
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE

ICT International Doctoral School

University of Trento, Italy

Smartphone Data Transfer

Protection According to

Jurisdiction Regulations

Mojtaba Eskandari

Advisor

Prof. Bruno Crispo, Università degli Studi di Trento, Italy.

Co-Advisor

Dr. Anderson Santana de Oliveira, SAP Labs, Mougins, France.

Examiners

Prof. Francesco Bergadano, Università degli Studi di Torino, Italy.

Prof. Luigi Vincenzo Mancini, Sapienza-Università di Roma, Italy.

Dr. Roberto Carbone, Fondazione Bruno Kessler, Trento, Italy.

Submission: 31st January 2017, Revision: 24th June 2017, Defense: 3rd July 2017

Abstract

The prevalence of mobile devices and their capability to access high speed

Internet have transformed them into a portable pocket cloud interface. The

sensitivity of a user’s personal data demands adequate level of protection

in the cloud. In this regard, the European Union Data Protection regula-

tions (e.g., article 25.1) restricts the transfer of European users’ personal

data to certain locations. The matter of concern, however, is the enforce-

ment of such regulations. Since cloud service provision is independent of

physical location and data can travel to various servers, it is a challenging

task to determine the location of data and enforce jurisdiction policies.

In this dissertation, first we demonstrate how mobile apps mishandle

personal data collection and transfer by analyzing a wide range of popular

Android apps in Europe. Then we investigate approaches to monitor and

enforce the location restrictions of collected personal data. Since there are

multiple entities such as mobile devices, mobile apps, data controllers and

cloud providers in the process of collecting and transferring data, we study

each one separately. We introduce design and prototyping of a suitable

approach to perform or at least facilitate the enforcement procedure with

respect to the duty of each entity.

Cloud service providers, provide their infrastructure to data controllers

in form of virtual machines or containers; therefore, we design and imple-

mented a tool, named VLOC, to verify the physical location of a virtual

machine in cloud. Since VLOC requires the collaboration of the data con-

4

troller, we design a framework, called DLOC, which enables the end users

to determine the location of their data after being transferred to the cloud

and probably replicated. DLOC is a distributed framework which does not

need the data controller or cloud provider to participate or modify their

systems; thus, it is economical to implement and to be used widely.

Keywords

[Personal Data, Data Transfer, Privacy, Mobile Apps, Cloud]

5

Acknowledgments

All praises to almighty Allah for His unconditional love and countless bless-

ings and throughout my life, in particular, to accomplish this achievement.

I would like to thank my beloved family for their support, love, and prayers.

My dearest brother-like friend Maqsood Ahmad for his sincere, and un-

conditional willingness to help me overcome my shortcomings on several

occasions.

During the almost four years as a Ph.D. student, I was blessed to meet

amazing people who supported me a lot in various ways at the University of

Trento and in my staying in SAP Labs France. First and foremost, I would

like to thank my supervisors, Professor Bruno Crispo and Doctor Anderson

Santana De Oliveira for their excellent guidance and mentor-ship - I love

the way they introduced me to research and shaped me as a researcher. I

would always be grateful for their availability - they were always available

to provide insightful on the research challenges, I faced. I will always be

thankful to them for their nice and easy way of expressing complex aspects

of my research work and the efforts they made on co-authoring our papers.

Second, my colleagues/friends, especially, Waqar Ahmad, Kashif Ahmad,

Attaullah Buriro, Nasrullah Khair, Sayed Ali Mirheidari, and Mohammad

Lamine who helped and encouraged me in the starting days of my PhD.

I would like to take this opportunity to acknowledge SECENTIS (FP7-

PEOPLE-2012-ITN) project which partly supported this PhD by the EU

under grant 317387.

I would also like to thank the whole Unitn ICT administrative staff

especially Andrea Stenico and Francesca Belton for their support and help

in various aspects during my PhD study.

6

Abbreviations

Back Tracking Pattern BT Pattern

Cloud service provider CSP

Data Protection Authority DPA

Distributed data Location tracker in cloud DLoc

European Union EU

European Economic Area EEA

EU Data Protection Directive DPD

EU General Data Protection Regulation GDPR

Google Play Top Apps Downloader GTAD

Infrastructure as a Service IaaS

Message Authentication Code MAC

Personal Data Transfer Location Analyzer PDTLoc

Platform as a Service PaaS

Proof of Retrievability PoR

Round Trip Time RTT

Service Level Agreement SLA

Software as a Service SaaS

Third Party Auditor TPA

Verifier for physical Location of a virtual machine VLOC

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Challenges and Contributions 4

1.2.1 App Analysis for Data Location Investigation . . . 5

1.2.2 Data Location Enforcement on Mobile Devices . . . 6

1.2.3 Verify the Location of a Virtual Machine in Cloud . 7

1.2.4 Distributed Data Tracking in Cloud 8

1.3 Organization of the Dissertation 9

2 PDTLoc: Data Tracking in App Level 11

2.1 Introduction . 11

2.2 Problem Statement . 13

2.3 Data Flow Analysis . 13

2.4 PDTLoc . 16

2.4.1 Overview . 17

2.4.2 Static Analysis Module 18

2.4.3 Dynamic Analysis Module 21

2.4.4 Location Investigator 22

2.5 Empirical Analysis . 23

2.5.1 Dataset Collection 23

2.5.2 GTAD . 24

2.5.3 Experimental Setup 26

i

ii CONTENTS

2.5.4 Evaluation Goals 27

2.6 Results and Discussions 27

2.6.1 Personal Data Accessed 27

2.6.2 Contacted Servers 29

2.6.3 Server Locations 31

2.6.4 Privacy Discussion 33

2.7 Data Location Enforcement on Mobile Devices 35

2.7.1 Xposed . 35

2.7.2 The Enforcer module designed on top of Xposed . . 36

2.8 Improving Transparency and Compliance 37

2.9 Limitations . 38

2.10 Related Work . 39

2.10.1 Static Privacy Leak Detection 39

2.10.2 Dynamic Privacy Leak Detection 41

2.11 Chapter Summary . 42

3 VLoc: Verify the Location of a Virtual Machine in Cloud 43

3.1 Introduction . 43

3.2 Related Work . 45

3.3 VLOC . 48

3.3.1 System Model . 48

3.3.2 Determining the Location of a Virtual Machine . . 50

3.3.3 Security Considerations 59

3.3.4 Limitations . 60

3.4 Empirical Setup . 61

3.4.1 Data Collection . 61

3.4.2 Evaluation Measure 62

3.4.3 Accuracy . 63

3.5 Chapter Summary . 67

CONTENTS iii

4 Distributed Data Tracking in Cloud 69

4.1 Introduction . 69

4.2 DLoc . 71

4.2.1 Estimating the data location 77

4.3 Empirical Evaluation . 78

4.3.1 Dataset Collection 80

4.3.2 Evaluation Goals 80

4.3.3 Evaluation Measure 81

4.3.4 Results and Discussions 82

4.4 Security and privacy analysis 85

4.5 Limitations . 86

4.6 Related Work . 86

4.6.1 Server side data geolocation 87

4.6.2 Delay based data geolocation 87

4.7 Chapter Summary . 90

5 Migration to industry 93

5.1 Introduction . 93

5.2 Industry (SAP) . 95

5.3 Standardization Bodies . 96

5.4 Open-source Software . 97

6 Conclusions and Future Work 99

Bibliography 101

List of Tables

2.1 The sinks of personal information 19

2.2 The sources of personal information 21

2.3 Types of personal data in each category. 28

4.1 The summary of the results 82

v

List of Figures

2.1 Screen shots of PDTLoc web interface. 17

2.2 A general overview of PDTLoc. 18

2.3 A general overview of GTAD. 25

2.4 Type distribution of the collected personal data 29

2.5 The coverage effectiveness of the dynamic analysis technique 30

2.6 Number of servers and apps engaged in actual data transfer 31

2.7 The distribution of the remote server locations 31

2.8 The target countries per apps. 32

2.9 Exclusive data transfer locations 33

2.10 The apps that do not provide any privacy policy. 34

2.11 The apps providing privacy policy. 34

2.12 An overview of the jurisdictional policy enforcement mech-

anism on device. 36

3.1 Triangulation to find the location of a server 50

3.2 An observation on the changes of the coefficients 57

3.3 A sample of RTT vs. distance values and a trained function 57

3.4 The initialization process 58

3.5 The number of used landmarks per various ranges. 62

3.6 A comparison between VLOC and its rivals 65

3.7 Two observations of randomly chosen landmarks 66

3.8 Estimation error in localization per various ranges 67

vii

viii LIST OF FIGURES

4.1 System Overview of DLoc. 73

4.2 The number of DLoc agents per range. 81

4.3 Screen shots of DLoc estimating the location of a file. . . . 83

4.4 GeoLocation error estimation per challenges 84

4.5 Location estimation error per individual ranges 85

Chapter 1

Introduction

The popularity of mobile devices has grown drastically in the last decade.

International Data Corporation (IDC) reported 1.43 billion smartphone

shipments in 2015 and anticipated a steady rise to 1.92 billion in 2020 [77].

In Europe alone, according to the Ericsson ConsumerLab’s report, there

were 475 million user subscriptions in 2014 and this number is estimated

to reach 815 million subscriptions in 2020 [31].

Smartphones often store personal data such as contacts, financial infor-

mation, photos, location, etc. Essentially, “personal data” refers to any in-

formation relating to an identified or identifiable natural person, i.e., data

subject [76]. It is a common practice for mobile apps to collect, process

and transfer personal data to back-end servers (cloud) for further process-

ing and storage. Cloud service provisioning usually is independent of the

service provider’s location; thus, it raises the issue of identifying in which

jurisdiction, personal data is stored and processed. Data protection regula-

tions, such as article 25.1 of the European Union Data Protection Directive

(DPD’25.1) [76, 44], restrict personal data transfer to particular jurisdic-

tions. DPD’25.1 prohibits the transfer of personal data to any country

that does not ensure an adequate level of protection. This principle drove

the creation of the EU-US Safe Harbor agreement in July 2000 [34].

1

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

Years later, an Austrian privacy activist, Maximillian Schrems, sued

Facebook Ireland claiming that the company made his personal informa-

tion available to the US intelligence agencies without any consent or no-

tification [16]. As consequence of that filed case, the European court of

Justice decided to invalidate the Safe Harbor agreement [24]. This decision

caused numerous debates on the legal aspects of transferring and process-

ing European Citizens’ personal data to outside the European Economic

Area (EEA) [6, 94].

In February 2016, the European Commission and the United States

agreed on a new framework for transatlantic data flows, the EU-US Pri-

vacy Shield [23]. The new arrangement imposes stronger obligations on

companies in the US in order to protect the European users’ personal data.

Moreover, it provides more robust monitoring and enforcement mechanism

that allows the European users to raise any inquiry or complaint in this

context with a dedicated new Ombudsman.

However, the major problems are: a) lack of an enforcement mechanism

for jurisdiction regulations on both server side and mobile devices; b) there

is no analysis system to monitor the data collection and data transfer

practices of mobile apps.

1.1 Motivation and Problem Statement

Since data is a passive entity and can be easily replicated and transferred

through network, tracking its physical location and enforcing jurisdiction

regulations require a robust and widespread monitoring system observing

the entire network.

Cloud service providers (CSPs) serve multiple consumers using a multi-

tenant model by dynamically assigning resources on consumers’ demand [63].

There are multiple roles in a cloud service provision scheme which we use

2

CHAPTER 1. INTRODUCTION 1.1. MOTIVATION

in this text. Data Processor refers to the entity which provides cloud in-

frastructure. Data Controller is an entity (usually an organization) which

collects data from individuals (users) and process them in cloud using the

infrastructure provided by Data Processor. Data Subject indicates an en-

tity/person about whom the data is collected and processed by the Data

Controller.

Since the cloud services are consumed over the Internet, they are inde-

pendent of the location of the provider. CSPs wish to be free to relocate

data for various purposes such as load balancing in order to reduce the

maintenance cost. However, knowing and controlling the physical location

of data for storage and processing is a key requirement for enforcement

of the jurisdiction regulations. Moreover, it could be very important for

an organization (i.e. data controllers) using cloud in some particular sce-

narios dealing with compliance [3]. Due to lack of appropriate monitoring

mechanisms, personal data may be transferred amongst various data cen-

ters situated in different jurisdictions, and consequently it might lead to

violations in data privacy as there are various data protection regulations

in different countries.

This dissertation mainly focuses on providing demonstration of compli-

ance as the violation from jurisdiction regulations significantly impacts on

engaged businesses. For instance, the EU General Data Protection Reg-

ulation (EU GDPR) imposes considerable fines (up to 4% of the global

annual turnover) to organizations that fail to comply with the new frame-

work effective in May 2018 [71]. Two of the most important points of the

regulation features are new responsibilities for data processors and new

constraints of trans-border data flows, in particular with the emergence of

a new EU-US agreement on the topic, the Privacy Shield, replacing the

Safe Harbor agreement.

It is necessary to understand how personal data is mishandled, identify

3

1.2. CHALLENGES AND CONTRIBUTIONS CHAPTER 1. INTRODUCTION

the major barriers and introduce an approach to enforce the regulations on

data collection/process. The first step is to analyze the most used mobile

apps in order to observe their data collection practices and the ways they

handle personal data transfer. The second step is to study the feasible

approaches to handle properly the collected personal data according to the

data protection regulations. Since there are multiple entities playing role in

this procedure, it is crucial to design the observation and the enforcement

routines for each entity separately. In other words, how to make the whole

set of entities compliant with the data transfer regulations. As cloud service

providers, provide their infrastructure to the data controllers in forms of

virtual machines or containers, in order to maintain the compliance, data

controllers are required to monitor the location of their virtual machines

in cloud. The last step is to determine the location of data after being

transferred to the cloud from a user’s smartphone. This procedure must

be independent of the cloud provider or the data controller.

1.2 Research Challenges and Contributions

In the enforcement of jurisdiction policies on mobile devices (e.g. Arti-

cle 25.1 of EU DPD) we need to find the answers of the following research

questions:

• RQ1. How much and what type of personal data is collected by mobile

apps, currently?

• RQ2. What are the locations of the remote servers to which the col-

lected personal data is transferred?

• RQ3. How many of the popular apps used in the EEA, violate Euro-

pean Data protection regulations on the data transfer restriction?

• RQ4. How such regulation can be enforced on users’ devices?

4

CHAPTER 1. INTRODUCTION 1.2. CHALLENGES AND CONTRIBUTIONS

• RQ5. What is the most effective and practical solution to verify the

location of a virtual machine in cloud even if the cloud provider is not

collaborative?

• RQ6. While maintaining the present-day underlying cloud services

and infrastructures, how an end-user can track the location of her

data in cloud from her smartphone?

1.2.1 App Analysis for Data Location Investigation (RQ1-3)

Understanding the data collection and data transfer practices of mobile

apps requires the analysis of data-flow from where the data is generated

to where it is stored in a remote server. We need to infer whether a user’s

personal data leaves the boundary of the app and to identify the geograph-

ical location of the data recipient. Transferring personal data consists of a

data flow between the framework APIs called to access personal informa-

tion and the APIs that provide potential transfer points; such as network,

files, log, etc. Code analysis is able to determine some of such data flows;

however, due to code obfuscation, reflection, and dynamic code loading,

which are widely used in mobile apps, static analysis fails to completely

cover the code. Instead, dynamic analysis is able to cover those dynamic

parts of the code if a proper triggering mechanism is used.

We design and develop a tool named PDTLoc which inspects mobile

applications and extracts information about the collected personal data

and the jurisdictions of the remote servers to which the data is transferred.

As use case we investigate the current state of the privacy protection of the

European smartphone users with regard to DPD’25.1, we used PDTLoc to

analyze the 1, 498 most popular apps in the EEA. We obtained evidence

confirming that 16.5% (that is 242 apps), transfer data outside the EEA

without user consent. This signifies that these apps collect and transfer

5

1.2. CHALLENGES AND CONTRIBUTIONS CHAPTER 1. INTRODUCTION

personal data to servers located outside the EEA escaping the control of

a data protection framework (e.g., Safe Harbor), thus violating the users’

data protection rights. We also analyzed the privacy policies provided by

the app developers. One striking finding is that 51% of the most used apps

in Europe do not provide any privacy policy. Furthermore, out the apps

providing a privacy policy, only 53 apps (3.5% of all) had Safe Harbor cer-

tification, whose agreement was anyway declared invalid, as we mentioned

above. Perhaps the situation will be clarified when the EU-US Privacy

Shield framework will be finalized.

This work is published and to be presented in The 17th International

Symposium on Privacy Enhancing Technologies (PETS), 2017, Minneapo-

lis, USA [32].

1.2.2 Data Location Enforcement on Mobile Devices (RQ4)

Policy enforcement approaches on devices (particularly Android devices)

fall into three major categories. The first category consists of modifying the

Android framework in order to insert monitoring modules at key interfaces

to enable the interception of data collection and data transfer activities as

they occur on the device [64, 14, 28, 47, 13, 45, 30]. The problem is that

such approaches require extensive modification to the operating system

which leads to significant usability issues and widespread adoption. The

second category involves decomposing the applications, injecting an inline

reference monitor into the code and repackaging it again [92, 53, 25, 52, 10].

The major issue with these approaches is that they are not able to cover

the code completely due to dynamic features of the code such as reflection,

dynamic code loading, native code, and obfuscated/encrypted code. The

third does not need to modify the framework or instrumenting the app

code. It hooks the APIs at runtime in order to allow the monitoring of the

data collection and data transfer activities of the app.

6

CHAPTER 1. INTRODUCTION 1.2. CHALLENGES AND CONTRIBUTIONS

We design a module on top of Xposed framework [91] which intercepts

the APIs transferring data to remote servers and analyzes their destination

location by using the service provided by PDTLoc. This module then

enforces the given jurisdiction policies on the device at the run time.

1.2.3 Verify the Location of a Virtual Machine in Cloud (RQ5)

Once personal data is transferred to a remote server, the user (data subject)

has no control over it. Data controllers have to comply with the data pro-

tection regulations; however, cloud service providers (CSPs) wish to be free

to relocate data among their data centers for multiple purposes including

load balancing, energy consumption optimization, reducing maintenance

cost, etc. Since CSPs have control over the infrastructure and the net-

work traffic of virtual machines running the data controllers’ services, it is

quite challenging to verify the location of the virtual machine from inside

the cloud. Therefore, there are a number of approaches which perform

such verification by employing a widespread network of servers, referred as

landmarks [37]. They estimate distance by computing network latency of a

challenge message transmitted between each landmark and the server and

then determine the location of the server accordingly. There are two major

challenges here. First, the network measurements are not reliable due to

dynamic nature of the Internet. Second, a huge network of landmarks is

quite expensive to implement.

We have overcome these challenges by introducing VLOC (a Verifier

for physical LOCation of a virtual machine), which is able to verify the

physical location of a virtual machine by taking advantage of nearby ran-

domly chosen web-servers. Since VLOC does not rely on a network of fixed

landmarks, its implementation is simpler and requires far less maintenance

cost than other proposed solutions. VLOC is implemented as a software

component which is installed and initialized on a virtual machine.

7

1.2. CHALLENGES AND CONTRIBUTIONS CHAPTER 1. INTRODUCTION

This work is published in IEEE 6th International Conference on Cloud

Computing Technology and Science (CloudCom), 2014, Singapore [33].

1.2.4 Distributed Data Tracking in Cloud (RQ6)

Cloud storage services such as Amazon S3, DropBox, or Google Drive al-

low users to store their data on remote servers independent of geographical

location. Cloud storage services utilize a federation schema by maintain-

ing data at different providers which then distribute and replicate the data

among different cloud storage providers. This reduces vendor lock-in and

increases data availability through additional redundancy which, at the

same time, can raise issues with data security and compliance requirements.

Particularly, such replication and transparent data distribution limit the

user’s direct control over data flows, leading to potential violations of data

transfer compliance constraints. In such scenario the cloud provider and

data controller are not willing to collaborate in compliance with the reg-

ulations. Therefore, they do not modify their underlying services in order

to enable monitoring the location(s) of data flow.

We already introduced a practical approach when data controller is

willing to collaborate by installing VLOC on their virtual machines. We

move one step forward and propose a framework, named DLoc, which does

not require a network of monitoring servers (dedicated landmarks) and

does not need to reside and running within the cloud. DLoc runs in a

distributed manner on a significant number of mobile phones, uses a proof

of data possession technique to guarantee that the cloud storage service

possesses a particular file and estimates the location of all copies of files

publicly available in the cloud.

This work is submitted to International Workshop on Data Privacy

Management. Springer International Publishing, 2017, Norway.

8

CHAPTER 1. INTRODUCTION 1.3. ORGANIZATION OF THE DISSERTATION

1.3 Organization of the Dissertation

This dissertation consists of the following chapters:

Chapter 2 proposes an analysis mechanism which addresses the issue

of transferring privacy related information collected by mobile apps. More-

over, it discusses the current state of privacy protection in mobile apps and

suggests a number of actions to improve the control over trans-border per-

sonal data flows (RQ1-3). Then it describes the enforcement of location

relevant policies for mobile apps’ end users. A third party service is un-

der development to analyze mobile apps and notify the user whether the

app is compliance with the given jurisdiction privacy policies. Finally we

introduce the on-device enforcement mechanism designed for jurisdiction

regulations (RQ4).

Chapter 3 continues the previous chapter with focusing on policy en-

forcement at the service provider’s side. Here, we introduce VLOC [33]

and its usage for data controllers (RQ5).

Chapter 4 introduces a distributed auditing approach for data tracking

in cloud (RQ6). As the presented approach neither needs a modification on

the server side or a huge network of landmark servers, it is quite economic

and practical to be implemented.

Chapter 5 describes that how the results of this dissertation in demon-

strating compliant privacy management practices impacts industry.

Chapter 6 concludes the dissertation by summarizing the chapters pre-

sented.

9

1.3. ORGANIZATION OF THE DISSERTATION CHAPTER 1. INTRODUCTION

10

Chapter 2

Analyzing Remote Server Locations

for Personal Data Transfers in

Mobile Apps

These days, smartphones are homes for a wide range of users’ personal

data and the apps running on them often use cloud servers for storage and

processing. The sensitivity of a user’s personal data demands adequate

level of protection at the back-end servers. We design and implement an

app analysis tool, PDTLoc (Personal Data Transfer Location Analyzer),

to detect and study the violation of the jurisdiction regulations.

2.1 Introduction

Several studies highlight that mobile applications actively collect and ex-

filtrate personal data from smartphones [2, 43, 29]. The main concern

here is how to enforce jurisdiction regulations such as DPD’25.1 in mo-

bile apps. As the first pace to tackle the problem, we design and imple-

ment PDTLoc (Personal Data Transfer Location Analyzer), which employs

both static and dynamic analysis techniques to infer whether the apps vi-

olate DPD’25.1. PDTLoc inspects mobile applications and extracts in-

11

2.1. INTRODUCTION CHAPTER 2. PDTLOC

formation about the collected personal data and the jurisdictions of the

remote servers to which the data is transferred. In order to investigate the

current state of the privacy protection of the European smartphone users

with regard to DPD’25.1, we used PDTLoc to analyze the 1, 498 most

popular apps in the EEA. We obtained evidence confirming that 16.5%

(that is 242 apps), transfer data outside the EEA without user consent.

This signifies that these apps collect and transfer personal data to servers

located outside the EEA escaping the control of a data protection frame-

work (e.g., Safe Harbor), thus violating the users’ data protection rights.

We also analyzed the privacy policies provided by the app developers. One

striking finding is that 51% of the most used apps in Europe do not provide

any privacy policy. Furthermore, out the apps providing a privacy policy,

only 53 apps (3.5% of all) have Safe Harbor certification, whose agreement

was anyway declared invalid, as we mentioned above. Perhaps the situ-

ation will be clarified when the EU-US Privacy Shield framework will be

finalized.

Contributions:

• We design and implement PDTLoc, an Android app analysis tool that

employs a backward program slicing technique to detect DPD’25.1’s

violation by mobile apps [76].

• We collect a dataset of 1, 498 Android apps which are the most used

apps in the EEA. We analyze these apps using PDTLoc to investi-

gate the recipient server locations of the users’ personal data. To our

knowledge, this is the first study of the kind conducted so far.

• In order to demonstrate the gravity of the problem, we also analyze

the privacy policies of the apps in the dataset in order to check if the

data controller and the processing locations are clearly identified.

12

CHAPTER 2. PDTLOC 2.2. PROBLEM STATEMENT

2.2 Problem Statement

Let A = {a0, a1, a2, . . . , an} be a set of android apps. There is a jurisdic-

tion regulation denoted by R = {l0, l1, l2, . . . , lq}, which restricts ai ∈ A to

transfer data to particular locations i.e., l0...lq. Let S = {s0, s1, s2, . . . , sm}
be the set of all servers used by A to store and process data. Each sj ∈ S is

situated in a physical location indicated as slj. There is a T(a,s) function

showing the app a transfers personal data to the remote server s. For-

mally speaking, we have to enforce the regulation R on the set A by using

Equation 2.1:

∀ a ∈ A ∃ s | T(a, s)⇒ sl ∈ R (2.1)

The problem we solve is to determine, with a particular level of certainty,

whether ai ∈ A violates R. For each app, we have to discover the list of

the remote servers to which it transfers data; then, we need to find their

locations and match them against the allowed list, R, to discover violations.

In the analysis we perform in this work, the major goal is to expose the

status of privacy protection with respect to DPD’25.1 by the most popular

mobile apps in the EU. More specifically, we analyze the type of personal

data accessed by these apps, the number of apps that collect/transfer per-

sonal data to servers over the network, and the locations of the recipient

servers.

Caveat: In this work, we do not try to assert the compliance of the

apps but rather to detect if they are likely violating user’s privacy rights

concerning international data flows limited by the DPD’25.1.

2.3 Data Flow Analysis

The purpose of our data flow analysis is to understand how an app re-

trieves and transfers personal data. In the context of the problem, we need

13

2.3. DATA FLOW ANALYSIS CHAPTER 2. PDTLOC

to infer whether a user’s personal data leaves the boundary of the app and

to identify the geographical location of the data recipient. Transferring

personal data consists of a data flow between the Android framework APIs

called to access personal information; such as device Id, location, contacts,

calendar, photos, etc., i.e., “source APIs”; and the APIs that provide po-

tential transfer points; such as network, files, log, etc. i.e., “sink APIs”.

Source and sink APIs are discussed in detail later in Section 4. An auto-

mated data flow analysis tool detects data flows between the source and

sink APIs. We can perform such analysis both statically, i.e., extracting

information from the bytecode/source code; and dynamically, i.e., running

an app on a device/emulator and monitoring its behavior. Here we describe

the fundamental concepts regarding static and dynamic analysis that form

the basis of our approach.

• Backward Program Slicing: In the bytecode representation of

a program, two types of data structures are used for storing and

performing operations on data, i.e., stack and register. Operations

are performed on stack or register variables using program instruc-

tions (I). In this text, we use registers (r) as we perform analysis on

Android apps and Android is based on a register based virtual ma-

chine. Backward program slicing is a data flow analysis technique

that, with respect to a register r used at point P in a program, con-

siders all the instructions I that can be executed before P and have

a direct or indirect effect on the value of r at P. The combination

of r and P, a certain API call in our case, forms a slicing criterion,

whereas the set of instruction I that effect the value of r at P is called

a backward slice. For instance, Line 2–6 and Line 9 represent a back-

ward slice corresponding to the variable Sum used at Line 9 (Point P)

in Listing 2.1.

14

CHAPTER 2. PDTLOC 2.3. DATA FLOW ANALYSIS

Listing 2.1: Backward Slicing Example

1 ...

2 int i, sum , count;

3 i = 1;

4 sum = 0;

5 for(; i != 50; i++){

6 sum += i;

7 count = count * 100 / i;

8 }

9 System.out.println("Sum = " + Sum); // point P

As a backward slice usually starts from a sink API, an inspection of

a backward slice corresponding to a particular register, can provide

information about its source and, thereby, infer the data flow path

between the source and sink APIs. The source, here, is represented

by the API that retrieves the personal information and the sink is

represented by the API that transfers the information to the outside

world through the Internet.

Such data flow paths can also be inferred by other analysis techniques

outlined in the literature (Section 2.10), such as [8]. These techniques,

generally, identify access to sources of personal information and then

track its flow in the program. Since the basic motivation of this work is

to find the location of the recipients of personal information, starting

the analysis from the sink APIs yields a better performance by filtering

out the apps that do not transfer personal information to the outside

world. Therefore, we use backward program slicing and effectively

avoid analyzing those apps which might access personal data, but do

not send it outside.

• Dynamic Tracking: Dynamic analysis is the process of executing

an app and observing its behavior. Tracking the behavior exhibited

by an app at execution time, usually, involves monitoring the system

resources accessed by the app, such as file-system, network, telephony,

etc. Since, this work focuses on personal data transfer over the net-

15

2.4. PDTLOC CHAPTER 2. PDTLOC

work, we monitor the outgoing traffic.

Both of these techniques, static and dynamic, come with their respective

pros and cons. Static analysis is able to reach all possible data flows in the

source code and not only those executed in a specific run of the app. On the

other hand, there are programming features, such as various types of code

and data obfuscation, reflection, and dynamic code loading, that yields

an incomplete result. Reflection is a programming feature that enables

apps to operate on strings, i.e., instantiate objects of a class, invoke its

methods and access/modify its fields where the class, method and field

names are represented by strings that may not be readily available for

a static analyzer[78]. Similarly, dynamic code loading allows an app to

extend its code base after installation[20]. Therefore, it is impossible for

a static analysis tool to fully analyze such cases of dynamic nature. On

the other hand, dynamic analysis is able to overcome these limitations in

many cases. However, the app must be executed to trigger the critical

data flows for dynamic analysis to capture sensitive behavior, which is

a challenge for dynamic analysis tools. There are limitations with each

technique; however, if combined, static and dynamic analysis techniques

can complement each other in designing a more effective data flow analysis

system.

2.4 PDTLoc

In order to effectively detect violation from DPD’25.1 in popular mobile

apps, we design PDTLoc, a tool that takes advantage of both static and

dynamic analysis. Two screen shots of PDTLoc’s web interface are pro-

vided in Figure 2.1 and a complete video demo can be found here: https:

//youtu.be/q7fSpq7knV4.

16

https://youtu.be/q7fSpq7knV4
https://youtu.be/q7fSpq7knV4

CHAPTER 2. PDTLOC 2.4. PDTLOC

(a) Analyzing (b) Results

Figure 2.1: Screen shots of DLoc where we can analyze a mobile app and explore the

analysis results.

2.4.1 Overview

Figure 2.2 shows an overview of the basic blocks and the workflow of PDT-

Loc. PDTLoc consists of three major modules: a static analysis, a dynamic

analysis, and a location investigator module. Both the static and the dy-

namic analysis modules take an .apk file; extract a list of accessed personal

data; and a list of server names, URLs and IP addresses to which the per-

sonal information is sent. The dynamic analysis module complements the

static module and it is only activated when the given app uses reflection.

The lists of URLs extracted by both the modules may wary due to different

nature of these analysis techniques. Therefore, we consider a union set of

both the lists.

The lists of URLs along with the identifiers of the respective personal

information, which is sent to these URLs, are stored in a repository for

further analysis. The Location Investigator module (shown in Figure 2.2)

reads URL/IP addresses from the repository and creates a list of the server

locations where the app sends the collected personal data.

17

2.4. PDTLOC CHAPTER 2. PDTLOC

Figure 2.2: A general overview of PDTLoc.

2.4.2 Static Analysis Module

PDTLoc’s static analysis module, represented by module 1 in Figure 2.2,

takes an .apk file and extracts the URLs/IP addresses of the destination

servers. APK is an archive file format that represents the Android app and

contains all the compiled code and the compiled/raw resources. Android

apps are usually written in Java, compiled into Dalvik bytecode and then

all the compiled classes are packed into a classes.dex file. Therefore, we

have to analyze this file to understand the behavior of the app.

To analyze the classes.dex file, the static analysis module extracts

and translates it into Smali code by employing ApkTool [81]. Smali code

is a disassembled representation of the Dalvik bytecode [39]. We use Smali

disassembly over Java because the decompilation process is more prone to

be thwarted by obfuscation, whereas the disassembly is more resilient [79].

The Static Check component inspects the Smali code for the use of reflec-

tion in order to pass the app to the dynamic analysis module. The Back-

ward Slicer performs backward program slicing on the Smali files to dis-

cover the information flow to certain sink APIs. This component employs

an extension of SAAF (Static Android Analysis Framework for Android

apps) that is able to extract the backward slices corresponding to a given

18

CHAPTER 2. PDTLOC 2.4. PDTLOC

sink API [46].

Class Method Parameter

javax/net/ssl/SSLSocketFactory createSocket host, port

android/net/Uri parse uri

java/net/URL <init> *

java/net/Socket setRequestProperty key, value

org/apache/http/client/methods/HttpGet <init>, setURI uri

org/apache/http/client/methods/HttpPost <init>, setURI, setEntity uri

org/apache/http/client/methods/HttpPut <init>, setURI uri

java/io/OutputStream write *

java/io/Writer write *

Table 2.1: The sinks of personal information. (*: All possible parameters)

Table 2.1 lists the sink APIs along with the corresponding parameters

of interest used in our analysis. We carefully analyzed the lists of sink

and source APIs provided in the literature, such as [8, 85], and considered

only those sink APIs that take the name or IP address of a particular

server and transfer data to it. The Backward Slicer receives these APIs

in the form of an .xml file referred to as BackTrack Patterns (shortly

BT Patterns). A BT Pattern provides information about the API, such

as class name, method name, position of the parameter in the parameters

list and its type. For example, Listing 2.2 instructs the Backward Slicer to

backtrack parameter 0, which is of type Ljava/lang/String;, of setURI

method of class org/apache/http/client/methods/HttpPost. Similarly,

information about the rest of the APIs in Table 2.1 is also provided to the

Backward Slicer.

Listing 2.2: BT Pattern Example

1 <backtracking -pattern

2 active="true" class="org/apache/http/client/methods/HttpPost"

3 description="Apache HTTP POST" method="setURI" parameters="Ljava/lang/String;"

4 interesting="0" />

The Backward Slicer spots the position of a given BT pattern in the

Smali files, backtracks the target parameter and extracts the correspond-

ing code slice. A code slice contains all the code statements that have a

19

2.4. PDTLOC CHAPTER 2. PDTLOC

Listing 2.3: Backward Slice Example

1 const -string v0 , "facebook.com"

2 sput -object p0 , Lcom/facebook/Settings;->facebookDomain:Ljava/lang/String;

3 sput -object v0 , Lcom/facebook/Settings;->facebookDomain:Ljava/lang/String;

4 sget -object v0 , Lcom/facebook/Settings;->facebookDomain:Ljava/lang/String;

5 const -string v0 , "https :// graph.%s"

6 ...

7 move -result -object v4

8 invoke -direct {v3, v4}, Ljava/net/URL;-><init >(Ljava/lang/String ;)V

direct/indirect impact the register holding the value of the target param-

eter. Listing 2.3 depicts an example of a backward slice corresponding to

the API java/net/URL;-><init>. Similar slices representing each of the

BT patterns are extracted in the form of BT report and provided to a Slice

Analyzer.

The Slice Analyzer component traverses the slices and extracts URLs/IP

addresses to which user’s personal data might be transferred. Its major role

is to analyze the slices for certain data extraction patterns that represent

access to personal data. A typical data extraction pattern consists of a

class name, a method name, and a parameter as listed in Table 2.2. This

list includes only the APIs provided by the framework, used to acquire a

user’s personal information. However, it does not consider other methods

of acquiring user personal data, such as data input through text fields or

that stored on files on the device, etc. At this stage, PDTLoc can only

guarantee the existence of such data flow paths and flags them suspicious

with respect to their potential violation of DPD’25.1. Finally, the Slice

Analyzer generates a mapping of the personal data accessed by the app

and the corresponding server-locations to which the app might transfer the

personal data, and stores it in a repository for further processing.

20

CHAPTER 2. PDTLOC 2.4. PDTLOC

Class Method Parameter Parameter example

android/content/ContentResolver query uri content://media/external/video/media

content://sms/inbox

content://com.android.browser/history

android/net/Uri parse uri

android/content/Context getSystemService name location

connection

wifi

netstats

batterymanager

android/telephony/TelephonyManager getAllCellInfo

getCellLocation

getDeviceId

getSimCountryIso

...

*

Table 2.2: The sources of personal information

2.4.3 Dynamic Analysis Module

We dynamically analyze the apps using reflection (around 90% of the apps

in this study) that can potentially conceal data flows when only statically

analyzed [95]. Therefore, based on the static checks, the PDTLoc’s dy-

namic analysis module, (module 2 in Figure 2.2), is activated in case of

the app making use of reflection. The dynamic analysis module utilizes a

number of tools provided as part of the Android SDK. It executes the given

app, monitors its network traffic, and captures the URLs/IP addresses to

which the personal data is transferred. It employs adb to manage the

dynamic analysis process that follows certain steps for each app:

• Launch the emulator and configure WiFi and GPS.

• Run the TCP-Dump tool to monitor the network traffic [80].

• Install the app and unlock the emulator.

• Launch the app with Monkey to stimulate it [38]. Monkey injects ran-

dom events into the app including touch, drag, type, change the screen

orientation, etc.

21

2.4. PDTLOC CHAPTER 2. PDTLOC

• After completion of the execution, URLs/IP addresses and the param-

eters (i.e., the transmitted data) are extracted from the TCP-Dump,

stored in the repository and all the data is erased from the emulator

in order to make it ready for next app analysis.

This process is repeated for each app that uses reflection. Since the goal

of using the dynamic analysis is to complement the static analysis, the

results are stored in the repository as a union set of both the analysis

modules. The dynamic analysis module captures all those data flows (in-

cluding those involving in reflection, native code, dynamic code loading,

etc.) that are properly executed during the analysis run. In order to extract

the personal information traveling through those data flows, we analyzed

the URLs by looking for particular patterns like ‘‘lat=[\.\-0-9]*’’,

‘‘city=[a-Z]*’’, ‘‘deviceIds=[0-9]*’’, ‘‘macAddress=[0-9a-f]*’’,

etc.

2.4.4 Location Investigator

The fundamental purpose of PDTLoc is to analyze an app and tell if it

sends user’s personal data to servers hosted at locations outside the juris-

diction defined by the given policies, e.g., the EU DPD’25.1. Therefore, we

need to investigate the physical locations of the machines represented by

the extracted URLs/IP addresses. The PDTLoc’s third module is Location

Investigator (module 3 in Figure 2.2). This module reads the URLs/IP

addresses of the remote servers from the repository and determines their

physical locations. There are a number of online databases that bind IP

addresses (or server names) to their corresponding geographical locations.

We configure the Location Investigator to use IPaddressAPI.com [50]. The

Location Investigator retrieves the locations using this online IP-Location

service and reports a mapping of URLs and geographical locations. It also

22

CHAPTER 2. PDTLOC 2.5. EMPIRICAL ANALYSIS

marks those locations which are outside the declared jurisdiction.

2.5 Empirical Analysis

This section describes the criteria and the procedure of dataset collection

followed by the experimental setup and the evaluation goals.

2.5.1 Dataset Collection

Since this work considers the analysis of the transfer of European users’

personal data outside the EEA as a case study (i.e., violating DPD’25.1),

we have targeted the popular mobile apps in the EEA. For the app se-

lection, we relied on AppFigures which is an app tracking platform that

monitors the downloads and sales of the apps from Google and Apple app

stores [7]. We downloaded AppFigures’s list of the 400 most popular apps

for each EEA state. We identified 1, 498 distinct android apps for the en-

tire EEA and downloaded them. We use android apps because they have

over 80% of the market share [49], also for the availability of analysis tools

and their simple downloading mechanism. However, we searched for the

apps in our list, on iTunes in order to check their availability for iOS. In

the dataset we have collected, 80% of apps are available for both Android

and iOS and 20% are available only for Android. Therefore, our research

results are meaningful to iOS users as well; assuming the destination cloud

servers are the same for both OS, which is reasonable.

We developed a fully automated tool, named GTAD (Google Play Top

Apps Downloader), which crawls Google play store, identifies the popular

apps and downloads them. GTAD can also be configured to download a

custom list of apps; therefore, it downloads the apps that we need for this

experiment. Moreover, GTAD collects additional information about each

app including title, download hits, ratings, category, description, developer

23

2.5. EMPIRICAL ANALYSIS CHAPTER 2. PDTLOC

website and email, privacy policy link if available, etc.

2.5.2 GTAD

Figure 2.3 illustrates the four major modules of GTAD. The “Crawler”

module annotated by 1 queries Google Play store for the list of the top

apps. Google by default shows only 540 of top apps1 while this number is

not enough for performing experiments in large scale. We realize that if

we query Google Play store for top apps based on category, we can have

maximum 600 apps per category and since there are about 50 categories,

we can find a significant number of top apps.

The crawler module queries Google Play website and parses the received

HTML page. It extracts the apps package names and adds them into the

“Apps List”. Please note that since package name is unique, we use it as

a unique key to store and retrieve data.

The second module, “App Info Extractor” indicated by 2 , receives the

app package names from the list and queries Google Play website for that

app. It extracts the information provided in the app’s page including the

title and the logo of the app, category and subcategory, number of reviews,

user rates/score, number of downloads/installs, developer’s organization,

website and email, the link to the privacy and policy of the app if there is

any, published date, and the description of the app. This module requires

a set of regular expressions in order to find and extract the proper informa-

tion from the given HTML pager. The used regular expressions are listed

in Listing 2.4.

The third module is “APK Downloader” which reads the “Apps List”

and download them from Google Play. Google Play provides a set of APIs

used to authenticate the user and her device and then download the re-

1https://play.google.com/store/apps/collection/topselling_free

24

https://play.google.com/store/apps/collection/topselling_free

CHAPTER 2. PDTLOC 2.5. EMPIRICAL ANALYSIS

Figure 2.3: A general overview of GTAD.

Listing 2.4: Regular expressions used to extract information about the apps from Google

Play website

1 title : r’<div class="id -app -title "[^ <]* >([^ <]*) <\/div >’

2 logo : r’]*src ="([^"]*) "[^>]*>’

3 category: r’<a class="document -subtitle category" href ="\/ store\/apps\/ category \/([^"]*?)

">’

4 subcat : r’]*>[^<]*< span [^ >]* >([^ <]+) <\/span >+’

5 numOfReviews: r’]* >([0 -9\. ,\s]*) <\/span >’

6 score : r’<div class=" score "[^>]*>([0-9.,\s]*) <\/div >’

7 maxDownloads: r’<div class=" content" itemprop =" numDownloads ">[0-9\.,\s]*\ -([0 -9\. ,\s]*)

<\/div >’

8 org : r’<div class="title">[\s]* Offered [^<]*<\/div >[^<]*<div class =" content " >([^<]*) <\/

div >’

9 devLink : r’]* >[^ <]* <\/a>

’

10 devEmail: r’]* >[^<]* <\/a>’

11 policyLink: r’]* >[^ <]* <\/a>[\s]*<a class="dev -

link" href ="[^"]* url\?q=([^"]*)&sa=D[^"]*"[^ >]* >[^ <]* <\/a>’

12 datePublished: r’<div[^>]* class =" content "[^>]* itemprop =" datePublished ">([0-9a-zA-Z\.,\s

]*) <\/div >’

13 desc : r’<div[^>]* itemprop =" description "[^ >]* >(.+?) <\/div >’

25

2.5. EMPIRICAL ANALYSIS CHAPTER 2. PDTLOC

quested app. We use a python tool, called gplaycli 2, to download an

APK file from Google Play. Since Google only permits to download the

apps compatible with the user’s device, GTAD enables us to define as

many devices as we need in order to guarantee the APK download. If the

APK Downloader module fails to download an app, it automatically tries it

with the next device profile until having a successful download. Moreover,

GTAD is able to use an FTP server for storing the downloaded information

and the APK files.

2.5.3 Experimental Setup

As PDTLoc consists of a static and a dynamic analysis module, we designed

the experiment in such a way to know the results from both modules sep-

arately as well as their combined results. The static module analyzes all

the apps in the dataset, whereas the dynamic module analyzes those apps

which pass the static reflection check.

Static analysis module configuration: This module analyzes all

1, 498 downloaded .apk files. We used a desktop computer with an Intel

Core i5 3.20 GHz CPU and 8 GB memory running Ubuntu 15.10 for

the analysis. The static analysis took roughly 38 hours on this machine.

Dynamic analysis module configuration: The dynamic module

analyzes those apps that are marked for the use of reflection. We call it

Auto-Dynamic as it uses Monkey to stimulate the apps. It employs Android

Lollipop 5.0.1 on its emulator and the Monkey tool is configured to inject

700 random events into each app. We executed the experiment on the same

machine and it took about 6 days to analyze all the given apps.

2https://github.com/matlink/gplaycli

26

https://github.com/matlink/gplaycli

CHAPTER 2. PDTLOC 2.6. RESULTS AND DISCUSSIONS

2.5.4 Evaluation Goals

The experiments are designed to answer the following research questions:

• RQ1. Accessed Data: What are the types of personal data ac-

cessed/collected by the apps?

• RQ2. Data Transfer: What are the locations of the remote servers

to which the collected personal data is transferred?

• RQ3. DPD’25.1 Violation: How many of the popular apps used

in the EEA, violate DPD’25.1? Notice that there may be exceptions

where transfers outside of the EEA are authorized, such as Binding

Corporate Rules [22]. Data subjects need to be informed about the

adoption of such legal mechanisms, through the terms of service and

privacy policy. We took this in consideration when considering viola-

tions, looking for information about the agreements and certifications

by the app developer when available.

2.6 Results and Discussions

We analyzed statically all 1, 498 apps and out of these apps, 1, 472 (98%)

apps use reflection; therefore, we analyzed them also dynamically.

This section reports the analysis results and discusses them in the light

of the consequent privacy concerns. The supporting data, the full list

of the analyzed apps and the study’s conclusions are accessible via this

link: http://titan.disi.unitn.it/pdtloc/.

2.6.1 Personal Data Accessed

Pieces of personal data stored on a user’s device are categorized into three

broader groups as shown in Table 2.3. These groups, Content; Device; and

27

http://titan.disi.unitn.it/pdtloc/

2.6. RESULTS AND DISCUSSIONS CHAPTER 2. PDTLOC

Network, represent user data stored on the device; device status data; and

network data, respectively.

Category Information

Content Calendar

Contacts

Audio

Video

Image

Files

MMS & SMS

Call log

System settings

User dictionary

Device Device ID

Online accounts

Power state

System alarm

Device location

Telephony services

Network MAC Address

Proxy settings

Network Status

Network connectivity

Network usage

history and statistics

Table 2.3: Types of personal data in each category.

Figure 2.4 provides a graphical representation of the number of apps

that access the various types of personal data (RQ1). According to these

results, device status data, marked as “Device”, such as device id, noti-

fications and power information, etc., as shown in Table 2.3, is accessed

by almost all apps. Further examination revealed that 75% of the apps

request device location. Similarly, network information is of interest to

28

CHAPTER 2. PDTLOC 2.6. RESULTS AND DISCUSSIONS

65% of the apps. What is alarming here is that over 70% of the apps read

“Content”, which carries sensitive personal information.

Content Network Device Location

0%

20%

40%

60%

80%

100%

Figure 2.4: Type distribution of personal data collected by the analyzed apps.

2.6.2 Contacted Servers

The static analysis and the dynamic analysis module extracted, in total,

135 K and 21 K valid URLs/IP addresses, respectively. The number of

URLs extracted by the static analysis module is much more as compared to

those extracted by the dynamic analysis. The disparity in these numbers

further endorses that static analysis provides an over-approximation of the

program and extracts URLs which might not be contacted in an actual pro-

gram execution, whereas the dynamic analysis extracts only those URLs

which are contacted by the app in a single run. However, the presence of

any of these URLs in the executable of an app provides a potential data

transfer point and cannot be ignored. Since the purpose of dynamic anal-

ysis is to widen the analysis range, we use a combination of the URLs/IP

addresses extracted by both the modules. Figure 2.5 illustrates the value

of the dynamic analysis module to the static analysis results; where the red

line shows the number of URLs found in a particular app and the blue line

represents the number of new unique URLs discovered only by dynamic

analysis in the same app. For certain apps the number of new URLs/IP

addresses discovered by the dynamic analysis in comparison to the static

29

2.6. RESULTS AND DISCUSSIONS CHAPTER 2. PDTLOC

0 200 400 600 800 1,000 1,200 1,400
100

101

102

Apps

#
S
er

ve
rs

Static
Dynamic

Figure 2.5: This graph shows that how effective is the dynamic analysis technique in

covering the blind spots of the static analysis technique.

analysis is much higher than the others possibly because of heavy use of

reflection.

It is important to mention here that the relation between servers and

URLs is one-to-many, i.e., on each server there can be multiple resources

represented by different URLs. Therefore, the number of servers an app

contacts is considerably less than the number of URLs.

Moreover, PDTLoc could extract data flow paths only for a portion

of all the URLs due to known limitation of static and dynamic analysis.

Therefore, we divide the servers into two groups, i.e., those which are

involved in an observed data transfer and those which are only contacted.

Figure 2.6 provides the number of servers and apps for which at least a

personal data transfer is observed. Overall for 505 (34%) apps, transfer

personal data is observed among which 295 (20%) of the apps transfer

personal data outside the EEA. Similarly, 401 servers are the recipients of

data transferred by these apps among which 213 are located outside the

EEA.

30

CHAPTER 2. PDTLOC 2.6. RESULTS AND DISCUSSIONS

Outside EEA Global
0

200

400

600

213

401

295

505Servers Apps

Figure 2.6: Number of servers and apps engaged in actual data transfer

2.6.3 Server Locations

Figure 2.7 illustrates the distribution of locations for servers engaged in

the transmission of personal data (RQ2). As it reveals, only 23% of the

servers are hosted in the EEA and the majority of the servers (67%) is in

the US. Therefore, it is expected that the major portion of personal data

to travel outside the EEA.

67% 23%

2%
2%

4% United States
Europe

China
Hong Kong

Russia
Japan

Others

Figure 2.7: The distribution of the locations to which the European users’ personal data

collected by mobile apps travels.

The main focus of this work is to provide a location analysis of the

31

2.6. RESULTS AND DISCUSSIONS CHAPTER 2. PDTLOC

1 10 100 1,000

EEA

US

China

Japan

India

Russia

Australia

Korea

Canada

Hong Kong

Singapore

Others

apps

Observed Potential

210

258

10

6

5

2

12

7

2

9

Figure 2.8: The target countries per apps.

servers contacted by the apps in our dataset. Figure 2.8 shows a graphi-

cal representation of the country-wise distribution of servers based on the

number of apps. It illustrates that a reasonable portion of the apps contact

(observed and potential data transfer) servers outside the EEA and US,

especially China, Japan, India and Russia.

As most of the analyzed apps contact servers outside the EEA, it is

interesting to know the number of apps transferring data only to a cer-

tain location/country. In this regard, Figure 2.9 illustrates the number of

32

CHAPTER 2. PDTLOC 2.6. RESULTS AND DISCUSSIONS

0 200 400 600 800 1,000

EEA

US

EEA+US

Others

12

892

232

0

apps

Figure 2.9: The number of apps that transfer the personal data exclusively to the EEA,

US and other locations.

apps exclusively contacting servers located in the EEA, US, EEA & US

and any other country. It shows that none of the apps perform exclusive

data transfer to servers located outside the EEA and US. Only 12 (less

than 1%) apps contact servers located only inside the EEA. In contrast,

the number of apps contacting servers exclusively in the US is reasonably

higher, i.e., 892 apps. This implies that most of these apps either belong

to the US-based companies or having their data centers located in the US.

Similarly, the number of apps exclusively contacting servers in the EEA &

US is 232. A similar reasoning applies to these apps as well where the apps

either communicate to servers in the US or their local counterparts in the

EEA.

2.6.4 Privacy Discussion

The new agreement between the EU and the US, the EU-US Privacy Shield,

provides stronger obligation on the US based companies dealing with EU

personal data. However, similar to the Safe Harbor, the EU-US Privacy

Shield also control only a portion of the entities (service providers, apps)

33

2.6. RESULTS AND DISCUSSIONS CHAPTER 2. PDTLOC

0% 20% 40%

No Privacy Policy

Non EEA–Potential

Non EEA–Observed

51

50

7

Figure 2.10: The apps that do not provide

any privacy policy.

0% 20% 40%

Provide Privacy Policy

Non EEA–Potential

Non EEA–Observed

the US–Observed

Safe Harbor

49

49

13

9.5

3.5

Figure 2.11: The apps providing privacy

policy.

involved in personal data collection/transfer to US and other countries.

Figures 2.10 and 2.11 depict the results of the analysis we have done on

the mobile apps’ privacy policy and terms of use. More than half of the

most used apps in Europe, 51%, do not provide any privacy policy as shown

in Figure 2.10. They simply do not tell their users what they do to the

personal data they collect and where they store and process them.

In the app analysis, we observed that 7% (108) of the apps transfer per-

sonal data outside the EEA while do not provide any privacy policy; thus,

this is a violation of the DPD’25.1 regulation (RQ3). Moreover, the analy-

sis results reveal that 50% of the apps contact servers (potentially transfer

personal data) outside the EEA and since these apps do not provide a

privacy policy, they should anyways be considered suspicious.

Among all the apps providing privacy policy (49%), we observed that

13% transfer personal data to the non EEA based servers (e.g. , the US,

China, Russia, etc.) while only 3.5% of them holding safe harbor certifi-

cation (Figure 2.11). We concludes that 9.5% (134) of the apps certainly

violate DPD’25.1 (RQ3) since users did not provide consent for those in-

ternational data flows, and the available privacy policies are transparent

about the data processing locations. Additionally, when we consider the

apps which do not provide privacy policy and transfer personal data out-

side EEA 7% (108), in total, we confirm that 16.5% (242) of the analyzed

34

CHAPTER 2. PDTLOC2.7. DATA LOCATION ENFORCEMENT ON MOBILE DEVICES

apps violate this regulation.

One of the major challenges for the Privacy Shield Agreement is that

even if we assume that its enforcement will be practical, it will cover only

a small portion of mobile apps dealing with European users personal data.

The European Data Protection watchdogs would need to have a more

proactive role in inspecting compliance with the Data Protection Regu-

lations, in particular for widely used mobile apps.

2.7 Data Location Enforcement on Mobile Devices

There are three approaches to enforce jurisdiction policies on mobile phone:

modifying the framework, repackaging apps, and hook APIs at run time.

Since the two former approaches are quite costly and not practical in wide

range usage, we choose the third category of approaches. Such approaches

basically hook the APIs at runtime in order to allow the monitoring the

data collection and data transfer activities of the app.

We design a module on top of Xposed framework [91] which intercepts

the APIs transferring data to remote servers and analyzes their destination

location by using the service provided by PDTLoc. This module then

enforces the given jurisdiction policies on the device at the run time.

2.7.1 Xposed

“Zygote” is a process which is the heart of the Android runtime. Every

application is started as a copy (“fork”) of it. The process start is done with

/system/bin/app process, which loads the needed classes and invokes the

initialization methods.

This is where Xposed comes into play. It copies an extended app process

executable into /system/bin on installation. This extended startup pro-

cess adds an additional jar, which is called “Xposed Bridge”, to the

35

2.7. DATA LOCATION ENFORCEMENT ON MOBILE DEVICESCHAPTER 2. PDTLOC

Figure 2.12: An overview of the jurisdictional policy enforcement mechanism on device.

classpath and calls methods at certain places. When an app launches,

this jar file is executed in the very beginning of the process. It enables

Xposed to “hook” method calls and inject a custom code before and after

methods.

2.7.2 The Enforcer module designed on top of Xposed

Figure 2.12 illustrates an overview of the jurisdiction policy enforcement

mechanism on an android based device. As the figure shows, Xposed

Bridge is in between the app and the framework. It receives a list of

APIs in order to intercept them. When the app calls an API, 1 , Xposed

Bridge intercepts it if it is in the list and forwards it to the API handler

module, 2 . API Handler performs pre-call or post-call executions in order

to read or modify the parameters and the results of the called API. More-

over, it extracts the name/IP address of the server to which the incoming

data is being transfered, and passes it to the Location Investigation

module in order to determine the location of the remote server. Then the

location of the server is compared against the given jurisdiction privacy

policies and if there is a compliance, it proceeds the call, 3 , otherwise

36

CHAPTER 2. PDTLOC 2.8. IMPROVING TRANSPARENCY AND COMPLIANCE

the call is dropped and logged. The Xposed Bridge forwards the call to

the framework and receives the results, 4 , 5 . Then it sends the received

results to the API Handler module again for further modification/logging

if necessary, 6 and finally the results are forwarded to the app, 7 , 8 .

2.8 Improving Transparency and Compliance

A number of actions are necessary to improve the control over trans-border

personal data flows. It is important that the data protection authorities

in Europe demand transparency from the application providers about the

location of the data processing. This needs to be explicit in privacy poli-

cies. It is vital to clarify which parties have access to personal data and

for which purpose. In our study, we observed some applications transfer-

ring sensitive personal data items to multiple servers across the globe. In

addition to the jurisdictional issue, as all countries do not offer the same

level of privacy protection to individuals, it is not possible to state that all

those servers belong to the data controller, or even if the data controller is

aware of them. Data Protection Authorities (DPAs) need to be proactive

in protecting the privacy rights of individuals, by identifying international

data which is not compliant with the regulations and agreements in place.

The market place provider needs to make privacy policies mandatory, that

is the minimum acceptable action that Google, Apple and Microsoft need

to take, to mention the main companies who control mobile application

marketplaces today. Ideally, the apps should display certification seal,

but it is possible to go further. Research on machine readable and auto-

mated privacy policy enforcement has shown it is possible to offer more

transparency and control to data subjects [9, 11, 17]. Moreover, the mar-

ketplace must have a mechanism to promptly remove applications signaled

as non-compliant by DPAs or by the users. Furthermore, it is not difficult

37

2.9. LIMITATIONS CHAPTER 2. PDTLOC

to implement user notification features on the mobile OS, such that users

can remove those non-compliant applications from their devices. On the

other hand, it is extremely hard to reclaim the data that has already been

leaked.

We are planing to provide PDTLoc as an online service. End-users, mar-

ketplaces and security agencies can utilize such service to perform privacy

analysis of mobile apps.

2.9 Limitations

PDTLoc determines the physical location of the remote servers by employ-

ing a third party service e.g., IPAddressAPI.com; thus, it relies on the

information provided by this service.

Our server location analysis of the apps is based on the 1st hop server

and do not consider if the personal data might be transferred to another

server, e.g., App1 transfers data to abc.com and then the data is transferred

from abc.com to xyz.com. In this case, PDTLoc only considers the transfer

of data to the 1st server. It is impossible to trace data transfer once they are

released to a server without collaboration of the target server. Furthermore,

the mere transfer of the data towards another jurisdiction without explicit

consent by the data subject and for which no international agreements are

in place, already represents a violation. Therefore, PDTLoc only considers

the transfer of data to the first hop server. Moreover, some applications

might behave differently depending upon the location of the device they

are running on. Since we have performed dynamic analysis in only one

location (i.e., Italy), there is no guarantee about the behavior of such apps

elsewhere.

The source and sink APIs considered in this work is a representative list

of APIs which can be used by apps to retrieve personal data and transfer

38

CHAPTER 2. PDTLOC 2.10. RELATED WORK

it over the network. However, there are other methods to receive personal

data and transfer it outside which is not considered in the analysis, e.g.,

apps can coordinate with each other to acquire and transfer data. Fur-

thermore, we focus on only benign apps rather than malware that usually

employ more sophisticated and stealthy methods to exfiltrate personal in-

formation.

The data flow paths extracted by the static analysis module only indi-

cate the existence of potential personal data transfer in the app, but do not

ensure if the app actually transfers personal data outside. However, even

the existence of such data flow paths enables the app potentially violate

DPD’25.1 and are, therefore, flagged in this work.

2.10 Related Work

Literature shows a number of research publications and tools which try to

solve the problem of privacy leakages in Android apps. They focus on a

wide range of private user data and are based on different strategies. Here

we briefly discuss some of them in the context of our problem.

2.10.1 Static Privacy Leak Detection

A number of static analysis approaches have been proposed in literature

which can serve to detect privacy leakage in Android apps. Based on the

model of the Android framework, CHEX is an approach that performs

data flow analysis to detect component hijacking vulnerabilities [60]. In

principle, the same approach can be used to detect also privacy leakages.

Scandal [57] tries to detect leakage of private information, such as lo-

cation information and phone identifiers, using media including Network,

Files and SMS. It is based on identifying data flow using abstract semantics

of the applications. Although, it provides a concrete representation of the

39

2.10. RELATED WORK CHAPTER 2. PDTLOC

data flow, it consumes a lot of resources and would therefore suffer from

performance and scalability issues.

Androidleaks is a WALA based solution to detect privacy leakages in

Android apps [36] [48]. It uses a system dependence graph to perform taint

analysis.

Based on bytecode analysis of Android apps, DroidAlarm is a tool de-

signed to counter privilege escalation by detecting capability leaks [97]. It

uses control flow graphs to detect and extract capability leak paths from to

sensitive sources to public interfaces. However, it only supports Android

2.2 which is quite outdated.

AmanDroid is an inter component-data flow analysis framework for An-

droid apps [85]. It is an extensible tool implemented in Scala and based on

an intermediate representation of Dalvik bytecode. Amandroid performs

data flow analysis by constructing an inter component data flow analysis

graph. It provides a plugin for taint analysis which captures data flow

between various sources and sinks of information. The sources and sinks

are easily configurable in Amandroid’s taint analysis plugin. Theoretically,

these sort of tools are ideal for detecting privacy leakage. However, we

practically tried it on some apps and it could not detect some very obvious

data flows.

Bodden et al. presents, Flowdroid, one of the most sophisticated static

analysis tool for Android [8]. It is a Soot based tool which performs data

flow analysis on a representation of Java bytecode called Jimple [82]. They

also publish a benchmark of applications, known as DroidBench, which can

be used to test data flow analysis tools.

Epicc is another static analysis tool which focuses on privacy leakage

considering inter component communication and inter app data flows [68].

They provide a cover for privacy leakage between various components of

an app and among multiple apps, which most of the static analysis tools

40

CHAPTER 2. PDTLOC 2.10. RELATED WORK

do not consider. To make it a complete package, Didfail and IccTa are two

other tools which combine Flowdroid and Epicc [15] [59]. They utilize the

object/field/context sensitivity of Flowdroid and the inter-component data

flow detection Epicc to construct superior tools. This chain of static analy-

sis tools, however, is based on Soot that was designed for Java applications

and some times fails to analyze Android apps.

As a matter of fact, some of these static analysis tools capable of detect-

ing privacy leakage can be adopted to be used in our work. However, we

preferred performing analysis on Smali code as it provides a direct repre-

sentation of the Dalvik bytecode. Therefore, we used an extension of SAAF

that performs analysis on Smali code and is based on backward program

slicing of apps. The extension of SAAF overcomes some of its limitations,

such as handling data flow through intents.

2.10.2 Dynamic Privacy Leak Detection

As static analysis usually suffers from over-approximation and, therefore,

a higher number of false alarms, dynamic analysis solutions provide the

answer.

SmartDroid detects sensitive APIs in an app, creates a static activity

switch path and control flow paths leading to these sensitive APIs and

dynamically executes these paths to generate trigger inputs which could

be used to detect privacy leakage [96]. They rely on instrumentation of

framework services to ensure dynamic execution.

TaintDroid is one of the most widely cited tools in Android dynamic

privacy leakage detection [30]. It is based on tainting sensitive information

and tracking it towards sensitive sources. Similarly, Droidbox is another

tool which detects privacy leakage in Android apps by executing them in

an emulator [27]. However, such tools require a dynamic triggering solution

to effectively execute portions of the code that leak private information.

41

2.11. CHAPTER SUMMARY CHAPTER 2. PDTLOC

To counter this problem, some tools provide their own triggering solu-

tion along with privacy leakage detection, e.g., AppsPlayground, AppIn-

tent, etc. [74, 93].

However, most of these tools still suffer from code coverage issues and

increasing the code coverage when analyzing Android apps is an open re-

search problem. Moreover, Shauvik et al. performed an analysis based

study of the state-of-the-art open sourced test input generation tools for

Android applications [19]. Surprisingly, random exploration strategies

based tools performed far better than the other model based and system-

atic tools.

Since even the more sophisticated tools do not yield considerable im-

provement in the code coverage and unnecessarily complicate the pro-

cess, we use the standard application exerciser provided with the Android

SDK,i.e., the Monkey tool, in the dynamic analysis module.

2.11 Chapter Summary

This chapter introduces a substantial contribution in the analysis of trans-

border personal data flows. It is a major debate that may impact how

the regulatory framework around the digital economy will evolve. We have

highlighted the main concerns in personal data transfers by in principle

non-malicious applications, and shown a considerable number of them fail

to comply with the EU personal data protection regulation, in the first

study of the kind, up to our knowledge. While PDTLoc has been suitable

in this case, we believe it can be extended to analyze other information

flow properties as well.

This work is interviewed by CNIL, the French National Commission of

Information Technology and Liberty, and they wrote an article about PDT-

Loc which is publicly available here: https://linc.cnil.fr/where-does-all-data-go.

42

https://linc.cnil.fr/where-does-all-data-go

Chapter 3

VLOC: An Approach To Verify The

Physical Location Of A Virtual

Machine In Cloud

In this chapter we introduce an approach, named VLOC, to verify the phys-

ical location of a virtual machine on which the data controller applications

and the collected data from end users are stored. VLOC is implemented

as a software tool which is able to estimate the geolocation of itself and

notify the corresponding user if the location is unauthorized. VLOC uses

a number of arbitrary web-servers as external landmarks for localization

and employs network latency measurement for distance estimation. Due to

the fluctuation in the network latency, VLOC employs a machine learning

technique in order to adapt itself to various network latency tolerance.

3.1 Introduction

According to the National Institute of Standards and Technology (NIST),

one of the essential characteristics of cloud computing is resource pooling

which allows cloud service providers (CSPs) to serve multiple consumers us-

ing a multi-tenant model by dynamically assigning resources on consumers’

43

3.1. INTRODUCTION CHAPTER 3. VLOC

demand [63]. Cloud service provisioning is independent of the location of

the provider, as the services are consumed over the Internet. CSPs wish to

be free to relocate data for load balancing purposes in order to reduce the

maintenance cost. However, knowing and controlling the physical location

of data for storage and processing is a the key requirement for enforcement

of the jurisdictional regulations. Moreover, it could be very important for

organization (e.g. data controllers) using Cloud in some particular sce-

narios dealing with compliance [3]. Due to lack of appropriate monitoring

mechanisms, a piece of sensitive data may be transferred amongst various

data centers situated in different geographical locations, and consequently

there might be violations in data privacy as there are various regulations

for privacy protection in different countries.

Since data controllers need to guarantee that the country where the pro-

cessing occur has an adequate level of protection to the rights and freedoms

of the individuals from whom the data was collected, they would benefit

from a service that could verify the physical location of their data/vir-

tual machines. There are a number of approaches for finding the physical

location of a piece of data or a host. Generally, they take advantage of

network metrics such as round trip time delay for a transmitted message

between two identical hosts and then calculate the distance or the physi-

cal location of one of hosts based on the measured latency from the other

ones. The main drawback of this approach is dynamicity of the internet.

As the network load changes frequently in time, it is not possible to find

a constant correlation between network latency and physical distance. In

addition, there are other factors which impose delay on a transmission such

as authentication mechanisms, network delays, proxying, caching, and so

on. Therefore, an adaptive approach is required to deal with the dynamic

environment of the Internet.

In this chapter we introduce a geolocation approach, named VLOC (a

44

CHAPTER 3. VLOC 3.2. RELATED WORK

Verifier for physical LOCation of a virtual machine), which is able to verify

the physical location of a virtual machine by taking advantage of nearby

randomly chosen web-servers. Since VLOC does not rely on a network of

fixed landmarks, its implementation is easier and maintenance cost lower

than other proposed solutions. VLOC is implemented as a software com-

ponent which needs to be installed and initialized on a virtual machine.

3.2 Related Work

Peterson et al. in [72] introduced the idea of combining the concept of In-

ternet geolocation with Proof of Retrievability (PoR) for data localization.

GeoProof is an implementation of such an idea [3]. It uses a tamper-proof

physical component installed in the local network of cloud servers. As this

component is GPS 1 enabled, it is able to recognize its own location. In

addition, GeoProof employs a PoR protocol [54] by which it challenges the

storage servers. The information gathered from the PoR protocol and the

physical component enable it to verify the location of a piece of data.

The major drawback of GeoProof is the requirement of a tamper-proof

and GPS enabled device situated inside the local network of each data

center. Cloud providers may hesitate to adopt such solutions as it may leak

sensitive information. In [4] GeoProof is enhanced by reducing the required

computational overhead and improving its accuracy, but the mentioned

drawback remains unresolved.

As distance bounding protocols such as [75, 41, 72, 3] use network

latency for distance calculation, they are quite time critical. Therefore,

network fluctuation significantly decreases their accuracy. Network laten-

cies can be imposed by network equipment and servers. Such latencies can

not be distinguished from message transmission latency. Hence, distance

1Global Positioning System

45

3.2. RELATED WORK CHAPTER 3. VLOC

bounding protocols suffer from lack of accuracy in dynamic environments

such as Internet. Gondree and Peterson proposed a schema to tackle such

problem by employing a latency function built based on the current network

traffic observation [37]. In their schema, there are a number of landmarks

which observe the network traffic by transmitting a number of messages

amongst themselves and then build a model based on that. The main dis-

advantage of this approach is the requirement of a dedicated network of

landmarks which is quite costly. Moreover, in the model building phase the

landmarks send messages amongst themselves in order to find a baseline

for the Internet delay which does not quite represent the real environment.

In fact, this scenario does not consider the latencies imposed by cloud me-

diation services such as authentication, decryption, etc. Therefore, the

observation has an inherent error which influences the distance estimation.

DLAS provides a data localization assurance service based on crypto-

graphic foundations that allows cloud users to select the preference re-

garding data location [65]. In order to provide such service, DLAS uses

a Zero Knowledge System (ZKS) protocol to maintain secrets and verify

them as mentioned in the Service Level Agreement (SLA) between parties.

In DLAS, the CSP (called enterprise in that paper) is trusted and uses

an external cloud storage service and guarantees not to move user’s data

according to her location preferences. The storage provider (SP) prepares

a list of all data centers with their physical locations and informs the CSP

once a piece of data is moved. Employing ZKS protocols enables the CSP

to verify the region of a particular data center and prevents the CSP from

violation of the data location preferences policies. Since DLAS does not

use any external resource for geolocation and relies on logical characteris-

tics of data centers, it is vulnerable to be bypassed by virtualization. A

copy of network topology of all data centers (i.e. empty virtual machines

and settings) can be stored on each data center and a piece of data can be

46

CHAPTER 3. VLOC 3.2. RELATED WORK

moved amongst them without awareness of DLAS. Our approach, VLOC,

does not suffer from this kind of attack.

Massonet et al. introduced a system which monitors data transfers by

making collaboration between cloud infrastructure provider and the service

provider (i.e. user) [61]. In this system, data controller (i.e. tenant or cloud

customer) is able to specify required locations for a piece of data allow-

ing to be processed and the system prevents moving data to unauthorized

locations. However, its major drawback is providing such a monitoring

service only at infrastructure level. Therefore, it does not cover data items

with finer granularities. This drawback is resolved by another work [26].

It introduces a vast monitoring framework being able to collect evidences

about data transfers in various service levels. Basically this framework em-

ploys a dedicated monitor for each of service layers including SaaS, PaaS,

and IaaS. Each monitor tracks the API calls related to data transferring

and stores required logs. Furthermore, in order to track the movements

of a piece of data in various layers, this framework keeps a map amongst

different granularities for the data. This framework is promising; however,

there is an assumption which says the CSP wishes to demonstrate compli-

ance; therefore, it does not move user’s data without authorization. This

assumption is quite reasonable as there are many ways to make a copy of

data without having authorization. However, restricting the known ways

of copying and transferring data and employing a geolocation technique

mitigate the risk of illegal data transferring. Due to this assumption, CSP

provides a list of all data centers with their physical locations. In our

attack model, we assume that the CSP is not trustworthy as its goal is

to minimize maintenance costs by moving resources to less expensive data

centers.

47

3.3. VLOC CHAPTER 3. VLOC

3.3 VLOC

The user can install the VLOC on her virtual machine and once the tool

gets initialized, it notifies the user the physical location of the virtual ma-

chine. VLOC does not need a dedicated physical device nor a network of

pre-arranged landmarks. The main requirement of VLOC is the availabil-

ity of an online IP geolocation service like [50, 62], to get a list of websites

like Alexa 1-million [5] and the current geolocation of the virtual machine.

First, the tool chooses a, configurable, number of random websites (agreed

with the CSP at the moment user buys its cloud hosting service) and then

starts to collect geolocation information about them. Then, it can verify

at any moment, the geolocation of the virtual machine.

3.3.1 System Model

In the following we describe the main ingredients of the geolocation system

in which VLOC verifies the location of a virtual machine.

• The list of websites; A database of websites addresses. For instance,

these addresses can be collected from Alexa [5].

• The VLOC tool; it is a software component installed on a virtual

machine to verify its physical location. VLOC includes a Data Col-

lector component which collects the required geolocational informa-

tion for every website. The IP location service provides geolo-

cational information of the web-server of a particular website. The

Round-Trip-Time (RTT) measurement module, which mea-

sures the network latency between current virtual machine and a tar-

get web-server by sending multiple HTTP requests to the website

hosted on that web-server. The number of HTTP requests can be

specified through a parameter passed to this module. Finally, the av-

48

CHAPTER 3. VLOC 3.3. VLOC

erage value of round trip time of the successful requests is returned as

a result.

• The target virtual machine; This is the virtual machine that needs

to be securely geolocated and on which the VLOC tool is installed.

The virtual machine holds data as well web services users want to run

on the cloud.

• Current host; it is the physical server on which the virtual machine

is running.

• The distance estimation function which maps each RTT value to

a distance between the pair of associated hosts. This function is a

polynomial function and its coefficients are variable and updated dur-

ing the initialization of the VLOC tool. The value of coefficients are

calculated based on collected data and their corresponding measured

RTT values. Therefore, the function is able to estimate the distance

between two identical hosts based on former observations.

• The learning module calculates the coefficients of the distance es-

timation function by finding the correlation between measured RTT

values of two identical hosts and their associated distance. This mod-

ule attempts to find the best function approximation which represents

the collected data.

• The triangulation technique; this is a technique used to specify

the physical location of a point by having the latitude and longitude

coordinates of at least three nearby points. This technique is used, in

our model, to estimate the physical location of the current host based

on three nearby web-servers. The technique is explain in details in

the next section.

49

3.3. VLOC CHAPTER 3. VLOC

Figure 3.1: Triangulation for specifying the physical location of a host by knowing the

physical locations and distances from other nearby hosts.

3.3.2 Determining the Physical Location of A Virtual Machine

To find the physical location of a server on which a virtual machine is in-

stalled, a feasible solution is to take advantage of quality of service metrics

used in networks. In [72], multiple trusted landmarks with known physical

locations are used. The distance between a landmark and a data center is

obtained by sending specific messages and measuring transfer delay with a

an error below a chosen threshold. At least three landmarks are required

to achieve the required accuracy in triangulation procedure.

Computing the location of a point by triangulation

Computing the location of a point, px, on a surface is possible when we

have the locations of at least three nearby points, {p1, p2, p3}, and their

distance from px. As Figure 3.1 illustrates, if we draw a circle with the

center of each point and the radius of their distances (d1, d2, d3) from px, all

the circles meet each other at px. By finding their intersection point, we can

determine the location of px. This technique is called “Triangulation” [90]

or “Trilateration” [87].

Before we utilize triangulation technique, we need to consider that since

Earth is not a surface rather a sphere, the location of objects on earth is

50

CHAPTER 3. VLOC 3.3. VLOC

represented by the latitude (φ) and longitude (λ) values which are defined

in polar system. The latitude of a point is the angle between the equatorial

plane and the straight line that passes through that point and through

(or close to) the center of the Earth. The longitude of a point is the

angle east or west of a reference meridian to another meridian that passes

through that point [88]. In order to calculate the intersection points of the

circles, we convert this coordination into the Cartesian system by utilizing

Equation 3.1 and for the reverse operation, Equation 3.2.

x = λ. cos(φ)

y = λ. sin(φ)
(3.1)

λ =
√
x2 + y2

φ = tan−1(
y

x
)

(3.2)

We write the equation of a circle in the following form:

(x− xi)2 + (y − yi)2 = d2i i = 1 . . . n (3.3)

where (xi, yi) indicates the center of the circle (the location of the ith device

in our system) and di its radius, which is the distance between the server

and the device. In order to find intersection point of multiple circles, we

do it two by two i.e. in pairs. However, before trying to find intersection

of two circles we have to figure out if they touch each other. Suppose that

we have two circles i, j; if we draw a line between the two centers (dij),

compare its length with the radii (di and dj) and employing the triangle

existing conditions [89], we can conclude that whether those circles can be

used for our purpose or not. We obtain the distance between the centers

of two circles by measuring their Euclidean distance as the following:

dij =
√

(xi − xj)2 + (yi − yj)2 (3.4)

51

3.3. VLOC CHAPTER 3. VLOC

The situation of the two circles is determined by the following condi-

tions:

• dij <
√

(di − dj)2 : One circle is inside the other so there is no inter-

section.

• dij > di + dj : The circles are too far apart to intersect.

• dij = di + dj : The circles touch at a single point.

• dij < di + dj : The circles touch at two points.

If two circles touch at least at one point, we subtract their two equations,

in 3.3, to get the line equation. By solving that subtraction the following

equation is yielded which determines the intersection point(s):

(x, y) =
1

2
(xj + xi, yj + yi) +

d2i − d2j
2dij

(xj − xi, yj − yi)

±1

2

√
2
d2i + d2j
d2ij

−
(d2i − d2j)2

d4ij
− 1(xj − xi, yj − yi)

(3.5)

In order to compute the location of a point, this equation is applied on the

locations of at least three nearby points and yields the intersection point

which equals to the location of the first point.

Estimating Distance

The most important factor in determination of the location by triangula-

tion is the distance of landmark points (hosts) with our virtual machine.

The virtual machine sends HTTP requests to three hosts and measures

the round trip time delay. Then, based on measured delays, distance from

every host is estimated and by utilizing a triangulation technique, the phys-

ical location of the host on which the virtual machine is installed will be

computed.

52

CHAPTER 3. VLOC 3.3. VLOC

As mentioned before, VLOC needs an initialization which consists of

three phases. The first phase is to collect geolocational information of the

given list of websites. Algorithm 1 shows the procedure of data collection.

This algorithm takes a list of websites, an online IP geolocation service,

and the location of the current host (the virtual machine) and then finds

the physical location of web-server of each website and calculates the dis-

tance between the web-server and the current host and stores them into

a database. The second phase of initialization, which is depicted in Algo-

rithm 2, is measuring the round trip time (RTT) delays of websites. This

algorithm takes the list of websites, a range of operation which signifies

the radius of a circle showing a geographical zone, and a confidence factor

and then it measures the RTT value of an HTTP request for every website.

As using long distances increases the error rate of distance estimation, our

approach limits its range of operation to the nearby websites and in Algo-

rithm 2 the range of operation refers to choosing websites situated in range

of R KMs. Due to probability of failure in the requests and the delay of

packet routing imposed on some requests, this algorithm takes a parameter

named confidence factor C which repeats the HTTP transmission opera-

tion C times for each website and finally the average of successful HTTP

requests is used. Since after initialization phase the physical location of

the current host needs to be verified and the only trustworthy entity is net-

work delay measurement, it is required to provide a function which maps

an RTT value to the corresponding distance. Having distance from at

least three hosts enables the current host to calculate its physical location

by making use of a triangulation technique. Therefore, the last phase of

initialization is to prepare a function being able to estimate the physical

distance between the current host and an arbitrary host.

The distance estimator function, in VLOC, employs a distance bounding

protocol in order to calculate distance between two geographical points

53

3.3. VLOC CHAPTER 3. VLOC

Input: L: list of websites; IPG: reference of IP geolocation service; H: current

host information;

Output: L′: List of websites with their collected geolocation information;

1 L′ = new List();

2 for (w in L) do

3 g = IPG.getInfo(w);

4 d = distance(H, g);

5 r = {w, g, d};
6 add r to L′;

7 end

8 return L′;
Algorithm 1: The data collection algorithm.

based on their measured RTT value. The following equation shows a simple

distance calculator:

f(x) = a.x (3.6)

where x is the given RTT value and a is a coefficient that converts the

value of a round trip time delay to its corresponding distance. Unfortu-

nately, due to dynamicity of packet transmission in the Internet, it is not

possible to consider a constant coefficient for the distance estimation func-

tion. Moreover, the hierarchical architecture of cloud does not allow the

protocol to work properly as in order to transmit and process a request,

the request needs to pass through various service layers. In addition, each

layer imposes an extra delay on the process and the number of participated

service layers is vary per different types of requests. Therefore, in order to

estimate the transmission latency of a request, it is not possible to consider

a global constant coefficient for the distance calculation function. Thus, a

technique is required being able to adapt itself with various circumstances

and handle different delays in the distance calculation procedure. VLOC

54

CHAPTER 3. VLOC 3.3. VLOC

Input: L′: List of websites with their geolocation information;

R: Range of operation;

C: Confidence factor;

Output: L′′: List of chosen websites with measured RTT;

1 L′′ = new List();

2 for (r in L′) do

3 if (rd < R) then

4 for i = 1 to C do

5 Send an HTTP request to rw;

6 tstart = Now();

7 Wait for respond from rw;

8 res = The received response;

9 tend = Now();

10 if (res was successful) then

11 ∆ti = tend − tstart;
12 end

13 end

14 rtt = 〈∆t1...C〉; // Average

15 rec = {w, rtt};
16 add rec to L′′;

17 end

18 end

19 return L′′;

Algorithm 2: Measuring and collecting round trip time (RTT) latencies of the nearby

websites.

55

3.3. VLOC CHAPTER 3. VLOC

uses the following equation:

f(x) =
n∑

i=0

aix
i (3.7)

in this equation the coefficients are variable and they are updated according

to the observation performed by Algorithm 2. This algorithm chooses a

random subset of websites from the list and measures the RTT values for

them and then updates the coefficients. In order to provide an accurate

observation, a sufficient number of websites must be used (e.g. at least 500

websites). Therefore, the algorithm is able to cover the regular turbulences

happening in the network as depicted in Figure 3.2, the coefficients do not

face abrupt changes; they stay in a limited range.

Figure 3.3 illustrates an example of the distance estimation function.

As this figure shows, each item (i.e. website) has an RTT value and a cor-

responding distance from the current host. The coefficients of the function

are obtained by applying a machine learning technique (i.e. Polynomial

Regression [86]) on the collected data. The function shown in this figure is

an example of trained function which is able to perform distance estima-

tion for further RTT values. Therefore, employing this technique enables

us to handle the dynamicity of the Internet environment.

An interesting question might arise here, since the environment of the

cloud computing is changing in time the distance estimation based on one

time observation might not be accurate enough. In fact, this is likely to

be true because network and host conditions may be different at the time

of observation and at the time of estimation. Therefore, there must be a

short time gap between observation and estimation. However, the size of

this gap depends to the fluctuation of latency of the network. In order to

maintain the accuracy above an accepted level, the observation needs to be

performed periodically. In fact, while the estimation function is being used,

the coefficients can be updated frequently and provide better accuracy

56

CHAPTER 3. VLOC 3.3. VLOC

Sheet2

Page 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.001

0.01

0.1

1

10

100

1000

a0

a1

a2

a3

Figure 3.2: An observation on the changes of the coefficients of Equation 3.7 during the

update process captured 20 times. These results show that choosing a random subset of

websites for each update, does not lead to very different coefficients.

Figure 3.3: A sample of collected RTT values versus distances and the trained function

representing the distance estimation procedure.

57

3.3. VLOC CHAPTER 3. VLOC

Figure 3.4: The initialization process. The process of frequently updating the coefficients

of the distance estimation function is illustrated in this figure.

based on the most recent observations. In order to utilize such a technique,

we need to perform the observation procedure in every predefined time

slot; and then update the coefficients based on them. The entire process

is depicted in Figure 3.4.

Once the initialization phase is finished, the distance estimation function

is ready to be used. In order to verify the location of current host (virtual

machine), at least three nearby websites get selected and then by making

use of the mechanism employed in Algorithm 2, the RTT value for those

hosts are measured. In the next stage, the distances between current host

and the selected websites are estimated by utilizing the distance estimation

function. Finally, as illustrated in Figure 3.1, the geolocation of current

host is obtained.

The presented approach can be integrated into various techniques and

schema in order to be used in various application. For instance, it can

be integrated into a proof of retrievability service (PoR) such as [3, 54,

58

CHAPTER 3. VLOC 3.3. VLOC

55, 66, 72] or into a data transfer monitoring framework such as the one

introduced in [26]. Moreover, it can be used as a notification service on

transferring a specific piece of data to an unauthorized physical location.

3.3.3 Security Considerations

Alternative approaches to ours use a network of pre-arranged landmarks,

situated outside of the target host, as verifiers. They send challenge mes-

sages to the host and measure the RTT values and finally estimate the

physical location of the host. All these approaches however, require an

external network of landmarks.

In contrast, our approach puts the verifier inside the target host, remov-

ing in this way the requirement of an organized network of landmarks. In

VLOC, the physical location is estimated by sending message from the tar-

get hosts to existing websites, rather than from some specified landmarks

to the target host.

This however, opens security issues that VLOC needs to address. Since

VLOC is in the virtual machine hosted on the cloud, a mistrusted cloud

provider could intercept and manipulate all communications between VLOC

and the websites. Encrypting the messages is not a solution, since the en-

crypting key would reside on the cloud and can be extracted from the

RAM by the cloud provider. Our solution to this problem is to obfus-

cate the communications VLOC performs for the purpose of estimating

the distance within the regular traffic of applications stored on the virtual

machine. The reasoning behind this choice is that the cloud provider could

not easily filter out or block these messages and a full packet inspection

would be required. Since in our threat model the cloud provider moves

data only for the purpose of saving money, breaking our system would

simply require more effort than what gained by moving the data.

Therefore, VLOC does not use fixed landmarks, easy to blacklist, but

59

3.3. VLOC CHAPTER 3. VLOC

rather randomly chosen websites as external landmarks. In order to mea-

sure required RTT values, we use normal HTTP requests which would be

difficult to block without affecting other applications. The cloud provider

sees the virtual machine sending an HTTP request to some websites like

what many applications do for REST requests or SOAP ones.

An other possible point of attack is the list of websites VLOC will

query. Rather than embedding a fixed list in VLOC software, the user can

configure online and dynamically at her will the address of the IP-location

service VLOC uses to gather list and location of the candidate websites.

The size of the list and the number of selected website can be configured

dynamically as well.

3.3.4 Limitations

Although VLOC is promising in a practical environment, there are a num-

ber of limitations need to be considered. One of the limitations is related

to detection of network latency changes (i.e., due to network disruption).

This may have an impact on the accuracy of the estimated location. While

an adaptive monitoring module capable of such detection is under develop-

ment, at the moment VLOC adopts the strategy of periodically repeating

the measurements. The frequency of such confirmation is a parameter can

be configured dynamically.

Furthermore, there are two other parameters in VLOC need to be tuned

in order to achieve the best accuracy. Those parameters which are the

range of operation, R, and the confidence factor, C, impact on the amount

of noise in the measured latencies and consequently on the accuracy of the

geolocation estimation procedure. The confidence factor plays a crucial

role in the measurement phase as it attempts to handle the fluctuation of

the network while the duty of the range of operation is to filter out far

web-servers. Since long distances overwhelm the impact of short distances

60

CHAPTER 3. VLOC 3.4. EMPIRICAL SETUP

in training, they reduce the accuracy of geolocation estimation as it is

demonstrated in Figure 3.8.

As the cloud provider is considered as an adversary, it can perform

some operations to reduce the accuracy of VLOC. For instance, it can

inject packet delays on all outgoing and incoming traffic. These delays

could be recorded, or they could be randomly generated. At the time of

injecting these delays, VLOC faces a slight reduction in accuracy, however,

since VLOC observes the environment frequently and adapts itself with

the network turbulences, it can get adapted to the such a situation. The

cloud provider is agnostic to the purpose of outgoing and incoming packets

as VLOC packets are exactly regular HTTP requests. Furthermore, if the

cloud provider performs such an operation, it impacts the quality of the

service which is an important key in cloud business.

3.4 Empirical Setup

In order to evaluate VLOC, we developed it in form of a web-based tool

in PHP/MySQL which collects the data and executes the training and

accuracy measurements. The target host is a computer in Trento, Italy

and the goal is to estimate the geolocation of this computer.

This section explains the data collection process and describes the data

used. It also describes the evaluation measures, the experimental results

and their analysis.

3.4.1 Data Collection

As mentioned before, the initialization phase needs to collect geolocational

information and measure RTT latencies of a number of randomly chosen

websites. In order to do so, we used Alexa 1-million [5] list from which

the geolocational information of 188, 644 websites were collected. We have

61

3.4. EMPIRICAL SETUP CHAPTER 3. VLOCSheet6

Page 1

1

10

100

1000

10000

100000

Range (KM)

N
u

m
b

er
 o

f
la

n
d

m
ar

k
s

Figure 3.5: The number of used landmarks (websites) per various ranges. Each range

refers the maximum distance between the landmarks and the current host.

used IPaddressAPI.com [50] as the IP-location service. This operation is

performed by Algorithm 1. After collecting such information, we selected

38, 892 websites which were geographically located in the vicinity of 1000

KM radius. We measured the RTT values of these website by employing the

Algorithm 2. Figure 3.5 illustrates the number of these websites (used as

landmarks) in various ranges. The confidence factor for this measurement

was set to 10, which means for every website 10 HTTP requests were sent

and the average of successful ones was stored as the corresponding RTT

value. The HTTP requests used in the experiments were sent through a

PHP function named fsockopen [73] which initiates a socket connection to a

resource in network. We used this function to open a connection to a given

website address on port 80 referring to the port of HTTP protocol. Since

the application only opens a socket and does not download any web-page,

it acts resembling a ping request over HTTP protocol.

3.4.2 Evaluation Measure

Since the main purpose of VLOC is to verify the location of a virtual ma-

chine, the evaluation measure must be able to verify the distance between

the actual physical location of the machine and its estimated location. We

62

CHAPTER 3. VLOC 3.4. EMPIRICAL SETUP

used error of average distance estimation defined in the Equation 3.8 for

accuracy evaluation.

Eavg =
1

N

N∑
i=1

‖p(i)e − p(i)o ‖ (3.8)

where N is the number of data instances participating in test phase, p
(i)
e

denotes the estimated physical location for ith website in the list and p
(i)
o

is the observed geolocation (the real physical location) for that website.

Finally, Eavg refers to the calculated average error in KM .

In order to provide a comprehensive evaluation, we evaluated the ap-

proach with different websites which is achieved by applying random com-

bination of measured RTT values. We used cross validation technique [42]

to perform such a combination by using 10 fold 5 times setting which works

as follows. First, the collected data is divided into 10 parts called folds.

Out of these 10 parts, 9 are used to construct the estimation function. The

remaining 1 fold is used to evaluate the constructed function. Then the

data items get shuffled and the same division and evaluation is repeated

for 5 times.

3.4.3 Accuracy

In this section the accuracy of location estimation is discussed. In order

to estimate the physical location of a server, first we need to estimate

the distances of at least three nearby hosts. The accuracy of distance

estimation makes a major impact on the accuracy of physical location

estimation (i.e. triangulation procedure). We also compare the accuracy of

VLOC with other distance measurement techniques which are GeoProof [3]

and distance calculation with the speed of light.

63

3.4. EMPIRICAL SETUP CHAPTER 3. VLOC

GeoProof uses the following equation for its distance measurement:

f(x) =
1

2
x

4

9
s10−6 (3.9)

where x is the given RTT value, 4
9s is the measured speed of transferring

data over the Internet while s is the speed of light. This function f(x)

takes x in milliseconds and computes the distance in KM . Since there

is no accuracy evaluation experimental results provided by GeoProof in

their paper, in order to compare its accuracy with the accuracy of VLOC,

we applied GeoProof distance estimation formula on our measured RTT

latencies.

The other experiment is done by using speed of light in fiber as the

calculation parameter which would be as follow:

f(x) =
1

2
x(0.66)s10−6 (3.10)

As the speed of light in fiber is 66 % of the speed of light in vacuum, it

can be used as measure for distance calculation. However, this measure-

ment can be solely used in a high speed network with neither routers or

other kind of nodes in the middle. We consider it as a theoretical baseline.

VLOC provides a more realistic correlation between distance and observed

network latency over the Internet. VLOC builds a model representing

such a correlation and uses it for distance calculation. Since the model is

build based on observation of network latency regardless the type of net-

work environment, it is able to estimate the distance between two hosts

based on their message transmission latency. In addition, building a spe-

cific model for the current network and updating the model based on the

changes in the latency of the network enable it to handle the fluctuation of

the transmission latency. This is achieved by tuning the coefficients of the

estimation function, introduced in Equation 3.7, with the measured RTT

values. Figure 3.6 shows the impact of adaptive approach on the accuracy

64

CHAPTER 3. VLOC 3.4. EMPIRICAL SETUP
Sheet4

Page 1

100 200 300 400 500 600 700 800 900 1000

1

10

100

1000

10000

Our Approach GeoProof Light speed in Fiber

Range (KM)

E
st

im
a

ti
o

n
 E

rr
o
r

(K
M

)

Figure 3.6: A comparison of various distance estimations done by VLOC and its rivals.

These results show the average of estimation error in various ranges.

of distance estimation and compares it with non-adaptive approaches.

Once the estimation function is constructed, VLOC will be able to ver-

ify the physical location of the current machine. In this stage we provide

the accuracy of geolocation estimation. The location of landmarks makes

a significant impact on the accuracy of localization in triangulation tech-

nique. Figure 3.7 illustrates this impact, which shows the current server

needs to be surrounded by the chosen landmarks and using randomly cho-

sen landmarks. Randomly chosen landmarks do not guarantee the best

accuracy. According to this fact, we performed the experiment of local-

ization estimation in two fashions including randomly chosen landmarks

and optimized ones. The results of these experiments are depicted in Fig-

ure 3.8. These results reveal that as the range of operation increases, the

optimized chosen landmarks outperform the randomly chosen landmarks.

According to the results shown in Figure 3.8, the best result for geolo-

cation estimation is obtained in range of 150 KM in which 162 landmarks

are participating. As the range of the operation grows, the accuracy of the

location estimation falls down. In order to utilize triangulation technique

in larger ranges, we need to draw larger circles which increases the risk of

estimation error. Thus, the landmarks situated in nearby are the best for

65

3.4. EMPIRICAL SETUP CHAPTER 3. VLOC

(a) An example of extremely bad chosen

landmarks.

(b) An example of desirable chosen land-

marks.

Figure 3.7: Two observations of randomly chosen landmarks which can be perfect or can

give very different location estimation. The light red markers show the locations of the

selected landmarks, the blue marker is the current host (Trento), and the yellow marker

points to the estimated physical location of current host.

our purpose.

In VLOC, various factors impact on the accuracy represented by the

following statement:

Acc ∝ P × C
F

− ‖ d
dR

f(R)‖ (3.11)

where Acc is the accuracy, P is the frequency of performing RTT latency

measurement in order to keep an updated observation of the network la-

tency, C is the confidence factor used in Algorithm 2, F refers to the net-

work fluctuation which is obtained by calculating the latency differences

of a number of HTTP requests transmitted between two identical hosts.

f(R) is a function representing the changes of accuracy based on changes

of range of operation, R. Small values of R (i.e. less than 100 KM in

our experiments) do not yield an accurate result because the number of

66

CHAPTER 3. VLOC 3.5. CHAPTER SUMMARY
Sheet5

Page 1

0

100

200

300

400

500

600

700
Randomly Chosen Optimised

Range (KM)

D
is

ta
n

ce
 f

ro
m

 t
ar

ge
t

(K
M

)

Figure 3.8: Estimation error in localization per various ranges. This figure depicts the

results in two landmark selection styles which are optimized and random selection.

landmarks in small ranges are not sufficient. On the other hand, as Fig-

ure 3.8 shows, there is an optimum point for R and increasing this value

after that point makes a negative impact on the accuracy. Therefore, in

this statement, the derivative of such a function is used.

3.5 Chapter Summary

This chapter presents an approach, named VLOC, for verifying the physical

location of a virtual machine without using a network of fixed external

landmarks nor a GPS enabled device. VLOC is implemented as a software

which is able to estimate the physical location of itself and notify the

corresponding user if the location is unauthorized. It allows a user to

install it on a virtual machine and after initialization it will be ready to be

practically used.

VLOC works inside of the target host (inside of the cloud) and does

not rely a network of fixed external landmarks; therefore, the implemen-

tation cost is quite negligible. All a user needs to do is to install it as a

tool on his/her virtual machine and then initialize it. However providing

a geolocation service by using a tool installed inside the cloud while the

cloud provider is the major adversary brings an important security issue.

67

3.5. CHAPTER SUMMARY CHAPTER 3. VLOC

Since cloud provider has control over the infrastructure, platform, and the

network, he is able to modify the real measurements with fake information.

Our strategy against such an attack is to use random websites as exter-

nal landmarks and obfuscate our messages into a regular protocol such as

HTTP. In this scenario, there is a significant cost for the cloud provider to

filter the network traffic and modify the information.

The experimental results demonstrate that VLOC is accurate enough

for being used in practice. Moreover, it can be integrated into a monitoring

framework in order to track a piece of data or into a policy enforcement

engine as a policy information point in XACML architecture [67].

68

Chapter 4

Distributed Auditing for Data

Location Compliance in Cloud

In this chapter we introduce a framework, named DLoc, which enables the

end-users to track the location of their data after being transferred to the

cloud. DLoc does not require a network of monitoring servers (landmarks)

and does not need to reside and/or run within the cloud. It uses a proof

of data possession technique to guarantee that the cloud storage service

possess the particular file and estimates its location(s) in a distributed

manner without requiring the collaboration of the data controller or cloud

provider.

4.1 Introduction

Steadily increasing data volumes and the rising dependency of business and

social life on data ubiquity have led to massive growth of cloud storage ser-

vices such as Amazon S3, DropBox, or Google Drive. These services allow

users to store their data on remote servers independently of geographical

location. Cloud storage services utilize a federation schema by maintaining

data at different providers which then distributes and replicates the data

among different cloud storage providers. This reduces vendor lock-in and

69

4.1. INTRODUCTION CHAPTER 4. DLOC

increases data availability through additional redundancy.

Applying such federation schema can raise issues with compliance re-

quirements. Especially the transparent data distribution and replication

on the provider-side limit the user’s direct control over data flows which

lead to potential violations of compliance constraints. Personal data, for

instance, sometimes must not leave a particular jurisdiction while the dis-

tribution in such a case is reasonable in terms of availability, it clearly can

violate privacy compliance regulations such as the EU Data Protection

Regulation [71]. Russia 1 and China 2 are also imposing restriction on the

location of the data processing.

The approaches introduced to track a file in cloud are divided into two

major groups. The first group propose a schema requiring modification

of underlying cloud services and collaboration of cloud service providers.

The second group observes the environmental parameters (from outside

of the cloud) in order to estimate the location of a file in cloud. The

parameters include network delay, hop counts, mode of delay, median of

delay, standard deviation of delay, and population density. We used some

of these features in our previous work, VLOC.

The second group has a clear advantage since it does not require modi-

fying the underlying services; however, they require a wide spread network

of servers communicating to each other, pinging cloud storage servers and

monitor their data transfer practices. Having such network brings a signif-

icant cost to the tracking service. In VLOC, we designed and implemented

a technique which monitors the dynamics of the network delay of the cloud

service and builds a model out of it and keeps updating the model. It does

it through measuring RTT delay from servers which have two major char-

acteristics: a) they are chosen randomly, so cloud provider is not able to

1https://techcrunch.com/2016/11/17/linkedin-is-now-officially-blocked-in-russia/
2http://www.bbc.co.uk/news/technology-40106826

70

https://techcrunch.com/2016/11/17/linkedin-is-now-officially-blocked-in-russia/
http://www.bbc.co.uk/news/technology-40106826

CHAPTER 4. DLOC 4.2. DLOC

filter them; b) their physical location is known to VLOC. VLOC needs to

be installed on a virtual machine and be initialized with the actual location

of the data center; therefore, it can be used by data controllers to monitor

and verify the location of their virtual machine in cloud. Data owners need

to find the location of their data in cloud and VLoc does not provide such

service. In fact, we need a technique which does not require the collabora-

tion of cloud provider or data controller in order to monitor the location

of data from a client machine.

In this work, we propose a framework, named DLoc, which does not

require a network of monitoring servers and does not need to reside within

the cloud. The idea is to distribute the monitoring tasks to DLoc agents.

Each user who subscribes for the file tracking service participates in the

file tracking procedure as a DLoc agent by letting her phone to challenge

the cloud storage services and share her coarse-grained location with our

service. DLoc makes use of proof of data possession technique to guarantee

that the cloud storage service possess the particular file in question and

estimates the location of all copies of files publicly available in the cloud.

The major challenge is to minimize the number of messages going to and

coming from the DLoc agents while maximizing the accuracy of location

estimation. It achieves that by observing the environment and studying

the algorithms used in the system and provide a measurement to evaluate

the accuracy and performance.

4.2 DLoc

In this section, we explain how DLoc, Distributed Data Localization frame-

work, works. Figure 4.1 illustrates a general overview of DLoc and the

major steps required to track a file in cloud. There are four major entities:

• Data owner wants to upload a file into Cloud Storage B which is

71

4.2. DLOC CHAPTER 4. DLOC

located in her country. She wants to assure that her file stays in that

region.

• Cloud Storages are the storage services used as backup storage and

file sharing platform.

• DLoc agents are actually other smartphone users who use cloud

storage services as well. They challenge a given target server and

collect network latency information.

• TPA is a third party auditor server, which coordinates the DLoc

agents and handles the file tracking procedure.

The data owner runs Algorithm 3 on her phone to upload the file. This

algorithm encrypts the given file with an encryption key generated by the

user’s device. Then, it produces a set of meta-data required by DLoc to

track the file securely.

Algorithm 3, first, encrypts the given file (F) with the input key (k).

Then, it generates the hash value for each block of the encrypted file (hi).

The next step is to compute MAC (Message Authentication Code) for

each of hash values of the blocks (mi) with a randomly generated key.

Please note that this random generated key is the same for all blocks of

the given file (Msk). The encrypted file (Fc) is uploaded to the cloud and

the MAC values (M = {m1,m2, . . . ,mn}) along with the MAC key (Msk)

are published to the TPA. This procedure is shown by 1 in Figure 4.1.

When the data owner wants to track her file in the cloud, she queries the

TPA (shown by by 2 in Figure 4.1). The TPA runs the Algorithm 4 which

receives the list of DLoc agents (S), the number of required challenges (c)

and the file identifier (Fid) which specified in the query coming from the

data owner; and then it generates a list of challenge requests (R). The

parameter S does not contain all the DLoc agents rather a selected subset

72

CHAPTER 4. DLOC 4.2. DLOC

Figure 4.1: System Overview of DLoc.

Input: F : input file; k: encryption key;

Output: Fc: encrypted file; M : set of MAC codes for Fc blocks; Msk: MAC

encryption key;

1 Fc = Encrypt(F , k);

2 Msk = new RandomKey();

3 BFc = Fc.getBlocks();

4 for (bi in BFc) do

5 hi = Hash(bi);

6 mi = MAC(hi, Msk);

7 end

8 M = {m1,m2, . . . ,mn};
9 return {Fc, M , Msk};
Algorithm 3: The data owner runs this algorithm on her phone in order to prepare

the file for upload and provide required metadata for the tracking procedure.

73

4.2. DLOC CHAPTER 4. DLOC

of them. The selection policy is based on their availability, location, and the

number of requests they have performed already. The number of challenges,

c, is tunable; as its value grows the accuracy and also the overhead. The

algorithm, first chooses c random blocks (B) of the file, then chooses a

random member of DLoc agents and assigns a random block to it 〈si, ri〉.
In this setting, it is possible that a block is requested more than once and

a DLoc agents receives more than one request. Finally the TPA sends

each request to its corresponding DLoc agents, which is indicated by 3 in

Figure 4.1.

Input: Fid: file identifier; S: list of DLoc agents; c: number of challenges;

Output: R: list of challenge requests;

1 n = Fid.getNumberOfBlocks();

2 B = {b ∈ N|(bi = RandomNumber(0, n)
c

)
i=1

};

3 R = {};
4 for (b′i in B) do

5 si = S.getRandomMember();

6 ri = new Request(Fid.getURL(), b′i);

7 R← 〈si, ri〉;
8 end

9 return R;
Algorithm 4: Preparing the challenge messages for broadcasting to the DLoc agents.

When a DLoc agent receives a challenge request from the TPA, it per-

forms the Algorithm 5 shown by 4 in Figure 4.1. This algorithm receives

a set of requests (R′), challenges the server and provides challenge re-

sults (CR) to the TPA. This algorithm has two major tasks. First, to

challenge the server whether it possesses the file or not. Second, to es-

timate the distance between the server and the DLoc agent in order to

provide information for distributed localization. In order to challenge the

server for the file possession, Since each request (ri) contain a file block

number, this algorithm queries the server for that particular block, then it

74

CHAPTER 4. DLOC 4.2. DLOC

computes the hash value of the block (hi). In the meanwhile it measures

the download time (∆ti) that will be used later for distance estimation.

The hash values and the measured round trip time (RTT) of the challenge

request are sent to the TPA for further analysis.

In Chapter 3, we demonstrate that there is a direct correlation between

RTT and physical distance; however, there are a number of parameters

involved which affect the accuracy. The major issue is that DLoc agents

are located in various locations and use different network bandwidths. In

order to mitigate the effect of the network variety, we take two approaches.

The first one is to use an off-the-shelf technique to observe the DLoc agent

network connection before challenging the server (Nspeed in Algorithm 5).

It uses an API provided by http://www.speedtest.net which encom-

passes a network of servers around the globe and finds a nearby server and

communicate a number of packages, then it provides an observation on

the network performance. The results of this API are useful to tune the

weights of the RTT values in order to mitigate the effect of different net-

work bandwidths on the estimation procedure. Moreover, due to network

load, the traffic goes through different paths which causes various network

delays; therefore, it lowers the accuracy of distance estimation based on

RTT. In order to tackle this issue, we employ a machine learning tech-

nique, to tune the wights of parameters and adapt the estimation to the

network fluctuation which is indicated by “NormalizeNet(Nspeed,∆t)” in

Algorithm 5.

Finally, each DLoc agent sends a set of the hashed value of each block (H),

normalized network measurements (N) and its location (L) to the TPA (5 in

Figure 4.1). The TPA collects all the information from the DLoc agents

and carries out two tasks: it verifies the challenges by running Algorithm 6

and determines the location of the server by executing Algorithm 7 which

is discussed later.

75

http://www.speedtest.net

4.2. DLOC CHAPTER 4. DLOC

Input: R′: subset of challenge requests;

Output: CR: challenge results;

1 H = {}; //Hash values of the blocks

2 Nspeed = Network.AnalyzeSpeed();

3 for (ri in R′) do

4 u = ri.getURL();

5 x = ri.getBlockNumber();

6 tstart = Now();

7 bi = download file-block #x from u;

8 tend = Now();

9 ∆ti = tend − tstart;
10 hi = Hash(bi);

11 H ← 〈x, hi〉;
12 end

13 N = NormalizeNet(Nspeed,∆t); //Network Measurements

14 L = DeviceLocation();

15 return {H,N,L};
Algorithm 5: Challenging the server.

76

CHAPTER 4. DLOC 4.2. DLOC

Since the TPA possesses the MAC values of all blocks and their key (Msk),

by receiving the hash value of each block (hj) is able to verify its integrity.

Algorithm 6 receives the file identifier (Fid) and all collected challenge re-

sults and evaluates them. Each challenge result consists of a pair of block

numbers and its hash value 〈xj, hj〉 which is retrieved from the server by

a DLoc agent. This algorithm first computes the MAC value of the block

number specified in the challenge result (m′j) then compares it with the

already stored MAC value for the same block (mj). By doing the same

procedure for all the received challenge results, we can verify the integrity

of the stored file with a certain level of confidence. The confidence level

depends on the number of challenge requests which may cause overheads.

Input: Fid: file identifier; CR: challenge results;

Output: verification result;

1 Msk = Fid.getMACkey();

2 for (ci in CR) do

3 Hi = ci.HashValues();

4 for (〈xj, hj〉 in Hi) do

5 m′
j = MAC(hj, Msk);

6 mj = Fid.getMACValue(block# = xj);

7 if (m′
j 6= mj) then

8 return “Integrity Error!”;

9 end

10 end

11 end

12 return “Verified!”;
Algorithm 6: Verifying the challenges.

4.2.1 Estimating the data location

Algorithm 7, named the localization algorithm, uses Equation 3.5 and

estimates the location of the data based on a set of given challenge re-

77

4.3. EMPIRICAL EVALUATION CHAPTER 4. DLOC

sults (CR). Each challenge result contains the location of the DLoc agent

(center of the circle) and network measurement information to compute

the its distance from the server (the radius of the circle). This algorithm

estimates at least one location for the data. As the cloud storage provider

might create multiple copies of the data on various servers, this algorithm

handles this matter as well by determining the locations of all accessible

copies of data.

The localization algorithm, first, creates an empty list of points (P).

Then, for each given challenge result, it computes the distance from server

by calling Distance() function. This function basically models the corre-

lation between network delay and distance using a polynomial regression

function, which is employed by VLOC as well [33]. The next major step

is to calculate the intersection points of the circle of the current challenge

results with the results received from the other DLoc agents. Then it ver-

ifies the circles and drops the ones which are not useful for localization

according to the conditions mentioned above. There is an exception to

this. Since in practice there is always a negligible error in distance estima-

tion, sometimes the circles are close to each other but just for few meters,

they do not match the condition. In order to overcome this issue, we de-

fine an error tolerance range parameter (ε) to compensate the error. The

algorithm finds all intersection points amongst all the given circles and

keep them in the P list. At the end, it determines the popular ranges (FL)

in which a considerable number of points are estimated. These popular

ranges indicate the location of servers storing the data.

4.3 Empirical Evaluation

To evaluate DLoc we run experiments on 4 android devices (playing the

role of servers) situated in four cities and in total, 1, 422 web hosts playing

78

CHAPTER 4. DLOC 4.3. EMPIRICAL EVALUATION

Input: CR: challenge results; ε: error tolerance range;

Output: FL: locations of the file;

1 P = new List();

2 for (ci in CR) do

3 di = Distance(ci.Net()); //Network Measurements

4 li = ci.DeviceLocation();

5 for (cj in CR ∧ j > i) do

6 dj = Distance(cj.Net());

7 lj = cj.DeviceLocation();

8 dij = ‖li − lj‖; //Euclidean distance

9 if (dij <
√

(di − dj)2) then

10 continue; //Ignore j

11 end

12 if (dij > di + dj) then

13 if (dij > di + dj + ε) then

14 continue;

15 end

16 inc di, dj until dij ≤ di + dj;

17 report “ε is used”;

18 end

19 (p1, p2) = IntersectPoints(ci, cj);

20 P ← p1;

21 P ← {p2|p1 6= p2};
22 end

23 end

24 FL = A set of the most popular ranges in P ;

25 return FL;
Algorithm 7: Localization procedure.

79

4.3. EMPIRICAL EVALUATION CHAPTER 4. DLOC

as DLoc agents. As we measure the round trip time value (RTT) such role

changing does not influence the final result.

We designed and implemented an android app to challenge the servers

and collect network delay measurements between each DLoc agent and the

nearby smartphone. Please note that in order to avoid confusion, we use

the same terminology that we have explained in the approach. In other

words, in the data analysis we do not consider this role changing.

This section explains the data collection process and describes the eval-

uation measures, the experimental results and their analysis.

4.3.1 Dataset Collection

In our settings there are four servers located in Trento, Turin, Eindhoven,

and Leuven and there are many DLoc agents challenging them. We par-

tially used the data collected in [33] including the address and location

of numerous landmarks situated near the mentioned cities. Each DLoc

agent challenges the server by utilizing an HTTP request for over 15 times

a day and measures the RTT values of each challenge. In the following

sections we analyze the data collected by DLoc agents and study the effect

of various factors on the final results.

4.3.2 Evaluation Goals

The experiments are designed to answer the following research questions:

• RQ1 Accuracy: How accurate is DLoc to estimate the location of

server hosting the file?

• RQ2 Environment: What are the parameters, such as number of

DLoc agents, distance of the agents from the server, etc., influencing

the accuracy of DLoc?

80

CHAPTER 4. DLOC 4.3. EMPIRICAL EVALUATION

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

1

10

100

1000

Range (KM)

#
D
L
o
c
A
g
e
n
ts

Eindhoven (max 142 agents) Leuven (max 844 agents)

Trento (max 280 agents) Turin (max 156 agents)

Figure 4.2: The number of DLoc agents per range.

4.3.3 Evaluation Measure

As the main task of DLoc is to determine the location(s) of an uploaded file

(data) in the cloud, to evaluate it, the distance between the actual physical

location of the machine where data resides and its estimated location. We

used error of average distance estimation defined in the Equation 4.1 for

accuracy evaluation.

Eavg =
1

N

N∑
i=1

‖pie − pio‖ (4.1)

where N is the number of executions of the test, pie denotes the estimated

physical location of the server (cloud storage) in the ith test pio is the

observed location (the real physical location) for that server. Finally, Eavg

refers to the calculated average error in KM .

We evaluated the approach with challenges generated by various DLoc

agents that spread widely around the servers. In order to provide a com-

prehensive assessment we apply a random value combination. We used a

slightly modified version of cross validation technique [42] to perform such

81

4.3. EMPIRICAL EVALUATION CHAPTER 4. DLOC

a it. We trained the system with 80% of the data and test with the re-

maining 20%. The operation was repeated for a 1000 times by shuffling

the data each time. Moreover, we used the same setting for all 4 different

servers situated in 4 cities.

4.3.4 Results and Discussions

The results of the experiment composed of 1000 runs in each of the four

cites, i.e., Trento, Turin, Eindhoven, Leuven, are aggregated in Figure 4.3 (a-

d), respectively. Figure 4.3 shows the actual location of the file hosting

cloud servers, location of the surrounding DLoc agents and the location of

the server hosting the file as estimated by DLoc. On the map shown in

the figure, the red, yellow and blue markers represent the actual location,

the estimated location and the location of the DLoc agents. As shown

in the figure, DLoc estimates the location of the server with a reasonable

degree of accuracy, i.e., the estimated location is within 92 KM of the

actual location for the Trento node, 153 KM for the Turin node, 45 KM

for the Eindhoven node and 20 KM for the Leuven node (RQ1). Table 4.1

summarizes the results for each city.

Eindhoven Leuven Trento Turin

Min error (KM) 22.25 16.54 70.06 134.38

Max error (KM) 47.39 33.92 219.32 295.54

Standard deviation (KM) 2.22 2.02 30.67 30.54

Table 4.1: The summary of the results for each city.

Figure 4.4 illustrates the average error of the location determination

for various number of challenges. As the results in this figure show, for

the servers located in Eindhoven and Leuven, increasing the number of

challenges does not have a significant impact on the estimation error while

for the other two servers specially Turin, a notable change can be observed.

While one of the reasons is the sparsity of DLoc agents around each server,

82

CHAPTER 4. DLOC 4.3. EMPIRICAL EVALUATION

(a) Eindhoven (b) Leuven

(c) Trento (d) Turin

Figure 4.3: Screen shots of DLoc estimating a file on the four servers situated in multiple

cities. The light red markers show the locations of the DLoc agents, the blue marker

indicates the actual location of the server, and the yellow marker points to the estimated

physical location of the server.

we also study the influence of distance, between the agents and the server,

on the accuracy.

To study the influence of distance on the accuracy of location estima-

tion (RQ2), we unitized the distance into multiple ranges and performed

experiments on all DLoc agents situated only in each individual range. Fig-

ure 4.5 illustrates the results of such experiment. As it shows in the range

of 20− 40 KM , only in Leuven there are a number of agents surrounding

the server and sent 320 challenges while there is no agent until the range

of 140 − 160 KM where the number of challenges increased and the ac-

83

4.3. EMPIRICAL EVALUATION CHAPTER 4. DLOC

50 100 150 200 250 300 350 400 450 500

0

100

200

300

400

#Challenges

G
e
o
L
o
c
a
ti
o
n

E
rr
o
r
(K

M
)

Eindhoven (2.6 agents per KM) Leuven (7.7 agents per KM)

Trento (1.1 agents per KM) Turin (0.6 agents per KM)

Figure 4.4: GeoLocation error estimation per various number of challenges.

curacy slightly declined due to the distance. The similar steady move is

observed for Eindhoven for the ranges of 60− 80 KM , 100− 120 KM and

140 − 160 KM . Turin and Trento have a bit different story; their closest

agents are in the ranges of 140− 160 KM and 200− 220 KM respectively.

Moreover, the number of challenges in these ranges are quite small (20 and

85) compare to what the servers located in Eindhoven and Leuven expe-

rience in their closest range. These two reasons explain the yielded lower

accuracy for Turin and Trento. Therefore, not only the number of DLoc

agents influences the accuracy, also their distance from the servers has a

notable effect. Which means, the closer to the server the agents are, the

less number of challenges is required to track data effectively.

It worth to mention that the obtained results even for Turin and Trento

are acceptable as the main usage of DLoc is to monitor the enforcement

of jurisdiction regulations which, at its finest granularity, limits the data

to boundaries of a country. Moreover, it can have other usage as well

including quality of service measurement.

84

CHAPTER 4. DLOC 4.4. SECURITY AND PRIVACY ANALYSIS

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320
0

50

100

150

200

250

#c [760]#c [1115]

#c [3687]

#c [320]
#c [465]

#c [5946]

#c [5690]
#c [85]

#c [260]

#c [2549]

#c [20]

#c [743]

Range (KM)

E
rr
o
r
(K

M
)

Eindhoven (142 agents) Leuven (844 agents)

Trento (280 agents) Turin (156 agents)

Figure 4.5: Location estimation error per individual ranges. “#c” denotes the number of

challenges sent from the DLoc agents in the corresponding range.

4.4 Security and privacy analysis

DLoc does not require the cloud storage provider (CSP) to modify their

systems. When DLoc is running, all the CSP can realize is that a user

shares her files with a number of other users and the other smartphones

(DLoc agents) participating in geolocating the file are chosen randomly and

can be anywhere near the server or elsewhere; therefore, the CSP is not

able to impose a fake delay on the responses of the challenges it receives.

In order to bypass DLoc, there are two possible scenarios. The first

one is to break into the TPA which handles the challenges, DLoc agents

and prepares the results. The second scenario is to register a huge number

of smart devices (DLoc agents) in the TPA and make them to collude

with each other to prepare a fake delay time and fake location. Both

scenarios are quite expensive for the CSP to perform. Therefore, the cost

of compliance is negligible compare to bypassing DLoc.

85

4.5. LIMITATIONS CHAPTER 4. DLOC

4.5 Limitations

Although DLoc is promising in a real world application, there are a number

of limitations need to be considered. The first limitation is dependency to

the number of DLoc agents and their distance to the target server. If there

is not enough DLoc agents in less than about 400 KM of a server, the

accuracy of DLoc will fall down.

Moreover since the cloud provider is considered as an adversary, it can

inject random delays to the outgoing traffic to reduce the accuracy of DLoc.

As the location of DLoc agents are considered as trusted, such random

delay can yield different measurement by each agent and increase the es-

timation error. However, the strength point is that by doing so the cloud

provider practically cuts its quality of service; therefore, abusing such lim-

itation is costly for the could provider.

In practice, integrating DLoc to the current cloud storage providers

(e.g. Amazon, Google drive, etc.) without modification of their systems

imposes another limitation on the user. In fact, the data owner must share

the file with the other users (giving them access to the file), even if it is

encrypted for them to challenge the servers, it is still a limitation.

4.6 Related Work

In the literature, there are a number of approaches to determine the loca-

tion of data in cloud. Some focus on providing a cloud infrastructure which

is able to handle the enforcement of data location policies which certainly

require hardware and/or software modification in cloud services. Recently

studies have drawn their attentions to finding the correlation between the

network delay and geographic distance which then can be used to deter-

mine the location of an Internet node. Here we review both groups briefly

86

CHAPTER 4. DLOC 4.6. RELATED WORK

with more emphasis on the second group as its more close to our work.

4.6.1 Server side data geolocation

Krau and Fusenig propose an approach utilizing a Trusted Platform Mod-

ule (TPM) on host platforms for data geolocation in clouds [58]. They

assume that a certification authority stores the location of a host with its

TMP’s identity. Then, the owner of a virtual machine requests a certifica-

tion of the host in order to transfer data. They also assume that all virtual

machines implement a “LocCheck” client which is able to communicate

with a “Location verification and integrity check” module implemented in

the hypervisor. This solution requires administrative methods to perform

the verification of the location. Moreover, it is costly and due to the variety

in cloud platforms, it is not able to prevent data replication in arbitrary

locations.

Paladi et al. introduce a high-level architecture in cloud storage systems

for a trustful location-based mechanism for data transfer control [70]. Fu et

al. use a TPM to provide a strong validation of cloud data geolocation [35].

These approaches require the modification of underlaying layer of cloud

services which are quite costly and difficult to be adopted by cloud providers.

4.6.2 Delay based data geolocation

Geoping assumes that the hosts with a similar network delay are at the

same location [69]. Basically, Geoping challenges the target server from a

number of known landmarks and builds a set of path-delay information.

To find the location of an unknown target server, it constantly pings the

server from the landmarks at known paths and uses Euclidean distance

and finally chooses the landmark with the best match.

Constraint-based geolocation employs multilateration, which is used by

87

4.6. RELATED WORK CHAPTER 4. DLOC

DLoc as well, where each landmark draws a circle around itself with a

radius of the distance to the target server [40].

Topology-based geolocation improves the accuracy of Constraint-based

geolocation by taking into account the network topology and using the re-

lationship between latency and distance in order to estimate the distance

between two Internet nodes [56]. It basically transforms the geolocation

problem into a convex optimization problem with constraints and solves

the problem to find the location of the target. A more recent work [18] en-

hances the same concept for geolocation which attempts to find the nearest

common router and related landmarks to the target node, introduce de-

viations to landmarks and consider their locations as areas, calculating

relative delay between landmarks and target node. Then it defines the dis-

tance as constraint conditions to estimate the real deviations of landmarks

and the location of the target.

Yong et al. introduce a three layer geolocation algorithm, which em-

ploys a large database of landmarks, their relative distances and delay

measurements [83]. The first layer is basically a constraint-based geolo-

cation algorithm which finds the area where the target server is situated.

The second layer employs the distance constraint-based method and uses

the primary landmarks in the area to shrink the possible area. Then, the

target is mapped to a near landmark discovered in the secondary area.

Benson et al. discuss how to determine the location of data in cloud

storage which spread in diverse locations [12]. They assume that the lo-

cations of all data storages are known, that the cloud provider has no

exclusive Internet connection between the data centers and that for each

data center, there is a trusted third party node located geographically close

to it. The proposed approach uses a distance measurement between the

data centers to determine the location of the data centers where the user’s

data is stored. They evaluated their work in Planet Lab network. However,

88

CHAPTER 4. DLOC 4.6. RELATED WORK

the assumptions are too strong or expensive for a real world application.

Furthermore, the work does not recognize multiple copies of data.

In order to reduce cost, IGOD selects a small subset of landmarks with

their optimal position based on the diversity parameter [51]. Although the

authors even achieved a better accuracy compare to the similar previous

works, it still needs a network of fixed landmarks (e.g. Planet Lab) which

is difficult to implement in practice.

Watson et al. demonstrate that verifying the location of data in a cloud

storage has a limited accuracy [84]. They show that a collusion of the

cloud provider with a number of malicious host makes it impossible for

users to verify the location of their file accurately. The main drawback of

this approach is that it requires a set of trusted landmarks exists in order

to verify the existence of a file on a host.

GeoProof combines a proof of retrievability scheme with a delay based

protocol to determine the distance between a host and a verifier [3, 4].

They assume a tamper proof GPS device in the local network of cloud

provider communicating with a third party to verify the location of data.

The major drawback of this protocol is that cloud providers are not willing

to have a black box attached to their local network. Moreover, the GPS

signals received by the device can be faked by a malicious cloud provider.

Gondree and Peterson proposed a schema to tackle such problem by

employing a latency function built based on the current network traffic

observation [37]. In their schema, there are a number of trusted landmarks

which observe the network traffic by transmitting a number of messages

amongst themselves and then build a model based on that. The main dis-

advantage of this approach is the requirement of a dedicated network of

landmarks which is quite costly. Moreover, in the model building phase the

landmarks send messages amongst themselves in order to find a baseline

for the Internet delay which does not quite represent the real environment.

89

4.7. CHAPTER SUMMARY CHAPTER 4. DLOC

In fact, this scenario does not consider the latencies imposed by cloud me-

diation services such as authentication, decryption, etc. Therefore, the

observation has an inherent limitation which influences the distance esti-

mation.

Abdou et al. show that having a fixed network of landmarks can be

manipulated [1]. The location of landmarks will be revealed over time

and since usually delay based approaches use UDP or ICMP protocols,

an adversary is able to filter them out and play with the delays of the

responses in order to misrepresent its own location. DLoc does not suffer

from this issue due to two reasons: a) The location of landmarks used by

DLoc is not fixed as the landmarks are portable devices. b) DLoc uses the

same protocol that the cloud storage provider uses to serve the clients and

basically an adversary is not able to differentiate between the real user and

a landmark.

There is a parallel work with DLoc which uses network delays and a

network of smartphones to estimate the physical location of a server [21].

However, the focus of DLoc is to estimate the location of data (e.g. a file)

in the cloud. It verifies the server for the possession of user’s data and

tracks all available online copies of the file on all servers. Moreover, the

best error rate reported in their study is 189 KM while the average error

rate for DLoc in Leuven and Eindhoven is less than 50 KM and for Turin

and Trento less than 150 KM . DLoc proposes a comprehensive framework

which adapt itself automatically by observing the environment and remove

noisy data.

4.7 Chapter Summary

This chapter introduces DLoc, which determines the location of a file trans-

ferred to the cloud. which determines the location of a file transferred to

90

CHAPTER 4. DLOC 4.7. CHAPTER SUMMARY

the cloud. It uses a proof of data possession technique to guarantee that

the cloud storage service possess the particular file and estimates its loca-

tion(s) in a distributed manner without requiring the collaboration of the

data controller or cloud provider. DLoc has a number of advantages com-

pare to its rivals. First, it does not require a dedicated network of trusted

landmarks which makes it quite economic to be used in a real world setting.

Second, it does not require a modification to the cloud services. Third, it

is able to deal with multiple copies of data. Fourth, employing machine

learning techniques has made DLoc robust against network fluctuations

and various types of connections. Finally, since it uses smartphones in-

stead of fixed landmarks, it has motivation for DLoc agents to use the

service and participate in the process.

In a real-world scenario where DLoc serves a huge number of smartphone

users, therefore it is able to find the locations of data centers precise enough

in order to report all the data centers in the world representing a physical

risk to all cloud providers. Moreover, since DLoc provides measurements

and statistics on where data is stored and how long does it take to be

delivered, it can be used to measure the quality of service for content

delivery to mobile users and help to improve it.

91

4.7. CHAPTER SUMMARY CHAPTER 4. DLOC

92

Chapter 5

Migration to industry,

standardization bodies and open

sources communities

In this chapter we discuss the relevance, effect and the contribution of our

work to industry.

5.1 Introduction

Demonstrating compliant privacy management practices has never been

this relevant for businesses. The EU General Data Protection Regulation

(EU GDPR) imposes considerable fines (up to 4% of the global annual

turnover) to organizations that fail to comply with the new framework

effective in May 2018. Two of the most important points of the regulation

features are new responsibilities for data processors (who process personal

data on behalf of other organizations) and new constraints of trans-border

data flows, in particular with the emergence of a new EU-US agreement on

the topic, the Privacy Shield, replacing the Safe Harbor agreement, which

was invalidated in 2015 by the EU Supreme Court of Justice.

These two characteristic greatly impact cloud platform providers, such

93

5.1. INTRODUCTION CHAPTER 5. MIGRATION TO INDUSTRY

as SAP. First, they most often play the role of data processor, directly or

indirectly, since customers (the actual data controllers) subscribe to the

cloud offers in order to reach their business goals. Second, the individuals

from whom data is collected have a number of rights according to the

regulation, including limitation of personal data across borders and/or to

third parties.

Meanwhile, cloud services often rely on geographically distributed data

centers across the globe for increased access speed and resilience. Moreover,

cloud platforms are designed for extensibility – via mobile applications and

further SaaS build over the platform services. The extensions are often

driven by a network of partner solution providers. In many of the cases,

they may also process personal data. In such a context, it is fundamental

cloud providers and customers, to have tools to enforce and to monitor

personal data flows in the cloud.

The work carried out in this PhD addressed questions related to data

processing location in the cloud:

• VLOC (a Verifier for physical LOCation of a virtual machine), which

is able to verify the physical location of a virtual machine by taking

advantage of nearby randomly chosen web-servers. Since VLOC does

not rely on a network of fixed landmarks, its implementation is easier

and maintenance cost lower than other proposed solutions. VLOC

is implemented as a software component which needs to be installed

and initialized on a virtual machine. Moreover, it can be used as a

background service of a virtual machine or a container.

• DLoc (Distributed auditing for Data LOCation compliance in cloud),

which determines the location of a file uploaded in cloud and all its

publicly available copies. Since DLoc employs the mobile devices as

its agents to challenge the server and verify the possession and the

94

CHAPTER 5. MIGRATION TO INDUSTRY 5.2. INDUSTRY (SAP)

location of the file, it distributes the computation overhead and the

cost amongst a significant number of mobile devices. Therefore, as

there is no need for a huge network of landmark server, it is quite

economic to implement. Moreover, another advantage of DLoc is that

cloud storage service providers do not need to make any modifications

in their systems.

• PDTLoc (Personal Data Transfer LOCation analyzer), which em-

ploys both static and dynamic analysis techniques to infer whether

the apps violate DPD’25.1. PDTLoc inspects mobile applications and

extracts information about the collected personal data and the juris-

dictions of the remote servers to which the data is transferred. PDT-

Loc provides the capacity for treating a large number of applications

on reasonably short time.

In the following we discuss the potential impact of these works from an

industrial perspective.

5.2 Industry (SAP)

SAP not only provides software, but also hosts personal data collected by

its customers in the cloud. One of the main decision factors for customers

to adopt cloud services is trust. Exploiting VLOC in the context of SAPs

cloud services would provide increased transparency to customers with

respect to the data processing locations for SAPs data centers, those of its

subsidiary companies (Successfactors, Ariba, Concur) and of its partners.

More visibility on critical risk factors for customers is needed overall in

order to acquire more cloud customers, especially those who are cloud

averse nowadays.

Moreover, SAP also needs to assess the data transfer flows for its own ap-

95

5.3. STANDARDIZATION BODIES CHAPTER 5. MIGRATION TO INDUSTRY

plications. By demand of SAPs management, we run PDTLoc on all SAP

official mobile apps (in total 60 apps in November 2016). We made the

results available internally to the SAPs Data Protection Office. PDTLoc

has potential for further exploitation as a testing framework for mobile ap-

plications, with a focus on information flow analysis, which is particularly

suitable for asserting privacy compliance properties. This is interesting for

SAP, who regularly publishes new mobile apps, or releases new versions of

it. PDTLoc can also serve as a blueprint for large scale privacy analysis

of applications in general. It can be well-suited for checking privacy fea-

tures of third-party applications and platform services (e.g. provided by

partners).

It is worthy mentioning that we also had a meeting with CNIL1, the

French National Commission on Informatics and Liberty, and presented

PDTLoc tool and its capabilities in order to see how it can be used to

protect the rights of citizens from their point of view. The constraint they

have is that they are not able such technology to prove non-compliance in

principle, because they need to prove we did not change the behavior of

the apps. However, they can use this tool to detect the suspicious behavior

of the apps in terms of data collection and data transfer which can be used

to request the data controllers (the app owners) to provide compliance

evidences.

5.3 Standardization Bodies

Standardization was not one of the goals for the current topic, however, the

results are relevant for standardization organizations and for certification

agencies. ISO and other bodies (ETSI, ENISA, and Cloud Security Al-

liance) are updating their standards and recommendations after the adop-

1https://www.cnil.fr/en/home

96

https://www.cnil.fr/en/home

CHAPTER 5. MIGRATION TO INDUSTRY 5.4. OPEN-SOURCE SOFTWARE

tion of the EU GDPR, often these are based on improvement life cycles

that involve the adoption of tools. As a matter of fact, the EU GDPR

suggests the creating of privacy certification seals and codes of conduct by

industry associations and similar entities. The certification mechanisms

and codes of conduct must be approved by a supervisory authority. On

their turn, services and software will be awarded a seal if they prove ad-

herence to the terms of the certificate in question. Tools like VLOC and

PDTLoc can greatly accelerate the deliverance of such certification seals.

There is a sign of interest about such uses for this technology. After

the appearance of the PDTLoc article we were contacted by one of the

directors the French Data Protection Authority for presenting the work to

their team.

5.4 Open-source Software

The prototypes developed here rely on a large number of open source com-

ponents. Some examples are the APK tool, SAAF (Static Android Analysis

Framework for Android apps) and Monkey (created by google). It may be

interesting to consider to release to full frameworks as open sources com-

ponents, if it fits SAPs exploitation strategy. This depends on potential

emerging business model (for instance for partner app certification) and

approvals from SAPs legal department.

97

5.4. OPEN-SOURCE SOFTWARE CHAPTER 5. MIGRATION TO INDUSTRY

98

Chapter 6

Conclusions and Future Work

In this dissertation, we introduce a substantial contribution in the analysis

of trans-border personal data flows and enforcement of jurisdictional regu-

lations over that. It is a major debate that may impact how the regulatory

framework around the digital economy will evolve. We have highlighted

the main concerns in personal data transfers by in principle non-malicious

applications, and shown a considerable number of them fail to comply with

the EU personal data protection regulation, in the first study of the kind,

up to our knowledge. While PDTLoc has been suitable in this case, we

believe it can be extended to analyze other information flow properties as

well.

To address the issue of server side compliance, we design VLOC which

verifies the physical location of a virtual machine without using a network

of fixed external landmarks nor a GPS enabled device. VLOC is imple-

mented as a software which able to estimate the physical location of itself

and notify the corresponding user if the location is unauthorized. There

are a number of approaches using distance bounding protocols to verify

the physical location of a host, but as mentioned in Chapter 3, they are

suffering from high implementation and maintenance cost or they are quite

non-feasible or non-practical. In contrast, VLOC runs inside of the target

99

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

host (inside of the cloud) and does not rely a network of fixed external

landmarks; therefore, the implementation cost is quite negligible. However

residing within the cloud while the cloud provider is the major adversary

brings a number of challenges which we have overcome.

In order to enable end-users to track the location of their data after

being transferred to the cloud, we propose DLoc framework which does

not require a network of monitoring servers and does not need to reside

and running within the cloud. It uses a proof of data possession technique

to guarantee that the cloud storage service possess the particular file and

estimates its location(s) in a distributed manner without requiring the

collaboration of the data controller or cloud provider.

In this thesis, we have proposed a bundle of approaches in order to

enforce and monitor the jurisdictional regulations on mobile apps. Since

collecting and transferring personal data to a remote server composes of

multiple elements (e.g. mobile devices, mobile apps, data controller and

cloud service provider), we introduced a bundle of tools and frameworks

to monitor the data transfer in various levels. Implementing such bundle

is quite economic compare to rival approaches; however, for some parts of

the work, to best of our knowledge, there is no other approaches.

100

Bibliography

[1] AbdelRahman Abdou, Ashraf Matrawy, and Paul C van Oorschot.

Accurate manipulation of delay-based internet geolocation. In Pro-

ceedings of the 2017 ACM on Asia Conference on Computer and Com-

munications Security, pages 887–898. ACM, 2017.

[2] Jagdish Prasad Achara, Franck Baudot, Claude Castelluccia, Geoffrey

Delcroix, and Vincent Roca. Mobilitics: Analyzing privacy leaks in

smartphones. ERCIM News, 2013(93), 2013.

[3] A Albeshri, C. Boyd, and J.G. Nieto. Geoproof: Proofs of geographic

location for cloud computing environment. In Distributed Computing

Systems Workshops (ICDCSW), 2012 32nd International Conference

on, pages 506–514, 2012.

[4] Aiiad Albeshri, Colin Boyd, and JuanGonzlez Nieto. Enhanced geo-

proof: improved geographic assurance for data in the cloud. Interna-

tional Journal of Information Security, 13(2):191–198, 2014.

[5] Alexa. Alexa.com, 2014.

[6] Tina Amirtha. Safe Harbor was for EU privacy: But how safe

is US data in Europe? http: // www. zdnet. com/ article/

safe-harbor-was-for-eu-privacy-but-how-safe-is-us-data-in-europe/ ,

2015.

101

http://www.zdnet.com/article/safe-harbor-was-for-eu-privacy-but-how-safe-is-us-data-in-europe/
http://www.zdnet.com/article/safe-harbor-was-for-eu-privacy-but-how-safe-is-us-data-in-europe/

BIBLIOGRAPHY BIBLIOGRAPHY

[7] AppFigures. A tracking platform to monitor the sales and downloads

of apps. http: // AppFigures. com , 2016.

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden,

Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau,

and Patrick McDaniel. Flowdroid: Precise context, flow, field, object-

sensitive and lifecycle-aware taint analysis for android apps. In ACM

SIGPLAN Notices, volume 49, pages 259–269. ACM, 2014.

[9] Monir Azraoui, Kaoutar Elkhiyaoui, Melek Önen, Karin Bernsmed,

Anderson Santana Oliveira, and Jakub Sendor. Data Privacy Man-

agement, Autonomous Spontaneous Security, and Security Assurance:

9th International Workshop, DPM 2014, 7th International Workshop,

SETOP 2014, and 3rd International Workshop, QASA 2014, Wro-

claw, Poland, September 10-11, 2014. Revised Selected Papers, chapter

A-PPL: An Accountability Policy Language, pages 319–326. Springer

International Publishing, Cham, 2015.

[10] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maf-

fei, and Philipp von Styp-Rekowsky. Appguard–fine-grained policy

enforcement for untrusted android applications. In Data Privacy

Management and Autonomous Spontaneous Security, pages 213–231.

Springer, 2014.

[11] Walid Benghabrit, Hervé Grall, Jean-Claude Royer, Mohamed Sell-

ami, Monir Azraoui, Kaoutar Elkhiyaoui, Melek Önen, Anderson San-

tana Oliveira, and Karin Bernsmed. Cloud Computing and Services

Sciences: International Conference in Cloud Computing and Services

Sciences, CLOSER 2014 Barcelona Spain, April 3–5, 2014 Revised

Selected Papers, chapter From Regulatory Obligations to Enforceable

102

http://AppFigures.com

BIBLIOGRAPHY BIBLIOGRAPHY

Accountability Policies in the Cloud, pages 134–150. Springer Inter-

national Publishing, Cham, 2015.

[12] Karyn Benson, Rafael Dowsley, and Hovav Shacham. Do you know

where your cloud files are? In Proceedings of the 3rd ACM workshop

on Cloud computing security workshop, pages 73–82. ACM, 2011.

[13] Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. Flexible and

fine-grained mandatory access control on android for diverse security

and privacy policies. In Usenix security, pages 131–146, 2013.

[14] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid:

behavior-based malware detection system for android. In Proceedings

of the 1st ACM workshop on Security and privacy in smartphones and

mobile devices, pages 15–26. ACM, 2011.

[15] Johnathon Burket, Lori Flynn, Will Klieber, Jonathan Lim, William

Snavely, Jonathan Burket, William Klieber, and Wei Shen. Making

didfail succeed: Enhancing the cert static taint analyzer for android

app sets, 2015.

[16] Mary Carolan. Data protection commissioner to inves-

tigate max schrems claims. http: // www. irishtimes.

com/ news/ crime-and-law/ courts/ high-court/

data-protection-commissioner-to-investigate-max-schrems-claims-1.

2398728 , 2015.

[17] F. Di Cerbo, D. F. Some, L. Gomez, and S. Trabelsi. Ppl v2.0: Uniform

data access and usage control on cloud and mobile. In TEchnical and

LEgal aspects of data pRivacy and SEcurity, 2015 IEEE/ACM 1st

International Workshop on, pages 2–7, May 2015.

103

http://www.irishtimes.com/news/crime-and-law/courts/high-court/data-protection-commissioner-to-investigate-max-schrems-claims-1.2398728
http://www.irishtimes.com/news/crime-and-law/courts/high-court/data-protection-commissioner-to-investigate-max-schrems-claims-1.2398728
http://www.irishtimes.com/news/crime-and-law/courts/high-court/data-protection-commissioner-to-investigate-max-schrems-claims-1.2398728
http://www.irishtimes.com/news/crime-and-law/courts/high-court/data-protection-commissioner-to-investigate-max-schrems-claims-1.2398728

BIBLIOGRAPHY BIBLIOGRAPHY

[18] Jingning Chen, Fenlin Liu, Xiangyang Luo, Fan Zhao, and Guang Zhu.

A landmark calibration-based ip geolocation approach. EURASIP

Journal on Information Security, 2016(1):4, 2016.

[19] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. Au-

tomated Test Input Generation for Android: Are We There Yet?(E).

In Automated Software Engineering (ASE), 2015 30th IEEE/ACM In-

ternational Conference on, pages 429–440. IEEE, 2015.

[20] Fred Chung. Custom class loading in dalvik.

[21] Gloria Ciavarrini, Valerio Luconi, and Alessio Vecchio. Smartphone-

based geolocation of internet hosts. Computer Networks, 116:22–32,

2017.

[22] European Commission. European commission - overview

on binding corporate rules. http: // ec. europa. eu/

justice/ data-protection/ international-transfers/

binding-corporate-rules/ index_ en. htm , 2016.

[23] European Commission. European Commission - press release: EU-

US Privacy Shield. http: // europa. eu/ rapid/ press-release_

IP-16-216_ en. htm , 2016.

[24] Court of Justice of the European Union. The court of

justice declares that the commission’s us safe harbour deci-

sion is invalid. http: // curia. europa. eu/ jcms/ upload/ docs/

application/ pdf/ 2015-10/ cp150117en. pdf , 2015.

[25] Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen.

I-arm-droid: A rewriting framework for in-app reference monitors for

android applications. Mobile Security Technologies, 2012(2):17, 2012.

104

http://ec.europa.eu/justice/data-protection/international-transfers/binding-corporate-rules/index_en.htm
http://ec.europa.eu/justice/data-protection/international-transfers/binding-corporate-rules/index_en.htm
http://ec.europa.eu/justice/data-protection/international-transfers/binding-corporate-rules/index_en.htm
http://europa.eu/rapid/press-release_IP-16-216_en.htm
http://europa.eu/rapid/press-release_IP-16-216_en.htm
http://curia.europa.eu/jcms/upload/docs/application/pdf/2015-10/cp150117en.pdf
http://curia.europa.eu/jcms/upload/docs/application/pdf/2015-10/cp150117en.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[26] AS. De Oliveira, J. Sendor, A Garaga, and K. Jenatton. Monitoring

personal data transfers in the cloud. In Cloud Computing Technology

and Science (CloudCom), 2013 IEEE 5th International Conference

on, volume 1, pages 347–354, 2013.

[27] Anthony Desnos and Patrik Lantz. Droidbox: An android application

sandbox for dynamic analysis (2011). https: // code. google. com/

p/ droidbox , 2014.

[28] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S

Wallach. Quire: Lightweight provenance for smart phone operating

systems. In USENIX Security Symposium, volume 31, 2011.

[29] Serge Egelman, Adrienne Porter Felt, and David Wagner. Choice ar-

chitecture and smartphone privacy: Theresa price for that. In The eco-

nomics of information security and privacy, pages 211–236. Springer,

2013.

[30] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar,

Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel,

and Anmol N Sheth. TaintDroid: an information-flow tracking system

for realtime privacy monitoring on smartphones. ACM Transactions

on Computer Systems (TOCS), 32(2):5, 2014.

[31] Ericsson. Europe mobility report appendix.

http: // www. ericsson. com/ res/ docs/ 2014/

emr-november2014-regional-appendices-europe. pdf , 2014.

[32] Mojtaba Eskandari, Maqsood Ahmad, Anderson Santana De Oliveira,

and Bruno Crispo. Analyzing remote server locations for personal

data transfers in mobile apps. In International Symposium on Privacy

Enhancing Technologies. Springer, 2017.

105

https://code.google.com/p/droidbox
https://code.google.com/p/droidbox
http://www.ericsson.com/res/docs/2014/emr-november2014-regional-appendices-europe.pdf
http://www.ericsson.com/res/docs/2014/emr-november2014-regional-appendices-europe.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[33] Mojtaba Eskandari, Anderson Santana De Oliveira, and Bruno Crispo.

Vloc: An approach to verify the physical location of a virtual machine

in cloud. In Cloud Computing Technology and Science (CloudCom),

2014 IEEE 6th International Conference on, pages 86–94. IEEE, 2014.

[34] European Court of Justice. Commission Decision of 26 july 2000 pur-

suant to directive 95/46/ec of the european parliament and of the

council on the adequacy of the protection provided by the safe harbour

privacy principles and related frequently asked questions issued by

the us department of commerce. Official Journal L 215 , 25/08/2000

P. 0007 - 0047 URL: http: // eur-lex. europa. eu/ LexUriServ/

LexUriServ. do? uri= CELEX: 32000D0520: EN: HTML , 2000.

[35] Dong Lai Fu, Xin Guang Peng, and Yu Li Yang. Trusted validation

for geolocation of cloud data. The Computer Journal, page bxu144,

2014.

[36] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. An-

droidLeaks: automatically detecting potential privacy leaks in android

applications on a large scale. Springer, 2012.

[37] Mark Gondree and Zachary N.J. Peterson. Geolocation of data in

the cloud. In Proceedings of the Third ACM Conference on Data and

Application Security and Privacy, CODASPY ’13, pages 25–36, New

York, NY, USA, 2013. ACM.

[38] Google. Monkey Tool. http: // developer. android. com/ tools/

help/ monkey. html , 2015.

[39] Ben Gruver. Smali/Baksmali Tool.

https://github.com/JesusFreke/smali/wiki, 2015.

106

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32000D0520:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32000D0520:EN:HTML
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html

BIBLIOGRAPHY BIBLIOGRAPHY

[40] Bamba Gueye, Artur Ziviani, Mark Crovella, and Serge Fdida.

Constraint-based geolocation of internet hosts. IEEE/ACM Trans-

actions On Networking, 14(6):1219–1232, 2006.

[41] G.P. Hancke and M.G. Kuhn. An RFID Distance Bounding Protocol.

In Security and Privacy for Emerging Areas in Communications Net-

works, 2005. SecureComm 2005. First International Conference on,

pages 67–73, 2005.

[42] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Model assess-

ment and selection. In The Elements of Statistical Learning, Springer

Series in Statistics, pages 219–259. Springer New York, 2009.

[43] Dominik Herrmann and Jens Lindemann. Obtaining personal data

and asking for erasure: Do app vendors and website owners honour

your privacy rights? CoRR, abs/1602.01804, 2016.

[44] Paul De Hert and Vagelis Papakonstantinou. The proposed data

protection regulation replacing directive 95/46/ec: A sound system

for the protection of individuals. Computer Law & Security Review,

28(2):130–142, 2012.

[45] Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza

Sadeghi. Asm: A programmable interface for extending android secu-

rity. In USENIX Security, volume 14, pages 1005–1109, 2014.

[46] Johannes Hoffmann, Martin Ussath, Thorsten Holz, and Michael Spre-

itzenbarth. Slicing Droids: Program Slicing for Smali Code. In Pro-

ceedings of the 28th Annual ACM Symposium on Applied Computing,

SAC ’13, pages 1844–1851, New York, NY, USA, 2013. ACM.

[47] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter,

and David Wetherall. These aren’t the droids you’re looking for:

107

BIBLIOGRAPHY BIBLIOGRAPHY

Retrofitting android to protect data from imperious applications. In

Proceedings of the 18th ACM conference on Computer and communi-

cations security, pages 639–652. ACM, 2011.

[48] IBM. Watson libraries for analysis.

[49] IDC Press Release. Smartphone os marketshare, 2016.

[50] IPaddressAPI.com. Ipaddressapi.com, 2017.

[51] Chetan Jaiswal and Vijay Kumar. Igod: Identification of geolocation

of cloud datacenters. In Local Computer Networks Conference Work-

shops (LCN Workshops), 2015 IEEE 40th, pages 665–672. IEEE, 2015.

[52] Cheol Jeon, WooChur Kim, Bongjae Kim, and Yookun Cho. En-

hancing security enforcement on unmodified android. In Proceedings

of the 28th Annual ACM Symposium on Applied Computing, pages

1655–1656. ACM, 2013.

[53] Jinseong Jeon, Kristopher K Micinski, Jeffrey A Vaughan, Ari Fogel,

Nikhilesh Reddy, Jeffrey S Foster, and Todd Millstein. Dr. android

and mr. hide: fine-grained permissions in android applications. In

Proceedings of the second ACM workshop on Security and privacy in

smartphones and mobile devices, pages 3–14. ACM, 2012.

[54] Ari Juels and Burton S. Kaliski, Jr. Pors: Proofs of retrievability for

large files. In Proceedings of the 14th ACM Conference on Computer

and Communications Security, CCS ’07, pages 584–597, New York,

NY, USA, 2007. ACM.

[55] Seny Kamara and Kristin Lauter. Cryptographic cloud storage. In

Financial Cryptography and Data Security, volume 6054 of Lecture

Notes in Computer Science, pages 136–149. Springer Berlin Heidel-

berg, 2010.

108

BIBLIOGRAPHY BIBLIOGRAPHY

[56] Ethan Katz-Bassett, John P John, Arvind Krishnamurthy, David

Wetherall, Thomas Anderson, and Yatin Chawathe. Towards ip ge-

olocation using delay and topology measurements. In Proceedings of

the 6th ACM SIGCOMM conference on Internet measurement, pages

71–84. ACM, 2006.

[57] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, Junbum Shin, and

SWRD Center. ScanDal: Static analyzer for detecting privacy leaks

in android applications. MoST, 12, 2012.

[58] Christoph Krauß and Volker Fusenig. Using trusted platform modules

for location assurance in cloud networking. In International Confer-

ence on Network and System Security, pages 109–121. Springer, 2013.

[59] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves

Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien

Octeau, and Patrick McDaniel. IccTA: Detecting inter-component

privacy leaks in Android apps. In Proceedings of the 37th Interna-

tional Conference on Software Engineering-Volume 1, pages 280–291.

IEEE Press, 2015.

[60] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex:

statically vetting android apps for component hijacking vulnerabili-

ties. In Proceedings of the 2012 ACM conference on Computer and

communications security, pages 229–240. ACM, 2012.

[61] P. Massonet, S. Naqvi, C. Ponsard, J. Latanicki, B. Rochwerger, and

M. Villari. A monitoring and audit logging architecture for data lo-

cation compliance in federated cloud infrastructures. In Parallel and

Distributed Processing Workshops and Phd Forum (IPDPSW), 2011

IEEE International Symposium on, pages 1510–1517. IEEE, 2011.

[62] MaxMind.Inc. Freegeoip.net, 2014.

109

BIBLIOGRAPHY BIBLIOGRAPHY

[63] Peter Mell and Tim Grance. The nist definition of cloud computing,

2011.

[64] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: ex-

tending android permission model and enforcement with user-defined

runtime constraints. In Proceedings of the 5th ACM symposium on

information, computer and communications security, pages 328–332.

ACM, 2010.

[65] A Noman and C. Adams. Dlas: Data location assurance service

for cloud computing environments. In Privacy, Security and Trust

(PST), 2012 Tenth Annual International Conference on, pages 225–

228. IEEE, 2012.

[66] Ali Noman and Carlisle Adams. Providing a data location assurance

service for cloud storage environments. J. Mob. Multimed., 8(4):265–

286, 2012.

[67] OASIS-Standard. extensible access control markup language (xacml)

version 2.0, 2005.

[68] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel,

Eric Bodden, Jacques Klein, and Yves Le Traon. Effective inter-

component communication mapping in android with epicc: An essen-

tial step towards holistic security analysis. Effective Inter-Component

Communication Mapping in Android with Epicc: An Essential Step

Towards Holistic Security Analysis, 2013.

[69] Venkata N Padmanabhan and Lakshminarayanan Subramanian. An

investigation of geographic mapping techniques for internet hosts.

In ACM SIGCOMM Computer Communication Review, volume 31,

pages 173–185. ACM, 2001.

110

BIBLIOGRAPHY BIBLIOGRAPHY

[70] Nicolae Paladi and Antonis Michalas. one of our hosts in another

country: Challenges of data geolocation in cloud storage. In Wire-

less Communications, Vehicular Technology, Information Theory and

Aerospace & Electronic Systems (VITAE), 2014 4th International

Conference on, pages 1–6. IEEE, 2014.

[71] European Parliament and of the Council. General data protec-

tion regulation, final version dated 27 april 2016. Online at

http://data.europa.eu/eli/reg/2016/679/oj, 2016.

[72] Zachary N. J. Peterson, Mark Gondree, and Robert Beverly. A posi-

tion paper on data sovereignty: The importance of geolocating data

in the cloud. In Proceedings of the 3rd USENIX Conference on Hot

Topics in Cloud Computing, HotCloud’11, Berkeley, CA, USA, 2011.

USENIX Association.

[73] PHP. fsockopen function, 2013.

[74] Vaibhav Rastogi, Yan Chen, and William Enck. AppsPlayground:

automatic security analysis of smartphone applications. In Proceedings

of the third ACM conference on Data and application security and

privacy, pages 209–220. ACM, 2013.

[75] Jason Reid, Juan M. Gonzalez Nieto, Tee Tang, and Bouchra Senadji.

Detecting relay attacks with timing-based protocols. In Proceedings of

the 2Nd ACM Symposium on Information, Computer and Communi-

cations Security, ASIACCS ’07, pages 204–213, New York, NY, USA,

2007. ACM.

[76] European Parliament. Directive 95/46/ec of the european parliament

and of the Council of 24 october 1995 on the protection of individuals

with regard to the processing of personal data and on the free move-

111

BIBLIOGRAPHY BIBLIOGRAPHY

ment of such data. http: // eur-lex. europa. eu/ eli/ dir/ 1995/

46/ oj , 1995.

[77] IDC Press Release. Worldwide smartphone market will see the first

single-digit growth year on record, according to idc. http: // www.

idc. com/ getdoc. jsp? containerId= prUS40664915 , 2015.

[78] Brian Cantwell Smith. Procedural Reflection in Programming Lan-

guages. PhD thesis, Massachusetts Institute of Technology, Labora-

tory for Computer Science, 1982.

[79] David Sounthiraraj, Justin Sahs, Garret Greenwood, Zhiqiang Lin,

and Latifur Khan. Smv-hunter: Large scale, automated detection of

ssl/tls man-in-the-middle vulnerabilities in android apps. In In Pro-

ceedings of the 21st Annual Network and Distributed System Security

Symposium (NDSS’14. Citeseer, 2014.

[80] The Tcpdump Group. TCP-Dump, 2015.

[81] Connor Tumbleson and Ryszard Winiewski. APK tool - a tool for

reverse engineering android apk files, 2016.

[82] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vijay Sundaresan. Soot-a Java bytecode optimization frame-

work. In Proceedings of the 1999 conference of the Centre for Advanced

Studies on Collaborative research, page 13. IBM Press, 1999.

[83] Yong Wang, Daniel Burgener, Marcel Flores, Aleksandar Kuzmanovic,

and Cheng Huang. Towards street-level client-independent ip geolo-

cation. In NSDI, volume 11, pages 27–27, 2011.

[84] Gaven J Watson, Reihaneh Safavi-Naini, Mohsen Alimomeni,

Michael E Locasto, and Shivaramakrishnan Narayan. Lost: location

112

http://eur-lex.europa.eu/eli/dir/1995/46/oj
http://eur-lex.europa.eu/eli/dir/1995/46/oj
http://www.idc.com/getdoc.jsp?containerId=prUS40664915
http://www.idc.com/getdoc.jsp?containerId=prUS40664915

BIBLIOGRAPHY BIBLIOGRAPHY

based storage. In Proceedings of the 2012 ACM Workshop on Cloud

computing security workshop, pages 59–70. ACM, 2012.

[85] Fengguo Wei, Sankardas Roy, Xinming Ou, et al. Amandroid: A

precise and general inter-component data flow analysis framework

for security vetting of android apps. In Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Secu-

rity, pages 1329–1341. ACM, 2014.

[86] Wikipedia. Polynomial regression, 2014.

[87] Wikipedia. Trilateration, 2014.

[88] Wikipedia. Geographic coordinate system. Online at

https://en.wikipedia.org/wiki/Geographic coordinate system, 2016.

[89] Wikipedia. Triangle. Online at

https://en.wikipedia.org/wiki/Triangle, 2016.

[90] Wikipedia. Triangulation. Online at

https://en.wikipedia.org/wiki/Triangulation, 2016.

[91] Xposed. Xposed framework. Online at http://repo.xposed.info/, 2017.

[92] Rubin Xu, Hassen Säıdi, and Ross J Anderson. Aurasium: practi-

cal policy enforcement for android applications. In USENIX Security

Symposium, volume 2012, 2012.

[93] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and

X Sean Wang. Appintent: Analyzing sensitive data transmission in

android for privacy leakage detection. In Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications security, pages

1043–1054. ACM, 2013.

113

BIBLIOGRAPHY BIBLIOGRAPHY

[94] Sara Zaske. Germany’s privacy leaders gather to discuss sus-

pending us safe harbor. http: // www. zdnet. com/ article/

germanys-privacy-leaders-gather-to-discuss-suspending-us-safe-harbor/ ,

2015.

[95] Yury Zhauniarovich, Maqsood Ahmad, Olga Gadyatskaya, Bruno

Crispo, and Fabio Massacci. Stadyna: addressing the problem of dy-

namic code updates in the security analysis of android applications.

In Proceedings of the 5th ACM Conference on Data and Application

Security and Privacy, pages 37–48. ACM, 2015.

[96] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong,

Xinhui Han, and Wei Zou. Smartdroid: an automatic system for re-

vealing ui-based trigger conditions in android applications. In Proceed-

ings of the second ACM workshop on Security and privacy in smart-

phones and mobile devices, pages 93–104. ACM, 2012.

[97] Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie. DroidAlarm: an

all-sided static analysis tool for Android privilege-escalation malware.

In Proceedings of the 8th ACM SIGSAC symposium on Information,

computer and communications security, pages 353–358. ACM, 2013.

114

http://www.zdnet.com/article/germanys-privacy-leaders-gather-to-discuss-suspending-us-safe-harbor/
http://www.zdnet.com/article/germanys-privacy-leaders-gather-to-discuss-suspending-us-safe-harbor/

	Introduction
	Motivation
	Challenges and Contributions
	App Analysis for Data Location Investigation
	Data Location Enforcement on Mobile Devices
	Verify the Location of a Virtual Machine in Cloud
	Distributed Data Tracking in Cloud

	Organization of the Dissertation

	PDTLoc: Data Tracking in App Level
	Introduction
	Problem Statement
	Data Flow Analysis
	PDTLoc
	Overview
	Static Analysis Module
	Dynamic Analysis Module
	Location Investigator

	Empirical Analysis
	Dataset Collection
	GTAD
	Experimental Setup
	Evaluation Goals

	Results and Discussions
	Personal Data Accessed
	Contacted Servers
	Server Locations
	Privacy Discussion

	Data Location Enforcement on Mobile Devices
	Xposed
	The Enforcer module designed on top of Xposed

	Improving Transparency and Compliance
	Limitations
	Related Work
	Static Privacy Leak Detection
	Dynamic Privacy Leak Detection

	Chapter Summary

	VLoc: Verify the Location of a Virtual Machine in Cloud
	Introduction
	Related Work
	VLOC
	System Model
	Determining the Location of a Virtual Machine
	Security Considerations
	Limitations

	Empirical Setup
	Data Collection
	Evaluation Measure
	Accuracy

	Chapter Summary

	Distributed Data Tracking in Cloud
	Introduction
	DLoc
	Estimating the data location

	Empirical Evaluation
	Dataset Collection
	Evaluation Goals
	Evaluation Measure
	Results and Discussions

	Security and privacy analysis
	Limitations
	Related Work
	Server side data geolocation
	Delay based data geolocation

	Chapter Summary

	Migration to industry
	Introduction
	Industry (SAP)
	Standardization Bodies
	Open-source Software

	Conclusions and Future Work
	Bibliography

