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The Faithful who gather at the mosque of Amr, in Cairo, are acquainted

with the fact that the entire universe lies inside one of the stone pillars that

ring its central court. . . No one, of course, can actually see it, but those who

lay an ear against the surface tell that after some short while they perceive

its busy hum. . .

- J.L.Borges, The Aleph





Introduction

During the first half of the 20th century, Federigo Enriques classified complex algebraic

surfaces up to birational equivalence; this classification was extended to all compact

complex manifold of dimension 2 in the 60’s of the same century by Kunihiko Kodaira.

The classification, that is widely known as the Enriques-Kodaira classification, divides

compact complex surfaces in four families, according to their Kodaira dimension. Three

of these families, namely those surfaces with Kodaira dimension −∞, 0 and 1, are

nowadays quite well known, while the fourth family, the one consisting of surfaces with

Kodaira dimension 2, still poses numerous open problems. These latter are known as

surfaces of general type.

Each surface of general type is associated with certain invariants; topological in-

variants, such as the self intersection of the canonical divisor K2, and birational in-

variants, such as the irregularity q and the geometric genus pg. These invariants de-

termine the other classical invariants: the (holomorphic) Euler-Poincaré characteristic

χ := 1− q + pg and the topological Euler-Poincaré characteristic e = 12χ−K2.

All of these values are related by several inequalities, that force minimal surfaces

of general type to live in a bounded region of the (χ,K2)−space. Actually, it is not

know if minimal surfaces of general type fill this region and this leads to the geography

problem: once two admissible values for χ and K2 are given, does there exist a minimal

surface of general type having these invariants? One of the strategies we can adopt to

solve the problem is to develop a way to construct surfaces of general type for fixed

values of χ and K2. It is important to have as many example of surfaces of general

type as possible, for they often are useful to test problems and conjectures.

In [Bea83b], Beauville proposed a simple construction of a surface of general type,

considering the quotient of the product of a curve C with itself with respect to the free

action of a finite group G. Inspired by this construction, Catanese defined in [Cat00]

surfaces isogenous to a product, quotients (C1×C2)/G where Ci’s are Riemann surfaces

of genus at least two and G is a finite group acting freely on C1 × C2. The significant
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vi INTRODUCTION

aspect of these surfaces is that they are determined by combinatorial data that can be

managed by an algorithm.

According to [Cat00], the action of a finite group on a product of two curves C1

and C2 both of genus at least two can be of two types: mixed, when some elements of

G exchange the two factors (and then C1
∼= C2), and unmixed otherwise.

After Catanese, many authors studied surfaces birational to a quotient of a product

of two curves, and several new surfaces of general type have been constructed in this

way, mainly in the case with χ = 1; see, for example, [BC04],[BCG08], [BCGP12],

[BP12], [BP16], [Fra13], [FP15], [CP09], [Pol09], [MP10], [Pen11], [Zuc03]. In all of

these works, the authors assume the group action to be free outside of a finite set of

points. We call this case quasi-étale.

In the present work, we drop the quasi-étale assumption and we consider the follow-

ing situation. Let C be a smooth projective curve of genus at least two and G be a finite

subgroup of Aut(C ×C) whose action is mixed. The quotient surface X := (C ×C)/G

is a mixed quotient, and its minimal resolution of the singularities S → X is a mixed

surface. We denote by G0 /G the index two subgroup of G consisting of those elements

that do not exchange the factors.

In general, the singularities of X are rather complicated, but if we assume the action

of G0 to be free, i.e. (C × C)/G0 to be a surface isogenous to a product, then X is

smooth and we call it a semi-isogenous mixed surface. This work is devoted to the

study of these surfaces.

Following the strategies of the above mentioned papers, our classification method

combines geometry and group theory. To each semi-isogenous mixed surface we can

associate the group G and a generating vector for G0 (see Definition 1.25). The idea is

that the geometry of X is encoded in this pair of algebraic data, hence the problem of

constructing surfaces is translated into the problem of finding pairs (group, generating

vector) subjected to certain conditions of combinatorial type.

One of the results of this work is an algorithm which, once the integers pg, q and K2

are given, produces all semi-isogenous mixed surfaces with those invariants. The algo-

rithm was implemented using the computer algebra software MAGMA (see Appendix

A for the commented script).

The algorithm works for arbitrary values of K2, pg and q; running the program for

all possible positive values of K2 and pg = q we obtained the following theorems.

Theorem A. Let X := (C × C)/G be a semi-isogenous mixed surfaces with pg(X) =

q(X) = 0 and K2
X > 0, such that |G0| ≤ 2000 and |G0| 6= 1024. Then X belongs to one

of the 15 families collected in Table 1 and it is of general type.
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Theorem B. Let X := (C × C)/G be a semi-isogenous mixed surfaces with pg(X) =

q(X) = 1 and K2
X > 0. Then X belongs to one of the 35 families collected in Table 2

and Table 3 and it is of general type.

Theorem C. Let X := (C × C)/G be a semi-isogenous mixed surfaces with pg(X) =

q(X) = 2 and K2
X > 0. Then X belongs to one of the 9 families collected in Table 4

and it is of general type.

For convenience, the tables can be found both on pages xi-xvii and on pages 77-83;

they are explained and commented in Subsection 4.6.3. In Theorem A, the assumption

|G0| ≤ 2000 and |G0| 6= 1024 is a computational assumption; since MAGMA has some

limitations (see Remark 4.46), we ask the algorithm to skip some cases. For pg = q ≥ 3,

we already have a complete classification of the surfaces of general type (see [Bea82],

[CCML98], [Pir02], [HP02]).

This classification led to the construction of new surfaces of general type; we men-

tion, above all, one of the first examples of minimal surface of general type with K2 = 7

and pg = q = 2.

The last part of this thesis is dedicated to the minimality problem of semi-isogenous

mixed surfaces. Let X := (C × C)/G be a semi-isogenous mixed surface and let

η : C × C → X

be the quotient map, ramified along R. We prove that H1(2KX) is isomorphic to the

cokernel of the G0 invariant part of the restriction map of the global sections of the

bicanonical system of C × C to R, i.e. if

ρ0 : H0(2KC×C)G
0 → H0(2KC×C |R)G

0

is the restriction map, then H1(2KX) ∼= coker(ρ0).

Moreover, it is possible to displace this problem onto the curves C and R; we prove

that H1(2KX) ∼= coker(Ψ0), where

Ψ0 : (H0(2KC)⊗H0(2KC))G
0 → H0(4KR)G

0

and the G0-actions are defined in Theorem 5.16.

The thesis is organised as follows.

• Chapter 1 is devoted to the study of covering spaces and Riemann surfaces. In

Section 1.1 we recall some well known results about covering spaces and lifting
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properties; moreover, we review the action of the fundamental group π1(X,x) on

the fibre p−1(x) of a covering space p : X ′ → X.

We focus on Galois covering of Riemann surfaces; in Section 1.2 and Section 1.3

we state some classical results, such as Hurwitz Formula and Riemann Existence

Theorem. In Subsection 1.3.1 we see how a Galois covering p : C → C/G deter-

mines an algebraic datum, an appropriate orbifold homomorphism. In Subsection

1.3.2 we reverse this construction: we prove that once we are given an appropriate

orbifold homomorphism, we can define a Galois covering p : C → C/G.

In Section 1.4 we consider a Riemann surface C and a finite subgroupG of Aut(C);

we show that the action of π1(C) on the universal cover of C extends to the action

of a bigger group. This will be useful for the classification of semi-isogenous mixed

surfaces.

In Section 1.6 we recall the definition of the canonical ring R(X) associated

with a compact complex manifold X and the definition of its Kodaira dimension

κ(X); in particular, we study the the canonical ring R(C) of a Riemann surface

C. Eventually, we give the classification of Riemann surfaces according to their

Kodaira dimension.

• In Chapter 2 we recall some standard results concerning smooth complex surfaces.

In Section 2.6 we describe the Enriques-Kodaira classification of compact complex

surfaces. In Section 2.7 we direct our attention to surfaces of general type; in

particular, we prove that for this class of surfaces, the first cohomology group

of the bicanonical system is strictly related with the minimality problem. Then

we recall some inequalities that hold for the invariants associated with a minimal

surface of general type; these inequalities naturally lead to the geography problem.

In the last section of this chapter, we illustrate the well known classification of

surfaces of general type with pg = q ≥ 3.

• In Chapter 3 we examine group actions on a product of curves; in particular,

referring to the results of Catanese contained in [Cat00], we give a description of

the automorphism group of the product C1 × C2, where both Ci’s are curves of

genus at least two. We see that in the case C1
∼= C2, there are two types of actions:

unmixed and mixed. In Section 3.2 we give a description of surfaces isogenous to

a product. Referring to the work of Frapporti and Pignatelli in [FP15], we briefly

discuss mixed quasi-étale surfaces.

• Chapter 4 is dedicated to the study of semi-isogenous mixed surfaces. Let C be
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a curve of genus g(C) ≥ 2, let G be a finite group acting on C × C and let G0

denote the index 2 subgroup of elements that do not exchange the factors. We

give a description of the locus of points in C × C having a non-trivial stabilizer,

setting a bijection between the set of point-wise fixed curves and the elements of

G \G0 of order 2.

After the definition of semi-isogenous mixed surface, in Section 4.2 we study the

ramification and branch locus of the quotient map

η : C × C → X := (C × C)/G,

while in Section 4.3 we compute the invariants associated with X. In Section 4.4

we compute the genus of the general Albanese fibre when q(X) = 1. In Section 4.5

we exploit the main theorem of [Arm68] in order to determine the fundamental

group of X.

These results are combined to develop an algorithm that classifies all semi-isogenous

mixed surfaces with fixed invariants K2, pg and q. This algorithm - implemented

in MAGMA - and its theoretical background are described in Section 4.6, where

we give some explicit bounds for the algebraic data that guarantee the finiteness

of the algorithm. We run the program for 0 ≤ pg = q ≤ 4 and 1 ≤ K2 ≤ 8;

results are listed and commented in Subsection 4.6.3. Because of some computa-

tional limits of MAGMA, the algorithm is forced to skip some cases, which are

listed in Subsection 4.6.4. We complete the chapter extending the construction

of semi-isogenous mixed surfaces to the case of low values of g(C).

• In Chapter 5 we address the minimality problem of semi-isogenous mixed surfaces.

In Section 5.1 we study the bicanonical system of a semi-isogenous mixed surface

X := (C × C)/G; we prove that this problem can be translated into a problem

concerning the curve C and the ramification locus R of the quotient map C×C →
X. As a byproduct, in Section 5.2 we prove that if X is of general type and the

ramification locus is irreducible, then it is minimal. Exploiting Hodge Index

Theorem, in Section 5.3 we give an explicit bound for h1(2KX) when χ(OX) = 1.

We complete the chapter using this result to compute the minimal model of some

of the surfaces constructed in the Chapter 4; in particular, we prove that all

semi-isogenous mixed surfaces with χ = 1 and K2 ≥ 6 are minimal.





x
i

K2
X G Id(G) G0 Id(G0) g(C) Type Branch Locus B H1(X,Z) min?

8 D2,8,5 o Z2
2 64, 92 Z2

2 ×D4 32, 46 9 [0;25] ∅ Z3
2 × Z8 Yes

8 256, 3679 (Z3
2 o Z4) o Z4 128, 36 17 [0;43] ∅ Z2

2 × Z2
4 Yes

8 256, 3678 (Z3
2 o Z4) o Z4 128, 36 17 [0;43] ∅ Z2

2 × Z2
4 Yes

8 256, 3678 (Z3
2 o Z4) o Z4 128, 36 17 [0;43] ∅ Z4

2 × Z4 Yes

8 256, 3678 (Z3
2 o Z4) o Z4 128, 36 17 [0;43] ∅ Z3

4 Yes

6 Z8 o Z2
2 32,43 Z2 ×D4 16,11 9 [0; 26] (3,−8) Z2

2 × Z2
4 Yes

6 Z4
2 o Z2 32,27 Z4

2 16,14 9 [0; 26] (3,−8) Z2
2 × Z2

4 Yes

6 Z4
2 o Z2 32,27 Z4

2 16,14 9 [0; 26] (3,−8) Z3
4 Yes

6 Z7 ×D7 98,3 Z2
7 49,2 15 [0; 73] (3,−8) Z2

7 Yes

6 Z7 ×D7 98,3 Z2
7 49,2 15 [0; 73] (3,−8) Z2

7 Yes

6 Z2
4 oD4 128, 734 Z2

4 o Z2
2 64,211 17 [0; 25] (3,−8) Z2 × Z2

4 Yes

6 (Z2
2 ×D8) o Z2 128, 750 Z2

2 ×D8 64,250 17 [0; 25] (3,−8) Z2 × Z2
4 Yes

6 (Z2 ×D8) o Z2
2 128, 1797 Z2

2 ×D8 64,250 17 [0; 25] (2,−4)2 Z2 × Z2
4 Yes

2 (Z3
2 oD4) o Z2

2 256, 47930 Z4
2 oD4 128, 1135 33 [0; 25] (3,−8)3 Z3

2 × Z4 No

2 (Z2
4 o Z2

2) o Z2
2 256, 45303 Z4

2 oD4 128, 1135 33 [0; 25] (3,−8)2, (2,−4)2 Z3
2 × Z4 No

Table 1: pg = q = 0, K2 > 0
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K2
X G Id(G) G0 Id(G0) g(C) Type Branch Locus B H1(X,Z) galb min?

8 D2,8,5 16,6 Z2 × Z4 8,2 5 [1;22] ∅ Z4 × Z2 5 Yes

8 D2,8,3 16,8 D4 8,3 5 [1;22] ∅ Z4 × Z2 5 Yes

8 Z2
2 o Z4 16,3 Z3

2 8,5 5 [1;22] ∅ Z3
2 × Z2 5 Yes

7 Z3 oD4 24,8 D6 12,4 7 [1;22] (2,−4) Z2 × Z2 5 Yes

7 Z3 ×D4 24,10 Z2 × Z6 12,5 7 [1;22] (2,−4) Z2 × Z2 5 Yes

6 D4 8,3 Z2
2 4,2 5 [1;24] (3,−8) Z3

2 × Z2 3 Yes

6 Z3 × S3 18,3 Z2
3 9,2 7 [1;32] (3,−8) Z3 × Z2 4 Yes

6 Z8 o Z2
2 32,43 Z2 ×D4 16,11 9 [1;22] (3,−8) Z2 × Z4 × Z2 3 Yes

6 Z2
2 oD4 32,28 Z2 ×D4 16,11 9 [1;22] (2,−4)2 Z2 × Z4 × Z2 3 Yes

6 Z2
2 oD4 32,28 Z2 ×D4 16,11 9 [1;22] (3,−8) Z3

2 × Z2 3 Yes

6 Z2
4 o Z2 32,11 Z2

4 16,2 9 [1;22] (3,−8) Z2 × Z2 3 Yes

6 D8 o Z2 32,42 D4 o Z2 16,13 9 [1;22] (3,−8) Z2
2 × Z2 3 Yes

6 Z2
4 o Z2 32,31 Z2

2 o Z4 16,3 9 [1;22] (3,−8) Z2
2 × Z2 3 Yes

6 (Z2
2 × Z4) o Z2 32,30 Z2

2 o Z4 16,3 9 [1;22] (2,−4)2 Z4 × Z2 3 Yes

6 D2,8,5 o Z2 32,38 Z2 × Z8 16,5 9 [1;22] (2,−4)2 Z2 × Z2 3 Yes

6 Z4 ×D4 32,25 Z2
2 × Z4 16,10 9 [1;22] (2,−4)2 Z2

2 × Z2 3 Yes

6 (Z2
2 × Z4) o Z2 32,30 Z2

2 × Z4 16,10 9 [1;22] (3,−8) Z2
2 × Z2 3 Yes

4 S3 ×D4 48,38 Z2
2 × S3 24,14 13 [1;22] (2,−4), (4,−12) Z2

2 × Z2 3

4 D12 o Z2 48,37 Z4 × S3 24,5 13 [1;22] (2,−4), (4,−12) Z2 × Z2 3

Table 2: pg = q = 1, K2 ≥ 4
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K2
X G Id(G) G0 Id(G0) g(C) Type Branch Locus B H1(X,Z) galb min?

2 (Z8 o Z2
2) o Z2 64,153 D2,8,5 o Z2 32,7 17 [1;22] (3,−8), (5,−16) Z2 × Z2 3 No

2 Z8 oD4 64,150 D4 o Z4 32,9 17 [1;22] (3,−8), (5,−16) Z2 × Z2 3 No

2 Z2
2 oD8 64,147 D4 o Z4 32,9 17 [1;22] (2,−4)2, (5,−16) Z2 × Z2 3 No

2 (Z2 ×D8) o Z2 64,128 Z2 ×D8 32,39 17 [1;22] (2,−4)2, (3,−8)2 Z2 × Z2 3 No

2 QoD4 64,130 Z2 ×D2,8,3 32,40 17 [1;22] (3,−8)3 Z2 × Z2 3 No

2 D4 oD4 64,134 Z8 o Z2
2 32,43 17 [1;22] (3,−8)3 Z2 × Z2 3 No

2 (Z2 ×D4) o Z2
2 64,227 Z3

2 o Z4 32,22 17 [1;22] (3,−8)2, (2,−4)2 Z2
2 × Z2 2 No

2 (Z2 ×D4) o Z2
2 64,227 Z3

2 o Z4 32,22 17 [1;22] (3,−8)2, (2,−4)2 Z2
2 × Z2 2 No

2 Z4 o (D4 o Z2) 64,228 (Z4 o Z4)× Z2 32,23 17 [1;22] (3,−8)2, (2,−4)2 Z2
2 × Z2 2 No

2 (Z4 ×D4) o Z2 64,234 (Z4 o Z4)× Z2 32,23 17 [1;22] (3,−8)3 Z2
2 × Z2 2 No

2 (Z4 ×D4) o Z2 64,234 Z2
4 o Z2 32,24 17 [1;22] (3,−8)2, (2,−4)2 Z2

2 × Z2 2 No

2 (Z4 oQ) o Z2 64,236 Z2
4 o Z2 32,24 17 [1;22] (3,−8)3 Z2

2 × Z2 2 No

2 Z2
4 o Z2

2 64,219 Z4 ×D4 32,25 17 [1;22] (3,−8)3 Z2
2 × Z2 2 No

2 (Z2
2 oD4) o Z2 64,221 Z4 ×D4 32,25 17 [1;22] (3,−8)3 Z2

2 × Z2 2 No

2 (Z2 × Z4) oD4 64,213 Z4 ×D4 32,25 17 [1;22] (3,−8)2, (2,−4)2 Z2
2 × Z2 2 No

2 Z2
4 o Z2

2 64,206 Z4 ×D4 32,25 17 [1;22] (3,−8), (2,−4)4 Z2
2 × Z2 2 No

Table 3: pg = q = 1, 0 < K2 < 4
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K2
X G Id(G) G0 Id(G0) g(C) Type Branch Locus B H1(X,Z) min?

8 Z4 4,1 Z2 2,1 3 [2;-] ∅ Z2 × Z4 Yes

7 Z6 6,2 Z3 3,1 4 [2;-] (2,−4) Z4 Yes

6 D4 8,3 Z2
2 4,2 5 [2;-] (3,−8) Z4 Yes

6 D4 8,3 Z2
2 4,2 5 [2;-] (3,−8) Z2 × Z4 Yes

6 Z2 × Z4 8,2 Z4 4,1 5 [2;-] (2,−4)2 Z4 Yes

4 D6 12,4 S3 6,1 7 [2;-] (2,−4), (4,−12) Z4 = π1(X) No, K2
Xmin

= 5

2 Z2 ×D4 16,11 D4 8,3 9 [2;-] (2,−4)2, (3,−8)2 Z4 = π1(X) No, K2
Xmin

= 4

2 Z2 ×D4 16,11 D4 8,3 9 [2;-] (2,−4)2, (3,−8)2 Z4 = π1(X) No, K2
Xmin

= 4

2 D4 o Z2 16,13 Q 8,4 9 [2;-] (3,−8)3 Z4 = π1(X) No, K2
Xmin

= 4

Table 4: pg = q = 2, K2 > 0
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Chapter 1

Riemann Surfaces

1.1 Covering spaces

Definition 1.1. Let X be a topological space. A covering space (or étale covering)

of X is a pair (X̃, p), where X̃ is a topological space and p : X̃ → X that satisfies the

following property: for each x ∈ X there exists a path-connected open neighbourhood

U such that each component of p−1(U) is mapped homeomorphically onto U by p.

Remark 1.2. For every x ∈ X the topology induced by the topology of X̃ on the fibre

p−1(x) is the discrete topology.

Once we are given a covering space p : X̃ → X and x0 ∈ X we can define a

π1(X,x0)−action on the fibre p−1(x0). Let γ be a loop on X based at x0, let γ be

the inverse path, i.e. γ(t) := γ(1− t), and let x ∈ p−1(x0); by the so called path lifting

property (cf. [Hat02, page 60]) there exists a unique lift γ̃ of γ with starting point x,

therefore we have a well defined map

Lγ : p−1(x0)→ p−1(x0)

that sends the starting point γ̃(0) of each lift γ̃ to its ending point γ̃(1).

The map Lγ depends only on the homotopy class of γ (cf. [Mas02, Lemma V.3.3]),

then the association γ 7→ Lγ gives an homomorphism from π1(X,x0) to the group of

permutation of p−1(x0).

This defines a left action of π1(X,x0) on the fibre p−1(x0), and for x̃ ∈ p−1(x0) the

stabilizer of x̃ is the subgroup p∗(π1(X̃, x̃)).

Definition 1.3. An isomorphism between two covering spaces p1 : X̃1 → X and

p2 : X̃2 → X is a homeomorphism φ : X̃1 → X̃2 such that p1 = p2 ◦ φ.

3
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For further results and details concerning covering spaces we refer to [Hat02, Section

1.3].

We give the proof of the following theorem.

Theorem 1.4 (cf. [Hat02, Proposition 1.36]). Let X be a topological space which is

path-connected, locally path connected, and semilocally simply connected. Then, for

every subgroup K of the fundamental group π1(X,x0), there exists a covering space

p : XK → X such that p∗(π1(XK , x̃)) = K for a suitable choice of the base point

x̃ ∈ p−1(x0).

Proof. This proof consists of two steps; in the first one we construct an universal cover

X̃ of X; in the second one we construct XK starting from X̃.

Let us define

X̃ := {[γ]|γ is a path in X such that γ(0) = x0},

where [γ] denotes the homotopy class of the path γ. The function

p : X̃ → X

[γ] 7→ γ(1)

is well defined and it is surjective, because X is path-connected.

Now we need to define a topology on X̃.

Let U be the collection of path connected open sets U ⊆ X such that π1(U)→ π1(X)

is trivial. Note that if π1(U) → π(X) is trivial for a choice of a base point, then it is

trivial for every choice of a base point, because U is path connected. Moreover, if V is a

path-connected open set such that V ⊂ U ∈ U , then also V ∈ U , since the composition

π1(V )→ π1(U)→ π1(X) is trivial.

Suppose that there exists U1, U2 ∈ U such that x ∈ U1 ∩U2; since X is locally path

connected, there exists a path connected open set V ⊂ U1∩U2 with x ∈ V , which means

that V ∈ U . Moreover, since X is semi-locally simply connected, for every x ∈ X there

exists U ∈ U with x ∈ U . Then U is a basis for the topology on X.

Given U ∈ U and a path γ in X with γ(0) = x0 and γ(1) ∈ U , let us define

U[γ] := {[γη]| η is a path in U such that η(0) = γ(1)}.

The set U[γ] only depends on the homotopy class [γ]. The map p|U[γ]
: U[γ] → U is clearly

surjective because U is path connected. Let us prove injectivity of p|U[γ]
. Suppose that

γη(1) = γη′(1), then [γηη′γ] = 1, because by definition of U , the map π1(U)→ π1(X)

is trivial. Then [γη] = [γη′].
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If [γ′] ∈ U[γ], then U[γ] = U[γ′]; indeed, if γ′ = γη, then the elements of U[γ′] can be

written as [γην] and then belong to U[γ], and elements of U[γ] are [γν] = [γηην] = [γ′ην]

and hence belong to U[γ′].

The collection Ũ := {U[γ]| U ∈ U , γ path in X, γ(0) = x0, γ(1) ∈ U} is basis for

a topology on X̃. Let U[γ] and Vγ′ elements of Ũ and let [γ′′] ∈ U[γ] ∩ V[γ′], then

U[γ] = U[γ′′] and V[γ′] = V[γ′′]. Let W ∈ U be such that W ⊂ U ∩ V and γ′′(1) ∈ W ,

then W[γ′′] ⊆ U[γ′′] ∩ V[γ′′] and [γ′′] ∈W[γ′′].

The bijection p|U[γ]
: U[γ] → U is a homeomorphism. Let V[γ′] ∈ Ũ such that V[γ′] ⊂

U[γ], then p(V[γ′]) = V . On the other side, for V ∈ U and V ⊂ U , p−1(V )∩U[γ] = V[γ′],

where [γ′] ∈ U[γ] is a path with end point in V . This means that p : X̃ → X is

continuous.

We shall also remark that it is a covering space, since for U ∈ U the sets U[γ] forms

a partition of p−1(U) as [γ] varies: if [γ′′] ∈ U[γ] ∩ U[γ′], then U[γ] = U[γ′].

The last thing we need to prove is that X̃ is simply connected. Let [γ] ∈ X̃; we

define the path γt in the following way:

γt(τ) :=

γ(τ) τ ∈ [0, t]

γ(t) τ ∈ (t, 1]

The function t 7→ γt is a path in X̃ that starts at [x0] (the homotopy class of the

constant path x0) and ends at [γ] Since [γ] is an arbitrary point in X̃, we get that

X̃ is path connected. To show that π1(X̃, [x0]) is trivial, it is sufficient to prove that

p∗(π1(X̃, [x0])) = 1, being p∗ injective (cf. [Hat02, Proposition 1.31]).

The elements in the image of p∗ are represented by loops γ with base points in x0

that lift to loops in X̃ based at [x0]. The path γ̃ : t 7→ [γt] lifts γ starting at [x0]; as

we want γ̃ to be a loop, [γ1] = [x0]. Since γ1 = γ, this means that [γ] = [x0], so γ is

homotopic to the constant loop and p∗ is trivial.

In this way we have constructed the universal covering space X̃ → X.

The next step of the proof is to construct the covering space XK . For [γ], [γ′] ∈ X̃,

we define [γ] ∼ [γ′] if γ(1) = γ′(1) and [γγ′] ∈ K. This is an equivalence relation since

K is a subgroup: it is reflexive since 1 ∈ K, it is symmetric since K is closed respect

to the inverse operation, and it is transitive since K is closed under multiplication.

Let XK := X̃/ ∼ be the quotient space respect to this equivalence relation endowed

with the quotient topology.

If γ(1) = γ′(1), then [γ] ∼ [γ′] if and only if [γη] ∼ [γ′η]; this means that if any two

points in U[γ] and U[γ′] are identified in XK , then the whole sets are identified. Then

the natural projection XK → X induced by [γ] 7→ γ(1) is a covering space.
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Let x̃0 ∈ XK ; it corresponds to the equivalence class of the constant path c based

in x0 ∈ X. A loop γ in X based in x0 lifts to X̃ to a path with starting point x̃0 and

ending point [γ], then γ lifts to a loop in XK if and only if [γ] ∼ [c], or equivalently

[γ] ∈ K. Therefore the image of p∗ : π1(XK , x̃0)→ π1(X,x0) is K.

Remark 1.5. If the groupK is normal in π1(X,x0), then we can define a π1(X,x0)−action

on XK in the following way: for t ∈ π1(X,x0) and [γ] ∈ XK , we define t · [γ] := [tγ].

This is equivalent to take the final point of the unique lift of the path tγ of base

point [c] ∈ XK , where this latter denotes the homotopy class of the constant path based

at x0.

The action is well defined: if γ ∼ γ′ then tγtγ′ = t(γγ′)t. But by assumption

γγ′ ∈ K, which is normal, so t(γγ′)t ∈ K. By a straightforward computation, we see

that this is a left action.

1.2 Galois Coverings

In the first part of this section we recall some basic definition and results concerning

coverings of varieties, that we suppose to be algebraic, irreducible and normal. In the

second part we discuss some well known results about Galois coverings of Riemann

surfaces.

Definition 1.6. Let f : X → Y be a finite proper morphism between varieties of the

same dimension. Then the inverse image of every point is a finite set of points. We say

that such a map is a branched covering.

Definition 1.7. Let X be a variety and let G be a finite subgroup of Aut(X). We say

that f : X → X/G is a Galois covering.

Definition 1.8. Let X and Y be varieties of the same dimension and let f : X → Y

be a regular map such that f(X) ⊂ Y is dense. The degree of the field extension

f∗(C(Y )) ⊂ C(X) is finite and is called the degree of f :

deg(f) := [C(X) : f∗(C(Y ))].

Proposition 1.9 (cf. [Sha77, Theorem 6.3.3]). Let f : X → Y be a finite map between

varieties of the same dimension. Then |f−1(y)| ≤ deg(f) for all y ∈ Y .

Definition 1.10. Let f : X → Y be a branched covering, let x ∈ X and y ∈ f(x). If

|f−1(y)| < deg(f), then y is said to be a branch point and x is said to be a ramification

point. The set of all branch points is called branch locus. If there are no branch points,

then f is said to be étale (or unbranched).
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Definition 1.11. Let f : X → Y be a branched covering, let x ∈ X and y = f(x). Let

V be a neighbourhood of y such that the connected component U of f−1(V ) containing

x does not contain any other preimages of y. Then we define the ramification index of

f at x as the number of the preimages in U of a generic point other than y in V . We

will denote such a number as rx.

Proposition 1.12 (cf. [Sha77, Theorem 6.3.4]). Let f : X → Y be a branched covering.

The complementary of the branch set in Y is an open set in the Zariski topology.

Let us now focus our attention on the Riemann surfaces, complex manifolds of

dimension one. Any non constant holomorphic map between two compact Riemann

surfaces is a branched covering (cf. [Mir95, pages 48-49]) and for such a map it holds

the well known Hurwitz’s formula.

Theorem 1.13 (Hurwitz’s formula, cf. [Mir95, Proposition II.4.16]). Let f : X → Y

be a non constant holomorphic map between compact Riemann surfaces. Then

2g(X)− 2 = deg(f)(2g(Y )− 2) +
∑
x∈X

(rx − 1). (1.1)

We should remark that, since the number of ramification points of a branched

covering between compact curves is finite, the sum in (1.1) is finite.

Proposition 1.14 (cf. [Mir95, Proposition III.3.1, Proposition III.3.2]). Let G be a

finite group acting holomorphically and effectively on a Riemann surface X. Then

the stabilizer of each point is a cyclic group and the set points of X with non trivial

stabilizers is discrete.

Given a finite group acting on a Riemann surface C, then it is possible to define a

complex structure on C/G (cf. Proposition III.3.3, [Mir95]).

Theorem 1.15 (cf. [Mir95, Theorem III.3.4]). Let C be a Riemann surface and let G

be a finite group acting on C. Then C/G has a structure of Riemann surface such that

the quotient map f : C → C/G is holomorphic, deg(f) = |G| and rp(f) = |StabG(p)|
for any p ∈ C.

Lemma 1.16 (cf. [Mir95, Theorem III.3.6]). Let C be a compact Riemann surface and

let G be a finite group acting on C. Let f : C → C/G be the quotient map. Then for

every branch point y ∈ Y , there is an integer r ≥ 2 such that f−1(y) consists of |G|/r
points of C, each one with ramification index r.
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Thanks to Lemma 1.16, we can rephrase Theorem 1.13 for Galois coverings in the

following way.

Theorem 1.17 (cf. Theorem III.3.7, [Mir95]). Let G be a finite group acting holo-

morphically and effectively on a compact Riemann surface C; let π : C → C/G =: Y

be the quotient map. Suppose that there are r branch points p1, . . . , pr in Y , and that

|Stab(x)| := mi for all x ∈ π−1(pi) for each i = 1, . . . , r. Then

2g(X)− 2 = |G|

(
2g(X/G)− 2 +

r∑
i=1

mi − 1

mi

)
. (1.2)

Corollary 1.18. Let C be a Riemann surface of genus g(C) ≥ 2 and let π : C →
C/G ∼= P1 be a Galois covering of P1 with branch locus {p1, . . . , pr}. Then r ≥ 3.

Moreover, if mi := |Stab(x)| for x ∈ π−1(pi) for all i = 1, . . . , r, then

−2 +

r∑
i=1

mi − 1

mi
≥ 1

42
.

Proof. By Theorem 1.17,

2(g(C)− 1) = |G|

(
−2 +

r∑
i=1

mi − 1

mi

)
.

Then
∑r

i=1
mi−1
mi

> 2. But
∑r

i=1
mi−1
mi

< r, then 2 < r.

Without loss of generality, we can suppose m1 ≤ m2 ≤ · · · ≤ mr. Since mi ≥ 2 for

all i = 1, . . . r

−2 +
r∑
i=1

mi − 1

mi
≥ −2 +

3∑
i=1

mi − 1

mi
= 1−

3∑
i=1

1

mi

Suppose then that r = 3 and let us compute the minimum value of δ := 1 − m−1
1 −

m−1
2 −m

−1
3 , taking into account that δ > 0. Since m1 ≥ 2, δ ≥ −1/2 + m−1

2 + m−1
3 .

Let us suppose m1 = 2; if m2 = 2, then δ < 0, which is impossible. Then for m1 = 2 it

holds m2 ≥ 3, therefore δ ≥ 1/6−m−1
3 . Suppose now m1 = 2 and m2 = 3; if m3 ≤ 6,

then δ ≤ 0, which is impossible. Then the minimum value of δ is 1/42 and it is reached

for (m1,m2,m3) = (2, 3, 7).

In the following chapters we will consider Riemann surfaces of genus g ≥ 2; for

these objects, we have two strong results concerning the automorphism group. The

first one, due to Schwartz, asserts that the automorphism group of a Riemann surface

C of genus ≥ 2 is finite. The second one, due to Hurwitz, gives a bound (that is sharp)

for the order of such group.
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Theorem 1.19 (Schwartz, [Sch90]). Any compact Riemann surface of genus g ≥ 2 has

a finite number of automorphism, i.e. the automorphism group Aut(C) is finite.

Theorem 1.20 (Hurwitz, cf. Theorem III.3.9, [Mir95]). Let C be a compact Riemann

surface of genus g ≥ 2 and let G be a subgroup of Aut(C), then

|G| ≤ 84(g − 1).

1.3 Riemann Existence Theorem

One of the main tools we will use in the following sections is provided by the Riemann

Existence Theorem. This theorem allows to construct a Galois covering of a Riemann

surface once such a surface is given along with the group associated to the covering.

Let C ′ be a Riemann surface, let x1, . . . , xr be r points on C ′ and let F̄ : C̄ →
C ′ \ {x1, . . . , xr} be an étale covering. Riemann Existence Theorem states that we can

extend F uniquely, up to isomorphisms, to a Galois covering F : C → C ′, where C is a

Riemann surface.

Proposition 1.21. Let f ′ : X \ A → X ′ be a holomorphic map between two Riemann

surfaces, where A ⊂ X is finite. If there exists a continuous function f : X → X ′ that

extends f ′, then f is holomorphic.

Proof. Let x ∈ A and let ϕ : U → C and ψ : V → C local charts defined in a neighbour-

hood of x and f(x) respectively. The map

ψ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(V ))→ C

is holomorphic in ϕ(U∩f−1(V ))\ϕ−1(x) and it is bounded in a neighbourhood of ϕ(x).

By Riemann extension theorem (cf. [Lan03, Theorem V.3.1]), the map is holomorphic

in ϕ(x), hence f is holomorphic in x.

Let D := {z ∈ C : |z| < 1} be the unitary open disc and let D∗ := D \ {0} be the

punctured disc.

Theorem 1.22 (cf. [GF12, Theorem 5.10]). Let X be a Riemann surface and let

s : X → D∗ be a connected covering space of degree m < +∞. There exists a biholo-

morphic map ψ : X → D∗ such that the following diagram commutes:

X D∗

D∗

..................................................................................................................................................................................................................... ............
ψ

........................................................................................................................................... ........
....

s

.......................................................................................................................................
....
............

pm
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where pm(z) = zm.

Theorem 1.23 (Riemann existence Theorem). Let C̄ and C ′ be two Riemann surfaces

and let A ⊂ C ′ be a finite set. Let f : C̄ → C ′ \A be a proper étale covering.

Then f can be extended to a ramified covering of C ′, that is there exists a Riemann

surface C, a proper holomorphic map F : C → C ′ and a biholomorphic map ϕ : C \
F−1(A)→ C̄ such that the diagram

C̄

f

��

C \ F−1(A)
ϕ

oo � � // C

F
��

C ′ \A �
�

// C ′

commutes. The couple (C,F ) is unique up to isomorphism.

Proof. For each x ∈ A let (Ux, ψx) be a chart centered in x; we can assume that

ψx(Ux) ∼= D and that Ux1 ∩ Ux2 = ∅ if x1 6= x2. Let U∗x := Ux \ {x}; since f is proper

f−1(U∗x) = V ∗x,1 t · · · t V ∗x,N ,

where for each i = 1, . . . , N V ∗x,i → U∗x is a connected covering of finite degree mi. By

Theorem 1.22, for each i = 1, . . . , N there exists a biholomorphic map hi : V
∗
x,i → D∗

such that, defining pmi : D
∗ → D∗ as pmi(z) = zmi , the diagram

V ∗x,i

f

��

hi // D∗

pmi
��

U∗x
ψx
// D∗

commutes. As we want to add a point yx,i to each V ∗x,i, we define Vx,i := V ∗x,i∪{yx,i} and

the topology we consider is the one that makes the natural extension of hi to Vx,i → D

that sends yx,i to 0 an homeomorphism. We define

C := C̄ ∪ {yx,i, i = 1, . . . , N}x∈A.

There exists a unique topology on C such that the inclusion i : C̄ ↪→ C is continuous

and for every open neighbourhood W of x the set {yx,i} ∪ (f−1(W ) ∩ V ∗x,i) is an open

neighbourhood of yx,i. This topology is Hausdorff.

Finally, we define F : C → C ′ as F (z) = f(z) if z ∈ C̄ and F (yx,i) = x. The

map F is proper. The charts (Vx,i, hi) are compatible with the charts of C̄ and define

a complex structure on C. The covering f : C̄ → C ′ \ A extends to a continuous
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map F : C → C ′ that is holomorphic by Proposition 1.21. Since F−1(A) = {yx,i}, its

complement is by construction identified with C̄. Indeed, the map i−1 : C\F−1(A)→ C̄

is a biholomorphic map.

Suppose that there exists another Riemann surface C1 and an holomorphic map

F1 : C1 → C ′ satisfying the statement. What we want to prove is that there exists an

isomorphism Φ: C → C1 such that F = F1 ◦ Φ.

By hypothesis, there exists a biholorphism ϕ1 : C1 \ F−1
1 (A)→ C ′. Let us consider

then the biholomorphism Φ̂ := ϕ1◦ϕ−1 : C \F−1(A)→ C1\F−1
1 (A); we want to extend

it to a continuous function Φ: C → C1.

By construction, F−1
1 (U∗x) = Φ̂(F−1(U∗x)), so, since F1 is proper, F−1

1 (x) contains

at least a point for each connected component of Φ̂(F−1(U∗x)). If F−1
1 (x) contains some

extra points, then these would be isolated, so C1 would not be a Riemann surface in a

neighbourhood of such points. Since C was defined such that for each x ∈ A, F−1(x)

has many elements as the connected components of F−1(U∗x), we can extend the map

Φ̂ to a bijective continuous map Φ: C → C1 sending each point yx,i to the unique

accumulation point of Φ̂(V ∗x,i). By Proposition 1.21, this map is holomorphic and then

it is an isomorphism.

1.3.1 From a Galois covering to an appropriate orbifold homomor-

phism

In order to understand the important tool that Riemann existence Theorem provides

for the study of Galois coverings of a Riemann surface, we will need some notions of

group theory.

Given integers g ≥ 0 and and m1, . . . ,mr > 1 the orbifold surface group of signature

(or type) (g;m1, . . . ,mr) is defined as

T(g;m1, . . . ,mr) := 〈a1, b1, . . . , ag, bg, c1, . . . , cr|cm1
1 , . . . , cmrr ,

g∏
i=1

[ai, bi] · c1 · · · cr〉.

Remark 1.24. For r = 0, T(g) is the fundamental group of a Riemann surface of genus

g.

Let H be a finite group; we say that an homomorphism

ψ : T(g;m1, . . . ,mr)→ H

is an appropriate orbifold homomorphism if it is surjective and ψ(ci) has order mi for

each i = 1, . . . , r.



12 CHAPTER 1. RIEMANN SURFACES

Definition 1.25. Let H be a finite group and let g,m1, . . . ,mr as above. A generating

vector for H of type (g;m1, . . . ,mr) is a (2g + r)−tuple of elements of H:

V := (d1, e1, . . . , dg, eg, h1, . . . , hr)

such that V generates H,
∏g
i=1[di, ei] · h1 · · ·hr = 1 and there exists a permutation

σ ∈ Sr such that ord(hi) = mσ(i) for i = 1, . . . , r. If such V exists, we will say that H

is (g;m1, . . . ,mr)−generated.

Remark 1.26. Giving a generating vector of type (g;m1, . . . ,mr) of a group H is equiv-

alent to giving an appropriate orbifold homomorphism

ψ : T(g;m1, . . . ,mr)→ H.

The last part of this section is dedicated to the proof of the following fact: once we

are given a Galois covering C → C/G of a Riemann surface, we can define a generating

vector of the group G.

Let C be a compact Riemann surface with genus g(C) ≥ 2 and let G be a subgroup

of Aut(C); let C ′ := C/G be the quotient curve and let us denote by g′ := g(C ′) its

genus. Let B := {p1, . . . , pr} be the branch locus of the quotient map f : C → C ′. For

the details of the results contained in this section and their proofs we refer to [Mir95,

pages 84-92].

Let us fix an element of B, say p1 and let us consider its fibre f−1(p1) := {q1, . . . , qt}.
Then H := Stab(q1) ∼= Zn for some integer n ≥ 2 (cf. [Mir95, Proposition III.3.1]). By

construction, for each i = 1, . . . , t there exists gi ∈ G such that giq1 = qi. It is

straightforward to prove the following lemma.

Lemma 1.27. giHg
−1
i
∼= StabG(qi).

This means that the stabilizers of qi’s are isomorphic and they all have the same

cardinality n = |G|/t.
Let X := C ′ \B and let p ∈ X. Then there exists a set of loops

{α1, . . . , αg′ , β1, . . . , βg′ , γ1, . . . , γr} ⊂ π1(X, p),

where

• π1(C ′, p) = 〈α1, . . . , αg′ , β1, . . . , βg′ |
∏g′

i=1 [αi, βi]〉;

• for each i = 1, . . . , r γi is a loop travelling once around qi and no other point in

B
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such that

π1(X, p) = 〈α1, β1, . . . , αg′ , βg′ , γ1, . . . , γr|
g′∏
i=1

[αi, βi] · γ1 · · · γr〉. (1.3)

If we define C0 := C \f−1(B), then f |C0 : C0 → X is a regular covering (cf. [Hat02,

pages 70-71]) and there is a surjective map

θ : π1(X, p)→ G.

The map θ is the so called monodromy map associated with the Galois covering f |C0 .

The map is defined as follows: let us fix q ∈ f−1(p), if γ is a loop based at p, Lγ(q) = gq

for some g ∈ G (cf. Section 1.1), then θ([γ]) := g. Monodromy is well defined up to

conjugacy in G.

Given the presentation (1.3), for i = 1, . . . , r let hi := θ(γi) and let mi be the

order of the stabilizer of the points in f−1(pi). For j = 1, . . . , g′ let aj := θ(αj) and

bj := θ(βj).

Lemma 1.28. Using the notation defined above {a1, b1, . . . , ag′ , bg′ , h1, . . . , hr} is a

generating vector for G of type (g′;m1, . . . ,mr).

Remark 1.29. One may ask what happens if we have a Galois covering f : C → C ′ :=

C/G where C consists in multiple connected components. Using the same notation as

above, let θ : π1(X, p)→ G be the monodromy map associated with f |C0 .

Let us fix x0 ∈ f−1(p); the fibre f−1(p) := {gx0 : g ∈ G} is in bijection with G. Let

y0, y1 ∈ f−1(p); they are in the same connected component of C if and only if there

exists a path γ : I → F such that γ(0) = y0 and γ(1) = y1. This holds if and only if

there exists a path η : I → F such that η(0) = x0 and η(1) = g−1
0 g1x0. This means

that g−1
0 g1 ∈ Im(θ), that is g1 ∈ g0Im(θ).

In this way we have proved that two points in the fibre of p are in the same connected

component of C if and only if the corresponding elements of G differ by an element in

the image of the monodromy map. Moreover, the number of connected components of

C is equal to |G : Im(θ)|.

1.3.2 From an appropriate orbifold homomorphism to a Galois cov-

ering

What we have seen so far shows that every Galois covering C → C/G ∼= C ′ induces an

appropriate orbifold homomorphism

ψ : T(g(C ′);m1, . . . ,mr)→ G,
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or equivalently a generating vector of type (g′;m1, . . . ,mr) for G.

Riemann existence Theorem is the key result that allows to reverse this construction:

given a compact Riemann surface C ′ and a generating vector of type (g′;m1, . . . ,mr)

for the finite group G, we construct a compact Riemann surface C such that C ′ ∼= C/G.

Let g′ := g(C ′) be the genus of C ′, p ∈ C ′ and

π1(C ′) = 〈α1, β1, . . . , αg′ , βg′ |
g′∏
i=1

[αi, βi]〉

the fundamental group of C ′. Let (a1, b1, . . . , ag′ , bg′ , h1, . . . , hr) be a generating vector

of type (g′;m1, . . . ,mr) forG. Fix B := {p1, . . . , pr} ⊂ C ′ and p ∈ X := C ′\B. For each

j = 1, . . . , r, let γj be a loop travelling around pj such that
∏g′

i=1 [αi, βi] ·
∏r
j=1 γj = 1,

therefore

π1(X) = 〈α1, β1, . . . , αg′ , βg′ , γ1, . . . , γr|
g′∏
i=1

[αi, βi] ·
r∏
j=1

γj〉. (1.4)

The generating vector (a1, b1, . . . , ag′ , bg′ , h1, . . . , hr) induces a surjective homomor-

phism

θ : π1(X, p) −→ G

αj 7−→ aj

βj 7−→ bj

γi 7−→ hi

let K := ker(θ). By Theorem 1.4, we can associate to the normal subgroup K a Galois

covering f : XK → X such that π1(XK , y) ∼= K.

Let t ∈ π1(X, p) and [γ] ∈ XK ; if we define t · [γ] := [tγ], we get a left action

of π1(X, p) on XK (cf. Remark 1.5). We can also define a G−action on XK : let

h ∈ G, then h · [γ] := [δγ], where δ ∈ θ−1(h). First of all, let us prove that this action

is well defined: suppose δ1, δ2 ∈ θ−1(h), then δ1 = kδ2 for some k ∈ K, therefore

[δ1γ] = [kδ2γ] = [δ2γ]. For h ∈ G and [γ] ∈ XK we will write [θ−1(h)γ] := h[γ].

The G−action on XK is faithful:

[γ] = h[γ] = [θ−1(h)γ]⇔ θ−1(h)γγ ∈ K

⇔ θ−1(h) ∈ K

⇔ h = 1G.

By Theorem 1.23, we can extend the étale covering f : XK → X = C ′ \ B to a

Galois covering F : C → C ′.

The following results underline the close link between the algebraic data and the

geometry of the covering space.
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Let us fix p1 ∈ B and let W be a small open neighbourhood of p1 in C ′ such that

W \ {p1} is isomorphic to a punctured disc. Let f−1(W \ {p1}) = D∗1 t . . . D∗s .
Let τ be a loop in W with base point p′ and travelling around p1 once; let γ be a

path on X starting at p and ending at p′ such that γ1 is homotopic to γτγ.

Proposition 1.30. f−1(W \ {p1}) = D∗1 t . . . D∗s has s = |G : 〈h1〉| connected compo-

nents.

Proof. By definition of XK ,[γ] ∈ f−1(p′); let [γ′] be another point in f−1(p′). The two

points [γ] and [γ′] belong to the same connected component D∗i if and only if there

exists a path δ : I → XK with δ(0) = [γ], δ(1) = [γ′] and such that η := f ◦ δ is

contained in W . This means that η is a loop in W , hence there exists a k such that

η = τk and [γ′] = [γη]. Since θ(γηγ) = hk1, to each point of f−1(p′) ∩D∗i corresponds

an element of S := 〈h1〉. Therefore s ≤ |G : 〈h1〉|
Conversely, to each γk1 ∈ 〈γ1〉 we associate the point [γk1γ] ∈ D∗i . These points are

exactly m1 = ord(h1):

[γa1γ] = [γb1γ]⇐⇒ γa−b1 ∈ K ⇐⇒ ha−b1 = θ(γa−b1 ) = 1G

⇐⇒ a ∼= b mod m1.

Proof of Proposition 1.30 implies that [γ] and [γτk] belong to the same connected

component D∗i for each k ∈ Z.

Let us define S := 〈h1〉, then {[γτk]}k = S · [γ].

Proposition 1.31. The correspondence h 7→ h·[γ] is a bijection between G and f−1(p′).

Proof. We first prove injectivity. Let h, h′ ∈ G such that h[γ] = h′[γ], that is

θ−1(h)γγθ−1(h′−1) = θ−1(hh′−1) ∈ K, hence hh′−1 = 1K .

In order to prove surjectivity let [η] ∈ f−1(p); if we define h := θ(ηγ) we get

h · [γ] = [θ−1(h)γ] = [η].

Proposition 1.32. Being in the same connected component D∗i is equivalent to be-

longing to the same left coset.

Proof. By Proposition 1.31, to each h ∈ G is associated a unique element of the fibre

f−1(p′): [θ−1(h)γ]. Let h, h′ ∈ G; then hS = h′S if and only if hθ(γτkγ) = h′ for some

k, that is hθ(γτkγ)[γ] = h′[γ]. That is [θ−1(h′)γ] = [θ−1(h)γτkγγ] = [θ−1(h)γτk], that

is equivalent to be in the same D∗i by the argument of Proposition 1.30.
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Proposition 1.30, Proposition 1.31 and Proposition 1.32 imply the following result.

Lemma 1.33. There is a bijection

F−1(pi) ←→ {kS}
yj ←→ kjS

where S := 〈hi〉.

A straightforward computation leads to the following results.

Lemma 1.34. StabG(yj) = kjSk
−1
j .

The construction we have given so far proves to the following Proposition.

Proposition 1.35. Given the following algebraic data:

• a finite group G;

• a curve C ′;

• points p1, . . . , pr ∈ C ′ and αi, βj , γk ∈ π1(C ′ \ {p1, . . . , pr}) as in (1.4);

• integers m1, . . . ,mr > 1;

• a generating vector V = (a1, b1, . . . , ag′ , bg′ , h1, . . . , hr) for G0 of type

(g(C ′);m1, . . . ,mr)

there exists a Galois covering c : C → C/G0 ∼= C ′ branched over {p1, . . . , pr} with

ramification index equal to mi over pi.

The set of elements of G0 with non empty fixed locus is the set

ΣV :=
⋃
g∈G0

r⋃
i=r

mi⋃
j=1

{g · hji · g
−1}. (1.5)

1.4 Group actions on the universal covering

Let C ′ be a Riemann surface of genus g′, let {p1, . . . , pr} ⊂ C ′ and p a point in

X := C ′ \ {p1, . . . , pr} and let

θ : T(g′;m1, . . . ,mr)→ G

be an appropriate orbifold homomorphism. Let us take a representation for π1(X, p) as

the one in (1.4). As we showed in Section 1.3.2, θ induce a Galois covering θ : C → C ′.
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Let u : ∆ → C the universal cover of C; as seen in the proof of Theorem 1.4, the

points of ∆ corresponds to the homotopy classes of paths in C with base point y = [p],

the constant path in X of base point p.

By Remark 1.5, the group π1(C, y) acts on ∆ as follows: for η ∈ π1(C, y) and

[δ] ∈ ∆, η · [δ] = [ηδ], that is the final point of the unique lift of ηδ with starting point

[x0], the class of the constant path in C with base point y.

The path γmii ∈ π1(X, p), travelling mi times around pi, lifts to a path ci ∈ π1(C0, y)

that travels once around a point of the fibre of pi. For all g ∈ G let us fix a path

αg : [0, 1]→ C0 with αg(0) = y and αg(1) = gy.

The normal subgroup

H := 〈〈αg · g∗ci · αg : g ∈ G, i = 1, . . . r〉〉

is a subgroup of π1(C, y) ∼= 〈a1, b1, . . . , ag, bg|
∏g
i=1 [ai, bi]〉, where with 〈〈S〉〉 we denote

the subgroup normally generated by S.

We have the following commutative diagram with exact rows and columns:

1

��

1

��

1 // H

��

ci 7→γ
mi
i // 〈〈γi〉〉

��

// 1

��

1 // π1(C0, y)
(f0)∗

//

��

π1(X, p)
θ //

��

G // 1

1 // π1(C, y) //

��

F //

��

G //

��

1

1 1 1

By construction, it follows that

F = π1(X, p)/〈〈γmii 〉〉

= 〈α1, β1, . . . , αg′ , βg′ , γ1, . . . , γr|
∏

[αi, βi] · γ1 · · · γr, γ
mj
j 〉 =: T.

(1.6)

In this way we have proved the following

Lemma 1.36. The sequence

1 −→ π1(C, y) −→ T −→ G −→ 1

is exact.
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The following results will be useful to compute the fundamental group of the surfaces

we are going to study in the next sections.

Lemma 1.37. The action of π1(C, y) on ∆ extends to an action of T on ∆.

Proof. Let [δ] ∈ ∆, w := u([δ]) ∈ C and z := f(w) ∈ C ′; let t ∈ T. Suppose that

w = [γ] is the homotopy class of the path γ ⊂ C ′ with starting point p.

Recall that, by (1.6), t is a loop on X based at p; we have defined t · w = t · [γ] =

[tγ] =: w′, which is the final point of the unique lift η of tγ with base point y = [p],

where [p] is the homotopy class of the constant path based at p.

We lift η to the unique lift with base point [x0], the homotopy class of the constant

path in C with base point y; we define t · [δ] as the final point of this lifting. Exploiting

the uniqueness of the lift, this is a well defined action that coincides on π1(C, y) with

the usual action.

Given the T−action on ∆, we want to compute the fixed locus of an element of T.

Lemma 1.38. Let [δ] ∈ ∆ then

StabT([δ]) =

{1} if f(u([δ])) 6∈ {p1, . . . , pr}

α〈γi〉α−1 if f(u([δ])) = pi, for some α ∈ T

Proof. Let [δ] ∈ ∆, w := u([δ]) and z := f(w) = [γ]; let t ∈ T. If t · [δ] = [δ], then by

definition it holds t · [γ] = [γ]. Either z 6∈ {p1, . . . , pr} or z = pi for some i = 1, . . . , r.

If z 6∈ {p1, . . . , pr}, then w is not a ramification point for f , so T acts as π1(X, p),

whose action on C0 is free, then Stab(w) = {1}, that is t = 1.

If z = pi for some i, then w is a ramification point for the quotient map f , then by

Lemma 1.34, StabG(w) = kSk−1 where S = 〈hi〉 and k ∈ G, but g[γ] = [θ−1(g)γ] =

(αγdi α
−1)[γ] for some α ∈ T and d ∈ {1, . . . ,mi − 1}, so StabT(w) = α〈γi〉α−1.

1.5 Riemann-Roch Theorem for Curves

In this section we give some basic definitions on divisors and invertible sheaves on

a Riemann surface. We will state, without giving any proof, some well known and

fundamental classical results.

For further details we refer to [Mir95, Chapter VI] and [Har77, Section IV.1].

Let C be a Riemann surface. A divisor on C is an element of the free abelian group

generated by the set of points of C. We write a divisor as

D =
∑
i

ni · Pi with ni ∈ Z.
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Its degree is defined as deg(D) :=
∑
ni. Each divisor is associated with an invertible

sheaf on C (cf. [Har77, page 144]) that we denote by L(D).

Theorem 1.39 (cf. [Mir95, Theorem VI.3.11]). Let D be a divisor on an algebraic

curve C of genus g. Then

h0(L(D))− h1(L(D)) = deg(D)− g + 1.

Corollary 1.40 (cf. [Mir95, Corollary VI.3.12]). Let D be a divisor of degree at least

2g − 1 on an algebraic curve C of genus g. Then h1(L(D)) = 0 and h0(L(D)) =

deg(D)− g + 1.

From now on, for any divisor D on a curve we will write hi(D) instead of hi(L(D)).

1.6 The Canonical Ring of a complex manifold

Let X be a compact complex manifold of dimension n, and let L be a line bundle on

X; we define the graded ring

R(X,L) :=
⊕
m≥0

H0(L⊗m).

If we take L := ωX to be the canonical bundle of X, then R(X) := R(X,ωX) is called

the canonical ring of X.

This ring is commutative; let tr(R(X)) be its degree of trascendency over C. The

number Pm := h0(ω⊗mX ) is called the m−th plurigenus of X.

Definition 1.41. Let X be a compact complex manifold. We define the Kodaira

dimension of X κ(X) as follows:

κ(X) :=

−∞ if R(X) ∼= C

tr(R(X))− 1 otherwise

For a compact complex manifold X, its Kodaira dimension κ(X) can assume the

values: −∞, 0, . . . ,dimX.

Remark 1.42 (cf. [Har77, page 421]). Let X be a smooth compact complex manifold,

let K be a canonical divisor of X and let φmK be the rational map from X to the

projective space associated with the linear system |mK|. The Kodaira dimension of X

is equal to the maximal dimension of the images φmK(X) for m ≥ 1.
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Definition 1.43. A variety X is said to be of general type if its Kodaira dimension is

maximal; that is κ(X) = dimX.

Theorem 1.44 (cf. [BHPV04, Theorem I.7.2]). Let X be a smooth compact complex

variety. Then

• κ(X) = −∞ if and only if Pm(X) = 0 for all m ≥ 1.

• κ(X) = 0 if and only if Pm(X) = 0 or 1 for m ≥ 1, but not always 0.

• κ(X) = k for 1 ≤ k ≤ dimX if and only if there are real constants α > 0 and

β > 0 such that αmk < Pm(X) < βmk for m large enough.

Corollary 1.45. Let X be a smooth compact complex variety of dimension k. Then

X is of general type if and only if

lim sup
m→∞

Pm(X)

mk
> 0.

Lemma 1.46 (cf. [Bea83b, Exercise VII.7.2]). If V,W are two smooth projective vari-

eties, then κ(V ×W ) = κ(V ) + κ(W ).

Lemma 1.47 (cf. [Bea83b, Exercise VII.7.3]). Let f : V →W be a surjective morphism

of smooth projective varieties. Then κ(W ) ≤ κ(V ), with equality if f is étale.

1.6.1 The Canonical Ring of a Riemann surface

In this section we see some well known results about canonical ring and Kodaira di-

mension of a Riemann surface. The first Theorem we will state, without giving the

proof, is a classic result due to Max Noether.

Theorem 1.48 (Max Noether’s Theorem, cf. [ACGH13, page 117]). If C is a non-

hyperelliptic curve, then the homomorphisms

SymnH0(C,KC)→ H0(C, nKC)

are surjective for n ≥ 1.

Theorem 1.48 implies that for a non-hyperelliptic curve, the canonical ring R(C) is

generated in degree 1.

An analogous result holds for hyperelliptic curves as well.

Proposition 1.49. Let C be a hyperelliptic Riemann surface of genus g(C) ≥ 3, then

the canonical ring R(C) is generated in degree 2.
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Proposition 1.49 is a well known result; we can prove it and give a precise description

of R(C) as well exploiting the following result.

Lemma 1.50 (cf. [Rei06, Section 4.4]). Let C be a hyperelliptic Riemann surface, then

R(C, g1
2) = C[t1, t2, w]/〈w2 = f(t1, t2)〉,

where ti’s are of degree 1, w of degree g + 1 and f ∈ C[t1, t2] has degree 2g + 2.

Proof of Proposition 1.49. Using the same notation of Lemma 1.50, it holds ωC =

(g − 1)g1
2, therefore R(C,ωC) = R(C, g1

2)[g−1], where the latter denotes the subring of

R(C, g1
2) of elements whose degree is multiple of (g − 1).

But since g ≥ 3, R(C, g1
2)[g−1] = 〈Symg−1(t1, t2), Symg−3(t1, t2)w〉, hence we get

the thesis.

As we see in Definition 1.41, κ(C) can assume the values −∞, 0 and 1. The following

Theorem gives a characterization for the Kodaira dimension of a Riemann surface C.

Theorem 1.51 (cf. [Bea83b, Example VII.2]). Let C be a smooth curve of genus g.

Then:
κ(C) = −∞ ⇔ g = 0

κ(C) = 0 ⇔ g = 1

κ(C) = 1 ⇔ g ≥ 2.





Chapter 2

Surfaces

In this section we recall some notions about surfaces, where by surface we mean compact

complex manifold of dimension 2. Namely, we will briefly illustrate the main definitions

and the main results concerning intersection theory for surfaces and the birational

transformations.

Eventually, we will recall the Enriques-Kodaira classification of surfaces.

Throughout this chapter, by curve on a surface we mean effective divisor.

We refer to [Bea83b], [Har77] and [BHPV04] for the proofs and the details of the

subjects contained in this chapter.

2.1 Invertible sheaves on a surface and intersection theory

Let S be a smooth variety of dimension n. The Picard group of S, denoted by Pic(S), is

the group of isomorphism classes of invertible sheaves (or line bundles) on S (cf. [Har77,

page 143]). To every divisor D on S corresponds an invertible sheaf OS(D) and a

meromorphic global section s unique up to a scalar multiplication such that div(s) = D.

The map D 7→ OS(D) identifies Pic(S) with the group of linear equivalence classes

of divisors on S (for further details see [Har77, Section II.6])

Let Ωk
S the sheaf of holomorphic k−forms; for k = n, the canonical bundle ωS := Ωn

S

is a line bundle. A canonical divisor is a divisor KS such that OS(KS) = ωS .

Let X be another smooth variety and f : S → X a morphism. The inverse image

of an invertible sheaf with respect to f defines a homomorphism f∗ : Pic(X)→ Pic(S).

Let us suppose now that f is a morphism of surfaces, which is generically finite of

degree d. Let C be an irreducible curve contained in S, then we define f∗C the direct

23
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image of C as

f∗C :=


0 if f(C) is a point

rΓ
if Γ := f(C) is a curve and the morphism

f |C : C → Γ is finite of degree r

We define f∗D for all divisors D on S by linearity. From the definition,

f∗f
∗D = dD for all divisors D on S.

Let us recall, eventually, the Projection formula. Though it holds under more

general hypotheses, we state it in a way more convenient for our purposes.

Theorem 2.1 (Projection Formula cf. [Har77, Exercise II.5.1]). Let X and Y be two

smooth surfaces, let f : X → Y be a finite morphism and F and E two line bundles on

X and Y respectively. Then

f∗(F ⊗OX f
∗E) ∼= f∗(F)⊗OY E (2.1)

Definition 2.2. Let C,C ′ be two distinct irreducible curves on a surface S, let x in

C ∩C ′ and Ox be the local ring of S at x (cf. [Har77, page 16]). Let f (respectively g)

be an equation of C (resp. C ′) in Ox, then the intersection multiplicity of C and C ′ ar

x is defined to be

mx(C ∩ C ′) := dimCOx/〈f, g〉.

By the Nullstellensatz the ring Ox/〈f, g〉 is a finite-dimensional vector space over

C.

Definition 2.3. Let C,C ′ be two distinct irreducible curves on S, the intersection

number C.C ′ is defined as

(C.C ′) :=
∑

x∈C∩C′
mx(C ∩ C ′).

The definition we have given corresponds to the intuitive idea of evaluating properly

the intersection of two curves; for instance, if C and C ′ are two irreducible curves then

C.C ′ = 1 if and only if they meet in a single point x which is smooth for both curves

with different tangent directions, in this case the curves are said to be transversal at x.

We extend Definition 2.3 to divisors by linearity.

Definition 2.4. Let S be a surface and let L be a sheaf on S, then the Euler-Poincaré

characteristic of L is the integer

χ(L) :=
∑
i

(−1)ihi(S,L).



2.1. INVERTIBLE SHEAVES AND INTERSECTION THEORY 25

Theorem 2.5 (cf. [Bea83b, Theorem I.4]). For L,L′ ∈ Pic(S), define

L.L′ := χ(OS)− χ(L−1)− χ(L′−1) + χ(L−1 ⊗ L′−1). (2.2)

Then (.) is a symmetric bilinear form on Pic(S) such that if C and C ′ are two distinct

irreducible curves on S then

OS(C).OS(C ′) = C.C ′

Definition 2.6 (cf. [Bea83b, Lemma I.6]). Two divisors D1, D2 on a surface S are said

to be numerically equivalent, written D1 ≡num D2 if D1.C = D2.C for every irreducible

curve C ⊂ X.

Lemma 2.7 (cf. [Bea83b, Lemma I.6]). Let C be a non-singular irreducible curve on

S. For all L ∈ Pic(S) we have

OS(C).L = deg(L|C).

Definition 2.8 (cf. [BHPV04, page 28]). Let S be a smooth surface and L ∈ Pic(S);

we say that L is a nef line bundle if

OS(C).L ≥ 0

for any curve C ⊂ S. A divisor D on S is said to be nef if the associated line bundle

OS(D) is nef.

Definition 2.9. Let D be a divisor on the surface S, we say that D2 := D.D =

OS(D).OS(D) is the self-intersection of D.

Proposition 2.10 (cf. [Bea83b, Proposition I.8]). Let S and S′ be two smooth surfaces

and g : S → S′ a generically finite morphism of degree d, D and D′ divisors on S′. Then

g∗D.g∗D′ = d(D.D′),

Definition 2.11 (cf. [Bea83b, page 120, page 153]). Let S be a surface. We say

that L ∈ Pic(S) is very ample if there exists an embedding i : S → Pn such that

L ∼= i∗(OPn(1)). L ∈ Pic(S) is said to be ample if L⊗m is very ample for some m > 0.

A divisor D on S is said to be very ample (respectively ample) if OS(D) is very

ample (resp. ample).

Remark 2.12. Let D be an ample divisor on S, then D is a nef divisor, whereas the

converse does not hold.



26 CHAPTER 2. SURFACES

Theorem 2.13 (Nakai-Moishezon Criterion, cf. [Har77, Theorem V.1.10]). Let S be a

smooth projective surface and let D be a divisor on S. Then D is ample if and only if

D2 > 0 and D.C > 0 for all irreducible curves C in S.

Definition 2.14 (cf. [Laz07, Corollary 2.2.7]). Let D be a divisor on a projective

surface S. Then D is said to be big if there exist an ample divisor A, a positive integer

m > 0 and an effective divisor N such that mD ≡num A+N .

A very useful way to prove the bigness of a divisor is given by the following result.

Theorem 2.15 (cf. [Laz07, Theorem 2.2.7]). Let D be a nef divisor on projective

surface. Then D is big if and only D2 > 0.

Theorem 2.16 (Mumford vanishing Theorem, cf. [BHPV04, Theorem IV.12.1]). Let

D be a big and nef divisor on a smooth projective surface X. Then H1(X,−D) = 0.

Theorem 2.17 (Kawamata-Viehweg vanishing Theorem, cf. [Laz07, Theorem 4.3.1]).

Let D be a big and nef divisor on a smooth projective surface X. Then

H i(X,KX +D) = 0 for i > 0.

2.2 Riemann-Roch Theorem for Surfaces

In this section we state, without any proofs, some well known results concerning line

bundles on a surface. Riemann-Roch Theorem, in particular, is a powerful tool to

compute the Euler-Poincaré characteristic of a line bundle.

Theorem 2.18 (Serre’s duality, cf. [Har77, Section II.7]). Let X be a compact, con-

nected complex manifold of dimension n and L be a line bundle on X. Then for each

0 ≤ j ≤ n the vector spaces

H i(M,L) and Hn−i(M,ωX ⊗ L−1),

are dual. In particular

χ(L) = (−1)nχ(ωX ⊗ L−1).

Theorem 2.19 (Riemann-Roch Theorem, cf. [Bea83b, Theorem I.12]). Let S be a

smooth projective surface, for every L ∈ Pic(S)

χ(O(L)) = χ(OS) +
L2 − L.KS

2
(2.3)
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Proposition 2.20 (Genus formula, cf. [Bea83b, Proposition I.15]). Let C be an irre-

ducible curve on a surface S of genus g(C). Then

g(C) = 1 +
C2 + C.KS

2
. (2.4)

Proposition 2.21 (Adjunction formula, cf. [GH78, page 147]). Let M be a compact

complex manifold, let V ⊂M be a smooth analytic hypersurface. Then

KV = (KM + V )|V .

2.3 Birational transformations and minimal models

In this section we briefly recall the definition of blow-up of a surface at a point and its

properties, in order to justify the classification of surfaces up to birational equivalence.

For further details we refer to [Bea83b, Section II].

Definition 2.22. Let S be a smooth surface and p ∈ S. Then there exist a smooth

surface Ŝ, called the blow-up of S at p, and a morphism ε : Ŝ → S such that

i. the restriction of ε to the set ε−1(S \ {p}) is an isomorphism onto S \ {p};

ii. E := ε−1(p) is isomorphic to P1. The set E is called exceptional divisor of ε.

To describe explicitly the behaviour of the blow-up in a neighbourhood of p, it is

sufficient to describe the case of S = C2 and p = (0, 0); for any surface we can reproduce

this construction using local coordinates.

Let us denote the coordinate on C2 by (x, y) and those on P1 by (t0 : t1). We define

Ĉ2 := {xt1 = yt0} ⊂ C2 × P1

and
ε : Ĉ2 −→ C2

((x, y), (t0 : t1)) 7−→ (x, y)

First of all ε−1(0) = {0} × P1. Let us prove that Ĉ2 is smooth.

Let q ∈ Ĉ2. If t1(q) 6= 0, then let us consider the open set V1 := C2×{t1 6= 0} ⊂ C2×
P1 with coordinates x, y, t := t0/t1; U1 := Ĉ2∩V1 is the zero locus of f(x, y, t) := x−yt.
Since ∂f/∂x(q) 6= 0, by the local diffeomorphism theorem (cf. [Mir95, Theorem 2.2.1])

y and t are local coordinates for U1 in a neighbourhood of q. Hence Ĉ2 is smooth in q.

We shall remark that in this open set E is the divisor of the regular function y.
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If t0(q) 6= 0, then in V0 := C2 × {t0 6= 0} we shall use as local coordinates x, y, u :=

t1/t0; in this open set Ĉ2 is the zero locus of g(x, y, u) = y − xu and x, u are local

coordinates for Ĉ2 in a neighbourhood of q. In this open set E is the divisor of the

regular function x.

Moreover, ε|Ĉ2\E is invertible:

ε|−1

Ĉ2\E
: C2 \ {p} −→ Ĉ2 \ E

(x, y) 7−→ ((x, y), (x : y))

Let ε : Ŝ → S be the blow-up of S in p ∈ S and let C be an irreducible curve C

on S passing through p with multiplicity m. The closure of ε−1(C \ {p}) in Ŝ is an

irreducible curve Ĉ which is called the strict transform of C.

Lemma 2.23 (cf. [Bea83b, Lemma II.2]). Let ε : Ŝ → S be the blow-up of S in p. Let

C be an irreducible curve on S passing through p with multiplicity m, then

ε∗C = Ĉ +mE.

Proposition 2.24 (cf. [Bea83b, Proposition II.3]). Let ε : Ŝ → S be the blow-up of S

at p ∈ S. Let E be the exceptional curve, then

i. The map Pic(S)⊕ Z→ Pic(Ŝ) defined by (D,n) 7→ ε∗D + nE is an isomorphism;

ii. Let D be a divisor on S. Then ε∗D.E = 0 and E2 = −1.

Lemma 2.25 (cf. [Bea83b, Proposition II.3]). Let ε : Ŝ → S be the blow-up of S at

p ∈ S. The canonical divisor of Ŝ is given by ε∗KS + E and K2
Ŝ

= K2
S − 1.

Proof. By definition of the map ε, the canonical sheaf on Ŝ\E and S\{p} are isomorphic

via ε∗, thus KŜ = ε∗KS + nE for some integer n. By Proposition 2.21

−2 = 2g(E)− 2 = (KŜ + E).E =⇒ KŜ .E = −1.

Then −1 = KŜ .E = ε∗KS .E + nE2 = 0 − n, where last equality holds by Proposition

2.24, so n = 1. The formula for K2
Ŝ

follows by Proposition 2.24 and Proposition

2.10.

Let us recall some well known results about blow-ups and rational maps.

Theorem 2.26 (Elimination of indeterminacy, cf. [Bea83b, Theorem II.7]). Let S be

a surface, X a projective variety and let Φ: S 99K X be a rational map. Then there
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exists a surface S′, a morphism η : S′ → S which is the composition of a finite number

of blow-ups, and a morphism f : S′ → X such that the diagram

S′

η

��

f

  

S
Φ // X

is commutative.

Theorem 2.27 (Universal property of blowing-up, cf. [Bea83b, Proposition II.8]). Let

f : S → X be a birational morphism of surfaces, and suppose that the rational map f−1

is not defined at the point p ∈ X. Then f factorizes as

f : S
g
// X̂

ε // X

where g is a birational morphism and ε is the blow-up at p.

Theorem 2.28 (cf. [Bea83b, Theorem II.11]). Let f : S → S0 be a birational morphism

of surfaces. Then there is a sequence of blow-ups εk : Sk → Sk−1 (k = 1, . . . , n) and an

isomorphism u : S → Sn such that f = ε1 ◦ · · · ◦ εn ◦ u.

Corollary 2.29 (cf. [Bea83b, Corollary II.12]). Let ϕ : S′ 99K S be a biraional map of

surfaces. Then there is a surface Ŝ and a commutative diagram

Ŝ
f

��

g

��

S′
ϕ

// S

where the morphisms f, g are compositions of blow-ups and isomorphisms.

Definition 2.30. Let S1 and S2 be two surfaces, we say that S1 birationally dominates

S2 if there exists a birational morphism S1 → S2.

A smooth surface S is said to be minimal if every birational morphism S → S′ is

an isomorphism.

Proposition 2.31 (cf. [Bea83b, Proposition II.16]). Every smooth surface birationally

dominates a minimal surface.

Definition 2.32. Let S′ → S be a birational morphism between smooth surfaces. If

S is minimal, we say that S is a minimal model of S′.
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As we will see in Section 2.6, apart from a particular class of surfaces, every surface

has a unique minimal model and in this case we will talk about the minimal model

of a surface. For this reason, one way to classify non ruled surfaces consists in the

classification of minimal surfaces.

Remark 2.33. By Theorem 2.28, a surface is minimal if and only if it contains no

exceptional curve.

If E ⊂ S is en exceptional curve, then by definition E ∼= P1 and by Proposition 2.24

E2 = −1. Actually, this is a characterization of exceptional curves by the following

important result.

Theorem 2.34 (Castelnuovo’s contractibility criterion, cf. [Bea83b, Theorem II.17]).

Let S be a surface and let E ⊂ S be a curve isomorphic to P1 with E2 = −1. Then E

is an exceptional curve on S.

Proposition 2.35 (cf. [BHPV04, Proposition III.2.2]). An irreducible curve C ⊂ S is

an exceptional curve if and only if

C2 < 0 and KS .C < 0.

2.4 Birational invariants

Definition 2.36. Let S be a smooth surface. We define the following integers:

q(S) := h1(S,OS)

pg(S) := h0(S,OS(KS)) = h2(S,OS) (by Serre duality)

Pn(S) := h0(S,OS(nKS)) for n ≥ 1.

The integer q(S) is called the irregularity of S; pg(S) is the geometric genus and

Pn is called the n−th plurigenus of S.

The (holomorphic) Euler-Poincaré characteristic of S is defined as the Euler-Poincaré

characteristic of the structure sheaf OS , that is (cf. Definition 2.4)

χ(S) := χ(OS) = 1− q(S) + pg(S).

Proposition 2.37 (cf. [Bea83b, Proposition III.20]). The integers q, pg and Pn are

birational invariants.

Definition 2.38. Let S be a smooth surface. We define the following integers:

bi := dimCH
i(S,C) e(S) :=

4∑
i=1

(−1)ibi,
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where bi is the i−th Betti number and e(S) is the topological Euler-Poicaré character-

istic of S.

Betti numbers are topological invariants, moreover we have b0 = b4 = 1 and by

Poincaré duality b3 = b1, so e(S) = 2− 2b1 + b2.

Remark 2.39. Topological Euler-Poincaré characteristic is not a birational invariant:

indeed if ε : S′ → S is the blow up of S at p, then e(S′) = e(S) + 1, since we replace a

point (e(p) = 1) with a rational curve E (e(E) = 2).

Theorem 2.40 (Noether’s formula, cf. [BHPV04, Theorem I.5.5]). Let S be a smooth

projective surface. Then

χ(OS) =
1

12
(K2

S + e(S)). (2.5)

Lemma 2.41 (cf. [Bea83b, Lemma VI.3]). Let π : S → S′ be an étale map of surfaces

of degree n. Then K2
S′ = nK2

S, e(S′) = ne(S), χ(O′S) = nχ(OS).

2.5 Albanese map

In this section we give some definitions and results concerning the Albanese variety and

the Albanese map associated with a surface.

For further details, we address, for example, to [Bea83b, pag 60-64] or [BHPV04,

pag 46-48].

Definition 2.42. A complex torus is a manifold T obtained as a quotient T = V/Γ,

where V is a complex vector space and Γ a lattice in V . If there exists an embedding

of T into a projective space, then T is said to be an Abelian variety.

Remark 2.43. A complex torus is a compact manifold equipped with the structure of

an abelian group.

The following Theorem, known as the universal property of the Albanese variety,

will be stated without proof.

Theorem 2.44 (cf. [Bea83b, Theorem V.13]). Let X be a smooth projective variety.

There exists a unique abelian variety A := Alb(X) and a morphism α : X → Alb(X)

such that for every complex torus T and f : X → T morphism, there exists a unique



32 CHAPTER 2. SURFACES

morphism f̃ : A→ T such that the diagram

X

A T

...................................................................................
.....
.......
.....

α

..................................................................................................................................................................................................................... ............

f̃

................................................................................................................................................................................................................................... .........
...

f

commutes. The abelian variety A = Alb(X) is called the Albanese variety of X and α

is called Albanese map. Moreover the morphism α induces an isomorphism

α∗ : H0(Ω1
A)→ H0(Ω1

X).

Remark 2.45 (cf. [Bea83b, Remark V.14]). Let X be a smooth projective variety, then

the following properties hold:

i. dim Alb(X) = dimH0(X,Ω1
X);

ii. The Abelian variety Alb(X) is generated as a group by α(X), in particular dimα(X) =

0 if and only if dim Alb(X) = 0;

iii. If X is a curve, Alb(X) is equal to the Jacobian J(C).

2.6 Enriques-Kodaira classification of surfaces

In Section 1.6, we gave the definition of the Kodaira dimension κ(X) of a complex

manifold X of dimension n; for a surface S, κ(S) ∈ {−∞, 0, 1, 2}, and by Corollary

1.45 and Proposition 2.37, it is straightforward to see that it is a birational invariant.

In order to give a classification of surfaces up to birationality, this invariant assumes

a central role. Its importance is underlined by the following fundamental result, which

is known as the Enriques-Kodaira classification.

Theorem 2.46 (cf. [BHPV04, Theorem VI.1.1]). Every surface has a minimal model

S in exactly one of the classes listed in Table 2.1.

Remark 2.47. Surfaces belonging to classes (3) and (6) are not algebraic (cf. [Kod64,

Theorem 25] and [BHPV04, Theorem VI.1.1]).

A rational surface is a surface birational to P2. The only minimal surfaces of this

type are P2 and the Hirzebruch surfaces Σn := PP1(OP1 ⊕OP1(n)) with n = 0, 2, 3, . . .

(P1 × P1 = Σ0).
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κ(S) Class of S K2
S e(S) pg q

−∞
(1) Minimal rational surfaces 8 or 9 3 or 4 0 0

(2) Ruled surfaces of genus g ≥ 1 8(1− g) 4(1− g) 0 g

(3) Minimal surfaces of class VII ≤ 0 ≥ 0 0 1

0

(4) Enriques surfaces

0

12 0 0

(5) Bi-elliptic surfaces 0 0 1

(6) Kodaira surfaces

(a) Primary

(b) Secondary

0 1 2

0 0 1

(7) K3 surfaces 24 1 0

(8) Tori 0 1 2

1 (9) Minimal properly elliptic surfaces 0 ≥ 0

2 (10) Minimal surfaces of general type > 0 > 0

Table 2.1: Enriques-Kodaira classification of surfaces

Theorem 2.48 (Castelnuovo’s Rationality Criterion, cf. [BHPV04, Corollary VI.3.4]).

An algebraic surface X is rational if and only if q(S) = P2(S) = 0.

Ruled surfaces of genus g have smooth morphism to a curve of genus g whose fibres

are P1.

A surface of class VII is a surface S with κ(S) = −∞ and b1 = 1, moreover q = 1.

As stated in Remark 2.47, these surfaces are neither algebraic nor Kähler. Examples

of this type of surfaces are Hopf surfaces ([Hop48]) and Inoue surfaces ([Ino74]).

Theorem 2.49 (Enriques, cf. [BHPV04, Theorem IV.12.1]). Let S be a smooth pro-

jective complex surface, then the following are equivalent:

• S is ruled;

• Pn = 0 for all n;

• P12 = 0.

An Enriques surface S is a surface with q(S) = 0, non-trivial canonical bundle (i.e.

ωS 6∼= OS) and ω⊗2
S
∼= OS .

A bi-elliptic surface (or hyperelliptic surface) is a surface S with q(S) = 1 and an

elliptic fibration over an elliptic curve. Surfaces of this type are quotient of a product

of two elliptic curves by a finite abelian group (cf. [BHPV04, Section V.5]).
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Kodaira surfaces are usually divided into two subtypes: the primary Kodaira sur-

faces with b1 = 3 and an elliptic fibration over an elliptic curve; the secondary Kodaira

surfaces are surfaces which admit a primary Kodaira surface as étale covering of degree

≥ 2. As stated in Remark 2.47, these surfaces are not algebraic.

A K3 surface is a surface S with q(S) = 0 and trivial canonical bundle.

A torus is a surface isomorphic to the quotient of C2 by a lattice of real rank 4.

A properly elliptic surface is a surface S admitting an elliptic fibration with κ(S) =

1. A very simple example is provided by the product of two curves, one elliptic and

the other of genus ≥ 2.

The following results hold for surfaces with non negative Kodaira dimension.

Theorem 2.50 (cf. [BHPV04, Proposition III.4.6]). If S is a non singular compact

connected surface with κ(S) ≥ 0, then all minimal models of S are isomorphic.

Proposition 2.51 (cf. [Laz07, Proposition 2.2.2]). Let S be a smooth compact con-

nected surface with κ(S) ≥ 0 and let D be an effective divisor on S such that D.KS < 0.

Then D contains an exceptional curve.

Proof. It is sufficient to prove that if D is an irreducible curve with KX .D < 0, then

D is an exceptional curve. By Theorem 1.44 for some n ≥ 1 there is a non negative

n−canonical divisor nKS
∼= K̃ =

∑
ciCi with ci ≥ 0. Since KS .D < 0, K̃.D =

nKS .D < 0 therefore the curve D must be one of the Ci’s, say D = C0. Hence

D(K̂ − c0D) ≥ 0 and D2 < 0. By Proposition 2.35 we get the thesis.

Lemma 2.52. Let S be a surface. If κ(S) ≥ 0 then one of the following occurs:

1. h2(2KS) = 0;

2. KS = 0 and therefore κ(S) = 0.

Proof. Since κ(S) ≥ 0, there exists n > 0 such that h0(nKS) > 0. We can choose then

an effective divisor A ∈ |nKS |. Suppose h2(2KS) > 0; by Serre duality h0(−KS) > 0,

let then B ∈ | −KS |: A+ nB is a principal effective divisor on S, that is A+ nB = 0,

but both A and B are effective, then A = B = 0. Thus −KS = 0.

2.7 Surfaces of general type and the geography problem

Enriques-Kodaira classification gives a good description for surfaces with Kodaira di-

mension κ ≤ 1, but surfaces belonging to the remaining class, namely the surfaces with

Kodaira dimension κ = 2, are far from being completely classified.
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Definition 2.53. A surface S is said to be of general type if κ(S) = 2.

Remark 2.54 (cf. [BHPV04, Corollary IV.6.5]). Every smooth surface of general type

is projective.

Proposition 2.55 (cf. [Laz07, Example 2.2.2]). Let S be a surface of general type,

then KS is a big divisor.

Proposition 2.56. Let S be a surface of general type. Then S is minimal if and only

if KS is nef.

Proof. It follows immediately by Proposition 2.51 and Proposition 2.55.

Lemma 2.57. Let S be a minimal surface of general type, then h0(2KS) = χ(OS)+K2
S.

Proof. By Riemann-Roch Theorem 2.19, χ(OS(2KS)) = χ(OS) + K2
S . Since S is mi-

nimal, KS is big and nef, then by Theorem 2.17 h1(2KX) = 0. By Lemma 2.52

h2(2KX) = 0. Then χ(OS(2KS)) = h0(2KS), whence the statement.

Proposition 2.58. Let S be a surface of general type, and let Ŝ be its minimal model.

Then h1(2KS) = K2
Ŝ
−K2

S.

Proof. By Riemann-Roch Theorem and Proposition 2.52

h0(2KS)− h1(2KS) = h0(2KS)− h1(2KS) + h2(2KS)

= χ(OS(2KS))

= χ(OS) +K2
S .

By Lemma 2.57, h0(2KŜ) = χ(OŜ) + K2
Ŝ

. Since Euler characteristic and m−th pluri-

genus are birational invariants, χ(OŜ) = χ(OS) and h0(2KŜ) = h0(2KS), whence the

thesis.

Theorem 2.59 (cf. [BHPV04, Theorem VII.2.2]). If S is a minimal surface of general

type, then K2
S > 0.

Theorem 2.60 (cf. [Bea83b, Theorem X.4]). Let S be a surface of general type, then

e(S) ≥ 0 and χ(OS) ≥ 1.

By Noether’s formula, the condition e(S) ≥ 0 is equivalent to K2
S ≤ 12χ(OS). For

a surface of general type Bogomolov and Miyaoka, and independently Yau proved the

stronger inequality that is named after them.
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Theorem 2.61 (cf. [BHPV04, Theorem VII.4.1]). Let S be a smooth surface of general

type. Then

K2
S ≤ 9χ(OS). (BMY)

In literature there are other well-known inequalities involving the invariants of mi-

nimal surfaces of general type:

Theorem 2.62 (cf. [BHPV04, Theorem VII.3.1]). Let S be a minimal surface of general

type. Then

K2
S ≥ 2pg(S)− 4 (N)

if q > 0⇒ K2
S ≥ 2pg(S) (D)

The inequality (N) is due to Noether, while (D) is due to Debarre.

Inequalities we have listed so far outline a region in the (χ,K2)−plane.

Figure 2.1: The geography of minimal surfaces of general type.

A minimal surface of general type corresponds to a point with integral coordinates

in the coloured convex region of Figure 2.1. By Debarre’s inequality (D), if a minimal
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surface of general type S has irregularity q(S) > 0 then it corresponds to a point lying

in the region above the line D.

We will understand the importance of line with equation K2 = 8χ displayed in

Figure 2.1 in following chapters.

The question that naturally arises looking to Figure 2.1 is: for any point (K2, χ) ∈
Z2 lying in the bounded region, does there exist a minimal surface of general type with

such invariants? This is the so called geography problem and is still far from being

solved, so one can try to develop a way to construct explicitly surfaces for fixed values

of K2 and χ.

2.8 The classification of surfaces of general type with pg =

q ≥ 3

In our work, we focused on the classification of surfaces of general type with pg = q.

These surfaces lie on the boundary of the region represented in Figure 2.1 and are far

from being fully classified, nevertheless there are some important results. In particular,

surfaces with pg = q ≥ 3 are fully classified.

Theorem 2.63 ([Bea82, Theorem IV.12.1]). If S is a minimal surface of general type,

then pg ≥ 2q − 4. Moreover, if pg = 2q − 4, then S is a product of a curve of genus 2

and a curve of genus q − 2.

Corollary 2.64. Let S be a surface of general type with pg(S) = q(S) (i.e. χ(OS) = 1),

then pg = q ≤ 4. Moreover, minimal surfaces of general type with pg = q = 4 are exactly

the products of two genus 2 curves.

Surfaces of with pg = q = 3 have been studied in [CCML98], [Pir02] and [HP02]

and they are completely classified.

Theorem 2.65. Let S be a minimal surface of general type with pg = q = 3 then one

of the following cases occurs:

• K2
S = 6 and S is the symmetric product of a genus 3 curve;

• K2
S = 8 and S = (C2 × C3)/τ , where Cg is a curve of genus g and τ is an

involution, acting on C2 as an elliptic involution and on C3 as a fixed point free

involution.





Chapter 3

Group Actions on a Product of

two Curves

In his seminal paper [Cat00], Catanese laid the foundations for the study of the so

called isogenous surfaces, surfaces that are obtained as the quotient of the product of

two curves with respect to the free action of a finite group. In the last years, these

objects have been studied in many works; we mention, among others, [BC04], [BCG08],

[CP09], [Pen11], [Pol08]. In the first part of the present chapter we will see some of

the results contained in these works, since they will play an important role in the next

sections.

Despite being a very rich source of new examples of surfaces of general type, isoge-

nous surfaces are not sufficient to give an answer to the geography problem, for they

all lie along the red line in the (χ,K2) plane in Figure 2.1. For this reason the con-

struction has been generalised, allowing the group to act freely outside of a finite set

of points; a surface constructed under these hypotheses is called quasi-étale quotient

and the minimal resolution of its singularities is a quasi-étale surface. These surfaces

has been widely studied in the last years; we mention among others [BP12], [BCGP12],

[Fra13], [FP15], [MP10], [Pen11], [Pol09], [Zuc03]. The results contained in Section 3.3

show how quasi-étale surfaces allow us to fill, in principle, an area on the (χ,K2)−plane

which is bigger than the one we can reach with the isogenous surfaces.

For a complete list of the surfaces classified in the works we mentioned, we refer to

[Pig15].

39
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3.1 Mixed and unmixed actions on a product of two curves

In [Bea83b], Beauville proposed a very simple construction to get a surface of general

type: considering the Fermat quintic plane curve C and a free action of Z2
5 on C × C,

the quotient surface (C × C)/Z2
5 is a minimal surface of general type with pg = q = 0

and K2 = 8.

Example 3.1 (cf. [Bea83b, Exercise X.13.4]). Let C ⊂ P2 be the plane quintic X2 +

Y 2 +Z5 = 0, let ζ := exp(2πi/5) be a 5−th root of unity and let us define an action of

G := (Z5)2 on C as

(a, b)[X : Y : Z] = [ζaX : ζbY : Z].

Then there are fifteen points on C with non trivial stabilizer

pi := [0 : −ζk : 1] k = 0, . . . , 4 Stab(pi) = 〈(1, 0)〉
qi := [−ζk : 0 : 1] k = 0, . . . , 4 Stab(qi) = 〈(0, 1)〉
ri := [1 : −ζk : 0] k = 0, . . . , 4 Stab(ri) = 〈(1, 1)〉

By Riemann-Hurwitz Formula (1.2), g(C/G) = 0.

Let us define φ ∈ Aut(G) as φ(a, b) := (a + 2b, 3a − b) and a G−action on C × C
as g(p, q) = (gp, φ(g)q).

By definition of φ, this latter action is free. Let us consider the surface X :=

(C × C)/G and the corresponding quotient map η : C × C → X.

Being the action free, the map η is étale and X is smooth. By Theorem 1.51

and Lemma 1.47, X is of general type. Moreover, using some results that we are

going to state and prove in the next sections under more general hypotheses, we have

pg(X) = q(X) = 0 and K2
X = 8.

The idea underlying this example turned out to be very fruitful in the classification

of surfaces of general type and led to the detailed study of the group actions on product

of curves. Most of the following results hold for a finite product of curves C1×· · ·×Cn
(cf. [Gle16]), but we will focus on the surface case, that is n = 2.

Our first aim is to understand the structure of the automorphism group Aut(C1×C2)

of the product of two Riemann surfaces of genus g(Ci) ≥ 2. The following result

provides a simple description of this group.

Lemma 3.2 (Rigidity Lemma, cf. [Cat00, Lemma 3.8]). Let f : C1×C2 → B1×B2 be a

surjective holomorphic map between products of curves. Assume that both B1, B2 have

genus at least 2. Then, after possibly exchanging B1 with B2, there are holomorphic

maps fi : Ci → Bi such that f(x, y) = (f1(x), f2(y)).
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Corollary 3.3 (cf. [Cat00, Corollary 3.9]). Let C1, C2 two Riemann surfaces of genus

g(Ci) ≥ 2 of i = 1, 2. Then one of the following occurs:

• C1 6∼= C2 and Aut(C1 × C2) = Aut(C1)×Aut(C2);

• C1
∼= C2

∼= C and Aut(C × C) = Aut(C)2 o Z2, where the group Z2 is given by

the involution exchanging the two coordinates.

Remark 3.4. Given a group G acting on the product of two curves C1 × C2, let K be

the kernel of the map G → Aut(C1 × C2). The group G′ := G/K acts faithfully on

C1×C2 and (C1×C2)/G ∼= (C1×C2)/G′. For this reason, we will consider only faithful

action, and we will omit this hypothesis for the sake of brevity.

Remark 3.5. If g(Ci) ≥ 2 for i = 1, 2 then by Theorem 1.20 Aut(Ci) ≤ 84(g(Ci) − 1),

hence by Corollary 3.3 Aut(C1 × C2) is finite. Therefore, taking into account Remark

3.4, if G is a group acting on C1×C2 we can always suppose it to be finite without loss

of generality.

Definition 3.6. Let C1, C2 be two Riemann surfaces of genus at least two. Let G be

a group acting on C1 × C2 and let us denote G0 := G ∩ (Aut(C1)×Aut(C2)).

Let us consider the two projection maps pi : G
0 → Aut(Ci) for i = 1, 2. We can

define a G0−action on Ci for i = 1, 2 in the following way: let x ∈ Ci and g ∈ G0, then

g(x) := pi(g)(x). Analogously, we can define a G0−action on C1 × C2: for g ∈ G0 and

(x, y) ∈ C1 × C2

g(x, y) := (p1(g)x, p2(g)y). (3.1)

We say that G0 acts diagonally on C1 × C2.

If G0 acts faithfully on both factor, we say that the action of G is minimal, and we

say that X := (C1 × C2)/G is a minimal realization of X.

Remark 3.7 (cf. [Cat00, Remark 3.10]). Using the same notation of Definition 3.6, let

Ki := ker(pi). Then Ki acts trivially on Ci and the action of G′ := G/〈K1,K2〉 is

minimal on (C1/p1(K2)) × (C2/p2(K1)). The surface (C1/p1(K2) × C2/p2(K1))/G′ is

a minimal realization of X.

By the previous remark, if we are given a surface X = (C1 × C2)/G, obtained as

the quotient of the product of two curves by a group action, then it is always possible

to construct a minimal realization of X. Hence, from now on we will only consider

minimal action of a group G on a product of curves C1 × C2.

Definition 3.8 (cf. [Cat00, Proposition 3.15]). Let C be a Riemann surface of genus

g(C) ≥ 2 and let G ⊂ Aut(C × C). Let G0 := G ∩ Aut(C)2 (cf. Definition 3.6), then

we say that the action of G is unmixed if G = G0 and mixed otherwise.
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Definition 3.9. Let C1, C2 be two Riemann surfaces both of genus at least two, and

let G be a group acting on C1×C2. Then (C1×C2)/G is said to be an unmixed quotient

(respectively a mixed quotient) if the action of G is unmixed (resp. mixed).

Remark 3.10. Definition 3.9 can be extended to the case g(Ci) ≥ 0 for i = 1, 2, requiring

G to be finite.

Since we are interested in surfaces of general type, assuming both genus to be at

least two does not effect our investigation.

Proposition 3.11. Let X = (C1 ×C2)/G be the quotient of the product of two curves

respect to the action of a finite group G. If X is of general type, then both C1 and C2

have genus at least two.

Proof. Since the quotient map η : C1 × C2 → X is surjective, by Lemma 1.47 κ(X) ≤
κ(C1×C2). By Lemma 1.46, κ(C1×C2) = κ(C1)+κ(C2), therefore 2 ≤ κ(C1)+κ(C2).

This means that κ(Ci) = 1 for i = 1, 2, thus, by Theorem 1.51 g(Ci) ≥ 2 for i = 1, 2.

If the action of G on C×C is unmixed, then G = G0 and the action may be assumed

without loss of generality to be the diagonal one, described by (3.1).

The mixed case is well described in the following result.

Theorem 3.12 (cf. [Cat00, Proposition 3.16]). Let C be a Riemann surface of genus

g(C) ≥ 2 and let G be a subgroup of Aut(C)2 o Z2 whose action on C × C is minimal

and of mixed type. Fix τ ′ ∈ G \ G0: it determines and element τ := τ ′2 ∈ G0 and

ϕ ∈ Aut(G0) defined by ϕ(h) := τ ′hτ ′−1. Then, up to a coordinate change, G acts as

follows:

g(x, y) = (p(g)x, p(ϕ(g))y)

τ ′g(x, y) = (p(ϕ(g))y, p(τg)x)
for g ∈ G0, (3.2)

where p : G0 → Aut(C) is the action map.

Conversely, for every finite subgroup G0 < Aut(C) and G degree 2 extension of G0,

once τ ′ ∈ G \G0 is fixed and once τ ∈ G0 and ϕ ∈ Aut(G0) are defined as above, (3.2)

defines a minimal mixed action on C × C.

Since there is no risk of ambiguity, we will always omit the action map p : G0 →
Aut(C).

Remark 3.13 (cf. [Cat00, Proposition 3.16]). Using the same notation of Theorem 3.12,

the quotient (C × C)/G does not depend on the choice of the element τ ′ ∈ G \G0.
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Suppose that we fix another τ̂ ′ ∈ G \G0, then τ̂ ′ = τ ′g for some g ∈ G0; according

to Theorem 3.12, τ̂ ′ induces an automorphism ϕ̂ ∈ Aut(G0) defined as ϕ̂(h) := τ̂ ′hτ̂ ′−1,

an element τ̂ := (τ̂ ′)2 and a G−action on C × C defined as

h(x, y) = (hx, ϕ̂(h)y)

τ̂ ′h(x, y) = (ϕ̂(h)y, τ̂hx)
for h ∈ G0.

Let us denote the G−action induced by τ ′ and τ̂ ′ with Gτ ′ and Gτ̂ ′ respectively. Let Φ

be the isomorphism

Φ : C × C −→ C × C
(x, y) 7−→ (x, ϕ(g)y)

Let h ∈ G0, then

Φ(hτ ′(x, y)) = Φ(hx, ϕ(h)y) = (hx, ϕ(g)ϕ(h)y) =

= (hx, ϕ̂(h)ϕ(g)y) = hτ̂ ′(x, ϕ(g)y) = hτ̂ ′Φ(x, y).

Analogously, we can prove the equality for elements in G \ G0. This means that Φ

induces an isomorphism between (C × C)/Gτ ′ and (C × C)/Gτ̂ ′ .

When the action of a group G on C × C is mixed, the quotient map η : C × C →
X := (C × C)/G can be factorized in the following way:

C × C σ−→ Y := (C × C)/G0 π−→ X, (3.3)

where σ is the quotient respect to the diagonal action of the subgroup G0 on C×C, and

π is the double covering determined by the involution ι : Y → Y such that ι[(x, y)] =

[(y, τx)].

Remark 3.14. By Theorem 3.12 and Lemma 1.28, a mixed action G on a product of

curve C × C with g(C) ≥ 2 determines a subgroup G0 of G with |G : G0| = 2, a curve

C ′ := C/G0, a set of points {p1, . . . , pr} ⊂ C ′ corresponding to the branch locus of the

quotient map C → C ′ and, for every choice of αi, βj , γk ∈ π1(C ′ \ {p1, . . . , pr}) as in

(1.3), a generating vector V for G0.

Vice versa, once we are given a set of algebraic data as the one listed in 1.35 and

a degree two extension G of the group G0, by Theorem 3.12 we get a mixed action on

C × C and the set of elements of G0 fixing some points on C is given by (1.5).

3.2 Surfaces isogenous to a product

The first case we address is the one in which the group action on the product of two

curves is free. The surfaces we obtain in this case have been studied in many works,

such as [Cat00], [BCG08], [CP09], [MP10], [Pen11],[Pol08], [Pol10].
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Definition 3.15 (cf. [Cat00, Definition 3.1]). A surface is said to be isogenous to a

product if it is the quotient of a product of two curves both of genus at least 2 by a

free action of a group.

Remark 3.16. In literature (cf. [Cat00]) a surface is said to be isogenous to a product if

it is the quotient of a product of two curves by a free action of a group; if both curves

are of genus at least two, then the surface is said to be isogenous to a higher product.

As stated in Remark 3.10, since we are interested in surfaces of general type, we will

always consider product of curves of genus at least two, then, by sake of brevity, we

give Definition 3.15 omitting higher.

Proposition 3.17 (cf. [Cat00, Proposition 3.13]). If X is a surface isogenous to a

product, then a minimal realization of X is unique.

Proposition 3.18 (cf. [Har77, Exercise II.8.3]). Let C1, C2 be two Riemann surfaces,

then denoting by πi : C1 × C2 → Ci the projection map onto Ci for i = 1, 2

ωC1×C2
∼= π∗1ωC1 ⊗ π∗2ωC2 .

Lemma 3.19. Let C1 and C2 be two smooth curves of genus g1 ≥ 2 and g2 ≥ 2

respectively and let S := C1 × C2, then S is a smooth minimal surface of general type.

Proof. Since both Ci’s are smooth, C1 × C2 is smooth.

Let πi : C1 × C2 → Ci be the projection on the i−th coordinate, and denote by

Fi a general fibre of πi, then KC1×C2
∼= π∗1KC1 + π∗2KC2 ≡ 2(g1 − 1)F1 + 2(g2 − 1)F2

(cf. Proposition 3.18).

Let D ⊂ C1 × C2 be an irreducible curve. If D = F1, then KC1×C2 .F1 = 2(g2 − 1);

analogously KC1×C2 .F2 = 2(g1 − 1). If D is not a fibre of πi, then KC1×C2 .D ≥
2(g1 − 1) + 2(g2 − 1). The self-intersection of the canonical divisor of C1 × C2 is

K2
C1×C2

= 8(g1 − 1)(g2 − 1) > 0.

By Nakai-Moishezon criterion 2.13 KC1×C2 is ample, in particular it is big and nef.

Being C1 × C2 of general type (cf. proof of Proposition 3.11), by Proposition 2.56 the

surface is minimal.

Theorem 3.20. Let X := (C1 × C2)/G be a surface isogenous to a product. Then X

is smooth and minimal surface of general type.

Proof. The action of G on C1 × C2 is free, hence the quotient map η : C1 × C2 → X

is a finite étale morphism of degree |G|: being C1 × C2 smooth by Lemma 3.19, X is

smooth as well. Moreover, by Lemma 1.47 X is of general type.
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LetD be an irreducible curve inX, then by Proposition 2.10KX .D = (η∗KX .η
∗D)/|G|;

η∗KX = KC1×C2 by [Bea83b, Lemma VI.3] and η∗D is effective, then KX .D > 0. By

Nakai-Moishezon criterion 2.13 KX is ample, then by Proposition 2.56 X is mini-

mal.

The values of the invariants of a surface isogenous to a product are given by the

following results.

Proposition 3.21. Let X := (C1 × C2)/G be a surface isogenous to a product, then

e(X) =
4(g(C1)− 1)(g(C2)− 1)

|G|

K2
X =

8(g(C1)− 1)(g(C2)− 1)

|G|

χ(X) =
(g(C1)− 1)(g(C2)− 1)

|G|
Proof. Let η : C1 × C2 → X be the projection; since the action of G is free, it is an

étale covering of X.

The topological Euler characteristic is multiplicative, hence e(C1×C2) = e(C1)e(C2) =

4(1 − g(C1))(1 − g(C2)). By Lemma 2.41, e(C1 × C2) = |G|e(X). As KC1×C2
∼=

2(g(C1) − 1)F1 + 2(g(C2) − 1)F2, where Fi denotes a general fibre of the projection

πi : C1 × C2 → Ci onto the i−th coordinate, K2
C1×C2

= 8(g(C1) − 1)(g(C2) − 1). By

Lemma 2.41 K2
C1×C2

= |G|K2
X .

By Noether’s formula (2.5) the third equality follows.

Remark 3.22. For a surface X isogenous to a product it holds K2
X = 8χ(OX).

Corollary 3.23. Let X = (C1 × C2)/G be a surface isogenous to a product. Then

h0(2KX) =
9(g(C1)− 1)(g(C2)− 1)

|G|
.

Proof. By Proposition 3.21

K2
X + χ(OX) =

9(g(C1)− 1)(g(C2)− 1)

|G|
;

by Theorem 3.20, X is a minimal surface of general type, therefore by Lemma 2.57

h0(2KX) = χ(OX) +K2
X , whence the thesis.

Proposition 3.24 (cf. [Cat00, Theorem C]). Let X = (C1 × C2)/G be a surface

isogenous to a product. Then the fundamental group of X sits in an exact sequence

1 −→ π1(C1)× π1(C2) −→ π1(X) −→ G −→ 1.
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3.3 Quasi-étale quotients

In the previous section, we saw that if the group G acts freely on a product of curves

C1 × C2, the quotient X = (C1 × C2)/G is a smooth, minimal surface such that

K2
X = 8χ(OX). This means that all surfaces isogenous to a product lie along the red

line in Figure 2.1; we cannot possibly find any example that answers to questions not

concerning that really limited geography region. The idea now is to drop the hypothesis

for which the action of G is free.

In this case, the quotient X := (C1 × C2)/G may be singular, so we will consider

the minimal resolution ρ : S → X of its singularities.

In this section we will study the case in which only a finite number of points has

non trivial stabilizer, the so called quasi étale case. For further details we address to

[BP12], [BCGP12], [Fra13], [FP15], [Pol09] and [Pig15].

Definition 3.25 (cf. [Fra13, Definition 2.8]). Let C1, C2 be two Riemann surfaces of

genus at least two. Let G be a subgroup of Aut(C1 × C2) whose action is free outside

a finite subset of points. We will say that the quotient surface X = (C1 × C2)/G is a

quasi étale quotient. We will denote by ρ : S → C1 × C2 the minimal resolution of the

singularities of X, and we say that S is a quasi étale surface.

Remark 3.26. If the action of G on C1 × C2 is unmixed, than the action of G is free

outside a finite set of points. Let (x, y) ∈ C1 × C2; since the action of G is diagonal,

Stab(x, y) = Stab(x) ∩ Stab(y). By Proposition 1.14 a non trivial automorphism of a

curve fixes a finite number of points, hence only a finite number of points in C1 × C2

has a non trivial stabilizer.

Lemma 3.27 (cf. [Fra13, Theorem 2.7]). Let C be a Riemann surface of genus at

least two and let G be a group whose action on C × C is mixed. Then the quotient

X = (C × C)/G is quasi étale if and only if the exact sequence

1 −→ G −→ G0 −→ Z2 −→ 1 (3.4)

does not split.

Proof. Using the notation of Theorem 3.12, suppose there exists τ ′g ∈ G\G0 such that

(τ ′g)2 = ϕ(g)τg = 1, then

τ ′g(x, τgx) = (ϕ(g)τgx, τgx) = (x, τgx),

which means that there exists a non trivial element in G that fixes a curve. Hence X

is not quasi étale.



3.3. QUASI-ÉTALE QUOTIENTS 47

Vice versa, let X be quasi étale and let us consider the factorization given by (3.3).

As we saw in Remark 3.26, σ : C × C → Y has a finite number of branch points

r1, . . . , rt. Suppose now that there exists a branch curve for π, that is a curve D ⊂ X

such that |π−1(q)| = 1 for all q ∈ D. Let q ∈ D such that π−1(q) = r′ 6∈ {r1, . . . , rt}.
The degree of the map σ is n := |G0|, then σ−1(r′) = {p1, . . . , pn}. This means that

|η−1(q)| = |(π◦σ)−1(q)| = n. Therefore |Stab(p1)| = 2, which means that Stab(p1) ∼= Z2

is generated by an element not in G0. Then the sequence (3.4) splits.

Remark 3.28. (cf. [BP16], [MP10], [Pol10]) Let X = (C1 × C2)/G be a quasi étale

quotient. Then the singularities of X are the images of all the points in C1 × C2 with

non trivial stabilizer in G.

The first problem we address is the relation between the singularities of the quotient

and the action of G on C1 × C2.

Definition 3.29. A surface S has a cyclic quotient singularity in p ∈ S if there exists

a neighbourhood U of p such that U ∼= C2/H, with

H =

〈(
e

2πip
r 0

0 e
2πiq
r

)〉
,

for some p, q, r ∈ Z. In this case we say that 1
r (p, q) is the type of the cyclic quotient

singularity in p.

Lemma 3.30 (cf. [BHPV04, pages 104-105]). Every cyclic quotient singularity of type
1
r (p, q) is isomorphic to a cyclic quotient singularity of type 1

n(1, a) with 1 ≤ a ≤ n and

gcd(a, n) = 1.

Definition 3.31. Let 1 ≤ a ≤ n and gcd(a, n) = 1. We denote a cyclic quotient

singularity of type 1
n(1, a) by Cn,a.

Definition 3.32. Let n, a ∈ Z such that 0 < a < n and gcd(n, a) = 1 The continued

fraction of n/a is the finite expression

n

a
= b1 −

1

b2 − 1
b3−...

:= [b1, . . . , bl].

The resolution of a cyclic quotient singularity of type 1
n(1, a) is well known and it is

described in [BHPV04, Section III.5]: the exceptional divisor of the minimal resolution

of such a singularity is given by E =
∑l

i=1Ei, where each Ei is a rational smooth

curve and E2
i = −bi, Ei.Ei+1 = 1 and Ei.Ej = 0 if |i − j| > 1. The coefficient bi’s

are given by the continued fraction n/a = [b1, . . . , bl]. Such a configuration is called

Hirzebruch-Jung string of type (n, a) and its dual graph is
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−b1 −b2 −bl−1 −bl

Remark 3.33. Arguing as in Remark 3.26, we see that if the action of G on C1 ×C2 is

unmixed, then the singular points in X = (C1 × C2)/G are all cyclic quotient, as the

stabilizer of each point in C1 × C2 is a cyclic group.

Lemma 3.34 (cf. [FP15]). Let X := (C × C)/G be a mixed quasi étale quotient, then

Sing(X) = π(Sing(Y )) . Moreover let p ∈ Y be a singular point of type Cn,a, with

n/a = [b1, . . . , bl]; then one of the following occurs:

i. ι(p) 6= p and π(p) is a singular point of type Cn,a;

ii. ι(p) = p; then l = 2m+ 1 is odd and bm+1 is even, π(p) is a singular point whose

minimal resolution has exceptional divisor with the following dual graph

−b1 −b2 −b′m+1

−2

−2

where b′m+1 = 1 + bm+1/2. Such a singularity is said to be of type Dn,a.

Proposition 3.35 (cf. [FP15, Proposition 2.18]). Let X = (C1 × C2)/G be a quasi

étale quotient. For a singular point of type Cn,a, we will denote by a′ the only integer

0 < a′ < n with aa′ ≡ 1 mod n and n/a = [b1, . . . , bl].

Then for each singular point x ∈ Sing(X) of type Cn,a we define the two integers:

kx := −2 +
2 + a+ a′

n
+

l∑
i=1

(bi − 2) Bx :=
a+ a′

n
+

l∑
i=1

bi.

For each singular point x ∈ Sing(X) of type Dn,a we define

kx := −1 +
2 + a+ a′

2n
+

l∑
i=1

bi − 2

2
Bx := 6 +

a+ a′

2n
+

l∑
i=1

bi
2
.

Then, if ρ : S → X is the minimal resolution of the singularities of X

K2
S =

8(g(C1)− 2)(g(C2)− 1)

|G|
−

∑
x∈Sing(X)

kx

χ(OS) =
K2
S

8
+

∑
x∈Sing(X)Bx

24
.

The last proposition shows that if we allow the points of C1×C2 to have non trivial

stabilizer, we obtain a surface S with K2
S ≤ 8χ, reaching the area below the red line in

Figure 2.1.
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Semi-isogenous Mixed Surfaces

So far the classification of quotients of products of two curves only concerned quasi

étale actions of groups. In this chapter we drop the quasi étale hypothesis and allow a

product C1 × C2 to contain curves with non trivial stabilizer.

By Remark 3.26, if the action of a group G on a product C1 ×C2 is unmixed, then

the quotient map η : C1 × C2 → X := (C1 × C2)/G is quasi étale. Therefore we will

study only mixed action. The notation we will use from now on is the one defined in

Theorem 3.12 and in (3.3).

4.1 Fixed points of mixed actions

As stated in the previous chapter, since we consider C of genus at least 2 (cf. Remark

3.10), a group G ⊂ Aut(C × C) ∼= Aut(C) o Z2 is finite.

Definition 4.1. Let C be a Riemann surface of genus at least 2 and let G be a group

whose action on C × C is mixed. Then we define the set

O2 := {g ∈ G \G0 : g2 = 1}.

Remark 4.2. By Lemma 3.27, the quotient X is quasi-étale if and only O2 is empty.

Let G be a group whose action on C ×C is mixed. Since we can assume the action

of G to be minimal (cf. Remark 3.7), Theorem 3.12 allows us to identify the normal

subgroup G0 / G acting diagonally on C × C with its image via p : G0 → Aut(C). Let

Σ be the subset of elements of G0 having some fixed point on the curve C.

Lemma 4.3. Let G be a group whose action on C × C is mixed. Then the following

hold:

49
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i. Let g ∈ G0, then Fix(g) 6= ∅ if and only if g ∈ Σ ∩ ϕ(Σ);

ii. Let g ∈ G \G0, then Fix(g) 6= ∅ if and only if g2 ∈ Σ.

Proof. i. Let (x, y) ∈ C × C, then g(x, y) = (gx, ϕ(g)y) = (x, y) if and only if

g ∈ Σ∩ϕ−1(Σ). The set Σ is Inn(G0)−invariant and ϕ2 ∈ Inn(G0), then ϕ−1(Σ) =

ϕ(Σ).

ii. Once we have fixed τ ′, there exists a unique h ∈ G0 such that g = τ ′h. Let

(x, y) ∈ C × C, then

τ ′h(x, y) = (ϕ(h)y, τhx) = (x, y)⇔

y = τhx

x = ϕ(h)y
⇔

y = τhx

x = ϕ(h)τhx

So Fix(g) 6= ∅ if and only if ϕ(h)τh = (τ ′hτ ′−1)τh = (τ ′h)2 = g2 ∈ Σ.

Definition 4.4. Let G be a group whose action on C × C is mixed. For each g ∈ O2

we define Rg := Fix(g).

Remark 4.5. Each Rg is a smooth irreducible curve isomorphic to C; indeed, once

we have fixed τ ′, the curve Rg is the graph of the automorphism τ ′g ∈ Aut(C), i.e.

Rg = {(x, τ ′gx) : x ∈ C}.

Proposition 4.6. Let G be a group whose action on C × C is mixed. Let D be an

irreducible curve contained in the ramification locus of the quotient map η : C×C → X.

Then there exists g ∈ O2 such that D = Rg.

Proof. Let P ⊂ C × C be the finite set of points fixed by a non trivial element of

G0. Each point in D \ P has stabilizer of order 2 generated by an element in G \ G0,

otherwise the point would be stabilized by a non trivial element of G0; therefore each

point in D \ P belongs to one of the Rg’s. Noting that if D 6= Rg then D ∩ Rg is a

finite set, we get the thesis.

Remark 4.7. By the previous proposition, if the action of G on C × C is mixed, then

we have a bijection between O2 and the set of ramification curves of the quotient map

η : C × C → X := (C × C)/G.

Proposition 4.8. Let X = (C × C)/G be a mixed quotient. Let π : Y = (C ×
C)/G0 → X the double covering induced by the involution ι : Y → Y . Then Sing(X) ⊂
π(Sing(Y )).
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Proof. Let u := σ(p, q) ∈ Y be a smooth point and let z := ι(u) ∈ Y . By Remark

3.28, {1} = StabG0(p, q) = StabG(p, q) ∩ G0. If u 6= z, then π(u) is clearly a smooth

point. If u = z, then StabG(p, q) = 〈g〉 ∼= Z2 for some g ∈ O2. Therefore dim Fix(g) =

dimRg = 1 (cf. Remark 4.5) and StabG(p, q) is generated by a pseudo reflection. This

means that there exists coordinates (x, y) in a neighbourhood of (p, q) such that locally

g(x, y) = (x,−y). In a neighbourhood of π(u), X is isomorphic to C2/〈g〉; the variety

structure in such a neighbourhood is given by the ring C[x, y]〈g〉 ∼= C[x, y2], hence π(u)

is smooth.

Since, by Remark 3.28, the singular points of Y correspond to the G0−orbits of the

points of C × C with non trivial stabilizer, the following corollary follows.

Corollary 4.9. Let X = (C ×C)/G be a mixed quotient and suppose the action of G0

on C × C to be free. Then X is smooth.

The objects we want to investigate are the surfaces we obtain when the diagonal

subroup G0 acts freely on the product C × C; the quotient X = (C × C)/G will then

be the quotient of the surface isogenous to a product Y = (C × C)/G0 respect to the

involution ι. This justify the following definition.

Definition 4.10. Let X := (C ×C)/G be a mixed quotient and let Y := (C ×C)/G0.

If Y is a surface isogenous to a product, then X is said to be a semi-isogenous mixed

surface.

Remark 4.11. By Theorem 3.12 and Lemma 4.3, in order to construct a semi-isogenous

mixed surface, one has to provide the algebraic data listed in Remark 3.14 such that

for the set ΣV defined in Proposition 1.35 it holds ΣV ∩ ϕ(ΣV ) = {1}. Moreover, we

shall remark that ϕ(ΣV ) = Σϕ(V ).

Proposition 4.12. Let X = (C × C)/G be a semi-isogenous surface of general type.

Then g(C) ≥ 3.

Proof. Suppose g(C) = 2, then we factorize the quotient map η : C × C → X in the

following way:

C × C → C(2) → X,

where the first map is the quotient determined by the action of Z2
∼= 〈h〉 on C × C

with h ∈ O2. It is well known that C(2) is birational to an abelian surface isomorphic

to the Jacobian variety J(C). Hence, by Lemma 1.47, κ(X) ≤ κ(C(2)) = 0, which is a

contradiction.
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4.2 The branch and the ramification locus

In this section we give a description of the ramification and branch locus of the quotient

map η : C × C → X; these results underline the connection between the geometry of

semi-isogenous mixed surfaces and the algebraic properties of the groups involved in

the construction in a simple yet clear way.

Proposition 4.13. Let X := (C ×C)/G be a semi-isogenous mixed surface. Then the

ramification locus of the quotient map η : C × C → X is the disjoint union⊔
g∈O2

Rg.

Proof. Let (x, y) ∈ C × C be a point with non trivial stabilizer g ∈ StabG(x, y). Since

g2 ∈ G0 and G0 acts freely on C ×C, g2 = 1, therefore (x, y) ∈ Rg. Let g, h ∈ O2 such

that there exists (x, y) ∈ Rg ∩Rh; then g−1h(x, y) = (x, y), but g−1h ∈ G0 and fixes a

point, whence g = h.

Proposition 4.14. Let X := (C × C)/G be a semi-isogenous mixed surface and let

g, h ∈ O2. Then h = γgγ−1 if and only if γRg = Rh. In particular, Rg is γ−invariant

if and only if γ belongs to Z(g), the centralizer of g.

Proof. For any γ ∈ G, the curve γRg is fixed pointwise by γgγ−1 = h, hence γRg = Rh.

Vice versa, if γRg = Rh, then γgγ−1 fixes Rh pointwise, then γgγ−1 = h.

Remark 4.15. Let X = (C×C)/G be a semi-isogenous mixed surface and let g, h ∈ O2.

Then there exists α ∈ G0 such that αRg = Rh if and only if there exists β ∈ G \ G0

such that βRg = Rh.

Proof. Suppose there exists α ∈ G0 such that αRg = Rh, then αgRg = αRg = Rh and

β := αg ∈ G\G0. The same argument with α ∈ G\G0 proves the other implication.

Definition 4.16. Let us say O2 := {g1, . . . , gN}, then by Proposition 4.14, for h ∈ G
hRgi = Rgj if and only if gj = hgih

−1. We can then define an homomorphism between

G and the permutation group of N elements

% : G → SN

h 7→ %(h)

where, if hRgi = Rgj , %(h)(i) = j.

Let G be a group whose action on C×C is mixed. We denote by Cl(g) the conjugacy

class of g ∈ G and we define Cl(O2) := {Cl(g) : g ∈ O2}.
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Proposition 4.17. Let X := (C × C)/G be a semi-isogenous mixed surface. Let

Cl(O2) = {Cl1, . . . ,ClM} and for each i = 1, . . . ,M let us fix gi ∈ Cli. Then the branch

locus B of the quotient map η : C × C → X is the disjoint union B = B1 t · · · t BM ,

where Bi := η(Rgi).

Moreover, for each g ∈ O2 the map η|Rg : Rg → Bg := η(Rg) is an étale covering of

degree |Z(g)|/2 and

g(Bg) =
2(g(C)− 1)

|Z(g)|
+ 1. (4.1)

Proof. The first claim follows from Proposition 4.13 and Proposition 4.14.

By Proposition 4.14, for each g ∈ O2 the subgroup Z(g), i.e. the centralizer of g,

is the stabilizer group of Rg. This group does not act faithfully on Rg, since g ∈ Z(g)

fixes the curve pointwise. Therefore Z(g)/〈g〉 ∼= Z(g) ∩G0 =: Z0(g) acts freely on Rg.

This means that the map η|Rg : Rg → Bg is unbranched, and its degree is deg(η|Rg) =

|Z(g)|/|〈g〉| = |Z(g)|/2. Since Rg ∼= C, equation (4.1) follows from Hurwitz’s formula

(1.2).

Remark 4.18. Proposition 4.13 and Proposition 4.17 imply that we have a bijection

between the set of ramification curves (the set of branch curves) and O2 (Cl(O2) re-

spectively).

4.3 Birational invariants

The following result, which is proved in [Bea83b] for varieties of arbitrary dimension,

will be used in the case of surfaces.

Lemma 4.19 (cf. [Bea83b, Lemma VI.11]). Let X be a smooth variety and G a finite

group acting on X. Let π : X → Y := X/G be the quotient map and assume Y to

be smooth. Then the G−invariant k−fold p−forms α ∈ H0(X, (Ωp
X)⊗k) are the forms

π∗ω, where ω is a k−fold rational p−form on Y such that π∗ω is regular on X.

In particular, if the group G acts freely (or equivalently, if π is étale) then the map

π∗ : H0(Y, (Ωp
Y )⊗k)→ H0(X, (Ωp

X)⊗k)G is an isomorphism.

Remark 4.20. We should stress that Lemma 4.19 holds for X eventually non connected.

Proposition 4.21. Let X = (C×C)/G be a semi-isogenous mixed surface, then q(X)

is equal to the genus of the quotient curve C ′ := (C/G0).

Proof. First of all, we want to prove that H0(Ω1
C×C)G ∼= H0(Ω1

X) via pull-back η∗; by

Lemma 4.19, it suffices to prove that if a 1−form on X α has poles, then η∗α has poles

as well.
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This is obvious if the poles of α are not in the branch locus of η.

Suppose then that (α) = A− kB, where A and B have no common components, B

is a branch curve for η and k ≥ 1.

Let q be a generic point of B and p ∈ C × C such that η(p) = q. Let (x, y) and

(u, v) be local coordinates centered at p and q respectively such that locally η(x, y) =

(x, y2) = (u, v). Then B = {v = 0} and locally

α =
1

vk
(f(u, v)du+ g(u, v)dv),

where α′ = f(u, v)du + g(u, v)dv is a holomorphic 1−form that does not vanish in a

neighbourhood of q.

Therefore

η∗α =
1

y2k
(f(x, y2)dx+ 2yg(x, y2)dy)

in a neighbourhood of p. The 1−form f(x, y2)dx+ 2yg(x, y2)dy either does not vanish

or vanishes with multiplicity 1 along {y = 0}. Therefore η∗α has a pole along {y = 0}
of order at least 2k − 1 > 0. We conclude that H0(Ω1

X) ∼= H0(Ω1
C×C)G.

Now, arguing as in [Cat00, Proposition 3.15]:

H0(Ω1
X) ∼= (H0(Ω1

C×C))G = (H0(Ω1
C)⊕H0(Ω1

C))G

= (H0(Ω1
C)G

0 ⊕H0(Ω1
C)G

0
)G/G

0

= (H0(Ω1
C′)⊕H0(Ω1

C′))
G/G0

,

where last equality is proved with computations which are analogous to the ones done

in the first part of the proof (cf. [Bea83b, Examples VI.12.2]). Since X is a mixed

quotient G/G0 ∼= Z2 exchanges the last two summands, hence q(X) = h0(Ω1
X) =

h0(Ω1
C′) = g(C ′).

Let X := (C × C)/G be a semi-isogenous mixed surface. We denote by B :=

B1 + · · · + BM the branch divisor of the quotient map η : C × C → X and we define

the integer

δ(B) :=

M∑
j=1

(g(Bj)− 1).

Remark 4.22. By Proposition 4.17, the branch curves are pairwise disjoint, hence

δ(B) = pa(B)− 1, where pa(B) denotes the arithmetic genus of B.

Moreover, by Proposition 4.17, it is immediate to see that

δ(B) =
2(g(C)− 1)

|G|
· |O2|. (4.2)
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Let X = (C × C)/G be a semi-isogenous mixed surface; the map π : Y = (C ×
C)/G0 → X is a double covering - therefore a cyclic covering - branched along the

smooth divisor B. Let us define T := π−1(B). Then the following lemma holds:

Lemma 4.23 (cf. [BHPV04, Lemma 17.2]). There exists a line bundle L on X such

that π∗(OY ) = OX ⊕ L∗. For such L the following hold:

• OY (T ) = π∗(L);

• KY = π∗(KX ⊗ L);

• OY (B) = L⊗2.

Proposition 4.24. Let X = (C × C)/G be a semi-isogenous mixed surface, then

e(X) =
2(g(C)− 1))

|G|
· (2(g(C)− 1)− |O2|) =

4(g(C)− 1)2

|G|
− δ(B), (4.3)

and

K2
X =

2(g(C)− 1)

|G|
· (4(g(C)− 1)− 5|O2|) =

8(g(C)− 1)2

|G|
− 5δ(B). (4.4)

Proof. For i = 1, . . . ,M let gi ∈ O2 such that η(Rgi) = Bi. By Proposition 4.17

e(Bi) =
−4(g(C)− 1)

|Z(gi)|
= −4

Ni

|G|
(g(C)− 1),

where Ni = |G|/|Z(gi)| is the cardinality of the conjugacy class of gi. Note that∑M
i=1Ni = |O2|. Since the ramification locus R := η−1(B) is the disjoint union of |O2|

smooth curves, each one isomorphic to C, it holds

e(C × C \R) = e(C × C)− e(R) = 4(g(C)− 1)2 + 2|O2|(g(C)− 1).

It follows

e(X) = e(X \B) + e(B) =
e(C × C \R)

|G|
+

M∑
i=1

e(Bi)

=
4(g(C)− 1)2

|G|
+

2|O2|
|G|

(g(C)− 1)− 4(g(C)− 1)

|G|

M∑
i=1

Ni

=
2(g(C)− 1)

|G|
(2(g(C)− 1) + |O2| − 2|O2|)

=
2(g(C)− 1)

|G|
(2(g(C)− 1)− |O2|)
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The second equality in (4.3) follows by (4.2).

The map σ : C × C → Y := (C × C)/G0 is an unramified covering of degree

|G0| = |G|/2 and the canonical divisor KC×C is numerically equivalent to the divisor

2(g(C)− 1)F1 + 2(g(C)− 1)F2, were F1, F2 denote a general fibre of the projections on

the first and on the second coordinate respectively. Then, by Proposition 2.10

K2
Y =

K2
C×C

deg(σ)
=

16(g(C)− 1)2

|G|
.

On the other side, by Lemma 4.23, 2KY = π∗(2KX + B), therefore, by Proposition

2.10 4K2
Y = 2(4K2

X +B2 + 4KX .B), that is

K2
Y = 2

(
K2
X +

B2

4
+KX .B

)
.

By Proposition 4.17, Bi.Bj = 0 if i 6= j, then B2 = B2
1 + · · ·+B2

M .

For all i = 1, . . . ,M , η∗(Bi) = 2Ri,1 + · · ·+2Ri,Ni ; these curves are pairwise disjoint

by Proposition 4.13 and of genus g(C). Applying the genus formula (2.4) to Ri,j ⊂ C×C
we get

R2
i,j = 2(g(C)− 1)−KC×C .Ri,j

= 2(g(C)− 1)− [2(g(C)− 1)F1.Ri,j + 2(g(C)− 1)F2.Ri,j ]

= −2(g(C)− 1).

According to Lemma 2.41

B2
i =

1

|G|
η∗(Bi).η

∗(Bi)

=
1

|G|

 Ni∑
j=1

2Ri,j

 .

 Ni∑
j=1

2Ri,j


=

4

|G|

Ni∑
j=1

R2
i,j = −8Ni(g(C)− 1)

|G|
,

where third equality holds because Ri,j .Ri,k = 0 whenever j 6= k.

By genus formula (2.4)

KX .Bi = 2(g(Bi)− 1)−B2
i =

4Ni(g(C)− 1)

|G|
+

8Ni(g(C)− 1)

|G|
.
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Then

K2
X =

K2
Y

2
−KX .B −

B2

4

=
8(g(C)− 1)2

|G|
− 12(g(C)− 1)

|G|

M∑
i=1

Ni +
2(g(C)− 1)

|G|

M∑
i=1

Ni

=
2(g(C)− 1)

|G|
(4(g(C)− 1)− 6|O2|+ |O2|),

whence the thesis.

By Proposition 4.24 and Noether’s formula, we immediately get the following.

Corollary 4.25. Let X := (C × C)/G be a semi-isogenous mixed surfaces. Then

χ(OX) =
g(C)− 1

|G|
· (g(C)− 1− |O2|) =

(g(C)− 1)2

|G|
− 1

2
δ(B). (4.5)

Remark 4.26. By Proposition 4.24 and Corollary 4.25 we get

8χ(OX)−K2
X =

2(g(C)− 1)

|G|
· |O2| = δ(B). (4.6)

Remark 4.27. By the proof of Proposition 4.24, for every branch curve Bi we get the

following equalities:

KX .Bi = 6(g(Bi)− 1), B2
i = −4(g(Bi)− 1),

therefore, being the branch curves pairwise disjoint

KX .B = 6δ(B), B2 = −4δ(B).

Moreover

10χ(OX)−K2
X =

2(g(C)− 1)2

|G|
=

(g(C)− 1)2

|G0|
= χ(OY ),

where last equality holds for by Proposition 3.21.

4.4 Albanese fibre of a Semi-isogenous Mixed Surface with

q = 1

By Remark 2.45, the Albanese map of a surface X with irregularity q(X) = 1 is a

fibration onto the elliptic curve Alb(X) and the genus galb of the general Albanese fibre
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is an important deformation invariant. In this section we explain how to compute galb

for a semi-isogenous mixed surface.

The argument is analogous to the one described in [FP15, Section 3] for the quasi

étale surfaces.

Let X = (C×C)/G be a semi-isogenous mixed surface with q(X) = 1. By Proposi-

tion 4.21, C/G0 is an elliptic curve, which will be denoted by E, and the Galois covering

c : C → E has branch locus {p1, . . . , pr}. Up to translation, we may assume that 0 ∈ E
is not in B and that −pi 6∈ B for each i ∈ {1, . . . , r}.

Let us define
Q : C × C −→ E × E

(p, q) 7−→ (c(p), c(q))

and let
α̃ : E(2) −→ E

{x, y} 7−→ x+ y

be the Abel-Jacobi map.

Let us define the morphism α : X → E defined as α([p, q]) := c(p) + c(q). First, let

us remark that it is well defined: let (p′, q′) ∈ [(p, q)], then either one of the following

occurs:

• (p′, q′) = g(p, q) for some g ∈ G0; then p′ = gp and q′ = ϕ(g)q, therefore c(p′) =

c(p) and c(q′) = c(q);

• (p′, q′) = τ ′g(p, q) for some g ∈ G0; then p′ = ϕ(g)q and q′ = τgp, therefore

c(p′) = c(q) and c(q′) = c(p).

In both cases c(p′) + c(q′) = c(p) + c(q). By Theorem 2.44, the morphism factorizes

through the Albanese map: α = ψ ◦ f .

What we get by these definitions is the following commutative diagram:

C × C E × E

X E(2)

Alb(X) E

........................................................................................................................................................................... ............
Q

...................................................................................
.....
.......
.....

η

...................................................................................
.....
.......
.....

ε

...................................................................................
.....
.......
.....

f

............................................................................................................................................................................................................. ............

................................................................................................................................................................................................................................... .........
...

α
...................................................................................
.....
.......
.....

α̃

.......................................................................................................................................................................................... ............

ψ

Let E′ := ε∗(α̃∗(0)) = {(u,−u) : u ∈ E}, consider F ∗ := Q∗(E′) and F := α∗(0).
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Lemma 4.28. F ∗ is smooth.

Proof. For every p ∈ C let mp := |StabG0(p)|; for any chart φ2 : U2 → C on E centered

at c(p), there exists a chart φ1 : U1 → C centered at p such that φ2(c(φ−1
1 (z))) = zmp

(cf. [Mir95, Proposition II.4.1]).

Analogously, let (p, q) ∈ C × C; then there exist local coordinates for C z1 and

z2 centered respectively in p and q such that - with a slight abuse of notation - the

(G0 ×G0)−cover Q assumes the form (z1, z2) 7→ (z
mp
1 , z

mq
2 ) in an open neighbourhood

U ⊂ C × C of (p, q).

Suppose that Q(p, q) ∈ E′ and let V := Q(U), then, being E′ a smooth curve, up

to a restriction of the open set V , there exist local coordinates y1, y2 on V such that

E′ ∩ V is given by ay1 + by2 + O(2) = 0 with ab 6= 0. Then a local equation for F ∗ in

U ∩ F ∗ is given by az
mp
1 + bz

mq
2 +O(2 min{mp,mq}) = 0. Since by hypothesis mp = 1

or mq = 1, F ∗ is smooth in (p, q).

Remark 4.29. F ∗ = Q∗(ε∗(α̃∗(0))) = (α̃ ◦ ε ◦Q)∗(0) = (α ◦ η)∗(0) = η∗(α∗(0)) = η∗(F ),

then η(F ∗) = F .

The group G acts freely on F ∗: suppose that g(x, y) = (x, y) for some g ∈ G0 and

(x, y) ∈ F ∗, then gx = x and ϕ(g)y = y. Therefore x ∈ c−1(pi) and y ∈ c−1(pj) for

some i, j = 1, . . . , r, but then Q(x, y) = (c(x), c(y)) = (pi, pj) ∈ E′; this means that

pj = −pi, which contradicts −pk 6∈ B for any pk ∈ B. Analogously, we can prove that

τ ′g(x, y) 6= (x, y) for (x, y) ∈ F ∗ and g ∈ G0.

Being F ∗ smooth and η|F ∗ : F ∗ → F an étale cover, F is smooth.

Let us define the points of E × E qi := (pi,−pi) and q′i := (−pi, pi) and the set

B′ := {qi, q′i : i = 1, . . . , r}; we observe that 0′ := (0, 0) ∈ E′ \B′.
As we saw in Subsection 1.3.1, given a suitable choice of loops α, β, γ1, . . . , γr ∈

π1(E \ B, 0), the Galois covering c : C → E is determined by a generating vector of

type (1;m1, . . . ,mr) of G0 that represents the monodromy map µc : π1(E \B, 0)→ G0

of c.

Q induces by restriction the (G0 ×G0)−cover F ∗ → E′, whose branch locus is B′.

In order to describe the monodromy map of this cover, we define a set of generators

for π1(E′ \B′, 0′) in the following way:

• δ := (α,−α);

• θ := (β,−β);

• γ′i := (γi,−γi) is a loop travelling around qi, for i = 1, . . . , r;



60 CHAPTER 4. SEMI-ISOGENOUS MIXED SURFACES

• γ′′i := (−γi, γi) is a loop travelling around q′i, for i = 1, . . . , r.

We need to pay some attention to choosing α, β and γi in order that δ, θ, γ′i and γ′′i
do not meet B′. Moreover,the classes of δ, θ, γ′i and γ′′i depend on α, β, and γi itself,

not only on their classes in π1(E \B, 0).

The classes of δ, θ, γ′i and γ′′i generate π1(E′ \ B′, 0′) and the monodromy map of

Q|F ∗ : F ∗ → E′ is the unique homomorphism µ′ : π1(E′ \B′, 0′)→ G0 ×G0 such that

δ
µ′7−→ (a, a−1) θ

µ′7−→ (b, b−1)

γ′i
µ′7−→ (hi, 1) γ′′i

µ′7−→ (1, hi)

Remark 4.30. By Remark 1.29, the number of connected components of F ∗ is equal to

the index of Im(µ′) in G0 ×G0.

Let us fix τ ′ ∈ G \ G0, let τ := (τ ′)2 ∈ G0 and ϕ ∈ Aut(G0) defined by ϕ(h) :=

τ ′hτ ′−1. We define a G−action on G0 ×G0 in the following way:

g(h1, h2) = (gh1, ϕ(g)h2)

τ ′g(h1, h2) = (ϕ(g)h2, τgh1)
for g ∈ G0.

Let us define

l :=

∣∣∣∣∣∣
⋃
g∈G

g Im(µ′)

∣∣∣∣∣∣ .
Lemma 4.31 (cf. [FP15, Lemma 3.2]). Let X := (C × C)/G be a semi-isogenous

mixed surface with q(X) = 1, then degψ = |G0|2/l.

Proof. Let u ∈ E′ \B′. The action of G0 ×G0 on Q−1(u) induces a bijection between

G0 × G0 and Q−1(u); arguing as in Remark 1.29, two points p, p′ ∈ Q−1(u) belong to

the same connected component of F ∗ if and only if gp = p′ where g ∈ Im(µ′).

Moreover, two points p, p′ ∈ F ∗ are mapped by η onto the same point of X if and

only if there exists g ∈ G such that gp = p′. So, exactly l points of Q−1(u) are mapped

into each connected component of F = η(F ∗).

Since degψ equals the number of connected components of F , we get the thesis.

Proposition 4.32. Let X := (C×C)/G be a semi-isogenous mixed surface with q(X) =

1. Then

galb = 1 + l · g(C)− 1− |O2|
|G0|2

.
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Proof. Since C is constructed via a generating vector of type (1;m1, . . . ,mr) for G0,

e(C) = −|G0|
∑r

i=1
mi−1
mi

. The (G0 × G0)−covering Q is branched along the union of

r horizontal copies of E and r vertical copies of E; moreover, for each i there are one

horizontal copy and one vertical copy with branching index mi. Since E′ is an elliptic

curve that intersects each of these copies of E transversally in one point, by Hurwitz’s

Formula 1.17 applied to Q|F ∗ : F → E′, we get

e(F ∗) = −|G0|2
r∑
i=1

2

(
mi − 1

mi

)
= e(C) · |G|.

Let us now consider the map η|F ∗ : F ∗ → F . This map has degree |G| = 2|G0| and by

Proposition 4.13 is ramified in F ∗ ∩
(⊔

g∈O2
Rg

)
, and∣∣∣∣∣∣F ∗ ∩

⊔
g∈O2

Rg

∣∣∣∣∣∣ =
∑
g∈O2

|F ∗ ∩Rg|.

On one side Rg = {(x, τ ′gx) : x ∈ C}, hence Q(Rg) = {(u, u) : u ∈ E}; on the other

side Q(F ∗) = {(u,−u) : u ∈ E}. Therefore, a point in F ∗ ∩ Rg is mapped to a point

(u0, u0) ∈ E′ with 2u0 = 0. There are four such points and by assumption none of them

lies on the branch curves of Q. Then, for each choice of such a u0, there are exactly

|G0|2 points in F ∗Q−1(u0, u0), but only |G0| of them lie on Rg, because once we have

fixed the first coordinate x, the second is forced to be (τ ′g)x.

We get that η|F ∗ is ramified in
∑

g∈O2
|F ∗ ∩Rg| = |O2| ·4 · |G0| points, and each one

of them has ramification index 2, thus we have 4 · |O2| branching points on F . Finally,

by Hurwitz’s Formula (Theorem 1.17),

e(C) · |G| = e(F ∗) = |G| ·
(
e(F )−

(
4 · |O2|)

2

))
= |G| · (e(F )− 2 · |O2|).

By Lemma 4.31, F is the disjoint union of |G0|2/l curves of genus galb, therefore

2− 2g(C) + 2 · |O2| = e(F ) =
|G0|2

l
(2− 2galb),

whence the thesis.

4.5 The fundamental group of a Semi-isogenous Mixed

Surface

In this section we show how to compute the fundamental group of a semi-isogenous

mixed surface. The strategy we follow is the one described in [Fra13] and it holds for

general mixed surfaces.
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The key result we use for this computation is the following.

Theorem 4.33 (cf. [Arm68, Theorem]). Let G be a discontinuous group of homeo-

morphisms of a path connected, simply connected, locally compact metric space X, and

let H be the normal subgroup of the elements of G having some fixed points. Then

π1(X/G) ∼= G/H.

Let X := (C × C)/G be a semi-isogenous mixed surface and let

ψ : T(g′;m1, . . . ,mr) → G be the appropriate orbifold homomorphism associated to

the G0−covering C → C/G0. According to Lemma 1.36, ker(ψ) ∼= π1(C) and, as we

showed in Lemma 1.37, the action of π1(C) on the universal covering ∆ of C can be

extended to a faithful discontinuous action of T := T(g′;m1, . . . ,mr).

The covering map u : ∆→ C is ψ−equivariant and C/G0 ∼= ∆/T.

Fix τ ′ ∈ G \G0, let (τ) := (τ ′)2 ∈ G0 and ϕ ∈ Aut(G0) defined by ϕ(h) := τ ′hτ ′−1.

Let H := {(t1, t2) ∈ T × T|ψ(t1) = ϕ−1} < Aut(∆ ×∆). Since ψ is surjective and

ϕ(τ) = τ , there exists t ∈ T such that τ̃ := (t, t) ∈ H. We define the automorphism

τ̃ ′ : ∆×∆ −→ ∆×∆

(x, y) 7−→ (y, t · x)

This map satisfies (τ̃ ′)2 = τ̃ . We also define the map ϕ̃ : H→ H as the conjugation by

τ̃ ′: ϕ̃(t1, t2) = (t2, t · t1 · t−1).

Let H = 〈gen(H)|rel(H)〉 be a presentation of H; we define

REL := {ϕ̃(h)τ̃ ′h−1τ̃ ′−1|h ∈ gen(H)}.

Let G the subgroup of Aut(∆×∆) generated by H and τ̃ ′; a presentation of G is given

by

G := 〈gen(H), τ̃ ′|rel(H), (τ̃ ′)2τ̃−1,REL〉.

We note that H is an index 2 subgroup of G, and there is a natural G−action on ∆×∆

given by

(h1, h2) · (x, y) = (h1 · x, h2 · y)

τ̃ ′(h1, h2)(x, y) = (h2 · y, (t · h1) · x)
for (h1, h2) ∈ H.

We define the homomorphism ϑ : G→ G as

ϑ(h1, h2) = ψ(h1) = ϕ−1(ψ(h2))

ϑ(τ̃ ′(h1, h2)) = τ ′ψ(h1) = τ ′ϕ−1(ψ(h2))
for (h1, h2) ∈ H.
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Let U := (u, u) : ∆×∆→ C × C; then for all p ∈ ∆×∆ and for all h ∈ G, U(h · p) =

ϑ(h) · U(p), hence
∆×∆

G
∼=
C × C
G

.

Remark 4.34. The π1(C × C)− action on ∆ × ∆ is free, hence for all x ∈ ∆ × ∆

π1(C × C) ∩ StabG(x) = {1}. This means that, for x ∈ ∆ ×∆, the restriction of ϑ to

StabG(x) gives an isomorphism with StabG(U(x)).

Lemma 4.35 (cf. [Fra13, Lemma 4.3]). The G−action on ∆ × ∆ is discontinuous,

which means:

i. The stabilizer of each point is finite;

ii. For all x ∈ ∆ × ∆ there exists a neighbourhood U of x such that for all g̃ ∈
G \ Stab(x), g̃(U) ∩ U = ∅.

Proof. i. By Remark 4.34, the restriction of ϑ to the stabilizer of x ∈ ∆×∆ gives an

isomorphism with Stab(U(x)), which is finite because G is finite.

ii. Let x ∈ ∆ × ∆ and let y := U(x) ∈ C × C; since G is finite and C × C is

Hausdorff, there exists a neighbourhood U ′ of y such that g(U ′) ∩ U ′ = ∅ for all

g ∈ G \ StabG(y). Let V ′ be the connected component of U−1(U ′) containing

x. There exists a connected neighbourhood V ⊆ V ′ of x such that V is mapped

isomorphically by U onto its image, U(V ) =: U ⊂ U ′ is StabG(y)−invariant and V

is StabG(x)−invariant. Let ḡ ∈ G \ Stab(x), then we claim that ḡ(V ) ∩ V = ∅:

U(ḡ(V ) ∩ V ) ⊆ U(ḡ(V )) ∩ U(V ) = ϑ(ḡ)(U) ∩ U,

then either ḡ(V ) ∩ V = ∅ of ϑ(ḡ) ∈ StabG(y). In this latter case, by Remark

4.34, there exists a unique ḡ′ ∈ Stab(x) such that ϑ(ḡ′) = ϑ(ḡ), so ḡ = kḡ′ with

k ∈ π1(C × C) \ {1}, thus:

ḡ(V ) ∩ V = kḡ′(V ) ∩ V = k(V ) ∩ V = ∅.

By Lemma 4.35 the hypothesis of Theorem 4.33 hold, hence we have the following.

Theorem 4.36. Let X = (C × C)/G be a semi-isogenous mixed surface. Then

π1(X) ∼=
G
G′
,

where G′ is the normal subgroup of G having some fixed points on ∆×∆.
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Theorem 4.36 can be stated in another form, which will be more useful under a

computational point of view.

Lemma 4.37 (cf. [Fra13, Lemma 4.5]). Under the hypothesis of Theorem 4.36, the

normal subgroup G′ is exactly the subgroup Tors(G), that is the normal subgroup of G
of those elements with finite order.

Proof. We need to show that every element g ∈ G that fixes some points in ∆×∆ has

finite order, and vice versa. Let us distinguish two cases:

i. Let g = (h1, h2) ∈ H and let (x, y) ∈ ∆×∆, then

(h1, h2)(x, y) = (x, y)⇔

h1 = αcmii α−1

h2 = βc
mj
j β−1

⇔ (h1, h2) has finite order;

the first equivalence follows by the proof of Theorem 1.23, while for the second

equivalence we refer to [Bea83a, Theorem 10.3.2].

ii. Let g = τ̃ ′(h1, h2) ∈ G \ H. If g fixes (x, y) ∈ ∆ × ∆, then g2 ∈ H fixes (x, y) as

well, hence, by point [i.], g has finite order. Conversely, if g has finite order, then

g2 ∈ H has finite order, thus by point [i.] g2(x, y) = (x, y) for some (x, y) ∈ ∆×∆.

Therefore g(x, (h2)−1x) = (x, (h2)−1x).

The last result we see in this section will be useful for the development of the

classification algorithm, since it provides a recipe to find a finite set of generators of G′

for a semi-isogenous mixed surface.

Proposition 4.38. Let X = (C×C)/G be a semi-isogenous mixed surface. Then G′ is

normally generated by the finite set N defined as follows: for each element h ∈ O2, we

choose an element h1 ∈ ψ−1(h) and we include in N the element τ̃ ′(h1, (t · h1)−1) ∈ G.

Proof. Let (h1, h2) ∈ H and assume that it fixed the point (x, y) ∈ ∆×∆, i.e. (h1, h2)(x, y) =

(x, y). The map U is ϑ−equivariant, hence θ(h1, h2) ∈ G0 fixed the point U(x, y) ∈
C × C, but G0 acts freely, so (h1, h2) ∈ kerϑ = π1(C × C). The group π1(C × C) acts

freely on ∆×∆, hence (h1, h2) is trivial; in other words, H acts freely on ∆×∆.

Let g := τ̃ ′(h1, h2) ∈ G \H and assume that it fixes the point (x, y) ∈ ∆×∆. Then

g2 ∈ H fixes (x, y) as well, hence g has order 2 (i.e. h2 = (t · h1)−1). Conversely each

element τ̃ ′(h1, (t · h1)−1) ∈ G \H fixes point-wise the curve {(x, (t · h1)x) : x ∈ ∆}.
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Each element g ∈ G \H of order 2 maps, via ϑ, to an element of order 2 in G \G0.

If two such elements map via ϑ to the same element, then they are conjugated in G.

Indeed, let τ̃ ′(h1, (t ·h1)−1) and τ̃ ′(s1, (t · s1)−1) be such that ψ(h1) = ψ(s1), then there

exists k ∈ kerψ = π1(C) such that h1 = s1 · k. We have the following equalities:

τ̃ ′(h1, (t · h1)−1) = τ̃ ′(s1 · k, k−1s−1
1 t−1)

= τ̃ ′(1, k−1) · (s1, (t · s1)−1) · (k, 1)

= ϕ̃(1, k−1) · τ̃ ′(s1, (t · s1)−1) · (k, 1)

= (k, 1)−1 · τ̃ ′(s1, (t · s1)−1) · (k, 1)

and we are done, since (k, 1) ∈ H.

4.6 The classification of Semi-isogenous Mixed Surfaces

with χ = 1

In this section we give an algorithm to classify semi-isogenous mixed surfaces X =

(C × C)/G with g(C) ≥ 2 and fixed values of the invariants K2
X , pg(X) and q(X).

4.6.1 Finiteness of the classification

First of all, in this section we will prove that for fixed values of K2
X , pg(X) and q(X)

the classification problem is finite.

Let X = (C × C)/G be a semi-isogenous mixed surface with g(C) ≥ 2 and let

(q;m1, . . . ,mr) be the type of an induced generating vector for G0. We define the

following rational numbers:

Θ := 2q(X)− 2 +
r∑
i=1

mi − 1

mi
, β :=

2(10χ(OX)−K2
X)

Θ
.

By Remark 4.26 and Remark 4.27 we get

|G0| = (g(C)− 1)2

10χ(OX)−K2
X

, |O2| =
8χ(OX)−K2

X

10χ(OX)−K2
X

(g(C)− 1). (4.7)

Proposition 4.39. Let X := (C × C)/G be a semi-isogenous mixed surface and let

(q;m1, . . . ,mr) be the type of an induced generating vector for G0. Then

(a) Θ > 0 and β = g(C)− 1;

(b) r ≤
4(10χ(OX)−K2

X)

β
+ 4(1− q);
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(c) each mi divides β;

(d) mi ≤
1 + 2(10χ(OX)−K2

X)

M
, where M := max

{
1

6
,
r − 3 + 4q

2

}
.

Proof. (a) Since, by Proposition 4.21, q(X) = g(C/G0), by Riemann-Hurwitz formula

(1.2):

2(g(C)− 1) = |G0| ·Θ,

hence Θ = 2(g(C)−1)
|G0| > 0 since g(C) ≥ 2. The equation β = g(C) − 1 follows now

from equation 4.7.

(b) By definition, Θ ≥ 2q − 2 + r/2, whence r ≤ 2Θ + 4(1− q).

(c) By Theorem 1.23, there exists an element h ∈ G0 of order mi such that h · x = x

for some x ∈ C. Since h ∈ G0 does not fix any point in C×C, it holds ϕ(h) · y 6= y

for all y ∈ C. Thus the map C → C/〈ϕ(g)〉 := C̃ is étale of degree ord(ϕ(h)) = mi.

By Riemann-Hurwitz formula (1.2) 2(g(C)− 1) = 2mi(g(C̃)− 1).

(d) (cf. [FP15, Proposition 5.4.e]) We first prove that

Θ +
1

mi
≥M := max

{
1

6
,
r − 3 + 4q

2

}
.

Since Θ = 2q − 2 + r −
∑r

i=1

1

mj
, we get

Θ +
1

mi
= 2q − 2 + r −

∑
i 6=j

1

mj
≥ 2q − 2 + r − r − 1

2
=
r − 3 + 4q

2
.

Since Θ > 0, r−3+4q
2 ≥ 1

2 ≥
1
6 unless r = 3 and q = 0. In this case Θ > 0

implies that at most one mi can be equal to 2. Hence also in this case Θ + 1
mi
≥

0− 2 + 3−
∑

j 6=i
1
mj
≥ 1− 1

2 −
1
3 = 1

6 . Therefore M ≤ Θ + 1
mi

.

By part (c) we have Θmi ≤ Θβ, then by definition of β we get

M ·mi ≤ 1 + Θ ·mi ≤ 1 + 2(10χ(OX)−K2
X).

Remark 4.40. We can bound the value of Θ from below:

Θmin =


1/42 for q = 0

1/2 for q = 1

2q − 2 for q ≥ 2
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The first follows from Corollary 1.18.

Suppose q = 1, then

Θ =

r∑
i=1

mi − 1

mi
≥ m1 − 1

m1
≥ 1

2
.

Finally, if q ≥ 2, an for G0 = {1} we get Θmin = 2q − 2.

Therefore

β =
2(10χ(OX)−K2

X)

Θ
≤

2(10χ(OX)−K2
X)

Θmin
.

The value β is by definition at least 1; but, if we are interested only in surfaces of

general type, by Proposition 4.39 and Proposition 4.12, we can assume β ≥ 2.

Moreover, r corresponds to the number of branch points of the quotient map C →
C/G0; by Hurwitz’s formula

r ≥ Rmin =


3 for q = 0

1 for q = 1

0 for q ≥ 2

As Remark 4.11 states, in order to construct a semi-isogenous mixed surface, it is

sufficient to provide a set of algebraic data.

Once we fix the three values K2, pg and q, the first steps that the classification

algorithm performs are the following:

• By Remark 4.40, we get Θmin and Rmin;

• Still by Remark 4.40, we compute the maximum value for β, βmax;

• For every β = βmax, . . . , 1, by point (b) of Proposition 4.39 we obtain Rmax the

maximum possible value for r, and by (4.7) we compute the order of the group

G0;

• For every r = Rmin, . . . , Rmax, we get an upper bound for every mi with i =

1, . . . , r according to point (d) of Proposition 4.39.

This shows that once we fix K2, pg and q, there exists only a finite number of integers

such that fulfil Proposition 4.39 and Remark 4.40.

In order to make our algorithm more efficient, we can prove the following result,

giving some restrictions for the mi’s.
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Proposition 4.41. Let X := (C × C)/G be a semi-isogenous mixed surface, let

(q;m1, . . . ,mr) be the type of an induced generating vector for G0 and suppose that

|O2| > 0. Then mi ≤ |G0|/|O2| and mi divides |O2| for all i = 1, . . . , r.

Proof. Let x0 ∈ C and let k := |Orb(x0)| be the cardinality of its orbit for the

G0−action on C. Let L be the curve L := {(x0, y) : y ∈ C}, the G−invariant set

L̂ :=
⋃
g∈G gL is the union of 2k irreducible components, each one isomorphic to C: k

disjoint horizontal copies of C and k disjoint vertical copies of C. Since the action of G0

is free and the elements of G\G0 switch horizontal and vertical components of L̂, a ram-

ification points of η|L̂ : L̂→ η(L̂) belongs to the set S := {(h1 ·x0, h2 ·x0) : h1, h2 ∈ G0}
which has cardinality k2. On the other side, the ramification locus of η|L̂ is

R̂ := L̂ ∩

 ⋃
g∈O2

Rg

 = {(h · x0, (τ
′g) · h · x0) : h ∈ G0, g ∈ O2},

and it has cardinality k · |O2|: once h ·x0 is fixed (k choices), there are |O2| possibilities

for g and each one gives a different point in R̂ by Proposition 4.13. Thus k · |O2| ≤ k2.

By Proposition 1.35, for each i = 1, . . . , r there exists hi ∈ G0 and xi ∈ C such that

Stab(xi) = 〈hi〉 and ord(hi) = mi, for k = |Orb(xi)| = |G0|/mi. We get |O2| ≤ |G0|/mi.

Let V := {(xi, (τ ′g) ·xi) : g ∈ O2} be the set of ramification points of η lying on the

vertical line {(xi, y) : y ∈ C}. The group 〈hi〉 acts faithfully and freely on V , indeed

hαi (xi, (τ
′g) · xi) = (xi, ϕ(hαi (τ ′g) · xi)) 6= (xi, (τ

′g) · xi), for α ∈ {1, . . . ,mi − 1},

since G0 acts freely on C × C; whence mi divides |V | = |O2|.

Remark 4.42. We shall remark that Proposition 4.41 shows more: mi ≤ Nj := |Cl(gj)|
for i = 1, . . . , r and gj ∈ O2. Indeed, the points in V belong to mi ramification curves

and Nj is the number of ramification curves mapped onto the same branch curve.

4.6.2 Hurwitz moves

Let C ′ be a curve of genus g′; given two different generating vectors V1 and V2 of the

same type (g′;m1, . . . ,mr) for the groups G0
1 and G0

2, index two subgroups of the group

G, one may ask if they define two Galois coverings which are isomorphic.

The answer to this question is studied in detail in [Pen15]: the Galois coverings

C1 → C ′ and C2 → C ′ induced respectively by V1 and V2 are equivalent if the two

generating vectors belong to the same Hurwitz equivalence class.
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In this section we will first see what are the Hurwitz moves and how they act on

a generating vector, then we will define the Hurwitz equivalence classes. We refer to

[BCG08, Sections 1-2] and [Pen15] for further details.

Let T := (a1, b1, . . . , ag′ , bg′ , h1, . . . , hr) be a (2g′+ r)−tuple of elements of G. Hur-

witz moves are different according to the type of generating vector and they define a

group that we will denote by Mg′,[r]; we need to distinguish three different cases.

Definition 4.43. If g′ = 0, then for i = 1, . . . , r − 1 we define

σi :=


hi 7→ hi+1

hi+1 7→ h−1
i+1hihi+1

hj 7→ hj for j 6= i, i+ 1

and M0,[r] = 〈σi : i = 1, . . . , r − 1〉.

Definition 4.44 (cf. [Pol08, Proposition 1.10]). If g′ = 1 and r = 1, then we define

tδ̃ :=


a1 7→ a1

b1 7→ b1a1

h1 7→ h1

, tδ :=


a1 7→ a1b

−1
1

b1 7→ b1

h1 7→ h1

and M1,[1] := 〈tδ̃, tδ〉.

Definition 4.45. If g′ 6= 0 and g′ > 1 or r > 1. We define the following maps:

tδj :=



aj 7→ ajb
−1
j

ai 7→ ai for i 6= j

bi 7→ bi for all i

hi 7→ hi for all i

tδ̃j :=



ai 7→ ai for all i

bj 7→ bjaj

bi 7→ bi for i 6= j

hi 7→ hi for all i

tσl :=



ai 7→ ai for all i

bi 7→ bi for all i

hl 7→ hl+1

hl+1 7→ h−1
l+1hlhl+1

hi 7→ hi for i 6= l, l + 1

tτk :=



ak 7→ akη
−1
k

bk 7→ ηkbkη
−1
k

ak+1 7→ ηkak+1

ai 7→ ai for i 6= k, k + 1

bi 7→ bi for i 6= k

hi 7→ hi for all i
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tξ1j,d
:=



aj 7→ χj,daj

ai 7→ ai for i 6= j

bi 7→ bi for all i

hd 7→ εj,dhdε
−1
j,d

hi 7→ hi for i 6= d

tξ2j,d
:=



ai 7→ ai for all i

bj 7→ a−1
j χj,dajbj

bi 7→ bi for i 6= j

hd 7→ ε′j,dhdε
′−1
j,d

hi 7→ hi for i 6= d

for 1 ≤ j ≤ g′,1 ≤ k ≤ (g′ − 1), 1 ≤ l ≤ (r − 1) and 1 ≤ d ≤ r, where we set

• ηk := b−1
k ak+1bk+1a

−1
k+1;

• χj,d :=
(∏j−1

k=1 [ak, bk]
)−1

hd
∏j−1
k=1 [ak, bk];

• εj,d := hd

(∏j−1
k=1 [ak, bk]

)
ajbja

−1
j

(∏j−1
k=1 [ak, bk]

)−1
;

• ε′j,d := hd

(∏j
k=1 [ak, bk]

)
a−1
j

(∏j−1
k=1 [ak, bk]

)−1
.

Finally, let Mg′,[r] := 〈tδj , tδ̃j , tσl , tτk , tξ1j,d , tξ2j,d〉.

A direct computation shows that if T is a generating vector of type (g′;m1, . . . ,mr),

then its image under the maps defined in previous definition is still a generating vector of

the same type. Also the automorphism group Aut(G) of G acts on the set of generating

vector by simultaneous application of an automorphism to each one of its elements.

Given (γ, η) ∈Mg′,[r]×Aut(G) and T = (a1, b1, . . . , ag′ , bg′ , h1, . . . , hr) a generating

vector of type (g′;m1, . . . ,mr) for G0 subgroup of index 2 of G, we define

(γ, η) · (G0, T ) := (η(G0), η(γ(T )).

The orbits of this action are called Hurwitz equivalence classes of generating vectors,

and each one of them correspond to a deformation class of the surfaces we are studying.

4.6.3 Classification of Semi-isogenous Mixed Surfaces with χ = 1

As done in [BP12], [Fra13], [FP15], we developed a MAGMA [BCP97] algorithm which

computes the semi-isogenous mixed surfaces with fixed values of invariants pg, q, and

K2.

The step the algorithm performs are the following.

Once the values K2, pg and q are fixed, by Proposition 4.39 and Remark 4.40,

we have only finitely many possible types for the generating vector V associated with
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the G0 on the curve C. Then we produce the finite list of all types (q;m1, . . . ,mr)

respecting the conditions in Proposition 4.39 and Proposition 4.41.

For each type, the orders of G and G0 are computed by |G| = 2|G0| = 4(10χ −
K2)/Θ2.

Then the script searches among the finitely many groups of order |G0|, the group

having a disjoint pair of generating vector of the prescribed type. For these groups,

the script checks their degree 2 extensions and discards the ones that have the wrong

number of elements of order 2 and/or do not satisfy the condition of Proposition 4.41.

We get a list of quadruples (type, G0, generating vector, extension G) and each

quadruple gives a family of mixed quotients, as explained in Remark 4.11, and all semi-

isogenous mixed surfaces with the prescribed invariants are here. Anyway, in the list

there might be surfaces whose branch locus does not correspond to the expected one,

then the script discards them.

Moreover, as stated in Subsection 4.6.2, different generating vectors give deforma-

tion equivalent surfaces if they differ by some Hurwitz moves. The script computes

this action on the generating vectors, and returns only a representative for each orbit.

Finally, the script computes the fundamental groups of the resulting surfaces, and, if

q = 1, the genus of the Albanese fibre too.

Remark 4.46. The algorithm works for arbitrary values of the invariants K2, pg and

q, but the implemented MAGMA version has some technical limitations. To perform

the algorithm, we have to run over all groups of a given order. Here we have to use the

database of Small Groups, which contains:

• all groups of order up to 2000, excluding groups of order 1024;

• the groups whose order is a product of at most 3 primes;

• the groups of order dividing p6 for p prime;

• the groups of order pnq, where pn is a prime-power dividing 28, 36, 55 or 74 and

q is a prime different from p.

In the other cases we cannot run among the groups of prescribed order and the script

returns the list of skipped cases, which have to be studied separately.

Let X = (C×C)/G be a semi-isogenous mixed surface with χ(OX) = 1 and K2
X > 0,

then by Remark 4.26, K2
X ≤ 8χ(OX) so the possible values of K2

X are in {1, . . . , 8}.
We ran the program for 1 ≤ K2

X ≤ 8 and 0 ≤ pg = q ≤ 4. As expected by the

classification results we mentioned in Section 2.8, for pg = q = 4 the output is empty,
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while for pg = q = 3 we have only one family: it has K2 = 6 and it is the family

of the symmetric products of curves of genus 3, which forms an irreducible connected

component of dimension 6 of the moduli space of minimal surfaces of general type.

For 0 ≤ pg = q ≤ 2 we get the following theorems.

Theorem 4.47. Let X := (C×C)/G be a semi-isogenous mixed surface with pg(X) =

q(X) = 0 and K2
X > 0, such that |G0| ≤ 2000 and |G0| 6= 1024. Then X belongs to one

of the 15 families collected in Table 4.2 (page 77) and it is of general type.

Theorem 4.48. The semi-isogenous mixed surfaces X := (C ×C)/G with pg = q = 1

and K2
X > 0 form the 35 families collected in Table 4.3 and Table 4.4 (pages 79, 81).

In all cases X is of general type.

Theorem 4.49. The semi-isogenous mixed surfaces X := (C ×C)/G with pg = q = 2

and K2
X > 0 form the 9 families collected in Table 4.5 (page 83). In all cases X is of

general type.

According to Table 2.1, a surface with K2 > 0 is either of general type or rational,

therefore regular and simply connected: an inspection of Table 4.2, Table 4.3, Table

4.4 and Table 4.5 shows that this latter case does not occur, so all the surfaces listed

are of general type.

In Tables 4.2, 4.3, 4.4 and 4.5, every row corresponds to a family and we use the

following notation: columns Id(G) and Id(G0) report the MAGMA identifier of the

groups G and G0: the pair (a, b) denotes the bth group of order a in the database of

Small Groups.

In columns G and G0 we denote by Zn the cyclic group of order n, by Sn the

symmetric group on n letters, by Q the group of quaternions, by Dn the dihedral group

of order 2n, and by Dp,q,r := 〈x, y | xp = yq = 1, xyx−1 = yr〉. The groups (258, 3678)

and (258, 3679) do not have a representation as semidirect product of non trivial groups

of smaller order, so we leave the relative spots blank.

The column Type gives the type of the generating vector for G0 is a short way, e.g.

[0; 25] stands for (0; 2, 2, 2, 2, 2). The Branch Locus B of η : C × C → X is also given

in a short way, e.g. (3,−8)2, (2,−4)2 means that B consists of 4 curves, two of genus 2

and self-intersection −4 and two of genus 3 and self-intersection −8. The last column

“min?” report (if known) whether the surface X is minimal or not. These results will

be proved in the following chapter. In Table 4.3 and Table 4.4, we also report the genus

galb of a general fibre of the Albanese map.

The semi-isogenous mixed surfaces with K2
X = 8χ(X) are those for which the action

is free; indeed all the examples with K2 = 8 in Tables 4.2, 4.3, 4.4 and 4.5 appeared
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in the papers already cited in previous chapter (see, for example, [BCG08], [CP09],

[Pen11]).

In Table 4.2, there is a surface with K2 = 6 and G = (32, 43). It realizes a new

topological type of surface of general type with pg = 0, indeed its fundamental group is

different from those present in literature (see [BCGP12, BCF15, Ino94, Kul04]). To the

best of our knowledge the surfaces with K2 = 6 and H1 = Z2
7 or H1 = Z2×Z2

4 provide

the first examples of minimal regular surfaces of general type with such invariants, and

so realize at least other two new topological types.

Also the examples in Table 4.3 with K2 = 6, 7 may be, to the best of our knowledge,

new, although other surfaces with these invariants have been already constructed (see

[BCF15, Pol09, MP10, Rit07, Rit10a, Rit10b, Rit15]).

Finally, we mention an example of a minimal surfaces of general type with K2 = 7

and pg = q = 2. The first example of a minimal surface of general type with these

invariants appeared very recently ([Rit15]). By the recent paper ([PP16]) of Pignatelli

and Polizzi, this surface is indeed different from Rito’s one.
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4.6.4 Skipped cases

As mentioned, the surfaces returned by the program may not be all semi-isogenous

mixed surfaces with the required invariants, since the program is forced to skip some

types, giving rise to groups of large order. The program returns the list of these skipped

cases; the triples (type of generating vector, |G0|, K2
X) of these cases are listed in Table

4.1. For the cases pg = q 6= 0 this list is empty.

type |G0| K2
S

2, 3, 7 21168 7

2, 3, 8 6912 7

? 2, 4, 5 4800 7

2, 3, 9 3888 7

2, 3, 10 2700 7

2, 3, 7 28224 6

? 2, 3, 8 9216 6

? 2, 4, 5 6400 6

2, 3, 9 5184 6

? 2, 3, 10 3600 6

2, 3, 12 2304 6

2, 4, 6 2304 6

3, 3, 4 2304 6

2, 4, 8 1024 6

2, 3, 7 35280 5

? 2, 3, 8 11520 5

? 2, 4, 5 8000 5

2, 3, 9 6480 5

? 2, 3, 10 4500 5

2, 3, 12 2880 5

2, 4, 6 2880 5

3, 3, 4 2880 5

type |G0| K2
S

2, 3, 7 42336 4

2, 3, 8 13824 4

2, 4, 5 9600 4

? 2, 3, 9 7776 4

2, 3, 10 5400 4

2, 3, 12 3456 4

2, 4, 6 3456 4

3, 3, 4 3456 4

2, 3, 14 2646 4

2, 5, 5 2400 4

2, 3, 7 49392 3

2, 3, 8 16128 3

? 2, 4, 5 11200 3

? 2, 3, 9 9072 3

? 2, 3, 10 6300 3

2, 3, 12 4032 3

2, 4, 6 4032 3

3, 3, 4 4032 3

? 2, 5, 5 2800 3

2, 3, 18 2268 3

type |G0| K2
S

2, 3, 7 56448 2

2, 3, 8 18432 2

2, 4, 5 12800 2

2, 3, 9 10368 2

2, 3, 10 7200 2

2, 3, 12 4608 2

2, 4, 6 4608 2

3, 3, 4 4608 2

2, 3, 14 3528 2

2, 5, 5 3200 2

2, 3, 18 2592 2

2, 4, 8 2048 2

2, 3, 7 63504 1

2, 3, 8 20736 1

2, 4, 5 14400 1

2, 3, 9 11664 1

? 2, 3, 10 8100 1

2, 3, 12 5184 1

2, 4, 6 5184 1

3, 3, 4 5184 1

2, 5, 5 3600 1

2, 3, 18 2916 1

2, 4, 8 2304 1

3, 3, 5 2025 1

Table 4.1: The skipped cases for pg = q = 0 and K2 > 0

According to Conder, that listed in [Con12] the largest order of a group of automor-

phisms of a compact Riemann surface of given genus g for 2 ≤ g ≤ 301, cases marked

by ? in Table 4.1 cannot occur.
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4.6.5 Semi-isogenous Mixed Surfaces with g(C) ≤ 2: a non general

type case

By Proposition 4.12, if X := (C × C)/G is a semi-isogenous mixed surface of general

type, then g(C) ≥ 3. One may ask what surfaces arise when we consider g(C) ≤ 2. In

this section we consider a curve C and a finite group G defining an action on C × C
described by (3.2), such that the subgroup G0 acts freely on C × C. We shall remark

that under these hypotheses all the results contained in Section 4.3 hold, since they do

not depend on g(C) ≥ 2, but on the action itself.

• Suppose g(C) = 0, that is C ∼= P1. Since every automorphism of P1 has non empty

fixed locus, G0 has to be trivial and G ∼= Z2 is generated by the involution that

exchange the two coordinates. Hence X is the symmetric product (P1)(2) ∼= P2.

• Suppose g(C) = 1. By Proposition 4.24, the surfaceX = (C×C)/G has invariants

K2
X = e(X) = χ(X) = 0. By Proposition 4.21, q(X) = g(C/G0) ≤ 1; if q(X) = 0,

then pg = χ(X) − 1 = −1, therefore g(C/G0) = q(X) = 1. The quotient map

C × C → Y := (C × C)/G0 is étale, hence, arguing as in Proposition 3.21,

e(Y ) = K2
Y = χ(Y ) = 0. By Lemma 1.47, κ(Y ) = κ(C × C) = 0 and q(Y ) =

2g(C/G0) = 2. Since Y is projective, according to Enriques-Kodaira classification

(cf. Table 2.1) and by Remark 2.47, Y is an abelian surface. Looking at the fixed

locus of the involution ι : Y → Y we distinguish two cases:

(a) The fixed locus is empty, then π : Y → X is étale and, according to Table

2.1, X is a bi-elliptic surface.

(b) The fixed locus is non empty, then (cf. [Kat87, Lemma 2.3, Lemma 2.6]) the

ramification locus of π : Y → X is the union of non-singular elliptic curves

and κ(X) = −∞, whence, since X is projective, according to table 2.1 and

Remark 2.47, X is a ruled surface of genus 1.

Moreover, both cases (a) and (b) occur.

• Suppose g(C) = 2. Then, by Corollary 4.25

2χ =
1

|G0|
− δ.

By definition δ ∈ N and χ ∈ Z, therefore |G0| = 1. This means that G ∼= Z2 = 〈τ ′〉
and τ ′(x, y) = (y, x), henceX ∼= C(2), which, as we said in the proof of Proposition

4.12, is the blow up of J(C) in one point, so X is an abelian surface blown up in

a point.
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K2
X G Id(G) G0 Id(G0) g(C) Type Branch Locus B H1(X,Z) min?

8 D2,8,5 o Z2
2 64, 92 Z2

2 ×D4 32, 46 9 [0;25] ∅ Z3
2 × Z8 Yes

8 256, 3679 (Z3
2 o Z4) o Z4 128, 36 17 [0;43] ∅ Z2

2 × Z2
4 Yes

8 256, 3678 (Z3
2 o Z4) o Z4 128, 36 17 [0;43] ∅ Z2

2 × Z2
4 Yes

8 256, 3678 (Z3
2 o Z4) o Z4 128, 36 17 [0;43] ∅ Z4

2 × Z4 Yes

8 256, 3678 (Z3
2 o Z4) o Z4 128, 36 17 [0;43] ∅ Z3

4 Yes

6 Z8 o Z2
2 32,43 Z2 ×D4 16,11 9 [0; 26] (3,−8) Z2

2 × Z2
4 Yes

6 Z4
2 o Z2 32,27 Z4

2 16,14 9 [0; 26] (3,−8) Z2
2 × Z2

4 Yes

6 Z4
2 o Z2 32,27 Z4

2 16,14 9 [0; 26] (3,−8) Z3
4 Yes

6 Z7 ×D7 98,3 Z2
7 49,2 15 [0; 73] (3,−8) Z2

7 Yes

6 Z7 ×D7 98,3 Z2
7 49,2 15 [0; 73] (3,−8) Z2

7 Yes

6 Z2
4 oD4 128, 734 Z2

4 o Z2
2 64,211 17 [0; 25] (3,−8) Z2 × Z2

4 Yes

6 (Z2
2 ×D8) o Z2 128, 750 Z2

2 ×D8 64,250 17 [0; 25] (3,−8) Z2 × Z2
4 Yes

6 (Z2 ×D8) o Z2
2 128, 1797 Z2

2 ×D8 64,250 17 [0; 25] (2,−4)2 Z2 × Z2
4 Yes

2 (Z3
2 oD4) o Z2

2 256, 47930 Z4
2 oD4 128, 1135 33 [0; 25] (3,−8)3 Z3

2 × Z4 No

2 (Z2
4 o Z2

2) o Z2
2 256, 45303 Z4

2 oD4 128, 1135 33 [0; 25] (3,−8)2, (2,−4)2 Z3
2 × Z4 No

Table 4.2: pg = q = 0, K2 > 0
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K2
X G Id(G) G0 Id(G0) g(C) Type Branch Locus B H1(X,Z) galb min?

8 D2,8,5 16,6 Z2 × Z4 8,2 5 [1;22] ∅ Z4 × Z2 5 Yes

8 D2,8,3 16,8 D4 8,3 5 [1;22] ∅ Z4 × Z2 5 Yes

8 Z2
2 o Z4 16,3 Z3

2 8,5 5 [1;22] ∅ Z3
2 × Z2 5 Yes

7 Z3 oD4 24,8 D6 12,4 7 [1;22] (2,−4) Z2 × Z2 5 Yes

7 Z3 ×D4 24,10 Z2 × Z6 12,5 7 [1;22] (2,−4) Z2 × Z2 5 Yes

6 D4 8,3 Z2
2 4,2 5 [1;24] (3,−8) Z3

2 × Z2 3 Yes

6 Z3 × S3 18,3 Z2
3 9,2 7 [1;32] (3,−8) Z3 × Z2 4 Yes

6 Z8 o Z2
2 32,43 Z2 ×D4 16,11 9 [1;22] (3,−8) Z2 × Z4 × Z2 3 Yes

6 Z2
2 oD4 32,28 Z2 ×D4 16,11 9 [1;22] (2,−4)2 Z2 × Z4 × Z2 3 Yes

6 Z2
2 oD4 32,28 Z2 ×D4 16,11 9 [1;22] (3,−8) Z3

2 × Z2 3 Yes

6 Z2
4 o Z2 32,11 Z2

4 16,2 9 [1;22] (3,−8) Z2 × Z2 3 Yes

6 D8 o Z2 32,42 D4 o Z2 16,13 9 [1;22] (3,−8) Z2
2 × Z2 3 Yes

6 Z2
4 o Z2 32,31 Z2

2 o Z4 16,3 9 [1;22] (3,−8) Z2
2 × Z2 3 Yes

6 (Z2
2 × Z4) o Z2 32,30 Z2

2 o Z4 16,3 9 [1;22] (2,−4)2 Z4 × Z2 3 Yes

6 D2,8,5 o Z2 32,38 Z2 × Z8 16,5 9 [1;22] (2,−4)2 Z2 × Z2 3 Yes

6 Z4 ×D4 32,25 Z2
2 × Z4 16,10 9 [1;22] (2,−4)2 Z2

2 × Z2 3 Yes

6 (Z2
2 × Z4) o Z2 32,30 Z2

2 × Z4 16,10 9 [1;22] (3,−8) Z2
2 × Z2 3 Yes

4 S3 ×D4 48,38 Z2
2 × S3 24,14 13 [1;22] (2,−4), (4,−12) Z2

2 × Z2 3

4 D12 o Z2 48,37 Z4 × S3 24,5 13 [1;22] (2,−4), (4,−12) Z2 × Z2 3

Table 4.3: pg = q = 1, K2 ≥ 4
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K2
X G Id(G) G0 Id(G0) g(C) Type Branch Locus B H1(X,Z) galb min?

2 (Z8 o Z2
2) o Z2 64,153 D2,8,5 o Z2 32,7 17 [1;22] (3,−8), (5,−16) Z2 × Z2 3 No

2 Z8 oD4 64,150 D4 o Z4 32,9 17 [1;22] (3,−8), (5,−16) Z2 × Z2 3 No

2 Z2
2 oD8 64,147 D4 o Z4 32,9 17 [1;22] (2,−4)2, (5,−16) Z2 × Z2 3 No

2 (Z2 ×D8) o Z2 64,128 Z2 ×D8 32,39 17 [1;22] (2,−4)2, (3,−8)2 Z2 × Z2 3 No

2 QoD4 64,130 Z2 ×D2,8,3 32,40 17 [1;22] (3,−8)3 Z2 × Z2 3 No

2 D4 oD4 64,134 Z8 o Z2
2 32,43 17 [1;22] (3,−8)3 Z2 × Z2 3 No

2 (Z2 ×D4) o Z2
2 64,227 Z3

2 o Z4 32,22 17 [1;22] (3,−8)2, (2,−4)2 Z2
2 × Z2 2 No

2 (Z2 ×D4) o Z2
2 64,227 Z3

2 o Z4 32,22 17 [1;22] (3,−8)2, (2,−4)2 Z2
2 × Z2 2 No

2 Z4 o (D4 o Z2) 64,228 (Z4 o Z4)× Z2 32,23 17 [1;22] (3,−8)2, (2,−4)2 Z2
2 × Z2 2 No

2 (Z4 ×D4) o Z2 64,234 (Z4 o Z4)× Z2 32,23 17 [1;22] (3,−8)3 Z2
2 × Z2 2 No

2 (Z4 ×D4) o Z2 64,234 Z2
4 o Z2 32,24 17 [1;22] (3,−8)2, (2,−4)2 Z2

2 × Z2 2 No

2 (Z4 oQ) o Z2 64,236 Z2
4 o Z2 32,24 17 [1;22] (3,−8)3 Z2

2 × Z2 2 No

2 Z2
4 o Z2

2 64,219 Z4 ×D4 32,25 17 [1;22] (3,−8)3 Z2
2 × Z2 2 No

2 (Z2
2 oD4) o Z2 64,221 Z4 ×D4 32,25 17 [1;22] (3,−8)3 Z2

2 × Z2 2 No

2 (Z2 × Z4) oD4 64,213 Z4 ×D4 32,25 17 [1;22] (3,−8)2, (2,−4)2 Z2
2 × Z2 2 No

2 Z2
4 o Z2

2 64,206 Z4 ×D4 32,25 17 [1;22] (3,−8), (2,−4)4 Z2
2 × Z2 2 No

Table 4.4: pg = q = 1, 0 < K2 < 4
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K2
X G Id(G) G0 Id(G0) g(C) Type Branch Locus B H1(X,Z) min?

8 Z4 4,1 Z2 2,1 3 [2;-] ∅ Z2 × Z4 Yes

7 Z6 6,2 Z3 3,1 4 [2;-] (2,−4) Z4 Yes

6 D4 8,3 Z2
2 4,2 5 [2;-] (3,−8) Z4 Yes

6 D4 8,3 Z2
2 4,2 5 [2;-] (3,−8) Z2 × Z4 Yes

6 Z2 × Z4 8,2 Z4 4,1 5 [2;-] (2,−4)2 Z4 Yes

4 D6 12,4 S3 6,1 7 [2;-] (2,−4), (4,−12) Z4 = π1(X) No, K2
Xmin

= 5

2 Z2 ×D4 16,11 D4 8,3 9 [2;-] (2,−4)2, (3,−8)2 Z4 = π1(X) No, K2
Xmin

= 4

2 Z2 ×D4 16,11 D4 8,3 9 [2;-] (2,−4)2, (3,−8)2 Z4 = π1(X) No, K2
Xmin

= 4

2 D4 o Z2 16,13 Q 8,4 9 [2;-] (3,−8)3 Z4 = π1(X) No, K2
Xmin

= 4

Table 4.5: pg = q = 2, K2 > 0





Chapter 5

Minimality of Semi-isogenous

Mixed Surfaces

In this chapter we will study minimality of semi-isogenous mixed surfaces. We will

address this problem in two different ways.

In the first section we will study the bicanonical system of a semi-isogenous mixed

surface. As we saw in Section 2.7, this is strictly related to the minimality problem of a

surface: if we have a surface of general type, the number of contractions of exceptional

curves we need to perform to get the minimal model is equal to the dimension of the

first cohomology group of its bicanonical system.

In the second section, thanks to the Hodge’s Index Theorem, we will give a bound

to h1(2KX) for semi-isogenous mixed surfaces with pg = q.

5.1 The bicanonical system of a Semi-isogenous Mixed

Surface

In this section we will study the bicanonical system of a semi-isogenous mixed surface

X = (C × C)/G; namely we will prove that H1(2KX) is isomorphic to the cokernel of

the G0 invariant part of the restriction map of the global sections of the bicanonical

system of C × C to R. We will prove this result in three steps:

i. we find a relation between the bicanonical system of the semi-isogenous mixed

surface X and the one of the isogenous surface Y = (C × C)/G0;

ii. thanks to a result by Beauville, we prove that we can relate the bicanonical system

of Y to the one of C × C;
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iii. we prove some results that will allow us to displace the problem onto the curves C

and R.

5.1.1 Displacing the problem onto Y

Lemma 5.1. Let X := (C ×C)/G be a semi-isogenous mixed surface, and let σ : C ×
C → Y := (C × C)/G0 be the étale covering determined by the diagonal action. Let

T := σ(R), then h2(2KY − T ) = 0 and

χ(OY (2KY − T )) =
9(g − 1)2

|G0|
− 7δ(B).

Proof. Let us consider the exact sequence

0→ OY (2KY − T )→ OY (2KY )→ OT (2KY )→ 0

and the long exact sequence in cohomology it induces

0 → H0(2KY − T ) → H0(2KY ) → H0(2KY |T ) →
→ H1(2KY − T ) → H1(2KY ) → H1(2KY |T ) →
→ H2(2KY − T ) → H2(2KY ) → 0 .

(5.1)

Y is surface isogenous to a product, then by Theorem 3.20 it is a minimal surface of

general type, thus H1(2KY ) = H2(2KY ) = 0.

We claim that H1(2KY |T ) = 0. Let us define Ti := σ(Ri), then, if we denote by

Bi := η(Ri), by Proposition 4.17

g(Ti) = g(Bi) =
2(g − 1)

|Z(τ ′gi)|
+ 1.

Let us compute deg(2KY |Ti) = 2KY .Ti: the map σ : C × C → Y is étale and σ∗(Ti) =

Ri,1 + · · ·+Ri,Ni , with Ni = |G0|/|Z(τ ′gi)|, then

2KY .Ti =
1

|G0|
· 2KC×C .(Ri,1 + · · ·+Ri,Ni)

=
2Ni

|G0|
· 2KC×C .Ri,1

=
2Ni

|G0|
· 8(g − 1) =

16(g − 1)

|Z(τ ′gi)|
= 8(g(Ti)− 1). (5.2)

Since deg(2KY |Ti) > 2(g(Ti)−1), h1(2KY |Ti) = 0, hence h1(2KY |T ) =
∑
h1(2KY |Ti) =

0. By exactness of the sequence (5.1), H2(2KY − T ) = 0.
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By Theorem 2.19

χ(OY (2KY − T )) = χ(OY ) +
(2KY − T ).(KY − T )

2

= χ(OY ) +K2
Y +

T 2 − 3KY .T

2
. (5.3)

Since Ti’s are pairwise disjoint

T 2 − 3T.KY =

M∑
i=1

(T 2
i − 3Ti.KY ).

By Proposition 2.20 T 2
i + Ti.KY = 2(g(Ti)− 1), then by (5.2)

T 2
i − 3Ti.KY = −14(g(Ti)− 1).

This means that T 2 − 3T.KY = −14δ(B). Plugging this value in (5.3) and exploiting

Proposition 3.21, we get

χ(OY (2KY − T )) =
(g − 1)2

|G0|
+

8(g − 1)2

|G0|
− 14δ(B)

2
,

whence the thesis.

Lemma 5.2. Let X be a semi-isogenous mixed surface. Then KX +B is a big and nef

divisor on X.

Proof. Let us compute the self intersection of KX +B.

(KX +B)2 = K2
X + 2KX .B +B2

= K2
X + 12δ(B)− 4δ(B)

= 64χ(OX)− 7K2
X ,

where second and third equality hold by Remark 4.27 and Remark 4.26 respectively.

Again, by Remark 4.27, 64χ(OX)− 7K2
X = 4χ(OY ) + 3δ(B), which is strictly positive

because δ(B) ≥ 0 and χ(OY ) > 0 being Y of general type. Hence (KX +B)2 > 0.

Let D ⊂ X be an irreducible curve. First, suppose D ⊂ B, then D = Bi for some

i = 1, . . . ,M . Then by the Genus Formula (2.4) (KX + B).D = (KX + Bi).Bi =

2g(Bi)− 2 ≥ 0, where last inequality holds by Proposition 4.17. Now suppose that D

is not contained in the branch locus, then by Proposition 2.10

(KX +B).D = 1/2π∗(KX +B).π∗(D)

= 1/2(KY + T ).π∗(D).
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KY .π
∗(D) ≥ 0 because Y is a minimal surface. Since D is irreducible and it is not

contained in the branch locus of π, π∗(D) has no component in T , thus T.π∗(D) ≥ 0.

By Theorem 2.15, KX +B is a big and nef divisor.

Lemma 5.3. Let X be a semi-isogenous mixed surface. Then

h0(2KX +B) = χ(OX(2KX +B)) = χ(OX) +K2
X + 7δ(B).

Proof. By Lemma 5.2 and Theorem 2.17 h1(2KX +B) = h2(2KX +B) = 0, hence the

first equality of the statement holds. By Theorem 2.19

χ(OX(2KX +B)) = χ(OX) +
(2KX +B).(KX +B)

2

= χ(OX) +K2
X +

3KX .B +B2

2

= χ(OX) +K2
X + 7δ(B),

where last equality holds for Remark 4.27.

Proposition 5.4. Under the hypotheses of Lemma 5.1

h1(2KX) = h1(2KY − T ) and h2(2KX) = 0.

Proof. Let us consider the exact sequence

0→ OX(2KX)→ OX(2KX +B)→ OB(2KX +B)→ 0

and the exact sequence in cohomology it induces

0 → H0(2KX) → H0(2KX +B) → H0(2KX +B|B) →
→ H1(2KX) → H1(2KX +B) → H1(2KX +B|B) →
→ H2(2KX) → H2(2KX +B) → 0 .

(5.4)

By Lemma 5.2 and Theorem 2.17, H1(2KX +B) = H2(2KX +B) = 0.

Since by Proposition 4.17, Bi’s are pairwise disjoint, h1(2KX+B|B) =
∑

i h
1(2KX +B|Bi).

By Remark 4.27, we get

(2KX +B).Bi = (2KX +Bi).Bi = 8(g(Bi)− 1) > 2(g(Bi)− 1),

where last inequality since g(Bi) > 1 by Proposition 4.17. Therefore by Corollary 1.40

h1(2KX + B|Bi) = 0, hence h1(2KX + B|B) = 0. By exactness of (5.4), this implies

that H2(2KX) = 0.
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By Lemma 4.23, there exists L ∈ Pic(X) such that π∗(OY ) = OX ⊕L∗ and 2KY =

π∗(ω⊗2
X ⊗ L⊗2) = π∗(2KX +B), then by Projection Formula (2.1)

π∗(ω
⊗2
Y ) = π∗(π

∗(ω⊗2
X ⊗OX(B)))

= π∗(π
∗(ω⊗2

X ⊗OX(B))⊗OY ))

= (ω⊗2
X ⊗OX(B))⊗ (OX ⊕ L∗)

= (ω⊗2
X ⊗ L

⊗2)⊕ (ω⊗2
X ⊗ L).

Then H0(2KY ) ∼= H0(2KX +B)⊕H0(ω⊗2
X ⊗ L). By Proposition 3.23

h0(2KY ) =
9(g(C)− 1)2

|G0|
,

then by Lemma 5.3

h0(Ω⊗2
X ⊗ L) =

9(g(C)− 1)2

|G0|
− (χ(OX +K2

X + 7δ(B)).

Moreover, by Lemma 4.23, OY (T ) = π∗(L), then

ω⊗2
Y ⊗OY (−T ) = π∗(ω⊗2

X ⊗ L
⊗2)⊗ π∗(L∗)

= π∗(ω⊗2
X ⊗ L),

then

π∗(ω
⊗2
Y ⊗OY (−T )) = π∗(π

∗(ω⊗2
X ⊗ L)⊗OY )

= (ω⊗2
X ⊗ L)⊗ (OX ⊕ L∗)

= (ω⊗2
X ⊗ L)⊕ (ω⊗2

X ).

Thus h0(2KY − T ) = h0(ω⊗2
X ⊗ L) + h0(2KX), that is

h0(2KX) = h0(2KY − T )− 9(g(C)− 1)2

|G0|
+ χ(OX) +K2

X + 7δ(B),

or, equivalently, by Lemma 5.1

h0(2KX) = h1(2KY − T ) +K2
X + χ(OX).

By Theorem 2.19 χ(2KX) = χ(OX)+K2
X , and since h2(2KX) = 0 we get the thesis.

Remark 5.5. If X is a semi-isogenous mixed surface, then by Proposition 5.4 h2(2KX) =

0. By Serre’s duality (cf. Theorem 2.18) h0(−KX) = 0, i.e. the anticanonical system of

X is empty; this means that X cannot be neither a Del Pezzo surface, nor a minimal

K3 surface, nor a minimal abelian surface.
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Remark 5.6. By Proposition 5.4, the exact sequence

0 −→ H0(2KY − T ) −→ H0(2KY )
ρ̂−→ H0(2KY |T ) −→ H1(2KY − T ) −→ 0;

tells us that h1(2KX) = dim coker(ρ̂).

5.1.2 Displacing the problem onto C × C

What we have proved so far is that, in order to understand the dimension of the space

H1(2KX), we can focus on the isogenous surface Y = (C × C)/G0. What we want

to do now is to simplify further the problem displacing it onto the product of curves

C × C.

Let us first consider the exact sequence of sheaves on C × C

0 −→ IRω⊗2
C×C −→ ω⊗2

C×C −→ ω⊗2
C×C |R −→ 0,

where IR denotes the ideal defining the ramification locus R and with ω⊗2
C×C |R we

denote the quotient sheaf ω⊗2
C×C/IRω

⊗2
C×C

∼= ω⊗2
C×C ⊗OC×C OR.

It induces a long exact sequence in cohomology

0 −→ H0(2KC×C −R)
ι−→ H0(2KC×C)

ρ−→
ρ−→ H0(2KC×C |R) −→ H1(2KC×C −R) −→ 0. (5.5)

We have a natural G0−action on the sheaf ω⊗2
C×C given by pull-back: for g ∈ G0

g : H0(U, ω⊗2
C×C) −→ H0(g−1(U), ω⊗2

C×C)

ω 7−→ g∗ω

Remark 5.7. The action defined above is a right action: if g, h ∈ G0 and ω ∈ H0(U, ω⊗2
C×C),

then (gh)ω = (gh)∗ω = h∗(g∗ω) = h(gω).

Being R G0−invariant, the G0−action on ω⊗2
C×C restricts to a G0−action on the

sheaf IRω⊗2
C×C . Therefore, G acts on the quotient ω⊗2

C×C |R as well.

All of these actions naturally descend to G0−actions on the spaces of global sections

with respect to which the maps ι and ρ displayed in (5.5) are G0−equivariant. This

means that from (5.5) we get an exact sequence

0 −→ H0(2KC×C −R)G
0 ι0−→ H0(2KC×C)G

0 ρ0−→
ρ0−→ H0(2KC×C |R)G

0 −→ coker(ρ0) −→ 0, (5.6)
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where ι0 and ρ0 denotes the restriction of the maps ι and ρ respectively to the G0-

invariant subspaces of their domains.

The key result that now allow us to displace the problem from the isogenous surface

Y onto the surface C × C is Lemma 4.19.

Remark 5.8. The following commutative diagram

Y T? _
j

oo

C × C

σ

OO

R? _
ioo

σ|R

OO

induces the following commutative diagram

H0(2KY )
j∗≡ρ̂

//

σ∗

��

H0(2KY |T )

σ|∗R
��

H0(2KC×C)G
0 i∗≡ρ0

// H0(2KC×C |R)G
0

(5.7)

By Lemma 4.19, σ∗ is an isomorphism.

We will now prove some results regarding the sheaves ω⊗2
C×C and ω⊗2

C×C |R; this will

allow us to translate the problem of computing h1(2KX) into a problem concerning he

product C × C.

As we already said before, by Proposition 3.18, ωC×C ∼= π∗1ωC ⊗ π∗2ωC . Therefore

Fact 5.9. ω⊗2
C×C

∼= π∗1ω
⊗2
C ⊗ π∗2ω

⊗2
C .

Remark 5.10. The isomorphism

Φ: H0(2KC)⊗H0(2KC) → H0(2KC×C)

α⊗ β 7→ π∗1(α)⊗ π∗2(β)

induces a G0−action on H0(2KC)⊗H0(2KC). Let α⊗ β ∈ H0(2KC)⊗H0(2KC) and

h ∈ G0, then

hΦ(α⊗ β) = h(π∗1α⊗ π∗2β) = (hπ∗1α)⊗ (hπ∗2β)

= (h∗π∗1α)⊗ (h∗π∗2β)

= (π1 ◦ h)∗α⊗ (π2 ◦ h)∗β

= (h ◦ π1)∗α⊗ (ϕ(h) ◦ π2)∗β

= π∗1(hα)⊗ π∗2(ϕ(h)β).

Therefore the G0−action on H0(2KC)⊗H0(2KC) is defined as

h(α⊗ β) = (ha)⊗ (ϕ(h)β) for α⊗ β ∈ H0(2KC)⊗H0(2KC), h ∈ G0.
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Proposition 5.11. For each ramification curve Ri ⊂ C × C

ωC×C |Ri ∼= ω⊗2
Ri
.

Proof. Let πj |Ri : Ri → C for j = 1, 2 be the restriction of the projection on the first

(respectively second) coordinate on the curve Ri. In both cases πj |Ri is an isomorphism

and the sheaves (πj |Ri)∗(ωC) and ωRi are isomorphic. Therefore

ωC×C |Ri ∼= (π∗1ωC ⊗ π∗2ωC)|Ri =

= (π1|Ri)∗ωC ⊗ (π2|Ri)∗ωC ∼= ωRi ⊗ ωRi = ω⊗2
Ri
.

Corollary 5.12. There exists an isomorphism of sheaves

Q : ω⊗2
C×C |R

∼=−→ ω⊗4
R .

Remark 5.13. On the sheaf ω⊗4
R we have the natural G0−action given by pull-back;

isomorphism Q in Corollary 5.12 is G0−equivariant, i.e. for ω ∈ H0(U, ω⊗2
C×C |R) and

g ∈ G0 it holds g ·Q(ω) := Q(g · ω).

In particular

Q0 : H0(2KC×C |R)G
0 → H0(4KR)G

0

is an isomorphism.

Let us see in detail how this G0−action works on the space of global section

H0(4KR). Let ω = (ωi), η = (ηi) ∈ H0(4KR), where ωi (respectively ηi) is the compo-

nent of ω (resp. η) along the subspace H0(4KRi), let h ∈ G0 and suppose that hω = η.

Then ηi = h∗(ω%(h)(i)), where % : G → SN is the homomorphism defined in Definition

4.16.

Lemma 5.14. The map σ|∗R : H0(2KY |T )→ H0(2KC×C |R)G
0

is an isomorphism.

Proof. The map σ|∗R is injective, then it is sufficient to prove that h0(2KY |T ) =

dim(H0(2KC×C |R)G
0
) to get the thesis.

Let us first compute h0(2KY |T ) =
∑
h0(2KY |Ti). Using the same arguments we

used in Lemma 5.1 and by Theorem 1.39

h0(2KY |Ti) = χ(2KY |Ti) = 8(g(Ti)− 1)− (g(Ti)− 1) = 7(g(Ti)− 1),

therefore h0(2KY |T ) = 7δ(B).
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By Lemma 4.19 σ|∗R : H0(4KT )→ H0(4KR)G
0

is an isomorphism. Again, since Ti’s

are pairwise disjoint, h0(4KT ) =
∑
h0(4KTi);

deg(4KTi) = 8(g(Ti)− 1) > 2(g(Ti)− 1),

therefore by Corollary 1.40, h1(4KTi) = 0. Hence, by Theorem 1.39

h0(4KTi) = 8(g(Ti)− 1)− (g(Ti)− 1) = 7(g(Ti)− 1),

finally by Remark 5.13

dim(H0(2KC×C |R)G
0
) = dim(H0(4KR)G

0
) = h0(4KT ) = 7δ(B).

Theorem 5.15. Let ρ0 : H0(2KC×C)G
0 → H0(2KC×C |R)G

0
be the restriction map

described in (5.6), then h1(2KX) = dim coker(ρ0).

Proof. By Remark 5.8 and Lemma 5.14, we get the following commutative diagram

0

��

0

��

H0(2KY )
ρ̂

//

σ∗

��

H0(2KY |T )

σ|∗R
��

H0(2KC×C)G
0 ρ0

//

��

H0(2KC×C |R)G
0

��

0 0

Let a ∈ Im(ρ0); being σ|∗R an isomorphism there exists a unique b ∈ H0(2KY |T ) such

that σ|∗R(b) = a. Let a′ ∈ H0(2KC×C)G
0

such that ρ0(a′) = a; since σ∗ is an isomor-

phism there exists a unique b′ ∈ H0(2KY ) such that σ∗(b′) = a′. By commutativity

of the diagram, and uniqueness of b and b′, ρ̂(b′) = b. This means that Im(ρ̂) and

Im(ρ0) are isomorphic via σ|∗R, therefore coker(ρ̂) ∼= coker(ρ0). By Remark 5.6 we get

the thesis.

5.1.3 Displacing the problem onto C

The last move is to displace the problem onto C, using Remark 5.10 and Corollary

5.12. Composing the map Φ, the restriction map ρ : H0(2KC×C)→ H0(2KC×C |R) and

Q we get the map

Ψ: H0(2KC)⊗H0(2KC) −→ H0(4KR),
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which is defined in the following way: let α⊗β ∈ H0(2KC)⊗H0(2KC), then Ψ(α⊗ β)i,

that is the component of Ψ(α⊗ β) along the subspace H0(4KRi) is

Ψ(α⊗ β)i = (π1|Ri)∗α · (π2|Ri)∗β

= (π1|Ri)∗α · (τ ′gi ◦ π1|Ri)∗β

= (π1|Ri)∗α · (π1|Ri)∗(τ ′giβ)

= (π1|Ri)∗(α · (τ ′giβ)), (5.8)

where · denotes the multiplication in the canonical ring.

Using the properties of Φ, ρ and Q, it is clear that Ψ is G0−equivariant, therefore

we can restrict Ψ to the G0−invariant subspace, eventually getting

Ψ0 : (H0(2KC)⊗H0(2KC))G
0 → H0(4KR)G

0
.

Being Ψ and Q two isomorphisms, coker(ρ0) ∼= coker(Ψ0).

We can summarise all of these results in the following theorem, which exploits

Theorem 5.15 too.

Theorem 5.16. Let Ψ: H0(2KC)⊗H0(2KC)→ H0(4KR) be the map defined on the

decomposable tensors as

Ψ(α⊗ β)i := (π1|Ri)∗(α · (τ ′giβ)),

where Ψ(α⊗ β)i denotes the component of Ψ(α⊗ β) along H0(4KRi).

Let g ∈ G0 and α⊗ β ∈ H0(2KC)⊗H0(2KC); the map

α⊗ β 7→ (gα)⊗ (ϕ(g)β)

defines a G0−action on H0(2KC)⊗H0(2KC).

Let h ∈ G0 and ω := {ωi} ∈ H0(4KR), where ωi denotes the component of ω along

H0(4KRi); the map

{ωi} 7→ {(h∗(ω%(h)(j)))j},

where % is the homomorphism defined in Definition 4.16, gives a G0−action on H0(4KR).

Respect to these actions the map Ψ is G0−equivariant, and restricts to a map

Ψ0 : (H0(2KC)⊗H0(2KC))G
0 → H0(4KR)G

0
.

Moreover, h1(2KX) = dim coker(Ψ0).
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Remark 5.17. Since Ψ is G0−equivariant, it respects the decompositions in irreducible

characters both of domain and codomain. Therefore, if for any χ ∈ (G0)∗ irreducible

character of G0, we consider the restriction of Ψ to the subspace corresponding to χ,

i.e.

Ψχ : (H0(2KC)⊗H0(2KC))χ → H0(4KR)χ,

it holds

coker(Ψ) ∼=
⊕

χ∈(G0)∗

coker(Ψχ).

Therefore, by Proposition 5.16

h1(2KX) ≤ dim coker(Ψ), (5.9)

this means that surjectivity of Ψ is a sufficient condition for the vanishing of h1(2KX).

5.2 Minimality of Semi-isogenous Mixed Surfaces with ir-

reducible ramification locus

The results proved in previous sections gives a very concrete way to prove minimality

of a semi-isogenous mixed surface. In this section we see an application of these results;

we will prove that if X := (C×C)/G is a semi-isogenous mixed surface of general type

and the ramification locus R consists in only one curve, then X is minimal.

Proposition 5.18. Let X = (C × C)/G be a semi-isogenous mixed surface. If the

ramification locus R of the quotient map η : C × C → X is irreducible, then

• if g(C) ≥ 3 then h1(2KX) = 0;

• if X is of general type, then it is minimal.

Proof. By Proposition 4.13, the ramification locus R is irreducible if and only if O2 has

only one element. Since X is a semi-isogenous mixed surface, in Theorem 3.12 we can

take τ ′ ∈ O2, then R = ∆ := {(x, x) : x ∈ C}.
According to Proposition 5.16, the cohomology group H1(2KX) is trivial if and only

if the map Ψ0 : (H0(2KC)⊗2)G
0 → H0(4KR)G

0
is surjective.

Let us denote by p : ∆ → C the projection on the first coordinate. Let α ⊗ β in

H0(2KC)⊗H0(2KC), then by definition (cf. Theorem (5.16))

Ψ(α⊗ β) = p∗(α · β). (5.10)
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We will prove that Ψ is surjective; as stated in Remark 5.17, this implies surjectivity

of Ψ0.

Suppose g(C) ≥ 3, then by Theorem 1.48 and Proposition 1.49, the canonical ring

R(C) is generated either in degree 1 if C is not hyperelliptic or in degree 2 if C is

hyperelliptic; in both cases multiplication map · : H0(2KC) ⊗H0(2KC) → H0(4KC)

is surjective. Since the map p∗ : H0(4KC)→ H0(4KR) is an isomorphism, surjectivity

of Ψ follows.

By inequality (5.9), h1(2KX) = 0.

If X is of general type, X is minimal by Proposition 2.58.

Proposition 5.18 gives a new proof for the following well known result.

Corollary 5.19. Let C be a curve of genus g := g(C) ≥ 3, then the symmetric product

C(2) is a minimal surface of general type.

Proof. By definition C(2) := (C × C)/Z2, where Z2 = 〈τ ′〉 is generated by the switch

of the two coordinates. By Proposition 4.24

K2
C(2) = (g − 1)(4(g − 1)− 5).

For g ≥ 4 K2
C(2) > 9, hence by Theorem 2.46 C(2) is of general type.

The only case we miss is g = 3; in this case K2
C(2) = 6, then it is either rational or

of general type. Being G0 trivial, by Proposition 4.21 q(C(2)) = g(C/G0) = g(C) = 3,

therefore it is of general type.

The ramification locus of the quotient map C × C → C(2) consists in the diagonal

∆ := {(x, x) : x ∈ C}, therefore, by Proposition 5.18, C(2) is minimal.

Remark 5.20. By Proposition 5.18, the only semi-isogenous mixed surface with K2 = 7

and pg = q = 2 listed in Table 4.5 is minimal, since |O2| = 1.

5.3 Minimality of Semi-isogenous Mixed Surfaces with

χ = 1

In this section we compute a bound for h1(2KX) of a semi-isogenous mixed surface X

with χ(OX) = 1. First of all we will determine a bound for the number of points in

the intersection between the branch locus B of the quotient map η : C × C → X and

the possible exceptional curves on X. Then, using the Hodge’s Index Theorem, we will

see how this result provides a first answer to the minimality problem of semi-isogenous

mixed surfaces with χ(OX) = 1 and K2
X > 0.
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Remark 5.21. Let D be a (possibly singular) irreducible curve on Y . Let D̃ be the

normalization of D: there exists a proper map ν : Ỹ → Y consisting of a finite number

of blow-ups such that the strict transform D̃ of D is smooth (see [BHPV04, Theorem

II.7.1]). We have the following commutative diagram

C × C

σ

��

(C × C)×Y Ỹ
γ1
oo

γ2
��

Y Ỹ
νoo

(5.11)

where (C × C)×Y Ỹ denotes the fibre product and γ1 and γ2 the natural projections;

the map γ2 is étale because σ is étale. Let D′ be an irreducible component of γ−1
2 (D̃),

its image γ1(D′) is a curve in C × C, and therefore surjects onto C, whence g(D′) ≥
g(C) ≥ 2. Since γ2 is étale, and D′ and D̃ are both smooth, we deduce that g(D̃) ≥ 2.

Let E be a smooth rational curve on X. If E ∩B = ∅, then there exists a rational

curve in π−1(E) ⊂ Y , contradicting Remark 5.21. By Proposition 4.17, B is finite

union of disjoint curves of genus strictly greater than 1, hence E and B meet in a finite

number of points. We split these points in two sets accordingly to the parity of their

intersection multiplicity:

A0 := {p ∈ E ∩B : mp(E ∩B) is even},
A1 := {p ∈ E ∩B : mp(E ∩B) is odd},

where mp(E ∩ B) denotes the intersection multiplicity of E and B in p. We define

µ0 := |A0|, µ1 := |A1| and µ := µ0 + µ1 = |E ∩B|.

Lemma 5.22. Let X := (C ×C)/G be a semi-isogenous mixed surface and let E ⊂ X
be a smooth rational curve. Then µ1 is even and µ1 ≥ 6.

Proof. Let D := π−1(E) ⊂ Y . Being π a double cover, by Riemann-Hurwitz’s formula

(1.2) e(D) = 2e(E) − µ = 4 − µ. The map π|D : D → E is finite of degree 2. In

particular, if D is reducible, D = D1 +D2 with π|Di : Di → E biregular, contradicting

Remark 5.21. So D is irreducible.

Let T := π−1(R) ⊂ Y ; since π is a local isomorphism out of T , the singularities of

D lie on T . Let us fix p ∈ E ∩B, and suppose mp(E ∩B) = k, then we can take local

coordinates (x, y) centred in p such that B = {x = 0} and E = {x = yk}. Denoting

by (z, w) local coordinates centred in p′ = π−1(p), the local expression of the map

π : Y → X is (z, w) 7→ (z2, w): T = {z = 0} and D = {z2 = wk}. This means that p′

is a singular point if and only if k ≥ 2.
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As we saw in Section 2.3, the blow-up of Y in p′ is given on a chart (say V1) by

(x1, y1) 7→ (x1y1, y1), and on the other chart (say W1) by (u1, v1) 7→ (u1, u1v1) and the

glueing V1 → W1 is given by (x1, y1) 7→ (x1y1, x
−1
1 ). So the strict transform D1 of D

on V1 is {x2
1 = yk−2

1 }, while on W1 is given by {uk−2
1 vk1 = 1}.

If k − 2 ≥ 2 then D1 has a singular point and we blow up again, otherwise D1 is

smooth and we stop. According to the parity of k, we get eventually either x2
n = 1 or

x2
n = yn; thus, if k is even there are two points on the strict transform Dn lying over p′,

otherwise there is only one point over p′. Repeating this process for each singular points

of D, we get that for the normalization D̃ of D it holds e(D̃) = e(D) + µ0 = 4 − µ1,

whence 2 − 2g(D̃) = 4 − µ1, i.e. µ1 = 2g(D̃) + 2 ≥ 6, where the inequality follows by

Remark 5.21.

Proposition 5.23. Let X := (C×C)/G be a semi-isogenous mixed surface and E ⊂ X
be a smooth rational curve. Then E.B is even and E.B ≥ 6.

Proof. Being

E.B =
∑

p∈E∩B
mp(E ∩B) =

∑
p∈A0

mp(E ∩B) +
∑
p∈A1

mp(E ∩B),

by Lemma 5.22, we get the claim.

We recall the following.

Theorem 5.24 (Hodge Index Theorem, cf. [BHPV04, Corollary IV.2.16]). Let S be a

smooth surface, NS(S) be its Neron-Severi group and consider NS(S) ⊗Z R endowed

with the quadratic form induced by the intersection product. Let D be a divisor on

S with D2 > 0. Then the intersection product is negative definite on the orthogonal

complement D⊥ of D in NS(S)⊗Z R.

For a divisor D on S, we denote by [D] its class in the vector space NS(S)⊗Z R.

Lemma 5.25 (cf. [BP12, Remark 4.3]). On a smooth surface S of general type every

irreducible curve C with KS .C ≤ 0 is smooth and rational.

Theorem 5.26. Let X be a semi-isogenous mixed surface of general type and suppose

that χ(OX) = 1. If K2
X ≥ 6, then X is minimal. If 1 ≤ K2

X ≤ 5, then

h1(2KX) ≤
⌊

7−K2
X

2

⌋
.
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Proof. Let us denote by Xmin the minimal model of X, then by Proposition 2.58,

h1(2KX) = K2
Xmin

−K2
X . Let us then compute the number of blow downs we have to

perform in order to obtain the minimal model of X.

Let E1 ⊂ X be a (−1)-curve. By Lemma 5.25, E1 is smooth, hence by Propo-

sition 5.23 n1 := E1.B ≥ 6. Let W be the subspace of NS(X) ⊗Z R generated by

[KX ], [B], [E1]. The matrix of the quadratic form induced by the intersection product

on W , by Remark 4.26 and Remark 4.27, is

M1 :=

 K2
X KX .B KX .E1

KX .B B2 E1.B

KX .E1 E1.B E2
1

 =

 K2
X 6(8−K2

X) −1

6(8−K2
X) −4(8−K2

X) n1

−1 n1 −1


it has determinant detM1 = −K2

Xn
2
1 − 12(8 − K2

X)n1 + 4(8 − K2
X)(73 − 8K2

X). As

quadratic polynomial in n1, detM1 has roots (x1 ≤ x2):

x1,2 =
−6(8−K2

X)±
√

36(8−K2
X)2 +K2

X(8−K2
X)(73− 8K2

X)

K2
X

.

and it is easy to see that x1 ≤ 0 ≤ x2. Since K2
X > 0, by Theorem 5.24 we have

detM1 ≥ 0, and the leading coefficient −K2
X is negative hence 6 ≤ n1 ≤ bx2c. For

K2
X > 0, the round-down of x2 is:

K2
X 8 7 6 5 4 3 2 1

bx2c 0 2 4 6 8 10 13 17
(5.12)

For K2
X ∈ {6, 7, 8}, it holds bx2c < 6, a contradiction, whence there are no (−1)-curves

on X.

Assume now K2
X < 6 and assume there exists another rational curve E2 ⊂ X such

that either E2
2 = −2 and E1.E2 = 1 or E2

2 = −1 and E1.E2 = 0. Up to change E2 with

E1 + E2, the matrix of the intersection form for [K], [B], [E1], [E2] is

M2 :=


K2
X KX .B KX .E1 KX .E2

KX .B B2 E1.B E2.B

KX .E1 E1.B E2
1 E1.E2

KX .E2 E2.B E1.E2 E2
2

 =


K2
X 6(8−K2

X) −1 −1

6(8−K2
X) −4(8−K2

X) n1 n2

−1 n1 −1 0

−1 n2 0 −1

 ,

where n2 := E2.B ≥ 6.

It has detM2 = n2
2(1 +K2

X) + n2(12(8−K2
X)− 2n1) + n2

1(1 +K2
X) + 12n1(8−K2

X) +

8(8−K2
X)(4K2

X − 37).

As quadratic polynomial in n2, detM2 has roots y1 ≤ y2.
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Since K2
X > 0, by Theorem 5.24 we have detM2 ≤ 0, and the leading coefficient

1 + K2
X is positive hence 6 ≤ n2 ≤ by2c. For 6 > K2

X > 0, and n1 ≥ 6, even (Lemma

5.25) and bounded from above by the value in (5.12), y1 is negative and the round-down

of y2 is:

K2
X 5 4 3 2 1

n1 6 6 8 6 8 10 6 8 10 12 6 8 10 12 14 16

by2c −2 3 −2 6 4 0 9 7 5 1 12 11 9 7 4 −1

For K2
X ∈ {4, 5}, it holds by2c < 6, a contradiction, whence there is at most one

(−1)-curves on X.

Arguing in the same way, one proves the statements in the remaining cases: K2
X ∈

{1, 2, 3}.

Thanks to Theorem 5.26 and some ad hoc arguments, we are able to determine for

most of the surfaces listed in Table 4.2, Table 4.3, Table 4.4 and Table 4.5 whether

they are minimal or not.

5.3.1 The cases pg(X) = q(X) = 2 and K2
X = 2

Let X be a semi-isogenous mixed surface of general type with K2
X = 2 and pg(X) =

q(X) = 2. By Debarre’s inequality (cf. Theorem 2.62), for a minimal irregular surface

of general type S it holds K2
S ≥ 2pg(S), thus X is not minimal and K2

Xmin
≥ 4, i.e. we

need to contract at least two (−1)-curves.

On the other side, by Theorem 5.26 we can contract at most two (−1)-curves.

Therefore the minimal model Xmin of X has K2
Xmin

= 4.

5.3.2 The case pg(X) = q(X) = 2 and K2
X = 4

Let X := (C × C)/G be a semi-isogenous mixed surface with K2
X = 4 and pg(X) =

q(X) = 2. The surface X is of general type and, according to Table 4.5, C is a curve

of genus 7, G0 ∼= S3 and G ∼= S3 × Z2: Z2 acts on C × C exchanging the factors.

By Theorem 5.26, X contains at most one (−1)-curve. We explicitly construct a

(−1)-curve on X, thus Xmin has K2
Xmin

= 5.

By Proposition 4.21, C ′ := C/G0 is a curve of genus 2: it is hyperelliptic. Let

f ′ : C ′ → C ′ be the hyperelliptic involution and c : C → C ′ the projection. According

to [Acc94, Corollary 2], f ′ lifts to an automorphism f ∈ Aut(C), i.e. f satisfies c(f(p)) =

f ′(c(p)) for all p ∈ C.

By the uniqueness of the lift, faf ∈ S3 for all a ∈ S3; in particular f2 ∈ S3 and
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S3 / H := 〈S3, f〉 < Aut(C) with H of order 12. The map C → C/H ∼= P1 ramifies

in 36 points, each one of them with stabilizer generated by an element of order 2 in

H \ S3. Let T := {pi}i=1,...,36 be the ramification locus of C → C/H.

Since Aut(S3) = Inn(S3), there exists a unique f̄ ∈ H \ S3 such that ϕ̄(g) :=

f̄gf̄−1 = ϕ(g) for all g ∈ S3. Let Γ := {(x, f̄x) : x ∈ C} ⊂ C × C be the graph of

f̄ . A direct computation shows that the curve Γ is G-invariant. Let Γ̃ := η(Γ) ⊂ X

; the ramification locus of the map η|Γ : Γ → Γ̃ is {(f̄p, f̄2p) : p ∈ T}, and each

ramification point has stabilizer of order 2 generated by an element of G \G0, then, by

Riemann-Hurwitz’s formula (1.2),

12 = 2g(Γ)− 2 = 12(2g(Γ̃)− 2) + 36,

that is g(Γ̃) = 0. The canonical divisor KC×C is numerically equivalent to

2(g(C)− 1)F1 + 2(g(C)− 1)F2 = 12F1 + 12F2 ,

where F1, F2 denote a general fibre of the projections on the first and on the second

coordinate respectively, then KC×C .Γ = 24. By the adjunction formula

Γ2 = 2g(Γ)− 2−KC×C .Γ = −12 .

Finally, since η∗(Γ̃) = Γ, by Proposition 2.10 Γ2 = η∗(Γ̃)2 = deg η · Γ̃2 then Γ̃2 = −1.

5.3.3 The cases pg(X) = q(X) = 0 and K2
X = 2

Let S be a numerical Campedelli surface, that is a minimal surface of general type with

K2 = 2 and pg = 0; it is known (cf. [Rei]) that its algebraic fundamental group πalg1 (S)

is a finite group of order ≤ 9. As remarked in [BCP11, Section 2.1] (see also [PPS13]),

if H1(S,Z) is finite, it is isomorphic to the abelianization of πalg1 (S) and so it has order

≤ 9.

Let X be one of the surfaces in Table 4.2 with K2
X = 2. The order of H1(X,Z) is

32; by the above argument, X is not minimal.

5.3.4 The cases pg(X) = q(X) = 1 and K2
X = 2

By [Cat81], the minimal surfaces of general type with pg = q = 1 and K2 = 2 form

a connected component in the moduli space: the Albanese map of these surfaces is a

genus 2 fibration, and their fundamental group is isomorphic to Z2 (cf. [FP15]). We

conclude that the surfaces in Table 4.4 with K2 = 2 are not minimal.





Appendix A

The Classification Algorithm

// Input: K^2, p_g and q

//

// Step 1: the types

//

// Once we fix K^2, p_g and q there are finitely many possible

// signatures satisfying all the condition of the Proposition 5.1.

//

// We will represent a signature as the multiset of

// positive integers {* m_i *}.

// We define the invariants Theta and Beta:

Theta:=function(q, sig)

a:=2*q-2;

for m in sig do a+:=(1-1/m); end for;

return a;

end function;

Beta:=func<K, chi, T | 2*(10*chi-K)/T>; // it coincides with g(C)-1

// These two transform a multiset, resp. a tuple into a sequence

MsetToSeq:=function(mset)

seq:=[ ];

103
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while #mset ne 0 do Append(~seq, Minimum(mset));

Exclude(~mset, Minimum(mset)); end while;

return seq;

end function;

TupleToSeq:=function(tuple)

seq:=[ ];

for el in tuple do Append(~seq,el); end for;

return seq;

end function;

// The input of the next program are 3 numbers, Length, HB and n

//and its output are all types with #type=Length such that

// each m_i is smaller than HB and it divides n;

CandTypes:=function(Length,HB,n)

D:={x: x in Divisors(n) | x in {2..HB}};

//divisors of n smaller than HB and different from 1

Types:=Multisets(D, Length);

return Types;

end function;

// The function ListTypes calculate all the types giving the

// expected value of beta (=2*(10*chi-Ksquare)/Theta).

ListOfTypes:=function(Ksquare,pg, q, beta)

list:={}; chi:=1+pg-q;

N:=IntegerRing()!(beta*(8*chi-Ksquare)/(10*chi-Ksquare)); // N is |O_2|

ordG0:=IntegerRing()!( (beta^2)/(10*chi-Ksquare));

if q eq 0 then Rmin:=3;

elif q eq 1 then Rmin:=1;

else Rmin:=0;

end if;
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Rmax:=Floor((4*(10*chi-Ksquare)/beta)+4*(1-q));

for R in [Rmin..Rmax] do

M:=Max(1/6,(R-3+4*q)/2);

HB:= Min({beta, Floor( (1+2*(10*chi-Ksquare) )/M ) });

if N gt 0

then HB:=Min({beta, N, Floor(ordG0/N), Floor((1+2*(8*chi-Ksquare))/M)});

end if;

for cand in CandTypes(R,HB,GCD({N, beta, ordG0}) ) do

T:=Theta(q,cand);

if T eq 2*(10*chi-Ksquare)/beta then

Include(~list, MsetToSeq(cand) cat [ordG0] );

end if;

end for; end for;

return list;

end function;

// ListTypes returns, for given K^2, p_g and q,

// all the possible types (using ListOfTypes) (see Proposition 5.1)

ListTypes:=function(Ksquare, pg,q)

List:=[ ]; chi:=1-q+pg;

if q eq 0 then Tmin:=1/42;

elif q eq 1 then Tmin:=1/2;

else Tmin:=2*q-2;

end if;

BetaMax:=Floor(Beta(Ksquare,chi,Tmin));

for beta in [BetaMax.. 1 by -1] do
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N:=beta*(8*chi-Ksquare)/(10*chi-Ksquare);

ordG0:= (beta^2)/(10*chi-Ksquare);

if IsIntegral(N) and IsIntegral(ordG0) and (N le ordG0) then

for T in ListOfTypes(Ksquare, pg,q, beta) do

Append(~List,T );

end for;

end if; end for;

return List;

end function;

//

// Step 2: admissible groups G^0

//

// Fixed K^2, p_g, q, and the type, we can compute the order

//of the group G^0. We search among the

//group of order |G^0| which groups

// have a generating vector of the prescribed type.

ElsOfOrd:=func<group, order | {g: g in group| Order(g) eq order}>;

// TuplesOfGivenOrder creates a sequence of length equal to

// the length of the input sequence type plus 2*q,

//whose entries are subsets of the group in

// the input, and precisely the subsets of elements of order

// the corresponding entry of type and 2*q copies of the whole group.

TuplesOfGivenOrders:=function(group,q,type)

SEQ:=[ ];

for i in [1..2*q] do Append(~SEQ,Set(group)); end for;

for i in [1..#type] do

if IsEmpty(ElsOfOrd(group,type[i])) then return [ ];

else Append(~SEQ,ElsOfOrd(group,type[i]));

end if;end for;
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return SEQ;

end function;

/// This script returns all the generating vector

// for a group isomorphic to H < G of prescribed type.

VectGens:=function(G, H, q, type: OnlyExistence:= false)

Vect:={}; SetCands:=TuplesOfGivenOrders(G,q,type);

if not IsEmpty(SetCands) then

if #type ne 0 then

Prune(~SetCands);

else type:=[1];

end if;

cands:= CartesianProduct(SetCands);

for cand in cands do m:=Id(G);

for i in [1..q] do m:=m*(cand[2*i-1]^-1, cand[2*i]^-1); end for;

for i in [1..#type-1] do m:=m*cand[2*q+i]; end for;

if Order(m) eq type[#type] then

S:=sub<G|TupleToSeq(cand)>;

if #S eq #H then

if #H eq #G then

Include(~Vect, Append(TupleToSeq(cand),(&*cand)^-1));

if OnlyExistence then return true; end if;

elif CanIdentifyGroup(#H) then

if IdentifyGroup(S) eq IdentifyGroup(H) then

Include(~Vect, Append(TupleToSeq(cand),(&*cand)^-1));

if OnlyExistence then return true;end if;

end if;

else

if IsIsomorphic(S, H) then

Include(~Vect, Append(TupleToSeq(cand),(&*cand)^-1));

if OnlyExistence then return true;end if;

end if;

end if; end if; end if; end for; end if;
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if OnlyExistence then

return false;

end if;

return Vect;

end function;

// The following function are use to construct the "Hurwitz moves".

// These moves are described in [Pen15].

// The next script takes a sequence of elements of a group

// and a further element g and conjugates each element

// of the sequence with g.

Conjug:=function(seq,el)

output:=[];

for h in seq do Append(~output,h^el); end for;

return output;

end function;

HurwitzMove0:= func<seq,idx|Insert(Remove(seq,idx),idx+1,

seq[idx]^seq[idx+1])>;

// HurwitzOrbit0, starting from a sequence of elements of a group,

// creates all sequences of elements which are equivalent to

// the given one for the equivalence relation generated

// by the Hurwitz moves of type (0; m_1,..., m_r),

// and return (to spare memory) only the ones whose entries have never

// decreasing order.

HurwitzOrbit0:=function(seq)

orb:={ }; shortorb:={ }; Trash:={ seq };

repeat

ExtractRep(~Trash,~gens); Include(~orb, gens);

for k in [1..#seq-1] do

newgens:=HurwitzMove0(gens,k);
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if newgens notin orb then

Include(~Trash, newgens);

end if; end for;

until IsEmpty(Trash);

for gens in orb do test:=true;

for k in [1..#seq-1] do

if Order(gens[k]) gt Order(gens[k+1]) then test:=false; break k;

end if; end for;

if test then Include(~shortorb, gens); end if;

end for;

return shortorb;

end function;

// The next one create the Hurwitz move of type (1; m)

HurwitzMove1N:=function(seq)

moves:={};

t1:=[seq[1],seq[2]*seq[1], seq[3]];

Include(~moves,t1);

t2:=[seq[1]*seq[2]^-1,seq[2], seq[3]];

Include(~moves,t2);

return moves;

end function;

// This one, starting from a sequence of elements of a group,

// creates all sequences of elements which are equivalent

// to the given one for the equivalence relation generated

// by the Hurwitz moves of type (1; m).

HurwitzOrbit1N:=function(seq)

orb:={}; Trash:={ seq };

repeat

ExtractRep(~Trash,~gens); Include(~orb, gens);

for newgens in HurwitzMove1N(gens) do

if newgens notin orb then Include(~Trash, newgens);

end if; end for;
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until IsEmpty(Trash);

return orb;

end function;

// The next one create the Hurwitz move of type

//(g’; m_1, ..., m_r), with g’>1 or g’>0 and r>1.

HurwitzMoveGen:=function(h,seq)

moves:={};

fund:=[seq[i]: i in [1..2*h]];

ram:=[seq[i]: i in [2*h+1.. #seq] ];

//Type 1-2, t_j, t_(\delta_j)

for j in [1.. h] do

t1:=seq; t2:=seq;

t1[2*j-1]:=seq[2*j-1]*(seq[2*j]^-1);

t2[2*j]:=seq[2*j]*seq[2*j-1];

Include(~moves, t1);Include(~moves, t2);

end for;

//Type 3, t_(\sigma_h)

for h in [1.. #ram -1] do

t3:=fund cat (HurwitzMove0(ram, h) );

Include(~moves, t3);

end for;

//Type 4, t_(\tau_k)

for k in [1.. h-1] do

x:=(seq[2*k]^-1) * seq[2*k+1] * seq[2*k+2] *(seq[2*k+1]^-1) ;

t4:=seq;

t4[2*k-1]:=seq[2*k-1]*(x^-1);

t4[2*k]:=x*seq[2*k]*(x^-1);
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t4[2*k+1]:=x*seq[2*k+1];

Include(~moves, t4);

end for;

//Type 5-6, t_(\xi^1_j,d), t_(\xi^2_j,d)

for j in [1..h] do

for d in [1..#ram] do

u:=seq[1]*(seq[1]^-1);

for k in [1..j-1] do

u:= u* (seq[2*k-1]*seq[2*k]*(seq[2*k-1]^-1)*(seq[2*k]^-1) );

end for;

s:=seq[1]*(seq[1]^-1);

for z in [2*h+d+1..#seq] do s:=s*seq[z]; end for;

c:=(u^-1)*(seq[#fund+ d])*u;

e:= u *seq[2*j-1]*seq[2*j]*(seq[2*j-1]^-1) *(u^-1);

f:=u*(seq[2*j-1]*seq[2*j]*(seq[2*j-1]^-1)*

(seq[2*j]^-1))*(seq[2*j-1]^-1)*(u^-1);

t5:=seq; t6:=seq;

t5[2*j-1]:= c*seq[2*j-1];

t5[2*h+d]:= seq[2*h+d]*s*e*seq[2*h+d]*(e^-1)*(seq[2*h+d]^-1)*(s^-1);

t6[2*j]:= (seq[2*j-1]^-1)*c*seq[2*j-1]*seq[2*j];

t6[2*h+d]:= seq[2*h+d]*s*f* seq[2*h+d]*(f^-1)*( seq[2*h+d]^-1)*(s^-1);

Include(~moves, t5);Include(~moves, t6);

end for;end for;

return moves;
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end function;

// This one, starting from a sequence of elements of a group,

// creates all sequences of elements which are equivalent

// to the given one for the equivalence relation

// generated by the Hurwitz moves of type (g’; m_1, ..., m_r),

// with g’>1 or g’>0 and r>1.

HurwitzOrbitGen:=function(h,seq)

orb:={}; Trash:={ seq };

repeat

ExtractRep(~Trash,~gens); Include(~orb, gens);

for newgens in HurwitzMoveGen(h,gens) do

if newgens notin orb then Include(~Trash, newgens);

end if; end for;

until IsEmpty(Trash);

return orb;

end function;

HurwitzOrbit:=function(h,type,seq)

orb:={};

// type (0; m_1,..., m_r)

if h eq 0 then

orb:=HurwitzOrbit0(seq);

// type (1; m)

elif h eq 1 and #type eq 1 then

orb:=HurwitzOrbit1N(seq);

// type (g’; m_1, ..., m_r),

else

orb:=HurwitzOrbitGen(h,seq);

end if;

return orb;

end function;

// End of Hurwitz moves
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// ClassVectGenscomputes all possible generating vectors

// for a group isomorphic to H < G of prescribed type and

// return only one representative for each orbit

// of the equivalence relation generated by the Hurwitz moves

ClassVectGens:=function(G,H,h, type)

Repres:={}; Vects:=VectGens(G,H,h, type);

while not IsEmpty(Vects) do

v:=Rep(Vects);

Include(~Repres,v);

orb:=HurwitzOrbit(h,type,v);

for v1 in orb do

for g in G do w1:=Conjug(v1,g);

Exclude(~Vects, w1);

end for;end for;

end while;

return Repres;

end function;

// If a group has a generating vector of the right

// type before to look for an extension, we check

// if the group has a disjoint pair of generating vectors.

// If this is not the case surely a generating vector

// and its conjugation by tau’ are not disjoint and Y is not smooth.

DisjGV:=function(H,q,gens1,gens2)

test:=true;

for i in [2*q+1..#gens1] do gen1:=gens1[i];

for j in [2*q+1..#gens2] do gen2:=gens2[j];

for d1 in [1..Order(gen1)-1] do

for d2 in [1..Order(gen2)-1] do

if IsConjugate(H,gen1^d1,gen2^d2) then

test:=false; break i;
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end if;

end for; end for; end for; end for;

return test;

end function;

// These function checks if a group has a disjoint pair of

// generating vectors

ExistDisjointVectGens:=function(groupH,q,type)

s:=SetToSequence(ClassVectGens(groupH,groupH,q,type));

c:=1; test:= false;

for i in [1..#s] do gens1:=s[i];

for j in [c..#s] do gens2:=s[j];

if DisjGV(groupH,q, gens1, gens2) then

test:=true; break i;

end if; end for; c+:=1; end for;

return test;

end function;

// Orbifold builds the orbifold surface group

// of the signature given by q and seq

Orbifold:=function(q,seq)

F:=FreeGroup(2*q+#seq); G:=Id(F); Rel:={};

for i in [1..q] do G:=G*(F.(2*i-1)^-1,F.(2*i)^-1);

end for;

for i in [1..#seq] do G:=G*F.(2*q+i); Include(~Rel,F.(2*q+i)^(seq[i]));

end for;

Include(~Rel, G);

return quo<F|Rel>;

end function;

// The group G^0 is a quotient of orbifold surface group
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// T of type (q;type) and so (G^0)^{ab} is

// a quotient of T^{ab}.

// Next script makes this test (only for q=0) before checking

// wheter the group has a generating vector of type (q;type).

AbCheck:=function(q, type, H, group)

test:=false;

AQH:=AbelianQuotient(H);

if q ne 0 then test:=VectGens(H, H, q, type: OnlyExistence:= true);

else for g in Subgroups(group) do

h:=group/(g‘subgroup);

if Order(h) eq Order(AQH) then

if IsIsomorphic(h, AQH) then

test:=VectGens(H, H, q, type: OnlyExistence:= true); break g;

end if; end if; end for;end if;

return test;

end function;

//ListGroupsG0 searches among the groups of order ordG0

// for groups with a disjoint pair of generating vectors of type (q;type)

ListGroupsG0:=function(q,type,ordG0)

badorders:={ 512, 768,1152,1280,1536,1920};

set:={}; i:=1;

if q ne 0 then group:=SmallGroup(1,1);

else

group:=AbelianQuotient(Orbifold(q,type));

end if;

if ordG0 in badorders then

P:= SmallGroupProcess(ordG0);

repeat
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H := Current(P); i;

if AbCheck(q,type,H,group) then

if ExistDisjointVectGens(H,q, type) then

Include(~set, i);

end if; end if; i:=i+1; Advance(~P);

until IsEmpty(P);

else

for H in SmallGroups(ordG0) do i;

if AbCheck(q,type,H,group) then

if ExistDisjointVectGens(H,q, type) then

Include(~set, i);

end if; end if; i:=i+1;

end for;

end if;

return set;

end function;

//

// Step 3: the extensions

//

// We check if the given group "groupH"=G^0

// has some extension of degree 2 with the expected number of

// elements of order 2 and which satisfies

// the condition of Remark 5.4.

Ind:=function(el2G ,G, type)

set:={};

for x in el2G do

cent:=Centralizer(G, x); n:=#G/#cent;

if forall{m: m in type | m le n} then

Include(~set, x);

end if;end for;

return set;

end function;
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// If 8*chi is not equal to Ksquare, the map CxC-> X is not

// q.e. and so G is a semidirect product of the normal subgroup

// G^0 and the cyclic group Z_2= <z>, that is, we have to give

// morphisms f:Z_2-> Aut(G^0). But if for two morphisms f_1, f_2,

// the images f_1(Z_2) and f_2(Z_2) are conjugated then the

// semidirect products are isomorph, hence we have

// to consider all the images of z in Aut(G^0) up to conjugation.

AutGr:= function(Aut)

A:={ Aut!1 };

repeat

for g1 in Generators(Aut) do

for g2 in A do

Include (~A,g1*g2);

end for; end for;

until #A eq #Aut;

return A;

end function;

ConjugCl:=function(group, order)

Set:={}; Rep:=[];

list:=[x: x in group | Order(x) eq order];

for el in list do

if el notin Set then

for a in group do

Include(~Set, el^a);

end for; Append(~Rep, el);

end if; end for;

return Rep;

end function;

// Extension checks if the given group "groupH"=G^0

// has some extension of degree 2 with the expected number

// of elements of order 2 and which satisfies the
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// condition of Remark 5.4, and returns all of them.

//

// If it is possible it constructs the extension as

// semidirect products, otherwise it runs over the groups

// of order |G|.

Extension:=function(idH,q,type,N)

H:=SmallGroup(idH[1],idH[2]);

ext:={};

Aut:=AutomorphismGroup(H);

#Aut;

if ( N ne 0) and (#Aut le 5000) and CanIdentifyGroup(2*idH[1]) then

A:=AutGr(Aut);

AutOfOrd2:=ConjugCl(A,2) cat [ Aut!1]; //inclusa l’identit

"Aut2!\n";

C2:=SmallGroup(2,1);

for i in [1..#AutOfOrd2] do

map:=hom<C2->Aut| AutOfOrd2[i]>;

G, em :=SemidirectProduct(H,C2,map);

el2G:={x: x in G | Order(x) eq 2 and x notin em(H)};

if #el2G eq N and #Ind(el2G,G,Set(type)) eq N then

//each m_i is smaller than N_j’s

Include(~ext, IdentifyGroup(G));

end if; end for;

else

"ExplicG.\n";

el2H:={x: x in H | Order(x) eq 2};

ordG:= 2*Order(H);

NoG:=NumberOfGroups(SmallGroupDatabase(), ordG);
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for i in [1..NoG] do G:=SmallGroup(ordG, i);

el2G:={x: x in G | Order(x) eq 2};

if (#el2G-#el2H) eq N then

if (N eq 0) or (N le #Ind(el2G,G,Set(type)) ) then

if VectGens(G,H,q,type: OnlyExistence:= true) then

Include(~ext, <ordG, i>);

end if; end if; end if;

end for;

end if;

return ext;

end function;

// Step 4a: the fundamental group

//

// Next scripts allow us to calculate the topological

// fundamental group of the surfaces we constructed.

// Orbi constructs the orbifold surface group and the

// appropriate orbifold homomorphism.

Orbi:=function(seq, gr, q)

F:=FreeGroup(#seq); G:=Id(F); Rel:={};

for i in [1..q] do G:=G*(F.(2*i-1)^-1,F.(2*i)^-1); end for;

for i in [2*q+1..#seq] do G:=G*F.i; Include(~Rel,(F.i)^(Order(seq[i])));

end for;

Include(~Rel, G);

P:=quo<F|Rel>;

return P, hom<P->gr|seq>;

end function;

// MapProd computes given two maps f,g:A->B the map product

// induced by the product on B

MapProd:=function(map1,map2)
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seq:=[];

A:=Domain(map1); B:=Codomain(map1);

if Category(A) eq GrpPC then n:=NPCgens(A);

else n:=NumberOfGenerators(A); end if;

for i in [1..n] do Append(~seq, map1(A.i)*map2(A.i)); end for;

return hom<A->B|seq>;

end function;

// Pi1 uses a generating vector for G^0

// inside G to construct the corresponding orbifold surface group

// and the group HH that acts on the universal cover of CxC.

// Then it constructs the degree 2 extension GG.

// Finally it takes the quotient by Tors(GG).

Pi1:=function(seq,G,q)

H:=sub<G|seq>;

//el:=[g: g in G | g notin H][1];

el:=Random({g: g in G | g notin H});

phi1:=hom<H->H| x:-> (el^-1)*x*(el)>;

T,f1:=Orbi(seq,H,q); t:=(el^2)@@f1;

TxT,inT,proT:=DirectProduct([T,T]);

HxH,inH:=DirectProduct([H,H]);

Diag:=MapProd(inH[1],inH[2])(H);

f:=MapProd(proT[1]*f1*inH[1],proT[2]*f1*phi1*inH[2]);

bigH:=Rewrite(TxT,Diag@@f);

tt:=inT[1](t)*inT[2](t);

PHI:=hom<bigH->bigH| x:-> inT[1](proT[2](x))*inT[2](t*proT[1](x)*(t^-1))>;

genH:=SetToSequence(Generators(bigH)); relH:=Relations(bigH);
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REL:=[]; im:=[];

F:=FreeProduct(bigH,FreeGroup(1));

for i in [1..#genH] do Append(~im,F.i); end for;

map:=hom<bigH->F|im>; tau:=map(tt);

ul:=F.(#Generators(F)); Append(~REL, ul^2*(tau^-1));

for i in [1..#genH] do

Append(~REL, map(PHI(genH[i]))* ul * map(genH[i]^-1 )*(ul^-1));

end for;

bigG,pr:=quo<F|REL>;

TG:={};

N:={h: h in H | Order(el*h) eq 2};

for h in N do

x:=h@@f1; y:=ul*( map( inT[1](x)*inT[2]((t*x)^-1) ) );

Include(~TG, pr(y) );

end for;

return Simplify(quo<bigG|TG>);

end function;

// Step 4b: the Albanese fibre

// GenAlb uses the generating vector seq for G^0

// inside G (giving a surface X with q=1)

// to compute the genus of the Albanese fibre of X.

GenAlb:=function(G, seq);

H,f:=sub<G|seq>;

el:=[x: x in G | x notin H][1];

N:={h: h in H | Order(el*h) eq 2};

HxH,inj, proj:=DirectProduct([H,H]);

r:=[];
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r[1]:= inj[1](seq[1])*inj[2](seq[1]^-1);

r[2]:= inj[1](seq[2])*inj[2](seq[2]^-1);

for i in {3..#seq} do

r[i]:=inj[1](seq[i]);

r[i-2+#seq]:=inj[2](seq[i]);

end for;

Im:=sub<HxH|r>;

set:={};

for g in Im do for h in H do

Include(~set,inj[1](h* proj[1](g))*inj[2](el*h*el^-1* proj[2](g)));

Include(~set, inj[1](el*h*el^-1*proj[2](g))*inj[2](el^2*h* proj[1](g)));

end for; end for;

comp:=(#H)^2/#set;

T:=0; for i in {3..#seq} do T+:=(1-1/Order(seq[i])); end for;

eul:= (#H*T)/2-#N;

genus:=1+ (eul/comp);

return genus;

end function;

//

// Step 5:to find all the surfaces

//

// There is a surface for each pair (group, generating vector)

// which passes previous tests, but they are often

// deformation equivalent. More precisely,

// it happens if the generating vectors

// are equivalent for the equivalence relation generated

// by Hurwitz moves and the automorhisms of the group.

// We need to construct orbits for this equivalence relation.

OrbitsVectGens:=function(G,H,q, type)

Orbits:={}; Vects:=VectGens(G,H,q, type);
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Aut:=AutomorphismGroup(G);

A:=AutGr(Aut);

while not IsEmpty(Vects) do

v:=Rep(Vects);

Include(~Orbits,v);

orb:=HurwitzOrbit(q,type,v);

for v1 in orb do

for phi in A do

Exclude(~Vects,phi(v1));

if IsEmpty(Vects) then break v1; end if;

end for;

end for;

end while;

return Orbits;

end function;

// BranchCurves chechs if a generating vector for G^0

// and the extension G give a smooth surface

// Y and a quotient map CxC-> X with the expected branch locus

BranchCurves:=function(groupG, q, gens, expN, type)

curves:=[**]; N:=0; test:=true; gens2:=[];

groupH:= sub<groupG|gens>; F:=( Theta(q,type)/2 ); //F=beta/#G0

tp:=[g: g in groupG | g notin groupH][1]; //tau’

for i in [1..#gens] do Append(~gens2, gens[i]^tp); end for;

if DisjGV(groupH,q,gens,gens2) then

RamCurves:={x: x in groupG| (not x in groupH) and (Order(x) eq 2)};

while not IsEmpty(RamCurves) do

c:=Rep(RamCurves);

cent:=Centralizer(groupG, c); nj:=#groupG/#cent;
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// index of Z(tau’ k) = number of ram. curves mapped onto

// the same branch curve, i.e. cardinality of the conj. class

if IsIntegral(nj*F) then

N:=N+nj; Append(~curves, [ 1+nj*F,-4*nj*F]);

for x in groupG do Exclude(~RamCurves, c^x); end for;

// we remove the elements conjugated to c.

else

test:=false; return test, [**];

end if;

end while;

else test:=false;

end if;

return (test and (expN eq N)), curves;

end function;

// For each triple (G,G^0, type) in the output of Step 3,

// we check which pairs (G, gen.vect),

// give a semi-isogenous mixed surface with the expected

// invariants and we print them in the file F.

FindSurfaces:=function(idG,idH,type,Ksquare,pg,q, New,F)

chi:=1+pg-q; d:=0;

G:=SmallGroup(idG[1],idG[2]);

H:=SmallGroup(idH[1],idH[2]);

beta:=Beta(Ksquare, chi,Theta(q,type));

N:=IntegerRing()!(beta*(8*chi-Ksquare)/(10*chi-Ksquare) );

Orbs:=OrbitsVectGens(G,H, q, type);

for gens in Orbs do

t, curves:=BranchCurves(G, q, gens, N, type) ;
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if t then d:=d+1;

fprintf F, "Surface number %o \n", New+d;

fprintf F, "G:%o\n", idG;

fprintf F, "G^0: %o\n", idH;

fprintf F, "genus of C: %o\n", 1+Beta(Ksquare, 1+pg-q, Theta(q,type));

fprintf F, "\n";

fprintf F, "Type of generating vector: %o\n",type;

fprintf F, "Generating Vector: %o \n", gens;

fprintf F, "\n";

fprintf F, "Branch curves: %o \n", curves;

fprintf F, "\n";

fprintf F, "H1(S,ZZ): %o \n", AbelianQuotient(Pi1(gens, G,q));

if q eq 1 then

fprintf F, "\n";

fprintf F, "genus Albanese Fiber: %o \n", GenAlb(G, gens);

end if;

fprintf F, "\n\n\n";

end if; end for;

return d;

end function;

// Output is the main function of the scripts.

// It calls the previous function and manages the outputs.

Output:=function(Ksquare, pg,q)

RT:=Realtime();

chi:=1-q+pg;

F:= "Semi_isog_mix_surf_pg" cat IntegerToString(pg)

cat "_q" cat IntegerToString(q) cat "_Ks" cat

IntegerToString(Ksquare) cat ".txt";

fprintf F, "K^2=%o, pg=%o and q=%o\n\n\n", Ksquare,pg,q;
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Types:=ListTypes(Ksquare, pg,q);

"Number of types", #Types;

ListG0s:=[**];

for T in Types do T;

ordG0:=T[#T];

if (not IsInSmallGroupDatabase(ordG0)) then

fprintf F, " TO CHECK : %o\n", T;

else AdmisG0:=ListGroupsG0(q,Prune(T), ordG0);

if #AdmisG0 ne 0 then Append(~ListG0s, [*ordG0, AdmisG0, Prune(T)*]);

end if; end if; end for;

"Number of types with a G0:", #ListG0s;

fprintf F,"Types with a G0:%o\n\n\n", ListG0s;

ListG:=[**];

for triple in ListG0s do

ordG:=2*triple[1];

if (not IsInSmallGroupDatabase(ordG)) then

fprintf F, "TO CHECK: %o\n", triple;

else for x in triple[2] do

printf "Searching extension\n";

N:=IntegerRing()!(2*(8*chi-Ksquare)/Theta(q,triple[3]));

Extens:=Extension([triple[1],x],q,triple[3],N);

if #Extens ne 0 then Append(~ListG,[*Extens,<triple[1],x>,triple[3]*]);

end if; end for; end if;

end for ;

"Number of candidate groups G:", #ListG;

fprintf F,"Number of candidate groups G:%o\n\n\n", ListG;

New:=0;
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for trip in ListG do

Ext:=trip[1]; idH:=trip[2]; type:=trip[3]; printf "Checking Groups\n";

trip;

for idG in Ext do idG;

newsurf:=FindSurfaces(idG, idH, type, Ksquare, pg, q, New, F);

New:=New+newsurf;

end for; end for;

fprintf F,"Time: %o\n", Realtime(RT);

printf "Time: %o\n", Realtime(RT);

return "Found ",New," families of surfaces";

end function;
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