow
along the edges), see for example [26]. The second one consists in controlling
the transition rate from nodes (or edges), see for example Kelly-Maulloo-Tan
[73], and the last one in assigning the product among the probability and
the relative transition rate. As in Basna-Hilbert-Kolokoltsov [24], we use the
last approach, in particular we control the product between the probability
to jump from one node to an adjacent one and the relative transition rate.
We formulate the problem as follows: from a microscopic point of view, each
player jumps from a node to an adjacent one according to a continuous-time
Markov process

{X(t), t ≥ 0}, qij(uij) =


uij , j ∈ N(i), j 6= i,

−
∑

k∈N(i),k 6=i uik, i = j,

0, otherwise,

(6)

where i ∈ V is the player’s initial state where V is the set of nodes of
the graph L(G) = (V,E), N(i) the set of neighbor nodes of i, qij is the
microscopic dynamics from i to j, and u the decentralized routing policy
described by the matrix-value function u(·) : R+ −→ Rn×n+ , t 7−→ u(t).
From a macroscopic point of view, each node is characterized by a dynamics
describing the time-evolution of the density. Such dynamics depends on a
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decentralized control {
ρ̇(t) = ρ(t)A(u),

ρ(0) = ρ0,
(7)

where ρ is a row vector such that the sum of his components is equal to one,
ρ0 is the initial condition and the matrix-valued function A : Rn×n+ → Rn×n
is defined as qij (see (6.4)). The problem that we want to solve consists in
designing a decentralized routing policy to minimize the output disagreement
with respect to a possible consensus/equilibrium. In particular each player,
regarding its microscopic evolution, solves the minimization problem

infu(·) J(i, u(·), ρ[·](·), ·),
J(·) =

∫ T
t `(X(τ), ρ(τ), u(τ))dτ + g(X(T ), ρ(T )),

{X(t), t ≥ 0} as in (6),

X(t) = i,

(8)

where ` and g are the running cost and the exit cost respectively defined as

`(i, ρ, u) =
∑

j∈N(i),j 6=i

u2
ij

2
(γij(ρ))+ , g(i, ρ) = dist(ρ, M̂i), (9)

where γij is a suitable coefficient yet to be designed, (·)+ is the positive part
and M̂i is the local consensus manifold/local Wardrop equilibrium set for the
player i defined as M̂i = {ξ ∈ Rn : ξj = ξi ∀ j ∈ N(i)}. At first we rearrange
the problem as a mean-field game (see Lemma 6.1.1) where the macroscopic
evolution of ρ is indeed the mean field entering the cost (8). The mean-field
game theory was developed in the work of Huang-Malhamé-Caines [65, 66]
and independently in that of Lasry-Lions [77, 78], where the new standard
terminology of Mean Field Games (MFG) was introduced. This theory
includes methods and techniques to study differential games with a large
population of rational players, and it is based on the assumption that the pop-
ulation influences the individuals’ strategies through mean-field parameters.
In addition to this theory, the notion of Oblivious Equilibria for large popu-
lation dynamical game was introduced by Weintraub-Benkard-Van Roy [98]
in the framework of Markov Decision Processes. Several application domains,
such as economic, physics, biology and network engineering accommodate
mean-field game theoretical models (see Lasry-Lions [78], Guent-Lasry-Lions
[64], Lachapelle-Salomon-Turinici [76], Achdou-Camilli-Capuzzo Dolcetta
[1]). Decision problems with mean-field coupling terms have also been for-
malized and studied in Bauso-Zhu-Basar [27], and application to power grid
management are recently provided in Bagagiolo-Bauso [11]. The literature
provides explicit solutions in the case of linear quadratic structure. In most
cases, a variety of solution schemes have been recently proposed, based
on discretization and/or numerical approximations (see Achdou-Capuzzo
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Dolcetta [3], Achdou-Camilli-Capuzzo Dolcetta [1]).
Computing an explicit solution in the nonlinear case is difficult, and therefore
we recast the problem in the framework of optimal control using a state
space extension approach. This approach consists to review the density ρ as
an additional state variable and no longer as an unknown variable. Then,
from (8) the resulting problem is

inf
u(·)

J(i, u(·), ρ[·](·), ·),

subject to {X(t), t ≥ 0} as in (6.2),

ρ̇(t) = ρ(t)A(u).

In this way the mean-field system of Lemma 6.1.1 is reduced to an HJB
equation plus a boundary condition{

∂tṼ (i, ρ, t) + H̃(i, ρ,∆(Ṽ ), ∂ρṼ , t) = 0 in V × [0, 1]n × [0, T [,

Ṽ (i, ρ, T ) = g(i, ρ(T )),
(10)

(see Lemma 6.2.1).
The state space extension procedure is reminiscent of the McKaen-Vlasov
control problem, in which the statistical distribution is encoded by our
density. Similarities and differences between the McKean-Vlasov and the
Mean-Field framework are analyzed in Carmona-Delarue-Lachapelle [39]. In
spirit with Casti [40], Bagagiolo-Bauso [10], Chitour-Jean-Mason [44], we
reformulate the problem as an inverse optimal control one, providing an
explicit expression of the running cost function ` in order to obtain a suitable
a-priori fixed decentralized feedback control u∗ij (see (6.15) in Chapter 6) as
the optimal feedback control of the problem. Then, using this control we
prove some convergence results. In particular we obtain a uniform distribu-
tion of the density ρ (consensus/equilibrium) at first on a neighborhood of
a node and then throughout the whole network. Indeed, given a suitable
attainability assumption (see (6.22)) which we prove to be satisfied by our
optimal control u∗ij through numerical simulations, we get a first converge
result to a local Wardrop equilibrium (see Theorem 6.3.1). As corollary we
prove a similar convergence result for the global equilibrium, characterized
by a uniform distribution of the density over all nodes (see Corollary 6.3.2).
Stability of the macroscopic dynamic (7) is treated also when u∗ij is af-
fected by a hysteresis phenomena modeled by a scalar play operator (see
Sect. 3.1.2). A similar problem with hysteresis was already discussed in
Ceragioli-De Persis-Frasca [41]. The authors make a rigorous treatment of
continuous-time average consensus dynamics with uniform quantization in
communications. The consensus is reached by quantized measurements which
are transmitted using a delay thermostat. In contrast to this, we use the play
operator, that can be considered as a concatenation of delayed thermostats
and this results in a continuous nonlinear dynamics.
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The use of hysteresis captures a scenario where the players have distorted
information on the density distribution in neighbor nodes. This implies that
the problem has multiple equilibrium points. Indeed, considering a simple
case of a network with four nodes (see Sect. 6.5), we define different types of
equilibrium points according to the choice of the value of the play parameter
ε > 0. Then, considering the global equilibrium manifold M (see (6.35)) and
assuming another attainability assumption (see (6.36)), analogous to the
previous one but in presence of hysteresis, we show in Theorem 6.5.3 that the
solution of the hysteretic macroscopic system converge asymptotically to M .
This means that it is asymptotically stable and we have a global equilibrium.

Part III- Controllability results for a planar scallop swimmer.

The third part of this thesis is concerned with the study of the controllability
of a swimmer immersed in a fluid (see Bagagiolo-Maggistro-Zoppello [15]).
In particular we focus on the system describing the motion of a scallop for
which it is well known from Purcell [86] that the scallop theorem/paradox
holds (see also Alouges-DeSimone [7], Munnier-Chambrion [83]). This means
that it is not capable to achieve any net motion performing cyclical shape
changes, either in a viscous or in an inviscid fluid. The study of locomo-
tion strategies in fluids is attracting increasing interest in recent literature,
especially for its connection with the realization of artificial devices that
can self-propel in fluids. Theories of swimming generally uses either low
Reynolds number approximation (Re→ 0, hence a viscous fluid), or the as-
sumption of inviscid ideal fluid dynamics (high Reynolds number, Re→ +∞)
where the Reynolds number (that arises from the adimesionalization of the
Navier-Stokes equations) is defined by

Re =
V Lρ

η
=
V L

ν

where V is the characteristic velocity of the body immersed in the fluid, L its
characteristic length, ρ the density of the fluid, η its viscosity and ν = η

ρ is
the kinematic viscosity. The above approximations are useful, together with
suitable assumptions on body’s composition of the swimmer, to determine
the state evolution of the scallop both in viscous and ideal fluid (see (7.6)
and (7.13) respectively). Coming back to the scallop paradox, some authors
tried to overcome it changing the geometry of the swimmer, for example
adding a degree of freedom, introducing the Purcell swimmer [86], or the
three sphere swimmer, as Golestanian-Ajdari [62]. Others, instead, supposed
the scallop immersed in a non Newtonian fluid, in which the viscosity is
not constant, ending up with a non reversible dynamics, see Cheng-DeMont
[42] , Qiu et al. [87]. Inspired by this last approach, our aim is to propose
some strategies which maintain the swimmer geometry and exploit instead
a change in the dynamics. For example in Cicconofri-Desimone [45] the
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authors modulate the speed of actuation to steer the swimmer along curved
trajectories. Differently from us they never leave the Stokes regime. Our
idea is based on switching dynamics depending on the angular velocity θ̇ of
opening and closing of the scallop’s valves. More precisely we analyze two
cases:
1) we suppose that if the modulus of the angular velocity |θ̇| is high, the
fluid regime can be approximated by the ideal one, instead if this modulus is
low the fluid can be considered as completely viscous. This situation is well
represented by a switching system in which the change of the dynamics is
determined by the modulus of the angular velocity. Using this representation
we provide a first result in which we overcome the Scallop paradox, and
hence obtain a partial controllability of the mechanical system in the state x
(see Theorem 7.2.1).
2) The fluid reacts in a different way between the opening and closing of
the valves: it facilitates the opening, so that it can be considered ideal, and
resists the closing, like a viscous fluid. These last approximations model a
fluid in which the viscosity η changes with the sign of the angular velocity
(sign(θ̇)). More precisely we use two constant viscosities: one high (resp.
one very small) if the angular velocity is negative (resp. positive). Also
this situation can be presented by a switching system (different from the
previous one) but we get a more weaker result then the one in case 1) because
we are able to achieve a net displacement but only forward (see Theorem
7.2.3). Inspired by [87], where the scallop’s opening and closing is actuated
by an external magnetic field, in this last case we introduce an hysteresis
mechanism through a thermostat to model a delay in the change of fluid’s
regime. In such a way, assuming to be able to prescribe the angular velocity
and using it as a control parameter, we prove that the system is controllable,
i.e. the scallop is able to move both forward and backward using cyclical
deformations (Theorem 7.2.4). Furthermore, we also show that it is always
possible to move between two fixed configurations in which we prescribe
both the initial and final positions and angles. We then get a result of global
controllability (Theorem 7.2.7). In conclusion we carry out some numerical
simulations to support our theoretical predictions.



Chapter 1

Overview of results on
Hamilton-Jacobi equations

In this chapter we presents some classical results on deterministic optimal
control and the associated Hamilton-Jacobi approach. Using the dynamic
programming techniques the study of optimal control problems can be
linked to the resolution of a particular class of nonlinear partial differential
equations: the Hamilton-Jacobi-Bellman equations. In many cases the
existence of classical solutions of such equations is not guaranteed. The
suitable context to obtain several existence and uniqueness results turned
out to be the viscosity solution framework, introduce by Crandall, Lions [48],
Crandall-Evans-Lions [50], Crandall-Ishii-Lions [51].
The chapter is organized as follows. In Sect. 1.1 the notion of viscosity
solution for the more general class of Hamilton-Jacobi equations is given.
We state some comparison and uniqueness theorems and conclude recalling
some important stability results. In Sect. 1.2 a general formulation of
the deterministic optimal control with finite or infinite horizon is given.
The Dynamic Programming Principle is stated and its differential version,
the Hamilton-Jacobi-Bellman equation, provided. The exit-time problem is
analysed in order to introduce the Dirichlet problem with boundary condition
in the viscosity sense (see Barles-Perthame [22], Ishii [71] for a complete
treatment). For a comprehensive account of the theory see for example
Barles [17] and Bardi-Capuzzo Dolcetta [16].

1.1 Viscosity solutions

We consider the Hamilton-Jacobi equation

λu+H(x,Du(x)) = 0, x ∈ Ω (1.1)

where Ω is an open domain of Rn, λ > 0 is a constant strictly positive, u is
a real valued function in Ω, Du is the gradient of u and the Hamiltonian

1



2 Chapter 1. Overview of results on Hamilton-Jacobi equations

H = H(x, p) is a continuous real valued function on Ω× Rn. It is well know
that for the equation (1.1) no classical solution (that is of class C1(Ω)∩C(Ω))
may exist. Even for a very simple 1-dimensional eikonal equation with a
Dirichlet boundary condition{

|u′(x)| = 1, x ∈ (−1, 1)

u(x) = 0, x = ±1
(1.2)

we can find infinite solutions almost everywhere, but not classic (see Fig-
ure 1.1). The theory of viscosity solutions was developed in order to overcome
these problems. The basic idea of this theory is to use a class of regular test
functions in order to replace the partial derivatives in (1.1) that may not
exist. We give here two equivalent definitions of viscosity solution.

Figure 1.1: Multiple solutions of the eikonal equation (1.2).

Definition 1.1.1. (I version). A function u ∈ C(Ω) is a viscosity solution
of the equation (1.1) if the following conditions are satisfied:

� λu(x) +H(x, p) ≤ 0 for all x ∈ Ω, p ∈ D+u(x) (viscosity subsolution),

� λu(x) +H(x, q) ≥ 0 for all x ∈ Ω, q ∈ D−u(x) (viscosity supersolu-
tion).

where D+, D− are the super and sub-differential of u in the point x, i.e.

D+u(x) =

{
p ∈ Rn : lim sup

y→x

u(y)− u(x)− p · (y − x)

|y − x|
≤ 0

}
,

D−u(x) =

{
q ∈ Rn : lim inf

y→x

u(y)− u(x)− q · (y − x)

|y − x|
≥ 0

}
.

Definition 1.1.2. (II version). A function u ∈ C(Ω) is a viscosity solution
of the equation (1.1) if the following conditions are satisfied:
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� if for any x0 ∈ Ω, any ϕ ∈ C1(Ω) such that u−ϕ has a local maximum
point at x0 with respect to Ω, then

λu(x0) +H(x0, Dϕ(x0)) ≤ 0 (viscosity subsolution),

� if for any x0 ∈ Ω, any ϕ ∈ C1(Ω) such that u−ϕ has a local minimum
point at x0 with respect to Ω, then

λu(x0) +H(x0, Dϕ(x0)) ≥ 0 (viscosity supersolution).

The motivation for the terminology viscosity solutions is that we can see
this kind of solution as the limit function u = limε→0+ uε, where uε ∈ C2(Ω)
is the classical solution of the regularized problem

− ε∆uε + λuε +H(x,Duε) = 0, x ∈ Ω (1.3)

in the case uε exists and converges locally uniformly to some continuous
function u. This method is named vanishing viscosity, and it is the original
idea behind the notion of viscosity solution presented by Crandall and Lions
in [48].
In the following we state some comparison results between viscosity sub- and
supersolution in the cases Ω bounded and Ω = Rn. As a simple corollary,
each comparison result produces a uniqueness theorem for the associated
Dirichlet problem. Moreover we present some important stability properties.
Before to do this we recall some properties satisfied by the Hamiltonian H
that we will take into account in the following results.

|H(x, p)−H(y, p)| ≤ ω1(|x− y|(1 + |p|)),
|H(x, p)−H(x, q)| ≤ ω2(|p− q|),

(1.4)

for x, y ∈ Ω, p, q ∈ Rn, and ωi, i = 1, 2 is a modulus of continuity, that is
ωi : [0,+∞)→ [0,+∞) is continuous non decreasing with ωi(0) = 0.

Theorem 1.1.3. Let Ω be a bounded open subset of Rn. Assume that
u1, u2 ∈ C(Ω) are, respectively, viscosity sub- and supersolution of

λu(x) +H(x,Du(x)) = 0, x ∈ Ω (1.5)

and
u1 ≤ u2 on ∂Ω. (1.6)

Then u1 ≤ u2 in Ω.

Remark 1.1.4. If u1, u2 are both viscosity solutions of (1.5) with u1 = u2

on ∂Ω, from Theorem (1.1.3) it follows that u1 = u2 in Ω.

We consider now the case Ω = Rn and state a comparison result in the space
BC(Rn) of bounded continuous function on Rn.
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Theorem 1.1.5. Assume that u1, u2 ∈ BC(Rn) are, respectively, viscosity
sub- and supersolution of

λu(x) +H(x,Du(x)) = 0, x ∈ Rn. (1.7)

Then u1 ≤ u2 in Rn.

Remark 1.1.6. Theorem (1.1.5) can be generalized to cover the case of a
general unbounded open set Ω ∈ Rn. Furthermore, the assumption u1, u2 ∈
BC(Rn) can be replaced by u1, u2 ∈ UC(Rn), that is the space of uniformly
continuous functions on Rn.

Stability Results

The first stability result is the one relative to the lattice operations in C(Ω):

(u ∨ v)(x) = max{u(x), v(x)},
(u ∧ v)(x) = min{u(x), v(x)}.

Proposition 1.1.7.

1. Let u, v ∈ C(Ω) be a viscosity subsolution of (1.1); then u ∨ v is a
viscosity subsolution of (1.1).

2. Let u, v ∈ C(Ω) be a viscosity supersolution of (1.1); then u ∧ v is a
viscosity supersolution of (1.1).

3. Let u ∈ C(Ω) be a viscosity subsolution of (1.1) such that u ≥ v
for any viscosity subsolution v ∈ C(Ω) of (1.1); then u is a viscosity
supersolution and therefore a viscosity solution of (1.1).

Proposition 1.1.8. Let un ∈ C(Ω) (n ∈ N) be a viscosity solution of

λun(x) +Hn(x,Dun(x)) = 0 in Ω. (1.8)

Assume that

un −→ u locally uniformly in Ω,

Hn −→ H locally uniformly in Ω× R× Rn.

Then u is a viscosity solution of (1.1) in Ω.
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1.2 Optimal control problem

We now recall some classical results on optimal control problem and the
associated Hamilton-Jacobi approach.
Let us consider the controlled nonlinear dynamical system{

ẏ(t) = f(y(t), α(t)), t > 0

y(0) = x.
(1.9)

where y(t) is the state of the system, f : Rn × A → Rn is the dynamics,
α : [0,+∞[→ A is a measurable control, A ⊂ Rm.
We consider the following assumption on A and f :

A ⊂ Rm is a compact set; (1.10)


f is continuous on Rn ×A;

∃M > 0 such that |f(x, a)| ≤M ∀x ∈ Rn,∀a ∈ A;

∃L > 0 such that |f(x, a)− f(z, a)| ≤ L|x− z| ∀x, z ∈ Rn ∀a ∈ A.
(1.11)

We denote with A the set of admissible controls defined as

A := {α : [0,+∞[→ A,measurable}

and we call A the set of constant controls.
It is well know that under the above assumptions, for all initial state x ∈ Rn
and for all measurable control α ∈ A there exists a unique solution (trajectory)
of (1.9). We define this solution, denoting it by yx(·, α), as the unique function
such that

yx(t, α) = x+

∫ t

0
f(yx(s, α), α(s))ds ∀t ≥ 0. (1.12)

In particular, yx(·, α) is absolutely continuous on compact interval of [0,+∞[
and it solves (1.12) almost everywhere.

The final goal is to find an optimal control α∗ such that the corresponding
trajectory yx(t;α∗) is the ”most convenient” one with respect to some given
criterion, typically minimizing a cost functional, between all possible trajec-
tories starting from x.

Before to do this we recall a basic estimate on yx(t, α) that we will use later:

|yx(t, α)− yz(t, α)| ≤ eLt|x− z| for all α ∈ A and t > 0. (1.13)



6 Chapter 1. Overview of results on Hamilton-Jacobi equations

1.2.1 The infinite horizon problem

In the infinite horizon problem the cost functional J , associated to every
trajectory, which has to be minimized is

J(x, α) :=

∫ ∞
0

e−λs`(yx(s, α), α(s))ds,

where the running cost ` : Rn ×A→ R and the discount factor λ satisfy

` is continuos on Rn ×A;

∃M > 0 and a modulus of continuity ω` such that

|`(x, a)| ≤M ∀x ∈ Rn, ∀a ∈ A;

|`(x, a)− `(z, a)| ≤ ω`(|x− z|) ∀x, z ∈ Rn ∀a ∈ A;

λ > 0.

(1.14)

The associated value function is

V (x) := inf
α∈A

J(x, α). (1.15)

We recall some basic results:

Proposition 1.2.1. Under the assumptions (1.11) and (1.14) the value
function V is bounded and uniformly continuous on Rn.

Proposition 1.2.2. (Dynamic Programming Principle). Assume (1.10),
(1.11) and (1.14). Then for all x ∈ Rn and t > 0

V (x) = inf
α∈A

{∫ t

0
e−λs`(yx(s, α), α(s))ds+ e−λtV (yx(t, α))

}
(1.16)

Remark 1.2.3. If there is an optimal control α∗ for x, that is, V (x) =
J(x, α∗), then the infimum in (1.16) is attained at α∗ for all t > 0:

V (x) =

∫ t

0
e−λs`(yx(s, α∗), α∗(s))ds+ e−λtV (yx(t, α∗)).

Furthermore we have that

V (yx(t, α∗)) = J(yx(t, α∗), α∗(·+ t))

namely a control α∗ is optimal for each point of the corresponding trajectory,
provided it is appropriately shifted in time. In other words, that could be
roughly interpreted as “pieces of optimal trajectories are optimal”. That
is the Bellman’s original formulation of the principle (Bellman [29]): “ An
optimal policy has the property that whatever the initial data and choice are,
the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision”.
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The main consequence of the Dynamic Programming Principle is the following

Proposition 1.2.4. Assume (1.10), (1.11) and (1.14). Then the value
function V is a viscosity solution of the Hamilton-Jacobi-Bellman equation

λV (x) + sup
a∈A
{−f(x, a) · ∇V (x)− `(x, a)} = 0, x ∈ Rn. (1.17)

The following result characterizes the value function as the unique vis-
cosity solution of (1.17).

Theorem 1.2.5. Assume (1.10),(1.11) and (1.14). Then the value function
V is the unique bounded and uniformly continuous function which is viscosity
solution of (1.17).

1.2.2 The finite horizon problem

The cost functional J defined on Rn× [0,+∞[×A which has to be minimized
is

J(x, t, α) =

∫ t

0
e−λs`(yx(s, α), α(s))ds+ e−λtg(yx(t, α)), (1.18)

where the running cost ` and the discount factor λ are such that

` satisfies the assumptions in (1.14), λ ≥ 0, (1.19)

and the terminal cost g : Rn → R is bounded and uniformly continuous.
The value function V in this case is defined as

V (x, t) := inf
α∈A

J(x, t, α). (1.20)

Proposition 1.2.6. Assume (1.10), (1.11), (1.19) and the hypothesis on g
introduce above. Then the value function V is bounded and continuous in
Rn × [0, T ], for all T > 0.

Proposition 1.2.7. (Dynamic Programming Principle).
Assume (1.10),(1.11), (1.19) and the hypothesis on g. Then for all x ∈ Rn
and 0 < τ ≤ t

V (x, t) = inf
α∈A

{∫ τ

0
e−λs`(yx(s, α), α(s))ds+ e−λτV (yx(τ, α), t− τ)

}
.

(1.21)

Proposition 1.2.8. With the same assumptions as before, the value function
(1.20) is the unique viscosity solution ofVt + λV + sup

a∈A
{−f(x, a) · ∇V (·, t)− `(x, a)} = 0 on Rn×]0,+∞[,

V (x, 0) = g(x) x ∈ Rn.
(1.22)

where ∇V (·, t) denotes the gradient of the value function with respect to the
n spatial variables.
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Another common way to study the finite horizon problem is to minimize
the following cost functional defined on Rn×]−∞, T [×A

I(x, t, α) =

∫ T

t
eλ(t−s)`(yx(s, α), α(s))ds+ eλ(t−T )g(yx(T, α)), (1.23)

where the running cost ` and the discount factor λ satisfy (1.19), and the
terminal cost g : Rn → R is bounded and uniformly continuous as before.
The value function W in this case is defined as

W (x, t) := inf
α∈A

I(x, t, α). (1.24)

and it is related to the function V (1.20) by the formula

V (x, t) = W (x, T − t).

Proposition 1.2.9. (Dynamic Programming Principle).
Assume (1.10),(1.11), (1.19) and the hypothesis on g. Then for all x ∈ Rn
and t < τ ≤ T

W (x, t) = inf
α∈A

{∫ τ

t
eλ(t−s)`(yx(s, α), α(s))ds+ eλ(t−τ)W (yx(τ, α), τ)

}
.

(1.25)

Proposition 1.2.10. With the same assumptions as before, the value func-
tion (1.24) is the unique viscosity solution of−Wt + λW + sup

a∈A
{−f(x, a) · ∇W (·, t)− `(x, a)} = 0 on Rn×]−∞, T [,

W (x, T ) = g(x) x ∈ Rn.
(1.26)

where ∇W (·, t) denotes the gradient of the value function with respect to the
n spatial variables.

1.2.3 The exit-time problem

Consider a target set T ⊂ Rn such that

T is closed with compact boundary ∂T . (1.27)

We study a problem with initial state x in T c := Rn \ T whose dynamics is
stopped and the payoff computed when the system either 1) reaches T or 2)
its interior int(T ).
We start considering the case 1) for which the cost functional J to minimize
is

J(x, α) :=

{∫ tx(α)
0 e−λs`(yx(s, α), α(s))ds+ eλtx(α)g(yx(tx(α)) if tx(α) < +∞,∫ +∞
0 e−λt`(yx(t, α), α(t))dt if tx(α) = +∞,

(1.28)



1.2. Optimal control problem 9

where tx(α) is the exit-time from T c (or the entry time in T ) defined as

tx(α) :=

{
+∞ if {t : yx(t, α) ∈ T } = ∅,
min{t : yx(t, α) ∈ T } otherwise.

(1.29)

The running cost ` and the discount factor λ satisfy (1.14), while the final
cost g : ∂T → [0,+∞[ is such that

g ∈ BC(∂T ). (1.30)

The associated value function V is

V (x) = inf
α∈A

J(x, α), (1.31)

and the following holds

Proposition 1.2.11. (Dynamic Programming Principle). Assume (1.10),(1.11)
and(1.14). Then

V (x) = inf
α∈A

∫ tx(α)∧t

0
e−λs`(yx(s), α(s))+e−λ(tx(α)∧t)V (yx(tx(α)∧t)). (1.32)

In case 2) instead, the cost functional Ĵ to minimize is

Ĵ(x, α) :=

{∫ t̂x(α)
0 e−λs`(yx(s, α), α(s))ds+ eλt̂x(α)g(yx(t̂x(α)) if t̂x(α) < +∞,∫ +∞
0 e−λt`(yx(t, α), α(t))dt if t̂x(α) = +∞,

(1.33)
where t̂x(α) is the exit-time from T c (ot the entry time in int(T )) defined as

t̂x(α) :=

{
+∞ if {t : yx(t, α) ∈ int(T )} = ∅,
inf{t : yx(t, α) ∈ int(T )} otherwise.

(1.34)

The conditions on `, λ and g are the same of case 1) above. The associated
value function V̂ is

V̂ (x) = inf
α∈A

Ĵ(x, α), (1.35)

that satisfies

Proposition 1.2.12. (Dynamic Programming Principle). Assume (1.10),(1.11)
and(1.14). Then

V̂ (x) = inf
α∈A

∫ t̂x(α)∧t

0
e−λs`(yx(s), α(s))+e−λ(t̂x(α)∧t)V (yx(t̂x(α)∧t)). (1.36)
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We now characterize the function V (1.31) as viscosity solution of the HJB
equation with the natural boundary conditions. By subsolution (respectively,
supersolution) of the Dirichlet condition

V = g on ∂T , (1.37)

we mean a function ≤ g (respectively, ≥ g) at each point of ∂T .

Proposition 1.2.13. Assume (1.10), (1.11), (1.14), (1.27), (1.30) and suit-
able conditions of controllability. Then V (x) is a bounded and uniformly
continuous viscosity solution of

λV (x) +H(x,DV (x)) = 0 in T c, (1.38)

with the boundary condition:

V = g on ∂T .

Proposition 1.2.14. Assume (1.10), (1.11), (1.14), (1.27) and (1.30). If
u ∈ C(T c) is a subsolution of (1.38) such that u ≤ g on ∂T and u is bounded
above, then u ≤ V in T c.

In order to give similar results for the exit time problem from T c we
need to use the definition of boundary conditions in viscosity sense (see the
follow section). This because the HJB equation (1.38) may be satisfied also
on ∂T c.

1.2.4 Boundary conditions in the viscosity sense

In this section we deal with Dirichlet boundary value problem{
λu(x) +H(x,Du(x)) = 0 in T c := Ω,

u(x) = g(x) on ∂Ω,
(1.39)

in cases where a solution does not verify the boundary condition in classical
sense. The following holds:

Definition 1.2.15. A function u ∈ C(Ω) is a viscosity subsolution (respec-
tively, supersolution) of

u = g or λu+H(x,Du) = 0 on ∂Ω (1.40)

if, for any ϕ ∈ C1(Ω) and x ∈ ∂Ω such that u − ϕ has a local maximum
(respectively, minimum) at x with respect to Ω ,

(u− g)(x) ≤ 0 (resp., ≥ 0) or λu(x) +H(x,Dϕ(x)) ≤ 0 (resp., ≥ 0).
(1.41)
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Equivalently, we say that subsolutions (respectively, supersolutions) of (1.40)
satisfy

(u− g) ∧ (λu+H(x,Du)) ≤ 0 on ∂Ω

(respectively,
(u− g) ∨ (λu+H(x,Du)) ≥ 0 on ∂Ω)

in the viscosity sense.

Proposition 1.2.16. Assume (1.10), (1.11), (1.14), suitable conditions of
controllability and g ∈ BC(∂Ω). Then the value function V̂ (x) (1.35) is a
bounded and uniformly continuous viscosity solution of (1.39) with boundary
condition in viscosity sense.

Also for (1.39) there are comparison results. We start to consider the
case with Ω bounded and the following assumptions on H and on ∂Ω. We
require that H satisfies (1.4) and with H as

H(x, p) = sup
a∈A
{−f(x, a) · p− `(x, a)}. (1.42)

The assumption on ∂Ω is to be a Lipschitz surface, namely

there are c > 0 and η : Ω→ Rn continuous such that

B(x+ tη(x), ct) ⊆ Ω for all x ∈ Ω, 0 < t ≤ c.
(1.43)

Theorem 1.2.17. Assume Ω bounded and the above conditions on H and ∂Ω.
Suppose u1, u2 ∈ C(Ω) are, respectively, a subsolution and a supersolution of

λu+H(x,Du) = 0 in Ω, (1.44)

and u2 satisfies

(u2 − u1) ∨ (u2 +H(x,Du2)) ≥ 0 on ∂Ω (1.45)

in the viscosity sense. Then u1 ≤ u2 in Ω. The same if u1 instead of u2

satisfies
(u1 − u2) ∧ (u1 +H(x,Du1)) ≤ 0 on ∂Ω (1.46)

If we take Ω unbounded the previous comparison theorem continues to
be valid provided that

1. (1.43) holds with η bounded and uniformly continuous;

2. u1 and u2 are bounded;

3. H is given by (1.42) with f : Ω×A→ Rn and ` : Ω×A→ R continuous
and Lipschitz continuous for all x, y ∈ Ω, a ∈ A, A compact, f bounded
in ∂Ω×A.

Theorem 1.2.18. Assume the above hypotheses 1. and 3, and suppose there
exists a solution u ∈ BC(∂Ω) of (1.39). Then u ∈ C(Ω) and it is the unique
solution of (1.39).





Chapter 2

Discontinuous
Hamilton-Jacobi equations

In this chapter, we give an overview on the first order Hamilton-Jacobi
equations with discontinuous Hamiltonians with respect to the state variable.
In particular, in Sect. 2.1 we focus on new problems arising by this discon-
tinuity and recall in Sect. 2.2 the results obtained by various authors. In
Sect. 2.3 we restrict to consider discontinuous HJ equations on networks and
discuss about existing results in this topic. Anyway, we point out that in this
thesis the discontinuity of the Hamiltonian is always given by discontinuities
through some hypersurfaces of the state space. That is, the Hamiltonians
are anyway continuous one some connected components.

2.1 An overview

Discontinuous HJ equations present new difficulties from the viewpoint of the
viscosity solutions theory. In addition to the problem of existence of solutions,
the main difficulty lies in the proof of the uniqueness or more precisely of
a comparison principle. Indeed, when using the classical double-variable
method for proving comparison results between sub- and superviscosity
solutions (see Crandall-Lions [49], Lions [80], Crandall-Lions [48], Crandall-
Evans-Lions [50], Barles [17], Bardi-Capuzzo Dolcetta [16], Barles [18]) we
cannot in general conclude as in the standard way because the points of
minimum and of maximum, even if very close, may belong to different regions
for which dynamics and costs are absolutely non-comparable. We consider,
for example, a very simple equation for which we can not directly apply the
double-variable method:

λu(x) +H(x,Du(x)) = 0, x ∈ R, (2.1)

13
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where λ is a strictly positive constant and the Hamiltonian H : R× R→ R
is defined as

H(x, p) =

{
HR(x, p) if x ≥ 0,

HL(x, p) if x < 0,
(2.2)

with HL and HR convex and coercive and with the Hamiltonian H discon-
tinuous on x = 0. An idea, explained by Barles-Briani-Chasseigne [19, 20], is
to use the Ishii’s definition of viscosity solution for the discontinuous Hamil-
tonians (see Ishii [69]). More precisely, an upper semi-continuous function
(usc) u : R → R is a subsolution of (2.1) if for any x ∈ R, any ϕ ∈ C1(R)
such that u− ϕ has a local maximum point at x, then

λu(x) +HL(x, ϕ
′
(x)) ≤ 0, if x < 0,

λu(x) +HR(x, ϕ
′
(x)) ≤ 0, if x > 0,

min{λu(x) +HL(x, ϕ
′
(x)), λu(x) +HR(x, ϕ

′
(x))} ≤ 0, if x = 0.

In the same way, a lower semi-continuous function (lsc) u : R → R is a
supersolution of (2.1) if for any x ∈ R, any ϕ ∈ C1(R) such that u−ϕ has a
local minimum point at x, then

λu(x) +HL(x, ϕ
′
(x)) ≥ 0, if x < 0,

λu(x) +HR(x, ϕ
′
(x)) ≥ 0, if x > 0,

max{λu(x) +HL(x, ϕ
′
(x)), λu(x) +HR(x, ϕ

′
(x))} ≥ 0, if x = 0.

As said before the doubling-variables technique is not sufficient in this
framework. To show this, we try to prove that u− v ≤ 0 on R, where u is a
bounded subsolution and v a bounded supersolution. We introduce the test
function

φε(x, y) = u(x)− v(y)− |x− y|
2

ε
. (2.3)

One supposes that it admits (xε, yε) ∈ R2 as maximum point. By classical
results one proves that both xε and yε converge to the same point x̃ for
ε→ 0. If x̃ > 0 (the case x̃ < 0 is analogous) and for ε small enough we get
by standard arguments that

λ(u(xε)− v(yε)) +HR

(
yε,

2(xε − yε)
ε

)
−HR

(
xε,

2(xε − yε)
ε

)
≤ 0,

hence u ≤ v. If x̃ = 0, assuming that xε < 0 < yε we obtain

λ(u(xε)− v(yε)) +HL

(
xε,

2(xε − yε)
ε

)
−HR

(
yε,

2(xε − yε)
ε

)
≤ 0.

Since the Hamiltonians HR and HL are totally independent we do not have
that

HL

(
xε,

2(xε − yε)
ε

)
−HR

(
yε,

2(xε − yε)
ε

)
→ 0 for ε→ 0,



2.2. Related literature 15

and hence we cannot conclude.
We realize that the problem not only refers to the above example but arises
when the Hamiltonians are discontinuous with respect to the state variable.
Then, to characterize the solution, it is necessary to define further conditions
on the interface (namely the surface of discontinuity), called transmission
conditions. Once this is done, one will propose a new definition of viscosity
solution and develop a new strategies in order to obtain the uniqueness of
the solution.

2.2 Related literature

The study of discontinuous Hamilton-Jacobi equations is the subject of sev-
eral works in which the techniques used come from both the theory of partial
differential equations and the optimal control theory.
In the particular case of discontinuous Hamilton-Jacobi-Bellman equations
we start by recalling the work of Ishii [69]. Afterward we can cite, for example,
the works of Soravia [94, 95] and Garavello-Soravia [59, 60] published among
2002 and 2006. In [59] for example, the authors study the HJB equations
resulting from optimal control problems with a no bounded control set and
a discontinuous running cost with respect to the state variable. In particular
the running cost is of type `(x, a) = h(x, a) + g(x) with continuous h and
Borel measurable g. The value function of this problem is not the unique
solution of the associated HJB equation. The sub- and super-optimality
principles for sub- and supersolutions are provided in order to get some
necessary and sufficient conditions which give the uniqueness of the solution.
When there is no uniqueness, the sub- and super-optimality principles allow
to characterize the minimal and maximal solutions.
In the articles mentioned above, the Hamiltonians have a specific structure,
they are Borel measurable in the state variables and there are no precise
information on the set of discontinuity points. We will see that among the
various studies on discontinuous Hamilton-Jacobi equations, many of them
refer to classes of problems for which we have information on the set of
discontinuity points of the Hamiltonian. This is the case of the work of
Bressan and Hong [33], in which the authors provide a rather complete study
of deterministic control problems in stratified domains, i.e. control problems
for which the dynamics and the running costs may have discontinuities on
the submanifolds of Rn. In particular, they show that the value function
satisfies some HJB inequalities (in the viscosity sense) and prove, under
certain conditions, a comparison result between sub and supersolutions of
these HJB equations, ensuring that the value function is the unique solution
of these equations. This comparison principle is obtained by arguments from
control theory, which imply that any subsolution (resp. supersolution) is
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lower (resp. greater) than the value function.

The articles of Barles, Briani and Chasseigne [19, 20] greatly influenced
the results contained in this thesis; in particular, using different tools, we
recover similar results. This is the reason for which we explain in detail the
methods developed in these articles. In [19], the authors consider an infinite
horizon optimal control problem in Rn whose dynamics and running costs
present discontinuities along an interface Γ. They consider the standard
regularity assumptions on the dynamics fi : Ωi ×Ai → Rn (i = −1, 1) and
the running costs `i : Ωi × Ai → R (i = −1, 1) in each half-space Ωi of Rn,
and a strong controllability hypothesis on the whole space Rn. In order to
properly define the problem, they introduce a specific dynamics and running
cost over the interface. To do so, they use the trajectory/solutions concept
of Filippov [54] and use the approach through differential inclusion. As a
consequence, they show the existence of trajectories which stay on Γ at least
for a while.
The discontinuous viscosity solutions theory developed by Ishii leads to
consider the following problem:

λu(x) +H1(x,Du) = 0 in Ω1,

λu(x) +H−1(x,Du) = 0 in Ω−1,

min {λu(x) +H1(x,Du), λu(x) +H−1(x,Du)} ≤ 0 on Γ,

max {λu(x) +H1(x,Du), λu(x) +H−1(x,Du)} ≥ 0 on Γ,

(2.4)

where for i = −1, 1, Hi : Ωi × Rn → R is the classical Hamiltonians

Hi(x, p) := sup
αi∈Ai

{−fi(x, αi) · p− li(x, αi)} . (2.5)

One proves that the problem (2.4) has not a unique solution. Nevertheless,
the authors identify the functions U+ and U− as viscosity solutions of (2.4).
Moreover, they are both value functions of a suitable optimal control problems
which differ in the strategies used on the interface Γ. The authors call singular
strategies those which are obtained by using on Γ any convex combination of
the dynamics and costs in Ω1 and Ω−1. While, the regular strategies are those
for which only push-push convex combinations are allowed. The solution
U− is achieved when taking into account both kind of controlled strategies,
while U+ when only the regular strategies are considered. Afterwards the
authors show that U− also satisfies the tangential inequality

λu(x) +HT (x,DΓu(x)) ≤ 0 on Γ, (2.6)

where HT : Γ × Rn−1 → R is the tangential Hamiltonian. Then, adding
(2.6) to the problem (2.4), not only U− becomes the unique solution of
(2.4)-(2.6) but one obtains a strong comparison result for this new problem
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(i.e., a comparison result between the subsolutions of (2.4)-(2.6) and the
supersolutions of (2.4)). One of the key results to prove the comparison
principle is the one according to which for any x̄ ∈ Γ, a supersolution of (2.4)
is both a supersolution of the tangential Hamiltonian

λu(x) +HT (x,DΓu(x)) ≥ 0 on Γ,

and super-optimal along certain trajectories located near x̄. A direct conse-
quence of the comparison principle is that U− is the minimal supersolution
(and solution) of (2.4). At last Barles et al. demonstrate that U+ is the
maximal subsolution (and solution) of (2.4).

In the work [20] Barles et al. generalize the results obtained in [19]. The
methods provided in [19] for the infinite horizon optimal control problems
are re-adapt for the finite horizon optimal control problems. Furthermore,
the authors extend the results to a more general class of domains assuming
a W 2,∞-regularity on the interface Γ. At the end, they weaken the global
controllability assumption considering only the normal one. These more
general settings imply new difficulties. In particular, due to the weakening of
the controllability assumption, the value functions U− and U+ (achieved as
in [19]]) are not a priori continuous. This involves to deal with discontinuous
viscosity sub- and supersolutions, which entail more technicalities. The
comparison principle is analogue to the one in [19] and implies the continuity
and the uniqueness of the value function U− as solution of the system which
appears in the proof of the principle. As before U− is the continuous minimal
supersolution (and solution) of the equivalent equation to (2.4) and U+ is
the continuous maximal subsolution (and solution) of the same equation. In
conclusion the author address the question of the stability for the problem
associated to U− and U+.

The results in [19, 20] concerning the value function U− can be review
in the general framework of stratified domains. This is what Barles and
Chasseigne do in [21]. More precisely the aim of the work [21] is to generalize
the results of Bressan-Hong [33]. First, contrarily to [33], they use a general
approach through differential inclusion and do not start from dynamics and
costs defined on the disjoint embedded submanifolds of the whole space Rn.
This has the advantage that the global Lipschitz assumption on the dynamics
can be reduced to a locally Lipschitz one. A normal controllability assumption
similar to the one in [20] is given and a value function U , which can be seen
as analogous to the value function U− in [19, 20] is introduced. The authors
prove a general comparison principle so that the function U is well defined.
For the proof of comparison, they assume neither the Holder-continuity as in
[33] for the value function nor that its restriction to each submanifold is differ-
entiable almost everywhere. Furthermore, the comparison principle holds for
upper semi-continuous sub and lower semi-continuous supersolutions whereas
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in [33] for Lipschitz subsolutions and continuous supersolutions. Finally they
provide a stability result allowing the stratification depends on a parameter ε.

We also recall the papers of Rao-Zidani [89] and Rao-Siconolfi-Zidani [88]
in the framework of the stratified domains. In [89], the authors study a sys-
tem of Hamilton-Jacobi-Bellman equations associated to some finite horizon
optimal control problem on multi-domains. A multi-domain is a stratified
domain for which one distinguishes the submanifolds Ωi (with dimension n)
and the interfaces Γj (which are also open embedded manifolds with dimen-
sions strictly smaller than n). The authors are interested in the problems
where there are different HJB equations for each Ωi without specifying the
equations at junction points. The above prescribed equations on Ωi are the
following {

−∂tu(t, x) +Hi(x,Du(t, x)) = 0 on (0, T )× Ωi,

u(T, x) = ϕ(x) on Ωi,
(2.7)

where ϕ : Rn → R is a given function and Hi : Ωi × Rn → R is defined as

Hi(x, p) = sup
q∈Fi(x)

{−q · p} (2.8)

with Fi : Ωi  Rn a Lipschitz continuous multifunction (with respect to the
Hausdorff metric) with non-empty, convex, and compact values. Taking the
Hamiltonians as in (2.8), with dynamics given by the multifunction Fi and
running costs zero, permits the authors to deal with a more general class of
multi-domains. Z. Rao and H. Zidani address the question to understand
which condition should be considered on the interfaces Γj in order to get the
existence and uniqueness of solution of (2.7). Their approach is completely
different from the one used in [19, 20] and seems to be easy to generalize for
two or multi-domains problems. They propose a junction condition involving
an Hamiltonian HE , says Essential Hamiltonian, built from a set of essential
dynamics FE which contains the dynamics from each adjacent region to Ωi

pointing inside Ωi. The concept of Essential Hamiltonian was introduced
for the first time by Barnard-Wolenski in [23]. In conclusion the authors
consider the following problem

∂tu(t, x) +Hi(x,Du(t, x)) = 0 in (0, T )× Ωi,

∂tu(t, x) +HE(x,Du(t, x)) ≥ 0 in (0, T )× Γj ,

∂tu(t, x) +HE(x,Du(t, x)) ≤ 0 in (0, T )× Γj ,

u(T, x) = ϕ(x) in Ωi.

(2.9)

They prove that, if the function ϕ is Lipschitz continuous, then the above
system has a unique viscosity solution in the sense of the new definition that
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they introduce. The definitions of sub- and supersolution proposed here are
more different. Indeed, the supersolution inequality involves test function
φ ∈ C1(Rn), while the subsolution inequality uses test functions φ ∈ C1(Γj).
The uniqueness result follows by a comparison principle, valid for continuous
sub and supersolutions.

The paper by Rao-Siconolfi-Zidani [88] is devoted to the analysis of an
infinite horizon problem on Rn, where the latter is partitioned in two disjoint
open sets Ω−1,Ω1 plus their common boundary, the interface, denoted by
Γ ∈ C2. As in Dupuis [52] and [19, 20] the authors define the dynamics
and the running cost on Γ through the convex combinations of dynamics
and running costs of the adjacent regions. Moreover, in spite of [89], the
running cost is not zero and the controllability assumptions are weakened.
Indeed, in [89], the authors assume a strong controllability assumption in
order to ensure the Lipschitz continuity of the value function. Here the
controllability assumptions are located in the points of the interface and they
are just of tangential type. This implies that all the subsolutions of HJB are
Lipschitz continuous when restricted to the interface. The equation proposed
to characterize the value function is the following

λu(x) +Hi(x,Du(x)) = 0 in Ωi,

λu(x) + max(H−1(x,Du(x)), H1(x,Du(x))) ≥ 0 in Γj ,

λu(x) +HT
Γ (x,Du(x)) ≤ 0 in Γj ,

(2.10)

where Hi is the classical Hamiltonian (2.5) and HT
Γ is built by selecting the

convex combinations of dynamics and costs which allow to stay in Γ. In (2.10)
the authors consider the usual Hamiltonian, indicated by Ishii’s theory, for
the supersolution part on Γ . On the other hand, the sub-solution inequality
is less standard because only test functions φ ∈ C1(Γ) are taken into account.
One proves that the value function of the optimal control problem studied
here is the unique solution of (2.10). The uniqueness result follows by a
comparison principle obtained as in [89] using the tools of the optimal control.
But this principle is more general than the one in [89] because it applies to
continuous subsolutions and lower semi-continuous supersolutions.

2.3 Hamilton-Jacobi equations on networks

Several phenomena in physics, chemistry and biology, described by interaction
of different media, can be translated into mathematical problems involving
differential equations which are defined on so-called ramified spaces. A
ramified space is a connected and closed subset of Rn, obtained as a finite
union of embedded sub-manifolds whose dimensions are strictly smaller than
n. The simplest example of ramified space is the network, i.e. a set of points,
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called vertices or nodes, that are connected by (one-dimensional) lines called
arcs or edges. The definition of ramified space is reminiscent of the one
of stratified domain introduced by Bressan and Hong in [33] and also used
in the articles [19, 20, 21, 89, 88] recalled in Sect. 2.2. Remember that we
speak about stratification of Rn, when Rn can be decomposed into a finite
union of its sub-manifolds. Thus, the ramified spaces are constructed as
stratified domains, but not considering the sub-manifolds of dimension n. An
immediate consequence of this construction is that a ramified space has empty
interior in the Rn topology and presents generally geometric singularities.
In the recent years there was an increasing interest in the investigation of
dynamical systems and differential equations on network, for example in
connection with problems of data transmission, traffic flows and consensus
problems (see for example Garavello-Piccoli [58], Engel et al [53] and Ren-
Beard [90]). In the framework of HJB equations on networks if one supposes
to take different HJB equations in each edge then passing form an arc to
another one through a node the system experiences a discontinuity. Hence
one recovers the same issue of the problems with discontinuous Hamiltonians
with respect to the state variable: finding a good notion of viscosity solution
on the interface that allows to ensure the existence and uniqueness of solution
and the stability.

2.3.1 Related literature

There exist several papers concerning control problems with state constrained
in closures of open sets (see Soner [92, 93], Capuzzo Dolcetta-Lions [38], Ishii-
Koike[72]) and also with empty interior (Frankowska, Plaskacz [55, 56]); while
there is to our knowledge much fewer literature on problems on networks:
we recall the paper of Camilli and Schieborn [91] devoted to the eikonal
equations on topological networks, i.e. graphs embedded in Euclidean space.
More precisely, the authors consider the equations of the form

H(x,Du(x)) = 0 on G

where G is a network and H : G×R→ R is the Hamiltonian. They suppose
that H is continuous with respect to the state variable. Accordingly, one
considers test functions that are continuous in G and whose restrictions
to each edges is C1. Using the latter, the authors extend the concept of
viscosity solutions to the class of first order Hamilton-Jacobi equations of
eikonal type and prove an existence and uniqueness result. The uniqueness
relies on a comparison principle inspired by Ishii’s classical argument for
eikonal equations [70].

In [2] Y. Achdou, F. Camilli, A. Cutr̀ı and N. Tchou characterize the value
function of an infinite horizon optimal control problem whose dynamics in
R2 are constrained to a network. Due this constraint, the set of admissible
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controls depends on the state of the system and drastically changes from a
point in the interior of the edges, where only one direction is admissible, to
a vertex where the admissible directions are given by all the edges connected
to it. The authors, indeed, restrict themselves to a star-shaped network,
namely a network given by the union of a finite number of half-line of the
plane with a single common point (the junction point). The Hamiltonian is
discontinuous at the vertex and suitable assumptions are made to ensure both
the continuity with respect to the state variable of the value function and
the existence of admissible controls at any point of the network. The authors
select continuous test functions in the network whose restrictions to each
edge is C1. Then they give a definition of viscosity solution of the associated
Hamilton-Jacobi equation on the network. Via the dynamic programming
principle one establishes that the value function is a viscosity solution of the
above equation. The uniqueness derives by a comparison principle in which
proof the classical doubling technique is still used, but choosing as penalty
term a not symmetric generalization of the geodetic distance.

Also in [68] C. Imbert, R. Monneau and H. Zidani restrict themselves to a
star-shaped network as in [2]. A particular class of Hamiltonians, independent
of the state variable and possibly discontinuous at the junction, is studied.
The test functions’ space, taken into account to define the viscosity solution,
is the no-stationary version of the one in [2]. Existence and uniqueness
of the viscosity solution is obtained considering the equivalence between
the viscosity supersolution and the super-optimality principle, and by using
representation formulas ”à la Hopf-Lax” for the viscosity subsolutions.

In conclusion Camilli and Marchi have proved in [36] the equivalence among
the notions of viscosity solution proposed in [2] and [68], and in the eikonal
context also with the one given in Schieborn-Camilli [91].

A general comparison result has finally been obtained in Imbert-Monneau
[67] and then in Achdou-Oudet-Tchou[4] through different methods.
In [67] the main assumption is that the Hamiltonian in each arc, say Hi(x, p),
is bimonotone, namely non increasing (resp. non decreasing) for p smaller
(resp. large) than a given threshold p0

i (x). Moreover, the authors consider
more general transmission conditions than in [2, 68] with an addiction running
cost at the junctions. The proof of the comparison principle is based on
arguments from the theory of partial differential equations: in particular,
when all the Hamiltonians related to the arcs are strictly convex and reach
their minimum at p = 0, the doubling-variable technique is applied with a
suitable test function. Then, in the general case, perturbation arguments
are used in order to apply the results proved in the former case.
In [4], the authors are interest to infinite horizon optimal control problems
on network in which dynamics and running costs are different on each edge,
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and each Hamiltonian is a priori completely independent from each other, as
in [67]. The main result is the proof of a general comparison principle only
using arguments from the theory of control which were first introduced in
Barles-Briani-Chasseigne [19, 20]. The problems studied in [19, 20] have in
common with [4] that the data are discontinuous across a low dimensional
subregion.



Chapter 3

Hysteresis operators: Delay
relay and Play

In this chapter, after defining the concept of hysteresis and its particular
properties, we introduce two hysteresis operators, the delay relay in Sect.
3.1.1 and the play operator in Sect. 3.1.2, which will be very useful tools in
the next treatment. In particular we will use the delay relay to overcome
the problem of the discontinuity along the interface of a network and of a
multi-domain (see Chapter 4 and 5 respectively), and to obtain controllability
results for a planar scallop swimmer (see Chapter 7). While, the play operator
will be applied to the study of stability of a control system affected by a
hysteresis phenomena (see Chapter 6, Sect. 6.5).

What is Hysteresis?

We state that an input/output relationship between time-dependent quan-
tities is affected by hysteresis if: (memory) the output’s value at time t
does not only depend on the input’s value at the same instant, but also on
the whole previous evolution of the input; (rate-independence) the value of
the output at time t does not depend on the velocity of the input’s evolu-
tion but only on the sequence of values reached by the input. There are
several physical and natural phenomena in which hysteresis occurs; surely
the most known is the relationship between magnetic field and magnetiza-
tion of ferromagnetic material. Others examples are the filtration through
porous media, phase transition, superconductivity, shape memory alloys
and behavior of thermostats (see Visintin [96] for further details). Another
interesting phenomenon, modeled by hysteresis, is the communication delay
as in Ceragioli-De Persis-Frasca [41]. One way to represent hysteresis effects
is the use of the hysteresis operators. The concept of hysteretic operator is
due to Krasnoselskii and Pokrovskii [74] which perform a systematic analysis
of the mathematical properties of these operators. Other references on the

23
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mathematical aspects of hysteresis, in particular in connection with PDEs
and applicative problems are Mayergoyz [82], Visintin [96], Brokate-Sprekels
[34], Krejci [75].

3.1 Hysteresis operators

Let [0, T ] be a time interval, B a Banach space and A a suitable set of
functions depending on time. An operator

F : D ⊆ C0([0, T ])×B → A (u,w0) 7→ F [u,w0](·)

is said to be an hysteresis operator if the following two properties hold

Casuality: ∀ (u,w0), (v, w0) ∈ D, ∀t ∈ [0, T ]

If u = v in [0, t] then F [u,w0](t) = F [v, w0](t); (3.1)

Rate independence: For every (u,w0) ∈ D and for every continuous
nondecreasing function ϕ : [0, T ]→ [0, T ]

(u ◦ ϕ,w0) ∈ D, F [u ◦ ϕ,w0] = F [u,w0] ◦ ϕ. (3.2)

Moreover, it is also natural to require the following
Semigroup property: for every (u,w0) ∈ D, for every [t1, t2] ∈]0, T ],
setting w(t1) := F [u,w0](t1), then

F [u,w0](t2) = F [u(t1 + ·), w(t1)](t2 − t1). (3.3)

Now, if the set A = C0([0, T ]) then we talk about continuous hysteresis, oth-
erwise discontinuous one. In what follows we study a discontinuous hysteresis
operator (the delayed relay) and a continuous one (the play operator). Both
satisfy the previous properties, but they differ in the domain of the output
w.

3.1.1 The delayed relay

We denote by BV (0, T ) the Banach space of functions [0, T ] → R having
finite total variation. For a fixed threshold parameter ε > 0 we introduce
the delayed relay operator

hε : C0([0, T ])× {−1, 1} → BV (0, T ) ∩ L∞(0, T ).

To better understand the behavior of the delayed relay operator with its
switching rules we can observe the figure below.
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Figure 3.1: Delayed relay operator.

For every input function u ∈ C0([0, T ]) and for every initial state w0 ∈
{−1, 1}, the function w(·) = hε[u,w0] : [0, T ]→ {−1, 1} is defined as follows:

w(0) :=


−1 if u(0) ≤ −ε,
w0 if − ε < u(0) < ε,

1 if u(0) ≥ ε,
(3.4)

while the definition of w(t) for t ∈ ]0, T ] depends on the past evolution of u,
on the initial value w(0) and on the switching rule that we take into account.
Anyway w(·) exists and it is uniquely defined in [0, T ] (see Visintin [96]).
We will consider two different switching rules: the immediate switching rule
and the getting over rule, both satisfying the condition

u(t) > ε⇒ w(t) = 1, u(t) < −ε⇒ w(t) = −1. (3.5)

We start to define the getting over rule using w(0) as in (3.4). We give
the rule for switching from −1 to 1, the other one being analogous. Let us
suppose u(t) ≤ ε and w(t) = −1.

Getting over rule.
We define the switching time t̃ := sup{τ ≥ t : x(τ) ≤ ε} ∈ [t,+∞]. There-
fore, at least for a suitable δ > 0, we have that w(τ) = −1 ∀τ ∈ [t, t̃], while
w(τ) = 1 ∀τ ∈]t̃, t̃+ δ].
In this case, the switching occurs just after the time when u is on the thresh-
old and it is going to get over. The state (−ε, 1) and (ε,−1) are admissible
and contained in Figure 3.1.
We now introduce the immediate switching rule.
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Immediate switching rule.
If we take w(0) as

w(0) :=


−1 if u(0) < −ε,
w0 if − ε ≤ u(0) ≤ ε,
1 if u(0) > ε,

(3.6)

then the relay switches from 1 (resp. −1) to −1 (resp. 1) exactly when u
reaches the threshold −ε (resp. ε).
Therefore, for instance, if u(t) = −ε then w(t) = −1 and it will remain
constant until u possibly reach ε and in that exact moment w will switch to
1. In this case, the two point (−ε, 1) and (ε,−1) are not contained in the
graph of Figure 3.1.

Note that, being the input u continuous in every compact interval of the
time, the number of switchings is finite (possibly null). Moreover, the use of
the getting over rule is linked to the problem with exit time from a closed
set as well the immediate switching rule to the exit time problem from an
open set.

3.1.2 The play operator

Figure 3.2: Hysteresis play operator

Let ε > 0 be a parameter which characterizes the play operator and define

Ωε :=
{

(u,w) ∈ R2 |u− ε < w < u+ ε
}
.

We define the play operator by

P : D ⊆ C0([0, T ])× R→ C0([0, T ]) (u,w0) 7→ P [u,w0](·)
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where D = {(u,w0) ∈ C0([0, T ]) × R|(u(0), w0) ∈ Ωε}. The behavior of
the play operator w(·) := P [u,w0](·), with its typical hysteresis loops, can
be described using Figure 3.2. For instance, supposing that u is piecewise
monotone, if (u(t), w(t)) ∈ Ωε then w is constant in a neighborhood of t;
if w(t) = u(t) − ε and u is non increasing in [t, t + τ ] (with small τ) then
w stays constant in [t, t + τ ] ; if w(t) = u(t) − ε and u is non decreasing
in [t, t+ τ ] then w = u(t)− ε in [t, t+ τ ]. A similar argument holds when
replacing u(t)− ε by u(t) + ε. Moreover we have w(0) = w0.
The play operator behavior just explained can be extended to continuous
inputs by density (of the piecewise monotone inputs in the continuous ones)
and by continuity of the Play operator (see Krasnoselskii [74], Visintin [96]).

Before to conclude the chapter we consider the following result about the
existence and uniqueness of a solution for a Cauchy problem with a hysteresis
operator.

Consider the following Cauchy problem
x′(t) = f(x(t), w(t)),

w(t) = F [x,w0](t)

x(0) = x0, w(0) = w0

(3.7)

with (x0, w0) ∈ R × R fixed (B = R), f : R × R → R a suitably regular
bounded function and F an hysteresis operator. One proves that (3.7) has a
unique “mild” solution, namely a solution in the integral sense.
In particular if we identify F with a delayed relay then:

� for the immediate switching rule it is easy to prove the existence and
uniqueness of the solution (x(·), w(·)) ∈ C0([0, T [×C0

r ([0, T [), where
C0
r ([0, T [) is the linear space of functions which are continuous on the

right in [0, T [;

� for the getting over rule we get existence and uniqueness considering
the particular definition of solution of (3.7) given in Bagagiolo [8] (a
sort of gluing by hand of pieces of trajectory with constant output w)
and the semigroup property of the delayed relay.

If instead F is the Play then the result follows by the Lipschitz continuity
of F as operator from C0([0, T ]) → C0([0, T ]) (see Visintin [96]) being w0

fixed.
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Chapter 4

Optimal control on networks

In this chapter we study a possible approximation of some optimal control
problems on networks with junctions. Then, starting from the results in
Bagagiolo [8] explained in Sect. 4.1, and after to clarify the basic assump-
tions on the junction problems (Sect. 4.2), we introduce in Sect. 4.3 the
thermostatic approximation of a twofold junction problem. Our approach
consists in replacing the junctions with a suitable combinations of delayed
thermostats, each of them characterized by a threshold parameter ε > 0 and
to study the passage to the limit when ε goes to zero. We characterize the
limit function as viscosity solution and maximal subsolution of a suitable
Hamilton-Jacobi problem. In Sect. 4.4 the case of a one dimensional threefold
junction problem is discussed. Considering still the thermostatic approxima-
tion we admits more than a way for passing to the limit, due to the choice of
either uniform or non-uniform switching thresholds. In both case we define
the value function of the associated limit problem as the unique viscosity
solution of a suitable HJ system. Moreover, we provide the corresponding
uniqueness results in the sense of maximal subsolution. This study can be
found also in Bagagiolo-Maggistro [14].
Finally in Sect. 4.5 we extend the results proven in Sect. 4.4 to a two threefold
junctions problem.

4.1 Preliminaries

In Bagagiolo [8], the author studies the dynamic programming method and
the corresponding HJB problem for optimal control problems whose dynamics
has a thermostatic behavior. This means that the dynamics f (as well as the
cost `) besides the control, depends on the state variable x ∈ R, which evolves
with continuity via the equation x′ = f , and also depends on a discrete
variable i ∈ {−1, 1} whose evolution is governed by a delayed thermostatic
rule, subject to the evolution of the state x (see Chapter 3, Figure 3.1 for

31
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more details). In particular, let us define

Oε := (]−∞, ε]× {−1}) ∪ ([−ε,+∞[×{1}) =: Oε−1 ∪ Oε1,
Ωε

1 = {x ∈ R|x ≥ −ε} Ωε
−1 = {x ∈ R|x ≤ ε}.

(4.1)

Let A be a compact set and let us consider the dynamics f : Oε × A→ R
and the running cost ` : Oε ×A→ [0,+∞[ which are continuous, bounded
and satisfy the following properties:
∃L > 0 such that, for any (xj , i, a) ∈ Oε ×A, j = 1, 2

|f(x1, i, a)− f(x2, i, a)| ≤ L |x1 − x2| ; (4.2)

there exist a modulus of continuity ω` : [0,+∞[→ [0,+∞[ (i.e. continuous,
increasing and ω`(0) = 0), such that for any (xj , i, a) ∈ Oε ×A, j = 1, 2

|`(x1, i, a)− `(x2, i, a)| ≤ ω` |x1 − x2| . (4.3)

Finally let A be the set of measurable controls α : [0,+∞[→ A. The
controlled evolution is then given by

x′(t) = f(x(t), i(t), α(t)),

i(t) = hε [x] (t)

x(0) = x0, i(0) = i0

(4.4)

where hε [·] represents the thermostatic delayed relationship between the input
x and the output i. Note that the initial value i0 ∈ {−1, 1} must be coherent
with the thermostatic relation and that, fixed the thresholds −ε, ε, for each
continuous scalar input t 7→ x(t), and for each initial output i0 ∈ {−1, 1}
coherent with x(0), there exist a unique output t 7→ i(t) satisfying i(0) = i0.
The following proposition holds

Proposition 4.1.1. For every (x0, i0) ∈ Oε and for every α ∈ A, there
exists a unique solution (x(·), i(·)) of the system (4.4) and (x(t), i(t)) ∈ Oε
for all t ∈ [0,+∞[. In particular x(·) ∈ C0([0,+∞[) and i(·) ∈ Cl([0,+∞[),
the set of left-continuous functions.

Proof. See Bagagiolo [8].
The infinite horizon optimal control problem is then, given a running cost `
and a discount factor λ > 0, the minimization over all measurable control of
the cost functional

J(x0, i0, α) =

∫ ∞
0

e−λt`(x(t), i(t), α(t))dt, (4.5)

whose associated value function is

Vε(x0, i0) = inf
A

∫ ∞
0

e−λt`(x(t), i(t), α(t))dt. (4.6)

The uniqueness of the solution of (4.4) implies that the proof of the following
result is standard.
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Proposition 4.1.2. (Dynamical Programming Principle). Assume (4.2)
and (4.3). Then for all t ≥ 0 and for all (x0, i0) ∈ Oε

Vε(x0, i0) = inf
α∈A

{∫ t

0
e−λs`(x(s), i(s), α(s))ds+ e−λtVε(x(t), i(t))

}
. (4.7)

For every initial point (x0, i0) ∈ Oε and for every α ∈ A, let us consider
the first switching time

t(x0,i0)(α) := inf {t ≥ 0|i(t) 6= i0} , (4.8)

with the convention t(x0,i0)(α) = +∞ if the set in the right-hand side of (4.8)
is empty. In the framework of optimal control problems, we can regard (4.8)
as the first exit time from the connected components of Oε containing the
initial point (x0, i0).

Proposition 4.1.3. For every (x0, i0) ∈ Oε let ε(i0) be the threshold of the
branch of Oε containing i0 (i.e. ε(i0) is −ε if i0 = 1 and ε if i0 = −1). Then
we have

Vε(x0, i0) = inf
α∈A

{∫ t(x0,i0)

0
e−λs`(x(s), i0, α(s))ds+ e−λt(x0,i0)Vε(ε

(i0),−i0)

}
,

(4.9)
where if t(x0,i0)(α) = +∞, then the second addendum in the right-hand side
is zero.

Proof. See [8].

Proposition 4.1.4. The value function Vε is bounded and uniformly con-
tinuous on each of the two connected components of Oε = Oε−1 ∪ Oε1.

Proof. See [8].
Using the last two Proposition, the authors rewrite the optimal control
problem as a coupling of two exit time optimal control problems which
mutually exchange their exit-costs. In Oε1 (resp. Oε−1), the function x 7→
Vε(x, 1) (resp. x 7→ Vε(x,−1)) coincides with the value function of the exit-
time optimal control problem on Ωε

1 (resp. Ωε
−1), where the exit-cost on −ε

(resp. on ε) is given by Vε(−ε,−1) (resp. Vε(ε, 1)). In other words, under
the assumptions (4.2) and (4.3), is proved the following Theorem.

Theorem 4.1.5. The value function Vε in (4.6) is the unique bounded, con-
tinuous function on Oε which solves the following coupled Dirichlet problem
in the viscosity sense, where the boundary conditions (the two exit-costs) are
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also in the viscosity sense.
λVε(x, 1) + supa∈A {−f(x, 1, a)V ′ε (x, 1)− `(x, 1, a)} = 0 in int(Oε1)

Vε(−ε, 1) = Vε(−ε,−1)

λVε(x,−1) + supa∈A {−f(x,−1, a)V ′ε (x,−1)− `(x,−1, a)} = 0 in int(Oε−1)

Vε(ε,−1) = Vε(ε, 1)

(4.10)
where V ′ denotes the derivative with respect to x.

Proof. See [8].
Starting from the last Theorem we study the limit of the value function Vε
and of HJB problem when the thresholds distance ε tends to zero, and hence
recovering the junction situation. Before to do this we introduce some basic
assumption on the problem with junction.

4.2 Basic assumption on the junction problem

Let the junction be given by a finite number of co-planar half-lines Ri,
i = 1, . . . , n, originating from the same point O, and we consider the half-
lines as closed, that is the point O ∈ Ri for every i. On each branch Ri we
consider a one-dimensional coordinate x ≥ 0 such that x(O) = 0. The state
position may be then encoded by the pair (x, i).

Figure 4.1: A star-shaped network.

We consider a controlled evolution on a star-shaped network (see Figure 4.1),
given by the following dynamics. On Ri the system is driven by a continuous
and bounded dynamics fi : R × A → R, where A is compact, with the
standard Lipschitz assumption

∃L > 0 such that, for any x, y ∈ R and a ∈ A

|fi(x, a)− fi(y, a)| ≤ L|x− y|. (4.11)
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Controllability: For every i,

∃ a−i , a
+
i ∈ A s.t. fi(0, a

−
i ) < 0 < fi(0, a

+
i ) (4.12)

The controlled system on the star-shaped network is then
y′(t) = fj(y(t), α(t)) for t > 0 and y(t) ∈ Rj
y(0) = x
x ∈ Ri

(4.13)

where α ∈ A.
To this controlled systems we associate an infinite horizon optimal control

problem. For every branch Ri we consider a running cost `i : R×A→ [0,+∞[,
and the problem is given by the minimization, over all measurable controls
α ∈ A, of the cost functional

J(x, i, α) =

∫ +∞

0
e−λt`j(y(t), α(t))dt. (4.14)

In (4.14), λ > 0 is a fixed discount factor, the trajectory y(·) is the solution
of (4.13), and the index j is given by y(t) ∈ Rj . Moreover, for every i, the
function `i : R × A → R is continuous and bounded, and there exists a
modulus of continuity ω` as in (4.3), such that, for any x, y ∈ R and a ∈ A
and for any i

|`i(x, a)− `i(y, a)| ≤ ω` (|x− y|) . (4.15)

We finally consider the value function

V (x, i) = inf
α∈A

J(x, i, α).

Of course, the concept of solution (or trajectory) for the system (4.13) is not
a-priori well-posed. When we are on the junction point O, we can choose
the index i we prefer, but the existence of the trajectory is not guaranteed,
due to possible fast oscillations of the index i (behavior which is linked to
the pointing versus of fi(O, a)). Then, considering the delay relay operator
(see Section 3.1.1) we give an approximation and the corresponding passage
to the limit for such possible oscillating behavior in the context of optimal
control.

4.3 A twofold junction problem

In this section we study the simple situation in which the “junction” is
given by two closed half-lines entering in the same point x = 0 (see
Figure 4.2). We define the dynamics f : R × A → R such that it is
f(x, ·) = f1(x, ·) (resp. f(x, ·) = f−1(x, ·)) if x > 0 (resp. if x < 0) , where
f1 : [0,+∞[×A→ R, f−1 :]−∞, 0]×A→ R.
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Figure 4.2: The two-fold junction and its thermostatic approximation.

For ε > 0 we approximate the junction problem by a delayed thermostatic
problem (see Figure 4.2) with output i ∈ {−1, 1}. Still denoting by f1, f−1

two extensions by constancy in the space variable x of the dynamics to
[−ε,+∞[×A and to ]−∞, ε]×A respectively, we may consider the controlled
system 

x′(t) = fi(t)(x(t), α(t)),

i(t) = hε [x] (t)

x(0) = x0, i(0) = i0

(4.16)

Similarly, we extend a running cost ` which is given in two different ways,
`1, `−1 in the two half-lines.

Let Vε be the value function of the thermostatic optimal control problem
(4.10) with dynamics given by (4.16) and corresponding costs. We define the
function

Ṽε : R \ {0} → R, Ṽε(x) =

{
Vε(x, 1) x > 0

Vε(x,−1) x < 0.

Note that, in general, Vε(0,−1) 6= Vε(0, 1).

Theorem 4.3.1. As ε → 0+, the sequence of functions Ṽε uniformly con-
verges on R \ {0} to a continuous function Ṽ1, Ṽ−1 respectively. If (4.11) and
(4.15) hold, then Ṽ continuously extends to x = 0 and, if (4.12) also holds,
it is a viscosity solution of

λV +H1(x, V ′) = 0 for x > 0

λV +H−1(x, V ′) = 0 for x < 0

V (0) = min
{
u0(0), Vsc(−1)(0), Vsc(1)(0)

} (4.17)

where H1, H−1 are the Hamiltonians in (4.10), u0(0) is the convexification

u0(0) =
1

λ
min
A0

{µ`−1(0, a−1) + (1− µ)`1(0, a1)} (4.18)
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with

A0 =
{

(µ, a−1, a1) ∈ [0, 1]×A×A :

µf−1(0, a−1) + (1− µ)f1(0, a1) = 0, f1(0, a1) ≤ 0, f−1(0, a−1) ≥ 0
}

(4.19)

and Vsc(i)(0) is the value function at x = 0 of the state-constraint optimal
control problem on the branch i.

Proof. We are going to use the notation in (4.1). We also recall that the
state-constraint problem in branch i is the optimal control problem restricted
to the branch i and such that, when we are on the point x = 0 we can only
use controls that make us to not leave the branch. We first prove that Vε
uniformly converges to a continuous function on R\{0}. We have some cases
and we illustrate some of them.

i) f−1(0, a) ≤ 0 for all a ∈ A. Hence, when starting from a point of Oε−1,
it is impossible to switch on the other branch Oε1. Hence, x → Vε(x,−1)
is the value function of the optimal control problem with dynamics f−1

and cost `−1 and state-constraint in Oε−1, which uniformly converges on
]−∞, 0] to the value function with same dynamics and cost and with state
constraints in ]−∞, 0] (note that dynamics and costs are bounded), that is
to Vsc(−1). On the other branch, being Vε(−ε,−1) convergent to Vsc(−1)(0),
by standard stability results (applied to the first two lines of (4.10)), we also
get the uniform convergence of Vε(·, 1) to the unique solution in [0,+∞[ with
viscosity boundary datum Vsc(−1)(0).

ii) ∃ a−1, a1 ∈ A such that f1(0, a1) < 0 < f−1(0, a−1). In this case,
when ε is sufficiently small, starting from (ε, 1) (resp. from (−ε,−1)) we can
always switch on the other branch, and we can reach (−ε,−1) (resp. (ε, 1))
in a time interval whose length is infinitesimal as ε. It is then easy to check
that the difference |Vε(ε, 1)− Vε(−ε,−1)| (as well as |Vε(0, 1)− Vε(0,−1)|)
is also infinitesimal as ε. Moreover, for every pair (ε1, ε2) with ε1, ε2 > 0,
‖Vε1 − Vε2‖ is also infinitesimal as max{ε1, ε2}. Hence, again from stability
results for (4.10), Vε uniformly converges on R \ {0}, and also the continuous
limit function continuously extends to x = 0.
We now define

Ṽ (x) =

{
Ṽ1(x) if x ≥ 0

Ṽ−1(x) if x ≤ 0

Now, assuming (4.12) (which of course implies the conditions in ii)), we prove
that the continuous limit function Ṽ satisfies the third equation of (4.17).
Again, we proceed illustrating some cases.

a) Vsc(−1)(0) strictly realizes the minimum in (4.17). Then, there exists
a measurable control α such that the corresponding trajectory starting from
x = 0 with dynamics f−1 does not exit from ]−∞, 0], and the corresponding
cost, with running cost `−1, is strictly less than u0(0) and Vsc(1)(0). Note
that, such a control α has exactly the same cost for the thermostatic problem
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with initial point (0,−1) (no switchings may occur).
Now, we observe that, for every (µ, a−1, a1) ∈ A0 with f−1(0, a−1), f1(0, a1) 6=
0, the alternation of the constant controls a−1, a1 correspondingly to every
switching, gives a cost for the thermostatic problem in (0,−1) as well as in
(0, 1), which, when ε goes to zero, converges to (µ`−1(0, a−1) + (1− µ)`1(0, a1)) /λ.
Indeed, the condition µf−1(0, a−1) + (1 − µ)f1(0, a1) = 0 implies that
f−1(0, a−1), f1(0, a1) are in the same (inverse) proportion as µ and 1 − µ,
and the corresponding time-durations for covering the distance 2ε (from one
threshold to the other one) are in the same (direct) proportion as µ and
1− µ. Hence, the required convergence holds.
From this we get that Vsc(−1)(0) = Vε(0,−1) and so Ṽ (0) = Vsc(−1)(0).

b) u0(0) strictly realizes the minimum. Then, let (µ, a−1, a1) ∈ A0 be
such that µ`−1(0, a−1) + (1− µ)`1(0, a1) is the minimum in the definition of
u0(0). Again, as in the previous point, we get that a switching trajectory
using controls a−1 and a1 is near optimal for Vε, and then the conclusion.

Remark 4.3.2. In this one-dimensional case, Theorem 4.3.1 also proves
that Ṽ = U+, where U+ is the value function of the so-called regular problem
in Barles-Briani-Chasseigne [19]. In the sequel we are also given a different
proof of such an equality where, using the thermostatic approximation, we
show that Ṽ is the maximal subsolution of a suitable Hamilton-Jacobi problem
as in [19], namely next problem (4.20).

Theorem 4.3.3. Assume (4.11), (4.12) and (4.15). The function Ṽ is a
viscosity solution of the Hamilton-Jacobi-Bellman problem

λV +H1(x,∇V ) = 0 in {x > 0} =: Ω1

λV +H−1(x,∇V ) = 0 in {x < 0} =: Ω−1

min {λV +H1, λV +H−1} ≤ 0 on x = 0

max {λV +H1, λV +H−1} ≥ 0 on x = 0.

(4.20)

We recall that here we mean that Ṽ is a subsolution of the first three equations
and a supersolution of the first two together with the fourth one according
the Definition (1.1.2).

Proof. From Theorem 4.1.5 and Theorem 4.3.1, and by a classical
convergent result, we have

λṼ (x) + sup
α∈A

{
−f1(x, α)Ṽ ′(x)− `1(x, α)

}
= 0 in Ω1,

and similarly for the equation in Ω−1.

We now prove the third equation in (4.20). Let ϕ ∈ C1(R) be a test
function such that Ṽ −ϕ has a strict relative maximum at x = 0. By uniform
convergence, there exists a sequence xε ∈ Ωε

1 of points of relative maxima for
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Vε(·, 1) − ϕ which converge to x = 0. We may have two cases: 1) at least
for a subsequence, at xε the HJB equation satisfied by Vε(·, 1) has the right
sign ”≤”, 2) it is definitely true that the boundary point xε = −ε is a strict
maximum point and the HJB equation has the wrong sign ”>”. Note that,
when xε is in the interior of Ωε

1, case 1) always occurs. Also note that the
boundary of Ωε

1, i.e. x = −ε, is also converging to x = 0.

Case 1). Sending ε→ 0, we get λṼ +H1 ≤ 0 in x = 0 and so the third
equation in (4.20).

Case 2). Since the boundary conditions in (4.10) are in the viscosity
sense and by virtue of the controllability condition (4.12), we have

Vε(−ε, 1) = Vε(−ε,−1) (4.21)

Now, the same argumentations and cases also hold for the branches Ωε
−1.

If the corresponding case 1) holds, then we get the conclusion as before.
Otherwise we have

Vε(ε,−1) = Vε(ε, 1) (4.22)

We now prove that case 2) cannot simultaneously holds in both branches.
Indeed, let us observe that (−ε,−1) is in the interior of Ωε

−1 and (ε, 1) is
in the interior of Ωε

1, therefore, using (4.22), (4.21), we get the following
contradiction which concludes the proof

Vε(−ε,−1)− ϕ(−ε) < Vε(ε,−1)− ϕ(−ε) = Vε(ε, 1)− ϕ(ε)
< Vε(−ε, 1)− ϕ(ε) = Vε(−ε,−1)− ϕ(−ε)

In order to prove the fourth equation in (4.20), we argue in the same way.

We now want to prove that Ṽ is the maximal subsolution of (4.20). We
first prove the following lemma.

Lemma 4.3.4. Let us assume that ∀ ε > 0 small enough, the optimal strategy
for the approximating problem ε, starting by any (x, 1), (x,−1) with x ∈
[−ε, ε], is to run through infinitely many switches between the two branches
(i.e. no state-constraint behavior is optimal). Let then (µ̄, ā−1, ā1) ∈ A0 be
such that f−1(0, ā−1) > 0, f1(0, ā1) < 0, and that

Ṽ (0) = u0(0) =
1

λ
{µ̄`−1(0, ā−1) + (1− µ̄)`1(0, ā1)}. (4.23)

For every x ∈ [−ε, ε], we consider the two switching trajectories (compare
with (4.16))

y′(t) = fi(t)(0, āi(t)),

i(t) = hε [y] (t)

y(0) = x, i(0) = 1

,


y′(t) = fi(t)(0, āi(t)),

i(t) = hε [y] (t)

y(0) = x, i(0) = −1.
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Note that the two trajectories on every branch move with constant veloc-
ity (f1(0, ā1) towards left and respectively towards right f−1(0, ā−1)), and
they switch infinitely many times. We then consider the corresponding two
functions

V̄ε(x, 1) =

∫ ∞
0

e−λt`i(t)(0, āi(t))dt with i(0) = 1,

V̄ε(x,−1) =

∫ ∞
0

e−λt`i(t)(0, āi(t))dt with i(0) = −1.

(4.24)

Then V̄ε(·, 1) and V̄ε(·,−1) are differentiable in [−ε, ε] and

sup
x∈[−ε,ε]

|V̄ ′ε (x, 1)− V̄ ′ε (x,−1)| → 0 for ε→ 0. (4.25)

Proof. The derivability comes form the constancy of dynamics and costs.
Note that we can rewrite the two functions in (4.24) as

V̄ε(x, 1) =

∫ x+ε
|f1(0,ā1)|

0
e−λt`1(0, ā1)dt+ e

−λ(x+ε)
|f1(0,ā1)| V̄ε(−ε, 1),

V̄ε(x,−1) =

∫ ε−x
f−1(0,ā−1)

0
e−λt`−1(0, ā−1)dt+ e

−λ(ε−x)
f−1(0,ā−1) V̄ε(ε,−1),

(4.26)

where the upper extremal of the integration is the reaching time of the
threshold in the corresponding initial branch. Then we have

V̄ε(−ε, 1) = V̄ε(−ε,−1) and V̄ε(ε,−1) = V̄ε(ε, 1), (4.27)

and by (4.23) for any i, limε→0 V̄ε(x, i) = Ṽ (0) = u0(0) uniformly in x ∈
[−ε, ε]. A direct calculation gives

V̄
′
ε (x, 1) =

1

|f1(0, ā1)|
e
−λ(x+ε)
|f1(0,ā1)| `1(0, ā1)− λe

−λ(x+ε)
|f1(0,ā1)|

|f1(0, ā1)|
V̄ε(−ε, 1),

V̄
′
ε (x,−1) = − 1

f−1(0, ā−1)
e
−λ(ε−x)
f−1(0,ā−1) `−1(0, ā−1) +

λe
−λ(ε−x)
f−1(0,ā−1)

f−1(0, ā−1)
V̄ε(ε,−1).

and then for ε→ 0

V̄
′
ε (x, 1) −→

µ̄
(
`1(0, ā1)− `−1(0, ā−1)

)
|f1(0, ā1)|

,

V̄
′
ε (x,−1) −→

(µ̄− 1)
(
`−1(0, ā−1)− `1(0, ā1)

)
f−1(0, ā−1)

.

Recalling the definition of A0 (4.19), calculating µ we get

V̄
′
ε (x, 1) −→ `1(0, ā1)− `−1(0, ā−1)

f−1(0, ā−1)− f1(0, ā1)
,

V̄
′
ε (x,−1) −→ `1(0, ā1)− `−1(0, ā−1)

f−1(0, ā−1)− f1(0, ā1)
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and then (4.25).

Comparison result

Theorem 4.3.5. Let u be a bounded and continuous subsolution of (4.20).
Then u ≤ Ṽ in R.

Proof. We first note that we can assume to be in the situation as in
Lemma 4.3.4. Indeed, otherwise in at least one branch Ṽ coincides with the
corresponding state-constraint value function which, see for example Soner
[92], is greater than any subsolution (note that, in general the state-constraint
value functions do not satisfy the third line of (4.20)). We then also get
u ≤ Ṽ on the other branch.
We assume by contradiction that supx∈R(u− Ṽ )(x) > δ > 0. If

∃r > 0|∀δ′ > 0 ∃ x ∈ [r,+∞[: sup
x∈R

(
(u− Ṽ )(x)− (u− Ṽ )(x)

)
≤ δ,

then, by Theorem 4.3.3 and known comparison techniques we get a contra-
diction because, in ]r,+∞[, Ṽ is a supersolution and u is a subsolution of
the same HJB. Similarly for the opposite case ] −∞,−r[. Hence we may
restrict to the case where u− Ṽ has the maximum with respect to r in x = 0.
Since V̄ε(x, i) converges to Ṽ (0), with V̄ε defined in (4.26), then for small ε,

u(zi)− V̄ε(zi, i) = max
[−ε,ε]

(u(·)− V̄ε(·, i)) >
δ

2
> 0, (4.28)

with zi ∈ [−ε, ε]. If for example max(u(·) − V̄ε(·, 1)) is reached in x = −ε
and max(u(·)− V̄ε(·,−1)) is reached only in ε, then using (4.27) we get the
following contradiction

u(−ε)− V̄ε(−ε, 1) = u(−ε)− V̄ε(−ε,−1)
< u(ε)− V̄ε(ε,−1) = u(ε)− V̄ε(ε, 1).

(4.29)

This implies that in at least one branch we can assume zi not equal to
corresponding switching threshold. Then let us assume z−1 ∈ [−ε, ε[.

We are now comparing u and V ε. We first note that by (4.26) we have
for every i = −1, 1

λV̄ε(x, i)− fi(x, āi)V̄
′
ε (x, i)− `i(x, āi) ≥ −O(ε),

in x ∈ [−ε, ε[ or in ]− ε, ε] respectively, where, here and in the sequel O(ε)
is a suitable positive infinitesimal quantity as ε→ 0. Recalling that V̄ε(·, i)
is derivable in [−ε, ε] and recalling the sign of fi(0, āi) we then get for every
i = −1, 1

λV̄ε(x, i) +Hi(x, p) ≥ −O(ε), (4.30)
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for every x ∈ [−ε, ε[ and for every p subgradient in x with respect to [−ε, ε]
of V̄ε(·,−1) (respectively for any x ∈]− ε, ε] and p subgradient of V̄ε(·, 1)).

Let η : [−ε, ε]→ R be continuous and c > 0 such that

]x+ ξη(x)− ξc, x+ ξη(x) + ξc[ ⊆ ]− ε, ε[ ∀x ∈ [−ε, ε], 0 < ξ ≤ c. (4.31)

For any 0 < ξ ≤ c, we define the function in [−ε, ε]× [−ε, ε]:

Φξ(x, y) = u(x)− V̄ε(y,−1)−
∣∣∣∣x− yξ − η(z−1)

∣∣∣∣2 − ∣∣y − z−1
∣∣2 .

Let (x−1
ξ , y−1

ξ ) be a point of maximum for Φξ ∈ [−ε, ε] × [−ε, ε] . Recall-

ing z−1 ∈ [−ε, ε[ by standard estimates (see Soner [92] or Bardi-Capuzzo
Dolcetta[16] p. 271) for small ξ we get x−1

ξ ∈]− ε, ε[, y−1
ξ ∈ [−ε, ε[ and

x−1
ξ − y

−1
ξ

ξ
→ η(z−1) and x−1

ξ , y−1
ξ → z−1 as ξ → 0. (4.32)

We have the following possible cases, for a subsequence ξ → 0: (i) (x−1
ξ , y−1

ξ ) ∈
]−ε, 0[×[−ε, ε[; (ii) x−1

ξ = 0 and y−1
ξ ∈]−ε, ε[; (iii) (x−1

ξ , y−1
ξ ) ∈ ]0, ε[×]−ε, ε[.

Case (i). We get for any small ξ

λu(x−1
ξ ) +H−1

(
x−1
ξ ,

2

ξ

(
x−1
ξ − y

−1
ξ

ξ
− η(z−1)

))
≤ 0, (4.33)

λV̄ε(y
−1
ξ ,−1)+H−1

(
y−1
ξ ,

2

ξ

(
x−1
ξ − y

−1
ξ

ξ
−η(z−1)

)
+2(z−1−y−1

ξ )

)
≥ −O(ε).

(4.34)
and we conclude in the standard way getting the contradiction to (4.28) first
sending ξ → 0 and then ε→ 0.
Case (ii). By x−1

ξ = 0 we have that

min

{
λu(0)+H1

(
0,

2

ξ

(−y−1
ξ

ξ
−η(z−1)

))
, λu(0)+H−1

(
0,

2

ξ

(−y−1
ξ

ξ
−η(z−1)

))}
≤ 0.

(4.35)

If λu(0) +H−1

(
0, 2

ξ

(
−y−1

ξ

ξ − η(z−1)

))
≤ 0 for a subsequence ξ tends to 0

we conclude as in case (i). Otherwise, we have

λu(0) +H1

(
0,

2

ξ

(−y−1
ξ

ξ
− η(z−1)

))
≤ 0. (4.36)

The inequality (4.34) and (4.36) cannot be compared because they have
different Hamiltonians. However, noting that y−1

ξ ∈]− ε, ε[, we have(
V̄ε(y

−1
ξ ,−1)

)′
=

2

ξ

(
x−1
ξ − y

−1
ξ

ξ
− η(z−1)

)
+ 2(z−1 − y−1

ξ ).
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By (4.25), we have

V̄ε(y
−1
ξ , 1) = V̄ε(y

−1
ξ ,−1) +O(ε),(

V̄ε(y
−1
ξ , 1)

)′
=
(
V̄ε(y

−1
ξ ,−1)

)′
+O(ε),

and using (4.30) in y−1
ξ for i = 1, we get

λV̄ε(y
−1
ξ , 1)+H1

(
y−1
ξ ,

2

ξ

(−y−1
ξ

ξ
−η(z−1)

)
+2(z−1−y−1

ξ )

)
≥ −O(ε). (4.37)

Then using(4.36) and (4.37) we may conclude in standard way obtaining a
contradiction as in the case (i).

Case (iii). For x−1
ξ ∈]0, ε[ we have

λu(x−1
ξ ) +H1

(
x−1
ξ ,

2

ξ

(
x−1
ξ − y

−1
ξ

ξ
− η(z−1)

))
≤ 0 (4.38)

that cannot be compared with (4.34). Being also in this case y−1
ξ ∈ [−ε, ε[,

we conclude as in the case before.

4.4 A threefold junction problem

In the previous section we have considered the case where the junction is
given by a line divided into two half-line by a point. Here we consider a
junction given by three half-lines entering the same point (see Figure 4.3).
In this case we have three labels {1, 2, 3}, one for every half-line R1, R2, R3,
that we identify with the labeled half-line Ri = [0,+∞[×{i}. We also
consider the controlled dynamics fi : Ri × A → R and the running costs
`i : Ri × A → [0,+∞[. We approximate these triple discontinuity by a
thermostatic-type combination in the following way. We extend fi and `i
to [−εi,+∞[×{i} × A, where all thresholds εi are greater than 0 and not
necessarily the same for every i.
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Figure 4.3: The threefold junctions and its thermostatic-type approximation.

The thermostatic controlled dynamics is given by
x′(t) = fi(t)(x(t), α(t)),

i(t) = h̃[x](t),

i(0) = i0 ∈ {1, 2, 3} ,
x(0) = x0 ∈ [−εi(0),+∞[,

(4.39)

where h̃[x](t) is the delayed thermostatic rules as shown in Figure 4.3. In
this thermostatic representation, denoting by Rεi := [−εi,+∞[×{i} (and
by int(Rεi) =] − εi,+∞[×{i}), we can only switch from Rε1 to Rε2 , from
Rε2 to Rε3 and from Rε3 to Rε1 . This is an arbitrary choice, because when
we are in the junction-point, we can in general switch in anyone of the
other branches. However, we will recover this kind of behavior in the limit
procedure. Moreover, in the switching rule given by h̃, also the variable x is
subject to a discontinuity at the switching instant unlike the twofold case in
previous section (see Figure 4.3 and also note in the thermostat, the branch
Rε1 is oriented in the opposite way with respect to the standard one). For
every i0 ∈ {1, 2, 3} and ∀x0 ∈ [−εi(0),+∞[ we consider the value function

Vε1,ε2,ε3(x0, i0) = inf
α∈A

∫ ∞
0

e−λt`i(t)(x(t), α(t))dt, (4.40)

and we also have for every i = 1, 2, 3 the Hamiltonians

Hi(x, p) = sup
a∈A
{−fi(x, a) · p− `i(x, a)} . (4.41)

where we drop the index i in the entries of fi, `i and consequently in Hi.
We will sometimes use this simplification of the notation in the sequel too,
without remember it.

The continuity of the value function (4.40) comes from the controllability
(4.12), regularity ((4.11) and (4.15)) and by the same procedures used in
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Bagagiolo [9]. Moreover, as in Proposition 4.1.1 the system (4.39) admits a
unique solution (x(·), i(·)) ∈ O = Rε1 ∪Rε2 ∪Rε3 and the function Vε1,ε2,ε3
(4.40) satisfies the Dynamic Programming Principle (DPP).

Proposition 4.4.1. For all t ≥ 0 and for all (x0, i0) ∈ O

Vε1,ε2,ε3(x0, i0) = inf
α∈A

{∫ t

0
e−λs`i(s)(x(s), α(s))ds+ e−λtVε1,ε2,ε3(x(t), i(t))

}
.

Proof. The proof is standard and uses the semigroup property of the
trajectories and the fact that translating a measurable control you still get a
measurable control.

Considering the first switching time as in (4.8) and the fact that it can
be regarded as the first exit time from the connected components of O, a
similar result to Proposition 4.1.3 holds

Proposition 4.4.2. For every (x0, i0) ∈ O let εi0 be the threshold of the
branch of O containing i0 (i.e. εi0 is −ε1 if i0 = 1, −ε2 if i0 = 2 and −ε3 if
i0 = 3). Then we have

Vε1,ε2,ε3(x0, i0) = inf
α∈A

{∫ t(x0,i0)(α)

0
e−λs`i0(x(s), α(s))ds

+ e−λt(x0,i0)(α)Vε1,ε2,ε3(−εi0s , i0s)

}
(4.42)

where i0s is the next value to the output i0 and εi0s the relative threshold.

Proof. Let us suppose for instance i0 = 1 and hence x0 ∈ [−ε1,+∞[.
If t(x0,i0)(α) = +∞ then (4.42) is just the definition of Vε1,ε2,ε3 . If instead
t(x0,i0)(α) < +∞, by (4.12) there exists a ∈ A such that f1(−ε1, a) < 0 and
since still by (4.12) follows that Vε1,ε2,ε3(−ε1, 1) ≤ Vε1,ε2,ε3(ε2, 2), applying
DPP (Proposition 4.4.1), we have the “≤” inequality in (4.42).
To prove the other inequality, let us take ρ > 0 and α̃ such that J(x0, 1, α̃)−
ρ ≤ Vε1,ε2,ε3(x0, 1). We can suppose t̄ := t(x0,1)(α̃) < +∞ (the other case is
easier). Take δ > 0 small enough such that every trajectory starting from
(ε2, 2) does not switch in the time interval [0, δ]. Let (x0δ , 2) be the point
reached after the time t̄+ δ and note that Vε1,ε2,ε3(x0δ , 2)→ Vε1,ε2,ε3(ε2, 2)
as δ → 0. Let us denote the integral in (4.42) by I1. We have

Vε1,ε2,ε3(x0, 1) ≥ J(x0, 1, α̃)− ρ ≥
I1 + e−λ(t̄+δ)J(x0δ , 2, α̃(·+ t̄+ δ))− ρ ≥
I1 + e−λ(t̄+δ)Vε1,ε2,ε3(x0δ , 2)− ρ.

(4.43)

We pass to the limit as δ → 0 in (4.43) and conclude by the arbitrariness of
ρ.
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Proposition 4.4.3. The value function Vε1,ε2,ε3 is bounded and uniformly
continuous on each of the three connected components of O = Rε1 ∪Rε2 ∪Rε3 .

Proof. From Proposition 4.4.2, in each connected component Rεi , Vε1,ε2,ε3
is the value function of the exit time problem from Rεi with exit cost
Vε1,ε2,ε3(−εi0s , i0s). Since by controllability (4.12) Vε1,ε2,ε3(−εi0s , i0s) is bounded
and continuous on the boundary points, we conclude applying the result of
Bardi-Capuzzo Dolcetta [16], Chapter IV, Section 3.

Proposition 4.4.4. For any choice of ε1, ε2, ε3 > 0 the value function
Vε1,ε2,ε3 is a bounded and uniformly continuous solution of the following
problem for Hamilton-Jacobi equations

for every i0 ∈ {1, 2, 3}, Vε1,ε2,ε3 is the unique bounded

and uniformly continuous viscosity solution

of the following Dirichlet problem in Rεi ,

with boundary conditions in viscosity senseλVε1,ε2,ε3(x0, i0) +Hi

(
x, V ′ε1,ε2,ε3(x0, i0)

)
= 0 in int(Rεi),

Vε1,ε2,ε3(εi0 , i0) = Vε1,ε2,ε3(−εi0s , i0s).

(4.44)

Proof. The boundedness and the uniformly continuity come from Propo-
sition 4.4.2 and Proposition 4.4.3. Moreover Vε1,ε2,ε3 is a solution of (4.44)
because in each branch, by virtue of (4.42), is the value function of the
exit time problem with fi0 , `i0 and exit cost Vε1,ε2,ε3(·, i0s). Being the latter
bounded and continuous on the boundary point, by Proposition 1.2.16 fol-
lows that Vε1,ε2,ε3 is solution of the system in (4.44) on each branch. The
uniqueness come from the results of Chapter V of Bardi-Capuzzo Dolcetta
[16] (see in particular Theorem 4.20).
In the sequel, when i0 ∈ {1, 2, 3} is fixed, we will denote the Dirichlet problem
in (4.44) by (4.44)i0 .

Proposition 4.4.5. For any choice of ε1, ε2, ε3 > 0 the value function
Vε1,ε2,ε3 of the switching three-thermostatic optimal control problem is the
only bounded and continuous function on O which is solution of (4.44).

Proof. The boundedness and the continuity come from Proposition 4.4.3.
The fact that Vε1,ε2,ε3 is a viscosity solution of (4.44) follows by Proposition
4.4.4. Regarding the uniqueness we prove that every solution of (4.44) is
a fixed point of a contraction map G : BC(O) → BC(O), where BC(O)
is the space of the real bounded and continuous function on O. By the
completeness, we provide the uniqueness.
Considering BC(O) = BC(Rε1) × BC(Rε2) × BC(Rε3), for every c ≥ 0

and for every i0 ∈ {1, 2, 3}, let z
(i0)
c be the solution of the correspondent
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Hamilton-Jacobi equation (4.44)i0 with boundary datum c. Hence, for each
(ξ, η, σ) ∈ BC(O) we define

G(ξ, η, σ) :=

(
z

(1)(
z

(2)
ξ(−ε2)

(ε2)
)(·), z(2)(

z
(3)
η(−ε3)

(ε3)
)(·), z(3)(

z
(1)
σ(−ε1)

(ε1)
)(·)).

This means that, for instance, the first component of G(ξ, η, σ) is the solution
on the branch Rε1 with boundary datum equal to the value on ε2 of the
solution on the branch Rε2 with boundary datum equal to ξ(−ε2). By the
uniqueness of the solution in any branch, it is easy to see that every solution
of (4.44) is a fixed point of G. Then for every (ξ, η, σ), (ξ̂, η̂, σ̂) ∈ BC(O), for
the first component of G we have

‖(G(ξ, η, σ))1 − (G(ξ̂, η̂, σ̂))1‖∞ ≤ |z(2)
ξ(−ε2)(ε2)− z(2)

ξ̂(−ε2)
(ε2)|

≤ e
−λ(2ε2)

M |ξ(−ε2)− ξ̂(−ε2)| ≤ e
−λ(2ε2)

M ‖ξ − ξ̂‖∞,

with M the bound of the running cost `i. A similar inequality holds for the
others components of G. Since λ > 0 we get the conclusion.
We now study two different thermostatic problem: the first in which we take
into account uniform switching thresholds and the second with non-uniform
switching thresholds.

4.4.1 Uniform switching thresholds

In this subsection we consider the thresholds (ε1, ε2, ε3) = (ε, ε, ε).
Looking to the twofold junction it is easy to see that the convexification
parameters µ, 1 − µ are given by the ratio between the time spent using
fi(0, ai) to go from a threshold to the other one (namely 2ε/fi(0, ai))and the
total time to perform a complete switching. Coherently to that, when for
f1, f2, f3 < 0 (here we drop the entries in the dynamics), namely when we
perform the whole cycle, the right convex parameters to be considered are

µ1 =
f2f3

f2f3 + f1f3 + f1f2
, µ2 =

f1f3

f2f3 + f1f3 + f1f2
, µ3 =

f1f2

f2f3 + f1f3 + f1f2
.

(4.45)
Moreover (µ1, µ2, µ3) ∈ [0, 1]3 and

∑3
i=1 µi = 1. Observe that now we

have not anymore the interpretation as balance of forces, indeed in general∑3
i=1 µifi(0, ai) 6= 0, regardless to our choice of the signs of the branches

Ri and dynamics fi. We also note that (4.45) is meaningful with the same
interpretation when at most one fi is null, in which case we definitely remain
in the corresponding branch. In order to identify the limit optimal control
problem when ε→ 0 we start to define its controlled dynamics. In particular,
calling TR = R1 ∪ R2 ∪ R3, we have that if (x, i) ∈ TR, with x 6= 0 then
the dynamics is the usual fi(x, ai) with ai ∈ A. If instead x = 0, being
(0, i) = (0, j) for i, j ∈ {1, 2, 3}, i 6= j, we can either choose any dynamics
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makes us to stay inside a single branch Ri or we may rest at zero “formally”
using any combination

∑3
i=1 µifi(0, ai) with fi(0, ai) and µi as before. More

specifically, we define the set of controls in the junction point

A(0) = A0 ∪ Ã

with (note that in Ã the index i is also at disposal)

A0 = {(a1, a2, a3) ∈ A3| fi(0, ai) ≤ 0 with at most one equal to 0},

Ã = {(a, i) ∈ A× {1, 2, 3}| fi(0, a) ≥ 0 } .

Then, calling â the generic element of A(0) we define

f0(0, â) =

{
fi(0, a) if â ∈ Ã,
0 if â ∈ A0.

With the same arguments, if (x, i) ∈ TR and x 6= 0 then the running cost is
`i(x, ai) with ai ∈ A, otherwise we define

`0(0, â) =

{
`i(0, a) if â ∈ Ã,
µ1`1(0, a1) + µ2`2(0, a2) + µ3`3(0, a3) if â ∈ A0.

The quadruples f = (f1, f2, f3, f0) and ` = (`1, `2, `3, `0) then define the
threefold junction optimal control problem. In particular given an initial
state (x0, i0) ∈ TR and a measurable control α(t) ∈ A ∪A(0) we consider a
possible admissible trajectory in TR whose evolution, denoted by (x(t), i(t)),
is such that i(t) remains constant whenever x(t) > 0 and x(t) evolves with
dynamics described above. Let us note that given an initial state, the set of
measurable controls for which there exists a unique admissible trajectory is
not empty and we denote it by A(x0,i0). We then consider an infinite horizon
problem with a discount factor λ > 0 given by

J(x0, i0, α) =

∫ +∞

0
e−λt`(x(t), i(t), α(t))dt,

where ` is the running cost described above and the corresponding value
function is

V (x0, i0) = inf
α∈A(x0,i0)

J(x0, i0, α). (4.46)

In the sequel when x = 0 we will drop the index i. Note that if we remain in
x = 0 for all the time using controls in A0 the best cost is given by

u1,2,3(0) =
1

λ
inf
A0

{µ1`1(0, a1) + µ2`2(0, a2) + µ3`3(0, a3)} . (4.47)
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Remark 4.4.6. Note that in general A0 is not compact. However, if
(ak1, a

k
2, a

k
3) ∈ A0 is a minimizing sequence for u1,2,3(0) converging to (ā1, ā2, ā3) /∈

A0 we have that the quantity inside the brachet in (4.47) loses meaning but
we still have the inequality

lim
k→∞

{
µk1`1(0, ak1) + µk2`2(0, ak2) + µk3`3(0, ak3)

}
≥ min{`i(0, āi)|fi(0, āi) = 0}.

and hence we can always detect an optimal behavior among the ones making
as remaining at x = 0.

We now have all the ingredients to characterize the value function (4.46).

Theorem 4.4.7. Assume (4.11), (4.12) and (4.15). Then, V is continuous
on TR. Moreover when x = 0,

V (0) = min
{
u1,2,3(0), Vsc(1)(0), Vsc(2)(0), Vsc(3)(0)

}
, (4.48)

where Vsc(i)(0) is the value function at x = 0 of the state- constraint optimal
control problem on Ri. Therefore
i) if V (0) = u1,2,3(0), then V is the unique bounded and continuous solution
of the three problems (one for every i ∈ {1, 2, 3}){

λu+Hi(x, u
′) = 0 in int(Ri)

u(0) = u1,2,3(0)
(4.49)

ii) if V (0) = Vsc(i)(0), for some i = 1, 2, 3, then V satisfies: V = Vsc(i) in Ri,
and uniquely solves (for every j ∈ {1, 2, 3} \ {i}){

λu+Hj(x, u
′) = 0 in int(Rj)

u(0) = Vsc(i)(0).
(4.50)

Proof. The continuity of V come from by controllability (4.12) and
regularity (4.11) and (4.15) in a standard way. Moreover, (4.48) comes from
(4.46) because the four terms in the minimum are exactly the only allowed
behaviors (see also Remark 4.4.6). Finally (4.49) and (4.50) naturally follow
from the standard properties of the corresponding Dirichlet problems in the
viscosity sense.
The Theorem 4.4.7 plays a key role in the following result in which we
characterize the uniform limit of the value function Vε,ε,ε of the approximating
thermostatic problem.

Theorem 4.4.8. Assume (4.11), (4.12) and (4.15). The value function V
(4.46) (also characterizes by Theorem 4.4.7) satisfies

V (x, i) = lim
ε→0

Vε,ε,ε(x, i) ∀ (x, i) ∈ Ri, i = 1, 2, 3. (4.51)

where Vε,ε,ε is the value function of the approximating thermostatic prob-
lem (4.44) with uniform thresholds (ε, ε, ε), and the convergence is uniform.
Moreover, when x = 0 the limit is independent from i = 1, 2, 3.
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Proof. We first prove that (4.51) holds for x = 0 (the junction point).
The fact that the limit (4.51), whenever it exists, is independent from
i when x = 0 comes from the controllability hypothesis (4.12) because
|Vε,ε,ε(0, i) − Vε,ε,ε(0, j)| is infinitesimal as ε. In the sequel, we drop the
symbol i in the expression Vε,ε,ε(0, i).
We prove (4.51) at x = 0 for a convergent subsequence still denoted by
(ε, ε, ε) which exists because Vε,ε,ε are equi-bounded. The uniqueness of
the limit will give the whole (4.51). By contradiction, let us suppose that
V (0) < limVε,ε,ε(0). By (4.12), for every ε > 0, we have Vε,ε,ε(0) ≤ Vsc(i)(0)
for every i = 1, 2, 3. Hence, the absurd hypothesis implies V (0) = u1,2,3(0)
by (4.48). Let us suppose that (a1, a2, a3) ∈ A0 realizes the minimum in the
definition of u1,2,3(0). We then analyze some possible cases, the other ones
being similar.

1) f1(0, a1), f2(0, a2), f3(0, a3) < 0. Hence, using a suitably switching
control between those constant controls, we get Vε,ε,ε(0) is not larger then
u1,2,3(0) plus an infinitesimal quantity as ε→ 0, which is a contradiction.

2) f1(0, a1) = 0, f2(0, a2), f3(0, a3) < 0. In this case we arrive at R1 and
we stop with f1(0, a1) in x = 0. Hence, u1,2,3(0) = 1

λ`1(0, a1) cannot be lower
than Vsc(1)(0) which is a contradiction.

If instead not exists the minimizing sequence for (a1, a2, a3) (see Remark
4.4.6) then u1,2,3(0) cannot be better than a state constraints. Then as
before, we have again a contradiction.
Now assume limVε,ε,ε(0) < V (0). Let δ > 0 be such that, for ε small enough,
it is Vε,ε,ε(0) + δ < V (0). A measurable control α which almost realizes the
optimum (less than β > 0) for Vε,ε,ε(0) must be such that there are infinitely
many switching between all branches Rεi (i.e for every i, fi(x, αi) < 0 ∀ x ).
Indeed, if it is not the case, then, for at least one branch Rεi , the trajectory
definitely remains inside it. Hence, for small ε, Vε,ε,ε(0) is almost equal to
Vsc(i)(0), which is a contradiction. Note that we can limit to consider a
piecewise constant control that we call again α since Vε,ε,ε defined both with
measurable controls and with piecewise constant controls, satisfies the same
problem (4.44) which admits a unique solution. Then, in order to obtain
the optimum, on each branch Rεi let xi1, . . . , x

i
ni

be the points corresponding
to the discontinuity instants ti1, . . . , t

i
ni

of the control α and let aij be the

constant controls ∀i = 1, 2, 3, ∀ j = 1, . . . , ni − 1. On the assumption that
fi(0, a

i
j) < 0 ∀ i, j we consider the dynamics fi(0, a

i
j) and the running cost

`i(0, a
i
j) on every spatial interval [xij , x

i
j+1]. Now, for every i we consider

inf
a∈A

{
`i(0, a)

|fi(0, a)|
|fi(0, a) < 0

}
. (4.52)

If (4.52) is a minimum for every i obtained in (ā1, ā2, ā3) then in each Rεi we
use constant dynamics fi(0, āi) and constant running cost `i(0, āi). Therefore
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|J(·, i, α)− J(·, i, āi)| ≤ O(ε) and we get

Vε,ε,ε(0) ≥ J(·, i, α)− β ≥ J(·, i, āi)−O(ε)− β
≥ u1,2,3(0)−O(ε)− β ≥ V (0)−O(ε)− β, (4.53)

that is a contradiction. If, for some i, (4.52) is not a minimum then we can
consider the minimizing sequence aki that realizes the infimum less than O( 1

k ).
In particular aki → ãi ∈ A for k → +∞ and fi(0, a

k
i ) → fi(0, ãi) = 0 being

fi(0, a
k
i ) < 0. However, since the optimal strategy is to switch among the

branches, we cannot stop in the branch Rεi with dynamics fi(0, ãi) paying
the cost `i(0, ãi). Then, always taking into account that fi(0, a

i
j) < 0 we

have

Vε,ε,ε(0) ≥ J(·, i, α)− β ≥ J(·, i, aki )−O
(

1

k

)
−O(ε)− β

≥ u1,2,3(0)−O
(

1

k

)
−O(ε)− β ≥ V (0)−O

(
1

k

)
−O(ε)− β,

(4.54)

which is again a contradiction. Therefore at the end, Vε,ε,ε(0) cannot be less
than V (0)− δ by the definition of V (0). This is a contradiction. Hence we
have limVε,ε,ε(0) = V (0). Now note that the equations solved by Vε,ε,ε and by
V ((4.44) and (4.49), (4.50) respectively) are the same for all (x, i) ∈ int(Ri)
and the boundary datum converges to V (0). Hence, representing the solu-
tions as the value functions of the corresponding optimal control problems,
we get (4.51) and the uniform convergence.

Now we want to show that V (4.46) is a viscosity solution of a suitable
Hamilton-Jacobi problem, namely next problem (4.63). In order to do this,
we introduce the test functions for the differential equations on the branches
and give the definition of viscosity subsolution and supersolution of (4.63).

From now on we consider the control α piecewise constant as explained
in Therem 4.4.8 and we indicate it with α p.c..

Definition 4.4.9. Let ϕ : TR→ R be a function such that

ϕ|Ri := ϕi : Ri −→ R
(x, i) 7−→ ϕi(x, i) if x 6= 0, ∀i ∈ {1, 2, 3}
(0, i) 7−→ ϕi(0, i) = ϕj(0, j) ∀j ∈ {1, 2, 3} \ {i},

(4.55)

with ϕ ∈ C0(TR) and ϕi ∈ C1(Ri).

Definition 4.4.10. A continuous function u : TR→ R is a viscosity subso-
lution of (4.63) if for any (x, i) ∈ TR, any ϕ as in (4.55) such that u− ϕ
has a local maximum at (x, i) with respect to TR, then

λu(x, i) +Hi(x, ϕ
′
i(x, i)) ≤ 0 (x, i) ∈ int(Ri),

min
{
λu(0, i) +Hi(0, ϕ

′
i(0, i)), i = 1, 2, 3

}
≤ 0 x = 0.

(4.56)
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A continuous function u : TR→ R is a viscosity supersolution of (4.63) if
for any (x, i) ∈ TR, any ϕ as in (4.55) such that u−ϕ has a local minimum
at (x, i) with respect to TR, then

λu(x, i) +Hi(x, ϕ
′
i(x, i)) ≥ 0 x ∈ int(Ri),

max
{
λu(0, i) +Hi(0, ϕ

′
i(0, i)), i = 1, 2, 3

}
≥ 0 x = 0.

(4.57)

In particular note that if x = 0 then the local maximum/minimum (0, i) is
with respect to all the three branches and ϕ′i(0, i) is the right derivative on
the branch i, (ϕ′i)

+. Since (0, i) = (0, j) for i, j ∈ {1, 2, 3}, i 6= j, in the
sequel we drop the index i in the pair (0, i).

We will prove the following Theorem using the thermostatic approxima-
tion, namely considering the approximating value function Vε,ε,ε. Differently
from the twofold junction problem in which the index that identifies the
branch is included in the sign of x and the test function ϕ ∈ C1(R), here,
we need to extend the test function ϕi in (4.55) from Ri to Rεi . To do that
we distinguish the case in which V − ϕ has a local maximum point at x = 0
from that where x = 0 is a local minimum point, both respect to all three
branches.
If V − ϕ has a local maximum point at x = 0 then we suppose that

ϕ′1(0)+ ≤ ϕ′2(0)+ ≤ ϕ′3(0)+. (4.58)

Our switching sequence is 1 → 2 → 3 → 1 which is coherent with such an
order. If the order is different, then we consider a different switching sequence
in the approximating thermostatic ε-problem, still coherent with the order.
This is always possible because the limit function V is independent from the
switching order of the chosen approximating problem. Then we define

ϕ̃i : [−ε,+∞[×{i} −→ R,

ϕ̃i =

{
ϕi(x, i) x ≥ 0

ϕis(−x, is) x < 0

(4.59)

for i = 1, 2 and with is the next transition to i. If i = 3 we construct ϕ̃3 in
two different way:

� if ϕ′1(0)+ = ϕ′3(0)+ then

ϕ̃3 =

{
ϕ3(x, 3) x ≥ 0,

ϕ1(−x, 1) x < 0.
(4.60)

� if ϕ′1(0)+ < ϕ′3(0)+ then

ϕ̃3 =

{
ϕ3(x, 3) x ≥ 0,

ϕ3(−x, 3) x < 0.
(4.61)
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Note that, by the assumption (4.58), the first case gives, ϕ′1(0)+ = ϕ′2(0)+ =
ϕ′3(0)+, and that the second case gives, at least for small ε, ϕ̃1(ε, 1) =
ϕ1(ε, 1) ≤ ϕ3(ε, 3) = ϕ̃3(−ε, 3). Finally note that in both cases we then have
ϕ̃1(ε, 1) ≤ ϕ̃3(−ε, 3).
If instead V − ϕ has a local minimum point at x = 0 then we suppose that

ϕ′1(0)+ ≥ ϕ′2(0)+ ≥ ϕ′3(0)+, (4.62)

and that the switching order is the coherent one, as above. In this case we
construct ϕ̃3 as in (4.59), (4.60), (4.61) (with the only difference of the case
ϕ′1(0)+ < ϕ′3(0)+ replaced by ϕ′1(0)+ > ϕ′3(0)+). In this case, for at least
small ε it is ϕ̃1(ε, 1) ≥ ϕ̃3(−ε, 3).

Note that the function ϕ̃i is not differentiable in x = 0, hence we cannot write
a unique HJB equation for the function Vε,ε,ε in the branch Rεi . In order to
overcome the problem of discontinuity of ϕ̃′i in x = 0 we interpret the behav-
ior of the dynamic fi(x, ai) < 0 for x ∈]− ε, 0[ as entering in the next branch
of the switching rule. More precisely, considering for example the branches
Rε1 and Rε2, we define the function Vε,ε,ε(x, 1) =: Ṽε,ε,ε(−x, 2), the dynamics
−f1(x, a) =: f̃2(−x, a) and the relative running costs `1(x, a) =: ˜̀

2(−x, a)
for x ∈] − ε, 0[. In this way, for any x ∈] − ε, 0[ a local maximum point of
Vε,ε,ε(·, 1)− ϕ̃1(·, 1), we get that Vε,ε,ε(·, 1) satisfies

λṼε,ε,ε(−x, 2) + sup
a∈A

{
−f̃2(−x, a)ϕ2(−x, 2)′ − ˜̀2(−x, a)

}
≤ 0.

which is equivalent, for the considerations before, to

λVε,ε,ε(x, 1) + sup
a∈A

{
−f1(x, a)ϕ̃1(x, 1)′ − `1(x, a)

}
≤ 0,

The same ideas can be applied to the other pairs of branches Rε2 with Rε3
and Rε3 with Rε1.

Theorem 4.4.11. Assume (4.11), (4.12) and (4.15). The value function V
(4.46) is a viscosity solution of the Hamilton-Jacobi-Bellman problem

λV +H1(x,∇V ) = 0 in int(R1)

λV +H2(x,∇V ) = 0 in int(R2)

λV +H3(x,∇V ) = 0 in int(R3)

min {λV +H1, λV +H2, λV +H3} ≤ 0 on x = 0

max {λV +H1, λV +H2, λV +H3} ≥ 0 on x = 0

(4.63)

Proof. From Proposition 4.4.4, Theorem 4.4.8 and by classical convergence
result, we get

λV (x, 1) + sup
a∈A

{
−f1(x, a)(V (x, 1))′ − `1(x, a)

}
= 0 in int(R1),
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and similarly for the equations in int(R2) and int(R3).
We now prove the fourth equation in (4.63). Let ϕ as given in (4.55) such
that V −ϕ has a strict relative maximum at x = 0 with respect all the three
branches and consider the assumption (4.58). Let us note that, for every i it
is

λV (0) + sup
a∈A,fi(0,a)≥0

{−fi(0, a)ϕ′+i (0)− `i(0, a)} ≤ 0. (4.64)

Indeed, for every ε > 0, and for every t > 0, we have (Vε,ε,ε solves DPP, see
Proposition 4.4.1)

Vε,ε,ε(0, i) ≤ inf
α p.c., fi(0,α)≥0

(∫ t

0
e−λs`i(x(s), α(s))ds+ e−λtVε,ε,ε(x(t), i)

)
,

hence, passing to the limit ε→ 0+,

V (0) ≤ inf
α p.c., fi(0,α)≥0

(∫ t

0
e−λs`i(x(s), α(s))ds+ e−λtV (x(t), i)

)
,

and finally we get the desired inequality (4.64), being x = 0 a local maximum
for V − ϕi with respect to Ri.

Hence, we only need to prove that, with our hypotheses, for at least one
i, we get

λV (0) + sup
a∈A,fi(0,a)≤0

{−fi(0, a)ϕ′i(0)+ − `i(0, a)} ≤ 0. (4.65)

For each i let (xiε, i) be a sequence of local maximum points for Vε,ε,ε − ϕ̃i
with respect to Rεi convergent to (0, i), with ϕ̃i as in (4.59). For each ε, for
at least one branch i we may assume xiε 6= −ε. Indeed, if it is not the case,
recalling that by controllability follows that Vε,ε,ε(−ε, i) ≤ Vε,ε,ε(ε, is), we
get the contradiction

Vε,ε,ε(ε, 1)− ϕ̃1(ε, 1) < Vε,ε,ε(−ε, 1)− ϕ̃1(−ε, 1) ≤
Vε,ε,ε(ε, 2)− ϕ̃2(ε, 2) < Vε,ε,ε(−ε, 2)− ϕ̃2(−ε, 2) ≤
Vε,ε,ε(ε, 3)− ϕ̃3(ε, 3) < Vε,ε,ε(−ε, 3)− ϕ̃3(−ε, 3) ≤
Vε,ε,ε(ε, 1)− ϕ̃1(ε, 1).

Now, let i be such that the correspondent xiε 6= −ε for every ε (or at
least for a subsequence). If xiε > 0 for all ε, in the limit we get

λV (0) + sup
a∈A

{
−fi(0, a)ϕ′i(0)+ − `i(0, a)

}
≤ 0,

and we get the conclusion.
If xiε ∈]− ε, 0[, in the limit we get

λV (0) + sup
a∈A

{
−fi(0, a)ϕ̃′i(0)− − `i(0, a)

}
≤ 0,
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and in particular

λV (0) + sup
a∈A,fi(0,a)≤0

{
−fi(0, a)ϕ̃′i(0)− − `i(0, a)

}
≤ 0,

where ϕ̃′i(0)− is the left derivative of ϕ̃i at x = 0. Now, if we are in the first
case (all the right derivatives coincide) then we have ϕ̃′i(0)− = ϕ′is(0)+ =
ϕ′i(0)+, and hence we get (4.65). If instead ϕ′1(0)+ < ϕ′3(0)+ then if i = 1
then is = 2, hence, by our hypotheses, in the inequality above it is

−fi(0, a)ϕ̃′i(0)− = −fi(0, a)ϕ′is(0)+ ≥ −fi(0, a)ϕ′i(0)+,

and we conclude. Same arguments if i = 2 and is = 3. If instead i = 3, then
ϕ̃3(0)− = ϕ′3(0)+ and we conclude.

Finally, if xiε = 0, then we still get

λV (0) + sup
a∈A,fi(0,a)≤0

{
−fi(0, a)ϕ̃′i(0)− − `i(0, a)

}
≤ 0,

and we conclude as before, i.e. studying the two cases as above.

Now we suppose V −ϕ have a local minimum with respect to TR at (0, i)
and consider (4.62). We have to prove that, for at least one i, we have

λV (0) + sup
a∈A
{−fi(0, a)ϕ′i(0)+ − `i(0, a)} ≥ 0. (4.66)

If for some i and for ε→ 0+, Vε,ε,ε(·, i) coincides with the state-constraint
value function on Rεi , then Vε,ε,ε(·, i) and V (·, i) coincides on Ri and hence
V satisfies the same HJB equation as Vε,ε,ε, which is (4.66).

Hence we suppose that no Vε,ε,ε(·, i) coincide with the corresponding
state-constraint value function.

For each i let (xiε, i) be a sequence of local minimum points for Vε,ε,ε− ϕ̃i
with respect to Riε, which converges to x = 0. In this case we may assume
that, for a fixed i, the sequence is such that either xiε 6= −ε or xiε = −ε but
the HJB equation satisfied by Vε,ε,ε has the right sign (≥ 0). Indeed, if it
is not the case (i.e. xiε = −ε and HJB has the wrong sign), we must have
Vε,ε,ε(−ε, i) = Vε,ε,ε(ε, is), and hence we get the following contradiction

Vε,ε,ε(ε, 1)− ϕ̃1(ε, 1) > Vε,ε,ε(−ε, 1)− ϕ̃1(−ε, 1) =
Vε,ε,ε(ε, 2)− ϕ̃2(ε, 2) > Vε,ε,ε(−ε, 2)− ϕ̃2(−ε, 2) =
Vε,ε,ε(ε, 3)− ϕ̃3(ε, 3) > Vε,ε,ε(−ε, 3)− ϕ̃3(−ε, 3) ≥
Vε,ε,ε(ε, 1)− ϕ̃1(ε, 1).

If xiε > 0, in the limit we exactly get

λV (0) + sup
a∈A
{−fi(0, a)ϕ′i(0)+ − `i(0, a)} ≥ 0.
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If xiε ∈ [−ε, 0[ in the limit we get

λV (0) + sup
a∈A
{−fi(0, a)ϕ̃′i(0)− − `i(0, a)} ≥ 0.

If all the right derivatives at x = 0 of ϕi(0) coincide, then we conclude
because ϕ̃′i(0)− = ϕ′is(0)+ = ϕ′i(0)+. Otherwise, if i = 3 then we have
ϕ̃′i(0)− = ϕ′3(0)+ and we conclude; if i = 1 or i = 2, by the hypotheses on
Vε,ε,ε(·, i) not coincident with the state-constraint value function, we get that
the supremum above is approximated by controls such that fi(0, a) ≤ 0,
which means

−fi(0, a)ϕ̃′i(0)− = −fi(0, a)ϕ̃is(0)+ ≤ −fi(0, a)ϕi(0)+

and we conclude.

If xiε = 0, then in the limit we get (still recalling that Vε,ε,ε(·, i) is not the
state-constraint value function)

λV (0) + sup
a∈A,fi(0,a)≤0

{−fi(0, a)ϕ̃′i(0)− − `i(0, a)} ≥ 0

and we conclude as before.
As we have obtain a result of maximal viscosity subsolution for the twofold-
junction, now we want to prove that V (4.46) is the maximal subsolution of
(4.63).
Let us assume that ∀ ε > 0 small enough, the optimal strategy for the
approximating problem ε, starting by any (x, i) with x ∈ [−ε, ε], is to run
through infinitely many switches between the three branches (i.e. no state-
constraint behavior is optimal). Let then µ1, µ2, µ3 be as in (4.45) and
(a1, a2, a3) ∈ A0 that realize the minimum in (4.47) such that

V (0) = u1,2,3(0) =
1

λ
{µ1`1(0, a1) + µ2`2(0, a2) + µ3`3(0, a3)}. (4.67)

For every x ∈ [0, ε], we define the following functions

V̄ ε(x, 1) =

∫ x
|f1(0,a1)|

0
e−λt`1(0, a1)dt+ e

−λx
|f1(0,a1)|u1,2,3(0),

V̄ ε(x, 2) =

∫ x
|f2(0,a2)|

0
e−λt`2(0, a2)dt+ e

−λx
|f2(0,a2)|u1,2,3(0)

V̄ ε(x, 3) =

∫ x
|f3(0,a3)|

0
e−λt`3(0, a3)dt+ e

−λx
|f3(0,a3)|u1,2,3(0),

(4.68)

where the upper extremal of the integration is the reaching time of the
point 0 in the corresponding branch starting from x ∈ [0, ε]. Note that, for
x ∈ [0, ε], Vε,ε,ε,(x, i) is not larger then V̄ ε(x, i) plus an infinitesimal quantity
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as ε→ 0. The functions in (4.68) are differentiable in [0, ε] by the constancy
of dynamics and running costs. A direct computation gives

V̄ ε(x, 1)′ =
`1(0, a1)

|f1(0, a1)|
e

−λx
|f1(0,a1)| − λe

−λx
|f1(0,a1)|

|f1(0, a1)|
u1,2,3(0),

V̄ ε(x, 2)′ =
`2(0, a2)

|f2(0, a2)|
e

−λx
|f2(0,a2)| − λe

−λx
|f2(0,a2)|

|f2(0, a2)|
u1,2,3(0),

V̄ ε(x, 3)′ =
`3(0, a3)

|f3(0, a3)|
e

−λx
|f3(0,a3)| − λe

−λx
|f3(0,a3)|

|f3(0, a3)|
u1,2,3(0),

and then for ε→ 0

V̄ ε(x, 1)′ −→ (1− µ1)`1(0, a1)− µ2`2(0, a2)− µ3`3(0, a3)

|f1(0, a1)|
,

V̄ ε(x, 2)′ −→ −µ1`1(0, a1) + (1− µ2)`2(0, a2)− µ3`3(0, a3)

|f2(0, a2)|
,

V̄ ε(x, 3)′ −→ −µ1`1(0, a1)− µ2`2(0, a2) + (1− µ3)`3(0, a3)

|f3(0, a3)|
.

Moreover by (4.68) we have for every i = 1, 2, 3

λV̄ ε(x, i)− fi(x, ai)V̄ ε(x, i)′ − `i(x, ai) ≥ −O(ε), (4.69)

in x ∈ [0, ε]. Note that in (4.69) when x = 0 we use the right derivative of
V̄ ε(x, i) and V̄ ε(0, i) = u1,2,3(0) for every i. Furthermore, by differentiability
of V̄ ε(x, i) and recalling the sign of fi(0, ai) we then get for every i

λV̄ ε(x, i) +Hi(x, q) ≥ −O(ε),

for every x ∈ [0, ε] and for every q subgradient in x of V̄ ε(x, i).
We now define on TR ∩

(
∪3
i=1[0, ε]× {i}

)
the function

V̄ (x) =

{
V̄ ε(x, i) if (x, i) ∈ int(Ri),
u1,2,3(x) if x = 0.

(4.70)

which is in C1([0, ε]) and that we extend to whole TR maintaining its differ-
entiability. This function will be useful in the comparison result (Theorem
4.4.13) as well as the following

Theorem 4.4.12. Let u : [0, 1] → R be a continuous function and exists
δ > 0 such that for every x ∈ [0, 1] in which the superdifferential (see
Definition 1.1.1) D+u(x) 6= ∅ one has that D+u(x) ⊆]−∞,−δ]. Then u is
decreasing.
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Proof. Fix ε > 0 such that |u(0) − u(x)| ≤ δ
2 for every x ∈ [0, ε]. We

consider the following dynamical system{
x′(t) = −1 t > 0,

x(0) = x ∈ [0, ε]
(4.71)

and associate to this exit time optimal control problem. Given A = [−1, 1]
the set of constant control we take a running cost `(x, a) = u(0) and an
exit cost g(x) = u(0). The problem is given by the minimization, over all
measurable controls α ∈ A of the cost functional

J(x, α) =

∫ tx(α)

0
e−λtu(0) + e−λtx(α)u(0) (4.72)

where tx(α) is the reaching time of the point x = 0. As we can see the cost J
is independent from the control α hence taking λ = 1 we have that (4.72) is
equal to u(0). This implies that the associated value function V (x) is equal
to u(0) for every x ∈ [0, ε]. Furthermore V (x) is a solution of

V (x) + V ′(x)− u(0) = 0 (4.73)

and also a supersolution of

V (x) +H(x, q) ≥ 0,

(with H(x, q) = q − u(0)), for every x ∈]0, ε] and for every q subgradient
in x with respect to [0, ε] of V ′(x). Moreover, for every p ∈ D+u(x) 6= ∅
we have that u(x) + p ≤ 0 for all x ∈ [0, ε] and that u is a subsolution
of u(x) + H(x, p) ≤ 0 for every x ∈]0, ε[. These considerations imply that
V ≥ u in [0, ε] and that u(0) ≥ u(x) ∀x ∈ [0, ε]. This result holds for every
[a, b] ⊆ [0, 1] small enough.

Comparison result

Theorem 4.4.13. Let u be a bounded and continuous subsolution of (4.63).
Then u ≤ V in TR.

Proof. We can assume to be in the settings above for which (4.67) holds.
Indeed, otherwise in at least one branch V coincides with the corresponding
state-constraint value function which is greater than any subsolution (see
Soner [92]). We then also have u ≤ V on the other branches. By contradiction
we suppose that sup(x,i)∈TR(u− V )(x, i) > δ > 0. If

∃r > 0|∀δ′ > 0 ∃ (x, i) ∈ [r,+∞[×{i} : sup
(x,i)∈TR

(
(u−V )(x, i)−(u−V )(x, i)

)
≤ δ,

then, by Theorem 4.4.11 and known comparison techniques we get a contra-
diction because, in ]r,+∞[×{i}, V is a supersolution and u is a subsolution
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of the same HJB. Hence we may restrict to the case where u − V has the
maximum with respect to r in x = 0. Since V̄ ε(x, i) converges to V (0), with
V̄ ε defined in (4.68), then for small ε,

u(zi, i)− V̄ ε(zi, i) = max
[0,ε]×{i}

(u− V̄ ε) >
δ

2
> 0. (4.74)

Since u(x, i) is a continuous subsolution of (4.63) then satisfies

λu(x, i)− fi(x, ai) · p− `i(x, ai) ≤ 0 ∀p ∈ D+u(x, i) 6= ∅, (4.75)

where D+u(x, i) is the set of super-differentials of u at a point (x, i). Now,
taking into account (4.69) and (4.74) we have that

p− V̄ ε(x, i)′ ≤ −λδ
2|fi(x, ai)|

+O(ε), (4.76)

whence, for ε < 1
2

∣∣∣ λδ
2|fi(x,ai)|

∣∣∣, we get that p− V̄ ε(x, i)′ ≤ −δ̄, for a suitable

δ̄ > 0 regardless to x. Hence u(x, i) − V̄ ε(x, i) is decreasing and, taking ε
as above, has maximum point in x = 0. By the previous consideration we
get that V̄ (x) (4.70) is an admissible test function and that u − V̄ has a
local maximum point in x = 0 for suitable small ε > 0. Hence, being u a
subsolution, exists ī ∈ {1, 2, 3} such that

λu(0) +Hī

(
0,
(
V̄ ε(0, ī)′

))
≤ 0. (4.77)

Moreover, by(4.68), we have

λV̄ ε(0, ī) +Hī

(
0,
(
V̄ ε(0, ī)′

))
≥ −O(ε). (4.78)

Subtracting (4.78) to (4.77) we get the contradiction to (4.74) and then, for
ε→ 0, u ≤ V in TR.

4.4.2 Non-uniform switching thresholds

In this section we suppose that the three thresholds of the three-thermostatic
optimal control problem are not the same for all Rεi . This imply that the
time spent in a single branch Rεi to reach the relative threshold depends on
the value of εi. Accordingly to this, the convexification parameters µ̄1, µ̄2, µ̄3

are such that if at limit for (ε1, ε2, ε3)→ (0+, 0+, 0+) the optimal behavior is
to switch only between two branch, Ri and Rj for i, j ∈ {1, 2, 3}, i 6= j, then
µ̄i + µ̄j = 1. If instead the optimal behavior is to switch among all three
branches Ri then µ̄i = µi as in (4.45). To identify the limit optimal control
problem when (ε1, ε2, ε3)→ (0+, 0+, 0+) we start to the define the controlled
dynamics. Using the same notation of the last section, if (x, i) ∈ TR with
x 6= 0 then the dynamics is the usual fi(x, ai) with ai ∈ A. If instead
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x = 0, being (0, i) = (0, j) for i, j ∈ {1, 2, 3}, i 6= j, we can either choose any
dynamics makes us to stay inside a single branch Ri or we may rest at zero
using any combination

∑3
i=1 µ̄ifi(0, ai) with fi(0, ai) and µ̄i as before. In

detail, the set of controls in the junction point is

A(0) = A ∪ Ã

with

A = {(a1, a2, a3, σ, µ̄1, µ̄2, µ̄3) ∈ A3 × {12, 13, 23, 123} × [0, 1]3|
σ = ij ⇒ µ̄i + µ̄j = 1, fi(0, ai) ≤ 0;

σ = 123⇒ µ̄i = µi, fi(0, ai) ≤ 0 with at most one equal to 0},

Ã = {(a, i) ∈ A× {1, 2, 3}| fi(0, a) ≥ 0} .

Note that in Ã the index i is at disposal, while in A, the notation ij means
that the switching is only between Ri and Rj (as well as 123 means that the
switching performs among all the three branches).
Then, as in the last section, calling â the generic element of A(0) we define

f0(0, â) =

{
fi(0, a) if â ∈ Ã,
0 if â ∈ A.

With the same arguments, if (x, i) ∈ TR and x 6= 0 then the running cost is
`i(x, ai) with ai ∈ A, otherwise we define

`0(0, â) =



`i(0, a) if â ∈ Ã,
µ̄1`1(0, a1) + µ̄2`2(0, a2) if σ = 12 and â ∈ A,
µ̄1`1(0, a1) + µ̄3`3(0, a3) if σ = 13 and â ∈ A,
µ̄2`2(0, a2) + µ̄3`3(0, a3) if σ = 23 and â ∈ A
µ1`1(0, a1) + µ2`2(0, a2) + µ3`3(0, a3) if σ = 123 and â ∈ A.

The quadruples f = (f1, f2, f3, f0) and ` = (`1, `2, `3, `0) then define the
threefold junction optimal control problem. The same considerations of the
case with uniform switching thresholds hold, hence, denoting by A(x0,i0)

the set of measurable controls for which there exist a unique admissible
trajectory, we consider an infinite horizon problem with a discount factor
λ > 0 given by

J(x0, i0, α) =

∫ +∞

0
e−λt`(x(t), i(t), α(t))dt

where ` is the running cost described above. The corresponding value function
is

V ∗(x0, i0) = inf
α∈A(x0,i0)

J(x0, i0, α). (4.79)
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Observe that if we stay in x = 0 for all time using controls in A the cost is

u0(0) =
1

λ
min
A

3∑
i=1

µ̄i`i(0, ai) =
1

λ
min {u1,2(0), u1,3(0), u2,3(0), u1,2,3(0)}

where u1,2(0) is the minimum over A of the cost `0 when σ = 12, u1,3(0) is
the minimum over A of the cost `0 when σ = 13 and similarly the others.

Theorem 4.4.14. Assume (4.11), (4.12) and (4.15). The value function
V ∗ (4.79) characterized as in Theorem (4.4.7), but with u0(0) in place of
u1,2,3(0), namely

V ∗(0) = min
{
u0(0), Vsc(1)(0), Vsc(2)(0), Vsc(3)(0)

}
, (4.80)

satisfies

V ∗(x, i) = lim inf
(ε1,ε2,ε3)→(0+,0+,0+)

Vε1,ε2,ε3(x, i) ∀ (x, i) ∈ Ri, i = 1, 2, 3, (4.81)

where Vε1,ε2,ε3 is the value function of the approximating thermostatic prob-
lem (4.44), with non uniform thresholds (ε1, ε2, ε3), and the convergence is
uniform. Moreover, when x = 0, the limit is independent from i = 1, 2, 3.

Proof. We start to prove that (4.81) holds for x = 0. The independence
from i of the inferior limit (4.81) comes from the controllability (4.12) because
|Vε1,ε2,ε3(0, i)−Vε1,ε2,ε3(0, j)| is infinitesimal as max {ε1, ε2, ε3}. In the sequel,
we omit the symbol i in the expression Vε1,ε2,ε3(0, i).
By contradiction, let us suppose that V ∗(0) < lim inf Vε1,ε2,ε3(0). By (4.12),
for every ε1, ε2, ε3 > 0, we have Vε1,ε2,ε3(0) ≤ Vsc(i)(0) for every i = 1, 2, 3.

Hence, it implies V ∗(0) = u0(0). Let (a1, a2, a3, σ, µ̄1, µ̄2, µ̄3) ∈ A realize the
minimum in the definition of u0(0).
We analyze some possible cases, the other ones being similar.

1) f1(0, a1), f2(0, a2), f3(0, a3) < 0 and σ = 123. Hence, considering the
triple (ε1, ε2, ε3) = (ε, ε, ε) and using a suitably switching control between
those constants controls, we get Vε,ε,ε(0) is not larger than u1,2,3(0) plus an
infinitesimal quantity as ε→ 0, which is a contradiction.

2) f1(0, a1), f2(0, a2), f3(0, a3) < 0 and σ = 23. Here, taking the triple
(ε1, ε2, ε3) = (ε2, ε, ε), we get Vε,ε,ε(0) is not larger than u2,3(0) plus an
infinitesimal quantity as ε→ 0, which is a contradiction.

3) f1(0, a1) = 0, f2(0, a2), f3(0, a3) < 0. In this setting we can study two
sub-cases according to the value of σ.

3.1) If σ = 123 we consider the triple (ε1, ε2, ε3) = (ε, ε, ε), we arrive in
R1 and we stop there. Therefore, u1,2,3(0) = 1

λ`1(0, a1) cannot be lower than
Vsc(1)(0) that is a contradiction.

3.2) If σ = 23 we consider the triple (ε1, ε2, ε3) = (ε2, ε, ε) and argue as
in the case 2).



62 Chapter 4. Optimal control on networks

We remark that if σ = 12 or 13 then considering (ε, ε, ε2) and (ε, ε2, ε)
respectively we can conclude as in 3.1).

4) f1(0, a1), f2(0, a2) = 0, f3(0, a3) < 0. Also in this case we have different
sub-cases according to the value of σ.

4.1) If σ = 123 we take the triple (ε, ε, ε) and conclude using Remark
4.4.6 since u1,2,3(0) cannot be lower than a state constraints. Then as before
we have again a contradiction.

4.2) If σ = 23 taking the triple (ε2, ε, ε) we get u2,3(0) = 1
λ`2(0, a2) that

is no lower thanVsc(2)(0), that is a contradiction.
Now we assume lim inf Vε1,ε2,ε3(0) < V ∗(0). Let δ > 0 be such that, for

arbitrarily small suitably chosen (ε1, ε2, ε3) , it is Vε1,ε2,ε3(0) + δ < V ∗(0). A
piecewise constant control α which almost realizes the optimum (less then β)
for Vε1,ε2,ε3(0) must be such that there are infinitely many switching between
all branches Rε1 , Rε2 , Rε3 . Indeed, if it is not the case, then, for a least one
branch, say Rεi , the trajectory definitely remains inside it. Hence, for small
(ε1, ε2, ε3), Vε1,ε2,ε3(0) is almost equal to Vsc(i)(0), which is a contradiction.
Then, in order to prove that Vε1,ε2,ε3(0) cannot be less than V ∗(0) − δ we
proceed as in the Theorem 4.4.8 considering O(max{ε1, ε2, ε3}) and u0(0)
instead of O(ε) and u1,2,3(0) respectively.
In conclusion we have lim inf Vε1,ε2,ε3(0) = V ∗(0). Note that the equations
solved by Vε1,ε2,ε3 and by V ∗(0)((4.44) and (4.49), (4.50) suitably modified)
are the same in the interior of Ri and the boundary datum converges to V ∗(0).
Then, representing the solutions as the value functions of the corresponding
optimal control problems, we get (4.81) and the uniform convergence.

Remark 4.4.15. As we show in the proof of Theorem 4.4.14, we can restrict
us to consider as thresholds:

(ε, ε, ε), (ε, ε, ε2), (ε, ε2, ε), (ε2, ε, ε); (4.82)

hence, given the dynamics f1, f2, f3 and the running costs `1, `2, `3 satisfying
the controllability assumptions there exists a unique choice of (4.82) such
that

V ∗(x, i) = lim inf
(ε1,ε2,ε3)→(0,0,0)

Vε1,ε2,ε3(x, i) = lim
(·,·,·)→(0,0,0)

V(·,·,·)(x, i) ∀ (x, i) ∈ Ri.

Note that for this problem we do not consider, for example, triples of thresh-
olds of the kind (c1ε, c2ε, c3ε), c1, c2, c3 ∈ R because they do not bring new
possible optimal behaviors. Moreover, we have no take into account the triple
of thresholds (ε2, ε2, ε) and its permutations because at the limit this would
means to stay in x = 0 without using the balance of the dynamics, which is
physically meaningless.

Remark 4.4.16. When the optimal strategy is to switch among all branches
we have that `i(0, ai) = `j(0, j) ∀i, j ∈ {1, 2, 3}, i 6= j and V ∗(x, i) = V (x, i),
where V is the value function (4.46) of the threefold junction problem with
uniform switching thresholds.
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Now, we suppose that the optimal strategy is to switch only between
two branches, for example R1 and R2. In order to prove the following
result we introduce a test function ψ : TR → R such that ψ ∈ C1(TR)
and on each branch ψi : Ri → R is such that ψi(x, i) = ψj(x, j) for every
i, j ∈ {1, 2, 3}, i 6= j when x = 0. Moreover, we give the following definition.

Definition 4.4.17. A continuous function u : TR→ R is a viscosity subso-
lution of (4.85) if for any (x, i) ∈ TR, any ψ ∈ C1(TR) such that u− ψ has
a local maximum at (x, i), then

λu(x, i) +Hi(x, ψ
′
i(x, i)) ≤ 0 (x, i) ∈ int(Ri),

min
{
λu(0, i) +Hi(0, ψ

′
i(0, i)), i = 1, 2, 3

}
≤ 0 x = 0;

(4.83)

A continuous function u : TR→ R is a viscosity supersolution of (4.85) if
for any (x, i) ∈ TR, any ψ ∈ C1(TR) such that u− ψ has a local minimum
at (x, i), then

λu(x, i) +Hi(x, ψ
′
i(x, i)) ≥ 0 (x, i) ∈ int(Ri),

max
{
λu(0, i) +Hi(0, ψ

′
i(0, i)), i = 1, 2, 3

}
≥ 0 x = 0.

(4.84)

In particular if x = 0 then the local maximum/minimum may be considered
with respect to two of the three branches only.

We point out the difference with Definition (4.4.10) where, for x = 0, the
maximum/minimum must be with respect to all three branches.

Theorem 4.4.18. Assume (4.11), (4.12) and (4.15). The function V ∗ is a
viscosity solution and the maximal subsolution of the HJB problem

λV +H1(x,∇V ) = 0 in int(R1),

λV +H2(x,∇V ) = 0 in int(R2),

λV +H3(x,∇V ) = 0 in int(R3),

min {λV +H1, λV +H2, λV +H3} ≤ 0 on x = 0,

max {λV +H1, λV +H2, λV +H3} ≥ 0 on x = 0.

(4.85)

Proof. By Proposition 4.4.4 and Theorem 4.4.14 we have that V ∗ satisfies
the first three equations of (4.85). Since we are considering the function
V ∗ = lim(ε,ε,ε2)→(0,0,0) Vε,ε,ε2 = V1,2, if V ∗ − ψ assumes his maximum or
minimum in x = 0 with respect to R1 ∪ R2, then by the twofold junction
problem we have that V ∗ is a viscosity solution and the maximal subsolution
of 

λV +H1(x,∇V ) = 0 in int(R1),

λV +H2(x,∇V ) = 0 in int(R2),

min {λV +H1, λV +H2} ≤ 0 on x = 0,

max {λV +H1, λV +H2} ≥ 0 on x = 0.
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If instead V ∗−ψ has a maximum point at x = 0 with respect to R1 ∪R3 we
prove that the min {λV +H1, λV +H2} is still lower or equal to zero. We
can consider two cases:
1) If the optimal behavior consists to reach R2 and stay there, namely
V ∗(x, 2) = Vsc(2)(x), and supposing that the cost to pay in R1 to reach the
junction is lower than the one in R3, we have that V ∗ = V1,2 on R1 ∪ R2.
Now, since (by assumption) that V ∗−ψ has maximum point at x = 0 locally
with respect to the branch R3, we have that ψ3(x, 3) ≥ V ∗(x, 3) for x near
to zero. The optimality of Vsc(2) implies that V ∗(·, 3) ≥ Vsc(2)(·) = V ∗(·, 2)
and hence ψ3(·, 3) ≥ V ∗(·, 2). Then gluing ψ3 over R2 we obtain that
V ∗ − ψ3 has a maximum point in x = 0 locally with respect to R2. Hence,
min {λV +H1, λV +H2} ≤ 0.
2) If the optimal strategy is to switch between R1 and R2 and the maximum
point at x = 0 is still with respect to R1 ∪R3 we conclude as before because
ψ3(·, 3) ≥ V ∗(·, 2).
If V ∗ = V1,2 and V ∗−ψ has a maximum point at x = 0 with respect to R2∪R3,
with similar argument as before we conclude that min {λV +H1, λV +H2} ≤
0.
In conclusion we have shown that the following condition hold: exists a
couple of indexes (̄i, j̄), fixed a priori, such that V ∗ = Vī,j̄ on Rī ∪ Rj̄ and
that for all ψ ∈ C1(TR) such that V ∗ − ψ has the maximum point at x = 0
with respect to any couple of edges, min{λV + Hī, λV + Hj̄} ≤ 0. From
the latter condition follows that min{λV + H1, λV + H2, λV + H3} ≤ 0.
Proceeding as before also for the fifth equation of (4.85) we have that V ∗

is a viscosity solution of (4.85). Now, let u be a continuous subsolution of
(4.85) satisfying the above condition with the same couple of indexes (̄i, j̄)
that we suppose to be (1, 2). Then

V ∗ ≥ u on R1 ∪R2 =⇒ V ∗(0) ≥ u(0). (4.86)

Furthermore V ∗ is a supersolution of the third equation of (4.85), u is a
subsolution of the same equation and hence, by (4.86), follows V ∗ ≥ u on R3.
We can conclude that V ∗ ≥ u on TR and hence it is the maximal subsolution
of (4.85).
A similar result holds also considering V ∗ = lim(ε2,ε,ε)→(0,0,0) Vε2,ε,ε = V2,3 or
V ∗ = lim(ε,ε2,ε)→(0,0,0) Vε,ε2,ε = V1,3.

4.5 A more general problem

In this section we consider a problem with two threefold junction points
given by a segment BC and four half-lines (see Figure 4.4).
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Figure 4.4: The threefold junctions and its thermostatic-type approximation.

We have five labels {1, 2, 3, 4, 5}, one for every half line R1, . . . , R5 that
we identify with

Ri =


[0,+∞[×{i} if i = 1, 2,

[0, k]× {i} if i = 3,

[k,+∞[×{i} if i = 4, 5.

We also consider the controlled dynamics fi : Ri ×A→ R, the running costs
`i : Ri ×A→ [0,+∞[ and the following condition
Controllability: For every i ∈ {1, 2, 3}

∃ a−i , a
+
i ∈ A s.t. fi(0, a

−
i ) < 0 < fi(0, a

+
i ), (4.87)

and for every j ∈ {3, 4, 5}

∃ ā−j , ā
+
j ∈ A s.t. fj(k, ā

−
j ) < 0 < fj(k, ā

+
j ). (4.88)

We approximate these two triple discontinuities in the geometric points B e
C with coordinates x = 0 and x = k, k > 0 respectively, by a thermostatic
approximation with uniform switching thresholds in such a way: we extend
fi and `i to [−ε,+∞[×{i} ×A for i = 1, 2, to [−ε, k + ε̄]× {i} ×A for i = 3
and to [k − ε,+∞[×{i} ×A for i = 4, 5.
Then, denoting by

Rεi =


[−ε,+∞[×{i} if i = 1, 2,

[−ε, k + ε]× {i} if i = 3,

[k − ε,+∞[×{i} if i = 4, 5,

the thermostatic controlled system is given by
x′(t) = fi(t)(x(t), α(t))

i(t) = h̃[x](t)

(x0, i0) ∈ Rεi0 ,
(4.89)

where h̃[x](t) is the delayed thermostatic rule as in Figure 4.4. A shown in
Figure 4.4 we can only switch from Rε1 to Rε3, then, depending on the used
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control, we can either reach the threshold −ε and hence switch from Rε3 to
Rε2 and from Rε2 to Rε1, or reach the threshold k + ε and hence switch from
Rε3 to Rε5, from Rε5 to Rε4 and from Rε4 to Rε3. Note that the variable x is
subject to a discontinuity at the switching instant (see Figure 4.4 and also
note in the thermostat, the branches Rε1 and Rε2 are oriented in the opposite
way respect to the standard one). Now, for every (x0, i0) ∈ Rεi0 we consider
the value function

Vε(x0, i0) = inf
α∈A

∫ +∞

0
e−λt`i(t)(x(t), α(t))dt, (4.90)

and we also have for every i = 1, . . . , 5 the Hamiltonians

Hi(x, p) = sup
a∈A
{−fi(x, a) · p− `i(x, a)} , (4.91)

where we drop the index i in the entries (x, i) ∈ Rεi of fi, `i and consequently
in Hi. As for the threefold junction problem, the continuity of the value
function (4.90) comes from the controllability, regularity and by the same
procedures used in Bagagiolo [9] and moreover the system (4.89) admits a
unique solution (x(·), i(·)) ∈ O = ∪5

i=1Rεi for each initial state (x0, i0) and
for any control α. The following holds

Proposition 4.5.1. For any ε > 0 the value function Vε of the switch-
ing multi-thermostatic optimal control problem is the unique bounded and
continuous function on O which satisfies, in the viscosity sense

λVε(x, 1) +H1

(
x, V ′ε (x, 1)

)
= 0 in int(Rε1),

Vε(−ε, 1) = Vε(ε, 3);

λVε(x, 2) +H2

(
x, V ′ε (x, 2)

)
= 0 in int(Rε2),

Vε(−ε, 2) = Vε(ε, 1);

λVε(x, 3) +H3

(
x, V ′ε (x, 3)

)
= 0 in int(Rε3),

Vε(−ε, 3) = Vε(ε, 2), Vε(k + ε, 3) = Vε(k + ε, 5);

λVε(x, 4) +H4

(
x, V ′ε (x, 4)

)
= 0 in int(Rε4),

Vε(k − ε, 4) = Vε(k − ε, 3);

λVε(x, 5) +H5

(
x, V ′ε (x, 5)

)
= 0 in int(Rε5),

Vε(k − ε, 5) = Vε(k + ε, 4).

(4.92)

Proof. We give here only the proof of the uniqueness of solution of
(4.92) because the boundedness and continuity of Vε come from analogous
results to ones proved for the threefold junction problem. Say that, we
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show that every solution of (4.92) is a fixed point of a contraction mapping
G : BC(O) → BC(O), where BC(O) is the space of real bounded and
continuous function on O, whose elements we represent by a five-uple of
functions, one for ever branch . By the completeness, we will get the
uniqueness. We define G in the following way: for every c ≥ 0 and for every

i ∈ {1, 2, 3, 4, 5}, let z
(i)
c be the solution of the Hamilton-Jacobi equation with

fixed i and with boundary datum c. Hence for every (ξ, η, σ, τ, β) ∈ BC(O)
we define

G(ξ, η, σ, τ, β) =

(
z

(1)(
z

(3)
ξ(−ε)(ε)

)(·), z(2)(
z

(1)
η(−ε)(ε)

)(·),
z

(3)(
z

(2)
σ(−ε)(ε),z

(5)
σ(k−ε)(k+ε)

)(·), z(4)(
z

(3)
τ(k+ε)

(k−ε)
)(·), z(5)(

z
(4)
β(k−ε)(k+ε)

)(·))
This means that, for instance, the first component of (G(ξ, η, σ, τ, β)) is the
solution on the branch Rε1 with boundary datum equal to the value on ε3 of
the solution on the branch Rε3 with boundary datum equal to ξ(−ε3). By
the uniqueness of the solution in any branch, this is a good definition. It is
easy o see that every solution of (4.92) is a fixed point of G. Then for every
(ξ, η, σ, τ, β), (ξ̂, η̂, σ̂, τ̂ , β̂) ∈ BC(Ω), for the first component of G we have

‖(G(ξ, η, σ, τ, β))1 − (G(ξ̂, η̂, σ̂, τ̂ , β̂))1‖∞ ≤ |z(3)
ξ(−ε)(ε)− z

(3)

ξ̂(−ε)
(ε)|

≤ e
−λ(2ε)
M |ξ(−ε)− ξ̂(−ε)| ≤ e

−λ(2ε)
M ‖ξ − ξ̂‖∞,

where M is the bound of `i. A similar inequality holds for the second, the
fourth and the fifth component of G. We study apart the third component:

‖(G(ξ, η, σ, τ, β))3 − (G(ξ̂, η̂, σ̂, τ̂ , β̂))3‖∞

≤ max

(
|z(2)
σ(−ε)(ε)− z

(2)
σ̂(−ε)(ε)|, |z

(5)
σ(k−ε)(k + ε)− z(5)

σ̂(k−ε)(k + ε)|
)

≤ e
−λ(2ε)
M max(|σ(−ε)− σ̂(−ε)|, |σ(k − ε)− σ̂(k − ε)|)

≤ e
−λ(2ε)
M ‖σ − σ̂‖∞

Since λ > 0, we get the conclusion.
We now study both the loop concerning the branches R1, R2, R3 and the
one relative to R3, R4, R5. In particular, when fi(0, ai) < 0 for i = 1, 2, 3,
namely when we perform the whole cycle, the right convex parameters to be
considered are

µ1 =
f2f3

f2f3 + f1f3 + f1f2
, µ2 =

f1f3

f2f3 + f1f3 + f1f2
, µ3 =

f1f2

f2f3 + f1f3 + f1f2
,

(4.93)
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where we drop the entries in the dynamics. Analogously, when f3(k, ā3) > 0
and f4(k, ā4), f5(k, ā5) < 0 the convex parameters are

µ̄3 =
f4f5

f4f5 + f3f4 + f3f5
, µ̄4 =

f3f5

f4f5 + f3f4 + f3f5
, µ̄5 =

f3f4

f4f5 + f3f4 + f3f5
.

(4.94)
For the above parameters ((4.93) and (4.94)) the same considerations as the
threefold case hold; both (4.93) and (4.94) are meaningful when at most one
fi(0, ai), i ∈ {1, 2, 3}, and one fj(k, āj), j ∈ {3, 4, 5} respectively is null. In
that case we definitely remain in the corresponding branch. To identify the
limit optimal control problem when ε→ 0 we define its controlled dynamics.
Calling TR5 = ∪5

i=1Ri, if (x, i) ∈ TR5 with x /∈ {0, k} then the dynamics is
the usual fi(x, ai), ai ∈ A. If x = 0 being (0, i) = (0, i′) for i, i′ ∈ {1, 2, 3},
i 6= i′ we can either choose any dynamics make us to stay inside a single
branch Ri and possibly for the branch R3 exit from k, or we may rest at
zero using any combination

∑3
i=1 µifi(0, ai) with fi(0, ai) and µi as before.

The set of controls in the junction point x = 0 is

A(0) = A0 ∪ Ã

with (note that in Ã the index i is also at disposal)

A0 = {(a1, a2, a3) ∈ A3| fi(0, ai) ≤ 0 with at most one equal to 0},

Ã = {(a, i) ∈ A× {1, 2, 3}| fi(0, a) ≥ 0} .

Then, calling â the generic element of A(0) we define

f0(0, â) =

{
fi(0, a) if â ∈ Ã,
0 if â ∈ A0.

With the same arguments, if (x, i) ∈ TR5 and x /∈ {0, k} then the running
cost is `i(x, ai) with ai ∈ A, otherwise we define

`0(0, â) =

{
`i(0, a) if â ∈ Ã,
µ1`1(0, a1) + µ2`2(0, a2) + µ3`3(0, a3) if â ∈ A0.

If x = k, with similar arguments as before we define the set of controls

A(k) = Ak ∪ Ãk

with

Ak = {(ā3, ā4, ā5) ∈ A3| f3(k, ā3) ≥ 0, f4(k, ā4), f5(k, ā5) ≤ 0 with at most one equal to 0},

Ãk = {(a, i) ∈ A× {3, 4, 5}| fi(k, a) ≥ 0, i = 4, 5 and f3(k, a) ≤ 0} .
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Then, calling ä the generic element of A(k) we define

fk(k, ä) =

{
fi(k, a) if ä ∈ Ãk,
0 if ä ∈ Ak.

and

`k(k, ä) =

{
`i(k, a) if ä ∈ Ãk,
µ̄3`3(k, ā3) + µ̄4`4(k, ā4) + µ̄5`5(k, a5) if ä ∈ Ak.

The 7-uples f = (f1, f2, f3, f4, f5, f0, fk) and ` = (`1, `2, `3, `4, `5, `0, `k) then
define the multiple threefold junction optimal control problem. In particular
given an initial state (x0, i0) ∈ TR5 and a measurable control α(t) ∈ A ∪
A(0) ∪ A(k) we consider a possible admissible trajectory in TR5 whose
evolution, denoted by (x(t), i(t)), is such that i(t) remains constant whenever
x(t) /∈ {0, k} and x(t) evolves with dynamics described above. Let us note
that given an initial state, the set of measurable controls for which there
exists a unique admissible trajectory is not empty and we denote it by A(x0,i0).
We then consider an infinite horizon problem with a discount factor λ > 0
given by

J(x0, i0, α) =

∫ +∞

0
e−λt`(x(t), i(t), α(t))dt,

where ` is the running cost described above and the corresponding value
function is

V (x0, i0) = inf
α∈A(x0,i0)

J(x0, i0, α). (4.95)

In the sequel when x = 0 or x = k we will drop the index i. Note that if we
remain in x = 0 for all the time using controls in A0 the best cost is given by

u1,2,3(0) =
1

λ
inf
A0

{µ1`1(0, a1) + µ2`2(0, a2) + µ3`3(0, a3)} . (4.96)

While, if we remain in x = k for all the time using controls in Ak the best
cost is given by

u3,4,5(k) =
1

λ
inf
Ak
{µ̄3`3(k, ā3) + µ̄4`4(k, ā4) + µ̄5`5(k, ā5)} . (4.97)

Remark 4.5.2. Note that in general both A0 and Ak are not compact.
However, if (an1 , a

n
2 , a

n
3 ) ∈ A0 is a minimizing sequence for u1,2,3(0) converging

to (ȧ1, ȧ2, ȧ3) /∈ A0 we have that the quantity inside the bracket in (4.96)
loses meaning but we still have the inequality

lim
n→∞

{µn1 `1(0, an1 ) + µn2 `2(0, an2 ) + µn3 `3(0, an3 )} ≥ min{`i(0, ȧi)|fi(0, ȧi) = 0}.

and hence we can always detect an optimal behavior among the ones making
as remaining at x = 0.
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In the same way if (ān3 , ā
n
4 , ā

n
5 ) ∈ Ak is a minimizing sequence for u3,4,5(0)

converging to (ã3, ã4, ã5) /∈ Ak we have that the quantity inside the bracket
in (4.97) loses meaning but we still have the inequality

lim
n→∞

{µ̄n3 `3(k, ān3 ) + µ̄n4 `4(k, ān4 ) + µ̄n5 `5(k, ān5 )} ≥ min{`i(k, ãi)|fi(k, ãi) = 0}.

and hence we can always detect an optimal behavior among the ones making
as remaining at x = k.

In order to characterize the value function (4.95) we define the value functions
of the semi-state constraint optimal control problems, namely the functions
that express the possibility to exit from the branch R3. In particular,
Vssc(3−k)(x) (resp. Vssc(3−0)(x)) is the value function of the control problem
on R3, constrained to not exit from 0 (resp. from k) and with exit cost in k
(resp. in 0). More specifically, Vssc(3−k)(x) satisfies

λv +H3(x, v′) ≤ 0 in ]0, k[

λv +H3(x, v′) ≥ 0 in [0, k[

Vssc(3−k)(k) = min{u3,4,5(k), Vsc(3)(k), Vsc(4)(k), Vsc(5)(k)} =: u∗(k)

(4.98)
while Vssc(3−0)(x)

λv +H3(x, v′) ≤ 0 in ]0, k[

λv +H3(x, v′) ≥ 0 in ]0, k]

Vssc(3−0)(0) = min{u1,2,3(0), Vsc(1)(0), Vsc(2)(0), Vsc(3)(0)} =: u∗(0).

(4.99)

Theorem 4.5.3. Assume (4.11), (4.15), (4.87) and (4.88). Then V is
continuous on TR5. Moreover when x = 0 and x = k

V (0) = min
{
u1,2,3(0), Vsc(1)(0), Vsc(2)(0), Vsc(3)(0), Vssc(3−k)(0)

}
, (4.100)

V (k) = min
{
u3,4,5(k), Vsc(3)(k), Vsc(4)(k), Vsc(5)(k), Vssc(3−0)(k)

}
. (4.101)

Therefore
i) if V (0) = u1,2,3(0), then V is the unique solution of the three problems
(one for every i ∈ {1, 2, 3}){

λv +Hi(x, v
′
) = 0 in int(Ri),

v(0) = u1,2,3(0),
(4.102)

ii) if V (0) = Vsc(i)(0), for some i = 1, 2, 3, then V satisfies: V = Vsc(i) in Ri,
and uniquely solves (for every i′ ∈ {1, 2, 3} \ {i}){

λv +Hi′(x, v
′
) = 0 in int(Ri′),

v(0) = Vsc(i)(0),
(4.103)
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iii) if V (0) = Vssc(3−k)(0) then V = Vssc(3−k) in R3 and uniquely solves
λv +H3(x, v′) ≤ 0 in ]0, k[

λv +H3(x, v′) ≥ 0 in [0, k[

v(k) = u∗(k).

(4.104)

i’) If V (k) = u3,4,5(k), then V is the unique solution of the three problems
(one for every j ∈ {3, 4, 5}){

λv +Hj(x, v
′
) = 0 in int(Rj),

v(k) = u3,4,5(k),
(4.105)

ii’) if V (k) = Vsc(j)(k), for same j = 3, 4, 5, then V satisfies: V = Vsc(j) in
Rj, and uniquely solves (for every j′ ∈ {3, 4, 5} \ {j}){

λv +Hj′(x, v
′
) = 0 in int(Rj′),

v(k) = Vsc(j)(k),
(4.106)

iii’) if V (k) = Vssc(3−k)(k) then V = Vssc(3−k) in R3 and uniquely solves
λv +H3(x, v′) ≤ 0 in ]0, k[,

λv +H3(x, v′) ≥ 0 in ]0, k],

v(0) = u∗(0).

(4.107)

Proof. The continuity of V comes from by controllability (4.87), (4.88)
and regularity (4.11), (4.15) in a standard way. Both (4.100) and (4.101)
come from (4.95) because the five terms in the corresponding minimum are
exactly the only allowed behaviors (see Remark 4.5.2). To prove the second
part of the Theorem we solve separately the Dirichlet problem in R1, R2 and
R3, putting the value of the minimum as boundary condition at x = 0. We
also solve the problem (4.104) using the results of comparison and uniqueness
at the end of the section. We get a solution w̄ in R1 ∪R2 ∪R3 which satisfies
w̄(0) = V (0). Hence, by uniqueness for the Dirichlet problem in each Ri and
by the uniqueness of solution of (4.104) we end up with w̄ = V . In the same
way for the problem evaluate in k we obtain a solution w̃ in R3 ∪R4 ∪R5

which satisfies w̃(k) = V (k) and such that w̃ = V . Finally, w̄ = V = w̃
hence V is a unique viscosity solution of the limit problem.

Theorem 4.5.4. Assume (4.11), (4.15), (4.87) and (4.88). The value func-
tion V (4.95) (also characterizes by Theorem 4.5.3) satisfies

V (x, i) = lim
ε→0

Vε(x, i) ∀ (x, i) ∈ Ri, i = 1, . . . , 5. (4.108)

where Vε is the value function of the approximating thermostatic problem
(4.92) with uniform thresholds and the convergence is uniform. Moreover,
when x = 0 and x = k the limit is independent on i.
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Proof. We start to prove that (4.108) holds for x = 0. The fact that the
limit, whenever it exists, is independent from i comes from the controllability
conditions (4.87) because |Vε(0, i) − Vε(0, i′)| is infinitesimal as ε. In the
sequel, we drop the symbol i in the expression Vε(0, i). We prove (4.108) at
x = 0 for a convergent subsequence still denoted by ε which exists as Vε are
equi-bounded. By contradiction, let us suppose that V (0) < limVε(0). By
(4.87), for every ε > 0, we have

Vε(0) ≤ min
{
Vsc(1)(0), Vsc(2)(0), Vsc(3)(0), Vssc(3−k)(0)

}
hence, the absurd hypothesis implies V (0) = u1,2,3(0) by (4.100). Let us
suppose that (a1, a2, a3) ∈ A0 realizes the minimum in the definition of
u1,2,3(0). We analyze some possible cases, the other ones being similar.

1) f1(0, a1), f2(0, a2), f3(0, a3) < 0. Hence, using a suitably switching
control between those constant controls, we get Vε(0) is not larger then
u1,2,3(0) plus an infinitesimal quantity as ε→ 0, which is a contradiction.

2) f1(0, a1) = 0, f2(0, a2), f3(0, a3) < 0 . In this case we arrive in R1 and
we stop with f1(0, a1) in x = 0. Hence u1,2,3(0) = 1

λ`1(0, a1) cannot be lower
than Vsc(1)(0) which is a contradiction. If instead not exists the minimizing
sequence for (a1, a2, a3) (see Remark 4.5.2) then u1,2,3(0) cannot be better
than a state constraints neither than a semi-state constraints. Then as before,
we have again a contradiction.
We can repeat the above steps for x = k assuming that V (k) < limVε(k).
We obtain still a contradiction.
Now assume limVε(0) < V (0). Let δ > 0 be such that, for ε small enough, it is
Vε(0)+δ < V (0). A measurable control α which almost realizes the optimum
(less than β > 0) for Vε(0) must be such that there are infinitely many
switching between branches Rεi (i.e for every i ∈ {1, 2, 3}, fi(x, αi) < 0 ∀ x).
Indeed, if it is not the case, then, for at least one branch Rεi , either the
trajectory definitely remains inside it or in the case of branch Rε3 can also
exits from it. Hence, for small ε, Vε(0) is almost equal to Vsc(i)(0) or to
Vssc(3−k)(0) , which is a contradiction. Note that we can limit to consider a
piecewise constant control that we call again α since Vε defined both with
measurable controls and with piecewise constant controls, satisfies the same
problem (4.92) which admits a unique solution. Then, in order to obtain
the optimum, on each branch Rεi let xi1, . . . , x

i
ni

be the points corresponding
to the discontinuity instants ti1, . . . , t

i
ni

of the control α and let aij be the

constant controls ∀i = 1, 2, 3, ∀ j = 1, . . . , ni − 1. On the assumption that
fi(0, a

i
j) < 0 ∀ i, j we consider the dynamics fi(0, a

i
j) and the running cost

`i(0, a
i
j) on every spatial interval [xij , x

i
j+1]. Now, for every i we consider

inf
a∈A

{
`i(0, a)

|fi(0, a)|
|fi(0, a) < 0

}
. (4.109)

If (4.109) is a minimum for every i ∈ {1, 2, 3} obtained in (ã1, ã2, ã3) then
in each Rεi we use constant dynamics fi(0, ãi) and constant running cost
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`i(0, ãi). Therefore |J(·, i, α)− J(·, i, ãi)| ≤ O(ε) and we get

Vε(0) ≥ J(·, i, α)− β ≥ J(·, i, ãi)−O(ε)− β
≥ u1,2,3(0)−O(ε)− β ≥ V (0)−O(ε)− β, (4.110)

that is a contradiction. If, for some i, (4.109) is not a minimum then we
can consider the minimizing sequence ani that realizes the infimum less than
O( 1

n). In particular ani → ȧi ∈ A for n→ +∞ and fi(0, a
n
i )→ fi(0, ȧi) = 0

being fi(0, a
n
i ) < 0. However, since the optimal strategy is to switch among

the branches, we cannot stop in the branch Rεi with dynamics fi(0, ȧi) paying
the cost `i(0, ȧi). Then, always taking into account that fi(0, a

i
j) < 0 we

have

Vε ≥ J(·, i, α)− β ≥ J(·, i, ani )−O
(

1

n

)
−O(ε)− β

≥ u1,2,3(0)−O
(

1

n

)
−O(ε)− β ≥ V (0)−O

(
1

n

)
−O(ε)− β,

(4.111)

which is again a contradiction.Therefore at the end, Vε(0) cannot be less than
V (0)− δ by the definition of V (0). This is a contradiction. Hence we have
limVε(0) = V (0). Now assuming that limVε(k) < V (k) and proceeding as
before we have again a contradiction, hence in conclusion limVε(k) = V (k).
Now note that the equations solved by Vε and by V ((4.92) and (4.102)-
(4.104), (4.105)-(4.107) respectively) are the same for all (x, i) ∈ int(Ri), i =
1, . . . , 5 and the boundary datum converges, depending on the cycle that we
are taking into account, to V (0) or V (k). Hence, representing the solutions
as the value functions of the corresponding optimal control problems, we get
(4.108) and the uniform convergence.
We now show how is possible to extend the results of viscosity solution and
maximal subsolution, proved for the threefold junction, also to this double
threefold junction problem. We introduce the test functions and give the
definition of viscosity subsolution and supersolution of (4.115).

Definition 4.5.5. Let ϕ : TR5→ R be a function such that

ϕ|Ri := ϕi : Ri −→ R
(x, i) 7−→ ϕi(x, i) if x /∈ {0, k},∀i ∈ {1, 2, 3, 4, 5},
(0, i) 7−→ ϕi(0, i) = ϕj(0, j) ∀j ∈ {1, 2, 3} \ {i},
(k, i) 7−→ ϕi(k, i) = ϕj(k, j) ∀j ∈ {3, 4, 5} \ {i},

(4.112)

with ϕ ∈ C0(TR5) and ϕi ∈ C1(Ri).

Definition 4.5.6. A continuous function u : TR5 → R is a viscosity sub-
solution of (4.115) if for any (x, i) ∈ TR5, any ϕ as in (4.112) such that
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u− ϕ has a local maximum at (x, i) with respect to TR5, then

λu(x, i) +Hi(x, ϕ
′
i(x, i)) ≤ 0 if x ∈ int(Ri),

min
{
λu(0, i) +Hi(0, ϕ

′
i(0, i)), i = 1, 2, 3

}
≤ 0 if x = 0,

min
{
λu(k, j) +Hi(k, ϕ

′
j(k, j)), j = 3, 4, 5

}
≤ 0 if x = k, i ∈ {1, 2, 3}.

(4.113)
A continuous function u : TR5→ R is a viscosity supersolution of (4.115)
if for any (x, i) ∈ TR5, any ϕ as in (4.112) such that u − ϕ has a local
minimum at (x, i) with respect to TR5, then

λu(x, i) +Hi(x, ϕ
′
i(x, i)) ≥ 0 if x ∈ int(Ri),

max
{
λu(0, i) +Hi(0, ϕ

′
i(0, i)), i = 1, 2, 3

}
≥ 0 if x = 0,

max
{
λu(k, j) +Hi(k, ϕ

′
j(k, j)), j = 3, 4, 5

}
≥ 0 if x = k, i ∈ {1, 2, 3}.

(4.114)
In particular note that if x = 0 then the local maximum/minimum is with
respect to the branches R1, R2, R3, and ϕ′i(0, i), i ∈ {1, 2, 3}, is the right
derivative on the branch i.
If instead x = k and i ∈ {3, 4, 5} then the local maximum/minimum is
with respect to the branches R3, R4, R5 and ϕ′j(k, j), j ∈ {4, 5}, is the right
derivative on the branch j, while ϕ′3(k, 3) is the left derivative in the branch
R3.

Theorem 4.5.7. Assume (4.11), (4.15), (4.87), (4.88). The value function
V (4.95) is a viscosity solution of the Hamilton-Jacobi-Bellman problem

λV +H1(x,∇V ) = 0 in int(R1),

λV +H2(x,∇V ) = 0 in int(R2),

λV +H3(x,∇V ) = 0 in int(R3),

λV +H4(x,∇V ) = 0 in int(R4),

λV +H5(x,∇V ) = 0 in int(R5),

min {λV +H1, λV +H2, λV +H3} ≤ 0 on x = 0,

max {λV +H1, λV +H2, λV +H3} ≥ 0 on x = 0,

min {λV +H3, λV +H4, λV +H5} ≤ 0 on x = k,

max {λV +H3, λV +H4, λV +H5} ≥ 0 on x = k.

(4.115)

Proof. From Proposition 4.5.1, Theorem 4.5.4 and by classical convergence
result,

λV (x, i) + sup
a∈A

{
−fi(x, a)(V (x, i))′ − `i(x, a)

}
= 0 in int(Ri), i = 1, . . . , 5.

Now, taken ϕ as in (4.112), if V −ϕ has a local maximum at B with respect
to the three branches then, similarly as in Theorem 4.4.11, we prove that
V satisfies the condition of maximal subsolution, namely the sixth equation
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in (4.115). If we suppose that V − ϕ has a local minimum at x = 0, still
following Theorem 4.4.11 we get that V satisfies the seventh equation of
(4.115).
It is evident that if the above arguments hold for the point B then they
also hold for the point C. Anyway, if we suppose that V − ϕ, with ϕ as in
(4.112), has a local maximum point at C, then consider the following change
of coordinate

y =


x+ k on Ri, i = 1, 2,

k − x on R3,

x− k on Ri, i = 4, 5.

(4.116)

Using (4.116), we define the branches R̃i

R̃i =


[k,+∞[×{i} if i = 1, 2,

[0, k]× {i} if i = 3,

[0,+∞[×{i} if i = 4, 5,

and the new dynamics and running costs on TR5

f̃i(y, a) =


fi(y − k, a) for i = 1, 2,

−fi(k − y, a) for i = 3,

fi(y + k, a) for i = 4, 5

, ˜̀
i(y, a) =


`i(y − k, a) for i = 1, 2,

`i(k − y, a) for i = 3,

`i(y + k, a) for i = 4, 5.

We also introduce the new value function Ṽ and the test functions ϕ̃

Ṽ (y, i) =


V (y − k, i) for i = 1, 2,

V (k − y, a) for i = 3,

V (y + k, a) for i = 4, 5

, ϕ̃i(y, a) =


ϕi(y − k, i) for i = 1, 2,

ϕi(k − y, i) for i = 3,

ϕi(y + k, a) for i = 4, 5.

(4.117)
Using f̃i, ˜̀

i, Ṽ and ϕ̃ we can define the limit problem P̃ and, though a
thermostatic approximation as before, the approximating problem P̃ε with
the value function Ṽε which converges to Ṽ (as in Theorem 4.5.4). Now the
node C has coordinate y = 0, the branches R̃3, R̃4, R̃5 are all positively
oriented (in the outgoing direction) and Ṽ − ϕ̃ has local maximum point at
y = 0. In this setting, as in Theorem 4.4.11, Ṽ satisfies the corresponding
condition of maximal subsolution in C (y = 0). By the previous definitions
of f̃i, ˜̀

i and ϕ̃ follow that

f̃i(y, a) = fi(x, a), ˜̀
i(y, a) = `i(x, a),

ϕ̃i(y, i) = ϕi(x, i), ϕ̃′i(y, i) = ϕ′i(x, i),

for i = 4, 5. Instead for i = 3 we have that

f̃3(y, a) = −f3(x, a), ˜̀
3(y, a) = `3(x, a),

ϕ̃3(y, 3) = ϕ3(x, 3), ϕ̃′3(y, 3) = −ϕ′3(x, 3).
(4.118)
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Hence,
− f̃3(y, a)ϕ̃′3(y, 3) = −f3(x, a)ϕ′3(x, 3), (4.119)

namely, although we used a change of coordinate, we maintain the sign of the
product dynamics-test function in the Hamiltonian H3 and then we conclude
that V verify the Ishii’s condition of maximal subsolution on C (x = k)(the
eighth equation in (4.115)) with fi, `i and ϕi, for i = 3, 4, 5. With the same
arguments if we suppose that V − ϕ as a local minimum point at x = k we
get that V satisfies the last equation in (4.115), then the proof is complete.

Theorem 4.5.8. Let u be a bounded and continuous subsolution of (4.115).
Then u ≤ V in TR5.

Proof. We focus on the junction point B involving R1, R2, R3 because
for the junction point C the proof is similar. Suppose by contradiction that
there exists (z, i) ∈ ∪3

i=1Ri such that

(u− V )(z, i) = max
(x,i)∈∪3

i=1Ri
(u− V )(x, i) > 0. (4.120)

If (z, i) ∈ int(Ri) for some i ∈ {1, 2, 3} then we get a contradiction because
by Theorem 4.5.7 and know comparison techniques V is a supersolution and
u is a subsolution of the same HJB equation. Then we may restrict to the
case in which u − V has maximum at z = 0 or at z = k. A said at the
beginning of the proof we study the case z = 0 (B), because the other one
is analogous. If the optimal strategy at B is to stay inside a single branch
without exiting, namely V (0) = Vsc(i)(0), then we get the contradiction
u(0) ≤ V (0) (see Soner [92]). If the optimal behavior is to exit form k, that is
V (0) = Vssc(3−k)(0) then V is a supersolution up to z = 0, hence u(0) ≤ V (0).
Therefore the optimal strategy at B is to switch among the three branches.
But also in this case, as in Theorem 4.4.13, we get that u(0) ≤ V (0). Hence,
u ≤ V in TR5.

Comparison and uniqueness results

Theorem 4.5.9. (Comparison result for mixed problem)
Let u, v : [0, k] → R be a continuous subsolution and supersolution, respec-
tively of 

λū+H3(x, ū′) ≤ 0 in ]0, k[

λū+H3(x, ū′) ≥ 0 in [0, k[

ū(k) = u∗(k).

(4.121)

Moreover, there are r > 0 and η : [0, k]→ R such that x 7→ −x+ k
2 with

]x+ t
k

2
− rt, x+ t

k

2
+ rt[ ⊆ ]0, k[ ∀ x ∈ [0, k], 0 < t ≤ r.

Then u ≤ v in [0, k].
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Proof. We assume by contradiction that exists z ∈ [0, k] : (u− v)(z) > 0.
If z ∈ [0, k[, ∀ 0 < ε < r we define the following function in [0, k]× [0, k]:

Φε(x, y) = u(x)− v(y)−
∣∣∣∣x− yε − η(z)

∣∣∣∣2 − |y − z|2.
We observe that Φε is continuous in [0, k]×[0, k] and consider (xε, yε) his point
of maximum. By the definition of η, z + εη(z) ∈ ]0, k[, so Φε(z + εη(z), z) ≤
Φ(xε, yε) and we obtain∣∣∣∣xε − yεε

− η(z)

∣∣∣∣2 − |yε − z|2 ≤ u(xε)− v(yε)− (u− v)(z) + ω(ε) (4.122)

where ω is a modulus. By standard estimates (see Soner [92]) for small ε we
get xε ∈]0, k[, yε ∈ [0, k[ and

xε − yε
ε

→ η(z) and xε, yε → z as ε→ 0. (4.123)

Then, for any small ε, we have

u(xε) +H3

(
xε,

2

ε

(
xε − yε

ε
− η(z)

))
≤ 0, (4.124)

v(yε) +H3

(
yε,

2

ε

(
xε − yε

ε
− η(z)

)
+ 2(yε − z)

)
≥ 0, (4.125)

and we conclude in the standard way getting (u − v)(z) ≤ 0 for ε → 0.
Therefore u ≤ v in [0, k[.
If z = k, by the same arguments as before we get xε ∈]0, k[, yε ∈ [0, k] and

xε − yε
ε

→ η(k) and xε, yε → k as ε→ 0. (4.126)

Now, if yε ∈ [0, k[ then v satisfies (4.125) which compared with (4.124) gives
a contradiction. If instead yε = k then v satisfies

min{v(k)− u∗(k), λv(k) +H3(k, v′)} ≥ 0. (4.127)

By (4.122) follows that

v(yε) ≤ v(k) + u(xε)− u(k) + ω(ε),

so we use limε→0 xε → k and the continuity of u to get

lim
ε→0

v(yε) ≤ v(k). (4.128)

Then by (4.126) and the continuity of the boundary datum we get

lim
ε→0

(v − u∗)(yε) = (v − u∗)(k) < 0. (4.129)

Thus, for ε small enough, the boundary condition (4.127) gives (4.125) with
yε = k and as before we have a contradiction. Then u ≤ v in z = k.
Finally, combining the above results we get that u ≤ v in [0, k].
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Theorem 4.5.10. (Uniqueness)
There exists a unique continuous function v : [0, k] → R which satisfies
(4.121), in viscosity sense.

Proof. Let u1 and u2 be two viscosity solutions of (4.121). Considering
u1 as subsolution and u2 as supersolution, by Theorem (4.5.9) we have that
u1 ≤ u2 in [0, k]. Changing the role of u1 and u2 we obtain equality u1 = u2

in [0, k].
With the same arguments we obtain uniqueness also for (4.107).



Chapter 5

Optimal control on a
multi-domain

In this chapter we study an optimal control problem in two complementary
domains of the space Rn as in Barles-Briani-Chasseigne [19]. After the basic
assumptions of the problem on Rn given in Sect. 5.1, in Sect. 5.2 we focus
on a multi-domain problem in R2. We approximate the problem by a delayed
thermostat with threshold parameter ε > 0, and study the limit when ε goes
to zero. We get that the limit function is a viscosity solution of a suitable
Hamilton-Jacobi problem. In Sect. 5.3 we give some idea about a future
research direction.

5.1 Basic assumptions

In this section we want to study the infinite horizon optimal control problem
which has different dynamics and running costs in the two complementary
domains of Rn, namely

H1 = {z ∈ Rn : z · S > 0}, H−1 = {z ∈ Rn : z · S < 0}, (5.1)

where S is a fixed unit vector of Rn. Of course, the difficulty is to understand
how to define the problem in

Γ = H1 ∩H−1 = {z ∈ Rn : z · S = 0}, (5.2)

where Hi is the closure of Hi. We start considering a controlled evolution
on such a multi-domain of Rn. On Hi (i = −1, 1) the system is driven by a
continuous and bounded dynamics fi : Rn ×A→ Rn, where A is compact,
and

∃ L > 0 such that ∀z1, z2 ∈ Rn, ∀a ∈ A :

|fi(z1, a)− fi(z2, a)| ≤ L|z1 − z2|.
(5.3)

79
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Moreover the following condition holds

Controllability: ∃β > 0 such that for any i = −1, 1 and z ∈ Γ

∃ a′i, a
′′
i ∈ A : fi(z, a

′
i) · S > β and fi(z, a

′′
i ) · S < −β. (5.4)

The controlled system on the multi-domain is then{
z′(t) = fi(z(t), α(t)) t > 0, if z(t) ∈ Hi,
z(0) = z0,

(5.5)

where α(·) belongs to A, the set of measurable controls. To this controlled
system we associate an infinite horizon optimal control problem. For every
Hi we consider a running cost `i : Rn × A → [0,+∞[, and the problem is
given by the minimization, over all α ∈ A, of the cost functional

J(z0, α) =

∫ +∞

0
e−λt`i(z(t), α(t))dt. (5.6)

In (5.6) the trajectory z(t) is the solution of (5.5), λ > 0 is a fixed discount
factor and the index i is given by z(t) ∈ Hi. Furthermore, for every i, the
running cost `i is continuous, bounded and there exist L̃ > 0 such that, for
any z1, z2 ∈ Rn and for any i

|`i(z1, a)− `i(z2, a)| ≤ L̃|z1 − z2|. (5.7)

Finally, we consider the value function

V (z0) = inf
α∈A

J(z0, α).

Of course, the concept of solution for the system (5.5) is not a-priori well-
posed. When we are on Γ we can choose the index i how we prefer, but
the existence of solution (trajectory) is not guaranteed, due to possible
fast oscillations of the index i. Then we are going to use the delay relay
operator and moreover we will restrict to the problem in R2. This is only a
simplification although all what follows can be generalized for the problem
in Rn.

5.2 A multi-domain optimal control problem in R2

In this section we focus on the problem of multi-domain in R2, where H1

and H−1 are two half-plane and Γ is the line {x = 0} because we consider
the unit vector S = e1 = (1, 0). We then consider a controlled dynamics
which suddenly changes when passing from a plane to the other one. That is,
denoting by f : R2 ×A→ R2, it is f(z, ·) = f1(z, ·) (resp. f(z, ·) = f−1(z, ·))
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if z · e1 > 0 (resp. if z · e1 < 0), where f1 : [0,+∞[×R × A → R2 and
f−1 :]−∞, 0]× R×A→ R2. The assumption (5.3) and (5.7) are still valid
for the above dynamic. Concerning the controllability condition we rewrite
it in this way:

Controllability: there is a β > 0 such that for any i = −1, 1 and z ∈ Γ

∃ a′i, a
′′
i ∈ A :

(
fi(z, a

′
i)
)

1
> β and

(
fi(z, a

′′
i )
)

1
< −β, (5.8)

where (fi)1 = fi ·e1. For ε > 0 we approximate the problem by a delayed ther-
mostatic problem (see Figure 5.1). Still denoting by f1, f−1 two extensions by

Figure 5.1: The two-domain problem and its thermostatic approximation.

constancy in the space variable z ·e1 of the dynamics to [−ε,+∞[×R×A and
to ]−∞, ε]×R×A respectively, we may consider the controlled thermostatic
system 

z′(t) = fi(t)(z(t), α(t)) t > 0,

i(t) = hε[z(·) · e1](t) t ≥ 0,

z(0) = z0, i(0) = i0,

(5.9)

where hε[·] represent the thermostatic delayed relationship between the
input z(·) · e1 and the output i. The initial state (z0, i0) is admissible if
i0 = 1 and z0 · e1 ≥ −ε, or i0 = −1 and z0 · e1 ≤ ε. Moreover, fixed
the thresholds −ε, ε, for each continuous input t → z(t), and for each
initial output i0 ∈ {−1, 1} coherent with z(0), there exists a unique output
t → i(t) =: hε[z(·) · e1](t) ∈ {−1, 1} satisfying i(0) = i0. Now, since the
two extended function f1 and f−1 are bounded, continuous and Lipschitz
continuous, and for a coherent initial state (z0, i0) there exists a unique
solution (z(t), i(t)) of the system (5.9) (as in Proposition 4.1.1). For a
rigorous as well as natural definition of the trajectory we refer to Bagagiolo
[8].
The solution (z(t), i(t)) of (5.9) can be seen as a trajectory starting from
(z0, i0) and evolving in the subset of R2 × R

Hε := Hε1 ∪H
ε
−1, (5.10)
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where
Hε1 := {(z, 1) ∈ R2 × {1} : z · e1 ≥ −ε},
Hε−1 := {(z,−1) ∈ R2 × {−1} : z · e1 ≤ ε},

(5.11)

with the switching rule from one connected component Hεi0 to the other one,
given by the delayed relay. In the sequel, for every i0 ∈ {−1, 1}, we will
use respectively the notations: ∂Hε1 := {(z, 1) ∈ R2 × {1} : z · e1 = −ε}
and ∂Hε−1 := {(z,−1) ∈ R2 × {−1} : z · e1 = ε}. With the latter ones the

closure of Hεi0 is given by Hεi0 = Hεi0 ∪ ∂H
ε
i0

. To the controlled system (5.9)
we associate an infinite horizon optimal control problem. Then we consider
the minimization, over all measurable controls α ∈ A, of the cost functional

J(z0, i0, α) :=

∫ +∞

0
e−λs`i(s)(z(s), α(s))ds. (5.12)

where λ > 0 is a fixed discount factor and the function ` satisfies the regularity
assumptions (5.7). The value function is defined by

Vε(z0, i0) = inf
α∈A

J(z0, i0, α), (5.13)

and we also have for every i the Hamiltonians

Hi(z, p) = sup
a∈A
{−fi(z, a) · p− `i(z, a)}. (5.14)

where we drop the index i in the entries of fi, `i and consequently in Hi.

The continuity of the value function (5.13) comes from by controllabil-
ity (5.8), regularity ((5.3) and (5.7)) and by the same procedures used in
Bagagiolo [9]. For more explicit steps see the proof of Theorem 5.2.7. The
uniqueness of the solution of (5.9) and the semigroup property of the delayed
relay (see (3.3) in Sect. 3.1) imply that the following result is standard.

Proposition 5.2.1. The Dynamical Programming Principle holds: for all
t ≥ 0 and for all (z0, i0) ∈ Hε

Vε(z0, i0) = inf
α∈A

{∫ +∞

0
e−λs`i(s)(z(s), α(s))ds+ e−λtVε(z(t), i(t))

}
.

(5.15)

Let us define the first switching time

t(z0,i0)(α) := inf{t ≥ 0 : i(t) 6= i0} ∀ (z0, i0) ∈ Hε,∀α ∈ A, (5.16)

with t(z0,i0)(α) = +∞ if the set in the right-hand side of (5.16) is empty.
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Proposition 5.2.2. For every (z, i) ∈ Hε let ρ(i) be the point of the plane
of Hε in which the eventual switching occurs and containing i (i.e ρ(i) is
(−ε, y(t(z,i)(α))) if i = 1 and (ε, y(t(z,i)(α))) if i = −1). Then we have

Vε(z, i) = inf
α∈A

{∫ t(z,i)(α)

0
e−λs`i(z(s), α(s))ds+ e−λt(z,i)(α)Vε(ρ

(i),−i)

}
.

(5.17)

Proof. Let us suppose for instance i = 1 and hence z ∈ Hε1. If t(z,i)(α) =
+∞ then (5.17) is just the definition of Vε. If instead t(z,i)(α) < +∞, by

(5.8) there exists a ∈ A such that
(
f1(ρ(1), a)

)
1
< −β and since still by

controllability (5.8) follows that Vε(ρ
(1), 1) ≤ Vε(ρ

(1),−1), applying (DPP)
(Proposition 5.2.1), we have the “≤” inequality in (5.17).
To prove the other inequality, let us take β > 0 and α̃ such that J(z, 1, α̃)−β ≤
Vε(z, 1). We can suppose t̄ := t(z,1)(α̃) < +∞ (the other case is easier). Take

ζ > 0 small enough such that every trajectory starting from (ρ(1),−1) does
not switch in the time interval [0, ζ]. Let (zζ ,−1) be the point reached after
the time t̄ + ζ and note that Vε(zζ ,−1) → Vε(ρ

(1),−1) as ζ → 0. Let us
denote the integral in (5.17) by I1. We have

Vε(z, 1) ≥ J(z, 1, α̃)− β ≥
I1 + e−λ(t̄+ζ)J(zζ ,−1, α̃(·+ t̄+ ζ))− β ≥
I1 + e−λ(t̄+ζ)Vε(zζ ,−1)− β.

(5.18)

We pass to the limit as ζ → 0 in (5.18) and conclude by the arbitrariness of
β.

Proposition 5.2.3. The value function Vε (5.13) is bounded and uniformly
continuous on each of the two connected components of Hε.

Proof. From Proposition 5.2.2, in each connected component Hεi , i ∈
{−1, 1}, Vε is the value function of the exit time problem from Hεi with exit
cost Vε(ρ

(i),−i). Since by (5.8) Vε(ρ
(i),−i) is bounded and continuous on

∂Hεi we can conclude applying the result of Bardi-Capuzzo Dolcetta [16],
Chapter IV, Section 3.

Proposition 5.2.4. The value function Vε (5.13) is a bounded and uniformly
continuous solution of the following problem for Hamilton-Jacobi equations

∀i ∈ {−1, 1}, Vε is the unique bounded and

uniformly continuous viscosity solution

of the following Dirichlet problem in Hεi ,
with boundary conditions in the viscosity sense{
λVε(z, i) +Hi (z,∇Vε(z, i)) = 0 in Hεi ,
Vε(·, i) = Vε(·,−i) on ∂Hεi .

(5.19)
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Proof. The boundedness and the uniformly continuity come from Proposi-
tion 5.2.2 and Proposition 5.2.3. Moreover Vε is a solution of (5.19) because in
each plane, by virtue of (5.17), is the value function of the exit time problem
with fi, `i and exit cost Vε(·,−i). Being Vε(·,−i) bounded and continuous
on ∂Hεi , by Proposition 1.2.16 follows that Vε is solution of the system in
(5.19) on each plane. The uniqueness come from the results of Chapter V of
Bardi-Capuzzo Dolcetta [16] (see in particular Theorem 4.20).

Proposition 5.2.5. The value function Vε (5.13) is the only bounded and
continuous function on Hε which is solution of (5.19).

Proof. The proof follows the same arguments of ones given in [8] (see
Proposition 3.6) and in Proposition 4.4.5 for the threefold junction problem.

Before proving the following Theorem 5.2.7 we have to clarify what happens
when we are on Γ = {x = 0}. To do so, as done for the twofold junction
problem Sect. 4.3, we follow the pioneering work of Filippov [54] and we
get that there exist trajectories which stay on Γ at least for a while. Such
trajectories are built through a dynamics of the form

fΓ(z, (µ, a1, a−1)) := µf1(z, a1) + (1− µ)f−1(z, a−1), (5.20)

for any z ∈ Γ and with (µ, a1, a−1) ∈ A0(z) so defined

A0(z) ={a = (µ, a1, a−1) ∈ [0, 1]×A×A :

fΓ(z, a) · e1 = 0, f1(z, a1) · e1 ≤ 0, f−1(z, a−1) · e1 ≥ 0}.
(5.21)

The associated running cost is

`Γ(z, a) = `Γ(z, (µ, a1, a−1)) := µ`1(z, a1) + (1− µ)`−1(z, a−1). (5.22)

Using (5.20) and (5.22) we define the following Hamiltonian on Γ

HT (z,∇Γu) = sup
A0(z)
{−fΓ(z, a) · ∇Γu− `Γ(z, a)}, (5.23)

where ∇Γu is the gradient of u with respect to the Γ-variable y, i.e. ∂u/∂y
Now, given Vε (5.13), we define the function

Ṽε : R2 \ {x = 0} → R, Ṽε(x, y) =

{
Vε(x, y, 1) x > 0, y ∈ R,
Vε(x, y,−1) x < 0, y ∈ R.

(5.24)

Note that in the above expression we consider the two components (x, y) of
the variable z ∈ R2 in order to make clearer the following Theorem 5.2.7
whose proof requires the following lemma.
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Lemma 5.2.6. Let w : R2 → R be continuous. Assume that, for some
ϕ ∈ C1, the function w − ϕ has a strict local minimum (a strict local
maximum) at a point z̄ ∈ R2. If wε → w uniformly, then there exists a
sequence of points zε → z̄ with wε(zε) → w(z̄) and such that wε − ϕ has a
local minimum (a local maximum) at zε.

Proof. See for example Bressan [31]

Theorem 5.2.7. As ε→ 0+, the sequence of functions Ṽε (5.24) uniformly
converges on R2 \ {x = 0} to a continuous function Ṽ1, Ṽ−1 respectively. If
(5.3) and (5.7) hold, then Ṽ uniquely continuously extends to the line {x = 0}
and if (5.8) also hold, it satisfies in viscosity sense

λu+H1 (x, y,∇u) = 0 in H1,

λu+H−1 (x, y,∇u) = 0 in H−1,

min{λu+H1 (x, y,∇u) , λu+H−1 (x, y,∇u)} ≤ 0 on Γ,

max{λu+H1 (x, y,∇u) , λu+H−1 (x, y,∇u)} ≥ 0 on Γ.

(5.25)

Proof. We use Ascoli-Arzelà theorem to prove the uniform convergence
starting from the function Vε. The boundedness of Vε follows by Proposition
5.2.3. To prove the uniform equicontinuity we consider any two points
(x1, y1), (x2, y2) ∈ R2 such that x1, x2 ≥ 0, a constant µ > 0 and a control
αµ which is “µ-optimal” for Vε(x2, y2, 1). Then

Vε(x2, y2, 1) ≥
∫ ∞

0
`i2(t)(x(t, (x2, y2, 1), αµ), y(t, (x2, y2, 1), αµ), αµ(t))e−λtdt−µ.

Computing the difference between the value functions in the two given points,
we get

Vε(x1, y1, 1)− Vε(x2, y2, 1) ≤∫ ∞
0

`i1(t)(x(t; (x1, y1, 1), αµ), y(t; (x1, y1, 1), αµ), αµ(t))e−λtdt−∫ ∞
0

`i2(t)(x(t; (x2, y2, 1), αµ), y(t; (x2, y2, 1), αµ), αµ(t))e−λtdt+ µ ≤∫ T

0
`i1(t)(x(t; (x1, y1, 1), αµ), y(t, (x1, y1, 1), αµ), αµ(t))e−λtdt−∫ T

0
`i2(t)(x(t; (x2, y2, 1), αµ), y(t, (x2, y2, 1), αµ), αµ(t))e−λtdt+

2

∫ ∞
T

Me−λtdt+ µ.

(5.26)
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Moreover, for T large enough, we can bound from above the last integral of
(5.26) with µ and, considering the modules, we get

≤
∫ T

0
|`i1(t)(·, ·, ·)− `i2(t)(·, ·, ·)|dt+ 3µ ≤∫ t1

0
|`1(·, ·, ·)− `1(·, ·, ·)|dt+

∫ T

t1

|`i1(t)(·, ·, ·)− `i2(t)(·, ·, ·)|dt+ 3µ,

(5.27)

with t1 the first switching time for the trajectory starting from (x2, y2),
assuming that this is the first one that switches. Then, using the Gronwall
inequality, we have that (5.27) is

≤ L̃t1eLt1 ‖ (x1, y1)− (x2, y2) ‖ +

∫ t1

t1

|`1(·, ·, ·)− `−1(·, ·, ·)|dt+∫ T

t1
|`i1(t)(·, ·, ·)− `i2(t)(·, ·, ·)|dt+ 3µ,

(5.28)

where t1 is the first switching time for the trajectory starting from (x1, y1).
Note that if t1 = t1, then the two trajectories reach the boundary ∂Hε1
at same instant and the corresponding integral in (5.28) is null. Suppose
that t1 6= t1 and since in t1 the trajectory starting from (x1, y1) is on ∂Hε1
by controllability (5.8) we can use a suitable control so that the trajectory
switches, hence we can bound from above the first integral of (5.28) with

2M(t1 − t1) ≤ 2ML̃TeLT ‖ (x1, y1)− (x2, y2) ‖ . (5.29)

Continuing to break the last integral in (5.28) on N -intervals, where N is
finite (in [0, T ]) because the switching are delayed and the dynamics are
bounded, we get

Vε(x1, y1, 1)− Vε(x2, y2, 1) ≤
C(T ) ‖ (x1, y1)− (x2, y2) ‖ +

N1∑
i=1

∫
Ii

|`i(·)(·, ·, ·)− `−i(·)(·, ·, ·)|dt+

N2∑
i=1

∫
Ii

|`i(·)(·, ·, ᾱµ(·))− `i(·)(·, ·, αµ(·))|dt+ 3µ,

(5.30)

where: the first addendum of the right-hand side of (5.30) represents the
estimate relative to the sum of the integrals on time intervals in which the
two trajectories do not switch, and C(T ) > 0 is the constant wherewith
we identify the sum of all constants given by each integral. The second
addendum is the sum of the integrals on the time intervals Ii, in which the
trajectory starting from (x2, y2) jumps while the one starting from (x1, y1)
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does not jump. To each of this N1-integral (N1 is finite) we can apply the
same argument of (5.29). While the last addendum is the finite sum of
integrals where the trajectory starting from (x2, y2) does not jump using the
control αµ. Hence we impose that also the trajectory starting from (x1, y1)
does not jump exploiting the result in Soner [92]. It states that for a suitable
ball B around (x2, y2), and suitable constants C̄, C∗ (that depend on the
instant of no switching for the trajectory starting from (x2, y2)), for every
point (x1, y1) ∈ B∩Hε1, there exists a control ᾱµ such that the corresponding
trajectory does not switch and the following hold:∣∣(x(x1,y1,1)(· ; ᾱµ), y(x1,y1,1)(· ; ᾱµ)

)
−
(
x(x2,y2,1)(· ;αµ), y(x2,y2,1)(· ;αµ)

)∣∣
≤ C̄(·) ‖ (x1, y1)− (x2, y2) ‖,∫

Ii

|`i(·)(·, ·, ᾱµ(·))− `i(·)(·, ·, αµ(·))|dt ≤ C∗(·) ‖ (x1, y1)− (x2, y2) ‖ .

With the above considerations over all integrals of (5.30) we can conclude
that

Vε(x1, y1, 1)− Vε(x2, y2, 1) ≤ C(T ) ‖ (x1, y1)− (x2, y2) ‖ +3µ ∀ε, (5.31)

where C(T ) is the sum of all constants given by the estimations of all integrals
in (5.30).
Similarly, if we consider Vε(·, ·,−1) and any two point (x1, y1), (x2, y2) ∈ R2

such that x1, x2 ≤ 0 we have

Vε(x1, y1,−1)− Vε(x2, y2,−1) ≤ C′(T ) ‖ (x1, y1)− (x2, y2) ‖ +3µ ∀ε,
(5.32)

where C′(T ) as C(T ) is the sum of all constants.
Now, to prove the uniform equicontinuity of Vε(·, ·, i) we have to show

that:

∀η > 0 ∃δ > 0 : ‖ (x1, y1)−(x2, y2) ‖ ≤ δ ⇒| Vε(x1, y1, i)−Vε(x2, y2, i) | ≤ η,

for any (x1, y1), (x2, y2) ∈ R2, i = −1, 1. Then fix η > 0 and µ ∈]0, η6 ]. If
i = 1 by (5.31) we get δ ≤ η/2C(T ). If instead i = −1 we obtain that
δ ≤ η/2C′(T ).
Hence Ṽε is equicontinuous and by Ascoli-Arzelà theorem there exists a
subsequence of Ṽε that uniformly converges in the compact subsets of Hi.
Denoting this subsequence with Vε we have:

Vε(x, y, 1)⇒ Ṽ1(x, y) for x > 0, y ∈ R on compact sets of H1,

Vε(x, y,−1)⇒ Ṽ−1(x, y) for x < 0, y ∈ R on compact sets of H−1,

where ⇒ denotes the uniform convergence.
Now, in order to prove that Ṽ continuously extends to the line {x = 0}
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we show that for ε small enough the difference |Vε(0, y, 1)− Vε(0, y,−1)| is
infinitesimal as ε. Let σε be the time used to switch from a threshold to
another one and such that goes to 0 as ε→ 0. We then consider a measurable
control ᾱ that allows to switch after σε and applying Proposition (5.2.1) we
get

Vε(0, y, 1) ≤
∫ ∞

0
e−λt`i(t)(x(t), y(t), ᾱ(t))dt ≤∫ σε

0
e−λt`1(x(t), y(t), ᾱ(t))dt+ e−λσεVε(0, y(τε),−1),

therefore

Vε(0, y, 1)− Vε(0, y(τε),−1)e−λσε ≤
∫ σε

0
e−λt`1(x(t), y(t), ᾱ(t))dt,

whence as ε→ 0, σε → 0 we obtain

Ṽ1(0, y)− Ṽ−1(0, y) ≤ 0. (5.33)

By the same arguments as above starting from Vε(0, y,−1) we have

Ṽ−1(0, y)− Ṽ1(0, y) ≤ 0. (5.34)

By (5.33) and (5.34) follows that Ṽ1(0, y) = Ṽ−1(0, y) ∀y ∈ Γ and hence
|Vε(0, y, 1)− Vε(0, y,−1)| = O(ε) . Then we define

Ṽ (x, y) =

{
Ṽ1(x, y) if x ≥ 0, y ∈ R,
Ṽ−1(x, y) if x ≤ 0, y ∈ R,

which is continuous as consists by functions that are uniform limits of the
corresponding Vε continuous themselves.
Afterward to provide the uniform convergence of Vε(x, y, i) on Hi we take a
pair of thresholds (ε1, ε2) with ε1, ε2 > 0 and both converging to zero, and
show that

‖ Vε1(x, y, i)− Vε2(x, y, i) ‖C0(Hi,R)≤ Kmax {ε1, ε2} ∀ (x, y) ∈ Hi,K > 0.

This inequality holds since, by controllability, the optimal behavior for the
problem with ε2 (assuming to be the smaller) is also optimal for the problem
with ε1 less then O(ε1 − ε2). Then Vε is a Cauchy sequence and hence
uniformly convergences on all Hi.
Now, we prove that Ṽ (x, y) satisfies (5.25). From Proposition 5.2.4 and by
classical convergence result we have

λṼ1(x, y) + sup
a∈A

{
−f1(x, y, a)∇Ṽ1(x, y)− `1(x, y, a)

}
= 0 in H1, (5.35)
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in the viscosity sense. Similarly for the equation in H−1.
We now prove the third equation in (5.25). Let ϕ ∈ C1(R2) be a test function
such that Ṽ − ϕ has a strictly maximum at (0, ȳ). Let {ε} be a sequence
such that ε→ 0, and by Proposition 5.2.8 we have that, for ε small enough,
the maximum point of Vε(·, ·, 1)− ϕ(·, ·) does not belongs to

∂(B((0, ȳ), r)) \
{

(x, y) ∈ R2 | x ≤ −ε
}

= ∂ϑε,

and that the maximum point of Vε(·, ·,−1)− ϕ(·, ·) does not belong to

∂(B((0, ȳ), r)) \
{

(x, y) ∈ R2 : x ≥ ε
}
.

Then, there exists a sequence (xε, yε) ∈ int(B((0, ȳ), r)) ∩Hε1 of local maxi-
mum for Vε(·, ·, 1)− ϕ which converges to (0, ȳ). We may have two case: 1)
at least for a subsequence, at (xε, yε) the HJB equation satisfied by Vε(·, ·, 1)
has the right sign “≤”, 2) it is definitely true that the boundary point
(xε, yε) = (−ε, yε) is a strict maximum point and the HJB equation has the
wrong sign “>”.

Case 1). Sending ε → 0 we get λṼ + H1 ≤ 0 in (0, ȳ) and hence the
fourth equation in (5.25).

Case 2). Since the boundary conditions in (5.19) are in the viscosity
sense and by the controllability (5.8), we have

Vε(−ε, yε, 1) = Vε(−ε, yε,−1). (5.36)

Now, the same reasoning and cases also hold in int(B((0, ȳ), r)) ∩ Hε−1. If
the corresponding Case 1) holds, then we obtain the conclusion as before.
Otherwise we get

Vε(ε, ŷε,−1) = Vε(ε, ŷε, 1). (5.37)

We observe that (−ε, yε,−1) ∈ int(B((0, ȳ), r)) ∩Hε−1 and
(ε, ŷε, 1) ∈ int(B((0, ȳ), r)) ∩ Hε1, therefore, using (5.36) and (5.37), we get
the following contradiction which concludes the proof

Vε(−ε, yε,−1)− ϕ(−ε, yε) < Vε(ε, ŷε,−1)− ϕ(ε, ŷε) =
Vε(ε, ŷε, 1)− ϕ(ε, ŷε) < Vε(−ε, yε, 1)− ϕ(−ε, yε) =
Vε(−ε, yε,−1)− ϕ(−ε, yε).

In order to prove the fourth equation in (5.25), we proceed in the same
way.

Proposition 5.2.8. Let (0, ȳ) ∈ R2 and r > 0 such that Ṽ − ϕ has a strict
maximum point in (0, ȳ) with respect to B((0, ȳ), r). For every ε > 0 let
(xε, yε) be a maximum point for Vε − ϕ with respect to ϑ̄ε, with

ϑ̄ε = B((0, ȳ), r) \
{

(x, y) ∈ R2 | x ≤ −ε
}
.

Then (xε, yε)→ (0, ȳ) for ε→ 0.



90 Chapter 5. Optimal control on a multi-domain

Proof. Let (xεk , yεk), k ∈ N, be any convergent sub sequence of (xε, yε)
to (x̃, ỹ) ∈ ϑ̄0 = B((0, ȳ), r) \

{
(x, y) ∈ R2 : x ≤ 0

}
. Still denoting this sub

sequence with (xε, yε), by the uniform convergence of Vε to Ṽ we have

Vε(xε, yε, 1)→ Ṽ (x̃, ỹ) as ε→ 0. (5.38)

By the choice of such convergent sub sequence and by (5.38) follows that

Ṽ (x̃, ỹ)− ϕ(x̃, ỹ) ≥ Ṽ (x, y)− ϕ(x, y) ∀ (x, y) ∈ ϑ̄0.

Moreover, (0, ȳ) ∈ ϑ̄0 hence

Ṽ (x̃, ỹ)− ϕ(x̃, ỹ) ≥ Ṽ (0, ȳ)− ϕ(0, ȳ).

Since (0, ȳ) is a strict maximum point with respect to B((0, ȳ), r), we have
that (x̃, ỹ) = (0, ȳ) and (xε, yε) → (0, ȳ). This ensures that the maximum
point of Vε − ϕ does not belong to ∂ϑε.

We now come back to the Hamiltonian HT (5.23) and consider the follow
HJB equation

λu+HT (x, y,∇Γu) ≤ 0 on Γ. (5.39)

In Barles-Briani-Chasseigne [19], considering further assumptions one proves
that if u is a subsolution of (5.25) then it is a subsolution of (5.39). Hence,
in our case, since we prove that Ṽ is a a viscosity solution of (5.25) then it
is a subsolution of (5.39). This means that ∀ϕ ∈ C1(R), ∀ȳ ∈ R such that
Ṽ (0, ·)− ϕ(·) has a local maximum at ȳ with respect to Γ, then

λṼ (0, ȳ) +HT ((0, ȳ), ϕ
′
(ȳ)) ≤ 0. (5.40)

We now give some ideas how to prove (5.40) using the thermostatic approxi-
mation.
To do so, we first remark that, changing ϕ(y) in ϕ(y)−|y− ȳ|2, we can assume
that ȳ is a strict local maximum point of Ṽ − ϕ. Then by Lemma 5.2.6 it
follows that Vε−ϕ has a local maximum point in yε. Moreover we take a1, a−1

as in (5.20) such that f1(0, ȳ, a1) ·e1 < 0 and f−1(0, ȳ, a−1) ·e1 > 0. Note that
these conditions on the dynamics can be extended to a neighborhood of ȳ of
radius ε for ε small enough, and hence to yε. Then, calling tε the time using
for a complete switching starting from yε and using f1(·, ·, a1), f−1(·, ·, a−1)
we compute

lim
ε→0

yε(t
ε)− yε
tε

,

where yε(t
ε) is the point on Γ obtained from yε after a complete switching
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and that still belongs to the neighborhood of ȳ. Then

lim
ε→0

yε(t
ε)− yε
tε

= lim
ε→0

1

tε

(∫ tε1

0
(f1(0, yε(s), a1))2 ds+∫ tε2

tε1

(f−1(0, yε(s), a−1))2 ds+

∫ tε

tε2

(f1(0, yε(s), a1))2 ds
)

=

lim
ε→0

( tε1
tε

1

tε1

∫ tε1

0
(f1(0, yε(s), a1))2 ds+

tε2 − tε1
tε

1

tε2 − tε1

∫ tε2

tε1

(f−1(0, yε(s), a−1))2 ds

+
tε − tε2
tε

1

tε − tε2

∫ tε

tε2

(f1(0, yε(s), a1))2 ds
)

=(
lim
ε→0

tε1 + tε − tε2
tε

)
(f1(0, ȳ, a1))2 +

(
lim
ε→0

tε2 − tε1
tε

)
(f−1(0, ȳ, a−1))2,

(5.41)

where tε1 and tε2 are the time to reach ∂Hε1 starting from Γ and the one
to reach ∂Hε−1 starting from ∂Hε1, respectively. Moreover, since we are
considering dynamics of the type (5.20), we will show that

lim
ε→0

tε1 + tε − tε2
tε

= µ and lim
ε→0

tε2 − tε1
tε

= 1− µ. (5.42)

The first ratio in (5.42) is the one between the time spent using (f1)1 to go
from a threshold to the other one and the total time to perform a complete
switching. Then

tε1 + tε − tε2
tε

=

2ε
−(f1)1

2ε
−(f1)1

+ 2ε
(f−1)1

=
(f−1)1

(f−1)1 − (f1)1
. (5.43)

While the second ratio in (5.42) is the one between the time spent using
(f−1)1 to go from a threshold to the other one and the total time to perform
a complete switching, hence

tε2 − tε1
tε

=

2ε
(f−1)1

2ε
−(f1)1

+ 2ε
(f−1)1

=
−(f1)1

(f−1)1 − (f1)1
. (5.44)

With the times defined as in (5.43) and (5.44) we have that

tε1 + tε − tε2
tε

(f1)1 +
tε2 − tε1
tε

(f−1)1 = 0,

therefore
tε1 + tε − tε2

tε
= µ and

tε2 − tε1
tε

= 1− µ.

Being yε a maximum point of Vε − ϕ, by Lemma 5.2.6 follows that

Vε(0, yε, ·)− ϕ(yε) ≥ Vε(0, yε(tε), ·)− ϕ(yε(t
ε)),
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namely,
Vε(0, yε(t

ε), ·)− Vε(0, yε, ·) + ϕ(yε)− ϕ(yε(t
ε)) ≤ 0. (5.45)

Dividing by tε the above inequality we get

Vε(0, yε(t
ε), ·)− Vε(0, yε, ·)

tε
+
ϕ(yε)− ϕ(yε(t

ε))

tε
≤ 0. (5.46)

We call I the first addendum of the left-hand side of (5.46) and II the second
ones. We can rewrite II as

II =
−ϕ′(yε)(yε(tε)− yε) + o(yε(t

ε)− yε)
tε

,

and by using (DPP) (Proposition (5.2.1)) in I we have

I = I ± e−λt
ε
Vε(0, yε(t

ε), ·)
tε

≥

1− e−λtε

tε
Vε(0, yε(t

ε), ·)− 1

tε

∫ tε

0
e−λs`i(s)(x(0,yε,·)(s), y(0,yε,·)(s), α(s))ds.

(5.47)

Observing that the computation (5.41) for the dynamics fi is also valid for
the running costs `i, from (5.46) and (5.47) as ε→ 0

λṼ (0, ȳ) + sup
A0(y)

{
−(µ(f1(0, ȳ, a1))2 + (1− µ)(f−1(0, ȳ, a−1))2)ϕ

′
(ȳ)−

(µ`1(0, ȳ, a1) + (1− µ)`−1(0, ȳ, a−1))
}
≤ 0, (5.48)

i.e. (5.40) holds.

We now assume that fi(0, ȳ, ai) · e1 = 0 for i = −1, 1, and as before we
extend this condition in a neighborhood of ȳ, hence it holds in yε.
We show that the trajectory starting form (0, yε) with dynamics f−1(·, ·, a−1)
does not reach ∂Hε−1 using times sε with the same infinitesimal order of ε
(i.e. may not occur that

∣∣ sε
ε

∣∣ ≤ M for any M > 0 and for every ε). (The
same reasoning with suitable changes also holds for the trajectory starting
form (0, yε) with dynamics f1(·, ·, a1)).
By contradiction, we suppose that the previous condition holds, hence
0 ≤ sε ≤Mε. Then, starting from (0, yε) using any dynamics f−1(·, ·, a) in
the time interval [0,Mε], we do not turn away from yε more then a quantity
cε that goes to 0 as ε → 0. And hence, we do not turn away from ȳ more
then c̃ε that goes to 0 as ε→ 0. Then, in every point of the trajectory with
dynamics f−1(·, ·, a−1) and s ∈ [0,Mε] we have

|(f−1(x(s), y(s), a−1))1 − (f−1(0, ȳ, a−1))1| ≤ Lc̃ε (5.49)
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by the Lipschitz continuity of the dynamics. Furthermore, by the absurd
hypothesis we have that∫ sε

0
(f−1(x(s), y(s), a−1))1 ds = ε

whence, using (5.49) follows

0 < ε ≤
∫ sε

0
Lc̃εds = Lc̃εsε.

Then passing to the limit for ε → 0 in the expression above we get a
contradiction, hence if sε is the time to reach ∂Hε−1 then ε = o(sε).
With this in mind, and considering any µ ∈ [0, 1], let µmin{√τε, sε} (resp.
(1 − µ) min{√τε, sε}) be the time to go from Γ toward ∂Hε1 (resp. ∂Hε−1)
without reaching it, using the dynamics f1 (resp. f−1), while ηε is the
time used to go from the point in which we stop with µmin{√τε, sε} (resp.
(1− µ) min{√τε, sε}) to Γ. We then define ηε = O(ε) + τε where τε the time
to go from ∂Hεi to Γ. The time tε for a complete switching starting from yε
is then such that tε = 2ηε + min{√τε, sε}. We then prove that

lim
ε→0

yε(t
ε)− yε
tε

= µ(f1)2 + (1− µ)(f−1)2.

Then,

lim
ε→0

yε(t
ε)− yε
tε

= lim
ε→0

1

tε

(∫ µmin{√τε,sε}

0
(f1(0, yε(s), a1))2 ds+∫ ηε+µmin{√τε,sε}

µmin{√τε,sε}
(fi(s)(0, yε(s), ā))2 ds+

∫ ηε+min{√τε,sε}

ηε+µmin{√τε,sε}
(f−1(0, yε(s), a−1))2 ds+∫ tε

ηε+min{√τε,sε}
(fi(s)(0, yε(s), â))2 ds

)
=

lim
ε→0

(
µmin{√τε, sε}

tε
1

µmin{√τε, sε}

∫ µmin{√τε,sε}

0
(f1(0, yε(s), a1))2 ds+

ηε
tε

1

ηε

∫ ηε+µmin{√τε,sε}

µmin{√τε,sε}
(fi(s)(0, yε(s), ā))2 ds +

(1− µ) min{√τε, sε}
tε

1

(1− µ) min{√τε, sε}

∫ ηε+min{√τε,sε}

ηε+µmin{√τε,sε}
(f−1(0, yε(s), a−1))2 ds

+
ηε
tε

1

ηε

∫ tε

ηε+min{√τε,sε}
(fi(s)(0, yε(s), â))2 ds

)
,

where ā is a constant control wherewith the trajectory goes from Hε1 to Γ
and â a constant one wherewith the trajectory goes from Hε−1 to Γ. Note
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that both controls ā and â are such that the corresponding trajectories point
right to Γ, hence τε = o(sε) and it has the same infinitesimal order of ε. This
implies that also ηε goes to zero as ε. Now applying a classical result in the
above equality we get that it is equal to(

lim
ε→0

µmin{√τε, sε}
tε

)
(f1(0, ȳ, a1))2 +

(
lim
ε→0

ηε
tε

)
(fi(0, ȳ, ā))2 +(

lim
ε→0

(1− µ) min{√τε, sε}
tε

)
(f−1(0, ȳ, a−1))2 +

(
lim
ε→0

ηε
tε

)
(fi(0, yε(s), â))2.

Moreover when ε→ 0 we have

µmin{√τε, sε}
tε

=
µmin{√τε, sε}

2ηε + min{√τε, sε}
→ µ,

ηε
tε

=
ηε

2ηε + min{√τε, sε}
→ 0,

(1− µ) min{√τε, sε}
tε

=
(1− µ) min{√τε, sε}
2ηε + min{√τε, sε}

→ 1− µ.

Again using Lemma 5.2.6 we have that

Vε(0, yε, ·)− ϕ(yε) ≥ Vε(0, yε(tε), ·)− ϕ(yε(t
ε)),

from which, using the same argument as before we get (5.48) and hence (5.40).

5.3 On Comparison result

A comparison result showing that Ṽ is the maximal subsolution of (5.25)
will be the subject of a future work. In [20] a comparison result for a finite
horizon problem with normal controllability conditions (as ours) is proved.
Here the authors, using a local comparison result, get a global comparison
for the problem in which both regular and singular controlled dynamics are
allowed.
Our aim is to develop strategies which permit to prove a global comparison
result for an infinite horizon problem considering only regular dynamics,
through the thermostatic approximation (as we have done for the problems
on network in Chapter 4). A first difficult respect to the one-dimensional
case is that here we cannot control the minimum point of the supersolution
because it slides along the hypersurface Γ.
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Chapter 6

A consensus problem on
network

In this chapter we study a decentralized routing problem over a network,
using the paradigm of mean-field games with large number of players (see Sect.
6.1). In Sect. 6.2, introducing a state-space extension solution approach, that
is an alternative method to the classical fixed point one, we turn the problem
into an optimal control one for each single player and exhibits the optimal
decentralized feedback control under a suitable assumption. In Sect. 6.3 we
study the convergence to and the stability of a local Wardrop equilibrium
and then its extension to a global equilibrium. In Sect. 6.4 we carry out
numerical studies. Finally, in Sect. 6.5 applying the play operator on the
control function we study both the global equilibrium and the stability of
the density equation subject to this operator.
This study can be found also in Bagagiolo-Bauso-Maggistro-Zoppello [13].

6.1 Model and Problem Set-up

In this section, we provide a model of a pedestrian density flow over a network
with dynamics defined on each node and using a line graph as topology. Let
G be a graph with h nodes, e edges, and vertex degree di for i = 1, . . . , h.
We define the line graph L(G) = (V,E) to be the graph with n = e nodes
and m = 1

2

∑h
i=1 d

2
i edges. In particular the graph is obtained by associating

a vertex to each edge of the original graph and connecting two vertices with
an edge if and only if the corresponding edges of G have a vertex in common.
Hence instead of considering a flux on the edges from now on we will consider
jumps between vertices. Now, let a connected line graph L(G) = (V,E) be
given, where V = {1, . . . , n} is the set of vertices and E = {1, . . . ,m} is the
set of edges. For each node i ∈ V , let us denote by N(i) the set of neighbor
nodes of i:

N(i) = {j ∈ V | {i, j} ∈ E} .

97



98 Chapter 6. A consensus problem on network

We consider a large population of players and each of them is characterized
by a time-varying state X(t) ∈ V at time t ∈ [0, T ], where [0, T ] is the time
horizon window. Players represent pedestrians and jump across the nodes
of the graph according to a decentralized routing policy described by the
matrix-valued function

u(·) :R+ −→ Rn×n+ , t 7−→ u(t). (6.1)

Note that u takes value in Rn×n+ because each component uij is the product
between the probability to jump from one node to an adjacent one and the
relative transition rate.

Let i ∈ V be the player’s initial state. The state evolution of a single
player is then captured by the following continuous-time Markov process:

{X(t), t ≥ 0}

qij(uij) =


uij , j ∈ N(i), j 6= i,

−
∑

k∈N(i),k 6=i uik, i = j,

0, otherwise,

(6.2)

where qij is the microscopic dynamics from i to j.
Denote by ρ the vector whose components are the densities on vertices. This
implies that the sum of the components is equal to one. Thus we have

ρ ∈ D := {ρ̂ ∈ [0, 1]n :
∑
i∈V

ρ̂i = 1}.

The density evolution can be described by the following forward Kolmogorov
Ordinary Differential Equation (ODE){

ρ̇(t) = ρ(t)A(u),

ρ(0) = ρ0,
(6.3)

where ρ is a row vector, ρ0 is the initial condition and the matrix-valued
function A : Rn×n+ → Rn×n is given by

Aij(u) =


uij if j ∈ N(i), j 6= i,

−
∑

j∈N(i),j 6=i uij if i = j,

0 if j 6∈ N(i).

(6.4)

Equation (6.3) establishes that the density variation on each node balancing
densities on neighbor nodes.
It is well known that the uniform distribution of the density on a graph
corresponds to a Wardrop equilibrium (Wardrop [97]) . Since we are con-
sidering a line graph, our aim is to achieve a uniform distribution of the
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density over all nodes. Indeed in traffic network the Wardrop equilibrium
corresponds to equidistribution of agents along edges. Therefore on its line
graph we view the equilibrium as uniform distribution on nodes. We start
by proving convergence to a local equilibrium, i.e. a uniform density on the
nodes adjacent to i.
For each player, consider a running cost `(·) : V × [0, 1]n × Rn×n+ → [0,+∞[,
and an exit cost g(·) : V × [0, 1]n → [0,+∞[ of the form given below

`(i, ρ, u) =
∑

j∈N(i),j 6=i

u2
ij

2
(γij(ρ))+ , (6.5)

g(i, ρ) = dist(ρ, M̂i). (6.6)

where γij is a suitable coefficient yet to be designed and (·)+ is the positive
part.

In (6.6) the dist(ρ, M̂i) denotes the distance of the vector ρ from the man-
ifold M̂i, where M̂i is the local consensus manifold/local Wardrop equilibrium
set for the player i defined as

M̂i = {ξ ∈ Rn|ξj = ξi ∀ j ∈ N(i)}. (6.7)

Therefore, the choice of the exit cost g(i, ρ) describes the difference between
the number of agents in the node i and the local equidistribution of agents
among the adjacent nodes.
The problem in its general form is then the following:

Problem 1: Design a decentralized routing policy to minimize the output
disagreement, i.e., each player solves the following problem:

infu(·) J(i, u(·), ρ[·](·), ·),
J(·) =

∫ T
t `(X(τ), ρ(τ), u(τ))dτ + g(X(T ), ρ(T )),

{X(t), t ≥ 0} as in (6.2),

X(t) = i,

(6.8)

where u is the control (6.1) taking value in Rn×n+ for any t ∈ [0, T ] and ρ
evolves as in (6.3). Note that every player minimizes a cost functional which
depends on the density of his neighbours. Thus, the microscopic (6.2) and
macroscopic (6.3) representations of the system are strongly intertwined
which makes the problem different from classical optimal control.

Mean-field formulation

This subsection presents a mean-field formulation of problem (6.8). Let v(i, t)
be the value function of the optimization problem (6.8) starting from time t
in state i. We can establish the following preliminary result.
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Lemma 6.1.1. The mean-field system for the decentralized routing problem
in Problem 1 takes the form:

v̇(i, t) +H(i,∆(v), t) = 0 in V × [0, T [,

v(i, T ) = g(i, ρ(T )),∀x ∈ V,
ρ̇(t) = ρ(t)A(u∗),

ρ(0) = ρ0,

(6.9)

where

H(i,∆(v), t) = inf
u

{ ∑
j∈N(i)

qij(v(j, t)− v(i, t)) + `(i, ρ, u)

}
, (6.10)

and g as in (6.6).
In the expression above, ∆(v) denotes the difference of the value function
computed in two successive vertices, qij is given in (6.2) and `(i, ρ, u) as in
(6.5). The optimal time-varying control u∗(i, t) is given by

u∗(i, t) ∈ arg min
u

{∑
j∈V

qij(v(j, t)− v(i, t)) + `(i, ρ, u)

}
. (6.11)

Proof. To prove the first equation of (6.9) we know from dynamic
programming that

v̇(i, t) + inf
u

{ ∑
j∈N(i)

qij(v(j, t)− v(i, t)) + `(i, ρ, u)
}

= 0 in V × [0, T [.

We obtain the first equation, by introducing the Hamiltonian in (6.10). Since
(6.2) depends on the routing policy u, then the latter is obtained minimiz-
ing the Hamiltonian as expressed by (6.11). The second equation is the
boundary condition on the terminal cost. The third and fourth equation are
the forward Kolmogorov equation and the corresponding initial condition.

The mean-field game (6.9) appears in the form of two coupled ODEs linked
in a forward-backward way. The first equation in (6.9) is the Hamilton-
Jacobi-Bellman (HJB) equation with variable v(i, t) and parametrized in
ρ(·). Given the boundary condition on final state and assuming a given
population density behaviour captured by ρ(·), the HJB equation is solved
backwards and returns the value function and the optimal control (6.11).
The Kolmogorov equation is defined on variable ρ(·) and parametrized in
u∗(i, t). Given the initial condition ρ(0) = ρ0 and assuming a given individual
behaviour described by u∗, the density equation is solved forward and returns
the population time evolution ρ(t).
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6.2 State space extension

We solve Problem 1 and the related mean-field game (6.9) through state
space extension in spirit with Bauso-Zhang-Papachristodoulou [26]; namely
we review ρ as an additional state variable. Then the resulting problem is of
the form

inf
u(·)

J(i, u(·), ρ[·](·), ·),

subject to {X(t), t ≤ 0} as in (6.2),

ρ̇(t) = ρ(t)A(u).

We are looking for a value function Ṽ (i, ρ, t) which depends on i and on the
density vector ρ as a state variable, rather than as a parameter as in (6.8).
The problem can be rewritten as follow.

Lemma 6.2.1. The mean-field system for the decentralized routing problem
in Problem 1 takes the form:{

∂tṼ (i, ρ, t) + H̃(i, ρ,∆(Ṽ ), ∂ρṼ , t) = 0 in V × [0, 1]n × [0, T [,

Ṽ (i, ρ, T ) = g(i, ρ(T )),
(6.12)

where for the Hamiltonian we have

H̃(i, ρ,∆(Ṽ ), ∂ρṼ , t) = inf
u

{ ∑
j∈N(i)

qij(Ṽ (j, ρ, t)−Ṽ (i, ρ, t))+∂ρṼ (i, ρ, t)(ρA(u))T+`(i, ρ, u)

}
,

(6.13)
and the optimal time-varying control u∗(i, ρ, t) is given by

u∗(i, ρ, t) ∈ arg min
u

{ ∑
j∈N(i)

qij(Ṽ (j, ρ, t)−Ṽ (i, ρ, t))+∂ρṼ (i, ρ, t)(ρA(u))T+`(i, ρ, u)

}
.

(6.14)

Proof. From dynamic programming we obtain

∂tṼ (i, ρ, t)+inf
u

{∑
j∈V

qij(Ṽ (j, ρ, t)−Ṽ (i, ρ, t))+∂ρṼ (i, ρ, t)(ρA(u))T+`(i, ρ, u)

}
= 0.

By introducing the Hamiltonian H̃(i, ρ,∆(Ṽ ), ∂ρṼ , t) given in (6.13), the
first equation is proven. To prove (6.14), observe that the optimal control is
the minimizer in the computation of the extended Hamiltonian. Finally, the
second equation in (6.12) is the boundary condition.

Remark 6.2.2. The use of the state space extension approach reduces our
initial problem to an optimal control problem. Therefore from now on we
will no longer consider the mean field formulation.
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Now, our aim is to review the optimal control problem as an inverse problem.
Our aim is to find a suitable γij (see (6.5)) such that the optimal control u∗ij ,
which is the argmin of the extended Hamiltonian, is

u∗ij =

{
ρi(t)− ρj(t) ρi(t) > ρj(t), j ∈ N(i),

0 otherwise.
(6.15)

In [26] for the infinite horizon problem, the authors take the value
functions as V (ρ) = dist(ρ,M), where M is the global equilibrium manifold.
Therefore in our finite horizon problem we assume that

V (i, ρ) = dist(ρ,Mi) =

√√√√√ ∑
j∈N(i)

(
ρj −

∑
k∈N(i)

ρk

#N(i)

)2

. (6.16)

Note that the above satisfies the boundary condition in (6.12), according to
our choice of the exit cost g (see (6.6)).
We can write (6.3) for the generic component i as

ρ̇i(t) =
∑

j∈N(i),j 6=i

ρj(t)uji −
∑

j∈N(i),j 6=i

ρi(t)uij .

Starting from the Hamiltonian (6.13) (see also (6.5)) we assume that if
ρi 6= ρj , γij is

γij(ρ) =

(
ρ2
i − ρiρj − dist(ρ, M̂j)dist(ρ, M̂i) + dist(ρ, M̂i)

2

(ρi − ρj)dist(ρ, M̂i)

)
. (6.17)

We want to prove that, using (6.17), the correspondent running cost (6.5) is
such that our control (6.15) is the optimal one. We have the following cases:

a) γij > 0

The Hamiltonian (6.13) is strictly convex in uij . Therefore the optimal
control uij is the solution of

∂H̃

∂uij
= uijγij(ρ)+

ρiρj − ρ2
i

dist(ρ, M̂i)
+dist(ρ, M̂j)−dist(ρ, M̂i) = 0. (6.18)

Namely if ρi > ρj , uij = ρi − ρj , instead if ρi < ρj since we are
supposing that uij ∈ R+ we have that the optimal control is uij = 0.

b) γij ≤ 0

The Hamiltonian (6.13) is linear in uij and is increasing or decreasing
depending on the sign of

βij =
ρiρj − ρ2

i

dist(ρ, M̂i)
+ dist(ρ, M̂j)− dist(ρ, M̂i) = −γij(ρ)(ρi − ρj)
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– if ρi > ρj the Hamiltonian is increasing in uij , hence it admits
minimum at uij = 0 ,

– if ρi < ρj the Hamiltonian is decreasing in uij , therefore it takes
smaller and smaller values as uij → +∞.

Now note that, if the densities are converging in time to the same value,
which is the case if we use the control u∗ij , the function (6.17) is never
negative and thus case b) before cannot occur. Simulations will show
this phenomenon and also suggest that

lim
ρi→ρj ,j∈N(i)\{i}

γij = +∞. (6.19)

which is coherent with the constraint u∗ij = 0. Therefore, using the function
(6.17), the correspondent running cost given by

`(i, ρ, u) =
∑

j∈N(i), j 6=i ρi>ρj

u2
ij

2

(
ρ2
i − ρiρj − dist(ρ, M̂j)dist(ρ, M̂i) + dist(ρ, M̂i)

2

(ρi − ρj)dist(ρ, M̂i)

)+

︸ ︷︷ ︸
γij(ρ)

,

(6.20)
leads the optimal feedback control to be exactly (6.15). Moreover, when using
control (6.15), the Hamiltonian (6.13) also converges to zero as t tends to
infinity. Hence, the function V (i, ρ) as defined in (6.16), is almost a solution
of the Hamilton-Jacobi-Bellman problem (6.12). Such a consideration leads
to the fact that, at least when time becomes large, the control (6.15) is
optimal. The fact that the Hamiltonian (6.13) converges to zero comes from
(6.18) where the second addendum of the right-hand side is bounded (the
distance from the manifold is larger than |ρi − ρj | up to a multiplicative
constant). This boundedness leads to (ρi − ρj)2γij(ρ) → 0 and hence the
conclusion, because inside the Hamiltonian we almost have (6.18) multiplied
by (ρi − ρj).
Now with the control (6.15), we can rewrite the evolution of ρ as

ρ̇i(t) =
∑

j 6=i,j∈N(i):ρj>ρi

ρj(t)(ρj(t)− ρi(t))−
∑

j∈N(i):ρi>ρj

ρi(t)(ρi(t)− ρj(t)) ∀i

(6.21)
Now our aim is to study the stability properties of the dynamical system

(6.21). In other words if using the optimal control u∗ij the system converges
to an equilibrium.

6.3 Wardrop equilibrium

In this section we will show how to obtain a uniform distribution of the
density ρ, at first on a neighborhood of a node and then throughout the
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graph.
The right-hand side of equation (6.21) is zero only when ρi = ρj ∀i ∈ V and
j ∈ N(i), which leads to a uniform density over the nodes.
The following assumption establishes that for a given feasible target manifold,
there always exists a decentralized routing policy u(t) which drives the density
ρ toward the relative manifold M̂i (see (6.7)).
This assumption will be used later on to prove the convergence to a local
Wardop equilibrium.

Figure 6.1: Geometric illustration of the Attainability condition.

Assumption 1 (Attainability condition)
Let M̂i be given by (6.7), r > 0 and Si = {ρ : dist(ρ, M̂i) < r}. For all
ρ ∈ Si \ M̂i there exists an element in the projection, ξ(i, ρ) ∈ ΠM̂i

ρ, such
that the value val[λi] is negative for every λi = (ρ(t)− ξ(i, ρ)), namely

∀i, val[λi] = inf
u
{λi · [(I − ∂ρ(ξ(i, ρ)))ρ̇T +

∑
j∈N(i)

(ξ(j, ρ)− ξ(i, ρ))qij ]} < 0,

(6.22)
where ∂ρξ(i, ρ) is a constant matrix since ξ(i, ρ) is a linear function of ρ.

We point out that, as we will show in Section 6.4 (see (6.26)), assump-
tion (6.22) is satisfied by our optimal control u∗ij (6.15).
Assumption (6.22) represents the trend of the agents in node i to be influ-
enced by the choices of neighbor agents. Agents can act in order to reach
the same density as in the adjacent nodes.
In the proof of the next theorem, we review the value function of (6.12) as a
Lyapunov function.

Theorem 6.3.1. Let Assumption 1 hold true. Then, ρ(t) converges asymp-
totically to M̂i, i.e.

lim
t→∞

dist(ρ, M̂i) = 0. (6.23)
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Proof. Let ρ be a solution of (6.3) with initial value ρ(0) ∈ Si \ M̂i. Set
τ = {inf t > 0 : ρ(t) ∈ M̂i} ≤ ∞ and let V (i(t), ρ(t)) = dist(ρ(t), M̂i). For
all t ∈ [0, τ ] and ξ ∈ ΠM̂i

(ρ(t)). We wish to compute V̇ (i(t), ρ(t)) as the
limit of the incremental ratio, thus at first we write its numerator, where
X(t) is the Markov process giving the evolution of the index i(t), that is:

V (i(t), ρ(t+ dt))− V (i(t), ρ(t)) + V (i(t+ dt), ρ(t))− V (i(t), ρ(t)) =

‖ρ(t+ dt)− ξ(ρ(t+ dt), X(t))‖ − ‖ρ(t)− ξ(ρ(t), X(t))‖+
‖ρ(t)− ξ(ρ(t), X(t+ dt))‖ − ‖ρ(t)− ξ(ρ(t), X(t))‖ =

‖ρ(t) + ρ̇(t)dt− ξ(ρ(t), X(t))−∇ρξ(ρ(t), X(t))ρ̇(t)dt‖−
‖ρ(t)− ξ(ρ(t), X(t))‖+ |dt|ε(dt)+
‖ρ(t)− ξ(ρ(t), X(t))− ∂Xξ(ρ(t), X(t))Ẋ(t)dt+ o(dt)‖ − ‖ρ(t)− ξ(ρ(t), X(t))‖

where limdt→0 ε(dt) = 0 and limdt→0 o(dt) = 0. Hence

V̇ (i(t), ρ(t)) =

lim
dt→0

1

dt

(
‖ρ(t) + ρ̇(t)dt− ξ(ρ(t), X(t))−∇ρξ(ρ(t), X(t))ρ̇(t)dt‖2

‖ρ(t) + ρ̇(t)dt− ξ(ρ(t), X(t))−∇ρξ(ρ(t), X(t))ρ̇(t)dt‖
−

‖ρ(t)− ξ(ρ(t), X(t))‖2

‖ρ(t)− ξ(ρ(t), X(t))‖
+ |dt|ε(dt)+

‖ρ(t)− ξ(ρ(t), X(t))− ∂Xξ(ρ(t), X(t))Ẋ(t)dt‖2

‖ρ(t)− ξ(ρ(t), X(t))− ∂Xξ(ρ(t), X(t))Ẋ(t)dt‖
−

‖ρ(t)− ξ(ρ(t), X(t))‖2

‖ρ(t)− ξ(ρ(t), X(t))‖
+ o(dt)

)
=

lim
dt→0

1

dt

(
‖ρ(t) + ρ̇(t)dt− ξ(ρ(t), X(t))−∇ρξ(ρ(t), X(t))ρ̇(t)dt‖2

‖ρ(t)− ξ(ρ(t), X(t))‖+O(
√
dt)

−

‖ρ(t)− ξ(ρ(t), X(t))‖2

‖ρ(t)− ξ(ρ(t), X(t))‖
+ |dt|ε(dt)+

‖ρ(t)− ξ(X(t))− ∂Xξ(ρ(t), X(t))Ẋ(t)dt‖2

‖ρ(t)− ξ(ρ(t), X(t))‖+O(
√
dt)

−

‖ρ(t)− ξ(ρ(t), X(t))‖2

‖ρ(t)− ξ(ρ(t), X(t))‖
+ o(dt)

)
=

1

‖ρ(t)− ξ(ρ(t), X(t))‖
d

dt

(
‖ρ(t)− ξ(ρ(t), X(t))‖2

)
≤

2

‖ρ(t)− ξ(i, ρ)‖

[
(ρ(t)− ξ(i, ρ))·(

(I −∇ρ(ξ(i, ρ)))ρ̇(t)T +
∑
j∈N(i)

(ξ(j, ρ)− ξ(i, ρ))qij

)]
.

Using now Assumption 1 we have that the second factor of the last product
is strictly negative, hence V̇ (i(t), ρ(t)) < 0. This proves not only that a
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Wardrop equilibrium but also that the solution ρ of the dynamics (6.3) is
locally asymptotically stable for the Lyapunov theorem.

The next step is to prove the asymptotic convergence of ρ, solution of
(6.3), to the global consensus manifold M defined as follows

M = {ρ ∈ D : ρ = 1
1

n
}, (6.24)

where n is the number of nodes.

Corollary 6.3.2. Let Assumption 1 hold true, then

lim
t→+∞

d(ρ(t),M) = 0.

Proof. We are in the hypothesis of Theorem (6.3.1), then

lim
t→∞

dist(ρ, M̂i) = 0.

It follows that for any sequence (tm)m∈N such that tm → +∞ we have that

ρi → β

ρj → β ∀ j ∈ N(i)

ρk → β ∀ k ∈ N(j) s.t j ∈ N(i)

...

(6.25)

By doing this, since the graph is connected, we can conclude that

ρi(tm)→ β =
1

n
∀i ∈ V.

Then, there exists a subsequence (tm`)`∈N such that

ρi(tm`)→
1

n
∀i ∈ V.

This proves that ρ(t)→ 1
n for t→ +∞ and thus limt→+∞ d(ρ(t),M) = 0.

6.4 Numerical example

In this section, numerical simulation show that on a graph with seven nodes,
the provided distributed routing policy (6.15) provides convergence to the
equilibrium.
Consider the following network consisting of 7 nodes and 8 edges.
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Figure 6.2: Network system with seven nodes.

Solving the Kolmogorov equation (6.21) with the following initial conditions

ρ1(0) = 0.15, ρ2(0) = 0.2, ρ3(0) = 0.1, ρ4(0) = 0.3,

ρ5(0) = 0.1, ρ6(0) = 0.15, ρ7(0) = 0,

we obtain the density evolution as shown in Figure 6.3

Figure 6.3: Simulation of the density.

As expected the density converges to the global equilibrium in which all
the ρi are equal.
In Figure 6.4 we can see that the function γij (6.17) is positive, in accordance
with our statements in Section 6.2.
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Figure 6.4: Evolution of γ12 and γ16 along the trajectories obtained using
control u∗ij (6.15).

Note that the optimal control u∗ij = (ρi − ρj)+ satisfies Assumption 1 as
by defining

αi = λi · [(I − ∂ρ(ξ(i, ρ)))ρ̇(t)T +
∑
j∈N(i)

(ξ(j, ρ)− ξ(i, ρ))qij ], ∀i = 1, · · · , 7,

max
ρ
{α1} = −6.1489 · 10−7 max

ρ
{α2} = −2.1462 · 10−6

max
ρ
{α3} = −3.1123 · 10−9 max

ρ
{α4} = −6.7065 · 10−7

max
ρ
{α5} = −8.0771 · 10−7 max

ρ
{α6} = −2.1169 · 10−6

max
ρ
{α7} = −7.4670 · 10−7.

(6.26)

Then, function αi is negative for all i, for our choice of the control.
According to Theorem (6.3.1), in Figure 6.5 we show that the distance of ρi
from the relative M̂i, ∀i = 1, . . . , 7, converges to zero.
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Figure 6.5: Distances to the consensus manifolds.

6.5 Stability with hysteresis

In this section we study stability of the macroscopic dynamics of the vector
ρ when the optimal decentralized feedback control (6.15) is affected by a
hysteresis phenomena modeled by a scalar play operator (see Chapter 3,
Sect. 3.1.2 for the details on the operator). We study how the evolution
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of the macroscopic equation changes when we apply the play operator to
the control u∗ obtained from (6.15). Furthermore, we characterize the set
of equilibrium points as union of several manifolds. Finally, we provide
convergence condition for the resulting dynamics.

The controlled dynamical system is
ρ̇(t) = ρ(t)A(w),

w(t) = P [u∗]+(t),

ρ(0) = ρ0,

w(0) = w0,

(6.27)

where P [·](·) is the play operator whose behavior is explained in the following
subsection and ∧+ is the positive part. With reference to our system (6.27),
we consider as input of the matrix A the positive part of the play operator,
applied to the control u∗ij = (ρi − ρj)+, i.e. wij(t) = P [(ρi − ρj)]+(t).

Remark 6.5.1. Note that, since (ρi(0) − ρj(0)) = −(ρj(0) − ρi(0)), then
(ρi(t)− ρj(t)) = −(ρj(t)− ρi(t)) ∀t. Thus it is not a restriction to suppose
that also P [(ρi − ρj)](0) = −P [(ρj − ρi)](0), therefore
P [(ρi − ρj)](t) = −P [(ρj − ρi)](t) ∀t.
Moreover since we are taking the positive part of the play, we will have that
if wij > 0 then wji = 0.

Equilibria

We are looking for the equilibrium points of the first equation of (6.27)
considering the simple case of a network with four nodes as the one depicted
in Figure 6.6

Figure 6.6: Network system with four nodes.

The evolution of the vector ρ is given by
ρ̇1(t) = −

(
w12 + w13

)
ρ1(t) + w21ρ2(t) + w31ρ3(t),

ρ̇2(t) = w12ρ1(t)−
(
w21 + w24

)
ρ2(t) + w42ρ4(t),

ρ̇3(t) = w13ρ1(t)−
(
w31 + w34

)
ρ3(t) + w43ρ4(t),

ρ̇4(t) = w24ρ2(t) + w34ρ3(t)−
(
w42 + w43

)
ρ4(t).

(6.28)
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Case 1
Assume that w12 > 0, w31 > 0, w24 > 0, w43 > 0. If

|ε| > max
{
ρ4

(w43

w12
− w43

w24

)
, ρ4

(w43

w24
− 1
)
, ρ4

(w43

w31
− w43

w12

)
, ρ4

(
1− w43

w31

)}
,

then the system to solve is
ρ̇1(t) = −w12ρ1(t) + w31ρ3(t),

ρ̇2(t) = w12ρ1(t)− w24ρ2(t),

ρ̇3(t) = −w31ρ3(t) + w43ρ4(t),

ρ̇4(t) = w24ρ2(t)− w43ρ4(t),

(6.29)

that is zero in (
ρ4
w43

w12
, ρ4

w43

w24
, ρ4

w43

w31
, ρ4, w12, w24, w31, w43

)
. (6.30)

We write only the values of w12, w24, w31, w43 because their symmetric
w21, w42, w13, w34 are always zero according to Remark 6.5.1. We will use
this convention from now on.

Case 2
Assume that w12 > 0, w31 > 0, w24 > 0, w43 = 0. If |ε| > 1, then the system
is zero in (

0, 0, 0, 1, w12, w31w24, 0
)
. (6.31)

Case 3
For w12 > 0, w31 > 0, w24 = 0, w43 = 0. If |ε| > max{ρ4, 1 − ρ4}, then the
system is zero in (

0, 1− ρ4, 0, ρ4, w12, w31, 0, 0
)
. (6.32)

Case 4
For w12 > 0, w31 = 0, w24 = 0, w43 = 0. if |ε| > max{ρ4, ρ3, 1 − ρ4 − ρ3}
then the system is zero in(

0, 1− ρ4 − ρ3, ρ3, ρ4, w12

)
. (6.33)

Case 5
Assume that all wij = 0 ∀j ∈ N(i). If

|ε| > max{ρ1 − ρ2, ρ2 − ρ4, ρ3 − ρ1, ρ4 − ρ3},

then the equilibrium point of the system is

(1− ρ2 − ρ3 − ρ4, ρ2, ρ3, ρ4,w) = (ρ1, ρ2, ρ3, ρ4,0), (6.34)

where w denotes the vector of all eight wij .
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Remark 6.5.2. Note that the equilibria in cases 2, 3, 4, 5 can be obtained as
limits of the equilibrium in case 1. Indeed if we let w43 → 0 we end up with
equilibrium (6.31) and since

∑4
i=1 ρi = 1, ρ4 = 1. If w43 → 0 and w24 → 0

we obtain equilibrium (6.32) where we denoted by 1− ρ4 the indeterminate
form ρ4

w43
w24

, taking into account the conservation of mass. Furthermore if
w31 → 0, w24 → 0 and w43 → 0 we get equilibrium (6.33), where we call the
indeterminate forms ρ4

w43
w31

and ρ4
w43
w24

respectively ρ3 and 1− ρ4 − ρ3 for the
same reason as before.
Finally letting all wij → 0 we end up with equilibrium (6.34), in which ρ2,
ρ3, and 1− ρ2 − ρ3 − ρ4 denote the indeterminate forms ρ4

w43
w24

, ρ4
w43
w31

, and
ρ4

w43
w12

that respect the conservation of mass.
Moreover, our choice of taking w12 > 0, w31 > 0, w24 > 0, w43 > 0 and not
other wij is completely arbitrary, indeed taking any 4 non symmetric wij > 0
we will end up with an equilibrium of the same type of (6.30).

In the following numerical simulations we show the behavior of the system
for two different choices of the parameter ε

(a)

(b)

Figure 6.7: Numerical simulations of the system converging to the equilibria
in case 1 (Figure 6.7(a)) and case 3 (Figure 6.7(b))
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In Figure 6.7(a) we take ε = 0.5. We can see that the densities converge
to the equilibrium (6.30). Instead in the Figure 6.7(b), using ε = 0.95, the
system converges to equilibrium (6.32).

Stability

In the following subsection we show that also in the presence of the play
operator we converge to the equilibrium for t → ∞. Before doing this we
make a further assumption for the manifold as defined next.
The global equilibrium manifold M in this case is the union of different
equilibrium manifolds

M =
5⋃
z=1

M z, (6.35)

where M̄z denotes the manifold whose points are equilibria relative to the
z-th case.

Assumption 2
Let M be given as in (6.35), s > 0 and S = {ρ : dist(ρ,M) < s}. For
all ρ = (ρ, w) ∈ S \M , there exists ξ ∈ ΠMρ such that the value val[λ] is
negative for every λ = (ρ− ξ), namely

val[λ] = inf
u
{λ · (I − ∂ρξ(ρ(t)))ρ̇(t)T } < 0. (6.36)

This assumption is analogous to the attainability (6.22) in the presence of
hysteresis. Note that here the term involving qij in (6.22) is not present, since
depending on whether we are in the node i or in the node j the projection
on the global manifold ξ is the same. Moreover, at the end of this section we
will stress the fact that (6.36) is satisfied under control wij = P [(ρi − ρj)]+.

Theorem 6.5.3. Let Assumption 2 hold true. Then ρ(t) converges asymp-
tomatically to M , namely

lim
t→+∞

dist(ρ,M) = 0. (6.37)

Proof.: Let ρ a solution of (6.27) with initial value ρ(0) ∈ S \M . Set
τ = {inf t > 0 : ρ(t) ∈M} ≤ ∞ and let V (ρ(t)) = dist(ρ,M). We compute:

V̇ (ρ(t)) =
d

dt

(
‖ρ(t)− ξ(ρ(t))‖

)
=

1

‖ρ(t)− ξ(ρ(t))‖

[(
ρ(t)− ξ(ρ(t))

)(
I − ∂ρξ(ρ(t))

)
ρ̇(t)T

]
< 0

by (6.36). Then the solution ρ of (6.27) is asymptotically stable and we have
a global equilibrium.
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In the following we deal with some examples of convergence to the
equilibria in different M z using the decentralized control u∗ij = (ρi − ρj)+.
At first we suppose that ε > 1 thus for all t, w(t) satisfies the conditions in
case 2. The system to study is

ρ̇1(t) = −w12(t)ρ1(t) + w31(t)ρ3(t),

ρ̇2(t) = w12(t)ρ1(t) + w24(t)ρ2(t),

ρ̇3(t) = −w31(t)ρ3(t),

ρ̇4(t) = w24(t)ρ2(t).

(6.38)

From the assumption on the wij we have

∃c > 0 : wij(t) > c ∀t ≥ 0.

Then considering the third equation of (6.38) we have that ρ3(t) ≤ e−ctρ3(0)→
0 for t→ +∞. By contradiction, we suppose that ρ1(t)→ ρ̄1 with ρ̄1 > 0.
Thus,

lim
t→+∞

ρ̇1(t) = lim
t→+∞

−w12(t)ρ̄1 + lim
t→+∞

w31(t)ρ3(t) 6= 0. (6.39)

This is a contradiction as the left hand side should be equal to zero. Hence
limt→+∞ ρ1(t) = 0. With similar argument also limt→+∞ ρ2(t) = 0. For the
mass conservation ρ4(t)→ 1 for t→ +∞ hence we obtain the equilibrium
point (6.31).

Assuming now that ε > max{ρ4(0), 1− ρ4(0)} and w(0) satisfies the condi-
tions in case 3, the system becomes

ρ̇1(t) = −w12(t)ρ1(t) + w31(t)ρ3(t),

ρ̇2(t) = w12(t)ρ1(t),

ρ̇3(t) = −w31(t)ρ3(t),

ρ̇4(t) = 0,

(6.40)

for all t ∈ [0, t̄[ where

t̄ = sup{t ≥ 0 : u∗12 + ε > w12(t) ≡ w12(0) > 0, u∗31 + ε >w31(t) ≡ w31(0) > 0,

w24 ≡ 0, w43 ≡ 0}.

We will now prove that t̄ = +∞.
Let us suppose by contradiction that t̄ < +∞. Obviously ρ4(t) ≡ ρ4(0) in
[0, t̄[. Using the hypothesis over wij we have that ρ3(t) = e−w31(0)tρ3(0) in
[0, t̄[ and thus ρ3 decreases. Moreover ρ2 is increasing.
Let us now focus on the differences among the densities. Since ρ4 is constant
and ρ3 ↘ then ρ4 − ρ3 ↗. This difference is always less than or equal to
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ρ4 and thus it is less than ε. By the continuity of ρ, lim
t→t̄

(ρ4(t)− ρ3(t)) < ε.

Therefore w43 does not change and remains equal to 0 in [0, t̄].
Let us now consider ρ2 − ρ4. By (6.40), in [0, t̄[ ρ2 ↗, thus ρ2 − ρ4 increases
and is less than 1− ρ4 < ε. By the previous continuity argument w24 ≡ 0 in
[0, t̄]. From the last two results we can conclude that ρ4(t) ≡ ρ4(0) in [0, t̄].
Considering ρ3 − ρ1 we have that, if ρ3 − ρ1 ↘ in [0, t̄[, the last difference
is greater than −ρ1 = ρ4 − 1 + ρ3 + ρ2 > ρ4 − 1 > −ε. This implies ε > ρ1

and thus using the continuity argument w31(t) = w31(0) > 0 in [0, t̄]. In-
stead if ρ3 − ρ1 ↗ it is always less that ρ3 < 1 − ρ4 < ε. Then as before
w31(t) = w31(0) > 0 in [0, t̄]. From the last one and w43 ≡ 0 we conclude
ρ3(t) = ρ3(0)e−w31(0)t in [0, t̄].

Again if ρ1 − ρ2 ↘ it is greater than −ρ2 > ρ4 − 1 > −ε. Proceeding
as before we conclude that w12(t) = w12(0) > 0 in [0, t̄]. Instead if ρ1− ρ2 ↗
reasoning as before we reach the same conclusion, i.e, w12(t) = w12(0) > 0
in [0, t̄].
Hence we have proven that in t̄, the same conditions valid in the interval [0, t̄[,
hold. Therefore there exists δ > 0 such that in [0, t̄+δ], wij(t) are the same as
in t = 0. This is a contradiction as t̄ is a supremum, thus we conclude t̄ = +∞.

We will now prove that the system converges to equilibrium (6.32). From
the assumption on the wij we have ρ3(t) = e−w31(0)tρ3(0)→ 0 for t→ +∞.
By contradiction, we suppose that ρ1(t)→ ρ̄1 with ρ̄1 > 0. Thus,

lim
t→+∞

ρ̇1(t) = lim
t→+∞

−w12(t)ρ̄1 6= 0. (6.41)

This is a contradiction as it should be equal to zero. Hence limt→+∞ ρ1(t) = 0.
Regarding ρ4 and ρ2, the first is constant and limt→+∞ ρ2(t) = ρ̄2 > 0. From
the mass conservation ρ̄2 = 1− ρ̄4 hence we obtain an equilibrium point as
in (6.32).
Using similar arguments, if ε is like in case 4 and 5 we will converge to
equilibria (6.33) and (6.34) respectively.
The above procedure can be extended to the case where ε is such that for all
t we have four non symmetric wij > 0 like in case 1.

Note also that the decentralized control u∗ij = (ρi−ρj)+ satisfies Assumption
2, indeed the function V (ρ(t)) is strictly decreasing along the trajectories
(see Figure 6.8).
As a consequence, the distance of ρ from the manifold M is a Lyapunov
function and thus Theorem 6.5.3 holds true.
The Figure 6.8 displays the distance of ρ from the manifold M1 in function
of time. It is visually clear that the time plot is decreasing in accordance to
our expectations.
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Figure 6.8: The distance of ρ from the manifold M1.



Part III

Controllability results for a
planar scallop swimmer
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Chapter 7

Swimming by switching

In this chapter we investigate different strategies to overcome the scallop
theorem. We will show how to obtain a net motion exploiting the fluid’s type
change during a periodic deformation. We are interested in two different
models: in the first one that change is linked to the magnitude of the opening
and closing velocity. Instead, in the second one it is related to the sign of
the above velocity. An interesting feature of the latter model is the use of
a switching rule through a delay relay. The latter is fundamental in order
to get both forward and backward motion. The plan of the chapter is the
following. In Sect. 7.1 we present the swimmer model and derive its equation
of motion both in the viscous and in the ideal approximation, proving the
scallop theorem. In Sect. 7.2, through the introduction of the switching
strategies, we obtain both a result of partial controllability on the state, and
a global controllability result of the scallop system. Finally in Sect. 7.3 we
present some numerical simulations showing different kind of controls that
can be used.
This study can be found also in Bagagiolo-Maggistro-Zoppello [15]

7.1 The Scallop swimmer

In this section we are interested in analyzing the motion of an articulated
rigid body immersed in a fluid that changes its configuration. In order
to determine completely its state we need the position of its center of
mass and its orientation. Their temporal evolution is obtained solving the
Newton’s equations coupled with the Navier-Stokes equations relative to
the surrounding fluid. We will face this problem considering the body as
immersed in two kinds of different fluids: one viscous at low Reynolds number
in which we neglect the effects of inertia, and another one ideal inviscid
and irrotational, in which we neglect the viscous forces in the Navier-Stokes
equations. First of all we recall that in both cases a swimmer that tries to
moves like a scallop, opening and closing periodically its valves, does not
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move at the end of a cycle. This situation is well known as scallop theorem
(or paradox) (Purcell [86], Alouges-DeSimone-Lefebvre [7]).
In what follows we will consider a planar body composed by two rigid valves
of elliptical shape, joined in order that they can be opened and closed.
Moreover this body is constrained to move along one of the cartesian axes
(the ex-axis) and is symmetric with respect to it. Finally we will neglect the
interaction between the two valves. The configuration of the system is easily
described by the position x of the juncture point along the ex-axis and by
the angle θ that each valve forms with the axis.

exx



Figure 7.1: The scallop configuration

The possible translation of the system is determined by the consecutive
opening and closing of the valves. Our aim is to determine the net trans-
lation of the body, given the function of time describing the angular velocity θ̇.

Viscous fluid

Here we focus on the case in which the scallop is immersed in a viscous
fluid. In this regime the viscous forces dominate the inertial ones that can
be neglected, so the equations governing the dynamics of the fluid are the
Stokes ones:

∆v −∇p = 0,

together with the incompressibility condition div v = 0. Let us consider that
the ellipses have major axis 2a and minor axis 2b with b << a, moreover
let us suppose that θ ∈ (0, π2 ) so that it remains acute. One of the main
difficulties in computing explicitly the equation of motion is the complexity
of the hydrodynamic forces exerted by the fluid on the swimmer as a reaction
to its shape changes. Since in our assumptions the minor axis of the ellipse
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is very small with respect to the major one, i.e. b << a, we can consider the
swimmer as one-dimensional, composed essentially by two links of length 2a
(see Fig 7.1). In the case of slender swimmers, Resistive Force Theory (RFT)
(Gray-Hancock [63]) provides a simple and concise way to compute a local
approximation of such forces, and it has been successfully used in several
recent studies, see for example Becker-Koehler-Stone [28], Friedrich-Riedel
et al. [57]. From now on we use this approach as well, in order to obtain
the forces acting on the swimmer, neglecting the interaction between the
valves. Since the scallop’s density can be assumed to be comparable to that
of the fluid and since the scallop is immersed in a viscous fluid the inertial
forces are negligible with respect to the viscous ones, then the dynamics of
the swimmer follows from Newton laws in which both the inertia of the fluid
and of the scallop vanish:

F = 0, (7.1)

where F is the total force exerted on the swimmer by the fluid. As already
said we want to couple the fluid and the swimmer, using the local drag
approximation of Resistive Force Theory. We denote by s the arc length
coordinate on the i-th link (0 ≤ s ≤ 2a) measured from the juncture point
and by vi(s) the velocity of the corresponding point. We also introduce the
unit vectors

e1 =

(
cos(θ)
sin(θ)

)
, e⊥1 =

(
− sin(θ)
cos(θ)

)
,

e2 =

(
cos(θ)
− sin(θ)

)
, e⊥2 =

(
− sin(θ)
− cos(θ)

)
in the directions parallel and perpendicular to each link and write the position

of the point at arc length s as xi(s) =

(
x
0

)
+ sei where x is the coordinate

of the joint between the two valves. By differentiation, we obtain,

vi(s) =

(
ẋ
0

)
+ sθ̇ie

⊥
i . (7.2)

The density of the force fi acting on the i-th segment is assumed to depend
linearly on the velocity. It is defined by

fi(s) := −ξ (vi(s) · ei) ei − η
(
vi(s) · e⊥i

)
e⊥i , (7.3)

where ξ and η are respectively the drag coefficients in the directions of ei
and e⊥i measured in N sm−2. We thus obtain

F =

∫ 2a

0
f1(s) ds+

∫ 2a

0
f2(s) ds = 0. (7.4)
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Using (7.2) and (7.3) and since we are neglecting inertia we have{
Fx = −4aξẋ cos2(θ)− 4aηẋ sin2(θ) + 4a2ηθ̇ sin(θ) = 0,

Fy = 0.
(7.5)

Observe that Fy vanishes since the scallop is symmetric with respect to the
ex axis. From (7.5) is now easy to determine the evolution of x

ẋ = V1(θ)θ̇ =
aη sin(θ)

ξ cos2(θ) + η sin2(θ)
θ̇. (7.6)

Ideal Fluid

While in the previous subsection we faced the problem of the self-propulsion
of the scallop immersed in a viscous fluid, here we focus on the case in
which it is immersed in an ideal inviscid and irrotational fluid. Let us make
the same assumptions on the parameters a and b that have been done in
the previous section, moreover let us denote by Ω the region of the plane
occupied by the swimmer in a reference configuration.
Assigning (x, θ) as functions of time let us call

f (x,θ) : Ω→ R2,

ζ 7→ f (x,θ)(ζ),

the function which maps each point of the swimmer ζ ∈ Ω in f (x,θ)(ζ) that
is its position in the plane at time t. Supposing that θ can be assigned and
that there are not other external forces, our aim is to find equations that
describe the motion of x. To this end we call v the velocity of the fluid, its
motion is given by the Euler equations for ideal fluids

vt + v · ∇v = −∇p, (7.7)

with the incompressibility condition div v = 0. Moreover we impose a
Neumann boundary condition, that is that the normal component of the
velocity of the fluid has to be equal to the normal component of the velocity
of the body: 〈

v(f (x,θ))−
(∂f (x,θ)

∂x
ẋ+

∂f (x,θ)

∂θ
θ̇
)
, n(x,θ)

〉
= 0,

where
〈
·
〉

denotes the scalar product, n(x,θ) is the external normal to the set

f (x,θ)(Ω). To find the evolution of x we should solve the Lagrange equation

d

dt

∂T b

∂ẋ
=
∂T b

∂x
+ F, (7.8)
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where T b is the kinetic energy of the body and F the external pressure force
acting on the boundary of the swimmer. As already done in Mason-Burdick
[81], Bressan [32], Munnier-Chambrion [84] this force F can be reinterpreted
as a kinetic term, precisely thanks to the fact that we are in an ideal fluid.
Therefore the system body + fluid is geodetic with Lagrangian given by the
sum of the kinetic energy of the body (T b) and the one of the fluid (T f ):

T tot = T b + T f .

The kinetic energy of the body is the sum of the kinetic energy of the two
ellipses, that reads

T b = m
(
ẋ2 + a2θ̇2 − 2aẋθ̇ sin θ

)
+ Iθ̇2, (7.9)

with m the mass of the scallop and I is the moment of inertia.
Since we are dealing with an ideal fluid and thus inertial forces dominates
over the viscous ones, in order to derive the kinetic energy of the fluid we
will make use of the concept of added mass. In fluid mechanics, added mass
or virtual mass is the inertia added to a system because an accelerating or
decelerating body must move (or deflect) some volume of surrounding fluid
as it moves through it. Added mass is a common issue because the object
and surrounding fluid cannot occupy the same physical space simultaneously
(Bessel [30]). For simplicity this can be modeled as some volume of fluid
moving with the object, though in reality “all” the fluid will be accelerated,
to various degrees.
Therefore the kinetic energy of the fluid will be given by the sum of the
kinetic energy of the added masses of the two ellipses:

T f =
1

2
vT1 M1addv1 +

1

2
vT2 M2addv2, (7.10)

where Miadd are the added mass matrices relative to each ellipse which are
diagonal, and vi the velocities of their centre of mass, expressed in the frame
solidal to each ellipse with axes parallel and perpendicular to the major axis.
Finally we can compute the total kinetic energy of the coupled system body+
fluid that is

T tot = m
(
ẋ2 + a2θ̇2 − 2aẋθ̇ sin θ

)
+ Iθ̇2+

+m11ẋ
2 cos2 θ +m22

(
ẋ2 sin2 θ + a2θ̇2 − 2aẋθ̇ sin θ

)
+m33θ̇

2
(7.11)

where mii, i = 1 . . . 3, are the diagonal elements of the mass matrices.
Following a procedure introduced by Alberto Bressan in [32], in order to end
up with a control system we perform a partial legendre transformation on
the kinetic energy defining

p =
∂T tot

∂ẋ
= 2ẋ

(
m+m11 cos2 θ +m22 sin2 θ

)
− 2aθ̇ sin θ(m+m22),
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from which we derive

ẋ =
p+ 2aθ̇ sin θ(m+m22)

2(m+m11 cos2 θ +m22 sin2 θ)
. (7.12)

There is a wide spread literature regarding the computation of added masses
of planar contours moving in an ideal unlimited fluid. We will use in the rest
of the chapter the added mass coefficients for the ellipse computed in Newman
[85]: the added mass in the direction of the major axis is m11 = ρπb2, the one
along the minor axis is m22 = ρπa2. Notice now that writing the Hamilton
equation relative to p, and recalling (7.11)

ṗ =
∂T tot

∂x
= 0,

thus, if we start with p(0) = 0, p remains null for all times and the evolution
of x becomes

ẋ = V2(θ)θ̇ =
a sin θ(m+ ρπa2)

m+ ρπb2 cos2 θ + ρπa2 sin2 θ
θ̇. (7.13)

Theorem 7.1.1 (Scallop Theorem). Consider a swimmer dynamics of the
type

ẋ = V (θ)θ̇. (7.14)

Then for every T -periodic deformation (i.e. stroke) one has

∆x =

∫ T

0
ẋ(t) dt = 0, (7.15)

that is, the final total translation is null.

Proof. Define the primitive of V by

F (θ) =

∫ θ

0
V (σ) dσ. (7.16)

Then using (7.14)

∆x =

∫ T

0
V (θ(t))θ̇(t) dt =

∫ T

0

d

dt
F (θ(t)) dt = F (θ(T ))− F (θ(0)) = 0,

by the periodicity of t→ θ(t).

Note that the dynamics (7.6) and (7.13) are of the type (7.14), therefore the
scallop theorem is valid either in the viscous and in the ideal case.
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7.2 Controllability

In this section we will give two different strategies to overcome the scallop
theorem, both based on a switching mechanism. In particular we produce
some partial and global controllability results for this switching systems.

7.2.1 Partial controllability in x

We have previously seen that if our scallop is immersed either in an ideal
fluid or in a viscous one, if it experiences periodical shape changes it is not
able to move after one cycle. Here we would like to find a way to overcome
this problem. The main idea is to be able to change the dynamics during
one periodical stroke and see if in this way we obtain a net motion and in
particular some controllability. In order to do this we have to introduce the
Reynolds number, a number which characterizes the fluid regime. It arises
from the adimesionalization of the Navier-Stokes equations and it is defined
by

Re =
V Lρ

η
=
V L

ν
, (7.17)

where V is the characteristic velocity of the body immersed in the fluid, L
its characteristic length, ρ the density of the fluid, η its viscosity and ν = η

ρ
is the kinematic viscosity. The Reynolds number quantifies the relative
importance of inertial versus viscous effects.

• η = η(|θ̇|)

Let us recall that if v(t, x) is a solution of the Navier Stokes equations,
the function u(t, x) = v(ct, x), c > 0 is still a solution of the Navier Stokes
equations but with a different viscosity. Now assume that the absolute value
of the speed θ̇ is very high, this means that rescaling the time of the solution
of the Navier Stokes equations, we end up with a viscosity η that is very small
and therefore the Reynolds number is large. In this case the inertial forces
dominates over the viscous ones, so we can consider the scallop immersed in
an ideal fluid and thus use the dynamics (7.13). Then we suppose that at a
certain point of the cycle the absolute value of the angular velocity is very
small. In this case we have a solution of the Navier Stokes equations with a
very high viscosity η. Thus we can suppose that the scallop is immersed in
a Stokes fluid, since the viscous effects dominates the inertial ones and use
the dynamics (7.6). This situation is well represented by a switching system
in which the change of the dynamics is determined by the modulus of the
angular velocity θ̇: if it is big (i.e |θ̇| > M with M > 0) we use the ideal
approximation and the corresponding dynamics; if it is small (i.e |θ̇| < M
with M > 0) we use instead the viscous approximation and the relative
dynamics.The switching rule in Fig 7.2 should also consider what happens
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when |θ̇| = M . However in the sequel we are going to exhibit a function θ̇
which stays in M or −M for only a set of times of null measure.
Our aim is to prove that using this kind of switching we are able to have
a net displacement, both forward or backward, using periodic continuous
functions θ̇

According to what said before we can prescribe the angular velocity θ̇
and thus use it as a control function u. Therefore we write the system as a
control system that is

ẋ(t) = Vw(t)(θ(t))u(t),

θ̇(t) = u(t),

w(t) = h[u](t),

x(0) = x0, θ(0) = θ0 w(0) = w0,

where u is continuous and

h[u] =

{
2 if |u| > M,

1 if |u| < M.

Figure 7.2: The rule of the classical switching

Moreover let us call Fi the primitives of the functions Vi, for i = 1, 2.
They are :

F1 =
aη arctanh(

√
η−ξ
η cos θ)√

η(η − ξ)
,

F2 =
−a
√
m+ a2ρπ arctanh(

√
(a2−b2)ρπ cos θ√

m+a2ρπ
)√

ρπ(a2 − b2)
.

Theorem 7.2.1. With the previous switching scheme we are able to overcome
the Scallop paradox, thus to move both forward and backward. More precisely
there are r > 0 small enough (see remark 7.2.2), a final time T > 0 and a
continuous T -periodic control function u(t), which make the system move
between two fixed points along the x axis, x0 and xf ∈]x0 − r, x0 + r[, in the
time T .
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Proof. First case: u(0) > M
In this case we start with the ideal approximation (i.e w0 = 2)

Vw(t)(θ(t)) =



V2(θ(t)) 0 < t < t1,

V1(θ(t)) t1 < t < t2,

V2(θ(t)) t2 < t < t3,

V1(θ(t)) t3 < t < t4,

V2(θ(t)) t4 < t < T,

(7.18)

with

t1 := inf{T > t > 0 |u(t) = M}, t2 := inf{T > t > t1 |u(t) = −M}
t3 := inf{T > t > t2 |u(t) = −M}, t4 := inf{T > t > t3 |u(t) = M},

assuming that inf (∅) = +∞. The net motion is then calculated as

∆x =(F2 − F1)(θ(t1)) + (F2 − F1)(θ(t3))

− (F2 − F1)(θ(t2))− (F2 − F1)(θ(t4)),
(7.19)

taking into account that θ(0) = θ(T ) and that (F2 − F1)(θ(ti)) does not
appear in the equation if ti = +∞.
We want to prove that we are able to move choosing a suitable periodic
evolution for our control function θ̇ = u. Let us call the unknowns θi := θ(ti),
for i = 1, . . . 4. First of all we show that ∆x as function of (θ1, θ2, θ3, θ4) is
surjective in ]0, π2 [×]0, π2 [×]0, π2 [×]0, π2 [.
We are going to prove that

∇(∆x) =


−(V2 − V1)(θ1)
(V2 − V1)(θ2)
−(V2 − V1)(θ3)
(V2 − V1)(θ4)

 6= 0

in (θ1, θ2, θ3, θ4) ∈]0,
π

2
[×]0,

π

2
[×]0,

π

2
[×]0,

π

2
[,

so that (7.19) is a submersion and surjective as required.
Recall that the function (F2 − F1)(·) is always increasing indeed

(F2 − F1)(θ)

∂θ
=(

− aη

ξ cos2 θ + η sin2 θ
+

ma+ ρπa2

m+ ρπb2cos2θ + ρπa2 sin2 θ

)
sin θ

=
sin θ cos2 θ

(
ma(η − ξ) + ρπ(ξa2 − ηb2)

)
(m+ ρπb2cos2θ + ρπa2 sin2 θ)(ξ cos2 θ + η sin2 θ)

> 0

for θ ∈]0,
π

2
[ and b << a.

(7.20)
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From this immediately follows that ∇(∆x) 6= 0.
The surjectivity ensures us that for any fixed ∆x in a neighborhood of zero we
are always able to find a (θ1, θ2, θ3, θ4) which realize the desired displacement.
Moreover, thanks to the symmetry properties of the function defining the
displacement, also each of the 4-uplets (θ1, θ4, θ3, θ2), (θ3, θ4, θ1, θ2) and
(θ3, θ2, θ1, θ4) realizes the same displacement. Supposing ∆x > 0 and recalling
that the function (F2 − F1)(·) is increasing, then the angles (θ1, θ2, θ3, θ4)
will have a suitable order that can or not be coherent with the switching
rule and the periodicity of θ̇. If their sorting is appropriate we will choose
a control θ̇ = u such that θ(ti) = θi. Otherwise at least one of the 4-uplets
above will be right. Thus defining (θ

′
1, θ

′
2, θ

′
3, θ

′
4) this latter uple, we take

a control u such that θ(ti) = θ
′
i. This choice of the control will lead us to

obtain the desired positive displacement.
For example suppose that the uplet (θ1, θ2, θ3, θ4) which realizes the desired
positive displacement, satisfy θ3 > θ4 > θ1 > θ2. Indeed

(F2 − F1)(θ1)− (F2 − F1)(θ2) > 0

=⇒ ∆x > 0

(F2 − F1)(θ4)− (F2 − F1)(θ3) < 0

To respect the switching scheme in the time interval (t2, t3) the function θ̇
should decrease and thus θ2 > θ3. The latter is not satisfied by (θ1, θ2, θ3, θ4),
but taking (θ

′
1, θ

′
2, θ

′
3, θ

′
4) = (θ3, θ4, θ1, θ2), we have the same ∆x and the

switching scheme is now respected. Analogous arguments can be used if
∆x < 0.
Second case: −M < u(0) < M

Figure 7.3: This figure shows a possible choice of θ(t) which realizes a positive
displacement and respects the switching scheme

In this case we start form the viscous approximation (i.e w0 = 1). Using
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arguments similar to the ones used before to compute ∆x and to prove its
surjectivity, and redefining accordingly the times ti for i = 1 . . . 4, we have
that

∆x =(F2 − F1)(θ(t2)) + (F2 − F1)(θ(t4))

− (F2 − F1)(θ(t1))− (F2 − F1)(θ(t3)).
(7.21)

Going on as before, exploiting the surjetivity and the symmetry of the last
function, we are able to find a control u that realizes the desired displacement.

Third case: u(0) < −M
This case is analogous to the first one.

In conclusion we have proved that wherever we start on the switching
diagram we are able to achieve a net displacement either positive or negative
and then we have the controllability.

Remark 7.2.2. Note that the value of r in the the last theorem is the
maximal value that the function |∆x(θ1, θ2, θ3, θ4)| can assume in
]0, π2 [×]0, π2 [×]0, π2 [×]0, π2 [. Thus the constant r is independent from x and θ.
To cover distances |∆x| ≥ r we should divide the spatial interval in N
subintervals of length less than r, each one realized by a u of period T

N .
Repeating N times this control u we are able to reach the desired displacement.

• η = η(sign(θ̇))

While in the previous subsection we supposed that the change in the fluid
regime was linked to the magnitude of the modulus of the angular velocity,
here we would like to link the two fluids approximations to the sign of θ̇.
This can be represented by a switching scheme as in Fig. 7.4. If the valves
are opening (θ̇ > 0) we suppose that the scallop is immersed in an ideal fluid;
instead when the valves are closing (θ̇ < 0) we assume the scallop immersed
in a viscous fluid. This idea is inspired by Cheng-DeMont [42] where the
fluid has a pseudoelastic nature that helps the valve opening but resist the
valve closing. While [42] shows that only the moment of the scallop is subject
to this pseudo-elastic dependence, we suppose instead that the forces are af-
fected by this dependence, since we are not considering the moment equation.
Despite the less physical evidences then [42], we conjecture that the model
describes a different response of the fluid to the opening and closure of the
scallop’ valves, since it is not difficult to immagine the following situation. We
suppose that during the valves closure the fluid opposes a greater resistance
due to its compression. Instead when the valves are opening, the fluid assists
this movement, and thus we have a small resistance. Therefore, according to
our assumption the viscosity of the fluid changes between the opening and
the closing of the valves, switching from one constant value to another one.
This model is also mathematically interesting because it is an important



130 Chapter 7. Swimming by switching

example of discontinuous hybrid switching system.
The system can be written as a control system, in which the control function
u(t) is the angular velocity θ̇:

ẋ(t) = Vw(t)(θ(t))u(t),

θ̇(t) = u(t),

w(t) = h[u](t)

x(0) = x0, θ(0) = θ0, w(0) = w0,

where the control u is continuous and now

h[u] =

{
2 if u > 0

1 if u < 0

Figure 7.4: The rule of the classical switching

Theorem 7.2.3. With the classical switching scheme (see Fig 7.4) we are
able to overcome the scallop theorem but moving only forward. That is, there
are r > 0 small enough, a time T > 0 and a continuous T -periodic control
function, which make the system move between two fixed configurations x0

and xf with xf ∈ [x0, x0 + r[, in the time T .

Proof. Let us suppose to start with the ideal approximation, so that we
are opening the valves

u(0) > 0 and w0 = 2,

Vw(t)(θ(t)) =


V2(θ(t)) 0 < t < t1,

V1(θ(t)) t1 < t < t2,

V2(θ(t)) t2 < t < T,

(7.22)

with

t1 := inf{T > t > 0 |u(t) = 0} and t2 := inf{T > t > t1 |u(t) = 0},
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with inf(∅) = +∞. The net motion can be computed as

∆x = F2(θ(t1)) + F1(θ(t2))− F1(θ(t1))− F2(θ(t2)), (7.23)

recalling as before that θ(0) = θ(T ). We want to prove that we are able to
move choosing a suitable periodic evolution for our control function θ̇ = u.
Let us call θ1 := θ(t1) and θ2 := θ(t2), first of all we show that ∆x as function
of (θ1, θ2) is surjective in ]0, π2 [×]0, π2 [.
Like before we prove that

∇(∆x) =

(
(V2 − V1)(θ1)
(V1 − V2)(θ2)

)
6= 0 in (θ1, θ2) ∈]0,

π

2
[×]0,

π

2
[,

hence (7.23) is a submersion and surjective as required. Notice that

∆x = (F2 − F1)(θ1)− (F2 − F1)(θ2).

If we chose a control such that θ1 > θ2 then ∆x will be positive, while if
θ1 < θ2 then ∆x will be negative. But since we need to respect the switching
rule the last case could not be achieved because after t1 θ̇ = u < 0 and thus
we are closing the valves therefore θ(t2) = θ2 will be necessarily less than
θ(t1) = θ1.
The case where u(0) < 0 is analogous to the previous one.
In conclusion we have proved that for every choice of w0 we are able to
achieve a net displacement but only forward.

Thermostatic-like case

In this section we introduce a mathematical variant of the previous switching
in order to be able to move both forward and backward and therefore have a
result of partial controllability in x. Our approach is to relate the variation
of u = θ̇ ∈ R to the fluid regime, by a delayed thermostat, an operator with
memory, introduced rigorously in Visintin [96], consisting of two different
thresholds for passing separately from one edge to the another one and
vice-versa. This idea was inspired by Qiu et al. [87] in which the Scallop
opening and closing is actuated by an external magnetic field, and thus a
delay mechanism is reasonable. More precisely we consider (like in [87]) that
an external magnetic field (H) is able to determine the opening and the
closure of the valves, therefore the sign of θ̇ as in Figure 7.5 a). Composing it
with the switching of Figure 7.4 we obtain the graph of Figure 7.5 b), which is
the same of Figure 7.4 if sign(H) = sign(θ̇), and this is a natural assumption
for example in the linear relation θ̇ = cH with c > 0. Then it is natural to
consider an hysteresis phenomena between H and sgn(θ̇) as in Figure 7.5
c). Composing this relation with the dynamics switching introduced before
(Figure 7.4), we get Figure 7.5 d). Subsequently, still supposing θ̇ = cH or



132 Chapter 7. Swimming by switching

more generally θ̇ = f(H) with f increasing and f(0) = 0, we will end up
with a delay phenomena on the type of fluid regime (see Figure 7.6).

1	  

-‐1	  

H	  

H	  

1	  

2	  

Sgn(θ’)	  
w	  

1	  

-‐1	  

Sgn(θ’)	  

H	  

1	  

2	  

H	  

a)	   b)	  

w	  

c)	   d)	  

Figure 7.5: Relation between the magnetic field and the angular velocity

We suppose that the dynamics V depends on the angle θ ∈]0, π2 [, and
also depends on a discrete variable w ∈ {1, 2}, whose evolution is governed
by a delayed thermostatic rule, subject to the evolution of the control u.
In Fig. 7.6 the behavior of such a rule is explained, correspondingly to the
choice of a fixed threshold parameter ε > 0. See Sect. 3.1.1 for more details.

Figure 7.6: The thermostatic approximation
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The controlled evolution is then given by
ẋ(t) = Vw(t)(θ(t))u(t),

θ̇(t) = u(t),

w(t) = hε[u](t),

x(0) = x0, θ(0) = θ0, w(0) = w0,

(7.24)

where hε [·] represents the thermostatic delayed relationship between the
input u and the output w. Note that the initial value w0 ∈ {1, 2} must be
coherent with the thermostatic relation: w0 = 2 (resp. w0 = 1) whenever
θ̇0 > ε (resp. θ̇0 < −ε).
We start now to analyse the value of the displacement ∆x depending of the
value of u proving the following result:

Theorem 7.2.4. Let xf ∈]x0 − r, x0 + r[ with r > 0 small enough. Then,
there always exits a time T > 0 and a continuous T -periodic control function
θ̇ = u (hence a periodic θ) such that one can move from x0 to xf in time T
when the delayed thermostat is taken into account. In other words the system
(7.24) is partially controllable in x.

Proof. First case

−ε < u(0) < ε and w0 = 1,

then we have

Vw(t)(θ(t)) =

{
V1(θ(t)) 0 < t < t1

V2(θ(t)) t1 < t < T.
(7.25)

where t1 is the first time for which u goes through ε, i.e.

t1 := inf{T > t > 0 |u(t) = ε}

and T is the final time. The displacement is then

∆x = F1(θ(t1))− F1(θ(0)) + F2(θ(0))− F2(θ(t1)). (7.26)

recalling as before that θ(0) = θ(T ). We call θ(t1) = θ1 and we want to
prove that we able to obtain ∆x = c,∀ |c| < r using a suitable periodic
control function. In order to do this we show that ∆x(θ1) is surjective in a
neighborhood of zero. First of all we compute the derivative and show that
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it is different from 0 and negative.

∂∆x

∂θ1
= V1(θ1)− V2(θ1) =(
aη sin θ1

ξ cos2 θ1 + η sin2 θ1
− (ma+ ρπa2) sin θ1

m+ ρπb2cos2θ1 + ρπa2 sin2 θ1

)

=
sin θ1 cos2 θ1

(
−ma(η − ξ)− ρπ(ξa2 − ηb2)

)
(m+ ρπb2cos2θ1 + ρπa2 sin2 θ1)(ξ cos2 θ1 + η sin2 θ1)

6= 0

for θ1 ∈]0,
π

2
[

Notice also that since in our assumptions b is negligible with respect to a, i.e
b << a, we have that ηb2 << ξa2 and thus the derivative is always negative
and consequently the ∆x is decreesing. We are interested in θ1 ∈]0, π2 [. Since
the derivative of the function defining the displacement is different from 0 in
]0, π2 [, (7.26) is locally invertible. Thus, since the inverse image of 0 is θ0 then
the inverse image of a neighborhood of 0 is a neighborhood of θ0. Finally,
recalling that ∆x is decreasing, we can conclude that (7.26) can be positive
or negative i.e. if we chose a control such that θ1 < θ0 the displacement will
be positive instead if θ1 > θ0 it will be negative. In both cases the switching
rule is respected thanks to the presence of the thermostat.

Figure 7.7: A possible choice of θ(t) starting from 0 < u(0) < ε which realizes
a positive displacement.

Second case
−ε < u(0) < ε and w0 = 2,

then we have

Vw(t)(θ(t)) =

{
V2(θ(t)) 0 < t < t1,

V1(θ(t)) t1 < t < T.
(7.27)

where t1 is the first time for which u goes through −ε

t1 := inf{T > t > 0 |u(t) = −ε}
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and T the final time. The displacement is

∆x = F2(θ(t1))− F2(θ(0)) + F1(θ(T ))− F1(θ(t1)). (7.28)

Calling again θ(t1) := θ1 also in the case we verify the surjectivity showing
that the derivative of the displacement is different from zero.

Hence (7.28) is locally invertible and the inverse image of a neighborhood
of 0 is a neighborhood of θ0. We can conclude as in the previous case that
(7.28) can be either positive or negative choosing a suitable control.

Third case
u(0) > ε and w0 = 2,

Vw(t)(θ(t)) =


V2(θ(t)) 0 < t < t1,

V1(θ(t)) t1 < t < t2,

V2(θ(t)) t2 < t < T.

(7.29)

with

t1 := inf{T > t > 0 |u(t) = −ε} and t2 := inf{T > t > t1 |u(t) = ε}.

The net motion is

∆x = F2(θ(t1)) + F1(θ(t2))− F1(θ(t1))− F2(θ(t2)). (7.30)

recalling that θ(0) = θ(T ).
Also in this case we want to prove that we are able to move both forward or
backward. Therefore we show that ∆x is surjective in ]0, π2 [×]0, π2 [ as in the
non hysteretic case. We compute the gradient and show that it is never null

∇(∆x) =

(
(V2 − V1)(θ1)
(V1 − V2)(θ2)

)
6= 0 in (θ1, θ2) ∈]0,

π

2
[×]0,

π

2
[

hence (7.30) is a submersion and surjective as required. Notice that

∆x = (F2 − F1)(θ1)− (F2 − F1)(θ2)

and recall that the function (F2 − F1)(·) is always increasing. Hence, if we
use a control such that θ1 > θ2 the ∆x will be positive, while if θ1 < θ2 then
∆x will be negative. Also in this case both the alternatives can be achieved
respecting the switching rule. Therefore we are able to obtain the desired
displacement.

Fourth case
The case where u(0) < −ε is analogous to the previous one.

In conclusion we have proved that for every choice of w0 we are always
able to find a periodic and continuous control θ̇ = u that allows us to obtain
the desired displacement. The system (7.24) is then partially controllable in
x.



136 Chapter 7. Swimming by switching

Remark 7.2.5. The introduction of the thermostat is essential because
allows us to achieve displacements of every sign and thus the controllability
result in x. This fact is strictly linked to the presence of the thresholds,
indeed we are allowed to move between them without changing dynamics and
therefore obtain values θ1 < θ2 either θ1 > θ2, and thus move both forward
and backward.

Remark 7.2.6. Note that the maximal value of r in the last theorem is
|∆x(π2 )| if −ε < u(0) < ε, and |∆x(π2 , 0)| if −ε < u(0) or u(0) > ε. Thus it
is always independent from x and θ.
To cover distances |∆x| ≥ r we should divide the spatial interval in N
subintervals of length less than r, each one realized by a u of period T

N .
Repeating N times this control u we are able to reach the desired displacement.

7.2.2 Global controllability result

In this subsection we are interested in studying whether it is feasible for
the system of the scallop to move between two fixed configurations ((x0, θ0)
and (xf , θf )). This part add something to the previous one, since we are
prescribing both the initial and final positions and angles. The following
holds:

Theorem 7.2.7. Let A and B be two fixed positions along the x-axis and
θ0, θf two fixed angles. Then, we are always able to find a suitable control
function u(t) such that the scallop system moves between A and B pass-
ing from θ(0) = θ0 to θ(T ) = θf , where T is a suitable big enough final
time. Moreover such function u(t) respects the switching rules modeling the
dependence of the viscosity η from |θ̇| (Fig.7.2) and from sign(θ̇) with the
thermostat, (Fig.7.6). In other words the system (7.24) is controllable.

Proof. Let u(t) the periodic function that makes the system move between
A and B with final angle θ0 during a time t

′
. We have proved the existence

of such a function with both switching rules, in the previous subsection. Now
whatever w(t

′
) we open or close the valves respecting the switching rule in

Fig.7.2 or Fig. 7.6 respectively until we reach the desired angle θf . We call
t
′′

the time in which we have θf and C the point in which we are arrived.
Now starting from C with w(t

′′
) we move to B using another periodic u(t)

(hence θ(t) periodic), whose existence is ensured from Theorem 7.2.4

7.3 Numerical examples

In this section we will show, through numerical simulations, that our the-
oretical pretictions on the controllability of the Scallop along x are good.
Moreover we will also describe how it is possible to obtain the same results
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Figure 7.8: This figure represents one of the cases considered in the proof of
Theorem 7.2.7

removing the continuity hypothesis on θ̇. In what follows the pictures are all
relative to the controllability result which follows the thermostatic switching
scheme (see Fig. 7.6) that is the most interesting one. Similar results can be
obtained analogously using the other switching described in Fig. 7.2.
Let us suppose to start with w(0) = 2 which means θ̇(0) > ε, Figure 7.9 shows
a possible choice of the control θ̇ to obtain a displacement ∆x = 1 cm, using
the following parameters: a = 2 cm, b = 0.1 cm, η = 2Nsm−2, ξ = 1Nsm−2

m = 1 g and ρ = 1 gcm−3. More precisely in these simulations we decided
to use a periodic polynomial control θ(t) that can be uniquely determined
imposing the following constraints.

θ̇(0) = θ̇0 θ̇(t1) = −ε θ̇(t2) = ε θ̇(T ) = θ̇0

θ(0) = θ0 θ(t1) = θ1 θ(t2) = θ2 θ(T ) = θ0

(7.31)

where θ1 and θ2 are determined by the numerical inversion of the function
∆x (7.26) and we chose t1 = 2 s, t2 = 6 s and T = 7 s. It is easy to see that
(since we want a positive displacement θ1 > θ2) θ̇ respects the thermostatic
switching rule and that after a time T = 7 s we have gained the desired
displacement of 1 cm.
Starting from the simulations in Figure 7.9 we want to build a piecewise
constant control, instead of a continuous one, to obtain the same displacement.
We note that in the case of delayed thermostat a discontinuous input is in
general not allowed due to the presence of memory. The main difficulty of
using a discontinuous control is to chose the switching times. Having in mind
the previous simulations (Fig. 7.9) we can take the switching times of the
continuous control and build a piecewise constant control which satisfies the
constraints (7.31). See Figure 7.10. These simulations actually prove that
the displacement does not depend on the whole control trajectory but only
on the values that the angle θ and its derivative θ̇ assume in the switching
times.
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Figure 7.9: The polynomial control θ̇(t), the resulting periodic angle θ(t)
and the corresponding x displacement in function of time.

Figure 7.10: The piecewise constant control θ̇(t), the resulting angle θ and
the corresponding x displacement in function of time.
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precision tracking of sperm swimming fine structure provides strong test
of resistive force theory, J. Exp. Biol., 213 (2010), 1226-1234.

[58] M. Garavello, B. Piccoli: Traffic flow on networks. In: AIMS Series
on Applied Mathematics, vol. 1, American Institute of Mathematical
Sciences (AIMS), Springfield, MO, Conservation laws models (2006).

[59] M. Garavello and P. Soravia: Optimality principles and uniqueness for
Bellman equations of unbounded control problems with discontinuous
running cost, NoDEA Nonlinear Differential Equations Appl., 11(3),
(2004), 271-298.

[60] M. Garavello and P. Soravia: Representation formulas for solutions of
the HJI equations with discontinuous coefficients and existence of value
in differential games, J. Optim. Theory Appl., 130(2), (2006), 209-229.

[61] R. Goebel, R. G. Sanfelice, and A. R. Teel: Hybrid Dynamical Sys-
tems: modeling, stability, and robustness, Princeton University Press,
Princeton, 2012.

[62] R. Golestanian, A. Ajdari: Analytic results for the three-sphere swimmer
at low Reynolds number, Phys. Rev. E, 77, 036308 (2008).

[63] J. Gray, J. Hancock: The propulsion of sea-urchin spermatozoa, J. Exp.
Biol, 32, (1955), 802-814.



146 Chapter 7. Bibliography

[64] O. Gueant, J. M. Lasry, P. L. Lions: Mean field games and applications,
Springer, Paris-Princeton Lectures, (2010), 1-66.

[65] M. Y. Huang, P. E. Caines, R. P. Malhamé: Individual and Mass
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