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Abstract

Microresonators are fundamental building blocks in the growing field of integrated
photonics and several resonator-based devices such as filters, switches and routers are
currently used in common optical telecommunication networks. In order to exploit
the peculiar features offered by integrated resonators, a complete and consistent com-
prehension of their physics and of the processes they can accommodate is needed.
More specifically, coupling of light to and from a resonator represents a crucial point:
a correct comprehension of the coupling dynamics, a proper model for the system
and its validation through experimental procedure are all essential elements for a
fruitful exploitation of the device. Among the different resonator-waveguide cou-
pling schemes, the most widely used is the in-plane coupling and it consists of a
waveguide placed near to a microresonator and laying on the same plane. However,
an alternative approach is represented by the vertical coupling scheme, where the
waveguide lays under the resonator edge. The peculiar position of the waveguide
in this last configuration causes the device to show specific properties not present
in other common coupling schemes: namely, a working range spanning from almost
visible wavelengths (780nm) to the near IR domain (1600nm), the selective excita-
tion of high order resonator radial modes and the possibility to fabricate wedge and
free-standing resonators without any detrimental effect on the bus waveguide.

In order to fully exploit these and other features of the vertical coupling scheme,
a detailed investigation has been carried out throughout this thesis. The waveguide-
microresonator system has been studied at different levels, from the general coupling
dynamics to more specific and peculiar phenomena. In particular, the basic model
proposed for the vertical coupling has been extended to consider wavelength de-
pendences and an experimental validation has been carried out consequently. The
reactive coupling model, which describes the internal dynamics of a vertically cou-
pled resonator in the case of multimodal operation, has been experimentally proven.
A general model considering the presence counterpropagating modes has been the-
oretically proposed and experimentally investigated. Finally, the bistable behaviour
generated by thermo-optic effect when a large amount of power circulates in the
microresonator has been experimentally studied.

In order to better characterize the system response, a specific interferometric setup
has been implemented. It consists in a Mach-Zehnder computer driven interferometer,
whose peculiar characteristic is the ability to perform simultaneous pump and probe
transmittance and phase measurements of any integrated photonic device provided
with input and output ports. In this way, the information carried by the phase
of the propagating optical signal is added to the one provided by its intensity and
contributes to produce a more complete picture of the investigated system. In the case
of microresonators this phase information becomes even more fundamental. Indeed,
the phase response of a resonating structure is highly influenced by variations in the
coupling strength, and the phase spectrum of a single resonance allows to clearly
identify the resonator coupling regime for that specific resonance. This fact does not



vi

hold in the case of transmittance measurements, where single resonance spectrum
carries information only on the total losses of the system. Finally, in order to exploit
the combined information provided by this measurement procedure, a phasor plot
representation is extensively used throughout the thesis work.
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Thesis motivation and outline

Integrated microresonators have always been considered fundamental building blocks
for the realization of a photonic chip. The possibility to use them as filters, switches,
integrated lasers, buffers or even all-optical transistors [1] had always attracted the
photonic community. Moreover, the electromagnetic field enhancement present inside
the resonating cavity, together with other peculiar features owned by microresonators
(i.e. the possibility to create freestanding structures, the small dimensions and the
precise control of the coupling gap), contributed to make this device a perfect platform
for the experimental investigation of fundamental physical phenomena in a variety of
fields, from nonlinear optics to quantum optics and cavity optomechanics [2, 3, 4]. As
a consequence to these experimental efforts, several structures with different shapes,
materials and coupling schemes were fabricated and widely investigated since the
realization of the first integrated resonator in 1983 [5]. In this sense Silicon photonics
is nowadays the main photonic platform for both research and application: the mature
handling of CMOS fabrication process allows high quality devices to be produced and,
together with the good optical properties of Silicon (transparency and nonlinear)
and its abundance with respect to other materials (i.e. III-V materials), makes this
platform the most suitable one for a widespread use and dissemination of photonic
integrated devices. Indeed, Silicon microresonator based devices do not represent
a renovation only for telecom applications, but they influence also metrology [6] ,
sensing [7], neural networks [8] and many others research fields.

Among the different coupling schemes that have been proposed in all these ap-
plications, a peculiar role is played by the so called vertical coupling [9]. Indeed,
the interesting properties owned by this kind of coupling could bring advantages in
the realization of a photonic chip: the large working range, spanning from almost
visible wavelengths to the near IR domain, could be exploited in wideband networks
[10]; the selective excitation of high order resonator modes could bring to a selective
filter [11]; the possibility to fabricate wedge and free-standing resonators without any
detrimental effect on the bus waveguide increases the Q-factor limit and opens the
path for robust and more sensitive biosensing elements [12]. However, a careful han-
dling of the system parameters and a correct comprehension of the system dynamics
are needed to achieve a full exploitation of its advantages.

In the field of integrated photonics, the physics of a system is commonly investi-
gated by looking at the transmittance response. However, despite the transmittance
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of a device represents one of the most important experimental quantity, there is
another important quantity that could provide equally important information: the
optical phase. Indeed, since any plane electromagnetic wave with wavevector k and
frequency ! can be written as E(r, t) = Aei(kr+!t+'), its evolution can be univocally
described only if both its amplitude and phase are known. Moreover, in the case of
microresonators, the phase response becomes an even more sensible parameter be-
cause of the diverse information that can be extracted through the phase spectrum,
from the group delay to the coupling regime. Information that cannot be obtained
with a simple transmittance measurement under Continuous Wave (CW) excitation.

In the present thesis we take advantage of the combined information given by
phase and transmittance measurements to investigate the properties of the vertically
coupled resonator system and provide a comprehensive description of the different
phenomena observed in the system. Indeed, a specific interferometric setup for the
measurement of transmittance and phase responses has been implemented (Chapter
2). The resonator-waveguide system under CW excitation has been theoretically
modelled and experimentally observed. A variety of physics has been investigated:
from the basic model describing the coupling dynamics of a single mode resonator
(Chapter 3), to the intermodal coupling that is observed when multimodal resonators
are used (Chapter 4); from the asymmetric resonance doublet that is observed when
counterpropagating modes are non equally excited inside the cavity (Chapter 5) to
the bistable behaviour observed when high optical input power is used (Chapter 6).
The investigated devices are fabricated by Fondazione Bruno Kessler (FBK), whereas
their design, modelling and measurements are carried out within the Nanoscience
Laboratory (NL) facilities.

More in detail, the outline of the thesis is the following:

• Chapter 1 aims at providing basic notions on the investigated system, which is
composed by a bus waveguide and a microresonator. The waveguide responsible
for the resonator excitation is presented in Section 1.1, where its working prin-
ciple and its characterizing parameters are defined. The microresonator is the
subject of Section 1.2: at first, the geometry and materials of a microresonator
(Section 1.2.1), its working principle (Section 1.2.2) and the different light cou-
pling schemes (Section 1.2.3) are briefly described; successively, a larger section
(Section 1.2.4) is devoted to the theoretical model for a singlemode in-plane
resonator: the relevant quantities characterizing a resonator and its different
coupling regimes are discussed. In the last section (Section 1.3) the new visu-
alization of the system response through phasor plot is introduced: the trans-
mittance and phase information are condensed in the real and imaginary part
of the complex electric field vector, which can be represented in a x-y single
graph.

• In Chapter 2 the pump and probe interferometric setup built for the simulta-
neous acquisition of phase and transmittance spectra is presented. Aim of this
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Chapter is to get familiar with this specific measurement procedure in order to
better comprehend the experimental results shown in Chapters 4, 5 and 6. More
specifically, the first part (Section 2.1) contains an introduction to the subject
of phase measurements in integrated devices and highlights the main features of
the presented setup. The second section of the Chapter (Section 2.2) is mainly
devoted to the description of the different elements composing the apparatus; it
starts from the three main stages constituting the actual device, whose aim is to
generate, make interfere and reveal the probe light beam; it successively focuses
on the two different operation modes that can be used to acquire the data and it
concludes the description with the automatized measurement pipeline. This last
element provides a remote control of the whole measurement procedure and it
makes possible to physically isolate the system from the environment reducing
the detrimental action of air fluxes and temperature fluctuations. The third
part of the Chapter (Section 2.3) contains the experimental characterization
of the system through the observation of integrated waveguide and resonator
responses. Firstly, the low power characterization of the two devices in the
linear regime is reported. Secondly, the results of a second test in high power
conditions are discussed: in particular, through Pump&Probe experiment, the
possibility to extract a weak probe signal from a strong pump signal is demon-
strated even with degenerate pump and probe wavelengths. Finally, the time
stability of the system is analyzed in low power and high power regimes.

• Chapter 3 deals with the fundamental model describing the interaction of a
single mode resonator with its vertically coupled bus waveguide. In order to
provide the most clear comprehension of the peculiar properties endowed by this
configuration, a more in-depth analysis to the other common coupling configu-
ration (i.e. in-plane coupling) is presented in Section 3.1. Section 3.2 introduces
the vertically coupled resonator in its geometry and fabrication process, showing
the challenging steps to achieve a proper device and summarizing the positive
features and the limitations offered by this technique. The developed theoreti-
cal model is fully presented in Section 3.3, with particular attention to the gap
and wavelength dependences of the model: indeed, observation of these two
features evidences the actual differences between vertical coupling and in-plane
coupling configurations. Finally, validation of the wavelength dependence is
carried out throughout Section 3.4.2, where experiments performed on a device
are compared with the predictions from the model.

• In Chapter 4 the investigation moves to multimode resonators. Indeed, the
multimodal operation of the microresonator, combined with the peculiar posi-
tion of the waveguide in the vertical geometry, gives rise to intermode coupling
characterized by both reactive and dissipative components. Section 4.1 contains
a general introduction to the subject of coupled systems and a more focused
description of the reactive coupling observed in the specific case of vertically
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coupled resonators. In Section 4.2 the theoretical model proposed in [13] is
presented and a different formulation is proposed. Section 4.3 contains the
experimental validation of the model through simultaneous acquisition of the
phase and transmittance data. In particular, at first, comparison of the ex-
perimental data with the theoretical ones confirms the correct description of
the system that is given by the model. Secondly, the analysis of the experi-
mental data demonstrates that a precise definition of the coupling dynamics is
possible only when both the phase and the transmittance spectra are acquired.
Finally, an experimental result is used to evidence the importance of using an
interferometric setup in the analysis of a microresonator response.

• Chapter 5 treats another peculiar phenomenon generated by the backscattering
of photons inside the resonator cavity. This phenomenon results in the appear-
ance of a resonator mode travelling in the opposite direction with respect to
the waveguide-excited mode. The excitation of this counterpropagating mode
is mainly due to sidewall roughness of the microresonator and its experimental
evidence is the presence of a resonance doublet in the spectrum. This last fea-
ture is due to the lift in energy of the two standing waves that are created inside
the cavity by the interference of the two propagating and counterpropagating
modes. In this Chapter we propose a new model, which takes into account the
multimodal nature of a resonator to justify the presence of asymmetric dou-
blets in the resonator spectrum. More in detail, in order to get familiar with
the phenomenon of backscattering in microresonators, Section 5.1 contains a re-
view of the different models present in the literature and highlights the relevant
contributions that have been identified in the creation of the asymmetric dou-
blet. In Section 5.2, the proposed model is explained: the new contributions,
the considered approximations and the quantities characterizing the doublet
are described. The successive section (Section 5.5), starting from phase and
transmittance measurements, introduces new methods for the identification of
a backscattering generated doublet and for the evaluation of its asymmetry.
Section 5.3 contains the results of 2D simulations on singlemode and multi-
mode resonators to verify the assumptions of the model. Finally, in Section 5.4,
a Pump and Probe experiment performed on a vertically coupled resonator is
discussed. Fitting of the experimental data confirms the goodness of the model
and the observation of the doublet at different wavelengths shows oscillations
of the unbalance up to 40% of the total transmittance. An explanation to this
experimental evidence is provided and qualitative agreement with simulations
is demonstrated.

• Chapter 6 deals with the bistable behaviour that is observed in a microres-
onator in high power conditions, due to the mutual coupling of thermal and
optical effects. In Section 6.1, a general introduction to the thermo optic effect
responsible for the system bistability is given. Then, Section 6.2 focuses on the
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common model of a thermo-optically driven microresonator. Section 6.3 dis-
cusses the experimental results on a vertically coupled resonator and compares
them to the theoretical predictions from the model.

• Final conclusions summarizes the results presented throughout the thesis and
presents some future advances that could be reached.

Personal contribution

Since nowadays the research is mainly the result of the joined efforts of several people
working together in a laboratory, I provide here a description of my involvement on
the different Chapters of the thesis:

• Chapter 2: I directly contributed to the implementation of the setup in all its
components and I personally performed its characterization;

• Chapter 3: starting from the results presented in [14], I have both acquired the
data and developed the theoretical model for the wavelength dependence;

• Chapter 4: I contributed to both the development of the model from [13] and
to the acquisition of the experimental data; this is a collaborative work carried
out with two colleagues (Fernando Ramiro-Manzano and Stefano Biasi);

• Chapter 5: I mainly contributed with the simulations and partially with the
development of the theoretical model and with the analysis of the experimental
data; this is a collaborative work carried out with two colleagues (Fernando
Ramiro-Manzano and Stefano Biasi);

• Chapter 6: I developed the simulations and acquired the experimental data.
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Chapter 1

Introduction

1.1 Waveguides

Semiconductor waveguides have been firstly proposed as the building blocks of an
integrated photonic circuit by Miller in 1969 [15], and that initial idea paved the way
for the birth and evolution of nowadays integrated photonic networks. Since then,
several kinds of waveguide have been created, proposed and exploited in integrated
photonic circuits to channel light from one point to another in the circuit. Strip, strip
loaded and slot waveguides (see Figure 1.11) are only few of the several proposed
geometries [16, 17, 18, 19].

Despite the countless variety of employed shapes and materials, this basic element
is commonly driven by the same steady and simple working principle, namely, Total
Internal Reflection (TIR)2. The TIR phenomenon, which allows to confine a light
beam in a finite geometry, is schematically represented in Figure 1.1(right): the
presence of a material with high refractive index n2 (the waveguide core) surrounded

1Mode profile throughout the thesis are simulated with Comsol® software
2Actually, light guiding can be achieved exploiting different physical principles from TIR: plas-

monic waveguides [20], hybrid-plasmonic waveguides [21] and photonic crystal waveguides [22] are
some alternatives to common waveguides.

Waveguide core
Top cladding

Bottom claddingStrip loaded Slot

θ > θc

θ < θc

n1 < n2

n2

Strip

Figure 1.1: (left) Simulated modes and schematic geometries of (from left to right)
strip, strip loaded and slot waveguides; FEM simulations have been carried out at
� = 1.55 [µm] with Si waveguides (n = 3.5) on a Silica substrate (n = 1.44) and air
as top cladding; strip waveguide dimensions are 220nm⇥ 500nm. (right) Schematic
representation of the Total Internal Reflection principle.

9
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1st TE

1st TM 2nd TM 3rd TM

3rd TE2nd TE 1stx 2ndy TE

2ndx 2ndyTEx
y

Figure 1.2: Simulated waveguide modes for a 1.1µm ⇥ 0.5µm Silicon waveguide at
� = 1.55 [µm]: the electric field arrows in the 1

st TE and TM modes evidence the
difference between the two polarized modes. High order vertical modes are also guided
thanks to the large height of the waveguide.

by a material with lower refractive index n1 (the waveguide cladding) forces the beam
to bounce back inside the core each time it reaches the waveguide walls (see Figure
1.1(Right)). As it is widely known, this effect holds only for beams arriving on the
waveguide wall with an angle ✓ greater than the critical angle ✓c = arcsin (n2/n1),
which results in n2 > n1 to have a guided beam. In order to describe more in detail the
propagation of an optical beam along a semiconductor waveguide, the wavy nature
of electromagnetic radiation must be taken into account.

Indeed, the electric field component of an electromagnetic plane wave travelling
along a waveguide can be described as: E(x, y, z) = E(x, y)e�i�z where z is the
propagation axis, E(x, y) is the electric field profile along the waveguide cross section
and � is the propagation constant of the wave [23]. The accepted values for � and
the corresponding profiles of E(x, y) can be found by solving the Helmholtz equation
for E(x, y):

�
k2
0n

2
(x, y)�r2

xy

�
E(x, y) = �2E(x, y) (1.1)

where n is the refractive index of the materials and k0 is the wavevector of the
propagating wave. Equation 1.1 can be seen as an eigenvalue equation with � and
E(x, y) as eigenvalues and eigenvectors. Therefore, discrete values for the propagation
constants �m comes out as natural solutions of the equation, with as many again
related profiles Em(x, y). These two quantities (�m and Em(x, y)) describes the guided
modes, each one identified by integer numbers called mode numbers (mx,my).

In Figure 1.2 the profile of Em(x, y) for different modes is shown as computed
with a Finite Element Method (FEM) software which solves and propagates local
Maxwell equations. As shown in the figure, many modes are present and more than
one mode number is needed to univocally identify them. In particular two mode
numbers should be used to indicate the horizontal (mx) and vertical (my) profiles,
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with l = m�1 indicating the number of nodes in the profile, here the electric field goes
to 0. A third symbol must be added to describe the polarization of the propagating
field. Indeed, waveguide modes with an electric field component oscillating in the
horizontal/vertical direction are said Transverse Electric/Magnetic (TE/TM) modes,
respectively. They can show very different behaviours due to their different field
distribution, as shown in Figure 1.2. The TE and TM modes with mode number
m = 1 do not show any node in their field profiles and they are called the fundamental
modes of the waveguide. Since common waveguides can usually sustain only the
fundamental vertical mode (my = 1), because higher order modes are not guided due
to their high attenuation coefficients, only the horizontal mode number is considered
and modes are described as 1

stTM, 2ndTE,etc... The electric field profile E(x, y)

associated to each mode is not confined within the waveguide core, but it extends
into the cladding material. More precisely, in the case of a symmetric slab waveguide
(E(x, y) = E(y), the field profile can be described with a cosine function inside the
waveguide core and with a decreasing exponential function at the cladding level [23]:

Em(y) /
(

cos

�
2⇡
�
sin (✓m) y

�

sin

�
2⇡
�
sin (✓m) y

�
m = even

m = odd
(core)

Em(y) /
(

exp (��my)
exp (�my)

y > 0

y < 0

(cladding)

where the parameter �m =

p
�2
m � n2

2k
2
0 is the extinction coefficient. The expo-

nentially decaying field outside the waveguide is also called evanescent field, and it
represents the part of the field most sensitive part to the outer environment. Indeed,
coupling of light from one element to the other takes advantage of this field tail and
allows different structures to be used such as directional couplers and resonators.

The other parameter characterizing a mode, i.e. the propagation constant, can
be written as �m = k0neff,m where neff,m is the effective refractive index of the m-th
mode and, in general, is a complex quantity. In the following, linear propagation of
a light beam is considered; a brief discussion of beam propagation inside a nonlinear
media can be found in Chapter 6 or, more extensively, in several books [24, 25, 26].
In the linear case, the imaginary part of neff (n̂eff ) deals with wave attenuation:
the intensity of every waveguide mode decreases exponentially with the propagation
length, following the Lambert-Beer’s law: I(z) = I0e�↵z, where I0 is the initial inten-
sity and ↵ = 2k0n̂eff is the attenuation constant. The sources of losses contributing
to an increase of ↵ can be very different, from material absorption to surface scatter-
ing, to radiative losses when bent waveguides are considered [27]. The real part of
neff (n̄eff ) is related to the mode propagation speed along the waveguide. Indeed,
the phase velocity of the propagating mode is found to be: vp,m =

c
n̄eff,m

while the
group velocity is obtained as:

vg,m =

d!

d�m
=

c

n̄eff,m + ! dn̄eff.m

d!

=

c

n̄eff,m � �dn̄eff.m

d�

=

c

ng,m

(1.2)
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Figure 1.3: Simulated effective index (left) and group index (right) of waveguide
modes shown in Figure 1.2. Effective index intersection observed at about 1650nm
for high order modes evidences their different dependence on wavelength.

where ng,m is the modal group refractive index. Examples of neff,m and ng,m for
different modes propagating in a common strip Silicon waveguide are shown in Figure
1.3 as a function of the wavelength. In a naive view of the waveguide properties, the
neff parameter can be thought as a weighted refractive index between the core and
the cladding ones (ncladd < neff < ncore ). The weights depend on the distribution
of the optical mode inside and outside the waveguide core. A mode highly confined
in the core possesses an effective index similar to the bulk core one and, conversely,
a very low confinement is associated to modes showing an effective index near the
cladding bulk index. As a consequence, the waveguide parameters (�, �, ng, etc..)
depend on the waveguide geometry, on the materials (core and cladding) and on
the wavelength. This last dependence is due to the wavelength dependent refractive
indexes and to the lower confinement achieved at higher wavelengths.

In addition to these parameters one can compute the Group Velocity Dispersion
(GVD) of a mode as: GVDm =

d2!
d�2

m
= �2⇡

!

d2n̄eff

d�2
which becomes an important

parameter when wideband propagation occurs [28]. Other parameters that can be
extracted from the field distribution are the field confinement factor and the effective
modal area [29]. The confinement factor is described as :

�m =

˜
core

n2
(x, y)E2

m(x, y)dxdy˜
n2
(x, y)E2

m(x, y)dxdy
(1.3)

and gives a more quantitative description on the amount of field propagating inside
the waveguide core. The effective modal area can be written as:

Aeff,m =

�˜
E2

m(x, y)dxdy
�2

˜
E4

m(x, y)dxdy
(1.4)

and describes the spreading of the mode outside the waveguide core. These pa-
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Figure 1.4: Absolute and relative phase for the 1

st TE mode shown in Figure 1.2
after 1mm propagation. The relative phase is obtained from the comparison with a
reference phase coming from 1mm propagation in bulk Silicon.

rameters become important when nonlinear processes are considered, because a field
propagation inside the active element (i.e. the waveguide core) is a desirable condition
to increase the efficiency of the process [30].

Finally, also the phase 'm of a propagating mode can be extracted from the
effective index, being 'm(z) = arg(E(z)) = �mz where z is the travelled length. The
phase dependence on wavelength for a Si waveguide is shown in Figure 1.4 for a
propagation length of 1mm. As it appears from the figure, a strong phase variation
with wavelength is observed: this is due to the long optical path, which enhances
the small wavelength variation thousand of times. A possible way to decrease this
phase dependence and stabilize its value is to compare it to a reference line where a
material with similar refractive index to the one of the guided mode is used. In this
way the difference between the reference and the investigated phases is less wavelength
dependent, as shown in Figure 1.4 (in the figure the same core material but in its bulk
form is used). This small dependence is needed when experimentally probing a device
and it is commonly adopted in interferometric measurements, where the signal from
a reference arm is combined with the one coming from the sample arm to achieve a
relative phase variation. This technique is employed in all the phase measurements
presented in the thesis and a more detailed explanation is contained in Appendix A.

1.2 Microresonators

1.2.1 Materials and geometries

Several kinds of microresonators have been fabricated, showing different shapes, ma-
terials and dimensions. Fused silica toroids and microspheres, integrated microrings
and microdisks (Figure 1.5) and many other resonating geometries have been ideated
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Figure 1.5: SEM images of different microresonator geometries: (from left to right)
toroid, sphere, ring, disk and racetrack. Images taken from [32, 33, 34].

for the study of fundamental phenomena as well as for their implementation in a
photonic chip. Among the group IV most used materials for microresonators we
find Silica, Silicon and Silicon based materials such as Silicon Nitride (SiN), Silicon
Oxynitride (SiON) and Hydex [1, 31].

1.2.2 Working principle

The most simple representation of a microresonator is a circular waveguide looped
back on itself. Propagation of a light beam inside the resonator is driven by the
same principle described for the waveguide and, as for waveguides, the first order
vertical modes are usually the only guided modes. Therefore, only the horizontal
mode number (mx) is used and it is called the radial mode number (due to the
circular geometry of the system). The peculiar property of a microresonator is the
possibility to accumulate light, just as it happens in the cavity of a common Fabry-
Perot resonator. This can be achieved only when the resonant condition is met:

l� = Leffneff (1.5)

where l is an integer number called the azimuthal mode number, � is the circulating
wavelength and Leff = 2⇡Reff is the resonator effective length . This latter usually
does not coincides with the geometrical perimeter of the resonator. Indeed, as it will
be shown in Section 3.3.2, the resonator modes propagate at a radius Reff , different
from the resonator one.

Equation 1.7 states that, when the optical path length equals an integer number
of the incoming wavelength, the input wave reproduces itself after a roundtrip and
a complete constructive interference of several waves is found. Therefore, when the
resonant condition occurs, the system accumulates energy in the resonating radial
mode. Different resonant modes are usually grouped in families of modes, each one
containing modes with different azimuthal number l but with the same radial mode
number m. For this reason they are called the m-th radial mode order family.

In the case of a racetrack resonator (Figure 1.5) the presence of an extended
coupling region modifies the resonant condition: l� = Leffneff + 2LCneffC , where
LC and neffC are the length and effective refractive index of the directional coupler,
respectively.
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Figure 1.6: Schematic representation of different coupling techniques: (from left to
right) prism, tapered fiber and waveguide based coupling.

1.2.3 Light coupling

In order to optically probe the properties of a resonator, a light signal is injected
to and extracted from the resonator through a coupling element (a waveguide in our
case). The coupling principle takes advantage of the evanescent field of guided modes,
which propagates outside the coupling element. When the waveguide approaches the
resonator, part of this evanescent tail couples to the cavity supported mode and the
optical signal is transferred to the resonator or leaks out from it. At this point, when
the resonance condition is met, the continuous external excitation from the coupling
element leads to power enhancement inside the resonator. On the basis of this prin-
ciple, several coupling configurations have been exploited (see Figure 1.6), each one
presenting specific features that can be used in different applications. As an exam-
ple, prism coupling has been proven to be a useful approach when silica microsphere
resonators are used, because of its easy implementation in a freespace setup and its
fine tuning of the coupling distances. [35]. Another very commonly adopted coupling
scheme consists in moving a tapered silica fiber near to the resonator edge. In this
way the low confinement obtained along the tapered region of the fiber combined
with the short gap between the two elements allows light to be coupled to the res-
onator. This technique is frequently used in the test of freestanding devices, such as
Silica microspheres, toroids or microdisks [36, 37]. Indeed, the possibility to move the
coupling element both in the horizontal and vertical directions allows the best cou-
pling configuration to be found with any freestanding device. However, this coupling
technique presents also some drawbacks: for example, the circular crossection of the
fiber makes the lateral coupling to a planar resonator difficult to be achieved. In
addition, the possibility to move the fiber along the diverse directions is provided by
piezo electric movimentation, which usually causes larger instability of the coupling
element and represents an additional noise source. Finally, another relevant disad-
vantage is the not-integrated nature of the fiber, which prevents CMOS fabrication
of the whole device to be achieved. A common alternative to this approach is the use
of an integrated waveguide. In this case in-plane and vertical configurations provide
excellent light coupling for both planar and freestanding devices, with nanometric
precision on the gap size [9, 38]. Moreover, the stable coupling conditions produced
with the integrated fabrication diminish the coupling related noise.



16 Chapter 1. Introduction

An important feature to take into consideration when coupling light to a microres-
onator is phase matching. This term refers to momentum conservation and it becomes
particularly relevant in the case of nonlinear processes (e.g. in the case of Second Har-
monic Generation (SHG) or Four Wave Mixing (FWM) processes) where it plays an
important role in defining the efficiency of the nonlinear generation [39, 40, 25]. The
phase matching condition for light coupling corresponds to require the wave vector
of the photons into the waveguide and into the resonator to be identical. This is par-
ticularly important in racetrack resonators, where the long range coupling becomes
effective only when the two waves propagating in the directional coupler travel at the
same phase velocity, i.e. with matched phase profiles [41]. Also in the case of Silica
spheres, coupling related phase matching has a relevant contribution to determine
the final coupling coefficient. In this sense, an interesting and detailed treatment of
phase matching for prism and tapered fiber coupling in microspheres can be found
in [42]. For what concerns in-plane point coupling with integrated microresonators,
the assumption of a point coupling region due to the low radius and the employment
of similar resonator and waveguide materials reduces the dependence of coupling ef-
ficiency on phase matching. Actually, a more important coupling parameter in this
configuration is the overlap between the waveguide mode and the resonator mode.
Finally, phase matching in vertically coupled structures can be treated as in racetrack
resonators: as explained in Chapter 3 light coupling occurs on a distributed region
and can be described with similar terms used for a directional coupler.

1.2.4 Theoretical model

Regardless of the kind of coupling, the excitation of a microring resonator is described
as a point interaction: the exchange of energy is thought to happen only at a given
point, which is usually placed in the middle of the coupling region, where the gap is
minimal. This fact is not true for the vertical coupling case, and Chapter 3 explains
the origin of this difference.

A general model explaining the coupling and thus the dynamics of a singlemode
microresonator was described by Stokes in 1982 [43], which considers the coupling
region as a directional coupler with two input and two output ports (see Figure 1.7).
Energy conservation at the coupling stage requires the coupling coefficient k and the
transmittance coefficient t of the directional coupler to satisfy: k2

+ t2 = 1, where
negligible coupling induced losses are considered. Using Transfer Matrix Formalism
[44] the electric field at the output ports of the directional coupler can be described
as:


E3

E4

�
=


t ik

ik t

� 
E1

E2

�
(1.6)

where E1 6= 0 indicates the waveguide excitation field amplitude. The presence of
the resonator forces the power at the resonator output to be:
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Figure 1.7: Sketch of the theoretical model of a coupled microresonator with the
coupling region depicted as a 2x2 port directional coupler.

E2 = E3e
�↵Lei�L. (1.7)

where L = 2⇡R is the effective resonator length already described. Indeed, a wave
propagating along the resonator diminishes exponentially its amplitude due to the
intrinsic losses (the loss coefficient ↵(�) being always positive3) and changes its phase
depending on the propagation constant �. The parameters ↵ and � in a more gen-
eral form should be written as ↵m,l and �m,l to evidence their dependence on the
guided mode order m and on the azimuthal mode number l. Coupling light from the
waveguide to the resonator does not only affects the spectral width and depth of the
resonance, but also its spectral position: the propagation constant �m,l and, thus,
the effective index neff , depend on the environment. As it will be shown in Chapter
4, the waveguide position modifies the propagation constant of the resonating mode:
being made of a different material from the cladding it alters the refractive index of
the resonator environment and it brings to a shift of the resonances which is as much
large as the waveguide approaches the resonator.

The model is valid also for a racetrack resonator, with only few differences: the
directional coupler length constitutes an additional parameter to tune the coupling
coefficients k and tcontained in Equation 1.6; the attenuation and propagation of
the electric field along the resonator described in Equation 1.7 should be modified
as follows: E2 = E3e�(↵RLR+↵C2LC)ei(�RLR+�C2LC), where two contributes are high-
lighted, one coming from the straight propagation along the directional coupler (C
subscript) and one from the curved elements (R subscript). LC and LR = ⇡R are the
length of the directional coupler and of one curved element, respectively. With these
modifications also the results presented below can be applied to racetrack resonators.

Substituting Equation 1.7 into Equation 1.6, the solution for the field amplitudes
3↵ > 0 is here assumed because passive and lossy devices are studied. For completeness, when

↵ < 0 (i.e. for active devices) power amplification occurs, which can bring to signal amplification
and lasing [45].
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Figure 1.8: Transmittance spectrum of a 70µm radius SiN microresonator (neff =

1.75 at 1.55µm) as obtained from Equation 1.8 for three different coupling regimes
identified by the parameter r = ⌧/t.

E3 and E4 in stationary conditions can be found. Then, the transmittance can be
computed as:

T =

����
E3

E1

����
2

=

����
⌧ � te�i�L

1� ⌧ tei�L

����
2

(1.8)

where ⌧ = e�↵L is the roundtrip attenuation coefficient. On resonance (i.e. for
�L = 2⇡) Equation 1.8 becomes:

T =

����
E3

E1

����
2

=

����
⌧ � t

1� ⌧ t

����
2

(1.9)

In Figure 1.8 the transmittance response obtained from Equation1.8 is shown
with the typical peaks associated to resonator resonances. Depending on the ratio
r =

⌧/t between the attenuation coefficient and the transmittance coefficient, three
different coupling regimes can be identified (in Figure 1.8 the coupling coefficients are
tuned and the roundtrip attenuation coefficient is fixed to ⌧ = 0.95). Indeed, when
r < 1 the resonator is said to be in the under coupling regime. The word indicates
the lower losses that are associated to the coupling process (extrinsic losses) with
respect to the one associated to light propagation inside the microresonator (intrinsic
losses). In this regime the device spectrum is mainly driven by the internal losses
and its transmittance shows narrower resonances. The opposite case is found when
major losses are associated to coupling (r > 1) and the spectrum results in wider
resonances. The in between situation is found when the two channel of losses equals
(r = 1) and the resonator falls in the critically coupled regime. This condition is
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easily recognized from the spectrum, which shows dips with null transmission.
More in detail, the spectral shape of the resonances shown in Figure 1.8 is a

Lorentzian lineshape (with a unity offset). This can be easily seen performing an
expansion of Equation 1.8 near the resonance condition (i.e. for � = �r + ��, with �r
satisfying Equation 1.5). The resulting transmittance is:

T (��) = 1� (1� t2) (1� ⌧ 2)�
2⇡neff

��
�2

�
t⌧ + (1� t⌧)2

(1.10)

which is a Lorentzian function of ��. The quantities 1 � t2 and 1 � ⌧ 2 can be
related to the coupling and intrinsic losses of the resonator, respectively. With some
mathematical elaboration of the above equation, an expression for the resonator Free-
Spectral-Range (FSR) and the resonance Full-Width-at-Half-Maximum (FWHM) 4�
can be reached [46, 47]:

FSR (�) ⇠ �2

2⇡Rng (�)
(1.11)

4� =

(1� t⌧)�2

⇡ng (�) 2⇡R
p
t⌧

(1.12)

where ng is the group index defined in Equation 1.2. The FWHM of a resonance
allows to compute the quality factor Q of the device:

Q =

�

��
(1.13)

which represents the average number of oscillations the propagating wave makes inside
the resonator perimeter. Despite Equation 1.13 can be used to experimentally infer
the Q factor of the probed structure, another description of the Q-factor allows a
more clear connection of this quantity to the device properties. Indeed:

Q =

2⇡ctc
�

=

2⇡c

�↵c

(1.14)

Thus, knowing the Q factor, one can obtain the average lifetime a photon spends
inside the resonator tc, or the attenuation rate ↵c = 1/tc.

Several loss channels can contribute to increase the attenuation of a microres-
onator and they are usually divided into intrinsic and extrinsic ones. Intrinsic losses
consist of material absorption, bending losses (also called radiation losses), scattering
losses and surface absorption [27], while the extrinsic losses are mainly represented
by coupling losses. Interestingly, when a resonator is found in critically coupled
regime (↵i = ↵e), an experimental value for the intrinsic losses can be achieved, be-
ing: Q = [1/Qi + 1/Qe]

�1
=

Qi=Qe

Qi/2, where Qi/e / 1/↵i/e are the intrinsic/extrinsic
quality factors, respectively.

Another useful parameter to be computed is the Field Enhancement factor (FE),
which indicates the field magnification occurring inside the resonator volume:
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Figure 1.9: (left) Field Enhancement for a microresonator as found from Equation
1.15 for three coupling regimes already investigated in Figure 1.8 and (right) FE
for different attenuation and transmission coefficient with the maximum values high-
lighted in red.

FE =

����
E4

E1

����
2
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����
it⌧ei�L

1� k⌧ei�L

����
2

(1.15)

The presence of a strong field inside a small volume is a peculiar property of mi-
croresonators, which makes them suitable elements for the observation of nonlinear
effects at low input powers [48]. In this sense, an essential step to properly exploit the
optical power accumulation produced by the resonator is a correct selection of light
coupling parameters. Indeed, coupling of light inside a resonator highly affects both
the internal power enhancement and the obtained output power, and thus represents
one of the most important parameters to take into account in the design and test of
microresonators. In Figure 1.9 the FE occurring inside a SiN resonator is shown for
the three different regimes (system parameters are the same used to create the data
shown in Figure 1.8). As it appears from the three curves, the larger enhancement is
achieved for critical coupling conditions; this fact is confirmed by Figure 1.9(right),
where the FE at different coupling coefficients t and attenuation coefficient ⌧ is rep-
resented: the maximum FE for every coupling coefficient is evidenced by the red line
and it is obtained for ⌧ = t. The same result can be reached looking at the resonator
stored energy [27]:

Uc =
Qi�

2⇡c
(1� T )Pin (1.16)

where the maximum energy for a fixed input power Pin occurs when the transmit-
tance drops to its lowest value (i.e. 0 in critical coupling). From Equation 1.16 also
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Figure 1.10: Folded and unfolded phase spectra of a microresonator as obtained from
Equation 1.17 with the same system parameters used in Figure 1.8.

the role of the internal quality factor becomes clear. Indeed, a higher Qi provides
larger circulating energy, and thus favors the appearance of nonlinear phenomena and
decreases their threshold power.

From these considerations the importance of a proper coupling is evident. In
this sense, with the observation of the phase response of a resonator a deeper under-
standing of the coupling dynamics can be achieved. Indeed, the optical phase delay
accumulated by the electrical field when travelling along the device can be easily
computed as:

' = arg

✓
E3

E1

◆
= ⇡+�L+tan

�1

✓
t sin(�L)

⌧ � t cos(�L)

◆
+tan

�1

✓
t⌧ sin(�L)

1� t⌧ cos(�L)

◆
(1.17)

Folded and unfolded phase spectra for three different coupling regimes are shown
in Figure 1.10. The difference observed between the two visualizations is only appar-
ent: an electromagnetic wave shifted forward in phase by ⇡is identical to the same
wave shifted backwards of the same quantity (i.e. �⇡); similarly, when the wave
reaches 2⇡ shift it regain its initial shape. In the following the folded visualization
is used because experimental phase values are found in between ±⇡, as explained in
Section 2.2.5.

Looking at the folded spectra in the three coupling regimes, different behaviours
can be recognized: the phase of an undercoupled resonator is always found between
±⇡/2 and it feels no shift on resonance, while the overcoupled one shows values up
to ⇡/ � ⇡ on resonance. An explanation to this fact lays in the coupling dynamics,
which brings to the final signal. Indeed, the waveguide output field E3 is obtained
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from the interference of two signals, the one transmitted from the waveguide and the
one coupled back from the loaded resonator:

E3 = rE1 + itE2 (1.18)

the complex unity i at the resonator output being due to the additional 2(⇡/2) phase
shift felt by the field when crossing (two times) the coupling region between the two
elements. As a consequence to this additional shift, the two outgoing waves (from
the resonator and from the waveguide) always interfere destructively. On resonance,
in undercoupling regime the major contribution to the output intensity comes from
the waveguide not shifted field, whose larger amplitude cancels the weaker field from
the resonator. A null final phase shift between the on and off resonance signals is
then found. In the opposite case (overcoupling) a greater contribution to the output
field is coming from the resonator, thus showing a net ±⇡ shift on resonance. In the
boarder case of critical coupling, a precise value for the phase on resonance cannot
be determined due to the absence of a signal (T = 0) and thus shows a discontinuity
passing from �⇡/2 to ⇡/2. The out of resonance response shows a more complicated
behaviour because the not achieved resonance condition (Equation 1.5) produces a
variable shift between the two outgoing waves, with the not coupled one increasing
its weight as the input laser gets off resonance. Far from resonance the phase in the
three regimes reaches the same null shift, as expected from a signal not coupled to
the resonator.

This simple analysis evidences the advantages offered by phase measurements
when a correct identification of the resonator coupling regime is needed. Indeed, the
transmittance spectrum does not show an equal net difference between under and
overcoupled peaks. As an example, a comparison between Figure 1.8 and Figure 1.10
shows that similar transmittance minima can be found even when the phase clearly
indicates that opposite regimes are present.

Another important quantity that can be computed with a phase spectrum is the
group delay ⌧g = d'(!)

d!
= �2⇡�2

c
d'
d�

, which physically describes the time delay accumu-
lated by a light pulse when crossing the system. In Figure 1.11 the group delays for
the three coupling regimes are shown. A larger delay is achieved when the resonance
condition is met in critical/overcoupling condition due to the additional time spent
by the light beam while propagating along the resonator. This property is currently
exploited in the creation of integrated delay lines for coincidence measurements or in
the implementation of all-optical buffers [49, 50, 51]. Interestingly, the phase delay
found for an undercoupled device can assume positive and negative values: this is
a counterintuitive result, which seems to suggest a superluminal propagation of the
light beam. However, several debates on this subject brought to prove this odd ob-
servation as a manifestation of the wavy nature of light: the group and phase velocity
of a signal (which can actually be higher than c) are not related to the information
carried by that signal [52, 53, 54]. Despite this fundamental controversy, a more
practical approach aiming at creating an efficient delay line requires a precise control
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Figure 1.11: Phase delay of a microresonator for different coupling regimes.

of the bandwidth. Indeed, overcoupled resonances should be preferred to obtain a
flat response due to their larger FWHM. In this sense, an additional parameter to
consider are resonator intrinsic losses: low loss microresonators produce larger delay
times and seem to be preferable structures. However, the small bandwidth associated
to high Q resonators limits their application in delay lines. An already exploited so-
lution is to use cascades of overcoupled resonators [49]: the bandwidth remains the
single resonator bandwidth, but the total delay is increased by the multiplication of
n single delay times (n being the number of cascaded resonators).

1.3 Phasor representation

When phase (') and transmission (t) responses of a device are simultaneously mea-
sured, an interesting representation can be exploited. The real and imaginary parts
of the outcoming electromagnetic wave can be described as:

Re(E) = |t| cos(') Im(E) = |t| sin(') (1.19)

and condensed in the phasor diagram representation widely used in electronics.
The phasor angle is related to the phase response of the device, while its transmit-

tance is described by the phasor radius. This representation is useful in the analysis
of several optical phenomena such as Fabri-Perot interference [55], but it becomes
an even more interesting tool when resonating devices are studied. Indeed, the con-
densed information of phase and transmittance allows an ease discrimination of the
different coupling regimes to be achieved.

The phasor plot in Figure 1.12 gathers the two spectra of Figure 1.8 and 1.10
(replotted for ease of visualization) through Equation 1.19. As it appears from the
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Figure 1.12: (left) usual separated transmittance and phase spectra of a microres-
onator and (right) condensed phasor plot in the three coupling regimes.

plot, a circular phasor curve is associated to each resonance. However, a more careful
analysis highlights a clear difference between under and over coupled resonances. In
the first case the related phasor shows an always positive real component, while in
the second case the circle crosses the imaginary axis and a negative real component
of the phasor is found (i.e. at a given wavelength). This simple analysis holds for
any resonance, even in the case of multiple coupled modes (see Chapter 4 and 5)
where a common spectrum representation becomes less intuitive. Actually, a relevant
drawback of the phasor representation is the loss of information on wavelength, which
can be roughly described by the color of the phasor curve, as in Figure 1.12.

This brief introduction on the properties of waveguide and resonators highlights
the complementary information carried by phase and transmittance measurements
on a microresonator, and makes clear the deeper investigation that is made possible
when both these two quantities are observed. Before going into details on the physics
that has been studied with this combined approach, we present in the following
Chapter the experimental set up that has been specifically implemented to perform
simultaneous phase and transmittance measurements.



Chapter 2

Interferometric setup

2.1 Phase measurement in integrated devices

Among the different techniques that can be used to obtain the phase of a propagat-
ing optical signal, interferometry is the most common one. Integrated Mach-Zehnder
Interferometers (MZI) have been widely implemented in photonic integrated circuits
for fast and ease test of the devices [56]. Moreover, the high phase sensitivity of
interferometric measurements has been exploited also in biosensing devices, where
integrated MZI constitutes mature sensing elements [57, 58, 59]. Despite commonly
used, this integrated approach presents some drawbacks. At first, it requires prelim-
inary design of the device, which should include an interferometer on each element
that is going to be tested, with a consequent increase of the device footprint and an
increment in the source of error for the fabrication process. Secondly, even if this
approach allows phase and transmittance to be measured on the same device with
proper use of splitters, it could suffer from bandwidth limitations due to the presence
of directional couplers [60]. Y splitters can also be used to increase the bandwidth,
but they usually introduce high losses in the photonic circuit. Actually, alternative
techniques have been proposed to avoid the design of specific structures inside the
tested devices. A solution proposed by Gifford et al. [61] relies on Fourier Transform
analysis of orthogonally polarized optical signals in what is called an Optical Vector
Network Analyzer. Another approach by Mas et al. [62] relies on modulation of the
optical signal inside the interferometer arms. Slightly different modulation frequen-
cies in the two arms produce beating of the interference signal, which can be analyzed
with a lock-in amplifier to extract the phase information. Both these methods are
suitable for passive characterization of photonics component and they can be used in
a wide wavelength range.

In order to enlarge the features offered by interferometric measurements and
deepen the investigation on resonating structures, we built a free-space setup able
to capture simultaneously the phase (') and the amplitude (T ) of a transmitted
light beam, which propagates in a photonic device (Figure 2.1(center)).

In addition to this feature, the implemented setup is also provided with a filtering
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Figure 2.1: Schematic representation of the information available by interferometric
measurements. The most common approach (left), where separate measurements are
carried out to obtain amplitude and phase, is substituted with the presented one
(center), which acquires phase and amplitude simultaneously and allows standard
phasor representation to be exploited; (right) in addition, Probe phase and amplitude
can be extracted in a degenerate Pump & Probe experiment without any optical
filtering stage; DUT=Device Under Test.

stage which makes it an ideal platform for degenerate Pump & Probe experiments,
i.e. when the Pump and the Probe signals have the same wavelength. The system
is able to filter out a Pump beam three orders of magnitude stronger than a Probe
signal (Figure 2.1(right)) without the need of specific optical filters.

In the following sections, a complete description of the features offered by this
setup and the demonstration of the above mentioned properties are provided. In
particular: in Section 2.2 a detailed description of the setup is given; Section 2.3 shows
few experiments performed on different integrated waveguide samples and highlights
the crucial features of the setup; finally, Section 2.4 summarizes the results of the
characterization and presents some possible improvements.

2.2 Setup description

The different parts constituting the setup (see Figure 2.2), namely, the Preparation,
Interference and Detection stages, are described in Section 2.2.1, 2.2.2, 2.2.3, respec-
tively. The two acquisition modes used to extract the optical phase are explained in
Section 2.2.4 and the influence of external unwanted sources of noise on the system
is discussed in Section 2.2.5.

2.2.1 Preparation stage

The preparation stage (Figure 2.2(top)) creates and manipulates two optical signals:
the Probe and the Pump signals.

In particular, the Probe signal is provided by a fiber pigtailed Continuous Wave
Tunable Laser (CWTL) operating in the IR range (1490-1610 nm) at a maximum
power of 10mW. The laser beam undergoes an intensity modulation by an optical
chopper wheel at a modulation frequency of about 1kHz. This modulation allows
the readout of the signal from a lock-in amplifier at the detection stage (see Section
2.2.3 below). To avoid mechanical noise from the motor, the chopper has been placed
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Figure 2.2: Sketch of the experimental setup; (top) Preparation stage:
CW=Continuous Wave, EDFA=Erbium-Doped Fiber Amplifier, VOA=Variable Op-
tical Attenuator; the Pump (shaded area) and Probe laser beams are polarized and
then attenuated with the VOA (Pump) or modulated through the chopper wheel
(Probe); (center) Interference stage: BS=Beam Splitter, OSA=Optical Spectrum
Analyzer; PD=PhotoDetector; the beam coming from the preparation stage is split
in two beams, one crossing the sample and one travelling in free space, both of them
encountering modulation and attenuation components along their path to the second
beam splitter where recombination occurs; (bottom) Detection stage: the combined
beams are acquired by two Germanium PD (only one is shown) and the modulated
Probe signal is revealed by the filtering action of the Lock-in Amplifier. Several
communication buses allow to remotely control the instruments via computer. The
connected instrumentation shows the symbol
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outside the optical table containing the interferometer.
Despite the setup can operate with only this Probe source, for example to charac-

terize passive devices, a second laser beam can be coupled to realize Pump & Probe
experiments. The Pump signal (shaded box in Figure 2.2) consists of a fiber pigtailed
CWTL, whose output is amplified by an Erbium Doped Fiber Amplifier (working
wavelengths 1535-1565 nm) resulting in a high power signal (5W maximum). This
passes through a Variable Optical Attenuator (VOA), provided with remote control,
and then it is coupled to the modulated Probe via an integrated 2x1 (50/50) fiber
optic coupler.

Polarization and isolation stages are present for both the Pump and the Probe
signals in order to select the desired optical mode polarization (TE/TM) and prevent
laser damage, respectively.

The Probe beam can be used alone or with the Pump one, depending on the
experiment. When only the Probe signal is used, the Lock-in amplifier basically
contributes in reducing the noise of the measurements. When both the Pump and
the Probe signals are sent through the interferometer, it acts as a filter for the Pump
signal and it allows to isolate the information carried by the weak probe. Remarkably,
the filtering efficiency does not depend on wavelength and the Pump can be filtered
out also when degenerate in wavelength with the Probe signal (see Section 3.3, a
result that can not be obtained with optical filters.

2.2.2 Interference stage

After the first stage, the two fiber coupled signals are sent through a collimator, which
constitutes the starting point of the second stage. The interferometer is a MZI (Figure
2.2(center)). The device under test (DUT) is placed on one of the two arms of the
interferometer, between two objectives equipped with xyz piezo-positioners for correct
alignment. Objectives are here used since we mostly deal with silicon photonics where
the waveguides have small cross-sections (v µm2). An IR camera on top of the sample
allows for direct observation of the sample. Let us call the arm with the tested device
the sample arm and the one without the free arm. Finally, a chopper wheel and an
open/closed shutter are present on each arm. They allow two different acquisition
modes to be used (see Section 2.2.4 below). A 90/10 cube beam splitter is used at the
initial splitting stage of the interferometer to partially compensate for the coupling
losses at the sample stage, which can be as high as 20dB depending on the sample.
In order to minimize these losses, an active control of the alignment is also present:
simultaneous movement of the objectives and acquisition of the transmitted Probe
power allows to maximize the signal output and to find the best configuration for the
measurement. Fine tuning of the optical power is possible also along the free-arm,
thanks to a tunable attenuator provided with remote control. A third beam splitter
(BS3) allows for continuous power measurement and spectrum acquisition by means
of a photodetector and an Optical Spectrum Analyzer (OSA), respectively. In order
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to balance the different dispersion in the two arms, a delay line made of a series of
movable glasses is inserted. Indeed, the delay perceived by light when travelling along
the sample arm is wavelength dependent due to the dispersion of the involved media.
The same delay can be reproduced with the insertion of a similar material in the
other arm, where precise dimensioning of the material thickness allows to reduce the
phase dependency on wavelength. A detailed explanation of this phenomenon and a
simple model to describe it are given in Appendix A.

Total losses occurring to the Probe and to the Pump along the optical line up
to the sample alignment stage account for 18dB and 12dB, respectively, the Probe
making an additional free-space step at the preparation stage to be modulated by
the chopper wheel.

2.2.3 Detection stage

Once the signal is recombined by the second beam splitter, it enters the detection
stage where it is acquired by two Germanium PhotoDetectors ((PD), only one shown
in Figure 2.2(bottom) for ease of visualization). At this point, the Pump continuous
beam, when used, generates the DC component of the electrical signal, which is mea-
sured with a multimeter; at the same time, the modulated Probe creates a modulated
electrical signal, which can be extracted with a Lock-in Amplifier and measured with
an oscilloscope. Alternatively, a flipping mirror can deviate the optical signal to an
IR camera to verify the correct superposition of the two beams coming from the free-
arm and from the sample arm. This is a necessary condition to optimize interference
and, thus, reduce phase errors.

2.2.4 Acquisition modes

The system output consists in three different signals: one coming from the sample
(IS), one from the free-arm (I0) and one from the interference between the two (I).
From these quantities the phase difference (�') accumulated by light when travelling
through the sample with respect to the free arm can be obtained. Indeed one can
easily see that:

I = I0 + IS + 2

p
I0IS cos�' (2.1)

Manipulation of the above equation allows to evidence the relevance of an accurate
power balancing of the two arms. Indeed, being:

�' = cos�1

✓
I � I0 � IS
2

p
I0IS

◆
(2.2)

it comes out that a system with equal powers for I0 and IS minimizes the experimental
error on �'. Moreover, the larger slope of the cos

�1 function at the boarder of its
domain (i.e. -1 and 1) brings to a lower accuracy of the extracted phase values
when �' is about 0 or 180 degree. The above considered equations are valid for the
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Figure 2.3: (top) acquisition procedure in normal mode: the three different quantities
I0, IS and I are acquired along three identical continuous scans of the laser wave-
length thanks to the different configuration of the two shutters; O=Open C=Close;
(bottom) acquisition procedure in choppered mode: proper configuration of the two
chopper wheel frequencies (20Hz and 60Hz for Chopper 1 and Chopper 2, respec-
tively) provides a modulation of the optical signal which contains information about
the three required quantities; wavelength step scan (one per each period of Chopper
1) allows recreating the phase and transmittance spectra.

in-phase component of the Probe signal. The presence of two Ge detectors allows
to observe also the quadrature component of the Probe signal; in this case the cos
function should be substituted with the sin function in Equation 2.1, due to energy
conservation.

In the described setup, the three signals I0, IS and I can be acquired with two dif-
ferent methods, called normal and choppered, whose operating principles are schemat-
ically represented in Figure 2.3. In normal mode operation (Figure 2.3(top)) three
repeated scans of the laser wavelength are performed and different configurations of
the two movable shutters (open-closed, closed-open and open-open) are used to select
at each scan the desired quantity I0, IS or I. Measurement of closed-closed config-
uration is also possible if a reference noise spectrum is needed. In this acquisition
method, the two chopper wheels inside the interferometer stay in open position and
do not play any role in the measurement. On the other hand, in choppered mode
the two wheels are driven at multiple frequencies (20 Hz and 60 Hz in our system)
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and the movable shutters are fixed in the open-open configuration. This working
configuration allows the acquisition of the three signals for each wavelength while
slowly scanning the Probe wavelength, as depicted in Figure 2.2(bottom). Indeed,
the choice of multiple frequencies creates a final signal which brings information on
all the three quantities.

Both methods present advantages and limitations. In normal mode, on one hand,
fast and wide range wavelength scans can be performed. For reference, 100 nm
scan with 20 pm resolution takes less than 3 min. On the other hand, accuracy on
wavelength and power is not assured because the laser response can vary within the
three repeated scans, thus introducing an error source in the system. This effect
becomes detrimental when unstable lasers are used or when small features, such as
narrow resonances, are studied, because they are highly influenced by wavelength
variations. In these situations, the choppered mode constitutes a better measurement
procedure. Indeed, the simultaneity of the measurement is assured within one chopper
period (50ms in our case), increasing accuracy in wavelength and power. Simultaneity
reduces also the influence of the environment conditions (mainly air temperature and
flux), whose variation can be considered negligible within 50ms. The drawback of this
procedure is the time needed for the acquisition which can be up to 20 times longer
than the normal one (for the same wavelength range and resolution). In the case of
unstable laser wavelength, the Optical Spectrum Analyzer can be used to reconstruct
the correct spectrum, with the disadvantage of a longer time for the acquisition. As
a consequence, in order to exploit the good features of the two methods, long scans
are usually performed in normal mode to observe the phase spectrum in its entirety,
while its small interesting parts are studied in choppered mode.

2.2.5 System isolation

As it can be seen from Figure 2.2, many components of the setup are remotely driven
by a PC. This fact makes the system able to perform measurement in a completely
automatized mode, with several optional step on the measurement process, such as
auto alingment of the sample, movement of the shutters, tuning of the free arm power,
etc. This computer driven measurement does not only constitute a simpler tool for
the experimentalist, but also allows for exact and repeatable experimental parameter
selection providing stable operating conditions at each stage of the measurement.

Another important advantage connected to the use of remote control is the pos-
sibility to physically isolate the setup from external unwanted sources of noise, such
as air fluxes or room temperature variations, through a closed box. This feature is
essential for interferometric measurements, where even a small variation of the room
temperature can influence the results. An experimental evidence of this fact is shown
in Figure 2.4, where the phase signal of a resonating structure taken in isolated and
non-isolated conditions is shown. From the figure, it clearly appears that a non iso-
lated system presents larger fluctuations of the signal with respect to the isolated
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Figure 2.4: Phase spectrum of a resonating structure in (red) isolated (i.e. a closed
box is placed around the optical table where the setup is mounted) and (blue) non-
isolated (i.e. open box) conditions. Weak resonances are evidenced at 1364nm and
1377nm only in isolated conditions. Sample details are given in Section 2.3.2.

system. This results in a scarce or null visibility of the sharp features that character-
ize a device spectrum, as it happens for the resonances of the resonator, in particular
at 1364 nm and 1377 nm. The slow oscillation that is observed in both signals comes
from the wavelength dependent optical path, as explained in Figure 1.4. The intro-
duction of a glass delay line reduces the phase dependence on wavelength but it is not
able to cancel it completely (waveguide dispersion cannot be perfectly reproduced,
apart with an equal waveguide). As a consequence, a continuous shift is observed in
the measured phase, which appears as an oscillation in a real measurement. Indeed,
the experimental phase is obtained from Equation 2.2 and the cos�1 function returns
values in between 0 and ⇡. A simple model for the description of these oscillation is
explained in Appendix A. The shift in the phase between the two curves is due to the
different temperature and air conditions before and after the opening of the isolating
box. It is worth notice that the observed wavelength range is not covered by the
CWTL commonly used in the setup and presented in the preparation stage. Indeed,
the acquisition has been performed with a different low power CWTL to demonstrate
the versatility of the system, which can be used over a wide wavelength range.

2.3 Setup characterization

In order to characterize the setup, we performed a series of measurements on a channel
waveguide and on a disk resonator (Figure 2.5). Low and high power regimes have
been investigated and time stability has been tested.
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Figure 2.5: Optical image of the tested resonator with the bus waveguide visible in the
bottom part of the figure; coupling of the waveguide to the resonator can be canceled
out by increasing the horizontal displacement between the two structures (see 3.4 for
further details). In this way the isolated waveguide response can be investigated.

Figure 2.6: (left) Free-arm, transmittance and interference signals as obtained with
the normal mode for a SiON waveguide; (center) Phase variation as found from
Equation 2.2 (blue line) and from experiment (rainbow line); oscillation of the signal
comes from phase folding at 0 and 180 degrees due to cos�1 function; (right) Phasor
plot as obtained from the experimental data using Equation1.19; phasor radius is
normalized to its higher value.

2.3.1 Waveguide: low power

In particular, as a first example, low power measurements have been carried out on
a SiON channel waveguide with a cross section of 2.5mm x 250nm and a length of
6mm. Details on the sample can be found in [12]. In this first experiment, only
the Probe signal was used with a fixed power of 5mW and the normal operating
mode was selected. Indeed, the three signals presented in Figure 2.6(left) show only
broad oscillating features, thus justifying the employment of the faster operating
mode. The reconstructed phase difference is shown in Figure 2.6(center), together
with the theoretical curve coming from the simple model described in the Appendix
A, which takes into account the different dispersions and the different optical paths
encountered along the two arms. Remarkable accordance between the two curves is
found, with slight deviations mainly due to inexact estimation of the glass dispersion.
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Figure 2.7: (top) Time signal measured in the choppered mode; the different ac-
quisition windows are clearly visible and the three interesting quantities (IS, I0, I)
are highlighted in different colours; (bottom-left) Transmittance spectrum, (bottom-
middle) phase spectrum and (bottom-right) phasor plot of a vertically coupled SiN
resonator as measured with the choppered mode. Fitting from the analytical model
[63, 13] is also shown for the transmittance and the phase spectra (red colour).

Combining the information given by the phase and transmittance spectra through
Equation 1.19, the phasor plot presented in Figure 2.6(right) can be obtained. An
oscillating semicircular behaviour is characterizing the phasor plot. This is expected
from a waveguide structure, where only phase variation with wavelength should be
observed. Decrease of the phasor radius (i.e. transmittance intensity) is mainly due
to lower sensitivity of the detector, lower power of the laser and higher propagation
losses of the waveguide at longer wavelengths.

2.3.2 Resonator: low power

Maintaining a low power regime, i.e. with only the Probe laser switched on, a sec-
ond measurement has been carried out to test the setup in its choppered mode.



2.3. Setup characterization 35

The chosen device consists of a Silicon Nitride ring resonator vertically coupled to a
SiON bus waveguide. Indeed, resonating structures typically show narrow resonances
[64], which must be studied with great wavelength accuracy. Moreover, the peculiar
intermodal coupling mechanism that has been demonstrated in these samples [13]
generates a sharp Fano lineshaped response [65] which makes the device response
highly dependent on small wavelength fluctuations. In Figure 2.7(top) a portion of
the optical signal filtered by the lock-in amplifier is shown and the four chopper con-
ditions for the acquisition of the interesting quantities (IS, I0, I) are clearly visible.
Instantaneous processing of the raw data cuts the rising and falling edges of the sig-
nal, recognizes the important windows and makes the average on the values related
to each quantity, providing a final set of three values for each scanned wavelength.
These values allow the transmittance spectrum to be obtained (Figure 2.7(left)), the
phase spectrum to be reconstructed (Figure 2.7(center)) and the phasor diagram to
be represented (Figure 2.7(right)). Clear spectra are obtained thanks to the high
acquisition rate, which provides more than one thousand points per each of the three
signals at each wavelength. Good agreement between the fitted curve and the exper-
imental data demonstrates the accuracy provided by the acquisition method, which
is able to faithfully capture the narrow features of coupled resonating families. From
the transmittance spectrum two radial families of resonating modes are clearly dis-
tinguishable, with quality factors as high as 15000. On the other hand, the phase
spectrum contains information on the coupling regime of the two modes with the
bus waveguide: the phase undergoes a phase shift below ⇡ (⇠120°) when passing
the transmittance dip of the wide family indicating an undercoupling regime for that
family [44]; moreover, the narrower family produces an even smaller variation of the
phase, well below ⇡, thus revealing an undercoupled regime. This analysis is also
revealed by the phasor plot, where the two circles indicates the presence of the two
families and the always positive values of Im(E) indicates that only undercoupled
resonances are present (the sin being lower than 0 for arguments between ⇡ and 2⇡,
i.e. in overcoupling regime [63]). Red lines in Figure 2.7(bottom) are fitted curves
based on the model described in [63, 13] which takes into account the peculiar nature
of the vertical coupling. The good agreement between the two curves demonstrates
the accuracy of the acquisition setup, which is able to faithfully capture the small
features related to multiple resonance coupling.

2.3.3 Waveguide: high power (Pump & Probe)

In order to explore the properties of the system in the high power regime, Pump &
Probe experiments have been performed on the sample studied in Section 2.3.1. The
Probe laser was the same used in the low power characterization (Section 2.3.1) and
its power was fixed at 5mW; the Pump wavelength was 1550 nm while its power was
varied between 0mW and 2W with the Pump power variation step included in the
pipeline. In Figure 2.8(top-left) the Pump output power, coming from the sample
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Figure 2.8: (top-left) Pump power input vs Pump power output; the input is reg-
istered from the multimeter after BS3, the output is acquired with the Germanium
detector after BS2; Pump losses at BS3 and BS2 account for 23dB and 37dB respec-
tively, where the difference between the two comes from the sample alignment stage;
Probe interference (bottom-left), sample arm (top-right) and free arm (bottom-right)
signals; stability of the free and sample arms allows to discard misalignment of the
system as a source of phase instability; it is worth noticing that the small misalign-
ment observed at the sample arm is not related to the Pump power.

arm and acquired at the interferometer output, is represented in its dependence on
the Pump input power, as registered by the OSA. A linear behaviour is observed
indicating the absence of relevant nonlinear effects induced in the sample by the high
propagating power, and a stable operation of the setup. Observation of the free arm
and of the sample arm signals (Figure 2.8(right)) allows to confirm the stability of the
system under high power operation. Indeed, both these arms are barely influenced by
the power variations. On the other hand, the interference signal (Figure 2.8(bottom-
left)) shows a clear dependence on the Pump Power.

This is directly transferred to the measured Probe phase, which is shown for
different Pump input powers in Figure 2.9(top). No signature of the strong Pump
signal can be recognized around 1550 nm, thus demonstrating the good filtering action
provided by the lock-in amplifier for Pump power as high as 200 mW (at the alignment
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Power increasing

Figure 2.9: Probe phase signal at different Pump powers revealing a pronounced
dependence on Pump input power: (top) experiment and (bottom) simulation from
the model described in Appendix A considering a temperature increase of the sample
of 2°C.

stage). At the same time, the variation of the phase for different Pump powers
indicates that some power dependent phenomenon is occurring inside the sample.
Some considerations on the system under study (namely: the low nonlinear coefficient
of SiON and the slow increase in the power propagating along the waveguide) suggests
the thermo optic effect [66] as the most probable candidate. Indeed, the simulation
presented in Figure 2.9(bottom), which takes into account the effect of a temperature
variation (of about 2°C) inside the waveguide, confirms this hypothesis. The clear
shift observed in the experiment is correctly reproduced by the simulated data with a
slight difference in the wavelength dependence that can be ascribed to the imperfect
information on the glass dispersion. A more pronounced discrepancy arises at phase
domain extremes (0° and 180°) where the experimental data do not reach the upper
and lower theoretical limits. This fact is likely due to the high sensitivity of the
cos�1 function around 0° and 180° combined to a residual and spurious signal not
coupled to the fundamental mode of the waveguide and not filtered by the setup.
This effect is more pronounced at lower wavelengths (see Figure 2.8) due to the
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higher number of guided modes. This fact is a clear limitation and improvements
in this direction are ongoing. Nonetheless, it is worth notice that an accurate and
precise phase measurement should not involve the extreme parts of the phase domain
because the high sensitivity of the cos�1 function to small perturbations among the
IS, I0 and I causes a particular increase of the noise and a decrease of the accuracy of
the phase measurement. In this sense, careful positioning of the glasses in the delay
line allows to change the observed value and choose the best operating condition.
From a practical point of view, this is achieved with a first rough manual positioning
of the glass elements. Afterwards, with the isolation box closed, a stepper motor
allows to perform a fine tuning of the glass positions up to the desired phase value.

2.3.4 Time stability

The time stability of the system is tested on the waveguide already investigated in
Section 2.3.1. Acquisition of the Probe phase at different times for fixed conditions
on laser wavelength (1555nm) and power (5mW) allows to obtain an average phase
variation in low power condition. The acquired data are shown in Figure 2.10(top)
and they result in a constant phase drift of about 0.25o/min and average noise of
about 1o. The time stability of the system in the Pump & Probe regime is also tested:
in Figure 2.10(bottom) the time variation of the Probe signal is shown for Pump
power and wavelength fixed at 1W and 1550nm respectively. The arrow at about
18min indicates the time when the Pump wavelength has been moved to 1555nm, in
degenerate configuration with the Probe laser. No apparent variation on the phase
behaviour is found, nor in resolution neither in time drift. Indeed, a resolution of
about 1

o is observed along the whole measurement and a constant average drift of
about 1o/min can be recognized. This more pronounced phase variation with respect
to the one found in the low power regime can be attributed to thermal responses
of the sample when high power beams are injected. Indeed, a lengthening of the
waveguide due to thermal expansion of about 0.3‰ per hour is sufficient to explain
such a large drift.

2.4 Conclusion and perspectives

In the present Chapter an experimental characterization of an automatized interfer-
ometric setup is carried out. The setup is suitable for simultaneous phase and trans-
mittance characterization of photonic devices both in low and high power regimes. A
detailed description of the system and of its operating principle has been provided,
together with its characterization in low and high power experiments. In particular,
the filtering action during degenerate Pump & Probe experiments has been tested
and clear extraction of the Probe signal from a three order of magnitude stronger
Pump signal has been proven. As a result to these measurements, an average noise
of about 1° and a phase variation below 0.25°/min have been found in low power
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Figure 2.10: (top) Time dependence of the Probe phase in the low power regime with
null Pump power incident on the sample; (bottom) high power regime measurement
during Pump & Probe experiment: degenerate Pump and Probe wavelength condition
occurs at t = 18min, with no apparent variation in phase value, resolution and drift.

regime, the latter increasing to 1°/min when high optical powers are used. Possible
noise sources can be the movement of the objectives at the alignment stage and/or
a not perfect isolation from the environment, which brings to weak air fluxes (in a
similar way to what is observed in Figure 2.4). For what concerns the continuous
phase drift, the cause of this phenomenon has not been identified yet. Temperature
fluctuations of the room and, hence, of the sample can be a possible candidate, which
is compatible with the large timescale of the effect. In this sense, the implemen-
tation of temperature measurement during the experiment is an important step to
understand the influence of thermal fluctuations on the system response.

Some useful developements aimed at improving the efficiency of the system are
also possible. These are mainly directed towards the implementation of a free-space
delay line. Indeed, the glass delay line has been initially chosen as the dispersion
compensating element because of its characterizing features, such as the alignment
simplicity and reduced dimensions, which permit its fast and easy re-positioning in
any position along the optical path. However, it carries also some drawbacks, which
makes it one of the most important source of noise and accuracy in the system:
in particular it is responsible for Fabri-Perot fringes in the phase spectrum and its
dispersion constitutes an additional parameter in the fitting model presented in Ap-
pendix A. The free-space delay line could be a solution to these drawbacks: the
absence of Fabri-Perot cavities (only reflecting mirrors are used) should diminish the
delay-line associated noise and, being the dispersion of air well known in literature,
the wavelength dependent interference could be easily lead back to the sample dis-
persion, thus resulting in a more accurate observation of the absolute phase variation
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inside the tested device. Despite these possible improvements, the diverse options
already offered by the experimental pipeline and the possibility to use the system
with any input-output element make the system a very versatile one. Moreover, the
low phase noise and the wide and tunable spectral domain (between 1100nm and
1600nm, limited by the chosen laser source and the spectral response of the employed
BS) surpass those of commercially available optical vector analyzers[67]; in addition,
the possibility to perform high power measurements without need of optical filters
enlarges the information that can be extracted from the investigated device. Indeed,
several physical phenomena have been already observed when measurements are per-
formed with vertically coupled resonators: in particular, the new information carried
by the optical phase helped to highlight the dynamics of the reactive-coupling model
(see Chapter 4), to propose a model for the backscattering phenomenon (see Chapter
5) and to investigate the bistable regime occurring at high input powers (see Chapter
6).



Chapter 3

Vertically coupled microresonators

As already pointed out in the introduction, coupling of light to and from a microres-
onator is a crucial step for the integration of this photonic structure in a photonic
integrated circuit. Indeed, the transfer function of the device is highly influenced by
the interaction between the resonator and its coupling element (bus waveguide), and
the possibility to fully exploit the properties of a microresonator is strongly depen-
dent on the accurate control of the position of the coupling element. Moreover, a
correct comprehension of the physical phenomena observed in a vertically coupled
microresonator (see Chapters 4, 5 and 6) cannot neglect the basic coupling dynamics
that drives the system. Indeed, the transfer of light to and from the resonator in a
vertically coupled structure shows very different behaviour from the one observed in
in-plane coupling and it deserves a detailed analysis to be carried out. Therefore, in
this Chapter the peculiar geometry and the theoretical model describing light cou-
pling in a singlemode vertically coupled resonator are presented, and an experimental
validation of this model is given.

3.1 In-plane coupling model

As a first step, a more detailed explanation of the common in-plane model already pre-
sented in Chapter 1 is given, with specific attention on its dependence on waveguide-
resonator distance and wavelength. Indeed, these are the more evident features that
distinguish the vertical coupling from the in-plane configuration, and their discussion
helps to understand the dynamics of the two systems.

As a reference model for the in-plane coupled geometry, the one proposed by
Spillane et al. [68] is considered here. This model describes the coupling of light from a
multimodal waveguide to a microresonator laying on the same plane. A weak coupling
between the two elements is assumed and a high Q resonator is considered. Moreover,
it describes the influence of the non ideal tapered fiber (due to its multimodal nature)
on the resonator response by addition of a loss channel (radiative loss) at the coupling
stage. In order to simplify the description, this last term (ideality) is neglected in the
following analysis, considering only a single mode tapered fiber. This approximation

41
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does not affect the results on an in-plane coupled system.
The model starts from the equation of motion for a resonating cavity proposed

by Haus in 1984 [69]:

da

dt
= �i!0a�

�
k2
0 + �2

0

�
a+ ik0s (3.1)

An excitation field s / ei!t at frequency ! is coupled to the resonator via the cou-
pling coefficient k0. The resonator is characterized by an intrinsic loss coefficient �0,
a resonating frequency !0 and a field amplitude a. As described in the introduction,
the system response is obtained as the superposition of the two signals coming from
the resonator and from the waveguide:

p = |st0 + ik0a| (3.2)

This results in a transmittance:

T = p/s = |t0 + ik0a/s| (3.3)

In steady state condition the on resonance transmittance, from now on called Extinc-
tion Ratio (ER), can be written as:

Tres =
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(3.4)

where K = k2
0/�

2
0 is the ratio between the resonator coupled power and the resonator

loss.
Depending on K, the system falls in the under (K<1 ), over (K>1 ) and critical

(K=1 ) coupling conditions that have been already discussed in the introduction.
From an experimental point of view, the parameter K can be tuned with two main
knobs: the wavelength and the gap. Indeed, since k0 describes the amount of light
that passes from the waveguide to the resonator and vice versa, a variation in the
distance of the two elements can tune this quantity1. More formally, the parameter
k0 depends on the distance x between the two elements as:

k2
0 =

¯k2
0e

��0x (3.5)

where ¯k0 is the coupling coefficient at x=0 and �0 is the spatial decay rate of the
system, with respect to gap variations. As it can be deduced form Equation 3.5,
an increase in the distance produces a decrease in the coupling constant, as one can
expect. Moreover, the exponential form of the equation makes the sensitivity of the
system highly dependent on the gap and justifies the fabrication constraints that
these structures require.

In Figure 3.1(left and center) the ER, and the parameters k, �0 are shown in their
1Variation of �0 can also affect the coupling regime and cause the same alterations produced

with k0, but an accurate tuning of this parameter in a real device is a less controllable process.
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Figure 3.1: Gap dependences of the ER (left) and of the system parameters k and
� (center) for an inplane coupled resonator as obtained from Equation 3.4 and 3.5;
(right) wavelength dependence of the ER for the same system; (coupling regimes are
shown for clarity).

dependence on the waveguide-resonator distance, as described in Equation 3.4 and
3.5. It is important to notice here that the monotonic dependence of k0 on the gap
makes the critical coupling condition (Tmin = 0) to be achieved only at a single well
defined gap value. This fact is true for any coupled mode order and for any exci-
tation wavelength, and it is a result connected to the intrinsically point like (local)
nature of the coupling dynamics. A similar behaviour is found for what concerns
the wavelength dependence of the coupling. In Figure 3.1(right) the simulated ER
at different wavelengths is shown and it resembles the same behaviour observed for
the gap variation. An intuitive picture to explain the similarity between the gap
and the wavelength dependences relies on mode confinement. Indeed, the lower con-
finement found at higher wavelengths makes the guided mode more sensible to the
environment. As a consequence, the ability to couple light inside a microresonator
at a fixed distance is increased if higher wavelengths are used in a similar fashion
to what happens for gap reduction. This means that an increase in the coupling
strength can be achieved both by moving the waveguide towards the resonator or
by increasing the incident wavelength. FEM simulation of two inplane coupled SiN
waveguides (dimensions: 2.5µm ⇥ 250nm) confirms this description: in Figure 3.2
the effective index difference (�neff ) between the symmetric (ne) and antisymmetric
(no) supermodes of the system is represented as a function of gap (left) and wave-
length (right). An exponentially decaying/growing behaviour is found for increasing
gap/wavelength. As expected from the intuitive picture above presented, larger gaps
or lower wavelengths weakens, exponentially, the coupling between the waveguides.
The two degrees of freedom (gap and wavelength) constitute an advantage of the
in-plane coupling scheme because they provide useful coupling tuning parameters,
but they bring also intrinsic drawbacks to the system. Namely, the need of a very
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Figure 3.2: Gap and wavelength dependences of the effective index difference be-
tween symmetric and antisymmetric supermodes of two identical inplane coupled
SiN waveguides (dimensions: 2.5µm⇥ 250nm). Exponential tendencies are found in
both the panels, thus justifying Equation 3.5. Wavelength and gap fixed at 1.55µm
and 0.4µm for the left and right panels, respectively.

precise gap control and the lack of an efficient excitation of the resonant modes in
a broad spectral region. To avoid this wavelength dependent behaviour other inte-
grated structures have been proposed. T. Carmon et al. [70] proposed a bent fiber
as the bus element to match the wavelength dispersion of the WGMr over a wide
wavelength range. They demonstrate to achieve coupling at extreme wavelengths of
682 and 1540 nm, albeit with a difference of about 50% in the transmission.

Another possible solution to wavelength and gap dependences lays in racetrack
resonators. In these structures a directional coupler is used as the coupling element
between the bus waveguide and the resonator. The coupling coefficient of the res-
onator k coincides with that of the directional coupler, that is [26]:

k2
= sin

2

✓
⇡

2

L

Lc

◆
(3.6)

where L and Lc are the coupler length and transfer length, respectively. The latter
is computed as:

Lc =
�

2 |ne � no|
(3.7)

and represents the needed length to completely transfer a light signal from one waveg-
uide of the coupler to the other. The quantities ne and no are the symmetric and
antisymmetric supermodes of the coupler (also called even and odd from the parity
of the electric field profile along the horizontal axis). In Figure 3.3, the obtained cou-
pling coefficient for a SiN racetrack resonator at fixed coupler length is shown in its
dependence on gap and wavelength (blue line). An oscillating behaviour is observed,
with k reaching 0 and 1 multiple times, both in gap and wavelength. This depen-
dence is transferred to the racetrack transmittance: in the same figure the minimum
transmittance for the racetrack, computed using Equation 3.4, is shown as a function
of gap and wavelength (�0 = 0.05). In both cases the critical coupling condition is
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Figure 3.3: Simulated coupling coefficient (blue line) and transmittance (red line)
of a racetrack resonator as computed from Equation 3.6 and 3.4 (with �0 = 0.05),
respectively: (top) gap and (bottom) wavelength dependences for coupler length of
250µm and 340µm, respectively; 1.5µm ⇥ 250nm SiN symmetric waveguides have
been considered for the resonator and the coupler.

reached multiple times, thus providing efficient coupling at multiple wavelengths and
for diverse gap values. However, very sharp features are observed near the critical
coupling regions, indicating low tolerance to gap and wavelength variations. More-
over, in order to achieve this situation of oscillating transmittance, a large coupling
length is needed. As an example, data shown in Figure 3.3(bottom) are obtained with
a coupler length of 340µm, almost five times larger than the transfer length needed
at � = 1.5µm (65µm). As a consequence, a marked increase in the device footprint
is observed, resulting in lower FSR and requiring a more accurate fabrication pro-
cess. A consistent model for directional couplers, describing the peculiar oscillating
transmittance, can be obtained also from a point coupling model with a frequency
dependent coupling coefficient. However, this last approach does not describe the
physical insight of the directional coupler. Indeed, the observed oscillations are man-
ifestation of the physical process ongoing in the device: a mode injected in one of the
two waveguides actually oscillates back and forth between the two waveguides and
the selected gap/wavelength determine the final intensity dropped in the two output.
Therefore, to describe the actual system with the most faithful model, an elongated
coupling region seems a more suitable choice. As a last remark, the coupling coeffi-
cient described in Equation 3.6 and the consequent transfer length do not take into
account boarders effects. An accurate calculation should consider two point coupling
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region, one at the input and one at the output of the directional coupler.
In the following section we present an alternative approach to in-plane structures,

based on a fully integrated vertically coupled resonator. This configuration presents
the bus waveguide buried below the microresonator and shows peculiar features that
are not present in the common in-plane point coupling. In particular, a long range
interaction is found in this structure and it results in an oscillating coupling strength
both for gap and wavelength variations. This fact allows several critical coupling
gaps to be present and efficient coupling of both visible (800nm) and IR (1550nm)
resonant modes to be achieved on the same device. The dimensions of the system are
comparable to those of common in-plane microresonators and the vertical position of
the waveguide allows precise definition of the gap even without high-resolution lithog-
raphy. In addition, the horizontal displacement of the waveguide is demonstrated to
result in a selective excitation of high order resonator modes.

3.2 Vertical coupling: geometry and fabrication

In Figure 3.4 the fabrication process for a vertically coupled resonator is schematically
represented. The device substrate consists of a Si wafer with a thick thermally grown
SiO2 layer (> 4µm) on it. (a) As a first step the waveguide layer is deposited with
precise calibration of the waveguide thickness and (b) a dry etching process defines
the waveguide width. (c) The successive grown of a cladding layer results in a lifted
geometry due to the presence of the waveguide which prevents any planar structure
to be correctly fabricated. (d) To avoid this problem, by using BoroPhosphoSilicate-
Glass (BPSG) as the cladding material, repeated high temperature thermal treatment
of the wafer allows the planarization of the device to reach 96%. (e) After that, a
precise definition of the waveguide-resonator vertical gap and a perfect planarization
can be obtained by Reactive Ion Etching (RIE) of the BPSG layer. (f) Finally the
resonator layer can be grown up to the wanted thickness and its geometry can be de-
fined with a photoresist mask and a dry RIE. (e’) A similar fabrication process, with
a sacrificial layer of amorphous Silicon (a-Si) above the BPSG cladding, (f’) allows a
free-standing device to be created. (f”) A wedge resonator can also be obtained by
substituting the final dry etching with a wet chemical etching in HF buffered solution.

The fabrication process allows to evidence some positive features directly related
to the use of vertically coupled resonators. At first, the definition of the waveguide-
resonator vertical distance by means of RIE provides an extremely precise control on
the gap value (at the nanometer level), without the employment of any high resolu-
tion lithography [9]. Secondly, waveguide and resonator materials are independently
chosen, thus allowing different configurations to be exploited. In addition, wedge
resonators can be obtained without affecting the bus waveguide geometry [12]. These
last two possibilities are not possible with common in-plane coupling, where the ma-
terial of all the guiding elements is the same and only dry etching processes can be
performed to preserve waveguide shape, unless very complicated processes are used.



3.3. Vertical coupling: theoretical model 47

(a) (b) (c) (d)

(e)(f)(f’’)

(e’)(f’)

Si SiO2
BPSG

Figure 3.4: Fabrication process for the creation of a normal, free-standing (’) and
wedge (”) vertically coupled resonator.

Finally, the realization of a freestanding device coupled to a fixed waveguide dimin-
ishes the vibration related noise that occurs when optomechanical experiments are
performed.

3.3 Vertical coupling: theoretical model

In contrast with in-plane structures, in a vertically coupled geometry the interaction
between the two elements does not take place in a single point. Indeed, the placement
of the bus waveguide under the resonator enlarges the area of interaction as depicted
in Figure 3.5(a). In particular, it comes out from geometrical considerations that
the distance between the guided modes of the two elements is kept almost constant
over a wide area, called flat zone ⇤ (Figure 3.5(b)), which can be considered as the
effective interacting region of the system [14]. The existence of this flat zone makes
the system very similar to a directional coupler and suggests to adopt this structure
as an approximation of the vertically coupled device.

Starting from this assumption, the waveguide and resonator output fields (a3 and
a4) can be related to the input fields (a1 and a2) as [41]:

a3 = a1ei
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2 z
h
cos (�z)� i��2� sin (�z)
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where
� = [(��)2 + C12 C21]

1/2 (3.9)

is a system parameter depending on the propagation constant mismatch between the
resonator and the waveguide �� = �1 � �2 and on the mode overlap coefficients
C12, C21. Considering the resonant condition linking the resonator input and output
fields:
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Figure 3.5: (a) schematic representation of a microdisk-bus waveguide system with
the coupling region highlighted by orange circles; (b) effective distance between the
two coupling elements in a vertically coupled system (left) compared to the distance
between waveguides in a directional coupler (right).

a2 = a3e
�i

2⇡neff1
� (2⇡r�⇤)e�↵L (3.10)

a solution to Equation 3.8 can be computed and the transmittance of the system in
the vicinity of a resonance can be described by a Lorentzian function of the form:
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with:
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The new quantities that appear in Equation 3.11, 3.12, 3.13, 3.14 are: c the light speed
in vacuum, L the length of the resonator, �0, neff1 and ↵ the resonant wavelength,
the effective index and the intrinsic loss coefficient of a given resonator mode.

In the on resonance condition (i.e. with � = �0) the transmittance reaches its
minimum value, corresponding to the ER parameter already introduced. Therefore,
from Equation 3.11 the ER can be written as:
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����� A�
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�����

2

(3.15)
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Figure 3.6: Flat zone ⇤, directional coupler coupling length and coupling coefficients
(C12C21) as a function of gap. (Figure from [14]).

At this point the dependences of ER on the different system parameters can be
investigated. In particular, in order to give a comprehensive view of the system, a brief
description of the dependence on the vertical gap is firstly given in (see Section 3.3.1).
This analysis presents the results described in [14] and it constitutes the starting point
for the further theoretical and experimental investigation on wavelength dependence
presented in Section 3.3.2 and Section 3.4.

3.3.1 Gap dependence

For what concerns the gap dependence, the relevant variations that must be taken
into account are the effective interaction length (i.e the flat zone ⇤) and the over-
lap coefficients C12, C21. Indeed, other parameters, such as the resonator effective
refractive index or the resonator intrinsic losses, are barely affected by the waveguide
vertical movement.

The flat zone is defined from geometrical considerations as the distance between
two inflection points of the quantity dLv/dz (i.e. when d2Lv/dz2 = 0). An example of
its dependence on the vertical distance is depicted in Figure 3.6, with the interaction
length doubling its value as the gap is increased. The considered geometry consists
of a 40µm radius disk resonator 400nm thick vertically coupled to ist bus waveguide
(2.5µm ⇥ 250nm). The overlap coefficients [23] describe the superposition between
the waveguide and the resonator mode fields within the waveguide cross section (C12)
or the resonator area (C21) 2, and they show an exponential dependence on gap
variations [71]. An example of this dependence is shown in Figure 3.6, where the two
coefficients for coupled slab waveguides are represented. In the same figure the flat
zone elongation is compared to the coupling length of a common directional coupler
predicted by coupled mode theory Lc = ⇡/2�. Thicknesses of 400nm and 250nm for
the coupled waveguides have been used to compare with the flat zone calculations.

Adding these dependences to Equation 3.11, the system ER can be computed

2These two coefficients are considered to be constant along the coupling length (border effects
are negligible).
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Figure 3.7: ER dependence on gap for a vertically coupled resonator as obtained from
Equation 3.15 .

for different gap values (see Figure 3.7). From the figure, an oscillating response is
evidenced, with the system reaching complete transparency (ER = 1) and complete
absorption (ER = 0) at multiple gap values, in a very different fashion to what is
commonly observed for in-plane resonators.

3.3.2 Wavelength dependence

The similarity between a vertically coupled structure and a directional coupler, which
is demonstrated for gap variations, can be verified also for wavelength dependences.

Indeed, the Coupled Mode Theory (CMT) applied to directional couplers shows
that coupling of light from one waveguide to the other depends on wavelength with a
periodic behaviour [41] and light can be completely transferred from one waveguide
to the other at different wavelengths. Therefore, in a vertically coupled system the
same coupling factor should be achieved at several wavelengths, generating several
critical coupling scenarios.

To verify this qualitative concept, we extend here the above described model to
wavelength variations. In particular, in the equation for the ER (Equation 3.15),
several wavelength dependent quantities can be found. In order to take into account
the different variations, a simplified model based on two slab waveguides is exploited,
thus resembling the behaviour of common directional couplers. As a consequence, the
explicit dependence of the different quantities on wavelength is described by only few
parameters: the geometrical parameters of the system (waveguide thickness, width
and separation), the refractive indexes of the materials, the resonator effective mode
radius r and its attenuation coefficient ↵. Indeed, the approximation allows to derive
all the other quantities from analytical calculations.

From ellipsometric measurements, the refractive index of the three materials con-
stituting the system (resonator n1, bus waveguide n2 and cladding nc) can be found
at varying wavelengths. Then, the first waveguide mode can be obtained by solving
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(a) (b) 

(c) 

Figure 3.8: (a) Propagation constants and propagation constant mismatch in the IR
domain from (3.17); (b) normalized mode profiles calculated for the two waveguides
at fixed wavelength (1.55µm); the shaded areas defines the actual position of the
two elements; (c) the radial position of the maximum of the electric field and (inset)
radial shape of the mode inside the resonator at different wavelengths; a resonator
radius of 25µm and thickness of 350nm has been considered.
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the transcendental equation [23]:
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where d is the thickness of the considered waveguide, ✓i is the propagation angle, ✓c =
nc/ni and ni = n1 or n2 depending on whether the resonator or the bus waveguide is
considered. The propagation constant �i and the extinction coefficient ⌧i are obtained
from the angle ✓i as:
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In Figure 3.8(a) the propagation constants for two slab waveguides and the propa-
gation constant mismatch �� = �2 � �1 is shown (thicknesses: 350nm and 250nm).
With ⌧ and � known for both waveguides, the mode profiles along the coupling
direction can be found (Figure 3.8(b)) and the overlap coefficients C12, C21 can be
extrapolated from the overlap of the two fields inside the waveguides [23].

The effective index neff comes out directly from the propagation constants as
neff = �(2⇡/�).

The length of the resonator is L = 2⇡r with r the resonator radius, while the
size of the flat zone ⇤ depends on the vertical distance between the waveguide and
the resonator Lv as described in Section 3.3.1. Since in the experiment described
below (see Section 3.4 [12]) only wedge resonators are used, particular attention
should be paid to the different radial modes. Indeed, a univocal definition of the
resonator radius is not possible due to the fact that the different modes circulate on
different circumferences. As a result, the parameter r represents an effective radius,
which describes the system position where the field inside the resonator reaches its
maximum intensity (Figure 3.8(c)), and it can be easily extrapolated from 2D finite
element simulation (the actual resonator radius has been fixed to 25µm to mimic the
real system). From this assumption the L value is directly obtained, and also ⇤ can
be derived once the relative positions of the microresonator and the bus waveguide
are given. The last unknown quantity needed for the computation of Equation 3.15
is the intrinsic loss of the resonator, which can be obtained from FEM simulations.

Inserting the values for the different parameters in Equation 3.15 the wavelength
dependence of the on resonance transmittance (ER) for a vertically coupled structure
is obtained. An example of this is shown in Figure 3.9, together with the transmit-
tance of a symmetric directional coupler and the ER coming from a laterally coupled
device obtained from Equation 3.4. In particular, in the vertical coupling geom-
etry and in the directional coupler there are multiple critical coupling wavelengths
(Tmin ⇠ 0). The similarity between the two curves comes from the elongated coupling
region that characterize both these structures. This behaviour contrasts to what is
observed for a point coupling geometry, i.e. for a lateral coupling configuration, where
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IN OUT

Point coupling

IN OUT

Vertical coupling

IN OUT

Directionalcoupler

Figure 3.9: Bus waveguide coupling scheme (top) and ER dependence on wavelength
(bottom) for a vertically coupled resonator, as resulting from Equation3.15, for a
directional coupler, as obtained from the coupling coefficient described in Equation
3.6, and for a point coupled resonator, as resulting from Equation 3.4; a 75µm long
symmetric SiN coupler have been used for the directional coupler, with waveguide
dimensions of 2.5µm⇥ 250nm; 25µm radius 350nm thick SiN resonator and 250nm
SiON bus waveguide have been considered for the simulation of microresonators, with
20µm flat zone length in the vertical coupling case.

the critical condition occurs for a single wavelength only.

3.4 Wavelength dependence: experimental results

3.4.1 Device description

In order to verify the wavelength dependence of the model described above, some ex-
perimental measurements were performed on a real system. The system is composed
by a 350 nm-thick and 24µm radius SiN wedge disk resonator vertically coupled to
a 250nm-thick and 2.5µm-wide SiON bus waveguide (Figure 3.10(a)). The employed
fabrication process is the one described in Section 3.4, with a final isotropic wet
etching resulting in a wedge angle of 7°. Complete characterization of the resonator
dimensions and shape has been carried out through Atomic Force Microscope (AFM)
measurements [72]. As a consequence of the wedge geometry, the optical mode radius
is retracted from the external rim with respect to the one of an anisotropic dry-etched
disk-resonator (Figure 3.10(b)). The extent of retraction depends on the considered
wavelength (see Figure 3.8(c)) and on the observed optical mode [12]. The resonator
vertical position is fixed 677 nm above the waveguide with BoroPhosphoSilicateGlass
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PC 
TL 

LP 

DUT 
PD 

(c) 

Figure 3.10: (a) sketch of the device (cross-section); vertical dashed lines show the
central position of the waveguide in the two configurations; (b) simulated 1

st order
radial mode cross section for wet (top) and dry (bottom) etched disk resonators
showing 2µm difference in the mode radial position; 24µm external radius and � =

1.55µm have been considered in the simulation; (c) experimental setup for the optical
characterization of the device: IR or visible light from two different tunable laser
(TL) is sent in the polarization controller stage (PC) and coupled into the sample
through tapered fibers; tapered fiber and polarization controller are also used to
extract transmitted signal from the sample and to send it to the photodetector (PD).

(BPSG) cladding placed in between. Figure 3.10(a) shows the two possible configu-
rations corresponding to horizontal distances of 2 or 1 µm between the centre of the
waveguide and the outer rim of the disk. Henceforth we label these alignments wg1
and wg2 respectively. A 2µm thick SiO2 cladding layer below the waveguide allows
to isolate the optical modes from the Si substrate at the bottom of the wafer.

Optical measurements have been carried out in the visible and in the IR range:
specifically from 760nm to 795nm and from 1440nm to 1630nm, with resolution of
3pm and 1pm, respectively3. While the IR measurements have been performed on the
interferometric setup described in Chapter 2, the characterization in the visible range
required a specific setup, which is schematically presented in Figure 3.10(c). Light
from a tunable laser source has been coupled in and out from the sample using tapered
lensed fibers and the transmitted signal has been acquired with a Ge photodetector.
In both IR and visible measurements, a polarization controller in the input stage and a
linear polarizer at the output one have been inserted in order to ensure the excitation
and detection of a TE mode propagating in the bus waveguide. All experiments have
been carried out at room temperature under stable and controlled conditions.

3Laser linewidth is below 1fm for both the laser.
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3.4.2 Results

We first focus on the results coming from the wg2 configuration, whose visible and
IR spectra are shown in Figure 3.11. Both spectra show the typical periodic peaks
related to resonant guided modes, with several order family modes coupled in the
visible spectrum and only two modes in the IR one. Despite Free Spectral Range
(FSR) analysis allows to identify the 1

st and the 2

nd TE radial modes as the coupled
families in the IR range, the same analysis cannot be done in the visible range. Indeed,
even though periodic peaks associated to different radial families can be recognized,
they show very similar FSR and they cannot be identified within the experimental
uncertainty. For this reason, we focused our attention on the brightest order family
in the visible range, labeled by squares in Figure 3.11(top), showing transmittance
and Q up to 20% and 20000, respectively. The IR spectrum, on the other hand, is
mainly characterized by complex resonance line shapes where the 2

nd order family
modes (Q ⇠ 1000) are reactively coupled to the 1

st order family modes (Q ⇠ 20000)
[13].

The two spectra constitute a first confirmation of the theoretical model described
in Section 3.3, which will be recalled here as oscillatory model, due to the multiple
oscillations of the transmittance minima. The existence of peaks in the visible and IR
spectra for the same device demonstrates that light over a 900nm range can be coupled
simultaneously to a resonator just by using the vertically coupled configuration. This
feature cannot be explained by the point coupling models [73, 68], which allow only
a single wavelength for the critical coupling condition (Figure 3.9).

Also the fine feature of the visible spectrum supports the model: oscillations of
the resonance depth are present, resembling those of a directional coupler [41]. The
oscillations are explained by the oscillatory coupling model as shown by the dashed
line in Figure 3.11. Simulation has been done by using the parameters reported in
Table 3.1. Even though the simulated curve does not fit perfectly the experimental
one, a qualitative agreement can be observed, showing that the results derived from
the model are consistent with the experiment.

A similar analysis on the transmittance cannot be performed for the IR spectrum,
because the 1

st and the 2

nd order families strongly affect each other by a reactive
coupling mechanism (see Chapter 4 and [13]).

However, by using the wg1 configuration we are able to preferentially excite the
first order radial family in the IR range (Figure 3.12). In fact, when the waveguide is
shifted 1µm inside the resonator edge, optimal overlap between the waveguide mode
and the WGMr modes occurs for the first order radial mode [9]. With this wg1
geometry, no signature of coupling in the visible range is observed, because the more
confined visible modes do not overlap effectively with the bus waveguide mode.

Nonetheless, observations on the IR spectrum can still bring to a richer under-
standing of the physics of the system. The 1

st family in Figure 3.12, well isolated
from the 2

nd family, shows a peculiar shape describing a clear oscillation with a con-
trast of about 30%. An alternative possible explanation to this feature could rely
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Figure 3.11: (top-left) visible spectrum for wg2 configuration; the transmittance min-
ima of the investigated family of resonances from the experiment (square symbols and
interpolation line) is compared to the transmittance minima obtained from the model
(dashed line); (top-right) detail of an isolated resonance with a Lorentzian fit (with
laser resolution of about 3pm); (bottom) IR spectrum for wg2 configuration with 1

st

and 2

nd order family mode resonances.

Figure 3.12: (left) IR transmission spectrum of the wg1 configuration and a fit of the
model (line); (right) detail of an isolated resonance with Lorentzian fit (with laser
resolution of about 1pm).
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⇤ [µm] thickness [nm] ↵ [1/cm] gap [nm]
vis 20±10 100±20 0.4±0.1 670±20

IR 12±5 350±50 0.6±0.1 700±50

Table 3.1: Fitting parameters as found for Figure 3.11(top) and Figure 3.12.

Figure 3.13: (top panel) Mode profiles at � = 780nm for the 1

st order radial mode
and for the 5

th order radial mode. (bottom panel) Integral of the electric field of the
different resonator optical modes computed in the bus waveguide region (red line and
squares) and propagation losses (green line and disk) for � = 780nm.

on different material absorption channels (as for instance: Si-H bondings produced
as residuals of the fabrication precess). However, the ellipsometry characterization
revealed negligible material losses in this spectral region. As already pointed out,
also the effect of a point coupling interaction cannot bring to such a behaviour, since
the only oscillation that is expected from the model consists of a single dip in the
transmittance. Actually, a reasonable explanation to this issue can be given by the
oscillatory coupling model described above. Indeed, as found for the visible spectrum
of wg2, the ER obtained from the model (line in Figure 3.12) qualitatively follows
the oscillating behaviour of the experimental curve and, thus, confirms the oscillatory
coupling model as a good description of vertically coupled systems.

The parameters resulting from the fit in the two regimes are shown in Table 3.1.
Despite the uncertainty on the ⇤ values due to the approximations in the model,

we notice that ⇤ and thickness are significantly different in the VIS and IR. In par-
ticular the thickness in the VIS range is not compatible with the experimental one
(⇠350nm). However, this apparent discrepancy can be solved by considering two
peculiarities of the system: the geometry of the resonator and the coupling of higher
order modes in the visible range. Indeed, the wedge shape of the resonator causes the
thickness of the resonator in its external part to be strongly dependent on the radial
position, starting from 350nm at 21.5µm radius and decreasing to 0nm at 24µm.
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In order to take this evidence into account in the model, we consider the parameter
thickness as an effective parameter, which corresponds to the resonator thickness felt
by the optical modes along the coupling region. In addition to this, higher order
modes in the visible range are pushed at larger radii by the wedge geometry (Figure
3.13(top)) and they show a stronger electric field in the waveguide region (Figure
3.13(bottom)) where the resonator effective height can be substantially lower than
350nm. As a consequence to these considerations, an effective thickness as low as
0.1µm can be assumed in the visible range. The same geometrical argument (res-
onator optical modes propagating at larger radii) justifies the larger flat zone found
for the visible modes with respect to the IR ones. Indeed, in the IR range only the 1st

and 2

nd order family of TE modes should be taken into account, since higher order
modes are absorbed by the Si substrate (see Appendix B for details on substrate
absorption). TM modes in the IR range are also absorbed by the substrate, due to
their lower confinement. Losses and gap values are in agreement with values found in
[14] and with Scanning Electron Microscope measurements respectively. This anal-
ysis does not consider a possible contribution from TM modes propagating in the
resonator. This is because the bus waveguide does not support TM modes and it
works as a filter for the excitation and extraction of TM modes propagating in the
resonator. However, given the peculiar geometry of the coupling and of the resonator
there could be a polarization rotation mechanism at the coupler region. Despite
this seems a weak effect with respect to direct excitation of TE modes, it should be
verified with some measurements or 3D simulations. At this point it is also worth
noticing that the developed model takes into account only first order modes for both
the waveguide and the resonator, while higher order modes are present in the real
structures at visible and IR wavelengths. The model contains another important ap-
proximation on the relative position between the waveguide and the resonator modes
along the coupling region: due to the different shape of the two elements (straight and
circular, respectively) the interaction occurs at always different angles, with the mode
in the resonator changing its phase velocity with respect to the waveguide mode. In
this sense the model is an approximate one and the parameter describing the actual
device (such as the flat zone, the propagation constants, the resonator radius, etc.)
should be considered as effective/mean parameters. These considerations can explain
the difference between experimental data and simulated ones. The fitting curve pre-
sented in Figure 3.12 shows that the model is not able to perfectly match the real
system, yet. In particular, for long wavelengths the model predicts an increase in
the transmittance which is not experimentally observed. For this reason, the use of
full 3D simulations of the real system, similar to those shown in [13], the possibility
to acquire data in different spectral regions (e.g. NIR) and the developement of a
position dependent model (i.e. a model which takes into account the relative posi-
tion between the two elements along the coupling region) could constitute important
thrusts for a more accurate modeling of the investigated device.

Other interesting information about the studied system can be extracted from a
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comparison of the Q of the 2

nd order family in the IR spectra for the wg1 and wg2
configurations. These are discussed in Appendix B.

3.5 Conclusion and perspectives

In this Chapter the theoretical model describing coupling of light inside a singlemode
vertically coupled resonator has been proposed and its experimental validation has
been presented. In particular, the oscillatory behaviour of the resonance transmit-
tance predicted by the model has been observed both for gap and for wavelength
variations. From an experimental point of view, a deeper analysis on gap depen-
dence has been performed, and simultaneous coupling of visible and IR light in a
WGM wedge resonator has been demonstrated. These results evidence the inade-
quate description provided by the point coupling model and justify the formulation
of a different model for the coupling process of the vertically coupled geometry. The
proposed model and its dependences on gap and wavelength constitute a remarkable
tool for the application of this structure to a wide range of fields, from biosensing to
telecommunication. Indeed, in the biosensing area the possibility to exploit a wedge
shaped resonator and to selectively expose the resonator to the outer environment,
burying the waveguide under a cladding layer, constitutes a remarkable feature which
increases the detection sensitivity of the device [72]. In addition, the oscillating cou-
pling strength allows a device to be tested at multiple frequencies. This represents an
important condition to efficiently probe diverse biological components, each one with
a specific spectral response, with only one resonator. In the telecommunication area,
the observed wavelength dependence allows the design of large bandwidth resonators,
a feature which constitutes a desirable basis for the development of a multichannel
technology [74], opening the possibility to further increase the number of operation
per device. Also the selective excitation of a specific radial mode order that has been
shown in this Chapter (compare Figure 3.11 with Figure 3.12) can be exploited to
reach multiple channel operation within the same device, for example by coupling a
single resonator to distinct waveguides placed at different horizontal positions with
respect to the resonator edge. The oscillating coupling observed for wavelength vari-
ations allows also to create a device where critical coupling of the various signals of a
frequency conversion process can be obtained, resulting in an overall increase of the
efficiency. Finally, all these applications must be joined and added to other inter-
esting features related to the vertical coupling, such as low cost CMOS compatible
fabrication process and stable coupling with free-standing structures [9, 75], which
make the employment of vertically coupled structures a close and desirable goal for
the design of compact and cost-effective photonic chips.
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Chapter 4

Reactive coupling in microresonators

Beyond the great number of applications that can be enabled with a vertically coupled
resonator, there are also several interesting physical phenomena that can be observed
thanks to the peculiar features of this structure. In particular, the possibility to bal-
ance the excitation of different radial mode orders and the peculiar coupling process
described in Chapter 3 help to highlight the presence of a reactive component in the
mutual coupling between different resonator modes.

The present Chapter investigates this phenomenon both with theoretical model
and experimental results and it is divided as follows: a brief introduction to the
phenomenon of reactive coupling in the context of open systems is firstly given in
Section 4.1; the theoretical model proposed in [13] for a vertically coupled resonator
is discussed in Section 4.2 and a further development of the model is also presented,
which provides a different view for the system response; finally, Section 4.3 contains
the experimental validation of the model through transmittance and phase measure-
ments.

4.1 Introduction

The effect of coupling a physical system to its environment constitutes the key point
of open systems. The interaction of a system with an external element creates both
dissipative and reactive channels, which lead to energy decay and shift, respectively
[76]. This effect has been firstly observed in atoms, where the coupling of the dis-
crete atomic levels to a continuum of states by radiative decay channels modifies the
spontaneous decay rates of the system [77, 78] and a shift in its transition frequen-
cies, namely, a Lamb shift [79]. Similar results have been reported in nanoparticles,
with asymmetric scattering observed when plasmon excitations interact with radia-
tive decay paths [80]. In the field of photonics, the coupling of light to and from
a resonator by its bus waveguide is associated to a shift and a spectral broadening
of the resonance [81, 82]. Indeed, even though it is needed to probe the resonator
properties, the waveguide constitutes a perturbation to the environment perceived
by the resonator and it modifies consequently the resonator modal spectrum Actu-
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ally, also the coupling between different resonator modes has been demonstrated to
modify the system response: the interference between different optical modes of two
side coupled resonators system creates a transparency window in their spectrum [83];
this effect, called Coupled Resonator-Induced Transparency (CRIT), is the all optic
analog to the Electromagnetic Induced Transparency (EIT) effect observed in the
atomic context [84] and it is a widely studied effect for its many fundamental and
practical implications, such as tunable delay lines and filters [85]. Recently, investi-
gation on optomechanical resonating systems showed an Optomechanically Induced
Transparency (OIT) effect [86], where the coupling of optical modes (photons) with
mechanical ones (phonons) produces a transparency effect similar to the one observed
in EIT. Interestingly, most of the studies and investigation on coupling induced effects
have been mainly devoted to the action of the dissipative component, the reactive
one not being similarly discussed. In the present Chapter both the dissipative and
the reactive components associated to light coupling in a multimode vertically cou-
pled resonator are investigated from a theoretical and an experimental point of view.
In particular, a waveguide mediated intermode coupling is observed, with great in-
fluence on the system response: depending on the relative detuning between the
coupled modes, the reactive component of the coupling is demonstrated to enhance
or suppress the appearance of resonances in the spectrum. The interference between
resonator modes brings to EIT-like effect and to asymmetric Fano lineshapes, thus
confirming the analogy between photonic and atomic systems.

4.2 Model description

In this Section the theoretical model describing the intermodal coupling in a vertically
coupled resonator is proposed. Following the experimental results, only two modes
belonging to different radial families of the resonator are here considered. Nonetheless
an extension to an arbitrary number of modes is possible. Starting from a discussion
on the original model demonstrated in [13], a new formulation of the equations is
proposed. This allows to identify two different contributions in the system response:
the first representing the average between the two excited modes and the second
containing information on the differences between the two coupled modes. The new
formulation is demonstrated to be particularly useful in the case of quasi degener-
ate modes, i.e. when small differences in resonance wavelength, intrinsic losses and
coupling coefficients between the modes are present.

As a first step, it is useful to start from the most simple case of a single mode
resonator coupled to a bus waveguide, (schematically represented in Figure 4.1(left)),
whose equation of motion can be obtained from Temporal Coupled Mode Theory
[87]:

i
d↵(t)

dt
=


!0 +�� i

�nr + �

rad

2

�
↵(t) + gEin(t) (4.1)
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Figure 4.1: Schematic representation of a single mode resonator (left) and of a mul-
timode resonator (right) with waveguide mediated intermode coupling.

where ↵ is the amplitude of the electromagnetic field propagating along the waveg-
uide and !0 is the unperturbed resonant frequency. � is the reactive term due to
the presence of the waveguide, which causes a spectral shift of the resonance. The
dissipative counterpart to � is described by �

rad, which represents the radiative losses
related to the coupling with the waveguide. This last term, together with the intrinsic
(non-radiative) loss term �nr, determines the overall losses of the waveguide-resonator
system. The excitation source, needed to load the resonator, is described by the last
term in Equation 4.1. It is an incident field, Ein(t), weighted by the coupling coef-
ficient g. As it is expected, Equation 4.1 resembles Equation 3.1 already presented
for an in-plane coupled resonator and produces the already investigated Lorentzian
shaped resonance. The three regimes of under, over and critical coupling described
in Section 1.2 are here driven by the ratio between �nr and �

rad .
Let us now consider a resonator with more radial modes, e.g. two. Then, two

copropagating modes, with different radial mode orders, can be considered to travel
simultaneously along the resonator. Since the bus waveguide breaks the system sym-
metry, the two modes interact. Addition of a complex term to the single mode
equation takes into account the coupling between the two traveling fields. The two
coupled mode equations can then be written as:

8
>><

>>:

id↵1(t)
dt

=

h
!1 +�

rad
11 � i�

nr
1 +�rad

11
2

i
↵1(t) +

h
�

rad
12 � i� rad

12
2

i
↵2(t) + g1Ein(t)

id↵2(t)
dt

=

h
!2 +�

rad
22 � i�

nr
2 +�rad

22
2

i
↵2(t) +

h
�

rad
21 � i� rad

21
2

i
↵1(t) + g2Ein(t)

(4.2)
In Figure 4.1(right) a schematic representation of the system described by the

equation is sketched. The two Hermitian (2x2) matrices �

rad and �

rad take into
account the presence of the loading waveguide in its reactive and dissipative effect
on the resonator response, respectively. Diagonal elements �

rad
jj and �

rad
jj come from

the direct action of the waveguide and they are present also in Equation 4.1 for a
single propagating mode. Off-diagonal terms �

rad
ij and �

rad
ij count for the intermode
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interaction that is mediated by the waveguide, which allows to transfer optical power
between the two modes at the coupling stage 1. Therefore, absence of �rad and �

rad

matrices corresponds to the case of unperturbed singlemode resonators, where no
waveguide is present, whereas absence of diagonal terms only, describes the case of
two propagating modes not interacting between each other.

In this analysis, only the fundamental mode of the bus waveguide is considered
to play a significant role in the system dynamics. This assumption is based on
the large overlap between the fundamental mode of the waveguide and the gaussian
mode that is used to excite it (coming from an objective or from a tapered fiber),
which should produce a minor excitation of higher order modes. Consequently, the
contribution of higher order waveguide modes to the non-diagonal reactive term is
neglected (�other

ij = 0) and the related diagonal element �

other
jj is reabsorbed in the

observed resonant frequency !j = !0
j +�

other
jj .

Following what has been proposed in [13], �rad and � rad matrices can be rewritten
as:

�

rad
=

✓
⌘21 ⌘1⌘2
⌘2⌘1 ⌘22

◆
¯

�

rad
�

rad
=

✓
⌘21 ⌘1⌘2
⌘2⌘1 ⌘22

◆
¯

�

rad (4.3)

where ¯

�

rad and ¯� rad are overall frequency shift and dissipation rate, respectively.
The new coupling coefficients, ⌘1 and ⌘2, are relative weights for the coupling of the
incident field Ein(t) to the two resonator modes (they correspond to the coefficients
g1 and g2) and they characterize the diagonal elements �rad

ii and � rad
ii , thus governing

the waveguide-resonator coupling strength for the two modes. Moreover, as a con-
sequence to the waveguide-mediated intermode coupling, ⌘1 and ⌘2 also mediate the
off-diagonal elements �rad

ij and � rad
ij of the reactive and dissipative matrices. Energy

conservation requires that ⌘21 + ⌘22 = 1, which basically means that light can only be
coupled to one of the two modes and no coupling related losses are present.

Equation 4.2 can be reformulated in matrix form as:

i
d

dt

✓
↵1(t)

↵2(t)

◆
=

✓
�1 �a

�a �2

◆✓
↵1(t)

↵2(t)

◆
+

✓
⌘1
⌘2

◆
Ein(t) (4.4)

where:

�i = !i + ⌘2i ¯�
rad � i

2

�
�nri + ⌘2i ¯�

rad
�

a = ⌘1⌘2
⇣

i�̄rad

2 � ¯

�

rad
⌘ (4.5)

As it can be seen from this new formulation, the diagonal elements �1 and �2
contain the perturbation produced by the waveguide on the resonator mode, both in
resonance shift and losses. Similarly, the non diagonal element a describes the effect

1This interaction has been already observed in microspheres [88], where only a dissipative com-
ponent is considered.
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of an intermode coupling and it needs both the resonator modes to be excited (⌘1 6= 0

and ⌘2 6= 0).
When a monochromatic wave is considered as the input source (Ein = E0e�i!int),

a stationary solution to Equation 4.4 can be found and the mode amplitudes results:

↵̄i(!in) =
�j⌘i�a⌘j
�i�j�a2

E0 (4.6)

where �i,j = !in � �i,j.
In the case of non interacting modes (a = 0 ), the i-th mode field depends only

on the direct excitation provided by the waveguide (↵̄i(!in) =

⌘i
�i
E0). Conversely,

an additional source of excitation appears when the a term is different from 0: it
represents coupling of light from the j-th mode to the i-th mode through the waveguide
and it is responsible for many interesting effects that appear in the transmittance.

This last can be computed as the superposition between the input signal and the
two mode fields ↵̄1 and ↵̄2:

t(!in) = 1� ¯i�
rad

(⌘1↵̄1 + ⌘2↵̄2) (4.7)

where ↵̄1 and ↵̄2 are weighted by their coupling coefficients in order to obtain the field
amplitude at the waveguide output. Considering Equation 4.6, the transmittance can
be rewritten in a more explicit form:

t(!in) = 1� i
¯

�

rad⌘22
�2

� i
¯

�

rad⌘21
�1 � a2

�2

✓
1� a

�2

⌘2
⌘1

◆2

(4.8)

As expected, cancelling the excitation source for one mode (i.e. ⌘2 = 0) results in a
single mode transmission, which resembles the usual Lorentzian shape:

t(!in) = 1� i
¯

�

rad
1

�! � ¯

�

rad
1 +

i
2

⇣
�nr1 +

¯�1
rad
⌘ (4.9)

where �! = !in � !1 is the laser to resonance detuning and ¯

�

rad
1 , ¯�1

rad are the
reactive and dissipative coupling related components.

Examples of the transmittance T as obtained from Equation 4.8 (T = |t|2 ) are
shown in Figure 4.2 for different coupling regimes (different rows) of the two coupled
modes and for different values of the reactive term ( ¯�rad

= �25, 0, 25 GHz for left,
center and right panels, respectively).

In order to obtain an easy comparison with the experimental results presented in
Section 4.3, one narrow and one broad resonant modes are considered. Each panel
shows the response for different relative detuning � = (!2 � !1)/�2 between the two
resonances (� values are shown in the right side of each spectrum): in particular, the
narrow mode resonance is fixed to a given frequency and it is crossed by the broad
one, which passes (from bottom to top of the panel) from negative detunings (� = �3)
to positive ones (� = 3). It is worth to note that, while the reactive term ¯

�

rad can be
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(a) (c)

(f)

(g) (i)
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Under-over
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Δrad < 0 Δrad > 0
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Figure 4.2: Simulated transmittance spectra for two coupled resonator modes as
obtained from Equation 4.8 for different values of the reactive term: ¯

�

rad
=

�25, 0, 25GHz in the left, center and right panels, respectively; and for different
coupling regimes (top, middle, bottom panels): the extrinsic over intrinsic coupling
ratio for the two modes is shown above the central panels (left/right value for the
narrow/broad mode); each panel contains spectra for five different detunings between
the two families (successive spectra are offset by 1 for clarity and � values are spec-
ified on the right side of each spectra); specific phenomena discussed in the text are
highlighted in panels (d) and (f).



4.2. Model description 67

set to 0 value, the term ¯� rad needs always to be present to avoid unphysical results
such as T > 1.

A first evidence that is verified in all the panels is the occurrence of asymmetric
lineshapes associated to the narrow family (see panel (d) as the most evident case).
This effect comes from the interference between the narrow and the broad coupled
modes, and it can be thought as an all optical manifestation of Fano resonances
commonly observed in atomic physics [89, 90]. According to this view, the narrow
mode plays the role of the discrete level of an atomic system, while the broad mode
behaves as the continuum of states, showing an almost constant amplitude within the
narrow mode resonance width [91]. In the case of small detunings this effect turns
out in a EIT one, as it is observed in panel (h) for a null detuning between the two
families.

Despite the presence of Fano resonances is independent from the values of the re-
active component, other interesting effects are enabled by this term. In the following,
the case of Under-over coupled narrow-broad families is used as a reference example
since it more fathfully follows the experimental observations, but the same results
can be also found in the other coupling configurations. In the case of no reactive
coupling (panel (e) and all other central panels, ¯

�

rad
= 0), the transmittance shows

symmetric behaviour with respect to detuning between the two families: when the
detuning is fixed to the same absolute value, the narrow dip at frequency !1 (center
of the spectra) shows the same extinction ratio (i.e. on resonance transmittance) and
shape, no matter on the sign of the detuning. Once the reactive component is added
to mode coupling ( ¯�rad 6= 0) the behaviour with respect to the detuning � is no more
symmetric and the transmittance shape that is found for positive detunings is no
more regained for negative detunings. An interesting evidence of this fact is the dif-
ferent extinction ratios found for the narrow family when three different detunings are
considered. As an example, a positive ractive term can be considered (i.e. ¯

�

rad > 0).
Comparison of the spectra presented in panel (f) for the different detunings shows
the narrow resonance dip to become more pronounced for negative detunings, with
respect to the ¯

�

rad
= 0 case, and, conversely, to decrease its intensity for positive de-

tunings. Remarkably, when the detuning is decreased to � = �3, an almost critically
coupled narrow mode is observed, while it completely disappears from the transmit-
tance spectrum when � = 3. Similar behaviour is found for ¯

�

rad < 0, with properly
switched detuning values. The absence of similar phenomena for ¯

�

rad
= 0 repre-

sents a peculiar signature of mode interference and it is mathematically described by
the term A =

⇣
1� a

�2

⌘2
⌘1

⌘
in Equation 4.8, which is a multiplicative factor for the

amplitude of the first mode. Written in explicit form it reads:

A =

!in � !0
2 +

i
2�

nr
2

!in �
�
!0
2 + ⌘22 ¯�

rad
�
+

i
2

�
�nr2 + ⌘22¯�

rad
� (4.10)

and considering the response of the system at the bare frequency of the broad mode
!in = !0

2, it becomes:
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A⇤
=

�nr2
2i⌘22 ¯�

rad
+ �nr2 + ⌘22¯�

rad
(4.11)

In the case of a reactive term larger than the intrinsic decay rate of the broad
mode �nr2 , the following approximation can be applied:

⇠ =
2i⌘22 ¯�

rad

�nr2
� 1 (4.12)

and the term A⇤ consequently drops to low values. In this situation, when the spectral
position of the first mode resonance coincides with the broad mode bare frequency
!1 = !0

2, the amplitude associated to the first mode becomes negligible and no
evidence of its excitation is found in the waveguide output. A physical explanation
to this suppression is obtained by looking at the two terms in A =

⇣
1� a

�2

⌘2
⌘1

⌘
. The

first term, which is multiplied by ⌘1 in Equation 4.8, describes the direct excitation of
the narrow mode from the waveguide, while the second term describes the excitation
of the first mode by the broad resonance through the waveguide. When these two
factor equals A=0, therefore the narrow resonance vanishes in the spectrum. As it
has been already discussed, this happens for !1 = !0

2. This effect is observed for all
the three investigated regimes (panels (c), (f) and (i)), where ⇠ ⇠ 6 and !1 = !0

2 at
� = 3.1 for all the three cases. Indeed, a strong mode suppression is found for � = 3.
The phenomenon is found for both positive and negative values of the reactive term,
the only difference being an inverted sign for the detuning (� = �3 for ¯

�

rad < 0) to
obtain !1 = !0

2 .
The vanishing narrow resonance is not the only evidence of intermode reactive

coupling. The same term A is responsible also for the EIT effect observed for � = 0

when ¯

�

rad 6= 0. Indeed, the term A evaluated at the center of the broad peak
(!in = !0

2 + ⌘22 ¯�
rad) results in:

A⇤⇤
=

⌘22 ¯�
rad

+

i
2�

nr
2

i
2

�
�nr2 + ⌘22¯�

rad
� (4.13)

Exploiting the condition expressed in Equation 4.12 on the reactive term, the A⇤⇤

term becomes:

A⇤⇤ ⇠ 2⌘22 ¯�
rad

i
�
�nr2 + ⌘22¯�

rad
� (4.14)

which becomes much larger than 1, in modulus, when the reactive term is larger
than the overall losses of the broad mode. This is the case of the three simulated
regimes, where the reactive term is about six times the resonator losses for the broad
family. Therefore, when the narrow mode resonant frequency approaches the broad
mode frequency (i.e. null detuning), its contribution to the output signal is enhanced
with respect to the � = 0 case. This is clearly visible in all the coupling regimes
(highlighted in panel (f)), where the tiny feature observed for the first mode at � = 0
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in the ¯

�

rad
= 0 case becomes a strong mark in the overall transmittance shape when

� 7 0.
A different insight on the system response can be found by considering two new

variables:

�1 =
⌘1↵1+⌘2↵2

2 , �2 =
⌘1↵1�⌘2↵2

2
(4.15)

The transmittance is then computed as (see Equation 4.7): t(!in) = 1�2i�rad�1(!in).
This transformation can be seen as a change in our system basis: the two past vari-
ables ↵1 and ↵2, each one defining an individual resonator mode, are now condensed
in a single variable, which takes into account both the modes and their interaction.
Starting from Equation 4.2, an equation of motion for the new variables can be ob-
tained:
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with ⌦

+
= !1 + !2, ⌦

�
= !1 � !2 and �± =

�1±�2
2 . These quantities can be

thought as the frequencies and intrinsic losses of supermodes, in a similar description
to the standing modes found in the backscattering theory for microresonators (see
Chapter 5 or [92]). The parameter ⌘ = ⌘22 � ⌘21 describes the unbalance in the two
mode excitations. Considering an external excitation source Ein = E0ei!int, with few
mathematical steps an explicit form for �1 is found:

�1 = i

��  
(4.17)

where:
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The transmittance becomes then:

t(!in) = 1�
¯

�

rad

�(!in)�  (!in)
= 1�

¯

�

rad

�(!in)

⇣
1�  (!in)

�(!in)

⌘ (4.19)

In this new form the transmittance is described as a perturbed Lorentzian: the term
�, without the perturbation  , produces the typical Lorentzian dip associated to
resonant processes and it embodies the properties of a mean resonator mode with
resonance frequency and intrinsic losses in between those of the two coupled modes.
The second term,  /�, introduces a perturbation to the mean field and it constitutes
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Figure 4.3: (a)-(g) (top): transmittance spectra as obtained from Equation 4.19
(solid line) and mean Lorentzian shape obtained from the same equation for  = 0

(dashed blue line) for different values of �� and ⌘; (a)-(g) (bottom): perturbative term
 /� obtained with the same simulative parameters; (h) contour plot of the quantity´
| /�| d! as a function of �� and ⌘; coloured circles refer to the parameters used in

panels (a)-(g); lighter values in panel (h) refers to larger discrepancy between T and
� curves (as an example, compare panels (e)-(g) with panels (a)-(c)); ¯�rad

= 5GHz,
¯

�

rad
= 0 and !1 = !2.
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the field component related to the difference between the modes. This view becomes
particularly useful when the two coupled modes have similar properties: when the
intrinsic losses, the resonating frequencies and the excitation strength are equal for
the two modes, these are indistinguishable and only the � term is needed to describe
the system response. However, as the two modes differentiate (!1 6= !2, �1 6= �2 or
⌘2 6= ⌘1) the perturbative term  /� becomes more and more relevant. In Figure 4.3
panel (h), the amplitude of this perturbative term is computed in its dependence on
�� and ⌘ . In this context, !1 = !2 and ¯

�

rad
= 0 are used to simplify the description

of the results provided by the model. As it appears from the contour plot, the
intensity of the perturbation is null when �� = 0 and ⌘ = 0 (i.e. when modes are
identical). Conversely, its strength is increased as these two parameters get far from
0. A similar result is obtained also by changing the relative detuning between the
two families !1 6= !2. The effect of the perturbative term can be observed also in
the different spectra related to different �� and ⌘ values (panels from (a) to (g)). In
particular, in the top figure of each panel the actual transmittance computed from
Equation 4.19 is compared to the one obtained with the only � term (labeled � in
the figure). The difference between these two curves is due to the presence of a non
null perturbative term  /�, which is represented in the bottom figure of each panel.

Interestingly, the new description of the system response that is obtained in this
formulation is complementary to the one discussed above and represented by Equation
4.8. Indeed, this new tool allows to recognize the presence of coupled modes in the
case of quasi degenerate modes, when the Lorentzian shape is barely influenced by the
mode interaction. Conversely, when the two coupled modes show markedly different
parameters the term  /� is no more negligible with respect to the � term associated
to the mean Lorentzian and the description of the system response becomes less
intuitive. Therefore, in this last case the description through Equation 4.8 is more
useful.

4.3 Experimental results

In order to verify the results predicted by the theoretical model presented in the previ-
ous Section, transmittance and phase measurements on a vertically coupled resonator
have been performed. The system consist of a 20µm radius SiN disk microresonator
similar to the wedge investigated in Chapter 3 2. Schematic representation of the
system is provided in Figure 4.4 (left).

In Figure 4.5, the transmittance spectrum of the device is shown and the periodic
resonances of three different TE polarized radial mode families are found. A FSR
analysis allows to identify them as the 1

st, 2nd and 3

rd order families as indicated
in figure. The effective refractive index and the electric field distribution of these
three modes are shown in Figure 4.4. In the following we focus our attention on

2the resonator is very similar to the one presented in Section 3.4, with the only difference laying
in the final (dry) etching process.



72 Chapter 4. Reactive coupling in microresonators

SiON

SiN

20µm

2.5µm

1st

2nd

3rd

1st

2nd

3rd

Figure 4.4: (left) Schematic representation of the investigated structure; waveguide
and resonator height are 250nm and 350nm respectively; (center) resonator TE mode
effective refractive indexes and (right) electric field profiles at � = 1.5µm.
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Figure 4.5: (left) transmittance spectrum of the investigated device showing broad
and weak features related to the 3

rd radial family and much stronger signatures of a
critically coupled 2

nd radial family; (right) zoomed view of the 2

nd family resonance
revealing a weakly coupled resonance associated to the 1

st radial family.

the first two radial orders, whose small resonance detuning allows to investigate the
predicted intermode coupling. The selective excitation provided by vertical coupling
is here a fundamental property, which allows the efficient excitation of multiple modes
to be tuned. In this case, the simultaneous excitation of a critically coupled broad
family and of a narrow undercoupled family allows a more clear observation of the fine
features predicted by the model. Moreover, in order to obtain a more accurate insight
on the system, the interferometric setup presented in Chapter 2 is used to acquire
both the transmittance and the phase spectra of the two resonances. These are shown
in Figure 4.6 for nine consecutive azhimutal numbers (m1 = 122 : 130, m2 = 115 :

123). Fortunately, the slightly different FSR of the two involved families allows to
investigate the doublet in different configurations. Indeed, skimming the different
panels of Figure 4.6 from left to right (i.e. looking at successive resonance peaks)
the narrow peak associated to the first order mode is observed to completely cross
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the larger peak of the second mode, thus resulting each time in a different frequency
detuning between the two modes 3. As a first evidence, different extinction ratios
of the narrow mode are observed when it lays on the blue or on the red part of the
broad mode (compare for example panels (a-b) with panels (h-i)). This asymmetric
behaviour indicates the occurrence of a reactive interaction between the two modes.
A definitive signature of reactive coupling is observed in the central panels (d-e-f),
where the amplitude of the narrow mode is greatly enhanced with respect to initial
and final panels. This experimental configuration, with an almost critically coupled
broad family crossed by a narrow undercoupled one corresponds to the top panels of
Figure 4.2. In particular, the simulation for ¯

�

rad > 0 (panel (c)) qualitatively matches
the experimental data, with an enhanced interference between the two modes for null
detuning and a vanishing narrow dip for positive detunings, when it lays on the red
part of the broad family. Comparison with panel (b) of the same figure confirms that
such a strong alterations in the transmittance cannot be explained without a reactive
component in the coupling.

In this context, phase measurements allows a definite evaluation of the coupling
regime for the two families. In particular, the narrow family is always found in
undercoupled configuration, its phase shift being limited to ⇡. On the other hand, the
broader second family crosses the critical condition in between panel (d) and (e). In
these panels the phase variation associated to the second mode decreases from about
2⇡ to less than ⇡ indicating a change of coupling regime. This evidence is confirmed
by transmittance analysis: the 2

nd family in Figure 4.5 shows a net oscillation in its
extinction ratio, with the lowest value reached at about 192 THz. This is a clear
evidence for a change in the coupling regime. Actually, the phase response remains a
more reliable tool, and it becomes essential in the case of vertically coupled structures,
where an oscillation in the ER can be related to a mode going to both under or over
coupled regime (see Chapter 3).

The information brought by transmittance and phase measurements can be also
combined in a phasor plot to evidence the occurring physical phenomena: looking
at the three phasor plot shown in Figure 4.6 two circles can be identified, a larger
one and a smaller one, related to the broad and narrow resonances, respectively.
The small circle is observed to increase its radius in the central plot: this means an
enhanced excitation of the 1

st radial mode, which confirms the results obtained from
transmittance analysis.

Another improvement given by phase acquisition is the possibility to perform
simultaneous fitting of transmittance and phase data, with an increased accuracy on
the results. Simultaneous fitting of the transmittance and phase data shown in Figure
4.6 with Equation 4.8 results in the red curves. The almost perfect superposition of
the two curves confirms the correctness of the model and the great accuracy of the
setup used for the acquisition of the data. From the fit some system parameters can

3A similar crossing phenomenon driven by thermo-optic effect has been demonstrated in the
same device [93].
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Figure 4.6: Transmittance and phase of the tested disk microresonator: (top) experi-
mental (grey) and fitted (red) curve as obtained from Equation 4.19; (bottom) phasor
plot (experimental and fitted curves) of panel (b)-(e)-(h); black horizontal line helps
to distinguish between under and over coupled modes.

be obtained in their evolution with frequency. In Figure 4.7 the extrinsic over intrinsic
losses parameter �

rad
i /�i for the two coupled families and the reactive term �

rad
12 are

depicted. As expected, the coupling ratio decreases with frequency for the 2

nd mode
and it crosses the critical coupling condition at about 193 THz (corresponding to
panels (d)-(e) of Figure 4.6). Interestingly, the coupling of the 1st mode increases with
frequency, thus indicating a more coupled condition at higher frequencies. This should
bring to an increasing signature of the narrow family with frequency. Conversely,
comparing panels (a-b) with (h-i) the 1

st mode weakens with frequency. This is
another evidence of the mode suppression provided by the reactive component of the
coupling. Indeed, as expected from a comparison between simulated and experimental
data, a positive off-diagonal reactive component (�rad

12 ) of about 15 GHz is found from
the fitting procedure. Actually, fitting of the data with negative values for the reactive
term is possible, with similar values for the Sum of Squared Errors. However, the
lack of physical interpretation of a negative term allows to discard them as unrealistic
results.
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Figure 4.7: Extrinsic over intrinsic decay rates for the 1

st (top) and 2

nd (middle)
modes as obtained from fitting of the experimental data shown in Figure 4.6; (bottom)
off-diagonal reactive term �

rad
12 as obtained from the same fitting procedure (error

bars not shown because too small to be visible).

A final measurement is presented to stress the importance of acquiring also the
phase response of a device. In Figure 4.8 the transmittance and phase of a microring
resonator similar to the one investigated before is shown. The transmittance spectrum
contains only one resonant peak at about 1575nm, thus indicating a single mode
operation of the device. However, looking at the phase spectrum, the feature of
a second coupled mode arises as an additional 2⇡ shift at about 1577nm. This
information is completely hidden in the transmittance due to the strongly overcoupled
regime of the mode. Fitting of the experimental data with Equation 4.19 confirms
this hypothesis, returning an extrinsic over intrinsic loss ratio much larger than one
(�rad

1 /�1 ⇠ 16). With this simple evidence, phase measurements are demonstrated
to give remarkable information on a resonator-waveguide system and they justify the
acquisition of data through interferometric setup to extract not only the amplitude
but also the phase of the outcoming signal.

4.4 Conclusion and perspectives

In the present study the mutual coupling between different radial mode orders of a
vertically coupled microresonator has been investigated. The theoretical model pre-
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Figure 4.8: Experimental and fitted (with Equation 4.19) transmittance and phase of
a SiN vertically coupled microring resonator: a single mode spectrum in the transmit-
tance turns out to contain two resonant modes when the phase spectrum is observed.

sented in [13] has been discussed in the case of a resonator supporting two modes,
with one narrow and one broad family of resonances in its spectrum. The introduction
of dissipative coupling between modes showed asymmetries in the narrow features,
which can be explained as Fano lineshaped resonances in analogy to the Fano reso-
nances observed in the atomic context. Coupling has been characterized also by a
reactive component, which is demonstrated to strongly perturb the system response:
it brings to enhanced EIT effect when a small detuning between the two families oc-
curs and it leads to complete suppression of the narrow family when this resonates at
the broad mode bare frequency. Explanation to these effects has been provided and
their manifestation in a real device has been experimentally proven. In this sense, the
experimental choice of a vertically coupled structure had been fundamental to ob-
serve the coupling related effects. Indeed, the vertical coupling configuration allowed
two different modes to be effectively excited over a wide spectral range. This fact,
together with the variable detuning between the two families due to their different
free spectral range, provided an optimal experimental platform to test the theoretical
model. Both mode enhancement and suppression had been observed and good agree-
ment between experimental data and simulated one has been found. Experimental
acquisition of the phase response of the system increased the accuracy of the fitting
procedure and, moreover, it gave a much more reliable insight on the coupling regime
of each coupled mode.

The increased resonance slope that is found in Fano resonances and the sharp vari-
ation of transmittance observed in EIT effect suggest several potential applications
for the device. Indeed, EIT/Fano based biochemical sensors, low power switching
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devices and all optical delay lines had already been proposed [85, 94, 95, 96, 97, 98]4.
Some of the proposed platforms exploiting microresonators suffer from lack of in-
tegration, as it is the case of microspheres [91], or they need coupling of multiple
cavities [83], with consequent complications in the fabrication process and/or a low
production yield. Moreover, tuning of mode resonating frequencies is accomplished
by moving the tapered fiber or by changing the separation between resonators, which
bring to impractical devices. In this sense, the investigated vertically coupled plat-
form offers an all-integrated device where all optical tuning of the mode interference
can be accomplished: by change of the azimuthal mode number (as shown in Sec-
tion 4.3) or exploiting the thermo optic effect (as demonstrated in [93]). In addition,
different displacement of the waveguide can change the excitation of the involved
modes (Section 3.4.2) and constitutes an additional degree of freedom in the design
of the device. Despite the variety of application, intermode coupling and the conse-
quent perturbation of the spectrum can become detrimental effect for a proper use of
the device. Unfortunately, intermodal coupling seems to be a phenomenon intrinsi-
cally tied to vertical coupling, as it appears anytime two guided modes are found at
similar frequencies; neither the use of different resonator geometries, such as wedge
resonators, nor the movement of the waveguide to different vertical and horizontal gap
seems to modify the strength of this phenomenon (see results described in 3). In this
sense, the most practical solution to mitigate this effect is to excite only one resonator
mode by tuning the waveguide horizontal position. In order to maintain multimode
operation of the resonator, another more complicate approach can be used, based on
the thermo optic effect: by means of selective heaters the relative position between
resonances can be tuned, in a similar fashion to what is described in [93], and spectra
with isolated resonances can be obtained.

Future experiments should regard devices with coupled modes showing similar
characteristic parameters (intrinsic/extrinsic losses and resonant frequency), to verify
the model based on a perturbative approach (see Equation 4.19) and to evidence the
contribution of the reactive and dissipative components for nearly degenerate modes.
Interestingly, a similar analysis on coupled counterpropagating modes is proposed
in the next Chapter 5, where the parameters ⌦

± and �± are used to describe the
properties of symmetric and antisymmetric supermodes.

4Noticeably, the research for an effective delay line requires accurate phase measurements, to
monitor the change in group delay that is introduced by EIT/Fano effects.
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Chapter 5

A model for backscattering in

microresonators

5.1 Introduction to backscattering

Despite the complex dynamics that have been described in the previous chapters
(see Chapter 3 and 4), only one direction of propagation for the resonating mode
was considered (the one excited by the waveguide). However, the always present
sidewall roughness causes excitation of a resonator mode travelling in the opposite
direction with respect to the waveguide excited one [99, 100]. This phenomenon is
commonly referred as backscattering and it has largely been observed in microres-
onators [101, 102]. The presence of two propagating modes with opposite direction
creates two standing modes inside the resonator, which are usually labeled as sym-
metric and antisymmetric modes [92]. The roughness mediated coupling of clockwise
(cw) and counterclockwise (ccw) modes lifts the degeneracy of the symmetric and
antisymmetric standing modes [92]; this results in a resonance frequency split and
gives rise to what is called a backscattering doublet (Figure 5.1). From an exper-
imental point of view, this resonance splitting is usually not visible in high loss
microresonators; indeed, despite this roughness induced degeneracy is present in all
microresonators, the large resonance width produced by other loss channels hides the
small frequency split caused by backscattering. Conversely, in a high-Q resonator
the narrow resonance width makes the observation of backscattered modes a more
probable event. On one side, the presence of split resonances becomes useful for sev-
eral on-chip applications, from fast light propagation [101] to second order filtering
[103, 104] and particle detection [105]. On the other side, it can represent a detrimen-
tal and unwanted source of loss for a resonator and it can severely affect its properties
[106]. In this sense, promising results to avoid backscattering signatures have been
obtained: tuning of the mode frequency splitting up to an entire free-spectral range
allows to pass from half FSR spaced doublets to the complete degenerate counter-
propagating modes [107, 108]. The drawback of this solution is the presence of a large
integrated loop mirror element, which decreases the resonator FSR and increases the

79
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device footprint.
In order to design devices able to cancel or to take advantage of the backscatter-

ing, a proper theoretical model is needed. Indeed, several models have been proposed
to fully characterize this phenomenon [109, 110, 111, 112]. However, only symmet-
ric resonance doublets are predicted by these models, while experiments show clear
asymmetry in the doublet [27, 113]. Recently, the backcoupling occurring at the
waveguide-resonator coupling region has been proven to be a possible source for this
asymmetry [92, 114]. However, asymmetric resonances are observed also in large radii
resonators [12], where the backcoupling term is considered to be negligible and can
not be solely the source for the asymmetry.

The present Chapter contains a theoretical, simulative and experimental inves-
tigation on a new general model of backscattering in microresonators. The model
is able to describe both the presence of symmetric doublets and the appearance of
the more elusive doublet asymmetry even in low power conditions and for large radii
resonators. Based on the strong analogy between the coupling dynamics of multi-
ple copropagating modes in a microresonator (Chapter 4) and the mutual coupling
of counterpropagating modes through sidewall roughness, the model contemplates
both imaginary and real components of the mode coupling coefficient. A more in
depth description of the model is provided in Section 4.2, where the approximations,
the mathematical and physical meaning of the different terms and the predictive re-
sults are explained. Section 5.3 shows the results of FEM 2D simulations to verify
the assumptions and the approximations contained in the model. Experiments on a
vertically coupled microresonator showing backscattering doublets are presented in
Section 5.4 to validate the model predictions. In Section 5.5, the discussion moves
to the different issues related to doublets identification and classification. In particu-
lar, a new tool for the analysis of resonance doublets is proposed. Starting from the
acquisition of phase and transmittance spectra, an inverse phasor representation is
used to identify the existence of mode splitting with extreme sensitivity. In addition,
different methods for the classification of doublet asymmetry are proposed.

5.2 Model description

The theoretical model developed to describe the dynamics of cw and ccw modes
takes into account the main backscattering sources already proposed in literature
and introduces new channels to explain the doublet properties. In particular, the
considered platform is a microresonator coupled to its bus waveguide; following the
model proposed in Chapter 4 no specific coupling configurations are here considered.
This choice allows to simplify the mathematical treatment of the subject by exploiting
TCMT and returns a general model, which can be applied to both in plane and
vertically coupled resonators. Indeed, as it will be explained, the backscattering
process mainly originates inside the resonator volume and it is not affected by the
coupling dynamics.
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Figure 5.1: (left) Experimental doublet in a microresonator transmittance spectrum
and, (right) schematic representation of the considered resonator model: a two port
excitation sustains clockwise (cw) and counterclockwise (ccw) modes inside the mi-
croresonator, which are characterized by intrinsic losses �int and external coupling
coefficient ⌘.

As a first step, it is useful to recall the most simple equation for a singlemode
resonator already described in Section 3.1:

d↵

dt
=

�
i!0 � �int � �

�
↵ + i⌘Ein (5.1)

The evolution of the resonator field ↵ is dependent on the resonating frequency
!0, on the intrinsic and extrinsic decay rates (�int and �, respectively) and on the
coupled input field ⌘Ein. Generalization of this formula to the case of two excitation
ports (Figure 5.1) and two propagating fields (the cw and ccw modes) results in:

(
d↵cw
dt

= (i! � �int � �)↵cw + i⌘Ein1

d↵ccw
dt

= (i! � �int � �)↵ccw + i⌘Ein2

(5.2)

The same equation condensed in matrix form becomes:

d↵

dt
=

�
i! � �int � �ext

�
↵+ iKE

in

(5.3)

where the different matrices are:

↵ =

✓
↵cw

↵ccw

◆
, ! =

✓
!

0

0

!

◆
, �int =

✓
�int

0

0

�int

◆

K =

✓
⌘

0

0

⌘

◆
, E

in

=

✓
Ein1

Ein2

◆ (5.4)

The same resonator mode is considered to be excited in the two directions, thus
giving equal resonating frequencies, coupling coefficients ⌘ and intrinsic / extrinsic
decay rates �int/�. The matrix �ext for the extrinsic decay rate of the system is
found from energy conservation: [87]:
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2�ext

= K+K (5.5)

where the + symbol denotes the Hermitian adjoint. This returns:

�ext

=

 
⌘2

2

0

0

⌘2

2

!
(5.6)

As it appears from the diagonal form of the different matrices defined in Equation
5.4, no coupling between the two modes has been inserted up to now and the system
describes the independent propagation of cw and ccw modes.

In general, the coupling between modes can be found both inside and outside the
resonator. The inner coupling is related to the sidewall roughness of the microres-
onator and it is spread along the whole resonator circumference [99]. In our model,
the strength of this coupling source is described by the coupling parameters �12 and
�21 and it affects the non diagonal elements of the intrinsic matrix, which becomes:

�int =

✓
�int

�21

�12
�int

◆
(5.7)

The outer coupling source is found at the coupling region, where a portion of the
waveguide field can be scattered back into the ccw mode [102]. Indeed, the effective
index variation felt by the waveguide mode when approaching the resonator can bring
to a partial reflection of the field. To this process is associated the backcoupling
parameter ⌘bc, which appears in the coupling matrix as:

K =

✓
⌘

⌘bc

⌘bc
⌘

◆
(5.8)

The extrinsic loss matrix is consequently modified to fulfill Equation 5.5, which re-
turns:

�ext

=

 
⌘2+⌘2bc

2

⌘⌘bc

⌘⌘bc
⌘2+⌘2bc

2

!
(5.9)

Defining an extrinsic decay rate � = ⌘2/2 and backcoupling decay rate �bc = ⌘2bc/2,
the extrinsic matrix can be rewritten in a more usual form as:

�ext

=

✓
�+ �bc

2

p
��bc

2

p
��bc

�+ �bc

◆
(5.10)

and the coupling matrix becomes:

K =

✓ p
2�p
2�bc

p
2�bcp
2�

◆
(5.11)

From Equation 5.3, considering only one port excitation (Ein2 = 0), the equation of
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Figure 5.2: Schematic representation of the different excitation sources for the ccw
(red lines) and cw (green-dashed line) modes considered in the model.

motion for two interacting cw and ccw fields is then obtained:

8
<

:

d↵cw
dt

= (i! � �int � (�+ �bc))↵cw �
�
2

p
��bc + �21

�
↵ccw + i

�p
2�bcEin1

�

d↵ccw
dt

= (i! � �int � (�+ �bc))↵ccw �
�
2

p
��bc + �12

�
↵cw + i

⇣p
2�Ein1

⌘

(5.12)
The different excitation sources for the cw and ccw modes are schematically rep-
resented in Figure 5.2. In particular, in addition to the direct excitation from the
waveguide, the ccw mode can be excited by internal coupling of the cw mode (�12).
Conversely, the cw mode receives indirect excitation from the backcoupled light com-
ing from the waveguide field (

p
2�bc) and from the internal coupling with the ccw

mode (�21). Finally, there is another coupling process, valid for both the modes,
where the propagating mode inside the resonator can couple to the bus waveguide
and be successively backcoupled to the opposite resonator mode (��bc). From this
picture it becomes evident the different role of intrinsic and extrinsic coupling mech-
anism. The first acts only on the coupling between the two resonator modes, whereas
the second modifies also the coupling between the resonator and the bus waveguide.

Before moving to a more specific analysis of the system response, some useful
considerations on the mode coupling coefficients �12, �21 and �bc should be done.

A first important remark regards the coupling terms �12 and �21: the model treats
them as complex numbers, with real and imaginary components describing dissipative
and reactive features of internal mode coupling, respectively. Despite this fact has
already been proposed in other models [92], the most common ones usually take
into account only the reactive term. In our case, the dissipative feature of the inner
coupling is considered to originate from the multimodal nature of the microresonator:
the possibility to transfer power to higher order modes during backscattering opens
an additional loss channel that is not present in singlemode resonators1.

A second note regards the relation between �12 and �21. The isotropic distribution
and orientation of sidewall defects and the field profiles associated to the cw and ccw
modes suggest the existence of a symmetric coupling dynamics. Consequently, equal

1To be consistent with experimental observations, the 1st order radial mode is considered as the
main excited mode.
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coupling coefficients can be used (�12 = �21 = �) without affecting the generality of
the model and without alteration on the model predictions on real systems.

A final relevant note concerns the backcoupling term (�bc). This external coupling
element is considered to be negligible with respect to the inner term when resonators
with radius larger than 10µm are used [102]. In this condition, the long and pro-
gressive approaching between the waveguide and the resonator creates an adiabatic
variation in the mode effective index, which results in a negligible reflection coef-
ficient. Since our simulative and experimental examples consist in resonators with
20µm and 25µm radii, respectively, it is possible to neglect the backcoupling term
from Equation 5.12 without significant deviations from the real dynamics2. Actu-
ally, the contribution to �bc does not come only from the reflection due to effective
index variation, but also from the enhanced reflection along the coupling region. In
this region, the electromagnetic field is more concentrated along the rough waveguide
and resonator sidewalls, and this brings to an increment in the overall reflected field.
Nonetheless in our experiment, the use of the vertical coupling geometry makes this
effect negligible. Indeed, in this geometry the electromagnetic field of the modes
is mainly concentrated along the top and bottom surfaces of the waveguide and
resonator, respectively, and not on their sidewalls. Therefore, the lower degree of
roughness associated to horizontal surfaces results in lower backscattering strength.

In these conditions, from Equation 5.12, considering a monochromatic excitation
source Ein = E0ei!int and performing similar mathematical steps to those described
in Section 4.2, it is possible to extract the stationary cw and ccw field amplitudes
(↵̄cw and ↵̄ccw ). The response of the system for a one port excitation is then obtained
from the interference between the input and the ccw waves weighted by the coupling
coefficient:

t(!) = 1 + i
p
2�↵̄ccw(!)

= 1� 2�

(i�! + �int + �)� �2

(i�!+�int+�)

(5.13)

where �! = ! � !in is the relative detuning between the input laser frequency !in

and the mode resonant frequency !. Interestingly, the form of Equation 5.13 highly
resembles that of Equation 4.19 and suggests some useful comparisons. The coprop-
agating and counterpropagating modes of the present case are related to the 1

st and
2

nd copropagating modes of the multimodal resonator and, similarly, the mode inter-
action that previously was mediated by the waveguide is here represented by sidewall
roughness. This analogy suggests once more to consider both dissipative and reactive
effects in the coupling between backscattered modes. Hence, the mode interaction in
the model is described by two coefficients �r and �i, which constitute the interaction

2Additionally, the wedge shape of the experimentally tested resonator produces an even more
adiabatic alteration of the effective index in the coupling region with respect to common disk res-
onators.
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Figure 5.3: Transmittance and phase spectra as resulting from Equation 5.13 for
varying values of (left) �i and (right) �r, with �r = 0 and �i = 80GHz, respectively;
resonant frequencies of the top-right panel have been shifted for ease of visualization.

coefficient � = �r + i�i. Then, to characterize the action of these two parameters
on the system response, the transmittance and the phase, computed as T = |t|2 and
' = arg (t), can be simulated for different values of �i and �r (Figure 5.3).

Actually, a more clear view of the action of �r and �i on the doublet shown in
the figure can be reached looking at the resonator symmetric and antisymmetric
solutions. Indeed, the superposition of ccw and cw waves inside the resonator creates
symmetric and antisymmetric standing waves [92], whose amplitudes ↵+ and ↵� can
be defined as:

↵+
=

↵ccw + ↵cwp
2

↵�
=

↵ccw � ↵cwp
2

(5.14)

This change of variables is very similar to the one performed in Chapter 4 (see Section
4.2) and it recalls the above described analogy between the two physical systems.
Substituting Equation 5.14 into Equation 5.12, the equation of motion for these new
quantities can be written as:

8
<

:

d↵+

dt
=

⇣
i! � �int � ⌘2

2 � �
⌘
↵+

+ i (⌘Ein)

d↵�

dt
=

⇣
i! � �int � ⌘2

2 + �
⌘
↵�

+ i (⌘Ein)

(5.15)
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The transmittance of the system computed as:

t = 1 + i⌘
(↵+

+ ↵�
)p

2

(5.16)

returns the same result shown in Equation 5.13. Indeed, the only observable we have
on the system still remains the power extracted from the ccw mode (or from the
cw one if the Ein2 port is used as excitation port). However, this new form gives
a different and somehow more intuitive description of the system. The amplitudes
of the symmetric and antisymmetric modes are closely related to the shape of the
doublet, each peak being associated to ↵+ or ↵� resonances. When the cw mode
begins to be excited from the backscattered ccw mode, the amplitudes and resonating
wavelengths of ↵+ and ↵� cease to be degenerated, as it can be seen from Equation
5.15. As a consequence to this, a split in the spectrum appears, as it is found in the
left panels of Figure 5.3. The doublet splitting is mainly affected by the imaginary
component of the coupling (�i) and it is found to be �!s = 2�i. In the same figures
(Figure 5.3(left)) a variation of the doublet separation is followed by a variation in
the doublet transmittance. Equal intrinsic and extrinsic coefficients lead to critically
coupled resonances in the case of non interacting modes, as it can be seen from the
phase plot. Conversely, the same resonance with the same coefficients passes to the
under coupling regime when the mode coupling is turned on. This observation is
in accordance to other models [106, 111] and it can be ascribed to the interference
between the symmetric and antisymmetric modes at the coupling stage. When a
spectral shift between the two modes occurs (i.e. when �i is different from 0), their
superposition produces different values for the overall transmittance. This can be seen
from Equation 5.16, where the dependence of the response of the system on the ↵+ or
↵� superposition is made explicit. Increasing the spectral distance, the transmittance
minima stabilize to a fixed level, because of a lower superposition between the two
fields is found. For what concerns the influence of the dissipative component of the
coupling (�r), it can be seen from Figure 5.3 that it mainly affects the symmetry and
the linewidth of the doublet. The same prediction follows from Equation 5.13. As
a real number, �r constitutes a source of loss for one mode and a source of gain for
the other mode, depending on its sign. Consequently, an unbalance in the intrinsic
losses between ↵+ and ↵� results in a different intrinsic/extrinsic coupling ratio3.
This gives different transmittance minima and linewidths.

5.3 Simulations

The above described model assumes the existence of a real component in the coupling
between the ccw and cw modes and foresees the origin of this component in the

3In the following, the word “unbalance” and “asymmetry” are used to refer to the same spectral
feature, the first recalling more the physical principle originating the doublet, the second being more
related to its manifestation.
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Internal cladding

External cladding

Figure 5.4: (left) Structure of the simulated resonator-waveguide system; blue colour
indicates higher refractive index materials (n=2), while grey colour represents the
internal and external cladding material (n=1.45); (center) unbalance, calculated
from difference between transmittance minima (see method U1 in Section 5.5), and
(left) splitting occurrences as obtained for a singlemode (blue line) and a multimode
(dashed red line) resonator; the difference between the two resonators is clear in the
unbalance, whereas no net difference is observed in the resonance splitting.

multimodal nature of a resonator. In order to confirm this hypothesis, some FEM
simulations were carried out with the COMSOL® software.

The investigation aims at verifying the differences between singlemode and mul-
timode resonators in the appearance of resonance doublets. 2D simulations of an
in-plane coupled resonator (Figure 5.4(left)) allow the transmittance to be computed
at different wavelengths and to visualize the resonance minima of each doublet. Res-
onator radius and materials similar to those of the real structure investigated in
Section 5.4 are used, and the rough sidewalls responsible for the backscattering are
reproduced with a perturbation on the external circumference of the resonator (inset
of Figure 5.4(left)). More in detail, sidewall roughness can originate from several
fabrication steps (the lithographic process, the wet chemistry steps or common dry
etching [47, 115]) and the appearance of scatterers along the resonator sidewall is
basically a stochastic process. Therefore, the surface roughness can be truthfully
reproduced by a Gaussian distributed noise along the resonator external edge. The
RMS (⇠RMS) and central wavelength (⇠C) characterizing this distribution are chosen
to match the real Q factor of the device and accounts for 0.008 and 100nm, respec-
tively. Moreover, only a portion (1/3) of the resonator edge opposed to the coupling
region is covered with the noise distribution. This is done to avoid the appearing of
a roughness dependent coupling4, which is not the subject of the study. Results of
the simulations are synthesized in the two panels of Figure 5.4(center and right). In
particular, the doublet unbalancing and splitting of a singlemode and of a multimode

4An example being the unwanted enhancement of backcoupling effects along the coupling region.
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resonator are shown. The unbalance values are obtained from the difference between
transmittance minima of the doublet, as explained in Section 5.5, while splitting is
calculated as the spectral distance between doublet minima. Due to the stochastic
nature of the process, only a statistic approach can reveal the properties of the de-
vices. Several doublets are then considered and an histogram for each quantity is
obtained.

As it can be seen from the data, a clear increment in the overall unbalancing is
associated to the onset of multimode operation for the resonator (blue histogram),
while very feeble asymmetry is found when singlemode resonators are considered
(red histogram). This explains the symmetric modes that are observed in high-Q
singlemode resonators [106, 116, 117]: when the multimode channel is not open, there
is a higher probability for a backscattered photon to couple with the single opposite
propagating mode; conversely, with a multimode resonator a non-null probability
exists to couple a backscattered photon to a higher order mode, which does not
contribute to the amplitude of the standing waves. Interestingly, a similar difference
is not found in the doublet splitting, which reaches similar values in the singlemode
and multimode resonators. Therefore, equal behaviour for the reactive component of
single and multimode resonators seem not to be followed by equal behaviour of the
dissipative component, thus suggesting that the multimode resonator can enhance the
presence of asymmetric doublets. This fact has relevant practical consequences since
different approaches to the phenomenon of backscattering should be used. Indeed,
on one hand, the singlemode condition is preferred for the predominant presence of
symmetric doublets, a property which makes the device response more predictable
and more easy to be controlled. On the other hand, the multiple channel operation
provided by multimode resonators is a favourable property for their implementation
in photonic circuits. Moreover, there exists a possibility to exploit the asymmetry
of a doublet in the generation of entangled photons [118], or even to alternatively
suppress one of the two resonances and create a two way photonic switch.

5.4 Experimental results

In order to take advantage of the above-mentioned features of asymmetric split reso-
nances or even to cancel asymmetry out, a proper control of the cw/ccw power balance
is needed. In this sense, the variation of azhimutal number that has been exploited
in Section 4.3 to tune the mode coupling parameters is not a useful tool. Indeed,
highly variable asymmetry has been observed in neighbouring doublets [102, 109],
mainly due to the randomly distributed roughness. A more practical solution relies
on the tuning of a single doublet. Recently, tuning of the asymmetry has been proven
in the case of nonlinear interaction inside the resonator when strongly exciting the
resonance doublet [119, 120], the basic principle being the unbalance of self-phase and
cross-phase modulations. However, both experiments showed symmetric resonances
in low power conditions and their investigation was aimed at a different goal; namely,
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Transmittance, phase and phasor plot of the investigated doublet. It
is useful to highlight the greater sensitivity offered by the phasor plot even in the
central part of the doublet, where it more clearly evidences the small discrepancies
between data and fit.

the symmetry breaking observed in pumped doublets.
In this section, an experimental investigation on doublet asymmetries is described.

Asymmetric transmittance and phase doublets are observed under low power excita-
tion. Moreover, all optical tuning of the asymmetry is demonstrated through Pump &
Probe experiment, with transmittance unbalance reaching values up to -40% and 40%.
The experiment also highlights different behaviours between imaginary (splitting) and
real (dissipation) components of the coupling, and thus confirms the predictions of
the simulations. It also provides a first validation of the theoretical model presented
in Section 5.2 through accurate fitting of the experimental phase and transmittance
data.

5.4.1 Pump and probe experiment

The analogy between multi mode coupling and ccw/cw described in Section 5.2 of-
fers an interesting tool to prove the tuning of doublet asymmetry. Indeed, in a recent
work by Bernard et al. [93], the reactive coupling between copropagating modes in a
vertically coupled device is tuned by means of a pump laser, which basically serves
as a heating source for the device. The observed variation of the coupling parameters
suggests to exploit the same tool to investigate the tuning of coupling parameters in
a backscattering doublet. Therefore, a pump and probe experiment is carried out
on the wedge microresonator already studied in Chapter 3. The choice of a verti-
cal geometry allows to truthfully discard the presence of backcoupling effects at the
coupling region, as already pointed out in Section 5.2. Moreover, the use of a wedge
resonator decreases the intrinsic losses with respect to a similar disk resonator [12]
and allows backscattering doublets to be observed. Indeed, despite this structure
does not show doublets in the C-band (1530-1565nm), the larger transparency of the
resonator material (SiN) in the E-band (1360-1460nm) allows doublets resonances to
be observed in this spectral region. In particular, in Figure 5.5, the transmittance
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Figure 5.6: (top) Spectrum of the tested device in three power excitation regimes and
(bottom) stored energy for the two observed resonances in high power conditions.

and phase spectra of the investigated resonance at 1371 nm are shown and two split
resonances are clearly visible. Fit of the experimental data with the theoretical model
returns values for the dissipative (�i) and reactive (�r) components of the mutual cou-
pling of about 1GHz and 30MHz, respectively. The low but not null real component
is justified by the weak asymmetry, while the large imaginary part confirms the large
splitting observed in transmittance. The evidence of doublet splitting appears also
in the phasor plot as a small circle right in the center of the phasor curve.

Exploiting the setup described in Chapter 2, it is possible to study both the
transmittance and the phase of the doublet with a probe laser, while exciting another
resonance in a different spectral region. The pumped resonance is chosen in the C-
band region to allow an easier optical filtering of the pump signal from the probe one.
The selective excitation offered by the vertical coupling allows two different resonator
modes to be effectively excited in that region: the 1

st radial mode corresponding to a
narrow resonance (Q ⇠ 20000) and the 2

nd radial mode associated to a broader one
(Q ⇠ 1000). The spectrum of the device, showing these two resonances in low and
high power excitation, is plotted in Figure 5.6, together with the stored power inside
the resonator, obtained from Equation 1.16. The typical triangular transmittance
due to thermo-optic effect is observed for the 1

st mode when pumped at 5W and, less
intense, at 1W. A similar resonance alteration is not found for the 2

nd mode at the
same excitation powers, because the lower mode confinement produces lower values of
stored energy; in addition, the larger resonance width makes a possible alteration of



5.4. Experimental results 91

Figure 5.7: Transmittance spectra of the probe doublet acquired at increasing pump
wavelength (transmittance is vertically offset and the right part of the resonances is
not shown for a more clear visualization); in the inset, the recorded pump spectrum
is shown, with different dots indicating the pump position for each acquired probe
spectra; a clear shift of the doublet central wavelength is observed as the pump moves
towards the resonance center; data are obtained with the pump laser exciting the 1

st

radial mode and with an input power of 1W; variation of the doublet unbalance is
also visible in the figure.

its shape less visible. A fit of the triangularly shaped resonance at 5W with Equation
6.6 presented in Chapter 6 is also shown in figure.

The thermo optic effect combined with the high input power allows a fine tuning
of the doublet wavelength to be achieved. Indeed, the sudden increase of energy that
occurs when the pump wavelength approaches the resonance produces a correspond-
ing increase in the resonator temperature due to power absorption from the material.
Thanks to the thermo-optic effect, this temperature increment is translated into an
increase of the effective index of any resonance of the device (a more detailed ex-
planation and a quantitative analysis of this phenomenon is contained in Chapter
6). Hence, a scan of the resonance at 1550nm produces a red shift of the doublet
at 1370nm. This is observed in Figure 5.7, where the probe spectrum acquired for
different pump positions is shown. As the pump moves towards the resonance center
a larger shift of the probe is found, with values as high as 100pm when the pump
reaches the resonance center.

The fine tuning of the doublet position offered by this method allows a value for
the doublet unbalance (U1) to be obtained at different wavelengths: with fixed pump
power, the resonator internal power is tuned by scan of the C-band resonance and the
consequent variation of the doublet spectral position and unbalance is monitored with
the probe laser. A first sign of a wavelength dependent unbalance is already present
in Figure 5.7: as the doublet moves to larger wavelengths, an evident variation in the
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doublet asymmetry occurs. In order to perform a wider investigation on this property,
this measurement has been carried out for different pump powers and radial modes.
In particular, the results for three pump mode-power combinations (1st-1W, 1st-5W,
2

nd-5W) are synthesized in Figure 5.8, where the doublet unbalance vs doublet central
wavelength is plotted5. An additional set of data, called off-resonance, is present and
it serves as a reference level for the evaluation of thermal effects due to the strong
laser power. In this case, the laser wavelength is kept fixed at an out of resonance
condition throughout all the measurement, while its power is smoothly increased up
to 5W. In this way only the distributed thermal effects occurring outside the resonator
are considered, such as the temperature variation occurring to the whole sample due
to facet absorption and waveguide absorption. The out of resonance condition assures
that resonator based effects coming from the resonator excitation are not observed. A
first comment on Figure 5.8 regards the comparison between these off-resonance data
and the 2

nd-5W ones. The good overlap between the two set of data suggests that no
additional effects are given by the resonator to the doublet unbalance when the 2

nd

mode is excited. More precisely, the possible effects related to resonance excitation
seems to be overwhelmed by the distributed thermal effects produced by the strong
5W pump. This fact is confirmed by the 1

st-5W set of data, which shows some points
in accordance with the “off-resonance” and 2

nd-5W ones. These points corresponds
to a largely detuned pump wavelength, still far from the resonance center, which
basically corresponds to the off-resonance case; therefore, in this case the distributed
thermal effects can be truthfully considered as the most prominent source of shift
and unbalance variation for the doublet central wavelength. As it is expected, this
effect ceases to play a significant role when the resonator begins to be effectively
excited. Other doublets belonging to the 1

st-5W set are found at longer wavelengths
due to the larger power circulating inside the resonator. These points exhibit an
oscillating behaviour in their unbalance, as it can be seen from the central panel of
the figure, where the unbalance over a larger spectral range is shown. Unfortunately,
mode hops in the probe laser forbid measurements in the middle excitation range.
Nonetheless, in the observed points the unbalance reaches values as high (low) as
40% (-40%). A similar oscillating behaviour is observed also for the 1

st-1W set. In
this case, the unbalance immediately moves away from the other data set, indicating
a small influence of the distributed thermal effect. This is because the pump power
is 5 times lower than the 2

nd-5W case and its thermal effect is rapidly canceled in
favor of a resonator dependent effect.

From this analysis, two competing phenomena responsible for the unbalance vari-
ation can be highlighted: (1) a first effect related to a distributed homogeneous
heating of the sample, produced by power absorption outside the resonator and (2) a
second effect strictly related to the local heating obtained with the excitation of the
1

st resonator mode. The first effect shows a weaker dependence on wavelength, with

5The 2nd-1W combination is not shown because of the negligible central wavelength variation
that is observed.
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Figure 5.8: (top) Wide range plot showing the doublet unbalance for large shifts
of the doublet central wavelength and for different pump mode-power combinations;
the four different scenario presented in the text are highlighted with different marker
shapes and colours; the unbalance is obtained from transmittance difference method
U1 (see Section 5.5). (center) Zoomed view of the same data (bottom) Doublet split
for the 1

st-1W combination. Arrows refer to the data shown in Figure 5.10.

an average unbalance variation of about 15% over a 70pm shift. Moreover, it does
not manifest any evident oscillation, but simply a smooth increase. The second effect
produces a stronger unbalance variation of about 30% over the same spectral shift.
Most importantly, it produces an oscillation in the doublet asymmetry, which makes
possible to switch from a -40% to a 40% unbalance in a 100pm shift of the resonance
wavelength. The oscillation is continued over all the spectral shift obtained with the
5W pump power. Interestingly, the doublet split does not follow the oscillations of
the asymmetry (see Figure 5.8(bottom)), similarly to what obtained by simulations.

In oder to understand the origin of the stronger effect (2) a second simulation,
similar to the one presented in Section 5.3, is carried out. In this case the heating is
strongly localized in the region of the first order mode. Therefore, only locally the
refractive index is changing. To model this, only the refractive index of the inter-
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Figure 5.9: Unbalance dependence on doublet central wavelength as obtained from
2D simulation of a 20µm radius microresonator; simulation parameters are the same
as those used to obtain Figure 5.4 (for the multimodal case), the only difference being
the central wavelength of the noise distribution ⇠C , which is decreased from 100nm to
10nm; spectral shift of the doublet is due to the increase of internal cladding refractive
index from 1.44 to 1.46, with step of 4⇥ 10

�3.

nal cladding is increased. Indeed, the wedge shaped resonator pushes the mode to
propagate in a more internal radius at increasing wavelengths (see Figure 3.8). Con-
sequently, the local temperature increase produced by pump absorption is displaced
from the probe profile to a more inner radius. Therefore, the probe field perceives
an asymmetric increase of the refractive index, which can be simulated with a higher
refractive index of the inner cladding. Results of the simulation (see Figure 5.9) qual-
itatively follows what is experimentally observed. An overall oscillating unbalance
with wavelength appears, with maximum and minimum values reaching -5% and -
25% respectively. The differences between simulation and data are mainly ascribed
to the limitations of 2D model over a complex 3D real structure (wedge shape) and
to not accurate roughness parameters.

Despite this qualitative agreement between experiment and simulation, a clear
understanding of the physical origin for the oscillating unbalance is not yet reached.
From a mathematical point of view, the only multimodal nature of the resonator
that is introduced to explain the asymmetry is not sufficient to explain the observed
dependence on wavelength. This can be described with an oscillation in the real
component of the coupling, which means a variation in the energies stored in the
symmetric and antisymmetric standing modes. A first tentative explanation relies
on the relative position between these two modes with respect to the waveguide. As
described in [121] a variation in the position of a defect results in different losses, and
then unbalancing, for the two standing modes. In our case the defect could be the
waveguide, which can introduce losses at the coupling region. Instead of a physical
movement of the waveguide, a variation of the defect position can be reproduced
by the wavelength increase. The field profiles of the standing modes at the coupling
region depend periodically on wavelength and bring to wavelength dependent coupling
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Figure 5.10: Experimental (coloured lines) and fitted (red lines) transmittance and
phase of differently unbalanced doublets (positive (p), balanced (b) and negative
(n1)-(n2); agreement between the two curves is observed, with discrepancies mainly
due to Fabri-Perot oscillations, which becomes visible in out of resonance conditions.

induced losses, which could explain the unbalance oscillation. This interpretation can
explain the weak unbalance variation observed for the thermal effect as the beginning
of weak oscillations. The stronger variation observed for a 1

st mode pump is explained
with a local asymmetric alteration of the refractive index, which brings to a spectral
shift similar to the case of an homogeneous increase, but with an enhanced difference
in the coupling induced losses.

As a last analysis, the different symmetric and asymmetric doublets observed
during the pump and probe experiment can be used to test the theoretical model.
In Figure 5.10 transmittance and phase spectra for different doublets are shown,
together with theoretical fitted curves. The spectra are related to the unbalance
points addressed by arrows in Figure 5.8 and they have been chosen to cover different
possible asymmetry configurations. Fitting parameters for the doublets are shown
in the figure. As expected, the real coupling coefficient assumes positive, negative
and almost negligible values, thus following the three observed asymmetries. The
imaginary component is found at about 90MHz, which results in a spectral distance
between the two minima of about 11pm, in agreement with the experimental data
shown in Figure 5.8(bottom). Despite good agreement between data and model is
found for all the doublets, some divergences are observed, especially in the extreme
parts of the spectra. These discrepancies are mainly ascribed to the Fabry-Perot
oscillations, whose intensity becomes more visible when the transmittance flattens, i.e.
outside resonance. Moreover, the initial assumption on the mode coupling parameter
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�12 = �21 should be carefully reconsidered since the wedge shape of the resonator can
displace the symmetric and antisymmetric modes at different radial positions and
create overall different losses and coupling strength.

5.5 Doublet visualization

5.5.1 Identification

As a last topic, a new method for the identification of a doublet and for the recog-
nition of its asymmetry is proposed. Indeed, a doublet is usually distinguished by
looking at resonance alteration in the transmittance spectrum [111]. In particular, a
doublet becomes visible when the transmittance shows two different minima. In this
case, even if the split does not overcome the FWHM of the single resonances, the
doublet can be said to be resolved in transmittance. Actually, several cases can be
found where a not resolved doublet affects the device properties [104]. Therefore, a
method for the identification of doublets that are partially or completely hidden in
their transmittance spectrum is a desirable goal. Figure 5.11 contains four different
panels, associated to different identification methods. In each panel three curves re-
lated to three different coupling strengths (�i) are shown to evidence the sensitivity
of the methods to weakly backscattered modes. The first panel (top-left) presents
the most common approach, which exploits the information on the system that is
given by transmittance and looks for a bifurcation in the resonance dip. In addition,
phase observation (bottom-left) can be joined to transmittance to give a two side
observation of the system. However, as evidenced by the figure, these two separated
quantities do not provide a sensible visualization tool in the case of weak coupling.
In a second approach, the condensed phasor plot can be exploited (top-right). This
method had already been theoretically proposed [101], but it becomes useful only
when large coupling parameters are present. As it can be seen in the figure, the pha-
sor barely changes its circular shape and it can be hardly used to univocally identify
the presence of a doublet. Interestingly, a much sensible and efficient way to extract
the split nature of a resonance is obtained when looking at the response inverse (1/t).
Actually, the curve representing the real and imaginary components of the response
inverse in a 2D plot (x = Re(1/t) and y = Im(1/t)) is a common circle, which can
be represented in an inverse phasor plot. Generally speaking, the complex inverse
mapping (t ! 1/t) transforms circles (phasor plot) in circles (inverse phasor plot),
where the only difference lays in their radii. In this way, no improvement in the sensi-
tivity is obtained with respect to the common phasor plot. However, when the phasor
circle is forced to pass through the origin of the axes (Re(t) = 0 and Im(t) = 0) its
inverse mapping becomes a straight line. This is observed in the bottom-right panel
of Figure 5.11, where the straight line (blue horizontal line) is the inverse phasor
curve of non interacting resonator modes. When this requirement is fulfilled, the
inverse representation is able to reveal backscattering doublets that were hidden in
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Figure 5.11: Different methods for the identification of a doublet: (left) transmittance
(with zoomed transmittance minima in the inset) and phase spectra as obtained
from Equation 5.13, (top-right) phasor plot and (bottom-right) inverse phasor plot;
no doublet asymmetry is considered in the simulation to simplify the description
(�r = 0).

other methods: the red and yellow lines obtained for weakly interacting modes show
an evident deviation from the blue straight curve for non interacting ones. This evi-
dence demonstrates the high sensitivity reached with this new visualization method.
Actually, in order to have a phasor curve always passing through the origin, a unity
down shift of the real component is applied, and the plotted new quantity is not the
response inverse but g = 1/(1� t).

In order to illustrate the experimental relevance and the increased sensitivity
offered by the new method, a study of a not resolved doublet is performed. The
involved resonance is found nearby the one investigated in Section 5.4 and it does
not show any relevant sign related to the presence of a doublet, nor in transmittance
neither in phase response (see Figure 5.12). In this sense, fitting of the experimental
curves with the model can help to evidence the presence of backscattering. The two
fit curves are obtained considering a model with or without interaction (i.e with �i
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Figure 5.12: Experimental and fitted transmittance (left) and phase (center) of the
microresonator investigated in Section 5.4 for a not visible doublet; lack of evident
transmittance alteration prevents recognition of the doublet to be easily performed
with the only experimental data; (right) inverse phasor plot obtained from the same
curves showing clear alteration from the straight line associated to singlemode prop-
agation.

as fitting parameter or with �i fixed to 0; �r = 0 in both cases). Despite they both
are able to describe the main features of the experimental data, the relevance of
the imaginary coupling coefficient obtained with the interacting fit (�i = 400MHz)
seems to indicate the presence of a backscattering interaction. However, a definitive
and much clear confirmation to this hypothesis is obtained with the inverse phasor
plot (see Figure 5.12(right)), which presents a clear bump in correspondence to the
resonance center, where the doublet is expected to appear. Moreover, the qualitative
good agreement with the interacting model and the clear discrepancy with the non
interacting one definitively confirm the presence of a hidden doublet.

This example already shows the potentiality of the new identification method,
which does not remain a theoretical proposal but becomes a fruitful tool also in test-
ing real devices. The high sensitivity makes it a useful tool both for the analysis and
the prevention of split resonances. Indeed, an inverse phasor analysis on a (thought)
normal resonance can reveal the presence of a hidden mode coupling in the system.
Therefore, successive investigations on the same device, for example the search for
higher Q factors through increase of the radius, should take this effect into account.
Remarkably, this analysis can be performed even before the coupling effect creates a
visible alteration in the resonator spectrum. Nonetheless, the easier and more com-
mon transmittance and phase observations remain proper methods to get a sufficient
insight on a system with large mode splitting.

5.5.2 Asymmetry

As the doublet can be recognized through different methods, its asymmetry (or un-
balance) can be evaluated in different ways. We here present some possible choices,
which are related to the identification method explained in the previous section. For
example, when the common transmittance splitting is used, the most simple and
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Figure 5.13: Unbalancing identification can rely on: (a) transmittance minima, (b)
phasor area and (c) inverse phasor; (d) percentage unbalance found with the different
methods for varying values of �r; a direct comparison between different methods
cannot be easily obtained due to the different values of �i

effective experimental parameter is represented by the transmittance minima of the
two coupled resonances, Tmin1 and Tmin2 , as described in Figure 5.13(a). The doublet
unbalancing is then defined as the difference between these two values:

U1 = Tmin1 � Tmin1 (5.17)

An alternative approach can be followed when also the phase of the outcoming signal
is measured. In this case the phasor plot of a doublet shows a flattened and perturbed
circle, with one left and one right lobes (see 5.13(b)). When the transmittance shows
a resolved doublet also a third central lobe is drawn by the phasor curve. In this
description, the unbalance measurement is related to the area covered by the left and
right lobes, whose mathematical description is:

Ar =

'ć

�1
|t| cos(') + |t| sin(')d! Al =

+1́

'c

|t| cos(') + |t| sin(')d' (5.18)
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where ' = '(!) is the phase response and 'c = '(!c), with !c the doublet central
wavelength. The unbalancing is then defined as the difference between the two area
normalized by the overall area:

U2 =
Al � Ar

Al + Ar

(5.19)

Despite these two are the most direct definitions of unbalance, there could be
the case of unresolved resonances, where the identification of the doublet requires
the inverse complex method described above. In this context, other definitions of
unbalance are needed. In Figure 5.13(c) the inverse phasor is shown for the case
of weak unbalancing (�r = 2MHz, five times lower than for the curves shown in
panel (a) and (b)). A first definition of unbalance relies on the integral of Re(g)

along the imaginary component Im(g). In order to obtain an unbalance definition
showing 0 value for a perfectly balanced doublet, the integral is computed in two
different domains: (Bl) from �1 to the zero derivative point (black dot in figure),
which corresponds to the central wavelength of the doublet, and (Br) from the zero
derivative point to +1. The unbalance value is then defined as:

U3 =
Bl � Br

Bl +Br

(5.20)

In Figure 5.13(d) the unbalance level computed with the three different methods
is shown for different values of �r. The simulation parameters are the same for
U1 and U2, with a larger value of the imaginary component (�i = 100MHz) with
respect to the one used for U3; this is needed to have a resolved doublet where the
two methods can be applied. Remarkably, despite the five times lower splitting, the
inverse phasor method returns unbalance values as large as the one observed with
the phasor method, thus confirming its sensitivity. Actually, a real comparison of
U1, U2 with U3 definitions can not be done. The unbalance can be computed with
the inverse phasor method only when not resolved doublets are present. For larger
backscattering interaction, when a resolved doublet appears, the distorted shape of
the inverse phasor curve brings to nonlinear dependence of the unbalance with �r and
prevents a suitable definition to be obtained. This fact manifests the complementary
between different methods. Despite U3 makes possible to highlight the presence of
asymmetric doublets in extremely low backscattering conditions, it cannot be used for
spectrally resolved doublets, where, however, U1 and U2 definitions can be fruitfully
exploited.

5.6 Conclusion and perspectives

In this Chapter, a theoretical, simulative and experimental investigation on the
backscattering phenomenon occurring inside a microresonator has been presented.

A theoretical model able to describe both symmetric and asymmetric doublets
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has been proposed, with no restrictions on the resonator dimension and coupling
scheme. The main characteristics of the model is the complex coefficient describing
the coupling of cw and ccw modes, which indicates the presence of both reactive and
dissipative effects of the coupling. The addition of a real (i.e. dissipative) component
to the more common imaginary (i.e. reactive) one stems from the analogy with
another system, namely, the multimodal coupling inside vertically coupled resonators,
and it highlights an interesting connection between different phenomena. From a
physical point of view the dissipative effect has been addressed to the multimodal
nature of the resonator; this hypothesis has been confirmed with 2D simulations,
which showed an increase of the doublet average asymmetry in the case of multimodal
resonators. This fact represents an important results towards complete understanding
and handling of the backscattering effect. Indeed, the number of modes supported
by a resonator becomes an important design parameter, which should be considered
to effectively obtain the desired effect (enhancement or reduction of asymmetry).
Experimental validation of the proposed model has also been performed for the case
of a vertically coupled resonator. Accurate fitting of transmittance and phase spectra
for both symmetric and asymmetric doublets confirmed the ability of the model
to correctly describe the system response. The peculiar properties of the tested
samples (large radius wedge resonator and vertical coupling) allows to focus the
investigation only on the internal backscattering source (i.e. sidewall roughness)
and to neglect backcoupling effects at the coupling region. In this sense, a future
study on the phenomenon should deal with both external and internal sources of
coupling, trying to identify their relevance on the final response. The same experiment
showed also tuning of the doublet asymmetry through spectral shift of the doublet
central wavelength. Despite this interesting observation, which could be useful to
control the generation of entangled photons or to create all optical switches, a clear
understanding of its driving principles has not been achieved, yet. Future experiments
should verify the presence of this effect in other samples. Moreover, investigation on a
different coupling scheme, i.e. in-plane coupling, could help to distinguish the specific
contribution of the waveguide-resonator coupling from the one of the resonator itself.

Finally, the enhanced visibility of a backscattering doublet provided by inverse
phasor plot has been demonstrated both theoretically and experimentally; this new
approach constitutes a remarkable tool for both the design and the fabrication of
microresonators. Indeed, an early experimental identification of backscattering sig-
natures permits a prompt correction of both design and fabrication parameters to be
carried out, with consequent time and cost saving.
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Chapter 6

Thermo optic effect induced

bistability

An important quantity that must be taken into account when testing, designing and
modeling photonic devices is temperature. Thermal effects in photonics have been
widely studied, for the problems they can bring to the device operation, but also
for the new processes they can enable [122]. Indeed, since the early observation
of Thermo-Optic Effect (TOE) in Silicon, several Silicon-based devices have been
produced to take advantage of this effect, from switches, to filters and modulators
[123]. Specific attention must be paid to thermal effects in microresonators, where
a correct thermal analysis becomes essential to fully control the device properties.
Indeed, the sharp peaks associated to resonant modes increases the sensitivity of this
device to temperature variations. This fact has both positive and negative conse-
quences: on one hand, it opens to thermal control of the resonance position and thus,
to microresonator-based switches and routers [124]; on the other hand, it increases
the sensitivity to external temperature fluctuations and requires additional feedback
control [125, 126]. Active control of a resonator temperature can be performed with a
metal wire placed on top of the resonator: the wire heats up through Joule effect and
heat conduction produces a temperature variation in the resonator volume. A differ-
ent source of heat relies in the absorption of an optical signal inside the resonator:
photons absorption by defects or by Two Photon Absorption (TPA) or Free Carrier
Absorption (FCA) mechanisms constitutes a source of heat inside the resonator and
thus increases its temperature. This effect is known as all-optic TOE and it is a non-
linear effect [127]. As it will be shown later in the Chapter, this nonlinearity makes the
system a bistable one, showing different transmittance values for equal input signals
and fixed parameters. The all-optical control of a bistable system through TOE can
be exploited in the creation of all-optical memories and buffers [128] and it represents
an important degree of freedom for the device. Therefore, a proper analysis on ther-
mal effects in microresonators is a needed step towards optimization of temperature
dependent functionalities. This is the aim of the present Chapter, which provides a
brief analysis on the thermal effects occurring in SiN microresonators. The discus-
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sion firstly introduces TOE: the origin and the proposed applications of this effect in
microresonators are briefly presented in Section 6.1. All-optical TOE is described in
Section 6.2, where the experimental realization of all-optic resonance tuning is also
shown. The optical nonlinearity introduced by this mechanism is discussed in Section
6.3, where bistable operation of the resonator under optical TOE is demonstrated.
The tested device is similar to those used in previous chapters of the thesis and the
actual investigation can be used to highlight and discriminate thermal effects from
other physical phenomena.

6.1 Thermo optic effect (TOE)

Modulation of the refractive index of a material can be achieved through different
mechanisms: mechanical stress/strain [129, 130], heat [131], carrier injection [132]
and nonlinear phenomena, such as TPA [133] or �3 (Kerr) [134], can alter the elec-
tronic distribution of a semiconductor and therefore modify its interaction with a
propagating electromagnetic field inside the material. Among these, heating of a
device is one of the most common techniques to control the optical properties of a
device.

Indeed, when a material undergoes a temperature variation �T = T1 � T0, a
corresponding variation is found in the real part of its refractive index:

n(T1) = n(T0) +
dn

dT

����
T0

�T (6.1)

where the term dn/dT is the thermo optic coefficient of the material.
Manifestation of this effect in the optical domain is commonly found in the spectral

displacement of fringes and peaks of interferometers and resonators, respectively 1.
This is computed as:

��TOE = �1 � �0 =
d�

dT

����
T0

�T =

d�

dn

dn

dT

����
T0

�T (6.2)

where �0 and �1 are the peak/fringe wavelengths at T0 and T1 = T0 + �T . In
the specific case of a microresonator, Equation 1.5 allows the above equation to be
simplified to:

��TOE ⇠ �0
n0

dn

dT

����
T0

�T (6.3)

The above equation is an approximated one, because it takes into account only a
variation of the refractive index of the resonator and not of the cladding. In Silicon-
On-Insulator (SOI) microresonators, the ten times lower thermo optic coefficient of
Silica with respect to Silicon [135] justifies the approximation. Conversely, the ob-

1Fabri-Perot fringes in waveguides are interferometric fringes and they are also affected by TOE.
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served similar values for the thermo-optic coefficient of SiN and Silica makes the
approximation less effective in the case of SiN resonators. Since here a SiN based res-
onator is studied, careful considerations must be done when evaluating quantitative
experimental results for this structure.

Equation 6.3 can be used to obtain a first experimental estimate of the thermo
optic coefficient of the device: the spectral displacement of a resonance is monitored
at different temperatures. These are set by an external Peltier cell or metal wires
integrated in the chip [136, 137]. The same equation suggests practical applications
of microresonators as temperature sensors [138, 139, 140, 141]. In this last view,
the Q-factor of the device plays an important role: a higher Q resonator enhances
the sensitivity of the device to temperature variations due to a sharper linewidth.
This fact represents also a drawback of high-Q resonators, because slight variations
in the external temperature can strongly alter the response of the device. In this
sense, microresonator based filters and routers, where accurate positioning of the
resonance is required, are usually equipped with TOE-based temperature controllers,
which are used to compensate fabrication errors or to cancel spectral displacements
due to variations in the environment. TOE in microresonators is too slow to act as
the main tuning mechanism: the slow heat dissipation occurring in micrometer sized
structures limits the characteristic time of this effect to µs [142, 143], much longer
than with other effects such as Two Photon Absorption (TPA) and Kerr effects, where
ps switches are currently achieved 2 [145, 146, 147]. Actually, the different timescales
between TOE and other nonlinear phenomena can be fruitfully exploited to achieve
self-pulsing behaviour in microresonators and to create chaotic signals [148, 149]

Besides timing of the different processes, the impact of TOE on the device prop-
erties usually exceeds that of other nonlinear effects [150]. Therefore, a correct com-
prehension of its role is of crucial importance, both to take advantage or to reduce
its intensity. For this last point, successful results have been obtained in slotted
silicon microresonators applying a polymer (PMMA) with negative-thermo optic co-
efficient on top of the resonator [151]: the negative coefficient of the polymer allows
to completely compensate the spectral shift produced by the resonator material with
an opposite shift due to TOE occurring in the cladding. Other proposed solutions
rely on careful control of the fabrication process: by thermal annealing of a Silicon
photonic crystal cavity in N2 atmosphere or by controlling the oxidation level in
porous Silicon microcavities, null or strongly reduced TOE have been demonstrated
[152, 153].

2Actually, a device exploiting fast thermo-optic effect with dissipation time about tens of ps and
speed rate as high as 50Gbit/s has been theoretically proposed [144]; this exploits surface plasmon
polaritons to shrink the field distribution to few nanometers and improve heat dissipation. This
demonstrates that thermal effects are not intrinsically slow, but they are strongly limited by heat
diffusion mechanisms.
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6.2 Thermo optic effect: experiment

Despite the temperature control provided by external elements, there exists another
way to tune the spectral position of resonances inside a resonating structure. Tem-
perature variations can be achieved also by pumping a resonance with a strong laser
source: the field enhancement produces a large optical power circulating in the res-
onator cavity and the linear absorption transform this power into heat, and then
temperature gradient. This effect can be used to perform all-optical tuning of a
resonance as it can be mathematically described with Equation 6.3:

��TOE ⇠ �0
n0

dn
dT

��
T0
RthPabs

⇠ �0
n0

dn
dT

��
T0
Rth(1� T )Pine�↵L

(6.4)

where the dependence of the temperature gradient �T on both the absorbed cir-
culating power Pabs and on the thermal resistance of the resonator has been made
explicit.

In the second line of Equation 6.4 a more practical description of the wavelength
shift is provided, where an explicit form of the resonator absorbed power is given
in terms of transmittance (T), laser input power (Pin) and absorption loss (↵L).
This last term mainly comes from impurities in the resonator material and it can
be identified with overall intrinsic losses; indeed, other sources of loss like bending
losses or surface scattering have negligible values due to the large radius and low
index contrast of the resonator, respectively. From the Equation 6.4, it comes out
that low transmittance and high intrinsic losses (i.e. low Q-factor) bring to larger
resonance displacements. Therefore, to avoid TOE, undercoupled/overcoupled high-
Q resonators with large thermal conductivity (low thermal resistance) should be
used. In this sense, free-standing resonators, which shows higher resistance due to
their insulation from the substrate, are more affected by TOE than their counterpart
fixed to the substrate.

The all optical resonance tuning described by Equation 6.4 can be used in practical
applications as an alternative tool to the temperature control, since it does not require
design of external heating elements and it simplifies the fabrication process. Actually,
the spectral displacement provided by the pump affects also the pump-resonance
position, and thus modifies the power dropped in the resonator, with consequent
alteration in the spectral displacement. Therefore, feedback control is needed to drive
the circulating power to the needed value, which makes this method an alternative
and not a substitute to the external one.

Experimental demonstration of TOE in a SiN microresonator can be obtained
from high power transmittance measurements. The tested device is a microdisk wedge
resonator similar to the ones investigated in Chapters 3 and 5. In Figure 6.1(top) the
transmittance of an isolated resonance of the device is given for different input powers,
while scanning the resonance from low to high wavelengths. A triangular shaped
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Figure 6.1: (top) Transmittance of a SiN wedge resonator for different pump powers:
0.8, 7.6, 14.8, 17.9 mW and (bottom) extinction ratio vs input power: experiment
and linear fit.

curve is observed when the pump power is increased and it can be easily explained
considering the TOE. Indeed, as the laser wavelength approaches the resonance, the
dropped power in the resonator increases and consequently brings to a redshift of the
resonance, as described by Equation 6.4. As the wavelength scan goes on this results
in a slower decrease of the transmittance with respect to the low power spectrum.
Once the laser reaches the blue shoulder of the resonance, the dropped power in
the cavity starts to decrease (due to the increase of transmittance) and the TOE
is no more able to sustain the redshifted position of the resonance, which abruptly
steps back to its cold position and consequently brings transmittance to unity (being
the laser far off resonance). The action of the TOE can be seen as a feedback on
the resonance position: it is positive when a red detuned laser field is injected in the
resonator and it brings to a lengthened red part of the resonance; it becomes negative
for blue detunings, leading to a shortened (and almost not visible) blue shoulder.

Fit of the data (red curves in Figure 6.1) is obtained with a simple model which
takes into account the nonlinear contribution provided by TOE. The resonating mode
amplitude ↵ is computed as:
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d↵
dt

=

⇥
i (!0 � !inc)� �i � �

rad
⇤
↵ + i

p
2�

radEin+

+iC |↵|2 ↵
(6.5)

The first line represents the usual equation for a single mode resonator (see Equation
4.1 or Equation 5.1 for comparison), whereas the second line contains the nonlinear
contribution provided by TOE. A more detailed description on the origin of this
nonlinearity is found below (Section 6.3). The coefficient C is chosen to be positive
or negative depending on the sign of the thermo-optic coefficient. The laser drift is
reproduced by a continuous change of the incident frequency: !inc = !0

inc�vsts, where
vs and ts are the fixed scan speed and increasing scan time, respectively. Numerical
solution of Equation 6.5 allows obtaining the device transmittance as:

T (!in) =

����1 + i
↵(!in)2�

rad

Ein

����
2

(6.6)

It is important to notice that the described shape for the transmittance is found
when materials with positive thermo optic coefficients are considered, as it is the
case of SiN and Silica. Otherwise, the same reasoning works but with opposite scan
direction: a triangular shape for the transmittance is observed when the laser scans
the resonance from red to blue, and it reveals elongated and hidden blue and red
resonance shoulders, respectively.

In Figure 6.1(bottom) the measured spectral displacement of the resonance center
�� (corresponding to minimum transmittance in the data) for different resonator
absorbed powers is shown, together with a linear fit of the data. Negligible or null
contribution is observed from higher order terms. This is an expected result and
it comes from the absence of TPA and, consequently, FCA related shifts due to the
larger bandgap of SiN with respect to Si. On one hand, this fact simplifies the system
and its analysis because fewer physical phenomena come into play. On the other hand,
it prevents the observation of TPA based self-pulsing and chaotic behaviours.

From the slope of the linear fit a and from Equation 6.4, it is possible to extract
the thermal resistance of the device as:

Rth =

a
�0
n0

dn
dT

��
T0

(6.7)

Inserting the thermo optic coefficient of SiN (2.45 ⇥ 10

�5K�1) as found from litera-
ture [122] and considering absorption loss as high as ↵ = 0.9cm�1[14], the resulting
resistance at 1550nm is Rth = (2± 1)⇥ 10

3
[K/W ]. The large error associated to this

experimental estimate comes from the limited precision in the evaluation of the input
losses of the setup. As an example, an error of 1dB in the input losses (i.e. under/over
estimation of coupling losses to the sample) brings to more than 25% of variation in
the resulting thermal resistance. A reference value for the thermal resistance can
be obtained through simulation of the system through Comsol software: in order to
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Figure 6.2: Resonator transmittance for two scanning directions (evidenced by ar-
rows); bistable behaviour is highlighted by different values for the same input wave-
length

correctly simulate the heat source, the profile of the propagating optical mode is used
as the heat profile and the temperature variation of the resonator (weighted by the
optical field profile) is evaluated for a given heat power. The resulting resistance is
Rth = 2.9⇥ 10

3
[K/W ], which agrees with the experimental one.

6.3 TOE induced bistability

The relation between the electric field E and the polarization P of a material is:

P = "0�
(1)E + "0�

(2)E2
+ . . . (6.8)

where only the linear and quadratic susceptibilities �(1), �(2) have been considered.
Being �(1)

= n2 � 1, a variation in the refractive index �n = n2 � n1 can be related
to a variation in the linear susceptibility: �� ⇠ 2n1�n.3 Therefore, considering a
variation in the refractive index produced by temperature, as described by Equation
6.1, the consequent polarization difference reads:

�P = "0

✓
2n1

dn

dT
�T

◆
E + . . . (6.9)

From this equation it becomes evident that the only presence of TOE does not bring
to a nonlinear behaviour of the material. However, when an all optic TOE effect is
considered, the temperature variation depends on the electric field intensity (�T =

RthPabs) and the TOE becomes a nonlinear effect.
A first evidence of this nonlinearity is the deformed response shown in Figure

6.1, where a nonlinear term is needed to explain the observed curve. A second
3A small variation �n is here considered, such that n2 + n1 ⇠ 2n1.
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Figure 6.3: (left) Power output vs input at fixed blue detuned wavelength showing
hysteresis and, hence, bistable behaviour; (right) schematic representation of the
pump-resonance detuning

clue on the nonlinear nature of all optic TOE is presented in Figure 6.2, where the
transmittance of a resonance is measured for two detuning directions of the input
laser (from red to blue and vice versa). As it is found from the figure, the two curves
clearly shows different behaviours, with the transmittance assuming two different
values for the same incident wavelength. This comes from the TOE, which acts as
a positive feedback while scanning the resonance from blue to red, and becomes a
negative one when the opposite scan direction is chosen [154].

This result suggests a bistable behaviour of the system and requires a nonlinear
phenomenon to be present (TOE in our case).

This statement is confirmed by another experiment, reported in Figure 6.3. The
power at the waveguide output is acquired for increasing and decreasing values of the
input power and for a fixed red detuned laser wavelength. As it is evident from the
figure a bistable behaviour is observed. Explanation of this effect relies on the TOE
and can be easily obtained following the panels on the right side of the figure, which
represent the pump laser position with respect to the resonance:

1. At low powers the red detuned off-resonance laser pump results in a cold cavity
and in almost unitary value for the transmittance; when the laser power is
increased, a linear behaviour between input and output power is found, due to
an almost constant transmittance level;

2. At a given threshold input power (highlighted by red dots) the TOE, activated
by the circulating power, starts to move the resonance towards red; the conse-
quent reduction of transmittance (the laser is getting more on-resonance) brings
to larger circulating power and, then, to larger thermal shift of the resonance;
the dynamics becomes a feedback dynamics, which rapidly moves the resonance
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towards red and makes the laser passes from almost red off-resonance position
(1) to blue detuned one (2), with an abrupt decrease in output power;

3. Once the input power starts to decrease, no abrupt variation is found at position
(2) and the input vs output relation remains linear up to a lower input power
(position 3); this is the result of a positive feedback provided by the TOE;
indeed, as far as the power is decreased, a weaker TOE occurs and the center
of the resonance moves towards the laser wavelength; however, this movement
increases the dropped power in the cavity (the laser is going more and more
on-resonance), and hinders the blue movement caused by lower input power;
the effect holds until the resonance center finally reaches the laser wavelength
(position 3); at this point the positive feedback becomes negative (as it happens
for laser wavelength scans) and the resonance quickly moves back to its initial
cold position (1).

The above described dynamics needs a red detuned pump laser and a positive thermo-
optic coefficient, which basically moves the resonance on the red with input power.
The same experiment performed with a blue detuned laser pump results in what is
called an optical limiting behaviour, with the resonance moving off the laser pump as
the power is increased, thus returning a limited cavity dropped power and an almost
unity transmittance.

The bistable behaviour of the system can be investigated also by looking at the
resonator stored energy Ui, which is experimentally obtained from Equation 1.16
(here reported for ease of visualization):

Ui = (1� T )
Pin

�i
(6.10)

Ui obtained from the data shown in Figure 6.3 is shown in Figure 6.4(a), where the
four interesting points are highlighted by blue and red dots. As it is expected, low
output power values correspond to high values for the stored energy.

Inserting the spectral shift provided by TOE into the equation for the resonator
internal energy, an interesting insight on the nonlinearity provided by all optics TOE
can be reached. From the usual transmittance equation the internal energy reads
[49]:

Ui =
2�

radPin

(!0 ��!TOE � !p)
2
+ (�i + �)

2 (6.11)

The frequency shift �!TOE due to TOE can be computed from Equation 6.4 and it
becomes:
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Figure 6.4: (a) Resonator stored energy Ui as obtained from experimental data pre-
sented in Figure 6.3 through Equation 1.16; coloured squares refer to the probe spec-
tra shown in panel (c) and (d); (b) contour plot of the input power as a function of
pump-resonance detuning and resonator stored energy; grey curves highlights equal
input power points and clearly show the deformation produced by the nonlinear TOE;
in the same panel the experimental points extracted from panel (a) are reported and
the used laser wavelength is evidenced by the green line; good agreement between
the data and the theoretical curves is observed; (c) transmittance and (d) phase of a
probe resonance at different input powers (reported in panel (a)) showing two clearly
distinguished states of the system, thus confirming its bistable behaviour; for ease
of visualization, subsequent transmittance and phase spectra have been upshifted by
unity and 50 degrees, respectively.
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The addition of a energy dependent shift produces a nonlinear behaviour of the
resonator. This is clearly visible in panel (b) of Figure 6.4, where the dependence
of the input power Pin over internal energy Ui and pump-resonance detuning is rep-
resented in a contour plot, as obtained inverting Equation 6.11. Curves belonging
to fixed input powers are highlighted in grey scale and they basically represent the
resonator internal energy at varying pump wavelength. Interestingly, the positive
nonlinear coefficient � bends the resonance towards red and creates a bistable region,
where the system with fixed wavelength and input power can be loaded with two
internal energies. This is more easily revealed by blue and red curves, which belongs
to two input powers.

Blue, red and grey-dashed arrows on the right part of the panel schematically
describes the internal energy steps that characterize the measurement shown in panel
(a), with a fixed frequency detuning represented by the green line in panel (b): start-
ing from the lower dashed line, the input power is increased and the system continu-
ously increases its internal energy going from the blue to the red curve; the threshold
point is found on the knee of the red curve, when the system jumps between two
points with equal input energy but with remarkably different internal energies (red
arrow); the successive decrease of input power shows a smooth decrease of the internal
energy, following the grey-dashed curve up to a second threshold point, represented
by the intersection with the blue curve; in this configuration another jump is made
possible, from the maximum internal energy to a much lower value (blue arrow),
which brings the system back to its initial condition. Experimental values shown in
panel (a) are reported in panel (b) as blue and red dots and they qualitatively follows
what is predicted by the theoretical curves.

The bistable nature of the system is proven also by the transmittance and phase of
a probe resonance. While scanning the input pump power on the 1559nm resonance
to obtain the data in panel (a), several spectra of a nearby resonance (at 1549nm) are
acquired with the setup described in Chapter 2. Measurements shown in panels (c)
and (d) of Figure 6.4 are related to the coloured points in panel (a). A clear relation
is found between spectral shift of the probe and internal energy of the resonator.
In particular, the redshifted probe spectra (3th to 5

th lines from top to bottom)
corresponds to large internal stored energy, where the thermal shift is more consistent.

In order to more deeply understand the properties of a bistable system the mea-
surement presented in Figure 6.4(a) has been repeated for different pump-resonance
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Figure 6.5: (left) Power output vs power input plot at different pump-resonance
wavelength detunings; (right) Input power dependence on detuning and stored en-
ergy; blue and red lines/squares indicates simulated/experimental threshold values
at different wavelength detunings.

(positive) detunings. Results of the measurement are shown in Figure 6.5. On the
left, the output vs input power plot is shown: as the pump gets off resonance, larger
input powers are needed to reproduce the hysteresis curve and a larger difference be-
tween high power and low power thresholds (red and blue dot, respectively) is found.
In order to explain this experimental evidence, it is useful to look at the right panel
of the figure, where a similar plot to the one presented in Figure 6.4(b) is shown. The
blue and red curves represent the low and high threshold points for increasing input
power. As it can be seen from the plot, when the detuning is increased the blue and
red curves crosses always lighter curves, meaning that larger input powers are needed
to reach threshold points. Theoretical curves shown in the figure are mainly driven
by the nonlinear coefficient �:

� =

1

n0

dn

dT

����
T0

e�↵L�iRth (6.13)

which depends on several system parameters. Curves shown in Figure 6.4, are
obtained with thermo-optic coefficient and propagation loss ↵ taken from litera-
ture [122, 14], while the intrinsic loss �i comes from fitting of a cold resonance
spectrum. Finally, the thermal resistance value comes from the FEM simulation
(Rth = 2.9 ⇥ 10

3
[K/W ]). Remarkably, the experimental points in the figure related

to threshold values (blue and red squares) extracted from the data shown in the left
panel (blue and red circles) qualitatively resemble the system behaviour predicted by
simulation. Quantitative discrepancies could be due to inexact evaluation of system
loss or from slightly different sample parameters (i.e. thermo-optic effect or intrinsic
losses).
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6.4 Conclusion and perspectives

In this Chapter, the effect of optically driven TOE in SiN microresonators have been
addressed. Linear absorption of photons inside the resonator has been identified as
the main source of heating, with negligible contribution from higher order nonlin-
ear phenomena. This result confirms the hypothesis made in Chapter 5, where the
doublet shift observed in the Pump and Probe experiment was addressed to the lin-
ear absorption of Pump power inside the resonator. Description of the nonlinear
phenomenon leading to a bistable behaviour of the system has been given and the
dependence of bistability on wavelength has been investigated. Experimental data
allows to obtain an estimate on the thermal resistance of the resonator which ac-
counts for Rth = (2± 1)⇥ 10

3
[K/W ]. This value shows qualitative accordance with

the simulated value (Rth = 2.9⇥ 10

3
[K/W ]) and it is about one order of magnitude

lower than for a free-standing SiN resonator [155]. This last is an expected result:
the free-standing resonator is more isolated from the substrate and the heat produced
by the optical mode can only be dissipated through the thin pedestal4. To quantita-
tively confirm this fact, thermal simulation of a free-standing resonator isolated from
the substrate by a 3µm Silica pedestal has been performed 5 and the found thermal
resistance Rth = 2.4 ⇥ 10

4
[K/W ] is about ten times larger than the one obtained

for the in-plane resonator. The relevant uncertainty of the experimental estimate is
mainly due to the limited precision on input/output losses estimation. In this sense,
accurate measuring of the diverse source of losses and systematic monitoring of the
device alignment stages must be considered for future investigations, especially when
quantitative results are required. Finally, a simple measurement, which can help to
clarify the analysis, is an experimental estimation of the thermo-optic coefficient of
the device through TOE (i.e. with an external heating source). This can confirm or
reassess the value found in literature.

4Dissipation through air is considered to be negligible.
5The same geometrical and material parameters described in [155] have been used.
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Conclusions

The thesis mainly deals with a specific coupling technique for microresonators, that
is, vertical coupling. The aim is to propose a comprehensive investigation of the
several physical phenomena observed in vertically coupled microresonators to obtain
a valuable tool for the exploitation of these structures in various applicative and
fundamental researches.

In Chapter 3, the peculiar features connected to coupling of light to and from a
single mode resonator have been discussed and a specific theoretical model has been
proposed: remarkable difference is demonstrated between common in-plane coupling
and vertical coupling, with the latter showing an oscillating coupling strength, both
for wavelength and gap variations. Theoretical predictions have been validated with
experiments on a vertically coupled SiN wedge resonator, both in the visible and in the
IR domains. The possibility to critically couple both IR and visible modes suggests
fruitful applications of vertically coupled resonators as multiple channel filters and
the oscillatory dependence on waveguide position can be exploited in optomechanical
systems involving free-standing resonators.

The selective excitation of different radial mode orders is another observed prop-
erty of vertical coupling, which distinguishes it from other coupling techniques. This
last feature allows more than one mode order to be simultaneously excited and pro-
vides an optimal platform to investigate the properties of intermode coupling in
multimode resonators. These were discussed in Chapter 4, where the waveguide me-
diated coupling between the 1

st and 2

nd radial mode orders of a vertically coupled
SiN resonator was studied, both theoretically and experimentally. The presence of
reactive and dissipative components in the intermode coupling was demonstrated and
their role in the appearance of asymmetric resonances was discussed. In particular,
the reactive component is shown to strongly enhance or reduce the 1

st mode related
resonance, depending on the relative detuning between the two modes, reaching also
complete cancellation of the resonance. Thanks to the different FSR of the two fami-
lies, experimental validation of the theoretical model for different detunings has been
possible, confirming both resonance enhancement and suppression. The theoretical
model already proposed in [13] to describe the intermode coupling dynamics has
been here extended to the case of quasi-degenerate modes (i.e. modes with similar
intrinsic/extrinsic losses and resonance position).

The similarity between the description of intermode coupling in multimode res-
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onators and the one usually proposed for backscattered clockwise and counterclock-
wise modes suggests the presence of a dissipative term even in this last physical
phenomenon, where only a reactive component is usually adopted. This possibil-
ity has been investigated in Chapter 5, where the subject of backscattering in mi-
croresonators has been treated. A general theoretical model for the description of
asymmetric resonance doublets has been proposed: following the model described in
Chapter 4, real (dissipative) and imaginary (reactive) components for the coupling of
backscattered modes have been considered. The physical origin of these two compo-
nents has been discussed and their effect on doublet shape has been highlighted. In
particular, the real component was shown to describe unbalanced resonance doublets,
without need of nonlinear interaction. Experiments to verify the model prediction
were carried out on a vertically coupled SiN wedge resonator. Indeed, despite the
model is valid for any coupling scheme, the peculiar waveguide position in vertically
coupled systems allows to discard possible sources of backscattering at the coupling
region and thus simplifies the analysis. Through pump and probe experiment, it was
possible to tune the doublet spectral position and to observe doublets with differ-
ent degrees of unbalance. Proper fitting of these doublets with the developed model
returned non-null values for the real components, thus confirming the need of dissi-
pative coupling between backscattered modes. Curiously, an oscillating dependence
of the doublet unbalance on the doublet spectral position has been found. Despite
simulations qualitatively reproduce the trend, the origin for this behaviour has not
been identified yet. Some tentative explanations have been given. As a side topic,
also the identification of symmetric and asymmetric resonance doublets has been
considered: comparison of different identification methods provided a clear evidence
on the additional sensitivity that is gained when phase measurements are combined
with transmittance ones.

As a last topic, the behaviour of a SiN microresonator under high power excita-
tion has been studied. The absence of �2 and �3 related nonlinearities simplifies the
description of the system, which is mainly driven by TOE. Observation of transmit-
tance spectra under different excitation powers provided an experimental estimate
of the thermal resistance of the system, which agrees with the value simulated with
FEM software. Bistable condition has been also observed and it can be explained in
terms of nonlinear optical TOE. From this nonlinearity, a simple model describing
the relation between input power and internal stored energy allowed to evidence the
presence of a bistable region and to study its dependence on pump-resonance detun-
ing. Input power vs output power plots acquired for different detunings qualitatively
follow the prediction of the model and provided a second estimate for the thermal
resistance compatible with the simulated one.

Chapter 2 deserves a separate mention. Indeed, no specific physical phenomena
have been investigated in this chapter, but a comprehensive description of an interfer-
ometric setup has been given. The different components, the acquisition modes and
the experimental characterization of the setup with waveguides and resonators have
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been exposed. The same setup has been used to perform the phase and transmit-
tance measurements that were shown throughout the thesis: in this sense the chapter
deals more with a measurement method than with a device. Indeed, despite the main
subject of the thesis is the vertically coupled resonator, a second subject can be recog-
nized, that is, the phase measurement. Combined with transmittance, this quantity
yields complete information on the investigated device, which helps to clarify known
aspects or to highlight new features that are not apparent in the transmittance. In
this sense, emblematic results are the definitive and unambiguous identification of
the coupling regime in multimode resonators (Chapter 4) and the enhanced visibil-
ity obtained for unresolved resonance doublets through the inverse phasor method
(Chapter 5). Actually, the advantages carried by phase measurements should not be
restricted to resonating devices: phase measurements in a FWM process on a SiON
waveguide are going to be performed to demonstrate the results described by Larrè
et al. [156, 157] on a specific analogy between Bose-Einstein Condensates (BEC) and
photon bunches conceived within the theory of fluids of light.

Clearly, some improvements are also possible in each of the investigated subject.
A general advance in the measurements can be obtained with the introduction of a
new delay line in the interferometric setup and with a more efficient isolation from
temperature variations: these steps should reduce the noise and help to stabilize the
system response. The results provided in Chapter 3 for transmittance values can
be joined with phase measurements to confirm or reassess the proposed model. For
what concerns Chapter 4, the new model for quasi-degenerate modes should be ex-
perimentally tested. Additional investigation is required also for the backscattering
phenomena described in Chapter 5: the model must be confirmed with measurements
on different resonators and different coupling schemes, taking into account also the
backcoupling term that has been discarded in the present analysis. Moreover, accu-
rate studies on the oscillating unbalance should be performed to identify the actual
source for this behaviour. Finally, a more precise evaluation of the system losses is
required to obtain accurate results, as demonstrated in Chapter 6.

In conclusion, the results described in this thesis represent an advancement to-
wards a deeper comprehension and a more conscious exploitation of vertically coupled
resonators. Theoretical modeling of fundamental physical phenomena in microres-
onators, such as intermode coupling and backscattering, has been experimentally
validated on vertically coupled resonators. Despite the peculiaries of these struc-
tures, the generality of the proposed models makes them suitable also for different
kind of coupling geometries. Finally, the additional information provided by phase
measurement suggests to join it to common transmittance measurements when a
different point of view on a given phenomenon is needed.
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Appendix A

Dispersion model for delay line

calibration

An explanation to the oscillating pattern of the interference in Figure 2.6(b) relies
on two main contributes, a physical one and a mathematical one. From a physical
point of view the different dispersions of the materials placed along the two arm of
the interferometer (SiN and glass in our case) makes the phase difference between
the two arms to change with wavelength. In order to study this phenomenon a
simple model considers two propagating laser beams: E1 / ei�1L1 and E2 / ei�2L2

where the subscript 1,2 indicate the sample and the free arm respectively. �i and
Li are the propagation constant and the path covered by light along the different
materials composing the two arms, respectively (Figure A.1). Additionally, Fabry-
Perot interference can be added by superimposing a second propagating beam with
length 3L, 5L,... to the forward propagating electric field. Since the results presented
in this work are barely influenced by Fabry-Perot fringes they have not been con-
sidered in the fitting model. Once the two beams have been propagated along all
their individual arms, the intensity of the three detected beams can be found from:
I0 = |E1 +E2|2, I1 = |E1|2, I2 = |E2|2. It is worth to notice that a good result for the
interference signal cannot be obtained without considering the contribution of the

βglass βSiON

BS3

BS1

BS2

lenslens DUT

βglass

delay line

Figure A.1: Schematic representation of the setup with the elements considered in
the model.
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Figure A.2: Simulated phase and optical path differences using the described model
for the scheme shown in Figure A.1

lenses in the two coupling objectives along the sample arm, which modify the optical
path. Once the three signals are found, the phase response can be obtained from
Equation 2.2. At this stage the mathematical issue becomes important: the presence
of the cos

�1 function in the equation requires to shrink the phase values between 0
and ⇡ to have a one-to-one correspondence. Therefore, a folded phase representation
is obtained, as it can be seen in Figure A.2(top), where the phase is folded each
time it reaches 0 and p values. The corresponding unfolded representation can be
obtained with postprocessing of the phase signal and it resembles a parabola which
opens upward. A more clear understanding of the phenomenon creating the phase
oscillation can be reached by looking at the difference between the optical path along
the free and the sample arms (Figure A.2(bottom)). Indeed, despite a large difference
is observed throughout the spectrum the phase response shows a flat region at about
1520nm, where the optical path difference shows null slope. Moreover, the shape of
the optical path difference resembles the phase response in its unfolded form: a larger
slope of the first produces a larger slope of the second (i.e. faster oscillations in the
folded representation). From this brief analysis, it becomes evident the main role of
the delay line, which is not to compensate the phase delay between the two arms but
their dispersions.



Appendix B

Quality factor analysis

A comparison of the 2nd family resonances for the IR spectra in the two configurations
can lead to a better understanding of the system. According to the transmittance
values (see Figure 3.11), in the wg2 configuration, the system should change from
under- to over-coupling regimes as the wavelength increases, fulfilling a critical cou-
pling condition at about 1530nm. Considering transmittance as the main information
channel, wg1 seems to follow the same behaviour, increasing its transmittance and
thus becoming more and more overcoupled at higher wavelengths. Surprisingly, a
similar analysis on the total Q returns different situation: the assumed overcoupled
wg1 configuration actually shows Q values always greater than those of wg2, where
the critical coupling condition is reached (see Figure B.1(top)).

Despite the two analysis (on transmittance and on Q) seems to reach opposite
results, a solution to this apparent inconsistency is obtained by considering the total
losses (�tot) composed by two main channels, the intrinsic one (�int), due to the
material, and the radiative one (�rad), mainly due to coupling:

�tot = �int + �rad = �int(1 + k) (B.1)

where k =

�rad
�int

is the coupling coefficient. Then, the extinction ratio value can be
written as:

ER =

✓
�int � �rad

�int + �rad

◆2

=

✓
1� k

1 + k

◆2

(B.2)

Experimental data of ER extracted from the IR spectra have been used in Equa-
tion B.2 to obtain the two possible k solutions of this second order equation for both
the configurations wg1 and wg2. Knowing that �tot = !0/Qtot, �int and �rad values
could be extracted from Equation B.1. Since Equation B.1 and Equation B.2 are
symmetric for �rad and �int they can be swapped in the calculations with no varia-
tion on the results. Therefore unexpected behaviour can be understood as follows.
The intrinsic Q (Qint) are the same for both wg1 and wg2 showing a particular strong
dependence on wavelength (see Figure B.1). The similarity of the two values is an
expected result since the two resonators belong to the same processed wafer. In
contrast to the 1

st family modes, showing oscillatory coupling (main text), the low
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Figure B.1: (top) Quality factors from the IR spectra for wg1 and wg2; (bottom)
Intrinsic and radiative quality factors for wg1 and wg2 configurations.

confinement of the 2

nd one induces a remarkable coupling to the Si substrate of the
wafer through the SiO2 bottom cladding limiting the Qint with a strong wavelength
dependency. This assumption has been confirmed by a FEM simulation which per-
fectly match the experimental values (green line in Figure B.1). As expected, much
lower losses are found for the wg1 configuration, which becomes mainly dependent
on intrinsic losses (Qt ⇡ Qi). In the wg2 case the small difference between both loss
channels (�rad and �int) results in an overall small Q, limited mainly by radiative
losses for wavelengths below 1525 nm and by internal losses for higher wavelengths.
In summary, the strong dependence of the intrinsic losses of the 2

nd family results
in a peculiar behaviour where the system remains in undercoupling regime in wg1,
whereas for wg2 it passes from overcoupled to undercoupled when the wavelength is
increased.
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