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Abstract

Being a multi-disciplinary field of research, Systems Biology struggle to have a common

view and a common vocabulary, and inevitably people coming from different backgrounds

see and care about different aspects. Scientists have to work hard to comprehend each

other and to take advantage of each other’s work; however, they can provide unexpected

and beautiful new insight to the problems we have to face, enabling cross-fertilization

among different disciplines.

However, Systems Biology scientists all share one main goal, in the end: comprehend

how a system as complex as a living creature can work and exists. Once we really under-

stand how and why a biological system works, we can answer other important questions:

can we fix it when it breaks down; can we enhance it and make it more resistant, correct

its flaws; can we reproduce its behaviour and take it as inspiration for new works of engi-

neering; can we copy it to make our everyday work easier and our human-created systems

more reliable.

The contribution of this thesis is to push ahead the current state of art in different

areas of information technology and computer science as applied to systems biology, in a

way that could lead, one day, to the understanding of a whole, complex biological system.

In particular, this thesis builds upon the current state of art of different disciplines: pro-

gramming languages theory and implementation, parallel computing, software engineering

and visualization. Work done in these areas is applied to Systems Biology, in the effort

to scale up the dimension of the problems that is possible to tackle with current tools and

techniques.

Keywords

[Systems Biology, Process Algebra, Simulation Algorithms, Visualization, Parallel Com-

puting]
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Chapter 1

Introduction

This thesis reflects my own journey into the land of systems biology, from a computer sci-

ence, programming language designer and developer perspective. Being a multi-disciplinary

field of research, systems biology struggle to have a common view and a common vocabu-

lary, and inevitably people coming from different backgrounds see and care about different

aspects; this is both the limitation and the beauty of this field of study. Scientists have to

work hard to comprehend each other and to take advantage of each other’s work; however,

they can provide unexpected and beautiful new insight to the problems we have to face,

enabling cross-fertilization among different disciplines.

In the end, systems biology scientists all share one main goal: comprehend how a

system as complex as a living creature can work and exists. Once we really understand

how and why a biological system works, we can answer other important questions: can we

fix it when it breaks down; can we enhance it and make it more resistant, correct its flaws;

can we reproduce its behaviour and take it as inspiration for new works of engineering;

can we copy it to make our everyday work easier and our human-created systems more

reliable. These questions, coming for medicine, biology, biotechnology, informatics, all

spring from the same basic goal, and all depends on being able to reach that goal.

The contribution of this thesis can be seen as an effort of pushing ahead the current

state of different areas of information technology and computer science as applied to

systems biology, in a way that could lead, one day, to the understanding of a whole,

complex biological system. In particular, this thesis builds upon the current state of

art in programming languages theory and implementation, parallel computing, software

engineering and visualization and applies it to systems biology, in the effort to scale up

the dimension of the problems that is possible to tackle with current tools and techniques.
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1.1. TITLE DISSECTED

1.1 Title dissected

Thesis titles tends to be obscure, too short and general or too long and detailed. However,

a thesis title is important, as it is the sum of the contribution done by the candidate to the

world of research. In order to introduce the concepts expressed in this thesis, I will dissect

the title and examine its parts, giving a short preview of the areas my work touched.

1.1.1 Scaling up

Scaling is a pretty common world in computer science. Many algorithms, methods, lan-

guages were invented or substantially improved because the previous ones did not scale up

well. An algorithm, method or language scales when can seamlessly be used to undertake

problems of increasing complexity, even across different orders of magnitude.

The term itself is not used in rigorous way: even if the underlying idea remains the

same, its exact meaning varies when applied to different concepts.

As an example, consider programming languages: all general purpose programming

languages are considered equivalent from a computational point of view. More precisely,

every programming language that computes exactly the same class of functions as do

Turing machines is said Turing-equivalent. All general-purpose languages in wide use can

simulate, and be simulated by, a universal Turing machine, and therefore are Turing-

equivalent. Simply put, the computational power of all general-purpose languages is

the same: any computation that can be done in one general purpose language, can be

expressed in any other general purpose language. However, in terms of scaling, they are

different.

In theory is not impossible to build every known software in assembly language or

machine code; however, for all practical purposes, nobody will ever dream of building a

web application or a word-processor entirely in assembly, because it requires a huge effort,

astonishing programming skills, almost infinite time; it lacks flexibility, composability -

for example, existing parts cannot be reused in a simple and standardized way. Finally, it

would not be possible to build the software as a team effort, because assembly is mostly

a “write-only” language, hard to understand even for the original author.

Assembly is still useful for core system components, or pieces of software that require

terrific speed of execution, but it is really bad for building big systems or to produce

software as a team effort. In other words, programming in assembly does not scale.

The same can be said for algorithms -for which however the definition of scalability

is strictly related to the formal notion of complexity, and therefore is more rigorous- for

methodologies, and for patterns and practices.
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CHAPTER 1. INTRODUCTION

1.1.2 Systems biology

Systems Biology is an inter-disciplinary field of study focusing on the comprehension of the

complex dynamics regulating biological systems, using tools and concepts derived from

other scientific fields like mathematics and computer science. Systems Biology studies

the interactions between the components of biological systems to understand how these

interactions give rise to the function and behaviour of that system.

The main difference between systems biology and more traditional disciplines lies in

the world system; in Denis Noble words “is about putting together rather than taking

apart, integration rather than reduction” [161]. Adopting a systemic view, scientist may

discover new emergent properties and understand better the processes happening in a

biological system:

The reductionist approach has successfully identified most of the compo-

nents and many of the interactions but, unfortunately, offers no convincing

concepts or methods to understand how system properties emerge. [...] The

pluralism of causes and effects in biological networks is better addressed by

observing [...] multiple components simultaneously. - Uwe Sauer, Matthias

Heinemann, Nicola Zamboni [201]

It is important to point out that Systems Biology do not fight against reductionism;

admitting that it is necessary to develop a new way of thinking and a new method to

understand what emerges from the interaction of fundamental components by no ways

implies that the reductionist approach is flawed; on the other hand

The ability to reduce everything to simple fundamental laws does not im-

ply the ability to start from these laws and reconstruct the universe. [...] The

constructionist hypothesis breaks down when confronted with the twin hypoth-

esis of scale and complexity. [...] At each stage, entirely new laws, concepts

and generalizations are necessary, requiring inspiration and creativity to just

as great a degree as in the previous one. - P.W.Anderson [7]

Understanding how a whole systems works under the assumption that its behaviours

is more than the simple sum of the parts is at the base of all Systems Biology efforts, and

of all the efforts to understand Complex Systems in general. Integration becomes central

to capture qualities and properties that cannot be observed, or explained, only from the

basic parts. Quoting again Noble “It requires that we develop ways of thinking about

integration that are as rigorous as our reductionist programmes, but different” [161]; on

the same line Sauer et. al. [201] state that to understand complex systems “rigorous data

integration with mathematical models” is necessary.
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The importance of interconnections in living systems is also stated by S.E. Jorgensen [122].

Like the other system-level scientists, Jorgensen observes that many relevant living bio-

logical systems are too complex to be reproduced in-vitro in a laboratory, or even to be

described down to their details. He advocates that the only way to try and comprehend

them is to build models on the scale of the system itself. This does not mean scien-

tists have to build a model based on phenomenological observation alone, nor a model

entirely built in a completely mechanistic way that tries to explain everything in terms

of fundamental laws. They have to find a way to express a system as a combination of

factors from levels both higher and lower in the hierarchy, of observed behaviour and

mechanistic modelling. Quoting Luca Cardelli “it is now evident that even when we are

able to fully characterize a model from a mechanistic point of view, the model itself can

express “emergent” phenomenological behaviour that is not evident from the parts list.

Conversely, given a known behaviour and a long parts list, it is often difficult to identify

the subset of the parts list that is responsible for the behaviour”. The advent of molecular

biology more than fifty years ago shifted biology from the classification and observation of

species and components to the comprehension of how they work; now we are at the point

in which we need a formal and precise way to map biological interactions, in order to learn

how to “fix” them in a rational way, as expressed in an humorous way by Lazebnik [139]

and Cardelli [32].

1.1.3 Model composition, Simulation and Visualization

The urgent need for a formal way to express interactions is a shared sentiment among the

Systems Biology community. Indeed, there is much discussion and work around which

language we should adopt to build models, but no one doubts that scientific modelling is

a fundamental part of the scientific method as applied to Systems Biology.

I strongly agree with this view; even beyond Systems Biology, I cannot really say to

have understood a principle, or even more a complex system, if I am not able to reproduce

it. As Richard Feynman said “What I cannot create, I do not understand”.

Generally speaking, the scientific method is a set of techniques, specifications and

guidelines that are applied to a method of inquiry, used to acquire, integrate or correct

knowledge about observable phenomena. The details and precise guidelines vary from one

scientific field to another, but to be dubbed scientific, a method of inquiry must be based

on some features: data has to be gathered in an observable, empirical and measurable

way; hypothesis must be tested under the same constraints to gather evidence for its

verification or confutation; the steps taken during this process must be repeatable in

order to dependably predict any future results.

Scientific researchers apply the scientific method to their work; they build and propose
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hypotheses as explanations of phenomena and current data, and design experimental

studies to test these hypotheses. John Stuart Mill was one of the first to clearly outline

what distinguishes a scientific method from other methods of investigation [154].

Why? impossible or impractical to 
create experimental conditions; 
human thought processes amplified; 
(leverage computational power to 
simulate, visualize, manipulate)

What? A simplified abstract view of the 
system: complex reality, empirical objects, 
phenomena, and physical processes.

How? consistency to empirical data: 
ability to explain past observations, ability 
to predict future observations. Simulation.

Define the 
question

Gather 
information 

and resources 

Form 
hypothesis

Perform 
experiment, 
collect data

Analyze data

Draw 
conclusions,

Test hypotesis

Hypothesis 
consistent?

Modelling

Simulation
(and more)

Visualization

Figure 1.1: The scientific method applied to Systems Biology

Modelling is an essential part of the scientific method, and of almost all scientific ac-

tivities; building a hypothesis about how a phenomena can be interpreted already implies

the construction of a mental model of how existing data and knowledge could justify

the phenomena subject of study. Many scientific disciplines have different ideas about

specific types of modelling. In general, modelling is the process of generating abstract,

conceptual, graphical or mathematical models.

In biology it is becoming incredibly difficult to build wet-lab experiments that elucidate

the phenomenon at hand, especially for complex systems. Building models that explain

all past experiments and predict the results of new experiments is the solution proposed

by Systems Biology.

As we have seen, Systems Biology combines molecular biology with other field of study;

in particular, mathematics at the beginning and now of computer science, enabled the

possibility of in-silico experiments, done by building a model of the system and solving

or simulating it on a computer. Eventually it is necessary to find real experimental

validation, but modelling can make possible experiments of a complexity not manageable
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before. Model composition, in-silico verification and predictions are part of the scientific

method applied to Systems Biology (Fig. 1.1).

Simulation

Building a model gives by itself some useful insights on the process or system under

study, as it forces the modeller to think about the system in a rigorous way; however,

model construction is just the beginning. The scientific method requires the design of

experiments to test hypothesis. Central to every experiment in systems biology is the

simulation of the system under study; the use of computer based simulations for making

predictions and testing hypothesis should come to no surprise, as it is now a common

practice in many fields - from many-body physics to hydraulics, mechanical engineering

and meteorology, just to cite a few ones.

In Computational Systems Biology, many techniques derived from formal verification

and analysis of complex systems are under study for application to biological systems;

these techniques can actually prove in a rigorous way some properties about a given model

and the system it represents. However, stochastic simulation techniques that reproduce

in an exact way the “chemical machine” on which models can run as a sort of “biological

software” [75], are still the easiest, quickest and most used way to proceed and test the

hypothesis underlying the simulated model.

Visualization

Finally, visual techniques for systems biology are a current topic of research, as they

are useful at many levels. During my PhD I explored their use to design, organize and

understand biological models. In particular, the latter application -visual techniques

to understand data from a specific problem domain- falls into the area of visualization

and may help to address the drawbacks and difficulties in understanding the results of

simulations and analysis run on complex models.

The role of visualization is to extract information from raw data, the first step in the

many-phase process that leads to understanding and ultimately to new knowledge [37].

Visualization takes basic data, composed of symbols taken from some grammar or lan-

guage (e.g. series of doubles, graph structures, grid structures, DNA strings, ...) and

processes them in order to present to the user information, using visual cues and graph-

ical techniques. Information, in turn, is data processed to be useful, in a way that can

provide answers to who, what, where and when questions. Ultimately, the correct mix

of information and data help a scientist to understand the data and answer the most

important question: the how, that gives new knowledge to the scientist.
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1.2 Contribution

My PhD began three years ago with the rather general statement of doing research on

parallel techniques for simulation of biological systems.

Even if this is a really interesting and challenging problem to face, as we shall see in

due time, and even if despite some interesting progresses the problem is far from being

“solved”, during my first year I discovered that the size of a problem is not limited only by

the simulation algorithm. The limit to the size of biological systems that can be simulated

or analysed lies in a more fundamental reason: the inherent complexity of biological

systems. Making progress in the area of parallel algorithms for computation biology is

really important, especially in the light of the so called concurrency revolution that is

taking part in these last years. But a parallel and scalable algorithm (for simulation,

analysis, static checking, ...) does no good by its own, because we will be never able to

use it and exploit its capabilities. When I started my PhD in 2006, I quickly discovered

that it was not possible, given the present process-algebra based tools and techniques, to

create a correct, big enough model to run on this hypothetical scalable algorithm. Nor

it was possible to take the sheer amount of data produced by the hypothetical algorithm

and interpret them in some meaningful way.

Scaling the simulation and analysis algorithms to take advantage of the computational

power offered by today’s and tomorrow’s multi-core and many-core architectures is a

great area of research, and it must be done in order to be able to understand not only

single or isolated pathways, but also how tissues and cells works -especially if we want to

overcome today’s way of modelling systems from their macroscopic behaviour and deliver

the promise done by systems biology of understand the whole by composing the parts-.

But it is also very important to make progress in other areas, or we will be able to run,

simulate and analyse big models, but we will not be able to compose them, or we will not

able to understand the results of a simulation.

For this reason, the problem of scaling up systems biology spans over four main areas:

• Scale at model composition level: as in the assembler example, basic languages

used for the first systems biology models are not able to scale. The main limitation

is exactly the same found in all general purpose language: the lack of modularity, the

impossibility of re-using modules and components written by someone else without

having to rewrite them almost completely (easy reuse) and the lack of ability to build

a complex software (or model, in this case) composing simpler modules, treating

them in an (almost) black-box way. We advocate the use of a programming language

for systems biology, and a programming discipline to model construction, in order to

overcome these limitations. The contribution of the author in this area is its work
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as part of the team that defined, refined and implemented the BlenX language.

• Scale at algorithm level: the Gillespie algorithm is the most widely used and

known algorithm of systems biology: it made possible to perform accurate and

physically correct simulations of realistic biochemical systems . However, it has

some limits: as we try to build and simulate significantly more complex and vast

models we are bound to collide with one of its assumption. The Gillespie algorithm,

in fact, assume that space is homogeneous ; clearly this assumption can hold at the

level of a single pathway (even if even in this case it is necessary to make distinctions)

but cannot be considered at a whole-cell level, or when dealing with inter-cellular

interactions. The contribution of this thesis here is the design and implementation

of a variant of the Gillespie algorithm for spatial, heterogeneous systems.

• Scale at execution level: the original goal of my PhD, design simulation algo-

rithms to take advantage of the computational power offered by today and tomorrow

multi-core and many-core architectures. This is particularly important, as the way

in which new processors are built has changed dramatically in the last four years.

Previously, programmers relied on Moore’s law to deliver exponentially increasing

performances to their users. This empirical law states that the number of transistors

on a CPU, and so its computational power, is bound to double every 18 months.

This law held since the transistor was invented, and it is still valid today. However,

up to four years ago, an increase of computational power on a CPU meant a decrease

in the number of CPU cycles necessary to complete the execution of an instruction

(that changed from hundred to tens to multiple instruction per cycles, thanks to in-

struction level parallelism) and/or an increase in frequency (how many CPU cycles

can be done in a second). The consequence is that existing programs could im-

mediately benefit from new processors, running at roughly twice the speed (if they

were CPU-bound) every new processor release. Around 2004, the last single core

CPUs hit some physical barriers -power consumption, speed of signal propagation-

and since then CPU frequency stabilized to 3-4 GHz and has not grown in an ap-

preciable way. At the same time, instruction level parallelism continued to improve,

but not in a very significant way, and at the price of great architectural complexity.

So CPU manufacturer turned to multi-core architectures. The number of transis-

tors still double roughly every 18 months, doubling the number of cores, while the

complexity per core remains roughly the same. This lead to the start of the so

called concurrency revolution: to obtain performance increments on new processors,

software needs to be changed and become parallel.

Parallel simulation of biological systems must be addressed, if we want to deliver the
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promise done by systems biology to be able to understand a system as whole, where

models could possibly be very large in order to capture the systems behaviour in a

reliable way. Today models are at the scale of a single pathway; on a single CPU or

core a sequential simulation algorithm can take hours to days to run the simulation

of a complex pathway with hundreds of species and millions of entities. Consider

now a (simple) cell in which tens of pathways can be active simultaneously, and the

problem becomes clear.

The contribution of this thesis is an analysis of current simulation methods, how

they can be revisited in terms of known parallel architectures and some practical

considerations of the limits to the extent of parallelism that can be obtained on

current architectures.

• Scale at result interpretation level: even today the simulation of a single path-

way can produce a very complex output. Output generated from models expressed

in a powerful language is particularly difficult to examine. This happens because

the more a language is able to encapsulate and hide complexity from the modeller,

i.e. the more powerful a language is, the more complex the model can become, and

this is shown in the output of an analysis or simulation. Thousands of entities, in-

termediate configurations, complexes, can be produced during a simulation. Clearly,

understanding what is going on and how they are produced, how they interact, ulti-

mately why a particular behaviour is expressed can be daunting - but it is the reason

of why the simulation was run and the model created in the first instance, so it must

be addressed.

The contribution of my thesis in this area is an analysis of the visualization tech-

niques that can be applied to the simulation results to help the scientist to extract

knowledge from the raw data. Furthermore, we present some ongoing work done

with Larcher [134] on the use of classification combined with visualization to pro-

vide better results.

• Scale at experiment composition level: one of the goals of Systems Biology

is to re-create an artificial laboratory in a virtual computing environment, creating

in-silico experiments that can help biologists reproduce experiments that are too

long or too expensive in a real lab. Sometimes, like in the case of experiments to

test evolution theories, there are experiments that are not even possible in a real

laboratory, and that must entirely simulated on a computer. Life scientists could use

Systems Biology tools to reproduce in a virtual environment some experiments, test

their hypothesis, and return to the lab with confirmations or new ideas on what they

need to investigate to obtain answers to the problem at hand. In-silico experiments
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are disparate and may different significantly one from another; model construction

and simulation remain at the base of these in-silico experiments, but in many cases

there is much more than simulation. Up to now, the design and execution of an

in-silico experiment was almost completely deferred to the user. The contribution of

this thesis is the design and first implementation of a framework to design, compose,

run and reproduce in-silico experiments that require multiple tools and multiple

steps to complete.

1.2.1 What is not part of this thesis

Many other areas of research deal with the problem of studying complex biological sys-

tems, in particular how to tackle problems of greater dimension and how to create more

complex and elaborated in-silico experiments.

For example, there are whole conferences and journals dealing with the field of study of

multi-scale and multi-level simulation [138, 67]. In particular, groups at the University of

Rostock [226, 227] and at the University of Santa Barbara [27, 168] work on toolkits that

allow for a semi-automatic choice of the algorithm to use for a simulation, considering and

making trade-offs in both speed and accuracy. Similarly, Takahashi et al. [222] devised a

method for multi-scale simulation that allows for whole cell simulations.

Another area of research that will not be included in this thesis is the usage and scaling

of formal analysis techniques. A wide range of methods are grouped under this is a very

large umbrella -basically, all computational analyses but simulation-. These very useful

techniques, for which thorough research has been done in the area of performance and

parallel computing, include markovian analyses and equivalences [13], performance and

steady state analysis [129], model checking [43] (especially its stochastic variant [131])

and abstract interpretation [70].

Finally, this thesis will not face a very important aspect, which to the best of my

knowledge has not yet been considered by the various systems biology workbenches and

toolkits: versioning and reproducibility.

Versioning is the process of assigning version numbers to unique states of computer

software. Also called revision control, this process is used to keep track of incrementally

different versions of electronic information, typically source code, documents or other

human-generated files.

Reproducibility and documentation are two of the basic ingredients of the scientific

method. Both require to document, archive and share all data and methodology resulted

from experiments, so they can be used to reproduce the experiment and made available

for careful scrutiny by other scientists, allowing them the opportunity to verify results.

This practice, called full disclosure, also allows statistical measures of the reliability of
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these data to be established.

These two features are related, as they both need to keep track and store informa-

tion about models, experiments, steps and parameters used for simulation and analyses.

The systems biology community has put a good effort in the definition of standards dic-

tating which information has to be recorded, that led to the creations of the MIASE

(Minimum Information About a Simulation Experiment) standard with its formal rep-

resentation SED-ML, and of the MIRIAM standard (Minimum Information Required in

the Annotation of Models). However, software implementations of these standards are

still scarce.

On the other hand, tools for versioning, tracking, integration and testing (with re-

producibility, automated execution and reporting) are commonly found in the modern

software developer toolbox1.

The integration of ideas and functionalities from these software – in particular with

respect to versioning of models and results and automatic recording of changes, parameters

and steps of in-silico experiments – within the framework presented in Chapter 6 would

be another step in the direction of seamless management of complex in-silico experiments.

1.3 Organization

This thesis starts with a general background and state of the art in the area of simulation

and modelling formalism. The problems to tackle in order to scale up systems biology

are disparate, even if they have multiple points of connection. In chapters from 3 to 6

each problem will be introduced separately, presenting for each of them a brief discussion

of the state of the art, related work, both the how and why of the choices made, a small

example and future research directions.

Before some conclusion remarks, chapter 7 presents a more detailed case study in

which the techniques developed for this thesis where used to tackle a real size problem.

1As an example, consider source code repositories like CVS, SVN and Perforce; bug, features and change
trakers like Bugzilla and Visual Studio TFS; unit test frameworks; etc.
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Chapter 2

Background

This Chapter presents some background information on the basic concepts used in this

thesis; in particular, I will present an expanded overview of Systems Biology, how it relates

to simulation and stochasticity, and how the computational approach to Systems Biology

opened new possibilities and new roads.

2.1 Why Systems Biology

The interdisciplinary field of study called Systems Biology was introduced in Section 1.1.2,

at the beginning of this thesis; in that Section, we gave an overview of Systems Biology,

mainly defining it as a systems science, highlighting the differences with other, more

traditional disciplines in the life science domain of study.

Many distinguished scientist tried already to give a complete and precise definition of

Systems Biology [127, 126, 114]; while almost all agree in the importance of defining it

as a systems science, the precise definitions varies. This is another consequence of the

interdisciplinarity of systems biology: people coming from different fields, with different

backgrounds, inevitably focus on different subjects.

Here, following [184], we will introduce some central aspects of Systems Biology with

a metaphor. When on vacation in some nice location, tourists like to take pictures, so

that they can look at them later and remember the places they visited. Unfortunately,

many times pictures are disappointing, because they are not able to convey the idea of the

space. Especially with building, squares and landscapes it is difficult, if not impossible, to

capture the image you have in mind and fix it on the film (or memory card). For example,

look at a picture I took the last time I was in Firenze (Figure 2.1). The picture shows

a particular of Palazzo Vecchio, with the statue of Michelangelo’s David. The picture

shows you a lot of particulars: you can admire the statue, with its wonderful proportions
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and the smooth marble surface1; you can see the medieval palace, the door through which

many rich and powerful rulers walked, how the door is shaped and the quality of the stone

used for the building. However, despite all these details, you cannot admire the palace,

or even more the square and the surrounding building with their statues; you cannot see

where the palace and the famous Galleria degli Uffizi are, or were the Fiorentini used to

burn witches and heretics in the Medieval Age.

Figure 2.1: A particular of Palazzo Vecchio in Florence

Surely, it is possible to zoom out, and with the help of wide lenses capture the whole

square, but in this case you will lose all the details. Moreover, it is not possible to capture

with a single picture how all the buildings are positioned, how the network of streets and

alleys is laid out, so that you can get glimpses of the Arno river and Ponte Vecchio or

of the Duomo. It is not possible to understand how people flow and flock through the

square. In other words, the live dynamics of the square are not captured in a picture, no

matter how detailed it is.

A video could help in this case, especially if a good director shoots long enough footage.

1To be precise, that statue is nowadays only a copy, as the original is located in the Galleria dell’Accademia
museum.
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But what if we only have a camera? Computer science and technology could come to the

rescue.

Figure 2.2: A snapshot taken during the navigation of the Palazzo Vecchio picture set in Pho-
tosynth

In recent years, advances in image processing research made it possible to automat-

ically extract features, shapes and depth cues from images, so that a bunch of photos

can be composed into one, harmonic 3D environment, using little guidance from the user.

Microsoft Photosynth2 (Figure 2.2) is one of these software. The static shoot in Fig. 2.2

cannot show how Photosynth composes static photos to recreate a 3D environment: it is

possible to zoom in, switching form picture to picture in a smooth way, so that both the

general picture and the details are preserved. Moreover, it is possible to relate together

pictures that had nothing in common -for example, picture taken at the opposite sides of

the square- and navigate through the environment, recreating the dynamics of a video.

The goal of systems biology is roughly the same: starting from detailed but static

pictures, systems biology aims at composing them together, adding knowledge about the

system to reveal dynamic properties and behaviour that was previously unknown or only

hypothesized.

The ‘pictures’ in the analogy are the result molecular biology, the branch of science that

studies biology on a molecular level, dealing with the formation, structure, and function

of the macromolecules that constitute the basis of life, like DNA, RNA and proteins.

In the last sixty years, thanks to breakthrough discoveries and constant advances in

technologies and experimental techniques, this field of research made huge progress, rising

to a summit in the last years of the past century with the complete sequencing of the

2http://photosynth.net/
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human genome.

Discoveries and advances in molecular biology led to a massive increase in the data

available to scientists; the sheer amount of data available begun very soon to be beyond

what it was possible to deal without information techniques, giving birth to bioinformatics,

the application of informatics to store, manage and analyse molecular biology data.

Bioinformatics allowed for great improvements in handling of data, which lead to

the success of the Human Genome Project and to the beginning of the post-genomic era.

However, molecular biology and bioinformatics could not help us to understand the overall

behaviour of a system; molecular biology shed light and analysed in detail how individual

components (e.g. molecules and proteins) works, and bioinformatics helped in enabling

these analyses at a genome scale, but this is not sufficient. As we claimed in Sec. 1.1.2,

systems sciences need to go beyond the assumption that knowledge, however deep, of the

single components could be used alone to explain the whole system, even in the extremely

unlikely case of having a complete network of connections between the components.

Like in our analogy, while we continue to need to understand genes, proteins, mecha-

nisms and structures at a molecular level, we need also the focus on the system’s structure

and dynamics ; we need to shift from a single picture to a network of pictures, an environ-

ment that is much more than a simple catalogue or album. Quoting Kitano: “a system

is not just an assembly of genes and proteins, its properties cannot be fully understood

merely by drawing diagrams of their interconnections” [128]. Like in the case of Photo-

synth, we aim at reconstruct the system using tools and concepts from computer science.

2.2 Approaches: Stochasticity and Space

The first models of biochemical interactions pre-date the birth of computers; these models

described interactions between the various entities in a deterministic way, following the

law of mass action. This law assumes that the system which has to be simulated is

homogeneous and that biochemical reactions are continuous and deterministic; also, it

states that under these assumptions the reaction rate of any reaction is proportional to

the quantities (or, better, concentrations) of its reactants.

Using this law it is possible to find expressions for the rate of change in concentrations

of all the molecules of the system; hence any biochemical system can be expressed through

a set of coupled, non-linear, first order differential equations. In general, these equations

do not have an analytical solution, but they can be numerically integrated in order to

find an approximation of the reaction dynamics of the system.

While in the past this approach was often used to model biochemical systems, in the

last decades some major drawbacks of this method have emerged from a better under-
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standing of physical phenomena. In fact it is now known that molecules undergo random

collisions, some of which can trigger reactions if the released energy exceeds a certain

threshold. Moreover, the dynamic evolution of biochemical systems is not a continuous

process, because the quantities of the molecules can change only by integer amounts, that

is, discrete steps.

Because of this intrinsic stochastic and discrete nature of biochemical reactions, the

physical base of the deterministic model is not completely correct. In some cases this ap-

proximation is acceptable, whereas it becomes more and more unacceptable when systems

are composed of a small number of molecules. In these systems, in fact, the deterministic

approach is unable to describe the fluctuations in the quantities of the molecules: in these

cases a stochastic modelling approach is required.

2.2.1 Monte Carlo methods and Monte Carlo simulation

The expression Monte Carlo method is very general. Monte Carlo (MC) methods are

stochastic techniques; they are based on the use of random numbers, probability and

statistics to investigate problems [123]. MC methods are used in everything from eco-

nomics to physics and chemistry to traffic flow regulation. Of course the way in which

they are applied varies from field to field; dozens of different MC methods are in use even

within the same discipline, like chemistry. Loosely speaking, all you need to do to call a

procedure a Monte Carlo experiment is to use random numbers to examine that particular

problem.

The use of MC methods allows us to examine more complex systems: large-scale

problems very often take the form of linear or non-linear algebraic, differential, and/or

integral equations, which are not directly solvable (within a reasonable time). When the

number of variables and parameters grows beyond a few hundreds, the computational

difficulties become major obstacles and the usual methods begin to fail. It is at this

point that Monte Carlo methods emerge as important problem-solving tools. Consider

for example the field of biochemical kinetics -the field we are interested in-: even under

the conditions in which the deterministic approach is valid (large number of molecules

in a homogeneous system) and therefore a system can be represented in the form of a

system of differential equations, often this system does not have an analytical solution.

Even trying to solve it numerically is feasible only for simple sets of equations.

The Monte Carlo method in the case of linear algebraic problems usually consists

in creating a suitable statistical situation (a probability space); the solution is obtained

by computing an estimate obtained from a random walk in that space. This method is

called Random-walk Monte Carlo. At every step in this random walk the path to follow

is chosen raising a question and obtaining an answer in the form of the expected value of
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some random variable. This is typically done using a computer model that makes use of

so-called pseudo-random generators.

The Random-walk Monte Carlo method is widely used for both its efficiency compared

to deterministic algorithms and its physically correct behaviour. It is worth noting that at

many levels, nature exhibits a chaotic behaviour: besides quantum physics considerations,

even if at microscopic level we could observe a deterministic behaviour, at a macroscopic

level the number of variables and the complexity of the interaction, plus the inevitable

influence from the environment, lead to an unpredictable evolution of the system.

2.2.2 The stochastic method

In fact, the stochastic approach to chemical kinetics has a stronger physical base compared

to deterministic approach: early experimental studies (see as an example [213], [198]) have

demonstrated that stochastic effects can be significant in cellular reactions.

More recent experimental studies showed the importance of noise in gene regulation:

see [112], [152] and [66], just to cite a few ones.

The proliferation of both noise and noise reduction systems is a hallmark of

organismal evolution – Federoff et al.(2002)

Transcription in higher eukaryotes occurs with a relatively low frequency in

biologic time and is regulated in a probabilistic manner – Hume (2000)

Gene regulation is a noisy business – Mcadams et al. (1999)

These studies, together with the success of Monte Carlo stochastic simulation techniques in

the quantum physics simulation, have ignited widespread interest in stochastic simulation

techniques for biochemical networks.

2.2.3 Representation of Space

In addition to stochasticity, spatial effects may also deeply influence many biological

systems; just to mention a few, gene expression, mRNA movement and localization within

the cytoplasm, morphogen gradients, protein transport; they all strongly rely on location

and space. Moreover, diffusive effects are important also in the description of many

pathways, including signalling pathways where sub-cellular compartmentalization and

crowding can cause the signal weakening, or where co-location of molecules is fundamental

for the pathway dynamics.

In [220], Takahashi et al. review the various approaches to spatial simulation. Spatial

simulation methods can be classified using different criteria: whether and how they deal
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Figure 2.3: The different levels of abstraction discussed in this chapter

with spatial effects, the scale, i.e. the granularity, at which they operate, the abstraction

used for time, whether they are stochastic or not, and if they consider weak interactions

or not.

Method Space Scale Time Stochastic

MD Particle Micro Continuous -

BD Particle Micro Varies +

CA Discrete Micro/Meso Discrete (steps) Varies

Spatial Gillespie Discrete Meso Events +

PDEs Mesh Macro Continuous Varies

Gillespie Homogeneous Meso Events +

ODEs Homogeneous Macro Continuous -

Table 2.1: (Spatial) simulation methods. The table is an adapted version from [220]

In Table 2.1 the various methods for spatial simulation are listed; each method in

the list groups several different algorithms in a family; for example, BD encloses all the

particle based approach at the Smoluchowski level of detail. The methods are listed in

increasing level of detail, represented by the Space column.

Space is the spatial abstraction and level of detail used by the method (see Figure 2.3);

in the ‘particle’ space, molecules are represented as individual particles with positions in

a continuum space; in ‘discrete’ space, space is discretized in sub-volumes (or voxels),

or a regular lattice is used. In the latter case, each lattice site can accommodate one

or multiple particles. Usually, when only particle is allowed per lattice site, the method

is still operating at the microscopic scale, while allowing multiple particles per site/per

voxel bring the method into the so called mesoscopic scale, a scale at which the repre-

sentation of particles is still discrete, but there is no need and no way to distinguish and

treat individual particles. In other words, at the mesoscopic level there is the shift from

individual molecules to populations, or species.

Time represent how time is treated. The time evolution in PDEs, ODEs and MD

systems is obtained by integrating over time, considered as a continuous variable. Time

is stored as a continuous variable also in Gillespie and its spatial variant; however, instead

of integrating over a time variable, the method “skips” from one time point to another,

which represents the next simulated event. Finally, BD methods use different time rep-

resentations: methods based on Green Functions are event-driven, while Smoldyn, for
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example, updates the system state at discrete time steps.

Many biochemical models need a level of detail and accuracy that requires simulations

to deal with both spatial and stochastic aspects (for a survey on these biochemical phe-

nomena and the computational methods used to simulate them, see [62]). For this reason,

we will summarize and present only the techniques highlighted in bold in Table 2.1.

2.2.4 Gillespie SSA

The Gillespie SSA, and the family of algorithms derived from it, can be considered the

de-facto standard simulation algorithms for systems biology. This algorithm, as displayed

in Table 2.1, does not take into account space, operates at the mesoscopic scale -where

quantities are discrete, but there is no single molecule details and hence the algorithm

works at a species or population level- and it one of the first stochastic algorithms.

The stochastic approach to chemical kinetics -at a mesoscopic scale- was first employed

by Delbruck in the ’40s. The basic assumptions he made are that a chemical reaction

occurs when two (or more) molecules of the right type collide in an appropriate way,

and that these collisions are random. Whenever two molecules come within a certain

proximity, they can react with some probability: collisions are frequent, but those with

the proper orientation and energy, that is the collisions that allow molecules to react

together, are infrequent. In [81] and [84], Gillespie introduced the additional assumption

that the system is in thermal equilibrium. This assumption means that it is possible to

avoid the difficulties generated by the procedure of estimating the collision volume for

each particle; the system is considered as a well-stirred mixture of molecules, where the

number of non-reactive collisions is much higher than the number of chemical reactions.

It makes possible to state that the molecules are randomly and uniformly distributed at

all times, and therefore that the mixture is homogeneous.

This well-stirred mixture assumption allow to derive an exact stochastic method, which

is in charge of predicting collisions by estimating the collision volume of each particle, that

is computationally lighter than other methods. This method, derived by Gillespie, is called

the Stochastic Simulation Algorithm (SSA) [84].

We can observe that biological systems can be modelled on different levels of abstrac-

tion, but models at each level follow the same pattern:

• pairs entity type, quantity ;

• interactions between the entities.

For example, in the case of biochemical models entities are molecules and interactions

are coupled chemical reactions. Therefore, we can reduce the necessary parameters for

describing a system to:
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• the entities, usually referred to as species, present in the system S1, ..., SN ;

• the number and type of interactions, called reaction channels, through which the

molecules interact R1, ..., RM ;

• the state vector X(t) of the system at time t, where Xi(t) is the number of molecules

of species Si present at time t.

The state vector X(t) is a vector of random variables that does not permit to track the

position and velocity of the single molecules.

2.2.5 Base rate and actual rate

For each reaction channel Rj a function aj, called the propensity function for Rj, is defined

as:

aµ = hµcµ for µ = 1, . . . ,M (2.1)

such that hµ is the number of distinct reactant combinations for reaction Rµ and cµ is a

constant depending on physical properties of the reactants and

a0 =
M∑
µ=1

aµ

The cµ constant is usually called base rate, or simply rate of an action, while the value of

the function aµ is called the actual rate.

Gillespie derives a physical correct Chemical Master Equation (CME) from the above

representation of biochemical interactions. Intuitively, this equation shows the stochastic

evolution of the system over time, which is indeed a Markov process.

Gillespie also presented in [84] an exact procedure, called exact stochastic simulation,

to numerically simulate the stochastic time evolution of a biochemical system, thus gen-

erating one single trajectory. The procedure is based on the reaction probability density

function P (τ, µ), which specifies the probability that the next reaction is an Rµ reaction

and that it occurs at time τ . The analytical expression for P (τ, µ) is:

P (τ, µ) =

 aµ exp(−a0τ) if 0 ≤ τ <∞ and µ = 1, . . . ,M

0 otherwise

where aµ is the propensity function.

The reaction probability density function is used in a stochastic framework to compute

the probability of an action to occur. The way of computing the combinations hµ, and

consequently the actual rate aµ, varies with the different kind of reactions we consider.
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In the case of first-order reactions, hµ is equal to the number of entities (the cardinality)

of the one reactant, while in the case of second-order reactions, hµ corresponds to the

number of all possible interactions that can take place among the reactants.

2.2.6 Molecular Dynamics

Chemical and biochemical reactions can be simulated in a very precise and detailed way

using molecular dynamics. Molecular dynamics is a form of computer simulation where

atoms are allowed to interact under known laws of physics, giving a view of the motion

of the atoms. Methods that simulate quantum mechanical and molecular mechanical

dynamics have been applied to a wide range of problems of chemical and biological interest

(see for example [92]), such as chemical reactions in solution and enzymes and solvent

effects on electronic excited states; in these simulations, every detail of the chemical

reaction, like formation and breaking of bonds between single atoms, and the position

and energy of every atom in the system are explicitly simulated.

2.2.7 Brownian dynamics

Brownian dynamics (BD) methods operate at a slightly coarser level of detail, where

molecules have an identity and an exact position in continuous space, but no volume,

shape or inertia. Every molecule of interest is represented as an individual point, and

those that are not of interest (water, non-reactive molecules, etc.) are not represented.

Brownian Dynamics simulations are a stochastic simulation approach with continuous

space; they are based on the solution of the Smoluchowski equation, which describes the

diffusive encounter of molecules in solution.

Handling of time varies from method to method: some methods are realized as a

numerical procedure to solve the Smoluchowski equation; in this case, time is continuous.

Others methods, like GFRD (Green’s function reaction dynamics) [228] and E-GFRD

(Enhanced GFRD) [221], are based on the decomposition of the problem into a set of

two-body problems and on the analytical solution for these two-body problems of the

Smoluchowski equation by using Green’s function; in this case, the simulation time is

driven by events.

Finally, Smoldyn [8] is another approach to the numerical realization of the Smolu-

chowski model. In Smoldyn, a bimolecular reaction occur if two reactants approach each

other within a binding radius, a radius that is different (typically smaller) than the phys-

ical radius of the molecules, and that depends on the diffusion coefficients and on the

reaction rate constant. Simulated time is discrete, as reactions, computation of move-

ments and update of the position are done at fixed time steps.
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2.2.8 Lattice-based methods

At a slightly coarse level of detail we find lattice-based methods. In this case, the simulated

space is divided into voxels (three dimensional elements); each voxel is assigned to a

lattice site. In particular, we will focus on cellular automata (CA) based methods. These

methods share two characteristics: space and time are discrete, and the evolution in time

of the system is fully specified in terms of local interactions, instead of being obtained by

solving for the global behaviour of a phenomenon.

In a standard cellular automaton each site has a finite number of states; the molecule

can propagate from one site to another according to its diffusion rate, and then collide or

react with other molecules. CA can be used to simulate reaction and diffusion at both

microscopic scales, having single and multiple molecules at a site, respectively. In the

latter case, the CA is called a multiparticle model.

The multiparticle diffusion model is more complex and more realistic. In this model,

multiple particles per lattice site are permitted; particles move in a stochastic way by

following independent random walks between positions in the lattice. Brownian diffusion

is therefore modelled as a series of independent random choices for the movement of

particles on a regular, uniform grid.

A third possibility is to use a coupled map lattices (CML). A CML is an extension of a

CA where the discrete state values of CA cells are replaced by continuous real values. CML

are a versatile technique for modelling a wide variety of dynamic systems and phenomena,

including chemical reaction-diffusion systems, as the Gray-Scott model -described in [165]-

or Turing pattern models.

2.2.9 Spatial Gillespie

The Gillespie algorithm, introduced in Sec. 2.2.4, allows simulating chemical reactions

in an efficient way. Every collision that leads to a reaction is explicitly simulated, but

collisions that do not lead to a reaction are not. The stochastic behaviour of the chemical

system is preserved, as molecules are still represented as discrete quantities, but infor-

mation on a single molecule, and with it any positional information, are lost. Moreover,

the assumptions made by Gillespie explicitly rule out diffusion from the system: since the

solution is in thermal equilibrium, it is assumed that diffusion is instantaneous so that

each molecule has the same probability of reacting with every other molecule in the sys-

tem. The algorithm works well locally, but cannot be used to represent complex pathways

that span over a considerable extension of reactions taking place in an inhomogeneous

medium.

A proposed extension is the discretization of the space by subdivision into logical
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Figure 2.4: The extension to the Gillespie SSA proposed by Bernstein. On the left, a discretiza-
tion of the space into four cells. On the right, the species and the reactions added to the system
in order to deal with diffusion.

sub-volumes, often referred to as Cells. The dimension of a cell is chosen to be small

enough for the sub-space to be homogeneous and for the enclosed entities to have almost

instantaneous diffusion, so that the assumptions made by the Gillespie algorithm are

valid inside a single cell; furthermore, spatial information is added to the system by

duplicating every species S. New species with the same characteristics of S and with

an index identifying its position on the grid are added to the system (S1, S2, ..., Sn);

diffusion is represented by first-order reactions among species. This method, proposed by

Bernstein [14], is depicted in Fig. 2.4.

The advantage of this approach is that the algorithm in charge of simulating the

reaction-diffusion system does not change; it is possible to add more species to model

the molecules in different compartments and add reactions to “diffuse” between adjacent

compartments, and then to use the existing tools and algorithms to simulate the modified

system.

An efficient implementation for simulating reactive-diffusive systems by using spatial

structures is used in the next subvolume method (Elf et al. [65]). The underlying theory is

the same utilized by Bernstein, as both are based on the exact realizations of the Markov

process described by the Reaction Diffusion Master Equation. The algorithm uses three

data structures: (i) a connectivity matrix, (ii) an event queue and (iii) a configuration

matrix, used to naturally partition reactions into sub-volumes. Instead of mapping move-

ments of entities using different species, the direct method [84] is used on each sub-volume

to compute the time for the next event, i.e. a chemical reaction or a diffusion event. Then,

the next reaction method [80] is used to identify the sub-volume where the first event will

occur. The event is simulated, then the reaction and diffusion times in the volume (or

volumes, in case of a diffusion event) are updated using the direct method again.
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2.3 Model definition

As we have seen in Section 1.1.2, Systems Biology put the focus on understanding the

system’s structure and dynamics; as a consequence, scientists needed a way to describe

how a biological system behaves, how it will respond to stimuli, how it will dynamically

evolve in time, transitioning from an initial state to a final one. In other words, Systems

Biology leads to a hypothesis-driven kind of research [128], where models play a central

role.

A biologist that would like to understand how a systems behaves, starts by making

an educated guess of how it may work internally: based on the data and facts at hand,

he builds into his (or her) head a model of the system. Then, he proceeds to verify that

model, in order to validate or reject it, in the spirit of the experimental scientific process.

Generally speaking, a model could be expressed in many ways: form drawings on a

blackboard to the cartoon-like figures so common in many textbooks and databases (see

Figure 2.5), to a plain English description of the dynamics, to a set of equations describing

the concentration of chemicals and molecules in time.

Soon, the problem of which formalism to use to create model arose. For example, free

form descriptions (textual or graphical) have several disadvantages: they are not really

precise -the scientist can make several assumptions that he or she may later forget-, it is

difficult to share -again, assumptions and symbols that may be clear to a scientist may

not be for another one- and does not give the ability to perform direct tests and validate

or invalidate the model in a fast, reproducible way.

These shortcomings are all due to one reason: the lack of formality, or in other words,

of a precise semantics.

The first biochemical models that tried to overcome these limitations were described

by using mathematical tools, mainly PDEs (Partial Differential Equations) and ODEs

(Ordinary Differential Equations). As seen previously in this Chapter, these sets of equa-

tions are used to build deterministic models of the system under study. Mathematical

models are not ambiguous, as every observable aspect of the system is described using

the precise and rigorous language of mathematics.

However, mathematical models present some limitations when they are used to express

system’s dynamics. First of all, composability. As shown in [30], a biological network

represented as a set of differential equations consists of a large “flat” set of equations that

unrolls the state space, where both the network structure and the discrete character of

the components are lost.

Secondly, on a related note, a model based on a large flat systems of equation may

lead not only to the loss of structure, but to models that have little or no predictive
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Figure 2.5: Representation of a biological process in present-day databases and textbooks; image
taken from [164]
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

d[S]
dt = −k1[E][S] + k−1[ES]
d[E]
dt = −k1[E][S] + k−1[ES] + k2[ES]
d[ES]
dt = k1[E][S]− k−1[ES]− k2[ES]

d[P ]
dt = k2[ES]

Figure 2.6: Representation of a biological process as a set of differential equations: the structure
is flat and modularity is lost



d[S]
dt = −k1[E][S] + k−1[ES]
d[E]
dt = −k1[E][S] + k−1[ES] + k2[ES]−kfi[E][I] + kri[EI]
d[ES]
dt = k1[E][S]− k−1[ES]− k2[ES]

d[P ]
dt = k2[ES]

d[EI]
dt = kfi[I][E]− kri[EI]

d[I]
dt = −kfi[E][I] + kri[EI]

Figure 2.7: Loss of modularity is clear when we modify kinetics in presence of an inhibitor: it
is necessary to modify the equation for E to obtain the correct behaviour

power ; in other words, models that are limited to describe the observed behaviour of the

system, opposed to models that give insight on the underlying mechanics that produce

that observed behaviour. As we have seen in Section 1.1.2, Systems Biology needs to

do more than sticking together the description of single components to understand how

components interact as systems to produce the observed behaviours. On the other hand,

however, this does not mean that it should embrace an entirely holistic approach, relying

only on high level descriptions of the system, but build on the reductionist approach and

overcome its limitations.

For example, consider a signalling pathway where it is observed that a protein acts

like a switch, by making the concentration of an entity grow as a hill function when it is

active. A common way of modelling it with a system of equations would be to model this

growth by using a hill function. The model will reproduce the exact observed behaviour;

however this does not imply that we understood why, in the first place, the protein acts

as a switch [108]. Again, it is possible to observe that an entity has a negative feedback

on another one: when the concentration of first one grows, the concentration of the latter

diminish. Using equations, biologists may be tempted to introduce a direct dependency

between the two entities, because this is what he observed, even if the two entities never
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come to direct contact in the real biological system. Of course, modelling of higher level

behaviour it is sometime necessary; also, it is obvious that this is not a shortcoming of

mathematics per-se, but it is partly consequence of the lack of composability, of the ability

of building a model starting from parts, and partly due to its denotational nature. In

Jasmin Fisher words “a mathematical model is a formal model whose primary semantics is

denotational; that is, the model describes by equations a relationship between quantities

and how they change over time. The equations do not determine an algorithm for solving

them [...] for mathematical models, there is a gap between the meaning of the model and

its implementation on a computer” [75].

Finally, stochasticity. It is indeed possible to include noise and stochasticity in PDE

systems, in the form of the Langevin equation [82] (for a complete outlook on how different

deterministic and stochastic methods are related, and how to translate between different

methods, see [83] and [25, 30]). However, trying to preserve stochasticity may lead to odd

equations, where entities that only exist in discrete quantity are related in differential

form. Moreover, established stochastic methods acting on discrete quantities have the

advantage of being proven to be exact and of being generally applicable, with no need to

demonstrate the physical soundness of every model, and simpler.

This transition from deterministic to stochastic methods marked the transition from

solvable models to runnable or executable models.

2.4 Computational and Executable Systems Biology

As soon as computers were available, mathematical modellers started to take advantage

of their power to study mathematical models. However, these models were solved, using

a choice of algorithms to analyse the mathematical relationship between elements. In

the ’70 a different variety of models, called computational models, started to appear; in

particular, boolean networks, first introduced by Kauffman [125, 85].

A computational model resembles a computer program. Like a mathematical model,

a computational model is a formal. The difference lies in its semantics; a computational

model dictates a sequence of steps or instructions that can be executed by an abstract

machine. This means that the primary semantics of the model is operational, and can be

therefore implemented on a real computer. To study a mathematical model, an algorithm

must be devised; a computational model instead is inherently executable, as it describes

which steps must be taken by its abstract machine to reproduce its behaviour. This

abstract machine can be implemented on a computer, and therefore the model can be

simulated by running it inside an implementation of the abstract machine that follows

one of the stochastic algorithms just introduced. This approach of executing biological
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processes is at the basis of emergent schools of thought like executable biology [75] or

algorithmic systems biology [184].

Computational models give various advantages: for example, when their execution

engine implements one of the stochastic selection algorithms listed in the previous sections,

their simulation is by-construction correct w.r.t. physical characteristics; depending on the

underlying formalisms, a number of computer science analysis techniques (model checking,

behavioural equivalence checking, Markovian analysis, ...) can be applied to them; finally,

they are easier to compose, especially when they are written in an appropriate way.

2.4.1 Which language?

A consequence of this shift towards computational models was the need for a new lan-

guage; mathematical models are naturally expressed using mathematics, but what about

computational models? Which is the language of computation? Or, even more important,

which is the language for biological computation?

A first, simple choice, initially adopted for biochemical models, is the use of chemical

equations, a set of chemical formulas extended to represent biological reactions and in-

teractions. Every reaction in a system is therefore represented as one or more chemical

formulae:

E + S → ES (2.2)

ES → E + S (2.3)

ES → EP (2.4)

EP → E + P (2.5)

This approach proved to be very popular: it is very simple, looks familiar to biologists

-chemistry belongs to their background- and fits nicely with stochastic methods; it is only

necessary to label each reaction with a stochastic rate, and the method will take care of

computing propensities for that reaction. Furthermore, this approach is very common:

it is sufficient to consider that SBML, the Systems Biology Markup Language, uses this

formalism at his core [110].

Chemical equations are a step forward in some aspects: for example, besides the

aforementioned support for stochastic method, they are better than differential equations

with respect to composability. In fact, chemical equations express naturally sets of par-

allel reactions; therefore, two independent pathways can be simulated together simply by

stitching their models. However, if the two models need to interoperate, things get more

complicated and more work is required. This problem arises from the lack of formal-

29



2.4. COMPUTATIONAL AND EXECUTABLE SYSTEMS BIOLOGY

ity and from the lack of information about the behaviour of molecules and interactions.

Furthermore, this approach makes nothing to help the modeller in dealing with the com-

plexity inherent in biological systems3; the chemical notation is not compact. Again, this

is due to the fact that instead of describing the behaviour of molecules and biological

entities, this approach is limited to listing the possible behaviours. It makes it easy to

add new behaviour, but leads to duplications and verbosity. As every programmer knows,

duplications affect in a terrible way extensibility and maintainability.

To draw a parallel with computer science, think about trigonometric functions, like

sine and cosine. It is possible to implement them with a lookup table, listing values of

sine and cosine for various inputs. Or it is possible to use an algorithm, a method to

compute values for sine and cosine for any possible input, like the power series developed

by Newton. In this way, the function is compact, its precision higher (arbitrarily higher),

and works for many different inputs. However, it requires a computer to be convenient to

use.

As an answer to these needs, formal languages for systems biology began to flour-

ish. Using a formal language to model biological interactions and dynamics allow us to

write compact models, and let us build in a relatively simple way very complex models.

Moreover, it is easy to see how models built using formal languages are inherently exe-

cutable: formal languages have semantics, and so a computer program can consume them

and, following the semantics rules, reproduce step by step their dynamic evolution in a

simulation, or analyse in a rigorous way their properties using static analysis techniques.

In this way the complexity inherent in biological systems is not entirely erased, but

partially transferred from the modeller to the software. The software, in fact, can make

automated analysis of a model, but then the results of these analyses -the emerging

dynamics of the system, important to understand how the system behaves- must be

interpreted by a scientist. Understanding how a system behaves is one of the goals of

modelling, and it is also important as a debugging facility to correct models with an

erratic behaviour.

Many different formalisms were used as a language for describing the dynamics of bi-

ological systems; among them, the already mentioned boolean networks; Petri-nets [167],

originally developed as a graphical formalism for chemical reactions; statecharts [98]; pro-

cess algebras. We consider here process algebras, because their ability of handling large

systems, concurrency, causality, nondeterminism, stochasticity and cooperation/competition

for resources makes them the ideal candidate to tame the complexity of biological systems.

3In fact, the next, not yet finalized revision of SBML, version 3, will contain new concepts that will help to
overcome its now apparent shortcomings
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2.4.2 Process Algebras

Process Algebras (or Process Calculi) are a family of formalisms created to model con-

current systems in a formal way. Process Algebras provide a language for the description

of interactions between a collection of concurrent processes, and algebraic laws that allow

process descriptions to be manipulated and reasoned upon in a formal way.

A variety of process calculi originated from the precursors CCS [157] and CSP [105];

however, all of them have in common several features.

First of all, the notion of process is central to these formalisms. The exact term used to

refer to processes may vary, and they can be referred to using some synonyms, like entities,

agents, boxes and so on. Processes are first-class constructs in these languages, and they

are the single most important one, in the same way functions are the base construct in

functional languages and objects in object oriented programming. In this thesis we will

introduce and focus on the BlenX language, so we will follow the BlenX literature and

use the term box or entity to refer to processes.

Second, entities are separated, isolated objects: their state is not shared, nor any other

entity in the system can modify it directly. Instead, they interact by communication

(message-passing), exchanging messages on channels, names whose purpose is to provide

means of communication.

The third characteristic is the description of entities and systems of entities as a com-

bination of a small number of primitives by means of basic operators. The basic operators

include input and output actions, used to exchanged messages; sequentialization of ac-

tions and interactions; parallel composition of processes; recursion or process replication;

manipulations of interaction points (e.g. creation or hiding of channels).

A last common characteristic is the definition of algebraic laws over the operators;

as we mentioned, they allow process expressions to be manipulated and permit formal

reasoning about processes.

A composition of operators and primitives can be used to build what is called in

computer science a communication protocol. The behaviour of a system is given by the

ordered sequence of actions and communications that a system can perform. Despite

of its simplicity, process algebras contains the crucial ingredients for the description of

concurrent and cooperating systems.
It is easy to see how they can be useful to describe concurrent execution in the computer

science domain; for example, a web-browser requesting a page to a web-server may be
modelled in process algebra as such:

browser := Send(HttpChannel, RequestForPage).Receive(HttpChannel, Response);

server := Receive(HttpChannel, RequestedPage).(Choiche(

ExistPage(RequestedPage) -> Send(HttpChannel, Page),

not ExistPage(RequestedPage) -> Send(HttpChannel, Error404));
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Send and Receive are the primitive input and output actions we were talking about;

they are composed here using the sequencing operator ’.’, meaning that the action after

the dot is executed only when the action before the dot is completed, and the ’Choice’

operator (often represented with a ’+’ sign), meaning that either one or the other action

is executed, but never both. Choice looks like an if statement for actions.

With this in mind, we can translate the two processes (or entities, as we shall call

them) in plain English. The browser entity declare to do the following: “send a request

on the Internet Http channel, then prepare to receive a response on the same channel”;

the server entity is prepared to: “receive a request form the Internet Http channel, then

either if the page exists send the page, or if it does not exists send an error”.

It is important to note that a message exchange happens when two entities request

two complementary actions on the same channel: for example, the Send(HttpChannel,

RequestForPage) in the browser entity matches the Receive(HttpChannel, RequestedPage)

in the server entity.

Despite their common underlying basis, the several languages and calculi proposed in

the literature have all important distinctions and different features that makes them dif-

ferently expressive, powerful, and simple to use and reason upon (in a formal way too). A

distinction that is particularly important for us is the synchronous or asynchronous nature

of the communication primitives - the input and output actions. In some calculi, actions

-in particular the output or send action- can be asynchronous, which means that they

are not-synchronized with a matching action; in this case, the action is non-blocking, and

the eventual remaining part of a sequence is executed immediately, without waiting for

the pending communication to complete. In most of them, however, the communication

primitives are synchronous, which means that pairs of matching actions are rendezvous

points; entities are allowed to progress only when both sides of a communications are

ready. We will consider only synchronous calculi, as they are more apt to describe bio-

logical interactions.

2.4.3 Process algebras and Systems Biology

Historically, the first step towards the use of process algebra for computational systems bi-

ology was the use of algebras originally meant to model concurrent interactions in software

systems (like CCS [155], the pi-calculus [156], PEPA [103] or the Mobile Ambients [34]).

Process algebras started to be used to model abstractions of biochemical reactions in

the last years of the 20th century; between 2001 and 2002 works in this area started to

flourish [190, 191, 182], mainly using the pi-calculus as a language for biology; in 2002

Regev and Shapiro wrote a seminal paper [189] that cast the ground for the description

of biological processes using concurrency theory and process algebras (see Figure 2.8).
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Figure 2.8: The parallel drawn between biology and concurrent and distributed computing.
Cells and biological processes can be seen as computations [189]

P

Q

a

a.P

a.Q

P
Q

Figure 2.9: Languages of communicating interacting processes, used for modelling concurrent
systems, can represent molecular interactions as well
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Actions and co-actions, that are usually seen as input and output activities, can be

the abstract view of any sort of complementarities. Actions could well correspond to

the abstract view of requests sent by an operating system to a printer manager, or the

conformational changes that take place in a receptor protein in response to its binding

with the signal molecule (see Figure 2.9). What is crucial to notice here is that, whichever

is the level of abstraction considered, by its own nature process algebras describe a system

in terms of what its subcomponents can do rather than of what they are.

These first attempts encouraged the invention of new “biologically inspired” process

algebras, designed to model in a better way some of the features specific to the biological

domain [93, 47]; in particular, the experience in modelling biological systems in pi-calculus

and Mobile Ambients lead to the design and creation of BioAmbients [187], a calculus suit-

able for representing various aspects of molecular localization and compartmentalization,

including the movement of molecules between compartments, the dynamic rearrangement

of cellular compartments, and the interaction between molecules in a compartmentalized

setting.

Concepts in BioAmbients were developed to design and create the Brane Calculi [29],

a family of process calculi with dynamic nested membranes, where active entities here are

tightly coupled to membranes. In this way, the focus shifts from molecules to membranes,

since membrane are the entities performing interactions, and hence play a central role in

computation.

Experience with the pi-calculus also inspired the creation of Beta-binders [180], a

calculus to reason about biological interactions where constructs called binders are added

to wrap a process. Like BioAmbients, binders resemble membranes; however, they are a

fine grained concept used to mimic biological interfaces at various levels (protein domains,

membrane receptors, ...). A few operators were added to the pi-calculus kernel to describe

the dynamics of those interfaces; communication semantics was modified to support both

encapsulation and affinity based communication, useful to model realistically domain-

domain interactions in proteins, ligand-receptor binding and in general all shape based

interactions [177, 179].

Similarly, the K-calculus [49] introduced interactions modelled at the domain level,

where bonds are represented using shared names; even if K-calculus has a different gran-

ularity, it can still be encoded in pi-calculus.

Finally, experience in using both PEPA [26] and Beta-binders [42] for building models

of biochemical pathways recently lead to the creation of Bio-PEPA [41], which extended

PEPA with features to handle biochemical networks, such as stoichiometry and different

kinds of kinetic laws.

This list of algebras and calculi is by no means complete, but includes the most relevant
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ones to the development of computational and executable systems biology.

In [172], Cardelli devises four distinct chemical toolkits, each combinatorial in nature,

each abstracting from chemistry using a different abstract machine defined by instruction

set and its own peculiar interaction model. These interaction models are not ones com-

monly used in computing: however, as we have seen, it is possible to map them to concepts

derived from concurrent and distributed computing. In particular, Cardelli devises three

machines, for different levels of detail; even if the interaction model for these abstract

machines is very different (e.g. fast synchronous binary interactions for Proteins, slow

asynchronous stochastic broadcast for Genes), he points out that the pi-calculus, with

stochastic semantics and a synchronous synchronization model, is extraordinarily suit-

able for describing molecular interactions at a protein level, higher levels of organization

and also asynchronous genetic networks. For this reason, the synchronous communication

model is considered the model of choice for biological interactions.

Modelling reactions with a process algebra

Biological species (cells, enzymes, molecules...) are modelled as entities with interaction

capabilities; a biochemical interaction becomes a message exchange (a protocol); the mod-

ification of a species, its transformation due to internal or environmental factors, becomes

a change of state in the entity, or the transition from one entity to another one, according

to the language.

As an example, consider the following chemical interaction:

E + S → E + P

This is a classical chemical interaction in which an enzyme E act as a catalyst to ease the

conversion of the substrate S into the product P .

If you think of E as an entity, box or agent, it has only one purpose: every time it

finds a substrate, change it into a product. But we have seen that entities are separate

objects, so the only way in which E can change S is indirectly, by sending it a message:

E := Send(Channel, ChangeYourself).E;

Once a message is sent, the entity continues to act as an E, so that an enzyme it

represents can be re-used and interact with another substrate. On the other side, S

simply has to wait for a message. When a message arrives, if it is a ChangeYourself

message it change into a product P , otherwise it will continue to be an S:

S := Receive(Channel, Message).(Choice([Message == ChangeYourself]P

[Message != ChangeYourself]S);
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2.5 Summary

This chapter introduced some basic Systems Biology concepts that will be used throughout

this thesis. In particular, we introduced modelling and simulation as fundamental steps

for supporting the scientific method in Systems Biology. We then focused on different

simulation methods and on modelling languages, with particular emphasis on the usage

of process algebras to build executable biological models.

The next chapter will elaborate on these concepts, presenting how they lead to the

introduction of BlenX, a process algebra-derived language with biological constructs.
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BlenX

This Chapter will introduce BlenX, a language derived from the Beta-binders process

algebra, specifically designed to model different biological phenomena.

In the previous chapter we have seen how process algebras and, in general, concurrency

theory, revealed to be apt to describe biological systems, and how new process algebras

were specifically designed to include basic biological interactions and characteristics as

primitives.

Now we will explore how these concepts drove the design of BlenX, explaining the

rationale of a language derived from a biologically inspired process algebra. This kind of

language adds to the common process algebras concepts derived from biology, in order to

make the modelling process easier and reduce in some way the “semantic gap” between

biology and programming languages. Our goal is to illustrate not only how the language

works but also why it looks and works in this way, in a tour of the design choices that

were made during its creation.

In fact, although BlenX builds on concepts derived from the Beta-binders process

algebra, a real world language has to face several compromises: it has to be usable by

non-experts, to be efficiently interpreted and executed on a computer, it needs to cope

with incomplete and mixed models, it has to provide constructs that are not present

in pure process algebras but are still necessary, and so on. Compromises are necessary:

similarly to a living organism, and like many other software systems, evolutionary pressure

is exerted on a language. As a consequence, language design is an evolutionary process.

3.1 Building BlenX

In the previous chapter, we introduced differential equations as a possible way of modelling

biological interactions. However, we observed how differential equations are not easily
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composable. Consider a slightly revised version of the example in Figure 2.6:

d[S]

dt
=− k1[E1][S] + k−1[E1.S] (3.1)

d[E1]

dt
=− k1[E1][S] + k−1[E1.S] + k2[E1.S] (3.2)

d[E1.S]

dt
=k1[E1][S]− k−1[E1.S]− k2[E1.S]

d[P ]

dt
=k2[E1.S] (3.3)

If the product P is used in another reaction, we do not only need to add new equations,

but also to modify the existing ones. For example, suppose that P is an enzyme that can

be activated by phosphorilation, and that E1 is its kinase (i.e. the enzyme responsible for

its activation). If we wanted to add the complementary reaction (i.e. its de-activation by

an E2 phosphatase), we would need to add a couple of differential equations – to define

the change in time of E2 and of its bound form, E2.P – but we would also need to change

Eq. 3.1 and Eq. 3.3:

d[S]

dt
=− k1[E1][S] + k−1[E1.S]+k3[E2.P] (3.4)

d[E1]

dt
=− k1[E1][S] + k−1[E1.S] + k2[E1.S]

d[E1.S]

dt
=k1[E1][S]− k−1[E1.S]− k2[E1.S][E1]

d[P ]

dt
=k2[E1.S]−k4[P][E2] + k−4[E2.P] (3.5)

d[E2.P]

dt
=k4[P][E2]− (k−4 + k5)[E2.P] (3.6)

d[E2]

dt
=−k5[E2][P] + k−5[E2−P] + k5[E2.P] (3.7)

Similarly, if we wanted to add an inhibitor to the modelled system , it is necessary to

rewrite part of Eq. 3.2:
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d[S]

dt
=− k1[E1][S] + k−1[E1.S]

d[E1]

dt
=− k1[E1][S] + k−1[E.S] + k2[E1.S]−k6[I][E1] + k−6[E1.I]

d[E1.S]

dt
= + k1[E1][S]− k−1[E1.S]− k2[E1.S]

d[P ]

dt
= + k2[E1.S]

d[I]

dt
=−k6[I][E1] + k−6[E1.I]

d[E1.I]

dt
=+k6[I][E1]− k−6[E1.I]

Moreover, the two modifications cannot be composed: if the modeller wanted both the

deactivation through a kinase and the competitive inhibition, he would have to write a

third, different model. This is a known problem, pointed out by researches that worked on

the equivalences between the various formalisms (process algebras, differential equations

and chemical equations [25, 30]).

Using chemical equations, as we have seen in the previous chapter, makes composabil-

ity somehow better: starting from a simple model (kinetic rates are omitted for simplicity)

E1 + S → E1S

E1S → E1 + S

E1S → E1 + P

we can add de-activation through a phosphatase E2 in a very simple way:

E2 + P → E2P

E2P → E2 + P

E2P → E2 + S

Similarly, it is possible to add competitive inhibition:

E1 + I → E1I

E1I → E1 + I

Moreover, the approach is composable: the equations can be just stick together, and with
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the help of a correct stochastic simulation algorithm, they will just reproduce the expected

behaviour.

This approach, however, is not perfect. First of all, composability relies on naming:

enzymes, molecules and in general entities must have precise names. Entities with the

same name will be treated as one species; to avoid conflicts when combining modules,

unintended name clashes have to be avoided. The second drawback is that this way of

modelling is really verbose: behaviour is listed instead of specified ; in case of multiple

possible interactions, the number of equations “explodes” in an exponential way. Some

models, like the construction of polymers of unbound length, cannot even be expressed

with a finite set of chemical equations [30].

A way to overcome this limitation is to describe the behaviour of the single entities in

a computational way: instead of saying what the molecule can do by listing the reactions

in which it can participate, we describe what the entity does when interacts with another

entity; in this way, the set of equations ‘ E1 + S → E1.S ↔ E1 + S → E1 + P ’ is

transformed into a set of three processes1, for E1, S and P :

E1 waits for a message on its e1bind channel. Once it receives the message, it

becomes “occupied”; from that point, it can either send an activation message or

wait for an unbinding request;

S sends a complementary message on e1bind, matching E1’s action. When a match

is found, S change its state, becoming an S ′ process, where it can either wait for an

activation message or send an unbinding request;

P , at the moment, does nothing.

S

S’

E1

E1’

?e1bind?e1unbind!activate

P

!e1bind!e1unbind

?activate

Figure 3.1: Interacting automata

1Processes, messages, channels and other concepts derived from concurrency theory were introduced in Sec-
tion 2.4.2
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Each process, representing one entity, can be represented graphically as two interacting

automata [31] (see Figure 3.1), or alternatively with a more standard textual description.

Recall from the previous chapter that in the textual description of process algebras the

behaviour of each entity is represented as a set of actions (input ‘?’, output ‘!’, etc.)

composed using operators. Sequencing of actions is obtained using the ‘.’ operator; ‘+’ is

the choice operator, representing possible alternative behaviours (or), and ‘|’ represents

the parallel composition of behaviours (and):

E1 := e1bind?().(activate!().E1 + e1unbind?().E1);

S := e1bind!().(activate?().P + e1unbind!().S);

P := nil; //for now, P does nothing

The behaviour for P can be modified so that, for example, it acts like an enzyme,
sending activation messages on a specific channel:

P := p_activate!();

Adding de-activation through a phosphatase E2 requires the specifications of a process
for E2 and the addition (using the choice operator) of the correct behaviour to P :

E2 := deactivate!().E2;

P := previous_behaviour + deactivate?()

if the simpler E2 + P → S kinetics suffices, or

E2 := e2bind?().(deactivate!().E2 + e2unbind?().E2);

P := previous_behaviour + e2bind!().(deactivate?().S + e2unbind!().P);

if we wanted to reproduce the more complex behaviour of the initial model.

3.1.1 Biological inspiration

Although modular, this language risks being too “low level”: for example, it is not pos-

sible to provide explicit representations for wrappers, membranes, and in general all the

subdivisions at the base of living things, and of their respective points of interaction (ion

channels, receptors, membrane proteins, protein domains). Communication is at the same

time too broad and too specific: too broad, because there is no limitation in the scope of

messages; every entity interacting on the same channel can exchange messages, with no

notion of encapsulation or information hiding. Too specific, because entities must interact

on a precise channel, know its name, and exchange messages at a fixed rate defined by

the channel.

The first problem can be mitigated using a restriction operator, like in pi-calculus;

the restriction operator limits the scope (i.e. the visibility) of messages to a sub-set of

processes. However, its usage to codify physical boundaries can be cumbersome.
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To solve the problem of too specific interactions we need to relax the typical key-lock

mechanism used in message passing: classical process calculi assume a key-lock model

for interactions, where a strict, exact matching on channel names is required in order

to allow two parties to communicate. Reactions with non-exact matching, however, are

quite common in biology [3] and they are relevant in the creation of drugs (consider, for

example, competitive inhibition of receptors).

A possible solution to both problems is to “wrap” or enclose entities in a structure. In

order to create a more general abstraction, this structure is logical: it can reflect either

the physical boundaries of the object (e.g. when the entity is a protein, or a cell) or not.

In this way, the structure defines a scope; every channel name, every interaction is by

default isolated from the rest of the environment. If the modeller wants to expose some

channel, it has to explicitly allow for that; for example:

E1 :=

(e1bind, e1unbind, activate) //List of public, exposed channels

[ // Square brackets are used to isolate a process

e1bind?().(activate!().E1 + e1unbind?().E1)

];

E2 := (deactivate) [ deactivate!().E2 ];

A corresponding graphical notation could help in making the isolation clearer (see Fig-

ure 3.2). Each entity could be written in isolation, and there should be no worries about

name clashes on internal channel names.

deactivate!().E2
deactivate

e1unbind

e1bindactivate e1bind?().
(activate!().E1+
 e1unbind?().E1)

E1

E2

Figure 3.2: Encapsulation of processes

Building on this solution, it is possible to relax the strict matching on channel names.

In biology, an interaction occurs because of the characteristics of the two interaction

sites: for example, a ligand can interact with a receptor on the basis of its shape, charge,

amino-acid sequence, and other physical or chemical characteristics.

We can assign a name to these characteristics; then the characteristics of an interaction

site can be described by a set of names attached to it. Let’s call this set of names the
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type of the interaction site. Let’s also call box the structure that enclose processes and

binders the interaction sites (see Figure 3.3):

(a) (b)

z

y

B
{V}

{U}

P

Box

Box Name

Internal
Process

Binder

} Interface

(c)

Figure 3.3: Following Regev and Shapiro [189], the language draws a parallel between processes
and molecules. Both the protein in (a), with its domains, and the cell in (b), with its receptors,
can be mapped onto the box in (c), with its interaction sites (binders, or collectively interface)
and its internal behaviour (P). The process P reacts to messages on binders, like the living cell
reacts to stimuli on its receptors.

E1 := (e1bind: {A, B}, e1unbind : {C, D}, activate: {E})

[ e1bind?().(activate!().E1 + e1unbind?().E1) ];

S := (e1bind: {B}, e1unbind: {D})

[ e1bind!().(activate?().P + e1unbind!().S) ];

Communication capability now can be expressed as a function of the characteristics of

each interface: if they are compatible, the two can communicate and therefore interact.

This compatibility can be expressed as the intersection between the two sets: if two of

the interaction sites on their respective entities share some characteristic, communication

is allowed (Figure 3.4).
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e1unbind

e1bindactivate e1bind?().
(activate!().E1+
 e1unbind?().E1)

E1

{E}
{C,D}

{A,B}

e1unbind

e1bindactivate

S

{E}
{C}

{A}

Figure 3.4: Processes with typed interaction sites can interact when types are compatible

Another important aspect of encapsulation is that it improves modularity of the lan-
guage. Consider enzymatic interaction with inhibition, and try to modify our process
algebra example to add an inhibitor:

E1 := e1bind?().(activate!().E1 + e1unbind?().E1);

S := e1bind!().(activate?().P + e1unbind!().S);

P := nil; //for now, P does nothing

Ideally, we should be able to add a process or entity describing the inhibitor to the system,
without modifying the description of the enzyme or of the other entities in the system.
Adding a process for the inhibitor requires us to re-use the existing “binding” channel in
E1, in order to have competitive binding:

I := e1bind!().e1unbind!().I;

After binding, by sending a message on the e1bind channel, the inhibitor issues an unbind

message and waits for a match to arrive. In this way, it occupies one enzyme E1, making

it unavailable for interactions with S.

This model has several problems:

• there can be an undesired interleaving. Consider what happens after an enzyme

becomes “bound” to a substrate, and another one becomes “bound” with an in-

hibitor. It is not possible to tell anymore which one was bound with another one.

This should be not a problem in this simple model, but can possibly and easily lead

to a non correct model in more complex scenarios;

• it is not simple to use different rates. Up to now we omitted to specify kinetic rates

and we supposed that, in process calculi tradition, they were attached to channel

names; however, a biological entity could have interactions with multiple partners,

like in our enzyme-substrate-inhibitor example. It is possible to codify multiple

interactions using different channel names and/or private channels, but this harms

model composability.
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In fact, a common solution is to use the shared channel to send a private channel that
will be used to represent the real interaction; for example, in pi-calculus this is obtained
using the ‘new’ and/or the restriction (µ) operators:

E1 := e1bind?(act_channel).(act_channel!().E1 + e1unbind?().E1);

S1 := e1bind!(new channel my_channel(rate(0.1))).

(my_channel?().P1 + e1unbind!().S1);

S2 := e1bind!(new channel my_channel(rate(0.2))).

(my_channel?().P2 + e1unbind!().S2);

In this way, E1 can interact with both S1 and S2 at different rates. However, if
we want to use different rates for binding and unbinding, as required by the inhibitor
example, we need to consider a more complex model, like the one in [31]:

E1 := (new channel k1(rate1), new channel k2(rate2)).

a!(k1,k2).(k1!().E1 + k2!().E1);

S != a?(k1,k2).(k1?().S() + k2?().P);

This pattern can be generally used for complexation and decomplexation; however, it

get across that this solution is not easy to use; furthemore, this pattern does not allow to

add interaction capabilities in a simple a modular way.

In addition, when processes are encapsulated, like in our case, sending a private channel

loses meaning: out of S scope, my channel will have no connection with S2. So this

pattern does not work well with our “new” language.
Encapsulation provides a simpler solution: it is possible to attach the communication

rate to the capability itself. What we obtain is a communication model based on the
affinity between interaction sites: the affinity gives to the modeller the possibility both
to tell when two sites can interact and at which rate they interact:

E1 := (e1bind: {A, B}, e1unbind : {C, D}, activate, {E})

[ e1bind?().(activate!().E1 + e1unbind?().E1) ];

S1 := (e1bind: {B}, e1unbind: {D}, activate, {F})

[ e1bind!().(activate?().P1 + e1unbind!().S1) ];

S2 := (e1bind: {B}, e1unbind: {D}, activate, {G})

[ e1bind!().(activate?().P2 + e1unbind!().S2) ];

affinity({A, B}, {B}) = rate(...);

...

affinity({F}, {E}) = //some computed rate

affinity({G}, {E}) = //some other computed rate

The problem with interleaving during complexation and decomplexation, however,

remains. More in general this is a problem with boundaries, both logical and physical:

models need to cross and modify them. Biology is full of examples where boundaries

are modified, created or destroyed: mating, exocytosis, phagocytosis, secretion, vacuoles,

mitosis, are only some of the processes in which creation of membranes are concerned.

2Technically, my channel will be a free name in the receiving process
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A possible solution is to provide explicit actions for dealing with membranes, like

in [28] and [188]. However, these actions add complexity to the modelling language, from

both a practical and a theoretical point of view.

Another alternative is to equip the language with a reduced set of primitives for han-

dling boundaries modification and write more complex actions in terms of those primitives.

The simplest possible primitives, in this case, are two: one for merging two enclosures,

and one for dividing an existing enclosure in two parts. Let the first one be called fjoin,

and the second one fsplit. These primitives are functions over boxes; fjoin takes as input

two boxes (each as an interface, process pair) and returns a single box; fsplit takes as input

a single box (defined as an interface and two processes in parallel) and returns two boxes:

fjoin = (Box1(i1, P1), Box2(i2, P2)) = (Box(i, P1|P2), σ1, σ2)

fsplit = (Box(i, P )) = (Box1(i1, P1), Box2(i2, P2), σ1, σ2)

were σ1 and σ2 are functions used to perform name substitution (required, for example,

to avoid name clashes) inside P1 and P2 respectively.
Using fjoin and fsplit, our example of enzymatic interaction can be written in a simpler

way:

E1 := (e: {E})

[ activate!().E1 ];

S := (s: {F})

[ activate?().P ];

join (Box_1, Box_2) =

if Box_1 == E1 and Box_2 then

(Box(e: {E}, s: {F}, activate!().E1 | activate?().P), id, id)

else

bottom;

split (Box) =

if Box == Box(e: {E}, s: {F}, E1 | P) then

(E1, Box(s: {F}, P, id, id)

else

bottom;

where complexation and decomplexation are treated as joining and splitting of boxes

respectively.

When we examine carefully the model, however, we can see that some old problems

reappear: when the processes for the enzyme E1 and the substrate S are joined, they can

interact by communication through a channel that is now shared. The channel, which

was previously private both to E1 and S, needs to have the same name.
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In many cases it is possible to write a clever join function that takes care of renaming

the channels appropriately, but the function would be very complex and ad-hoc, hence

not usable in the general case. Another problem arises from the global nature of join and

split functions: adding new rules for joining and splitting boxes requires changing the

functions, adding more and more cases.

3.1.2 Towards the implementation

As we have seen in the previous chapters, one of the most relevant advantages, if not the

most important, of using a formal language for building biological models is that models

become executable. Process calculi for systems biology provide an operational description

of the system; therefore, in order to correctly model and simulate biological processes,

they need to offer a formal description of how a model can be executed.

This formal description requires the definition of the syntax and semantics of the lan-

guage, and of an abstract stochastic machine implementing the semantics. The definition

of the semantics and of the abstract machine for BlenX is not the focus of this thesis;

Romanel et al. [185] addressed these topics, covering all the aspects of the language3 that

we are introducing in this chapter. The interested reader can refer to [57], [185] or [197]

for further details.

The machine executes the model by reducing entities and processes, choosing among

the possible concurrent semantic rules (mono actions involving one process or bi actions

involving pairs of processes, like for communication) by means of one of the methods

described in Section 2.2.

The primary goal of an abstract machine is to efficiently perform computations over the

model on standard computer hardware. By computation, we mean simulation, generation

of the underlying continuous time Markov chain and, in general, analysis of the model

using an algorithm.

If we try to write a realistic abstract machine for our language, in order to implement

an efficient stochastic simulator for it, some problems with the language pop up.

One of these problems is efficiency: when many entities are present in a system, the

abstract machine should be able to handle them efficiently. Previous stochastic simulators

for process calculi 4 used as internal representation lists of processes, where each individual

was represented as a single process. Propensities were computed by maintaining a list

of available inputs and outputs on a given channel; when the next reaction channel was

chosen using a stochastic method (usually, the Gillespie SSA), the machine randomly

chose one of the available reactions on that channel with equal probability, by choosing

3With the exception of continuous variables, which will be introduced in the next section
4We are referring to the scenario of late 2006, when BlenX was being designed.

47



3.1. BUILDING BLENX

an input through a uniform random distribution and then similarly selecting an output

from the remaining list.

Clearly, when the number of individuals gets greater, the selection process becomes

slower; moreover, this encoding, although correct, is distant in philosophy from the design

principles of many stochastic methods, including Gillespie, which are based on species,

populations and counting for the sake of efficiency.

Counting

A possible solution to this problem is to define a notion of equivalence, enabling the

grouping of processes in classes that could be called species and treated as such by the

various methods.

Various notions of equivalence for process calculi exist: among them, structural con-

gruence seems a good choice. Some minor changes to the language, like removing the

restriction operator (that has limited use in our case, as boxes already substitute it in

most of the cases) and substituting recursion with a replication operator, make structural

equivalence decidable in polynomial time, and therefore efficient to implement.
The introduction of the replication (‘rep’) operator makes necessary to add the possi-

bility of defining internal processes independently, to avoid duplications of code:

let Ep : proc = e1bind?().(activate!().r!() + e1unbind?().r!());

E1 := (...)

[ rep r?().Ep | Ep ];

Affinity

Another decision that has to be made regards affinities, in particular how a measure of

affinity between two types can be computed. Previously we mentioned set intersection

and affinity computed on types characteristics as possible ways of computing an affinity

measure, but we did not specify how this computation can be done. Since this computation

can differ from one scenario to another, a simple solution is to let affinity be “user defined”:

the user may list explicitly the pairs of compatible types, and how strong is their affinity

(e.g. which is their interaction rate). This list can be specified separately, possibly in

another file, so that it can be automatically generated by a pre-processor5.
Using this solution each type, which we shall call binder identifier, can be identified

by a single label. Our enzyme-multisubstrate example can therefore become:

let Ep : proc = e1bind?().(activate!().r!() + e1unbind?().r!());

E1 := (e1bind: EB, e1unbind: EU, activate: EA)

[ rep r?().Ep | Ep ];

5This possibility will be used in Chapter 7
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let S1p: proc = e1bind!().(activate?().r!() + e1unbind!().P1p);

let P1p: proc = //P1 behaviour...

S1 := (e1bind: S1B, e1unbind: S1U, activate: S1A)

[ rep r?().S1p | S1p ];

let S2p: proc = e1bind!().(activate?().r!() + e1unbind!().P2p);

let P2p: proc = //P2 behaviour...

S1 := (e1bind: S2B, e1unbind: S2U, activate: S2A)

[ rep r?().S2p | S2p ];

In a separate file, we declare the various affinities:

(EB, S1B, rate(...));

...

(E1A, S2A, rate(...));

3.1.3 Field tests

The best way to test a language is to write a compiler and a machine for it, and start

writing programs. In the case of a language for systems biology, the simplest possible

machine is a simulator, and the programs are models of biological interactions.

Suppose to be in charge of the development of a simulator for our language: very

soon it becomes clear that another problem plagues the join and split constructs. For the

maximum flexibility, fjoin and fsplit can be defined as lambda functions; this means that it

is possible to express any kind of computation, including recursion using a Y-combinator.

This is clearly not desirable: fjoin and fsplit are defined over the global state of the system,

hence the evaluation of these functions had to be done at each step of the computation.

This evaluation can heavily affect performance, and in the worst case it can even not

terminate.

A better way of dealing with changes on boxes structures is needed.

Complexes

Complexation and decomplexation can be represented with fjoin and fsplit. However,

doing it in a modular and correct way it is not as easy as it should be: creation of

complexes is one of the most common scenarios in modelling biological pathways.

Many biological processes rely on the formation of bonds between entities; complexes

and polymers have both a structural and a functional role. Even our simple enzyme-

substrate example and its variants (multi substrate, inhibition) works by constructing

complexes.

Since complexes are so important in biology, a reasonable choice is to consider them

as primitive constructs, like entities or membranes. Complexes are molecules composed of
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base structural units connected by chemical bonds (Fig. 3.5(a)); polymers can be thought

as large complexes composed of repeating structural units (Fig. 3.5(b)). In our language,

these structural units are represented by boxes, where each box has one or more interaction

site (binder). We can use binders not only as interaction points, but also as binding sites :

when two binders are bound, a private interaction channel is built (Fig. 3.5(c)); like in

nature, this connection forms a complex that can have a functional role (by allowing an

enzymatic reaction, for example), a structural role (formation of a biolpolymer like DNA

or proteins themselves) or both. Technically, a complex is a graph, where entities are

nodes connected through their binders (see Figure 3.5(d)).

(a) (b)
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B2

B3

B4A

A

A

A

B

B

B
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(c)

B4
B

A

B

B

B

A

A

A
B2

B1 B3

(d)

Figure 3.5: Complexes in biology: functional units or dimers (a), polymers (b). Complexes
in our language: boxes represent functional or structural units, connected through binders (c);
boxes connected to form a complex can be seen as graphs (d)

The introduction of complexes can be made with very little impact on the language: it

suffices to modify slightly the affinity definition. When we want to allow for complexation

through a binder, we specify rates for complexation and decomplexation in addition to

the usual rate of communication:

(E1A, S2A, complexation_rate, decomplexation_rate, communication_rate);
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Figure 3.6: Complexes in the language: (a) formation of a complex; (b) decomplexation; (c)
interaction while complexed

Notice that we want to preserve also the previous way of specifying affinity: using

a single communication rate is still valuable for representing those interactions when

complexation is not involved or is abstracted.
Using complexes, the model for enzymatic interactions (with or without inhibition,

with or without multiple substrates) becomes very compact and easy to write and under-
stand:

E1 := (activate: EA)

[ rep activate!() ];

let P1p: proc = //P1 behaviour...

S1 := (activate: S1A)

[ activate?().P1p ];

In a separate file, we declare the various affinities:

(EA, S1A, rate(...), rate(...), rate(...));

Adding an inhibitor, or another substrate, can be done easily; in the model file, we
add a definition for the I process:

I := (i: IA)

[ nil ];

And in the affinity file, we add a new affinity:

(EA, S1A, rate(...), rate(...), rate(...));

The I process does nothing, as its only role is to bind with an enzyme and “occupy” its

interaction site; the language deals automatically with this behaviour. Adding another

substrate, or any other combination (another inhibitor, a different catalyst, and so on)

requires a comparable, limited effort. Using a specific construct for complexes has great

advantages for modelling low-level, reversible reactions.
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However, it has also disadvantages with respect to the usage of join and split functions:

it cannot be used at a higher level of abstraction, where the detail of the reaction are not

known and we simply need a way of “replacing” one or more “reagent” entities with one

or more “product” entities, and cannot be used to produce or delete entities.

It is possible to argue that this way of modelling follows the philosophy of Antoine

Lavoisier, the father of the modern chemistry:

Rien ne se perd, rien ne se cre, tout se transforme.

However, from a system perspective sometimes we need to model the overall behaviour;

several biological operational patterns – endocytosis, meiosis, exocytosis, replication – are

easy to express with constructs like join and split functions [181] while they not find an

immediate mapping to formation and dissolution of complexes.

As a simple example, we wrote a model for the classic Lotka-Volterra predator-prey

dynamics. This model is easy to express using chemical equations:

Predator + Prey → 2Predator

Predator → Nil

Prey → 2Prey

Preys breed with a specific rate, with no specific interaction with the environment; instead

predators need to interact with the system in order to proliferate (in this case, by “eating”

a prey).
Without join and split functions, we can still write the model in our language by

making the preys interactions with the system explicit:

let PreyP: proc = rep r?().

(x?().ch(x, PZ).p!() //being eaten, become a predator

+ x!().r!()); //eat food

let FoodP: proc = rep f?().

(x?().ch(x, PX).r!()); // when eaten, become a prey

let PredatorP: proc = rep p?().

(x!().p!() // eat a prey

+ delay(die_rate).ch(x, PZ).f!()); //or die and become food

Prey := (x: PX)

[ PreyP |

FoodP |

PredatorP |

r!() //activate the first instance as a prey

];
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Food := (x: PZ)

[ PreyP |

FoodP |

PredatorP |

f!() //activate the first instance as a "food"

];

Predator := (x: PY)

[ PreyP |

FoodP |

PredatorP |

p!() ];

In a separate file, we declare the affinities:

(PX, PZ, ...)

(PY, PX, ...)

In this model, we make explicit the interaction with the environment, introducing

“Food” for preys. In this way, the number of boxes is conserved, as they are simply

transformed from one species to the other. Notice that this is possible thanks to the

choice of structural congruence as an equivalence relation to group boxes in the same

class. In this case, there is no need for constructs for creating or merging boxes; however,

this is not always the case and the resulting model is harder to create and understand.

Events

Implementing join and split as functions is too expensive to be practical; however, we can

think of joining and splitting as events of a rewriting system. Events can be based on

conditions over the global state of the system, mainly presence or absence of same species,

and have an associated stochastic rate as every other action in the language:

Prey := (x: PX) [ nil ];

Food := (x: PZ) [ nil ];

Predator := (x: PY) [ nil ];

Predator2 := (x: PY2) [ nil ];

when (Predator, Prey : eat_rate) join (Predatory2);

when (Predator2 : inf) split (Predator, Predator);

when (Prey : breed_rate) split (Prey, Prey);

when (Predator : death_rate) delete;
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Besides join and split, other events (delete, new) can be introduced to make modelling

easier. Conditions on species (presence, counting) are based on structural congruence,

making event implementation very efficient.

3.1.4 Real world models

Up to now the language was used to build simple models. However, the real test for a

language starts when other people use it to build real world models: things are not perfect

and there are many uncertainties and unknowns.

Patterns

A very common model used as a test drive for modelling languages is the classical MapK
cascade signalling pathway [108]. Paradigms based on communication should make it easy
to express this kind of pathway; moreover, the introduction of complexes in our language
makes very easy to write a detailed model, where all the enzymatic reactions are expressed
as a sequence of binding-transformation-unbinding:

let E1: bproc = #(e1: signalE1)

[ rep e1!().nil ];

let E2: bproc = #(e2:1, signalE2)

[ rep e2!().nil ];

let pKKK : pproc =

act?().ch(act, ubI).unhide(deact).unhide(p).

deact?().hide(p).ch(deact, ubD).ch(act, irecKKK).

ch(deact, drecKKK).hide(deact).kkk!().nil;

let pKKKr : pproc = (rep kkk?().pKKK | pKKK);

let KKK: bproc = #h(p, KKKkase), #(act, irecKKK), #h(deact, drecKKK)

[ pKKKr | rep p!().nil ];

// Second stage of phosphorilation: we wait for a deactivation

// from our phosphatase

// Then we loop back to first phase of phosphorilation (X_P)

let pKK_PP : pproc = ( deact?().hide(p).xp!().nil );

// First phase of phosporilation

let pKK_P : pproc = rep xp?().(

act?().ch(act, ubI).ch(act, incKK2).ch(deact, decKK2).unhide(p).pKK_PP +

deact?().ch(deact, ubD).ch(act, incKK).ch(deact, decKK).hide(deact).x!().nil);

let pKK : pproc = act?().ch(act, ubI).ch(act, incKK2).unhide(deact).xp!().nil;

let pKKr : pproc = (rep x?().pKK | pKK);
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// KK bio-process

let KK : bproc = #h(p:1, KKkase), #(act:1, incKK), #h(deact:1, decKK)

[ pKKr | pKK_P | rep p!().nil ];

// Second stage of phosphorilation: we wait for a deactivation

// from our phosphatase

// Then we loop back to first phase of phosphorilation (X_P)

let pK_PP : pproc = ( deact?().hide(p).xp!().nil );

// First phase of phosporilation

let pK_P : pproc = pre xp!().(

act?().ch(act, ubI).ch(act, incK2).ch(deact, decK2).unhide(p).pK_PP +

deact?().ch(deact, ubD).ch(act, incK).ch(deact, decK).hide(deact).x!().nil);

let pK : pproc = act?().ch(act, ubI).ch(act, incK2).unhide(deact).xp!().nil;

let pKr : pproc = (rep x!().pK | pK);

// K bio-process

let K : bproc = #h(p, Kkase), #(act, incK), #h(deact, decK)

[ pKr | pK_P | rep p!().nil ];

// Phospatase for KK

let KKPase: bproc = #(de:1, KKpase)

[ rep de!().nil ];

// Phospatase for K

let KPase: bproc = #(de:1, Kpase)

[ rep de!().nil ];

It is possible to notice that we have three basic structures here:

• signals, like E1 and E2, which continuously send their messages of activation or

deactivation;

• phospatases, like KPase and KKPase; they have the same structure and function-

ality of signals, sending messages of deactivation with an appropriate rate;

• kinases, which have “sensing” domains (interaction sites, binders in our case), on

which they “listen” for messages of activation and deactivation and an “effecting”

domain that, like in the case of signals and phospatases, continuously send a message

of activation.

This kind of structures, where entities have roughly the same behaviour and differ only

for some little particulars (like rates) are pretty common; a technique from programming

languages helps in this situation.
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Templates, also called generics or parametric processes, are constructs used to repli-

cate basic structures (e.g. classes in object oriented programming). Templates enable

a metaprogramming technique that allows a primitive to work with many different pa-

rameters without being rewritten for each one. In programming languages templates

are usually parametric with respect to data types, even if other kind of parameters, like

dimensions, can be used.

Templates play an important role in the easy definition of patterns, elements of reusable

design through which it is possible to express and reuse common behaviours (see Box 1).

Box 1 What are patterns?
The concept of patterns was developed originally by the architect Christopher Alexander. He
intended patterns as basic architectural design ideas to be collected in a list of reusable descrip-
tions, as elements of a pattern language. Elements of this language may be combined, governed
by certain rules, and serve as an aid to design cities and buildings. A pattern is not a finished
design; it is a description or template for how to solve a problem that can be used in many
different situations.
The concept had a great success in computer science. Alexander writing had a great influence
in the research on programming language design, modular programming, object-oriented pro-
gramming, software engineering. Its work A Pattern Language[5] had a great influence in the
software engineering design patterns movement, where patterns are intended as general reusable
solutions to a commonly occurring problem in software design.

In our case, we can imagine boxes being parametric with respect to their internal

process (or part of it), channel names, binder identifiers; similarly, processes can be

parametric with respect to names for channels or binders, and processes or part of them.

Writing generic templates for kinases, phosphatases and signals allow us to rewrite the

model in a more compact way:

// Signal template

template Signal: bproc<<binder S>> = #(e,S)

[ rep e!().nil ];

// Phospatase template

template Phospatase: bproc<<binder P>> = #(x, P)

[ rep x!(minus).nil; ]

// Kinase templates: with single or double activation

template pSTATE2: pproc<<binder Intermediate, binder Active>> =

rep state2?().(

unhide(p).ch(recv, Active).

recv?().hide(p).ch(recv, Base).state1!().nil);

template pSTATE1s: pproc<<binder Base, binder Active>> =

rep state1?().(
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unhide(p).ch(recv,Active).

recv?().hide(p).ch(recv,Base).state0!().nil);

let pSTATE1: pproc =

rep state1?().(

recv?(what).what!().nil |

(plus?().state2!().nil + minus?().state0!().nil));

template pSTATE0: pproc<<binder Base, binder Active>> =

rep state0?().(

ch(recv,Base).recv?().ch(recv,Active).state1!().nil);

template SingleK: bproc<<binder K, binder Base, binder Active>> =

#h(p, K), #(recv, Base)

[ recv?().ch(recv,Active).state1!().nil |

pSTATE0<<baseK3,activeK3>> |

pSTATE1s<<baseK3,activeK3>> |

rep p!(plus).nil ];

template DoubleK: bproc<<binder K, binder Base,

binder Intermediate, binder Active>> =

#h(p, K), #(recv, Base)

[ recv?().ch(recv, intK2).state1!().nil |

pSTATE0<<Base,Intermediate>> |

pSTATE1 |

pSTATE2<<Intermediate,Active>> |

rep p!(plus).nil ];

// Definition: activation and deactivation signals

let E1: bproc = Signal<<signalE1>>;

let E2: bproc = Signal<<signalE1>>;

// The three kinases (one with single phosporilation, two

// with double phosphorilation)

let K3: bproc = SingleK<<kaseK3, baseK3, activeK3>>;

let K2: bproc = DoubleK<<kaseK2, baseK2, intK2, activeK2>>;

let K1: bproc = DoubleK<<kaseK1, baseK1, intK1, activeK1>>;

// The 2 phosphatases

let P1: bproc = Phospatase<<paseP1>>;

let P2: bproc = Phospatase<<paseP2>>;

Notice that, besides being more compact, this model is also more general: it is possible

to use the template definitions for kinases, phosphatases and signals to build any other

signalling pathway.
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Conditional events

The MapK model works as an ultra-sensitive switch: it has to be robust with respect to

noise, but when a signal molecule is introduced in the system, it has to respond quickly

with a non-linear response curve; similarly, when the signal cease to exists, it should

quickly return to the initial, non active state. This behaviour is a consequence of the

cascade of signals (E1 activates K3, which in turn activates K2, which will phosposrilate

K1) and of the double-phosporilation of some of the kinases.
In order to test the model and run experiments on it, it is necessary to introduce and

take away the signal molecules E1 and E2 at will. A natural way of doing it during a
simulation is to insert and delete boxes using events; this time, however, events have a
condition on time:

when (E1: time=3000.0: inf) delete(2);

This kind of events allow the modeller add controlled perturbations to the system.

Variables and expressions

Another example of a real-world model that we tried to express in our language is the

cell-cycle model from Tyson and Novak [162]. Its original version is based on ODEs; when

trying to translate it in our modelling language, a problem immediately arises from the

chosen level of abstraction: almost every reaction in the model can be expressed in our

language, except for those involving the mass.

The mass of a cell is the sum of all the contained proteins and molecules; during

mitosis, the cell-cycle machinery checks both concentrations of particular molecules and

the mass of the cell to decide weather is time to split the cell in two parts. The dependence

between these molecules and their relation with the mass of the cell is unknown, therefore

an abstraction must be used.

In the original model, the mass is a continuous quantity depending on time. The

following equation is commonly used to express the growth of mass:

δm

δt
= µ ·m

where µ is a constant. If we discretize it we obtain:

∆m
∆t

= µ ·m → ∆m = µ ·m ·∆t

To update the m variable every ∆t, we can write the following expression:

mt(i) = mt(i−1) + ∆m → mt(i) = mt(i−1) + (µ ·m ·∆t)
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The discretized version of this equation can be used inside a modified version of the

stochastic simulation engine to update the mass over time.

To integrate this kind of abstraction in the language, we need to introduce variables,

constants and expressions. For example, the syntax to write the previous equation could

be:

let m(0.1): var = mu * m init 0.2;

where 0.1 is an “hint” to the simulator, that could be used to set the integration step

∆t6.

With the introduction of variables, we also need an event that can modify their value.

We shall call this event update. The event acts on variables, not boxes: when it is fired,

an expression is evaluated, and the resulting value is assigned to the variable.

The condition of an update event involves no entities and no rate: the event is triggered

as soon as a conditional expression is valid. This particular kind of condition is based on

the traversal of successive states. Suppose we want to recognize the oscillatory behaviour

in Fig. 3.7, and adjust the variable n, also depicted in the figure, by increasing it at every

oscillation:

let n : var = 1;

let f : function = n + 1;

...

when (: A -> 20, A <- 20 :) update (n, f);

The concatenation of an arbitrary succession of states allows to overcome possible limita-

tions that are often encountered when dealing with a stochastic approach, mainly noise.

As an example, look at Fig. 3.8: the simple state list just introduced is not enough to

capture the correct period of oscillations, as highlighted in the upper-right corner of the

figure.

This issues can be solved by adding more states:

let n : var = 1;

let f : function = n + 1;

...

when (:A -> 10, A -> 20, A <- 20, A <- 10:) update (n, f);

This event can capture correctly the behaviour of the noisy oscillating system, as depicted

in Fig. 3.9.

6The current version of BetaSim, the simulator for the BlenX language introduced in Sec. 3.2, uses this hint
to set the time step for an Euler solver, which is used to integrate the value of continuous variable over time.
Clearly, the ideal solution would be to use an hybrid simulation algorithm; this solution will be studied in a future
release of BetaSim.
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Figure 3.7: The specie A exhibits an oscillating behaviour, captured by a state-list condition. n
is a variable that “counts” the number of oscillations.

Figure 3.8: The specie A exhibits an oscillating behaviour, but data has some noise: the state-list
condition cannot capture it and n is updated in a wrong way.
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Figure 3.9: The new state-list condition is able to capture the oscillations correctly.

The addition of variables, expressions (functions) and update events with state condi-

tions enrich the language to the point that it is now usable for many different scenarios.

The language we have built in this section is BlenX.

3.1.5 History and credits

The design of a language is a team effort; many people at CoSBi were involved in the

definition of BlenX, at various levels: specification of the semantics, implementation,

definition of the syntax, refinement, suggestion and on-field testing.

The process of creation of a new language accounted in the previous section mirrors

not only the rationale behind BlenX, but also its evolution through time.

2004: Beta-binders

The language we “re-created” in Section 3.1.1 closely resembles the original Beta-binders

process algebra, designed and defined by Priami and Quaglia; in particular, the concepts

of compatibility based on sets and of join and split functions was introduced in the original

Beta-binders papers [180, 181].

The proposal to relax the key-lock assumption also came from Beta-binders [180].

In fact, Beta-binders provide the means to model the enclosing surfaces of entities and

possible interactions taking place at the level of the enclosing surfaces. Processes are

encapsulated into boxes with interfaces; interfaces have an associated type that represents

the interaction capabilities of the box, closely following the concept of cells of computa-

tions [189] introduced in the previous chapter:
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Processes, the basic interacting computational entities of these languages, have

an internal state and interaction capabilities. Process behaviour is governed by

reaction rules specifying the response to an input message based on its content

and the state of the process. The response can include state change, a change

in interaction capabilities, and/or sending messages.

Types as sets of names is also how they were shaped in the original Beta-binders

papers; as in Section 3.1.1, the interaction was enabled if and only if the types of the

interfaces of the two partners are not disjoint.

Prandi et al. introduced the notion of affinity [176]; this allowed a finer control than

the one expressed by the intersection of the types of interfaces.

2006: First version of BlenX

The language introduced in Section 3.1.2 is essentially the first version of BlenX (which

was still called Beta) and it is mainly the work of Alessandro Romanel: he developed both

the theory and a working implementation of the structural congruence in BlenX [196],

opening the way to the idea of species as classes of structural congruent processes that

leads to an efficient implementation of the Gillespie Stochastic Selection Algorithm.

2007: Second version of BlenX, BetaWB

The second revision of BlenX [58], which we re-created in Section 3.1.3, was implemented

in the first publicly available version of BetaWB [55].

This language revision contained the concepts of complexes and events; with Romanel

and Priami we designed and implemented them in a Workbench, a set of tools for simu-

lation (BetaSim), model building (BetaDesigner) and inspection of results (BetaPlotter).

In particular, we considered that complexes are really common in biological systems;

even if in some cases it is possible to abstract over them, in other cases they have a central

role and must be modelled explicitly. As we have seen, modelling a complex formation

using exclusively message exchange it is possible, but not very convenient. Hence, in

BlenX complexes as first-class citizens.

Complexes as native language constructs are a peculiar feature of BlenX, where boxes

play the role of monomeric units; they can be used to represent any ensemble of two or

more boxes, from dimers to more complex polymers. New complexes can be generated at

runtime as a consequence of binding and unbinding actions -similarly to what happens

when new boxes are created after monomolecular and bimolecular reactions-, and so it

is possible to easily generate complex biopolymers made of dozens or hundreds of boxes

from relatively simple and compact programs.
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The addition of events based on structural congruence added an easy way to deal with

reactions that involved the creation, destruction and fusion of boxes. Without them, a

box can only be modified in its internal process or in its interface (the set of binders);

therefore, events filled the gap left by the lack of join and split functions.

2008: BetaWB version 2

The second version of BetaWB [56] brought more features in the language. The workbench

allowed other people to experiment with the language, building more complex model.

Listening to their feedback, the language was modified to include new features [57], the

ones introduced in Section 3.1.4.

The first important new feature is the macro rewriting system that allows the definition

of parametric processes and parametric boxes, called templates. Being entirely a compiler

transformation, it does not add to or modify in any way the semantics of BlenX, but

it allows the modeller to save considerable time and to write more compact code by

eliminating many repetitions in the code.

The second feature worth mentioning is the introduction of variables and functions;

they led to the realization of an hybrid simulation algorithm that allows the modeller

to insert some global behaviour inside the system. Both this constructs are a step away

from a pure process algebra approach (the first introduces a sort of rewriting system to

specify rewriting rules, the second the ability of introducing continuous variables in a way

that was possible only with ODEs before); this is an example of the kind of compromises

we had to face when dealing with a real-world language that has to be both formal and

usable.

Models

Besides people involved directly in the design and implementation of language features,

people who worked on the creation of models helped in shaping BlenX too. In particular,

the NfKB model [135] used binders to codify space, following the original Beta-binders

ideas; as such, it proved to be a good check of the validity of our approach, which retained

Beta-binders capabilities. The Cell Cycle model [164] was a test for events, variables

and functions; finally, the Actin model and Self-assembly models [136] helped in refining

complexation and templates.
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3.2 The Beta Workbench

The Beta Workbench (BWB for short), is a set of tools to design, simulate and analyse

models written in BlenX7.

Figure 3.10: The logical strucure of BWB

The core of BWB is a command-line application (core BWB) that hosts three tools:

the BWB simulator, the BWB CTMC generator and the BWB reactions generator. These

three tools share the BlenX compiler and the BlenX runtime environment. The core BWB

takes as input the text files that represent a BlenX program (see Sec. B), passes them to

the compiler that translates these files into a runtime representation that is then stored

into the runtime environment. The logical arrangement of the computational blocks above

is depicted in Fig. 3.10.

3.2.1 BWB simulator

The BWB simulator is a stochastic simulation engine. The runtime environment provides

the stochastic simulation engine with primitives for checking the current state of the sys-

tem and for modifying it. The stochastic simulation engine drives the simulation handling

7BWB is available at http://www.cosbi.eu/Rpty Soft BetaWB.php
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the time evolution of the environment in a stochastic way and preserving the semantics

of the language. The stochastic simulation engine implements an efficient variant of the

Gillespie’s algorithms described in [84].

Stochastic rates

The BWB simulator computes the probability of an action to occur using the reaction

probability density function introduced in Section 2.2.4. The way of computing the com-

binations, and consequently the actual rate, varies with the different kind of reactions

we consider; here we list the possible reactions that can be used in BlenX, which are

supported by the BWB simulator.

Rate of a monomolecular reaction:

the simplest kind of reactions we can encounter are first-order reactions, usually referred

to as monomolecular reactions, that take the form:

S1 → S2...Sn

In this case, the number of combinations hµ is equal to n, where n is the number of entities

(the cardinality) of S1.

Rate of a bimolecular reaction:

second-order reactions, usually referred to as bimolecular reactions, take the form:

S1 + S2 → S3...Sn or S1 + S1 → S2...Sn

The second case explicitly consider the fact that the two elements reacting are indeed of

the same species, as in homodimerization reactions.

To obtain hµ, we have to compute the number of all possible interactions that can

take place between elements of the first species and elements of the second species. Let n

be the cardinality of the species S1, and m the cardinality of the species S2.

In the former case, the number of combinations hµ is equal to n ·m, while in the latter

the number of combinations hµ is equal to n·(n−1)
2

.
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Constant rates:

constant rates are used when the number of combinations hµ is not meaningful; for exam-

ple, consider zero-th order reactions like Nil− > S1. In this case hµ = 1, so the base rate

constant cµ is directly used as the exponent of the exponential distribution form which a

time of execution will be sampled.

Rate functions:

the numerical integration of the reaction probability density function has been proved by

Gillespie to be exact : a Monte-Carlo simulation of the method represents a random walk

that is an unbiased realization of the chemical master equation.

However, when a specie represents a higher aggregation entity (e.g. a cell) then the

input-output relation can exhibit a non-linear behaviour (e.g. sigmoidal dose-responses

for signalling molecules). In this case, we let the user specify a rate functions, that is used

in place of the Gillespie method to compute the propensity function.

Note that in this case the proof that the method, and so the algorithm, is exact does

not hold anymore. It is up to the user that chooses a rate function to demonstrate that

the assumptions he/she made are realistic and that the produced results are correct. We

are only providing the BlenX programmer with the highest flexibility in specifying the

quantitative parameters that drive the simulation engine.

3.2.2 BWB CTMC and Reactions generators

When rates are drawn from an exponential distribution and models are finite-state, a

BlenX program gives rise to a continuous-time Markov process (CTMC). The BWB CTMC

generator adds to the core blocks a set of iterators to exhaustively traverse the whole state

space of a BlenX program. The CTMC generator also labels all the transitions between

states with their exponential rate.

The BWB reactions generator identifies state changes that can be performed by entities

and complexes generated by the execution of a BlenX program and produces a descrip-

tion of the system as a list of species and a list of chemical reactions in which species are

involved. These lists are abstracted as a digraph in which nodes represent species and

edges represent reactions (see Fig. 3.11). This graph can be reduced to avoid presence of

reactions with infinite rate. The final result is an SBML description of the original BlenX

program ( Fig. 3.12).
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Figure 3.11: The graph of all the reactions generated by the BWB Reactions generator
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Figure 3.12: The SBML file generated by the BWB Reactions generator
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(a) (b)

Figure 3.13: The model of the ERK pathway in the designer.

3.2.3 BWB designer and BWB plotter

The core BWB is enriched by two tools for input/output operations: The BWB designer

and the BWB plotter.

The BWB designer8 is a tool that allows to write BlenX programs both in a textual

and in a graphical way. The two representations are interchangeable: the tool can parse

and generate the graphical representation from any valid BlenX program, and generate

the textual representation from the graphical form (see Fig. 3.13). In particular, it is

possible to draw boxes, pi-processes, interactions, events and to form complexes using

graphs (see Figures 3.14 and 3.15). The textual representation can then be used as input

to the core BWB.

The BWB plotter is a graphical tool that parses and displays simulation outputs as

changes in concentrations (Fig. 3.16), graphs of the reactions executed by the simulator

(Fig. 3.17) and other views of the relations between entities and reactions. The BWB

plotter provides to the user a picture of the dynamic behaviour of a simulated model and

the topology of the network that originated that behaviour.

3.3 Related work and Future directions

Work on computational tools for systems biology is vast and diverse. We choose to focus

on executable models, i.e. on the design of executable computer algorithms that mimic

biological phenomena, for which a number of reviews and essays can be found [75, 130,

137].

8The designer for the second version of BlenX, shown in these pictures, was developed with Daniele Furlan
from the University of Trento.

68



CHAPTER 3. BLENX

Figure 3.14: Definition of a complex through the Designer interface.

Figure 3.15: Definition of the internal process for a double-phosphorilated kinase.
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Figure 3.16: The Plotter displaying the result of a simulation of a BlenX Circadian Clock model.

Figure 3.17: The Plotter displaying the graphs of reactions executed during a simulation.
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Moreover, our focus is on a language approach for systems biology, specifically on

features linked to scalability of those languages. Computational languages proved to be

a general, reusable, powerful and scalable way of describing complex computations and

interactions, thanks to features like modularity and abstraction we highlighted during our

introduction of BlenX.

Relevant languages for systems biology were already introduced in Chapter 2; focused

surveys can be already found in the literature: we advise the reader to refer to [94], [48]

and [40].

In this section, we want to recall the formalisms and frameworks more closely related

to BlenX and BetaWB, highlighting similarities and differences in the light of scalability

issues.

SPiM, the Stochastic Pi Machine [171], is a programming language based on the pi-

calculus. SPiM features a stochastic simulation machine based on the Gillespie SSA

method (Sec. 2.2.4), and a simple graphical notation for modelling a range of biological

systems [173]. The basic textual notation can be used to model large systems incremen-

tally, by directly composing simpler models of subsystems. However, the same modularity

issues we highlighted in our introduction of process algebras are true for the pi-calculus

dialect used in SPiM: the language was designed to model computer systems, and there-

fore building some kind of biological interactions on top of it (e.g. complex formation) can

be cumbersome. Similarly to BetaWB, SPiM provides also a set of tools for visualization

and interpretation of the output data, as well as tools to import and export models in

different format.

Bio-PEPA [41] is another language designed for modelling and analysis of biochemical

networks. Like BlenX, Bio-PEPA is based on a process algebra (PEPA), and extends it in

order to introduce features and characteristics needed to model in a closer way biochem-

ical networks. Examples of these features are the support for different kinds of kinetic

laws, which are very similar to BlenX functions, stoichiometry (a unique characteristic

of Bio-PEPA) and SBML-events, an extension that was introduced following the same

considerations we made for BlenX events. Therefore, Bio-PEPA allows to build models

with different levels of abstraction.

Bio-PEPA can support different kinds of analysis, including stochastic simulation,

analysis based on ordinary differential equations (ODEs) and model checking in PRISM,

through the Bio-PEPA workbench. A mapping from the graphical notation SBGN-PD to

Bio-PEPA is also available.

The k-calculus [49] is a language for the formal description of molecular biology. Like

in BlenX, interactions are modelled at the domain level; however, bonds are represented

by means of shared names, and reactions follow a rule-based approach instead of message
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passing. In both cases it is possible to build models and complexes starting from compo-

nents in a modular way. The differences between the two languages can be appreciated

by examining how different solutions to the self-assembly of complexes, a process in which

disordered components form an organized structure only through local interactions, are

modelled in the k-calculus [46] and in BlenX [136].

Finally, the University of Rostock modelling and simulation group actively develops

James II, a flexible, extensible and reusable simulation framework which supports many

modelling formalism and many simulation methodologies. The same group designed and

developed on top of JAMES simulators for the Attributed π-calculus [121], a variant of the

pi-calculus where reaction rates can be made dependent on attributes that are assigned

to processes, and for SpacePi [119], a variant of the pi-calculus that provides a way for

individual based modelling of systems dependent on spatial and temporal interactions of

individuals. Roehl et al. developed on top of James the concept of model components,

which helps in building models from components, therefore sharing the goals of BlenX

templates introduced in this chapter [195]. Realization is, however, quite different being

based on a separate language (XML based) for the description of components and of

their extensibility points. It would be interesting to compare and possibly merge ideas

from the two approaches. Both the languages and the James framework shows concepts

and practices that we are considering for our future research directions, which will be

illustrated in the next section.

3.3.1 Next steps

Work on BlenX is far from being complete. As we mentioned in Section 3.1, the definition

of BlenX has been an interactive process: as such, the language itself it’s not static, but

it is alive and continuously improved to meet the community requirements. BlenX limits

arose during on-field tests, i.e. the creation of complex, real world models.

An example is the in-silico experiment we will describe in Chapter 7; that particular

research topic was addressed using the in-silico experiment framework that will be intro-

duced in Chapter 6. However, our initial question was whether it was possible to model

the entire evolutionary framework in BlenX. It turned out that it was not possible due to

some language limitations. Later, we realized that by performing some minor adjustment

to the language a whole new class of evolutionary computations, which included our initial

scenario, could be expressed in BlenX.

On a related note, work done on the research on Horizontal Gene Transfer (HGT)

highlighted similar problems. In this case, it was possible to build a limited HGT model

using BlenX, but the model was not flexible enough to allow for the kind of in-silico

experiments we had in mind. An ad-hoc solution proved to be more convenient.
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Finally, the current version of BlenX has no explicit support for spatial characteristics.

As we have seen in Chapters 1 and 2 spatial aspects are very important in many biological

systems.

One of the promises of beta-binders was to allow for a hierarchical spatial model even

without the nesting of beta-processes [181]. This hierarchical model could be obtained

thanks to the use of binders and affinity functions: with each beta-process represent-

ing a compartment, and pi-processes the species in that compartment, affinity functions

governed the ability of communicating with other compartments, defining a logical “neigh-

bourhood” and “containment” relationships. Affinity functions had to be created so that

logical relationships reflected the real, physical ones. However, defining spatial relations

in this way was cumbersome and started to collide with the notion -which was becoming

dominant, and later was adopted by BlenX- of one beta-process as one biological entity.

As a solution, an extension to beta-binders was proposed by Romanel et. al. [95]; in

this extension, every beta-process was labelled with an index reflecting the position of the

process inside a tree-structure, representing the nesting of compartments. Actions were

added to allow for movement of processes, and the affinity relation update to taken in

consideration the spatial relationships.

However, this solution was never incorporated into BlenX. As Larcher demonstrated

with the NfKB model [135], it is possible to encode space in the model using types, like

in beta-binders. However this encoding is not always simple, and can be cumbersome if

more than a couple of species or locations are involved.

The following sections contains my opinion, maturated during several meetings and

fruitful discussion with other CoSBi researchers, on how the current version of BlenX

could be evolved to address these shortcomings.

Richer types

The notion of typed interaction sites proved to be one of the winning points of BlenX.

It helps composability through isolation, it can be used to closely reflect many biological

concepts, and it allowed the introduction of complexes as first-class citizens. Furthermore,

the same notion was later implemented by other bio-inspired languages, like Kappa [50],

proving the wisdom of this approach.

However the current implementation of binders is, in my opinion, too weak. Right now

the binder identifier, i.e. the type associated to a binder, is only a name, an identifier,

that is used to look-up an affinity measure in the affinity table. The affinity function

itself, in fact, is an explicit list of affinity values described in a set-theoretic way; this

is handy in many situations, but expressing the function in a computable way, using

formulas or algorithms, is an invaluable help in many cases. Moreover, they could make
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models self-contained, eliminating the need for external programs to compute the affinity

function/table. The limitations showed by in-silico evolution, HGT and modelling of

space can all be overcome by using more powerful types and affinity functions.

Let introduce an example, derived from evolutionary computation. As we will see in

Chapter 7, mutations at DNA level are reflected in many cases on the domain sites of a

protein. This kind of mutation can be implemented by changing the type of a binder. But

then, which affinities the new type should have? Should they be copied from the original

ones, with random modifications? Which relations have to be kept, and which have to be

dropped?
If we could compute the affinities directly from the types, the problem would not arise.

Let’s represent domains using a simplified model, using 0-1 strings of length 5:

let Domain : type = boolean[5];

and use a compatibility function based on complementarity:

let f(a,b) : function = //function for complementarity

let affinity(Domain d1, Domain d2) = f(d1,d2);

The function is written so that complementary domains are fully compatible, while do-

mains with some differences can still match in a weaker way: for example, two Do-

mains [0,1,1,1,0] and [1,0,0,0,1] will have an affinity of 1, while [0,1,0,1,0] and

[0,1,0,0,1] will have an affinity of 0.4, for example.
Processes and boxes will use binders as before, with the addition of functionalities to

read and write binder values:

let Protein : bproc = #(x, A:Domain), #(y, B:Domain)

[ ...x?().ch(A@1, A@1 xor RandBool())... ];

Channels can be also augmented with types, acquiring the ability to carry messages of a
specific type:

let threshold : const = 0.5;

let P : pproc =

mutate?(x).if (RandDouble() > threshold) mutate!(x xor RandBool()) else mutate!(x);

where the mutate channel will carry boolean values. The mutation process can then be
reused inside boxes, where it is used to mutate the box own binder types in response to
some event:

let Protein : bproc = #(x, A:Domain), #(y, B:Domain)

[ P |

...x?().mutate!(A@1).mutate?(value).ch(A@1, value).

mutate!(A@2).mutate?(value).ch(A@2, value)....];

As another example, consider spatial relationships. As we have seen in Chapter 2,

some methods, in particular species based methods, use a discrete mesh structure to define
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space. Consider for example a model for micro-tubules: the movement of molecules along

the microtubule can be modelled as discrete movements along a 1D axis.
With richer types, we can devote the value of a binder to keep track of the space,

while still retaining its functionality as a communication channel:

let SpaceBinder : type = int;

or, if we want to give a limit to the number of discrete grid positions:

let SpaceBinder : type = (0..10);

Translocation can be represented as a stochastic process:

template moveLeft<<binder B, rate l>> = ch(l, B, B - 1);

template moveRight<<binder B, rate r>> = ch(r, B, B + 1);

let Protein : bproc = #(x, A:SpaceBinder)

[ ...

| moveLeft<<A, 0.05>>

| moveRight<<A, 0.1>>

];

Communication (interaction) can obviously only take place only between proteins in the
same space; in this case, an affinity function can be defined as:

let rate1 : const = 1.0;

let rate2 : const = 0.0;

let f2(a,b) : function = if (a==b) then rate1 else rate2;

let affinity(SpaceBinder d1, SpaceBinder d2) = f2(d1,d2);

Affinity functions

One aspect that it is important to consider is the expressive power and computability of

affinity functions.

Other calculi, use lambda calculus to express conditional events (like the original beta-

binders with its join and split functions) or communication constraints (like the Attributed

Pi-calculus [121]). In this calculi, a lambda function is applied to state-dependent argu-

ments (binders and processes in the first case, attributes in the latter); the result of the

evaluation is used to choose whether the communication should happen or not.

In Beta-binders, this led to inefficiencies in the simulation. In the case of the Attributed

pi-calculus, it has been shown that

language is a call-by-value λ-calculus)

When we limit in-silico experiments to simulation, .... he language to express affinity

functions should not be too powerful. In order to guarantee some aspects of the simulator

(like termination), to maintain the language tractable, and to make model execution

efficient, the language for affinity functions should not be Turing-complete.
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After some initial considerations, I believe that the direction is to have simple mathe-

matical and boolean expressions, with no recursion (and no while commands or equivalent

construct). To manipulate data types that consist of more than one entry, like in the

Domain binder type of the previous example, a bounded for or foreach construct can help.

Notice that as long as we allow only for finite or immutable lists or sets of elements, many

language properties should still be decidable.
Another way may be to introduce some pre-defined functions, for which we already

proved termination and other properties of interest, that use expressions (or pure func-
tions) as an input parameter. Notice that my proposal is not to introduce pure functions
as a first class construct, nor to add higher-order functions across the language. For sim-
plicity, the only higher-order functions are the intrinsic special functions. This means that
functions (or expressions, or operators) are only allowed as an input parameter of these
special functions:

let f (x, y) : function ...

let r (t1, t2) :

fold f t

map f t

filter f t

apply f t

append t1 t2

zipwith f t1 t2

In this case, the function for complementarity between Domains mentioned above can be
expressed as:

let f(a,b) : function = fold(+, zipwith(xor, a, b)) / length(a);

let affinity(Domain d1, Domain d2) = f(d1,d2);

The affinity function uses the zipwith intrinsic function to apply the xor operator to each

element of the Domains, then it will sum them (using the fold intrinsic function and the

+ operator) and divide the sum by the Domain length. For example, the application of

zipwith with xor on [0,1,0,1,0] and [0,1,0,0,1] produces [0,0,0,1,1], map with +

leads to 2, divided by 5 = 0.4.

A final consideration about species: the structural congruence have to be updated.

We can still retain the notion of species based on structural congruence, as it will work

for the examined examples. For example, the introduction of a numeric SpaceBinder to

encode a position in space effectively separates entities of the same species but located in

a different position on the grid, as the spatial Gillespie method requires (see Section 2.2).

Moreover, if we substitute the integer, discrete location with a real floating-point value

(or better, with a pair or triple of real values representing Cartesian coordinates), each

entity will belong to a different species9, making the language suitable for the description

9Assuming that there will not be two entities having the same exact location
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of individual based systems. In this way, it should be possible to emulate most of the

concepts of languages with an explicit notion of space (like SpacePi [120]). Of course,

this approach requires different simulation methods, like the BD methods introduced in

Section 2.2.

In conclusion, the extension of types and affinity between types in BlenX is an area

where much work can be done: some work has already started (see for example Romanel et

al. [185]), but many of these ideas require further research. In particular, the language for

the definition of affinity functions has to be defined and studied in a comprehensive way,

in order to verify and prove which kind of functions it is possible to express and which

properties are decidable and at which cost. My opinion is that this language should

represent a compromise, keeping many desirable properties (i.e. termination) decidable,

while allowing for some interesting functions to be computed.

The price to pay is that static analysis, compiler optimizations, and, in general, proving

properties on models will become more difficult tasks in comparison with the current

version of BlenX, but we should avoid to make them impossible.

3.4 Summary

In this chapter we have seen that a programming language can be used to model biological

entities by writing compact textual code, which let us build very complex models in a

more manageable way.

In particular, we introduced BlenX, a language for Systems Biology, and we focused

on the aspects of BlenX that allows to build composable and scalable models: modular

composition through affinity-based interaction, reuse through patterns and templates,

and abstraction. Work on BlenX is still active: its usage with realistic models as well as

comparison with other languages gave us ideas for future extensions of the language, aimed

at increasing its modularity. Our goal is to create a language that simplifies modelling of

large scale systems by enabling seamless composition of simpler, smaller and/or abstract

parts.
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Chapter 4

Simulation

The Gillespie algorithm (Sec. 2.2.4, [84]) is the most widely used and known algorithm in

systems biology; thanks to this stochastic method, it is possible to perform accurate and

physically correct simulation of realistic biochemical systems.

However, more complex and large models need to cope with spatial aspects and move-

ment of particles, which are not considered by the Gillespie SSA. Space is becoming a

very important aspect in model simulation.

Furthermore, the Gillespie algorithm is inherently sequential. If we want to deliver the

promise done by systems biology to be able to understand a system as whole, we also need

to move from sequential to parallel simulation algorithms. Models could possibly be very

large in order to capture the systems behaviour in a reliable way. This is particularly true

in the case of spatial models, which add a new degree of complexity to simulation methods,

as we shall see in this chapter. Algorithms that can leverage parallel architectures will

give modellers a great advantage.

This chapter will treat the problem of execution and simulation of large models. We

will see how spatial aspects need to be taken into account when the scale moves up from

the level of detail of a single pathway, and how parallel computing can speed up the

simulation of spatial methods.

4.1 Space

When studying a single localized pathway, the macroscopic description of its kinetics

usually suffices. However, many biological processes are not local and they often take

place in an inhomogeneous medium, the cytosol, where spatially localized fluctuations of

inorganic catalysts and intracellular diffusion can have an important role.

Space and variations in concentration of biochemical entities play e central role in many

interesting biological processes, including mRNA movement within the cytoplasm [79],
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ASH1 mRNA localization in budding yeast [4], morphogen gradients – for example,

across egg-polarity genes in Drosophyla oocyte [4] –, bacterial chemotaxis [209], synapse-

specificity of long-term facilitation in neural cells [124], and microtubule assisted protein

movement during the cell cycle [162]. When dealing with such processes, it is necessary

to explicitly consider the cell geometry and, in general, spatial conformation and diffusion

processes.

As we have seen in Chapter 2, stochastic simulation of biochemical models is a fun-

damental analysis tool for systems biology: models allow researchers to quickly repli-

cate experimental conditions in-silico, that can be tested by simulation. However, many

stochastic methods make some assumptions about the reaction volume and about the

representation of molecules.

For instance, SSA assumes that a system is a well-stirred mixture of molecules (see

Section 2.2.4); all the entities of the same species are treated in the same way: if the

well-stirred mixture assumption holds, it means that we can consider diffusion inside the

reaction volume as instantaneous. Therefore, the probability of any of two molecules of

one species to meet (and react) with any two molecule of another species is the same.

Obviously, the consequence is that we need to consider species or classes of molecules

instead of single molecules; this is good with respect to performance, but it has drawbacks

when considering inhomogeneous systems.

We presented some stochastic methods able to deal with spatial information and dif-

fusion of entities in Section 2.2. Here, we recall briefly two ways of overcoming the

limitations of Gillespie-like methods: choose a different level of abstraction, using single

molecular detail, and therefore a different method not based on the well-stirred assump-

tion, or adapt the existing methods, making the assumption co-exists with diffusion and

space.

Before proceeding further, we briefly review the concepts of diffusive flux and Fick’s

law [74]. The analytical description of diffusion is summarized by the definition of diffusive

flux, the number of molecules which pass through a small surface S per unit of area per

unit of time. J , the net flux of a solute, depends on the number of molecules passing

through either side of the surface: if there are more molecules on the left, then we expect

a left-to-right flux which grows in size as the difference of concentration between the

two sides of the surface increases. As this local difference varies from one point in space

to another, the flux is a vectorial quantity depending on the position in space. The

simplest description of the flux as quantity dependent on the concentration of species is

the Fick’s first law, which states that the flux is proportional to the local derivative of
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the concentration c of solute with respect to the spatial variables:

~JB = −DB∇cB

where B is some generic chemical species, JB = JB(x, y, z) is the local flux of B molecules,

cB is the local concentration of B, and DB is the diffusion coefficient for B. The diffusion

coefficient includes the parameters driving the diffusion dynamics.

4.1.1 Particle-based methods

Particle based methods consider each molecule in the system as an individual entity that

has to be simulated and analysed. Therefore, each entity in the system has attributes,

like position, kind of molecule and velocity. These attributes are used to compute the

movements and the reactions inside the system for each individual; the actual computation

and the attributes used and updated by the system vary from one method to another (see

Sec. 2.2).

We will focus on Brownian Dynamics (BD) methods, where each molecule is repre-

sented as a point-like particle with continuous x, y and z coordinates, that diffuses freely

in space following Fick’s first law. No assumption is made about the distribution in space

of the various molecules; these methods can simulate localized fluctuations, gradients,

local events without any adjustment.

A drawback of particle-based methods is represented by execution speed, because

the speed of execution is influence by both the number of species and of reactions in the

systems and by the number of individuals for each species. Therefore the usage of particle-

based methods, even of faster, more high-level methods like BD ones, is historically seen

as impractical for the simulation of large systems.

4.1.2 Species-based methods: spatial Gillespie and NSM

As we mentioned, the most diffused mesoscopic level simulation algorithms for intra-

cellular stochastic kinetics are based on the premise that diffusion is so fast that the

concentrations of all the involved species are homogeneous in space. However, recent ex-

perimental measurements of intracellular diffusion constants indicate that the assumption

of a homogeneous well-stirred cytosol is not necessarily valid even for small prokaryotic

cells.

Reaction-diffusion methods, as introduced in Section 2.2, are based on a discretization

of the simulated volume: the system spatial domain is divided into a number of reaction

chambers, called cells, voxels or sub-volumes, small enough for the assumption of a homo-

geneous medium to hold. As their names indicates, reaction-diffusion models consist of
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two components. The first is a set of biochemical reactions which produce, transforms or

removes chemical species. The second component is used to model diffusion as the move-

ment of species between reaction chambers; in particular, the movement of a molecule

M from sub-volume i to sub-volume j is represented as a first order reaction Mi → Mj,

where d is the diffusion coefficient.

Assuming that both reaction rates and diffusion coefficients are given, reaction-diffusion

systems can be simulated using the Gillespie SSA, as demonstrated by Bernstein et al. [14].

A more efficient alternative is represented by the Next Sub-volume Method (NSM)

proposed by Elf et al. [65]. NSM is a two level method in which every cell computes

individually the next event, a chemical reaction or a diffusion, using the Gillespie direct

method [84]. The cell where the next event will occur is determined using a global priority

queue holding the reaction times of the quickest reaction event for each cell. More in detail:

• Initialization

1. Distribute the initial numbers of molecules between the cells and store in a

configuration matrix. This can be done randomly or according to any initial

distribution.

2. Calculate the sum of reaction rates ri for each cell i and store in the rate

matrix. The reaction rates are calculated for the size ∆ of the cell, according

to the reaction-diffusion master equation [15].

3. Calculate the sum of diffusion rates for each cell, store it in the rate matrix.

4. For each cell i, calculate the first event (diffusion or reaction) time T (i) =
ln(rand)∑
events ri+si

5. Make an initial ordering of the cells according to their next event times. The

cells are kept sorted in a priority queue.

• Iterations

1. Assume that c is the cell in which the next event occurs at time T (c) = τ

according to the top element of the priority queue. Generate a random number

rand uniformly distributed between 0 and 1, choose a Reaction Event if rand <

rc/(rc + sc) and otherwise a Diffusion Event.

2. Reaction Event:

(a) Rescale rand from the previous point to [0, 1] to determine which reaction

occurred as in the direct method.

(b) Update the state of the cell c in the configuration matrix according to chosen

reaction
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(c) Recalculate the
∑
rc+sc for the cell c, calculate the time of the next event.

(d) Insert the new event time of cell c in the event queue and order the queue

3. Diffusion event:

(a) Update the states of both cell c and its neighbour, d, which got an additional

molecule.

(b) Recalculate the sums, sample the time to the next event in the cells

(c) Insert the new event times in the event queue

4.2 Processing speed: Parallel Execution

The interest in concurrent and high-performance computing for computational and sys-

tems biology has grown steadily in the last years. When my PhD started three years ago,

only a handful of groups were working on this subject. Soon after, we assisted at the

dawn of the so-called concurrency revolution: researchers in life-sciences and developers

started to understand what computer scientists already knew: concurrent software was

becoming the main way to speed-up computations. When using the same abstraction, and

algorithms with the same complexity, concurrent execution the only way of scaling up the

size of research problems, and ultimately one of the few viable ways to fully understand

large systems.

In the past years, in order to run an application faster on a new computer, the pro-

grammers had to do little or nothing: some tweaks could be done, maybe in assembly

language or by recompiling the source code with a new compiler, in order to take ad-

vantage of the new features available with each generation of new processors. Running

the existing program on a new processor of the same family required no change, and

gave big speed-ups for free. This progress was possible thanks to the refinement to both

the electronics technology, which allowed for smaller circuits, and the inner processor ar-

chitecture. Smaller circuits meant less current drawn, and this allowed for astonishing

increases in the CPU clock, the frequency at which a processor is able to process and ex-

ecute instructions. It also meant that more transistors could be packaged inside the same

chip, resulting in more complex architectures: features like superscalar processing, branch

prediction, multiple cache levels, out-of-order and speculative execution were gradually

introduced by Intel in the 4th, 5th and 6th generation of their PC processors [44]. All

these improvements resulted in faster and faster CPUs, but it was mainly the increase of

frequency to drive their performances. Since the introduction of micro-chips, manufac-

turers were able to design and introduce a new generation of CPUs that was two times

faster than the previous one roughly every 18 months.
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This rate of growth is often referred to as Moore’s law, from a famous quote of the

Intel co-founder Gordon Moore. Moore made the empirical observation that the number

of transistor packed into a chip is expected to double every 18 months. This is only an

empirical observation, but to date it has never been disobeyed. Since the raw processing

power is strictly linked to the number of transistors, the law suggests also that the pro-

cessing power and computing speed also are doubling every 18 months. In the past this

growth of power was easily linked in an apparent way to the increase in CPU frequency

and also, in a less apparent way, to the number of instructions processed per clock cycle

due to architecture improvements. However, staring from 2004 onwards, new processors

started not to follow this trend anymore (see Figure 4.1). Physical limitations started

to disallow increase in power and frequency, and the processor architecture could not be

revolutionized again, but only improved.
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Figure 4.1: Moore’s law: IPS (Instructions Per Second), numbers of transistors and frequency:
from 2004 onwards the last one is not growing anymore.

The solution was to keep packing more transistors, by inserting more cores, i.e. more
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execution units, inside the same chip. In this way, raw performances and processing

power is still doubling every couple of years by doubling the number of cores. This

means that it is no longer possible to run a program on the newest CPUs and obtain an

increment in performance: having many cores inside a chip requires not only to recompile

a program, but to rewrite it and rethink it completely. Quoting Herb Sutter “The free

lunch is over”: programming multi-core CPUs requires a paradigm shift, from sequential

to parallel programming [219].

Box 2 The difference between Parallel and Concurrent
Parallel and Concurrent are commonly used in an interchangeable way. Concurrent derives from the Latin
verb concurrere, which means run together, make the same thing, operate at the same time. Parallel
derives from the Greek parallelos, “beside one another”. The difference between the two is tiny, and often
negligible.
However the difference is sometimes significant; in our case it is advisable to highlight the differences that
arise when these words are coupled with words like computing, program or language.
A concurrent language, for example, means that the language has some constructs to make program
statements or functions “operate at the same time”. A parallel program, instead, is a computer program
designed to run in parallel, i.e. as a collection of computational processes running “beside one another”.
Concurrent computing therefore is more about the ability of reasoning about a program as a set of
intercommunicating processes, and compose them using ad-hoc constructs (like BlenX, in our specific
case); on the other hand, parallel computing is more about the ability of running a program on multiple
processors at the same time: you can have simple, sequential programs running in parallel (like in MRIPs,
as we shall see later in this chapter), and concurrent programs running in a sequential way (think about
BlenX or Concurrent ML).
While it is important to know the difference, it is so small that using them as synonyms is not a mistake,
especially when there is no possibility of misunderstanding.

Nonetheless, even if concurrent computing needs to become mainstream, it is still

too difficult: developing concurrent applications requires a deep knowledge of both the

application domain and of the tools and methods for parallel programming.

A correct parallel implementation of any existing method or problem requires to con-

sider four aspects: (i) the best computational splitting policy; (ii) how to handle synchro-

nization among the computational workers, (iii) the more suitable hardware architecture

and software packages to use and, above all, (iv) the nature of the inherent parallelism.

Some problems are naturally parallelizable while others are purely serial. Parallelizable

methods can fall under two great umbrellas: task parallel and data parallel applications.

Following Dematté et al. [54], we will examine which parallel programming techniques

can be applied to stochastic simulation methods.

4.2.1 Concurrent Monte Carlo simulations

To enhance the efficiency of Monte Carlo simulations, two computational paradigms were

widely studies in the past: Single Replication in Parallel (SRIP) and Multiple Replications
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in Parallel (MRIP).

Single Replication in Parallel. The SRIP approach is based on the decomposition of

a stochastic trajectory into logical processes, running on different processors and

communicating by means of message passing protocols [78]. For naturally divisible

problems, it shows elevated performances in speed-up and scale-up benchmarks.

Significant drawbacks originate from the necessity for warranty of synchronism.

Multiple Replications in Parallel. The method speeds up simulation by launching

independent replications on multiple computers and using different random seeds in

such a way that the processes are approximatively uncorrelated. Therefore, more

observations can be collected during a given time interval than running a single

replication on one computer within the same period of time. Traditionally, one runs

a simulation for a fixed time and then performs the data analysis [101]. When the

accuracy defined by the user is reached, the simulation stops and a confidence in-

terval is generated. If the number of processes, the length of each replication and

the deletion period are carefully chosen, the statistics will be valid [69]. In contrast

to SRIP, MRIP can be easily applicable to any system, independent of the inherent

system parallelism. However, the fact that a single replication cannot be executed

on a unique processor and that outputs (or pieces of them) almost deterministic are

identical when replicated, make the use of MRIP approaches sometimes inappropri-

ate [87]. The MRIP and SRIP approaches are not exclusive, i.e., it is possible to use

MRIP and SRIP in the same simulation program.

In biology, whereas the MRIP policy, well understood and investigated for a long

time [16, 69, 86, 87, 88, 113, 146, 158, 217, 231], finds straightforward application to real

case-studies [22, 224], the SRIP policy has a rather vague characterization. SRIP meth-

ods can be further divided into two opposite sub-categories which include: (a) methods

that exploit data-parallelism (or loop-level parallelism), namely that speed-up simula-

tion of interacting particles on a finite grid in which individual processors are in charge

of simulating the state of each site [206]; (b) methods that exploit task-parallelism (or

functional parallelism), namely that divide the computation of a realization into a set

of sub-computations among cooperative processors by computational dependency criteria

[78, 151] (See Fig. 4.2 for a compact view of the parallel paradigms just described).

To date, the research in distributed-parallel processing has successfully solved many

related problems; parallel computing has been applied successfully to the field of com-

putational and systems biology too (for a survey on the various methods and techniques

applied to this field of study, see Mazza et al. [11]).

86



CHAPTER 4. SIMULATION

Figure 4.2: a. Parallel paradigms hierarchy. b. Model partitioning structure into Logical
Processes and Simulation Engines

Unfortunately, up to now little attention has been paid to the parallelization of stochas-

tic simulations with respect to the SRIP policy, especially for species-based models (es-

sentially, the Gillespie SSA and derived methods). A notable effort is the pioneering work

of Schwehm et al.[206]; unfortunately, the algorithm reached a good maturation only

recently, with the work of Jeschke et al. [118].

The situation is brighter when we look at individual-based models; Tomita with the

E-Cell project is an excellent example of how individual-based techniques can scale very

well [218].

In this thesis, we present our investigation of parallel techniques applied to stochastic

simulations of both species-based models and of individual-based models. In the first case,

we aim at explaining why species-based models based on the Gillespie SSA are difficult

to parallelise, driving the reader through the theoretical basis and strategic decisions that

influenced our reasoning and design.

In the second case, we wanted to explore the usage of unconventional architectures,

and exploit the computational power of Graphic Processors (GPUs)1 to run simulations

based on an existing individual-based methods orders of magnitude faster.

We will briefly introduce the category of computer-simulation systems known as Dis-

crete Event Simulation (DES) and the work done on these systems in the light of parallel

and distributed computing. We will show how the Gillespie SSA introduces in Section 2.2.4

can be reformulated in term of a DES system, and we will show the characteristics as-

sumed by the algorithm when it runs in a parallel environment.

1The class of hardware processors known as GPUs, is presented in Appendix C, were we present their charac-
teristics, architecture and programming philosophy.
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4.2.2 Discrete Event Simulation (DES)

In DES, the life of a system is modelled as a sequence of timed events. With this approach,

a system is set up by a collection of processes P = {p1, p2, . . .} and of activities or

events2 E = {e1, e2, . . .}. A DES process is fully characterized by a finite set of states

S = {s, s′, . . .}. At any given time, each process has exactly one active state. Each state

s has a set of actions As = {αs, α′s, . . .} that can be performed when the process is in

that state; the aim of an action is to change the current active state. Activities or events

are sets of actions that are executed together to transform the state of the system (see

Figure 4.3). Here, we refer to the state of a system z as the collection of all the active

states of the processes in the system. A run is thus meant as a sequence of interleaved

system states and events: r : z0|e0 → z1|e1 → z2|e2 . . . z(u−1)|e(u−1) → zu.

P1
a1,a2

a3

P2
a4,a8

a5,a7
a6

P3
a9

a10

Event:
{a1,a7,a9}

P1
a1,a2

a3

P2
a4,a8

a5,a7
a6

P3
a9

a10

Figure 4.3: DES terminology: each process (circles) has various states (squares - the active one
in grey), each with a set of actions (listed next to them). An event is a collection of actions
which are executed to bring a system from one state (left) to the next one (right).

As opposed to continuous simulation, in discrete event simulation state changes of the

simulated system are assumed to happen at discrete points of the virtual time and are

thus controlled by non-continuous functions, resulting in a succession of events.

DES can be used to simulate stochastic processes. In a stochastic process, each state

is partially but not fully determined by the previous one. Typically, a stochastic process

can have one or more deterministic arguments3 and their values range over an index

collection of non-deterministic random variables Xi with certain probability distributions.

Such functions are equally known as realisations or simple paths. The view of a stochastic

process as an indexed collection of random variables is the most common one. The events

2DES Events should not be confused with BlenX Events; same for processes, actions and states. The concepts
are very similar, but the terminology is used here in a more general way. This section apply to simulations in
general, not only to simulation of process algebra models

3we consider the time as always present among the arguments.
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to be executed are bound to the set of random variables Xi, that determine which event

will be executed and when. A simulation executes events in non-decreasing time-stamp

order so that the virtual time (the time-stamp on the last executed event) never decreases.

Indeed, the occurrence of an event typically causes four actions: (a) progression of the

virtual time to the time-stamp of the simulated event; (b) changes of the state of the

simulated system; (c) scheduling of new events and (d) unscheduling of other events.

Thus the basic data structure of a DES program consists of: (i) a virtual simulation

clock; (ii) a time-stamp ordered list of pending events and (iii) the state variables.

4.2.3 Parallel and Distributed Discrete Event Simulation (PDES and DDES)

In this summary, we deal with parallelism at model function level. In particular, we focus

on methods which make intensive use of multiprocessors architectures for DES and which

can be classified in between the following two classes: parallel discrete event simulation

(PDES) and distributed discrete event simulation (DDES).

In PDES and DDES, a simulation model is partitioned into regions or domains4. Each

region is simulated by a so-called logical process (LP). Each LP consists of [73]: (i) a

spatial region Ri of the simulated system; (ii) a simulation engine SEi executing the

events belonging to the region Ri and (iii) a communication interface, enabling the LPs

to send messages to and receive messages from other LPs (see Fig. 4.2b).

LPs are mapped onto distinct processors with (as an assumption) no common memory.

Thus, every LP can only access a subset of the state variables Si ⊂ S, disjoint to state

variables assigned to the other LPs. The simulation engine SEi of each LP processes two

kinds of events: internal events which have no direct causal impact on the state variables

held in the other LPs and external events that can change the state variables in one or

more other LPs. If an external event is processed, the LP holding the state variables that

are to be changed is informed through a message sent by the LP. The message routing

between the LPs is done by a communication system, connecting the LPs. Incoming

messages are stored in input queues, one for each sending process.

Box 3 The principle of causality
Causality, a notion central to natural science and logic, describes the relationship between cause
and effect. In general, the principle of causality says that the cause must precede its effect; in
parallel execution, and for PDES in particular, we mean that the succession of time-stamped
events that we execute can be always reproduced by a sequential simulation. Therefore, no event
with an higher time-stamp (effect) that is influenced by an event with lower time-stamp (cause)
can be executed out of order. If this happens, we have a causality violation.

4for the purposes of this paper, only spatial decomposition is considered; however, the concepts illustrated
here are also suitable for decompositions into general domains.
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Due to different virtual time progression within the various LPs, it is difficult to

guarantee the causality principle (see Box 3). Special considerations have to be made to

obtain the same simulation results from DDES as from sequential DES. The two most

commonly used synchronization protocols in DDES are: (i) The conservative (or Chandy-

Misra) synchronization protocol developed by Chandy and Misra and [36], [35] (ii) the

optimistic (or time warping) simulation protocol based on the virtual time paradigm

proposed by Jefferson [117]

4.2.4 Conservative vs Optimistic

The basic idea of the conservative protocol is to absolutely avoid the occurrence of causal-

ity violations. This assert is granted by strictly freezing the computation of an event e

with virtual time (VT) te until when no messages with VT lower than te will be received.

Under the assumption of FIFO message transport, this is achieved by only simulating an

event if its VT is lower than the minimum of the time-stamps of all events in all input

queues. An obvious problem arising in conservative simulation is the possibility of dead-

locks [106]. Some deadlock resolution schemes have been developed during the last years.

Among them, the more interesting are: avoid deadlock by the use of NULL-messages [36]

and detect and recover deadlock in advance [35]. Some optimization protocols are dis-

cussed in [24, 230] (NULL-messages approach), in [10] (NULL-messages on request), in

[45, 91] (lookahead computation), and in [175, 199] (local deadlock detection).

In contrast with the conservative protocol, there is no blocking mechanism in the

optimistic one. An event is simulated even if it is not safe to process. Thus, causality

errors are allowed to occur, but are later detected and solved. To guarantee causality, a

mechanism called time warp or rollback is implemented. Time warp is optimistic in the

sense that each processor P executes events in time-stamp order optimistically assuming

that causality is not being violated. At any point, however, P may receive a straggler

event E, that should have been executed before the last several events already executed

by P . In this case, it rolls back to a check pointed system state that corresponds to a

time-stamp which is a global minimum among all VT (global virtual time) and then less

than the straggler’s time-stamp. Processor P resumes its execution from this point, and

P processes E, in the right time-stamp order. A successful optimistic DDES minimizes

the runtime costs of (i) state-saving system state, (ii) rollback, (iii) global virtual time

(GVT) computation, and (iv) interprocessor communication.
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4.2.5 Characterization of the Gillespie SSA as a DES system

From a computational point of view, a biochemical system designed to be simulated with

the Gillespie algorithm can be seen as a collection of interacting processes, where each

process can be in a different state among a set of discrete states. In this view, biochemical

species are treated as processes that are able to perform a set of actions, changing their

state in response to an external or internal action; reactions can be codified as events

that are composed of a number of complementary actions, so that the execution of a

reaction results in a simulation event that executes two (in the case of mono-molecular

reactions) or more (in the case of bi-molecular reactions) actions in two or more processes

(see Fig. 4.4).

A+B A+C
C D

A

B
C

r1

r2

Dr1: a-, b-, a+, c+
r2: c-, d+

|A|a- a+

|C|c- c+

|D|d- d+

|B|b- b+

Figure 4.4: A set of species and a set of reaction (left) represented as a set of processes and
events (right). Each event is composed by two or more actions that modify the state of each
process, typically decreasing or increasing the counter for the cardinality of the corresponding
species.

Formally, a biochemical system S = (P,E) is a set of processes P = {p1, ..., pn}, each

holding a set of states and a set of actions, and a set of events E = {e1, ..., em}, each

composed by a set of actions; typically, for every process p there will be two actions

(a+, a−) in charge of decreasing and increasing the counter for the cardinality of the

corresponding species. However, it is possible and sometimes useful to add additional

state variables and corresponding actions (for example, to encode BlenX global events

introduced in Chapter 3).

Following this computational view, the simulation of a biochemical system with the

Gillespie algorithm becomes a DES, where event times are generated by sampling an

exponential distribution. The fact that times are generated by an exponential distribution

leads to some insights in how this particular DES can be parallelised. In particular, we

will show that it is almost never convenient to parallelize biochemical systems by using a

conservative approach. In support of our analysis, we shall consider a dependency graph

between events, defined as the graph of reactions introduced by Gibson and Bruck [80].

Definition 4.2.1. Let Reactants(e) and Products(e) be the sets of reactants and prod-
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ucts, respectively, involved in the event e.

Here, for reactants we indicate the processes whose actions decrease the cardinality of

their state variable, identified with the name of the process and a ‘-’ suffix. For example,

the event e1 in Fig. 4.5 is composed by the actions {a−, b−, c+}; the actions a− and

b− modify the state of A and B, so Reactants(e1) = {A,B}. Products are defined in a

similar way as the processes whose actions increase the cardinality of their state variable.

Definition 4.2.2. Let DependsOn(e) be the set of processes whose state change affects

the execution time of the event e, and Affects(e) the set of processes whose state changes

when an event is executed.

Following the description of the Gillespie SSA given in Sec. 2.2.4, we have that

DependsOn(e) = Reactants(e). Typically, Affects(e) = Reactants(e) ∪ Products(e),
or better, the set of processes on which the actions in e act. Sometimes, when two ac-

tions are complementary (i.e. one cancels the effects of the other), the set can be a little

smaller. This is the case of the event e3 in Fig. 4.5 for example, where e− cancels e+ and

Affects(e3) can be reduced to {D,F}.

Definition 4.2.3 (Dependency graph). The dependency graph of a biochemical system

S is a directed graph G(V,E) in which the set of nodes V corresponds to the set of

events and there is a directed edge between V (e1), V (e2) if and only if Affects(e1) ∩
DependsOn(e2) 6= ∅

A + B C
B + C D
D + E E + F

F D

A
B

C

D

E
F

e1: a-, b-, c+
e2: b-, c-, d+

e3: d-, e-, e+, f+

e4: f-, d+

e1

e2
e3

e4

Figure 4.5: The dependency graph (right) for a simple biochemical system (left).

The dependency graph can be used to show that the dependencies among reactions,

united with the times sampled from an exponential distribution, in many cases lead to

the need for sequential execution.

Definition 4.2.4. Considering a system S, its dependency graph can be partitioned into a

set of strongly connected components. We call the set of processes and events belonging to
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a strongly connected component of cardinality greater than one a subsystem5 (see Fig. 4.6).

A + B C
B + C F
D + E E + F
F + C D + G

e1

e2
e3

e4

e5
e6

e7

G G'
G' G''
G'' G

Figure 4.6: A biochemical system partitioned into subsystems.

Theorem 4.2.1. In a DES system implementing the Gillespie SSA, the execution of an

event may lead to the need to recompute the next execution time for all the events in a

subsystem.

Proof: whenever an event is executed, the next execution time of the events depending on

it, i.e. its neighbours in the dependency graph, must be updated. Since in the Gillespie

SSA times are exponentially distributed, there is no lower bound that guarantees us that

the times we are going to recompute will be higher than a certain threshold.

The events with the new, lower, time-stamps will in turn lead to the need for recom-

puting the time of other events, with the possibility of generating lower time-stamps for

the events they affect. By definition, in a strongly connected component there exists a

path between any two vertexes, so it is possible that the generation of new times ripples

and affects all the events in the subsystem.

Consider Fig. 4.7: execution of event e1 leads to the re-computation of e2, which

leads to the re-computation of e4... In the end, all the events in the same subsystem are

influenced, leading possibly to a completely different schedule (order of execution).

From this theorem, we can immediately derive the following two corollaries:

Corollary 4.2.2. Even when times are drawn from an exponential distribution, the ab-

sence of causality errors in a subsystem is guaranteed whenever actions are executed in

increasing time-stamp order (serialization, or zero lookahead).

Sketch of proof: if events are executed in increasing time-stamp order, without specula-

tively executing events in the ‘future’, they will be not influenced by ripple effects on a

schedule.
5Since each reaction event has a dependency on itself, strongly connected components always exists; the case

of trivial SCC with cardinality of one is explicitly non considered in the definition of subsystems
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e1

e2
e3

e4

e5
e7

e6

e1

e2
e3

e4

e5
e7

e6

t=0.1

t=0.2

t=0.19

t=0.22

t=0.48

t=0.4
t=0.25

t=0.11

t=0.15

t=0.17

t=0.16

t=0.19

t=0.20

Figure 4.7: Due to the exponential distribution used to generate execution times, the execution
of an event can lead to the re-computation of the times of all the events in the same subsystem
during the successive simulation steps.

Corollary 4.2.3. When times are drawn from an exponential distribution, the absence of

causality errors is guaranteed only if actions are executed one after the other; therefore a

pure conservative approach to PDES -which allows actions to be executed only when they

cannot incur in causality errors- has a lookahead of zero, leading to a serialized execution

where no speedup is possible.

We considered the usage of some methods to obtain the lookahead necessary for concur-

rent execution. However, using these techniques would lead to unacceptable compromises

concerning the accuracy of the simulation. In fact Jeschke et al. [118] showed that most

of the techniques used to obtain lookahead for the conservative approach, such as arti-

ficially inserting lookahead into the computation and relaxing ordering constraint, have

drawbacks that makes them not suitable for our goals.

An alternative approach for having some lookahead even in presence of exponential

distributed random numbers is pre-sampling. Pre-sampling is a technique proposed by

Nicol [160] for computing lookaheads in queueing network simulations with exponential

distributed service time, and then used also for federated military simulations by Loper

and Fujimoto [149]. However, it presents a number of problems that makes it an infeasible

approach in our domain. As noted by Nicol and Fujimoto, the service time variation has

a strong effect on speedup. Under high variation very small lookahead values are possible,

meaning that lookahead is computed more often, thereby incurring in increased overhead.

Furthermore, they also noticed that rich interconnections between simulated entities, such

as those used for simulating a spatial environment, cause increased uncertainty in future

behaviour, resulting again in small look-ahead, with poor performances especially when

using exponential distributed times.

Fujimoto concludes that, to perform well, this technique requires: (i) fixed sized time
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intervals, with the same time distribution for all messages; (ii) precise time-stamps with

few random number samples and (iii) some knowledge concerning the number of messages

produced in the near future [149]. Since reaction-diffusion biochemical simulations do not

meet any of these requirements, we decided to discard this approach.

e1

e2 e3

e4

e7

e5
e6

e7

e2

e1

e3

e4 e5

e6

Figure 4.8: Due to the diffusion events, a reaction-diffusion system has only one single subsystem.

Indeed, it is possible to make two crucial observations about reactive-diffusive sim-

ulations: (a) in a reaction-diffusion systems where species are free to diffuse in every

direction, the dependency graph for diffusive events is fully connected; thus, the whole

system is a single big subsystem (see Fig. 4.8) and (b) many biological systems show a

little number of big subsystems; compounds, molecules and enzymes in a cell are reused

over and over, forming big interconnected networks with loops. Indeed, regulation and

transcription processes are often based on feedback loops, whose introduce loops and

connected components (subsystems) in the dependency graph.

In conclusion, the Gillespie SSA can be characterized as a DES. Between two main

approaches to parallelize DES, the optimistic approach is the more promising one: as the

Cor. 4.2.2 and Cor. 4.2.3 show, a pure conservative approach, united with exponentially

distributed times and the particular dependency structure we have in biochemical systems,

is very likely to perform poorly.

4.3 Parallel Simulation of Species-based Systems: Redi

As a proof of concept, we designed and developed Redi, a parallel stochastic reaction-

diffusion simulator that uses a new model with state-dependent diffusion coefficients for

a reaction-diffusion Gillespie method.

95



4.3. PARALLEL SIMULATION OF SPECIES-BASED SYSTEMS: REDI

4.3.1 Redi method: state-dependent diffusion rates

Similarly to other methods, Redi is based on the Fick’s law we introduced earlier in

this chapter. The Fick’s law depends on a parameter D, the diffusion coefficient, which

represents the diffusion dynamics. When the medium is isotropic, the diffusion coefficient

is a constant scalar independent of the concentration of the solute. However in biological

system even for purely diffusive transport phenomena the classical Fickian diffusion is

at best a first approximation [2, 1]. A better approximation is to make the diffusion

coefficient of a species dependent on the concentration of that species and on the other

species of solutes eventually present in the medium.

With Paola Lecca [140], we developed a new model for concentration dependent diffu-

sion coefficients for a reaction-diffusion system. Then, we used the computed concentration-

dependent diffusion coefficients to calculate the rates of diffusion of the biochemical

species. For simplicity we treated purely diffusive transport phenomena of non-charged

particles, focusing on diffusion driven by a chemical potential gradient.

Our method consists of the following five main steps:

• calculation of the local virtual force F per molecules as the spatial derivative of the

chemical potential

• calculation of the particles mean drift velocity in terms of F and local frictional f ;

• estimation of the flux J as the product of the mean drift velocity and the local

concentration;

• definition of diffusion coefficients as function of local activity, concentration and

frictional coefficients, modelled as linearly dependent on the local concentration

too.

• calculation of diffusion rates as the negative first spatial derivative of the flux J .

The determination of the activity coefficients requires the estimation of the second virial

coefficient : in our model this estimation is performed using a Lennard-Jones potential to

describe the molecular interactions. Details about the method derivation can be found in

Appendix.

We developed an algorithm that computes the diffusion rates as described. The al-

gorithm first subdivides the volume into cells of fixed dimension. The dimension of each

cell in the mesh is chosen to be not too fine-grained, in order to reduce simulation time,

but within the constraints described in [14] to preserve accuracy.

The algorithm is designed starting from NSM. NSM is efficient but centralised and

sequential in nature, and can have problems in scaling to very large systems. Moreover,
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it cannot be easily adapted to take advantage of parallel or distributed systems, which is

one of our goals for Redi. Our algorithm overcomes these limitations by eliminating the

use of a global priority queue.

Let assume that for every cell of the mesh the concentration, the diffusion and reaction

rates of the chemicals and their interactions are known. Let assume also that for every cell

of the mesh the type next event (reactive or diffusive) and the time at which it will occur

are known. In order to apply the original Gillespie algorithm to the chemical reactions

occurring in each reaction chamber, we require the concentrations of chemicals located in

that cell to be homogeneous. For each cell we draw a set of dependency relations with

neighbour cells; the cell can perform its next event only if it is quicker than the diffusion

events of the neighbour cells, because diffusion events can change reactant concentrations,

and therefore the time and order of the events. The algorithm makes use of this property:

as each cell can evolve independently from other cells if it does not violate the restrictions

imposed by its dependencies, at every step all the cells that can evolve are allowed to

consume one event and advance one simulation step. Note that, as reactions executed in

the current cell are older than the ones in its neighbours, we do not have to worry about

them altering our concentrations meanwhile.

The algorithm has still the same average computational complexity of Elf and Bern-

stein methods. Nevertheless, removing the global priority queue should allow us to design

an implementation that scales better with the number of reactions and processors.

4.3.2 Redi implementation: Optimistic Spatial Gillespie

The implementation of the Redi simulator is driven by two goals: correctness (the simu-

lator must respect the assumptions underlying the method of choice) and scalability (the

addition of further processing power must result in an increased execution speed).

Both goals are achieved by using an approach based on PDES with an optimistic

scheduling policy, as discussed in Sec. 4.2.2.

Notice that the two objectives must be considered together, as the one heavily affects

the other. Some methods, like the one presented in [193], violate both the assumptions

made by the Gillespie SSA (homogeneous and well-stirred environment) and the properties

stated by Bernstein (that diffusion events must be at least as frequent as reaction events)

to obtain fast parallel execution through volume subdivision. The algorithm, as the

authors admit, can be useful in some cases, but it is not correct in a general sense.

Indeed, when the spatial localization of molecules becomes important for the purposes of

the experiment, the algorithm produces incorrect results.

For an effective implementation of the simulation algorithm as a PDES, the global

state information should not be maintained as much as possible, so that different pro-
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cessors can process and update their partial local state concurrently. Algorithms like

the Next Subvolume Method (NSM) maintain information of execution times in global

data structures and therefore they are not immediately adaptable to a parallel environ-

ment, even if a distributed version of the algorithm was recently proposed by Jeschke et.

al. [118].

We take a slightly different approach with respect to the NSM: we analyse the problem

from the point of view of a single cell on the two or three-dimensional grid. We assume

that every cell knows and stores its local information: concentrations of species, diffusion

and reaction rates, and next reaction time, as well as references to its neighbours. In

each cell there are some dependency relations, both between species inside the same cell

and between those in neighbour cells that can diffuse inside (see Fig. 4.9(a)). We have

noticed that each cell on the grid can evolve (execute simulation events) independently

of the other cells if the executed events do not violate the restrictions imposed by the

dependencies. Following the optimistic approach, we let each cell evolve independently,

up to when a diffusion event occurs. When a neighbour notifies to the current cell a

diffusion event with a clock Tdiff smaller than the current clock Tact, reactions in the

current cell with times between Tdiff and Tact are marked as straggler. So, we rollback

every action executed within Tdiff and Tact, recompute propensities and reaction times

and restart the simulation of the events in that cell from time Tdiff .

A -> B+C
A -> left
B -> right 
B + E-> C+E
A -> up

0.12
0.14
0.17
0.21
0.22
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CellSystem 1

b c

Network / IPC
Phisical Processor 1 Phisical Processor 2
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Figure 4.9: Each cell is modelled as a process in a PDES (a). Cells are grouped into systems in
order to reduce communication overhead (b).

Each cell is mapped to a logical process (LP) and multiple logical processes can be

mapped onto a physical processing unit. The assignment of logical processes to physical
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processes may be done either dynamically, possibly by using a load balancing algorithm,

or statically, by exploiting spatial locality to reduce communication overhead.

4.3.3 Performance Considerations

The scalability goal is not easy to achieve because a lot of practical, real world considera-

tions have to be taken into account. The SSA was designed to run efficiently on hardware

of the late ’70s, and it is indeed quite efficient. An implementation of the Gillespie

algorithm can process and simulate roughly 105 reaction events per second; that is, a sim-

ulation loop takes approximately 10000-30000 CPU cycles to execute. Since a simulation

loop is so fast, it is really difficult to speed it up by means of a parallel architecture. Ex-

ecution of diffusion or reaction events on different processors requires synchronization in

order to exchange messages. In the best scenario, processes can run on a single multi-core

machine, where communication is done using shared memory and mutexes. According to

the literature and to our tests, even in this case the cost of switching context and pro-

ceeding the execution on a different thread (roughly 5000 CPU cycles) can easily result

comparable to the loop time (see Fig. 4.10).
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Figure 4.10: The execution time of a parallel simulation (running on 2 processors) using various
techniques of synchronization and inter-thread communication, compared to a serial simulation
(Base). Notice that the overhead for running on multiple threads actually increases the execution
times in all but the last case, where we used a pool of threads and hand-written assembly code
for synchronization.

On a shared memory architecture, the problem is even worse. Even if current HPC

architectures can rely on very low-latency connections and very efficient message passing

implementations (like the MPI interface we used), communication overheads can vanish

any performance gain. For this reason, we chose a coarse granularity when we assigned

cells (i.e., logical processors) to physical processors, in order to reduce the overhead to

the minimum. For this reason, we designed our parallel simulator in a hierarchical way

(Fig. 4.2b): logical processors representing cells are grouped into Cell Systems, that hold

99



4.3. PARALLEL SIMULATION OF SPECIES-BASED SYSTEMS: REDI

the partial state for a set of spatially contiguous cells. Cell Systems are then grouped

and driven by a Root System, that holds topological information on the Cell Systems and

that caches some essential information on the global state of the system. Every System

has a specialized communicator. The Root System has a communicator based on MPI to

let Cell Systems communicate with each other across processor and machine boundaries.

The Cell Systems have a single threaded, shared memory communicator in charge of

maximizing the performance and reduce the overhead on a single processor or core. A

further layer can be added with the aim to manage groups of Cell Systems which execute

on different CPUs or cores on the same computation node, i.e. on a machine that shares

the same memory and that does not need for network communication or message passing

in case of inter-groups interactions.

Cells and Cell Systems communicate through a consistent interface, that is transparent,

and that allows cells to communicate any diffusion information without taking care of the

hierarchy. To communicate a diffusion from the cell C1 to the cell C2, C1 sends a message

to its Cell System; if C2 is on the same physical processor (i.e. it belongs to the same Cell

System), the information is directly propagated. If instead the Cell System realizes that

C2 does not belong to the set of cells it manages, it forwards the information up to the

next System, until it reaches a System that knows C2 or until it reaches the Root System.

In the second case, the information is propagated using inter-thread communication or

MPI messages (see the pseudo-code in Fig. 4.11).

Example

Redi accepts an input file that specifies reactions, reaction rates and diffusion coefficients,

as well as the initial location of the chemicals.

We tested our simulator with some models (enzymatic reactions, oscillatory networks,

chemotaxis pathway) under realistic conditions: most or all the molecules not attached

to membranes have been let to move and, mostly important, the diffusion coefficients

have been set always higher or at least comparable to the reaction rates. Such conditions

obviously increase the number of messages sent, making harder for our simulator to ap-

propriately scale. However, it is fundamental to provide a realistic model that respects

the assumptions we made [14].

Here we briefly show a spatial version of the Lotka-Volterra predator-prey model. This

model is simple yet effective; in particular, the model exhibits a different and interesting

behaviour when ran in an environment that includes spatial information [204]. The results

we obtained (see Fig. 4.13) are consistent with what we expected and with what is found

in the literature [204].

This model allowed us to perform some initial performances estimations, listed in Ta-
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CellSystem ():

while true do

NextAction := FastestCell().FastestAction;

StateChange := Action.Execute();

History.Add(StateChange);

UpdateClock(StateChange);

if Action.IsDiffusion()

if Action.TargetCell /∈ CellSystem.Cells

RootComm.Notify(StateChange);

else

Action.TargetCell.Notify(StateChange);

if RootComm.HasNotification

Event := RootComm.HasNotification;

switch Event.Type

case Rollback :

DoRollback(Event.Time);

case Diffusion :

Event.TargetCell.Notify(Event.DiffusionAction);

RootSystem ():

while true do

T imer := StartTimer();

Event := WaitForEvents(T imer,RootComm);

switch Event.WakeReason

case TimerTick :

SendCheckpointCommand(GlobalT ime);

SystemState := RecvCheckpointData();

DoCheckpoint(SystemState);

case Communication :

switch Comm.Type

case Error :

BroadcastRollback(Comm.Time);

case Diffusion :

TrgtSystem := LookupSystem(Comm.SourceCell);

TrgtSystem.ForwardDiffusion(Comm);

CurrentGlobalT ime := Event.UpdateTime();

Figure 4.11: Pseudo-code for CellSystem and RootSystem
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var predator : rate 100;

var prey : rate 100;

predator + prey -> predator + predator [55];

prey -> prey + prey [15];

predator -> nil [10];

run prey [1, 1, 0, 100]; prey [14, 14, 0, 100];

predator [2, 2, 0, 100]; predator [12, 12, 0, 100]

Figure 4.12: The input file for the 3D Lotka-Volterra model.
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Figure 4.13: A time-step of the Lotka-Volterra simulations (a) and the variation in cardinality
of each species over time (b).

ble 4.1. We measured the execution time of the serial version of the algorithm, where

all the inter-process communications were removed and substituted with direct manip-

ulation of data structures in shared memory, and of the optimistic parallel algorithm.

The hardware used for the simulation consists of PCs with AMD Opteron 64-bit CPUs

at 2.4GHz, 4GB of Ram, interconnected with a 10Gbps Infiniband connection. We can

observe that the overhead is significant when dealing with a small 16x16 2D grid, for a

total of 256 node; the overhead starts to be less heavy starting with a 100x100 2D grid.

As the grid becomes larger and larger, given a fixed number of subsystems, the diffusion

events between different subsystems becomes less frequent. Note that a number of cells

in the tens or hundreds of thousands is not unrealistic; for example, data for the last row

of Table 4.1 were obtained for a 32x32x32 3D grid.

4.3.4 Case studies

The model of diffusion we have proposed has been successfully applied to simulate the

spatial dynamics of molecules in non-homogeneous media. We examined several case

102



CHAPTER 4. SIMULATION

N cells Serial 2 Cores 5 Cores 12 Cores

256 1.5 14.8 0.1x - - - -

10000 13.1 10.7 1.22x - - - -

16384 17.4 (12.3/15.4/13.5) 1.29x (9.1/10.1/9.4) 1.86x - -

26896 64.1 (34.7/42.8/38.7) 1.66x (14.2/17.2/15.1) 4.25x (7.0/9.4/8.0) 8.06x

32768∗ 75.8 (42.7/47.3/45.3) 1.67x (18.4/20.7/19.2) 3.95x (16.7/17.1/16.9) 4.49x

Table 4.1: Times in second for the execution of 5 · 104 simulation steps, 400 entities,
(min/max/avg of five runs), and speedup for the parallel algorithm (∗: on a 3D grid)

studies where spatial effects are relevant: spatial effects due to the irregular distribu-

tion of chaperones on the kinetics of the chaperone-assisted protein folding [140, 142]

(see Figure 4.14), tubulin diffusion in cytoplasm [141] and Bicoid diffusion in Drosophila

embryo [143].

(a) (b)

Figure 4.14: A sample view of the distribution of chaperones (bluepoints)and nascent proteins
(red points), right-folded proteins (yellow points), misfolded proteins of type 1 (green points)
and misfolde proiteins of type 2 (magenta points).

In the latter case study, Lecca et al. [143] modelled a morphogen gradient with Redi.

During embryonic development, cell differentiation is position-dependent and is regulated

by signalling molecules, called morphogens. Morphogens are produced in a specific region

of a tissue and move away from their source to form long-range concentration gradients:

cells subsequently differentiate in response to the morphogen concentration. The study

concerned with the simulation of the dynamics of the Bicoid protein spatial distribution

in Drosophila embryo, using Redi to point out a plausible range of the diffusion coefficient

for this protein (see Figure 4.15).
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(a) (b)

Figure 4.15: Stochastic simulation of the Bicoid diffusion in Drosophila embryo with Redi: (a)
Simulation running (b) comparison with in-vitro fluorescent microscopy.

4.4 Parallel Simulation of Individual-based Systems: GPUSmol

As part of the effort to apply parallel computation to simulation methods for systems biol-

ogy we developed another, quite different algorithm. GPUSmol is based on Smoldyn [8],

an individual-based, BD (Brownian Dynamics) level stochastic simulator. Therefore,

GPUSmol performs individual based simulation with single molecule detail, in contrast

with Redi, which is a species-based simulator. The most important aspect is that the

algorithm is targeted to Graphics Processing Units (GPUs), whose structure and pro-

gramming model allows for great speed-ups. A brief itroduction to GPUs and to GPU

computing is given in Appendix C.

4.4.1 A GPU based implementation of Smoldyn

Smoldyn

Smoldyn adopts an extension of the Smoluchowski model for diffusion-influenced systems.

In the Smoluchowski model time increases continuously, as it does in nature; Smoldyn

instead adopts finite time steps of fixed length for the simulation algorithms.

Each molecule is treated as a point-like particle with continuous x, y and z coordinates,

that diffuses freely in space following Fick’s first law. The Smoluchowski description also

accounts for external and long-range forces, but they are ignored in Smoldyn as they

typically have minimal influence in biochemical systems.

Smoldyn ignores the dynamics of the solvents and of other unreactive species, leading

to a detailed Brownian motion of the reactive molecules that allows for accurate results

at larger scale. It also ignores steric interactions, spatial orientations and internal energy

levels (which are events that occur faster than the diffusive and reactive processes of
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interest). Therefore, the complete state of the model at each time step is fully specified

by a list of the molecular positions.

In Smoldyn, a bimolecular reaction occurs when two reactive molecules collide with

each other. However, as we have seen in the description of the Gillespie algorithm, most

reactions occur at a slower rate because only collisions with the right orientation and with

a minimal energy lead to a reaction. This is addressed in Smoldyn by replacing the sum

of the molecular radii with a smaller effective binding radius to reproduce the correct

steady-state reaction rate for bimolecular reactions (see Fig. 4.16).

B

A

A

B

A+B A+BCC

Figure 4.16: A forward reaction occurs when one A and one B molecule diffuse within a distance
that is less or equal to the binding radius. If a reverse reaction is present, the A and B products
are initially separated by the unbinding radius which is made larger than the binding radius to
prevent the instant recombination of the products.

These binding radii are computed at the beginning of the simulation and stored in

memory to improve performances. Besides the binding radius, an additional parameter,

called unbinding radius, is computed for reversible reactions. In reversible reactions, like

A + B ↔ C + D, the products C and D need to be positioned at a distance that is

greater than the binding radius for the reverse reaction (C + D → A + B), otherwise

it will occur immediately. This is neither desirable nor correct. Therefore, products

are initially separated by the unbinding radius, which is automatically computed from

diffusion coefficients and reaction rates [8].

After unbinding, the products can diffuse away from each other or they may diffuse

closer to each other and rebind again.

Smoldyn implements this model in a five steps iterative algorithm, with an additional

step for pre-processing:

• Initialize
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– compute coefficients for unimolecular reactions;

– compute binding and unbinding radii.

• At each time step:

– Perform diffusion

– Compute Surface interactions

– Perform Zeroth-order reactions

– Perform Unimolecular reactions

– Perform Bimolecular reactions

During initialization step Smoldyn computes the value for several parameters (e.g.

binding and unbinding radii). Then, the algorithm proceeds iteratively, computing events

occurring at discrete time steps (remember that Smoldyn uses discrete time steps in place

of a continuous time model).

In the diffuse step, a normally distributed number is generated for each spatial di-

mension, for each molecule. The position of each molecule is updated, and then surface

interactions are computed.

Zeroth-order reactions are computed for every kind of molecule. The probability that

exactly j molecules of type A are produced in a single time step is given by a Poisson

distribution:

Prob(j) =
(k0∆t)jexp(−k0∆t)

j!

Some computational efficiency can be gained by calculating the required probabilities

during the program initialization and storing them in look-up tables (one for each zeroth-

order reaction). However, the overall improvement in speed is typically negligible because

only one Poisson deviate is required for each zeroth-order reaction at each time step, and

it is therefore not employed by Smoldyn.

Unimolecular reactions are computed for each molecule in the system. The probability

that a specific A molecule reacts during a ∆t long time step is:

Prob(reaction) = 1− exp(−k1∆t)

However, if a molecule can react via multiple first-order reaction, a sequential application

of equation leads to a bias towards the first one. Instead, the following formula is used:

Prob(reactioni) =
ki∑
j kj

[
1− exp

(
−∆t

∑
j

kj

)]
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where ki is the rate constant for the i-th reaction. Rather than re-calculating the reaction

probabilities at each time step, Smoldyn employs a faster method: during the program ini-

tialization, it calculates the coefficients for each possible unimolecular reaction for a given

type, and then sums these probabilities to form a list of cumulative reaction probabilities,

stored in a look-up table.

At each time step during the simulation, a specific molecule reacts with reaction i if a

uniformly distributed random number is between the i-th and (i+1)-th stored cumulative

probabilities.

The computation of bimolecular reactions employs a spatial partitioning scheme of

the simulation volume. When checking for bimolecular reactions, the program only needs

to investigate pairs of molecules that are in the same or neighbouring regions, checks

their distance and, if the distance is less than the binding radius, performs the reaction

by substituting the reactants with the products, placing them in appropriate positions

(taking into account the unbinding radius when appropriate).

GPU implementation

In order to obtain great performances from GPUs a data parallel approach must be taken;

GPU kernels6 must be programmed so that they access a little subset of data points (one or

more) in the domain, in a way that it is as much as possible independent from the others.

The interested reader may refer to Appendix C, which introduces GPUs architecture and

explains the GPU programming model.

In the case of Smoldyn, the natural data set on which to operate a subdivision is the

molecules set. In particular, we choose to run on the GPU the three central and more

time consuming steps: first order (unimolecular) reactions, diffusion and bimolecular

reactions. Code for initialization (computation of rate, binding and unbinding radii, and

so on) remains on the CPU, as well as code for zeroth-order reactions.
The diffusion step needs to process each molecule in the system using a for loop,

computing new positions for each one:

for(int index = 0; index < numMolecules; ++index) {

float4 pos = posArray[index];

float rate = diffusionRates[typeArray[index]];

int randX = gaussianRand();

int randY = gaussianRand();

int randZ = gaussianRand();

pos.x += rate * randX;

pos.y += rate * randY;

pos.z += rate * randZ;

posArray[index] = pos;

6See Appendix C
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}

It is relatively easy to adapt this code to run efficiently on the GPU:

uint index = __umul24(blockIdx.x,blockDim.x) + threadIdx.x;

if (index >= numMolecules)

return;

volatile float4 pos = posArray[index]; // ensure coalesced read

volatile int typeId = typeArray[index];

int rngIndex = index % MT_RNG_COUNT;

MersenneTwisterState* rngState = &(rngStateArray[rngIndex]);

float rate = tex1Dfetch(diffusionRatesTex, typeId);

int randX = MersenneTwisterGenerate(rngState, rngIndex) & gaussianTableDimMinusOne;

int randY = MersenneTwisterGenerate(rngState, rngIndex) & gaussianTableDimMinusOne;

int randZ = MersenneTwisterGenerate(rngState, rngIndex) & gaussianTableDimMinusOne;

pos.x += rate * gaussianLookupTable[randX];

pos.y += rate * gaussianLookupTable[randY];

pos.z += rate * gaussianLookupTable[randZ];

Besides unrolling the for loop, a couple of adjustments have to be made in order to guar-

antee very good performances. The most notable problem is to get the random number

generator run efficiently on the GPU. Fortunately, CUDA already provides a parallel im-

plementation of the Mersenne Twister pseudo-random number generator [150, 174]. The

algorithm for generating random numbers maps well onto the CUDA programming model,

as CUDA provides bitwise arithmetic and an arbitrary amount of memory writes. The

Mersenne twister is iterative, and the generation of each number requires a limited num-

ber of instructions. Therefore it is not possible to parallelize a single twister step using

several execution threads. On the other hand the GPU uses thousands of threads for the

computation of the new position of molecules, one for each molecule in the system.

The short and simple solution is to have many simultaneous Mersenne twisters pro-

cessed in parallel. To prevent the emission of correlated sequences by each generator,

each twister is provided with a different set of Mersenne Twisters parameters. The com-

putation of twister parameters is a lengthy process, which is done off-line using dcmt,

a special library supplied by the Mersenne Twister authors for the dynamic creation of

parameters [150]. Once they are computed, however, they can be used over and over

again to generate un-correlated sequences of random numbers.

The set of parameters and the actual state are stored in the rngStateArray, resident

in GPU memory. The number of twisters used in this case is 32768, enough for common

simulations. However, if more are needed, it is easy to enlarge this number by using dcmt

to compute a larger set of initial parameters.
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Another problem linked to the generation of random numbers is their distribution:

like most pseudo-random number generators, Mersenne Twister produces uniformly dis-

tributed numbers. On the other hand, our algorithm requires Gaussian distributed num-

bers in order to simulate Brownian motion. Therefore, the generated random numbers

must be transformed accordingly. The Box Muller [18] transformation is commonly used

in this case; it is easy to implement and it runs pretty fast on the GPU. Moreover, the

CUDA Mersenne Twister implementation includes a Box Muller transformation out of

the box. However, a quicker alternative exists: the trigonometric calculations required by

the Box Muller transformations make this heavily used algorithm a possible performance

bottleneck. Instead, we use of a look-up table. A look-up table has several advantages: it

can be computed during the initialization phase, and then stored in the very fast, cached,

Multiprocessor constant memory; it is nearly as accurate but it is much faster.

The parallelisation of first-order reactions proceeds in a similar way: the computation

of whether each molecule may undergo a unimolecular reaction or not, and in the former

case which of the possibly multiple reactions will take place, is done by “tossing a coin”

for each molecule, e.g. using again the Mersenne Twister Random Number Generator. A

particular tricky point, common to other GPU implementation of similar algorithms, is

introduced by the possibility of adding or removing molecules from the system. Reactions

of degradation, decomplexation and so on (like A → 0 or C → A + B) change the

total number of molecules available in the system; the natural data structure for a serial

implementation, in this case, is to use a linked list to store molecular data. Smoldyn, in

fact, uses this data structure internally.

However, the nature of a GPU and its programming model makes it necessary to

memorize data as contiguous, and therefore fixed size, arrays (see Figure 4.17a and Box 4).

An initial, simple solution is to mark degraded molecules with a special “not valid” flag

and add new molecules to the end of the array, which was purposefully allocated larger

than necessary. This solution, however, may lead to serious performance degradation, as

writing to a shared location that could potentially be accessed by multiple threads requires

atomic functions, serialization, and leads to sub-optimal memory access patterns.

The solution in this case is to record the introduction of new molecules in the system

using an auxiliary array. This array will be filled with information of what happened to

each molecule in the system; when the i-th molecule undergoes a reaction that leads to

the addition of one molecule, the type of the new molecule is written in the i-th position

of the auxiliary array, otherwise that position is filled with 0. At the same time, when a

molecule is removed, we adopt the previous mentioned strategy, filling the i-th position

in the original array with a 0 (non-valid id; see Figure 4.17b). For example, suppose that

the i-th molecule, of kind C, underwent a reaction C → A+B: in this case, C is changed
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Figure 4.17: First-order reactions on a GPU. The array in the figure is the array holding
molecules type; the same procedure is carried out for every other molecule specific informa-
tion.

into A, but a B molecule needs to be added to the system as well. The id for C is then

added to the auxiliary array at the i-th position.

At the end of this first step, a segmented scan is performed. Scan primitives are

powerful, general-purpose data-parallel primitives that are building blocks for a broad

range of applications. Harris et al [207] developed a GPU implementations of these primi-

tives, which includes an efficient formulation and implementation of segmented scan, using

CUDA. The result is cudpp, a library that contains several parallel processing algorithms

based on segmented scans. A common algorithmic pattern that arises in many parallel

applications with complex access requirements is the prefix-sum algorithm. The input

to prefix-sum is an array of values. The output is an equally sized array in which each
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Box 4 Data storage on the GPU
In order to store a collection of objects in memory, like molecules in our case, a plethora of
choices are available. Even if we restrict ourselves to arrays, it is possible to store data as an
array of pointers(a), array of structures (AoS)(b) or structure of arrays (SoA)(c):

......

...

...

...

...

a) b)

c)

Kernels are launched on multiple threads, and data will be split among threads for parallel
processing. The best access pattern is to have each thread reading a separate, unique portion
of memory; therefore, predictable, computable offset inside the data array -like in the b) and c)
cases- is preferable; moreover, even if it looks like a weird alternative from a programming point
of view, structure of arrays (SoA) are preferable to array of structures (AoS) for achieving global
memory coalescing on the GPU. Therefore, in our implementation, we memorized molecular data
in a set of arrays of basic, primitive data types.

element is the sum of all values that preceded it in the input array. Using this algorithm

in conjunction with a simple pre-processing kernel, it is possible to count the number of

molecules deleted and introduced in the system.

These operations are performed in multiple steps, using auxiliary arrays and several

calls to the cudpp library, or combining all of them in a single, custom kernel implemented

using the same ideas and algorithms. In both cases, the output of the procedure is the

total number of molecules in the system, and two sets of concurrently compacted arrays,

which represent the data associated to the original, still active molecules and the data

associated to the newly introduced molecules respectively (Figure 4.17c).

The treatment of bimolecular reactions is more complex and interesting. A trivial

solution may be that of testing the distance between any possible pair of molecules;

GPUs are particularly efficient in this scenario. Consider for example n-body simulations,

like in astrophysics and Molecular Dynamics. However, we have seen that in the model

under examination long-distance interactions are either already taken into account or

ignored because too marginal to influence the overall behaviour; we only need to examine

pairs of particles within a distance equals or less than the biggest binding radius. As we
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mentioned, Smoldyn already employs a spatial subdivision technique. The algorithm for

spatial subdivision used by Smoldyn cannot be used directly on the GPU, but we can

substitute it with a different, GPU friendly algorithm.

The usage of spatial subdivisions for local interactions was one of the first problems

tackled by GPU programmers: indeed, like most of the first GPU programs, this problem

has been tackled not for scientific purposes, but for a recreational one. Videogames gave

by far the most important push in graphics technology: one need only consider that

GPUs had been invented with the only purpose to accelerate video-game graphics. In

many videogames, realistic rendering of natural phenomena is done using particle systems :

movement of objects, like stones, but also of fluids (smoke, water, lava and so on) is

obtained by using hundreds of thousands small, hard balls that interact locally with each

other, and optionally globally with a directional force (like gravity). Techniques used to

speed up simulation and rendering of particle systems are therefore an ideal candidate for

accelerating simulation of bimolecular reactions in a BD framework.

In particular, we employed a technique developed especially for CUDA [90]. Spatial

subdivision is obtained using a three dimensional grid; the grid cell size is double the

radius of the biggest binding radius. This means that each molecule can interact only

over a limited number of grid cells (27 in 3 dimensions, see Figure 4.18). The grid

data structure is generated from scratch each time step: it may be possible to perform

incremental updates to the grid structure on the GPU, but this method is simple and the

performance is constant regardless of the movement of the particles.

Figure 4.18: Test on neighbour cells for collision or, in our domain, bimolecular reactions.

The central point is to generate the grid in parallel on the GPU. Like explained in [90],

it is easier to do it using atomic operations; however, not all GPUs support them7. An

alternative solution is based on sorting. This solution is slightly more complex, but

7Actually, only the G80 family does not support atomic operations: they were added with the G90 family.
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guarantees better performances.

The algorithm assigns a numerical id to both molecules and cells. During the first step

it computes a hash value for each molecule, based on its cell number, and then it stores

it as a pair (cell hash, particle id); the linear cell id is a good hash choice in this case.

Then molecules are sorted based on their hash values, using the fast radix sort algorithm

described in [89]. This creates a list of molecules ids in cell order (see Figure 4.19).
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Figure 4.19: Generating a uniform grid using sorting

To be able to distribute data to the threads of the bimolecularReact kernel, the one

that will actually check for reactions and execute them, we need to be able to find the

start of any given cell in the sorted list. This is achieved by running another kernel, which

uses a thread per particle and compares the cell index of the current particle with the cell

index of the previous particle in the sorted list. If the index is different, this indicates

the start of a new cell, and the start address is written to another array using a scattered

write.

Maintaining a grid heavily simplifies the work of the bimolecularReact kernel: as we

mentioned, we have to test for distance between pairs of molecules only inside the current

cell and the 27 (3x3x3, see Fig. 4.18) neighbouring cells.

The kernel is launched with a number of threads equal to the number of molecules.

Each thread calculates the grid containing its molecule. It then loops over the neighbour-
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ing 27 grid cells, and then loops over the particles in these cells (using the start index

computed in the previous kernel). The kernel checks if the two molecule types can react

together; if so, it computes the distance between them. If the distance is less than the

binding radius the reaction is performed. When the current cell index no longer equals

the index of the cell we are examining, we have reached the end of the current cell.

In the case of bimolecular reactions there might be a decreasing in the number of

molecules in the system: reactions like A+B → C subtract one to the global number of

molecules. In order to let these reactions happen, we use the same technique described

for unimolecular reactions: we write 0 at one of the reactant molecule types (in the place

of B, for example); then we use a segmented scan, which will compact the array and will

count the number of active molecules.

CPU GPU
Initialize

Transfer data

Zeroth reactions
Diffuse

Unimolecular
Segmented scan

Bimolecular

Segmented scan

Compute hash
Build Grid

Process Cell

Read back N

Read back N
(opt) Reallocate arrays

Figure 4.20: The various steps of the algorithm, showing CPU-GPU interaction.

After kernels finished to run on the GPU, the total number of molecules is computed.

Device arrays are kept larger than would be needed, in order to diminish the number of

re-allocation; if, however, the total number of molecules is greater than the allocated size,

we re-allocate a larger space. If the GPU memory is large enough, we make a fast device-

to-device copy; in this way the molecules data is always kept on the GPU, completely

avoiding any transfers back and forth the CPU memory that could decrease performances.

Then, the loop starts again for the next time step. An overview of the various steps
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is depicted in Figure 4.20.

4.5 Related work and Future directions

One of the obstacles on the way of systems biology is the scalability of current approaches,

i.e. the ability to deal with even bigger and more complex models. Complex models are

necessary to understand higher level behaviours, but need for both powerful modelling

tools and efficient simulation engines to analyse them.

In this thesis we tackled the problem of designing a parallel simulator for biochemical

systems; we parallelized a species-based system, developing a concurrent version of a

method based on the Gillespie theory, from both a theoretical and a practical point of

view. Then we exploited the huge raw computational power of modern GPUs to speed-up

the execution of precise, individual based BD methods. In particular, we developed a

GPU version of Smoldyn.

The design of parallel and distributed algorithms requires indeed both a strong theo-

retical background, in order to guarantee that the designed algorithm is equivalent to the

serial one, and a good deal of experience and practical programming, in order to make it

really scalable and efficient.

Systems Biology simulations as DES

The characterization of biochemical species-based simulations as DES has been explored

by another group: Jeschke et. al. [118] conducted a parallel research on the same topic,

focusing on the analysis of communication costs and on sizing of the window for optimistic

execution in a distributed grid environment. It will be interesting to incorporate their

studies and analysis of the window size to our framework, to see which are the differences

between their grid-based and our HPC based approach.

Other problems we need to face are the analysis of the obtained data, whose dimension

grows at an impressive rate when dealing with spatial simulations, include load-balancing

techniques for workload subdivision and an analysis of the rollback mechanisms on dif-

ferent biochemical systems. Finally, we would like to perform an in-depth study of the

performances, with different checkpoint frequencies, different number of nodes, different

policy of cell allocation between nodes and different state saving strategies.

GPUs in Systems Biology

GPUs have been used to tackle a wide range of Systems Biology problems; for a gentle

introduction, we recommend [178].
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A particular area in which GPUs have been applied very successfully is individual

based simulations; as we have seen in Chapter 2, individual based simulations directly

simulates spatial interaction at a single molecule detail, and are therefore good candidates

for precise simulations where spatial relationships play an important role. Following the

classification in Section 2.2, we examine available simulation algorithms at different levels

of abstraction, which influence both accuracy and performances.

Molecular Dynamics (MD) works at the level of the atoms; these simulations

explicitly represent every detail of the chemical reaction considered, as the position and

the energy of every atom in the system. MD methods map well on GPUs, and many

solutions are proposed. Here, it is worth mentioning the pioneering work on Namd [216],

VMD [148], and HOOMD [6].

Brownian Dynamics (BD) methods operate at a slightly coarser level of detail,

where molecules have an identity and an exact position in a continuous space, but

no volume, shape or inertia. Each molecule of interest is represented as an individual

point. Brownian Dynamics simulation generally adopts a stochastic approach based on

the solution of the Smoluchowski equation, which describes the diffusive encounter of the

molecules in the solution [8, 221, 228]. The algorithm proposed here is a GPU variant of

the Smoldyn method [8]. To the best of our knowledge, this is the first GPU implemen-

tation of a Smoluchowski-based method.

Recently, Januszewski et al. [116] adopted an alternative approach to perform reaction-

diffusion simulation on a GPU: the dynamics of globally interacting Brownian particles

is represented with the Kuramoto model. In this way, the simulation is reduced to the

numerical solution of some stochastic differential equations. The integration is performed

using a stochastic scheme of the 2nd order. Time steps are discrete; at each step the

equations are computed and the positions of all particles are updated.

At a coarse level of detail we find lattice-based methods, where the simulated space is

partitioned into three dimensional elements. Particularly interesting for GPU computing

are cellular automata (CA) based methods. Here, space and time are discrete, and the

evolution in time of the system is governed only by local information, instead of obeying

to a global equation. Therefore, CA models fit nicely on the GPU model of computation.

For a complete survey on CA simulation algorithm and a comparison between CPU and

GPU implementation, we refer the reader to [200]. Here, we just recall two CA based

methods, both of notable interest for systems biology applications and easily implemented

on a GPU: Coupled Map Lattices (CML) [100] and the multiparticle model [194].

CML [99] is an extension of a CA where the discrete state values of the CA cells are

replaced by continuous real values. Efficient implementation of the Gray-Scott model [165]

and of the Turing pattern models [202] are obtained running CML on GPUs. They are
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usually implemented as partial differential equations that describe the concentrations of

chemical reactants at each lattice site over time; their GPU implementation consists of a

single data stream where the concentrations of the chemical species are stored in different

channels of a single texture that represents the discrete spatial grid. This stream serves as

input to a kernel, which implements the partial differential equations in a discrete form.

The multiparticle diffusion model is more complex and more realistic. In this model,

multiple particles per lattice site are permitted; particles move in a stochastic way by

following independent random walks between positions in the lattice. Brownian diffusion

is therefore modelled as a series of independent random choices for the movement of

particles on a regular, uniform grid. The algorithm described in [194] implements a

multiparticle model on GPU in an efficient way using a novel data structure; the authors

apply the method to a 3D model of in vivo diffusion inside the E.Coli cell.

Finally, the Agent Based Model (ABM) generalizes the CA model. ABMs are

computational representations of dynamic systems where a number of individual, au-

tonomous constituent entities (called Agents) interact locally in order to recreate a higher

level, group behaviour. This ability to simulate the emergent behaviour of complex sys-

tems from local interactions makes agents attractive for systems biology. Indeed, ABMs

have been used to model and simulate inflammatory cell tracking, tumour growth, intra-

cellular processes, wound healing, morphogenesis, microvascular patterning, pharmaco-

dynamic and tuberculosis (see [153] for a survey).

Even if Agents are concurrent, independent objects, historically only sequential simula-

tion algorithms have been implemented. One of the first parallel implementation running

on graphics hardware was done by De Chiara et al. [39]. Notably, they study the dis-

tributed behaviour of a flock, a wide studied problem in systems biology. Recently, several

research efforts concentrated on ABM simulation on GPUs; Perumalla et al. [166], for

example, used an extended cellular automata approach to simulate ABMs on the GPU.

However, being based on CA and therefore on lattice sites, they have limitations both in

the number of agents and on replications. Two groups, in particular, pushed the state

of art in large-scale ABM simulation, by extending existing ABM frameworks with rich

and complete support for simulation on a GPU: Richmond et al. with FLAME [192] and

D’Souza et al. with SugarScape [63]. They rely on existing agent frameworks supporting

a number of key ABM features, as, e.g., birth and death allocation, agent replacement and

movement, pollution formation and diffusion, collision detection. Of particular relevance

for systems biology is the application of SugarScape to the 3D simulation of granuloma

formation in TB infection [64]. The authors showed that ABM frameworks running on

GPUs are flexible and mature enough to run complex simulations, with a speed that is

three orders of magnitude faster than the sequential algorithm.
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However, not all the applications are well suited for a GPU implementation and the

performances vary considerably depending on the biological system considered. In Ta-

ble 4.2 we relate the cited works with the obtained speedup; the table reports the im-

provements of combining GPUs and CPUs over CPUs only configurations, together with

the GPU and the software package used. The column speedup refers to the simulation

execution time; for instance, a 10x speedup means that the simulation time required by

a CPU only system is 10 times the one of a CPU/GPU configuration. These data have

to be considered carefully, since the way in which performance measurements are taken

varies greatly; furthermore, GPU performances vary dramatically even within the same

generation; Figure 4.21 reports a comparison of the GPUs listed in Table 4.2 in terms of

GFLOPS8.

Therefore, speedup values have not the same value since, for example, the GXT280

board outperforms 8600M GS by three orders of magnitude. For this reason Table 4.2

has to be considered only as a sketch of GPUs computing power without any intention of

comparing algorithms or implementations.

Method Software GPU Speedup Source

Species
Based

SSA Multiple Simulations 8800GTX 50x [144]

Single Simulation 8600M GS 2x [61]

Individual
Based

MD Namd 8800GTX 10x CUDA Zone9

VMD n.a. 125x CUDA Zone

HOOMD n.a. 15x CUDA Zone

BD SDE Tesla C1060 675x CUDA Zone

GPUSmol GT220 - GTX280 10-25x this thesis

CA CML Xenos 25x [202]

ABM FLAME 9800 GX2 250x CUDA Zone

Table 4.2: GPU performance comparison

Even if we did not considered them in this chapter, we added to the table a couple

of interesting species based systems implemented on a GPU. We omitted ODEs systesm,

for which a number of GPU based implementations exists, as we focus on stochastic

simulations only.

As we already pointed out, these systems do not present really impressive perfor-

mances, mainly because the Stochastic Simulation Algorithm (SSA) is hard to parallelize

8One GFLOP = one billion of FLoating point Operations Per Second
9Available online at http://www.nvidia.com/object/cuda_home.html
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Figure 4.21: Performance comparison between different GPUs (in GFLOPs). Notice that the
best performer (9800 gx2) and the worse (8600M gs) belong to the same family (g80-g90)

(see Section 4.2.5 for a thorough analysis of the problematic). The situation is better in

the case of MRIPs (multiple replications in parallel) employed in [144], where 50 simula-

tions run in parallel on a GPU require the same time of a single simulation performed on a

CPU. The speed-up is even less impressive if we consider that single precision floating point

numbers are used in both cases (single replication [61] and multiple replications [144]).

Double precision numbers are only available from the current generation (g100-g200) of

Nvidia GPUs, and with a huge performance penalty: the speedup is roughly one order

of magnitude less in this case, as only one SPU out of eight is able to deal with double

precision arithmetic.

Nonetheless, the result obtained in [61] is worth noting: unlike our DES based ap-

proach, the authors reorganize the structure of SSA in order to reduce the complexity in

space of the algorithm. In this way it is possible to split the reactions set among blocks

and to obtain a certain level of parallelism inside a single simulation. In addition, the SSA

requires generating a large quantity of random numbers, a time consuming task; using

GPUs as a fast random number generator reduces the time needed for a run.
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Individual based systems offer specific tools to describe those models where many

details, as the position and the mass of each element in the model, are needed. We

first examined molecular dynamics methods that map naturally on GPUs. The methods

presented offer good performances, especially the VMD software. The field of MD on

GPUs is receiving great attention from the community and new applications are released

every month. Instead, it is quite surprising that Brownian Dynamics methods are not

supported because their nature fits well with the streaming programming paradigm, as

we demonstrated in Section 4.4. Besides our algorithm, the only very recent and valuable

exception is [116], that achieves an impressive speedup of 675x, using stochastic equations.

Finally, we discussed lattice based methods and agent based models. They have

reached a good maturation, both in the applications and in the theory supporting GPUs.

A key feature is the possibility of using the GPUs computing power without specific

programming skills. For instance, the FLAME framework uses an XML specification

language for Agents that is automatically compiled into CUDA code. This makes the

250x speedup more interesting, because this computing power is available to all the ABM

community.

4.6 Summary

In this chapter we introduced two simulation methods, focusing on their scalability. In

particular, we considered the treatment of spatial aspects, which are fundamental when we

want to go beyond localized, single pathway models, and parallel execution of simulation

algorithms. The increase in model size and in method complexity, in fact, requires us to

create efficient algorithms that fully utilize modern multi- and many-core architectures,

scaling efficiently with the dimension of the problem. The result are a species-based

simulator, Redi, which is based on a spatial extension of the Gillespie algorithm with state

dependent diffusion coefficient, implemented as a Parallel DES system, and a massively

parallel version of the individual-based method used in Smoldyn [8].
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Visualization

Visual techniques for systems biology are a current topic of research, where they are useful

at many levels. In particular, visual techniques can help in understanding data in the

biological domain. Understanding usually is a multi-step process; extracting information

is the first step in this process that leads to new knowledge. This is the role of visualization.

Visualization, in a broader sense, is referred to any process used to communicate both

abstract and concrete ideas using a graphical language. In the context of computer science,

visualization is mainly concerned with a systematic exploration of data and information.

In particular, scientific visualization is the process of manipulating data -composed of

symbols taken from some grammar or language (e.g. series of doubles, graph structures,

grid structures, DNA strings, ...)- through transformation, selection and graphical repre-

sentation, in order to extract and present to the user information, using visual cues and

graphical techniques. Information, processed data suitable for exploration and analysis,

can provide the user answers to who, what, where and when questions.

The final goal of visualization is to gain insight and understanding into the information

space, in order to help a scientist in understanding the data and give an answer to the

most important question: the how, that gives new knowledge on the phenomena under

study (Fig.5.1, [38]).

Scientific visualization is maybe the first known application of visualization to human

knowledge: the visualization of experiments and phenomena is as old as Science itself.

The importance of Scientific Visualization is even stronger today: the visual analysis

of data produced by simulations on both standard and high performance computers is

now a fundamental step in the scientific process. The increasing complexity of simulation

models and size of datasets resulted in longer and longer analysis times. Scientists need to

comprehend in a fast way the meaning behind simulation results and datasets in order to

get insight into their models. Visualization methods and technologies are able to reduce

analysis time, and help scientist in dealing with large and complex models.
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Data Information Knowledge

Symbols

Data processed to assign meanings to 
it, in order to provide answers to who, 
what, where and when questions

Application of data and information, providing 
answers to how questions

VisualizationVisualization

Figure 5.1: The visualization process

5.1 Space

The need for visualization is even stronger in the case of spatial simulations; some au-

thors go to the extent of defining scientific visualization as “primarily concerned with

the visualization of three dimensional phenomena (architectural, meteorological, medical,

biological, etc.), where the emphasis is on realistic renderings of volumes, surfaces, illumi-

nation sources, and so forth, perhaps with a dynamic (time) component” (M. Friendly).

While we prefer the more general definition given in the introduction, as we believe that

visualization techniques can be applied to a wider range of scientific data, it is undeniable

that in order to understand three dimensional phenomena we need to visualize them: our

perception of space is strongly related to our vision.

5.1.1 COVISE

For our research on visualization of spatial biochemical simulations we made use of an

existing computer graphics framework: COVISE. During my PhD I had the opportunity

to do an internship within the Visualization group at HRLS Stuttgart, the main group

doing research and development on COVISE.

COVISE (Collaborative Visualization and Simulation Environment) is an extensible

distributed framework that integrates simulations, post-processing and visualization func-

tionalities with support for collaborative working [186]. In COVISE an application is

divided into several processing steps, represented by COVISE modules, that can be de-

veloped, arbitrarily combined and executed across different computers, including parallel

and vector computers.

COVISE supports flexible rendering through OpenCOVER; this support ranges from
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visualization on standard desktop PCs to projection in virtual environments (powerwalls,

CAVEs, ...) were users can analyse datasets and simulations results intuitively in an

immersive environment, to augmented reality prototypes.

Rendering modules include both volume rendering (using the VIRVO rendering en-

gine [205]) and fast rasterization of possibly distributed mesh objects.

Figure 5.2: Composition of modules in the COVISE pipeline.

The usage of COVISE and OpenCOVER allowed us to concentrate on some parts of

the visualization process and of the graphic pipeline (see Figure 5.2), leaving most of the

details and the burden of data processing to the framework.

5.1.2 Volume rendering

Volume rendering is a technique used to display a 2D projection of a 3D discretely sampled

data set [77].

A 3D data set is typically a regular volumetric grid, with each volume element -called

voxel - represented by one or more values.

When measured, the value is usually obtained by sampling the immediate area sur-

rounding the voxel, like in the case of 3D scanners (CT, MRI, or MicroCT scanners),

where a group of 2D slice images with a regular number of pixels are acquired in a reg-

ular pattern. When obtained through a simulation, the value is given by the simulated
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quantities at each position in the regular grid.

A volume renderer is quite often implemented in a direct way, where every sample

value is mapped to an opacity value and a colour. The mapping is done with a transfer

function which converts values (or tuples of values) to an RGBA (red, green, blue, alpha)

value.

Different rendering techniques are used to compose RGBA values from multiple voxels

and project their combination onto a correspondent pixel on the frame buffer; the two

most diffused techniques take advantage of the processing power of GPUs. In particular,

the oldest technique uses texture mapping, using the very fast texture units available in

the Rasterization stage, while the most recent one uses GPU accelerated ray casting.

The technique of ray casting for volume rendering is derived directly from the rendering

equation. A ray is cast for each desired image pixel: the ray starts at the eye point and

passes through the image pixel on the imaginary image plane floating in between the

camera and the volume to be rendered. The ray is sampled at intervals throughout

the volume; at each sample point the data is interpolated, then the transfer function is

applied to the interpolated value, and the obtained RGBA sample is accumulated. The

accumulated RGBA value written to the current image pixel, and the process is repeated

for every pixel to produce a complete image on the frame buffer. This technique is time

consuming, but provides results of very high quality; fortunately, direct volume rendering

is an extremely parallel problem, and therefore in the last year several fast algorithms for

GPU ray casting were developed [115, 214]. Virvo, the volume rendering component of

OpenCOVER, is able to use both techniques.

A crucial point of direct volume rendering is the definition of the transfer function:

transfer functions are required in order to pull out specific features of volume datasets,

as they will dictate how the volume will look like on the 2D screen. Therefore, a simple,

interactive way of defining transfer functions is needed.

A classical Transfer Function Editor uses a one-dimensional plane for colour mapping.

The unique, horizontal axis is used to represent the domain values (often in the 0..255

range); colour markers are inserted at user defined values on this axis. Values at these

points are associated directly with the given colour, while colour at value points between

two colour markers is computed through interpolation. Transfer Function Editors for

alpha values typically use a two-dimensional plane, where the x-axis is used to represent

the domain values, and the y-axis to represent alpha (opacity) values.

The original Transfer Function Editor embedded in OpenCOVER and Virvo used

separate colour and opacity transfer function. The two functions could be edited from

within a virtual environment, and changes were reflected in the image instantaneously,

allowing for experimentation; however, a more powerful and immediate editor was needed
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in our case.

Figure 5.3: The Tablet UI Transfer Function Editor. From top to bottom: colour chooser for
the selected colour marker, histogram for the distribution of volumetric data, the interactive
editor interface.

With Uwe Woessner of the HLRS at the University of Stuttgart, we studied a more

user friendly transfer function editor. The editor combined in a single view colour and

opacity information. The user could select how input values map to colour and alpha using

markers. Markers are freely moveable; alpha markers are equipped with anchor points

to adjust the shape of the trapezium (height, bases) that will define the alpha values

around the marker. The user can add (and remove) an arbitrary number of markers, to

fine-tune the transfer functions (see Figure 5.3). Unlike the original Transfer Function

Editor, which was implemented as a 3D widget inside OpenCOVER, the new editor was

implemented as a widget for a Tablet PC user interface. The tablet UI can still be used

inside immersive environments, but it is is easier to control than a 3D widget, which is

controlled using tracking when displayed in an immersive environment and therefore can

be less precise.

Like in the original Transfer Function Editor, we reflected changes to the function

in real time, allowing for interactive exploration of different combinations. To add even

more flexibility, we took advantage of the Tablet pen, using it not only to move and adjust

markers, but also to draw free-form functions (Figure 5.4): the pen can be used to directly

set the alpha value corresponding to each data value in the domain, allowing a fine-tuning

of opacity and transparency that allows to highlight particular features of the volumetric

data set.
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Figure 5.4: The free-form alpha function editor allows to draw or erase the alpha function using
a pen

Another addition to the transfer function editor was the ability of setting functions

for multi-variate volume datasets. In multi-variate volume data sets, each voxel in the

volumetric grid is associated with more than one value. This case is not very frequent

in the case of data acquired through scanners (even if there are some notable exceptions,

like the Visible Human Project), but it is more frequent in the case of simulations, where

each voxel can contain different concentrations of several species. In our case, Redi (our

reaction-diffusion simulator, see Section 4.3) was configured to produce volumetric data

with one or more variables; in many occasions, the scientist may be interested in showing

more than one species at the same time, or even better, showing when and where a

particular combination of reactants and reagents is present in the simulated space.

In this case, a multi-dimensional transfer function editor is needed. A multi-dimensional

transfer function editor can associate multiple values with a single RGBA value; therefore,

any combination of input values is mapped to colour and opacity information that will

be used by the volume renderer.

To maintain complexity to a reasonable level, we restricted ourselves to two dimen-

sional transfer functions. This meant re-define the various concepts and objects with one

additional dimension: the colour function is now to be defined on a two-dimensional plane

using 2D points; alpha markers are also centred on 2D points, and have a 3D shape. So

instead of having trapezoid or Gaussian shapes, alpha markers are realized as pyramids

and bells. However, we choose to visualize the widgets from above, using an orthographic

projection on the bi-dimensional colour plane (see Figure 5.4). The alpha values defined
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Figure 5.5: The multi-dimensional Transfer Function Editor: three colour markers (magenta,
yellow and blue) are used to define the background colour, and three alpha widgets (two Gaussian
bells and one pyramid) are used to define the opacity values.

by the widgets are immediately mapped onto the underlying coloured background; in

this way it is possible to place and control the markers without using a complex and

potentially confusing 3D representation.

We experimented the usage of both editors on a variety of preset data (CT scans,

mechanical simulations) available at the HLRS Stuttgart; we also used them to define

transfer functions for Redi simulation results. A picture taken from an interactive session

on the testing using Redi datasets is displayed in Figure 5.6.

5.1.3 Isosurfaces

An alternative form of visualization for volume datasets is to use isosurfaces. An isosurface

is a surface that represents points of a constant value within a volume. Isosurfaces are

computed by extracting a polygonal mesh from volumetric data; the mesh will crosses the

three-dimensional scalar field at the specified isovalue.

Isosurfaces can be drawn very quickly, but usually the extraction algorithm requires

some time. We implemented a GPU algorithm for Isosurface extraction based on Marching

Cubes and Marching Tetrahedron [77]; the algorithm process data entirely on the GPU,

therefore any memory bandwidth bottleneck is avoided. For more information on GPUs

architecture and their programming model, the interested reader may refer to Appendix C.
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Figure 5.6: Volume rendering of a Redi simulation inside HLRS Stuttgart CAVE

The implementation is written in CUDA, and the algorithm is divided among of a set

of GPU kernels1, one for each stage of the process. Furthermore, we designed the kernels

to support the mesh in COVISE unstructured format throughout the process; in this way

we avoid space and time consuming conversion, and we keep memory utilization low.

COVISE allows to store a mesh in an unstructured grid, a grid made of different, non

regular polygonal elements. Each voxel can be a different polygon (tetrahedron, cube,

pyramid, diamond...) and each polygon can have different dimensions. Furthermore, the

grid does not need to be regular (e.g. same number of voxels along a given axis). In

contrast, a regular grid is composed of voxels of the same shape and dimension, displaced

in a regular pattern. Typically, unstructured grid are more flexible and more compact,

and are therefore widely used in simulations.

An unstructured grid needs three vectors to represent the grid structure, in addition to

the vectors of coordinates and of scalar values associated to each coordinate. The needed

data structures are listed in Tab. 5.1.

The computed mesh is saved directly in GPU memory as an OpenGL Vertex Buffer

Object with an associate Index buffer. In this way, the representation is kept as compact

as possible for fast rendering of the isosurface mesh. Obviously, these data structures

need to be allocated on the device memory (using cudaMalloc) and filled with data from

1See Appendix C
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Identifier Description Length

Type List element type list (tetrahe-
dron, hexahedron, pyramid
and the other polygons sup-
ported by COVISE)

M

Elem List list of offsets for element i in-
side the connection list

M

Conn List connection list (index buffer
pointing into the coords {x, y,
z} arrays)

M

vertexes The list of vertex coordinate N

values The scalar values associated
with each coordinate

N

Table 5.1: Unstructured grid data structures, allocated on global device memory

the host memory (with cudaMemCopy).

Since our grid is composed by different polygonal elements, the first step is to classify

them. using the classifyElements kernel. This kernel takes as input the complete geometry

of the unstructured grid and the scalar field. One thread is run for each element in the

element list.

• Input: Type List, Elem List, Conn List, values, and an isovalue;

• Number of threads: one thread per element

• Output: element classification arrays; number of neighbours (per node); relevant

edges matrix

The purpose of this kernel is to perform a classification of the type of elements, in order

to compute how many elements of each type are present and where they are located, as

an offset inside the Elem List array. Furthermore, for every element it tests if it cross the

isosurface -and therefore the isosurface mesh will cross that element-, and if so how many

vertexes are required to generate the mesh triangles for that voxel.

The number of vertexes that will be required in order to generate the isosurface is

obtained using a look-up table, held in texture memory, different for each element type.

This information is stored in the element classification arrays.

In addition, this kernel produces a 2-dimensional matrix. Each cell in the matrix,

addressed by (n1, n2) contains two data: whether these two nodes (which are contiguous

vertexes of an unstructured grid element) are on an edge that will generate an isosurface
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mesh vertex, and if so which is the offset of node n2 in the n1’s list of neighbours. This

information will be needed for the computation of normals.

The last output of the kernel, the number of neighbours, is stored in an array of

length equal to the number of nodes (i.e. vertex indexes) in the original unstructured

grid, contains the number of neighbours for each node. It is used in conjunction with the

2-dimensional matrix: the map at (n1, n2) contains a two element structure. The first

element allows to find if there is a vertex-edge between n1 and n2 already; the second

one, the actual number of n1 neighbours. So, when it is found a new (n1, n2) couple, the

counter at position n1 in the number of neighbours array is increased; the old value is

recorded as an offset in the map at (n1, n2). A successive kernel will use this information

to build the list of n1 neighbours and n2’s offset inside that list.

The element classification arrays and number of neighbours array are passed to the

CUDPP routine cudppScan which will performs a parallel sum scan (for more information

about the parallel sum scan and CUDPP, see Section 4.4.1 and [207]). Briefly, cudppScan

does a cumulative sum of elements, which is useful to obtain both an array of offsets and

the total number of elements, used to obtain the exact size of buffers that are allocated

before invoking successive kernels:

• Input: element classification, number of neighbours (per node);

• Number of threads: automatic

• Output: number of voxels crossed by the isosurface (per element type); number

of vertexes the generated mesh will produce; number and offset of unique vertex

coordinates (size of vertex and normal buffers).

In particular, the number of vertexes is used to compute the size of the OpenGL index

buffer, while the scan on the number of neighbours array gives the number of unique

vertex coordinates, that will be used as the size of OpenGL vertex and normal buffers.

The following kernels to be called are generateTriangles{Thetra/Hexa/Pyramidal/...}:

• Input: number and offset of unique vertex coordinates (size of vertex and normal

buffers); vertexes, the original vertex positions in the grid; the grid geometry infor-

mation (Type List, Elem List, Conn List); the values scalar field; an isovalue; the

relevant edges matrix computed by the previous kernel; the number of voxels crossed

by the isosurface;

• Number of threads: one per active Thetraedral/Hexahedral/... voxel

• Output: a vertex buffer that contains the (unique) interpolated vertex positions;

the isosurface vertex positions; the number and offset of unique vertex coordinates.
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Each kernel deals with a different element type, using the classification information

and offset arrays provided by the previous kernels. They generate the isosurface mesh

coordinates and store them in separate vertex and index buffers. Positions inside the

buffer, and whether or not two generated vertexes are the same (fall on the same voxel

edge) are obtained thanks to the the relevant edges matrix and the compacted neighbour

array. The vertex positions inside the vertex buffer are indexed by the corresponding

index buffer (one per element type).

Finally, computation of normals is carried out by three kernels: createNeighbourList,

createNormals1 and createNormals2

The creation of a neighbour list, carried out by the first of these three kernels, is

necessary to understand between which couple of vertexes it is necessary to perform

interpolation.

• Input: the isosurface vertex positions (index buffers);

• Number of threads: number of vertexes in the isosurface mesh;

• Output: a compacted list of neighbours for each node;

Figure 5.7: The isosurface extracted from a Redi diffusion model.

The index buffer already contains node “numbers” (positions into the vertex buffer)

in a non-duplicated way. Besides, indexes are ordered in such a way that is possible to

see which one belongs to a given triangle.

The process of generating normal staring for the value field and from the neighbour list

is done in two steps, by two kernels; the first one, createNormals1, computes the normal

gradient per-vertex:
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• Input: the vertex buffer, which contains the (unique) interpolated vertex positions;

the isosurface vertex positions(index buffers);

• Number of threads: number of unique vertexes;

• Output: the normal gradient per-vertex;

The second one, createNormals2, interpolates the normal gradient per-vertex between

neighbour vertexes and fills the final normal buffer:

• Input: the vertex buffer, which contains the (unique) interpolated vertex positions;

the isosurface vertex positions(index buffers); the compacted list of neighbours com-

puted by the createNeighbourList kernel; the normal gradient per-vertex;

• Number of threads: number of unique vertexes;

• Output: the interpolated normals, stored in an OpenGL normal buffer ;

The final result is a isosurface mesh complete with normals; the normal computation

produces a mesh that seems much more detailed and visually pleasant (see Fig. 5.7). Our

algorithm for isosurface computation, for medium sized grids (¡ 1M elements), performs

at interactive frame rates.

5.2 Networks

A recurrent visualization problem in systems biology is drawing graphs in a custom, con-

trolled, meaningful way. Systems biology commonly uses networks or graphs to represent

many different aspects; the goal is to understand the interaction dynamics, and networks

are the most common way of representing interactions.

Networks (or graphs, in computer science terms) are used to describe reaction networks,

ecological food webs, dependency graphs for causal relations, or even complexes and

polymers. Graphs are a convenient way of representing any kind of relation between

elements in a domain; for this reason, at CoSBi we developed a software (CoSBiLab

Graph [71]) that is able to read, visualize, save, compute metrics and run algorithms on

any kind of graphs, even if most of the features are tailored to life science.

The task of visualising a graph is relatively simple: nodes are draw on a 2D canvas,

connected by edges. The position of nodes is assigned by layout algorithms. Layout

algorithms are usually general: they work on any type of graph, and try to displace node

so that they meet some general criteria. For example, they may group together highly

connected nodes, or reorder nodes so to minimize edge crossing. The result is usually a
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visually pleasing graph; however, the chosen layout does not always add information to

the graph data.

A first example is given by reaction networks. Visualization of reaction networks is

really important in the case of models described using process algebras, like in the case

of BlenX. As we mentioned in Chapter 2 and 3, a process algebra model describes the

possible interactions between components, not the whole reaction network, as it is gives

an operational description of the single components and their interactions. The advantage

is a compact model, whose reaction network does not need to be wholly specified, but it is

unfolded during the execution (usually, a stochastic simulation) of the model. Therefore,

complexity is somehow transferred from the modeller to the software that executes the

model. However the final reaction network, unfolded during simulation, needs to be

visualized, as it helps the user to understand both if the model was correct and if the

simulated reactions are those he expected. Indeed, the inspection of the reaction network

can reveal secondary, but significant, interaction between components that were not clear

or explicit before, leading to new knowledge on the model or on the problem at hand.

5.2.1 Reaction Networks

In a reaction network produced by a simulation, each class of entities already present

in the model, or generated during the simulation, is a graph node, and if an interaction

had taken place between two classes of nodes, an edge between their nodes is added to

the graph. Reaction networks can be quite large, and show complicated interactions.

Unfortunately, standard layout algorithms do not help in making the picture clearer.

Take as an example the NfKB and MapK reaction network showed in Figures 5.8

and 5.13 respectively: by carefully inspecting nodes and edges it is possible to extract

information about the behaviour of the components, and about the key interactions, but

the process requires time and patience.

With Danyel Fisher from Microsoft Research Redmond, we designed a new way of

displaying reaction networks, which uses our knowledge of the domain in order to layout

nodes in a way that gives more information to the user. The starting point was asking

ourselves and other researchers which are the most common network structures in reaction

networks. We realized that cycles, for example, are very important: many enzymes

and many molecules undergo reversible transformations, and therefore they change state

(going from active and inactive, for example) cyclically. Another common structure is

represented by interacting cycles : biochemical pathways are almost always interconnected.

For example, an enzyme that is cyclically activated and deactivated in one pathway can

take part in the transformation of another molecule in a different part of the model or in

another pathway altogether. A third frequent possibility is that a chemical will undergo
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Figure 5.8: The NfKB reaction network displayed as a graph

a series of non-reversible transformations, leading to a chain of interactions. A fourth

possibility is represented by star or daisy-shaped structures: a single molecule can be used

in many different reactions, leading to many different products. Finally, we classified all

the other possible structures as complex networks. For all but the last kind, for which we

used a standard force-directed graph layout, we devised a possible meaningful graphical

representation. The result is shown in Figure 5.9.

We enriched the structures with some additional information. For example, bimolec-

ular reactions involve two reagents transforming into one or two reactants. In this case,

instead of introducing a separate node for the reaction as we did in Graph, we inserted a

single edge for each structure, and then we logically connected it to the other half of the

reaction (belonging to a different structure) using a reminder. Furthermore, we assigned

to each structure a colour, and used it in the reminder, so that the user can immediately

connect them visually (see Fig 5.10(a)). Another information we inserted is about rates,

or speed of that reaction: if a reaction happens more often, the edge(s) representing it are

ticker. To highlight this concept better, we introduced also speed ticks on the edges: the

highest the number and frequency of ticks, the faster is the reaction (see Figure 5.10(b)).

We developed an application, Rings, which extracts these structures from the BetaSim

output files and displays them using our graphical representation, and tested it on several

pathways. Here we show, as an example, the MapK signalling pathway (Figures 5.13

and 5.14), the ERK signalling pathway (Fig. 5.15), the NfKB pathway (Fig. 5.8, 5.11

and 5.12).
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(a) (b)

(c) (d) (e)

Figure 5.9: The graphical representation of common network structures used in Rings.

It is possible to notice how in many cases the reaction network is completely described

in terms of the first four structures; only in the case of NFkB a complex network ap-

pears. The advantages of this visualization become clear comparing Figures 5.8 and 5.13

with Figures 5.11 and 5.11. For example, the cyclic behaviour of K, KK and KKK be-

comes apparent, as well as their relationship and the identical behaviour of KK and KKK,

which are activated by multiple phosphorilation and are therefore categorized as inter-

acting cycles (one for the first phosphorialtion-dephosporilation and one for the second

phosphorialtion-dephosporilation stage).
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(a) (b)

Figure 5.10: Reminders for bimolecular and monomolecular reactions (a) and rate ‘ticks’(b).

Figure 5.11: The NfKB reaction network displayed with the Rings application. Cycles, networks
with multiple interacting cycles and lines of monomolecular reactions are displayed separately
as functional units.
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Figure 5.12: A particular of the NfKB pathway, representing the reversible process of IkB
enucleatipon (the transportation of IkB from the cytoplasm to the Nucleus and vice-versa)

Figure 5.13: The MapK reaction network displayed as a Graph.
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Figure 5.14: The MapK reaction network displayed in Rings.

(a) (b)

(c)

Figure 5.15: The ERK reaction network, obtained from the simulation of the BlenX version of
the Fell ERK model. The applications highlights (a) a central reaction “hub”, (b) how some
entities follow the same behaviour, (c) the interaction of the ligands L with the Membrane
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5.3 Complexes

As we have seen in Chapter 3, complexes as native language constructs are a peculiar

feature of BlenX, where boxes play the role of monomeric units; complexes can be used

to represent any ensemble of two or more boxes, from dimers to more complex polymers.

New complexes can be generated at runtime as a consequence of binding and unbinding

actions -similarly to what happens when new boxes are created after monomolecular and

bimolecular reactions-, and so it is possible to easily generate complex biopolymers made

of dozens or hundreds of boxes from relatively simple and compact programs.

The drawback is that it is not easy to understand how a complex is shaped and

generated; programs can generate thousands of them as part of a simulation or analysis;

for example, a simulation produces a trace, a textual description of the time evolution

of the program, that includes a description of complex structure. This textual output

is complete, but can be difficult to understand because of the overwhelming quantity of

data.

5.3.1 Need for classification

The task of visualizing a complex consists of rendering each box in the complex at a

position, with a dimension and a colour that depends on the position of its neighbours

and on its class.

Note however that in the Chapter 3 we have described what an entity is, but not what

a class of entities is. We have already given a similar definition, when we introduced

species : in the case of simulation using species-based methods, like the Gillespie SSA, a

definition of species is necessary. As we have seen, we use classes of structural congruence

for that purpose; however, here we want to tackle the problem in a more general way.

We can define a class of entities as the minimal set containing all the entities that are

equivalent one to the other. Hoverer, introducing a notion of equivalence does not solve

our problem, as it only moves our question from “what is a classes of entities?” to “when

two entities are equivalent?”

There are various definition of equivalence, with increasing expressive power: from

syntactical to structural to behavioural. Clearly, the latter would be the best one to

represent a biological species: two biological entities that act in the exact same way should

be considered equivalent, and therefore as belonging to the same species. However, due to

computational constraints, in BlenX we group entities in the same species up to structural

equivalence [183].

Moreover, talking about behaviour raises a whole new set of questions. Behaviour

is a very general term, for which many different definitions are given in literature. In
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computer science, especially in the process algebra field, behaviour is usually identified

with the notion of bisimulation. However, for biological purposes, this definition is way

too strict, and yet in some cases fails to capture different behaviours (as in the case of

different rates, see [30]).

The definition of behaviour might even change, as it depends on the scientist goal: for

different models, for different analyses or questions, it is perfectly valid to assert that two

entities are equivalent if they have the same response to external stimuli, and/or they

have the same interaction capabilities, and/or they have the same internal state and/or

the same processing capability (even when their interaction capabilities are differnt) and

so on.

Finally, for information extraction and processing from output data (e.g. simulation

results) even a notion of equivalence based on behaviour may be too strict. For example,

you might want to divide and represent differently some entities based on their structure.

For all these motivations, we introduce in our framework a classification module be-

tween output data and visualization. Thanks to this classification module, a user can

decide exactly when two entities are equivalent by classifying them into categories.

Classification could be very powerful and serve other purposes than visualization; in

this first iteration however we want to concentrate on the set of primitive necessary to

our visualization goals.

5.3.2 Our approach

Our goal is to extract from the output of a processed BlenX model data in the form of

graphs, and present them to the scientist in a form that helps him/her to understand the

dynamics of the system.

When we deal with a big graph and we want to lay out its nodes in order to get

an intuitive graphical representation of it, most of us instinctively follow a standard

procedure. First of all we look for a node with particular characteristics, often a node

with peculiarities that make it unique inside the graph. Once we have identified this node

we take it as starting point and we proceed analysing its neighbours. Considering their

characteristics we classify them in some way and we decide how to displace them. We

explore the whole graph, iterating this process and obtaining a layout and overall picture

that corresponds to what the graph actually represents in our mind.

This process is based on the fact that, even if we do not know a-priori the whole

structure of the graph, we know which are its basic blocks and how they can be combined

together. These are the observations that inspired our approach, that combines classifica-

tion of nodes with local layout rules. Following this approach, we can draw in a dynamic

way a graph on a node-per-node basis, taking into consideration only the current position
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and direction, how it is classified, and its neighbours.

In the concrete application we chose as a case study, the graph (a BlenX complex) is

already completely built; in general, our approach may be applied to dynamically created

graphs.

5.3.3 Implementation

The process for displacing the nodes can be divided into separate steps, implemented by

four blocks. The first block gives to the user an instrument to classify nodes depending

on their characteristics, by means of a simple language for defining classes of nodes.

The second block explores the input graph, labelling each node with one or more of the

previously defined classes. The third block is used to define the visualization rules for

each class of nodes. Using a simple set of instructions the user can specify how to draw

a node belonging to a class and how to layout other nodes around it. The last block

visualizes the input graph using as input the labelled graph and the user defined rules

coming from the third part. The implementation schema is represented in Fig 5.16.

Part 1

Classes definition

Input Graph

Part 2

Graph labelling

input

input

output

Labelled Graph

S

A

A
A

A

A

B

B

B

Part 3

Drawing rules
definition

Part 4

Visualizer

Graph representation

input

input
output

Modules A (input language dependent) Module B (input language independent)

Figure 5.16: Organization of the process for disposing graph nodes

As shown in the picture it is possible to separate the implementation in two modules.

The first one (A) is dependent from the language used for describing the input graph.

The second one (B) instead is independent from such language as it depends only on the

output of module A, which act as a proxy or facade for the graph.

This observation implies that module B can be used for any language, while module A

has to be rewritten in order to act as a proxy that transform the considered language to
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a labelled graph in the format consumed by B. In section 5.3.3 we will describe each part

of the implementation separately. For the language dependent blocks, we use the BlenX

language. Here we propose a short introduction to this language focusing on the aspects

important in this context.

Classes definition

Each BlenX box has a set of binders, or interfaces; as a first approximation, the set of

binders defines the interaction capabilities of that box2. Moreover, when a box changes

its state it typically changes also its binders and thus the characteristics of some of its

interfaces. As a result, in many cases it is enough to consider the binders in order to

understand the kind of box we are dealing with and which state this box is in, and

therefore to classify it.

For visualization purposes, we will classify BlenX boxes following this approach: using

information on their interfaces only, avoiding to consider the structure of their internal

program. Following this strategy the definition of a class corresponds to the specification

of a set of interface descriptions. If a box has interfaces for satisfying all the interface

descriptions of a class, it belongs (not exclusively) to such class. We provide a language

for specifying the classes and here the generating BNF grammar follows:

2This is an approximation because a binder may be never used as a communication channel by the internal
process, or it may be used to perform input in a box and output in another box. Clearly, these three kind of
boxes give rise to different possible interactions
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classList ::=

class

| classList class

class ::= (interfaceDescSet) Id ;

interfaceDescList ::=

interfaceDesc

| interfaceDesc, interfaceDescSet

| interfaceDescSet . . .

interfaceDesc ::=

listOfType:listOfState

| *

listOfType ::=

| type

| listOfType or type

listOfState ::=

| state

| listOfState or state

type ::=

Id

| *

state ::=

hidden

| bound

| free

| *

According with the rules introduced by this grammar, the following is an example of rules

describing two classes of boxes:

(A:free, B or c:*, *:hidden, *) classA;

(*:bound or hidden, B:* ...) classB;

The first row describes the rules to match a class with name classA. Boxes that belong

to this class have exactly four interfaces; one of the interfaces has type A and is free, one

has type B or C and can be in any state, another has to be hidden and can be of any
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type, the last can be of any type in any state. The second class, called classB, does not

specify an exact number of interfaces; the dots at the end of the interface description set

mean that there can be more interfaces than those specified. Of course, the additional

interfaces can be of any type in any state. The boxes that belong to this class must have

at least two interfaces, one bound or hidden and the other on of type B.

Blocks description

Graph loading and labelling

We have seen that, in order to guarantee flexibility and extensibility, in our framework

the input graph is loaded by a graph adapter. This block is conceptually very simple: it

produces an in-memory representation of the graph that is shared and used by the other

module. For this particular application, we wrote a BlenX complex graph adapter, which

reads each complex generated from a BlenX model as a different graph.

The BlenX graph labelling block explores the BlenX output file and associates to each

box that belongs to a complex a list of classes. By combining the in-memory graph and

the list of labels we create the labelled graph that is used by module B.

The labelling procedure starts with a two steps pre-processing phase, in which rules

are expanded and sorted, so that the algorithm can treat them in consistent way that

speeds up the association of rules with binders:

• Rules explosion: classes described with rules containing one or more or are expanded

into separate class description with basic rules. Example: (bound or hidden:*,

*:B ...) classB; is transformed into a set of two rules with the same class name:

(bound:*, *:B ...) classB; and (hidden:*, *:B ...) classB;

• Rules sorting: we sort the basic rules inside each class description in order to create

a list for each class where the most restricting rules are at the beginning; therefore,

rules that specify both type and state (type:state) are positioned at the head of the

list, followed by those specifying only the type(type:*), than those specifying only

the state *:state and at the end those specifying no restriction (* or *:*).

The algorithm then tries to match each node in the graph, in this case each box in

the complex, with all the class descriptions. If a class matches, the name of that class is

added to the list of labels associated with the analysed box. In particular, the matching

phase of a class description with a box proceeds as follows:

• If the class is of the form (interfaceDescSet . . . ) Id, and the rules in the class de-

scription are less then the number of binder of the current box, we create a copy
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of the class description where we substitute the ellipses with a correct number of

unrestricted rules (*). This allows us to handle all the classes in the same way.

• If the number of class rules and the number of binders are not equal, the box does

not belong to the current class.

• Each binder is associated to the list of all the rules it satisfies. If one of the binder

dose not satisfy any rule the box does not belong to the current class.

• A different rule is associated with each binder, choosing among one of the rules

satisfied by the binder. If this association is possible, the box belongs to the current

class.

5.3.4 Graph layout

Along with the classification and labelling block, the layout part is a fundamental block

for our framework. This block, designed to arrange nodes in the two or three dimensional

space, is independent from the graph description and from the classification grammar, as

it only depends on the normalized, labelled graph generated by the previous block.

The layout is not based on an automatic algorithm; general layout algorithms are

very good for arranging nodes without human intervention, most of the time in a visually

pleasant way. Some of them even emphasize some graph property, making it possible

to understand some properties just by visualizing the graph. However, the generality of

these algorithms have also a drawback: nodes disposition is based on some topological

properties, not on the domain-specific features of the graph. This is impossible for a

general algorithm that need to work on every graph type.

A possible alternative is to write algorithms for the layout and visualization of a

particular kind of graphs; say, reaction networks graphs. In this case, the algorithm knows

which kind of nodes, structures, connections to expect, and so arrange graphical elements

on the screen making sensible and knowledgeable choices. Obviously, this knowledge has

to be fixed inside the algorithm, encoded by the developer that wrote it. The drawback

here is the opposite than in general layout algorithms: it lacks flexibility, and therefore it

can be used only for the kind of networks it was designed for.

For our framework, we wanted to get the best of both worlds: an algorithm in which the

end-user can exploit his (or her) domain knowledge to build a meaningful representation of

the studied object, without being particularly tied to a specific one. This approach is not

convenient as a general layout algorithm, because it needs user attention and interaction

to specify how the layout should proceed, and is not as powerful as a specialized algorithm,
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as we don’t offer a full-fledged programming language to specify it. However, it have been

proven to be a good compromise and to fulfil perfectly our current needs.

The user can insert his (or her) domain knowledge inside the algorithm by specifying

how a single node should be displaced with respect to his predecessor, how its neighbours

should be arranged, or even a mix of the two. Besides position, each node can be assigned

a colour, a shape, a label, and many other properties. In particular, in our case, we use

classes or combinations of classes as produced by the labelling block as the starting point

to assign properties and rules for positioning.

Let’s explain it better with an example. Suppose that the previous block classified

the nodes of a graph in just three categories: left, right and root. From the names, is

easy to understand that this graph should be laid down as a tree: starting from the root,

the node connected to the root and marked as right (if any) should be placed 30 degrees

to the right, while the one marked left (if any) should be placed 30 degrees to the left.

Repeat the same process for the nodes attached to them. In our framework, this can be

expressed using a layout grammar :

rootnode root {

successor_adjustment = left:(translation(1,2,0)); right:(translation(-1,2,0));

shape = cylinder;

color = blue;

}

node left or right {

successor_adjustment = left:(translation(1,2,0)); right:(translation(-1,2,0));

shape = cylinder;

color = red;

}

This example does exactly what we specified using words, in a grammar that our algorithm

can understand. The complete grammar, shown in Table 5.2, is composed by a set of

drawing rules, one for each node class or set of classes. Each drawing rules can specify a set

of attributes. Attributes are properties to be applied to nodes belonging to that class(es),

including properties used to transform the current node location, and the location passed

to the neighbour nodes.

The layout algorithm uses these drawing rules (properties and transformations) to

lay-out the labelled graph. The algorithm starts compiling a list of nodes whose class is

marked as rootnode in the drawing rule. In our example, only nodes labelled with root

will be put in that list. The algorithm takes one node from the list as a starting point for

a visit of the graph. During the visit, the algorithm keeps track of the current position;

when it finds a new node, it marks it as laid out using the current position, then applies
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nodeList ::= node

| nodeList node

node ::= root node bodyNode

| node bodyNode

bodyNode ::= IdCond{ attribute list }

attibuteList ::= attribute

| attibuteList ;attribute

attribute ::= shape = shapeVal

| color = colorVal

| size = dimension

| successors direction adj = IdCond :(adjastmenList)

| transformation = adjastment

dimenson ::= real

| real , real

adjastmentList ::= adjastment

| adjastmentList, adjastment

adjastment ::= rotation(real , real , real , real)

| translation(real , real , real)

IdCond ::= IdCond or Cond

| IdCond and Cond

Table 5.2: The layout grammar accepted by the graph layout block
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to its attributes the specified properties (colour, etc..) and the transformations to the

current position. Position transformations can apply to the current node or, like in the

case of our example, can be applied to the current position passed to neighbours using

the successor adjustment attribute.

At the end of the process, the graph layout produces a mapping from nodes to points

in space, that will be used by the last block in the tool-chain to display the results.

Visualizer

The last block in the tool-chain is a GUI application. Its task is really simple: it takes the

mapping produced by the previous block and uses it to render the graph on the screen.

In order to understand the mechanism used to draw a complex think about the vi-

sualizer as a program that transforms a 3D Cartesian coordinate system. The visualizer

uses this coordinate system to position the objects and as a base for the translations

and rotations used to update the current drawing position. Every object drawn by the

visualizer is centred on the current coordinate system origin.

The visualizer gets the information on how to draw a complex analysing the rule de-

fined in the layout grammar; in particular, at each step it looks for a rule with a label

compatible with the one marking the current node. The rule has some attributes that

specify the visual cues of the node (i.e. its shape, size and colour). Using these attributes

the visualizer draws the current node inside the 3D environment, then it updates the co-

ordinate system and draws the neighbour nodes (if not already drawn). The instructions

for updating the coordinate system are specified by the successors node adj attribute.

This attribute holds a list of labelled transformations, specified as a composition of trans-

lations and rotations. The visualizer considers one of the successor nodes, reads its label

and searches the successors node adj list for an entry with a label matching the one

on the successor node. If an entry is found, the visualizer updates the coordinate system

using the transformations on that entry. Then, in order to obtain the attributes needed

to draw the node, the visualizer looks for a rule with a label matching the one on current

node; finally it draws the node at the updated position using the correct set of attributes

and re-iterate the process on the neighbours, making a marked traversal of the graph with

a DFS or BFS algorithm.

The visualizer starts the visit of the graph from a root node. A root node belongs

to a class whose matching drawing rule is marked as root node. It is possible to have

more than one root node per graph; in this case the visualizer starts randomly from one

of them.

Note that as every other block in the chain the visualizer is completely replaceable.

Indeed Larcher in [53, 134] replaced the visualizer presented in this thesis, which uses rich
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graphics to display nodes but does not allow for transformations in the 3D plane, with a

more complex 3D visualizer with stereographic display.

Examples

Larcher and Romanel [136] developed a model for actin complexation and growth. Actin

monomers, when bound to certain molecules, can form filaments and tree-like structures

that are important for processes like cell locomotion, phagocytosis and intracellular motil-

ity of lipid vesicles.

In the polymerization process actin monomers arrange themselves into two parallel,

twisted strands that form a coiled structure. The exact 3D structure is difficult to re-

produce on paper, and therefore in textbooks it is often simplified and represented as in

Figure 5.17.

(a) (b)

Figure 5.17: (a) Bi-dimensional representation of an actin filament, (b) Microscope image of an
actin filament (Copyright Dylan Burnette, NIH)

The complexes produced during the simulation of Larcher and Romanel model should

have the same topology; however, as we already pointed out, inspecting the simulation

results to understand how a complex is structured is not a trivial task.
Our goal is to produce actin representations similar to those depicted in Figure 5.17

starting from the model output. The first step is to define a set of classes for the classifi-
cation of BlenX boxes:

(LB:free,*,*) first_monomer;

(L or LB:bound, *, *) monomer;

(*,*) arp;
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This file defines three classes that can be used to distinguish boxes for the root of the

filament, the actin monomers (with the exception of the root node), and for Arp2/3 (the

branching points).
We define a set of layout rules for these classes:

root_node first_monomer

{

shape = sphere;

size = 0.5;

color = blue;

successors_direction_adj = monomer:(translation(1,0,0)),

arp:(rotation(60,0,0,1),

translation(1,0,0));

}

node monomer

{

shape = sphere;

size = 0.5;

color = blue;

successors_direction_adj = monomer:(translation(1,0,0)),

arp:(rotation(60,0,0,1),

translation(1,0,0));

}

node arp

{

shape = sphere;

size = 0.5;

color = orange;

successors_direction_adj = monomer:(translation(1,0,0));

}

The visualizer uses the algorithm presented in Section 5.3.4 and this set of rules to

draw BlenX complexes representing actin filaments. The result is presented in Figure 5.18

5.4 Related work and Future directions

Scientific visualization is a very broad area of research: even if we restrict ourselves to

visualization of biochemical data, there are too many approaches to give a meaningful

summary of the related work. We would concentrate only on some interesting tools

and approaches from each of the areas we touched (visualization of space, networks,

complexes).

One of the most active research groups on visualization of spatial simulations and

volumetric data is the Volume Rendering group at the VRVis Zentrum fur Virtual Reality
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(a) (b)

Figure 5.18: The actin filament visualized as Boxes and as geometrical shapes (spheres and
cylinders)

und Visualisierung Forschungs. They work mainly on visualization of medical imaging,

surgery simulation and volumes created by electron microscopy and confocal microscopy.

These can be considered as related fields.

Their High-Quality Real-Time Volume Rendering project ([203, 96]) is focused on the

study of algorithms and methods that combine volume rendering, isosurface extractions,

and illumination techniques for advanced visualization of relevant characteristics. Many

of the developed techniques and concepts can be transferred to our domain.

A related area of research involves the visualization of Flows [133], Tensor Fields [229]

and Vector Fields, using techniques like pathlines, streamlines, Line Integral Convolution

(LIC) [23] or a mix of LIC and Volume Rendering [102]. These techniques can be used

to visualize not only the instant concentration of species in space, but also to directly

visualize the flux, the movement and evolution of the diffusion gradient over time. In

OpenCOVER, we already tried to use pathlines for this task, with mixed results. LIC,

streamlines or streamshapes as used in the visualization of MT-RMI could lead to better
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results.

With respect of network visualization, to the best of our knowledge, no tool or visual-

ization technique has been studied specifically to visualize the reaction networks produced

by systems biology simulations. On the other hand, the literature on visualization of bio-

chemical pathways, a closely related field, is quite rich. Many software products, like

Osprey [21], Biolayout [223] and Bio-Path [19], facilitate visualization and manipulation

of complex interaction networks in large-scale datasets and biochemical pathways. Most

of the tools display networks using both default layouts and ad-hoc algorithms. Other

works concentrated on this aspect, developing context-aware layouts for biochemical path-

ways [12, 17, 145].

Finally, many software for the visualization of molecules in 3D exists. Just to cite the

most famous, RasMol, JMol, Chemscape, MAGE, MolView and Chem3D are all very well

know and established programs in the Molecular Biologist toolbox. Their purpose is to

visualize the 3D structure of proteins and molecules. The novelty of our approach is to

apply this kind of visualization to the rendering of process structure, in particular to the

rendering of complexes, a unique feature of BlenX.

The small language we use to define the positioning of boxes in the 3D space, based

on their class, is very similar to the ThreePi language developed by Cardelli et al. [33].

This similarity comes to no surprise, as the underlying concepts are the same: attach to

each species (pi-calculus process or class of boxes) a set of affine transforms, in order to

assign to each entity (i.e. to each instance of that species) a position in the 3D space.

Future research directions could proceed along two main lines: on the one hand, we

should consolidate and make more usable our existing work; on the other hand, we could

introduce new methods in our visualization prototypes – like the Tesor and Vector field

visualization techniques we mentioned – or extend our existing work.

The first direction, for example, requires the implementation of a new, stand-alone

Volume Rendering application for integration with BetaWB. In fact, one drawback of

using COVISE for visualization is that it is necessary to take a dependency on the whole

framework in order to use it: in order to develop COVISE modules and to run COVISE

applications, it is necessary to set-up and deploy the whole framework. Besides, COVISE

is a flexible but complex piece of software, that requires a very powerful hardware in

order to fully express its capabilities. Furthermore COVISE, as the name implies, is a

framework for collaborative visualization and simulation; we only made use of a limited

set of its capabilities, limiting our research to the visualization part.

Therefore, while it was easy to use and experiment with it during my internship at

HLRS, COVISE revealed to be un-practical to be used inside a small research group like

the one at CoSBi. In order to further develop spatial visualization techniques, we plan to
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re-produce the basic capabilities we need using smaller, simpler software.

That said, working with such a complex software was a valuable experience: visualiza-

tion tools for Systems Biology are still in their infancy, and they can take great inspiration

from related fields (mechanical simulations, medical imaging, and so on). Furthermore,

as Systems Biology scales up and becomes more and more able to deal with complex

systems, more powerful collaborative visualization capabilities will be needed.

We are also considering the extension of our work on complex visualization. The

drawing process illustrated in this chapter draws a complex considering exclusively its

structural characteristics, ignoring temporal information. Improving our method in or-

der to exploit such information should make possible to enrich the representation of the

rendered molecule and generate a movie that illustrates its formation process.

The classification of boxes can also be improved adding the possibility to classify them

considering characteristics of their internal program. It is useful when modifications of the

internal program do not cause any changes of the interface structures but are interesting

to be recognized in the drawing procedure.

The classification method can be also used for other purposes: suggestions in this di-

rection come from the Actin example by Larcher et al. [136]. Analysing simulation results

obtained from the Actin model is not trivial: filaments can potentially assume infinite

conformations, thus even a short simulation usually generates thousands of different com-

plexes. Classification can be used to group together molecules that belong to distinct

species but share common characteristics, in order to make the analysis and inspection of

simulations results easier.

5.5 Summary

In this chapter we introduced visualization as a discipline for understanding the outcome

of Systems Biology experiments. In particular, we focused on three different visualization

techniques for simulations. Spatial visualization, through volume rendering and isosurface

extraction, is key to understand spatial interactions in large reaction-diffusion simulation.

Our approach to network visualization, where we extracted and rendered in an intuitive

way network components, allowed us to show key information in a simpler and tidy way,

even when working with possibly huge networks. Finally, visualization of complexes made

simple to interpret and understand one of the key features for modular composition of

BlenX models.
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Chapter 6

Tools and Composition

Systems Biology is a field of research that heavily relies on software to carry on its studies.

As we have seen in Chapter 2 and 3, in the last years this dependence grew even stronger:

computer science theory deeply influenced research in Systems Biology, creating a whole

new research branch known as executable systems biology. In this field of research creation

of models and their analysis and simulation using computer programs is not only an useful

instrument, but plays a fundamental central role.

In the last chapters we have seen how computer programs can help research in systems

biology; in particular, we have seen how software is fundamental to create, simulate, and

visualize biochemical models. Even if it is a common understanding that model simulation

plays a central role in Systems Biology, the computational tools used by researchers in

this field are by no means limited to simulators. In fact, many other programs and tools

are needed, to pre-process and prepare input data, to analyse and visualize output data,

to run statistical analyses, derive aggregate results and drive and control how data is

processed and used in simulations. Different programs and tools need to be used together

to create an in-silico experiment.

As we already discussed thoroughly in Chapter 1 and 2, experiments are central to the

scientific method: hypotheses formed by scientists to answer a question must be tested

before drawing any conclusions. A hypothesis is tested by means of an experiment in

order to be confirmed, rejected, or refined, under the currently available knowledge. The

composition of different software tools in a consistent way, in order to build an in-silico

experiment, is therefore one of the central aspects in the day-by-day work of a systems

biology researcher, probably second only to the construction and composition of models.

In our research group we experienced these difficulties quite often. Even if every

member of our group have a good working knowledge of informatics, not everyone is

familiar with programming. This is even more evident with people with a background

in life sciences: the area of expertise of biologists does include the usage of informatics
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instruments like simulators or on-line databases, but does not include the ability of dealing

with difficult computer tasks (e.g. using command line scripts, building a database query,

and so on).

On the other hand biologists and, more in general, natural scientists, are familiar

with the concept of protocol. A protocol is a procedural method for the implementation

of experiments. Protocols are present to standardize laboratory methods and ensure

replication of results by others in the same laboratory or by other laboratories; they

usually consists of detailed procedures, lists of required tools, how data is handled and

treated and rules for generation of results and reports.

Up to now, there was a lack of a coherent framework for in-silico experiments; a single

tool was commonly used to answer questions for one class of in-silico experiments; new

research directions needed for a new tool in order to derive new results. Even inside our

research group, most of the activities are implemented today by different tools written in

disparate programming languages; the user has to use them in the correct order (enforcing

the protocol by hand) and transfer data between them manually (i.e. copying and loading

files or gathering data from databases). Despite some efforts from the community, tools

lacked interoperability and composability, and generalizations was overlooked.

Well defined interfaces between tools are needed to enable composability and interop-

erability, so that a library of abstracted functionalities could be built. Then, users can

consider these interoperable tools as basic building blocks and use them to compose a

protocol to design and implement in-silico experiments.

6.1 Tools as Services

The list of required tools and the detailed procedure to follow in order to complete an

experiment can be described as a series of steps; typically, these steps are described either

through text or visually in a graphical way, using block diagrams, flowcharts or similar

diagrams. Looking at these requirements it appears clear that an integrated software

environment designed to help scientific research needs:

1. to expose software blocks and tools as components or services1; here we refer to a

service as a software tool that represent a common operation (for example, execute

a simulation, gather data from and online DB, and so on) in the scientist’s domain;

2. easy composition/chaining of different services, preferably using a visual language.

1We choose to call our component services, in contrast with plug-ins or agents: a plug-in extends the capabilities
of a larger program, and therefore it implies a strong dependence on a central program; the concept of agent, on
the other hand, commonly implies a very high degree of intelligent and autonomous behaviour. Our components,
instead, run independently but are orchestrated to obtain a richer behaviour, like servers in a microkernel OS or
web-services in the cloud.
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Services should be able to perform processes and exchange types of data linked to the

domain of interest; in our case, Systems Biology data. Therefore, with the help of users

and scientists from our research group, we defined the list of basic building blocks that a

framework for Systems Biology experiment composition needs:

Composer services: user-driven model definition, load imported behaviours, load imported

data, abstract behaviour, edit behaviours and data, compose submodels, define

model variants, define behaviour mutation strategies.

Knowledge Inference services: automated and user assisted computation of rates and behaviours.

Runner services: simulation: chemical interactions, spatial/diffusion; numerical analysis;

Markov chain extraction; model checking; static analysis; abstract Interpretation;

type checking.

Abstraction services: statistics; analysis of components; Fourier analysis.

Visualization services: plotting; dynamic view; spatial view; structural views: graph of reactions.

Box 5 Ontology terms

Entity: a biological entity, able to evolve its own state and the state of other
entities. Possible evolutions are of finite types

Behaviour: a set of evolution capabilities of a set of entities

Values: an instantiation of the speed of evolutions and of the initial popu-
lation of entities

Model: a pair (Behaviour,Values)

Question: a property of the model (or of the behaviour) whose satisfaction is
to be quantified (probabilistically) over time

Service: a processing block that takes as an input a model and a question
(all optional) and returns a model and a question (all optional?)

Protocol: a workflow of activities processing MODELS, under the control of
QUESTIONS

Experiment: the process of an execution of the workflow, from one defined
START activity to a defined END activity
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6.1.1 Workflow vs. Dataflow model

A workflow 2 is a pattern or composition of steps or activities designed to achieve process-

ing intents of some sort. Steps are organized into a work process, that can be documented

and learned, using some basic operators: sequencing of connected steps and operations,

choice between multiple alternative steps, and so on.

The term workflow is also often used in computer programming to capture and develop

processes and scenarios that may require human-machine interaction.

The most important programming and runtime frameworks provide libraries for cre-

ating, composing and executing workflows. This support can be more or less complete

and integrated with the runtime environment. As an example, consider the Windows

Workflow Foundation (WF), part of the .NET Framework.

The primary goal of WF is to support business processes; the discrete series of step

that describes the activities of the people and software involved in the process is described

as workflows. Once this workflow has been defined, an application can be built around

that definition to support the business process. WF allows to build workflow-based appli-

cations, whether those applications coordinate interactions among software, interactions

among people, or both. WF addresses the main challenges that arise when dealing with

real-world business processes: for example, some business processes can take hours, days,

or weeks to complete; state and resource need to be controlled and maintained, making

applications persistable for example. Flexibility, the ability to change a business process

on the fly, handling unpredictable behavior, allowing for domain-specific activities and

coordination primitives are all requirements considered and fulfilled by WF.

At first sight, workflows in general, and WF in particular, could be a very good choice

for our purposes. The Trident Scientific Workflow Workbench, for example, is a software

from Microsoft Research built on the Windows Workflow Foundation that can be used to

compose, run, and catalog experiments as workflows [210]. Being based on WF, the many

strong points of WF (like, for example, fault tolerance, resilience, persistence, scheduling

over HPC clusters or cloud computing resources, ...) are inherited automatically (for a

more detailed overview of Trident and WF, see Section 6.2).

However, it also inherits the same weaknesses, or better, those characteristics that

make it good for large-scale, large-data processing and computations but not so great for

fast, short, data intensive computations. In other words, while Trident might be a great

choice for some of our scenarios, usually we are dealing with a finer level of granularity.

Moreover, we think that an approach focused on the flow of data rather then on the

2Note that here we are referring to workflows as a software technology to formalize and structure complex and
possibly distributed processes, not as a language for modelling a simulation. The usage of workflows as modelling
tools, although an interesting topic, is out of the scope of this thesis.
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control flow might fit our needs best.

As an example, consider a scenario that occurred in our research group. Forlin et al.

needed to build a quantitative model to make predictions on the effect of the removal

or addition of some bio-molecules from a synthesis pathway present in fruit plants. The

group only had a partial idea of the interaction network, and therefore part of it had to

be inferred from existing knowledge. The available data included some experimentally

measured time series, which indicated the variation in concentration over time of each

species. Forlin processed the data, using first some statistical techniques and then some

genetic programming techniques to guess the network structure and then refine it, until

the network output matched the experimental measures.

In order to build this kind of application, the scientists reused some tools already

developed in our group (simulators, time series and data readers) plus some third party

tools (mainly packages from the R statistical analysis suite); then Forlin automated the

procedure connecting the various pieces with Python, a scripting language.

Obviously, not every scientist has the knowledge and time to craft an ad-hoc solution

for every different experiment. Moreover, tools and solutions built in this way are usually

targeted to the particular case and data under exam: they lack generality, making also

hard to reproduce the same steps in a later phase or under slightly different situations.

An easier and more dependable way of building and composing systems biology tools

is therefore needed. Consider again our requirements: we would like users to consider

our interoperable tools as basic building blocks and use them to compose a protocol to

design and implement in-silico experiments. These requirements are very close to the ones

needed to build biological models, that we introduced in Chapter 2 and 3.

We can consider software tools as interacting agents with well defined interfaces, like we

did for bio-molecules. In this way, we can see how similar the solution to the two problems

might be (Figure 6.1). This approach shifts the focus to the interaction capabilities of

each agent, and hence towards a data flow model. The flow of data passed from one agent

to the other and how this data is processed and transformed by the agents defines the

interactions between tools or components, rather then the sequencing of actions and steps

(Box 6).

6.1.2 Dataflows for biological experiments

The BlenX language inspired our service model: the notion of typed interfaces, of reactive

programming, and the focus on the exchange of data all derived from our knowledge of

BlenX. There are four main differences however:

1. For simplicity, we divider the interface in input and output ports. We also added a
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Figure 6.1: We represented the cell (a), with its receptors, as a BlenX box in (b), with its
interaction sites (binders, or collectively interface); this idea influenced our definition of services
(c) as autonomous computing units. Services, like BlenX boxes, have an interface and an internal
process machinery; they react to inputs and produce output data as a result of some interaction.

control or configuration port (the round dot in the Figure); this ports sets up the

service during initialization, configuring and controlling it so that it is conform to

the question (see Box 5).

2. The internal process needs to be written in a real programming language; the BlenX

internal process language is not enough. Although it is desirable that the language

or framework for service programming has parallel features, which BlenX supports,

we have to remember that services are complex pieces of software (simulators, data

analysis toolkits, 3D rendering engines,...) which have to be written using a general

purpose programming language.

3. Binder types are replaced by port types, which are the data types of the underlying

programming language, or must be easily mapped onto them. The type of data

exchanged and processed by services includes, but is not limited to:

• Primitive data types (strings, integers, double)

• Time series

• Graphs
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Box 6 Which is the difference between data- and workflows?
We already defined a workflow as a discrete series of steps that describes the activities of the people
and software involved in a process. In this sense, a workflow is not different from the control flow
model typically found in conventional programming: in fact, workflow frameworks like WF were strongly
inspired by orchestration languages (like BPEL), which in turn are built upon process algebras. It is
possible to recognize in WF many pi-calculus operators: replication, parallel, choice, sequencing.
On the other hand, a dataflow-based programming model focuses on the exchange of data, in which the
dependencies between data is explicit, and the flow of the operations on that data is determined by
these dependencies. Variations of values, for example, automatically triggers the computation of other
values linked to it. Dataflow programs are often referred to as reactive programs: the program is built
as a network of concurrent processes (or, in a simpler case, automata) connected by channels. Processes
communicate by sending data over channels, and react to input data by triggering a new computation,
that will lead to the production of new output messages. Dataflow-based program are like a series of
workers on an assembly line, who do their assigned task as the materials arrive.
Both these models are well suited to programming a variety of concurrent or distributed processing
scenarios. It is interesting to note that BlenX, introduced in Chapter 3, can easily embrace both pro-
gramming models. Interaction between boxes, being based on types, message exchange, and interaction
capabilities reflect more closely a dataflow-based programming approach; the definition of the internal
processes, however, closely resembles a workflow programming model.
The difference between dataflow-based and workflow-based models resembles the difference between func-
tional and imperative programming: it is not sharp and clear, and it is more a matter of style, discipline
and focus (for example, it is possible to write functional-style code in an imperative language like C#,
and imperative code in a functional language like ML) than of computational power (as we know, all
mainstream programming languages are equivalent).

• Models (Behaviour, Data), our main data type

Model
BehaviorBehavior ValuesValues

Service Service

4. The affinity bases interaction model is replaced by an interaction model based on (a)

type compatibility and (b) user-defined interactions. Ports can exchange messages

only if their type is compatible (e.g. an input port of type double could receive

messages from an output port of integers) and only if the user connected them (see

Figure 6.2).

Obviously the last point is key to achieve our goals: users need to be able to compose

service in a flow that examines, process and stores the data in the way they meant, in

order to produce an in-silico experiment.

For example, consider the data flows in Figure 6.3. These composition of services

allow the user to create store, run, and persist on permanent storage (for future usage or

reference) the procedure to reproduce an experiment, something he previously needed to

do by hand.
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Figure 6.2: Visual composition of services

While workflow frameworks are rather diffused, mainly due to their wide adoption

to model and implement business processes, dataflow frameworks are rather uncommon.

On the other hand, we wanted to quickly experiment our ideas without the burden of

building and testing a complete dataflow framework from scratch, at least not in this

research phase in which we did not know if our approach will turn our to be effective.

Therefore, we looked if we could borrow some existing technology from other fields of

research.

6.1.3 Robotics Studio

Microsoft Robotics Studio is a software platform for the creation of programs to control

and run small robots. Robot programs are by their nature reactive: robots reacts to

stimuli from the environment to plan and execute their actions. You can even think of

a robot as an agent or box: stimuli and message post to its interface are processed, in

order to both update the robot’s internal state and, possibly, to produce some output or

reaction from the Robot.

Robotics studio adopts very interesting and innovative solutions to write this kind of

programs. In particular, it is based on VPL (Visual Programming Language) and DSS

(Distributed Software Services). VPL and DSS enable the design of applications starting

from basic blocks. In this case, the basic blocks (also called activities) are a set of pre-

defined data processing primitives and a set of user-definable activities called services.
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Figure 6.3: Data flows for the execution of in-silico (a) evolution experiment (see Chapter 7 for
a complete explanation) and (b) model refinement experiment.

Services are implemented using C# and communicate using a lightweight protocol. VPL

(Visual Programming Language) is a dataflow based visual orchestration language for

activities, services and primitives.

Services are executed within the context of a node, a hosting environment that provides

support for services to be created and managed. The DSS service model has been designed

to facilitate reuse of services. It does this by making them easy to use and compose with

each other while enforcing a very loose coupling between them. All DSS services consist

of a common set of components as depicted in Figure 6.7.

It is easy to observe that DSS services are very similar both to BlenX boxes and to

our own service concept: the major difference lays in the presence of only one port on

which multiple message types are multiplexed. For every message type, it is possible to

register one handler; when a message of that kind is received, the correct handler is called

automatically. Multiple communication partners over the same port are also allowed: they

can all post messages that will trigger the same handler, or alternatively invoke different

handlers using a different message type. Notice that the message type is different from

the transported type: you can have different message types (for example, PostError and

PostResult) that carry the same payload (e.g. a string or an integer).

Internally, message handlers are written using a .NET language. It should come to no

163



6.1. TOOLS AS SERVICES

Model

Behaviour
(code)

Values

Rates

Load/Edit BlenX
model

Model

Behaviour
(code)

Values

Multi

Selector/Mutator

Fitness

Sim Sim

Fitness
Behaviour

(code) Rates

Rates

TracesFitness

Sim

Fitness

Figure 6.4: Details of the evolution data flow, with the types of data exchanged between services.

surprise that in order to help in writing message handlers and code for service processing,

the framework includes a library for concurrent programming, called CCR ( Coordination

and Concurrency Runtime), a fast library for asynchronous parallel programming based

on the join process calculus. Therefore, the analogy between our BlenX-based service

model is even deeper than one can initially think. Therefore, we decided to try and

implement our own service model on top of DSS, using the CCR to coordinate the flow

of data and messages.

This choice proved to be successful: the DSS framework took care of the details (like

serialization, object communication and linking, ...). This, together with the notion of

contracts and the usage of well defined interfaces, made it easy to exchange complex data

structures between services. It was easy to create new services and also to encapsulate

existing code in DSS services, as we shall see in the case study in Chapter 7. Scalability

proved to be a strong point, thanks to the ability of running services on different machines

and making them communicate seamlessly. Performances were also pretty good, with

some optimizations when services operated on same machine.

The Visual Programming Language was a good idea, and was very appealing to us: we
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Figure 6.5: A detail of the model refinement data flow, with the types of data exchanged between
services.

hoped that our target users could find easy to program interactions between services and

activities in this way; unfortunately, it proved to be not flexible and counter-intuitive in

many ways, above all in the way of connecting services in a data flow. Other drawbacks

were the lack of flexibility in the definition of activities; extensibility is guaranteed only

through the design and implementation of new services, which is not ideal in some scenario.

Finally, while DSS and CCR are designed to be extremely efficient and have great

performance, they are however too slow to be used in some cases, where the level of

granularity we have in mind is very fine (think about a Data Writer service that is in-

voked at every simulation step, or imagine a visualizer that performs real-time volumetric

rendering). Again, lack of flexibility confirms to be the more relevant problem.

An example: Redi

As a simple example of how this framework can be applied to a real problem, consider a

stochastic simulation with Redi (see Section 4.3).

Redi has a plugin structure that fits nicely into the DSS model: we encapsulated each
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DSS Service

CCR

DSS Service

CCR

Figure 6.6: The basic DSS service composition model.

Figure 6.7: A DSS service (from msdn.microsoft.com)

Figure 6.8: Composition and running of Redi as a network of DSS services
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Figure 6.9: Redi and its plugin running as DSS services
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plugin in a DSS service. We also build a re-usable DSS services that takes as input a class

whose memebers are the simulation parameters, builds a grid view over it and exposes

then to the user (Fig 6.8). In this way, we simulate the presence of the “control” port we

mentioned in the previous section: simulation parameters are recorded and “published” to

the interested services, triggering also the execution of the other services in the dataflow.

Output and visualization plugins can be composed and configured using the VPL graphical

editor, as depicted in Figure 6.9.

6.2 Related work and Future directions

We already mentioned Microsoft Research Trident previously in this Chapter as an ex-

ample of a software built upon workflow technology [210]. Trident adds to WF domain

specific activities, basic workflows, a library (which is a catalogue of existing activities

and workflows), a registry (a catalogue of known services and data sets) and a visual

composer part (called workbench) to support the creation and composition of scientific

workflows. The goal is to provide basic elements that are useful and understandable by

domain scientist, to let them compose, publish, track workflows without being developers

or computer experts. Trident also adds to WF some valuable features, like the ability to

schedule workflows on HPC clusters, the subdivision of activities and workflows by roles,

services for automatic provenance and logging, and a web portal written in Silverlight

that guarantees cross-platform access. It also has features what Trident authors define a

“semantic” workflow discovery, which is a simple system to search for a particular work-

flow based on tags and annotations. While the underlying idea exposed by both Trident

and our service-based framework is the same, the granularity and scope of application

are different, making the two approaches complementary rather than opposite. In fact,

for longer-running (coarser granularity) workflows, the runtime provided by WF (and

therefore by Trident) offers support for checkpointing, persistence, resuming, which are

desirable features. On the other end, it seems to be not suitable for fast, real-time mes-

sage passing. Our service-based model, instead, aims at having better performance for

message passing and communication of complex structures between services, making them

suitable for composition fast, finer grained components. Our prototype based on DSS and

the underlying CCR, despite some limitations highlighted in the previous Section, showed

that this is achievable.

The Taverna Workbench [111] is an open source tool for designing and executing work-

flows created by the myGrid project. Taverna is very similar in design and philosophy

to Trident: it is a family of tools for designing and executing workflows, that consists of
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the Taverna Engine (workflow execution engine), the Taverna Workbench (desktop client)

and Taverna Server (remote workflow execution server, which sits on top of the execution

engine). Taverna allows for the automation of experimental methods through the use of

a number of different services; notice that Taverna services, like Trident services, are not

the small, fast components we introduced in our framework, but are mainly Web services.

Services come from different domains like biology, chemistry but also meteorology and

social sciences.

The Systems Biology Workbench (SBW) [109], instead, seems to be closer in spirit to

our service model. Citing their documents “SBW, is a software framework that allows het-

erogeneous application components to communicate and use each others’ capabilities via a

fast binary encoded-message system [...] a simple, high performance, open-source software

infrastructure which is easy to implement and understand”. The SBW message exchange

system is implemented through a simple network protocol, which allows to potentially run

different components on separate, distributed computers. It is, however, more oriented

to programmers than to end users. In other words, it is more similar to a component

or object broker3 than to an orchestration framework. SBW enables interoperability and

compatibility between components created using the framework, but components need

to be instantiated an used inside a program or script; discoverability and self description

capabilities limit somehow their ease of use (inside a visual programming and composition

environment, for example).

On a related note, James II [226] provides a plug-in that adds an experimentation

layer4. This experimental layer allows for the definition and execution of simulation ex-

periments. In particular, it provides a framework for setting up and executing simulation

experiments, focusing on correct handling of random number generators, replication, re-

peatability and choice of the simulation algorithm [104]. The layer greatly facilitates the

configuration and usage of James; also, the plug-in system in James allows to develop

more complex experiments as a composition of plug-ins [68]. However, the focus is on

modelling and simulation: unlike Taverna, Trident or the proposed framework, the exper-

imentation layer does not explicitly provide a way of composing different tools to build

complex experiments, using an high-level, graphical language.

Finally, the myExperiment web portal is worth mentioning. myExperiment [51] is

3For example, like CORBA or DCOM
4Like many other modelling and simulation frameworks, James has a modular design based on plug-ins.

However, as already noted, our focus goes beyond extensibility of a simulation framework, to cover all the different
aspects of in-silico experiments, in which simulation is only one of the tools
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not a workbench or a framework; it is rather a sort of “social network”, a collaborative

environment where scientists can publish their workflows in order to share expertise and

avoiding reinvention. The myexperiment.org web site contains a large, public collection

of workflows. Workflows span over multiple systems including Taverna and Trident.

In conclusion, Trident and Taverna are workbenches that allow a scientist with limited

computing background to construct highly complex analyses reusing components and

processes by the community; in some cases, they allow even groups with limited in-

house computing resources to run those processes and analysis over public and private

distributed computational resources.

On the other hand, SBW and James II are frameworks targeted at developers and

designed to make easier for them to build interoperable tools. This is a great advan-

tage for the community, as both developers and users benefit from this interoperability;

the former group can build new solutions re-using or inserting into existing components;

the latter can use software (for example, JDesigner) which, thanks to SBW, can provide

many functionalities (different stochastic simulation algorithms, etc.) from different re-

search groups. However, SBW and James II components need traditional programming

techniques (e.g., writing plug-ins, instantiation and compose them from code,...) in order

to be used; these techniques require skills that are not immediately acquired by every

systems biology scientist.

Future directions

The BlenX-inspired service model was implemented, with some adaptations, on the Dis-

tributed Software Services framework. This prototype proved to be both quick to build,

sufficiently easy to use and fast. As we previously highlighted in the Chapter, there were

however some weak points; our future research and development will try to overcome

these weak points.

Furthermore, we plan to investigate interoperability with workflow technologies, like

Trident and Taverna: as we pointed out, these techniques share the same underlying

ideas, but at a different level of granularity. Integration of our service model inside

these workbenches would allow to use fast-little components for data crunching as well as

workflows for lengthy, distributed processes.

Finally, as we mentioned in the introduction, the introduction of versioning and re-

producibility in systems biology workbenches and toolkits could add immense benefits to

researcher. These two features are related, as they both need to keep track and store

information about models, experiments, steps and parameters used for simulation and

analyses. The systems biology community has put a good effort in the definition of
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standards dictating which information has to be recorded, that led to the creations of the

MIASE (Minimum Information About a Simulation Experiment) standard with its formal

representation SED-ML, and of the MIRIAM standard (Minimum Information Required

in the Annotation of Models). However, software implementations of these standards are

still scarce. A notable example is James, which through its plug-in system started to grow

in this direction [68].

The integration of ideas and functionalities – in particular versioning of models and

results and automatic recording of changes, parameters and steps of in-silico experiments

– within the framework presented here would be another step in the direction of seamless

management of systems biology experiments.

6.3 Summary

In this chapter we focused on the problem of the definition of complex in-silico experi-

ments, where the user needs to move (scale) from a single simulation to more complex

experiments where multiple tools are needed. In particular, we introduced a framework

for the design and execution of general in-silico experiments. The framework allows to use

different tools, exposed as services, and to combine them in a dataflow, allowing to build

complex experimental protocols from basic building blocks. We compared our approach

with other, related technologies: workflows, plug-in systems, simulation frameworks with

support for experiments, highlighting similarities and differences.
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Chapter 7

Case study: Evolution

In this chapter we examine how the techniques introduced and described in the previous

Chapters helped our research group to create in-silico experiments of a scale larger than

was possible previously. Moreover, we show how, using the techniques presented in this

thesis, both the components and the process developed for this experiment can be reused,

something that was difficult to achieve originally.

This case study is an updated version of [59] and [60], where some parts are updated

using the results described in this thesis.

In [60], we presented an evolutionary approach to study biochemical networks. The

approach is based on an evolutionary algorithm. Evolutionary algorithms are one of the

first examples of cross fertilization between biology and computer science; algorithms and

tools that mimic evolution are known from the pioneering work of Fogel in 1966 [76].

These algorithms are inspired by evolutionary biology concepts, like inheritance, muta-

tion, selection and crossover. They have been applied to areas such as machine learning,

optimization, search problems; however they soon lost their strict connection with biology

and therefore brought advantages only to computer science.

On the other hand, approaches to study evolution are commonly based on comparative

genomics or proteomics and on phylogenetic analysis [208, 9]. These studies compare

networks from different organisms to infer how evolution affects the internal structure of

the network of interactions.

Recently, however, there is an interest in understanding how networks emerged during

evolution: knowledge of the process can help us to understand their basic properties, such

as the role of complexity and the importance of topology and feedback loops. Therefore,

alternative approaches emerged to simulate and re-create evolution in-silico; differently

from evolutionary algorithms, they mimic the process in a very close and precise way

[212, 169, 170, 163].

Up to now, these approaches have used ad-hoc tools and representations of network
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dynamics, usually based on mathematical models, without exploiting the capability of the

new computational and conceptual tools of systems biology.

Our goal is to blend evolution in-silico with computational models based on systems

biology oriented languages, rejuvenating the mutual enrichment between biology and com-

puter science. We develop a specific framework to allow straightforward study of network

evolution based on the BlenX language and on the techniques described in Chapter 4

and 6. The great flexibility of BlenX in the definition of the structure of proteins al-

lows us to introduce primitives for mutations used to build domain-based interaction and

mutation models. Starting from the study of mutations at a biological level, we end up

with some interesting program modifications that permit us to mutate the BlenX repre-

sentation of biological entities in a meaningful and automatic way. Moreover, network

dynamics can be easily modelled, and the interactions of emerged networks analysed.

7.1 Description of network dynamics

To study biological evolution of networks, we need a way to describe network dynamics

and an algorithm to simulate network evolution from a generation to the next one.

7.1.1 A compositional model for signalling networks

A signalling network is any biological process that converts one kind of signal or stimulus

into another; this conversion is also called signal transduction. In general, a signalling

network results in a composition or cascade of biochemical reactions that are carried out

by proteins and linked through second messengers. Biological signal transduction allows

a cell or organism to sense its environment and react accordingly. Typically, a signalling

network has one (or more) inputs, represented by any environmental stimulus, and one

(or more) outputs, represented by an active protein.

We represent a protein in BlenX as a biological entity composed of a set of sensing

domains, a set of effecting domains and an internal structure. Sensing domains are the

places where the protein receives signals, effecting domains are the places that a protein

uses for propagating signals, and the internal structure codifies for the mechanism that

transforms an input signal into a protein conformational change, which can result in the

activation or deactivation of another domain. This is inspired by the available knowledge

of protein structure and function (see for example [215]).

Each biological entity is modelled with a box, which is a composition of an inter-

face and an internal process unit. This gives an effective way for modelling proteins by

decomposing the domains of interaction and the internal structure into two different con-

structs. Moreover, the compositional nature of the language allows us to design and apply
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mutations on biological entities in an effective, simple and intuitive way.
We propose a general methodology for modelling proteins by providing patterns for

modelling interaction domains and internal structures. Domains are represented using
binders, i.e., interaction sites with an affinity. A sensing domain is represented by a
binder, and the mechanism of message-passing is used to implement the reception of
activation (e.g. phosphorylation) and deactivation (e.g. dephosphorylation) signals sent
to the protein. The effecting domain is instead used to communicate, and so to activate or
inhibit, other proteins. A general pattern for modelling a protein which can be activated
by a single external signal was already presented in Sec. 3.1.2; we recall here the code for
the pattern:

template pSTATE1s: pproc<<binder Base, binder Active>> =

rep state1?().(

unhide(p).ch(recv,Active).

recv?().hide(p).ch(recv,Base).state0!().nil);

template pSTATE0: pproc<<binder Base, binder Active>> =

rep state0?().(

ch(recv,Base).recv?().ch(recv,Active).state1!().nil);

template SingleK: bproc<<binder K, binder Base, binder Active>> =

#h(p, K), #(recv, Base)

[ recv?().state1!().nil |

pSTATE0<<baseK3,activeK3>> |

pSTATE1s<<baseK3,activeK3>> |

rep p!(plus).nil ];

SingleK is a template for the initial (inactive) state of the protein. When an inter-

boxes communication is executed through recv binder, the action recv?() is consumed,

and the intra-box communication on channel state1 is immediately executed. This trig-

gers the sequence of actions unhide(p) and ch(recv,Active) (because their rates are

inf). The obtained box has reached its active form, where the binder p is unhidden

and the box can execute inter-communications through it. Now, if the box executes an

inter-boxes communication through the binder recv, the reverse mechanism is executed

and the protein returns back in its inactive form.
The pattern for modelling a protein which can be activated by receiving a signal twice

is slightly different: five processes are put in parallel composition to represent the internal
behaviour of the protein; one of them (pSTATE0) is the same as before, and another one
(pSTATE1) needs a minor modification:

template pSTATE2: pproc<<binder Intermediate, binder Active>> =

rep state2?().(

unhide(p).ch(recv, Active).

recv?().hide(p).ch(recv, Base).state1!().nil);

let pSTATE1: pproc =
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rep state1?().(

recv?(what).what!().nil |

(plus?().state2!().nil + minus?().state0!().nil));

template DoubleK: bproc<<binder K, binder Base,

binder Intermediate, binder Active>> =

#h(p, K), #(recv, Base)

[ recv?().ch(recv, intK2).state1!().nil |

pSTATE0<<Base,Intermediate>> |

pSTATE1 |

pSTATE2<<Intermediate,Active>> |

rep p!(plus).nil ];

The pSTATE0, pSTATE1 and pSTATE2 processes encode the state machine that allows us to

switch from the inactive to the active state and back. After receiving the first signal (with

an activation mechanism similar to the one described for single signal activation), the

process pSTATE1, representing an intermediate configuration, is activated. This process

presents a choice behaviour: when a name minus is received, the process for the inactive

state is enabled again; otherwise, if a name plus is received, the process representing the

active state is enabled.

At the beginning, boxes are instantiated from the templates and are in the inactive

form. Signals that enables the different internal processes are received when a box exe-

cutes an inter-boxes communication through the binder recv. When the internal process

pSTATE2 is enabled, the box enclosing it has reached its active form. The reverse mecha-

nism allows the protein to return back in its inactive form.

Obviously these patterns can be easily extended for modelling proteins with more than

one sensing and effecting domains and for modelling mechanisms of activation based on

the reception of more than two external signals.

As a final remark, note that the processes in these patterns can be seen as codifications

for different states. The set of processes in these patterns are mutually exclusive, i.e. only

one of the processes in the set is active at any given moment. Furthermore, upon a change

each process enables exactly one process in the set before blocking on an input action.

The set of processes act as a state machine; this behaviour will be useful for introducing

mutations of processes in the next section.

7.2 Evolutionary framework

We propose a framework for simulating the evolution of networks in-silico. Evolution

proceeds through selection acting on the variance generated by random mutation events.

Individuals replicate in proportion to their performance, referred to as fitness. This pro-
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cess can be modelled as shown in Tab. 7.1. This algorithm differs slightly from the generic

EvolutionAlgorithm ():

Population := GenerateInitialPopulation();

for i = 0 to generations do

for each Individual in Population do

output := Simulate(Individual);

fitnesses[Individual] := ComputeFitness(output);

NewPopulation := ReplicateAndMutate(fitnesses, Population);

Population := NewPopulation;

Table 7.1: Generic EvolutionAlgorithm.

evolutionary algorithms used in computer science, being closer to real biological observa-

tions made for the asexual reproduction of organisms. Each individual in the population

is codified using a BlenX program, and the boxes in each program are the abstraction of

all the entities present in that individual. The interaction among these entities result in

the behaviour of the network we want to study.

There are four main procedures in the algorithm:

• GenerateInitialPopulation: the initial population can be generated randomly,

from a predefined network configuration to be used as a starting point, or it can be

a network with no interactions. All the individuals in the initial population can be

equal at the beginning, as they will be differentiated later by the mutation phase.

• Simulate: each individual in the population is simulated separately using the

BetaWB stochastic simulator.

• ComputeFitness: the output of the simulation is used to compute the fitness value

of the current individual. Note that the fitness value is problem-dependent; for an

example, refer to Sec. 7.4.

• ReplicateAndMutate: this is the most important part of the algorithm; like in

a real environment, individuals with the highest fitness values are more likely to

survive, replicate and produce a progeny that resembles them, being not, however,

completely equal to them.

The ReplicateAndMutate algorithm (Tab. 7.2) creates a new population with the

same number of individuals of the current generation, using as a base the current in-

dividuals. At each step it chooses one individual, with probability proportional to its
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ReplicateAndMutate (fitnesses, Population):

for i = 0 to i < Population.Size do

Individual := ChooseOneIndividual(Population, fitnesses);

for each Protein in Individual.Proteins do

if Random() < DuplicationProbabily

Protein2 := Protein.Duplicate();

Individual.Proteins.Add(Protein2);

for each Domain in Protein.Domains do

if Random() < MutationProbability

MutationType := GetRandomMutation();

if IsMutationFeasible(Domain,MutationType)

Domain2 := Individual.PickCompatibleDomain(Domain,MutationType);

Individual.Mutate(Domain,Domain2,MutationType);

NewPopulation.Add(Individual);

return NewPopulation;

Table 7.2: The ReplicateAndMutate algorithm.

fitness (ChooseOneIndividual in the code above). This is achieved by constructing a

cumulative probability array a from the fitness array, generating a random number in the

range 0...a[Population.Size], and then finding the index into which the random number

falls.

The selected individual will replicate and pass to the next generation. During the

replication, each protein in the “genome” of the individual is given the chance to mutate,

according to a probability.

A mutation is selected among all the possible types by the GetRandomMutation

function, and this mutation is applied. Finally the individual, which can be either equal

to its predecessor or mutated, is added to the new population. We now define in more

detail the mutations that we consider in our framework.

7.2.1 Mutations

Here we consider the end-effects of point mutations occurring at the DNA level. These

mutations ultimately affect network dynamics. For example, mutations in a DNA se-

quence can change the protein amino-acid sequence, leading to changes in its tertiary
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structure with implications on the affinity of this protein with other proteins or sub-

strates. Similarly, events at DNA level as gene duplication or domain shuffling can alter

network structure and dynamics.

A computer program which is used to mimic evolution of a species must implement

random mutations in individuals during replication as well. Here, we can easily implement

these molecular processes using the domain and network model we discussed in Sect. 7.1.1.
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Figure 7.1: Different kinds of mutations: in (a) the initial configuration, displaying the α function
as a list of tuples; in (b) duplication of protein C followed by mutation of domain ∆C

out in (c).
Finally, (d) displays how the internal structure could change to accommodate the duplication
of a domain.

We will take as an example the three-protein network represented in Fig. 7.1(a) and

we will illustrate how different mutations can be modelled in BlenX.

Duplication and deletion of proteins

Gene duplication at DNA level is implemented with a duplication of the box associated
to the protein the gene codifies for. The new box will have the same internal structure
and the same binder names, while binder identifiers will be new but will have the same
interaction capabilities. This is achieved by copying the affinities of the original binder
identifiers. Duplication of binder identifiers is needed because subsequent mutations on
one of the binders of the duplicated protein must not affect the original one. Furthermore,
since the new protein is a new distinct entity, it must not be structural equivalent to the
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original one. The same considerations hold for the internal processes: duplication and
deletion of domains may lead to a modification of the internal structure (see next section);
the internal processes must be duplicated so that each box has its own, distinct internal
behaviour. Using the templates presented in Sec. 7.1.1, the box for protein C

let C: bproc = DoubleK<<outC, baseC, intC, activeC>>;

will be duplicated to

let C: bproc = DoubleK<<outC, baseC, intC, activeC>>;

let C1: bproc = DoubleK<<outC1, baseC1, intC1, activeC1>>;

Deletion of a protein is accomplished by deleting the associated box, the internal

process it refers to and the appropriated entries in the α function.

Mutation of domains

Point mutations in DNA can change the protein amino-acid sequence, and consequently

lead to the mutation of a domain and to changes in the interaction capabilities of the

protein to which it belongs. In our formalism, this is achieved by changing the α function

on the two domains that take part in the interaction. More specifically, the mutation on a

domain can be a change of interaction, for which we modify the affinity adding a number

sampled from a normal distribution, an addition of an interaction between two domains

d1 and d2, modelled as the addition of an affinity α(d1, d2) = x, with x > 0, and finally

a removal of an interaction between two domains d1 and d2 setting α(d1, d2) = 0. For

example, the mutation on domain outC that can be observed in Fig.7.1(c) is obtained

by changing the compatibility from α(outC, activeB) = 1.0 to α(outC, activeB) = 0.0,

α(outC, baseB) = 0.9; in this way the internal process of C is now allowed to send a plus

message when the B process is in an inactive state, represented by the binder identifier

baseB.

Duplication and deletion of domains

Domain duplication or deletion is more complex as it involves not only interfaces or rates,

but requires also modification of the internal behaviour in response to stimuli.

Duplicating or removing domains can be easily done acting on the binders list and on

the affinity function α; however, for these domains to act as sensing or effecting domains

in cooperation or in antagonism with the existing ones, the internal behaviour of the

process must also be changed. We devised several possible modifications of the behaviour

when a domain is added.

As an example, consider the case of a sensing domain: when a signal arrives -by means

of a ligand binding, or by phosphorylation of a residue- the internal behaviour of the
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protein changes bringing it to a different state. If that domain is duplicated, the internal

behaviour must be changed accordingly. The second domain may act concurrently with

the old domain, with the result that the activation of this second domain will bring the

protein in the same state as the old one, acting in parallel. This is the case, for example,

of a receptor that can bind to two different signal molecules. Alternatively, the duplicated

domain can affect the capability of the protein to reach that state, and so must act in

coordination with the original one; this is the case of kinases that must be phosphorylated

twice to activate (double phosphorylation, as in Fig. 7.1(d)).

These mutations are obtained by manipulating the structure of the internal process

to transform their behaviour. In both cases, we assume that the internal process have

a standard structure, as described in Sec. 7.1. This process is built through parallel

composition of different processes, each representing a different state. The set of processes

in parallel is a set of mutually exclusive ones: at any given time only one of the processes

can be active (e.g. not blocked waiting for a communication). Moreover, each process

in the set enables another one by issuing a communication immediately before blocking

itself.

rep state0().( ch(recv, baseA).recv().
                 state1().nil )
                   

rep state1().( ch(recv, actA).unhide(p).
                 recv().hide(p).state0().nil ) 

rep state1().( recv(what).( what() |
                 ( plus().state2().nil +
                   minus().state0().nil ) ) )

rep state0().( ch(recv, intA).recv().
                 state1().nil )
                   

rep state2().( ch(recv, actA).unhide(p).
                 recv().hide(p).state1().nil ) 

Figure 7.2: Transformation for the modification of a sensing domain, introducing a new state.
Light gray highlights the modified actions, dark gray the newly introduced ones.

In the case of “cooperative” domains, where a signal on both is required to reach the

desired internal configuration, the transformation can be accomplished by substituting the

process codifying for the current active state with a new process, adjusting the channel

names used for the intra-communications and binder identifiers accordingly. In Fig. 7.2,

for example, it is shown how it is possible to manipulate an internal process to transform

a protein activated (or deactivated) by a single phosphorylation into a protein that is

activated (or deactivated) by a double phosphorylation, encoding an intermediate step of

“half-activation”.
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rep state0().( ch(recv, baseA).recv().
                 state1().nil )
                   

rep state1().( ch(recv, actA).unhide(p).
                 recv().hide(p).state0().nil ) 

rep state0().( ch(recv, baseA).                
                 ( recv().state1().nil +
                   recv1().state1().nil ) )

rep state1().( ch(recv, actA).unhide(p).
                 recv().hide(p).state0().nil ) 

Figure 7.3: Transformation for the modification of a sensing domain. Light gray highlights the
introduced actions.

The case of concurrent, or competitive domains, where each of the signals can lead to

the desired internal configuration, can be handled in a similar way; in this case however

the process representing the state is substituted with a different process (see Fig. 7.3).

Deletion of a domain requires to undo the steps done while duplicating it. This task

is accomplished again by transformation of the internal process, restoring the behaviour

to the original one.

7.2.2 Measure of fitness

When analysing evolution of specific biological systems, one needs to consider the “fitness”

benefit of that system to the organism (i.e. to its reproductive success). While it is

usually complicated to define and measure such fitness contribution, network dynamics

can provide a good proxy in case of biological networks. As the concentrations of the

proteins involved in such networks will define the proper functioning of the network, how

these concentrations fit a specific time course would determine how well the network

“operates”.

We will illustrate in our example how fitness can be computed using the integration

of a response.

7.2.3 Constraints

We understand that with our framework it is possible to generate countless combinations,

interactions and mutations. Many interactions or mutation can be possible and have

sense from the point of view of a program syntax and semantics, but have little or no

sense from the biological perspective. We addressed this issue by providing a configurable

way of specifying constraints on mutations, their probability and which class, or type, of

protein or domain they can affect.
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7.3 Implementation

We implemented our evolutionary framework using the BlenX language and its supporting

tools (The Beta Workbench, introduced in Sec. 3.2).BetaWB was modified to run within

the experimental service framework introduced in Chapter 6.

(a)

rep state1().( recv(what).( what() |
                 ( plus().state2().nil +
                   minus().state0().nil ) ) )

A Aout

plus
minus

pAact | pA0 | pA1 | pA2 | !p(plus).nil 

(b)

            new PiReplication( 
               new PiAction(new ActionIO("state1", "", ActionType.INPUT)), 

               new PiParallel( 

                  new PiAction(new ActionIO("recv", "what", ActionType.INPUT), 
                     new PiAction(new ActionIO("what", "", ActionType.OUTPUT), 

                        new PiNil())), 
                     new PiChoice( 

                        new PiAction(new ActionIO("plus", "", ActionType.INPUT), 
                           new PiAction(new ActionIO("state2", "", ActionType.OUTPUT), 

                              new PiAction(new PiNil()))), 

                        new PiAction(new ActionIO("minus", "", ActionType.INPUT), 
                           new PiAction(new ActionIO("state0", "", ActionType.OUTPUT), 
                              new PiAction(new PiNil())))))); 

(c)

Figure 7.4: Representation of a protein -a kinase with two phosphorylation sites-: (a) its text-
book description; (b) as a box, with the part of its internal process that encodes its intermediate
configuration; (c) the program code to generate programmatically part of the internal process.

Each individual in our evolutionary framework is represented by a BlenX program.

We used the BetaWB simulator to execute the models and obtain their time courses; we

built a new tool to compute the fitness based on the simulator output files, and a new

tool to manipulate and mutate the BlenX programs, based on the BetaWB libraries.

The challenging part was to implement mutations of BlenX programs. The first three

kind of mutations introduced in Sec. 7.2 act on the α function, and so it is possible to

obtain them by manipulating the BlenX binder definition file, a file that stores in a tabular

way the α function. However, mutations of the fourth kind (duplication and deletion of
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domains) lead to changes in the internal behaviour. These changes are done directly on

the program, by exploiting the executable nature of BlenX. Models written in BlenX

are not meant to be solved (like other formalisms, for example those based on ODEs);

instead, the model code is compiled into a format that is understood and executed by the

simulator virtual machine.

The BetaWB compiles the model Just in Time: the simulator takes the source code

for the model and compiles it into an Abstract Syntax Tree (AST). This tree is the object

model of the processes discussed in Sec. 7.2. Transformations discussed in that section

are implemented by manipulating and navigating in a programmatic way the Abstract

Syntax Tree. Our libraries allow us to access the AST and write it to the disk, generating

a new and perfectly valid BetaWB textual model.

As an example, consider Fig. 7.4, that reports three representations of the same bi-

ological entity, a two-level kinase. In the upper left corner, the kinase is depicted using

the standard representation used in biological papers and textbooks. The figure in the

upper right corner represents the same object as a box with an internal process codifying

for different states. The BlenX code immediately under the box represents one of those

processes, that codifies for the intermediate state. The process is recurring (using the rep

operator) and reacts to signals on the binder representing the sensing domain. When a

signal arrives, the name passed through the communication channel is used to understand

if the protein represented by the box was phosphorylated or de-phosphorylated; a mes-

sage is then sent to exactly one other process in the set, the one representing the active

state in the first case and the one representing the completely inactive case in the second.

The lower part of Fig. 7.4 depicts how the code for the internal process representing the

intermediate state can be generated programmatically using our library.

We built an AST analyser that is able to recognize some patters in the tree and

modify them accordingly. The possibility of recognizing patterns on the tree, of generating

programmatically parts of it and adjusting the remaining part can be used to produce

all the possible mutations at the level of internal behaviour. Transformations introduced

in Figures 7.2 and 7.3, for example, are implemented in the way shown in Figures 7.5

and 7.6 respectively.

In the original paper [60], all the tools in BetaWB are orchestrated by a driver. The

driver application runs all the simulations on a single machine, in a sequential way.

In Chapter 6, we introduced a modular framework for in-silico experiments; one of the

driving motivations in its design is the ability of writing small components to perform

specific functionalities, and then being able to compose them using a graphical environ-

ment in a seamless way. As Figure 7.7 shows, this programming model suits very well to

our evolutionary simulation scenario.
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Figure 7.5: AST transformation for the cooperative modification of a sensing domain.

Figure 7.6: AST transformation for the competitive modification of a sensing domain, with a
full gain in performance.

We updated the original project by dividing the application into multiple services:

a runner service encapsulating the BetaWB simulator; a couple of composer services
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to host the mutation and replication code; a visualization service to trace the progress

of the simulation; another visualization service, implementing the network visualization

introduced in Section 5.2.1, to inspect the resulting networks and other services for support

and bookkeeping.

(a)

(b)

Figure 7.7: The evolution application running as an ensemble of DSS services. Notice the
“Rings” service, displaying a network with high fitness value.

Furthermore, evolutionary simulations are a trivially parallelisable problem: the MRIP

approach described in Chapter 4 is sufficient in this case. Each generation depends on

the previous one, but within each generation each individual lives (e.g. is simulated)

independently from the other. The foreach block of the evolutionary algorithm in Tab. 7.1
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Figure 7.8: MAPK cascade as described in [107]. KKK denotes MAPKKK, KK denotes
MAPKK and K denotes MAPK. The signal E1 transforms KKK to KKKp, which in turn
transforms KK to KKp to KKpp, which in turn transforms K to Kp to Kpp. In particular,
when an input E1 is added, the output of Kpp increases rapidly. The transformations in the
reverse direction are the result of the signal E2, the KKpase and the Kpase. In particular, by
removing the signal E1, the output level of Kpp reverts back to zero.

can be split in concurrent threads of execution.

Our services takes advantage of this fact by running simulations on different compu-

tation nodes on a cluster of PCs, distributing the load between nodes and even, thanks

to their underlying usage of the Coordination and Concurrency runtime, among multiple

cores. Results are then gathered and combined by another service at the end of each

generation.

7.4 An example: MAPK cascade

The mitogen-activated protein kinase cascade (MAPK cascade) is a series of three protein

kinases which is responsible for cell response to growth factors. In [107], a model for the

MAPK cascade was presented (Fig.7.8) and analysed using ODEs; the cascade was shown

to perform the function of an ultra-sensitive switch and the response curves were shown to

be steeply sigmoidal. A process calculi based analysis of the MAPK cascade was presented

in [173]. For simplicity, in this paper we rely on a simplified version of the model, where

all the enzymatic reactions of the form:

E + S 
KES

K−1
ES

ES ⇀KEP EP ⇀∞ E + P

are substituted with simplest reactions of the form:

E + S ⇀KEP E + P

Using the design patterns presented in 7.1, a model for the MAPK cascade has been

developed (see Tab.7.4). Notice that differently from [60], the model has been updated to

the latest version of BlenX, using the constructs introduced in Sec. 3.1.4; therefore, the

model is more compact and readable.
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// Signal template

template Signal: bproc<<binder S>> = #(e,S)

[ rep e!().nil ];

// Phospatase template

template Phospatase: bproc<<binder P>> = #(x, P)

[ rep x!(minus).nil; ]

// Kinase templates: with single or double activation

template pSTATE2: pproc<<binder Intermediate, binder Active>> =

rep state2?().(unhide(p).ch(recv, Active).

recv?().hide(p).ch(recv, Base).state1!().nil);

template pSTATE1s: pproc<<binder Base, binder Active>> =

rep state1?().(unhide(p).ch(recv,Active).

recv?().hide(p).ch(recv,Base).state0!().nil);

let pSTATE1: pproc =

rep state1?().(recv?(what).what!().nil |

(plus?().state2!().nil + minus?().state0!().nil));

template pSTATE0: pproc<<binder Base, binder Active>> =

rep state0?().(ch(recv,Base).recv?().ch(recv,Active).state1!().nil);

template SingleK: bproc<<binder K, binder Base, binder Active>> =

#h(p, K), #(recv, Base)

[ /*... see Chapter text */ ];

template DoubleK: bproc<<binder K, binder Base,

binder Intermediate, binder Active>> =

#h(p, K), #(recv, Base)

[ /*... see Chapter text */ ];

// Definition: activation and deactivation signals

let E1: bproc = Signal<<signalE1>>;

let E2: bproc = Signal<<signalE1>>;

// The three kinases (one with single phosporilation, two

// with double phosphorilation)

let K3: bproc = SingleK<<kaseK3, baseK3, activeK3>>;

let K2: bproc = DoubleK<<kaseK2, baseK2, intK2, activeK2>>;

let K1: bproc = DoubleK<<kaseK1, baseK1, intK1, activeK1>>;

// The 2 phosphatases

let P1: bproc = Phospatase<<paseP1>>;

let P2: bproc = Phospatase<<paseP2>>;

when (E1 : step = 1500 : ) delete(2);

run 20 K3 || 200 K2 || 200 K1 || 2 E1 || 2 E2 || 2 P1 || 2 P2

Table 7.3: Complete model of MAPK in BlenX
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Following [173], we set all the reaction rates to a nominal value of 1.0 and we initialize

the system with two of E1, E2, KKPase and KPase, 20 of KKK and 200 of KK

and K. Simulating the MAPK system with the BetaWB simulator, similar response

profiles (modulo timescale) were observed for the output of Kpp with respect to the

model presented in [107], despite the differences in the simulation parameters; the system

still behaves as an ultra-sensitive switch.

Figure 7.9: (a) Basic individual of the initial configuration. (b) Only signals E1 and E2 are
enabled. (c) A particular individual we obtained, with a two-level phosphorilation. (d) An
alternative evolution, with single phosphorilation kinases but a longer cascade.

We use this simplified MAPK cascade system as a starting point for testing our evo-

lutionary framework. In particular, we want to analyse the evolution of a population

according to a fitness function which captures the essential behaviour of our MAPK cas-

cade model.

In detail, we generate an initial population of 500 individuals containing the network

shown in Fig.7.9a. We set up very general initial conditions, with a single kinase K1, a

single phosphatase P1, an activation signal E1 and a deactivation signal E2; the model

lacks any interactions among entities. In other words, we consider an ancestral organism

that possessed all the base proteins but lacked a signalling system similar to the MAPK

cascade as observed today. The dynamic of each individual is then simulated; we run each

individual for 7000 simulation steps and we remove the signal E1 at the step 1500 using a
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time-triggered delete event, introduced in Sec. 3.1.1. Using the output of the simulation,

we then measure for each individual the corresponding fitness. The fitness function we

(a) (b)

Figure 7.10: (a) Time course of the Kpp concentration over the simulation time, superimposed
to the integral areas for the fitness function we implemented. The fitness parameters are i1 = 0,
e1 = 2000, i2 = 5000 and e2 = 7000. (b) Time course of Kpp for a network with high fitness.

implemented measures how rapidly the output of an active kinase increases, how much

the output of the same kinase persists after removing the signal E1 before returning back

to the initial condition. Let out = {n0, n1, ..., n7000} be the tuple representing the active

kinase K∗ dynamics in time of an individual, then the fitness for out is formally computed

by the following formula:

fitness(out) = µ+
( ∑e1

j=i1
nj

K∗M ∗ (e1− i1)
−
(
γ ∗

∑e2
j=i2

nj

K∗M ∗ (e2− i2)

))
The two sums, that we denote respectively with A1 and A2, represent discrete integrals

and are normalised with respect to their possible maximum values (see Fig.7.10). The

values i1, e1, i2 and e2 are changeable parameters that define the boundaries for the com-

putation of the two discrete integrals present in the formula, and the value K∗M represents

the maximum value for the K∗ response. Moreover, µ represents the minimum fitness

and γ controls the relative importance to responding to a signal and turning the response

off after its removal. The reported results are for i1 = 0, e1 = 2000, i2 = 5000, e2 = 7000,

K∗M = 200, µ = 0.1 and γ = 0.75.

Notice that we implemented the fitness computation as a separate, customizable ser-

vice. Configuration information provided through the control port can be used to adjust

the aforementioned parameters; if a completely different fitness measure is needed, the

service can be replaced altogether with a different one, without the need to change or

recompile the application.
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Figure 7.11: Changes in fitness during a typical evolutionary simulation.

According to the algorithms presented in the previous section, the population is

evolved. Differently form previous studies we made on the same model, we do not limit

mutations to mutations of domains, but we included also duplication and deletion of pro-

teins and domains. In order to maintain a biological validity for the new individuals,

possible mutations are the one that satisfies the following constraints: (1) signals E1 and

E2 cannot be removed; (2) a kinase can only activate other kinases or itself; (3) kinases

are specific (e.g. they do not phosphorilate multiple proteins); (4) phosphatases are not

specific but can only deactivate kinases.

We iterated the evolution algorithm for 2000 generations, for different values of fitness

function parameters.

We then inspected the generated models using the Plotter and Designer tools from

BetaWB (see Sec. 3.2) and the “Rings” network visualizer introduced in Chapter 5. The

dynamic behaviour of one of the obtained networks is shown in Fig.7.10(b); examples of

obtained individuals are in Fig. 7.9. The network visualizer (Sec. 5.2.1) allowed us to

quickly inspect the result networks, to capture at a glance interesting activation patters.

For example, in Figure 7.12 (a) and (b) we can see how the networks for individuals
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(a)

(b)

Figure 7.12: Individuals displayed in the Rings network visualizer

Fig. 7.9(b) and (c) respectively, look like in our application.

In particular, we did not obtain individuals with a perfect MAPK cascade network,

but individuals in (c) and (d) have very good fitness values and show the two directions in

which evolution went to build an ultra-sensitive switch, namely forming longer cascades

with multiple kinases or having multiple phosphorylation sites. We did not obtain in our

runs individuals whose networks combined the two characteristics; we suspect that this

fact may be due to the fitness function, that reached its maximal values with the two

configurations in (c) and (d). We will conduct more experiments with a more sensitive

fitness function. As a final note, interactions within kinases and phospatases shown in

(c) and (d) are only an example: we obtained also individuals with very complex rela-

tions (self-activations, “reverse” activations -where for example K1 activated K2 and K2

activated K1- and so on).

The variation of fitness during a simulation is depicted in Fig. 7.11. Note the “steps”

in the fitness. We observed this typical behaviour in almost all our runs. In the first

generations, individuals have to find the correct signal: the jump in (a) is realized when the
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the activation signal E1 hits one of the kinases. In (b) instead we have the slow adaption

to the introduction of the deactivation signal: the presence of the signal allows the cascade

to be switched off, but reduces the gain of the switch in response to an activation signal.

The second jump, in (c), is where double phosphorylations or more kinases are added to

the cascade, allowing the network to re-gain the lost efficacy and react in a steep way to

the activation signal. The last phase, (d), is where more phosphatases are added in order

to switch off the response in a quicker way.

Interesting individuals, selected using fitness and complexity measures (e.g. number

of proteins and/or domains and/or interactions) were chosen for further inspection. The

network visualizer introduced in Section 5.2.1 allowed us to quickly inspect visually these

networks: it was possible, for example, to establish at a glance how many components were

involved in a cascade, how signals and kinases interacted (acting in a single or in multiple

points), how fast were the reactions and how many intermediate steps were formed.

The Rings application helped us in finding that particularly fit individuals showed

either a good number (¿=4) of single-phosphorilated kinases on a cascade (showing as

many simple interacting rings) or a few number of kinases (2-3) with many independent

phosporilation sites (showing as few multi-rings or complex networks). Again, components

for selection and visualization were inserted in the tool-chain in a very simple way, using

our framework.

7.5 Related work and Future directions

This chapter presented how the tools introduced in this thesis can be combined and used

to construct a formal approach and a working implementation for simulating the evolution

of networks in-silico.

Network dynamics are described with the BlenX language, which allowed us to de-

velop a modular description of signalling networks. The programming language approach

adopted for modelling allowed us to describe mutations in a novel and modular way as

well: BlenX proved to be well-suited for this task, allowing us to implement mutations as

program transformations.

Following the approach described in Chapter 6, we used a service-oriented framework

to develop various services, and then we composed them together to create an evolutionary

algorithm. We also used the MRIP approach mentioned in Chapter 4 to speed up the

evolutionary simulation. The small example in Sec. 7.4 showed the potential of our

approach; by simulating evolution we can gain interesting insights in network topology,

proteins structures and interactions and on the role of different processes.

Future work in this area proceeds along two main lines. Other researcher in our group
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are currently exploring the usage of the same framework from an optimization perspective,

to help discovering and inferring biochemical network topologies from incomplete data.

At the same time, we plan to use the features in the new version of BlenX to perform

evolutionary computations and simulation of evolution inside a single BlenX model, as we

mentioned at the end of Chapter 3. Our aim is to be able to express mutations, replications

and multiple generations within the language, using first order functions operating on

binders with higher order types.

7.6 Summary

In this chapter we presented a realistic case study that uses some of the methods in-

troduced in this thesis. In particular, we showed how the modular features of BlenX

(Chapter 3) allow to express complex models in a simple, composable way; we showed

how the framework introduced in Chapter 6 allows to orchestrate different tools in a sim-

ple, graphical way to obtain an in-silico experiment that is more complex than a single

simulation; we used a simple but effective parallel execution technique, introduced in

Chapter 4. We then examined the results of the in-silico experiment using the network

visualization technique introduced in Section 5.2.1.
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Conclusions

In this thesis we faced the problem of applying systems biology to large scale systems;

while Systems Biology promises to be able to cope with problems, hypotheses and research

at a system level, some of the methodologies, theories and underlying techniques are yet

in a non-mature state.

Research done during my PhD studies, summarized by the contents of this thesis, de-

fined five main areas of intervention: modelling languages, spatial simulation algorithms,

parallel simulation algorithms, tools for the interpretation of results of in-silico experi-

ments and tools for the composition of in-silico experiments.

Work on modelling languages include my research as part of the team that designed,

formalized and implemented the BlenX language. A programming language approach

promises to enable the construction of very complex models: after all, software systems

are widely recognized as the most complex thing human beings created, more complex

then aircrafts, cars, or computer hardware itself. Therefore, the idea is that programming

languages and their related methods, tools and practices, could be used to scale up the

size of the problems we are able to model and analyse, and help to master the extreme

complexity of biological processes. BlenX was built upon the beta-binders process algebra,

inheriting concepts like affinity-based interactions and encapsulation, to create a language

that can be used to model biological systems in a very compact and modular way. During

the process of creating the language, several other concepts found their way into BlenX; we

designed a language more tailored to the modeller needs in terms of ease of modelling and

expressiveness. Features like events, variables, rate expressions, continuous functions,

made the language easier to use in models of realistic biological systems, where some

details need to be abstracted away in order to concentrate on the central aspects.

Scaling up the size of the biological problems we are able to treat requires advances

in the simulation methods. On the one hand, explicit handling of space in models and

simulation algorithm is necessary if the model goes beyond the level of a single pathway:
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the most used family of simulation algorithm, Gillespie SSA and its variants, do not take

space into account. On the other hand, parallel execution is key to obtain acceptable

simulation performances, especially when we consider that we are living a paradigm shift

in both hardware architectures and software development, from high speed single core

machines and sequential programs to many-core architectures and the parallel software.

Therefore, we devised a method and an algorithm to simulate movement and diffusion

though a crowded, inhomogeneous medium, like the cell cytosol. Then, we analysed the

techniques that can be employed to parallelise the execution of stochastic simulations. We

presented the the practical implementation of a species-based method and of an individual-

based method.

Visualization, especially when dealing with large spatial model (like in developmental

biology), or with very complicated reaction networks, is key to understand and interpret

simulation and analysis experiments. This thesis focuses on visualization techniques to

interpret the results of simulations, with the development of a new technique to visual-

ize reaction graphs, a new framework to visualize biological complexes -with a special

application to BlenX- and of various tools and GUIs to visualize spatial simulations.

Finally, some initial research on ways to design protocols for in-silico experiments is

presented. During our research, we realized that even if simulation is very important

for systems biology, there are a lot of different techniques that can be used; moreover,

simulation is often only a step in a more complex set of operations necessary to investigate

some problem. This thesis propose a method and programming practice to develop tools

in a way that can be easily composed; each tool is encapsulated in a component or service,

each representing a single step to be taken during an in-silico experiment. A composition

of tools, realized in a graphical way thanks to existing technology borrowed from other

fields of research, can be seen as a protocol reflecting a real wet-lab experimental protocol.
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Appendix A

Computed diffusion coefficients

A.1 The model of diffusion

If solutions of different concentrations are brought into contact with each other, the solute

molecules tend to flow from regions of higher concentration to regions of lower concen-

tration, and there is ultimately an equalisation of concentration. The driving force of

the diffusion is the Gibbs energy difference between regions of different concentration,

i. e. the gradient of chemical potential µ. Consider a solution containing N different

solutes. The chemical potential µi of any particular chemical species i is defined as the

partial derivative of the Gibbs energy G with respect to the concentration of the species i,

with temperature and pressure held constant. Species are in equilibrium if their chemical

potentials are equal.

µi ≡
∂G

∂ci
= µ0

i +RT ln ai (A.1)

where ci is the concentration of the species i, µ0
i is the standard chemical potential of the

species i (i .e. the Gibbs energy of 1 mol of i at a pressure of 1 bar), R = 8.314 J · K−1

· mol−1 is the ideal gas constant, and T the absolute temperature. The quantity ai is

called chemical activity of component i, and it is given by

ai =
γici
c0

(A.2)

where γi is the activity coefficient, c0 being a reference concentration. The activity co-

efficients express a deviation of a solution from the ideal thermodynamic behaviour and

in general they may depend on the concentration of all the solutes in the system. For

ideal solution, a limit which is recovered experimentally at high dilutions, γi = 1. If the

concentrations of species i varies from point to point in space, then so does the chemical
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A.1. THE MODEL OF DIFFUSION

potential. For simplicity, we treat here the case in which there is only a chemical po-

tential gradient in the x direction only. Chemical potential is the free energy per mole

of substance i, free energy is the negative of the work W which a system can perform,

and work is connected to force F by dW = Fdx. Therefore an inhomogeneous chemical

potential is related to a virtual force per molecule of

Fi = − 1

NA

dµi
dx

= −kBTc
0

γici

∑
j

∂ai
∂cj

∂cj
∂x

(A.3)

where NA = 6.022× 1023 mol−1 is the Avogadro’s number, kB = 1.381× 10−23 J · K−1 is

the Boltzmann’s constant, and the sum is taken over all species in the system other than

the solvent. This force is balanced by the drag force experienced by the solute (Fdrag,i) as

it moves through the solvent. Drag forces are proportional to the speed. If the speed of

the solute is not too high in such a way the solvent does not exhibit turbulence, we can

assume that the drag force is

Fdrag,i = fivi (A.4)

where fi ∝ ci is the frictional coefficient, and vi is the mean drift speed.

Again, if the solvent is not turbulent, we can assume that the flux, defined as the

number of moles of solute which pass through a small surface per unit time per unit area,

is

Ji = civi (A.5)

i. e. the number of molecules per unit volume multiplied by the linear distance travelled

per unit time.

Since the virtual force on the solute is balanced by the drag force (i. e. Fdrag,i = −Fi),
we obtain the following expression for the mean drift velocity

vi =
Fi
fi

so that Eq. (A.5) becomes

Ji = −kBT
γifi

∑
j

∂ai
∂cj

∂cj
∂x
≡ −

∑
j

Dij
∂cj
∂x

(A.6)

where

Dij =
kBTc

0

γifi

∂ai
∂cj

(A.7)
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are the diffusion coefficients. The Eq. (A.7) states that, in general, the flux of one species

depends on the gradients of all the others, and not only on its own gradient. However, here

we will suppose that the chemical activity ai depends only weakly on the concentrations

of the other solutes, i. e. we assume that Dij ≈ 0 for i 6= j and the Fick’s laws still

holds. Let Di denote Dii. It is still generally the case that Di depends on ci in sufficiently

concentrated solutions since γi (and thus ai) has a non trivial dependence on ci. In order

to find an analytic expression of the diffusion coefficients Di in terms of the concentration

ci, let us consider that the rate of change of concentration of the substance i due to

diffusion is given by

Di = −∂Ji
∂x

(A.8)

Substituting Eq. (A.7) into Eq. (A.6), and then substituting the obtained expression for

Ji into Eq. (A.8), gives

Di = − ∂

∂x

(
−Di(ci)

∂ci
∂x

)
(A.9)

so that

Di =

(
∂Di(ci)

∂x

)
∂ci
∂x

+Di(ci)
∂2ci
∂x2

=
∂Di(ci)

∂cj

∂cj
∂x

∂ci
∂x

+Di(ci)
∂2ci
∂x2

(A.10)

Let ci,k denote the concentration of a substance i st coordinate xk, and l = xk − xk−1

the distance between adjacent mesh points. The derivative of ci with respect to x calculate

in xk− 1
2

is

∂ci
∂x

∣∣∣
x

k− 1
2

≈ ci,k − ci,k−1

l
(A.11)

By using Eq. (A.11) into Eq. (A.6) the diffusive flux of species i midway between the

mesh points Ji,k− 1
2

is obtained

Ji,k− 1
2

= −Di,k− 1
2

ci,k − ci,k−1

l
(A.12)

where Di,k− 1
2

is the estimate of the diffusion coefficient midway between the mesh points.

The rate of diffusion of substance i at the mesh point k is

Dik = −
Ji,k+ 1

2
− Ji,k− 1

2

l

and thence
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Dik =
Di,k− 1

2

l2
(ci,k−1 − ci,k)−

Di,k+ 1
2

l2
(ci,k+1 − ci,k) (A.13)

To determine completely the right-hand side of Eq. (A.13) is now necessary to find

an expression for the activity coefficient γi and the frictional coefficient fi, contained in

the formula (A.7) for the diffusion coefficient. In fact, by substituting Eq. (A.2) into Eq.

(A.7) we obtain an expression of the diffusion coefficient in terms of activity coefficients

γi

Dii =
kBT

fi

(
1 +

ci
γi

∂γi
∂ci

)
(A.14)

Let focus now on the calculation of the activity coefficients, while a way to estimate

the frictional coefficients will be present in Section A.1.1. By using the subscript ’1’ to

denote the solvent and ’2’ to denote the solute, we have

µ2 = µ0
2 +RT ln

(
γ2c2

c0

)
(A.15)

where γ2 is the activity coefficient of the solute and c2 is the concentration of the solute.

By differentiating with respect to c2 we obtain

∂µ2

∂c2

= RT
( 1

c2

+
1

γ

∂γ2

∂c2

)
(A.16)

The chemical potential of the solvent is related to the osmotic pressure (Π) by

µ1 = µ0
1 − ΠV1 (A.17)

where V1 is the partial molar volume of the solvent and µ0
1 its standard chemical potential.

Assuming V1 to be constant and differentiating µ1 with respect to c2 we obtain

∂µ1

∂c2

= −V1
∂Π

∂c2

(A.18)

Now, from the Gibbs-Duhen relation, the derivative of the chemical potential of the solute

with respect to the solute concentration is

∂µ2

∂c2

= −M(1− c2v)

V1c2

∂µ1

∂c2

=
M(1− c2v)

c2

∂Π

∂c2

(A.19)

where M is molecular weight of the solute and v is the partial molar volume of the solute

divided by its molecular weight. The concentration dependence of osmotic pressure is

usually written as
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Π

c2

=
RT

M

[
1 +BMc2 +O(c2

2)

]
(A.20)

where B is the second virial coefficient (see Section A.1.2), and thence the derivative with

respect to the solute concentration is

∂Π

∂c2

=
RT

M
+ 2RTBc2 +O(c2

2) (A.21)

Introducing Eq. (A.21) into Eq. (A.19) gives

∂µ2

∂c2

= RT (1− c2v)
( 1

c2

+ 2BM
)

(A.22)

From Eq. (A.16)and Eq. (A.22) we have

1

γ2

∂γ2

∂c2

=
1

c2

[
RT (1− c2v)(1 + 2BMc2)− 1

]
so that

∫ γ′2

1

dγ2

γ2

=

∫ c′2

c0

1

c2

[
RT (1− c2v)(1 + 2BMc2)− 1

]
dc2

On the grounds that c2v � 1 [225], by solving the integrals we obtain

γ′2 = exp[2BMRT (c′2 − c0)] (A.23)

The molecular weight Mi,k of the species i in the mesh k can be expressed as the ratio

between the mass mi,k of the species i in that mesh and the Avogadro’s number Mi,k =

mi,k/NA. If pi is the mass of a molecule of species i and ci,kl is the number of molecules

of species i in the mesh k, then the molecular weight of the solute of species i in the mesh

k is given by

Mi,k =
pi l

NA

ci,k (A.24)

Substituting this expression in Eq. (A.23) we obtain for the activity coefficient of the

solute of species i in the mesh k (γi,k), the following equation

γi,k = exp
(

2B
pi l

NA

c2
i,k

)
(A.25)
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A.1.1 Intrinsic viscosity and frictional coefficient

The diffusion coefficient depends on the ease with which the solute molecules can move.

The diffusion coefficient of a solute is a measure of how readily a solute molecule can push

aside its neighboring molecules of solvent. An important aspect of the theory of diffusion

is how the magnitudes of the frictional coefficient fi of a solute of species i and, hence, of

the diffusion coefficient Di, depend on the properties of the solute and solvent molecules.

Examination of well-established experimental data shows that diffusion coefficients tend

to decrease as the molecular size of the solute increases. The reason is that a larger solute

molecule has to push aside more solvent molecules during its progress and will therefore

move slowly than a smaller molecule. A precise theory of the frictional coefficients for the

diffusion phenomena in biological context cannot be simply derived from the elementary

assumption and model of the kinetic theory of gases and liquids. The Stokes’s theory

considers a simple situation in which the solute molecules are so much larger than the

solvent molecules that the latter can be regarded as a continuum (i. e. not having

molecular character). For such a system Stokes deduced that the frictional coefficient of

the solute molecules is fi = 6πrHi η, where rHi is the hydrodynamical radius of the molecule

and η is the viscosity of the solvent. For proteins diffusing in the cytosol, the estimate

of frictional coefficient through the Stokes’s law is hard, for several reasons. First of all,

the assumption of very large spherical molecules in a continuous solvent is not a realistic

approximation for a protein moving through the cytosol: the protein may be not spherical

and the solvent is not a continuum. Furthermore, in the protein-protein interaction in the

cytosol water molecules should be included explicitly, thus complicating the estimation

of the hydrodynamical radius. Finally, the viscosity of the solvent η within the cellular

environment cannot be approximated either as the viscosity of liquid or the viscosity of

gas. In both cases, the theory predict a strong dependence on the temperature of the

system, that has not been found in the cell system, where the most significant factor in

determining the behavior of frictional coefficient is the concentration of solute molecules.

To model the effects of non-ideally on the friction coefficient we assume that its dependence

on the concentration of the solute is governed by expression similar to the one used to

model friction coefficient in sedimentation processes [211]

fi,k = kfci,k (A.26)

where kf is an empirical constant, whose value can be derived from the knowledge of the

ratio R = kf/[η]. Accordingly to the Mark-Houwink equation, [η] = kMα is the intrinsic

viscosity coefficient, α is related to the shape of the molecules of the solvent, and M is still

the molecular weight of the solute. If the molecules are spherical, the intrinsic viscosity is

224



APPENDIX A. COMPUTED DIFFUSION COEFFICIENTS

independent of the size of the molecules, so that α = 0. All globular proteins, regardless

of their size, have essentially the same [η]. If a protein is elongated, its molecules are more

effective in increasing the viscosity and [η] is larger. Values of 1.3 or higher are frequently

obtained for molecules that exist in solution as extended chains. Long-chain molecules

that are coiled in solution give intermediate values of α, frequently in the range from 0.6

to 0.75 [132]. For globular macromolecule, R has a value in the range of 1.4 - 1.7, with

lower values for more asymmetric particles [97].

A.1.2 Calculated second virial coefficient

The mechanical statistical definition of the second virial coefficient is given by the following

B = −2πNA

∫ ∞
0

r2 exp
[
− u(r)

kBT

]
dr (A.27)

where u(r) is the interaction free energy between two molecules and r is the intermolecular

center-center distance. In this work we assume for u(r) the Lennard-Jones pair (12,6)-

potential (Eq. A.28), that captures the attractive nature of the Van der Waals interactions

and the very short-range Born repulsion due to the overlap of the electron clouds.

u(r) = 4
[(1

r

)12

−
(1

r

)6]
(A.28)

and expanding the term exp
(

4
kBT

1
r6

)
into an infinite series, the Eq. (A.27) becomes

B = −2πNA

∞∑
j=0

1

j!
(T ∗)j

∫ ∞
0

r2−6j exp
[
− T ∗ 1

r2

]
dr

where T ∗ ≡ 4/(kBT ) and thus

B = −πNA

6

∞∑
j=0

1

!j
4j(kBT )−

1
4

+ 1
2
j Γ
(
− 1

4
+

1

2
j
)

(A.29)

In our model the estimate of B is given by truncating the infinite expansion of the Γ

function to j = 4. Taking into account the additional terms for j > 4 does not influence

the simulation results in a significant way.
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Appendix B

BlenX language reference

A BlenX program is made of an optional declaration file for the declaration of user-

defined constants and functions, a binder definition file that associates unique identifiers

to binders of entities used by the program and a program file, that contains the program

structure.

All the BlenX files share the syntax definition of identifiers, numbers and rates as reported
below:

Letter ::= [a− zA− Z]
Digit ::= [0− 9]
Exp ::= [Ee][+]?{Digit}
real1 ::= {Digit}+{Exp}
real2 ::= {Digit}∗”.”Digit+({Exp})?
real3 ::= {Digit}+”.”Digit∗({Exp})?

Real ::= real1 | real2 | real3
Decimal ::= {Digit}+

Id ::= ({Letter}| )({Letter}|{Digit}| )∗

number := Real | Decimal

rate := number | rate ( Id ) | inf

Note that in the following sections, during the description of the programming con-

structs, we prefix qualifying words to Id in order to clarify the kind of identifier that can

occur in a given position. We will write boxId, binderId, funcId and varId to specify

identifiers referring to boxes, binders, functions and variables respectively. Syntactically,

they are all equal to Id; the disambiguation is done by the BlenX compiler using a symbol

table. For examples, if an identifier Id is used in a function declaration, it will be stored

as a funcId in the symbol table.
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B.1 The declaration file

A declaration file is a file with .func or .decl extension that contains the definition of

variables, constants and functions. Since these constructs are optional, it is possible to

skip the definition of the whole file. The declaration file has the following syntax:

declarations ::=
decList

decList ::=
dec

| dec decList

dec ::=
let Id : function = exp ;

| let Id : var = exp ;
| let Id : var = exp init number;
| let Id ( number ) : var = exp ;
| let Id : const = exp ;

exp ::=
number

| Id

| | Id |
| log ( exp )
| sqrt ( exp )
| exp ( exp )
| pow ( exp , exp )
| exp+ exp

| exp− exp
| exp× exp
| exp / exp

| −exp
| +exp
| ( exp )

An expression is made up of operators and operands. The syntax for the expression exp

and the possible algebraic operators that can be used is given in the previous table. Oper-

ator precedence follows the common rules found in every programming language. + and

− have the precedence when used as unary operators, while × and / have the precedence

w.r.t. + and − when used as binary operators.

A state variable or simply variable is an identifier that can assume real modifiable val-
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ues (Real value). The content of a variable is automatically updated when the defining
expression exp changes; The content of the variable can also be changed by an update
event (see Sec. B.6). In this case, the function associated with the event is evaluated and
the variable is updated with the resulting value. After the variable identifier and the var
keyword, the user has to specify the expression used to control the value of the variable
and an optional initial value after the init keyword. Examples of variable declarations
follows:

let v1 : var = 10 * |A|;

let mCycB : var = 2 * |X| * log(v1) init 0.1;

In addition, we define another type of variables, called continuous variables. A con-
tinuous variable x represent a differential equation on x. The equation is discretised and
integrated over time; the variable value is evaluated at fixed time steps ∆t, specified by the
user. In a continuous variable declaration the user has to specify the Id of the variable,
immediately followed by the ∆t value:

let x(delta_t): var = expr;

Where delta t is a real number. An optional initial value can be specified with the init

keyword. For example:

let x(0.1): var = x * (1/y) init 0.2;

The expression after the = sign is used to compute the delta value, with ∆t implicit.

Therefore, the declaration let x(delta t): var = expr; corresponds to the differen-

tial equation
δx

δt
= expr

. Every ∆t, the simulator updates the variable value using the following formula:

xt(i) = xt(i−1) + expr ·∆t

.
A constant is an identifier that assumes a value that cannot be changed at run-time

and specified through a constant expression (an expression that does not rely on any
variable or concentration |Id| to be evaluated). As an extension, BlenX allows the use
of constant expressions. Examples of constant declarations and of constant expressions
follow:

let c1 : const = 1.0;

let pi : const = 3.14;

let c2 : const = (2.5 + 1) / (2.5 - 1);

let c3 : const = (4.0/3.0) * pi * pow(c1, 3);

let e: const = exp(1.0);
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In the current version of BlenX, functions are parameterless and always return a Real
value. As is, a function is only a named expression that can be used to evaluate a rate or
to update the content of a state variable. An example of function definition follows:

let f1 : function =

(k5s / alpha) / (pow( (J5 / (m * alpha * |X|) ) , 4) + 1);

Notice that when a program contains continuous variables, then the CTMC generation

is not allowed.

B.2 The binder definition file

The binder definition file is a file with .types extension that stores all the binder identifiers

that can be used in the declaration of binders (see Sec. B.4) and the affinities between

binders associated with a particular identifier.

Affinities are a peculiar feature of BlenX. The interaction mechanism of many biolog-

ical modelling languages is based on the notion of exact complement of communication

channel names, as in computer science modelling where two programs can interact only

if they know the exact address of the interacting partners. In BlenX instead interactions

are guided by affinities between a pair of binder identifiers. There are three advantages

in this approach: it allows us to avoid any global policy on the usage of names in order to

make components interact; it relaxes the exact, or key-lock, style of interaction of exact

name pairing; it permits a better separation of concerns, as it allows us to put interaction

information in a separate file that can be modified or substituted without altering the

program. The usage of affinities in a separate file is comparable to program interactions

guided by contracts or service definitions, like in some web-service models (see [20]).

affinities ::=
{ binderIdList }

| { binderIdList }%%{ affinityList }
binderIdList :

binderId

| binderId, binderIdList

affinity ::=
( binderId, binderId, rate )

| ( binderId, binderId, funcId )
| ( binderId, binderId, rate, rate, rate )

affinityList :=
affinity

| affinity , affinityList
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An affinity is a tuple of three or five elements. The first two elements are binder

identifiers declared in the binderIdList, while the other elements can either be rate values

or a single function identifier. If the affinity tuple contains a single rate value, then the

value is interpreted as the base rate of inter-communication (Sec. B.4.1) between binders

with identifier equal to the first and second binderId respectively.

If the affinity tuple contains three rate values, these values are interpreted as the base rate

for complex, decomplex (see Sec. B.5 for the definition of complexes) and inter-complex

communication between binders with identifier equal to the first and second binderId

respectively.

When the element after the two binderIds is a function identifier, the expression associated

to the function will be evaluated to yield a value, then interpreted as the rate of inter-

communication.

B.3 The program file

The central part of a BlenX program is the program file. The program file has a .prog
extension; it is generated by the following BNF grammar:

program ::=
info 〈〈 rateDec 〉〉 decList run bp

| info decList run bp

info ::=
[ steps = decimal ]

| [ steps = decimal, delta = number ]
| [ time = number ]

rateDec ::=
Id : rate

| CHANGE : rate
| EXPOSE : rate
| UNHIDE : rate
| HIDE : rate
| BASERATE : rate
| rateDec, rateDec

decList ::=
dec

| dec decList
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dec ::=
let Id : pproc = process ;

| let Id : bproc = box ;
| let Id : complex = complex ;
| let Id : prefix = actSeq ;
| let Id : bproc = Id 〈〈 invTempList 〉〉 ;
| when ( cond ) verb ;
| template Id : pproc 〈〈 decTempList 〉〉 = process ;
| template Id : bproc 〈〈 decTempList 〉〉 = box ;

bp ::=
Decimal Id

| Decimal Id 〈〈 invTempList 〉〉
| bp || bp

A prog file is made up of an header info, an optional list of rate declarations (rateDec),

a list of declarations decList, the keyword run and a list of starting entities bp.

The info header contains information used by the BWB simulator that will execute

the program. A stochastic simulation can be considered as a succession of time-stamped

steps that are executed sequentially, in non-decreasing time order. Thus, the duration of

a simulation can be specified as a time, intended as the maximum time-stamp value that

the simulation clock will reach, or as a number of steps that the simulator will schedule

and execute. The delta parameter can be optionally specified to instruct the simulator

to record events only at a certain frequency (and not every time and event is simulated).

A BlenX program is a stochastic program: every single step that the program can

perform has a rate associated to it, representing the frequency at which that step can,

or is expected to, occur. The rateDec specifies the global rate associations for individual

channel names or for four particular classes of actions that a program can perform. In

addition, a special class BASERATE can be used to set a common basic rate for all

the actions that do not have an explicit rate set. The explicit declaration of a rate in the

definition of an action has the precedence on this global association (see Sec. B.4).

The list of declarations decList follows. Each declaration is a small, self-contained piece

of code ended by a ‘;’. A declaration can be named, e.g. it can have an Id that designates

uniquely the declaration unit in the program, or it can be nameless. Declarations of

boxes, processes, sequences of prefixes and complexes must be named1, while events are

nameless.

1Note that some language constructs, i.e. processes and sequences, can appear throughout a program without
a name; they must be named only when they appear as a declaration
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B.4 Processes and Boxes

Boxes are generated by the following BNF grammar:

box ::=
binders [ process ]

binders ::=
# ( Id : rate, Id )

| # ( Id, Id )
| #h ( Id : rate, Id )
| #h ( Id, Id )
| binders, binders

process ::=
par

| sum

The intuition is that a box represents an autonomous biological entity that has its

own control mechanism (the process) and some interaction capabilities expressed by the

binders.

A binders list is made up of a non empty list of elementary binders of the form

#(Id : rate, Id) (active with rate), #(Id, Id) (active without rate), #h(Id : rate, Id)

(inactive with rate), #h(Id, Id) (inactive without rate), where the first Id is the subject

of the binder, rate is the stochastic parameter that quantitatively drives the activities

involving the binder (hereafter, stochastic rate) and the second Id represents the identifier

of the binder. Binder identifiers cannot occur in processes while subjects of binders can

The subject of an elementary beta binder is a binding occurrence that binds all the

free occurrences of it in the process inside the box to which the binder belongs. Hidden

binders are useful to model interaction sites that are not available for interaction although

their status can vary dynamically. For instance a receptor that is hidden by the shape

of a molecule and that becomes available if the molecule interacts with/binds to other

molecules. Given a list of binders, we denote the set of all its subjects with sub(binders).

A box is considered well-formed if the list of binders has subjects and identifiers all

distinct. Well-formedness of each box defined in a BlenX program is checked statically at

compile-time. Moreover, well-formedness is preserved during the program execution.

The BlenX graphical representation of a box is:
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boxId

Name    : rate, binderId

Box

Process

Binder

}Interface
Name    , binderId

Hidden binder

(with optional rate)

Boxes are generated by the following BNF grammar:

process ::=
par

| sum

par ::=
parElem

| sum | sum
| sum | par
| par | sum
| par | par
| ( par )

sum ::=
sumElem

| sum+ sum

| ( sum )

sumElem ::=
nil

| seq

| if condexp then sum endif

parElem ::=
Id

| Id 〈〈 invTempList 〉〉
| rep action . process

| if condexp then par endif

seq ::=
action

| action . process

| Id . process

A process can be a par or a sum. The non-terminal symbol par composes through the
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binary operator | two processes that can concurrently, while the non-terminal symbol sum

of the productions of process is used to introduce guarded choices of processes, composed

with the operator +. The + operator act intuitively as an or operator, meaning that at a

certain step a process offers a choice of different possible actions such that the execution

of each of them eliminates the others. By the contrary, the | operator act intuitively as

an and operator, meaning that processes composed by | run effectively in parallel.

Notice that we can put in parallel processes also with the constructs Id and Id 〈〈 invTempList 〉〉,
meaning that we are instantiating a template (see Section B.8) or an occurrence of a pro-
cess previously defined. As an example, consider the following sequence of processes
definition:

let p1 : pproc = nil ;

let p2 : pproc = nil | p1 ;

Process p2 is defined as a parallel composition of the nil process and an instance of the

p1 process. In BlenX the definition of a process can only rely on identifiers of previously

defined processes. Mechanisms of recursive definitions and mutual recursive definitions

are not admitted.

The rep operator is used to replicate copies of the process passed as argument. Note

that we use only guarded replication, i.e. the process argument of the rep must have a

prefix action that forbids any other action of the process until it has been consumed. The

nil process does nothing (it is a deadlocked process), while the if-then statement allows

the user to control, through an expression, the execution of a process. The non-terminal

symbol seq identifies an action, a process prefixed by an action and a process prefixed by

an Id. When in a program we have a process defined using the statement Id.process we

statically check that the Id corresponds to a previously defined sequence of prefixes.
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B.4.1 Actions

The actions that a process can perform are described by the syntactic category action.

action ::=
Id ! ( Id )

| Id ! ()
| Id ? ( Id )
| Id ? ()
| delay ( rate )
| expose ( Id : rate , Id )
| hide ( Id )
| unhide ( Id )
| ch ( Id, Id )
| expose ( rate, Id : rate, Id )
| hide ( rate, Id )
| unhide ( rate, Id )
| ch ( rate, Id, Id )

The first four actions are common to most process calculi. The first pair of actions

represent an output/send of a value on a channel, while the second pair represent the

input/reception of value or a signal on a channel. The remaining actions are peculiar of

the BlenX language. The definition of free names for processes is obtained by stipulating

that Id?(Id′).process is a binder for Id′ in process and that expose(Id : rate, Id).process

and expose(rate, Id : rate, Id).process are binders for Id in process. The definitions of

bound names and of name substitution are extended consequently. The definition of free

and bound names for boxes is obtained by specifying that the set of free names of a

box binders[process] is the set of free names of the process minus the set sub(binders)

of subjects of the binders. Moreover, as usual two processes process and process′ are

α-equivalent if process′ can be obtained from process by renaming one or more bound

names in process, and vice versa. As usual renaming avoids name clashes, i.e. a free

name never becomes bound after the renaming. More details of this definitions can be

found in [52].

species:

In BlenX species are defined as classes of boxes which are structurally congruent. The

structural congruence for boxes, denoted with ≡, is the smallest relation which satisfies

the following laws:
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• process ≡ process′, if process and process′ are α-equivalent

Es: z?(t).t!().nil ≡ z?(w).w!().nil

• process | nil ≡ process and sum | nil ≡ sum

Es: P | nil ≡ P

• process1 | (process2 | process3) ≡ (process1 | process2) | process3 and sum1 | (sum2 | sum3) ≡
(sum1 | sum2) | sum3

Es: (P + Q) | (R | S) ≡ ((P + Q) | R) | S

• process1 | process2 ≡ process2 | process1 and sum1 | sum2 ≡ sum2 | sum1

Es: P | Q ≡ Q | P

• repaction.process ≡ action.(process | repaction.process)
Es: rep x!().nil ≡ x!().(nil | rep x!().nil))

• binders[process] ≡ binders[process′], if process ≡ process′

B

P Q
B'

P Q

• binders, binders′[process] ≡ binders′, binders[process]

B

P P
B'

x

x

y

y

• #(Id : rate, Id1), binders[process] ≡ #(Id′ : rate′, Id1), binders[process{Id′/Id}]
and

#(Id, Id1), binders[process] ≡#(Id′, Id1), binders[process{Id′/Id}] and

#h(Id : rate, Id1), binders[process] ≡ #h(Id′ : rate′, Id1), binders[process{Id′/Id}]
and

#h(Id, Id1), binders[process] ≡#h(Id′, Id1), binders[process{Id′/Id}]
if Id′ 6∈ sub(binders)

B

rep y!().nil

B'

x x

zy
rep z!().nil

Consider for example the program:
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...

let b1 : bproc = #(x:1,A)

[ ( x!().nil + z?(w).w!().nil ) | x!(z).nil ];

...

let b2 : bproc = #(y:1,A)

[ y!(z).nil | ( z?(t).t!().nil + y!().nil ) ];

...

In the example we have b1 ≡ b2, hence the boxes belong to the same species. Notice that

if we have multiple definition of boxes that represent the same species, then at run-time

they are collected together and the species name is taken from the first definition (e.g. in

the example the name of the corresponding species is b1). Hereafter, when we say that

in a particular state of execution of a program the cardinality of a box species b1 is n we

mean that in that state of execution the number of boxes structurally congruent to b1 is

n.

Intra-communication:

consider the following piece of code:

let p : pproc =

x!(m).nil + y?(z).z?().nil + y?().nil ;

let b1 : bproc = #(x:1,A),#h(m,B)

[ p | x?(z).z!(c).nil + x?().nil + y!().nil ];

Box b1 has a binder #(x : 1, A) and an internal process defined as a parallel com-
position of the sum process p and the sum process x?(z).z!(c).nil + y!().nil. Each sum
composes processes guarded by input or output actions. Parallel processes that perform
complementary actions on the same channel inside the same box can synchronize and
eventually exchange a message, generating an intra-communication. In the example, sev-
eral intra-communications can be performed. Indeed, each output in the first sum can
synchronize with an input on the same channel in the other sum, and vice-versa. Consider
the input/output pair:

x!(m).nil + ... | x?(z).z!(c).nil + ...

x?(z) represents an input/reception of something that will instantiate the placeholder z
over channel x, while x!(m) represent an output/send of a value m over channel x. The
placeholder z in the input is a binding occurrence that binds all the free occurrences
of z in the scope of the prefix x?(z) (in this case in z!(c).nil). Sometimes the channel
name x is called the subject and the placeholder/value z is called the object of the prefix.
The execution of the intra-communication consumes the input and output prefixes and
the object m of the output flows from the process performing the output to the one
performing the input:
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nil | m!(c).nil

The flow of information affects the future behavior of the system because all the free

occurrences bound by the input placeholder are replaced in the receiving process by the

actual value sent by the output (in the example z is substituted by m). The graphical

representation of the intra-communication is

x:1, A

m, B
x!(m).nil +... | x?(z).z!(c).nil +...

x:1, A

m, B
nil | m!(c).nil

If an input has no object and it is involved in a intra-communication:

x!(m).nil + ... | x?().nil + ...

then the two prefixes are consumed and no substitution is performed:

nil | nil

If an output has no object and is involved in an intra-communication:

... + y?(z).z?().nil + ... | ... + y!().nil + ...

then the two prefixes are consumed and the substitution in the process prefixed by the in-
put is performed by using a reserved string $emp on which no further intra-communication
is allowed.

$emp?().nil | nil

Notice that the string $emp cannot be generated by the regular expression defining the

Id (see Section B).
If object-free outputs and inputs synchronize in an intra-communication:

... + y?().nil + ... | ... + y!().nil + ...

then the two prefixes are consumed, generating the process:

nil | nil

The stochastic nature of BlenX emerges in the above examples through the rates associ-

ated to the input/output channels. In particular, if the channel is bound to a binder, the

rate is specified in the binder definition; if the binder is #(x : 1, A) (or #h(x : 1, A)) the

rate associated to an intra-communication over channel x is 1, while if the binder is #(x,A)

(or #h(x,A)) the associated rate is assumed to be 0 and hence no intra-communications

over channel x can happen.
If the channel is not bound to a binder, then the rate has to be defined in the global

rateDec. In particular, if rateDec is:
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<< ... , x : 2.5 , ... >>

the rate associated to an intra-communication over channel x is 2.5. Instead, if no specific

x rate definition appears in the rateDec list, then the BASERATE definition is used. If

also no BASERATE definition appears in the rateDec list, then a compile time error is

generated. In the example, intra-communications over channel y need a specific definition

or the BASERATE in the rateDec list.

Since to each communication channel in a box we can associate an unique rate r, then

the overall propensity of performing an intra-communication on a channel x is given by

the following formula:

r × ((In(x)×Out(x))−Mix(x))

where In(x) identifies all the enabled input on x, Out(x) the enabled output on x and
Mix(x) all the possible combinations of input/output within the same sum. As an ex-
ample, consider the box:

let b1 : bproc = #(x,A),#(m,B)

[ x?().nil + x!().nil + x!().nil |

x?().nil + x!().nil + x!().nil ]

Let the rate associated to x be 3, the overall propensity associated to an intra-communication

on the channel x is calculated using the previous formula obtaining:

3× ((2× 4)− 4) = 12

where term (2×4) represents all the combinations of input/output and the last 4 represents

the combinations contained in the same sum and hence the ones that cannot give raise

to an inter-communication.

Notice that multiplying 12 by the cardinality of the species b1 we obtain the overall

propensity that a box of that species performs an intra-communication on channel x.

hide:

consider the following box:

let b1 : bproc = #(x:1,A),#(m,B)

[ hide(2,x).nil + hide(x).nil ]

Box b1 can perform two hide actions. The execution of both actions cause the modification

of the box interface hiding the binder #(x : 1, A). The graphical representation of the

actions is
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x:1, A

m, B
hide(2,x) + hide(x)

x:1, A

m, B
nil 

The only difference between the actions is the stochastic rate association. Indeed, the
first action specifies its own rate and hence is performed with a rate of value 2. For the
second action, a rate has to be defined in the global rateDec. In particular, if rateDec is:

<< ... , HIDE : 4 , ... >>

the rate associated to the all hide actions is 4. Instead, if no specific HIDE rate def-

inition appears in the rateDec list, then the BASERATE definition is used. If also

no BASERATE definition appears in the rateDec list, then a compile-time error is

generated.

To compute the overall propensity associated to hide actions performed by boxes of

a given species, we need to calculate all the possible combinations. This combination is

obtained by multiplying the number of all the enabled hide actions hide(r, x) on the same

binder with the same rate r and the number of all the enabled hide actions hide(x) on

the same binder by the corresponding base rates. The overall propensity is then obtained

by multiplying this combination with the cardinality of the species.

Notice that an hide action on an binder which is already hide is not enabled. A

definition of an hide action on a name which is not a binder is not enabled and generates

a compile-time warning.

unhide:

consider the following box:

let b1 : bproc = #h(x:1,A),#(m,B)

[ unhide(2,x).nil + unhide(x).nil ]

Box b1 can perform two unhide actions. The execution of both actions cause the modifi-

cation of the box interface unhiding the binder #h(x : 1, A). The graphical representation

of the actions is

x:1, A

m, B
unhide(2,x) + unhide(x)

x:1, A

m, B
nil 

The only difference between the actions is the stochastic rate association. Indeed, the
first action specifies its own rate and hence is performed with a rate of value 2. For the
second action, a rate has to be defined in the global rateDec. In particular, if rateDec is:
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<< ... , UNHIDE : 4 , ... >>

the rate associated to the hide action is 4. Instead, if no specific UNHIDE rate def-

inition appears in the rateDec list, then the BASERATE definition is used. If also

no BASERATE definition appears in the rateDec list, then a compile time error is

generated.

To compute the overall propensity associated to unhide actions performed by boxes

of a given species, we need to calculate all the possible combinations. This combination

is obtained by multiplying the number of all the enabled unhide actions unhide(r, x) on

the same binder with the same rate r and the number of all the enabled unhide actions

unhide(x) on the same binder by the corresponding base rates. The overall propensity is

then obtained by multiplying this combination with the cardinality of the species.

Notice that an unhide action on an binder which is already unhidden is not enabled

and that a definition of an unhide action on a name which is not a binder is not enabled

and generates a compile-time warning.

change:

consider the following box:

let b1 : bproc = #(x:1,A)

[ ch(2,x,D).nil + ch(x,D).nil ]

Box b1 can perform two change actions. The execution of both actions cause the modi-

fication of the box interface changing the value A of the binder #(x : 1, A) into D. The

graphical representation of the actions is

x:1, A
ch(2,x,D) + ch(x,D)

x:1, D
nil 

The first action specifies its own rate and hence is performed with a rate of value 2.
For the second action, a rate has to be defined in the global rateDec. In particular, if
rateDec is:

<< ... , CHANGE : 4 , ... >>

the rate associated to the hide action is 4. Instead, if no specific CHANGE rate def-

inition appears in the rateDec list, then the BASERATE definition is used. If also

no BASERATE definition appears in the rateDec list, then a compile time error is

generated.

To compute the overall propensity associated to change actions performed by boxes of

a given species, we need to calculate all the possible combinations. This combination is
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obtained by multiplying the number of all the enabled change actions ch(r, x,D) on same

values and the number of all the enabled change actions ch(x,D) on same binders and

with equal substituting types by the corresponding base rates. The overall propensity is

then obtained by multiplying this combination with the cardinality of the species.

die:

consider the following box:

let b1 : bproc = #(x:1,A)

[ die(2).nil ]

Box b1 can perform a die action. The execution of the action eliminates the related box.

The graphical representation of the action is

x:1, A
die(2).nil

The action is executed with the specified rate of value 2. To compute the overall

propensity associated to die actions we calculate the number of all the enabled die actions

die(r) on same rates and multiply this values by the corresponding base rates and by the

cardinality of the species.

delay:

consider the following box:

let b1 : bproc = #(x:1,A)

[ delay(2).nil ]

Box b1 can perform a delay action. The execution of the action allows the box to evolve

internally. The graphical representation of the action is

x:1, A
delay(2).nil

x:1, D
nil 

The action is executed with the specified rate of value 2. Moreover, Nil is used

to identify a deadlocked box which does nothing. To compute the overall propensity

associated to delay actions we calculate the number of all the enabled delay actions

delay(r) on same rates and multiply this values by the corresponding base rates and by

the cardinality of the species.
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expose:

consider the following box:

let b1 : bproc = #(x:1,A)

[ expose(2,x:3,B).x!() + expose(x:3,B).x!() ]

Box b1 can perform two expose actions. The execution of both actions add a new binder

#(y : 3, B) to the interface, by renaming the subject into a new name to avoid clashes of

names (x renamed into y with all the occurrences bound by the subject in the expose).

The graphical representation of the actions is

x:1, A expose(2; x : 3;B):x!() + 
expose(x : 3;B):x!()

x:1, A
y!()

y:3, B

The first action specifies its own rate and hence is performed with a rate of value 2.
For the second action, a rate has to be defined in the global rateDec. In particular, if
rateDec is

<< ... , EXPOSE : 4 , ... >>

the rate associated to the hide action is 4. Instead, if no specific EXPOSE rate def-

inition appears in the rateDec list, then the BASERATE definition is used. If also no

BASERATE definition appears in the rateDec list, then a compile-time error is gener-

ated. Expose actions are considered separately and hence the overall propensity that a

box species perform an expose action is calculated multiplying the rate associated to the

action by the action rates and by the cardinality of the box species performing the action.

Notice that an expose action of a binder identifier which is already present in the set

binders of the box is not enabled.

if-then statement:

consider the following box:

let b1 : bproc = #(x:1,A)

[ if (x,unhidden) and (x,A) then x!().nil ]

Box b1 can perform the output action x!() only if the conditional expression is satisfied
by the actual configuration of the binders of the box containing the if-then statement. In
this example if the binder with subject x is unhidden and its binder identifier is A, then
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the output can be executed. The general form of the conditional expressions of if-then
statements are generated by the following BNF grammar:

condexp ::=
atom

| condexp and condexp

| condexp or condexp
| not condexp
| ( condexp )

atom ::=
( Id, Id )

| ( Id, hidden )
| ( Id, unhidden )
| ( Id, bound )
| ( Id, Id, hidden )
| ( Id, Id,unhidden )
| ( Id, Id, bound )

Conditional expressions are logical formulas built atoms (conditions on binder states)
connected by classical binary logical operators (and,or,not). In the atoms the first Id
identifies the subject of a binder, while the second Id (if present) identifies the binder
identifier. The keywords hidden, unhidden and bound identify the three states in which a
binder can be. As an example, the conditional expression:

(x,A) and ( not(y,B,hidden) or (z,bound) )

is satisfied only if the box has a binder with subject x of type A and has a binder with
subject y which is not hidden and with type different from B or has a bound binder with
subject z (see Section B.5). Notice that boxes of the form:

let b1 : bproc = #(x:1,A)

[ if (y,unhidden) and (x,A) then x!().nil ]

let b1 : bproc = #(x:1,A)

[ y?(x).if (x,unhidden) and (x,A) then x!().nil ]

generates compile-time warnings. Indeed, in the first case the (y, unhidden) do not refer

to any binder of the box, while in the second case the atom (x, unhidden) is bound by

the input y?(x) and not by the subject of the binder. In general, at run-time atoms on

binders which are not present are evaluated as false value.

inter-communication:

processes in different boxes can perform an inter- communication (distinct from the intra-
communication described above) if one sends a value y over a link x that is bound to an
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active binder of the box #(x : r, A) and a process in another box is willing to receive a value
from a compatible binder #(y : s, B) through the action y!(z). The two corresponding
binders are compatible if a compatibility value (i.e. a stochastic rate) greater than zero is
specified in the binder declaration file

{...,A,...,B,...}

%%

{ ... , (A,B,2.5), ... }

Note that intra-communications occur on perfectly symmetric input/output pairs that

share the same subject, while inter-communication can occur between primitives that have

different subjects provided that their binder identifiers are compatible. This new notion of

communication is particularly relevant in biology where interactions occur on the basis of

sensitivity or affinity which is usually not exact complementarity of molecular structures.

The same substance can interact with many other in the same context, although with

different levels of affinity expressed through different properties.

The graphical representation of an inter-communication is:

x!(m).nil x,A
y,B
y?(z).nil nil x,A

y,B
nil

If the compatibility is specified by a stochastic rate, the overall propensity of the inter-
communication is computed as bimolecular rate (see Section 3.2.1), considering all the
possible combinations of inputs on channel x in the first box and outputs on y in the
second box and multiplying this value with the product of the cardinality of the box
species in the system. As an example consider the program:

...

let b1 : bproc = #(x:1,A)

[ x!().nil + x!().nil | x!().nil ];

...

let b2 : bproc = #(y:3,B)

[ y?().nil | y?().nil ];

...

let b3 : bproc = #(z:2,C)

[ z?().nil ];

run 10 A || 20 B || 5 b3

Assuming boxes b1 and b2 defines two different species, the overall propensity of the

inter-communication on boxes species A and B is

(2.5× (3× 2))× (10× 20)
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B1

B2

B3

B4A

A

A

A

B

B

B

B

Figure B.1: Example of complex.

where 2.5 is the basal rate, (3× 2) is the number of combinations of inputs and outputs

and (10× 20) is the product of the cardinality of the two box species.

If the compatibility is expressed by a function defined in the declaration file:

{...,A,...,B,...}

%%

{ ..., (A,B,f1), ... }

then the overall propensity of the inter-communication is computed as a rate function (see
Section 3.2.1) and therefore it does not depend directly on the cardinality of the involved
species. In the example, if the function f1 is as:

...

let f1 : function = 2 * pow(|b3|,2);

...

the overall propensity of the inter-communication has value 50.

Notice that in an inter-communication, values corresponding to binder subjects cannot

be sent.

B.5 Complexes

A complex is a graph-like structure where boxes are nodes and dedicated communication
bindings are edges. Figure B.1 report an example is reported, where b0 = #(x : r0, A0)
and b1 = #(y : r1, A1). In BlenX, complexes are not defined as species, but as graph-like
structures of box species. Complexes can be created automatically during the program
execution or they can be instantiated also in the initial program. A complex can be
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defined using the following BNF grammar:

complex ::=
{ ( edgeList ) ; nodeList }

edgeList ::=
edge

| edge, edgeList

edge ::=
( Id, Id, Id, Id )

nodeList ::=
node

| node nodeList

node ::=
Id : Id = ( complBinderList ) ;

| Id = Id ;

complBinderList ::=
Id

| Id, complBinderList

A complex is created by specifying the list of edges (edgeList) and the list of nodes

(nodeList). Each edge is a composition of 4 Ids. The first and the third identifiers

represent node names, while the others represent subject names. Each node in the nodeList

associates to a node name the corresponding box name and specifies the subjects of the

bound binders. As an example, consider the program:

...

let b1 : bproc = #(x:r0,A0),#(y:r1,A1)

[ x!().nil ];

...

let b2 : bproc = #(x:r0,A0),#(y:r1,A1)

[ y!().nil ];

...

let C : complex =

{

(

(Box0,y,Box1,x),(Box1,y,Box2,x),

(Box2,y,Box3,x),(Box3,y,Box0,x)
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);

Box0:b1=(x,y);

Box1:b2=(x,y);

Box2=Box0;

Box3=Box1;

}

...

The complex C defines a complex with a structure equivalent to the one reported in

Figure B.1. A complex can also be generated automatically at run-time thorough a set

of primitives for complexation and decomplexation. The ability of two boxes to form and

break complexes is defined in the bind declaration file by specifying for pairs of binder

identifiers triples of stochastic rates:

{...,A,...,B,...}

%%

{ ..., (A,B,1.5,2.5,10), ... }

Complex and decomplex operations create and delete dedicated communication bindings

between boxes. The biological counterpart of this construct is the binding of a ligand to

a receptor, or of an enzyme to a substrate through an active domain. Given two boxes

with binder with identifiers A and B respectively, the complex operation creates, with

rate 1.5, a dedicated communication binding:

P x,A
y,B

Q P x,A
y,B

Q

while the decomplex operation deletes, with rate 2.5, an already existing binding:

P x,A
y,B

Q P x,A
y,B

Q

Finally, the inter-complex communication operation enables, with rate 10, a communica-

tion between complexed boxes through the complexed binders:

x!(m).nil x,A
y,B
y?(z).nil nil x,A

y,B
nil
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Notice that a binder in bound status is identified by #c(y : B)s where c means that the

corresponding box is part of a complex. It is important to underline that, although the

bound status cannot be explicitly specified trough the syntax of the language and is used

only as an internal representation, a binder in bound status is different from a hidden

or unhidden binder and hence the structural congruence definition has to be extended

accordingly:

− #c(Id : rate, Id1), binders[process] ≡#c(Id′ : rate′, Id1), binders[process{Id′
/Id}]

if Id′ 6∈ sub(binders)
− #c(Id, Id1), binders[process] ≡#c(Id′, Id1), binders[process{Id′

/Id}]
if Id′ 6∈ sub(binders)

B.6 Events

Events specify statements, or verbs, to be executed with a specified rate and/or when

some conditions are satisfied. A single event is the composition of a condition cond and

an action verb (recall the syntax of declarations in Sect. B.3).

dec ::=
| ...

| when ( cond ) verb ;
| ...

Conditions

Events are used to express actions that are enabled by global conditions, expressed by

cond. Conditions are used to trigger the execution of an event when some elements are

present in the system, when a particular condition is met, with a given rate, or at a precise

simulation time or simulation step.
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cond ::=
entityList : EvExpr : rate

| entityList : EvExpr : funcId

| entityList : EvExpr :
| entityList :: rate

| entityList :: funcId

| : EvExpr :

entityList ::=
boxId

| boxId, entityList

EvAtom ::=
| Id | = Decimal

| | Id | < Decimal

| | Id | > Decimal

| | Id | ! = Decimal

| time = Real

| steps = Decimal

| stateOpList

EvExpr ::=
EvAtom

| EvExpr and EvExpr

| EvExpr or EvExpr
| not EvExpr
| ( EvExpr )

More precisely, a condition cond consists of three parts: entityList, a list of boxes present

in the system; an expression used to enable or disable the event; a rate or rate function,

used to stochastically select and include them in the set of standard interaction-enabled

actions.
EvExpr can be combined through logical operators starting from atoms; furthermore,

a condition can specify both an EvExpr and a rate (see definition of cond), so that we
can simultaneously address rates and conditions (e.g. on structures and concentrations of
species). As an example, consider the following event:

when(A, B : (|A| > 2 and |B| > 2) : rate(r1)) join (C);

The entities involved in the event are A and B, as they appear in the entityList ; moreover,

the EvExpr requires the cardinality of both the species identified by boxes A and B to be

greater than two, so the event will fire only when there are at least two A and two B in

the system. When the condition is satisfied, the event will fire with rate r1.
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The EvAtoms evaluate to the boolean values true and false, and can be used to express

conditions over concentrations of species identified by an Id (| Id | op Decimal, where

op ∈ <,>,=, ! =) or over simulation time or simulation steps.
A condition on simulation time will be satisfied as soon as the simulation clock is

greater or equal to the specified time; a conditions on simulation steps will be satisfied as
soon as the step count will exceed the number specified in the EvAtom. In both cases, the
condition will remain true until the event is fired. So, events for which the only condition
specified is the number of steps or the execution time are guaranteed to fire exactly once.
For example, the event:

when(A : time = 3.0 : inf) delete;

will fire as soon as the simulation clock reaches 3.0, removing one A form the system.
It is important to make a remark: Ids that can appear in the EvExpr must be entities

that appear in the entityList. The following code:

when(A, B : (|C| > 2) : rate(r1)) join (C);

will produce a compilation error. The only exception is when the entityList is empty (the

sixth case in the BNF declaration of cond). In this case, the Ids in the expression can be

chosen among all the betaIds or varIds already declared, with no restrictions.

If more complex expressions are needed (i.e. for expressing conditions on more species

in the system) it is possible to use a rate function instead (see Sect. B.1).

Note that the number of Ids specified in the entityList depends on the event verb that

is used for the current event. See the next section for more details on this point.

Events, like all the other actions that can trigger an execution in a BlenX program,

can have an associated rate. It is possible to specify both rate constants (form 1, 4 in

the BNF specification of cond) or rate functions (form 2, 5 in the BNF specification of

cond). The rate constants are treated differently in the case of events with or without

explicit EvExprs. When there is no EvExpr, the rate is computed as a monomulecular

or bimolecular rate, using the concepts introduced in Sec. 3.2.1. In the monomolecular

case, the number hµ of reactant combinations is equal to the cardinality of the species

designated by the unique box in the entityList, in the bimolecular case the number hµ of

reactant combinations is the product of the cardinalities of the species designated by the

first and second box in the entityList.
When a condition is present, the rate is a constant rate (see Sec. 3.2.1). This is to

avoid the case in which a decimal value used in a comparison operation in a EvAtom can
influence the rate of that action. Consider the two following pieces of code:

when (A : |A| > 2 : r) delete(2);

and
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when (A : |A| > 10 : r) delete(2);

The second event will be triggered when there is an higher concentrations of boxes of
species A, ten in this case. If we use the monomulecular way of computing the actual rate,
the second event will be triggered with an higher rate than the first one, as monomolec-
ular rates are proportional to the reactants concentration. What we intuitively expect,
however, is that the two actions will take place with the same actual rate, hence the event
rate is considered as a constant rate. Consider also the following example:

when (A : |A| = 0 : r) new;

Intuitively, this event introduces a box of species A with a given rate when there are no

such entities in the system. If we compute the rate in the usual way, the event will be

never executed (which is clearly different form what we expect).

For the case in which rates are specified as functions (form 2, 5 in the BNF specification

of cond), the function is evaluated and the resulting value is used directly to compute the

propensity function (see Sec. 3.2.1).

Verbs.

Events can split an entity into two entities, join two entities into a single one, inject or

remove entities into/from the system. Events are feature is essential to program pertur-

bation of the systems triggered by particular conditions emerging during simulation and

to observe how the overall behaviour is affected. An example could be the knock-out of

a gene at a given time.

verb ::=
split ( boxId, boxId )

| join ( boxId )
| new ( Decimal )
| delete ( Decimal )
| new
| delete
| update ( varId, funcId )

Verbs and conditions have some dependencies: not all verbs can apply to all conditions.

The entityList in cond is used by the event to understand which species the event will

modify; at the same time, the verb dictates which action will take place. Indeed, a verb

specify how many entities will be present in the entityList :

• the split verb requires exactly one entity to be specified in the condition list;

• the join verb requires exactly two entities to be specified in the condition list;
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• the new and delete verbs requires exactly one entities to be specified in the condi-

tion list;

• the update verb requires that the condition list is empty (form 6 in the BNF

specification of cond).

The split verb removes one box of the specified species from the system, and substitutes
it with the two other entities specified in the ( boxId, boxId ) pair. In the following piece
of code:

when(A :: r) split(B, C);

One A will be substituted by one B and one C, leading to the following behaviour:

A B C
The join verb removes two boxes, one for each of the species specified in the list, from
the system, and introduces on box of the species specified in its (boxId) argument:

when(A, B :: r) join(C);

One A and one B will be joined in one C, leading to the following behaviour:

A B C
The target of the join, i.e. the box specified as argument, is optional:

when(A, B :: r) join;

If no box is specified, a new box, automatically generated form two originating boxes, will

be introduced into the system:

A B C
P Q P|Q

x,T x, U x, T

z, U

The new box will have as the interface the union of the interfaces of boxes A and B, and

as its internal process the parallel composition of the internal processes of A and B.

The new and delete verbs introduce and remove boxes. New will introduce into the
system one copy (in its parameterless variant) or n copies (in its second variant) of the
single entity present in the event list. As for the other events, the event is triggered with
a certain rate and/or with a condition expression is met. The behaviour of delete is
complementary: it will remove one or more boxes from the system when its cond triggers
the event. Note that in the case of delete a box of the species specified in the entity list
must be present:
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when(A : |A| = 0 : inf) delete;

when(A : |A| = 0 : inf) new(2);

The first event will never fire, while the second one will fire as soon as there are no more
boxes of species A in the system. Other examples of valid events are:

when(A : (|A| > 1 and |A| < 10) : inf) new(100);

when(A :: r) delete;

when(A : (|A| = 2) and (steps = 3000) : inf) delete(2);

This set of event will produce oscillations of the concentrations of A, by introducing some

boxes when the concentrations falls under a threshold and deleting them with a decay

of rate r, until the simulation reaches 3000 steps; after that, all As are deleted from the

system and no further evolution is possible.

The update verb is used to modify the value of a variable in the system. When the

event is fired, the function funcId and the resulting value is assigned to the variable

varId. Functions and variables are explained in greater detail in Sec. B.1; here it is

sufficient to know that variables are global Ids bound to real values, and that functions

are mathematical expressions on variables and cardinality of entities that evaluate to a

real value.

The condition of an update event has no entities in its entityList, and no rate or rate

function in its rate part: the event is triggered as soon as its EvExpr evaluates to true.

Jointly to an update event it is possible to use a particular kind of condition, based on

the traversal of successive states.

statOpList :

stateOp

| stateOp, stateOpList

statOp :

Id← Real

| Id→ Real

The list of states to be traversed are expressed in a stateOpList ; each stateOp element in

the list expresses a condition on the quantity of an Id (i.e. cardinality of boxes for boxId

or the value bound to a variable for varId).

StateOps are examined in sequence, one after the other. We say that a stateOp becomes

valid when the condition on its Id is met for the first time. The ‘→’ operator recognizes

when the quantity bound to Id becomes greater than the specified real value, while the
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‘←’ operator recognizes when the quantity bound to Id becomes smaller than the specified

real value.

When a stateOp becomes valid, the EvExpr passes to the evaluation of the following

stateOp of the list. As soon as the last state in the stateOpList becomes valid, the EvExpr

evaluates to true, so the event (update, in this case) can be fired. Once fired, the EvExpr

restart its evaluation from the beginning of the stateOpList, waiting for the first stateOp

to become valid again.

B.7 Prefixes

Prefixes are generated by the following BNF grammar:

dec ::=
...

| let Id : prefix = actSeq ;

actSeq ::=
action

| action . prefix

In other words, a prefix is an object bound to a sequence of actions. Prefixes are

used exclusively in templates (see Sec. B.8). Templates can contain variable parts; among

these parts, it is possible to specify a variable prefix that can be substituted with a

custom sequence of actions when instantiated. An example of the usage of prefixes for

easing template definitions is given in the next Section.

B.8 Templates

Templates, often referred to as generics or parametric processes, are a feature of many

programming languages that allows code in an extended grammar in which code can

contain variable parts that are then instantiated later by the compiler with respect to the

base grammar.

In BlenX template code is specialized and instantiated at compile time using binder

identifiers, code or names that are passed as template arguments. Therefore, BlenX

provides a grammar for defining templates and code to instantiate and use them.
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Template declaration.

It is possible to define templates for processes, boxes and sequences. The BNF for template
declaration and definition is the following:

dec ::=
...

| template Id : pproc 〈〈 formList 〉〉 = piProcess ;
| template Id : bproc 〈〈 formList 〉〉 = betaProcess ;

form ::=
name Id

| pproc Id
| binder Id
| prefix Id

formList ::=
form

| form, formList

The declaration of a template bproc or pproc follows closely the declaration of their

standard counterparts, with the let keyword substituted by template, and an additional

list of template formal parameters enclosed by double angular parenthesis.
The template parameter formList is a comma-separated list of forms; each form de-

clares a template argument made up of a keyword anong name, pproc, binder, prefix
followed by an Id. The Id will be added to the environment of the object being defined,
acting as a placeholder for the object that will be used during parameter instantiation.
For example, in the following code:

template P : pproc<<pproc P1, name N1, name N2, binder T1>> =

x?().N1!().ch(N2, T1).P1;

we do not have to define the pproc P1, nor we have to insert the binder identifier T1 into

the type file: this piece of code will compile without errors, as the process P1 and the

binder identifier T1 are inserted into P ’s environment as template arguments. P will be

treated by the compiler as pproc with four template arguments: a process, two names and

a binder identifier. Note that the notion of “name” is pretty general: it can be any name

appearing into the template, being it a channel name, an action argument or a binder

name.

Template instantiation.

A declared template (pproc or bproc) is held by the compiler in its symbol-table in order
to satisfy following invocations or instantiations of that template. Template instantiation
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is the compile time procedure that substitute the template formal parameters with the
actual parameter with which the template object will be used. For example, the following
code is a possible instantiation of the previous pproc template:

let NilProc : pproc = nil;

let B : bbproc = #(z, Z)

[ P<<NilProc, y, z, Z2>> | y?().nil ];

The code generate by the compiler as the result of this instantiation is equivalent to the
following hand-written code:

let NilProc : pproc = nil;

let B : bbproc = #(z, Z)

[ x?().y!().ch(z, Z2).NilProc | y?().nil ];

More precisely, a template is instantiated by using the Id of the template (pproc or

bproc) and providing it with a list invTempList of comma-separated template invocations

invTempElems, whose kind has to match the kind of the template formal parameters.

invTempElem ::=
Id

| Id 〈〈 invTempList 〉〉
| ( Id, unhidden )
| ( Id, hidden )

invTempList ::=
invTempElem

| invTempElem, invTempList

bp ::=
...

| Decimal 〈〈 invTempList 〉〉

Note that templates do not increase the expressive power of the language, they only
make it easier to write generic and reusable code. Consider the following code:

template rep : pproc<<name x, pproc P>> = !x?().(P.nil);

template detach : pproc<<name x, prefix P, binder T, name y>> =

x?().P.ch(x, UN).hide(x).ch(x, T).unhide(x).y!().nil;

The first template is the general pattern of a replicating process, that performs some

actions and then gets back to its original state. The second template is the general

pattern of an entity that waits for a signal on a binder, responds by performing some

action and then forces an unbind.
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Enzymes that catalyse a reaction with a substrate and then detach from it can then
be written as follows:

let E1p : prefix = delay(rate).p!(). ... ;

let E1p : prefix = ... ;

let E1 : bproc = #(p, TyrDomain) =

[ rep<<y, detach<<p, E1p, TyrDomain, y>> >> ];

let E2 : bproc = #(q, XYDomain) =

[ rep<<r, detach<<q, E2p, XYDomain, r>> >> ];

The programmer has only to define the prefix that codifies for the response (E1p and E2p),

without having to worry how to write code for forcing the detachment of the substrate.
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Graphics Processing Units

Many scientific applications -medical, physical, mechanical engineering- have obtained

clear benefits from visualization techniques and boosted research and technological inno-

vation in Computer Graphics.

Recently, however, development in Computer Graphics has been driven by commercial

applications (videogames, movies, etc.). The wide adoption of three-dimensional graphics

in videogames, for example, pushed innovation in graphics technologies at an astonishing

pace giving us a new, powerful kind of processors: GPUs. Fortunately, this fact had a

positive effect on research: the continuous evolution of graphics hardware and economies

of scale made powerful hardware accelerators readily available to single researchers.

In order to better understand the methods and algorithms used Chapters 4 and 5,

where we will use GPUs to perform high performance computations and visualization

of volumetric data respectively, this appendix introduces GPUs, their design rationale

and their architecture. These concepts are applied in the aforementioned chapters to

the design of algorithms for spatial visualization and for parallel processing of stochastic

simulations.

C.1 GPU history

A Graphics Processing Unit (GPU) is a processor designed and built to accelerate the

computation of graphics operations. Specifically GPUs are found inside graphics boards,

where they are used to speed up 3D graphics rasterization. Rasterization is the task of

taking an image described as a series of shapes (usually triangles) and converting it into

a raster image (a bitmap, i.e. a two dimensional array of pixels -colour data-) for output

on a video display.

The term GPU is often used in contrast or comparison with CPU (Central Processing

Unit), the main, general purpose processor at the core of every computer, designed and
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built to execute efficiently a variety of algorithms. In fact since the onset, a GPU was

a highly specialized processor created to deal with a specific set of operations in the

rasterization pipeline. The set of operations was limited but, thanks to their specialized

implementation, these operations ran extremely fast on the GPU.

To understand how a GPU works, why the architecture of today’s GPU is shaped in

this way, and why the GPU can execute extremely fast only some kind of programs we

need to introduce the 3D rendering pipeline, i.e. the set of instructions that a GPU was

designed to do.

This pipeline is the set of graphics operations done on triangles and points in a 3D

coordinate space to transform and project them to a 2D surface (the screen) and then on

the image pixels to colour and lit them (see Figure C.1). The input of the 3D graphics

Input stage

Tessellation
(optional)

Vertex assembly

Geometry stage
(optional)

Rasterization/

Primitive assembly
(culling, clipping, viewport map)

Pixel assembly

(Fog, Testing, Blending)
Output-Merger stage

Figure C.1: The 3D rendering pipeline

pipeline is a set of vertexes, 3D vectors used to describe the position and orientation of

shapes (usually triangles meshes) inside a three dimensional world. A first optional stage

(Tessellation) tessellate the shapes to create a mesh made by only triangles. It optionally

increases the number of triangles in order to create a more refined geometry. Then, in

the Vertex Assembly stage, vertexes in the input mesh are processed and transformed,

mapping the scene to the point of view of the camera (the “virtual” position of the

user). If necessary, normal vectors used later for lighting and culling are computed. After
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this phase, vertexes can undergo further combination or creation during the Geometry

stage, before being assembled in primitives (usually triangles). During this stage (called

Primitive Assembly), vertexes can be discarded for three reasons: 1) viewport mapping

(vertexes are out of the field of view); 2) culling (vertexes are part of the back of a shape

and therefore not visible); 3) clipping (vertexes belong to an portion of space explicitly

set as empty by the application). Finally, primitives are projected on a 2D surface for

rasterization in the Pixel assembly stage, where per-pixel data (such as colour) is generated

using lighting, texture and depth information. The image is then composed and send to

the output buffer.

The Vertex assembly and Pixel assembly stages are of particular interest. Both of them

work on sets of four values: four floating point values for vertexes (representing points

or vertexes in 3D homogeneous coordinates), four integer values for pixels (representing

the red, blue, green colour components plus an alpha value for transparency). Also, both

of them are very expensive from a computational point of view. Therefore, using SIMD

(Single Instructions, Multiple Data) operations to accelerate them seemed a reasonable

way of speeding up 3D graphics.

The first GPUs accelerated the Vertex assembly and Pixel assembly phases (known at

the time as “Transform & Lighting”), using some standard, fixed algorithms (i.e. Gouraud

Shading for lighting). Later generations started to allow some programmability, first for

the Pixel assembly phase (introduced by Nvidia with registry combiners), then for both

vertex and pixel assembly steps using shaders.

A shader is a set of software instructions used to program some stages of the render-

ing pipeline, substituting the standard, fixed algorithms previously used. With shaders,

customized effects can be used. The shader instruction set and assembly language was

very limited at the beginning; for example, loops and branches were not possible, value

types were limited -floating point for vertexes, integers for pixel colours- and the number

of instructions for each shader program was limited to tens of instructions. Also, pixel

and vertex shading instruction set were different. Every new generation of hardware,

however, the shader model was refined and more features were added: GPUs become

powerful enough to be able to perform all the stages of the pipeline without the help of

the CPU, and even more, thanks to the programmability enabled by shaders. Starting

with the fourth version of the shader model, pixel and vertex shaders were unified. The

latest version of the shader model added support for geometry shaders (use of the same

unified shaders to program the geometry stage). Limits on program length are now only

practical; there is support for loops and branching (although with a performance penalty,

as we will see later), for atomic functions and many other capabilities that make them

easier to use with general purpose computations (e.g. not strictly related to rendering).
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C.2 GPU computing

GPU computing started as an effort from the scientific community to exploit the raw pro-

cessing power of GPUs to make scientific computations. Two GPU generations ago, with

the G80 series of processors and the introduction of unified shaders, graphics processors

manufactures started to see the potentiality of GPUs in High Performance Computing

(HPC). Today, GPUs are marked and advertised from vendors as cheaper and more per-

formant alternatives to small traditional clusters.

Indeed, the raw power of the more recent GPUs is comparable to the computational

power of a cluster with roughly a thousands of CPU cores. However, due to the nature

of GPUs, this power can be exploited by only a few specialised algorithms.

C.3 GPU architecture

In general, the architecture of a GPU is tailored to 3D graphics computations. The

characteristics of graphics computations (highly parallel, very high arithmetic intensity1,

simple stream of mathematical instructions executed on the same data types) dictated

the design of GPUs: little or no cache at all, a cluster of SIMD cores, and a memory with

large bandwidth. Overall, compared to CPUs, GPUs are relatively simple: CPUs are

designed to run a very wide variety of programs, even purely serial programs, as quick as

possible, and therefore they package very complex logic and large caches. It is surprising

to see how little space on a processor die (and consequently a low number of transistors)

are used for actual computation. Consider for example the floor plan of a single AMD

core in Figure C.2: only the area marked as Execution Units and part of the Floating

Point Unit area are dedicated to the ALUs, the Arithmetic and Logic Units used in the

computations.

GPUs, on the other hand, are very specialized: most of their silicon is used to perform

arithmetic computations (see Figure C.3). The small area dedicated to the scheduling

of computational resources and the absence of cache, however, do not prevent the GPU

from being the ideal candidate for computations that present the same characteristics of

3D graphics: high arithmetic intensity, same operation applied to all (or to a big subset

of) the input data, simple or no branching.

It is important to note that even if we can consider modern GPUs as massively parallel

processors, not every execution unit (shader processor) in a GPU is a single core: each

shader processor contains the digital circuits to perform arithmetic computations, but not

the additional logic necessary to drive it as separate unit2.

1the ratio of computation to bandwidth, or more formally arithmetic intensity = operations / words transferred
2To some extent, this applies to standard CPUs as well: each core have several execution units (or ALUs);
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Figure C.2: Marked die plot for a single AMD core. Notice the small area devoted to actual
computation (“Execution Units” and part of “Floating Point Unit”). Note the large area devoted
to level 2 cache. The situations is even more extreme in multi-core processors, where often an
additional level 3 cache, shared by all the cores, is present.

The architecture details vary from vendor to vendor, and sometimes even from one

model to another. In this thesis we will focus on the NVIDIA GPU architecture [147],

as it is the most used for GPU computing. NVIDIA was the first one to address specif-

ically GPU computing with the introduction of CUDA (Compute Unified Device Archi-

tecture) [159].

CUDA GPUs are organized in multiprocessors, which group multiple streaming pro-

cessors, the basic execution units (see Figure C.4 and Figure C.6). CUDA executes the

same program on all the multiprocessors: the code for the program (kernel) is the same

but both the data and the execution flow can be different and diverge. CUDA launches

multiple instances of the same kernel, called threads. Threads are grouped in warps (see

Table C.1) for execution on a multiprocessor.

Threads are runtime instances of the same kernel, and therefore they execute the same

up to six on mainstream processors. All the ALUs perform computations in parallel; however the instructions
issued to these units, and how computation is divided and scheduled on them, is internal to the processor core
and completely transparent to the user
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Figure C.3: Marked die of a nVidia GT200 GPU (image courtesy of Nvidia). If you don’t consider
die areas devoted to graphics operations (Texture units, Raster and ROPs) the computing area
(Shader Processors) clearly dominates.

Device/Host GPU/CPU
Kernel Function called from the host, executed on device. Ker-

nels are executed one at time, by many threads.
Thread Instruction stream flowing into a single execution unit.

Note that they are not like CPU threads. For example,
context switch is free.

Warp Set of threads, currently 32 threads. The Warp is the
scheduling unit (one warp is scheduled on one multipro-
cessor)

Block Set of threads that cooperate via shared memory.
Grid The ”structure” on which blocks of threads are launched

(Only a facility for decomposing your domain, for having
threads that access different parts of your data).

Table C.1: CUDA terminology
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Figure C.4: The structure and computing resources of a Nvidia GT200 chip. Notice the 10
processor clusters, each containing 3 Multiprocessors

program code; furthermore, all the threads in a warp are executed by one multiprocessor

in an SIMD fashion, and therefore they must execute exactly the same instruction at the

same time, although on different data. If threads diverge (taking, for example, different

branches of an if statement), they will be split into different warps, leading possibly to

under-utilization of the multiprocessors. These restrictions help in keeping the architec-

ture simple but powerful: thanks to the big amount of silicon allocated to arithmetic

operations, the raw power of GPUs is enormous.

Applications that process large amounts of data or objects, and perform the same op-
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Figure C.5: The GT200 TPC, containing 3 Multiprocessors

SP SP

SP SP

SP SP

SP SP

SFU SFU

S
hared M

em
ory

I Cache

D Cache

Decode/Scheduler

Streaming 
Multiprocessor (SM)

Figure C.6: A Nvidia Streaming Multiprocessor (SM), with its own Instruction Unit and 8
Streaming Precessing Unit (SPU)

erations on all of them, will fit nicely on a GPU: to keep all the streaming processors busy,

and therefore to obtain good performances, tens of thousands threads need to be executed

268



APPENDIX C. GRAPHICS PROCESSING UNITS

concurrently. Therefore, applications based on the execution of disparate, short tasks will

lead to the fragmentation of warps and to the under-utilization of multiprocessors. Simi-

larly, the applications that process a small subset of data at each time will fail in keeping

the streaming processors fed with enough data. Finally, applications requiring double

precision floating point numbers are currently severely limited: the support for double

precision was added only in the latest generation of GPUs, and in a reduced way. For ex-

ample, on NVIDIA GPUs only one streaming processor for each multiprocessor is capable

of operating in double precision; this leads to performances that are at best one eight of

the single precision performances. Double precision is very important in some scenarios;

in Monte-Carlo simulations and in numerical integration single precision is sometimes not

enough. Fortunately, the next generation of GPUs will enhance significantly the support

for double precision operations [72].

C.4 Programming a GPU

The first GPUs where programmed by submitting a string containing the shader program

to the GPU driver through a graphics API like DirectX or OpenGL. Later, C-like higher

level languages (HLSL and GLSL) were introduced, making the overall programming

easier. However, these languages are still targeted to 3D graphics applications: the code

had still to be submitted explicitly to the GPU via graphics API calls, data had to be

mapped to graphics concepts and moved explicitly (sometimes inefficiently) back and

forth from the GPU to the central memory, again using counter-intuitive graphics APIs.

With the advent of GPU computing, several other languages or libraries were introduced;

the latest example are Brook [7], OpenCL [8] , and CUDA.

The term CUDA usually refers to both an architecture and its associated programming

model. The CUDA GPUs are programmed through an API and a set of C language

extensions. CUDA embeds the GPU code inside C++ code, using the language extensions

to indicate whether a function should be executed on the CPU (called ”host”) or on the

GPU (”device”). It is therefore independent from graphics libraries.

All the details about threads, warps, multiprocessors, etc. are hidden from the end

user; CUDA instead exposes the notions of blocks, grids and threads (see Table C.1) to

ease the decomposition of the problem domain. As depicted in Figure C.7, threads are

both the “physical” and “logical” basic unit of execution; the GPUs groups and schedules

threads in warps, while CUDA offers an higher level view of grids and blocks. Grids and

blocks can be used by the programmer to map the subdivisions inherent in the problem

domain (in particular, spatial subdivisions) in a convenient way. Each thread is then

provided with variables representing the block and grid coordinates on which it needs to
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operate. Each thread can then access and process a single item or subset of the problem

domain.

SM
Decode/Schedule

1 2 32...

Warp

a) Physical allocation b) Logical allocation Thread

1 2 blockDim...

Thread Block

... ... ......

Grid 0

... ... ......

Grid 1

Figure C.7: The structure and computing resources of a Nvidia GT200 chip. Notice the 10
processor clusters, each containing 3 Multiprocessors

As an example, consider the simple and common scenario of porting computationally

intensive loops to the GPU. In order to enable efficient execution, loops have to be trans-

formed, strip-mining or unrolling them. After unrolling each thread executes a single,

distinct iteration of the original loop. For instance, Table C.2 shows a simple algorithm

that takes a vector ’a’ of length ’N’ and a value ’b’ and increments each value of ’a’ by

’b’. As expected, the sequential algorithm on the left accesses the elements of ’a’ one

by one. Instead, the kernel code on the right spawns ’N’ parallel threads, each of them

incrementing a single value of ’a’; the position in the array ’a’ that the thread T has to

increment is obtained by multiplying the block index of T (blockIdx.x) by the number

of threads per block (blockDim.x) and finally adding the current index of T within the

block (threadIdx.x).
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//CPU code

void increment_cpu(float *a, float b,

int N)

{

for (int idx = 0; idx<N; idx++)

a[idx] = a[idx] + b;

}

//GPU code

__device__

void increment_gpu(float *a, float b,

int N)

{

int idx = blockIdx.x * blockDim.x +

threadIdx.x;

if (idx < N)

a[idx] = a[idx] + b;

}

Table C.2: Plain C code versus CUDA code for implementing a simple algorithm. Notice how
the loop is unrolled; calling the kernel on the right will require spawning N threads, each of
them incrementing a single item
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