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SUMMARY	
	
The	 management	 and	 conservation	 of	 threatened	 animal	
populations	require	accurate	knowledge	on	their	distribution	and	
abundance.	 At	 the	 same	 time,	 knowledge	 on	 the	 factors	 driving	
changes	 and	 fluctuation	 in	 distribution	 and	 abundance	 is	 also	
critical.	Nevertheless,	gaining	such	insight	is	especially	challenging	
for	 species	 living	 in	 patchy	 and	 fragmented	 landscapes,	 as	 is	 the	
case	for	most	mammals	in	tropical	forests.	
This	 thesis	 addressed	 these	 issues	 by	 developing	 and	 validating	
analytical	frameworks	that	allow	to	make	robust	spatial	inference	
on	 population	 abundance,	 and	 ultimately	 aimed	 at	 gaining	
knowledge	on	the	conservation	status	of	selected	mammal	species	
in	 the	 rainforest	 of	 the	 Udzungwa	 Mountains	 of	 Tanzania,	 with	
emphasis	 on	 arboreal	 primates.	 This	 area	 is	 an	 outstanding	
hotspot	for	biodiversity	and	endemism	at	continental	level	and	it	is	
especially	 important	 for	primates.	Results	of	 the	 research	project	
were	 used	 to	 provide	 management	 recommendations	 for	 the	
conservation	 of	 target	 species	 and	 of	 the	 environment	 these	
inhabit,	 which	 is	 undergoing	 rapid	 and	 critical	 modifications	
through	habitat	depletion	and	fragmentation.	
	 In	 Chapter	 1,	 data	 from	 camera	 traps	 (i.e.	 remotely-
triggered	 cameras	 that	 take	 images	 of	 passing	 animals)	 were	
analysed	 from	 60	 locations	 in	 the	 Udzungwa	 Mountains	 of	
Tanzania	 to	 determine	 fine-scale	 habitat	 associations	 for	 11	
medium-to-large	 mammal	 species.	 Generalized	 linear	 models	
(GLM)	 were	 applied	 to	 determine	 the	 relationship	 between	
camera-trapping	 events	 and	 habitat	 and	 human	 disturbance	
parameters,	 obtaining	 good	 fit	 for	 the	 9	 most	 recorded	 species.	
Results	 provided	 novel	 insights	 into	 the	 ecology	 of	 the	 target	
species	and	validated	the	usefulness	of	camera	trapping	to	assess	
communities	of	forest	mammals.	
Chapter	2-4	 focused	on	arboreal	primates,	 and	distance	sampling	
from	line	transects	was	the	detection	method	of	choice.	The	three	
target	 species	 included	 the	 endangered	 and	 endemic	 Udzungwa	
red	colobus	(Procolobus	gordonorum).	Analysis	were	performed	on	
data	from	previous	field-based	programmes	in	the	area,	as	well	as	
on	 a	 set	 of	 data	 that	 was	 sampled	 during	 an	 additional	 field	
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campaign	 by	 the	 candidate	 in	 the	 period	 September-November	
2015.	 The	 overall	 dataset	 available	 included	 thus	 distance	
sampling	data	of	the	three	study	species,	that	were	collected	along	
transects	of	2	km	in	length	(N=186)	in	the	five	major	forest	blocks	
found	in	the	study	area.	Such	dataset	also	included	environmental	
and	 human	 disturbance	 parameters	 that	 were	 sampled	 at	
vegetation	plots	 (N=512)	of	25	×	25	m	placed	every	500	m	along	
each	transect.	

In	 Chapter	 2	 a	 hierarchical	 modelling	 approach	 was	
applied.	This	recently	developed	approach	 incorporates	the	effect	
of	 environmental	 covariates	 on	 both	 the	 detection	 and	 the	 state	
processes	 of	 the	 distance	 sampling.	 Such	 method	 takes	 in	 full	
account	 the	 contrasting	 habitat	 and	 protection	 level	 among	 the	
different	 forest	 blocks	 in	 the	 area,	 making	 the	 inference	 process	
more	 informative.	 Indeed,	 results	 of	 the	 study	 showed	 that,	
relative	to	this	novel	approach,	density	was	underestimated	by	the	
canonical	 distance	 sampling,	 particularly	 in	 the	 less	 protected	
forests.	
	 The	inference	on	density	is	spatially	explicit	to	the	scale	of	
the	covariates	used	in	the	hierarchical	modelling.	In	Chapter	3,	an	
approach	 that	 calibrated	 remote-sensing	 imagery	 to	 ground	
measurements	of	tree	density	to	derive	basal	area,	as	a	significant	
predictor	 of	 primate	 density,	 was	 thus	 developed.	 GLM	 was	
applied	 to	 relate	 9.8	 ha	 of	 ground	 samples	 of	 tree	 basal	 area	 to	
various	metrics	extracted	from	Landsat	8	imagery.	The	potential	of	
this	approach	was	tested	for	spatial	inference	of	animal	density	by	
comparing	 the	 density	 predictions	 for	 the	 endangered	 colobus	
monkey,	 to	 the	 previous	 estimates	 from	 field	 transect	 counts.	 A	
species	 distribution	 model	 was	 derived,	 and	 this	 was	 able	 to	
predict	 primate	 densities	 that	 matched	 those	 based	 on	 field	
measurements.	
	 Lastly,	 in	 Chapter	 4,	 a	 further	 application	 of	 hierarchical	
distance	 sampling	 for	 primates	 was	 provided.	 Such	 analysis	
accounted	for	a	comprehensive	set	of	environmental	covariates	of	
both	 detectability	 and	 abundance	 and	 a	 novel	 field	 routine	 was	
proposed	 to	 measure	 the	 spread	 of	 the	 groups	 during	 transect	
sampling,	as	this	affects	distance	measurements	and	hence	density	
estimates.	
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	 The	 general	 approach	 proposed	 in	 this	 thesis	 has	
important,	 inherent	 applications	 as	 it	 magnifies	 the	 relevance	 of	
abundance	models	for	informing	conservation.	This	is	particularly	
crucial	for	species	whose	spatial	pattern	can	be	complex	in	relation	
to	 human	 and	 habitat	 disturbance	 factors	 and	 given	 that,	 almost	
universally,	management	decisions	need	to	be	focus	ed	on	priority	
areas.	
	 In	 this	perspective	a	Bayesian	modelling	approach	will	be	
applied	 in	 a	 multi-site	 framework,	 comprehensive	 of	 all	 the	 five	
forest	sampled	 in	 the	study	area,	as	a	 further	development	of	 the	
research	 project.	 Such	 analysis	 will	 allow	 for	 an	 efficient	
comparison	 of	 animal	 densities	 across	 the	 forest	 blocks,	 while	
properly	 accounting	 for	 statistical	uncertainty	 in	 the	 estimates	of	
those	 parameters	 that	 are	 found	 to	 influence	 both	 species	
detectability	and	abundance.	
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INTRODUCTION	
	
Environmental	 changes	and	anthropogenic	pressures	 are	 eroding	
biodiversity	 at	 unprecedented	 rates,	with	 negative	 impact	 on	 the	
survival	 and	 fecundity	 of	 animal	 species	 (Millenium	 Ecosystem	
Assessment	2005,	Ceballos	et	al.	2015,	Urban	2015).	Modifications	
and	degradation	in	the	extent	and	spatial	configuration	of	habitats	
can	 in	 fact	reduce	population	size	and	growth	rates,	elevating	the	
chance	 of	 extinction	 of	 populations	 and	 species	 (Ronald	 Pulliam	
1988,	 Naeem	 et	 al.	 1999,	 Acevedo-Whitehouse	 &	 Duffus	 2009).	
Assessing	the	impact	that	such	natural	and	human-induced	factors	
have	 on	 the	 distribution	 and	 dynamics	 of	 selected	 species	 is	
therefore	crucial	to	plan	for	adequate	conservation	actions	and,	in	
turn,	 to	 better	 predict	 the	 effects	 on	 species	 of	 the	 current	
environmental	 conditions.	 As	 the	 number	 of	 species	 threatened	
with	 extinction	 is	 way	 larger	 that	 our	 capacity	 to	 effectively	
protect	 them	with	the	 limited	resources	available	to	conservation	
(Myers	et	al.	2000),	it	is	widely	acknowledged	that	efforts	may	be	
more	 proficiently	 focused	 on	 species	 that	 are	 known	 to	 be	
intensively	 subjected	 to	 environmental	 changes,	 habitat	 loss	 and	
over-	exploitation.	Such	species	are	indeed	highly	representative	of	
dysfunctions	in	the	ecosystems	(Bridgewater	2016).	
	 Among	 the	 vertebrates,	 the	 significant	 role	 of	 forest	
mammals	as	indicators	of	ecosystem	health	(Ahumada	et	al.	2011)	
and	 their	 susceptibility	 to	 habitat	 loss	 and	 degradation	 and	 to	
hunting	 (Schipper	 et	 al.	 2008,	 Visconti	 et	 al.	 2011)	make	 them	 a	
model	 study	 subject	 to	 develop	 appropriate	 and	 effective	
management	 and	 conservation	 strategies,	 in	 a	 world	 that	 is	
undergoing	 rapid	 changes	 and	 alterations	 of	 physical	 and	
biological	systems.	Hence,	gaining	knowledge	on	forest	mammals'	
occurrence	 as	 well	 as	 on	 habitat	 associations	 represents	 an	
important	 step	 for	 defining	 appropriate	 conservation	 strategies,	
especially	for	tropical	forests	(Tobler	et	al.	2008).	Tropical	regions	
of	the	Western	Hemisphere,	Africa	and	Asia	host	indeed	the	larger	
species	richness	of	mammals	(Gaston	2003,	Lomolino	et	al.	2006),	
as	well	as	the	highest	diversity,	with	several	species	that	are	highly	
threatened	(Ceballos	&	Ehrlich	2006).	In	particular,	knowledge	on	
the	dynamics	that	govern	relevant	environmental	parameters	is	of	
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primary	importance,	since	it	directly	affects	management	success.	
Even	 if	 significant	research	advances	keep	raising	our	capacity	 to	
understand	 the	 effects	 of	 landscape	 fragmentation	 and	 alteration	
on	species	survival,	still	several	difficulties	arise	in	the	attempt	to	
define	general	patterns	of	association	between	animal	abundance	
and	 the	 entangled	 features	 of	 the	 habitat	 they	 occupy.	 Complex	
site-	and	species-specific	 factors	may	 in	 fact	 interplay	 in	masking	
our	 capacity	 to	 define	 general	 patterns	 of	 species	 and	 habitat	
associations	and	to	identify	the	processes	that	drive	populations	to	
extinction	(Onderdonk	&	Chapman	2000,	Henle	et	al.	2004).					
	 In	 this	 perspective,	 primates	 represent	 good	 ecological	
indicators	 among	 mammals,	 being	 the	 taxa	 with	 the	 highest	
percentage	of	threatened	species	(Schipper	et	al.	2008;	Estrada	et	
al.	 2017)	 and	 carrying	 out	 critical	 ecological	 functions	 in	 their	
ecosystems	 (Marshall	 &	 Wich	 2016).	 Moreover,	 they	 are	
particularly	 sensitive	 to	 habitat	 changes	 (Cowlishaw	 &	 Dunbar	
2000,	Marsh	2003,	Struhsaker	2010)	and	are	highly	dependent	on	
closed-canopy	forest	(Mittermeier	&	Cheney	1987,	Chapman	et	al.	
2006,	 Lovett	 &	 Marshall	 2006).	 These	 are	 also	 habitats	 that	 are	
continuously	subjected	to	modifications,	both	natural	and	human-
driven	 (Isabirye-Basuta	&	Lwanga	2008),	 and	where	hunting	and	
diseases	represent	additional	critical	sources	of	threat	(Cowlishaw	
&	 Dunbar	 2000,	 Schwitzer	 et	 al.	 2015),	 that	 affect	 primate	
populations	negatively.	Nevertheless,	primates	are	reported	to	be	
resilient	 in	 forests	 that	show	variable	degrees	of	degradation	and	
disturbance	(Johns	&	Skorupa	1987,	Chapman	et	al.	2000,	Cavada	
et	al.	2016),	as	a	result	of	an	 interplay	of	 factors	 that	are	still	not	
clearly	identified	and	that	might	be	site-	and	species-dependent.	
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AIM	AND	OBJECTIVES	
 
This	 thesis	 research	 aimed	 at	 modelling	 species	 responses	 to	
habitat	 parameters	 and	 threats	 in	 the	 complex	 landscape	 of	 the	
Udzungwa	 Mountains	 of	 Tanzania,	 a	 remarkable	 biodiversity	
hotspot	(Myers	et	al.	2000)	and	an	outstanding	region	for	primate	
endemism	and	conservation	(Rovero	et	al.	2014b).	The	first	study	
aimed	at	determining	 fine-scale	habitat	 associations	of	 terrestrial	
mammals	 detected	 by	 camera	 trapping,	 as	 a	 methodologically	
novel	 approach	 to	 study	 the	 rare	 and	 poorly	 known	 forest	
mammals	 inhabiting	 the	 study	 area.	 The	 major	 focus	 of	 this	
research	 was	 then	 placed	 on	 three	 arboreal	 primates	 (see	
Materials	and	Methods),	as	keystone	species	that	are	crucial	study	
subjects	for	ecology	and	conservation	science.	
	 Specific	objectives	of	the	thesis	were	as	follows:	
1.	Apply	camera-trapping	to	assess	the	community	of	medium-to-
large	 forest	 mammals	 in	 the	 study	 area	 and	 derive	 a	 proxy	 of	
species'	 relative	 abundance,	 providing	 insights	 on	 poorly	 known	
species'	habitat	associations	(Chapter	1).	
2.	 Study	 arboreal	 primates	 as	 important	 ecological	 indicators	 by	
testing	 novel	 approaches	 to	 estimate	 population	 densities;	 apply,	
for	this	purpose,	a	hierarchical	distance	sampling	approach;	test	if	
such	 approach	 could	 lead	 to	 an	 increase	 in	 the	 accuracy	 of	 the	
density	 estimates	 that	 were	 previously	 obtained	 for	 the	 same	
study	 area,	 from	 a	 canonical	 distance-sampling	 analysis	 (Chapter	
2).	
3.	Develop	an	approach	for	calibrating	remote-sensing	imagery	to	
ground	 measurements	 of	 primate	 density	 predictors;	 use	 these	
modelled	 habitat	 predictors	 to	 derive	 spatially	 explicit	models	 of	
animal	density	(Chapter	3).	
4.	 Extend	 the	 dataset	 available	 from	 previous	 field-based	
programmes	in	the	study	area,	by	collecting	data	from	a	previously	
un-sampled	 forest;	 test	 a	 novel	 field	 routine	 for	 measuring	 the	
spread	of	social	groups	(Chapter	4).	
5.	Test	a	Bayesian	analysis	as	a	 future	perspective,	 that	can	allow	
for	an	efficient	comparison	of	animal	densities	across	all	the	forest	
blocks,	 while	 simultaneously	 evaluating	 the	 influence	 of	
parameters	both	at	a	site-level	as	well	as	at	the	level	of	the	entire	
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study	area;	apply	such	approach	to	properly	account	for	statistical	
uncertainty	in	the	estimates	of	those	parameters	that	are	found	to	
influence	both	species	detectability	and	abundance	(Perspectives).		
6.	 Use	 stepwise	 and	 general	 results	 to	 gain	 insight	 on	 the	
conservation	 status	of	 the	 target	 species	and	on	 the	 changes	 that	
are	 undergoing	 in	 the	 environment	 these	 inhabit,	 to	 provide	
management	recommendations	for	conservation	purposes.	
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MATERIAL	AND	METHODS	
 
Study	area		

The	Udzungwa	Mountains	of	Tanzania	

The	 Udzungwa	 Mountains	 are	 located	 in	 south-central	 Tanzania	
and	 represent	 the	 largest	 mountain	 chain	 in	 the	 Eastern	 Arc	
Mountains,	 covering	 an	 area	 of	 about	 19,000	 km2	 (Platts	 et	 al.	
2011,	Figure	1).	The	area	is	characterized	by	the	presence	of	moist	
forest	 blocks	 that	 are	 interspersed	 with	 drier	 habitats	 and	 that	
show	a	variable	size,	ranging	from	12	to	over	500	km2	(Marshall	et	
al.	 2010).	 The	 natural	 habitat,	 that	 also	 include	 scattered	 forest	
fragments,	 is	 surrounded	 by	 woodland,	 grassland,	 cropland	 and	
human	 settlements,	 with	 a	 different	 degree	 of	 anthropogenic	
pressure	 that	 is	 exerted	 upon	 several	 unprotected	 forests	
(Marshall	et	al.	2007)(Figure	2).	The	Udzungwas	hold	the	highest	
amount	of	closed	canopy	and	 intact	 forest	within	 the	Eastern	Arc	
(Burgess	et	al.	2007).	The	area	was	also	found	to	host	several	rare	
and	endemic	 species,	with	a	highly	 restricted	 range,	making	 it	 an	
outstanding	hotspot	 for	biodiversity	 and	 conservation	 (Rovero	et	
al.	2014b).	
Rainfall	 is	concentrated	in	two	periods	(November-December	and	
March-May),	 ranging	 from	 2,000	 to	 2,500	 mm/year	 in	 the	 east-
facing,	moister	forests	(Barelli	et	al.	2015).	
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Figure	1.	Map	of	the	Udzungwa	Mountains	of	Tanzania	as	seen	from	the	
satellite,	showing	the	location	of	the	sampled	forests.	
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Figure	 2.	 Example	 of	 the	 variety	 of	 forest	 habitats	 encountered	 in	 the	
Udzungwa	Mountains,	Tanzania.	Photo:	Francesco	Rovero	and	NC.	

	
Sampled	forest	blocks	

The	 five	 forest	 blocks	 selected	 for	 the	 study	 (Figure	 1.1)	 present	
wide	 variation	 in	 terms	 of	 elevation	 range	 (290-2,576	 m	 a.s.l.),	
habitat	type	(Figure	2)	and	level	of	protection.	
	
1)	Magombera	 (MG)	 is	 a	 small	 (12	 km2),	 unprotected	 and	 highly	
isolated	 forest	 fragment,	 of	 low	 elevation	 (270-300	 m	 a.s.l.)	 and	
with	 flat	 surface,	 covered	 in	 evergreen	 lowland	 forest	 and	
surrounded	 by	 crop	 fields	 and	 human	 settlements	 (Marshall	
2008);	
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2)	Matundu	(MT)	is	the	largest	forest	block	(562	km2),	intensively	
logged	 in	 the	 past	 and	 now	 protected	 under	 the	 Udzungwa	
Mountains	 National	 Park	 (UMNP)	 jurisdiction.	 Given	 the	 past	
disturbance	 the	 forest	 is	 covered	 with	 regenerating,	 secondary	
vegetation	 that	 is	mainly	 lowland	 deciduous	 and	 semi-evergreen	
(Marshall	et	al.	2007).	The	elevation	ranges	 from	280	 to	1,000	m	
a.s.l.;	
	
3)	Mwanihana	(MW)	is	a	well	protected	forest	as	part	of	the	UMNP.	
The	forest	escarpment	extends	for	151	km2	(Marshall	et	al.	2010)	
and	 from	 350	 to	 almost	 2,300	 m	 a.s.l.	 Along	 such	 elevational	
gradient	 the	 forest	 is	 covered	 with	 deciduous	 vegetation	 in	 the	
lowland	 zones,	 while	 evergreen	 forest	 is	 found	 in	 the	 montane	
areas	(Lovett	et	al.	2006);	
	
4)	Uzungwa	Scarp	(US)	is	a	newly	gazetted	Nature	Reserve	of	314	
km2,	where	high	disturbance	occurs,	given	a	lack	of	ranger	patrols	
on	the	area.	The	forested	habitat	is	similar	to	the	one	found	in	MW,	
but	both	canopy	and	understorey	structures	are	altered	from	pole	
and	 timber	cutting.	Hunting	has	a	great	 impact	on	several	animal	
species,	including	primates,	with	strong	negative	effects	which	are	
especially	impacting	the	colobine	monkeys	(Rovero	et	al.	2012).	
	
5)	 Ndundulu	 (ND)	 is	 a	 forested	 area	 of	 231	 km2	 (Marshall	 et	 al.	
2010),	 outside	 the	 UMNP.	 Is	 part	 of	 the	 Kilombero	 National	
Reserve	 and	 is	 relatively	 well	 protected.	 The	 forest	 ranges	 from	
1300	to	2000	m	a.s.l.	and	is	covered	in	montane	forest	vegetation.	
Sporadic	 logging	 activities	 took	 place	 until	 the	mid	 of	 the	 1990s	
(Dinesen	&	Lehmberg	1996).	
	
Target	species	

The	main	research	focused	on	the	following	three	arboreal	primate	
species	that	occurs	throughout	the	Udzungwa	Mountains	range:	
	
1)	Peter's	Angolan	colobus	(Colobus	angolensis)	(Figure	3)	
Within	 the	 Udzungwas	 the	 species	 is	 reported	 to	 be	 distributed	
more	 commonly	 at	 higher	 altitudes,	 in	 the	 upper-montane	 forest	
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areas	(Marshall	et	al.	2005).	The	male/multi-female	groups	range	
in	 size	 from	 2	 to	 14	 individuals	 (Rovero	 et	 al.	 2009),	 that	 spend	
most	 of	 the	 time	 resting	 and	 feeding	 mainly	 on	 mature	 leaves.	
Angolan	colobus	 is	often	found	in	association	with	Udzungwa	red	
colobus.	 The	main	 threat	 for	 the	 species	 is	 represented	by	 forest	
degradation	(Struhsaker	&	Rovero	2007,	Marshall	2008).	
	

Figure	 3.	 Peter's	 Angolan	 colobus	 (Colobus	 angolensis).	 Photo:	 Scott	
Olson.	Drawing:	Jonathan	Kingdon	(2013).	

2)	Udzungwa	red	colobus	(Procolobus	gordonorum)	(Figure	4)	
The	 species,	 classified	 as	 IUCN-Endangered,	 is	 endemic	 to	 the	
Udzungwa	 Mountains,	 where	 it	 occurs	 in	 all	 forest	 blocks,	
exception	 given	 for	Mufindi,	 located	 in	 the	 south-west	 portion	 of	
the	 area	 (Rovero	 &	 Perkin	 2008).	 The	 multi-male/multi-female	
groups	range	in	size	from	3	to	83	individuals	and	are	often	found	
in	 association	 with	 Angolan	 colobus.	 The	 species	 is	 a	 good	
ecological	indicator	of	forest	integrity,	with	larger	groups	that	are	
found	in	 large	patches	of	mature,	moist	and	mixed	evergreen	and	
semi-deciduous	forest	(Struhsaker	et	al.	2004,	Rovero	et	al.	2009).	
The	species	feeds	predominantly	on	young	leaves,	with	a	diet	that	
also	 comprises	 petioles,	 buds	 and	 less	 frequently	 fruits	 (Rovero	
2003,	 Pucci	 &	 Rovero	 2004).	 Threats	 for	 the	 species	 are	
represented	 by	 habitat	 loss,	 due	 to	 logging,	 conversion	 to	
agriculture,	 collection	 of	 firewood,	 and	 charcoal	 production,	 and	
hunting	(Struhsaker	et	al.	2016).	
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Figure	 4.	 Udzungwa	 red	 colobus	 (Procolobus	 gordonorum).	 Photo:	
Thomas	Struhsaker.	Drawing:	Jonathan	Kingdon	(2013).	

	
3)	Sykes'	monkey	(Cercopithecus	mitis/monoides)	(Figure	5)	
The	 species	 is	 influenced	 relatively	 less	 by	 habitat	 degradation	
than	 the	 two	 colobines,	 being	 an	 opportunistic	 species,	 able	 to	
exploit	 all	 vertical	 forest	 strata	 and	 feeding	 predominantly	 on	
fruits	(Rovero	et	al.	2009).	The	monkey	lives	in	mono-male/multi-
female	groups,	which	size	ranges	from	2	to	22	individuals	(Rovero	
et	al.	2006).	They	are	found	in	associations	with	Sanje	mangabeys,	
Angolan	colobus	and	Udzungwa	red	colobus.	
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Figure	5.	Sykes'	monkey	(Cercopithecus	mitis/monoides).	Photo:	NC	

	

Species’	detection	methods	and	data	collection	

Camera	trapping	

Camera	 traps	 are	 automatic	 cameras	 taking	 images	 of	 passing	
animals	 and	were	used	 for	data	 collection	 in	 a	preliminary	 study	
(Chapter	 1).	 The	 aim	 was	 to	 assess	 habitat	 associations	 for	
terrestrial	 mammals	 on	 a	 fine	 scale	 to	 gain	 insights	 about	 the	
communities	of	species	inhabiting	Mwanihana	forest	in	the	UMNP.	
Camera	 trapping	 is	 a	 tool	 widely	 used	 to	 study	medium-to-large	
mammals	 (Rovero	 et	 al.	 2010,	 O’Connell	 et	 al.	 2011,	 Meek	 et	 al.	
2012).	 The	 use	 of	 a	 systematic	 array	 of	 several	 camera	 traps	 is	
important	 for	 data	 quality	 and	 for	 the	 subsequent	 application	 of	
statistical	 models	 that	 allows	 for	 robust	 inference	 (Trolliet	 et	 al.	
2014).			
	 In	 the	study	reported	 in	Chapter	1,	60	camera	 traps	were	
displaced	on	a	regular	grid	in	the	forest	of	Mwanihana,	covering	a	
total	area	of	120	km2		(i.e.	1	camera	trap	every	2	km2).	The	camera-
trap	models	 selected	 for	 the	 study	were	 Reconyx	 RM	 45	 and	HC	
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500,	 able	 to	 take	 photos	 in	 consecutive	 intervals	 of	 1	 second	
between	each	shot,	storing	captured	data	in	compact	flash	memory	
cards	of	2	GB.	The	cameras	were	left	on	the	site	for	a	minimum	of	
30	 days	 (O’Brien	 2008)	 and	 yielded	 pictures	 of	 the	 captured	
species	together	with	date	and	time	of	the	photo.	
	
Distance	sampling		

For	primate	abundance	and	density	estimation	(Chapter	2	and	4),	
distance	sampling	along	line	transects	(Buckland	et	al.	2001,	2004)	
was	 the	method	 of	 choice,	 as	 this	 is	 commonly	 applied	 to	 obtain	
reliable	 abundance	 estimates	 (Buckland	 et	 al.	 2010a).	 For	 this	
purpose,	 line	 transects	 and	 linear	 paths	 across	 the	 forest)	 were	
randomly	 superimposed	 on	 the	 whole	 survey	 region,	 as	 equally	
spaced	transects	of	the	same	length.		
Distance	sampling	data	for	the	present	work	came	from	uniformly	
and	equally	spaced	line	transects	of	2	km	in	length	(with	transects	
shortened	at	1.5	km	in	MG	for	space	constraints),	distributed	in	the	
five	 main	 forest	 blocks	 in	 the	 study	 area.	 The	 full	 dataset	
comprised	 N=151	 line	 transects	 providing	 197	 repetitions,	 with	
355,66	km	walked.	While	walking	along	each	 transect,	 records	of	
the	 animal	 groups	 detected	 were	 taken	 (N=420),	 together	 with	
their	distance	from	the	observer	and	the	angle	from	the	line	of	the	
detection.	 For	 data	 analysis	 such	 measurements	 were	 then	
converted	 in	 perpendicular	 distances	 (PD)	 from	 the	 transect,	
applying	trigonometry.		
The	application	of	 the	distance	sampling	method	required	also	 to	
respect	 the	 basic	 principle	 of	 transect	 randomization,	 and	 to	
satisfy	a	set	of	key	assumptions	:	
1)	Animals/groups	on	the	line	were	detected	with	certainty.	
2)	Animals/groups	were	detected	prior	to	their	movement,	before	
any	response	to	the	observer.	
3)	Measurements	of	distance	were	taken	with	high	accuracy.	
4)	An	adequate	number	of	transect	repetitions	was	acquired.	
5)	Group	sizes	were	accurately	recorded.	
Moreover,	 for	animal	occurring	 in	groups,	as	 is	 the	case	 for	many	
primate	 species,	 distance	 should	 be	measured	 from	 the	 centre	 of	
the	 group.	 This	 is	 most	 commonly	 achieved	 by	 measuring	 the	
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distance	to	the	first	individual	sighted,	which	is	also	the	one	closest	
to	 the	 line.	 Such	 measurements	 of	 PD	 need	 afterward	 to	 be	
corrected,	 taking	 into	 account	 the	 spread	 of	 the	 groups	
(Whitesides	 et	 al.	 1988,	Marshall	 et	 al.	 2008).	 A	 common	way	 of	
determine	 group	 spread	 values	 is	 to	 take	 species-	 specific	
measurements	during	a	parallel	study	and	to	include	the	averaged	
value	in	the	subsequent	distance	analysis	(Buckland	et	al.	2010a).	
To	further	reduce	biases,	a	new	method	for	group	spread	sampling	
was	 applied	 and	 validated	 in	 Chapter	 4,	 obtaining	 observation-
specific	values	of	group	spread	while	simultaneously	sampling	the	
distance	 measurement	 from	 the	 first	 individual	 observed.	 The	
perpendicular	 distance	was	 then	 corrected,	multiplying	 it	 by	 1	 +	
r/AOD,	 with	 r	 being	 half	 the	 group	 spread	 and	 AOD	 being	 the	
animal-to	observer	distance.	
	
Habitat	data	

Environmental	and	human	disturbance	covariates	

To	model	 habitat	 specific	 density	 of	 the	primate	 target	 species,	 a	
set	of	covariates	characterizing	 the	 forest	habitat	and	parameters	
representing	 anthropogenic	 sources	 of	 disturbance	 in	 the	 area	
were	 sampled	 inside	 squared	vegetation	plots,	 of	 25	×	25	m	 that	
were	placed	every	500	m	along	each	 transect	walked	 for	primate	
data	 collection	 (N=604).	 Plot	 level	 data	 habitat	 covariates	where	
then	 averaged	 for	 each	 transect,	 to	 obtain	 transect	 level	 data	 for	
further	analysis.	
A	 list	 of	 the	 sampled	 parameters,	 together	 with	 detailed	
information	on	the	sampling	procedure	can	be	 found	 in	Table	4.1	
in	Chapter	4.	
	
Remote	sensing	data	

The	modelling	process	to	be	applied	for	obtaining	spatially	explicit	
maps	 of	 species	 density	 requires	 to	 collect	 information	 on	
influential	 environmental	 variables	 over	 space	 (i.e.	 on	 the	whole	
study	 area).	 Such	 sampling	 activity	 can	 be	 highly	 costly	 (Jones	
2011),	particularly	when	operating	over	large	areas	and	in	tropical	
forests.	 The	 implementation	 of	 methods	 that	 are	 low	 in	 costs,	
robust	and	fast	to	apply	is	therefore	essential,	as	well	as	the	need	
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to	evaluate	the	quality	and	the	effectiveness	of	the	information	that	
can	be	derived	(Jones	et	al.	2008,	De	Barba	et	al.	2010,	Maniatis	&	
Mollicone	2010).	In	this	perspective	the	use	of	remote	sensing	data	
shows	a	considerable	potential,	 as	 it	 can	allow	 to	derive	spatially	
explicit	data	over	large	areas	and	at	moderate	costs	(Wilkie	&	Finn	
1996,	 Proisy	 et	 al.	 2007)	 to	 improve	 the	 modelling	 of	 species	
distribution	 (Franklin	 2009),	 especially	 if	 these	 are	 employed	 to	
derive	vegetation	structural	related	properties	(Zimmermann	et	al.	
2007).	High	 thematic	accuracy	can	be	provided	by	optical	data	at	
high	resolution,	 such	as	 the	satellite	 images	delivered	by	 IKONOS	
or	QUICKBIRD	(Mumby	&	Edwards	2002).	Even	 if	 the	availability	
of	 remote	 sensed	 products	 is	 continuously	 increasing	 (He	 et	 al.	
2015),	the	acquisition	costs	of	these	images	as	well	as	their	quality	
can	represent	a	critical	issue	in	many	regions	of	the	world	(Ploton	
et	 al.	 2012),	 and	 mainly	 in	 the	 tropics.	 Broader	 availability	 is	
provided	 by	 Landsat	 data	 that	 have	 been	 used	 to	 investigate	
several	ecological	problems	in	various	environments	(Foody	et	al.	
2003,	 Cohen	 &	 Goward	 2004,	 Weng	 2009).	 Landsat	 series	 offer	
moreover	 data	 for	 some	 decades,	 providing	 a	 longer	 temporal	
insight	that	is	useful	when	focusing	on	the	study	of	environmental	
changes	 rate	 and	 habitat	 modifications.	 These	 data	 however	 are	
not	 always	 able	 to	 directly	 provide	 sufficiently	 sensitive	 and	
detailed	 information	 as	well	 as	 adequate	 reliability	 to	 investigate	
many	 important	 ecological	 issues	 and	 to	 derive	 the	 desired	
relevant	 environmental	 variables.	 This	 is	 true	 in	 particular	 if	 the	
variable	 of	 interest	 is	 related	 to	 the	 vegetation	 canopy	 and	 to	 its	
structure	(Falkowski	et	al.	2004,	Duncanson	et	al.	2010).	
Hence	 further	 investigation	 was	 claimed	 to	 develop	 an	 analysis	
tool	 able	 to	 characterize	 specific	 features	 related	 to	 the	 forest	
structure,	also	for	those	areas	where	Landsat	images	represent	the	
only	feasible	and	easily	accessible	information.	Details	and	results	
of	such	analysis	are	reported	in	Chapter	3.	
	
Data	analysis	

Hierarchical	distance	sampling	

Management	 and	 conservation	 of	 wildlife	 require	 not	 only	
accurate	 information	 about	 the	 size	 of	 the	 population,	 but	 also	
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knowledge	on	how	the	abundance	and	density	are	influenced	and	
shaped	 by	 habitat	 parameter	 and	 human	 disturbance	 factors,	 as	
addressed	in	Chapters	2-4.	
The	conventional	distance	sampling	approach	uses	measurements	
of	 PD	 to	 estimate	 a	 detection	 function,	 meaning	 the	 probability	
that	 a	 group	 of	 animals	 is	 detected,	 as	 a	 function	 of	 its	 distance	
from	the	line,	while	assuming	that	animals	on	the	line	are	detected	
with	 certainty	 (meaning	 that	 the	 probability	 of	 detection	 is	 1	 at	
distance	0).	After	estimating	the	detection	function,	it	is	possible	to	
estimate	 the	 proportion	 of	 animals	 that	 were	 detected	 within	 a	
strip	 of	 distance	 w	 from	 the	 transect,	 on	 either	 side.	 These	
represent	 a	portion	of	 the	 true	density	of	 the	animals	 along	each	
transect.	 The	 expected	 animal	 density	 can	 then	 be	modelled	 and	
estimated,	 adjusting	 encounter	 rates	 and	 correcting	 for	 animals	
that	 were	 missed	 in	 the	 strip.	 Such	 approach	 however	 does	 not	
describe	how	density	varies	spatially,	as	also	influenced	by	habitat	
covariates.	
In	this	perspective,	hierarchical	distance	sampling	(HDS)	(Royle	et	
al.	 2004)	 is	 a	 framework	 that	 has	 been	 implemented	 as	 an	
extension	 of	 the	 conventional	 distance	 sampling	 to	 allow	 the	
spatially	 explicit	modelling	 of	 abundance	 and	 density	 at	multiple	
survey	 sites,	 as	 a	 function	 of	 site-specific	 covariates,	 thus	
accounting	 for	 variation	 in	 local	 density	 among	 sample	 units.	
Assuming	that	multiple	transects	have	been	surveyed	and	distance	
data	 were	 recorded,	 hierarchical	 models	 represent	 a	 unified	
framework	 for	 analysis.	 Such	 framework	 recognizes	 that	
observations	 are	 generated	 by	 a	 combination	 of	 a	 state	 process	
(i.e.	 the	 one	 that	 determines	 abundance	 at	 each	 site)	 and	 a	
detection	process	(i.e.	the	one	that	yields	observations	conditional	
on	the	state	process).			
The	 transect-level	 abundance	 distribution	 is	 assumed	 to	 be	Nt	 ~	
Poisson	(λt),	with	sample	unit	t	=	1,…,	M					
The	detection	process	is	modeled	as	ytj	~	Multinomial(Nt,	πtj),	with	
t	=	1,…,	M	and		j	=	1,…,	J	where	πtj	is	the	multinomial	cell	probability	
for	transect	t	 in	distance	class	 j.	Over	each	distance	interval	these	
probabilities	 are	 computed	 integrating	 a	 detection	 function,	with	
scale	parameter	σ	for	a	half-normal	detection	function.	Covariates	
effects	can	be	computed	as	affecting	parameters	λ	and	σ.					
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A	great	potential	of	such	modelling	framework	is	that	it	allows	for	
accurate	 evaluation	 on	 how	 changes	 in	 covariate	 values	 could	
affect	population	density	and	distribution	in	the	study	area,	as	well	
as	 their	 detection	 probability.	 This,	 in	 turn,	 allows	 for	 the	
implementation	of	spatially-explicit	models	and	highly	informative	
maps,	where	spatially	diffused	values	for	the	influential	covariates	
are	available	(Chapters	2,3,4).	
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CHAPTER	1	

Modelling	 fine-scale	 habitat	 associations	 of	 medium-to-
large	 forest	 mammals	 in	 the	 Udzungwa	 Mountains	 of	
Tanzania	using	camera	trapping	

	
Based	 on	 the	 paper:	Martin	 EH,	Cavada	N,	 Ndibalema	 VG,	 Rovero	 F	
(2015)	 Modelling	 fine-scale	 habitat	 associations	 of	 medium-to-large	
forest	 mammals	 in	 the	 Udzungwa	 Mountains	 of	 Tanzania	 using	
camera	trapping.	Tropical	Zoology:	1–15.	
	
	
Summary	

We	used	camera	 trap	data	collected	 in	2013	 from	60	 locations	
in	the	Udzungwa	Mountains	of	Tanzania	to	determine	fine-scale	
habitat	associations	for	medium-to-large	mammal	 species.	 The	
area	 is	 outstanding	 for	 biodiversity	 and	 endemism	 in	 Africa,	
particularly	 for	 mammals.	 Each	 camera	 trap	 sampled	 for	 30	
days	 and	 the	 survey	 yielded	 12,911	 images	 of	 26	 species.	We	
used	 generalized	 linear	 modelling	 to	 determine	 relationships	
between	 camera-trapping	 events	 and	 vegetation	 and	 other	
habitat	variables.	We	obtained	satisfactory	model	fit	for	9	out	of	
the	 11	most	 recorded	species,	 with	 explained	model	 deviance	
up	to	63.7%.	Results	provide	novel	insights	into	the	ecology	of	
target	 species.	 For	 example,	 the	 event	 count	 of	 the	 IUCN-
endangered	 Abbott's	 duiker	 (Cephalophus	 spadix)	 was	
positively	 correlated	 with	 distance	 to	 the	 park	 border,	
indicating	 preference	 for	 interior	 forest	 and	 avoidance	 of	
disturbance.	 The	 event	 count	 of	 the	 Eastern	 Arc-endemic	
Lowe's	servaline	genet	(Genetta	servalina	lowei)	was	positively	
correlated	 with	 diversity	 of	 large	 trees	 but	 negatively	
correlated	 with	 visibility	 and	 herbaceous	 cover,	 indicating	
preference	 for	 mature	 forest	 habitat.	 Our	 study	 validates	 the	
usefulness	of	 camera	 trapping	 to	assess	 communities	of	 forest	
mammals,	 especially	 as	 related	 to	 habitat	 associations,	
providing	 data	 that	 are	 of	 relevance	 to	 their	 conservation	
management.	
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Introduction	

Forest	mammals	are	a	key	component	of	tropical	forests	 in	terms	
of	biomass	and	as	 indicators	of	ecosystem	health	(Ahumada	et	al.	
2011).	They	are	also	among	the	most	threatened	faunal	groups	due	
to	 habitat	 loss	 and	 degradation	 (Schipper	 et	 al.	 2008).	 Hence,	
knowledge	 on	 their	 occurrence	 and	 factors	 determining	 their	
habitat	 associations	 are	 important	 for	 defining	 conservation	
strategies	 (e.g.	Wasserman	 &	 Chapman	 2003,	 Tobler	 et	 al.	 2008,	
Rovero	et	al.	2013b).	Despite	such	widely	recognized	importance,	
tropical	 forest	 mammals	 are	 generally	 poorly	 known	 partly	
because	 they	 are	 difficult	 to	 detect,	 owing	 to	 their	 nocturnal	
behaviour,	elusiveness	and	rarity	(e.g.	Linkie	et	al.	2007).	
	 In	 this	 context,	 remotely	 set,	 automatic	 cameras	 taking	
pictures	 of	 passing	 animals	 (camera	 trapping)	 have	 been	
increasingly	used	in	the	last	decade	for	studying	mammals	all	over	
the	world	 (Karanth	 &	 Nichols	 1998,	 2002,	 O’Connell	 et	 al.	 2011,	
Fleming	et	al.	2014).	Camera	traps	are	non-invasive,	relatively	easy	
to	use	and	cost	efficient	(Rovero	et	al.	2013b,	Fleming	et	al.	2014).	
A	 number	 of	 studies	 (O’Brien	 2008,	 Ahumada	 et	 al.	 2011,	 2013,	
Rovero	et	al.	2014a,	b)	have	proved	the	efficiency	of	camera	traps	
in	 mammal	 studies.	 A	 limited	 set	 of	 studies	 focused	 on	 habitat	
associations	(Linkie	et	al.	2007,	Bowkett	et	al.	2008,	Rovero	et	al.	
2013a)	 and	 considered	 single	 species,	 or	 groups	 of	 species,	 to	
investigate	habitat	associations	(e.g.	Bowkett	et	al.	(2008)	targeted	
forest	 antelopes	 in	 the	 Udzungwa	 Mountains).	 Here,	 we	 present	
the	 results	 of	 a	 study	 performed	 on	 a	 community	 of	medium-to-
large	forest	mammals,	using	camera	trapping	in	a	mountain	forest	
habitat	in	Tanzania	with	a	focus	on	fine-scale	habitat	modelling.		
	 Our	 study	 area,	 the	 Udzungwa	 Mountains,	 is	 one	 of	 the	
most	 outstanding	 sites	 for	 biodiversity	 endemism	 and	
conservation	 in	 Africa	 (Rovero	 et	 al.	 2014b).	 The	 area	 is	
particularly	 rich	 in	 mammalian	 forest	 fauna	 (Rovero	 &	 De	 Luca	
2007).	 Forest	 mammals	 have	 been	 the	 subject	 of	 a	 number	 of	
studies	 that	deployed	camera	 trapping	(De	Luca	&	Mpunga	2005,	
Bowkett	 et	 al.	 2008,	 Ahumada	 et	 al.	 2011,	 Rovero	 et	 al.	 2013a,	
2014a).	Our	study	objectives	were:	1)	to	assess	the	community	of	
medium-to-large	forest	mammals	as	detected	through	an	extensive	
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camera-trapping	 effort;	 2)	 to	 derive	 a	 proxy	 of	 species’	 relative	
abundance	 and	 3)	 to	 determine	 the	 best	 predictors	 of	 this	
response	variable	among	a	suite	of	fine-scale	vegetation	and	other	
habitat	 factors	 as	 potential	 covariates	 of	 relative	 abundance.	 In	
turn,	we	aimed	to	provide	new	insights	on	habitat	associations	of	
several	 poorly	 known	 and/or	 rare	 species,	which	 are	 relevant	 to	
their	conservation	management.	
	
Material	and	methods	

Study	area	

The	Udzungwa	Mountains	 in	south-central	Tanzania	are	a	system	
of	 moist	 forest	 blocks	 interspersed	 with	 drier	 habitats.	 We	
conducted	 the	 study	 in	 Mwanihana	 forest,	 in	 the	 eastern	
Udzungwa	 Mountains	 National	 Park	 (UMNP;	 Figure	 1.1)	 that	 is	
centred	on	7°46’S,	36°51’E	and	has	a	size	of	1,990	km2.	Mwanihana	
is	one	of	the	 largest	 forest	blocks	in	the	range	(151	km2	of	closed	
forest	habitat)	with	continuous	vegetation	cover,	from	300	to	over	
2,000	m	above	sea	level	(Rovero	et	al.	2013a).	The	forest	habitat	is	
characterised	by	deciduous	forest	at	lower	altitude	on	the	eastern	
side,	while	evergreen	 forests	are	 found	at	higher	altitudes	on	 the	
western	side	(Lovett	et	al.	2006).	 In	addition,	 the	 lower	elevation	
habitat	contains	large	portions	of	secondary,	regenerating	forest	as	
a	 result	 of	 past	 human	 activities	 including	 logging.	 The	 northern	
part	 of	 the	 upper	 elevation	 zone	 has	 lower	 canopy	 and	 bamboo	
forest	with	rocky	and	very	steep	areas.	Total	rainfall	in	Mwanihana	
forest	 is	 around	 1,500	mm	 per	 year	 (data	 from	 UMNP).	 The	 dry	
season	 spans	 from	 June	 to	 November,	 with	 light	 rains	 typically	
falling	from	November	to	February	and	heavy	rains	from	March	to	
June	 (Tropical	 Ecology	 Assessment	Monitoring	 (TEAM)	 Network,	
unpublished	data).	
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Figure	 1.1	 Map	 of	 the	 Udzungwa	 Mountains	 showing	 the	 main	 forest	
blocks	with	closed	canopy	 forest	darker	 in	colour.	The	study	 forest	was	
Mwanihana	 (top	 right	 inset)	 (a)	 where	 the	 60	 camera	 trap	 sites	 are	
shown	as	white	dots	on	the	background	representing	a	Digital	Elevation	
Model;	 (b)	 shows	 the	 location	 of	 Udzungwa	 Mountains	 in	 Tanzania.	
Source:	Rovero,	Martin	et	al.	2014.	

	
Data	collection:	camera	trapping	

We	 conducted	 the	 camera-trapping	 survey	 from	 3	 July	 to	 11	
November	 2013	 by	 sampling	 60	 camera	 trap	 locations.	 Sampling	
was	 part	 of	 a	 long-term	 biodiversity	monitoring	 programme,	 the	
TEAM	 network,	 of	 which	 Udzungwa	 has	 been	 a	 part	 since	 2009.	
For	this	study,	we	only	used	data	for	year	2013,	for	which	we	also	
conducted	habitat	 analysis.	While	pooling	data	 for	multiple	 years	
would	 have	 increased	 the	 sample	 size,	 we	 preferred	 not	 to	
introduce	 potential	 bias	 in	 our	 analysis	 due	 to	 temporal	
discordance	 between	 animal	 and	 habitat	 data,	 as	 well	 as	 due	 to	
habitat	 differences	 between	 years.	 Using	 ArcGIS	 10	 (ESRI	 2011),	
we	 placed	 camera	 traps	 in	 a	 pre-designed,	 regular	 grid	 of	 60	
locations	across	 the	 forest,	 at	 a	density	of	one	camera	per	2	km2.	
We	selected	the	final	camera	position	to	be	on	active	wildlife	trails,	
located	 within	 a	 maximum	 of	 100	 m	 from	 the	 original	 location	
using	 a	 handheld	 GPS	 unit	 (Figure	 1.1).	 Due	 to	 the	 number	 of	
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cameras	 available	 and	 the	 time	 needed	 for	 the	 field	 team	 to	 set	
cameras,	we	sampled	the	60	points	by	deploying	three	consecutive	
arrays	 of	 20	 cameras	 traps	 (south,	 central	 and	 northern	
Mwanihana).	 We	 used	 automated	 digital	 cameras	 with	 infrared	
flash	 (Reconyx	RM	45	and	HC	500	models,	Reconyx	 Inc.,	Holmen,	
WI,	 USA).	We	 set	 cameras	 to	 take	 photos	with	 no	 delay	 between	
consecutive	triggers	and	we	tied	each	camera	to	a	tree	about	2–3	
m	away	from	the	wildlife	 trail,	at	an	average	height	of	50	cm	and	
left	 them	 running	 for	 30	 days.	 As	 cameras	 can	 operate	
autonomously	over	such	periods,	we	did	not	check	them	to	avoid	
unnecessary	 disturbance.	 At	 sampling	 completion,	 we	 recovered	
memory	cards	and	we	extracted	mammal	images	for	identification,	
using	a	specialized	software	(DeskTEAM,	Fegraus	et	al.	2011).	We	
used	 a	 single	 taxonomic	 authority	 (IUCN,	 2015)	 for	 species	
identification.	 Once	 validated	 by	 the	 TEAM	 Network	 secretariat,	
we	downloaded	the	data	package	from	the	open-access	repository	
at	 http://www.teamnetwork.org	 (data	 package	 ID:	 TV-
20140227231705_4591).	
	
Data	collection:	vegetation	sampling	

We	conducted	habitat	assessment	at	all	60	camera	trap	 locations.	
We	 adapted	 a	 vegetation	 assessment	 protocol	 previously	
developed	in	the	same	area	for	a	camera-trapping	study	on	forest	
ungulates	 (Bowkett	 et	 al.	 2008;	 Table	 1.1).	 Thus,	 we	 took	
measurements	of	vegetation	at	three	spatial	scales.	At	the	broadest	
scale,	 we	 measured	 the	 20	 nearest	 trees	 starting	 with	 the	 tree	
closest	to	the	camera	trap	location	and	moving	clockwise	until	we	
reached	the	20th	tree.	We	split	trees	into	two	categories:	trees	with	
a	 diameter	 at	 breast	 height	 (DBH)	 of	 5–10	 cm	 and	 trees	 greater	
than	10	cm.	At	mid-scale,	we	randomly	placed	 four	3	×	3	m	plots	
within	 10	 m	 radius	 of	 each	 camera	 and	 within	 each	 plot	 we	
recorded	the	number	of	stems	>5	cm	DBH	and	taller	than	1	m.	At	
the	 smallest	 scale,	 we	 recorded	 the	 percent	 cover	 of	 leaves,	
seedlings	and	herbs,	bare	soil	and	dead	logs,	within	four,	1	m2	plots	
positioned	at	the	corners	of	each	3	×	3	m	plot,	resulting	in	a	total	of	
16,	 1	 m2	 plots	 around	 each	 camera	 trap.	 We	 also	 recorded	 the	
proportion	of	leaf	litter	that	was	at	least	5	cm	deep	in	the	plots	as	
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measured	with	a	ruler.	We	calculated	a	visibility	 index	of	the	plot	
around	each	camera	trap	location	by	estimating	the	percentage	of	
visibility	of	a	1	×	1	m	plastic	sheet	at	a	distance	of	20	m	from	the	
middle	 of	 the	 plot	 (Bowkett	 et	 al.	 2008).	We	 randomly	 repeated	
this	 exercise	 four	 times	 by	 placing	 the	 plastic	 sheet	 at	 four	
different	bearings,	i.e.	north,	east,	south	and	west	to	derive	a	mean	
value	 of	 visibility	 for	 each	 plot.	 We	 adopted	 this	 method	 to	
quantify	 the	density	of	 the	vegetation	growth	 for	 forest	 floor	 that	
was	not	measured	by	stem	density	(SD).	In	addition,	we	calculated	
the	 shortest	 linear	 distances	 from	 each	 camera	 trap	 point	 to	
National	 Park	 border	 and	 forest	 edge,	 using	 geoprocessing	 tools	
available	in	ArcGIS	10	software.	The	distance	to	the	National	Park	
border	is	negatively	correlated	with	elevation	at	camera	trap	sites,	
given	the	landscape	morphology	of	an	east–west	escarpment	and,	
together	with	the	distance	from	forest	edge,	is	considered	a	proxy	
of	decreasing	anthropogenic	disturbance	(Rovero	et	al.	2012).	
	
	
Table	1.1.	Vegetation	variables	measured	in	plots	centred	on	camera-trap	
sites,	and	used	 to	analyse	habitat	associations	of	 forest	mammals	 in	 the	
Udzungwa	 Mountains	 of	 Tanzania.	 Redundant	 variables	 that	 were	 not	
used	in	the	regression	analysis	are	reported	in	the	footnotes.		

Type	of	plots	for	the	
measurements	

Variables	used	in	the	regression	
analysis	(abbreviation)	

20	large	trees	(>10	cm	DBH)	 Stem	density	(SD1)	
Mean	basal	area	(MBA1)		
Diversity	(Simp1)a	

20	small	trees	(5–10	cm	DBH)	 Mean	basal	area	(MBA2)	
Diversity	(Simp2)b	

3	×	3	m	plots	 Small	trees	stem	density	(SD3)		
Diversity	(LogSimp3)c	

1	×	1	m	plot	(forest	floor	cover)	 Herbaceous	layer	and	seedlings	
(Herbs_Seedl)d	
Sum	of	deep	and	very	deep	leaf	
litters	(SumDepthD_VD)		
Visibilitye	
Distance	to	the	National	Park	
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border	(DistToNPBorder)f	
Distance	to	the	forest	edge	
(DistToForestEdge)f	

	 	

aSimp1	correlated	with	Richness	1	(r	=	0.9,	p	<	0.01,	n	=	59).	
bSimp2	correlated	with	Richness	2	(r	=	0.8,	p	<	0.01,	n	=	59).	
cLogSimp3	correlated	with	Richness	3	(r	=	0.8,	p	<	0.01,	n	=	59).	
dHerbs_Seedl	correlated	with	Leaves	(r	=	–0.7,	p	<	0.01,	n	=	59).	
eMeasured	20	m	from	the	centre	of	the	plot.	
fCalculated	by	using	ArcGIS	version	10.	
	
	
	

Data	analysis	

TEAM	data	are.csv	 files	 that	we	analysed	using	ad-hoc	codes	 in	R	
(R	Core	Team,	2015;	see	also	(Ahumada	et	al.	2011)).	We	derived,	
for	 each	 photographed	 species,	 the	 number	 of	 camera-trapping	
events	 as	 the	 number	 of	 images	 filtered	 by	 1	 h	 (Rovero	 et	 al.	
2013a,	 2014a).	 Hence,	 instances	 where	 the	 same	 species	 were	
captured	 by	 the	 same	 camera	 more	 than	 once	 within	 1	 h	 were	
excluded	 from	the	analysis	as	a	compromise	between	scoring	 the	
same	individual	multiple	
times	and	missing	individuals	(e.g.	Bowkett	et	al.	2008).	Following	
the	 analytical	 approach	 in	 Bowkett	 et	 al.	 (2008)	 and	 Rovero,	
Collett	 et	 al.	 (2013),	 we	 used	 the	 number	 of	 events,	 which	 is	
standardised	by	sampling	effort,	as	this	was	constant	among	sites,	
as	a	proxy	of	relative	abundance	to	determine	habitat	associations.	
While	 this	metric	 is	 an	 index	 that	does	not	 account	 for	 imperfect	
detection	 (O’Connell	 et	 al.	 2011),	 and	 therefore	 is	 of	 limited	
inference,	 our	 choice	 is	 supported	by	 studies	 that	 show	how	 this	
index	 is	 correlated	 with	 true	 abundance	 (O’Brien	 et	 al.	 2003,	
Rowcliffe	 et	 al.	 2008,	 2011),	 including	 the	 study	 by	 Rovero	 and	
Marshall	 (2009)	 on	Harvey's	 duiker	 in	 the	Udzungwa	Mountains.	
We	did	not	oversight	the	limited	value	of	such	index	as	especially	
associated	with	 the	 failure	of	 accounting	 for	potential	differences	
between	 species	 due	 to	 factors	 such	 as	 trail	 use,	 body	 size,	 daily	
range	 and	 behaviour	 (Trolle	 &	 Kéry	 2003,	 Kelly	 &	 Holub	 2008,	
Rowcliffe	&	Carbone	2008,	Sollmann	et	al.	2013);	however,	we	did	
not	aim	to	compare	this	index	among	species.	We	aimed	to	analyse	
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species-specific	 habitat	 associations;	 hence,	 we	 considered	 our	
approach	 sound	 for	 a	 descriptive	 assessment	 of	 how	 vegetation	
features	may	influence	relative	abundance.	
	 We	derived	 a	 species	 accumulation	 curve	 to	 check	 if	 data	
collection	lasted	a	sufficient	number	of	days	to	capture	the	species	
in	the	community.	We	randomised	1,000	times	the	order	in	which	
samples	were	included	in	the	curve	and	we	used	the	results	to	get	
confidence	intervals	around	the	mean	using	the	package	“vegan”	in	
R	 (Oksanen	 et	 al.	 2015).	 Even	 though	 this	 approach	 ignores	
imperfect	 detection	 of	 individual	 species,	 it	 is	 useful	 for	
comparison	with	other	studies	(e.g.	(Silveira	et	al.	2003,	Tobler	et	
al.	2008).	
	 We	derived	the	 following	covariates	 from	vegetation	data.	
For	 the	 two	 plots	 of	 trees	 5–10	 and	 >10	 cm	 DBH,	 we	 calculated	
mean	basal	area	(MBA),	total	basal	area	(TBA)	and	(SD	=	number	
of	 stems	 divided	 by	 the	 area	 approximated	 by	 a	 circle	 of	 radius	
equivalent	 to	 the	 distance	 from	 camera-trap	 site	 of	 the	 farthest	
tree).	 For	 the	 3	 ×	 3	m	plots,	we	 only	 computed	 SD.	 For	 the	 1	m2	
plots,	we	 computed	 the	mean	 estimated	 cover	 of	 the	 forest-floor	
categories	 and	 the	 proportion	 of	 plots	 with	 deep	 leaf	 litter.	 We	
used	Simpson's	reciprocal	diversity	index	(1/D)	to	calculate	plant	
diversity	in	each	plot.	
	 We	then	used	generalized	linear	models	(GLMs,	McCullagh	
&	Nelder	 1989)	 to	 determine	which	 variables	 best	 accounted	 for	
variation	between	the	selected	species	trap	events	and	the	habitat	
covariates	 at	 the	 camera	 locations.	We	 implemented	models	 in	R	
version	3.2.1	(R	Core	Team	2015)	using	the	packages	“lattice”	 for	
graph	visualizing	and	“nlme”	 for	running	the	model	(Sarkar	2008,	
Pinheiro	 et	 al.	 2016).	 Before	 applying	 the	 model,	 we	 first	
performed	 data	 exploration	 to	 check	 for	 outliers	 and	 collinearity	
among	the	explanatory	variables	(Zuur	et	al.	2007).		
We	 used	 dot	 charts	 to	 identify	 the	 presence	 of	 outliers	 in	 the	
explanatory	variables.	In	order	to	obtain	a	normalized	distribution	
for	 explanatory	 variables,	 we	 performed	 a	 log	 transformation	 to	
correct	 for	 the	 extreme	 values	 found	 for	 the	 parameter	 SD.	 We	
used	co-plots	to	highlight	collinearity	among	some	of	the	variables.	
For	 the	 covariates	 that	 showed	 high	 autocorrelation	 (correlation	
coefficient	r>0.6),	we	considered	only	one	variable	from	each	pair	
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for	further	analysis.	This	yielded	a	final	set	of	12	variables	that	we	
used	for	the	model	formulation	(Table	1.1).		
	 Since	 the	 response	 variables	 were	 counts,	 which	 are	
always	non-negative	and	that	tend	to	be	heterogeneous,	we	chose	
Poisson	GLM	owing	to	its	ability	to	deal	with	both	aspects	(Zuur	et	
al.	2010).	Whenever	we	detected	over-dispersion	in	the	model	(i.e.	
over-dispersion	>1.5),	we	corrected	standard	errors	using	a	quasi-
Poisson	 GLM,	 adding	 an	 over-dispersion	 parameter	 φ	 to	 the	
variance	of	the	response	variable	(Yi).	Following	Zuur	et	al.	(2009),	
we	 employed	 a	 stepwise	 backward	 selection	 to	 derive	 the	 best	
model.	 Since	 we	 first	 performed	 accurate	 data	 exploration	 and	
addressed	 collinearity	 among	 the	 explanatory	 variables,	 we	
assured	 that	 the	 algorithm	 employed	 could	 not	 affect	 the	 model	
selection	process.		
	 In	 order	 to	determine	which	variable	 to	drop,	we	 applied	
“Chi”	 and	 “F”	 tests	when	 using	 a	 Poisson	GLM	 and	 quasi-Poisson	
GLM	 respectively	 (Zuur	 et	 al.	 2010).	We	 then	 validated	 the	 final	
model	 containing	 only	 the	 variables	 showing	 significance	 at	 0.05	
level.	 We	 looked	 at	 the	 homogeneity	 of	 the	 residuals	 and	 we	
further	 plotted	 these	 against	 the	 fitted	 values	 and	 against	 each	
explanatory	 variable	 in	 the	 model,	 as	 well	 as	 against	 those	
covariates	that	we	excluded	from	the	model.		
	
Results	

Of	 the	 60	 camera	 traps	 set,	 one	 was	 stolen,	 and	 the	 remaining	
cameras	 accumulated	 1,818	 camera	 days	 (mean	 30.8),	 yielding	
12,911	 images	 of	 mammals.	 Twenty-six	 species	 were	 recorded	
from	all	the	59	sites	(Table	1.2).	The	range	of	species	captured	per	
camera	 was	 1–12	 (median	 7).	 Five	 species	 were	 recorded	
with	 >100	 events	 in	 this	 order:	 giant	 pouched	 rat	 (Cricetomys	
gambianus),	 bushy-tailed	 mongoose	 (Bdeogale	 crassicauda),	 red	
duiker	 (Cephalophus	 harveyi),	 suni	 (Nesotragus	 moschatus)	 and	
Sanje	Mangabey	(Cercocebus	sanjei).	Six	species,	namely	grey-faced	
sengi	(Rhynchocyon	udzungwensis),	Tanganyika	mountain	squirrel	
(Paraxerus	vexillarius),	 tree	hyrax	 (Dendrohyrax	validus),	Abbott's	
duiker	 (Cephalophus	 spadix),	 servaline	 genet	 (Genetta	 servalina)	
and	bush	pig	 (Potamochoerus	 larvatus),	 scored	>20	≤	100	events,	
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while	the	remaining	15	species	scored	≤	20	events,	of	which	seven	
species	 scored	 ≤	 5	 events	 (Table	 1.2).	 The	 species	 accumulation	
curve	 showed	 an	 initial	 steep	 shape	 and	 flattened	 out	 at	 around	
1,000	camera	days,	when	24	species	were	recorded,	i.e.	the	92%	of	
the	 total	 number	 of	 species	 detected	 (Figure	 1.2).	We	 could	 only	
model	habitat	association	for	the	11	most	camera	trapped	species	
(i.e.	minimum	of	20	events	recorded).	Out	of	these,	the	models	did	
not	 converge	 for	 red	 duiker	 and	 tree	 hyrax.	 The	 deviance	
explained	by	the	models	ranged	from	5.8	to	63.7%,	and	for	nearly	
half	 of	 the	 mammal	 species,	 the	 deviance	 explained	 was	 >30%	
(Table	1.3).	
	 We	found	the	trapping	events	for	the	two	carnivore	species	
modelled,	 servaline	 genet	 and	 bushy-tailed	 mongoose,	 to	 be	
influenced	by	different	 variables.	 For	 the	 bushy-tailed	mongoose,	
we	found	leaf	litter	depth	and	SD	to	be	negatively	correlated	with	
species’	 trapping	 events,	 with	 the	 latter	 variable	 being	 more	
significant	 (Table	1.3).	 For	 the	 servaline	genet,	 instead,	we	 found	
the	 herbaceous	 cover	 and	 visibility	 index	 to	 be	 negatively	
correlated	 with	 its	 trapping	 events,	 while	 the	 diversity	 of	 large	
trees	was	 the	most	 significant	 variable	 positively	 correlated.	 The	
explained	 deviances	 were	 21.9	 and	 43.5%	 for	 bushy-tailed	
mongoose	 and	 servaline	 genet	 respectively	 (Table	 1.3).	 For	 the	
Afrotheria,	 the	model	 explained	 29.8%	 of	 deviance	 of	 grey-faced	
sengi's	trapping	events	and	showed	significant	positive	correlation	
with	small	 tree	diversity	 (Table	1.3).	For	 the	primates,	 the	model	
selected	 MBA	 of	 large	 trees	 as	 the	 only	 variable	 negatively	
correlated	with	trapping	events	of	Sanje	mangabey	with	explained	
deviance	 of	 5.8%	 (Table	 1.3).	 For	 the	 ungulates,	 distance	 to	 the	
national	 park	 border	 was	 the	 only	 and	 most	 significant	 variable	
positively	 correlated	 with	 the	 trapping	 event	 of	 Abbott's	 duiker	
(14.5%	of	deviance	explained).	For	suni,	 the	variables	retained	 in	
the	 model,	 i.e.	 SD	 of	 small	 trees,	 distance	 to	 forest	 edge	 and	
National	 Park	 border,	 had	 negative	 correlations	with	 the	 species	
trapping	event;	only	visibility	index	showed	a	positive	correlation.	
Bush	 pig	 showed	 the	 highest	 number	 of	 variables	 significantly	
influencing	its	trapping	events,	with	63.7%	of	explained	deviance.	
These	were,	from	the	most	significant	to	the	least	significant,	plant	
diversity	 and	 SD	 of	 small	 trees,	 distance	 to	 the	 forest	 edge	 and	
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herbaceous	 cover	 (negative	 correlation);	 and	MBA	 of	 large	 trees,	
distance	to	the	National	Park	border	and	SD	of	large	trees	(positive	
correlation;	 Table	 1.3).	 For	 the	 rodents,	 giant	 pouched	 rat's	
trapping	event	was	positively	correlated	with	large	trees	diversity,	
with	 30%	 of	 deviance	 explained,	 while	 for	 the	 Tanganyika	
mountain	 squirrel	 herbaceous	 cover	 and	 SD	 of	 large	 trees	
negatively	 correlated	 with	 the	 species	 trapping	 events	 (14.5%	
deviance	explained;	Table	1.3).	
	
Table	 1.2.	 Checklist	 of	 mammals	 camera-trapped	 in	 Mwanihana	 forest,	
Udzungwa	Mountains,	Tanzania	ordered	by	decreasing	number	of	events.	
Naïve	occupancy	 is	computed	as	 the	number	of	sites	where	species	was	
trapped	divided	by	all	sites	sampled	(n	=	59).	

Latin	name	 Common	name	 Events	
per	hour	

Naïve	
occupancy	

Cricetomys	gambianus	
(Waterhouse,	1840)	

Giant	pouched	rat	 443	 0.712	

Bdeogale	crassicauda	
(Peters,	1852)	

Bushy-tailed	
mongoose	

419	 0.831	

Cephalophus	harveyi	
(Thomas,	1893)	

Red	duiker	 394	 0.763	

Nesotragus	moschatus	
(Von	Dueben,	1846)	

Suni	 165	 0.492	

Cercocebus	sanjei	
(Mittermeier,	1896)	

Sanje	mangabey	 129	 0.695	

Rhynchocyon	
udzungwensis	(Rathbun	
&	Rovero,	2008)	

Gray-faced	sengi	 69	 0.288	

Paraxerus	vexillarius	
(Kershaw,	1923)	

Tanganyika	
mountain	squirrel	

59	 0.322	

Dendrohyrax	validus	
(True,	1890)	

Tree	hyrax	 57	 0.305	

Cephalophus	spadix	
(True,	1890)	

Abbot’s	duiker	 52	 0.458	

Genetta	servalina	
(Pucheran,	1855)	

Lowe’s	servaline	
genet	

37	 0.356	
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Potamocherus	larvatus	
(F.	Cuvier,	1822)	

Bush	pig	 24	 0.203	

Cercopithecus	mitis	
(Wolf,	1822)	

Sykes	monkey	 19	 0.220	

Petrodromus	
tetradactylus	(Peters,	
1846)	

Four	toed	sengi	 15	 0.034	

Mellivora	capensis	
(Schreber,	1776)	

Honey	budger	 12	 0.153	

Loxodonta	africana	
(Blumenbach,	1797)	

African	elephant	 9	 0.119	

Nandinia	binotata	(Gray,	
1830)	

Palm	civet	 9	 0.119	

Syncerus	caffer	
(Sparrman,	1779)	

African	buffalo	 7	 0.068	

Atilax	paludinosus	(G.	
[Baron]	Cuvier,	1829)	

Marsh	mongoose	 6	 0.085	

Colobus	angolensis	
palliatus	(Grubb	et	al.,	
2003)	

Peter’s	Angolan	
colobus		

3	 0.068	

Panthera	pardus	
(Linnaeus,	1758)	

Leopard	 3	 0.034	

Procolobus	gordonorum	
(Matschie,	1900)	

Udzungwa	red	
colobus	

3	 >0.051	

Mungos	mungo	(Gmelin,	
1788)	

Banded	mongoose	 2	 0.034	

Tragelaphus	scriptus	
(Pallas,	1766)	

Bush	buck	 2	 0.034	

Papio	cynocephalus	
(Linnaeus,	1766)	

Yellow	baboon	 1	 0.017	

Rhynchocyon	cirnei	
(Peters,	1847)		

Chequered	sengi	 1	 0.017	

Thryonomys	
swinderianus	
(Temminck,	1827)	

Marsh	cane	rat	 1	 0.017	
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Figure	 1.2.	 Species	 accumulation	 curve	 with	 sampling	 effort	 for	 the	
community	of	medium-to-large	mammals	detected	by	camera	trapping	in	
the	Udzungwa	Mountains	of	Tanzania.	

	
	
	
Table	 1.3.	 Results	 of	 generalized	 linear	models	 of	 habitat	 predictors	 of	
abundance	 for	 the	 nine	 mammals	 that	 had	 adequate	 camera	 trapping	
events	 for	 the	 analysis	 (>20).	 Both	 the	 deviance	 and	 the	 significant	
outcomes	of	 the	effects	of	covariates	on	trap	events	are	 indicated,	along	
with	their	directionality.	See	Table	1.1	for	abbreviations	of	covariates.	

Species	 Significant	
covariates	

Estimates	(SE)	 p-
value	

Deviance	
(%)	

Sanje	
mangabey	

MBA2	 -510.933	
(280.192)	

0.074	 5.8	

Bushy-tailed	
mongoose	

LOGSD3	
Simp1	
SumDepthd_VD	

-1.675	(0.490)	
0.088	(0.048)	
-1.365	(0.691)	

<0.05	
0.072	
0.053	

21.9	

Lowe’s	
servaline	genet	

DistToNPBorder	
LOGSD1	
Simp1	
Visibility	
Herbs_Seedl	

0.000	(0.000)	
1.937	(1.036)	
0.239	(0.067)	
-0.030	(0.015)	
-0.052	(0.021)	

<0.05	
0.067	
<0.001	
<0.05	
<0.05	

43.5	

Giant	pouched	
rat	

Simp1	 0.110	(0.066)	 0.098	 30	

Tanganyika	
mountain	
squirrel	

LOGSD1	
LOGSD3	

-2.260	(1.312)	
3.214	(1.472)	

0.091	
<0.05	

14.5	
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Gray-faced	
sengi	

Simp2	
Simp3	

0.165	(0.080)	
0.190	(0.073)	

<0.05	
<0.05	

29.8	

Abbott’s	duiker	 DistToNPBorder	 0.000	(0.000)	 <0.001	 14.5	

Suni	 DistToForestEdge	
DistToNPBorder	
LOGSD3	
Visibility	

-0.000	(0.000)	
-0.000	(0.000)	
-1.860	(0.846)	
0.030	(0.009)	

<0.05	
0.08	
<0.05	
<0.01	

30.9	

Bush	pig	 DistToNPBorder	
DistToForestEdge	
LOGSD1	
LOGSD3	
Simp2	
Simp3	
MBA1	
Herbs_Seedl	

0.000	(0.000)	
-0.000	(0.000)	
2.221	(1.307)	
-6.414	(1.814)	
-0.468	(0.129)	
-0.316	(1.286)	
2.150	(0.552)	
-0.089	(0.034)	

0.055	
<0.05	
0.089	
<0.001	
<0.001	
<0.05	
<0.001	
<0.01	

63.7	

	
	
Discussion	

We	 undertook	 a	 considerable	 and	 systematic	 camera	 trap	 effort	
comprehensively	covering	the	target	area	to	define	the	community	
of	medium-to-large	 forest	mammals	 in	 the	Udzungwa	Mountains.	
We	thus	determined	habitat	associations	of	selected	species	based	
on	fine-scale	modelling	of	habitat	features	at	camera	trap	sites.	Our	
study	 confirms	 the	 usefulness	 of	 camera	 trapping	 for	 studying	
elusive	forest	mammals,	as	shown	by	previous	studies	in	the	area	
(e.g.	Rovero	et	al.	2014a)	and	elsewhere	in	the	tropics	(e.g.	Tobler	
et	 al.	 2008,	 Ahumada	 et	 al.	 2011).	 Our	 sampling	 effort	 was	
adequate	 to	detect	 a	 large	 (i.e.	 87%)	proportion	of	 species	 in	 the	
community,	 as	 additional	 camera	 trapping	 and	 complementary	
knowledge	indicates	that	approximately	30	species	may	in	fact	be	
present	in	the	area	(Rovero	&	De	Luca	2007,	Rovero	et	al.	2014a).	
This	 in	 turn	 confirms	 the	 need	 of	 a	 sampling	 effort	 longer	 than	
1,000	 camera	 days	 to	 describe	 a	 complex	 forest-dwelling	
community	 of	 larger	mammals	 (Tobler	 et	 al.	 2008,	 Rovero	 et	 al.	
2010).	 Our	 image	 event	 score	 constitutes	 an	 index	 that	 does	 not	
provide	 information	 on	 differences	 in	 abundance	 among	 species	
(see	Methods);	nevertheless,	the	fact	that	approximately	half	of	the	
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species	were	detected	with	<	10	events,	does	indicate	their	relative	
rarity	and/or	poor	detectability	by	camera	traps.	Among	these	are	
the	canopy	dwellers	such	as	the	two	colobine	monkeys,	namely	the	
Udzungwa	red	colobus	and	the	black	and	white	colobus,	that	rarely	
come	 to	 ground	 and	 for	which,	 therefore,	 camera	 traps	 are	not	 a	
suitable	 detection	 method.	 The	 remaining	 species	 in	 the	 forest	
community	were	 either	 only	 detected	 at	 low	 relative	 abundance,	
such	as	leopard,	buffalo	and	elephant,	or	only	in	the	marginal	areas	
of	 the	 forest,	 such	 as	 yellow	 baboon	 and	 banded	 mongoose	
(Kingdon	2008).		
	 The	 limit	 of	 our	 approach	 of	 using	 an	 index	 of	 relative	
abundance	 (see	 Methods	 and	 O’Connell	 et	 al.	 2011)	 bears	 the	
consequence	that	we	could	only	 implement	habitat	models	for	11	
species,	 while	 studies	 adopting	 inferential	 approaches	 that	
consider	detectability	may	allow	extending	the	analysis	to	some	of	
the	 least-detected	 species.	 However,	 Rovero	 et	 al.	 (2014a)	 used	
occupancy	 modelling	 for	 a	 different	 analysis	 on	 the	 same	 study	
system	 and	 found	 that	 for	 species	 with	 less	 than	 10	 events	
occupancy	 models	 did	 not	 converge	 (see	 also	 Ahumada	 et	 al.	
2011).	 Future	 analysis,	with	 larger	 sample	 size,	 should	 capitalize	
on	 our	 results	 by	 adopting	 inferential	 analytical	 approaches	 that	
account	for	imperfect	detection.		
	 For	small	carnivores	such	as	 the	Lowe's	genet	and	bushy-
tailed	mongoose,	we	found	a	strong	relationship	of	 their	 trapping	
events	with	plant	species	diversity.	Higher	tree	diversity	occurs	in	
the	 interior	 and	mid-elevation	 forest	 (Lovett	 et	 al.	 2006),	 where	
availability	of	prays	may	be	optimal	 for	these	two	forest	dwelling	
species	 (De	 Luca	&	Mpunga	 2005).	 In	 addition,	 SD	 of	 large	 trees	
was	 positively	 correlated	 with	 trapping	 events	 of	 Lowe's	 genet,	
indicating	their	preference	for	closed	canopy	and	highly	sheltered	
areas	 (Rovero	 et	 al.	 2013a).	 For	 bushy-tailed	mongoose,	 instead,	
the	model	predicted	a	negative	correlation	with	small	SD,	which	is	
also	 concordant	 with	 preference	 for	 mature,	 old-growth	 forest	
with	 relatively	 open	 lower	 canopy	 and	 understory	 (Rovero	 et	 al.	
2012).		Plant	diversity	of	both	medium	and	 small	 trees	 (i.e.	 those	
forming	the	lower	canopy)	had	a	positive	and	significant	effect	on	
the	grey-faced	sengi's	 trapping	events.	This	rare	species,	endemic	
to	 Udzungwa	 Mountains,	 was	 described	 in	 2008	 (Rovero	 et	 al.	
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2008)	 and	 is	 listed	 as	 vulnerable	 by	 the	 International	 Union	
Conservation	 for	 Nature	 –	 IUCN	 (IUCN	 -	 International	 Union	 for	
Conservation	 of	 Nature	 2015).	 Being	 diurnal,	 this	 species	 may	
prefer	 more	 dense	 vegetation	 to	 avoid	 detection	 from	 aerial	
predators	(Rovero	et	al.	2013a).	For	the	Sanje	mangabey,	another	
Udzungwa-endemic	 and	 IUCN-endangered	 species	 (IUCN,	
International	Union	 for	Conservation	of	Nature	2015),	 our	model	
predicted	a	negative	correlation	between	trapping	events	and	MBA	
of	 lower	 canopy	 trees.	 This	 suggests	 that	 the	 species	 probably	
avoids	 areas	 with	 few	 lower	 canopy	 stems,	 indicative	 of	 limited	
food	 availability,	 particularly	 fruits,	 and	 high	 predation	 risk	 by	
raptors,	 particularly	 African	 crown	 eagle	 (Stephanoaetus	
coronatus)	 (Rovero	 et	 al.	 2009).	 Indeed,	 the	 Sanje	 mangabey's	
preference	 for	 steep,	 low	 canopy	 and	 densely	 covered	 areas	 is	
supported	by	focal	group	studies	(T.	Jones,	pers.	Comm.).		
	 The	results	for	the	two	ungulates	Abbott's	duiker	and	bush	
pig	show	that	their	trapping	events	were	positively	correlated	with	
distance	 to	 the	 National	 Park	 border,	 a	 factor	 considered	 as	 a	
proxy	of	 anthropogenic	disturbance	 (Rovero	et	 al.	 2012).	 For	 the	
endangered	 and	 Tanzania-endemic	 Abbott's	 duiker,	 this	 is	 an	
interesting	and	 conservation-relevant	 finding,	 and	we	note	 that	 a	
previous	study	on	forest	antelope	in	the	area	could	not	determine	
the	 drivers	 of	 relative	 abundance	 for	 this	 species	 due	 to	
insufficient	data	(Bowkett	et	al.	2008).		
	 Conversely,	 Harvey's	 duiker	 had	 a	 negative	 association	
with	 distance	 to	 National	 Park	 border,	 indicating	 possible	
tolerance	 towards	 disturbance	 events	 (Rovero	 et	 al.	 2014a).	 The	
different	 results	 found	 by	 Bowkett	 et	 al.	 (2008),	 who	 found	
decreasing	index	of	relative	abundance	with	distance	from	villages,	
may	be	partly	due	to	the	fact	that	the	latter	study	had	the	bulk	of	
its	data	collected	in	Matundu,	a	lowland	forest	which	was	reported	
to	be	more	disturbed	with	possible	hunting	 from	nearby	villages.	
Moreover,	 in	Mwanihana,	 forest	 local	 communities	were	 allowed	
to	 collect	 firewood	 inside	 the	National	 Park	 border	 although	 this	
activity	was	stopped	in	2011	(UMNP	unpublished	data).	Our	result	
for	Harvey's	duiker	may	also	 indicate	a	greater	re-colonization	of	
the	 lower	 elevation	 forest	 by	 this	 species	 in	 Mwanihana.	 In	
contrast,	 for	 the	 other	 forest	 antelope,	 the	 suni,	 trapping	 events	
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were	 negatively	 correlated	 both	 with	 the	 distances	 to	 National	
Park	border	and	forest	edge,	and	with	small	SD,	which	is	probably	
indicative	 of	 the	 species	 avoidance	 of	 the	 areas	 where	 human	
disturbances	 are	 likely	 to	 be	 high,	 such	 as	 along	 the	park	border	
and/or	forest	edge.	Comparable	results	were	found	by	Mugerwa	et	
al.	 (2012)	 in	 Bwindi	 Impenetrable	 National	 Park,	 Uganda,	 where	
higher	 detection	 of	 the	 yellow-backed	 duiker	 (Cephalophus	
silvicultor)	 from	camera	 trapping	was	 found	 in	 the	 interior	 forest	
where	human	activities	were	lower	than	along	the	park	edge.	The	
fact	that	we	found	a	positive	relationship	between	suni's	trapping	
event	and	visibility	index,	but	negative	relationship	with	small	SD,	
does	 also	 support	 this	 species’	 sensitivity	 to	 disturbances.	 Poor	
visibility	will	 likely	occur	in	areas	dominated	by	dense	vegetation	
and	lianas	along	the	Park's	border	due	to	canopy	degradation	and	
predominance	 of	 secondary,	 regenerating	 forest	 (Bowkett	 et	 al.	
2008,	 Rovero	 et	 al.	 2014a).	 Our	 results	 also	 showed	 negative	
correlations	 of	 bush	 pig	 trapping	 events	 with	 sub-canopy	 tree	
diversities	 and	 stem	 densities;	 this	 response	 may	 reflect	 their	
opportunistic	 habits	 with	 preference	 for	 lower	 elevation	 areas,	
with	 regenerating	 vegetation	 and	 relatively	 low	 tree	 species'	
diversity	 (Simoons	 1953).	 Furthermore,	 the	model	 predicted	 the	
species'	habitat	preferences	 for	 the	areas	with	high	percentage	of	
leaf	 litter	 coverage,	 where	 the	 content	 of	 invertebrates,	 small	
vertebrates,	insect	larvae	and	carrion	constitutes	the	species'	main	
food	 (Maberly	 1967,	 Smithers	 1983,	 Kingdon	 2008).	 Only	 one	
variable,	 large	 tree	 diversity,	 was	 positively	 correlated	 with	 the	
trapping	events	of	 the	giant	pouched	rat.	This	may	 likely	 indicate	
the	 species'	 preference	 for	 highly	 sheltered	 areas	 with	 complex	
habitat,	 which	 may	 in	 turn	 mean	 greater	 food	 abundance.	 In	
contrast,	Tanganyika	mountain	squirrel's	 trapping	events	showed	
a	 positive	 relationship	 with	 small	 SD,	 indicating	 the	 species	
dependence	 on	 the	 dense	 forest	 floor	 and/or	 bushy	 areas	 that	
provides	 food	 sources	 and	 perfect	 refuges	 when	 fleeing	 from	
predators	and	particularly	raptors.		
	 In	general,	we	found	that	a	number	of	potential	covariates	
both	 as	 proxies	 of	 gross	 habitat,	 namely	 the	 distance	 to	 the	
National	Park	border,	and	as	fine-scale	vegetation	features,	namely	
the	SD	of	small	trees,	appeared	to	influence	habitat	associations	for	
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most	of	the	selected	species.	Conversely,	few	species	such	as	bush	
pig	and	Lowe	genet,	appeared	to	be	influenced	by	a	greater	set	of	
covariates,	while	 a	 small	 number	 of	 species	was	 only	 affected	 by	
one	 covariate,	 such	 as	 the	 Udzungwa-endemic	 Sanje	 mangabey	
(MBA	for	understory	forest)	and	the	Eastern	Arc-endemic	Abbott's	
duiker	 (distance	 to	 the	 National	 Park	 border).	 These	 species–
habitat	specific	relationships	may	be	of	particular	relevance	to	the	
need	of	protecting	the	full	array	of	forest	habitat:	the	interior	areas	
in	which	moist	montane	 forest	 is	 found,	 but	 also	 the	 forest	 edge	
that	 is	 preferred	 by	 other	 species.	 Particular	 emphasis	 should	
indeed	be	given	to	the	areas	along	the	Park	border	where	human	
activities	 resulting	 in	 severe	 habitat	 degradation	 are	 higher	
(Rovero	et	al.	2012).	
	
Conclusion	and	recommendations	

Our	study	confirms	the	usefulness	of	camera	trapping	in	studying	
habitat–species	 associations	 for	 elusive	 forest	 mammals.	 Our	
analytical	 approach,	 i.e.	 the	 use	 of	 an	 event-based	 index,	 has	 the	
limits	 described	 in	 the	 methods	 that	 should	 be	 considered	 in	
future	 studies	 by	 adopting	 inferential	 approaches.	 We	 have	
provided	insights	on	the	mammal	community	inhabiting	the	study	
area,	using	a	habitat	sampling	approach,	i.e.	measuring	vegetation	
features	at	 the	 fine	 scale,	which	was	previously	done	only	on	 the	
forest	 antelope	and	on	 the	grey-faced	 sengi	 (Bowkett	 et	 al.	 2008,	
Rovero	 et	 al.	 2014a).	 Our	 results	 are	 of	 particular	 conservation	
relevance	 for	 the	 range-restricted	 species,	 such	 as	 the	 Lowe's	
servaline	 genet	 and	 Abbott's	 duiker,	 for	which	 limited	 ecological	
data	existed	before	this	study.	We	acknowledge	that	greater	effort	
would	 be	 required	 to	 adequately	 determine	 habitat	 associations	
for	a	larger	portion	of	species	in	the	community.	
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CHAPTER	2	

Primates	 in	 human-modified	 and	 fragmented	 landscapes:	
the	 conservation	 relevance	 of	 modelling	 habitat	 and	
disturbance	factors	in	density	estimation	
	
Based	 on	 the	 paper:	Cavada	 N,	 Barelli	 C,	 Ciolli	 M,	 Rovero	 F	 (2016)	
Primates	 in	 human-modified	 and	 fragmented	 landscapes:	 the	
conservation	 relevance	 of	modelling	 habitat	 and	 disturbance	 factors	
in	 density	 estimation.	 PLoS	 ONE	 11(2):	 e0148289.	
doi:10.1371/journal.pone.0148289		
	
	
Summary	

Accurate	 density	 estimation	 of	 threatened	 animal	 populations	 is	
essential	 for	 management	 and	 conservation.	 This	 is	 particularly	
critical	for	species	living	in	patchy	and	altered	landscapes,	as	is	the	
case	 for	 most	 tropical	 forest	 primates.	 In	 this	 study,	 we	 used	 a	
hierarchical	 modelling	 approach	 that	 incorporates	 the	 effect	 of	
environmental	 covariates	 on	both	 the	detection	 (i.e.	 observation)	
and	the	state	(i.e.	abundance)	processes	of	distance	sampling.	We	
applied	 this	method	 to	 already	 published	 data	 on	 three	 arboreal	
primates	 of	 the	 Udzungwa	 Mountains	 of	 Tanzania,	 including	 the	
endangered	 and	 endemic	 Udzungwa	 red	 colobus	 (Procolobus	
gordonorum).	 The	 area	 is	 a	 primate	 hotspot	 at	 continental	 level.	
Compared	to	previous,	‘canonical’	density	estimates,	we	found	that	
the	 inclusion	 of	 covariates	 in	 the	modelling	makes	 the	 inference	
process	more	informative,	as	it	takes	in	full	account	the	contrasting	
habitat	and	protection	 levels	among	 forest	blocks.	The	correction	
of	density	estimates	for	imperfect	detection	was	especially	critical	
where	 animal	 detectability	 was	 low.	 Relative	 to	 our	 approach,	
density	 was	 underestimated	 by	 the	 canonical	 distance	 sampling,	
particularly	in	the	less	protected	forest.	Group	size	had	an	effect	on	
detectability,	 determining	 how	 the	 observation	 process	 varies	
depending	on	the	socio-ecology	of	the	target	species.	Lastly,	as	the	
inference	 on	 density	 is	 spatially	 explicit	 to	 the	 scale	 of	 the	
covariates	 used	 in	 the	modelling,	 we	 could	 confirm	 that	 primate	
densities	 are	 highest	 in	 low-to-mid	 elevations,	 where	 human	
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disturbance	tend	to	be	greater,	indicating	a	considerable	resilience	
by	 target	 monkeys	 in	 disturbed	 habitats.	 However,	 the	 marked	
trend	 of	 lower	 densities	 in	 unprotected	 forests	 urgently	 calls	 for	
effective	forest	protection.	

	
Introduction	

Knowledge	 on	 abundance	 and	 distribution	 of	 animal	 species	 is	
required	 when	 planning	 for	 conservation	 actions	 (Linkie	 et	 al.	
2006,	Rodríguez	et	al.	2007,	Ramos-Fernandez	et	al.	2013).	In	this	
context,	 primates	 are	 excellent	 study	 subjects	 as	 they	 represent	
good	 ecological	 indicators	 in	 tropical	 rainforest,	 being	 highly	
sensitive	 to	 habitat	 changes,	 hunting	 and	 other	 forms	 of	
disturbance	(Marsh	2003,	Struhsaker	2010,	Rodrìguez-Luna	et	al.	
2013).	 Indeed	 they	 are	 the	 mammal	 order	 with	 the	 highest	
proportion	 of	 species	 under	 threat	 (Chapman	 &	 Peres	 2001,	
Schipper	et	 al.	 2008),	due	 to	 the	effect	of	different	drivers	 (Jones	
2011,	 Marsh	 2013),	 that	 often	 interplay	 following	 complex	 and	
site-specific	 patterns	 (Rovero	 et	 al.	 2012).	 Ideally,	 therefore,	
proper	 estimation	 of	 population	 densities	 should	 accurately	
account	 for	 potential	 covariates,	 including	 spatially	 explicit	 ones,	
that	can	help	to	understand	how	ecological	processes	are	involved	
in	the	high	spatial	heterogeneity	of	population	abundance,	as	well	
as	 to	 understand	 how	 these	 populations	 will	 respond	 to	
environmental	 changes	 (Underhill	 &	 Gibbons	 2002,	 Ramos-
Fernandez	 et	 al.	 2013).	 In	 this	 perspective,	modelling	 the	 spatial	
patterns	of	threatened	populations	at	a	landscape-level	can	be	very	
informative,	 particularly	 when	 considering	 species	 that	 occupy	
highly	diverse	habitats	(Baillie	et	al.	2000,	Levi	et	al.	2009,	Arroyo-
Rodríguez	 &	 Fahrig	 2014).	 Such	 approach	 is	 also	 of	 clear	
conservation	 relevance	 for	 site	 prioritization,	 i.e.	 to	 identify	 the	
main	 drivers	 of	 change	 in	 variation	 of	 species	 density	 and	 locate	
those	 areas	 that	 need	 urgent	 intervention	 (Margules	 &	 Pressey	
2000).	

Meanwhile,	 it	 is	 widely	 acknowledged	 that	 models	 of	
animal	 density	 and	 their	 habitat	 preferences	 need	 to	 consider	
imperfect	 detectability	 of	 species	 at	 occupied	 sites	 (Yoccoz	 et	 al.	
2001,	Martin	et	al.	2005,	Kèry	&	Schmidt	2008)	to	avoid	incorrect	
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estimates	and	predictions	(Kellner	&	Swihart	2014,	Lahoz-Monfort	
et	 al.	 2014).	 This	 is	 particularly	 relevant	 for	 primates	 for	 which	
population	 assessments	 are	 inherently	 complex	 because	 of	 the	
habitat	characteristics	(Yoccoz	et	al.	2001,	Buckland	et	al.	2010a),	
and	the	social	structure	(Buckland	et	al.	2010b).	Hence,	the	use	of	
the	 ‘canonical’	 application	 of	 distance	 sampling	 (Buckland	 et	 al.	
2001),	i.e.	the	one	that	does	not	consider	the	differential	influence	
of	 covariates	 on	 abundance	 and	 detection,	 may	 not	 be	 the	 most	
informative	 approach	 when	 analysing	 density	 of	 primates	 that	
occupy	heterogeneous	 landscapes.	Here,	we	address	 this	 issue	by	
providing	an	application	of	 the	hierarchical	modelling	 framework	
by	 Royle,	 Dawson	 and	 Bates	 (2004),	 that	 allows	 to	 include	
covariates	 both	 in	 the	 observation	 (detection)	 and	 in	 the	 state	
(abundance)	processes.	
We	applied	such	method	to	distance	sampling	data	collected	in	the	
Udzungwa	 Mountains	 of	 Tanzania,	 an	 outstanding	 hotspot	 for	
primate	 diversity	 and	 endemism	 in	 Africa,	 where	 relevant	
background	 work	 has	 been	 already	 conducted	 on	 primates.	 We	
targeted	three	species	of	arboreal	monkeys,	including	the	endemic	
and	 threatened	Udzungwa	 red	 colobus	 (Procolobus	 gordonorum).	
Previous	 studies	 by	Araldi	 et	 al.	 (2014)	 applied	 the	 conventional	
distance	 sampling	 approach	 and,	 even	 though	 these	 authors	
realized	a	robust	survey	effort	for	well-informed	density	estimates,	
they	 did	 not	 consider	 the	 relationship	 between	 densities	 and	
environmental	 covariates.	 Barelli	 et	 al.	 (2015)	 presented	 an	
assessment	 of	 primates’	 responses	 to	 habitat	 factors	 and	 human	
disturbance	 using	 the	 observed	 encounter	 rate	 of	 primate	 social	
groups	 as	 the	 response	 variable	 in	 a	 multivariate	 regression	
framework.	 Hence,	 they	 did	 not	 account	 for	 imperfect	 detection.	
Both	 studies	 provided	 informative	 results	 regarding	 contrasting	
density	estimates	among	forest	blocks	(Araldi	et	al.	2014)	and	the	
consistent	 influence	 of	 elevation	 and	 climber	 coverage	 on	 the	
encounter	rate	of	primates	 (Barelli	et	al.	2015).	However,	 further	
investigation	 using	 a	 spatially	 explicit,	 inferential	 framework	 is	
highly	 relevant	 to	 understand	 how	 habitat	 and	 disturbance	
covariates	 affect	 density	 and	 detectability.	 The	 objectives	 of	 our	
study	 were:	 1)	 to	 obtain	 species-specific	 models	 from	 distance	
sampling	data,	using	an	approach	 that	has	rarely	but	successfully	
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been	 applied	 to	 derive	 the	 abundance	 of	 endangered	 animal	
populations	 (Schmidt	 et	 al.	 2012,	 Sillett	 et	 al.	 2012,	 Kellner	 &	
Swihart	2014);	2)	to	assess	if	such	selected	models	could	improve	
the	 sensitivity	 of	 estimates	 of	 primate	 population	 density;	 3)	 to	
gain	relevant	information	for	conservation	purposes	by	modelling	
the	spatial	variation	of	primate	density	 in	a	highly	heterogeneous	
and	complex	human-natural	system.	
	
Materials	and	Methods	

Study	area	and	species	

The	 Udzungwa	 Mountains	 (7°40'	 -	 8°40'	 S,	 35°10'	 –	 36°50'	 N;	
Figure	 2.1)	 extend	 over	 >19,000	 km²	 (Platts	 et	 al.	 2011)	 and	
represent	 the	 southern	 block	 of	 the	 Eastern	 Arc	 Mountains	 of	
Kenya	 and	 Tanzania	 (Lovett	 &	Wasser	 1993,	 Araldi	 et	 al.	 2014),	
within	the	Afromontane	biodiversity	hotspots	(Myers	et	al.	2000).	
The	mountains	are	characterized	by	the	presence	of	several	forest	
blocks	 that	 differ	 in	 elevation	 range	 (290	 -	 2,576	 m	 a.s.l.),	 area	
(from	12	to	>500	km²),	habitat	type	and	protection	level	(Marshall	
et	al.	2010,	Araldi	et	al.	2014).	

Data	were	collected	by	Araldi	et	al.	(2014)	and	Barelli	et	al.	
(2015)	 in	 four	 different	 forest	 blocks,	 namely	 Magombera	 (MG),	
Matundu	 (MT),	Mwanihana	 (MW)	 and	Uzungwa	 Scarp	 (US),	with	
MG	and	US	showing	intense	human	disturbance	due	to	the	absence	
of	legal	protection	(Struhsaker	et	al.	2004,	Marshall	2008).	
The	study	focused	on	three	species	of	arboreal	primates	that	show	
a	 widespread	 distribution	 across	 the	 Udzungwa	 Mountains:	 the	
Peters'	angolan	colobus	(Colobus	angolensis	palliatus)	(henceforth	
BW),	 the	 endemic	 and	 endangered	 (IUCN,	 2015)	 Udzungwa	 red	
colobus	 (hencefort	 RC)	 and	 the	 Tanzania	 Sykes'	 monkey	
(Cercopithecus	mitis	monoides)	(henceforth	SY).		

We	refer	to	Barelli	et	al.	(2015)	and	Araldi	et	al.	(2014)	for	
detailed	information	about	the	study	area	and	species.			

	



Chapter	2	

	 43 

Figure	 2.1.	 Map	 of	 the	 Udzungwa	 Mountains	 National	 Park,	 Tanzania,	
showing	 the	 four	 forests	 surveyed	 (Magombera,	 MG;	 Matundu,	 MT;	
Mwanihana,	 MW	 and	 Uzungwa	 Scarp,	 US)	 for	 primate	 density	 data	
collection.	

Data	set:	primates	and	habitat	covariates	

We	used	data	in	Araldi	et	al.	(2014)	and	Barelli	et	al.,	(2015)	that	
were	 collected	 through	 systematic	 line	 transects	 following	 the	
standardized	 distance	 sampling	 approach	 (Buckland	 et	 al.	 2001).	
Authors	achieved	a	uniform	coverage	of	target	forests	(Figure	2.2).	
Arboreal	vegetation	and	disturbance	parameters	were	collected	by	
establishing	 four	 squared	 vegetation	 plots,	 25	 ×	 25	 m	 each,	
centered	 on	 each	 line	 transect,	with	 a	 total	 of	 176	plots	 sampled	
(see	Barelli	et	al.	2015).	
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Figure	2.2.	Map	of	Mwanihana	forest	(MW)	with	the	sampling	grid,	as	an	
example	 of	 diffused	 grid	 of	 transects	 walked	 for	 primate	 density	
estimations	in	Udzungwa	Mountains	National	Park	of	Tanzania.	

	
Statistical	method	

We	modelled	 the	observed	data	 as	 a	hierarchical	 coupled	 logistic	
regression.	 One	 step	 of	 the	 modelling	 process	 is	 related	 to	 the	
partially	observed	true	state	(occurrence,	the	result	of	a	biological	
process);	 the	 other	 step	 describes	 detection,	 that	 is	 the	 result	 of	
both	 the	biological	process	 and	 the	observation	process	 (i.e.	 how	
animals	are	detected).	In	detail	we	assumed	animals’	abundance	at	
transect	 level	 to	 have	 a	 Poisson	 distribution	 (Xi	 ~	 Poisson	 (λi);	
i=1,...,n),	 with	 λ	 being	 the	 expected	 value	 of	 X	 (λ=E(x)).	 We	
modelled	 the	 detection	 process	 according	 to	 a	 multinomial	
distribution	 and	 we	 expected	 the	 detection	 probability	 to	
monotonically	 decrease	 with	 the	 increasing	 distance	 from	 the	
observer,	as	per	conventional	distance	sampling	theory	(Buckland	



Chapter	2	

	 45 

et	al.	2001).	We	verified	this	process	by	looking	at	the	histograms	
of	 the	 distance	 records.	 We	 removed	 outliers	 from	 the	 data	 set,	
defining	a	species-specific	right-	truncation	distance,	looking	at	the	
right	 tail	 of	 the	 plotted	 distance	 frequency	 distribution.	 We	 set	
such	truncation	distance	at	100	m	for	BW	and	SY	and	at	90	m	for	
RC.	 Observations	 taken	 at	 larger	 distances	 were	 scarce	 and	
provided	 little	 information	 for	 the	 estimation	 of	 the	 detection	
function	(Buckland	et	al.	2001).	 In	detail,	we	removed	64	outliers	
for	RC	and	SY	and	67	outliers	 for	BW.	We	noted	heaps	mainly	 in	
the	 first	 distance	 class,	 suggesting	 that	 rounding	 errors	 were	
mainly	 close	 to	 distance	 =	 0.	 We	 therefore	 grouped	 in	 intervals	
distances	that	were	recorded	on	a	continuous	scale,	correcting	for	
heaping	 and	 to	 improve	 estimates	 of	 density	 and	 model	 fit	
(Buckland	 et	 al.	 2001).	 Thus,	 we	 defined	 5	 bins	 of	 20	m	 for	 the	
analysis	on	BW,	6	bins	of	15	m	for	the	analysis	on	RC	and	4	bins	of	
25	m	for	the	analysis	on	SY.	

Using	 the	 function	 ‘distsamp’	 in	 R	 package	 ‘unmarked’	
(Fiske	&	Chandler	2011)	we	modelled	data	separately	 for	each	of	
the	 three	 primate	 species.	 We	 first	 checked	 the	 performance	 of	
different	 detection	 functions	 (uniform,	 half-normal	 and	 hazard-
rate)	 on	 the	 simplest	 model,	 without	 considering	 the	 covariates	
effect.	 Based	 on	 the	 Akaike	 Information	 Criterion	 (AIC),	 we	
retained	 the	 half-normal	 function	g(y)	=	 exp	 -	 (y	 2/2	 σ	 2),	with	 y	
being	 the	distance	class	and	with	σ	being	 the	scale	parameter	 for	
the	 detection	 function.	 We	 then	 incorporated	 in	 the	 model	 the	
influence	 of	 transect-specific	 covariates	 on	 both	 λ	 and	σ,	 using	 a	
log	 link	 function.	 We	 built	 models	 using	 all	 the	 possible	
combinations	of	environmental	and	human-disturbance	variables,	
sampled	 at	 the	 transect	 level,	 to	 determine	 how	 they	 affect	 both	
the	detection	process	and	the	presence	of	the	animals,	based	on	a	
set	 of	 assumptions	 (Table	 2.1);	 see	 also	 Barelli	 et	 al.	 (2015).	 In	
addition	 to	 distance,	 which	 is	 an	 inherent	 covariate	 of	 the	
detection	 process,	we	 assumed	 detection	 to	 be	 influenced	 by	 the	
following	 covariates:	 (1)	 group	 size,	 assuming	 that	 larger	 groups	
are	 more	 easily	 detected	 in	 the	 canopy	 at	 larger	 distances	
(Buckland	 et	 al.	 2001);	 (2)	 forest	 block,	 as	 a	 nominal	 covariate	
representative	of	the	heterogeneity	among	forests,	given	that	each	
forest	 is	 a	 discrete	 area	 sampled;	 (3)	 canopy	 cover	 and	 (4)	
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percentage	of	climbers;	(5)	steepness	and	(6)	distance	to	anthropic	
disturbance	(i.e.	roads	and	villages).	We	used	these	covariates	also	
when	modelling	the	state	process,	in	addition	to	(7)	elevation	and	
(8)	 diversity	 of	 tree	 communities,	 calculated	 as	 the	 Simpson's	
reciprocal	 diversity	 index;	 we	 also	 considered,	 as	 proxies	 of	
disturbance,	 (9)	 count	 of	 signals	 of	 human	 presence	 along	
transects	 (cutting	 signs,	 recent	 and	old	paths,	 and	 trails	made	by	
humans,	 sites	where	pit	 sawing	had	been	 carried	out	or	 charcoal	
was	 produced,	 as	well	 as	 signs	 of	 recent	 and	 old	 poacher	 camps,	
incidence	of	animal	snares)	and	(10)	distance	from	the	forest	edge.	

We	 used	 AIC	 to	 rank	 all	 the	 candidate	 models	 and	 we	
considered	as	equivalent	those	models	showing	ΔAIC<2	(Anderson	
&	 Burnham	 2002).	 This	 criterion	 prevent	 us	 from	 unequivocally	
define	a	single	best	model	on	which	 to	base	predictions.	We	 thus	
determined	 Akaike	 weights	 (wi)	 for	 each	 of	 the	 best	 models	 (R	
package	MuMIN;	 Barton	 2015)	 and	 to	 further	 reduce	 ambiguity,	
we	 derived	 the	 relative	 importance	 of	 each	 variable,	 on	 a	 scale	
from	 0	 to	 100.	 We	 decided	 to	 favor	 the	 model	 with	 the	 lowest	
number	of	parameters,	selecting	only	the	variables	that	showed	an	
importance	 of	 at	 least	 50%.	 To	 verify	 the	 goodness	 of	 fit	 of	 the	
selected	 model	 we	 performed	 a	 parametric	 bootstrapping,	
simulating	 200	 datasets	 from	 the	 fitted	 model	 and	 defining	 a	
function	that	returned	the	fit-statistic	of	the	Pearson's	X2.	We	used	
non	 parametric	 bootstrap	 to	 estimate	 the	 uncertainty	 (i.e.	 SE)	 of	
the	 parameters	 in	 the	 model.	 We	 then	 used	 the	 resulting	 best	
species-specific	models	selected,	to	predict	primate	group	density,	
as	well	 as	 their	detectability,	 in	each	sampled	 forest	block	and	 in	
each	of	 the	plot	 that	were	sampled	along	 the	 transects,	 for	which	
measurements	of	the	influential	habitat	variables	were	available.	

We	 also	 assessed	 how	 the	 hierarchical	 structure	 of	 our	
analysis	 could	 improve	 our	 estimates,	 by	 comparing	 our	 results	
with	 those	 from	Araldi	 et	 al.	 (2014),	 and	 assumed	 these	 authors’	
estimates	 to	 be	 comparable	 with	 those	 from	 our	 null	 model,	 i.e.	
one	 that	 assumes	 no	 covariates	 effect.	 To	 test	 for	 differences	
between	 the	 two	 approaches,	 we	 used	 a	 t-test	 after	 assessing	
normality	with	Shapiro-Wilk	tests	(Royston	1982).	
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Table	2.1.	List	of	 the	covariates	 sampled	 in	 the	 four	 forest	blocks	of	 the	
Udzungwa	Mountains,	Tanzania.	Covariates	were	examined	in	the	model	
building	 step	 for	 the	 three	 primate	 species	 (BW,	 RC	 and	 SY)	 and	 their	
predicted	 effect	 on	 both	 the	 detection	 and	 the	 density	 processes	 is	
reported	as	(+)	(=	positive)	and	(-)	(=	negative).	

Habitat	variables	 Variable	
effect	

Hypothesized	relationship	
with	the	detection	process	

Covariates	on	
detection	

	 	

Forest	block	 no	
interpretation	

Highly	diverse	morphology	in	
each	forest	block,	natural	or	
human	driven.	

Group	size	 +	 Large	groups	are	more	easily	
detected	even	at	larger	distances	
(Buckland	et	al.	2010b).	

Canopy	cover	 -	 Closed	canopy	area	reduces	
visibility.	

Distance	from	
disturbance	

-	 Proximity	to	human	disturbance	
and	therefore	to	disturbed	
habitats	can	facilitate	animal	
detection.	

Percentage	of	
climbers	

+	 Climbers	are	representative	of	
areas	that	have	been	logged	in	
the	past	and	are	found	in	lowland	
regenerating	forests	(Isaac	&	
Cowlishaw	2004,	Marshall	
2007);	being	proxies	of	open	
habitats	they	can	allow	better	
detection.	

Steepness	 +	 A	steep	terrain	originates	
naturally-broken	canopy	(Barelli	
et	al.	2015)	that	increases	
detectability.	

Covariates	on	
density	

	 	

Forest	blocks	 no	
interpretation	

High	variability	among	the	forest	
blocks	in	terrain	morphology,	
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vegetation	structure	and	formal	
protection	level.	

Canopy	cover	 -	 Preference	by	three	target	
species	is	shown	for	disturbed	
habitats	with	a	patchy	canopy	
cover	(Barelli	et	al.	2015).	

Total	basal	area	 -	 Mature,	old-growth	forests	that	
present	large	total	basal	area	
values	are	less	preferred	(Lovett	
et	al.	2006,	Barelli	et	al.	2015).	

Mean	basal	area	 +	 Colobines	are	found	to	
selectively	feed	on	large	tree	
species	(Struhsaker	2010),	
showing	high	scores	for	mean	
basal	area.	

Simpson	diversity	
index	

+	 A	higher	species	diversity	can	
represent	a	greater	variety	of	
food	sources,	thus	allowing	
primates	presence	(Medley	1993,	
Chapman	&	Chapman	1999,	
Cowlishaw	&	Dunbar	2000).	

Percentage	of	
climbers	

+	 Vegetation	diversity	in	the	
tropics	is	also	related	to	vines	
and	climber	species,	on	which	
Udzungwa	primates	rely	for	a	
large	portion	of	their	dietary	
requirements	(Rovero	&	
Struhsaker	2007).	

Elevation	 -	 Lower	to	mid-elevations	are	
characterized	by	the	presence	of	
semi-	deciduous	forests	where	
colobines	can	find	young	and	
more	digestible	leaves	(Barelli	et	
al.	2015).	The	frugivorous	Sikes'	
monkeys	(Dunn	et	al.	2012,	
Arroyo-Rodrìguez	et	al.	2015),	
are	not	found	at	higher	
elevations,	where	fruit	
productivity	is	low.	
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Steepness	 +	 Steep	terrains	facilitate	moderate	
climbers	spread	and	colonization	
(i.e	more	digestible	food	items;	
(McGraw	1996)),	due	to	natural	
occurring	brakes	in	the	canopy.	

Human	impact	
Distance	from	edge	
Distance	from	
disturbance	

-	
+	
+	

Noisy	and	disturbing	human	
activities	such	as	logging,	
together	with	hunting	may	affect	
animals	behaviour	and	can	cause	
avoidance	and	fleeing	responses	
(Rovero	et	al.	2009,	Manduell	et	
al.	2012).	

	
	
	
Results	

After	 right	 truncating	 the	 data	 at	 100	 m	 we	 retained	 90	
observations	 for	 BW	 and	 129	 for	 SY,	 while	 we	 retained	 97	
observations	 for	 RC	 with	 a	 90	m	 truncation.	 Detection	 functions	
indicated	 that	 all	 assumptions	 for	 the	method	were	met,	 i.e.	 they	
showed	a	monotonic	decrease	with	 increasing	distance	as	well	as	
good	fit	on	the	observed	data.	No	spikes	were	present	after	binning	
the	data	in	distance	classes.			

Model	 selection	 for	BW	resulted	 in	a	model	 containing	an	
effect	 of	 group	 size	 (+,	 i.e.	 a	 positive	 effect)	 on	 detection	 and	 an	
effect	of	percentage	of	climbers	(+),	human	impact	(-,	i.e.	a	negative	
effect)	 and	 forest	 block	 on	 density.	 The	 best	 model	 for	 RC	
contained	 an	 effect	 of	 forest	 block,	 climbers	 percentage	 (+)	 and	
distance	 from	disturbance	 (-)	 on	detection	 and	 an	 effect	 of	mean	
basal	 area	 (+),	 percentage	 of	 climbers	 (+),	 elevation	 (-)	 and	
distance	 from	human	 disturbance	 (-)	 on	 density.	 The	 best	model	
for	 SY	 retained	 an	 effect	 of	 group	 size	 (+)	 on	 detection	 and	 of	
climber	percentage	(+)	and	elevation	(-)	on	abundance	(Tables	2.2	
and	2.3;	Figures	2.3	and	2.4;	Figures	A	and	B	in	Appendix	1).	

The	 bootstrap	 P	 value	 based	 on	 the	 Chi-square	 statistic	
showed	adequate	fit	for	all	the	species	specific	models	(P=0.94	for	
BW;	P=0.18	for	RC;	P=0.37	for	SY).	Testing	for	differences	between	
density	estimates	from	our	null	model	and	estimates	in	Araldi	et	al.	
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(2014)	 confirmed	 the	 equivalence	 of	 the	 two	 methods	 (P=0.16).	
This	 in	 turn	 supports	 our	 hypothesis	 of	 a	 better	 performance	
(based	 on	 delta	AIC	 of	models	with	 covariates	 vs	 null	models)	 of	
our	 best	 models	 to	 estimate	 primates	 density	 (Figure	 2.5;	 Table	
2.4)	relative	to	the	conventional	approach	(ΔAIC=106.507	for	BW;	
ΔAIC=45.93	for	RC;	ΔAIC=82.83	for	SY;	Table	2.2).		

Spatially	explicit	maps	of	estimated	density	at	the	plot	level	
are	shown	in	Figure	2.6	and	Figure	C	in	Appendix	1.	

	
	
	

Figure	2.3.	Detection	 functions	 from	the	best	AIC	models,	 shown	for	 the	
0.25,	0.50	and	0.75	quartiles	of	the	covariate	group	size	for	Peters'	Angola	
colobus	(BW)	and	Tanzania	Sykes'	monkey	(SY).	
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Figure	2.4.	Covariates	effect	on	group	density	estimation,	shown	for	the	
best	model	selected	for	the	Udzungwa	red	colobus	(RC).	

Figure	 2.5.	 Comparison	 between	 the	 estimated	 density	 values	 for	 the	
three	 primate	 species	 (Peters'	 Angola	 colobus,	 Udzungwa	 red	 colobus,	
Tanzania	 Sykes'	 monkey),	 obtained	 applying	 different	 methods	 (i.e.	
hierarchical	modelling	with	covariates	(this	study);	the	study	by	Araldi	et	
al.	(2014);	null	model	without	covariates).	
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Figure	2.6.	Predicted	density	(groups/km2)	for	the	three	primate	species	
(Peters'	 Angola	 colobus,	 Udzungwa	 red	 colobus,	 Tanzania	 Sykes'	
monkey)	 from	 the	 best	 selected	models	 (see	 Table	 2.2)	 in	 the	 forest	 of	
Mwanihana.	 Predicted	 values	 were	 obtained	 for	 the	 plots	 that	 were	
sampled	 along	 the	 transects,	 for	 which	 exact	 values	 of	 the	 influential	
covariates	were	available.	
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Table	 2.2.	 Akaike	 information	 criterion	 (AIC)	 value	 for	 high	 ranked	
models	 of	 primate	 density	 (λ)	 and	 the	 shape	 parameter	 (σ)	 of	 a	 half-
normal	detection	function.	

Model	 AIC	 ΔAIC	

Peters'	Angola	colobus	(Colobus	angolensis)	 	 	

σ(Group	size)λ(Percentage	of	climbers	+	Human	
impact	+	Forest	block)	

425.84	 	

σ(Group	size)λ(Percentage	of	climbers	+	Forest	
block)	

426.49	 0.65	

σ(Group	size)λ(Canopy	cover	+	Percentage	of	
climbers	+	Simpson	diversity	index	+	Forest	block)	

428.47	 2.63	

σ(٠)λ(٠)	 533.05	 106.561	

Udzungwa	red	colobus	(Procolobus	
gordonorum)	

	 	

σ(Forest	block	+	Distance	from	disturbance	+	
Percentage	of	climbers)λ(Mean	basal	area	+	
Percentage	of	climbers	+	Elevation	+	Distance	from	
disturbance)	

557.41	 	

σ(Forest	block	+	Distance	from	
disturbance)λ(Mean	basal	area	+	Percentage	of	
climbers	+	Elevation	+	Distance	from	disturbance)	

558.25	 0.84	

σ(Forest	block	+	Distance	from	disturbance	+	
Percentage	of	climbers)λ(Mean	basal	area	+	
Percentage	of	climbers	+	Steepness	+	Elevation	+	
Distance	from	disturbance)	

558.59	 1.18	

σ(٠)λ(٠)	 603.34	 45.93	

Tanzania	Sykes'	monkey	(Cercopithecus	mitis	
monoides)	

	 	

σ(Group	size)λ(Percentage	of	climbers	+	Elevation)	 513.14	 	

σ(Group	size	+	Human	impact	+	Canopy	cover	+	
Percentage	of	climbers)λ(Percentage	of	climbers	+	
Elevation)	

514.45	 1.32	

σ(Group	size)λ(Percentage	of	climbers	+	Steepness	
+	Elevation)	

514.55	 1.41	
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σ(٠)λ(٠)	 595.96	 82.83	

	
	
	
Table	 2.3.	 Parameter	 estimates	 and	 their	 standard	 error	 for	 the	 final	
models	 selected	 for	 the	 three	primate	 target	 species	 that	 presented	 the	
lowest	AIC	values.	

Model	and	coefficient	 	 CI	(95%)	 SE	

Peters'	Angola	colobus	 	 	 	

Detection	(σ)	 	 	 	

Intercept							 10.2	 10.12	–	10.2	 2.15	

Group	size	 12	 11.98	–	12.06	 3.278	

Density	(λ)	 	 	 	

Intercept									 1.42	 1.01	–	1.83	 0.692	

Percentage	of	climbers								 0.2	 0.02	–	0.37	 0.192	

Human	impact									 -0.14	 -0.36	–	-0.08	 0.228	

Forest	Matundu						 -0.3	 -0.87	–	0.27	 0.473	

Forest	Mwanihana					 -0.35	 -0.91	–	0.2	 0.369	

Forest	Uzungwa	Scarp	 -0.97	 -18.3	–	-0.1	 0.951	

Udzungwa	red	colobus	 	 	 	

Detection	(σ)	 	 	 	

Intercept												 2.54	 1.22	–	3.87	 6.95	

Forest	Matundu									 8.43	 -52.13	–	68.99	 7.98	

Forest	Mwanihana									 6.14	 -24.36	–	36.65	 7.11	

Forest	Uzungwa	Scarp	 -0.87	 -1.86	–	0.12	 8.78	

Distance	from	
disturbance						

-1.78	 -3.51	–	-0.04	 5	

Percentage	of	climbers	 0.51	 -0.17	–	1.18	 4.51	

Density	(λ)	 	 	 	

Intercept							 0.74	 0.49	–	1	 1.55	
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Mean	basal	area																	 0.21	 0	–	0.43	 0.41	

Percentage	of	climbers				 0.09	 -0.11	–	0.3	 0.63	

Elevation											 -0.53	 -0.83	–	-0.22	 0.37	

Distance	from	
disturbance	

-0.27	 -0.47	–	-0.07	 0.44	

Tanzania	Sykes'	monkey	 	 	 	

Detection	(σ)	 	 	 	

Intercept				 6.57	 6.53	–	6.61	 1.385	

Group	size	 7.06	 7.03	–	7.08	 2.809	

Density	(λ)	 	 	 	

Intercept	 1.28	 1.1	–	1.47	 0.117	

Percentage	of	climbers	 0.16	 -0.03	–	0.35	 0.078	

Elevation								 -0.22	 -0.45	–	0	 0.107	

	
	
	
Table	2.4.	Forest	specific	values	of	detectability	and	group	density	for	the	
three	primate	target	species.	

Species	and	forest	 Detectability	
(SE)	

Density	
(groups/km2)	
(SE)	

Peters'	Angola	colobus	(Colobus	
angolensis)	

	 	

Magombera																																																																									0.15	(0.01)	 3.49	(0.73)	

Matundu																																																																														0.11	(0.007)	 3.45	(0.66)	

Mwanihana																																																																									0.13	(0.006)	 2.9	(0.53)	

Uzungwa	Scarp																																																																			0.04	(0.007)	 1.43	(0.57)	

Udzungwa	red	colobus	(Procolobus	
gordonorum)	

	 	

Magombera																																																																									0.12	(0.006)	 4.88	(0.97)	

Matundu																																																																														0.17	(0)	 2.4	(0.41)	
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Mwanihana																																																																									0.17	(0)	 1.83	(0.33)	

Uzungwa	Scarp																																																																			0.06	(0.005)	 1.2	(0.34)	

Tanzania	Sykes'	monkey	
(Cercopithecus	mitis	monoides)	

	 	

Magombera																																																																									0.13	(0.01)	 4.38	(0.66)	

Matundu																																																																														0.16	(0.009)	 4.53(0.45)	

Mwanihana																																																																									0.12	(0.01)	 3.09	(0.4)	

Uzungwa	Scarp																																																																			0.16	(0.01)	 2.82	(0.48)	

	
	
Discussion		

Our	study	aimed	to	show	the	importance	of	accounting	for	habitat	
covariates	 of	 primate	 detectability	 and	 abundance	 in	 distance	
sampling	 studies	 in	 complex	 landscapes.	 The	 hierarchical	
analytical	approach	allowed	us	to	obtain	reliable,	 informative	and	
spatially-explicit	estimates	relative	to	previous	studies	that	did	not	
consider	 the	 covariate	 effect	 (Araldi	 et	 al.	 2014)	 nor	 abundance	
estimation	with	imperfect	detection	(Barelli	et	al.	2015).	Moreover,	
the	method	we	 used	 allows	 for	 inference	 on	 density	 outside	 the	
sampled	 area.	 This	 is	 of	 particular	 relevance	 when	 the	 variables	
that	 are	 retained	 in	 the	 modelling	 are	 spatially	 diffused,	 as	 it	
usually	applies	to	those	derived	from	remote	sensing.	

A	 first	 important	 result	 is	 how	 the	 species-specific	 group	
size	influences	detection.	By	using	this	approach,	group	size	effect	
could	 be	 explicitly	 evaluated	 and	 therefore	 modelled.	 On	 the	
contrary,	 in	 conventional	 distance	 sampling	 group	 size	 is	
regressed	 on	 estimated	 probability	 of	 detection.	 The	 positive	
relationship	between	group	size	and	detection	 in	BW	and	SY,	but	
not	 RC,	 is	 likely	 explained	 by	 different	 grouping	 patterns.	 The	
average	group	size	of	BW	and	SY	was	indeed	similar	(3.84	and	3.41	
respectively)	 and	was	 almost	 five	 times	 lower	 than	 group	 size	 of	
RC	 (17.03).	 Groups	 of	 RC	 could	 have	 been	 consequently	 more	
easily	detected	even	far	from	the	transect	line.	Indeed	focal	studies	
have	 shown	 that	 RC	 can	 average	 40	 individuals	 in	 undisturbed	
forests	such	as	Mwanihana,	while	BW	and	SY	average	group	size	is	
<10	and	much	smaller	for	SY	(Rovero	et	al.	2009).	Thus	group	size	
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represents	 a	 critical	 parameter	 that	 needs	 to	 be	 carefully	
considered	 to	 avoid	 underestimation	 of	 animal	 densities,	 with	
particular	 relevance	 for	 species	whose	 social	 units	 are	 small	 (i.e.	
<5-10	 individuals)	 as	 is	 the	 case	 of	 SY,	 for	 which,	 indeed,	 the	
parameter	 'group	 size'	 had	 a	 higher	 effect	 on	 detection.	 As	
predicted,	 we	 found	 detectability	 for	 RC	 to	 be	 negatively	
influenced	by	distance	from	disturbance.	This	variable	represents	
a	proxy	for	forest	structures	that	can	hamper	visibility,	such	as	tall	
and	 dense	 canopy	 in	 interior	 forest.	 Climber	 percentage,	 on	 the	
contrary,	 had	a	positive	 association	with	RC	detectability.	Even	 if	
producing	 a	 small	 effect	 on	 the	 detection	 process	 (for	 climber	
coverage	 <75%),	 moderate	 presence	 of	 climbers	 constitutes	 a	
structure	 of	 the	 sub-canopy	 layer	 that	 is	 seemingly	 preferred	 by	
arboreal	primates	(see	below).	

As	for	the	effect	of	covariates	on	animal	density,	we	found	
the	percentage	of	climbers	to	have	a	positive	effect	for	all	the	three	
species	 we	 examined.	 This	 result	 is	 in	 line	 with	 findings	 from	
Barelli	 et	 al.	 (2015)	 and	 Rovero	 and	 Struhsaker	 (Rovero	 &	
Struhsaker	 2007);	 climbers	 represent	 a	 food	 source	 (Dunn	 et	 al.	
2012,	Arroyo-Rodrìguez	et	al.	2015),	influence	canopy	connectivity	
and	provide	supports	for	movements	in	the	canopy	(McGraw	1996,	
Manduell	et	al.	2012).	

We	 found	 a	 negative	 association	 between	 elevation	 and	
density	of	RC	and	SY.	This	also	matches	the	findings	from	previous	
studies	 (Marshall	 2007,	 Rovero	 &	 Struhsaker	 2007,	 Barelli	 et	 al.	
2015)	 that	 explained	 this	 result	 in	 terms	 of	 different	 food	
availability	along	the	elevation	gradients	of	the	study	area.	Human	
impact	 was	 found	 to	 have	 a	 negative	 association	 only	 with	 BW.	
Hunting	pressure	is	indeed	reported	to	be	targeted	mainly	on	this	
species,	 which	 skin	 is	 highly	 demanded	 (Rovero	 et	 al.	 2012).	 RC	
and	SY	appear	less	affected	by	hunting	and	this	differential	degree	
of	 human	 impact	 is	 reported	 in	 several	 other	 studies	 (Isaac	 &	
Cowlishaw	2004,	Kümpel	et	al.	2008,	Linder	&	Oates	2011,	Rovero	
et	 al.	 2012).	Density	 of	RC	was	 related	 to	 the	mean	basal	 area	of	
trees,	that	had	a	positive	effect,	and	to	distance	from	disturbance,	
with	a	negative	effect,	contrary	to	what	we	hypothesized.	This	is	in	
line	with	 results	 by	 Rovero	 and	 Struhsaker	 (2007)	 and	 confirms	
the	preferences	shown	by	 the	species	 for	 larger	 trees	 that	can	be	
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found	 also	 at	 forest	 edges.	 Here,	 even	 if	 logging	 is	more	 intense,	
productivity	 of	 the	 remaining	 large	 trees	 can	 still	 be	 high	 (Johns	
1983),	thanks	to	an	increase	in	illumination	(Davies	&	Oates	1994).	

We	 found	 lower	values	 for	group	density	estimates	 in	 the	
US	forest	block	for	all	the	three	species	and	mainly	for	BW	and	RC,	
for	 which	 density	 values	 were	 about	 the	 40%	 lower	 in	 US.	
Nevertheless,	variation	in	density	between	US	and	the	other	forest	
blocks	was	particularly	 substantial	 for	BW	 (Table	 2.4),	 for	which	
the	parameter	level	US	was	found	to	have	a	high	negative	effect	on	
density	estimation.	Importantly,	the	variation	in	density	estimates	
among	 forests	was	 almost	 two	 times	 lower	 than	 that	 reported	 in	
Araldi	 et	 al.	 (2014).	 Such	 underestimation	 may	 have	 been	
smoothed	 by	 our	 analysis	 because	 of	 adding	 the	 effect	 of	
covariates	on	both	the	detection	probability	and	the	state	process	
(Marques	 &	 Buckland	 2003,	 Marques	 et	 al.	 2007).	 This	 is	 of	
particular	conservation	relevance	in	highly	disturbed	habitats,	like	
US,	where	animals	are	sparse	and	shy,	and	therefore	tend	to	hide	
and	 go	 undetected	 relatively	 more	 than	 in	 other	 forests	 (Table	
2.4).	 In	 general,	 our	 results	 further	 confirm	 that	 the	 absence	 of	
protection	 in	 US	 highly	 affects	 the	 colobine	 monkeys,	 with	
pressures	 that	mainly	derive	 from	 targeted	hunting	and	 to	 lesser	
extent	 to	 habitat	 degradation	 (Rovero	 et	 al.	 2012,	 2015).	 These	
findings	 in	 turn	 support	 the	 hypothesis	 that	 colobines	 are	 more	
sensitive	 than	 Tanzania	 Sykes'	 monkeys	 to	 highly	 disturbed	
habitats	 and	 to	 human	 impact	 that	 deeply	 affects	 the	 structural	
characteristics	of	the	forest	(Chapman	&	Chapman	1999,	Anderson	
et	al.	2007,	Rovero	et	al.	2015).		
	
Conclusions	and	conservation	recommendations	

Obtaining	reliable	and	informative	estimates	of	primate	density	in	
complex	 and	 human-modified	 landscapes	 is	 difficult,	 yet	 with	
habitat	degradation	and	loss	being	a	pan-tropical	phenomenon,	an	
increasing	proportion	of	primate	species	is	found	in	degraded	and	
patchy	 habitats	 (Arroyo-Rodríguez	 &	 Fahrig	 2014).	 Our	 study	
demonstrates	 how	 the	 inference	 on	 abundance	 is	 improved	 by	
accounting	 for	 habitat	 covariates	 as	 separately	 affecting	 the	
observation	and	the	state	processes.	Indeed	when	compared	to	the	
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canonical	 approach	 to	 distance	 sampling,	 the	 method	 we	 used	
refined	 density	 estimation	 differences	 among	 forests.	 This	 is	 of	
particular	 relevance	 to	 populations	 in	 highly	 impacted	 forests	 as	
US,	 where	 animals	 can	 go	 easily	 undetected	 and	 are	 unevenly	
located	within	 the	 sampled	 area;	 	more	 generally,	 it	 represents	 a	
valuable	 tool	 for	 the	 study	 of	 threatened	 and/or	 low	 density	
populations,	 as	 failure	 to	 model	 covariates	 of	 detectability	 and	
abundance	 will	 likely	 produce	 biased	 density	 estimates.	We	 also	
showed	 that	group	size	 influences	 the	observation	process	and	 is	
of	 particular	 importance	 for	 species	 or	 populations	 with	 small	
social	 units.	 Lastly,	 this	 approach	 allows	 spatially	 explicit	
modelling	of	animal	density	at	 the	 scale	of	 the	covariates	used	 in	
the	 modelling.	 Hence,	 when	 significant	 covariates	 are	 available	
across	the	study	area	(forest	blocks	in	our	case),	and	even	beyond,	
such	as	from	remote	sensing	layers	(e.g.	elevation,	slope,	distance	
to	 disturbances,	 etc.),	 inference	 on	 density	 can	 be	 extended	 over	
such	 areas	 (hence	 even	 beyond	 the	 measurement	 points),	
providing	 a	 critical	 tool	 to	 predict	 the	 status	 of	 populations	 in	
fragmented	or	otherwise	heterogeneous	landscapes.	
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CHAPTER	3	

Integrating	 field	 and	 satellite	 data	 for	 spatially-explicit	
inference	on	the	density	of	threatened	arboreal	primates	

	
Based	on	the	paper:	Cavada	N,	Ciolli	M,	Rocchini	D,	Barelli	C,	Marshall	
AR,	Rovero	F	(2017)	 Integrating	 field	and	satellite	data	 for	spatially-
explicit	 inference	 on	 the	 density	 of	 threatened	 arboreal	 primates.	
Ecological	Applications	27(1):	235-243	
	
	
Summary	

Spatially	explicit	models	of	animal	abundance	are	a	critical	tool	
to	 inform	 conservation	 planning	 and	 management.	 However,	
they	 require	 the	 availability	 of	 spatially	 diffuse	 environmental	
predictors	 of	 abundance,	which	may	 be	 challenging	 especially	
in	complex	and	heterogeneous	habitats.	This	is	particularly	the	
case	 for	 tropical	mammals,	 such	 as	 non-human	 primates,	 that	
depend	on	multi-layered	and	species-rich	tree	canopy	coverage,	
which	is	usually	measured	through	a	limited	sample	of	ground	
plots.	 We	 developed	 an	 approach	 that	 calibrates	 remote-
sensing	 imagery	 to	 ground	 measurements	 of	 tree	 density	 to	
derive	basal	area,	in	turn	used	as	a	predictor	of	primate	density	
based	 on	 published	 models.	 We	 applied	 generalized	 linear	
models	(GLM)	to	relate	9.8	ha	ground	samples	of	tree	basal	area	
to	various	metrics	extracted	from	Landsat	8	imagery.	We	tested	
the	 potential	 of	 this	 approach	 for	 spatial	 inference	 of	 animal	
density	 by	 comparing	 the	 density	 predictions	 for	 an	
endangered	 colobus	monkey,	 to	 previous	 estimates	 from	 field	
transect	 counts,	measured	 basal	 area,	 and	 other	 predictors	 of	
abundance.	 The	 best	 GLM	 had	 high	 accuracy	 and	 showed	 no	
significant	difference	between	predicted	and	observed	values	of	
basal	 area.	 Our	 species	 distribution	 model	 yielded	 predicted	
primate	 densities	 that	 matched	 those	 based	 on	 field	
measurements.	Results	show	the	potential	of	using	open-access	
and	 global	 remote	 sensing	 data	 to	 derive	 an	 important	
predictor	of	animal	abundance	in	tropical	forests	and	in	turn	to	
make	 spatially	 explicit	 inference	 on	 animal	 density.	 This	
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approach	 has	 important,	 inherent	 applications	 as	 it	 greatly	
magnifies	 the	 relevance	of	abundance	modelling	 for	 informing	
conservation.	 This	 is	 especially	 true	 for	 threatened	 species	
living	 in	 heterogeneous	 habitats	 where	 spatial	 patterns	 of	
abundance,	 in	 relation	 to	 habitat	 and/or	 human	 disturbance	
factors,	are	often	complex	and,	management	decisions	-	such	as	
improving	 forest	 protection	 -	 may	 need	 to	 be	 focused	 on	
priority	areas.	
	
Introduction	

Species	 abundance	 estimation	 and	 the	 identification	 of	 factors	
predicting	 its	 variation	 is	 a	 pervasive	 goal	 in	 ecology	 and	
conservation	biology	and	it	is	gaining	increasing	attention	through	
the	 emergent	 potential	 of	 spatially	 explicit	 modeling	 (Guisan	 &	
Zimmermann	 2000,	 Guisan	 &	 Thuiller	 2005,	 Wulder	 &	 Franklin	
2006,	Anadón	et	al.	2010).	This	is	particularly	true	for	threatened	
species	 living	 in	 heterogeneous	 landscapes,	 where	 habitat	
structure	 and	 human	 disturbance	 vary	 according	 to	 complex	
spatial	 patterns.	 In	 these	 contexts,	 inference	 on	 abundance	
becomes	 truly	 informative	 only	 when	 it	 accounts	 for	 such	
heterogeneity	 (Arroyo-Rodríguez	 &	 Fahrig	 2014).	 Human-
modified	 landscapes	 are	 also	 expanding	 in	 tropical	 areas,	 where	
forest	 fragmentation,	degradation	and	defaunation	strongly	affect	
species	 viability	 (Balmford	 &	Whitten	 2003,	 Arroyo-Rodríguez	 &	
Fahrig	2014).	However,	because	of	 limited	and	substandard	data,	
spatially	 explicit	 models	 are	 less	 exploited	 in	 tropical	 areas	
compared	 to	 temperate	 ones	 (Cayuela	 et	 al.	 2009).	 Thus,	
integrating	 the	 use	 of	 field	 data	 with	 remote	 sensing	 data	
represents	 an	 advantageous	 approach	 to	 ensure	 data	 quality	 for	
spatial	modelling	in	these	areas	(Wilkie	&	Finn	1996,	Proisy	et	al.	
2007).		
	 Remote	 sensing	data	 (especially	 Landsat)	 have	been	used	
to	 investigate	 several	 ecological	questions,	mainly	 related	 to	 land	
cover	 change,	 carbon	 storage	 and	 habitat	mapping	 (Schroeder	 et	
al.	2011,	Legaard	et	al.	2015,	Mayes	et	al.	2015,	Twongyirwe	et	al.	
2015).	However,	the	resolution	and	quality	of	Landsat	data	do	not	
always	 adequately	 represent	 environmental	 components	 that	 are	
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most	 important	 for	 target	 species,	 such	 as	 vegetation	 structure,	
because	optical	satellite	 imagery	is	not	three-dimensional	(Hall	et	
al.	1995,	Duncanson	et	al.	2010).	Therefore,	methods	are	needed	to	
characterize	 features	 of	 the	 forest	 structure	 that	 are	 relevant	 to	
target	 species,	 particularly	 for	 inaccessible	 areas	 where	 Landsat	
images	represent	the	only	feasible	option.	
	 In	this	study,	we	aimed	to	derive	arboreal	primate	density	
from	remote	sensing	estimates	of	'tree	stem	basal	area'.	Basal	area	
is	 typically	 related	 to	 canopy	 cover	 (Alexander	 1971,	 Farr	 et	 al.	
1989,	 Smith	 et	 al.	 1992),	 but	 the	 two	 measures	 are	 not	 directly	
interchangeable	 (Cade	 1997).	 In	 particular,	 mean	 basal	 area	
specifically	measures	the	contribution	of	each	tree	to	biomass	and	
hence	identifies	forest	structure,	succession	stage	and	disturbance.	
Accordingly,	 it	 is	 a	 common	 measure	 of	 habitat	 quality	 for	
predicting	 animal	 abundance	 (Braithwaite	 et	 al.	 1989,	 Medley	
1993,	 Umapathy	&	Kumar	 2000).	 This	 is	 especially	 true	 for	 non-
human	 primates	 (Mbora	&	Meikle	 2004,	 Cristóbal-Azkarate	 et	 al.	
2005,	Anderson	et	al.	2007,	Rovero	&	Struhsaker	2007)	which	are	
globally	 threatened	 and	 in	 urgent	 need	 of	 conservation	 actions	
(Schipper	et	al.	2008,	Schwitzer	et	al.	2015).	Our	specific	objectives	
were	 to:	 1)	model	measured	 basal	 area	 against	 a	 combination	 of	
different	metrics	and	indices	derived	from	Landsat	imagery;	2)	test	
the	performance	of	the	best-performing	model	to	predict	values	of	
basal	 area	 outside	 of	 the	 sampled	 areas;	 3)	 use	 the	 results	 to	
derive	 a	 spatial	 map	 of	 population	 density	 of	 the	 endangered	
(IUCN	 2015)	 Udzungwa	 red	 colobus	 monkey	 (Procolobus	
gordonorum),	 based	 on	 previously	 published	 density-basal	 area	
model;	 4)	 compare	 the	 modelled	 primate	 density	 to	 previous	
predictions	 from	 field	 measurements;	 5)	 further	 refine	 these	
estimates	using	environmental	and	human	predictors.	
	
Materials	and	Methods	

Study	area	

The	Udzungwa	Mountains	are	 located	 in	the	south-central	part	of	
Tanzania	and	represent	the	largest	mountain	block	in	the	Eastern	
Arc	Mountains,	covering	an	area	larger	than	19,000	km2

	
(Platts	et	

al.	2011).	Closed	forest	blocks,	ranging	in	size	from	12	to	over	500	
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km2	(Marshall	et	al.	2010),	are	interspersed
	
with	drier	habitats.	We	

focused	our	 study	on	 the	 forest	of	Mwanihana,	 one	of	 the	 largest	
forest	 blocks	 (151.6	 km2)	 and	 under	 the	 protection	 of	 the	
Udzungwa	 Mountain	 National	 Park	 (UMNP)	 since	 1992.	 Highly	
variable	habitat	types	are	distributed	along	the	altitudinal	gradient	
of	the	forest	ranging	from	350	to	2,263	m	a.s.l.	Deciduous	forest	is	
found	 in	 the	 lowland,	with	 semi-deciduous	and	evergreen	 forests	
covering	the	sub-montane	and	montane	areas,	while	Hagenia	and	
bamboo-dominated	 forest	 characterize	 the	 upper	 montane	 level	
(Lovett	 et	 al.	 2006).	 Woody	 vegetation	 density	 increases	 with	
elevation,	with	the	largest	trees	found	at	mid	elevation,	probably	a	
result	of	human	disturbance	and	tree	respiration	costs	(Marshall	et	
al.	2012).	
	
Vegetation	data	

We	 derived	 field	 data	 for	 tree	 stems	 ≥10cm	 DBH	 (Diameter	 at	
Breast	Height;	1.3m)	from	three	sources	(Figure	3.1):	(1)	From	the	
Tropical	 Ecology	 Assessment	 and	 Monitoring	 Network	 (TEAM)	
(http://www.teamnetwork.org/,	 dataset	 ID	 0327011905	 4443),	
comprising	 six	 vegetation	 plots	 of	 100	 ×	 100	 m	 on	 a	 horizontal	
plane	 (i.e.	 adjusted	 for	 slope),	 following	 a	 standardized	 protocol	
(TEAM	 Network	 2011);	 (2)	 153	 vegetation	 plots	 of	 25	 ×	 25	 m,	
sampled	 along	 line	 transects	 uniformly	 distributed	 in	 the	 forest	
(from	Barelli	et	al.	2015);	(3)	33	new	randomly	placed	vegetation	
plots	of	25	×	25	m,	sampled	in	June-July	2015,	stratified	according	
to	 the	 predominant	 habitat	 gradient	 from	 disturbed	 lowland	
deciduous	to	mature	montane	evergreen	forest.	All	newly-sampled	
plots	were	placed	 in	 the	centre	of	Landsat	pixels	 for	concordance	
with	our	remote-sensing	imagery.	
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We	 obtained	 a	 single,	 cloud	 free,	 L8	 OLI/TIRS	 Landsat	 image	
(Landsat	scene	ID	LC81670652014299LGN00,	courtesy	of	the	U.S.	
Geological	Survey),	acquired	October	26,	2014.		

Figure	 3.1.	 Map	 of	 Mwanihana	 forest	 in	 the	 Udzungwa	 Mountains	 of	
Tanzania	showing	the	distribution	of	three	vegetation	plot	data	sets	used	
to	derive	basal	area.	

Primate	density	data	

Density	data	on	the	Udzungwa	red	colobus	 from	across	 the	study	
area	were	obtained	from	an	earlier	study	(Cavada	et	al.	2016).	This	
study	 used	 environmental	 covariates	 from	 the	 153	 plots	
established	 by	 Barelli	 et	 al.	 (2015)	 and	 distance	 sampling	 along	
line	 transects,	 to	 estimate	 colobus	 density	 across	 the	 study	 area.	
Transect	 data	 were	 modelled	 as	 a	 hierarchical	 coupled	 logistic	
regression,	 assuming	 a	 Poisson	 distribution	 for	 the	 animal	
abundance	 at	 a	 transect	 level.	 The	 detection	 process	 of	 the	
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distance	 sampling	 was	 modelled	 according	 to	 a	 multinomial	
distribution,	 assuming	 a	 monotonical	 decrease	 of	 the	 detection	
probability	with	the	increasing	distance	of	the	animal	groups	from	
the	 observer.	 The	 influence	 of	 a	 series	 of	 environmental	 and	
human	disturbance	covariates	was	evaluated	and	incorporated	on	
both	the	abundance	and	detection	steps	in	the	model.	Final	density	
estimates	 at	 the	 plot	 level	 were	 derived	 from	 environmental	
correlates	 that	 included	mean	 basal	 area,	 elevation	 and	 distance	
from	disturbance	(i.e.	forest	edge),	that	were	found	to	significantly	
affect	 the	 abundance	 and	 detectability	 of	 the	 red	 colobus	 in	 the	
study	area.	
	
Analysis	

Landsat	metrics	and	vegetation	indices	

To	 model	 basal	 area	 we	 first	 derived	 various	 Landsat	 metrics	
(Table	3.1).	This	began	with	a	Principal	Component	Analysis	(PCA)	
to	 extract	 uncorrelated	 information	 from	 the	 different	 spectral	
bands	 provided	 by	 the	 Operational	 Land	 Imager	 (OLI)	 sensor	 of	
the	Landsat	8	satellite.	After	applying	PCA	we	further	compressed	
the	spectral	data	applying	the	Tasseled	Cap	Transformation	(TCT)	
to	 represent	 forest	 structure	 (Cohen	 et	 al.	 1995).	We	also	used	 a	
GRASS	module	(Neteler	et	al.	2012),	modified	to	derive	vegetation-
related	spectral	indices,	combining	specific	bands	of	the	Landsat	8	
satellite	 images	 (Appendix	 2).	 Such	 indices	 enhance	 the	 signal	
related	to	vegetation,	while	minimizing	background	edaphic,	solar	
and	atmospheric	effects	(Jackson	&	Huete	1991).	
	
	
Table	 3.1.	 Vegetation	 indices	 extracted	 from	 a	 Landsat	 8	 image	 for	
comparison	to	ground	sampled	measures	of	mean	basal	area	(MBA).	

Index	 Algorithm	 Description	 References	

Simple	Ratio	
(SR)	

SR	=	ρnir/ρred	 Index	related	to	
changes	in	the	
amount	of	green	
vegetation;	
reduces	the	

(Jordan	
1969)	
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effect	of	
atmosphere	and	
topography.	

Corrected	
Simple	Ratio	
(SRC)	

SRC	=	SR	(1-((ρmir	–	
ρmir	min	)/(ρmir	max

	
	-	ρ	

mir	min))	

Linearizes	the	
relationships	
with	parameters,	
accounting	for	
MIR	band.	

(Brown	et	
al.	2000)	

Normalized	
Difference	
Vegetation	
Index	(NDVI)	

NDVI	=	(ρnir	-	
ρred)/(ρnir	+	ρred)	

Estimates	the	
amount	of	
vegetation,	it	
assumes	values	
that	are	
normalized	for	
the	amount	of	
incident	
radiation.	

(Rouse	et	al.	
1974)	

Corrected	
Normalized	
Difference	
Vegetation	
Index	
(NDVIC)	

NDVIC	=	NDVI	(1-
((ρmir	–	ρmir	min)/(	ρmir	
max	–	ρmir	min)	

Linearizes	the	
relationships	
with	parameters,	
accounting	for	
MIR	band	

(Nemani	et	
al.	1993)	

Modified	
Simple	Ratio	
(MSR)	

MSR	=	(ρnir/ρred	-	
1)/((ρnir/ρred)1/2	+	1)	

Linearizes	the	
relationship		
between	the	
index	and	
biophysical	
parameters	

(Chen	1996)	

Reflectance	
Ratio	(RR)	

RR	=	ρmir/	ρred	 Substitutes	NIR	
band	in	SR	with	
MIR	band,	which	
is	more	sensitive	
in	distinguishing	
complex	and	
stratified	forest	
structures	

(Tonolli	et	
al.	2011)	
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Normalized	
Difference	
Water	Index	
(NDWI)	

NDWI	=	(ρnir	-	
ρmir)/(ρnir	+	ρmir)	

Sensitive	to	
vegetation	water	

(Hardinsky	
et	al.	1983)	

Specific	Leaf	
Area	
Vegetation	
Index	(SLAVI)	

SLAVI	=	ρnir/(ρred	+	
ρmir)	

Estimates	
Specific	Leaf	
Area	

(Lymburner	
et	al.	2000)	

Red	Green	
Ratio	(RGR)	

RGR	=	ρred/ρgreen	 Sensitive	to	
different	foliar	
pigments	

(Gamon	&	
Surfus	
1999)	

Red	Green	
Index	(RGI)	

RGI	=	(ρgreen	–	
ρred)/(ρgreen	+	ρred)	

Normalization	of	
RGR	results	

(Coops	et	al.	
2006)	

Green	
Normalized	
Difference	
Vegetation	
Index	
(GNDVI)	

GNDVI	=	(ρnir	-	
ρgreen)/(ρnir	+	ρgreen)	

Estimates	the	
amount	of	green	
vegetation,	
exploiting	the	
green	channel,	
sensitive	to	
chlorophyll	

(Gitelson	et	
al.	1996)	

Normalized	
Canopy	Index	
(NCI)	
	
	

NCI	=	(ρmir	-	
ρgreen)/(ρmir	+	ρgreen)	
																																																																																		

Linearizes	the	
relationships	
with	parameters,	
accounting	for	
MIR	and	green	
bands	

(Vescovo	&	
Gianelle	
2008)	
	

Tasseled	Cap	
Angle	(TCA)	

TCA	=	
arctan(TCG/TCB)	

Index	based	on	
the	angle	formed	
by	brightness	
(TCB)	and	
greenness	(TCG)	
in	the	vegetation	
plane,	calculated	
from	TCT	
(Tasseled	Cap	
Transformation)	

(Powell	et	
al.	2010)	
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Model	building	

To	 relate	 field	 sampled	 values	 of	 basal	 area	 to	 the	 metrics	
calculated	 from	 the	 Landsat	 images,	 we	 used	 all	 newly-sampled	
plots,	plus	a	subsample	of	the	TEAM	and	Barelli	et	al.	(2015)	plots.	
The	 subsample	 plots	 were	 those	 showing	 at	 least	 75%	 overlap	
with	Landsat	pixels	(N=115).	 In	each	plot	we	calculated	the	basal	
area	 (BA,	 m2)	 for	 each	 sampled	 tree	 (DBH	 ≥10	 cm)	 as	
BA=π*(DBH/2)2.	We	 then	derived	 the	mean	basal	area	 (MBA)	 for	
each	plot,	 for	use	as	the	response	variable	(following	Barelli	et	al.	
(2015)	and	Cavada	et	al.	(2016)).	
	 We	used	generalized	linear	modelling	(GLM)	to	investigate	
the	 relationship	 between	 the	MBA-	 field	 sampled	 values	 and	 the	
Landsat	 metrics	 and	 indices.	 Prior	 to	 building	 the	 models,	 we	
checked	for	the	presence	of	collinearity	among	predictor	variables	
to	 remove	 those	 providing	 identical	 information.	 We	 thus	
calculated	Variance	 Inflation	Factor	 (VIF),	using	a	cut	off	value	of	
10	 (Marquardt	 1970,	 Hair	 et	 al.	 2006,	 Kennedy	 2008)	 and	 we	
retained	the	uncorrelated	predictors	P1,	P2,	RGI,	RR,	SLAVI.	From	
an	 Empirical	 Cumulative	 Distribution	 Function	 (ECDF)	 of	 the	
response	 variable,	 we	 decided	 to	 use	 an	 inverse	 Gaussian	 error	
distribution	 for	 the	 GLM	 with	 an	 inverse	 squared	 link	 function	
(Figure	3.2).	
We	built	models	using	all	the	possible	combinations	of	the	retained	
Landsat	predictors	and	we	used	 the	Akaike	 Information	Criterion	
(AIC)	 to	 rank	 the	 candidate	models.	We	considered	 those	models	
showing	ΔAIC<2	as	equivalent	(Anderson	and	Burnham	2002)	and	
defined	an	average	model	by	determining	Akaike	weights	(wi)	for	
each	 of	 the	 best	 models,	 using	 the	 packages	 ‘AICcmodavg’	
(Mazerolle	2015)	and	‘MUMin’	(Barton	2014)	in	R	version	3.2.1	(R	
Core	Team	2015).	For	validating	the	model	we	randomly	split	the	
MBA	dataset	 into	 two	 subsets,	 one	 for	model	 fitting	with	75%	of	
the	 data	 (N=109)	 and	 one	 with	 the	 remaining	 25%	 of	 the	 data	
(N=37).	We	then	used	bootstrapping	to	verify	the	goodness	of	fit	of	
the	selected	average	model:	we	simulated	1,000	datasets	from	the	
subset	derived	for	model	fitting	(i.e	the	one	considering	75%	of	the	
data)	 and	 then	 defined	 a	 function	 that	 returned	 the	 fit-statistic	
Pearson	χ2.	We	validated	the	model	by	checking	the	distribution	of	
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the	residuals	for	the	validation	subset.	We	evaluated	model	bias	by	
comparing	both	observed	and	predicted	values,	to	a	null	model	of	
mean	 residual	 prediction	 equal	 to	 zero,	 using	 Wilcoxon's	 signed	
rank	test	(for	α=0.05).	
	

Figure	3.2.	Empirical	cumulative	distribution	function	of	ground	sampled	
measures	of	mean	basal	area	 (MBA,	grey	dots)	 collected	at	 tree	plots	 in	
Mwanihana	forest,	Udzungwa	Mountains,	Tanzania.	The	black	line	shows	
the	fit	of	the	theoretical	inverse	Gaussian	distribution.	
	
	
Predictions:	MBA	values	and	RC	density	

To	 predict	 density	 values	 for	 groups	 of	 red	 colobus	 across	 the	
entire	Mwanihana	forest,	we	first	derived	spatially	diffused	values	
for	MBA	from	our	best	fitting	averaged	model,	giving	an	MBA	value	
for	each	Landsat	pixel	in	the	entire	study	area.	We	removed	those	
values	 of	 MBA	 that	 appeared	 as	 outliers	 in	 the	 derived	 dataset	
(i.e.	 >0.5	 m2).	 We	 believed	 these	 outliers	 were	 found	 for	 those	
pixels	 where	 our	 model	 was	 not	 able	 to	 derive	 realistic	 MBA	
values,	inside	those	areas	close	to	forest	borders	as	well	as	in	areas	
located	at	high	elevation	(above	1,800	m),	where	trees	are	sparse	
and	are	replaced	by	other	vegetation	(Lovett	et	al.	2006).	
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	 Besides	 MBA,	 previous	 modelling	 of	 red	 colobus	 group	
density	 was	 most	 effective	 using	 elevation	 (negative	 sign)	 and	
distance	 from	disturbance/forest	 edge	 (negative	 sign)	 (Cavada	 et	
al.	 2016).	 We	 therefore	 calculated	 spatially	 diffused	 values	 for	
these	variables	 from	a	Digital	Elevation	Model	 (DEM)	and	 from	a	
shapefile	of	the	forest	edge,	respectively.	We	then	used	a	published	
hierarchical	model	(Cavada	et	al.	2016)	to	predict	primate	density	
across	 the	 Mwanihana	 forest	 using	 these	 two	 variables	 and	
spatially	diffused	values	for	MBA	derived	from	our	model.	
Finally,	we	verified	the	accuracy	of	our	approach	by	comparing	the	
predicted	 primate	 density	 to	 density	 estimates	 in	 Cavada	 et	 al.	
(2016)	 for	 those	 plots	 in	 Barelli	 et	 al.	 (2015)	 (N=65)	 that	 were	
excluded	 while	 building	 the	 MBA	 model	 (see	 ‘Model	 building’	
above).	These	density	estimates	were	plot-specific	values	derived	
from	 the	 hierarchical	 analysis	 described	 above,	 and	 hence	 were	
effectively	 the	only	 field	based	and	site-specific	density	estimates	
that	could	be	used	for	such	validation.	We	compared	observed	and	
predicted	values	using	OP	regression	(Piñeiro	et	al.	2008)	and	we	
compared	the	slope	and	the	intercept	of	the	fitted	model	with	the	
1:1	line.	
	
Results	

After	 selecting	 the	 plots	 suitable	 for	 the	 analysis,	we	 retained	61	
plots	 from	 Barelli	 et	 al.	 (2015)	 and	 54	 TEAM	 sub-plots.	 Adding	
these	 to	 the	 33	 newly	 sampled	 plots,	 we	 obtained	 an	 overall	
dataset	of	148	plots	and	their	corresponding	sampled	MBA	values.	
We	built	models	using	all	the	possible	combinations	of	the	metrics	
and	 indices	 calculated	 from	 the	 Landsat	 images,	 including	 a	 null	
model.	We	retained	six	competing	models	of	MBA	(Table	3.2)	that	
were	 averaged	 for	 predictions.	 The	 resulting	 average	 model	
retained	 the	 first	 and	 the	 second	components	of	 the	PCA	and	 the	
indices	 RGI,	 RR	 and	 SLAVI	 (Table	 3.3).	 This	 model	 showed	
adequate	 fit	 based	 on	 the	 bootstrap	 P	 value	 based	 on	 the	 Chi-
square	 statistic	 (P=0.66)	 and	 no	 significant	 difference	 between	
observed	 and	 predicted	 MBA	 values	 (W=602,	 P=0.92).	 The	 MBA	
model	 failed	 to	 derive	 plausible	 values	 in	 those	 areas	 located	 at	
high	altitudes	as	well	 as	 close	 to	 the	 forest	edge	 (Figure	3.3).	We	
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obtained	 a	 spatially-explicit	 map	 of	 estimated	 density	 of	 red	
colobus	groups	across	 the	whole	 study	area,	 as	 influenced	by	 the	
covariates	 MBA	 (predicted	 from	 our	 model	 and	 with	 a	 positive	
effect),	elevation	and	distance	from	disturbance	(i.e	from	the	forest	
edge),	 both	 with	 a	 negative	 effect,	 according	 to	 the	 hierarchical	
model	defined	in	Cavada	et	al.	(2016)	(Figure	3.4).	
The	OP	regression	yielded	a	R2	of	0.84	attesting	the	accuracy	of	the	
predicted	red	colobus	group	density	values	as	derived	by	using	the	
spatially	diffused	values	 for	MBA	obtained	 from	the	GLM	analysis	
(Figure	3.5).	
	
	

Table	 3.2.	 Akaike	 Information	 Criterion	 (AIC)	 value	 for	 high	 ranked	
models	 (ΔAIC<2)	 of	 mean	 basal	 area	 (MBA)	 modelled	 as	 a	 function	 of	
predictors	derived	from	a	Landsat	8	image.	

Model	 AIC	 ΔAIC	
MBA~P1+RGI	 -620.70	 0	
MBA~P1+RGI+RR	 -619.89	 0.81	
MBA~P1+SLAVI	 -619.46	 1.24	
MBA~P1	 -619.097	 1.607	
MBA~P1+P2+RGI	 -619.096	 1.609	
MBA~P1+RR+SLAVI	 -618.98	 1.72	
	

P1=First	component	of	the	Principal	Component	Analysis;	P2=	Second	
component	of	the	Principal	Component	Analysis;	RGI=Red	Green	Index;	
RR=Red	Ratio;	SLAVI=Specific	Leaf	Area	Vegetation	Index.		
	
	
Table	3.3.	Estimates	and	standard	errors	 for	 the	parameters	retained	 in	
the	averaged	model	for	mean	basal	area	(MBA)	modelled	as	a	function	of	
metrics	and	indices	extracted	from	a	Landsat	8	image.	

Model-averaged	coefficients	 Estimate	 SE	 p	
P1	 -37.92	 19.61	 0.05	
RGI	 31.71	 15.43	 0.04	
RR	 19.40	 16.45	 0.2	
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SLAVI	 27.09	 16.18	 0.09	
P2	 18.15	 24.64	 0.4	
	

P1=First	 component	 of	 the	 Principal	 Component	 Analysis;	 P2=	 Second	
component	 of	 the	Principal	 Component	Analysis;	RGI=Red	Green	 Index;	
RR=Red	Ratio;	SLAVI=Specific	Leaf	Area	Vegetation	Index.		
	

Figure	3.3.	Predicted	values	of	mean	basal	area	(MBA)	across	Mwanihana	
forest	using	the	average	model	of	ground	sampled	values	versus	Landsat	
8	 metrics.	 White	 areas	 show	 pixels	 where	 the	 model	 failed	 to	 predict	
plausible	values	of	MBA	(i.e.	<0.5m2).	
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Figure	3.4.	Predicted	Udzungwa	red	colobus	group	density	in	Mwanihana	
forest	 using	 a	 species	 density	model	 (Cavada	 et	 al.	 2016)	 derived	 from	
remotely	sensed	mean	basal	area.	
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Figure	3.5.	 Linear	 regression	 (dotted	 line)	of	observed	versus	predicted	
values	 of	 Udzungwa	 red	 colobus	 density	 (groups/km2)	 among	 test	
vegetation	plots	(N=66).	A	1:1	relationship	is	indicated	by	the	solid	line.	

Discussion	

We	have	successfully	predicted	and	mapped	the	spatial	density	of	
an	 endangered	 primate,	 hence	 showing	 how	 modelling	
ecologically-relevant	 predictors	 of	 abundance	 can	 improve	
predictions	on	species	distribution	(Franklin	1995),	across	a	broad	
spatial	extent.	The	species’	density	pattern	highlighted	in	our	map	
is	 consistent	 with	 results	 in	 previous	 studies	 that	 were	 based	
solely	 on	 ground	 data	 and	 hence	 with	 limited	 spatial	 inference	
(Rovero	&	Struhsaker	2007,	Barelli	et	al.	2015,	Cavada	et	al.	2016).	
	 Our	 best	 supported	 models	 showed	 high	 accuracy	 in	
predicting	 MBA	 values,	 making	 it	 a	 reliable	 tool	 for	 inference	
beyond	 the	 ground	 measurement	 sites,	 with	 a	 good	 level	 of	
confidence	 and	 precision.	 MBA	 is	 a	 highly	 relevant	 descriptor	 of	
the	 canopy	 structure	 as	 well	 as	 a	 significant	 covariate	 that	 has	
emerged	 in	 different	 studies	 as	 influential	 for	 predominantly	
arboreal	primates	(Rovero	&	Struhsaker	2007,	Cavada	et	al.	2016).	
As	a	parameter	quantifying	forest	cover,	MBA	is	also	a	recognized	
proxy	for	habitat	degradation	and	fragmentation	(Urquiza-Haas	et	
al.	 2007).	 The	 best	 fit	 model	 we	 derived	 from	 GLM	 retained	 the	
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first	 two	 components	 of	 the	 PCA.	 This	 fitted	 the	 acknowledged	
evidence	 that	 Landsat	 products	 are	 able	 to	 discriminate	 forested	
habitats,	 through	 the	 information	 provided	 by	 specific	 spectral	
channels	(Blair	&	Baumgardner	1977,	Jakubauskas	1996,	Eklundh	
et	 al.	 2001,	 Cohen	 &	 Goward	 2004),	 in	 terms	 of	 the	 differential	
reflectance	 emitted	 by	 the	 higher	 strata	 of	 the	 canopy.	 The	
information	provided	by	the	Landsat	sensors	can	highlight	specific	
vegetation	 components	 (Thenkabail	 et	 al.	 2000,	 Almeida	 &	 De	
Souza	Filo	2004);	in	fact,	the	bands	of	the	visible	spectrum	and	of	
the	 Short-wave	 Infrared	 (SWIR)	 can	 be	 correlated	 with	 several	
forest	 structures,	 including	 basal	 area	 (Muukkonen	 &	 Heiskanen	
2005,	2007,	Hall	et	al.	2006).	The	relationship	with	MBA	shown	by	
the	 first	 PCA	 component	 of	 our	 model	 might	 be	 due	 to	 a	 large	
presence	 of	 trees	 with	 great	 basal	 area	 and	 tall	 canopy,	 causing	
pronounced	shadowing	which	translates	in	a	lower	reflectance.	
	 Among	the	vegetation	 indices	retained	by	the	models,	RGI	
can	be	 interpreted	as	a	proxy	of	the	forest	phenology	by	the	time	
when	 the	 Landsat	 image	 was	 acquired.	 Since	 such	 an	 index	
provides	 information	on	 the	 ratio	of	 red	 to	green	 reflectance,	 the	
positive	effect	we	found	on	MBA	could	be	due	to	the	contribution	
the	index	generally	gives	in	evaluating	the	size	of	the	tree	crowns,	
which	is	related	to	the	basal	area	extent.	During	that	period,	a	high	
amount	of	trees	shows	indeed	a	breakdown	of	green	pigments	and	
leaves	 fade	 from	 green	 to	 yellow	 and	 red	 (Motohka	 et	 al.	 2010).	
The	positive	 effect	we	 found	 for	RR	was	 also	 confirmed	by	other	
studies	that	found	a	correlation	between	the	visible	and	the	SWIR	
band	of	 the	Landsat	with	several	physical	structures	of	 the	 forest	
canopy,	 including	basal	area	(Muukkonen	&	Heiskanen	2005,	Hall	
et	 al.	 2006,	 Tonolli	 et	 al.	 2011).	 In	 addition,	 the	 positive	
relationship	 we	 found	 between	 MBA	 and	 SLAVI	 index	 is	 not	
surprising	given	 that	 the	 index	accounts	 for	 the	 sensitivity	of	 the	
mid-infrared	wavelength	to	the	structure	of	the	canopy,	especially	
for	heterogeneous	forest	compositions	(Lymburner	et	al.	2000).	
	 As	 the	main	goal	of	our	 study,	we	used	 the	predicted	and	
spatially	diffused	values	of	MBA	to	derive	a	map	of	the	Udzungwa	
red	colobus	density.	This	matched,	at	a	wider	and	spatially	diffuse	
scale,	 the	 density	 estimates	 found	 in	 prior	 studies	 (Barelli	 et	 al.	
2015;	 Cavada	 et	 al.	 2016).	 In	 particular,	 it	 confirmed	 the	 red	
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colobus’s	 preference	 for	 lower-elevation	 forest	 close	 to	 its	 edge,	
variably	disturbed	and	covered	with	regenerating	vegetation	 that	
is	recognized	as	an	 important	 food	source	 for	 the	species	(Barelli	
et	al.	2015).	Densities	decreased	where	MBA	values	increased,	 i.e.	
in	the	interior	and	old	growth	forest	parts	and	at	higher	elevation.	
This	 in	 turn	 indicates	 resilience	 of	 the	 animal	 to	 anthropogenic	
disturbance	 and	 again	 the	 preference	 shown	 by	 the	 species	 for	
forest	 edges.	 Such	 a	 counter	 intuitive	 density	 trend	 is	 clearly	
visualized	in	the	spatially	explicit	map	we	obtained.	This	provides	
novel	indications	for	the	protection	of	forest	areas	that	are	located	
at	the	interface	with	intense	anthropogenic	activity.		
	 We	 have	 confirmed	 that	 the	 use	 of	 remote	 sensing	
represents	 a	 robust	 tool	 to	 improve	 model	 performance	 and	 to	
reduce	the	costs	of	data	collection	(He	et	al.	2015),	which	implies	
bypassing	 the	 sample	 size	 limits	 associated	 with	 field	
measurements.	 We	 stress	 the	 importance	 of	 carefully	 evaluating	
the	 process	 regarding	 the	 selection	 of	 adequate	 satellite	 images,	
given	 the	 sensitivity	 for	 seasonality	 shown	 by	 some	 vegetation	
indices.	High	resolution	images	should	certainly	be	preferred	when	
deriving	 remote-sensing	 based	 predictor	 variables	 that	 can	 be	
essential	to	improve	predictive	species	modelling.	Nonetheless,	the	
quality	 of	 such	 images	 can	 often	 be	 poor,	 due	 to	 cloud	 coverage	
that	 hides	 the	 underlying	 canopy,	 i.e.	 the	 carried	 amount	 of	
information	is	lower	than	the	spectral	noise	(Woodcock	&	Strahler	
1987,	Ricotta	et	al.	1999).	This	phenomenon	consistently	arises	in	
images	 of	 tropical	 mountain	 forests,	 since	 clouds	 accumulate	
relatively	 more	 in	 dense	 forest	 cover	 areas	 due	 to	
evapotranspiration	 (Nagendra	 &	 Rocchini	 2008).	 Still,	 we	
demonstrated	 that	 since	 high	 resolution	 products	 in	 some	 cases	
cannot	be	used,	medium	resolution	images	like	Landsat	proved	to	
be	an	excellent	source	of	data	for	applications	both	in	the	study	of	
tropical	 forest	 structure	 and	 to	 develop	 reliable	 species	
distribution	models.	However,	caution	is	recommended	regarding	
the	 generalization	 of	 our	 approach,	 which	 is	 mainly	 relevant	 to	
comparable	 study	 systems	 in	 terms	 of	 both	 habitat	 and	 target	
species	characteristics.		
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Conclusions	

Spatially	explicit,	predictive	models	of	animal	abundance	can	offer	
a	powerful	 insight	on	 the	 species	 status	 and	distribution,	helping	
to	 identify	 those	 sites	 where	 urgent	 intervention	 is	 needed	 in	
terms	of	protection	and	conservation.	Overcoming	the	lack	of	high	
resolution	and	high	quality	remote	sensing	products	as	well	as	of	
spatially	 diffused	 covariates	 of	 abundance	 is	 essential,	 as	 it	 can	
firmly	 boost	 the	 usefulness	 of	 species	 distribution	 models.	 By	
focusing	on	the	endangered	Udzungwa	red	colobus,	we	showed	the	
potential	 of	 this	 approach	 to	 derive	 accurate	 spatially	 diffused	
estimates	 of	 animal	 density	 and	 distribution.	 This	 approach	 is	
particularly	 suitable	 for	 species	 for	 which	 data	 availability	 is	
incomplete	 and	 spatial	 coverage	 is	 heterogeneous,	 affecting	 the	
capacity	 of	 developing	 site-specific	 conservation	 and	 restoration	
programs	where	urgent	forest	and	species	protection	is	needed.	
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CHAPTER	4	

Optimizing	 field	 and	 analytical	 procedures	 for	 estimating	
densities	 of	 arboreal	 and	 threatened	 primates	 in	 tropical	
rainforest	

	
Based	on	the	paper:	Cavada	N,	Ciolli	M,	Barelli	C,	Rovero	F	(in	press)	
Optimizing	field	and	analytical	procedures	for	estimating	densities	of	
arboreal	 and	 threatened	 primates	 in	 tropical	 rainforest.	 American	
Journal	of	Primatology	
	
Summary	

The	application	of	distance	sampling	to	primate	density	estimation	
is	challenging	and	susceptible	 to	estimation	biases,	mainly	due	 to	
the	 difficulties	 of	 properly	 accounting	 for	 variation	 in	 species'	
detectability	 and	 of	 accurately	 sampling	 the	 spread	 of	 the	 social	
groups.	 We	 apply	 a	 hierarchical	 distance	 sampling	 approach	 to	
primate	data,	to	account	for	a	comprehensive	set	of	environmental	
covariates	of	both	detectability	and	abundance,	and	we	propose	a	
novel	 field	 routine	 to	 measure	 the	 spread	 of	 groups	 during	
transect	sampling.	We	confirm	the	good	potential	of	this	approach,	
given	 we	 obtained	 refined	 estimates	 of	 primate	 density	 (as	
measured	 by	 the	Akaike	 Information	 Criterion)	 in	 comparison	 to	
estimates	from	models	without	covariates.		
	
Introduction	

Accurate	 estimation	 of	 abundance	 and	 distribution	 of	 threatened	
animal	populations	is	required	to	inform	conservation.	In	the	case	
of	 primates,	 which	 are	 among	 the	 most	 threatened	 mammals	
(Schipper	et	al.,	2008),	distance	sampling	from	line	transects	is	the	
method	 of	 choice,	 especially	 for	 arboreal	 species	 (Buckland	 et	 al.	
2001).	 The	 key	 advantage	 of	 this	 method	 is	 that	 it	 accounts	 for	
imperfect	 detection	 of	 animals;	 however,	 it	 does	 not	 adequately	
consider	the	effect	of	habitat	factors	on	both	the	detection	and	the	
abundance	 of	 target	 species,	 especially	 when	 they	 live	 in	
heterogeneous	forests	(Cavada	et	al.	2016).	
Hierarchical	 analytical	 frameworks	 that	 include	 habitat	
covariates	 in	distance	sampling	have	been	developed	by	Royle	
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et	 al.	 (2004)	 and	 applied	 to	 birds.	 The	 first	 application	 to	
arboreal	 primates	 (Cavada	 et	 al.	 2016)	 has	 already	 shown	 its	
improvement	 for	 density	 estimates	 in	 comparison	 to	 the	
canonical	approach.	This	judgment	was	based	on	a	comparison	
of	 the	Akaike	 Information	Criterion	 (AIC)	 scores	of	 competing	
models,	i.e.	the	quality	of	the	models	in	terms	of	goodness	of	fit	
and	 its	 complexity.	 However,	 although	 it	 included	 several	
habitat	covariates,	 it	did	not	consider	 'tree	height'	as	a	 feature	
of	 forest	 structure	 of	 potential	 critical	 influence	 for	 both	
abundance	 and	 detectability.	 Most	 critically,	 moreover,	 a	
number	of	earlier	studies	(e.g.	Plumptre	&	Cox	2006;	Buckland	
et	al.	2010b)	have	stressed	 the	need	 to	consider	 the	spread	of	
primates'	 social	 group,	 as	 this	 affects	 distance	 measurement	
and	 hence	 density	 estimates.	 However,	 this	 has	 been	 usually	
addressed	 by	 using	 a	 post-hoc	 correction	 of	 group	 spread	
derived	 from	 parallel	 studies	 (Araldi	 et	 al.	 2014)	 instead	 of	 a	
direct	estimation	of	groups	spread	during	counts.	Here,	we	use	
a	novel	dataset	from	a	primate	hotspot	in	Tanzania	to	propose	
an	 application	 of	 hierarchical	 distance	 sampling	 to	 arboreal	
primates	 that	 comprehensively	 considers	 habitat	 covariates,	
including	the	measurement	of	group	spread	during	census.	
	
Materials	and	Methods	

Study	area	and	primate	data	collection	

Between	 September	 and	 November	 2015	 we	 counted	 primates	
along	26	line	transects	of	2	km	in	length,	throughout	the	forest	of	
Ndundulu	 (231	 km2,	 Marshall	 et	 al.,	 2010)	 in	 the	 Udzungwa	
Mountains	 of	 Tanzania	 (Figure	 4.1).	 The	 area	 is	 of	 exceptional	
biological	 diversity	 and	 endemism	 (Rovero	 et	 al.	 2014b)	 and	 is	
characterized	by	the	presence	of	distinct	forest	blocks	in	a	mosaic	
of	 drier	 habitats	 (Cavada	 et	 al.	 2016).	 Following	 Buckland	 et	 al.	
(2001)	we	designed	the	sampling	to	achieve	a	complete	coverage	
of	 the	 study	 area	 (Figure	 4.2)	 and	 an	 adequate	 number	 of	
repetitions	 (N=35).	 We	 walked	 the	 transects	 placed	 in	 the	
northern	part	of	the	forest,	which	were	spaced	by	1	km,	two	times	
each,	 and	 we	 walked	 the	 transects	 placed	 in	 the	 southern	 part,	
which	were	spaced	by	500	m,	one	time	each.	This	design	stratified	
the	transects	according	to	elevation	gradients	and	size	of	 the	two	
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main	 areas	 of	 the	 forest:	 the	 northern,	 higher	 elevation	 forest	
habitat,	 and	 the	 southern,	 lower	 elevation	 habitat.	 Along	 these	
transects	 we	 counted	 each	 group	 encountered	 of	 three	 monkey	
species	 inhabiting	 the	 area:	 Udzungwa	 red	 colobus	 (Procolobus	
gordonorum,	 hereafter	 RC),	 Peters'	 Angola	 colobus	 (Colobus	
angolensis	 palliates,	 hereafter	BW),	 and	 Tanzania	 Sykes'	 monkey	
(Cercopithecus	mitis	monoides,	hereafter	SY),	 and,	 simultaneously,	
we	estimated	the	group	spread.	To	achieve	this,	we	measured	the	
distance	 from	 the	 observer	 to	 the	 first	 individual	 seen	 (animal-
observer	distance,	or	AOD;	Animal	1	in	Figure	4.3),	as	for	standard	
distance	sampling.	We	then	calculated	the	perpendicular	distance	
of	 the	 animal	 to	 the	 transect	 (PD1)	 using	 trigonometry.	We	 also	
recorded	 the	 position	 of	 the	 two	 individuals	 located	 at	 the	 two	
extremes	of	an	imaginary	line	crossing	the	group	(Animals	2	and	3	
in	Figure	4.3)	and	we	calculated	each	of	their	PD	to	transect	(PD2	
and	PD3	in	Figure	4.3).	We	then	derived	the	length	of	the	distance	
(D)	between	the	two,	representing	one	axis	of	group	spread,	as	the	
leg	 of	 a	 rectangular	 trapezoid	 (Figure	 4.3).	 We	 finally	 corrected	
PD1	 using	 the	 standard	 formula	 proposed	 by	 Whitesides	 et	 al.	
(1988),	 i.e.	 multiplying	 it	 by	 1+(r/AOD),	 with	 r	 being	 half	 of	 the	
group	 spread.	 This	 procedure	 assumes	 that	 AOD	 is	 the	 one	 from	
the	 observer	 to	 the	 first	 individual	 sighted,	 that	 is	 also	 the	 one	
closest	 to	 the	 transect	 (Buckland	 et	 al.	 2010).	 We	 applied	 this	
approach	to	RC	only,	as	they	have	the	larger	social	groups	(Cavada	
et	 al.	 2016),	making	 particularly	 challenging	 the	measurement	 of	
group	spread.		
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Figure	 4.1.	 Map	 of	 the	 Udzungwa	 Mountains	 National	 Park,	 Tanzania,	
showing	 the	 surveyed	 forest	 of	Ndundulu	 and	 other	 surrounding	 forest	
blocks.	
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Figure	4.2.	Map	of	Ndundulu	forest,	Tanzania,	showing	the	location	of	26	
transects	walked	for	primate	surveys,	yielding	35	sampling	repetitions,	as	
well	as	the	104	vegetation	plots	sampled	in	the	survey	period	(September	
–	November	2015)		
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Figure	 4.3.	 Scheme	 of	 sampling	 procedure	 for	measuring	 group	 spread.	
Animals	2	and	3	represent	the	two	individuals	of	the	group	placed	at	the	
two	 extremes	 of	 an	 imaginary	 line	 crossing	 the	 centre	 of	 the	 group,	 as	
seen	during	sampling.	Their	projected	perpendicular	distances	(PD2	and	
PD3)	 to	 the	 transect,	 form	the	bases	of	a	 rectangular	 trapezoid.	D	 is	 the	
leg	 of	 the	 geometric	 figure,	 as	 well	 as	 the	 group	 spread	 value.	 The	
correction	 for	 group	 spread	 is	 then	 applied	 to	 PD1,	 the	 perpendicular	
distance	from	Animal	1	(i.e.	the	first	individual	sighted)	to	the	transect.	
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Vegetation	data	collection	

We	 collected	 vegetation	 covariates	 at	 plots	 of	 25	 ×	 25	m,	 placed	
every	500	m	along	 each	 transect	 (N=104).	We	also	measured	 for	
each	 plot	 the	 dominant	 tree	 height,	 which	 we	 defined	 as	 the	
average	 height	 of	 the	 seven	 trees	 with	 the	 largest	 diameter	 at	
breast	 height	 (DBH;	 Günter	 et	 al.	 2011;	 Table	 4.1),	 a	 feature	 not	
recorded	 in	 previous	 studies	 (Barelli	 et	 al.	 2015;	 Cavada	 et	 al.,	
2016).	 As	 the	 modelling	 procedure	 requires	 transect	 level	
covariates	 (and	 not	 observation	 level	 covariates),	 plot	 level	 data	
were	 then	 converted	 in	 transect	 level	 data	 by	 taking,	 for	 each	
covariate,	the	average	value	from	the	set	of	 four	plots	established	
along	each	transect.		
	

Table	4.1.	List	of	covariates	sampled	 in	Ndundulu	 forest,	Tanzania,	used	
to	estimate	density	of	primates	detected	from	line	transects.	

Covariate	 Sampling	description	

Group	sizea	 Number	of	individuals	in	social	groups	counted	at	each	
observation.	

Canopy	
covera,b	

Visually	estimated	extent	of	canopy	cover	above	each	
plot,	defined	using	five	classes,	from	completely	open	to	
completely	closed	(0%,	25%,	50%,	75%,	100%).	

Distance	from	
disturbancea,b	

Distance	measured	from	the	forest	border.	

Percentage	of	
climbersa,b	

Proportion	of	climbers	covering	tree	crowns,	defined	
using	five	classes,	from	no	climbers	to	completely	
covered	crown	(0%,	25%,	50%,	75%,	100%).	

Steepnessa,b	 Slope	of	the	plot.	

Total	basal	
areab	

Sum	of	single	trees	basal	area	(BA,	m2).	BA	was	
calculated	from	tree	measured	DBH≥	10	cm	as	
BA=π*(DBH/2)2.	

Mean	basal	
areab	

Average	BA	for	each	plot.	

Heighta,b	 Average	height	of	the	seven	larger	trees,	in	terms	of	
DBH,	within	each	plot.	Single	trees	height	was	measured	
using	a	Suunto	hypsometer.	
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Elevationb	 Measured	with	a	Garmin	64s	GPS	in	the	centre	of	each	
plot.	

Simpson	
diversity	index	
(D)b	

D=	1/Σ1i=1pi2,	with	i	being	the	number	of	a	certain	
species	and	pi	the	total	number	of	species	inside	each	
plot.	

a	fitted	on	detection	
b	fitted	on	abundance	
	
	
Analysis	

For	 each	 species,	 we	 modelled	 group	 encounters	 (N	 =	 100	
total),	along	each	transect	(N=26),	in	a	hierarchical	framework,	
i.e.	 following	Royle	et	al.	(2004)	that	applied	a	coupled	logistic	
regression	 whereby	 the	 regression	modelling	 the	 observation	
(detection)	process	 is	 conditional	 on	 the	 regression	modelling	
the	 state	 (abundance)	 process.	 Thus,	 we	 first	 grouped	
continuous	values	of	distance	 that	were	measured	 in	 the	 field,	
in	 distance	 classes	 (h)	 of	width	 20	m.	We	 then	 assigned	 each	
primate	observation	(ysh)	along	each	 transect	 (t)	 to	 its	specific	
distance	class	(h).	Using	the	function	distsamp	(Chandler	2014)	
in	the	package	unmarked	(Fiske	&	Chandler	2011)	in	R	(R	Core	
Team	2015)	we	modelled	local	abundance	(Xt)	at	each	transect,	
assuming	 for	 it	 a	 Poisson	 distribution:	 (Xt~	 Poisson	 (λt);	 t	 =	
1,…,n)	with	λ	representing	the	expected	value	of	X(λ	=	E(x)).	We	
also	modelled	detection	frequencies	(i.e.	the	observed	count	of	
individuals	 in	 each	 distance	 class	 h),	 assuming	 for	 these	 a	
multinomial	distribution,	conditional	on	the	population	size	Xt:	
(yt1,	 ...ytH)	 ~	 Multinomial(Xt,	 πt),	 where	 πt	 h	 is	 the	 multinomial	
probability	 for	distance	 class	h	 and	 transect	 t,	 that	 depend	on	
the	 parameter	 σ	 of	 the	 detection	 function,	 for	 which	 we	
assumed	a	half-normal	distribution,	as	g(y)	=	exp	–(y2/2	σ2).	We	
then	evaluated	 the	 effect	 of	 all	 combinations	of	 transect-	 level	
habitat	 covariates,	 as	 influencing	 both	 the	 detection-function	
parameter	σ	 as	well	as	 the	expected	abundance	λt..	We	ranked	
the	 candidate	 models	 according	 to	 the	 AIC,	 retaining	 models	
with	 ΔAIC<2	 (Anderson	 &	 Burnham	 2002).	We	 assessed	 best	
model	fit	through	parametric	bootstrapping.	Thus,	we	used	the	
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function	parboot	 in	 ‘unmarked’	that	generated	10,000	datasets	
from	our	best	performing	model	and	refitted	the	model	to	these	
simulated	 data;	 this	 defined	 a	 function	 that	 returned	 a	
distribution	of	Pearson’s	Χ2.	The	procedure	then	computed	the	
P	 value	 by	 comparing	 fitted	 versus	 simulated	 values.	 Non-
significant	 P	 indicates	 adequate	 model	 fit,	 i.e.	 no	 difference	
between	 fitted	 versus	 simulated	 data.	 We	 then	 averaged	
candidate	models	 (ΔAIC<2)	using	 the	package	MUMin	 (Barton	
2015)	in	R.	This	procedure	determines	the	Akaike	weights	and	
averages	the	estimates	of	the	parameters	of	interest	among	the	
set	 of	 candidate	 models.	 These	 were	 in	 turn	 used	 to	 derive	
species-specific	primate	density	estimations	(groups/km2).	We	
note	 that	 density	 is	 the	 primary	 outcome	 of	 this	 modelling	
approach,	while	abundance	in	terms	of	total	number	of	groups	
can	be	 later	derived	when	 the	 total	extent	of	 the	study	area	 is	
known	(Araldi	et	al.	2014).	We	also	derived	density	predictions	
at	 plot	 level.	 This	 was	 done	 by	 feeding	 the	 species-specific	
averaged	 model	 with	 covariate	 values	 as	 sampled	 at	 each	
vegetation	 plot,	 hence	 allowing	 the	 model	 to	 predict	 plot	
specific	values	of	density.	For	RC,	using	Wilcoxon	signed-rank,	
we	 compared	 our	 group	 spread	 measurements	 with	 those	 in	
Araldi	 et	 al.	 (2014),	 who	 measured	 them	 in	 a	 single	 and	
different	 forest	 block	 in	 Udzungwa	 through	 a	 separate	 study	
and	 then	applied	 the	 average	value	 for	 each	 species	 across	 all	
targeted	forests.	
	
Results	

We	 walked	 68.5	 of	 the	 planned	 70	 km	 of	 transects.	 We	 right-
truncated	 the	distance	data	at	100	m	for	BW	and	SY	and	at	90	m	
for	 RC,	 because	 the	 few	 detections	 at	 larger	 distances	 provided	
little	 information	 for	 the	 estimation	 of	 species-specific	 detection	
functions	and	could	possibly	complicate	model	fitting	(Buckland	et	
al.	2001).	We	thus	retained	26,	32	and	42	observations	for	BW,	SY	
and	RC	groups	respectively.			
The	 best	 performing	 models	 revealed	 that	 'group	 size'	 had	 a	
positive	 effect	 on	 the	 detectability	 of	 all	 species	 (Figure	 4.4),	
while	 'tree	 height'	 had	 a	 significant,	 positive	 effect	 on	 the	
density	 of	 BW	 and	 RC	 (Table	 4.2,	 Table	 4.3).	 The	 bootstrap	 P	
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value	 based	 on	 the	 Chi-square	 statistic	 was	 non-significant,	
hence	indicating	good	fit	for	all	the	species-specific	best	models	
(P=0.6	 for	BW;	P=0.37	 for	 SY;	P=0.49	 for	RC).	 Encounter	 rate,	
detection	 probability	 and	 group	 density	 estimates	 for	 each	
species	are	reported	in	Table	4.4,	while	the	spatial	distributions	
of	 density	 estimates	 are	 mapped	 in	 Figure	 4.5.	 Our	 group-
specific	measurements	of	group	spread	of	RC	were	significantly	
different	 from	 those	 in	 Araldi	 et	 al.	 (2014;	 Wilcoxon	 signed	
rank	test:	W=2012,	P=0.04).	
 
 

Figure	 4.4.	 Detection	 function	 from	 the	 best	 AIC	models,	 shown	 for	 the	
0.25,	 0.50	 and	 0.75	 quartiles	 of	 the	 covariate	 'group	 size',	 for	 three	
primate	species	in	Ndundulu	forest,	Tanzania.	
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Table	 4.2.	 Summary	 of	 model	 selection	 for	 the	 hierarchical	 distance	
sampling	 analysis	 performed	 on	 primates	 in	 Udzungwas,	 Tanzania.	
The	Akaike	information	criterion	(AIC)	value	is	shown	for	high	ranked	
models	(ΔAIC<2)	of	primates'	density	(λ)	and	the	shape	parameter	(σ)	
of	 a	 half-normal	 detection	 function.	 The	 null	 model	 (σ(·)	 λ(·))	 is	
shown	for	comparison.	

Model	 AIC	 ΔAIC	

Peters'	Angola	colobus	 	 	

σ(Group	size)	λ(Height	+	Simpson	diversity	index)	 104.30	 	

σ(Group	size	+	Canopy	cover)	λ(Tree	height	+	Simpson	
diversity	index)	

105.54	 1.24	

σ(Group	size)	λ(Tree	height	+	Mean	basal	area)	 105.76	 1.46	

σ(Group	size	+	Canopy	cover	+	Distance	from	
disturbance)	λ(Tree	height	+	Simpson	diversity	index)	

105.93	 1.62	

σ(·)	λ(·)	 120.31	 16.01	

Udzungwa	red	colobus	 	 	

σ(Group	size	+	Percentage	of	climbers)	λ(Tree	height	+	
Elevation)	

127.84	 	

σ(Group	size)	λ(Tree	height	+	Elevation)	 128.39	 0.56	

σ(Group	size	+	Percentage	of	climbers)	λ(Tree	height	+	
Elevation	+	Steepness)	

129.27	 1.43	

σ(Group	size	+	Percentage	of	climbers	+	Tree	height)	
λ(Tree	height	+	Elevation)	

129.31	 1.48	

σ(Group	size	+	Percentage	of	climbers)	λ(Tree	height	+	
Distance	from	disturbance	+	Elevation)	

129.54	 1.70	

σ(Group	size	+	Percentage	of	climbers)	λ(Canopy	cover	
+	Tree	height	+	Elevation)	

129.58	 1.74	

σ(·)	λ(·)	 148.77	 20.93	

Tanzania	Sykes'	monkey	 	 	

σ(Group	size)	λ(Steepness)	 86.58	 	

σ(Group	size)	λ(Canopy	cover	+	Percentage	of	climbers	
+	Steepness)	

87.34	 0.76	

σ(Group	size	+	Canopy	cover)	λ(Steepness)	 87.51	 0.94	
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σ(Group	size	+	Percentage	of	climbers)	λ(Steepness)	 87.72	 1.14	

σ(Group	size	+	Distance	from	disturbance)	
λ(Steepness)	

87.87	 1.30	

σ(Group	size	+	Tree	height)	λ(Steepness)	 87.93	 1.36	

σ(Group	size)	λ(Percentage	of	climbers	+	Steepness)	 88.16	 1.58	

σ(Group	size)	λ(Percentage	of	climbers	+	elevation	+	
Steepness)	

88.21	 1.63	

σ(Group	size)	λ(Canopy	cover	+	Percentage	of	climbers	
+	Total	basal	area	+	Steepness)	

88.22	 1.64	

σ(Group	size)	λ(Percentage	of	climbers	+	Distance	from	
disturbance	+	Steepness)	

88.39	 1.81	

σ(Group	size	+	Canopy	cover	+	Steepness)	
λ(Percentage	of	climbers	+	Mean	basal	area	+	
Steepness)	

88.53	 1.95	

σ(·)	λ(·)	 105.37	 18.79	

	
	
	
Table	 4.3.	 Results	 of	 model	 averaging,	 showing	 model	 averaged	
parameter	estimates	and	their	standard	error	for	the	three	primate	target	
species	detected	from	line	transects	in	Ndundulu	forest,	Tanzania.	

Model	and	
coefficients	

Estimate	 SE	 CI	(95%)	

Peters’	Angola	
colobus	

	 	 	

Detection	(σ)	 	 	 	

Intercept	 3.34	 0.51	 2.32	-	4.37	

Group	size	 3.59	 4.40	 -5.05	-	12.21	

Canopy	cover	 1.29	 1.92	 -2.46	-	5.04	

Distance	from	
disturbance	

-0.83	 0.96	 -2.72	-	1.05	

Tree	height	 -1.81	 2.07	 -5.86	-	2.25	

Climber	percentage	 0.16	 0.28	 -0.39	-	0.71	
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Density	(λ)	 	 	 	

Intercept	 1.21	 0.33	 0.56	-	1.85	

Tree	height	 0.52	 0.50	 -0.46	-	1.51	

Simpson	diversity	
index	

-0.58	 0.29	 -1.16	-	-0.01	

Distance	from	
disturbance	

0.08	 0.26	 -0.43	-	0.59	

Udzungwa	red	
colobus	

	 	 	

Detection	(σ)	 	 	 	

Intercept	 3.56	 0.24	 3.08	-	4.03	

Group	size	 1.30	 0.73	 -0.14	-	0.59	

Climber	percentage	 0.39	 0.29	 -0.18	-	0.95	

Tree	height	 -0.38	 0.56	 -1.47	-	0.72	

Density	(λ)	 	 	 	

Intercept	 1.35	 0.24	 0.88	-	1.82	

Tree	height	 0.63	 0.25	 0.14	-	1.11	

Elevation	 0.22	 0.19	 -0.14	-	0.59	

Steepness	 -0.15	 0.20	 -0.54	-	0.24	

Distance	from	
disturbance	

-0.11	 0.21	 -0.52	-	0.29	

Canopy	cover	 0.11	 0.22	 -0.32	-	0.54	

Tanzania	Sykes'	
monkey	

	 	 	

Detection	(σ)	 	 	 	

Intercept	 6.52	 0.66	 5.22	-	7.81	

Group	size	 11.09	 0.99	 9.16	-	13.02	

Canopy	cover	 1.14	 0.25	 0.66	-	1.63	

Climber	percentage	 -1.76	 0.15	 -2.06	-	-1.46	

Distance	from	
disturbance	

-0.86	 0.16	 -1.16	-	-0.55	
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Tree	height	 -0.07	 0.04	 -0.15	-	0.01	

Steepness	 -1.67	 0.08	 -1.83	-	-1.51	

Density	(λ)	 	 	 	

Intercept	 1.09	 0.29	 0.51	-	1.66	

Steepness	 -0.35	 0.29	 -0.91	-	0.22	

Climber	percentage	 -0.11	 0.40	 -0.89	-	0.66	

Canopy	cover	 0.45	 0.30	 -0.13	-	1.04	

Elevation	 -0.35	 0.25	 -0.85	-	0.15	

Distance	from	
disturbance	

-0.10	 0.29	 -0.67	-	0.48	

Total	basal	area	 -0.37	 0.41	 -1.19	-	0.46	

Mean	basal	area	 -0.46	 0.23	 -0.91	-	-0.01	

	
	
	
Table	 4.4.	 Encounter	 rate,	 detectability	 (±	 SE)	 and	 group	 density	 (±	 SE	
(CI)	 for	 three	primate	 species	detected	 from	 line	 transects	 in	Ndundulu	
forest,	Tanzania.	

Species	 Encounter	
rate	
(groups/km)	

Detectability	
(SE)	

Density	(groups/km2)	
(SE)	(CI)	

Peters'	Angola	
colobus	

0.38	 0.14	(0.01)	 3.5	(1.05)	(1.94	-	6.30)	

Udzungwa	red	
colobus	

0.61	 0.11	(0.01)	 3.86	(0.92)	(2.42	-	6.15)	

Tanzania	
Sykes'	monkey	

0.47	 0.12	(0.01)	 2.97	(0.86)	(1.67	-	5.26)	
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Figure	 4.5.	 Maps	 of	 spatially	 explicit	 density	 (groups/km2)	 of	 three	
primate	 species,	 predicted	 from	 the	 species-specific	 averaged	model,	 in	
Ndundulu	forest,	Tanzania.	Values	are	shown	for	each	plot	sampled	along	
transects,	for	which	covariate	measures	were	available.	

	
	
Discussion		

We	provide	 a	 novel	 test	 of	 hierarchical	modelling	 that	 integrates	
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habitat	 covariates	 for	 primate	 density	 estimation,	 confirming	 its	
importance	as	supported	by	earlier	evidence	(Cavada	et	al.	2016).	
Indeed	 inclusion	 of	 'tree	 height'	 as	 a	 predictor	 variable	 in	 the	
analysis	 proved	 to	 enhance	 the	 accuracy	 of	 our	 final	 models,	 as	
shown	by	the	AIC	scores	 in	Table	4.2.	 It	 is	plausible	that	arboreal	
primates	prefer	taller	trees	for	easier	locomotion	(Anderson	et	al.	
2007)	and	predator	avoidance.	We	also	suggest	a	 field	procedure	
to	measure	primate	group	spread	while	conducting	 line	 transects	
to	obtain	observation-specific	measurements.	This,	 too,	 improved	
the	precision	of	density	estimates,	as	we	found	that	measurements	
taken	at	different	 locations	and/or	 in	different	 seasons	 introduce	
biases.	Such	biases	could	be	the	result	of	averaging	measurements	
obtained	from	one	site	(and	season)	and	applied	to	different	ones,	
making	 the	PD	correction	highly	 imprecise.	We	acknowledge	 that	
in	 areas	where	animals	 are	poached	and	 flee	 rapidly	our	method	
may	be	less	useful.	
In	 conclusion,	 we	 show	 how	 accounting	 for	 forest	 and	 species-
specific	 covariates	 can	 lead	 to	 improved	 estimates	 of	 primate	
detectability	and	density.		
	
Conclusions	

The	analytical	approach	we	applied,	with	its	hierarchical	structure,	
allowed	us	to	derive	species-specific	models	that	performed	better	
than	the	null	models,	i.e.	those	that	did	not	consider	the	covariate	
effects.	For	animals	inhabiting	fragmented	forest	patches,	which	is	
increasingly	 the	 case,	 population	 density	 is,	 in	 fact,	 likely	 to	 be	
influenced	 by	 patch-specific	 factors,	 and	 therefore	 estimations	
need	 to	 account	 for	patch-specific	 covariates.	 Future	 studies	may	
include	the	sampling	and	the	evaluation	of	additional	covariates,	to	
further	 increase	 the	 precision	 of	 the	 results.	 These	 could	 include	
for	example	parameters	related	to	the	phenology	and	distribution	
of	 fruiting	 trees,	 which	 would	 be	 especially	 relevant	 to	 more	
frugivorous	 species.	 The	 hierarchical	 approach	 we	 followed	 also	
provides	 an	 opportunity	 for	 deriving	 spatially	 explicit	 density	
estimates	 (Figure	 4.5),	 and,	 when	 diffused	 covariate	 values	 are	
available	 (most	 typically	 from	remote	 sensing),	 it	 allows	 to	make	
fine-resolution	maps	of	predicted	density	(Cavada	et	al.	2017)	
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CONCLUSIONS	AND	PERSPECTIVES	

The	 history	 of	mammal	 evolution	 in	 the	 Udzungwa	Mountains	 is	
thought	 to	be	exceptionally	 long	 (Kingdon	&	Howell	1993),	 given	
the	ancient	origin	of	the	crystalline	mountains.	This	has	important	
implications	in	terms	of	capability	of	the	animals	to	cope	with	the	
rapid,	 human-driven	 changes	 occurring	 in	 the	 region.	 In	 this	
perspective,	we	 developed	 a	 research	 framework	 that	 could	 help	
to	model	and	assess	the	impact	that	such	changes	has	on	selected	
animal	species.		
	 A	 general	 insight	 was	 first	 gained	 on	 forest	 mammal	
habitat	 associations	 (Chapter	 1),	 with	 results	 from	 camera	
trapping	 that,	 on	 a	 fine-scale,	 are	 of	 particular	 conservation	
relevance,	 especially	 for	 elusive	 and	 range	 restricted	 species,	 for	
which	ecological	data	were	still	limited.	
	 An	 assessment	 of	 population	 density	 and	 abundance	was	
obtained	 for	 the	 main	 arboreal	 primate	 species	 inhabiting	 the	
Udzungwa	Mountains	(Chapter	2),	through	distance	sampling	and	
its	 hierarchical	 modelling	 applications.	 The	 estimates	 on	 animal	
occurrence	 that	 were	 derived	 were	 useful	 to	 delineate	 the	
ecological	status	of	the	study	species.	At	the	same	time,	the	models	
allowed	 to	 establish	 a	 spatially	 explicit	 relationship	 between	
species	 specific	 detectability	 and	 densities	 and	 a	 suite	 of	
environmental	and	human	disturbance	variables.		
	 Part	 of	 the	 research	 outputs	 were	 synthesized	 in	 a	 geo-
referenced	 model,	 describing	 distribution	 and	 density	 for	 the	
endangered	and	endemic	Udzungwa	red	colobus	(Chapter	3).	The	
spatial	 analysis	 approach	 that	 was	 applied	 allowed	 to	 fine	 tune	
field	 sampled	 data	 on	 primate	 occurrence,	 together	 with	 their	
correlation	 with	 habitat	 parameters.	 To	 derive	 spatially	 explicit	
data	 for	 influential	habitat	covariates,	a	remote	sensing	data-base	
was	used.	In	detail	it	was	demonstrated	how	Landsat	images,	when	
properly	selected	and	processed,	can	be	useful	to	provide	missing	
information	 on	 significant	 environmental	 parameters.	 It	was	 this	
way	 possible	 to	 develop	 an	 analytical	 and	 modelling	 framework	
that	is	of	high	utility	when	high	resolution	satellite	images	are	not	
available	for	the	study	area.	This	new	analytical	method	allowed	to	
infer	 abundance	 of	 the	 species	 across	 the	 study	 area,	 meaning	
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outside	 the	 transects	 and	 in	 those	 regions	 that	were	 not	 actively	
sampled	during	the	field	surveys.	For	the	first	time	it	was	possible	
to	model	at	a	 landscape	 level	 those	 factors	 that	were	 found	 to	be	
influential	in	determining	the	presence	and	density	of	the	species.	
At	 the	 same	 time	 such	 approach	 helped	 to	 predict	 the	 species	
distribution	range	in	the	study	area.		
	 During	the	research	period,	a	fifth	forest	was	added	to	the	
database	already	available	on	the	four	other	major	forest	blocks	in	
the	 area.	 This	 helped	 to	 better	 understand	 and	 depict	 the	
ecological	 scenario	 for	 the	 arboreal	 primate	 populations	 in	 the	
area	of	 the	Udzungwa	Mountains.	At	 the	 same	 time	 the	new	 field	
sampling	campaign	allowed	 to	develop	and	 test	a	novel	 sampling	
procedure	for	primate	group	spread.	This	was	a	crucial	step,	since	
group	 spread	 is	 recognized	 as	 a	 critical	 and	 challenging	 factor	 to	
sample	 and	 analyse,	 when	 applying	 the	 distance	 sampling	
approach	to	species	living	in	social	units	(Chapter	4).		
	 The	 overall	 methodology	 developed	 for	 the	 project	
represents,	 as	 a	 whole,	 a	 strong	 tool	 that	 can	 help	 to	 rapidly	
evaluate	 the	 state	 of	 target	 mammal	 species	 in	 complex	 and	
disturbed	 landscapes.	 The	 results	 obtained	 can	 indeed	 help	 to	
create	 and	 provide	 specific	 management	 recommendations	 for	
conservation	purposes.	The	outputs	of	this	research	are	relevant	to	
identify	 those	 sites	 on	which	 to	 concentrate	 conservation	 efforts	
and	to	take	into	evidence	the	need	to	improve	protection	measures	
in	unprotected	environments,	as	well	as	in	those	forest	sites	at	the	
direct	interface	with	anthropic	activities.	As	remarked	throughout	
all	 the	 chapters	 of	 this	 thesis,	 the	 development	 of	 efficient	 and	
rapid	 research	methods	 is	 a	 contingent	 requirement,	 in	 order	 to	
obtain	outputs	that	are	useful	to	primate	conservation	(Estrada	et	
al.	 2017).	 Both	 environmental	 and	 anthropogenic	 pressures	 that	
threaten	the	majority	of	world's	primate	species	might	indeed	still	
be	 reversed	 with	 an	 immediate	 implementation	 of	 management	
decisions,	 supported	by	effective	 scientific	 evidences.	The	 further	
development	of	the	findings	reported	in	this	research	will	thus	be	
helpful	 for	 primate	 conservation	 that	 is	 in	 turn	 essential	 to	
maintain	 intact	 ecosystems	 and	 the	 multitude	 of	 services	 these	
provide,	which	range	from	stable	water	supplies	and	pollination,	to	
the	 buffering	 of	 global	 warming	 (Wich	 et	 al.	 2011,	 Estrada	 et	 al.	
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2017).	
The	 overall	 data	 set	 collected	 during	 the	 study	 period	 include	
information,	 in	 terms	 of	 primate	 sightings	 and	 vegetation	 plots,	
from	 five	 forest	 blocks	 in	 the	 Udzungwa	 Mountains.	 These	 are	
altogether	a	representative	sample	of	 the	wide	variation	of	 forest	
size,	 elevation	 range,	 habitat	 type	 and	 disturbance	 in	 the	 whole	
area.	 For	 future	 analysis,	 to	 fully	 evaluate	 such	 highly	
differentiated	 landscape	 and	 thus	 gaining	 an	 exhaustive	 and	
spatially-explicit	insight	on	primate	populations	in	the	whole	area,	
an	integrated	multiregion	Bayesian	approach	(Royle	&	Kéry	2007,	
Sutherland	 et	 al.	 2016)	 will	 be	 applied.	 Such	 novel	 approach	 to	
data	analysis	will	result	in	accurate	species	specific	as	well	as	site-
specific	 estimates	 of	 density	 and	 detectability,	 thus	 allowing	 for	
more	efficient	comparisons	between	the	different	forest	blocks.	At	
the	 same	 time,	 the	 effect	 of	 site-specific	 covariates	will	 remain	 a	
central	component	of	the	analysis,	as	uncertainty	in	the	estimation	
of	 significant	 parameter	 will	 be	 derived	 too,	 thus	 increasing	 the	
accuracy	in	the	results.	Moreover,	the	application	of	such	analytical	
framework	 will	 help	 to	 improve	 the	 general	 knowledge	 on	 how	
forest	 specific	habitat	parameters	and	human	disturbance	 factors	
are	interplaying	in	shaping	animal	occurrence	and	distribution	in	a	
fragmented	environment.		
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APPENDICES	

Appendix	1.	Best	selected	model	detection	functions	for	RC	(Figure	
A),	 covariates	 effect	 on	 density	 estimation	 shown	 for	 BW	and	 SY	
(Figure	B)	and	spatially	explicit	modelling	of	animal	density	in	MG,	
MT	and	US	(Figure	C).	
	

Appendix	2.	Code	for	the	GRASS	7.0	module	that	was	implemented	
to	derive	a	series	of	vegetation	indices,	combining	specific	bands	of	
a	Landsat	8	image.	
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Appendix	1.	

Figure	A.	Detection	functions	from	the	best	AIC	models,	shown	for	
the	0.25,	0.50	and	0.75	quartiles	of	 the	 covariates	 “distance	 from	
disturbance”	 and	 “climber	 percentage”	 for	 the	 Udzungwa	 red	
colobus	(RC).	
	

	

Figure	B.	Covariates	effect	on	group	density	estimation,	shown	for	
the	 best	model	 selected	 for	 (a)	 Peters'	 Angola	 colobus	 (BW)	 and	
(b)	Tanzania	Sykes'	monkey	(SY)		
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Figure	 C.	 Predicted	 density	 (groups/km2)	 for	 the	 three	 primate	
species	 (Peters'	Angola	colobus,	Udzungwa	red	colobus,	Tanzania	
Sykes'	monkey)	from	the	best	selected	models	(see	Table	3)	in	the	
forest	of	(a)	Magombera,	(b)	Matundu	and	(c)	Uzungwa	Scarp.	
	

a)	
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b)	
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c)	
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Appendix	2.	

 #!/usr/bin/env python 
#%module 
#% description: Calculates vegetation indices 
for Landsat TM/ETM+/OLI spectral bands 
#% keywords: landsat, vegetation, indices, 
spectral, bands 
#%end 
 
#%option 
#% key: band_prefix 
#% type: string 
#% gisprompt: old,cell,raster 
#% description: Base name of input raster bands 
or a raster band map 
#% required: yes 
#%end 
#%option 
#% key: indices_prefix 
#% type: string 
#% description: Prefix for output raster 
indices maps 
#% answer: spectral 
#% required : yes 
#%end 
#%flag 
#%  key: t 
#%  description: Use bands for LANDSAT-4,5,7 
(TM/ETM+) 
#%END 
#%flag 
#%  key: o 
#%  description: Use bands for LANDSAT-8 (OLI) 
#%END 
#%flag 
#%  key: c 
#%  description: Calculates also Cap 
Tassellation Indices 
#%END 
#%option 
#% key: tc_prefix 
#% type: string 
#% gisprompt: old,cell,raster 
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#% description: If c flac: base name of input 
Tasselled Cap or a Tasselled Cap map 
#% required: no 
#%end 
#%Option 
#% key: sensor 
#% type: string 
#% required: yes 
#% multiple: no 
#% options: LANDSAT-4;5;7 (TM/ETM+),LANDSAT-8 
(OLI) 
#% description: Use bands for sensor 
#% answer: LANDSAT-8 (OLI) 
#%End 
 
 
import os, sys, shutil 
import os.path, re 
import grass.script as g 
 
 
def main(): 
     
    #r.mapcalc float coercing with integer 
input 
    #(dn_B6-dn_B4)/(dn_B6+dn_B4) 
    #1.0*(dn_B6-dn_B4)/(dn_B6+dn_B4) 
    #(1.0*dn_B6-
1.0*dn_B4)/(1.0*dn_B6+1.0*dn_B4) 
    #(float(dn_B6)-
float(dn_B4))/(float(dn_B6)+float(dn_B4)) 
 
    # define indices formulas 
 
    # RR: SWIR/Red reflectance ratio 
    rr_expr = '%(outpref)s_rr =1.0* %(mir)s 
/ %(r)s' 
 
    # SR: Simple ratio NIR/Red reflectance 
ratio (Jordan, 1969)   
    sr_expr = '%(outpref)s_sr =1.0* %(nir)s 
/ %(r)s' 
  
    # SRc: Corrected Simple Ratio (Brown et al. 
2000)  
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    src_expr = '%(outpref)s_src =1.0* $sr *(1-
((%(mir)s - %(minmir)s)/(%(maxmir)s -
 %(minmir)s)))' 
  
    # MSR: Modified Simple Ratio (Chen, 1996) 
    msr_expr = '%(outpref)s_msr =1.0* (%(nir)s 
/ %(r)s -1)/(sqrt(%(nir)s / %(r)s)+1)' 
 
    # RGR: Red Green Ratio (Gamon and Surfus) 
    rgr_expr = '%(outpref)s_rgr =1.0* %(r)s 
/ %(g)s' 
 
    # RGI: Red Green Index (Coops et al.) 
    rgi_expr = '%(outpref)s_rgi =1.0* (%(g)s -
 %(r)s)/(%(g)s + %(r)s)' 
 
    # NDVI: Normalized Difference Vegetation 
Index (Rouse et al., 1974) 
    ndvi_expr = '%(outpref)s_ndvi =1.0* 
(%(nir)s - %(r)s)/(%(nir)s + %(r)s)' 
 
    # NDVIc: Corrected NDVI (Nemani et al., 
1993) 
    ndvic_expr = '%(outpref)s_ndvic =1.0* $ndvi 
*(1-((%(mir)s - %(minmir)s)/(%(maxmir)s -
 %(minmir)s)))' 
 
    # GNDVIgreen: NGreen Normalized Difference 
Vegetation Index (Gitelson et al., 1996) 
    gndvi_expr = '%(outpref)s_gndvi =1.0* 
(%(nir)s - %(g)s)/(%(nir)s + %(g)s)' 
 
    # NDWI: Normalized Difference Water Index 
(Gao, 1996) 
    ndwi_expr = '%(outpref)s_ndwi =1.0* 
(%(nir)s - %(mir)s)/(%(nir)s + %(mir)s)' 
 
    # SLAVI: Specific Leaf Area Vegetation 
Index (Lymburner et al., 2000) 
    slavi_expr = '%(outpref)s_slavi 
=1.0* %(nir)s /(%(r)s + %(mir)s)' 
 
    # NCI: Normalized Canopy Index (Vescovo & 
Gianelle, 2008) 
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    nci_expr = '%(outpref)s_nci =1.0* (%(mir)s 
- %(g)s)/(%(mir)s + %(g)s)' 
 
    # NBR: Normalized Burn Ratio -> NOT 
IMPLEMENTED 
    # fire/burn index, use TM7/OLI_SWIR2 
     
    # TCA: Tasselled Cap Angle (Powell et al., 
2010; Gomez et al., 2011) 
    tca_expr = '%(outpref)s_tca =1.0* 
atan(%(gr)s / %(br)s)' #deg angle 
     
    # ln(-We) 
    lnmwe_expr = '%(outpref)s_lnmwe =1.0* log(-
%(we)s)' 
 
 
    # MAIN 
    landname= options['band_prefix'] #'toare_B' 
    indicespref= options['indices_prefix'] 
#'spectral' 
     
    #remove path before names and anything 
aftre the last point (ext) 
    
#landpref=os.path.splitext(os.path.basename(lan
dname))[0] 
     
    #remove ending numer from basename (purge 
path and @mapset) 
    #BASH: echo $(basename $landname) | sed 
's/[0-9]*$//' 
    landpref=re.sub('[0-9]*$', 
'',os.path.basename(landname.split('@')[0])) 
      
    # define bands maps 
    if flags['o']: 
        #landsat8 
        g.message("OLI sensor") 
        blue=landpref+'2' 
        green=landpref+'3' 
        red=landpref+'4' 
        ninfrar=landpref+'5' 
        minfrar=landpref+'7' #SWIR1 
    elif flags['t']:     
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        #landsat7 
        g.message("TM/ETM+ sensor") 
        blue=landpref+'1' 
        green=landpref+'2' 
        red=landpref+'3' 
        ninfrar=landpref+'4' 
        minfrar=landpref+'5'         
    else: 
        #landsat8 
        g.message("Warning: no sensor 
specified, defaout OLI used") 
        blue=landpref+'2' 
        green=landpref+'3' 
        red=landpref+'4' 
        ninfrar=landpref+'5' 
        minfrar=landpref+'7' #SWIR1 
 
    #set region on a band map (are all equal) 
    g.run_command('g.region', rast = minfrar) 
 
    # mir max and min 
    min_mir = g.raster_info(minfrar)['min'] 
    max_mir = g.raster_info(minfrar)['max'] 
 
    bands= { 
        "outpref" : indicespref, 
        "b" : blue, 
        "g" : green, 
        "r" : red, 
        "nir" : ninfrar, 
        "mir" : minfrar, 
        "minmir" : min_mir, 
        "maxmir" : max_mir, 
    } 
 
    # compute indices with GRASS mapcalc 
    g.message("Calculating vegetation indices") 
    g.mapcalc(rr_expr % bands, overwrite = 
True) 
    g.mapcalc(sr_expr % bands, overwrite = 
True) 
    g.mapcalc(src_expr % bands, 
sr=indicespref+'_sr', overwrite = True) 
    g.mapcalc(msr_expr % bands, overwrite = 
True) 
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    g.mapcalc(rgr_expr % bands, overwrite = 
True) 
    g.mapcalc(rgi_expr % bands, overwrite = 
True) 
    g.mapcalc(ndvi_expr % bands, overwrite = 
True) 
    g.mapcalc(ndvic_expr % bands, 
ndvi=indicespref+'_ndvi', overwrite = True) 
    g.mapcalc(gndvi_expr % bands, overwrite = 
True) 
    g.mapcalc(ndwi_expr % bands, overwrite = 
True) 
    g.mapcalc(slavi_expr % bands, overwrite = 
True) 
    g.mapcalc(nci_expr % bands, overwrite = 
True) 
     
    if flags['c']: 
        tcname= options['tc_prefix'] 
        if tcname=="": 
            g.message("Warning: no TC prefix, 
defaout 'tct8_C.' used") 
            tcpref='tct8_C.' 
        else: 
            tcpref=re.sub('[0-9]*$', 
'',os.path.basename(tcname.split('@')[0])) 
 
        comp= { 
            "outpref" : indicespref, 
            "br" : tcpref+'1', 
            "gr" : tcpref+'2', 
            "we" : tcpref+'3', 
        } 
         
        g.message("Calculating Cap Tassellation 
indices") 
        g.mapcalc(tca_expr % comp, overwrite = 
True) 
        #g.mapcalc(lnmwe_expr % comp, overwrite 
= True) #null() 4 We>0 
         
    return 0 
    #End main 
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if __name__ == "__main__": 
    options, flags = g.parser() 
    sys.exit(main()) 
 
 






