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Abstract 

Ultrafine grained (~ 1μm) steels have been the subject of extensive research work 
during the past years. These steels generally offer interesting perspectives looking 
for improved mechanical properties. UFG Powder Metallurgy hot work tool steels 
(HWTS) can be fabricated by high energy mechanical milling (MM) followed by spark 
plasma sintering (SPS). However, similarly to most UFG and Nano-Crystalline (NC) 
metals, reduced ductility and toughness result from the early plastic instabilities in 
these steels. Industrialization of UFG PM Tool Steels requires the application of 
specific metallurgical tailoring to produce tools with sound mechanical properties or 
in a more optimistic way, to break the Strength-Toughness “trade-off” in these 
materials. Among the possible ways proposed to restore ductility and toughness 
without losing the high strength, “Harmonic microstructure” design seems to be a 
very promising endeavor in this regard. Harmonic microstructure materials consist of 
a tunable volume fraction of evenly spaced “isolated” coarse-grained particles (CG) 
surrounded by a 3D interconnected network of UFG particles. CGs provide ductility 
and toughness, while high strength is guaranteed by the interconnected network of 
UFGs. This peculiar design offers an extra work hardening due to the generation of 
geometrically necessary dislocations at the interfaces of UFGs and confined CGs 
that are essentially present to accommodate the strain gradient imposed by the 
inhomogeneous (bimodal grained) microstructure.  

The first part of this work is devoted to the development of PM tool steels with 
harmonic microstructure. Due to the difficulties of processing hard tool steel particles 
according to the methods reported in the literature, an economical, simple alternative 
approach is also proposed. Near full density “Harmonic structure“ AISI H13 samples 
were produced using different volume fractions of UFG/NC mechanically milled (MM) 
and CG as-atomized particles followed by short time (30 min) low-temperature 
(1100°C) SPS. A combination of high hardness and significantly improved fracture 
toughness was achieved for the blends containing more that 50% UFG particles. The 
optimized mechanical properties was achieved by the mixture of 60% UFG particles 
where the sample showed a hardness near to the value predicted by the rule of 
mixtures (i.e. 405 HV10 vs. 406 HV10) while apparent fracture toughness (Kapp) 
was about 10% higher than that of predicted by the same rule (i.e. 52.0 MPa*m1/2 
vs. ~47.0 MPa*m1/2). A toughening effect was evidenced for the samples essentially 
showing harmonic microstructure. Toughening was interpreted to be the result of the 
deviatory effect of coarse-grained round atomized particles together with energy 
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dissipation by decohesion at the CG/UFG or UFG/UFG interfaces leading to a local 
drop of the driving force for the crack propagation. The design allowed to easily 
adjust the strength and toughness to meet the specific application-oriented 
requirements. The harmonic steel was also subjected to Thermal Fatigue (TF) 
testing. The preliminary results confirmed that this microstructure combined the 
beneficial effects of both of its constituents, i.e., the low crack nucleation rate of CG 
H13 and the low crack propagation rate of UFG H13, thus showing the lowest 
pyrocracking factor. Moreover, TF crack deflection as an extrinsic toughening 
mechanism was evidenced in Harmonic Microstructure.  

The second part of this work deals with the production and characterization of a 
PM HWTS reinforced with partially stabilized zirconia (PSZ). HWTS composites 
show improved hardness and remarkable wear resistance but generally also a 
systematic lower fracture toughness than the base material. Deteriorated toughness 
in metal matrix composites (MMCs) with a high strength matrix is mainly interpreted 
as a result of early damage initiation at the hard particles (HPs) or Matrix-HP 
interface. This damage can be even anticipated in the presence of readily damaged 
HPs (i.e. processing related flaws). Selection of PSZ as reinforcement was aimed at 
improving the strength and fracture toughness of the composite by taking advantage 
of the transformation toughening effect of PSZ. Two different types of PSZ, different 
volume fractions (10 and 20 vol. %) and sizes of reinforcement were used. 
Mechanical Alloying (MA) was used to process the composite powders to refine the 
matrix microstructure and both the matrix and PSZ particle size hence increasing the 
strength of the PSZ particles according to the Griffith strength formalism, and also to 
overcome the aggregation problems. Powders were consolidated by (SPS). The 
influence of processing parameters on density and microstructure was investigated. 
Short time (30 min) low-temperature (1100°C) consolidation by SPS allowed 
preserving the refined microstructure while achieving a maximum relative density of 
98.6%. Moreover, short time sintering did not allow the extensive formation of 
thermodynamically plausible reaction products at the PSZ-H13 interface. As a result 
of dispersion hardening, the hardness of the  as-sintered composites (i.e. maximum 
hardness of ~ 920 HV10) was increased compared to the mechanically milled UFG 
H13 (i.e. ~ 755 HV10), while  in comparison to the as-atomized H13 (i.e. ~ 640 
HV10) the improved hardness was ascribed to the synergic effect of dispersion 
hardening, microstructural refinement and strain hardening induced by MA. In these 
composites, tempering resistance at 550°C and 650°C was significantly improved 
due to the dispersion hardening effect. The hot compressive yield strength of the 
composites at 650°C and 450°C was increased up to 1.8 times the unreinforced 
UFG H13. t to m transformation during hot compression was evidenced and 
contributed to the strengthening. The hardness of the composites in heat treated 
condition (i.e. ~ 600 HV10) was significantly improved compared to that of the 
unreinforced matrix (i.e. ~ 420 HV10) while the apparent fracture toughness was 
drastically decreased to half the Kapp of the base material (19 MPa*m1/2 vs. 36 
MPa*m1/2). However, the fracture toughness was slightly higher than that of a TiC 
reinforced H13 (i.e. 17 MPa*m1/2) with the same hardness (i.e. ~ 600 HV10). 
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“All human knowledge takes the form of interpretation” 

Walter Benjamin 

Chapter I  
Introduction 

1.1 Strength and Toughness, two mutually exclusive 
properties 

A fundamental requisite for a broad range of engineering materials is the proper 

combination of strength and toughness. However, these properties are usually 

mutually exclusive1. Strength is consistently considered as a measure of material’s 

resistance to permanent deformation (e.g. plastic deformation in ductile materials) 

whereas toughness is literally a measure of the amount of energy absorbed by the 

material before fracture. Therefore, the capability of undergoing plastic deformation 

will increase the toughness of the material by the aid of local energy dissipation 

which would otherwise be spent for fracture. In general, the toughness in 

polycrystalline metallic materials is tightly correlated to the plasticity corresponding to 

the dislocation motion. However, energy dissipation can be linked to several other 

intrinsic and extrinsic toughening effects in steels and other types of engineering 

materials such as ceramics1.  

The strength of steels is predominantly dependent on the difficulty of dislocations 

mobility2. Therefore, the basic understanding of strength and temperature 

dependence of strength is determined by the crystal structure, which in turn gives 

information on the slip systems, Burgers vector, and also lattice frictional stresses 

(i.e. Peierls stress)2. Demand for much higher strength steels has invoked the need 

of introducing structural and microstructural complexities. Some of the strengthening 

methods which are of interest in the present work are briefly introduced and their 

influence on toughness and ductility is discussed accordingly. 

1.1.1 Grain boundary strengthening  

The well-known Hall-Petch equation can describe the relation between Yield stress 

and grain size in a polycrystalline material 2.  
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𝜎0 = 𝜎𝑖 + 𝐾𝐷−1/2      (1) 

where σ0 is the yield stress, σi is the “friction stress,” K is a constant representing the 

“relative” hardening contribution of grain boundaries and D is the grain size. The 

model is based on the experimental evidence that grain boundaries act as obstacles 

to dislocation motion.  

The equation is originated from the consideration that for grain with diameter D which 

sends dislocations from its interior to pile up at the grain boundary, a certain critical 

shear stress (c) at the tip of the pile up must be applied to overcome the grain 

boundary barrier and to continue slip. Thus by putting the (c) equal to the applied 

resolved shear stress minus the lattice friction stress (the stress that resists against 

dislocation movement), the minimum resolved shear stress to cause yield can be 

calculated. Eq.1 can be described by expressing the considerations above regarding 

axial stresses. However, the Hall-Petch equation cannot be used for nano-sized 

grain materials (D<100 nm) due to the validity limitation of Eq.1 when dealing with 

small pile-ups (less than 50 dislocations). In this case, a different model, which 

directly correlates the dislocation density (inversely proportional to grain size) to the 

strength and avoids the stresses at the grain boundaries (Eq.2), seems to be more 

appropriate3. It is noteworthy to mention that for BCC steels,  𝐾′ is reported to be 

lower in case of grain sizes less than 0.23 μm where the number of dislocations is 

lower than 20 4. However, there is no clear understanding on the nature of the curve 

and the slope (K’) at grain sizes below ~ 10-15 nm.5 

𝜎0 = 𝜎𝑖 + 𝛼𝐺𝑏𝜌1/2 = 𝜎𝑖 + 𝛼𝐺𝑏𝐷−1/2 = 𝜎𝑖 + 𝐾′𝐷−1/2  (2) 

A similar relation also holds for indentation hardness6. Moreover, a similar relation 

stands for the cleavage fracture strength and fatigue resistance of high strength 

ultrafine grain and nanostructured steels.  

1.1.2 Strengthening from fine hard particles 

In dispersion hardening, the hard particles (e.g. ceramics) are mixed with the matrix 

material and processed by taking advantage of some processing routes including 

Powder Metallurgy (PM). An obvious advantage of dispersion hardening compared to 

conventional precipitation hardening and age hardening is that in the latter the 

solubility of the second phase in the matrix at elevated temperatures might hinder the 

high-temperature strength. On the other hand, a non-soluble second phase in 

dispersion hardened material can guarantee excellent thermal stability and a 

significant resistance to recrystallization and grain growth compared with the matrix 

material 2. 
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The strengthening mechanism can be summarized into four main effects, i) the load 

transfer from matrix to particle in the presence of a strong interface 7, ii) the 

generation of dislocations at the matrix-reinforcement interface due to the coefficient 

of thermal expansion mismatch between the two components 8, iii) the Orowan 

strengthening due to the barrier to dislocation motion by hard particles (HPs) 9 and iv) 

the increased work hardening introduced by HPs 10. Strengthening is strongly 

dependent on the HP volume fraction, size and distribution inside the matrix which 

gives rise to the critical concept of “inter-particle spacing.” A very simple definition of 

inter-particle spacing or mean free path can be written as:  

 𝜆 =
4(1−𝑓)𝑟

3𝑓
        (3) 

where f is the volume fraction of (spherical) particles of radius r. As an example, the 

contribution of Orowan strengthening is inversely proportional to 𝜆, and in the 

presence of a high strength matrix, it can be written as a Hall-Petch type equation2:  

𝛥𝜎 = 𝜎0 + 𝐾𝜆−1/2      (4) 

The work of Shewfelt and Brown11 defines the contribution of “Dispersion Hardening“ 

in terms of temperature (T) and strain rate (𝜀̇) dependency of the ability of 

dislocations to overcome the obstacles by local climb (i.e. the dislocation remains in 

its slip plane except at the particle )  

𝜎𝑝 =
𝐺𝑏

𝜆
[(0.51 ± 0.01) + (0.12 ± 0.02)𝑙𝑜𝑔 (

έ𝑘𝑇𝑅2

4𝜋𝜌𝑏2𝑎𝑣𝐺𝜆𝐷0
) + (0.052 ±

0.009) (
𝑄

𝑘𝑇
)]      (5) 

where G is the shear modulus, b the Burgers vector, D0 is a pre-exponential 

component of the self-diffusion coefficient of iron ferrite, Q is the activation energy for 

self-diffusion, k is the Boltzmann constant, έ is the strain rate, R is the particle radius, 

λ is the square inter-particle spacing and av is the area associated with a vacancy. 

The equation is very similar to Eq.4, from which it is derived. 

1.1.3 Strain hardening  

Strain hardening or cold working is a well-known and widely used strengthening 

process for metals and alloys which cannot be hardened by heat treatment. In a 

polycrystalline metal, plastic deformation results in an increased number of 

dislocations and a higher state of internal stress can be achieved as a result of their 

interaction.    
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In the field of powder metallurgy, Mechanical Milling is considered as an efficient 

method to introduce both strain hardening and dispersion hardening to metal 

powders 6,12. 

1.1.4 Martensite Strengthening  

The transformation of austenite (𝛾-FCC) into martensite (𝛼′-BCT) by rapid cooling 

via a diffusionless displacive transformation is the most common strengthening 

technique for steels. The outstanding strength can be ascribed to the lattice distortion 

by C atoms, to the presence of strong barriers against dislocation motion, i.e. plate 

(high C steels) and lath (medium/low C steels) martensite boudaries and also to 

substructural defects like twins (plate martensite) and very high dislocation density 

(lath martensite). All features listed above provide a considerable resistance against 

slip thus increasing the strength of the steel. 

The main strengthening mechanism in martensite is attributed to the carbon atoms. 

Below 0.4% C content the hardness is highly dependent on the amount of carbon2,13. 

Upon quenching the steel (i.e. γ-α transformation), due to the solubility limit of carbon 

in α-ferrite, the carbon atoms strain the ferrite lattice and eventually redistribute by 

diffusion at room temperature to relieve the strain energy. This event leads to a 

strong engagement of carbon atoms and dislocations and puts a restriction on 

dislocation motion. Another strengthening mechanism can be explained by taking the 

formation of carbon atom clusters on {100} planes into account which in turn act as 

barriers to dislocation mobility2.  

Norstrom14 proposed an equation (Eq.6) for the yield strength of low-medium carbon 

martensitic steel 

𝜎𝑦 = 𝜎0 + 𝜎1 + 𝐾𝑦𝐷−1/2 + 𝐾𝑠𝑑−1/2 + 𝛼𝐺𝑏[𝜌0 + 𝐾(%𝐶)]1/2 (6) 

where σ0 is the lattice friction stress for iron, σ1 is solid solution strengthening from 

alloying elements, d is the lath martensite width, D is the martensite packet size, and 

ρ0 is the dislocation density of martensitic pure iron. The equation might additionally 

give an estimation of the effect of grain refinement corresponding to a decrease of 

either packet size or lath size on increasing the yield strength of the martensitic 

microstructure. On the other hand, the effect of strain hardening might be considered 

as included in the equation by taking the dislocation density into account. 

So, in summary, it would be convenient to express the strength in terms of a linear 

contribution of each of the mechanisms above using a rough approximation that 

none of those are interacting15. 

𝜎𝑦 = 𝜎0 + 𝜎𝑔+𝜎𝑑 + 𝜎𝑠 + 𝜎𝑝     (7) 
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where σ0 is the strength of the annealed matrix, σg is the contribution of grain 

refinement, σd is the contribution of dislocation (strain hardening), σs stands for the 

solid solution hardening and σp represents the dispersion strengthening. 

1.2 Effect of strengthening on fracture toughness and 
ductility 

Apart from the grain refinement, all other strengthening mechanisms mentioned 

above have a negative influence on toughness and ductility of steel 16,17. As an 

example, second phase hard particles are typically responsible for crack nucleation 

and propagation since the particles have a lower surface energy than the metallic 

matrix. These particles fracture at small deformations, increasing the probability of 

crack propagation at a very low energy 18. The size, distribution and volume fraction 

of second phase particles are the most decisive factors to affect the toughness, as it 

will be discussed in detail later (section 1.5.2) in the present work. 

Strain hardening would also lead to a drop in fracture toughness, especially in the 

case of the materials showing stronger hardening directly after yielding. Monotonic 

pre-strained quenched and tempered 4340 steel 19 showed a drastic drop of fracture 

toughness and an increase in yield strength by increasing the amount of pre-strain. 

The fracture toughness (mainly in ductile materials) is strictly dependent on the 

plastic strains at the crack tip which in turn is governed by the yield strength and the 

strain hardening properties, pre-straining might alter both factors thus affecting the 

fracture toughness.  

1.2.1 Effect of grain refinement on fracture toughness  

Most of the structural materials including low alloy steels exhibit a temperature 

dependent transition from ductile to brittle fracture which is related to the lattice 

frictional stress stated earlier. Many researchers 20,21 have claimed that the decisive 

properties to explain the plane strain fracture toughness of the sample when the 

crack propagates by cleavage are the yield strength (σy) and the cleavage fracture 

stress (σcl). Upon decreasing of the difference between these two stresses, as soon 

as yield occurs, small plastic strains (i.e. lower stresses) at the tip of the crack are 

needed to reach the critical stress for the cleavage. Therefore, the fracture 

toughness decreases drastically. The effect of grain size is schematically shown in 

Figure (1).  
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Figure I-1. Influence of grain size on yield (σy) and cleavage (σcl) stress22 

The plot shows that by reducing the grain size, the difference gets larger thus an 

increase in fracture toughness is expected. It is not surprising that the cleavage 

stress of ferritic steels is dependent on the grain size (D):  

𝜎𝑐𝑙 = 343 + 103𝐷−1/2(MN/m2)    (8) 

The rise in fracture toughness by decreasing the grain size is however reported to 

show a threshold of 1 μm 23 below which, sparse yet contradictory results are found 

in the literature demonstrating the effect of microstructural refinement down to 

ultrafine grained (UFG) and nanocrystalline (NC) regime 24. Drop in the fracture 

toughness might be related to an alteration of fracture mechanism from trans-

crystalline fracture to a mixed intercrystalline and trans-crystalline mode by refining 

the grain size down to less than 1 μm 25.  

Due to the limitations in producing samples with dimensions required for the test, the 

data on Charpy impact tests of UFG steels is very limited. The impact test results 

(small specimen) of a UFG (0.2 wt.% C) steel with grain size equal to 1.3 μm showed 

that the upper shelf absorbed energy (e.g. room temperature in this case) of UFG 

steel is much lower compared to the coarse-grained counterpart 23. However, the 

DBTT (ductile to brittle transformation temperature) was decreased by refining the 

grain size. (Figure 2)  
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Figure I-2. Dependence of the Charpy impact test properties on temperature of the 0.2%C 

steels with different ferrite grain sizes23 

The drop of DBTT by grain refinement should not be surprising, since as described 

earlier the critical stress of fracture increases more rapidly than the yield stress by 

refining the grain size. 

1.2.2 Effect of grain refinement on ductility  

The effect of grain refinement on ductility is even more challenging, while numerous 

reports exist on superior room temperature tensile strength of UFG steels processed 

through various microstructural refinement techniques 26–28 all of those also agree on 

the deterioration of the amount of work hardening in these steels. The reduced work 

hardening which negatively affects the tensile ductility can be perceived by the high 

yield ratios (σy/σUTS) 4.Therefore in theses steels, smaller “uniform” elongation is 

expected. Figure (3) clearly shows the grain size dependence of ductility in BCC 

steels. Two main explanations of reduction of tensile ductility by grain refinement 

down to UFG regime can be found in literature so far.  

 

1. Dynamic recovery (softening) leads to a reduction in apparent work 

hardening rate. Within deformation, the dislocations that accommodate 

the intragranular strain are trapped in grain boundaries. Therefore, the 

kinetics of dynamic recovery is linked to the spreading of trapped 

dislocations at the grain boundary 29,30. In the UFG steels, the time 

required for the dislocations to move into the boundaries is shorter than 
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the time of tensile testing 31. Thus the decrease of dislocation density 

inside the grain negatively influences the work hardening in comparison 

with coarse-grained steels.  

2. Taking the Considère criterion into account, the condition that satisfies 

tensile plastic instability is when the work hardening rate (i.e. slope of the 

true stress-true strain curve) is equal to the true stress, Eq. (9). At this 

point, the uniform elongation is overwhelmed by the neck initiation.  
𝑑𝜎𝑡

𝑑𝜀𝑡
= 𝜎𝑡        (9) 

As discussed above, on one side, UFG steel shows very high flow 

stresses at the early stages of plastic deformation but, on the other one, 

its work hardening capacity is reduced. As a consequence, the plastic 

instability occurs soon after plastic deformation which demolishes the 

ductility by suppressing the uniform elongation.  

Ma 32, in the frame of an interesting article, has summarized the additional extrinsic 

causes to explain low toughness and ductility of UFG and NC materials processed 

from powders. A fully dense bulk NC material is very difficult to process. Therefore 

poor sample quality leads to very low fracture strength. The residual porosity, weak 

interparticle bonding, residual stresses, and impurities would all trigger early plastic 

instability and brittle fracture in tension.  

 
Figure I-3. Grain size dependence of ductility in some BCC steels, black symbols represent 

uniform elongation and hollow symbols total elongation4 
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1.3 Powder Metallurgy tool steels 

The first and foremost distinctive competence which is the driving force for applying 

PM processing route for the fabrication of tool steels is the feasibility of avoiding or 

minimizing the segregation of carbides (Figure 4). Compared to the conventional 

methods such as casting and forming 33,34, PM parts show enhanced strength, wear 

resistance and enhanced isotropy. The latter is due to the absence of a continuous 

interconnected network of grain boundary carbides that act as preferential paths for 

crack propagation which is usually observed in conventional counterparts. (Figure 5 ) 

 
Figure I-4. Microstructure of conventional HSS (a) in comparison with PM HSS (b) at the same 

magnification, carbides are white in both micrographs 

This potential stems from the gas-atomization of the molten batch of pre-alloyed steel 

which is characterized by much higher solidification rates compared to conventional 

large ingots. Higher solidification rate in small atomized particles opposes the 

segregation of carbides. The other advantage of PM route is the capability of 

producing parts with complex geometries and with minor material loss and small 

machining. The production of PM tool steels has been a topic of both academic and 

industrial interest since 70’s 35.  Since then, many endeavors have been undertaken 

to produce and characterize novel tool steels and tool steel matrix composites via 

PM production routes. 
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Figure I-5. Effect of carbide structure on fracture initiation and bend fracture strength 

1.3.1 Microstructural refinement of powders and processing of 
composite powders  

Atomized powders can be used in the as-received state for consolidation purposes. 

However, the need of microstructural refinement to increase the strength of the 

consolidated compact has led to the use of several syntheses and processing 

techniques such as high energy Mechanical Milling (MM) to refine both particle size 

and microstructure5. The former is generally seen in MM of powders with high 

hardness (e.g. tool steel powders) and is a crucial point of attention during sintering, 

for the smaller particle size provides a higher driving force for sintering due to the 

higher surface energy. Moreover, non-equilibrium solid-state processing techniques 

such as Mechanical Alloying (MA) have been introduced to produce a variety of 

composite powders showing equilibrium or metastable phases which cannot be 

processed using any other technique 36. The other advantages of MA and MM are 

the capability of production of bulk quantities of the material at room temperature, by 

implementing very simple equipment.   

1.3.2 Mechanical Milling and Mechanical Alloying 

The ball milling process initially was used to coat hard phases (e.g. WC) with softer 

metals (e.g. Ni) 12. It was also reported that the metal powders could undergo 

repeated fracturing and cold-welding by the aid of ball milling process. The intense 
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cold working induced by the collision of the balls during MM affects the 

thermodynamically stable state of the material by introducing a huge quantity of 

lattice imperfections such as dislocations and interfaces at room temperature37,38. 

The grain size reduction is characterized by the formation of high energy grain 

boundaries in which the atomic arrangement does not own any long or short range 

order. Mechanical Milling has been applied successfully to a large number of metallic 

powders 6,39,40 to obtain an UFG or nanosized microstructure within the powders. On 

the other hand, MA of metal powders (ductile-ductile system) 41 or metallic powders 

with ceramic hard particles (ductile-brittle system) 42 have frequently been reported to 

yield novel composite materials after proper consolidation. The latter will be briefly 

described as it is related to a part of the present work.  

As it is shown in Figure (6a), in the first stages of mechanical alloying the ductile 

powders get flattened due to the impact of the balls while the brittle HPs are 

fragmented. The fine fragmented HPs then are trapped in the lamellas of the ductile 

matrix. Upon further milling, the ductile matrix is highly work-hardened and 

undergoes fragmentation, and its lamellar microstructure is tangled and refined as 

depicted in Figure (6b). In this stage, the actual composition of individual powders 

should theoretically approach the nominal mixing composition, and the particle 

morphology becomes more or less spherical. By extending the milling time, the 

matrix microstructure will be further refined and the second phase (HPs) dispersion 

into the matrix becomes more uniform (Figure 6c) giving rise to the formation of 

composite powders. 

 
Figure I-6. Microstructural evolution during milling of ductile-brittle combination of powder,a) 

ductile powders get flattened and oxides are fragmented and trapped in the matrix, b) ductile 

matrix is highly work-hardened ,refined and undergoes fragmentation while oxides are trapped 

in the refined lammellas and c) further refinemrnt of matrix microstructure,  the figure represents  

the specific case of oxide dispersion strengthening 12 
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The major drawback of MA process is the powder contamination during milling 12. 

The small size of the powders, large surface area and generation of fresh new 

surfaces during the fragmentation process all contribute to the powder 

contamination. While too many sources of contamination can be effective during MA, 

the primary cause of contamination in most cases is the milling atmosphere. The 

leakage of air into the milling container can easily contaminate the powder through 

nitrogen and oxygen pick-up. For example, the formation of cubic phase during long 

time milling of Ti was evidenced and attributed to the formation of TiN 43. Pellizzari et 

al. 44 have also reported oxygen and nitrogen pick-up during ball milling of AISI H13 

steel. Oxides can play a detrimental role in consolidation by impeding the strong 

interparticle bonding. The presence of oxides might further alter the fracture 

mechanism of the consolidated UFG and NC materials, from this viewpoint the 

contamination during MA or MM might have a two folded effect on the mechanical 

properties of these materials.  

 

1.3.3 Consolidation techniques 

 

Due to the high hardness of atomized tool steel powders and low sintering activity of 

these alloys, a fully dense bulk cannot be obtained by conventional pressing and 

sintering45. PM Tool steels are mainly produced by Hot Isostatic Pressing (HIP) in 

mass production46. New technologies such as hot extrusion sintering, metal injection 

molding and spark plasma sintering are considered as attractive routes for the 

fabrication of advanced materials with improved mechanical properties44,47.   

 

1.3.3.1 HIP Consolidation 

 

Tool steel inert gas atomized powders are often consolidated using Hot Isostatic 

Pressing (HIP) followed by hot forming (e.g. extrusion, forging or rolling) 33,46,48,49. 

The technique involves the application of isostatic pressure at high temperatures in a 

vessel 50. Encapsulated powders or sintered components thus are densified to yield 

more isotropic and improved mechanical properties. Figure (7) shows the density-

temperature maps for various particles sizes of Tool Steel powders HIPed with a 

pressure of 100 MPa (i.e. industrial practice).  

As it can be deduced from the Figure, the principal mechanism of densification till 

reaching a relative density of 98% is the power law creep regime in which the 

contribution of applied pressure in densification is the greatest since �̇� ∝ 𝑃𝑛, where 

�̇� is the densification rate and P is the applied pressure. The retained porosity (~2%) 

is most likely to be removed by the grain boundary diffusion which is mainly 
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dependent on temperature. Holding time helps the promotion of creep and 

completion of consolidation. 

 
Figure I-7. Density-temperature maps at P=100 MPa for tool steel with particle sizes of a) 50 μm 

and b) 100 μm 46 

As reported by Takigawa et al. 51 a near fully dense (~99%) tool steel can be 

achieved using different pressure/temperature values in less than 1 hour by HIPing. 

However, the response of the sample to mechanical testing is totally different. For 

example, in Figure (8a), it can be clearly observed that the fully dense sample HIPed 

at 1000°C and 100 MPa is showing an inter-particle fracture suggesting that even if 

the applied pressure was high enough to plastically deform the particles and promote 

densification, the temperature was not sufficiently high to promote the diffusion for a 

complete consolidation and development of strong bonding. On the other hand, the 

sample processed at 1200°C and 20 MPa shown Figure (8b) demonstrates an 

entirely different fracture surface on which no particle boundary is traceable. The 

result suggests that a strong bonding is developed between the powder surfaces 

thanks to the processing at higher temperatures.  
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Figure I-8. Fracture surfaces (magnification: 150x) of bend test samples both showing ~99% 

relative density, a) 1000°C, 100 MPa and b) 1200°C, 20 MPa 51 

Processing at high temperature for longer holding times might be detrimental for the 

MM or MA powders which are microstructurally refined down to UFG and NC regime 

due to a high probability of recrystallization and grain growth. For instance, a 

comprehensive study 52 on annealing the work-hardened MM Fe powders (~HV 950 

and crystallite grain size less than 20 nm) suggests that, at a temperature lower than 

850°C, 30 minutes of holding is enough to cause local strain relief, followed by 

recrystallization and grain growth.  A considerable increase in crystallite size was 

observed especially at temperatures above 650°C. Therefore, the industrial practice 

of HIPing tool steel (i.e. 1100°C, 4 h, 100 MPa) imposes a significant risk of grain 

growth and the deterioration of work hardened refined microstructure of MM and MA 

powders. While for the latter, the second phase particles added to pin the grain 

boundaries might have positive effects on lowering the kinetics of grain growth. 

1.3.3.2 Spark Plasma Sintering  

A successful alternative approach to consolidate MM or MA steel powders is Spark 

Plasma Sintering (SPS) 53–56. Numerous experimental reports suggest that 

densification of metal powders and ceramics by SPS can be achieved in shorter 

times and at lower temperatures and pressure levels compared to the conventional 

Hot Pressing (HP) or HIP 57. The schematic of an SPS apparatus is depicted in 

Figure (9). 
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Figure I-9. a) Schematic representation of SPS apparatus 58, b) pulsed current flow through 

powder particles 59 

SPS is characterized by the consolidation of powders under the concurrent influence 

of a low voltage, high current electromagnetic field, and uniaxial pressure. Powders 

fill the sintering die (e.g. graphite die) and heating is provided by passing a pulsed 

DC (Direct Current) through the die and powders (in the case of sintering of 

conductive powders) and uniaxial pressure is simultaneously applied through the 

punches. The distinctive competence of SPS compared to HP or HIP includes i) 

application of a pulsed DC and ii) high heating rates, which lead to the achievement 

of a fully dense material at lower sintering temperatures and shorter times. The 

thermal effect of current (i.e. Joule heating) facilitates the achievement of high 

heating rates (up to 1000°C/min) that can suppress grain coarsening by by-passing 

the surface diffusion mechanism. The efficiency of the process has been pointed up 

to the consolidation of refined MM and MA powders while retaining the desirable NC 

or UFG microstructure 54,60,61.  

The short sintering time might oppose the formation of thermodynamically plausible 

parasitic reaction phases at the interface of matrix/reinforcement in MA powders 

which may have been otherwise formed by the extension of sintering time. Moreover, 

experimental evidence can be found in literature confirming electric field induced 

dielectric breakdown of non-conductive surface oxides at the inter-particle contact 

areas during spark plasma sintering of metallic powders resulting in enhanced inter-

particle bonding 62–64. Surface cleaning from oxides is of great importance while 

dealing with tool steel particles since the risk of surface oxidation is very high even 
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by a careful handling and by using proper protection systems 65,66. Apart from Joule 

heating, there is still ambiguity on the inherent characteristics of the electric field on 

the processing of conductive and non-conductive materials which is far from the 

scope of the present thesis 62. 

A study on consolidation of MM-UFG High-Speed Steel powder clearly shows that 

the refined microstructure impelled by MM is retained after 5 minutes of SPS at 

1130°C  (Figure 10b)53. Much finer and homogeneously distributed carbides could be 

achieved in comparison with HIP/Forging processing (Figure 10a). The 

homogeneous carbide distribution and refined carbide size gave rise to improved 

0.2% proof compressive yield stress by 21% (i.e. ~3600 vs. 3000 MPa for 

conventional HIP/Forged) at room temperature and 6% (i.e. 2500 vs. 2350 MPa for 

conventional HIP/Forged) at 550°C for MM/SPS samples.   

 
Figure I-10. SEM micrographs of a) conventional PM HSS processed by HIP/Forging and b) 

MM/SPS HSS53 

1.4 AISI H13 Tool Steel 

The contemporary narrative of tool steels begins in a small town near Sheffield (UK), 

where Benjamin Huntsman, a clockmaker, developed the crucible melting process in 

the 18th century. The process allowed to achieve cast steels with a carbon content 

that fell between the wrought irons and that of cast irons. The steels could be 

hardened by heat treatment and found their application in cutting and machining the 

other metals. Since then, the tooling industry has frequently introduced many types 

of tool steels with complex microstructures and various alloying elements. The 

modern tool steels show a combination of hardenability, red hardness, toughness, 

and wear resistance. AISI H type tool steels are characterized by a very good 

combination of properties. They are used in quenched and tempered condition and 

show high toughness, high hot strength, good thermal conductivity, tempering 

resistance and low coefficient of thermal expansion. The tempering temperature is 

often between 550 to 650°C depending on the service temperature. The motivation 
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behind tempering is to trigger the formation of secondary carbides of the carbide 

forming alloying elements (i.e. Cr, Mo, W, and V) which is known as secondary 

hardening process. The secondary carbides retard the softening at elevated 

temperatures and also guarantee the high hot hardness (strength)67. AISI H13 is a 

chromium hot work tool steel which is widely being used as dies for Al or Mg 

extrusion, die casting dies, forging dies and tools thanks to its good wear (abrasion) 

resistance, high hardness and good toughness. 

1.4.1 Research progress in production of UFG PM AISI H13  

While a considerable number of research works are dealing with the hot isostatic 

pressing of AISI H13 tool steel and tool steel matrix composites 68,69, very limited 

attention has been paid to the consolidation of this steel via SPS. The work of 

Fedrizzi et al. 70 showed that it was possible to obtain an UFG AISI H13 by short time 

SPS of NC and UFG mechanically milled powders. Mechanical Milling of gas 

atomized H13 powders was conducted using Fritsch Pulverisette 6 planetary mono 

mill at 450 rpm under vacuum. Spheres with 10 mm diameter of 100Cr6 (63HRC) 

and a ball to powder weight ratio (BPR) of 10:1 was selected. At the early stages of 

the high energy MM (i.e. 200 min), both particle size and crystallite size showed a 

sharp reduction. The cellular microstructure of the Atomized powders showing micro-

segregated areas as a consequence of the rapid solidification process was totally 

destroyed. Finally, a nearly homogenous UFG lamellar microstructure was achieved. 

The continuation of MM resulted in further slight particle size refinement, similarly to 

the crystallite size as shown in Figure (11). 

 
Figure I-11. Mean particle size (a) and Crystallite size (b) as a function of milling time70 

The powders were then consolidated by SPS at 1100°C for 5 min to yield a UFG 

microstructure as depicted in Figure (12b). 
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Figure I-12. SEM micrographs of SPS a) atomized H13 and b) MM-H13 71 

The MM-H13 samples showed higher hardness than the atomized counterpart 

(Figure 12a) both in as sintered (800 HV10 vs. 640 HV10) and also in heat treated 

condition (quenching from 1020°C in a 5bar nitrogen, followed by double tempering 

at 625°C). However, a drop in fracture toughness was evidenced (58 MPa m1/2 vs. 77 

MPa m1/2). This drop was ascribed to i) the effect of grain size reduction down to 

1um, ii) oxygen pick-up during high energy milling that resulted in a higher 

concentration of surface oxides impeding the formation of strong metallic bonding, 

and iii) the slightly lower relative density of the MM samples compared to the as 

atomized ones (99.4% vs. 99.6%) due to the lower compressibility of strain hardened 

MM particles. 

1.5 Particle reinforced Hot Work Tool Steels 

Particle reinforced tool steel matrix composites (MMCs) are developed to increase 

the wear resistance of the tool.  The designs aim at integrating of the high toughness 

of metallic matrix and superior hardness of the hard particles to develop an excellent 

wear resistant material 72. A strong motivation behind the production of these 

composites is the increasing demand of abrasive wear resistance for dies used in the 

extrusion of lightweight metal matrix composites (i.e. Aluminum and Al alloys 

reinforced with SiC). The interaction of hard ceramic particles (HPs) with the die can 

severely damage and decrease its lifetime. A dramatically high die wear is observed 

when processing MMCs using conventional tool steels as die material 73. Pagounis et 

al. 69 have shown that the incorporation of 12 vol. % reinforcing particles (i.e. VC or 

Cr3C2)  in a PM hot work tool steel led to increased three-body abrasive wear 

resistance up to seven times, compared to the matrix base material. 

Even if PM is more expensive than conventional processing routes such as casting, 

the particle reinforced tool steel matrix composites are generally produced via PM 

routes due to improved mechanical properties as discussed earlier. The atomized 
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powders are mechanically milled or mixed with the hard particles of the second 

phase (i.e. ceramics) in a ball mill or mixer; the powders are then consolidated mostly 

using HIPing to obtain a fully dense material18,72.  

1.5.1 Role of HPs in Densification of MMCs 

In general, the solid state consolidation of MMCs is carried out at sintering 

temperatures well below the melting point of HPs. Therefore, the HPs should be 

considered as rigid, non-deformable particles during densification. Recalling the 

densification mechanism in HIP and SPS (i.e. plastic deformation, power law creep, 

grain boundary and bulk diffusion), consolidation of powder blends of HPs and matrix 

particles, called soft particles (SPs), is strongly dependent on HPs volume fraction, 

size (d), shape and the ratio of (dSP/dHP) 74–76.  

At low vol. % of HPs (i.e. isolated HPs), upon application of the pressure at the 

processing temperature the matrix particles can deform and fill the holes in the 

vicinity of HPs and matrix particles contacts to accomplish the densification. By 

increasing the HP volume fraction, the risk of formation of HP aggregates becomes 

higher. In this case, filling the holes, namely the excluded volume 77 trapped in 

between of rigid HPs by the soft metallic matrix even by the application of high levels 

of pressure or long holding times (i.e. long creep time) is almost impossible. 

Therefore a fully dense material cannot be achieved. This drawback appears more 

detrimental when dealing with a very fine HP size compared to coarser HPs 75.  

Upon further increasing the HP's vol. % a percolating HP network might be formed. 

The network may partly support the applied external pressure so that the effective 

pressure on softer metallic particles will be reduced which in turn leads to hindering 

of densification. On the other hand, in this condition, densification might progress by 

the rearrangement of the percolated HP network under the applied pressure. The 

ease of the rearrangement is dependent on the shape of HPs, the rearrangement of 

the spherical particles is easier compared to the irregularly shaped HPs. However, 

due to inherent brittleness of HP, rearrangements may be in accompany with HP 

fracture and cracking which will consequently demolish the expected mechanical 

properties of MMCs under mechanical load. 

The vol. % thresholds of the three highlighted conditions (i.e. isolated, aggregated 

and percolated HPs) is tightly dependent on the dSP/dHP ratio (Figure 13). Moreover, 

since the increased contact area of HPs can hinder the densification in all three 

regimes described above, the spherical morphology which offers the lowest contact 

area between the hard particles is considered the optimum HP morphology with 

regard to ease of densification. 
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Figure I-13. Effect of hard particle volume fraction and particle size ratio on the densification 

behavior of hard and soft powder mixtures 78 

However, from a mechanical properties viewpoint, the strength of hard ceramic 

particles in the metallic matrix is highly dependent on their particle size. In the fine 

ceramic particles, the probability of the existence of processing related flaws (i.e. 

pores, inclusions and grain boundary fissures) exceeding the critical flaw size is very 

low. Therefore according to the Griffith strength formalism 79, the strength of fine HPs 

is higher than that of coarser ones. To overcome the percolation and aggregation of 

HP’s, MA has been suggested by many researchers as a very efficient technique. 

MA provides a very homogeneous distribution of fine HPs in the metallic matrix thus 

by-passing the percolation threshold typically found by simple mixing of the powders 
56,80–82. 

1.5.2 Role of HPs in Mechanical performance of the steel matrix 
composites 

Apart from the governing function of the hardenable metallic matrix, the critical 

parameters that influence the mechanical properties of MMCs are briefly described in 

the following.  

1.5.2.1 HPs size and volume fraction 

A fine HP size provides higher strength due to the reduced mean free path between 

hard particles. For the same reason, fracture toughness drops significantly. In the 

presence of a theoretically clean and seamless interface, when the stress at the 
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poles of the particles becomes high, the crack initiates and easily propagates inside 

the HPs. Therefore, at given HP content, the higher the number of HPs the higher 

the probability of crack initiation and consequent crack propagation either through the 

HPs or HP/Matrix interface 18. Figure (14) schematically depicts the effect of HP size 

on the strength and fracture toughness of steel based MMCs. However, the critical 

flaw size in ceramic particles should also be considered. The probability of premature 

failure (initiated from particles) due to the presence of processing related flaws in 

larger ceramic particles is much higher than that of the finer ones 82. Therefore, even 

if the schematic presentation in this figure can be assumed for a qualitative 

evaluation of strength and toughness, it cannot be a design guideline to produce 

MMCs with improved toughness using coarser HP sizes. 

 
Figure I-14. (a) Bend Strength and (b) fracture toughness dependence of MMC on HP size 72 

Figure (15) clearly shows the influence of the HPs volume fraction and size on the 

impact toughness of hot work tool steel composites. No practical difference in impact 

toughness can be observed with regard to the size of the reinforcing particles. This 

conveys the fact that the quantity of processing related flaws larger than the critical 

flaw size serving as the locations of the initiating defect is much higher inside the 

coarse particles. These defects deteriorate the strength of the coarse ceramic 

particles and compensate for the positive effect of increased mean free path between 

them in view of mechanical properties of the MMCs. Moreover, it is shown that by 

increasing the volume fraction of HPs, a drastic drop in toughness is clearly 

evidenced.  It is also noteworthy to mention that a very high volume fraction of 

reinforcement does not necessarily provide better wear resistance in hot work tool 

steels. Since in the presence of the secondary carbides, the martensitic matrix will 

not be able to support and accommodate excessive volume fractions of the second 

phase during the wear test due to the limited toughness, the matrix can not support 
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the reinforcing particles thus spalling of the HPs occurs easily 69,83. Spalling of the 

HPs has a two folded effect on increasing the wear loss. Firstly, the pulled out HPs 

act abrasively in addition to the abrasive grits. Secondly, as a result of spalling, the 

mean free path (interparticle spacing) between HPs will be increased, and thus 

providing a larger mean free path for the action of abrasive media. The latter 

becomes crucial when the hardness of HPs is higher than that of the abrasive 

particles. 

 
Figure I-15. Impact toughness dependence of hot work tool steel composite on size and vol.% 

of HPs (Cr3C2) 18 

1.5.2.2 HPs distribution in the Matrix  

In addition to the effect of HPs dispersion on the densification behavior of 

composites, a homogenous distribution of HPs into the matrix provides isotropic 

properties of the MMCs which is essential to efficient use of load bearing capacity of 

HPs 84. HPs clusters may promote crack initiation and linkage of the cracks under 

loading85. Therefore these clusters negatively affect ductility and fracture toughness 

in view of local fracture initiation toughness, crack growth toughness and global 

fracture toughness.  

In order to obtain a homogenous distribution of HPs in a ductile matrix, a geometrical 

model based on the HP size (dp) and matrix powder size (dm) was proposed by Tan 

and Zhang 86. This model includes the HPs volume fraction (f) and the strains 

induced to the samples by a secondary process (i.e. extrusion and/or rolling). The 

model is extended by Sabirov et al. 87 for the severe plastic deformation (SPD) 

processes that induce a high amount of shear strain (γ) to the sample (e.g. equal 
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channel angular pressing). Based on the model, the HPs distribution is expected to 

be homogenous when the HP size (dp) is not smaller than a critical value. 

 𝑑𝑝 ≥
𝑑𝑚

[(
𝜋

6𝑓
)

1
3−1]

√𝑅

1−𝑅′𝛾

      (10) 

where R is the extrusion ratio and R’ reduction ratio during rolling. It appears that the 

large shear strains can effectively lower the critical size of HPs needed to achieve a 

homogenous distribution into the matrix.  It was shown that in an extruded Al6061 

powder metallurgy MMC reinforced with 20 vol. % fine Al2O3 particles showing 

diffused clusters elongated in the extrusion direction, 7 Passes of ECAP (i.e. 

introducing γ to Eq. 10) was sufficient to homogenize the particle distribution within 

the matrix87. As a result, the fracture toughness was increased from 1.5 to 2.7 KJ/m2. 

Therefore, in order to achieve a homogeneous distribution of fine HPs inside the 

matrix, SPD processes seem to be highly efficient. 

1.5.2.3 Matrix-Reinforcement Interface  

Considering the possible different strengthening mechanisms of HPs in MMCs, load 

transfer and matrix strengthening models predominantly rely on the existence of a 

defect free and strong matrix/HP interface 88. During solid state processing of 

composites, the interface can be classified according to the possible reactions 

between HPs and matrix into pure mechanical bond or reaction bond 18,89. As a 

general rule, the formation of reaction zones at the interface can significantly affect 

the mechanical properties, since most reaction products are brittle 56. However, there 

exist sparse results in the literature indicating that the formation of a limited (in size) 

reaction zone might improve the bonding between the matrix and the HPs thus 

improving the load transfer from matrix to the reinforcement 90.  
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Chapter II  
The aim of the work 

2.1 PM AISI H13 with “Harmonic Microstructure”  

 As author tried to introduce and rationalize the effect of grain refinement down to 

UFG regime on the deterioration of uniform elongation and toughness in ferritic steel, 

It would be thus of high industrial importance to imply some metallurgical practices to 

overcome ductility problem. One is to produce gradient grain microstructure in which, 

only the surface is characterized by (UFG) microstructure and the coarse grain (CG) 

core plate provides ductility. This can be achieved by implementing different 

mechanical or thermomechanical treatments 91–94. A successful industrial practice is 

hot rolling close to the transformation temperature and high rolling strains to achieve 

UFG ferrite on the surface down to 0.25 thickness of the strips as a result of strain 

induced transformation from austenite to ferrite due to the large strains and high 

undercooling 95. Other thermomechanical processes such as cryogenic rolling 

followed by secondary recrystallization are useful to produce heterogeneous bimodal 

grain materials 96. Bimodal grain size microstructure can also be achieved through 

powder processing 97. 

In theory, similar to the concept developed by Ashby98 describing the deformation of 

plastically non-homogenous materials, the increased strain hardening capability in 

these heterogeneous microstructure materials stems from the storage of 

geometrically necessary dislocations (dislocations of the same sign). Since the 

coarser grains undergo higher plastic deformation than that of the UFGs, there will 

be a plastic deformation gradient build up in the microstructure. Accommodation of 

this plastic strain gradient requires the storage of geometrically necessary 

dislocations. The dislocation density gradient is maximum in case of randomly 

distributed CGs that are fully embedded inside the surrounding UFGs 99. 

However, when considering the toughness, bimodal grain size materials do not 

always show a homogenous behavior due to the inhomogeneous distribution of fine 

grains inside the coarse grain matrix 100 or the grain shape and orientation 

dependency of toughness in severely plastically deformed grains 24. 

 An interesting extension to the gradient grains and heterogeneous bimodal grain 

size microstructures is realized by a powder metallurgical production route leading to 
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the achievement of the so-called “Harmonic Microstructure” 101, in which, instead of 

generating high strength and toughness very locally, as it appears in the 

aforementioned “gradient grain” structure, a 3D interconnected network of UFGs 

surrounding the CGs with fairly uniform spacings is formed in the bulk. This 

microscopically heterogeneous structure thus provides a homogenous combination 

of high strength thanks to the 3D interconnected network of UFGs and an acceptable 

level of uniform elongation provided by the strain hardening capacity of the enclosed 

coarser grained areas and also the generation of geometrically necessary 

dislocations at the interfaces of CGs and UFGs resulting in delayed plastic instability. 

As shown in Figure (1), this PM route involves the severe plastic deformation on the 

surface of powder particles to a certain depth by controlled mechanical milling and 

subsequent fast consolidation. The method thus allows the development of an 

interconnected network of UFG microstructure (Shell) surrounding a CG (Core) 

matrix. The mechanical properties strongly depend on the volume fraction and 

distribution of UFG Shell so that a controlled shell to core ratio provides excellent 

properties combination 102–105. 

 

 
Figure II-1. Schematic representation of (a) milled powder and (b) consolidated material106 

In most cases, the data reported in the literature is limited to pure metals (i.e. Ni, Cu, 

and Ti) and relatively low hardness alloys that show easy to deform FCC crystal 

structures (i.e. stainless steel). Dislocation interactions in materials with a BCC 

structure is accompanied with the formation of immobile dislocations, crack 

nucleation and finally brittle fracture of the powders. Therefore controlling the volume 

fraction of Shell seems to be impossible. Hence, in the case of BCC structured 

materials, an easier control of the volume fractions can alternatively be achieved by 

mixing and/or low energy mechanical milling of the desired vol. % of the MM-UFG 

particles with the as received powders. In this manner, the finer MM-UFG powders 

accumulate on the surface of the bigger as received powders (satellite structure) to 

yield a 3D interconnected network after consolidation.  

The aim of the first part of this work is to evaluate the fracture toughness of a PM 

hot work tool steel with a harmonic microstructure obtained by mixing of UFG 
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mechanically milled (MM) and coarser grained as atomized (AT) powders 

consolidated by SPS. In a second step, the best performing harmonic microstructure 

has been subjected to thermal fatigue testing. Considering the industrial application 

of hot work tool steel for hot forging and die casting, surface damages by heat 

checking most likely occurs 107,108. Heat checks are defined as a network of surface 

cracks which are formed because of the fatigue developed upon the repetition of 

thermal stresses. These stresses are generated because the expansion and 

contraction of the surface during heating and cooling is constrained by the core. 

Crack initiation at the surface of the tool impairs surface finishing and forces repairing 

operations. A deep propagation of these cracks may eventually trigger the tool 

failure. Resistance to heat checking can be improved by a combination of hot 

strength, ductility, and toughness together with inherent high thermal conductivity 

and low coefficient of thermal expansion. Thermal fatigue resistance evaluation of a 

harmonic microstructure can then be then of interest in its potential industrial 

application where the tool has to show a combination of high toughness and 

reasonable hardness together with high TF resistance. Therefore, the TF resistance 

of the harmonic PM AISI H13 tool steel is also investigated using a simple TF test 

equipment.  

2.2 PM AISI H13-PSZ composites  

Previous studies confirmed that the failure of MMCs with a high strength matrix 

initiates predominantly either from the HP or matrix-reinforcement interface 10,18,109. 

Moreover, the difference between the coefficient of thermal expansion of matrix and 

reinforcement generates a hydrostatic tensile field of stress in the matrix upon 

cooling from the processing temperature, which in turn deviates the crack towards 

the matrix/reinforcement interface and lowers the fracture toughness 69. One way to 

reduce the negative influence of the reinforcement on toughness is to select 

“Ceramic Materials” with relatively high stress to fracture and high fracture 

toughness.  

Partially stabilized Zirconia (PSZ), firstly introduced by Garvie et al.110 showed 

promising properties. Below 1170 °C, ZrO2 transforms from the tetragonal phase (t) 

into a monoclinic structure (m), accompanied by 3% to 5% volume expansion. In 

PSZ, by using dopants (e.g. Y2O3 or MgO) the tetragonal phase will be metastable at 

room temperature and shows stress-induced martensitic transformation into the 

monoclinic structure. In view of the aforementioned feature, PSZ shows higher 

fracture toughness (i.e. K IC ~ 8 MPa m1/2) in comparison with other ceramics as a 

result of the dissipation of the strain energy in the vicinity of the tip of a propagating 

crack due to the stress-induced transformation of the metastable tetragonal phase (t) 
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into the stable monoclinic one (m). Another toughening mechanism has been 

ascribed to the creation of compressive strain fields about the crack tip, due to the 

volume expansion resulting from t to m transformation, that opposes crack 

propagation 111. In a PSZ containing composite, the effective volumetric 

transformation strain (θT) is defined by Eq. 1 112 

𝜃𝑇 = 𝐶𝜃𝑇
𝑃      (1) 

where C is the volume fraction of transforming particles and 𝜃𝑇
𝑃 is the volumetric 

transformation strain of the particles when the particles are not constrained by the 

matrix. In a composite material containing small vol. % of transforming phase (i.e. 

PSZ), the effective volumetric transformation strain will be enhanced if the matrix 

material is not stiffer than PSZ (E ~ 210 GPa , ν = 0.3)111,112. The energy-dissipative 

stress induced phase transformation of PSZ thus can be expected to enhance the 

toughness of the tool steel matrix composite (Ematrix ~ 208 GPa) in comparison with 

the same tool steel reinforced with other ceramic compounds.  

Partially stabilized zirconia shows much higher hardness compared to the metals. A 

good combination of both hardness and fracture toughness makes it a proper 

candidate as a tribological material 113. PSZ shows the potential to enhance the 

abrasive wear resistance of the MMC more than other ceramic compounds not 

showing such kind of transformation. If there exists a strong bonding between PSZ 

and the matrix, volume expansion caused by phase transformation creates 

compressive zones at the tip of the propagating cracks which in turn opposes the 

linking up of these cracks and delays the particle removal by fracture 114.  

The strengthening mechanism of PSZ in a metallic matrix was investigated by Martin 

et al. 115. Incorporation of PSZ into a TRIP steel matrix led to an increase in the 

strength of the composite material with reference to the unreinforced alloy and also in 

comparison with the TRIP steel reinforced with a conventional HP (i.e. Al2O3). The 

load transfer to PSZ particles and energy dissipation due to the stress induced 

transformation before particle fracture or particle debonding was also well 

documented 115–117. 

In the frame of the second part of the present work, the feasibility and mechanical 

properties of a tool steel matrix-PSZ composite by mechanical alloying and spark 

plasma sintering has been evaluated. Two different types of zirconia and different 

volume fractions of reinforcement is taken into consideration. Mechanical Milling is 

carried out to achieve a full dispersion of hard particles into the severely deformed 

tool steel matrix to pursue the synergistic effects of i) strain hardening and 

microstructural refinement due to severe plastic deformation and ii) dispersion 

hardening by HPs.  



 
 

28 
 

 

Chapter III  
Materials and Experimental Procedures 

 

3.1 Materials and fabrication of samples 
 

3.1.1 Harmonic microstructure design  

To tailor the feasibility of development of a Core/Shell Structure in AISI H13 gas 

atomized powders, controlled mechanical milling was performed. A commercial gas 

atomized AISI H13 powder (Table 1) was used.  

Table III-1. Chemical composition of AISI H13 powder (wt. %) 

 𝐅𝐞 𝐂 𝐂𝐫 𝐌𝐨 𝐕 𝐌𝐧 𝐒𝐢 N* O* 

AISI H13 Bal. 0.41 5.1 1.6 1.1 0.35 0.9 383 105 

*in ppm 

Particles showed an average size of 100 μm and the maximum particle size was 

lower than 150 µm. The initial micro-hardness was 710 HV0.1, in agreement with the 

martensite (plus some retained austenite) microstructure obtained during rapid 

solidification. A first powder batch was used in the as-atomized state (AT) while a 

second one was annealed (AN) to reduce hardness and to improve the strain 

hardening capability. Annealing was performed in a tubular furnace (Alumina tube) in 

a reducing atmosphere (20% H2 and 80% Ar). Preheating rate was 0.5 °C/min up to 

200°C, and powders were heated at a rate of 3.5 °C/min up to 860°C. Dwell time 

was set to 2 hours followed by slow cooling (0.5 °C/min) down to 560°C and 

subsequent free cooling to room temperature. 

Powders were then subjected to low energy (controlled) mechanical milling using a 

Fritsch Pulverisette 6 planetary mono mill with a 500 ml vial using 100Cr6 steel balls 

under vacuum at room temperature for 16 hours. Parameters of the rotational speed 

(RPM) and ball to powder weight ratio (BPR) were chosen in order to reduce the 
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frequency of high energy impacts to avoid powder fragmentation during mechanical 

milling. Therefore, as suggested in previous research works118,119 the ball to powder 

ratio was set to 1.5:1(g/g) and the rotational speed of 150 rpm.  

An alternative approach to producing harmonic-microstructure AISI H13 was also 

examined.  The powders were subjected to high energy mechanical milling (MM) at 

450 rpm under vacuum. The milling time was set to 200 min, and cycles of 2 min ON 

and 9 min OFF were chosen to reduce frictional overheating. The ball to powder ratio 

(BPR) was set to 10:1.5 (g/g). Seven powder samples were prepared of which two 

samples were mono-sized grain namely AT (0%MM) and 100%MM. The rest of the 

samples were prepared by mixing of the different fractions (20, 40, 50, 60 and 80 vol. 

%) of MM powders with the AT particles using a Turbula mixer for 60 min. Mixing 

was carried out to develop a satellite structure consisted of the finer UFG-MM 

powders fully covering the coarser AT ones.  

It has to be noted that, for the production of Thermal Fatigue test samples (Section 

3.2.8), to further homogenize the harmonic microstructure architecture, the MM 

powders were mixed with the AT ones and then the batch was subjected to a low 

energy mechanical milling for an hour. The reasoning behind this additional 

production step was that low energy milling allows finer MM particles to fully cover 

the coarser AT particle surfaces more homogenously forming a percolating 3D 

interconnected network after SPS. This process may also guarantee more uniform 

AT particles spacing inside the UFG-MM network. The complete list of materials is 

listed in table 2. 

 

Table III-2. Description and codes of the samples 

Sample code Description 

AT-H13 As received gas atomized powders 

AN-H13 Annealed powders 

AT-H13(16h) Subjected to Low energy mechanical milling for 16h 

AN-H13(16h) Subjected to Low energy mechanical milling for 16h 

MM-H13 High energy mechanically milled 

20%MM 20 vol. % of MM-H13 mixed with 80 vol. % AT-H13 

40%MM 40 vol. % of MM-H13 mixed with 60 vol. % AT-H13 

50%MM 50 vol. % of MM-H13 mixed with 50 vol. % AT-H13 

60%MM (HS) 60 vol. % of MM-H13 mixed with 40 vol. % AT-H13 

80%MM 80 vol. % of MM-H13 mixed with 20 vol. % AT-H13 
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3.1.2   AISI H13 Tool Steel-PSZ composites  

Commercial AISI H13 tool steel powder (d < 45μm) was selected as the matrix 

material (Table 3). Two different types of PSZ particles, namely Magnesia Partially 

Stabilized Zirconia (Mg-PSZ) and a commercial 3 mol. % Yttria Stabilized Zirconia 

(from now on referred to as 3Y-PSZ) with mean particle sizes equal to 5 and 0.5 μm 

respectively (Table 4), were selected as the reinforcement. 

 

Table III-3. Chemical composition of AISI H13 (wt. %) 

 𝐅𝐞 𝐂 𝐂𝐫 𝐌𝐨 𝐕 𝐌𝐧 𝐒𝐢 𝐎  

AISI H13 Bal. 0.38 5.1 1.0 1.4 0.35 1.0 0.05  

 

Table III-4 Chemical composition of reinforcement (wt. %) 

 𝐙𝐫𝐎𝟐

+ 𝐇𝐟𝐎𝟐 

𝐘𝟐𝐎𝟑 𝐒𝐢𝐎𝟐 𝐅𝐞𝟐𝐎𝟑 𝐀𝐥𝟐𝐎𝟑 𝐍𝐚𝟐𝐎 𝐌𝐠𝐎 𝐓𝐢𝐎𝟐 

3Y-PSZ Bal. 5.23 0.003 0.002 0.005 0.007 N/A N/A 

Mg-PSZ Bal. N/A 0.025 0.005 N/A 0.006 3.5 1.0 

 

From the as-received powders sandwich like samples (H13/PSZ/H13) were 

consolidated (Figure 1) using the exact processing condition (i.e. the uniaxial 

pressure of 60 MPa , sintering temperature of 1100°C and 30 min holding time) 

planned to consolidate the MMCs. The samples were used to trace probable 

interfacial reactions between the matrix and reinforcement.  

 

 
Figure III-1. Schematic of sandwich structure 

Tool steel powder was mixed to 10 and 20 vol. % of reinforcement using a turbula 

mixer for 30 minutes. 0.2 wt. % Kenulube was added as the process control agent 
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(PCA). The powder mixture was then mechanically alloyed (MA) using a planetary 

mono mill under vacuum at a rotational speed of 450 rpm. The ball to powder ratio 

(BPR) was set to 10:1.5 (g/g). Milling was extended up to 340 minutes, and powders 

were collected after 90 min, 200 min and 340 min of milling to determine the optimum 

processing time. Cycles of 2 min ON (i.e. milling) and 9 min OFF (i.e. stop) were 

selected to avoid overheating. Air cooling suppressed drastic variations in vial 

temperature.  

For the purpose of comparison, a TiC reinforced H13 were also produced under the 

same processing condition. The mean particle size of TiC powder was 3 μm. A list of 

developed composites specifying the reinforcement type, vol. % and mean particle 

size is listed in table 5. 

Table III-5 composition and codes of MA powders 

Sample code Reinforcement 

vol. % 

Reinforcement 

type 

Reinforcement 

Mean particle 

size (μm) 

MA(H13+10%Mg-PSZ) 10 Mg-PSZ 5 

MA(H13+20%Mg-PSZ) 20 Mg-PSZ 5 

MA(H13+10%3Y-PSZ) 10 3Y-PSZ 0.5 

MA(H13+20%3Y-PSZ) 20 3Y-PSZ 0.5 

MA(H13+20%TiC)* 20 TiC 3 

* TiC reinforced H13 (i.e. MA(H13+20%TiC)) serving as a reference tool steel composite 

produced in  lab of metallurgy using the same technique was just evaluated by means of 

fracture toughness and hardness 

3.1.3 Spark Plasma Sintering  

All Powders in this work were consolidated using a DR. SINTER® SPS1050 

apparatus (Sumitomo Coal & Mining, now SPS Syntex Inc.) using graphite dies. The 

disc-shaped samples with small dimensions (20 mm in diameter, 7 mm in height) 

were heated at 100 °C/min up to the sintering temperature (1100°C) and were held 

for 30 minutes. A pressure of 60 MPa was applied once the temperature reached 

570°C. The samples were free cooled from the sintering temperature. Due to the 

limitation of the apparatus, heating rate could not exceed 50 °C/min for relatively 

large samples. Therefore, disks for the plane strain fracture toughness tests (30 mm 

in diameter and 7 mm height) and Thermal Fatigue test (40mm diameter and 20mm 

height) were consolidated using a lower heating rate (i.e. 50 °C/min).  

Overall views of the production of harmonic microstructure and tool steel-PSZ 

composites are schematically shown in Figures (2a) and (2b) respectively.   
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Figure III-2. Overall view of production routes, a) harmonic microstructure and b) tool steel-PSZ 

composite 

3.1.4 Heat treatment  

Samples were vacuum quenched from 1020°C x15 min using 5 bar nitrogen and 

tempered twice at 625°C for 2 h; the heating rate was set to 13 K/min.  

3.2 Materials Characterization 

3.2.1 X-ray diffraction 

XRD data were carried out on powders and sintered samples using an Italstructures 

IPD3000 instrument equipped with a Cu anode source (line focus) (Kα=0.15418 nm), 

a multilayer monochromator to suppress k-beta radiation and fixed 100 μm slits. The 

samples were positioned in reflection geometry with a fixed omega angle with 

respect to the incident beam, and spectra were collected using an Inel CPS120 

detector over the omega +120° two-theta range. Acquisition time was 1800 seconds 

per diffractogram. 

The data was analyzed using Rietveld method (i.e. considering the area under peak 

proportional to the vol. % of the corresponding phase), and elaborated by MAUD 

(Materials Analysis Using Diffraction) software 120. Mean crystallite size and the 

lattice average microstrain were calculated to tailor the effects of severe plastic 

deformation on the structural refinement.  

Peak broadening is dependent on the instrument, lattice strain and mean crystallite 

size. After instrumental effect corrections, mean crystallite size and lattice strain are 

determined by the Scherrer formula 
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 𝐵 =
0.9𝜆

𝑑𝑐𝑜𝑠(𝜃)
+ 𝜂𝑡𝑔(𝜃)     (1) 

where B is the width of the peak at half of its height, λ is the radiation wavelength, d 

is the crystallite size, η is the lattice strain, and θ is the Bragg angle. The equation 

can be rearranged by multiplying both sides by cos (θ) to give a linear function of θ 

 𝐵𝑐𝑜𝑠(𝜃) = (0.9
𝜆

𝑑
) + 𝜂 sin (𝜃)    (2) 

where the slope (η) is the lattice strain. This method can be applied if the crystallite 

size distribution lies in the range of 10-100 nm12. 

3.2.2 Density measurements 

Density measurements were done on as sintered specimen according to the 

“Archimedes” principle conforming to ASTM B962-08 121. The density of AISI H13 

was considered to be 7.76 g/cm3. 

The density of composites was assumed to obey the linear “ rule of mixtures.” 

𝜌𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 = 𝜌𝐻13𝑣𝐻13 + 𝜌𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡𝑣𝑅𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡   (3) 

where ρ and v are the absolute density and volume fraction respectively. The 

literature data on the absolute densities of 3Y-PSZ ( 6.05 g/cm3 ) and Mg-PSZ (5.7 

g/cm3 ) were used. 

3.2.3 Metallography  

Sintered samples were cut by precision micro-cutting with a diamond blade. 

Metallographic sections were prepared by grinding with SiC papers up to 1200 grit 

followed by polishing with 3 μm and 1 μm diamond paste and chemical etching with 

Nital (5% nitric acid in ethanol solution) was carried out on sintered samples and 

powders. Sintered samples Microstructures and powder morphologies were 

investigated by Scanning Electron Microscopy (SEM). All semi-qualitative chemical 

analyses were performed by energy-dispersive X-ray spectroscopy (EDS). EDS line 

scan analysis and elemental mapping was carried out on sandwich samples and 

consolidated composites respectively to identify the possible formation of reaction 

layers.  

3.2.4 Grain size measurement 

Quantitative image analysis using the linear intercept method on SEM micrographs 

was implemented to measure the grain size of the samples. The results were 

elaborated according to ASTM E112-13.  
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3.2.5 Hardness measurements 

Vickers hardness measurements on as sintered and heat treated samples was 

performed according to ASTM E92-82 122. The applied load was set to 10 Kg and the 

average of at least six indentations was reported. 

Microhardness test was performed on the metallographic samples. Applied load was 

set to 0.05 N for the powders in order to eliminate the influence of the substrate. The 

load was set to 0.1 N for the bulks. 

3.2.6 Measurement of yield strength 

The yield strength of the harmonic microstructure samples was measured using 

spherical indentation according to the empirical method proposed by Herbert et al. 
123. The technique gives a good estimation of the yield stress for materials showing 

small yield strain (less than 1%) in which, yielding occurs well before any finite-

deformation effects 124. The advantages of this method are its nondestructive 

characteristics, relatively low cost and the possibility of applying the test on the small 

samples. For the construction of  “stress-strain curves,” the contact area during 

indentation has been calculated by the following equation 

𝑎 = √2ℎ𝑐𝑅 − ℎ𝑐
2      (4) 

where a is the contact radius, hc is half the amount of h, the total displacement of the 

indenter into the sample, and R being the radius of the spherical indenter using the 

Hertz solution which is proved to be algebraically straightforward and precise in this 

context123. According to the observations of Tabor125 and using Eq.5, it is possible to 

define the mean pressure (Pm) as the applied load (P) over the contact area.  

𝑃𝑚 =
𝑃

𝜋𝑎2
       (5) 

Following the work of Mesarovic and Fleck 124, the yield is observed when (a/R) (i.e. 

contact area divided by indenter radius) approaches 0.16, this ratio is independent of 

the magnitude of σy , Young’s modulus, and Poisson’s ratio.  At this point, the mean 

pressure (Pm= P/ πa2) divided by 1.6, somewhat estimates the yield point of the 

material 123.  

The stress and strain in the uniaxial tensile test are equivalent to:  

𝜎𝑖𝑛𝑑𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 ≈
𝑃𝑚

𝜓
≈  𝜎𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑡𝑒𝑠𝑡   (6) 

𝜀𝑖𝑛𝑑𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 ≈ 0.2
𝑎

𝑅
 ≈  𝜀𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑡𝑒𝑠𝑡    (7) 
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where 𝜓 is a constraint factor and it’s value depends on deformation regime. The 

indentations was performed using MTS 810 mechanical testing machine on the 

surface of heat treated bulks, 6 × 3 × 30 mm3 (W × B × L), gently polished (3μm 

cloth) to minimize the risk of strain hardening by grinding at small depth and also to 

reduce the surface roughness aimed at obtaining meaningful and accurate 

measurements . The indenter was a zirconia sphere (R =2.5 mm). The experimental 

results show a good agreement with the model predictions for the large spheres, but 

for the smaller spheres (e.g. R = 14 μm) the model significantly overestimates the 

hardness126. The displacement limit and displacement rate were set to 0.5 mm and 

0.05 mm/s, respectively. In order to further validate the results, uniaxial tensile tests 

were carried out for the AT (i.e. 0%MM) and 100%MM sample using an Instron 1343 

100KN testing machine. A schematic of the test configuration is shown in Figure (3). 

 
Figure III-3 schematic of spherical indentation on the surface of the samples 

3.2.7 Fracture toughness  

Fracture toughness tests have been carried out using a procedure suggested for 

small notched specimens127. Samples 6 × 3 × 30 mm3 (W × B × L) were cut from 

the heat treated disks. A notch with depth “a” equal to 0.5W and the root radii (ρ) of 

50 μm was electro-discharge machined (EDM) in the samples. EDM may affect the 

microstructure in the vicinity of the crack tip especially due to the development of a 

heat affected zone (HAZ). However, EDM was performed using slow feed rate and 

relatively low current to reduce the thickness of the white layer and the HAZ. It 

should be also noted that fracture toughness data obtained in this thesis are only 

used to compare the toughness of the different samples which have all been 

undergone identical EDM processes.  

Plane strain fracture toughness testing was performed using a 10-ton capacity 

universal tester. The specimens were loaded in three-point bending at a crosshead 

speed of 0.5 mm/min according to the ASTM E399-90 128. It has to be stated that the 
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use of a finite notch radius in place of a fatigue pre-crack, takes higher stress to 

reach the “critical stress intensity,“ therefore leading to apparent  Kapp values slightly 

greater than the corresponding KIC obtained from fatigue pre-cracked specimen.  

3.2.8 Thermal Fatigue test 

Thermal fatigue testing was performed on three samples, namely the harmonic 

microstructure that showed the optimized mechanical properties, 100% UFG-MM 

and 0% MM (AT).  

Dimensional specifications are shown in Figure (4). The thickness of the disk (20 

mm) made it possible to develop a biaxial state of stress and bidirectional cracking 

on the surface. A condition which is similar to that observed in many industrial 

components 129. 

 
Figure III-4. Technical drawing of disks 

TF tests were performed using a customary test rig as depicted in Figure (5). The 

rotating disc (8 rev/min) was induction-heated in a limited central portion of the 

external surface up to 660±10°C (i.e. higher than the tempering temperature of the 

samples) and rapidly cooled by a water jet (2l/min) down to 60°C. A beaker, 

continuously filled with flowing water, was also placed beneath the rotating disk to 

warranty the minimum temperature to be achieved. An infrared pyrometer 

continuously monitored the surface temperature.  

Tests were interrupted after 200 and 500 cycles to evaluate surface thermal cracking 

after slightly polishing of the surface oxide layer. After 500 cycles metallographic 

cross sections parallel and perpendicular to the rotation direction were prepared to 

be analyzed by scanning electron (SEM) and optical microscopy (OM). The mean 

crack length (lm), maximum crack length (lmax), crack density (ρ) and the product of 

these parameters, i.e. the so-called Pyrocracking factor (P) 129 were calculated using 

quantitative image analysis. For this purpose only cracks longer than 20 μm were 

taken into account. 
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Figure III-5. Schematic view of the test rig 

3.2.9 High-temperature chemical stability of composites 

The chemical stability at the processing temperature was further studied by holding 

the consolidated samples at the SPS temperature (1100°C) under vacuum (5×10-4 

mbar) for longer dwell times (i.e. 1 and 2 hours). The metallographic cross-sections 

were analyzed using EDS semi-quantitative analysis.  

3.2.10 Tempering resistance  

Tempering resistance testing was performed on cylinderes (10 mm in height , 5 mm 

in diamater) at 550°C and 650°C under vacuum (5×10-4 mbar), for a maximum 

holding time of 10 hours. 

3.2.11 Hot Compression Tests 

Cylindrical samples were extracted by electro-discharge machining (EDM) from the 

sintered cylinders, with the main axis along the pressing direction. Hot compression 

tests were carried out on these cylinders using a Bähr dilatometer model 805A/D at 

650°C, 450°C and room temperature at a strain rate of 0.002 s-1 to 6% plastic strain.  

  



 
 

38 
 

Chapter IV  
Results and Discussion  
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Part 1 

4.1 Harmonic structure design by low energy MM 

Figure (1) shows SEM micrographs of the starting powders. The AT powder 

evidences the typical microstructure from rapid solidification, composed by primary 

martensite and retained austenite 71 (Figure 1a). Its hardness is rather high (712 
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HV0.05). Highly segregated areas can be detected in the intercellular regions. On the 

other hand, the annealed powders show carbide distribution mostly at prior 

intercellular regions, due to the local positive micro-segregation of carbide forming 

elements (Figure 1b). As a result of recrystallization, the hardness of the annealed 

powder is very low (190 HV0.05). 

 
Figure IV-1. SEM micrographs of a) Gas Atomized (AT) powder and b) Annealed Powder (AN), 

(nital 5%) 

Figure (2) shows the powders microstructure after 16 hours of mechanical milling. 

The hard (AT) particles show a visible deformed surface (Figure 2a) which can be 

recognized by the change in grain shape aspect ratio (i.e. prior austenite grain 

boundaries). The degree of straining gradually decreases towards the core. As a 

result of the lower hardness the (AN) particles (Figure 2b), experienced a much more 

severe surface plastic deformation. 

 
Figure IV-2. SEM micrographs showing the development of SHELL in a) (AT) and b) (AN) 

particles, (nital 5%) 

Grain boundaries are difficult to be distinguished and the precipitated carbides, at the 

intercellular region, which act elastically against the impacts are forced to accumulate 
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and align tangentially to the surface of the (AN) particles (Figure 3). There also exists 

evidence of cracked carbides in the deformed matrix and voids that are initiated at 

the carbides and matrix interfaces. In both cases, the fraction of the microstructurally 

refined surface is about 10 vol. % of the entire particle.    

 
Figure IV-3. SEM micrograph showing the core/shell structure in (AN) powders, arrows 

indicating cracked carbides and generated void,  (nital 5%) 

XRD patterns of the four samples are shown in Figure (4), peak broadening is 

evidenced in both mechanically milled samples with respect to the un-milled ones. 

Moreover, It can be observed that γ (retained austenite) peaks are not present in 

collected spectra of AT sample milled for 16 h as an indicative of strain induced 

martensitic transformation in the shell area (Figure 4a). Since the penetration depth 

of Cu-Kα radiation in steel particles does not exceed more than a few microns 130, it 

is possible to assume that the collected data accounts for the severely deformed 

shell of (AT) and (AN) powders. 

 
Figure IV-4. XRD patterns of a) AN and AN milled for 16 h, b) AT and AT milled for 16 h 
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The lattice microstrain vs. mean crystallite size of the samples are shown in Figure 

(5). 

 
Figure IV-5. Lattice microstrain vs. mean crystallite size for all powder samples 

The annealed powders show a drop in local strain and an increase in crystallite size 

as a result of dislocation recovery and grain growth; this becomes clearer when 

looking at the values obtained for rapidly solidified gas atomized powders. Samples 

which were subjected to mechanical milling, show microstructural refinement as the 

crystallite size is reduced compared to the un-milled counterparts. An increase in the 

lattice microstrain can be ascribed to the introduction of structural defects (e.g. 

dislocations) to the surface of the milled particles. The origin of microstrain will be 

discussed in more detail later in this work.  The microhardness measurement results 

are depicted in Figure (6).  

 
Figure IV-6. Microhardness evolution vs. milling time 
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The shell microhardness gradually increases by extending the milling time up to 16 h. 

As mentioned earlier, at this stage of milling, around 10 vol. % of the particles was 

severely deformed and microstructurally refined. By further extending the milling 

time, a drop in the shell micro-hardness is evidenced, in line with the SEM 

observations showing particle fragmentation after 20 h of mechanical milling (see 

Figure 7).  

 
Figure IV-7. SEM micrograph showing the fragmentation after 20 h of milling in (AN) powders, 

(nital 5%) 

The results thus suggest that in AISI H13 powder particles controlling the shell vol. % 

is rather hard or even impossible. To explain such behavior, one has to refer to the 

dislocation interactions in BCC structured materials. In a BCC structure material, the 

interaction of dislocations to generate a new dislocation with multiple Burgers vector 

of type <100> might nucleate a cleavage crack. However, there is strong evidence 

that the dislocations interaction cannot provide a stress concentration sufficient for a 

cleavage crack nucleation 131. Therefore, the role of the carbides should also be 

taken into account 131. As the surface of the particle is plastically deformed, at a 

certain level of strain hardening, a crack might nucleate in the carbides; the crack 

reaches the interface of carbide and strain hardened ferrite. Since strain hardened 

ferrite is not able to accommodate the plastic strain in the stress concentration site at 

the tip of the crack, the crack can be considered as a Griffith flaw. Therefore, once 

the length of these micro-cracks (i.e. cracking of coarse carbides or carbide films in 

the prior intercellular regions) reaches the critical length, because of the very slow 

velocity of dislocation movement in readily work hardened BCC ferrite 132, the crack 

will propagate by cleavage on the (001) plane.  Another probability is to assume that 

the generated voids at the carbide/matrix interface acted as preferred sites for crack 

nucleation and subsequent cleavage fracture133. 
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AT particles microstructure mainly consists of martensite showing higher initial 

microstrain and hardness due to the rapid solidification during gas atomization 

process. As a consequence, plastic deformation by MM will be more difficult, and the 

probability of early particle fragmentation is higher. Therefore, it was concluded that 

to develop a harmonic microstructure with controllable vol. % of UFG-shell, an 

alternative approach has to be applied.  

4.2 Harmonic Microstructure design by high energy MM 

4.2.1 Powder Characterization 

Figures (8a) and (8b) show that mean particle size is significantly decreased after 

high energy MM. The microstructure of the heavily milled powders is shown in Figure 

(8d). MM destroyed the initial microstructure and segregated regions (see Figures 1a 

and 8c) were stretched to form a fine and closely packed lamellar microstructure. 

The lamellar spacing as an indicative of strain level is not completely uniform within 

the particles. The lamellar spacing is still detectable at the core of MM particles, 

whereas the outer and near surface areas show a much more refined microstructure 

probably because those regions experience more severe collisions compared to the 

core. The very initial stages of MM are characterized by particle fragmentation and 

severe plastic deformation. Continuation of milling will result in the cold welding of 

the fragmented particles together with a continuous increase of the level of strain 

hardening caused by severe plastic deformation. The process reaches a stationary 

stage when the rates of cold welding and fragmentation become equal. Cold welding 

of deformed particles may be responsible for the formation of micro and nanopores 

(Figure 8d) that are hard to be removed during consolidation. These porosities are 

reported to be one of the obstacles to the fabrication of fully dense UFG and NC 

materials32. Figure (9) clearly depicts that the particle size distribution has also 

become much narrower than that of the starting powders. 
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Figure IV-8. Morphology of a) gas atomized, b) mechanically milled powders (200min, BPR: 

10:1.5 (g/g)), microstructures of c) gas atomized and d) mechanically milled powders. (SEM, 

nital 5%) 

 
Figure IV-9. particle size distribution of AT and MM H13 
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The average microhardness is increased from 712 HV0.05 in atomized state to 

around 850 HV0.05 after heavy MM as a result of strain hardening and martensite 

substructure refinement (i.e. Hall-Petch relation) by severe plastic deformation134. As 

mentioned earlier, the absence of γ-Fe peaks in XRD spectra is a result of stress 

induced γ-α transformation.  

The XRD spectra of MM powder is shown in Figure (10).  

 
Figure IV-10. XRD pattern of MM-H13, please note peak broadening as compared with Figure 

(4b). 

The quantitative XRD analysis results revealed that the mean crystallite size of the 

MM powders is refined to 16±6 nm and the lattice microstrain is increased to 0.5% 

(i.e. twice the rapidly solidified gas atomized particles reported in Figure 3). In MM 

powders two main strain fields are contributing to an increase in lattice micro-strain. 

One is around the dislocations (e.g. geometrically necessary dislocations) in the sub-

grain boundaries (i.e. martensite laths), and the other one is at the grain boundaries 

(grain boundary layer) containing lattice defects and geometrically necessary 

dislocations to compensate for the misfit of neighboring grains 135. When the powders 

are severely plastically deformed to refine the crystallite size down to less than 20 

nm, the probability of finding dislocations within the grains approaches zero. 

Therefore, the only contribution to the rise in local strain arises from the grain 

boundary layer. Part of this microstrain will be released upon holding the powders at 

the sintering temperature (1100 °C) in response to dislocation recovery. 
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4.2.2 Spark plasma sintering 

Figures (11a & b) depict the sintered microstructures of 0% MM (i.e. AT) and 100% 

MM respectively. The 100% MM shows a considerably finer grain size compared to 

the gas atomized counterpart, confirming that the fast Spark Plasma Sintering 

technique (30 min, 1100°C) allowed to retaining the structural modifications induced 

by MM.  

 
Figure IV-11. SEM (BSE) micrographs showing the microstructure of as sintered a) Atomized 

and b) 100% UFG-MM, (nital 5%) 

The optical micrographs of sintered mixtures are shown in Figure (12). The 

micrographs revealed that a threshold of 50 vol. % UFG-MM particles should be 

overcome to achieve a 3D interconnected network of UFG-MM surrounding the CG 

(AT) particles. Otherwise, the UFG-MM will appear as isolated zones within the CG 

matrix. Therefore the 50 to 80% MM samples are referred to as “harmonic 

microstructures” while the 20 and 40% MM specimen are considered as “bimodal 

grained” microstructures. 
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Figure IV-12. OM micrographs showing the microstructure of as sintered harmonic steels, a) 

20%MM, b) 40 % MM, c) 60% MM and d) 80% MM (nital 5%) 

The results of intercept length distribution are shown in Figure (13) and the 

corresponding average grain size is reported in Table 1. Mean grain diameter (i.e. 

prior austenite boundaries) for UFG-MM is 1.4±0.1 m. 25% of grain size population 

is smaller than 1.0 μm and 75% of the population is finer than 1.8 μm. Whereas, the 

sintered AT particles show a mean grain diameter of 4.2±0.5 m.  
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Figure IV-13. Results of grain size analysis by intercept method, a) vertical intercept length 

distribution for CG-AT zones b) horizontal intercept length distribution for CG-AT zones, c) 

vertical intercept length distribution for UFG-MM zones and d) horizontal intercept length 

distribution for UFG-MM zones 

The grain aspect ratio defined by the ratio of horizontal intercept length to the vertical 

one is near 1 in both grain regimes. Both UFGs and CGs show a lognormal 

distribution and the null hypothesis for the lognormal distribution could not be 

rejected at a significance level of 0.05. The wide range of grain size distribution in 

UFG-MM zones can be explained by the random process of ball impacts on particles 

during MM which yields different particle sizes and grain sizes and is in line with the 

observations of non-uniform lamellar spacing formerly seen in Figure (8d). No sieving 

of the initial powders nor the milled powders makes it difficult to control the final grain 

size and homogeneity of the harmonic structure precisely, however, from an 

industrial perspective, this processing route seems to be the simplest and the most 

economical route. 
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Table IV-1 Grain Size ASTM E-112-96 Mean of Vertical and Horizontal Lines 

Measuring 

Zone 

No. of 

grains 

(mm-2) 

Avg. 

Grain 

area 

(μm2) 

Avg. 

Grain 

diameter 

(μm) 

No. 

intercept

(mm-1) 

Mean 

linear 

intercept 

line (μm) 

ASTM 

grain 

size 

No. 

UFG 530000 1.9 1.4 815 1.2 15.8 

CG 59000 17 4.2 270 3.7 12.8 

 

The presence of upper bainite and retained austenite (RA) is evidenced mostly in the 

UFG zones (see Figure 14).  

 
Figure IV-14. a) SEM (BSE) micrograph of 50% MM microstructure showing bainite in UFG-MM 

zones (dark areas) and b) a higher magnification SEM (BSE) micrograph highlighting the 

presence of upper bainite and retained austenite  

Upon free SPS cooling (i.e. relatively low cooling rates), Austenite (γ) decomposition 

into bainite begins at the grain boundaries136. Therefore the higher grain boundary 

vol. % in UFG-MM promotes the formation of bainite by increasing the preferential 

nucleation sites. As it is highlighted in Figure (14), RA is evidenced in UFGs with a 

grain diameter less than 1 μm. It is widely accepted that austenite grain size 

reduction increases the stability of austenite, thus hindering the martensitic 

transformation137,138.However, due to low vol. % of RA, this phase could not be 

quantified by XRD analysis. Since free cooling could not provide a fully martensitic 

microstructure, further quench and tempering of the samples will be necessary.  
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4.2.3 Density and hardness of the SPS samples 

Figure (15) depicts the density and hardness measurements after SPS. Near full 

density samples were produced (see Figure 15a). A gradual decrease in relative 

density is observed by increasing the MM vol. %. On one side, MM powders possess 

a higher surface energy leading to higher driving force for sintering. However, on the 

other hand, this high surface energy is associated with a strong strain hardening of 

particles, showing very limited compressibility. As a consequence, neck formation 

and extension during SPS will become more difficult, thus hindering the sintering 

process.  

All blends also show a negative deviation from the linear “rule of mixtures” calculated 

by Eq. 1. 

𝜌𝐶 = 𝑓 × 𝜌𝑀𝑀 + (1 − 𝑓) × 𝜌𝐴𝑇    (1) 

where f is the volume fraction of MM and ρ is the relative density. AT (i.e. 0%MM) 

and 100%-MM densities were considered as the reference values. 

As it is shown in Figure 15(b), the hardness assumes a general increase by 

increasing the MM vol. %. Experimental measurements show a systematic negative 

deviation with respect to the theoretical values obtained by the rule of mixtures. This 

deviation can be tailored and justified by the same deviation observed in density 

measurements.  

 
Figure IV-15. a) Relative density vs. MM volume fraction, b) average Hardness of sintered 

specimen vs. MM volume fraction (the straight lines show predicted quantities by the rule of 

mixtures) 

There exist many experimental evidences that Young’s modulus is negatively 

affected by porosity content in polycrystalline materials 5. A widely accepted empirical 

relation is proposed by Sanders et al. 139 

𝐸 = 𝐸0𝑒𝑥𝑝(−𝑏𝑃)      (2) 
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Where E is the reduced modulus, E0 being the fully dense bulk modulus, b is a 

parameter equal to 5.03 in a material with the nearly similar Young’s modulus to H13 

steel 140 and P is the porosity.  

The Vickers indentation impression is a result of elastic-plastic deformation in a fully 

dense material. However, in a material containing porosity, pore closure by the 

indentation stress also contributes to the indentation impression. It is widely accepted 

that by increasing the porosity, hardness decreases. The extent of porosity closure is 

proportional to the level of stress induced by the indentation in bulk. By assuming an 

elastic deformation, the strain ε (ε11+ ε22+ ε33) is linearly related to the stress σ (σ11+ 

σ22+ σ33) by the elastic modulus.  

𝜎

3𝐸
= 𝜀       (3) 

Hence it is convenient to roughly conclude that, the observed decrease in hardness 

is linearly proportional to a decrease in Young’s modulus of the porous material.  

𝐻

𝐻0
= 𝑘

𝐸

𝐸0
       (4) 

where k is a constant and is reported to be very close or equal to 1140. Therefore, 

combining (2) and (4), the relation between hardness and porosity is quantified as 

follows: 

 
𝐻

𝐻0
= 𝑒𝑥𝑝(−5.03𝛥𝑃)     (5) 

Taking the theoretical hardness calculated by the “rule of mixtures” as the reference 

hardness (H0) for each sample, and 𝛥𝑃 as the porosity content difference of the 

experimental density measurements with that predicted by the mixtures rule, the 

predicted hardness (H) influenced by the porosity, somehow approaches the 

experimental results (see Figure 15b). 

In addition to the effect of porosity, the non-uniformly distributed MM particles in 40% 

MM and 50% MM might account for the high scatters observed in hardness 

measurements. It means that whether indenting on a surface with the larger volume 

fraction of fine grains than the nominal mixed value, the hardness shifts towards 

higher levels and vice versa. However, referring to Eq.6, the radius of the plastic 

zone (Cp,) under the Vickers indenter is roughly around 350 μm as depicted in Figure 

(16). Looking at the micrographs in Figure (12) and taking the average diameter of 

AT and MM powders (i.e. 100 μm and 30 μm respectively) into account, makes it 

possible to postulate that the average hardness is statistically accounting for the bulk 

(i.e. average microstructure). This is schematically shown in Figure (16). 

𝐶𝑝 = √
3𝑃

2𝜋𝜎𝑦
      (6) 
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Where P is the applied load (100 N, HV10), and σy is the yield stress of the 

material141.  

 
Figure IV-16. A schematic of the extent of plastic zone under Vickers indenter, d is the diagonal 

of residual impression of indentation which varies in between of 160 to 170 μm in the present 

experiment 

4.2.4 Grain growth and recrystallization  

In MM particles a closed pack lamellar spacing was observed. After SPS, the grains 

show a nearly equiaxed morphology that confirms the occurrence of recovery, 

recrystallization and limited grain growth during sintering. Both these effects are 

responsible for a part of hardness drop after sintering. 

It is assumed that the Vickers indentation on powders is not affected by the porosity. 

The effect of “sintered sample” porosity (i.e. 1.4%) on the hardness can be 

elaborated using Eq. 5. The result suggests that, by neglecting the influence of 

porosity, the hardness should be around 810 HV10 in the as-sintered state. 

Therefore, the observed difference in hardness (i.e. 810 HV10 vs. 850 HV10 in MM 

powder) might be related strain relief and grain growth. XRD analysis results on the 

SPS sample confirmed that the mean crystallite size of the sintered 100% UFG-MM 

(i.e. 24±4 nm) is increased compared to the as-milled state (i.e. 16±6 nm). Around 

40 HV10 drop in hardness is thus a consequence of the limited crystallite grain 

growth and follows the widely accepted Hall-Petch relation on the linear 

proportionality of strength (hardness) to the reciprocal square route of grain size. The 

relation also holds for martensite packets and α-Fe crystallite size in a microstructure 

which shows grains with random crystallographic orientations 134. 
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4.2.5 Heat treatment 

Figures (17a) and (17b) show the microstructure of quenched and tempered CG-AT 

and UFG-MM zones in “ harmonic structured ” specimens, respectively. The CG 

zones show coarser carbides. A number of these carbides are in the form of films 

precipitated preferentially on the prior austenite boundaries. On the other side, The 

UFG-MM zones show a finer microstructure and a more homogenous distribution of 

very fine secondary carbides. One explanation is that the increased dislocation 

density in UFG-MM opposes the energy barriers to carbide precipitation and provides 

a larger number of nucleation sites142,143.       

 
Figure IV-17. SEM (SE) micrographs of heat treated microstructure a) CG-AT regions and b) 

UFG-MM areas 

The hardness of the heat-treated samples follows the same trend observed in as-

sintered specimens while more conforming to the mixture rule (Figure 18a). The 

reciprocal square root of mean grain size of each specimen corrected by the 

statistical weight of fine and coarse grains according to the initial mixing volume 

fractions is plotted against hardness. The trend is more or less conforming to the 

Hall-Petch theoretical relation for hardness dependency on grain size (Eq. 7). The 

harmonic microstructures (i.e. 50 to 80% MM) show a slight positive deviation from 

the linear fit. The validity of the relationship is frequently reported for ultrafine grained 

materials down to a mean crystallite size of 20 nm. 134,144 

𝐻 = 𝐻0 + 𝐾𝐻[(1 − 𝑉𝑀𝑀)𝑑𝐴𝑇

−
1

2 + (𝑉𝑀𝑀)𝑑𝑀𝑀

−
1

2 ]   (7) 

where H is the hardness, H0 being constant, KH is the strengthening factor derived 

from the hardness measurements, and VMM is the volume fraction of UFG-MM.  
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Figure IV-18. a) Average hardness vs. the volume fraction of mechanically milled powder b) 

Average hardness vs. d (μm)-1/2 

4.2.6 Spherical indentation 

Figure (19a) plots the reconstructed stress-strain curves from the indentation curves 

for 5 samples, namely 0% (i.e. AT), 20%, 50%, 60% and 100% UFG-MM. Figure 

(19b) displays the tensile true stress-true strain curves for 0% MM and 100% MM.  

 
Figure IV-19. a) Stress-strain curves reconstructed from spherical indentation curves for the five 

samples and b) uniaxial tensile test true stress-true strain curves for 0% MM (AT) and 100% 

MM  

Table 2 lists the 0.2% proof yield strength of the mono-size grain samples (i.e. 

0%MM and 100%MM) together with the yield strength results obtained from spherical 

indentation. There is a good agreement between the values obtained from tensile 

tests and those of the spherical indentation. Moreover, results show a substantial 

increase in the yield strength of the samples by increasing the UFG-MM volume 

fraction.  
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Table IV-2. 0.2% proof yield strength of the specimen 

Sample YS (MPa )  

(Tensile Test) 

YS (MPa)  

(Indentation) 

0%MM  1053±6 1064±30 

20%MM - 1081±37 

50%MM - 1203±36 

60%MM - 1233±40 

100%MM 1387±10 1375 ±42 

 

A general negative deviation from the rule of mixtures is also evidenced by the yield 

strength results (Figure 20).  

 
Figure IV-20. Yield strength vs. MM volume fraction 

Apart from the influence of porosity on the yield strength of the samples, it would be 

more convenient to elaborate on the strengthening contribution of UFG-MM in heat 

treated samples by taking the Hall-Petch strengthening into account. Lesuer et al. 145 

proposed that the yield strength for a mechanically milled dispersion strengthened 

iron can be written as: 

𝜎𝑦 = 𝜎0 + 𝜎𝑔 + 𝜎𝑝      (8) 

Where σo is the friction stress representing the overall resistance of the crystal lattice 

to dislocation movement, σg is grain boundary strengthening which also includes the 

martensite sub-structure strengthening, and σp is particle strengthening. For the 

moment, it is assumed that strain hardening contribution (σd) caused by mechanical 

milling as the other significant contributing factor to the strength of the quenched or 

as-sintered AISI H13, can be neglected for the “heat treated”  samples. Since the 
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samples under investigation are tempered above the secondary hardening peak (i.e. 

at 625°C), this assumption is more than plausible. An explanation is that upon the 

isothermal holding of AISI H13 at temperatures above the secondary hardening 

peak, the dislocation recovery rapidly takes place irrespective of the initial micro-

strain 146. However, the initial dislocation density induced by severe plastic 

deformation during MM may increase the number of carbide nucleation sites as 

described previously, (see Figure 17) thus decreasing the carbides size and carbides 

spacing.  

Considering (AT) as the reference specimen, it is possible to rewrite the equation for 

the rest of the samples as follows; 

𝜎𝑦 − 𝜎𝑦
𝐴𝑇 = ∆𝜎𝑦 = ∆𝜎𝑔 + ∆𝜎𝑝           (9) 

𝜎𝑔 is the contribution of grain refinement and can be considered analogous to Eq. 7 

but with a different value of K’, while 𝜎𝑝 is the contribution of strengthening by 

particles and can be written as : 

 𝜎𝑝 = 𝐾"𝜆𝑠
−1/2

      (10) 

where K” is a constant and λs is the carbide (particle) spacing which is derived from: 

𝜆𝑠  = 1.51/2 [(
𝜋

4𝑓𝑣
)

1

2
− 1] 𝑑𝑝     (11) 

where fv is the vol. Fraction and dp is the average diameter of carbides. According to 

the quantitative image analysis the vol. % of carbides in the samples were estimated 

to be around 11.5, the average diameter of carbides (irrespective of the carbide type) 

was estimated to be around 90 nm for (AT) and 60 nm for the 100% MM sample. The 

value of K” is approximated to be 395 MPa μm1/2 for iron 145. Therefore, it is possible 

to estimate the strengthening contribution of fine carbides in harmonic microstructure 

and then to evaluate the contribution of grain refinement. Table 3 lists the Δσp for the 

samples.  
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Table IV-3.  Contribution of particle strengthening to the yield strength of the specimen 

considering 0% MM (AT) as the reference, dp is corrected by the statistical weight of fine and 

coarse grains according to the initial mixing volume fractions 

Sample dp (nm) Δσp 

(MPa) 

0%MM (AT) 90 0 

20%MM 84 32.8 

50%MM 75 89.3 

60%MM 72 110.4 

100%MM 60 210.2 

 

Figure (21) shows the contribution of distinct strengthening mechanisms in harmonic 

microstructures. 

 
Figure IV-21. A comparison between experimental yield strength vs. individual strengthening 

mechanisms (please note that the fitted line excludes 20% MM data point)   

The particle strengthening effect increases by increasing the UFG-MM vol. % as a 

result of reduced interparticle (carbide) spacing. Moreover, except from the 20% MM 

sample, which did not show a 3D interconnected network of UFG, the grain 

refinement strengthening is obeying the Hall-Petch relation. Disregarding the 

20%MM sample, the slope (i.e. Hall-Petch slope) of the linear fit of data  (dashed 

line) becomes around 282 MPa μm1/2, very near to that reported in the literature for 

pure iron and steel (i.e. varying between 260 to 310 MPa μm1/2)145,147. A similar trend 

is also reported for bimodally grained Iron and SUS 316L steel with harmonic 

microstructural design 148,149. It is mandatory to note that in both grain size regimes, 
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the very fine secondary carbides that are not detectable by SEM are not considered 

in the above calculations.  

4.2.7 Fracture Toughness 

The apparent fracture toughness (Kapp) is decreasing by increasing the volume 

fraction of harder MM particles (Figure 22). The Ka of AT-H13 is 61.5 MPa m1/2 while 

that of 100%MM is 36 MPa m1/2. 

 
Figure IV-22. Fracture toughness (Kapp) of the samples vs. volume fraction of UFG-MM (straight 

line shows the predicted values by rule of mixture) 

20%MM shows a slightly lower fracture toughness with respect to that predicted by 

the “ rule of mixtures.” The sample showed a very similar hardness and yield strength 

as compared with the 0%MM (AT) but a lower relative density. The 40%MM shows a 

drastic decrease in fracture toughness with highly scattered values. An 

inhomogeneous distribution of UFG MM around the CG matrix results in highly 

scattered Kapp values for bimodal grain sized materials 100. As mentioned earlier, 

40%MM does not show an interconnected network of fine grains due to the 

insufficient volume fraction of MM to fully surround AT particles (i.e. forming a 3D 

interconnected network). The confinement of isolated coarse grain zones by UFG is 

a prerequisite for enhancement of ductility and improved work hardening in bimodal 

grained metals by providing the condition for the development of strain gradients 

imposed by the microstructure150,151. This can somehow be extended to the 

toughness. Therefore, in the absence of an interconnected network, it is probable 

that the increased vol. % of hard isolated UFG-MM particles that act as energetically 
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preferential sites for crack propagation is responsible for this drop. Indeed, 50% to 

80%MM samples (i.e. harmonic microstructures) and especially 60%MM show a 

positive deviation from the rule of mixtures. It was previously stated that there is a 

negative deviation from the mixtures rule for hardness and yield strength of these 

samples (Figures 18a and 20) attributable, at least in part, to porosity. Knowing that 

porosity plays a deleterious effect on the fracture toughness by providing local stress 

concentration, a general negative deviation should have been witnessed for the Kapp 

values. Moreover, reduced carbide spacing in UFG-MM regions is well-documented 

to have a negative influence on toughness by providing a higher number of 

energetically preferred sites for crack propagation or in other words, decreasing the 

material resistance to crack propagation152. Therefore, despite the validity limits of 

the linear “mixtures rule” in predicting a complex fracture behavior, this systematic 

deviation might be related to a toughening mechanism induced by the harmonic 

microstructure. 

The fracture surfaces and the crack propagation paths are depicted in Figures (23 & 

24) and (25), respectively. As it is shown in Figure (23a), limited ductile fracture near 

the notch region is evidenced for the 0%MM (AT) sample. The rest of the fracture 

surface is characterized by interparticle fracture and a few cleavage facets. The 

interparticle fracture might be explained by the presence of surface oxides that 

hindered a full consolidation (i.e. development of strong metallic bondings between 

the particles) despite a nearly complete densification (Figure 15). The surface of the 

as-received gas atomized AISI H13 contains a mixed oxide layer on the surface 

consisted of a thin and homogeneous iron oxide layer (~7 nm thick) and isolated 

oxide particles rich in chromium, manganese, silicon and vanadium 65,66. The 

elimination of these oxides requires high vacuum annealing up to 900°C which 

introduces a very expensive additional step to the production. Moreover, in spite of a 

careful protection (storage in glow box), the oxidation of the surface cannot be easily 

avoided while handling these highly reactive powders to the SPS unit.  

The interparticle fracture might increase the apparent fracture toughness by 

promoting the crack path deflection 44. This type of fracture, as shown in Figure (23d) 

is characterized by the presence of localized dimples as an indicative of sintering 

neck failure. The 20 and 40%MM samples also show an inter-particle fracture 

mechanism (Figures 23b and 23c). The islands of hard UFG-MM particles seem to 

anticipate the failure acting as defects inside the AT matrix. The presence of isolated 

UFG regions on the fracture path can be appreciated from Figure (25a). 
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Figure IV-23. Fracture surface of a) 0%MM (AT), b) 20%MM (arrows indicating cleavage 

facets), c) 40%MM, d) sintering neck failure in 0%MM,e) 60% MM,f) higher magnification of 

60%MM (arrows showing delaminations), g) 80%MM and h) 100% MM ( in all micrographs the 

dashed lines are representing the boundary of near notch regions and the rest of the fracture 

surface, and dashed circles represent the AT particles) 

In 50 to 80% UFG-MM samples, the inter-particle fracture can be observed. 

Moreover, the fracture surface is characterized by a few cleavage facets and plenty 

of very fine dimples (see Figure 24). Cleavage facets are in the range of 5 μm or 
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less, which can be related to the fracture of CG-AT particles. Dimples are the result 

of microvoid initiation at the fine secondary carbides precipitated on grain boundaries 

of UFG-MM (see the rugged crack propagation path in Figures (25b) and (25c)25. 

The fracture surface of 100%MM is also characterized by very fine dimples and 

limited cleavage facets. 

The most peculiar aspect of the fracture in 50 to 80%MM samples is the presence of 

an extended number of decohesions at the interfaces of MM-AT or MM-MM particles. 

The origin of this type of interparticle decohesion might be explained by the presence 

of the 3D interconnected network of UFG-MM. Upon straining, a local strain 

mismatch build-up appears at the interface of CG-AT regions and the UFG-MM 

network. BCC structured UFGs are highly susceptible to the localized deformation 

because of the small number of dislocations inside the ultrafine grains and also 

reduced strain rate sensitivity153,154. to compensate for the strain mismatch, 

decohesion simultaneously occurs at the interfaces of (CG-AT) / (UFG-MM) and also 

at the interfaces of UFG-MM particles155. Some of these decohesions nearly lie in the 

planes perpendicular to the plane of the main crack (Figure 23f). Therefore, those 

might change the stress state by decreasing the stress triaxiality in front of the 

original crack 25 leading to higher stress to extend the original crack front. This 

interpretation plausibly justifies the positive deviation of apparent fracture toughness 

in harmonic microstructures. The presence of interparticle decohesion is evidenced 

in the near-notch region in the 60% MM sample (Figure 25b). 

 
Figure IV-24 a closer view of near notch fracture surface in harmonic microstructure showing 

dimples and a few cleavage facets indicated by arrows 
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Figure IV-25 crack propagation path, a) 20% MM, b)60% MM, arrow is showing the decohesion 

and c) 80% MM  ( horizontal arrows are addressing  the notch ) 

From mechanical properties viewpoint, the 60%MM sample (hereinafter referred to 

as harmonic sample (HS)) shows the optimum combination of strength and fracture 

toughness. The properties of this sample are in good agreement with the 

observations of Zheng et al. 148 which reported that optimized mechanical properties 

in steel with harmonic microstructure are achieved by the contribution of 50 to 60 

vol.% ultrafine grains. It is noteworthy mentioning that the average CG size in their 

work was about 2 μm whereas the UFG grains were in the range of 0.7 μm. 



 
 

63 
 

4.2.8 Thermal Fatigue resistance of the Harmonic Microstructure 

The optimized combination of hardness and fracture toughness in the bimodal 

harmonic structure are very promising looking at improved resistance to heat 

checking. Thermal fatigue resistance of the HS can be of interest in its potential 

industrial application where the tool has to show a combination of high toughness 

and reasonable hot strength and hardness together with high TF resistance. 

4.2.8.1 Microstructure of HS sample used for TF test 

The microstructure of the as sintered HS is shown in Figure (26). As stated earlier in 

the experimental part, the soft milling of the mixed (UFG-MM and CG-AT) powders 

for 1 hour improves the uniformity of the microstructure compared to the sintered 

bulk from the mixed powders. The as sintered and heat treated hardness of the 

100%MM, HS and 0%MM (AT) disks were the same as the previously tested 

samples (Figures 15 and 18) while the standard deviation was considerably reduced 

in the case of HS (i.e. 680±8 and 408±2 in as sintered and tempered condition 

respectively). 

 
Figure IV-26 Optical micrograph of as-SPS HS produced for TF testing; please note the more 

homogeneous AT-AT spacing compared to Figure (12c) 

4.2.8.2 TF test results  

Figure (27) shows the TF damage of the samples after 200 and 500 cycles. The 0% 

MM (AT) (Figures 27 a,d)  is clearly showing thicker heat checks which may be held 
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representative of deeper crack penetration. On the other hand, 100%MM (Figures 27 

c,f) with an UFG microstructure is indicating a finer heat checking network. HS 

(Figures 27 b,e) evidences an intermediate behavior, showing an average crack 

width lower than AT, but higher than 100% MM. 

 

 
Figure IV-27. TF damage after 200 cycles a) 0% MM (AT) b) HS, c) 100% MM and after 500 

cycles d) 0% MM (AT), e) HS and f) 100% MM 

The mean crack length (lm), maximum crack length (lmax), crack density (ρ) and the 

pyrocracking factor P after 500 cycles are reported in Figure (28).  0%MM (AT) 

shows a mean crack length exceeding 100 m while the HS and 100% MM samples 

are showing values lower than 50 m. 0%MM (AT) sample also shows the highest 

maximum crack length, confirming the faster propagation rate in this material. On the 

other hand, crack density is considerably higher for 100%MM evidencing the highest 

nucleation rate in that sample. 100%MM shows an ultrafine grain microstructure 

containing very fine secondary carbides. Carbides act elastically against 

thermomechanical stresses during TF testing and are considered as preferential 

sites for TF crack nucleation. Given the reduced carbide spacing in this material, 

higher crack nucleation rate thus higher crack density can be expected. HS seems to 

combine the best properties of the other two materials, namely the low mean crack 

length of MM and the low crack density thanks to the contribution of 40%vol. AT 

particles. The overall damage highlighted by pyrocracking factor P of 0%MM (AT) is 

approximately three times higher than the other two samples which show very similar 

P parameter while the lowest value belongs to HS. Looking at the cross-sectional 

view of TF damage in Figure (29), the deeper cracking in 0% MM (AT) is clearly 

confirmed. 
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Figure IV-28  a) Mean crack length, b) Maximum crack length, c) Crack density and d) 

pyrocracking factor P measured after 500 TF cycles 

 

 
Figure IV-29. SEM micrographs of perpendicular plane to damaged surface of a)   0% MM (AT), 

b) HS and c) 100% MM  
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The heavy internal oxidation of cracks let to assume the contribution of oxide-

induced propagation mechanisms156. The cracks are very open in this sample 

suggesting a considerably high plastic strain. On the other hand, 100%MM sample 

shows very short and sharp cracks, whereas HS shows a bimodal cracking which is 

responsible for an increase in lm and lmax parameters compared to the 100%MM. The 

three-dimensional constraint for the (AT) regions by the harder UFGs is responsible 

for the absence of very open cracks in HS. 

Figure (30a) depicts the microhardness profile after 500 cycles, normalized by the 

initial micro-hardness of each sample, measured in a central position of the TF 

specimen. A thermomechanically affected zone exists in all three samples. The 

depth of this region is about 2.5 mm for the coarse-grained 0% MM (AT) and around 

1 mm for the HS and ultrafine-grained 100% MM. Moreover, the hardness drops to 

0.7 initial value near the damaged surface for AT. The situation is different for 100% 

MM and HS that show a lower drop in hardness near the “damaged surface.” The 

observations in Figure (29) and the microhardness results suggest that 0%MM (AT) 

is affected by thermal and plastic strain induced softening 108 more than the two other 

samples in the first hundreds of cycles of TF testing. Another important 

understanding from the hardness profiles is that the depth of the softening region is 

larger than the longest cracks observed in all 3 three samples. This observation 

conveys the fact that under the current testing condition (T= 660°C), the resistance 

to the TF cracking is mainly controlled by the hot strength and resistance to thermal 

softening rather than the toughness of the material 107,157. Resistance to thermal 

softening can be directly linked to tempering resistance of the steel. The tempering 

curves at 650°C (i.e. near to the TF test temperature) for 0%MM (AT) and 100%MM 

are shown in Figure (30b).  

 
Figure IV-30 a) Microhardness profiles (surface to core) after 500 cycles of TF test and b) 

tempering resistance curves for 100% MM and 0% MM (AT)  
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After just 1 hour of tempering (Stage 1), the hardness is identical for both samples. A 

condition which conveys that hardness drop in 100%MM (HSPS= 755 HV10) occurs at 

a higher rate compared to the 0%MM (AT) (HSPS= 636 HV10). For longer isothermal 

holding intervals (stage 2), 100%MM shows a higher tempering resistance compared 

to the AT counterpart. 

The sudden drop in hardness for 100%MM at stage 1 is in agreement with the stress 

relieving of the severely deformed UFG-MM microstructure at the tempering 

temperature. However, after prolonged soaking, the over-tempering is retarded in 

this sample in comparison with the (AT) counterpart. Such behavior is formerly 

reported for the AISI H13 tool steel isothermally hold at temperatures above the 

secondary hardening peak (i.e. 580°C) 107. At these temperatures, the hardness 

drops drastically in the very early stages of isothermal holding irrespective to the 

initial microstrain (i.e. dislocation density and other structural defects) due to the fast 

dislocation recovery of the substructure interior (i.e. martensite lath)146. By extending 

the tempering time, the crucial parameter to determine the tempering resistance is 

the precipitated carbides type, morphology, distribution, and size. The finer and more 

homogenously dispersed carbides the higher the resistance to thermal softening. 

Therefore, the presence of finer secondary carbides in 100%MM corresponds to a 

better tempering resistance 158. The contribution of 60 vol. % ultrafine grains forming 

an interconnected network in HS thus can be expected to increase the tempering 

resistance of this sample as well.  

4.2.8.3 TF crack interaction with the harmonic microstructure 

The interaction of the strain field in front of a TF crack with the harmonic 

microstructure is shown in Figures (31) and (32). 

From the metallographic cross-sectional in Figure 29 and theoretical background on 

the mechanical properties of the UFG materials discussed earlier, it is convenient to 

postulate that most of the TF cracks in HS have been initiated in the UFG zones. The 

cracks inside the UFG-MM areas are sharp and propagate along the grain 

boundaries. As soon as the crack approach an AT particle, it is arrested (Figure 31a), 

and its propagation is retarded by crack-tip blunting as shown in Figure (31b). Crack 

tip blunting occurs because of the presence of relatively large grains at the tip of the 

propagating crack that accommodate a higher number of emitted dislocations without 

hindering the motion of the other dislocations. When more dislocations are emitted 

inside the coarse grains (i.e. at higher levels of thermomechanical stresses arising 

from heating and cooling cycles), the local strain mismatch between the CG and 

UFG will lead to the crack propagation by the decohesion of the UFG/CG interface. 

So that crack deflects through these interfaces (see Figures 32a-c) 155. Therefore, 
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crack blunting and crack deflection as extrinsic toughening mechanisms are 

operative in HS thanks to the harmonic microstructural design. 

 
Figure IV-31. a) TF crack arrest and b) crack blunting at the vicinity of AT particles 
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Figure IV-32. a) crack deflection along UFG/CG interface, b)closer view of CG AT particle and 

c) closer view of UFG-MM zone 

To further validate the hypothesis supporting the development of a local strain 

mismatch between the UFG and CG zone, the strain hardening rates obtained from 

the spherical indentation test for 100%MM, HS and 0%MM is depicted in Figure (33). 

Even if these results are obtained at room temperature, those can be used as a 

qualitative comparison between strain hardening capacity of the UFG-H13 and CG-

H13.  
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Figure IV-33. Strain hardening rates obtained from spherical indentation test 

The pronounced difference between the hardening rates of these two materials up to 

~ 15% plastic strain may reinforce the assumption above. It is also evident that the 

HS shows a transitional hardening rate expect for the early plastic strain regime 

where it shows higher strain hardening than the AT samples. In this strain regime, 

due to the presence of a high strength 3D interconnected UFG network it is probable 

that the tightly constrained CGs have undergone more intense strain hardening. 

Since the UFGs and CGs are not equally easy to deform under the spherical 

indentation, the confined coarse grains experience complex strain paths and triaxial 

strain components with large plastic strain gradients96. Therefore, according to the 

strain-gradient theory 159, this gradient plastic deformation of a length scale of ~10 

μm or more (see the spacing between CGs in Figure 26)  results in extra strain 

hardening due to the storage of large number of geometrically necessary dislocations 

near the interfaces of UFGs and CGs which are essentially present to accommodate 

the plastic strain gradient. In addition to the direct strengthening effect of the 

accumulated dislocations, because of the existence of dislocation density gradients, 

these dislocations generate long-range stresses impeding dislocation motion in 

regions far from the interface and cause additional hardening 99. This behavior has 

been documented in a number of bimodal grain size, harmonic microstructure and 

also metals with dispersed nano-domains 99.  Upon further straining, as it appears at 

an equivalent strain of 15%, where the coarse grains (both in HS and AT samples) 

have accumulated a large number of dislocations, all 3 samples show a similar 

hardening behavior. 
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Conclusions of part 1  

 Novel tool steels showing bimodal grain size were fabricated by spark plasma 

sintering of as atomized and mechanically milled particles. MM significantly refined 

the grain size and introduced a remarkable strain hardening which promotes a 

hardness increase in as sintered specimen. A harmonic microstructure, given by a 

3D interconnected network of fine-grains surrounding coarse-grained atomized 

particles, was achieved by the addition of 50-80% MM powder.  

  It was shown that in in the case of BCC structured materials, an easier control of 

the volume fractions of UFG/CG can be achieved by mixing and/or low energy 

mechanical milling of the desired vol. % of the MM-UFG particles with the as-

atomized-CG powders 

 The hardness of steel increased by increasing the vol. fraction of MM powder. 

Despite the bimodal grain size distribution in Harmonic microstructures, both 

hardness and yield strength obey the Hall-Petch relationship. 

 The harmonic microstructure shows enhanced strain hardening compared to the 

both mono-size grain (i.e. CG and UFG) under spherical indentation due to the 

generation of geometrically necessary dislocation as a result of plastic strain gradient 

imposed by the microstructure. 

 The fracture toughness decreased by increasing the vol. % of MM powder. A 

toughening effect was evidenced for the samples essentially showing harmonic 

microstructure. Toughening is interpreted to be the result of the deviatory effect of 

coarse-grained atomized particles together with energy dissipation by interparticle 

fracture at the CG/UFG or UFG/UFG interfaces leading to a local drop of the driving 

force for the crack propagation. 

 Looking at TF test results, the harmonic microstructure combined the beneficial 

effects of both of its constituents, i.e., the low nucleation rate of 0%MM (AT)-H13 and 

the low propagation rate of 100% MM-H13 and showed the lowest pyrocracking 

factor. The harmonic microstructure shows two extrinsic toughening mechanisms, 

namely crack blunting and crack deviation along the interfaces between CG and 

UFG-MM particles.  
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Part 2 

4.3 Fabrication of the Tool Steel-PSZ composite 

4.3.1 Powder Characterization 

Figure (34a) depicts the AISI H13 as-received powders (AT). The H13 particles show 

the typical spherical morphology characteristic produced by the gas atomization 

process. 3Y-PSZ and Mg-PSZ powders are shown in Figures (34b) and (34c) 

respectively. Ceramic particles are mostly agglomerated in both batches. 

 
Figure IV-34. SEM micrographs showing the morphology of starting powders, a) AISI H13, b) 

3Y-PSZ and c) Mg-PSZ powders 

Figure (35) shows the morphology and cross-sectional view of the powders collected 

after various intervals of mechanical alloying. After 90 min, (Figure 35a), ball milling 
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destroyed the initial spherical morphology of AISI H13 and flattened the powders. 

The particle size is increased compared to the starting powder also due to cold 

welding caused by the intense collisions with the balls and the vial. The flat 

morphology suggests that the milling process has not reached the stationary state 

yet 12. After 200 min the particles show an equiaxed morphology and a quite narrow 

size distribution. Moreover, a significant particle size reduction is evidenced (Figure 

35b). After 340 min of MA (Figure 35c) no substantial changes regarding particle size 

and morphology was observed. Therefore, it is convenient to assume that the steady 

state has been reached after 200 min.  

 
Figure IV-35. SEM micrographs of MA (H13+20 vol. % 3Y-PSZ) powders, a) SE image of MA, 

90 min, b) SE image of MA, 200 min, c) SE image of MA, 340 min 

As it is shown in Figures (36a) and (36b), after 90 min, the surface of the H13 

particles is covered with PSZ agglomerates (brighter particles in BSE micrograph), 

confirming that a homogenous dispersion of PSZ particles into the matrix is not 

achieved. More importantly, the limited local deformability because of the presence 

of a hard shell of PSZ suggests that densification will be hindered during SPS. Even 

if the driving force for sintering in severe plastically deformed steel particles (see the 

steel microstructure in Figure (36b) is increased given the increased dislocation 

density and other structural defects, PSZ agglomerates impede the steel particles 

contact during sintering thus leading to a weak metallic bonding and consolidation. 

Furthermore, the lower specific surface area of the flattened particles partly 

counteracts the positive effect of the intense deformation on increasing the driving 

force for sintering. It is noteworthy to remark that for all four powders batches, the 

vol. % and (dSP/dHP) nearly satisfied the percolation or aggregation of PSZ 

particles75,78. Therefore the extension of milling time was necessary to bypass the 

aggregation or percolation threshold82. After 200 min (Figure 36c), the distribution of 

PSZ inside the matrix became more homogenous. Most particles were occluded in 

lamellas of severely deformed steel particles. The number of remained PSZ particles 

on the surface is very limited. That is further confirmed by looking at the cross-

sectional view of the polished and etched MA particles in Figure (36d), showing a 

severely deformed microstructure characterized by ultrafine lamellas. An unalloyed, 

yet severely deformed, isolated H13 can be identified in the same figure. In Figures 
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(36c) and (36d), some micro-pores and nano-cracks appear at the conjunctions of 

the cold welded particles. These porosities might be retained after SPS of the MA 

powders and are reported to be one of the serious drawbacks to the production of 

fully dense nano-sized grain and UFG bulk via PM processing routes 160. 

 
Figure IV-36.  BSE image of MA (H13 + 20 vol. % 3Y-PSZ) powders  a) after 90 min (powder 

surface, brighter particles are Zirconia, b) metallographic cross-section of MA powders, 90 min, 

c) BSE image of the powder after 200 min (brighter particles are Zirconia), please follow the 

arrow to see micro-pores, and d) metallographic cross-section of MA powders, 200 min 

As shown in Figure (37), EDS elemental mapping on the cross section of the 

carefully polished MA powders confirmed the achievement of a nearly homogenous 

distribution of PSZ in the H13 matrix. 

 
Figure IV-37. EDS elemental mapping on MA powder (20 vol. % Mg-PSZ), the dashed area 

shows a region with less concentration of PSZ and arrows are addressing to PSZ particles 

(PSZ particles appear brighter in BSE micrograph) 
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Figure (38) shows the particle size distribution of the starting AISI H13 powders and 

the mechanically alloyed powders for 200 and 340 min. Looking at the data of 200 

min of MA, the size distribution has not been subjected to considerable change after 

340 min. Therefore, 200 min was selected as the optimum milling time in this work. 

 

 
Figure IV-38. Particle size distribution of AT AISI H13 powders, MA (200min) and MA (340min) 

The average microhardness of MA powders was higher than 1000 HV0.01 after 

200min of milling, however no meaningful distinction between 10 vol. % and 20 vol. 

% reinforcement could be appreciated due to the very high scatter of the micro-

hardness measurements which might be related to the very fine size of the powders, 

existing un-alloyed H13 areas and presence of microporosity previously shown in 

Figure 36. The AT powders microhardness was similar to that reported in section 4.1, 

and the average microhardness of mechanically milled H13 powders (MM-H13) 

powders was slightly higher than that reported in section 4.2.1  (i.e. 870 HV0.05).   

Quantitative analysis results and XRD patterns and are shown in Table 4 and Figure 

(39) respectively. 
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Table IV-4. XRD quantitative results for powders 

Sample  α-

Fe  

γ-

Fe 

 

t-

ZrO2 

 

m-

ZrO2 

 

c-

ZrO2 

 

α-Fe 

crystallite 

size ( nm)  

α-Fe  

microstrain 

(%) 

3Y-PSZ 0 0 64 28 8 N/A N/A 

Mg-PSZ 0 0 24 72 4 N/A N/A 

AT 94 6 0 0 0 40 0.2 

MM 100 0 0 0 0 16 0.5 

MA (H13+20%3Y-

PSZ) 

90 0 5.7* 4.3 * 12 0.6 

MA (H13+20%Mg-

PSZ) 

91 0 3.6* 5.4 * 18 0.5 

* In MA powders the vol. % of c-ZrO2 could not be discriminated from that of t-ZrO2. The 

cumulative vol. % of both phases is reported. 

Figures (39a) and (39c) show the XRD patterns related to As-received (unmilled) 3Y-

PSZ that contains 64 and 8 vol. % of tetragonal (t-ZrO2) and cubic (c-ZrO2) zirconia, 

respectively. Figures (39b) and (39d) depict the patterns of unmilled Mg-PSZ 

powders containing 24 and 4 vol. % t-ZrO2 and c-ZrO2 respectively. As it is illustrated 

in Figures (39e) and (39f), unlike the Atomized powders (AT), the MM-H13 and MA 

samples do not show peaks pertaining to austenite, as discussed earlier, γ to α strain 

induced transformation has been taken place during ball milling process. A slight 

peak shift to higher angles in MA samples is evidenced that might be related to an 

increase in point defects after mechanical milling. Peak shift might also occur 

because of the contamination during mechanical milling. However, as the balls were 

in steel, this hypothesis seems to be less plausible. Because of peak broadening, 

extreme peak overlapping, and low vol. % of PSZ, it was not possible to achieve a 

reliable distinction between t-ZrO2 and c-ZrO2 peaks in composite powders.  

The (H13+3Y-PSZ) powders that contained higher initial vol. % of t-ZrO2 show a 

relative reduction of (t+c) phase after MA (i.e. 57% vs. 72% in the starting powder). 

To explain this change, one should take the mean crystallite size of t-ZrO2 in the as-

received state (i.e. 46 nm) into the account. Assuming a log normal distrubtion for t-

ZrO2 crystallites size and by knowing that the stress induced transformation of t to m 

mainly involves tetragonal crystallites larger than 30 nm or crystallites with low 

stabilizer content 161, It can be deduced that the partial stress induced transformation 

of t-ZrO2 crystallites to m-ZrO2 during high energy milling is plausible 162,163.   
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Figure IV-39. XRD patterns of a) 3Y-PSZ (unmilled), b) Mg-PSZ (unmilled), c) elaboration on c-

ZrO2 and t-ZrO2 vol. % in 3Y-PSZ, d) elaboration on c-ZrO2 and t-ZrO2 vol. % in Mg-PSZ, e) 

unreinforced powders (i.e. MM and AT) and f) composite (MA) powders milled for 200 min 

In the case of coarser Mg-PSZ powders with a large monoclinic phase content (i.e. 

72 vol. %) in the as-received state, the vol. % of (t+c) phases is increased after MA 

(40% vs. 28% in the starting powder). The mean crystallite size of the t-ZrO2 in as-

received Mg-PSZ powders was calculated to be 16 nm. Therefore, in this system, the 

t-m stress induced transformation requires higher energy or longer milling time 

compared to the 3Y-PSZ reinforced composite powders 162. On the other hand, even 
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without the addition of a stabilizer, m-ZrO2 can be transformed to cubic and 

tetragonal phase by high energy ball milling. This transformation is a consequence of 

the significant crystallite size reduction and/or distortion of the monoclinic lattice 

because of the high-energy impacts during the ball milling process 164,165. Moreover, 

in the presence of a stabilizer (i.e. MgO), the formation of solid solution is favored by 

high energy mechanical milling 166. Probably, the same mechanisms are operative in 

composite powders containing Mg-PSZ and are responsible for m-t transformation 

during MA. It has to be noted that the mean crystallite size of the monoclinic phase in 

the unmilled Mg-PSZ powders was about 53 nm while this value reduced to around 

21 nm after high energy milling.  

PSZ does not show its nominal mixing volume fraction (i.e. 20 vol. %). Lower than 

expected zirconia volume fraction can be explained by the absorption contrast effects 

in XRD analysis due to the much bigger size of steel particles than that of the 

dispersed PSZ 167. This assumption can be justified by looking at the XRD patterns of 

powders milled for 90 min (Figure 40) showing that the volume fraction of zirconia in 

samples milled for 90 min is overestimated (i.e. 29 vol.%).  

 

 
Figure IV-40. XRD pattern and vol. % of phases after 90 min MA, please note the overestimated 

vol. % of PSZ  

Overestimation stems from the accumulation of PSZ on the surface of the powders 

with a thickness of about 4 μm (see Figure 36b). Whereas, for the 200 min milled 

powders, in which most of the PSZ particles are trapped within the ductile matrix 

lamellas (see Figure 36d), the vol. % of PSZ is underestimated. 
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4.3.2 Spark Plasma Sintering 

Figure (41a) depicts the lower punch displacement registered during sintering of MA 

powders. The curves qualitatively describe the samples densification. Upon applying 

the uniaxial pressure, the start of punch displacement nearly appears after 400s 

[573°C]. In this stage the steep linear increase is caused by the plastic deformation 

of the particles, the harder the particles, the lower the slope. This can be better 

appreciated when looking at the displacement, and the first derivative of 

displacement curves of softer AT-H13 in Figure (41b). The next stage begins 

immediately as the maximum uniaxial pressure (i.e. 60 MPa) is achieved, after 

almost 500s and the samples are being heated up to the sintering temperature. This 

stage is characterized by a slight decrease in the densification rate due to the ferrite 

to austenite transformation in AISI H13 steel (Ac1 ~840°C) 168. The final stage of 

consolidation is characterized by the achievement of a plateau for the punch 

displacement in Mg-PSZ reinforced composites.  

 
Figure IV-41. Sintering curves of a) composites and b) a comparison of sintering behavior of 

AT-H13 and the composites with regard to punch displacement and its first derivative 

In the case of the 3Y-PSZ reinforced composites, the curves still maintain a slight 

positive slope confirming that complete densification is not achieved. This result can 

be explained in the light of the very fine particle size of the starting 3Y-PSZ particles. 

Accordingly, the dH13/d3Y-PSZ particle size ratio is much smaller compared to the Mg-

PSZ composite and hard zirconia particles may completely cover the H13 ones, thus 

hindering densification and also the diffusion processes promoting sintering. The 

incomplete densification of 3Y-PSZ composites will be confirmed by the aid of 

density measurements reported in the next section of this work. 
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4.4 Characterization of the tool steel-PSZ composites 

4.4.1 Microstructure, hardness, and density 

The micrographs of the as-sintered samples are shown in Figure (42).  

 
Figure IV-42. SEM micrographs of as-sintered microstructure of a) AT-H13, b) MM-H13, c) MA( 

H13 +10%Mg-PSZ), d) MA( H13 +20% Mg-PSZ) the dashed areas are unalloyed H13, e) MA( 

H13 +10%3Y-PSZ), Please note the inter-particle porosities and f) MA( H13 +20% 3Y-PSZ), 

Please note the inter-particle porosities 

The AT-H13 (Figure 41a) shows an average grain size of nearly 5 μm, the same of 

the sintered sample previously described in section 4.2. The MM-H13 sample shows 

an ultrafine grained (UFG) microstructure with a mean grain size of 1.3 μm (Figure 
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42b). As it is depicted in (Figures 42c to 42f), composites also evidence an UFG 

microstructure. Over 80 vol. % of the bulk demonstrates the achievement of a 

successful PSZ dispersion while the rest of the microstructure consists of isolated 

unalloyed H13 areas similar to those in the milled powders (Figure 36d). In 3Y-PSZ 

reinforced samples, the presence of porosities at the particles interface is evidenced 

confirming the former deduction regarding the incomplete densification of this 

material. A higher magnification micrograph of the composite microstructure reveals 

the presence of fine PSZ particles dispersed in the matrix (Figures 43a and b). 

 
Figure IV-43. a) BSE-SEM micrograph of the 20 vol. % Mg-PSZ reinforced composite, dashed 

area is an unalloyed H13, and the brighter spots inside the composite area are PSZ particles 

and b) a higher magnification SE micrograph showing a good bonding between dispersed PSZ 

particles and the matrix (some PSZ particles are pointed by the arrows) 

XRD patterns of the as-SPS samples, shown in Figure (44), confirm the stability of 

the t-ZrO2 and c-ZrO2 in the composites thanks to the short time, fast sintering. The t-

m transformation is reported to occur at a critical grain size of t-zirconia 169–171 or due 

to the formation of spinel or Mg-rich silicates at the matrix-reinforcement interface 

leading to the destabilization of the t-zirconia 172. Present XRD results seem to 

exclude both possibilities. The mean crystallite size of α-Fe in AT-H13 is 

approximated to be 40 nm while this value for the MM-H13 and the composites is in 

the range of 25 nm. For the heavily milled powders recrystallization during sintering 

is generally easier than that of as-received powders because of the large excess free 

energy. Therefore, in order to preserve the refined microstructure, short time low-

temperature consolidation techniques appear to be necessary. As mentioned earlier, 

consolidation by SPS lead to a very limited grain growth in composites and MM-H13. 
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Figure IV-44. XRD patterns of as-sintered samples, a) AT-H13, b)MM-H13, c) MA(H13+20%3Y-

PSZ) and d) MA(H13+20%Mg-PSZ). (Please note that the Crystallite size of Monoclinic Zirconia 

is set to 100 nm to make it possible to refine the crystallite size of tetragonal and α-Fe with the 

MAUD software) 

Figure (45) shows the relative density vs. the hardness of the samples. Near full 

density sample (~98.6%) is achieved for MA (H13+20%Mg-PSZ). The 10 vol. % Mg-

PSZ reinforced composite also shows a relatively high density (~97.5%). Therefore, 

for these samples, it is possible to make some considerations about the effect of 

microstructural refinement and strain hardening induced by high energy milling and 

the simultaneous effect of dispersion hardening by PSZ particles. As discussed 

earlier, the relatively coarse-grained AT-H13 with a density equal to 99.5% shows a 

hardness of 630 HV10. Despite the lower density (~98.6%), hardness is increased to 

755 HV10 in MM-H13 due to the combined effect of the increased dislocation density 

and grain refinement. The addition of 10 vol. % and 20 vol. % Mg-PSZ led to a 

further increase in hardness to 850 HV10 and 920 HV10 respectively (about 100 and 

150 HV10 higher compared to the MM-H13), an indicative measure of dispersion 

hardening effect. Any additional contribution due to further structural refinement and 

defect can be excluded since the mean crystallite sizes of α-Fe in MM-H13, and the 
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MA samples are very similar. The hardness of MA (H13+3Y-PSZ) composites is 

negatively affected by the incomplete densification. The very high scatter in hardness 

results can be justified by the porosity content. 

 
Figure IV-45. Hardness vs. density of the as-sintered samples 

4.4.2 Residual stress analysis in the composites 

Given the lower coefficient of thermal expansion (CTE) of the ceramic particles 

compared to the matrix, residual thermal stress build-up at the at the matrix-

reinforcement interface upon cooling down from the processing temperature can be 

expected 173. These stresses are hydrostatic in nature and are tensile in the matrix 

and compressive in the reinforcement. Assuming a strongly bonded particle/matrix 

interface and presupposing no plastic stress relaxation, it is convenient to write the 

developed stress in the PSZ particles as follows: 

𝜎𝑝 =
(𝛼𝑚−𝛼𝑝)∆𝑇

0.5(1+𝜗𝑚)+(1−2𝜗𝑚)𝑓

𝐸𝑚(1−𝑓)
+

(1−2𝜗𝑝)

𝐸𝑝

     (12) 

Where subscripts m and p stand for matrix and particle respectively, α is the CTE, ν 

is the Poisson ratio, E is Young modulus, and f is the volume fraction of the 

reinforcement. The stress inside the matrix might be then resolved into two principal 

components in a spherical coordination system.  
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𝜎𝑟𝑚 =
𝜎𝑝

1−𝑓
(

𝑟3

𝑅3 − 𝑓) , 𝜎𝜃𝑚 =  
−𝜎𝑝

1−𝑓
(

𝑟3

2𝑅3 + 𝑓)   (13) 

where r is the reinforcement (i.e. ZrO2) radius, R is the distance from any chosen 

point in the matrix to the closest PSZ particle. These stresses are schematically 

illustrated in Figure (46a) using the data from the literature which is listed in Table 5. 

Table IV-5. Material properties of matrix and reinforcement 

 E (GPa) ϑ CTE at 1100°C (10-6 /°C) 

Reinforcement 210174 0.32174 10.2 175 

Matrix 208173 0.28173 16173  

 

According to the calculations, tangential tensile stress is about 900 MPa at the 

particle/matrix interface. For the 20 vol. % reinforced composite it assumes a 

descending trend to an average value above 250MPa at a substantial distance (i.e. 

1.7r) from the interface. The magnitude of this stress might be underestimated for the 

composites under study, given the very fine dispersion of PSZ particles and the very 

low interparticle spacing. The compressive radial stress overcomes 1000 MPa at the 

particle/matrix interface and decreases to zero far from the interface (i.e. 1.7r). 

However, even this theoretical evidence cannot be easily justified because of the 

overlapping of stress fields of other PSZ particles. The calculated average tangential 

stress might be approved by the mechanical equilibrium formula suggested by Mura 

for the MMCs 176,  

𝑓 × 𝜎𝑝 + (1 − 𝑓) × 𝜎𝐴𝑣𝑔 𝑚 = 0    (14) 

Where f is the volume fraction of reinforcement, 𝜎𝑝 is the stress in reinforcement (i.e. 

1015 MPa) and 𝜎𝐴𝑣𝑔 𝑚 is the average stress in the matrix. Substituting the known 

variables in the formula, the average stress in the matrix for 20 vol. % reinforced 

composites is 254 MPa, which is in a good agreement with that derived from Eq. 13. 

XRD patterns of a batch of mixed powders (i.e. stress-free) and as-sintered samples 

were elaborated to evaluate the α-Fe peak shift (i.e. change in cell parameter) to 

tailor the existence of residual tensile stresses in the matrix. Peak shift to lower 2θ 

angles (Figure 46b) might stand for the residual tensile stresses in the matrix. The 

cell parameters were calculated to be 2.90352 Å and 2.90749 Å for mixed powders 

and sintered sample respectively. The stored elastic stress calculated by Eq. 15, 

reveals that a residual tensile stress equal to 280 MPa has been generated in the 

H13 matrix as a result of thermal mismatch. 

𝜎 = 𝐸Ɛ = 𝐸 × (
𝑎𝑆𝑃𝑆−𝑎𝑃𝑜𝑤𝑑𝑒𝑟

𝑎𝑃𝑜𝑤𝑑𝑒𝑟
)     (15) 
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 “a”  is the cell parameter of the of α-Fe (110) and E being the Young’s modulus of 

the matrix.  

 
Figure IV-46. a) Schematic of residual thermal stress distribution as a function of distance from 

zirconia particle and b) XRD pattern [(110) peak] of mixed powders and as-sintered composites 

The existence of residual stress in the matrix confirms that the bonding of PSZ/H13 

is sufficiently strong to avoid relaxation by interfacial debonding. Dispersed PSZ 

particles are submicron in size and the steel particles size distribution has become 

narrower after MA as previously shown in Figure (38). The influence of particle size 

on the interface debonding at a given stress level might be estimated by Weibull 

distribution 177. The probability is calculated as follows:  

𝐹𝑖(𝑥) = 1 − 𝑒𝑥𝑝 [− (
𝑑𝑖

𝑑0
)

3
(

𝑥

𝑆
)

𝑚
]         (16) 

Where di is the particle diameter, x is the stress level, d0 is a normalized parameter 

and S and m are the scale and shape parameters respectively. Hence, the 

probability debonding for a stress level between x and (x+Δx) is 𝑓𝑖(𝑥) 𝑑𝑥 where 

𝑓𝑖(𝑥) can be written as: 

𝑓𝑖(𝑥) =
𝑑𝐹𝑖(𝑥)

𝑑𝑥
= − (

𝑑𝑖

𝑑0
)

3 𝑚

𝑆
(

𝑥

𝑆
)

𝑚−1
𝑒𝑥𝑝 [− (

𝑑𝑖

𝑑0
)

3
(

𝑥

𝑆
)

𝑚
]        (17) 

According to this equation, by decreasing the particle size, the debonding probability 

considerably decreases. Therefore, considering both the experimental observations 

and the theoretical calculations, it can be argued that the debonding at the 

PSZ/matrix interface should be unlikely to occur. To provide a direction to the 

practical implication of the findings, one has to consider the fracture behavior of the 

as-sintered composites. The tensile fields might deflect the crack towards the 

reinforcing particles 69 which in turn provide the necessity of incorporation of 

reinforcing particles with the lowest flaws and maximum fracture toughness. 
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4.4.3 High-temperature chemical stability  

The microstructures of the sandwich structure (H13/PSZ/H13) are depicted in 

Figures (47a) and (47c).  

 
Figure IV-47. SEM micrographs on the interface of a) H13/3Y-PSZ and b) H13/Mg-PSZ (arrows 

are pointing to the cracks) 

A seamless interface has formed in H13/3Y-PSZ while Mg-PSZ/H13 interface is 

characterized by cracking of the MgPSZ particles at the interface and propagation of 

these cracks inside the Mg-PSZ zone. The finer 3Y-PSZ powders can account for the 

absence of interface failure and crack extension in H13/3Y-PSZ. The tensile stress 

developing in the matrix upon cooling may cause cracking in the adjacent PSZ 

particles. Based on energy balance 178, there exist a critical particle size above which 

cracking is likely to occur.  

𝑑𝑐 > 𝐶/𝜎𝑡      (18) 

Where dc is the critical particle size, C is a constant depending on the 

matrix/reinforcement pair, and σt (the tensile stress) is calculated by Eq. 13. In a 

large number of materials combination where the second phase shows lower CTE, 

relatively large particles can satisfy the crack extension condition. Therefore the 3Y-

PSZ particles (d=0.5 μm) may not have satisfied the requirement in Eq.18 while the 

coarser as-received Mg-PSZ particles (d=5 μm) satisfied the crack extension 

condition. From a mechanical properties point of view, these observations further 

confirm the beneficial effect of MA on refining the large Mg-PSZ particles size 

resulting in the absence of particle cracking in MA(H13+Mg-PSZ) composites.  

The EDS line scan results in H13/Mg-PSZ (Figure 48a) show that the concentration 

of Zr, Si, and Mg increases across the interface and remains constant within the PSZ 

region. The condition is the same while looking at the line scan analysis of H13/3Y-

PSZ. Under present sintering condition (i.e. 1100°C, 30 min), the consolidated bulks 

from as-received powders forming a planar interface apparently show no precipitates 
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or any newly formed phase. The absence of reaction phases is of particular 

importance for Mg-PSZ reincforced composite in which silicates have been 

previously found to precipitate due to the presence of SiO2 impurity90,179. These 

silicates at the interface might impede the t to m transformation in PSZ particle 117.  

 
Figure IV-48. EDS line scan analysis results for the planar interface in a) H13/Mg-PSZ and b) 

H13/3Y-PSZ (arrow is pointing at the H13 surface oxides) 

However, in 3Y-PSZ reinforced composites produced by mechanical alloying, the 

backscattered electron (BSE) micrographs of the as-sintered sample revealed the 

formation of small sized reaction layers adjacent to the unalloyed H13 particles 

(Figure 49). These areas are characterized by high concentrations of Cr, V and Zr 

and the absence of Fe. 
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Figure IV-49. EDS elemental mapping on 3Y-PSZ reinforced composite (arrow is showing the 

emerged new phase, and the dashed area is un-alloyed H13) 

In Mg-PSZ reinforced composites (Figure 50), EDS mapping did not show any visible 
reaction zone. In particular, considering Si distribution, it is rather hard to deduce 
whether silicates have been formed at the matrix-reinforcement interface or not. 

 
Figure IV-50. EDS elemental mapping on Mg-PSZ reinforced composite (brighter spots in BSE 

micrographs are PSZ particles) 

The coexistence of Cr2O3 and ZrO2 in Steel-Zirconia joint is thermodynamically 

plausible at high temperatures (i.e. 1300°C) and an oxygen partial pressure greater 

than 5.7 × 10−10 mbar 180 where ZrO2 can be reduced at the expense of oxidation 

of Cr. The reduction of Zr does not completely occur, and zirconia will still exist in a 

non-stoichiometry state 181:  

ZrO2 →  ZrO2−X + X/2O2 , 0 ≤ X ≤ 0.02                     (19) 

However, in a severe plastically deformed matrix with a high density of structural 

defects (i.e. dislocations ) that might accelerate the diffusion mechanisms, these 

reactions might occur even at a temperature lower than that suggested in the 

literature. Moreover, the very fine particle size of 3Y-PSZ leads to a much larger 

PSZ-H13 interface area, shorter diffusion path and faster kinetics for the precipitation 

reactions of Cr and V oxides compared to the sandwich experiment above. As stated 
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earlier, the peaks pertaining to new phases could not be detected by XRD analysis, 

showing only the presence of t-ZrO2 and martensite. This can be explained by the 

low amount and very fine distribution of these precipitates. In the case of Mg-PSZ 

reinforced composites, the same phenomenon is not observed due to the coarser 

size of PSZ particles. 

In order to prove the chemical stability of the composites and to validate the above 

conclusions, samples were further subjected to long time (i.e. 1 and 2 h) exposure at 

the sintering temperature (i.e. 1100° C) under vacuum (5.0 × 10−7 bar). After two 

hours (Figures 51a and 52b) in both Mg-PSZ and 3Y-PSZ reinforced composites, 

new phases have emerged. EDS spot analysis results for Mg-PSZ and 3Y-PSZ 

reinforced composites are listed in Tables 6 and 7 respectively.  

Figure IV-51. BSE micrograph of composite after 2 h holding at 1100°C, a) MA( H13+20% Mg-

PSZ) and b) MA(H13+20% 3Y-PSZ) 

Table IV-6. EDS spot analysis on 20 vol. % Mg-PSZ reinforced composite (wt. %) 

Zone Fe Zr Cr V Si Mn Mo Mg 

1 24.5 14.3 25.1 6.0 4.2 1.7 - 0.5 

2 86.8 0.3 0.9 - - - 1.8 - 

3 44.0 6.4 4.6 1.0 11.6 5.1 - 2.9 

4 11.3 71.4 0.1 0.6 - - - 0.4 

 

Table IV-7. EDS spot analysis on 20 vol. % 3Y-PSZ reinforced composite (wt. %) 

Zone Fe Zr Cr V Si Mn Mo Y 

1 38.0 8.1 20.7 5.0 1.8 1.2 - - 

2 74.2 - 0.3 - - - 1.7 - 

3 66.8 10.8 0.5 - 0.2 - 1.4 0.6 

4 23.5 52.7 0.3 - 1.7 - 1.0 1.3 

 

Spot 1 in both micrographs is corresponding to a Cr, V rich zone. It appears that the 

reaction layer has been formed in the H13-ZrO2 system. These zones might consist 
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of complex oxides of Cr, V, and Zr.  Spot 2 in both micrographs is showing H13 

matrix in the vicinity of reaction zones which has been depleted of Cr, V, and Mn. 

Therefore, it can be postulated that inter-diffusion of several elements has taken 

place during high-temperature holding thus resulting in the formation of complex 

oxides. In Figure (51a), Spot 3 is characterized by a high concentration of Si, Mn, 

and Mg that might represent the precipitation of (Mg, Mn)Si2O4 which was formerly 

reported in Steel-Mg-PSZ systems 90,179. In Figure (51b) spot 3 is an MA area which 

is depleted of Cr and V. The brightest particles (Spot 4 in Figures 51a and 51b) are 

PSZ particles. Further investigations are needed to be performed by the aid of EBSD 

analysis on these samples to elaborate more on the composition and structure of the 

newly formed phases.  

The conclusion is mostly intended to highlight the efficiency of short time sintering of 

SPS that has not allowed the formation of excessive reaction zones. For the as-

sintered 3Y-PSZ reinforced composite, the width of the reaction layers was limited to 

several microns. The presence of small and limited reaction zone can be beneficial in 

view of the strengthening of reinforcement and matrix interface which in turn results 

in more efficient load transfer from the matrix to the reinforcement 182. The absence 

of reaction zones in the as-sintered Mg-PSZ reinforced composites can be related to 

the coarser particle size corresponding to lower surface energy and lower kinetics of 

Mg-PSZ/Steel interfacial reaction. However, since in the present study the properties 

of the composites with the incorporation of fine sized Mg-PSZ particles is not 

elaborated, a definitive interpretation of the dependence of the interfacial reaction 

kinetics on the reinforcement particle size cannot be made. 
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4.4.4 Tempering resistance 

Figure (52) shows the tempering curves of the as-sintered tool steels samples at 

550°C and 650°C respectively.  

Figure IV-52. Tempering curves of the samples at a) 550°C and b) 650°C 

A drastic drop in hardness is evident for all the samples after 1 hour of tempering at 

both temperatures (stage 1). For all samples, the rate of this drop is higher at 650°C 

(i.e. higher than secondary hardening peak temperature of H13) compared to 550°C 

which is very near to the secondary hardening peak temperature.  

Moreover, In the case of MM-H13 and composites, the rate of the drop is higher than 

that of AT-H13. As discussed earlier, this sudden drop is caused by dislocation 

recovery in martensite substructure irrespective of the initial dislocation density. 

Therefore, in view of the increased initial dislocation density (i.e. strain hardening) 

contributing to the higher initial hardness of the milled samples, the loss of hardness 

(i.e. ΔH=Hintial-H1) as a result of dislocation recovery should be higher. By extending 

the tempering time, the hardness of AT-H13 and MM-H13 samples decreases at a 

roughly constant rate while this rate is higher at 650°C. As mentioned earlier in the 

present work, it appears that the MM-H13 is more resistant to softening than the AT-

H13 at 650°C thanks to the presence of much finer carbides. In the case of the 

composites, after the primary drop, no significant reduction in hardness can be 

observed even after 10 hours of isothermal holding. The difference in hardness 

values of MA (H13-20%3Y-PSZ) and MA (H13-20%Mg-PSZ) is systematic and can 

be related to the higher relative density of the latter. One can deduce that after 1 

hour of tempering (i.e. stage 1), the strain hardening contribution to strengthening in 

composites becomes insignificant especially at 650°C. In stage 2, due to the good 

thermal stability of PSZ particles at the test temperatures, the synergetic effect of 

finer carbide size and dispersion hardening by PSZ particles seems to be the 

dominating mechanism responsible for the higher hardness of composites.  
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The microstructures of the samples after tempering resistance tests are shown in 

Figure (53). 

 
Figure IV-53. a) AT-H13 microstructure after 5 h tempering at 550°C, b) typical composite 

microstructure after 10 h tempering at 550°C (dashed area represent un-alloyed MM-H13), c) 

AT-H13 microstructure after 5 h tempering at 650°C ( please note the precipitation of carbides 

on prior austenite boundaries), d) typical composite microstructure after 10 h tempering at 

650°C (dashed area represent un-alloyed MM-H13), e) higher magnification micrograph of the 

composite microstructure tempered at 650C for 10 h , (please not the carbide size and 

distribution in un-alloyed MM-H13 regions) and f) higher magnification micrograph of the AT-

H13 microstructure tempered at 650C for 5 h 

Figure (53a) depicts the AT-H13 microstructure after 5h tempering at 550°C. The 

microstructure consists of tempered martensite with fine secondary carbides. Figure 

(53b) represents the typical microstructure of the composites tempered for 10 hours 

at 550°C showing UFG microstructure. The dashed area is representing an 

unalloyed, yet severely deformed region which shows a much finer microstructure 

compared to the AT-H13. These areas can also account for the microstructure of 
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MM-H13. Figure (53c) depicts the AT-H13 microstructure showing a larger number of 

secondary carbides precipitated (carbide films) on the prior austenite grain 

boundaries. Figure (53d) shows the composite tempered for 10 h at 650°C. The UFG 

microstructure contains very fine and homogeneously distributed carbides. Looking 

at the dashed area (representing the unalloyed H13) in the same figure, it can be 

appreciated that the carbide size is much finer than that of AT-H13 that precipitates 

are more homogenously distributed. The higher magnification micrographs in Figures 

(53e) and (53f) better highlight the size and distribution of secondary carbides inside 

the unalloyed H13 regions in composite (i.e. MM-H13) and the AT-H13 respectively. 

It can be concluded that the very fine PSZ particles embedded in the ultra-fine 

grained matrix seem to be stable to the temperature exposure and dispersion 

hardening effect holds even for longer tempering times2. 

4.4.5 Hot Compression  

The hot compression test results of 20 vol. % reinforced composites and the 

unreinforced samples are listed in Table 8. AT-H13 shows the lowest yield strength 

in all testing temperatures. The yield strength of the UFG MM-H13 is around 1.3 

times more than the AT-H13 thanks to the strain hardening and substructure 

strengthening induced by mechanical milling. The yield strength is significantly 

improved by the incorporation of PSZ particles especially at higher temperatures 

indicative of the dispersion strengthening effect of the PSZ reinforcement. Again, the 

lower relative density of MA (H13+20% 3Y-PSZ) might be responsible for the lower 

compressive yield strength of the composite compared to the Mg-PSZ reinforced 

counterpart.  

Table IV-8. 0.2% offset compressive yield strength of the samples 

Temperature (°C) AT-H13 MM-H13 MA 

(H13-3Y-PSZ)` 

MA 

(H13-Mg-PSZ) 

20 1810 MPa 2130 MPa 2420 MPa 2650 MPa 

450 720 MPa 1130 MPa 1920 MPa 2070 MPa 

650 480 MPa 795 MPa 920 MPa 1270 MPa 

 

It is noteworthy to mention that, the room temperature test results are in line with the 

approximated yield strength calculated from the hardness measurements (Table 9). 

The conversion of the Vickers hardness to Yield strength is done using the following 

relation for the “severely cold worked steel”  183.  

𝜎𝑦(𝐺𝑃𝑎) = 0.003𝐻𝑉     (20) 
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Dealing with particle reinforced MMCs, in a hardness test, deformation is localized, 

and particles undergo compressive stresses with a high degree of stress triaxiality184. 

As a result, particle fracture during indentation is suppressed, and HPs contribute to 

the “strengthening.” Therefore, the compressive yield strength might show a 

meaningful correlation with the hardness.  

Table IV-9. Estimated room temperature yield strength using the hardness results 

Temperature (°C) AT-H13 MM-H13 MA 

(H13-3Y-PSZ)` 

MA 

(H13-Mg-PSZ) 

20 1910 MPa 2250 MPa 2160 MPa* 2760 MPa 

*relative density in this sample is 95% 

The stress-strain curves at room temperature and 650°C tests are shown in Figures 

(54a) and (54b) respectively. Due to approaching the force limit of the equipment (i.e. 

20 KN, corresponding to a stress equal to about 2800 MPa) at the initial stages of 

strain hardening, it was not possible to complete the room temperature compression 

test to 6% strain for the composites.  

 
Figure IV-54. Stress-strain curves of samples tested at a) room temperature (20 °C) and b) 

650°C 

Figure (55) shows the strain hardening rate curves and strain hardening exponents 

(n) of the samples at 650°C and 450°C under quasi-static compressive deformation. 

The matrix strain hardening can be described by the dislocation movement and 

accumulation of dislocations. The general lower hardening rates at 650°C compared 

to 450°C is due to the loss of strength by increasing the temperature that counteracts 

the strain hardening by compression. The lower strain hardening rate of AT-H13 

compared to MM-H13 can be attributed to its larger grain size and lower density of 

structural defects (i.e. dislocations) in the as-sintered condition. As it can be 

appreciated from the graphs, the “apparent strain hardening rate” at the initial stages 

of plastic deformation is highest for the Mg-PSZ reinforced sample due to the 
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strengthening effect of Mg-PSZ particles which is in agreement with the observations 

of Martin et al. 185 For TRIP steel-Mg-PSZ composites. This effect is less pronounced 

in 3Y-PSZ reinforced composite which is probably due to the higher amount of 

porosity in the composite material. 

 
Figure IV-55. a) Strain hardening rate of the samples at 650°C, b) strain hardening rate of the 

samples at 450°C , c) hardening exponent (n) during plastic deformation for matrix material and 

Mg-PSZ reinforced composite at 650°C and d) hardening exponent (n) during plastic 

deformation for matrix material and Mg-PSZ reinforced composite at 450°C 

From around 3% up to 6% plastic strain at both temperatures, it is evident that the 

hardening rate and hardening exponent drop to lower values compared to the matrix 

material (i.e. MM-H13). The decline in hardening rate might have caused by 

debonding and fracture of PSZ or the reaction products179,186,187. The increased work 

hardening rate of the MMCs can be ascribed to the geometric constraints generated 

by the presence of HPs impeding the dislocations movement, and local increase of 

HPs volume fraction under loading and accordingly the parallel decrease in volume 

fraction of the matrix which is being deformed. Moreover, PSZ particles may undergo 

t-m stress induced transformation accompanied by volume expansion. The 
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generation of additional compressive stresses as a result of PSZ volume expansion 

may also contribute to the enhanced strain hardnening of the composite. The 

contribution of this peculiar characteristic of PSZ particles to strenghening has to be 

confirmed.   

To better describe the hardening response of the composites it would be appropriate 

to start with the considerations on the compressive yield strength (𝜎𝑦
𝑚) of the MM-

H13 matrix (i.e. 795 MPa and 920 MPa at 650°C and 450°C respectively), work of 

fracture of PSZ particles and the PSZ-H13 interface strength. The work of fracture of 

bulk 3Y-PSZ is reported to be 100 J m-2 and 18 J m-2 at room temperature and 

600°C, respectively188. The planar Interface strength of Y-PSZ coating on stainless 

steel is reported to vary between 206 to 500 MPa 189.  

For the present composites, additional considerations should be applied. Firstly, the 

successfully dispersed PSZ particles are submicron sized. Therefore the probability 

of the existence of critical flaws (according to Griffith theorem) inside these particles 

is very low. This was confirmed by the observations in Section 4.4.2. So it is possible 

to postulate that the work of fracture for these particles can be as higher than 20 J m-

2 at 650°C. The larger (un-dispersed) PSZ particles or the brittle reaction products 

might fracture at lower stresses, so it is possible to set the fracture energy lower than 

18 J m-2 for these particles. Secondly, referring to the considerations in section 4.4.2, 

no debonding was observed at the interface upon cooling and subsequent 

development of thermal stresses, therefore, interfacial strength (𝜎𝑚𝑎𝑥, i.e. the 

maximum stress at the interface calculated from eq.13) of the fine spherical shape 

PSZ particles embedded in the matrix should be higher than that observed in a 

planar interface and can be set to 900 MPa which is equal to the developed tensile 

stress upon cooling.  

Following the work of Zhang et al. 187 and Pruger et al. 189, it is possible to define the 

normalized interface strength (α) as the ratio of the “unreinforced matrix” yield stress 

(𝜎𝑦
𝑚) to (𝜎𝑚𝑎𝑥) which is equal to 1.13 at 650°C. For α>0.5 it is possible to assume 

a strong interfacial bonding in compression. It should be noted that this threshold 

increases to 1 in tension. In general, under compression, reinforcements provide 

much more strengthening than in tension. One explanation is that, debonding in 

compression occurs with considerably lower magnitude at the same strain level.     

Taking the normalized interface strength (α) and the fracture energies into account, it 

will be possible to classify the interfaces in the H13-PSZ system as a strong 

interface. The “strong” interface fails by debonding of flawless fine PSZ particles 

upon straining to a critical strain associated with matrix strain hardening at the poles 

of the particles.  While for the larger PSZ particles or brittle reaction products, well 

before interface debonding, particle fracture occurs and is considered as the main 
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damage mechanism190. The stress-strain curves are showing that the particles have 

significantly contributed to the strengthening of the composite and are in good 

agreement with the work of Zhang et al.187 stating that the strong interface 

effectively strengthens the material until a full debonding occurs.  Effective load 

transfer from the matrix to the reinforcement which is a function of the strength of the 

interface may trigger the t to m transformation in PSZ particles, especially during 

compression115,189. Because under compression, the t-m transformation may 

continue even if full debonding occurs but this event will take place at a lower rate 
189.  In order to check if the t-m transformation has been taken place during the 

compression test, the XRD patterns of the “deformed zone” of the compressed MA 

(H13+20% 3Y-PSZ) which showed the highest vol. % of the tetragonal phase in as-

sintered condition was analyzed. As it is shown in Figure (56), the compressed area 

did not show the initial t-ZrO2 content (i.e. 10 vol. %), moreover the vol. % of 

monoclinic phase is increased to 7.5 vol. %. Therefore, it is possible to postulate that 

the stress induced t-m transformation contributes to the increased hardening rate of 

the MMCs at the initial stages of plastic deformation. It has to be stated that the MM-

H13 shows a reasonably high strength even at high temperatures. Therefore, at a 

critical strain level, stress concentration at the poles of the PSZ particles is expected 

to be high enough to cause damage to the interface or large PSZ particles. 

 
Figure IV-56. XRD pattern collected from the deformed MA (H13+20% 3Y-PSZ) at 650°C. 

(Please note the comparison of the spectra with the spectra of as-sintered sample) 
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Unfortunately, reliable results could not be obtained from the XRD analysis on Mg-

PSZ reinforced composites mainly because of low vol. % of t-ZrO2 in as sintered 

samples and difficulties in sample preparation.  

Figure (57a) is showing the un-deformed surface of the Mg-PSZ reinforced 

composite. Figure (57b-c) are showing the deformed surface of Mg-PSZ reinforced 

composite subjected to hot compression at 650°C and Figure (57d) is showing the 

debonding of a fine PSZ particle (spot 1). The figure also highlights the fracture of a 

reaction product which is rich in Si, Mn, and Zr, (spot 2). The EDS spot analysis 

results of the particle are listed in Table 10.   

 
Figure IV-57. Deformed surface of the samples at 650°C, a) OM micrograph of the un-deformed 

composite (white isolated regions are un-alloyed H13), b) OM micrograph of the deformed 

composite, please see the plastic deformation of unalloyed H13, arrows indicating compression 

direction, c) SEM micrograph of the deformed surface, arrows indicating compression direction 

and d) higher magnification SEM micrograph showing particle debonding (1) and particle 

fracture (2) 

Table IV-10. EDS spot analysis results on particles (1) and (2) in Figure (57d), wt. % 

spot Fe Zr Cr V Si Mn Mo Mg 

1 52 35 5 1.4 1 0.4 - 0.3 

2 62 25 7 1 5 1.7 1 - 
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It appears that the transformation of t to m can be successfully exploited to 

strengthen the H13 matrix.  

Application of higher heating rates for the SPS may completely exclude the formation 

of thermodynamically plausible reaction products. On one side, elimination of the 

reaction layers can be beneficial since these products are generally brittle and 

detrimental to strength. Moreover, their emergence is accompanied by t-ZrO2 

destabilization. On the other hand, extremely thin and limited reaction layers can 

promote the interfacial strength allowing more efficient load transfer. Therefore, 

elaboration on the extent and composition of silicates and possibly spinel phases are 

of the future work of the author.  

4.4.6 Fracture Toughness 

The hardness vs. fracture toughness of heat-treated composites together with the 

results of 20 vol. % TiC reinforced H13 are shown in Figure 58. The TiC reinforced 

composite showed a relative density equal to ~ 98.5 %.  In comparison with the data 

of unreinforced MM-H13 (i.e. ~420 HV10 and Kapp=36 MPa m1/2) a general decrease 

in fracture toughness and a general increase in hardness can be appreciated. The 

apparent fracture toughness of Mg-PSZ reinforced composite is the highest among 

all 3 samples, the hardness being practically the same of TiC reinforced composite. 

The MA (H13+ 20%3Y-PSZ) is showing the lowest fracture toughness and also a 

very low hardness compared to the other counterparts, due to the high inter-particle 

porosity.  

 
Figure IV-58.  Hardness vs. apparent fracture toughness of the composites 



 
 

100 
 

Figure (59a) depicts the fracture surface of TiC reinforced composite. The surface 

seems to exclude any ductility contribution to fracture. The interparticle fracture 

(dashed area), and very fine and limited cleavage facets probably belong to the 

unalloyed H13 zones can be seen in Figure (59d). The higher magnification 

micrograph in Figure (59d) reveals the mechanism of void initiation by matrix/TiC 

decohesion. There also exists a few number of fractured TiC particles on the fracture 

surface (see Figure 60). The EDS area analysis as a semi-quantitative analysis 

revealed the presence of 15±1.5 wt. % Ti on the fracture surfaces corresponding to 

around 25 vol. % of TiC which is 1.25 times higher than the initial mixing volume. The 

fracture surface analysis suggests that the crack has propagated mainly through the 

reinforcement or by decohesion at reinforcement/particle interface. The fracture 

surface of Mg-PSZ reinforced composite shown in Figures (59b) and (59d) features 

some decohesion between the unalloyed H13 regions and the composite parts. The 

higher magnification micrograph (Figure 59f) reveals the occurrence of the 

particle/matrix decohesion together with the presence of clusters of PSZ and also 

regions characterized by fractured “reaction products.”  The vol. % of Mg-PSZ on the 

fracture surfaces is approximately 1.1 times higher than the nominal mixing volume. 

In these composites, the absence of extensive interparticle fracture confirms 

successful consolidation and development of strong metallic bonding. Therefore, 

upon the increase of stress concentration at the poles of the particles, the reinforcing 

particles fractured or debonded and crack propagated in the most energetically 

preferential path. This type of fracture behavior was formerly evidenced for the 

MMCs processed with severe plastic deformation showing a very homogeneous 

distribution of fine HPs 87. Generation of tensile fields (as a result of the thermal 

mismatch between matrix and reinforcement) near the particle/matrix interface, might 

also be effective in view of crack deviation towards the particle/matrix interface 18.  
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Figure IV-59. SEM micrographs of fracture surfaces of a) TiC reinforced composite, b) Mg-PSZ 

reinforced composite, c) higher magnification micrograph showing interparticle fracture at a 

porous region (dashed circle) in TiC reinforced composite, d) higher magnification micrograph 

showing some cleavage facets ( black arrow) and decohesion at the un-alloyed H13/composite 

interface ( white arrow), e) BSE higher magnification micrograph showing formation of voids 

(<1μm) as a result of particle matrix decohesion in TiC reinforced composite (arrow is pointing 

to a relatively big TiC particle) and f) BSE higher magnification micrograph showing plenty of 

voids , clusters of zirconia ( black arrow ) and a cracked reaction product ( white arrow ) in Mg-

PSZ reinforced composite. 
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Figure IV-60. Fracture surface of TiC reinforced composite (arrow points at the fractured TiC 

particle) 

MA (H13+20% 3Y-PSZ) shows a pure inter-particle fracture presenting lots of fine 

un-dispersed PSZ particle clusters on the fracture surface as shown in Figures (61a) 

and (61b) respectively. 

 
Figure IV-61.a) BSE micrographs of  fracture surface of 3Y-PSZ reinforced composite showing 

a pure interparticle fracture and b) higher magnification BSE micrograph showing aggregated 

PSZ particles (brighter fine particles) 

The crack propagation paths are displayed in Figure (62). Crack path in TiC 

reinforced composite is relatively smooth (Figure 62a) showing signs of particle 

decohesion, while the crack in Mg-PSZ reinforced composite tends to be deflected 

by the unalloyed H13/MA interface, and also through the brittle reaction products 
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(Figure 62b). The increased crack path tortuosity, higher fracture stress of PSZ 

particles with respect to TiC particles may be responsible for the increased “apparent 

fracture toughness” of Mg-PSZ reinforced composite. It should be noted that the 

existence of more extensive reaction products in the “fracture toughness specimen” 

can be related to the lower heating rate during SPS (i.e. 50 °C/min) allowing the 

formation of thermodynamically stable reaction products. Finally, Figure (62c) shows 

a pure inter-particle crack propagation in 3Y-PSZ reinforced composite confirming 

the poor densification and consolidation of this composite due to the accumulation of 

fine 3Y-PSZ particles on the steel powders surface impeding the development of 

metallic bonding between them during SPS. 

 
Figure IV-62. Crack propagation paths a) MA (H13+20%TiC), b) of MA (H13+20%Mg-PSZ), 

please see the interface decohesion of un-alloyed H13 (dashed area) and composite, and crack 

deflection towards the reaction products (highlighted by dashed circles) and c) of MA 

(H13+20%3Y-PSZ), please note the inter-particle fracture 
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Conclusions of part 2 

 Near full density composites were successfully produced by optimized 

Mechanical Alloying and fast Spark Plasma Sintering.  

 A too fine particle size negatively affects the densification of MA (H13+3Y-PSZ) 

composites due to overcoming the percolation threshold, impeding the direct H13-

H13 contact during sintering. Therefore, in order to achieve a more homogenous 

distribution of PSZ particles into the matrix, the initial particle size of the PSZ (or the 

particle size ratio dH13/dPSZ) has to be properly selected. The practical interpretation 

of the present results can be summarized as follows. MA can be considered as an 

efficient method to refine the size of relatively large HPs (d ~ 5 μm, dmatrix/dhp = 4) 

down to less than 1 μm and provide a homogenous distribution of these particles 

inside the matrix. A condition which guarantees the achievement of near fully dense 

composite reinforced with high strength flawless fine HPs. In view of the present 

results, this combination cannot be achieved using 10 and 20 vol. % of ultrafine HPs 

as the starting powder (d ~ 0.5 μm, dmatrix/dhp= 40), since in these particles the rate of 

agglomeration takes over the fragmentation rate during early stages of MA. 

Therefore, agglomerates of ceramic particles which are mostly found on the ductile 

matrix particles surface may not be fully dispersed within the matrix lamellas by the 

continuation of MA. This will lead to incomplete densification at relatively low 

temperatures (i.e. 1100 °C) because of the impediment of the development of 

metallic contacts due to the presence of HPs on the surface. 

 The tetragonal phase is partially retained in as-sintered samples and opens the 

way to exploit the beneficial effect of t to m stress induced transformation of ZrO2 on 

fracture toughness and strength. 

 The composites show improved hardness due to the combined effect of strain 

hardening and grain refinement induced by high energy mechanical alloying, and 

dispersion hardening by hard particles.  

 There exists a residual thermal stress build up in the composites due to the 

thermal mismatch between steel matrix and reinforcement. Stresses are tensile in 

the matrix and compressive in the particle. 

 For the samples sintered at 100°C/min, the H13/3Y-PSZ interface is 

characterized by a limited reaction layer with a thickness of a few microns after fast 

consolidation by SPS, whereas, in the Mg-PSZ reinforced composite no reaction 

zone was found.   

 Tempering resistance of the composites was significantly increased as a result of 

the good thermal stability of the PSZ particles at testing temperatures. 

 The room temperature and hot compressive strength of the composites were 

significantly enhanced by the incorporation of PSZ particles. The contribution of 
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stress-induced phase transformation to the strengthening of the composites was 

confirmed for the 3Y-PSZ reinforced composite. Fracture of large particles and 

debonding of fine PSZ particles occurred during the hot compression test. According 

to the strain hardening rate curves, fracture and debonding occur at a critical strain 

level of 2.5 to 3%. 

 The hardness of the heat-treated composites was improved with respect to the 

unreinforced matrix while, as expected, fracture toughness drastically decreased. 

However, one of the PSZ reinforced composites (i.e. Mg-PSZ reinforced composite) 

showed slightly higher fracture toughness compared to the TiC reinforced composite. 

In view of the practically same hardness and similar densities of these two samples, 

the higher toughness of PSZ particles may be responsible for this increase. On the 

other hand, the 3Y-PSZ composite with lower density showed an inter-particle failure 

with poor fracture toughness.  

 The lower heating rate during spark plasma sintering triggered the formation of 

thermodynamically plausible reaction products in PSZ-reinforced composites. 

Therefore in the future endeavor, the possibility of SPS at a higher heating rate 

should be taken into consideration.  
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Chapter V  

Conclusions and Future Perspectives 

Some of the mechanical properties of developed materials are listed in Table 

1. The results obtained in the frame of this Ph.D. thesis open interesting 

opportunities for many industrial applications. Harmonic steels could be tested when 

a relatively high toughness/hardness ratio is required, i.e. for forging dies. On the 

other side, according to the well higher hardness of the composites, a higher 

abrasive wear resistance is expected. PSZ reinforced Tool Steels become a more 

suited solution when high wear resistance is prominent, i.e. for in extrusion dies. 

Therefore, examining the wear resistance and also thermal fatigue resistance of the 

newly developed composites will be a future work of the author. Nevertheless, 

present results also highlighted some limits of the PM process (e.g. surface oxidation 

of powder particles), which should be solved in order to get the maximum benefits 

from the toughening/strengthening effects reported in this work. Very important 

design criteria could be investigated and implemented, looking for the development 

of novel PM steels. 
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Table V-1.  List of some mechanical properties of the samples developed in the present thesis 

 
* Obtained by spherical indentation method 
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