
PhD Dissertation

International Doctorate School in Information and

Communication Technologies

DISI - University of Trento

Distributed Contact and Identity Management

Alethia Graciela Hume LLamosas

Advisor:

Prof. Fausto Giunchiglia

Università degli Studi di Trento

Co-Advisor:

Prof. Luca Cernuzzi

Universidad Católica “Nuestra Señora de la Asunción

April 2014

Abstract

Contact management is a twofold problem involving a local and global level where

the separation between them is rather fuzzy. Locally, users need to deal with contact

management, which refers to a local need to store, organize, maintain up to date, and

find information that will allow them contacting or reaching other people, organizations,

etc. Globally, users deal with identity management that refers to peers having multiple

identities (i.e., profiles) and the need of staying in control of them. In other words, they

should be able to manage what information is shared and with whom.

We believe many existing applications try to deal with this problem looking only at the

data level and without analyzing the underlying complexity. Our approach focus on the

complex social relations and interactions between users, identifying three main subproblem:

(i) management of identity, (ii) search, and (iii) privacy.

The solution we propose concentrates on the models that are needed to address these

problems. In particular, we propose a Distributed Contact Management System

(DCM System) that:

• Models and represents the knowledge of peers about physical or abstract objects

through the notion of entities that can be of different types (e.g., locations, people,

events, facilities, organizations, etc.) and are described by a set of attributes.

• By representing contacts as entities, allows peers to locally organize their contacts

taking into consideration the semantics of the contact’s characteristics.

• By describing peers as entities allows them to manage their different identities in

the network, by sharing different views of themselves (showing possibly different in-

formation) with different people.

The contributions of this thesis are, (i) the definition of a reference architecture that

allows dealing with the diversity in relation with the partial view that peers have of the

world, (ii) an approach to search entities based on identifiers, (iii) an approach to search

entities based on descriptions, and (iv) the definition of the DCM system that instantiates

the previously mentioned approaches and architecture to address concrete usage scenarios.

Keywords: Contact Management, Identity Management, P2P, Entity Search

Acknowledgements

First I would like to express my special appreciation and thanks to my co-advisor

Professor Dr. Luca Cernuzzi, this would not have been possible without your encourage-

ment. I would also like to thank my advisor Professor Dr. Fausto Giunchiglia, you have

been a great mentor for me. I would like to thank you for your trust, for encouraging

my research and for allowing me to grow as a research scientist. Your advice on both

research as well as on my career have been priceless. I would especially like to thank my

colleagues from the KnowDive group. All of you have been there to support me with good

advice and interesting discussions. You have contributed significantly to my personal and

professional growth.

A thought to all my friends here in Trento who supported me in writing, and pushed

me to strive towards my goal. Thanks also to my friends from Paraguay who, from the

distance, were always present and knew how to give me the extra strength that I needed.

A special thanks to my family for all their love and encouragement. Words cannot express

how grateful I am to my two pillars, my mother and my husband. To my mom, thank

you for all of the sacrifices that you’ve made on my behalf, your prayer for me was what

sustained me thus far. To my beloved husband Eduardo, whose faithful support during

the final stage has been of key importance. You spent sleepless nights and you were always

my support in the most difficult moments.

Alethia Hume

University of Trento

April 2014

The work compiled in this thesis has been partially supported by the European Commu-

nity’s Seventh Framework Program (FP7/2007-2013) under grant agreement n. 600854

Smart Society: hybrid and diversity-aware collective adaptive systems: where people meet

machines to build smarter societies http: // www. smart-society-project. eu/

i

http://www.smart-society-project.eu/

ii

Contents

I General Notions 1

1 Introduction 3

1.1 The context . 3

1.2 The problem . 4

1.3 The solution . 5

1.4 Structure of the thesis . 6

2 The problem 9

2.1 Problem setting scenarios . 9

2.2 Discussion . 11

3 Ground knowledge 15

3.1 Fundamental notions . 15

3.2 Knowledge schema . 17

3.3 Instantiation of knowledge . 18

3.3.1 Entity identifiers . 19

3.3.2 Entity instances . 20

3.4 Contacts classification . 21

3.4.1 Classification of subjects . 22

3.4.2 Classification of objects . 24

3.5 Summary . 25

II The Proposed Approaches and System 27

4 Reference architecture 29

4.1 Requirements . 30

4.2 High-level design . 32

4.3 System logical view . 34

iii

4.3.1 Contact management portal . 35

4.3.2 Contact management application 37

4.3.3 Contact management network . 38

4.4 System dynamic view . 39

4.5 Summary . 44

5 A name-based approach to search in the DCM system 45

5.1 Motivating example . 47

5.2 A name-based overlay for linking directories 48

5.2.1 Formalization of the model elements 48

5.2.2 Building the name-based overlay 50

5.3 Name matching . 52

5.4 Algorithms . 53

5.5 Summary . 56

6 A description-based approach to search in the DCM system 57

6.1 Motivating example . 59

6.2 A semantic overlay for linking directories 61

6.3 Semantic link discovery . 65

6.4 Algorithms . 66

6.4.1 Identifying semantically relevant peers 67

6.4.2 Searching inside a relevant peer . 69

6.4.3 Aggregation of search results . 70

6.5 Summary . 70

7 The distributed contact management (DCM) system 73

7.1 Presentation Cards . 74

7.2 DCM Users . 77

7.3 Usage scenarios . 78

7.3.1 Initialization Scenarios . 78

7.3.2 Sharing Scenarios . 85

7.3.3 Search Scenarios . 91

7.4 Summary . 97

III Evaluation 99

8 Experimental evaluation of name-based search 101

8.1 Implementation . 101

iv

8.2 Evaluation . 105

8.3 Summary . 107

9 Experimental evaluation of description-based search 109

9.1 Implementation . 109

9.2 Evaluation . 110

9.2.1 Data-set generation . 110

9.2.2 Evaluation of results . 112

9.3 Summary . 114

IV Conclusions 117

10 Related work 119

10.1 Contact and Identity Management . 119

10.2 Distributed entity directory . 120

10.3 Semantic flooding . 122

11 Conclusions and future work 129

11.1 The context . 129

11.2 The contributions . 130

11.3 The evaluations . 133

11.4 Future work . 134

Bibliography 137

v

List of Tables

8.1 Implementations of Kadelmlia protocol. 102

8.2 Average query time . 106

10.1 Search Methods in P2P networks. 125

vii

List of Figures

3.1 An example of an ET to describe entities of type “Person” and two in-

stances showing the different descriptions of the same entity from the points

of view of peers P1 and P2 respectively. 22

3.2 An example of a classification of contacts as subjects. 23

3.3 An example of a classification of contacts as objects. 24

4.1 General system view . 32

4.2 Third party platforms . 33

4.3 Logical Architecture . 35

4.4 Sequence diagram of the initialization process of a new peer in the system. 40

4.5 Sequence diagram of a peer sharing its contact information. 41

4.6 Sequence diagram of a peer searching the system. 43

5.1 Example of Contact Lists Related by Identifiers 47

6.1 DCM Network of User-Generated Classifications 58

6.2 Example of Contacts with Similar Characteristics 60

6.3 Classification . 62

6.4 A Semantic Overlay Network . 64

7.1 Example of Person Presentation Cards . 76

8.1 Query time of different networks . 106

9.1 Topics Popularity Distribution . 112

9.2 Evaluation Results: Random queries . 113

9.3 Evaluation Results: Popular vs. Unpopular Queries 114

ix

Part I

General Notions

Chapter 1

Introduction

1.1 The context

In the general context of this thesis, we see Internet as a network of peers (a P2P network)

organizing their content in directories (e.g., contact lists, document directories and event

directories, like calendars or agendas, etc.), which store information about a number

of “things” that are of their interest. We refer to these things that exist in the real

world as entities. They can be of different types (e.g., locations, people, events, facilities,

organizations, etc.) and are described by a set of attributes. In particular, we focus the

attention in contact information, hence directories of contacts or contact lists. Within

this context, a contact is seen as a profile of an entity where the type of entity may be

constrained to certain types (i.e., corresponding to entities that can be contacted).

Different profiles of an entity can show different aspects of such entity. When talking

about directories of contact, this can be reflected in different contact information. For

example, a professor at the University of Trento may have a profile as a professor including

his university email address and university home page. Another profile of the same person

may include his mobile phone number, home address, and personal email address. As we

can see, the former shows a professional (or work) aspect while the latter shows a more

social aspect of the same person.

These different profiles exists as a consequence of different information being shared

with different people (e.g., work related information may be shared with students and

other information may be shared with family members). In the network of peers that we

are describing, this means that the different profiles will be stored in directories corre-

4 Introduction

sponding to different peers. On the other hand, all his students will have the same infor-

mation (i.e., the same profile as a professor), and this also means that the same profile

can be stores in different peers’ directory. Further, we see the root of the difference be-

tween peers storing one profile or the other in the ties or relations (e.g., student-professor,

colleagues, family ties, etc.) between each peer and the entity being described.

This thesis looks at many situations in everyday activities requiring managing such

profiles (i.e., contacts), including how they are created, shared, updated, searched and

organized in contact lists (also called contact directories).

1.2 The problem

Within the context described in Section 1.1, the problem this thesis address is twofold,

(i) management of contacts stored in peer’s contact list, and (ii) management of identities

or profiles shared by peers in the network.

• The contact management refers to a local dimension of peers that need to store,

organize, maintain up to date, and find information that will allow them contacting

or reaching other people, organizations, etc.

• The identity management refers to a global dimension of peers having multiple

identities (i.e., profiles) and the need of staying in control of them. In other words,

they should be able to manage what information is shared and with whom.

However, both part of the problem can not be separated because a profile shared by

a peer needs to be managed (i.e., stored, organized) as a contact in the contact list of

another peer. Also, the need of finding contact information about someone can be seen

as a sharing request from the point of view of the owner of the information and so on.

This evidence the inherently distributed nature of the problem.

On the other hand, we mentioned before that the contact list of different peers can be

related, for example by describing the same contact or by having contacts with similar

characteristics. A concrete example of the first case would be that different students

working with the same Prof. G. Lombardi may have his contact in their contact lists.

On the other hand, G. Lombardi is a professor in the area of Information Technology

(specialized, in particular, in distributed systems), and most likely he knows and has the

contact of many colleagues working in the same or related areas. This, in turn, shows

that the relation between data from different contact directories (i.e., corresponding to

different peers) can be of different nature and may be seen as a consequence of the relations

between peers themselves.

The solution 5

Taking into consideration these different aspects we believe that there is a complexity

associated to the Distributed Contact and Identity Management problem, which re-

quires the definition of appropriate models addressing the underlying subproblems rather

than looking only the data level. We identify the following subproblems:

1. Management of identity. On one hand, the identity of contacts has to be managed

in order to avoid duplicate contacts in local directories of peers. On the other hand,

the identity of peers has to be managed in order to allow them to stay in control of

their contact information globally (i.e., what it is shared and with whom).

2. Search. In the context described above, peers may have different information needs.

On one hand, the search problem refers to the need of taking into consideration the

different nature of possible search queries (e.g., search a specific contact or search

contacts with certain characteristics). On the other hand, it refers to the need of

taking into consideration different scopes for the search (e.g., search locally, search

among friends, search globally in the network, etc.).

3. Privacy. The problem of privacy refers to the need of taking into consideration the

privacy concerns that may appear as a consequence of manipulating contacts which

can include personal sensitive information. In this sense, peers should be able to

define what information can be shared and with whom.

1.3 The solution

In this PhD Thesis we propose a Distributed Contact Management System (DCM

System) with the following features:

1. It takes into account that different peers can describe physical or abstract object

(called entities) from different points of view showing possibly different information

about them.

2. It allows peers to locally organize their contacts in a meaningful manner, taking into

consideration the semantics of the contact’s characteristics.

3. It allows peers to manage their different identities in the network by defining and

sharing different contact profiles of themselves with different people.

4. It takes into account that peers directories in the system are inherently connected

by links of different nature and provides models that can formalize these links in

order to exploit them through different types of services.

6 Introduction

5. It allows peers to exploit links connecting different peers directories to search infor-

mation about entities (possibly contacts) based on identifiers.

6. It also allows peers to exploit links connecting different peers directories to search

contacts based on descriptions.

7. It takes into account the importance of privacy with regard to contact information

and proposes a privacy-friendly design that can facilitate the adoption of privacy

enhancing technologies.

In short, the contributions of the thesis are:

A reference Architecture that takes into consideration the different actors interacting

with the system, identifies different system components and define how they interact

with each other. This architecture allows dealing with the diversity in relation

with the partial view that peers have of the world, by accommodating multiple

representations (from the perspectives of different peers) for the same real world

entity. This includes also the case of peers describing other peers from different

perspectives as part of their contact directories.

An approach to search based on Identifiers that proposes a model to build the con-

necting links between local directories of peers based on different types of identifiers

that are used to refer to the entities that are stored in those directories.

An approach to search based on Descriptions that proposes a model to build se-

mantic links in order to connect local directories of peers that store information

about entities with similar or related characteristics.

The DCM System that has two roles: (i) on one hand, it is a case study that evaluates

the three above-mentioned contributions by integrating them into a concrete system

that shows the added value of the three elements as a whole; and (ii) on the other

hand, the definition of the system is in itself a contribution of this thesis, including

the definition of models that are application dependent (i.e., custom) and concrete

usage scenarios.

1.4 Structure of the thesis

The rest of the thesis is organized as follows:

• The Chapter 2 introduces some situations exemplifying different problems that are

related to management of contacts in personal devices and that people have to face

Structure of the thesis 7

in everyday activities. It also identifies and discusses a set of subproblems that are

motivated by these situations.

• The Chapter 3 presents basic notions and models that are adopter in this thesis

for the representation and organization of information.

• The Chapter 4 presents the reference architecture proposed by this thesis for the

Distributed Contact Management System (DCM System). This includes the identi-

fication of requirements for the architecture; the discussion of the high-level system

design identifying also actors interacting with it; the introduction of the system log-

ical view discussing the different system components; and the discussion of system

component interactions as a consequence of main system functionalities.

• The Chapter 5 presents an approach to build a distributed directory that can link

data from peers directories based on their identifiers in order to provide search ser-

vices analogous to those of telephone book white pages. This includes the definition

of models for the directory and the algorithms for the search.

• The Chapter 6 presents an approach to build a semantic overlay that can link data

from peers directories based on their characteristics in order to provide search ser-

vices analogous to those of telephone book yellow pages. This includes the definition

of models for the semantic overlay as well as the algorithms for the search.

• The Chapter 7 presents a the DCM System, introducing more application specific

models and an extensive description of different usage scenarios, which include the

actions performed by the system in order to support them.

• The Chapter 8 presents details of a preliminary evaluation of the approach proposed

in Chapter 5.

• The Chapter 9 presents details of a preliminary evaluation of the approach proposed

in Chapter 6.

• The Chapter 10 presents the related work in the different related areas.

• Finally, Chapter 11 and Chapter ?? present the conclusions and future work,

respectively.

8 Introduction

Chapter 2

The problem

The goal of this thesis is to define a distributed infrastructure for managing contacts,

which enables peers to manage their knowledge about the contact information of other

peers and to easily share their own contact information.

Although the contact management problem is essentially not new and it might look

rather simple, we believe that it has not been solved in an efficient manner. Moreover, we

consider that there is an underlying complexity that has been overlooked by many existing

applications and it is related to the fact that managing contacts is at the core of man-

aging/understanding social relations and social interactions. In order to deal with such

complexity, the attention has to focus on appropriate models to address the underlying

subproblems rather than looking only the data level.

In this chapter, first, we introduce some problem scenarios related to the management

of contacts that depict some issues that users usually face. Second, we identify and discuss

subproblems that are motivated by these scenarios.

2.1 Problem setting scenarios

Many situations in everyday activities require users of different types of devices (e.g.,

smart-phone, notebooks, PDAs) to deal with the management of their contacts. We

present in this section the description of a set of scenarios showing the type of difficulties

that users usually have in relation to the management of contact lists. The scenarios are

the result of a creative thinking work, we present them in a narrative way and we use an

informal language in order to illustrate realistic situations.

10 The problem

Problem setting scenario 1. Andrea is a 40 years old clerk. Recently he moved from

mobile to a smartphone. He wishes his contacts in Facebook, Twitter and Skype auto-

matically in his agenda. He finds out that it is possible to import such contacts to his

smart phone. The problem with this is that instead of having a single coherent contact

list, he got an extended list with a lot of contacts that seem to be repeated. Instead he

has to switch from a social network to another and manually copy his contacts, or he has

to import and then check manually for duplicates in order to merge the information from

different accounts.

Problem setting scenario 2. Liza is a PhD student of DISI, recently she moved from

IPhone to Android and she bought a recent HTC. For some reason she ignore, she wasn’t

able to maintain phone numbers and email addresses in her SIM card, but she still have

the email addresses of some people on GMail and some of her contacts are also friends of

her on Facebook. At the moment the only solution she has found is to spread on Facebook,

Twitter and Skype a message telling friends about this problem and asking them back their

phone numbers. She is upset by having to spread this message so widely but this is the

easiest way that found to do it. Now she has to memorize again all the information that

she is receiving in her contact list. She is also upset because she has to put the addresses,

emails and phone numbers manually. Moreover, she recently has made new friends and

she has no clue about how to rescue their mobile numbers.

Problem setting scenario 3. Giovanni was a Master student of DISI. At present he

has a contract in a local company as programmer. He never changed phone company

and always has had the same brand of smartphone (Samsung). Anyways, as years go by,

his friends have been messing his contact data, some moved house, some changed mobile

phone number, and some abandoned their email for a new one. Just few of them let

him know about those switches, therefore he regularly find his contact data as old. He

his irritated by this, because he often finds himself sending message to people that never

receives them. He is also irritated by having so often to put his hands on his contact data

in order to update them when he would have thousand of other things to do.

Problem setting scenario 4. Anna is a new PhD student in Trento; she just arrived

from Austria last week. She is making new friends very quickly and soon got involved in

the students activities of her students’ residence, San Bartolommeo. Last Friday there

was a party in the main hall of the residence. She chatted with a lot of people but in

particular she met a guy called Carlo, that she discovered having a lot of her research

interests. They promised to get in touch and he gave her his (printed) business card. At

the party she didn’t had time to memorize in her phone Carlo’s contact information. She

had to leave the party at 11pm. The next day, when she wishes to contact him to send him

Discussion 11

some references and start working together for a manuscript, she can’t find his card. She

doesn’t know how to get his email or phone number. She saw Carlo speaking with other

people she knows, but she does not know who of them (or if any of them) may have a way

to reach him.

Problem setting scenario 5. Carlo is a PhD student at the University of Trento. He is

very social, he likes sports and he enjoy participating at students activities. Last Friday,

he went to a party in the main hall of the students’ residence, San Bartolommeo. At the

party he first met Anna, a researcher, they agreed to discuss ideas for working together

and he gave her his business card. Right before leaving the party, Carlo met also Peter

and his friends. After some minutes chatting with them he learned that they also enjoy

playing at soccer as much as he does. In fact, they play almost every week and invited

Carlo to join them. Carlo wishes to give them his phone number or personal email so they

can contact him for next week’ match. He has his business card, which contains only his

work email address and does not contains the information he wishes to share. He then

decides to take note of the phone number of one of the guys with whom he agrees to get

in touch during the week. Unfortunately, when Carlo tries to contact the guy, he realizes

that he has the wrong number. He is upset because he was really looking forward to play

soccer and now he has no idea of how to contact those guys.

Problem setting scenario 6. John is a 45 years old father. He started to use a smart-

phone a couple of years ago. He is italian and lives with his family in Milan, where John

and his wife recently found out that one of their daughter has a very rare skin disease. The

doctor that diagnosed her in Milan was very clear with them, he explained that although

hi recognized the disease, he was not an expert on it. They are now trying to find a doctor

that can treat their daughter. They started by asking their current doctor for references

to other doctors. They are also searching information in internet and posting messages

on social networks (e.g., Facebook, Twitter) asking if anyone knows an specialist on skin

conditions. His next step is to talk to his friends and ask them if they know any expert on

the disease (or any dermatologist) but looking at his contact list, he does not know where

to start, who of his contacts is more likely to have the information he needs. John wishes

to have an easier way to search for the contact of a doctor that can help them. He is upset

and worry about his daughter.

2.2 Discussion

We model contacts as entities of different types (e.g., people, restaurants, hotels, univer-

sities and others) whose descriptions include different ways to reach them. The problem

12 The problem

setting scenarios presented above show that the management of contact information in-

cludes local and global dimensions.

• The Local dimension refers to managing the local contact list of peers. This includes

enabling basic operations that allow peers to create, update, delete and search con-

tacts. We have to take into consideration that the creation of new contacts can

often be the result of importing information from different sources (e.g., Facebook,

Gmail, Skype, etc.) and these sources may contain (possibly different) information

about the same contact. An example of this situation is what happen to Andrea in

problem setting scenario 1. In this sense, avoiding duplicate contacts in the local

contact lists of peers is an identity management problem.

On the other hand we also consider the search problem as part of this dimension

because it represents a need that is local (for the peer) regardless of the scope of the

search (i.e., if the peer wants to search in its local contact list or search in whole

network). We can distinguish between two types of search, which are analogous to

the white and yellow pages from phone book directories1.

In the first case (i.e., white pages), the peer knows exactly what is the (one) target

contact and the search is based on a given identifier. For example, in the problem

setting scenario 4, Anna knows exactly who she wants to contact (i.e., Carlo), she

knows his name and if a description of him is presented to her she will be able

to recognize him. This is also similar to the problem of Liza in problem setting

scenario 2. In the second case (i.e., yellow pages), the target of the search is not one

particular contact but a set of contacts fulfilling a given set of characteristics. We

say that search is based on a given description in this case. An example of this is

the problem of John in problem setting scenario 6.

• The Global dimension refers to the awareness of an intrinsic connection between

peers that may be storing information about the same contact. Moreover, people

often need to share different contact information (e.g., in different contexts or with

different people) showing possibly different profiles of themselves. An example of this

is the situation of Carlo in problem setting scenario 5, he wishes to show different

profiles to Anna and Peter. In the context of contact management, we need to allow

peers (such as Carlo) to stay in control of their own contact information, deciding

what information is shared and with whom. On one hand, this is related with the

peers’ right to privacy and, to data protection as way to guarantee it. On the other

hand, the models to manage contacts identity at a global level has to enable the

1http://en.wikipedia.org/wiki/Phone_book

http://en.wikipedia.org/wiki/Phone_book

Discussion 13

description of the same contact (i.e., of Carlo) from diverse points of view (i.e., from

Anna and Peter).

As this discussion shows, there are many subproblems that can be derived from the

analysis of different aspects of the Contact Management problem. In particular, we dis-

tinguish the following:

1. Identity management from a local and a global perspective. On one hand, the

identity of contacts has to be managed in order to avoid duplicate contacts in local

directories of peers. On the other hand, the identity of peers has to be managed

in order to allow them to stay in control of their contact information globally (i.e.,

what it is shared and with whom).

2. Search based on identifiers and descriptions (i.e., similar to white pages and yellow

pages). When dealing with management of contacts and in particular with search,

peers have different information needs in different scenarios. On one hand, the

search problem refers to the need of taking into consideration the different nature of

possible search queries (e.g., search a specific contact or search contacts with certain

characteristics). On the other hand, it refers to the need of taking into consideration

different scopes for the search (e.g., search locally, search among friends, search

globally in the network, etc.).

3. Privacy and data protection. The problem of privacy refers to the need of taking

into consideration the privacy concerns that may appear as a consequence of ma-

nipulating contacts which can include personal sensitive information. In this sense,

peers should be able to define what information can be shared and with whom.

14 The problem

Chapter 3

Ground knowledge

This chapter aims at introducing general notions in order to set the basis (i.e., ground

knowledge) for the discussions and approaches that are presented throughout this thesis.

Therefore, we define here basic elements that serve as a building blocks for the Distributed

Contact Management System (DCM system).

We start by presenting the notions of contact, peer and entity, which are fundamental

for the definition of our system. Then, we present the semantic schema we adopt in

this thesis for the representation of data. Next, we show how this semantic schema is

instantiated into actual data describing peer’s knowledge. Finally, we show how contacts

can be classified in hierarchical structures based on characteristics of different nature.

Acknowledgement. Some of the notions and definitions presented in this chapter are

the result of previous work developed by members of the Knowdive1 group. In particular,

some of the notions we adopt are based in the definitions introduced in [Pane, 2012] and

D1.1 (deliverable 1.1) from SmartSociety2 project.

3.1 Fundamental notions

Three fundamental notions for our system are:

Contacts. When thinking in contact information, people may often think in name, ad-

dress, phone numbers and maybe email address. However, with the extensive use of

personal devices (e.g., notebooks, smart- phones, PDAs) in combination with many

1http://disi.unitn.it/~knowdive/
2http://www.smart-society-project.eu/

http://disi.unitn.it/~knowdive/
http://www.smart-society-project.eu/

16 Ground knowledge

web-based technologies and services (e.g., social networks, instant messaging appli-

cations and others), the notion of contact information becomes more complex. A

contact in our system refers to an entity from the real world that is somehow “con-

tactable” (i.e., is capable of getting involved in communication activities), could be

a person, a facility, an organization, etc. Then, the representation of a contact is

seen as a profile describing characteristics that are known of such entity. This may

include information about different ways to reach the contact (e.g., phone number,

mobile number, skye user, and others), as well as other general characteristics (e.g.,

name, age, place of birth in the case of people) that can help distinguishing contacts

from one another.

Peers. We discussed in Chapter 2 the contact management at a large scale as a problem

that is inherently distributed. Therefore, when thinking in users of the DCM system,

we see a network of interacting peers. A peer refers to a user of the system that

maintains a contact list, is capable of acting, making decisions and participating in

communications activities (i.e., is contactable).

Entity. We use the notion of entity to refer to a “thing” that exists in the real world.

Entities are defined as abstract or physical objects, can be of different types (e.g.,

person, location, event, etc.) and are described by attributes (e.g., name, birth

date, latitude-longitude, size, duration, etc.), which can be different for different

types of entities. Within the system, we formalize the notion of entities and we use

it to represent structured information about contacts and peers. In other words, we

adopt an entity-centric approach that uses entities as the basic element of knowledge.

We say then that the peer’s contact list contains its knowledge about known entities,

including a description of itself as an object (i.e. a person) from the real world. In

order to understand the semantics of entities within the context of distributed contact

management, we need to take into consideration that:

• Peers represent their own “versions” of entities. As a consequence, different peers

may describe different points of view, showing possibly different aspects of the same

entity.

• Peers have a partial view of the world. This is a consequence of the fact that different

peers may know different subset of entities that exist in the world.

• Peers can describe entities that refer to other peers. This happens for example when

the contact of a peer, in turn, is also a user of the system.

Knowledge schema 17

To reason about contacts and peers, we need to represent entities in such a way that

will allow peers to understand each other (i.e., interoperability). For example, a peer

should be able to find all the different versions of an entity describing the same contact

that are available even if different peers generated them. Another example is the case of

a peer sharing its (own) contact with another peer; they need certain level of agreement

regarding the structure they use to represent the data.

Achieving interoperability between peers at the data level requires an agreement on the

formal models that they will follow for the representation of data (i.e., their knowledge).

In other words, in order to make the knowledge comparable, the same format should be

followed by different peers in the system. The entity-centric approach adopted in this

thesis distinguishes between a schema level that defines this “format” and a knowledge

level that defines how to instantiate the schema into actual knowledge. In the following

sections, we formally present the elements that are part of these two levels.

3.2 Knowledge schema

The Schema.org3 initiative defines schemas as “A set of types, each associated with a set

of properties and where the types are arranged in a hierarchy”. We adopt an approach

that is align with this idea and allows the definition of templates for each type of entity

used in the system. These templates serve to establish restrictions on the set of attributes

that can be used to describe a given type of entity. The meaning is further specified by

mapping single elements from the schema (i.e., types of entities, the names of attributes

and their values) to concepts from a knowledge base.

A concept is defined as “An abstract or general idea inferred or derived from specific

instances” in WordNet4; and as “An idea, something that is conceived in the human mind”

in Wikipedia5. In general, in the area of knowledge representation, concepts are used to

formalize and represent the meaning of words in a language independent manner.

In what follows, we formalize our notion of entity type and other related notions (i.e.,

basic schema elements) in a recursive manner.

An Entity Type (ET) is formalized as the tuple

ET = 〈C, {AD}〉

where,

• C represents a concept associated to the name of the entity type and which defines

the class of entities that are describe by it;
3http://schema.org/
4http://wordnet.princeton.edu
5http://en.wikipedia.org/wiki/Concept

http://schema.org/
http://wordnet.princeton.edu
http://en.wikipedia.org/wiki/Concept

18 Ground knowledge

• {AD} is a non-empty set of attribute definitions denoting the type of attributes

that can be used to describe an entity of the corresponding ET . We assume that a

distinction can be made between those mandatory and optional attributes but for

the sake of simplicity we avoid going into more details about this in the models.

The notion of Attribute Definition (AD) is aimed to explicitly state constraints

regarding how can be describe certain property of an entity. It is formally defined as the

tuple

AD = 〈C,AT 〉

where,

• C is a concept associated to the name of the attribute, which provides a meaning

for the property that an instance of the corresponding AD is describing;

• AT is a data type that establishes constraints on the values for the definition of

the attribute. We can distinguish among those that are natively supported by the

system (e.g., integer, string, float, date, etc.), complex concepts from a knowledge

base, and the application defined ETs.

3.3 Instantiation of knowledge

In order to actually represent knowledge about entities from the real world, a schema

defined following the models presented in Section 3.2 has to be instantiated. An entity

type ET is instantiated to represent a particular description of a real world entity, which

we call Digital Entity (DE). In turn, an attribute definition AD is instantiated as part of

a DE to represent a property (or characteristic), called Attribute (A) of the entity.

The representation of entities may look rather similar to each other when they describe

entities having similar characteristics (e.g., people with similar interests, born in the same

city maybe also in the same month, etc.). On the other hand, in the DCM system the

peers describe entities from their own point of view and therefore it may also happen that

two descriptions (from different peers) that appear to be different actually refer to the

same entity. We distinguish an entity from others in the system by mean of identifiers.

These identifiers are defined as labels assigned to entities and used as a reference to them

(used to “call” them) 6. Moreover, from our point of view, entities can be assigned with

multiple identifiers that serve different purposes.

Let us first discuss the entity identifiers and then we will formally define the entity

instances.
6http://en.wikipedia.org/wiki/Identifiers

http://en.wikipedia.org/wiki/Identifiers

Instantiation of knowledge 19

3.3.1 Entity identifiers

The identity of an entity encodes its uniqueness within certain context and allows to

distinguish it from other entities. It is defined by characteristics of the entity that

can be intrinsic (i.e. that belongs by nature) or extrinsic (i.e. acquired from the out-

side) [Do Van Thanh, 2007]. Identity is as a fundamental notion when reasoning about

entities, it allows position entities (that can be individuals or objects from the real world)

and understand their relations with other objects in the environment [Windley, 2005;

Camp, 2004].

Following the notion of identity, identifiers are used in order to refer (i.e., iden-

tify) a person, an organization or any type of entity within a context. One entity can

have, in fact, multiple identifiers that serve for different purpose or in different con-

texts. In the DCM system, we can distinguish between identifiers used by humans (called

human-understandable identifiers) and identifiers used by computers (called machine-

understandable identifiers).

People usually refer to an entity by a name, for example, when talking about the

entity. In their minds this name is uniquely mapped to the description they have (their

view) of such entity [Pane, 2012]. The context is implicit in the conversation in this case.

An entity can be called by multiple names (e.g., the same person being identified by the

names: Anne Smith, Anne Elizabeth Smith and Little Annie) and different entities can be

referred by (called using) the same name (e.g., Anne Smith and Alice Smith can be also

identified by the name A. Smith) as a consequence of being arbitrarily assigned. This does

not change their importance as human-understandable identifiers but makes impossible

for the machine to dereference names into the entity they represent. Therefore, we need

machine-understandable identifiers to allow computers to refer to entities.

On the other hand, a machine-understandable identifier is one that can be uniquely

solved by computers. Many standards were proposed in the WWW for digital identifiers,

among them the most widely known are URIs7, URLs8 and URNs9 In the DCM system

we need to distinguish the different descriptions of the same real world entity (i.e., from

local directories of peers) while still maintaining the track about what entity from the real

world the peer is describing (i.e., global identification). With the purpose of distinguishing

between local and global identifiers, the work of Pane [2012] creates two new identifiers,

called SURL and SURI.

A SURL is defined as a semantic URL that represents a particular description (in

local directories) of a real world entity. A SURL is created in local directories for each

7RFC1630 - Universal Resource Identifiers
8RFC1738 - Uniform Resource Locators
9RFC1737 - Uniform Resource Name

20 Ground knowledge

entity being described in it, it is globally unique and can be dereferenced to obtain the full

description of the entity. In other words, it encodes the location of a particular description

of a real world entity.

A SURI is defined as a semantic URI that represents a real world entity without

attaching it to a particular description. The same SURI is shared by different directories

describing the same real world entity, it is also globally unique. A SURI cannot be directly

used to retrieve an entity description, because it does not commit to one single description

and it rather includes the different points of view from which an entity is described.

Differently from other approaches from the Semantic Web that combine URIs and

URLs to identify entities in the Web (e.g., OKKAM, semanticweb.org10, www.w3.org11),

the separation between local and global identifiers allow us to split the identification of

a real world entity and its description(s). Further, other approaches implicitly impose a

description for the real world entity when re-using the identifier, while we (by adopting the

local/global identifiers) embrace diversity with regard to the point of views represented in

different directories, enabling also the creation of a network of interconnected directories

(we discuss in more details this in Chapter 5).

3.3.2 Entity instances

As we described before, knowledge in the system is represented through the instantiation

of the models presented in Section 3.2.

A Digitally Entity (DE) instantiates an entity type ET and describe a real world

entity from a particular point of view (i.e., the point of view of the directory’s owner).

This description represents known characteristics of the entity through a set of attributes.

Then, the description is also attached with the different types of identifiers that are

used to refer to it (i.e., human-understandable and machine-understandable identifiers).

Formally, it is defined as the tuple

DE = 〈SURL, SURI, {N}, ET, {A}〉

where,

• SURL is unique identifier of this particular DE;

• SURI is a unique identifier of the real world entity that the corresponding DE is

describing;

• {N} is a set of strings representing names used by the corresponding description

DE to identify a real world entity;

10http://semanticweb.org/wiki/Uniform_Resource_Identifier
11http://www.w3.org/TR/cooluris/#semweb

http://semanticweb.org/wiki/Uniform_Resource_Identifier
http://www.w3.org/TR/cooluris/#semweb

Contacts classification 21

• ET is the entity type among those defined for the corresponding system;

• {A} is a non-empty set of attributes describing the characteristics of the entity.

An Attribute (A) instantiates an attribute definition AD to represent a particular

characteristic of the entity within a DE. Some attributes may have multiple values, its

values may be mapped to a meaning in some knowledge base (i.e., semantic values) or

can represent a relation to another entity when the value is a reference to another DE

(i.e., relational attribute). Formally, it is defined as the tuple

A = 〈AD, {V }〉

where,

• AD is an attribute definition among those defined for the corresponding system and

denotes constraints on possible values for this attribute;

• {V } is a set of attribute values of the type AT of the corresponding AD. Note that, if

the corresponding AT is an ET , then A is called a relational attribute as it defined

relations between two entities. For example, relations like friend-of, colleague-of,

mother-son, etc., would be defined as relational attributes.

A simplified example of the schema and its instantiation is shown in Figure 3.1. It

is important to note, (i) first, that the specific definition of entity types depends of the

domain; (ii) second, that this example shows only one entity type (i.e., Person) but

in our system we will need to describe other types of entities (e.g., locations, events,

organizations, facilities, etc.) in order to represent general knowledge of peers about

contacts and other related entities.

3.4 Contacts classification

Classifications has been used for a long time as a mechanism to organize different types

of objects. Some well known examples of its extensive use and effectiveness are web

directories, file systems, email directories, business catalogs, among others. These clas-

sifications are tree-like structure hierarchies used to organize objects of different types

depending on their characteristics and the purpose of the classification in the target ap-

plication [Giunchiglia et al., Winter 2006].

The hierarchical structure of classifications encodes subsumption relationships between

the nodes in the hierarchy, which means that elements (or objects) that can be classi-

fied at a child node form a subset of the elements that can be classified at the parent

node [Giunchiglia et al., Winter 2006; Giunchiglia and Zaihrayeu, 2008]. However, the

22 Ground knowledge

Descrip(on	 in	 peer	 P1	

URL:	 p1/en&ty/1	
URI:	 uri/en&ty/2	
Name:	 Carlo	 Rossi;	 C.	 Rossi	

Gender:	 Male	
Age:	 34	
Phone	 Number:	 +39	 0461	 …	
E-‐mail:	 rossi@disi.unitn.it	
LinkedIn:	 …	
…	

Iden(fiers	

ABributes	

different	 points	 of	 view	 	

Descrip(on	 in	 peer	 P2	

URL:	 p2/en&ty/3	
URI:	 uri/en&ty/2	
Name:	 Carlo	 Rossi	 	

Gender:	 Male	
Date	 of	 Birth:	 1980-‐01-‐24	
Mobile	 Number:	 +39	 346	 …	
E-‐mail:	 carlo.rossi@gmail.com	
Facebook:	 …	
…	

Iden(fiers	

ABributes	

Type:	 Person	

Name:	 {String}	

Gender:	 String	

Date	 of	 Birth:	 date	

Phone	 Number:	 numeric	

Mobile	 Number:	 numeric	

…	

instance-of instance-of

Schema

Knowledge

Figure 3.1: An example of an ET to describe entities of type “Person” and two instances

showing the different descriptions of the same entity from the points of view of peers P1 and P2

respectively.

same object can be classified at different classification nodes or at different nodes from

different classifications. This means that the same object can be classified from different

perspectives, (i.e., considering different subsets of characteristics), which in turn allows

finding objects by following different paths (from different perspectives) in the hierarchies.

Within the context of this thesis, we are interested in using classifications (also called

lightweight ontologies [Giunchiglia and Zaihrayeu, 2008]) to organize contacts from peer’s

contact lists (i.e., the entities describing contacts) based on certain properties. Two main

dimensions can be distinguished for the organization of contacts, (i) contacts organized

as subjects with whom the user is connected (or linked) through a social relation; and (ii)

contacts organized as objects that are known by the peer and have certain characteristics.

3.4.1 Classification of subjects

As subjects of some social relation with the peer, contacts can be organized in social

groups. For example, friends of the peer, family of the peer, colleague of the peer, etc.

Contacts classification 23

Then, the organization of the groups themselves into a hierarchy defines a classification

of subjects.

An abstract example of a possible classification of contacts as subjects is shown in

Figure 3.2. In this example, social groups are mainly separated between groups of “Fam-

ily” members, “Work” related contacts and “Friends”, while nodes that are lower in the

hierarchy further separate the groups of the nodes that are one level above. As we also

mentioned before, contacts can be classified at more than one node. For example, a close

friend who happens to be also a colleague at work will be classified at two nodes, namely,

“Colleagues” and “Close friends”.

Family

Parents Brothers
and Sisters

Friends Work

Colleagues Bosses

Managers Director

Close friends Acquaintances

All social relations

Figure 3.2: An example of a classification of contacts as subjects.

Formally, we can define a classification of subjects as a rooted tree CS = 〈{n}, {e}, {l}〉,
where {n} is a set of nodes, {e} is a set of edges on {n}, {l} is a set of labels, and for

any node n ∈ {n} there is label l ∈ {l} associated with n. In CS, the label of a node

represents an intended relation between entities contained by the node and the peer that

owns the classification (i.e., parents of the peer, colleagues of the peer, etc.). Note that

the actual meaning of a node should be understood as the meaning of all the nodes in the

path to the root.

These classifications of subjects can be used in the assignment of permissions and

access control rules, such as it is done in RelBAC [Giunchiglia et al., 2008]. For example,

each node in the classification can be mapped to a specific set of contact information (i.e.,

profile or identity) to be shared by the peer with the contacts that are classified under

such node. In the DCM system, in general, this type of classifications may serve the

purpose of limiting the scope of certain services, among others we can mention, search

contact, share or publish contact information, send contact, etc.

24 Ground knowledge

3.4.2 Classification of objects

As objects that exists in the real world and are described by certain attributes, contacts

can be organized in groups with similar characteristics. For example, those contacts that

have the same profession, live in the same city, have the same nationality, etc. Such

groups can be formed by specifying only one constraint regarding the characteristics of

objects or by combining one or more constraints. Then, groups can be organized in a

hierarchy, from more general to more specific groups, to define a classification of objects.

An abstract example of possible classifications of contacts as objects is shown in Fig-

ure 3.3. Given that contacts are represented in our system through the notion of entities,

the characteristics used to classify them include their types and attributes. In this exam-

ple, we can see two classifications that correspond to different types, namely, “Facility”

and “Person”. In the case of contacts that are persons, we can see that the peer is inter-

ested in distinguishing between those that are “Doctors” and those that are “Professors”

(i.e., based on their profession). Among the doctors, we can also see that the peer is inter-

ested in “Dermatologists”, “Dermatologists” located in “Italy”, “Dermatologists” located

in “Paraguay”, and “Allergists” (without distinguishing where they are located).

Facility

Hotels Restaurants

Person

Professor Doctor

Dermatologist Allergist Steak
house

Vegetarian

Italy Paraguay

Figure 3.3: An example of a classification of contacts as objects.

Formally, we can define a classification of objects as a rooted tree CO = 〈{n}, {e}, {l}〉,
where {n} is a set of nodes, {e} is a set of edges on {n}, {l} is a set of labels, and for

any node n ∈ {n} there is label l ∈ {l} associated with n. In CO, the label of a node is

used to describe a characteristic that is intended on entities contained by the node. Also

in this case the actual meaning of a node should be understood as the meaning of all the

nodes in the path to the root.

These classifications of objects can be used in the DCM system to build catalogs of

contacts, such as the yellow pages from phonebooks, and to search contacts by descrip-

tions. Moreover, classifications from different peers can be connected by linking nodes

that encode related meaning in order to build distributed yellow pages for the system.

Summary 25

3.5 Summary

This chapter introduced the foundational notions for this thesis, which will be used in the

following chapters to build the Distributed Contact Management System (DCM system)

on top of them. First, the notions of contact, peer and entity were defined. A contact is

defined as an entity from the real world that is somehow contactable by possibly diverse

means; A peer is defined as a user of the system, maintaining a contact list and capable of

participating in communication activities; and An entity represents an abstract of physical

object that exist in the real world, it has a type and is described by a set of attributes.

Moreover, it was established the adoption of an entity-centric approach, which uses entities

to represent contacts and peers.

Next, the notion of a knowledge schema was presented as a mean to achieve interop-

erability between peers. It defines templates for the different types of entities used in the

system, establishing restrictions on the set of attributes used to describe a given type.

These templates are then instantiated into Digital Entities (DEs) and their Attributes

(As) to actually represent knowledge about entities from the real world. Two types of

identifiers were introduced in association to entities in order to distinguish among many

possibly different descriptions of the same real world entity. A semantic URL (SURL)

represents a particular description, while a semantic URI (SURI) represents the actual

entity without attaching any specific description to it.

Finally, it was discussed how the hierarchical structure of classifications (also called

lightweight ontologies [Giunchiglia and Zaihrayeu, 2008]) can be exploited to organize

contacts. On one hand, the notion of classification of subjects was presented as a mean

to organize contacts with whom the user is connected through social ties. On the other

hand, the classification of objects was presented to organize contacts based on their char-

acteristics (i.e., as objects described by certain attributes).

26 Ground knowledge

Part II

The Proposed Approaches and

System

Chapter 4

Reference architecture

In this chapter we present an architecture of reference for the Distributed Contact Manage-

ment System (DCM System), which integrates different system components that interact

in a complex manner. Moreover, we discuss the different roles played by each compo-

nent in addressing the problem tackled in this thesis. This architecture is one of the

contributions of this thesis.

The first step for the definition of the architecture was the elicitation of high-level

requirements through the analysis of the subproblems identified from problem setting

scenarios. Requirements are organized around dimensions considered of key importance

in the design of such a complex system (i.e., dynamic, with socio-technical implications,

inherently distributed), and cover the properties that should be met by it.

After the requirements analysis, the overall system design was thought with the fol-

lowing main objectives in mind:

• To meet the requirements identified in the first step of the architecture definition.

These requirements imply functional as well as non-functional properties that the

system should have.

• To provide an architecture that is generic enough, and that can therefore be ab-

stracted from application specific details in order to be applicable to diverse knowl-

edge management scenarios.

Taking into consideration the above mentioned objectives, the second step was to

continue with the definition of the system architecture itself. This included:

30 Reference architecture

1. The identification of actors interacting with the system and the discussion of their

roles in a high-level system design (Section 4.2).

2. The identification of system components in a logical view that analyzes the role of

each of them. Such analysis must include also the modules that are needed within

each component (Section 4.3).

3. The identification of interactions that happen between the different components as

a consequence of different types of functionalities provided by the DCM system

(Section 4.4).

Finally, it is important to note that the approaches presented in subsequent chapters

of this thesis, namely Chapters 5 and 6 as well as the case study from Chapter 7 will be

framed within this architecture.

4.1 Requirements

The requirements analysis for the architecture of the DCM system takes as a starting

point the problem setting scenarios from Chapter 2. In particular, we focus on deriving

requirements from the different subproblems that were identified from such scenarios. In

the following, we report the output of this analysis.

Data Storage. We follow a model that is centered in the notion of entities to represent

data (i.e., knowledge)1, which means that data is stored in the DCM system using entity

bases. The DCM system deals with a scenario that is inherently distributed. The direct

impact on data storage of this inherent distribution is twofold:

• First, storage of data is also distributed among peers (i.e., peers have their own local

contact list).Therefore, the system will support the storage of peers knowledge locally

in their personal devices. This means that each peer should be able to maintain its

own entity base.

• Second, peers need to find a minimal agreement about their entity representations in

order to understand each other (i.e., for communication and interactions). Therefore,

the system should provide a point of reference to get a basic (and extendable) schema

as well as general purpose knowledge (i.e., information about entities of general

interest).

1As it is presented in Chapter 3

Requirements 31

Peers interaction and linking. Peers in the DCM system are also inherently connected.

The links that connect peers in this network can be of different nature: (i) peers can be

explicitly connected because they know each other (i.e., one peer is in the contact list

of the other and vice versa), (ii) they can be indirectly connected by knowing the same

people (i.e., having the contact information about the same person, facility, etc.) even

if they do not know each other; (iii) peers can also be implicitly connected because they

have similar characteristics, interests, or needs (e.g., one peer may have the information

that another peer needs). As a consequence,

• The DCM system should support the identification and representation of different

type of links between peers.

• The system have to provide mechanisms that allow exploiting these links, for example

to search.

Services. Through the DCM system it should be possible to access different services

allowing peers to manage their local contact information, search for new contacts, match

existing contacts to other peers in the network, and publish (or share) their own contact

information. This means that:

• The system should provide search services that can run at different levels and with

different scope.

• Matching services should be provided in the system, (i) at a local level to avoid

duplicates, and (ii) at a global level to link peers and contacts.

• The system should support publishing services, connected to search mechanisms in

order to allow peers to be “findable” (when this is desired).

• Direct exchange services should also be supported by the system.

Privacy. In the DCM system, the mechanisms used for representing and searching con-

tacts might involve the manipulation of sensitive information, for example human personal

data. This may raise privacy concerns that we need to take into account. Fully address-

ing privacy in the system will require an extensive study of the state of the art as well

as the adoption/implementation of privacy enhancing technologies that can technically

enforce basic privacy principles2. Moreover, the study of privacy in the context of the

DCM system represents another big research area and it is out of the scope of this thesis.

2as defined in the EU-Directive 95/46/EC [European Commission, 1995] and the newly proposed GDPR [Eu-

ropean Commission, 2012]

32 Reference architecture

However, we consider that privacy is a very important dimension in this type of complex

socio-technical systems. To partially deal with privacy, the DCM system will provide

a privacy-friendly design. This means that the system design should take into consid-

eration main privacy principles in order to facilitate the adoption of privacy enhancing

technologies.

Performance. The system is expected to be designed to handle a potentially large num-

ber of peers managing information about an even larger number of objects. This is

reflected in the following architectural requirements:

• The system should be able to scale in the number of peers that can manage while

maintaining a coherent system behavior.

• The system should also scale to handle diversity of peers, in terms of their different

points of view, different needs and different interests; while still providing good

quality services.

4.2 High-level design

The design of the DCM system aims at defining an architecture that supports the manage-

ment of peers’ contacts and identities in a distributed manner. In this section, we present

a general view of this system that takes into consideration the different (external) actors

that can interact with the DCM system in order to define the nature and mechanisms for

these interactions.

Figure 4.1: General system view

High-level design 33

From this general perspective, the actors that interact with the system are (i) peers

that use the system to manage their contacts and identities; (ii) a system administrator,

who is responsible for verifying that the system works properly; and (iii) external systems

possibly acting as data providers, service providers, or both. The Figure 4.1 introduces

the general view of the system.

The term Peer refers to users of the system, which has the ability to make decisions.

The Peers in the DCM system will always act on behalf of someone, might be a person, a

company, organization, etc. Further, peers can decide to what extend the identity of this

someone is revealed and to whom (e.g., a central authority in the system, other peers,

etc.). Peers will interact with the system through applications running on personal devices

(e.g., smart-phones, tablets, laptops, etc.). When interacting with the system, the peers

will identify using a pseudonym (i.e., a user name), which implies the creation of an user

account. The notion of a user account enables the system to link the actions and data

of the same peer thereby maintaining a long-term relationship. This relation could, in

turn, enable different types of services, which are available only for system users. We will

discuss services in more details in the following sections.

A Web Portal GUI has a twofold goal. First, it will provide an interface that can

be used by peers to create an user account (i.e., when interacting with the system for

the first time) and to download an application for their personal device. Second, it will

also provide an interface that can be used by the administrator(s) of the system to very

an monitor that everything is working properly (i.e., to monitor system behavior). Note

that this presupposes the existence of a central authority that stores user accounts, allow

authentication, and (in general) deploys the different components of the system. This is

further discussed as part of the system logical view (Section 4.3)

The external data and external services are access by the DCM system through exter-

nal systems that we call 3rd Party Platforms. They are systems over which we have no

control, but that are part of the context in which our system has to function and therefore

can not be ignored.

3rd	 Party	 Pla*orms	 	

User	 Data	
e.g.,	 Facebook,	
Google	 Plus,	
Instagram	

Services	
e.g.	 Smart	
Campus	

Object	 Data	
e.g.,	 EnDtypedia,	
Open	 Data	
TrenDno	

Figure 4.2: Third party platforms

34 Reference architecture

According to their characteristics (information they store and the functionalities they

have), the 3rd party platforms can be distinguished in three types (as shown in Figure 4.2):

• First, there are systems that are mainly based on User Data, all social networks

are a good examples of this category. They store user information, which include

personal data, preferences, and tracking of users actions. Their added value is in

their user base, which can be used as target for, for example, advertisement.

• Second, we can identify other systems that are based on Object Data, they can

be seen also as information providers. They center the attention in building big

dataset of information about different types of entities from the real world (i.e.,

entity bases). Usually, they invest a lot of effort in producing high quality data

aiming to become a referent source for a particular domain(s). Some examples of

this type are, Wikipedia3, Freebase4, Entitypedia5, DBpedia6, Open Data Trentino

(ODT)7.

• Third, we can distinguish those that serves as Service providers. These are systems

that usually connect user and object data, i.e., are in the middle. An example of

this are systems that process information from object data systems based on user

data in order to provide customized services to users, like in SmartCampus8 project.

4.3 System logical view

A logical view of the architecture is presented in Figure 4.3. This view shows the different

components that are part of the system architecture.

The entry point and a point of reference in the system is the DCM Portal component.

The portal can be access by a new peer through a web interface, as we mentioned before, in

order to create an account and download an application that will run locally in its device.

This application that we call DCM App represents the second component of the system.

The app allow peers to interact with each other and with the portal in order to have

access to different type of services (like search). Finally, the peers interacting through the

app represent the third component of the system, namely, the DCM Network. In what

follows we present each component of the system in more details.

3www.wikipedia.org
4http://www.freebase.com/
5http://entitypedia.org
6http://dbpedia.org
7http://dati.trentino.it/
8http://www.smartcampuslab.it

www.wikipedia.org
http://www.freebase.com/
http://entitypedia.org
http://dbpedia.org
http://dati.trentino.it/
http://www.smartcampuslab.it

System logical view 35

DCM Network

Entity
Base

User Base

Services	

Privacy	

EB UB

Services	
Privacy	

EB UB

DCM	 System	
DCM	 Portal	

DCM	 App	

Figure 4.3: Logical Architecture

4.3.1 Contact management portal

The DCM Portal is composed by three layers, namely, (i) a data layer, (ii) privacy layer

and a (iii) service layer.

The Data layer stores information of users in a User Base (UB) and information about

entities that are known to the portal in an Entity Base (EB):

• The UB of the portal is intended for identifying users, called peers in the DCM

system. It stores information about the pseudonyms (i.e., user names) under which

the system recognizes peers, regardless of the real world entity on behalf of whom

they are acting. The UB can also maintains other peer-related information, such as,

the last time the peer was seen, available mechanisms to send them notifications,

etc. The identification of a peer in the UB is based on a user name, which can be

any arbitrary unique combination of characters (i.e., letters, numbers and symbols).

Moreover, user names are not mapped to a concepts from a knowledge base (e.g.,

WordNet9). However, a user name can be linked (although it is not mandatory) to

an entity in order to show that the corresponding peer is acting on behalf of such

real world entity.

• On the other hand, an EB is intended to store the knowledge of the portal, namely,

descriptions of the real world entities (e.g., persons, organizations, facilities, loca-

9http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

36 Reference architecture

tions, events, etc). This include, first, the definition of the semantic schema10 (i.e.,

set of templates) used to describe entities in the DCM system. Second, it includes

the description of entities on behalf of whom peers act, called the profile of the peer.

Last, it also includes other related entities that are needed to describe the general

knowledge that the portal has about the real world. The place of birth of a person

or the location where he/she lives; the place where an organization has its head-

quarters, or even the institution where a person works are all examples of general

interest entities that can be part of the portal knowledge and can also be used to

describe the profile of a peer.

The Privacy layer plays the role of a filter that knows who can access what and under

which circumstances. We define a privacy layer as part of a privacy-friendly design. This

layer is intended to account for the need of an agreement between the peers and the

portal regarding how peers data will be manipulated in the portal. Such agreement could

be achieved and technically enforced in an automatic (or semi-automatic) manner with

the adoption of appropriate privacy-enhancing technologies. As we mentioned before,

providing concrete solutions for this layer is out of the scope of this thesis and we leave

it as part of our future work. However, we invite the interested reader to find more

information in [PrimeLife, 2011].

The Service layer encapsulates a number of services that are supported by the system.

They include, among others: creation of user accounts, downloading the DCM App,

searching users (for example, to find if a local contact is also a user of the system),

searching contacts that were published int he portal, etc. The portal also offers services

for the protection of user’s data in the network. It is important to note that between this

layer and the data layer (as shown in Figure 4.3) we have the privacy layer. This means

that all services provided by the portal presuppose the evaluation of privacy (what data

can be revealed by the services, for what purpose and to whom).

Finally, It is important to point out that the separation among layers is mainly con-

ceptual and the actual implementation of privacy policies or services might be transversal

to different layers. For example, the privacy policies could require additional metadata to

be stored with the data they protect, in the data layer (UB and EB). Similarly, different

services might also require storing some additional information (e.g., indexes, statistics,

etc.).

10The notion of a semantic schema is discussed in Chapter 3

System logical view 37

4.3.2 Contact management application

Another key component in the architecture is the DCM Application (DCM App) running

on local devices of peers. Once a peer creates a user account and installs the DCM app,

this will be its everyday interface to into the system. In fact, we say peers become part of

the system through the DCM app. As it can be seen in Figure 4.3, the internal structure

of the DCM App is in principle the same as the DCM Portal (i.e., composed by three

layers). It can also be seen that a slightly different color is used for the DCM App, which

is aimed to point out that they work at different levels (i.e., the portal at a global level

and the app at a local level).

The Data Layer at peer Pi maintains a User Base UBPi
and a Entity Base EBPi

,

which contain the following information:

• The UBPi
at peer Pi stores information regarding the DCM user account of the local

peer. This information will be used, for authentication purposes, in any interaction

that the peer has with the DCM portal. Additionally, the UBPi
stores information

about others (external) user accounts (e.g., Facebook, Google Plus, Skype, etc.)

of the peer and relevant user information related to these accounts (for example,

contacts of the peer in external accounts).

• The EBPi
at the same Pi stores only the information about the entities of the user(s)

in UBPi
, i.e., entities that Pi knows or that are somehow relevant for Pi. We say

that the EBPi
represents Pi’s point of view or knowledge about objects from the

real world.

Let us give an example to clarify the difference between the information stored in the

different bases. Take the example of Anna and Liza, they are friends in Facebook and

Anna is a user o the DCM system. Let us call UBPa and EBPa , respectively, to the user

base and entity base in Anna’s DCM app. If Anna has the contact information (i.e.,

name, cellphone number, address, etc.) of Liza in the DCM app, the description of Liza

as a person will be in EBPa . This description may include attributes like, name, gender,

nationality, cellphone number, address, and Liza’s user name in Facebook. However,

knowing that Liza has a Facebook account does not imply that they are Facebook friends.

If Anna imports information about her Facebook friends into the DCM app, then Liza’s

user name from Facebook will be stored in the EBPi
as a contact associated to an external

account of Anna.

The Privacy layer at peer Pi filters who can have access to the local information in

UBPi
and EBPi

. Following the same reasoning as in the case of the DCM portal, this

layer is included in the DCM app as part of a privacy-friendly design. Moreover, the

38 Reference architecture

privacy layer at the DCM app is intended to negotiate and agree with corresponding

privacy layers, at the DCM portal and at other peers.

The Service layer at peer Pi is intended to communicate with the corresponding service

layers at the DCM portal or at other peers, in order to have access to services that they

can offer to Pi. At the same time, other peers can access to services provided by Pi through

this layer (for example, in a peer-to-peer manner). In general, this service layer can be seen

as the set of APIs through which the DCM app communicates with other components

of the system. This presupposes that the service layer, at the portal and at different

peers, speak the same language and can therefore understand each other. However, the

computation of a particular service is subject to privacy constraints regarding the data

they are allowed (or not) to reveal.

4.3.3 Contact management network

The third component of this architecture is the network formed by peers running the DCM

app and interacting with each other (i.e., a P2P network), namely, the DCM Network.

There are different types of links that can connect peers in the DCM system. For example,

we can consider that two peers are linked at the data level if they store information about

the same entity. However, we could say that they are linked at the service level if they

interact providing services to each other or a general distributed service in the network

(e.g., distributed search). In this thesis, we propose different approaches that model these

connecting links between peers.

We believe the added value of exploiting this network is twofold,

• First, we can make the system more scalable by leveraging on intrinsic character-

istics of P2P networks, which increase their capabilities as the network grows. In

fact, distributed solutions can directly exploit the distributed nature of the contact

management problem.

• Second, by providing services that are based on distributed solutions (e.g., dis-

tributed search, direct contact exchange) we can better support privacy. In other

words, for the system to work there is no need to reveal everything to some central

authority (in this case to the DCM portal). The data can remain under the control

of the peer, which means that the peer can decide what information to reveal and

to whom (through the privacy layer at the DCM app). Note that when talking

about contact information of people, we are referring to manipulation of potentially

sensitive information.

Finally, the importance of this component for the system goes beyond the simple sum

System dynamic view 39

of the number of peers (DCM apps) participating in the network. In this thesis, the

models that are needed to build such network are part of the contributions.

4.4 System dynamic view

The dynamic view of the system outlines the interactions among the different system

components. These interactions can be very complex as some activities may require the

many parallel threads of execution or iterative component interactions. However, we

believe that a simplified view of such interactions can help in understanding the overall

system behavior. We organize the description of these interactions around the peers, who

we consider as main actors in our system.

At a very high-level, we identify three main use cases for the peers: (i) initialization,

(ii) sharing, and (iii) search. Each of them, in turn, can include smaller use cases that can

also be executed independently. For the sake of making the dynamic view of the system

more understandable, we avoid going into the details of more atomic use cases. Instead,

we present only general sequence diagrams for each of the main uses cases in this section.

The more atomic cases are covered by the scenario descriptions in Section 7.3.

The initialization diagram presented in Figure 4.4 shows the interactions that take

place among the various system components when a new peer starts using the system.

The whole process begins with the peer accessing to the DCM portal, creating an account

and downloading the DCM application. Such user account is returned to the peer, who

can now install the DCM app on its personal device and and register its account. The

account registered in the DCM app tells the system the pseudonym on behalf of whom

the application is acting. In order to register the account, the DCM app asks the DCM

portal to authenticate the user. Without registering an account, the peer will not be able

to join the network. The future interactions of the peer with the system will be now done

through the DCM app.

A this point, the DCM app asks the peer to input some initial configuration param-

eters, which may include defining different profiles to be used in the system and setting

privacy preferences or at least verifying the default settings. Finally, the DCM app con-

nects to other peers in the system and joins the DCM network.

The sharing diagram presented in Figure 4.5 presents the system components inter-

actions taking place when a peer shares its contact information (i.e., its profile). Peers

will be able to share their contact information within the system using different tools. In

the diagram we show a high-level view outlining that different mechanisms will require

interaction between different components. First, we see that the peer directly interact

only with the DCM app. Then, the DCM app identifies which mechanism should be

40 Reference architecture

Figure 4.4: Sequence diagram of the initialization process of a new peer in the system.

System dynamic view 41

Figure 4.5: Sequence diagram of a peer sharing its contact information.

42 Reference architecture

used. Such identification will be based on the request received from the peer, different

settings previously established by the peer and any other information that the DCM app

may have.

As we can see in the diagram, the DCM app will interact with the DCM network

for exchanging contact information with other peers. On the other hand, the peer may

rely on the DCM portal and publish its contact information there. In fact, the peer may

decide to share its profile with the portal for different reasons. For example to be included

in some sort of public directory (e.g., hotels and restaurants would be interested on this)

or to prove its identity in order to ask the system to protect its personal information in

the network (e.g., people may be interested on this)11. Finally, the result in this diagram

refers to any notification or confirmation message that need to be shown to the peer as

an outcome of the sharing activity.

The search diagram presented in Figure 4.6 shows the interactions that take place

among the various system components during search. Peers can search in the DCM

system with different purposes and, therefore, providing as input different parameters

(i.e., different types of query). We see in the diagram that also in this case the search

process is triggered at the DCM app. The first distinction to be made by the DCM app

is between searching of users and searching contacts. The aim of searching a user would

be to find if someone’s known profile match to an exiting user of the system. In order

to perform such type of search, the DCM app have to interact with the DCM portal as

the portal manage the list of users of the system (i.e., through the portal’s UB) and their

associated profiles (i.e., through the portal’s EB). Notice that the DCM portal should

return the user name only if the corresponding peer has authorized (i.e., has decided to

be findable by a given profile).

On the other hand, the aim of searching a contact is to actually find the profile

(i.e., contact information) of someone. However, again here the DCM has to distinguish

between the case of a precisely known target (i.e., search in white pages) and the case of

an unknown target that should have certain characteristics (i.e., search in yellow pages).

The search process in these cases is characterized by the initialization of a new thread of

execution that interacts with the DCM portal and DCM network in the first case, while it

only (or mainly) interacts with the DCM network in the second case. The new execution

threads shown in the diagram are aimed to point out that these search mechanisms require

asynchronous (and maybe also iterative) communications between components. Moreover,

both types of search can be combined by executing them in parallel or sequentially. In

this thesis we present an approaches to address each of these two types of searches. They

11We will further discuss how these types of functionalities can be supported by the approaches presented in

the following chapters.

System dynamic view 43

Figure 4.6: Sequence diagram of a peer searching the system.

44 Reference architecture

are discussed in details in Chapters 5 and 6, respectively.

4.5 Summary

The reference architecture for the Distributed Contact Management System (DCM Sys-

tem) was presented in this chapter. First, the analysis of the system requirements was

presented. The outcome of such analysis was discussed in terms of: (i) data storage for

an inherently distributed scenario, (ii) peers interaction and linking, (iii) services that the

system needs to offer, (iv) possible privacy concerns that may arise, and (v) the system

performance.

Tanking into consideration the identified requirements a general view of the system

was presented. In it, the different (external) actors that can interact with the DCM

system were defined, as well as the nature and mechanisms for these interactions. Next,

the system logical view introduced the DCM Portal, DCM App and DCM Network as

key system components allowing peers to create accounts, interact with each other and

access to different type of services. Last, a dynamic view of the system was presented,

showing a simplified view of different interactions among system components. Three types

of interactions were distinguished: initialization, sharing and search.

Chapter 5

A name-based approach to search in

the DCM system

We see DCM network of peers (a P2P network) organizing their content in directories,

which digitally represent their own versions of entities that exist in the real world. Entities

as defined in Chapter 3 (Section 3.3.2) can be of different types (e.g., person, location,

event and others), they have a name, and are described by attributes (e.g., latitude-

longitude, size, birth date), which are different for different entity types [Bazzanella et al.,

2008]. Different versions of an entity can represent different points of view, they could

show different aspects of the entity or the same aspects with different level of details. In

a way, the local representations from peers can be seen as pieces of information about a

particular entity that are stored in a distributed manner in the network.

In this network, the different directories contain related data and, to some extent,

they can complement each other. One problem that prevents us from exploiting the

relation between these data is that there are no links connecting the local directories

from peers. An effort to connect related data on the web is that of Linked Data1, which

allowed linking important datasets like, dbpedia, Freebase, DBLP, ACM, and others.

Nevertheless, this approach leaves out of the semantic web the individual users (i.e., simple

normal peers) and the data from their local directories stored in personal devices (e.g.,

smart-phones, PDAs, notebooks, etc.). We propose an approach to build a distributed

directory that constructs the connecting links among the local directories of peers from

the DCM network. It it important to note that the model applies to any entity in the EB

1http://linkeddata.org/

http://linkeddata.org/

46 A name-based approach to search in the DCM system

of peers that describe a real world object and not only to those describing a contact of the

peer. The aim of this directory is to become a bridge allowing to link peers in the DCM

network that are interested in the same entity (maybe even from different perspectives).

As in any directory, one way in which peers normally identify and distinguish an

entity from others is by means of names (e.g., George Lombardi, Trento, Italy, University

of Trento), which play a different role from the other attributes because they are identifiers

rather than descriptions [Holloway and Dunkerley, 2004]. The values of other types of

attributes have a meaning that can be understood, e.g., by mapping them to concepts

from a knowledge base, like WordNet2. Names, on the other hand, are strings that

behave similarly to keywords. Real world entities can be called by multiple names as a

consequence of variations and errors. Moreover, the set of names used in different local

representations to identify the same real world entity can be different, at the same time

that the sets of names used to identify different real world entities can overlap.

The approach we propose incorporates the notion of a real world entity described by

different local representations from peers. This notion is used to organize the references

to the local representations in order to build a distributed entity directory that allows

finding all the available information about entities. Our system offers two main features:

• First, it takes into consideration that multiple, possible different, names can be used

to identify the same real world entity (e.g., George Lombardi vs. G. Lombardi and

Italy vs. Italia).

• Second, it allows peers to have control over the privacy of their data because the

entity directory stores only the names of the entity and a link to the local represen-

tation and not the data itself.

As a result, any name that is used in some local representation to identify an entity can

be used to find the different versions of that entity that are stored in the network of peers.

The rest if this chapter is structured as follows. Section 5.1 presents a motivating

example, while Section 5.2 formalizes the basic notions that link the different directories.

Further, the Section 5.3 discusses the name matching problem that arises when linking

different directories and the algorithms to perform search over the proposed name-based

overlay are presented in Section 5.4. Finally, a summary of the chapter is presented

Section 5.5.

An initial version of the work presented in this chapter was published in [Giunchiglia and

Hume, 2012], while an extended version was published in [Giunchiglia and Hume, 2013b]

and [Giunchiglia and Hume, 2013a].

2http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

Motivating example 47

5.1 Motivating example

Nowadays, most of the organization of our data is done in terms of directories. A well

known (and old) example is the telephone book directory, used to organize address and

phone numbers of people and companies. Newer forms of directories can be seen, for

example, in contact lists, document directories, event directories (i.e., calendars or agen-

das) used by peers in current devices (e.g., computers, PDAs, smart-phones) to organize

the local representation of entities of their interest. Moreover, the data from different

directories (possibly from different peers) can be related. Different peers attending to the

same event might store local representations of the event. Each of them might also have

the contact information of the other peers attending to the event, e.g., a meeting.

Gerorge	 Lombardi	
home:	 0461444322	
address:	 Via	 Solteri	 15,	 Trento,	 TN	
mobil:	 3460087686	

Giulio	 A.	 Lombardi	
home:	 0461915923	

Lombardi,	 G.	
mobil:	 3460087686	
email:	 george@disi.unitn.it	

…	

Prof.	 G.	 Lombardi	
email:	 george@disi.unitn.it	

…	

WE	

URI:	 uri/enGty/1	

URLs:	 p1/enGty/2	
p2/enGty/1	
p3/enGty/9	

DE	

URL:	 p1/enGty/2	

Names:	 • Prof.	 G.	 Lombardi	

DE	

URL:	 p2/enGty/1	

Names:	 • Lombardi,	 G.	

Prof.	 G.	 Lombardi	

Lombardi,	 G.	

George	 Lombardi	

CONTACT LISTS

ENTITY DIRECTORY

DE	

URL:	 p3/enGty/9	

Names:	 • Gerorge	 Lombardi	

p1
p2

p3

Figure 5.1: Example of Contact Lists Related by Identifiers

Let us consider in details the example of contact lists in different devices from the

peers of a network that connects students, researchers and professors among them (e.g.,

SmartCampus3), and with their family members. The first part of Figure 5.1 (upper

part) shows that the contact list of each device can be seen as a local directory of people.

Different peers in this network can have different information about the people in their

contact lists, like phone numbers, email addresses, skype user and others, which show

different ways to get in touch with them. For example, suppose that p1 is a student that

is taking a course with prof. George Lombardi and therefore p1 has, in its contact list, the

university email address of the professor. A researcher p2 that is working with him could

have more information, like his email and mobile phone number. On the other hand, a

family member p3 may have his home address and phone number but not the university

email (because such information is not relevant for p3).

3http://www.smartcampuslab.it

http://www.smartcampuslab.it

48 A name-based approach to search in the DCM system

Now, suppose that another researcher in the network, let us call it p4, hears about

prof. Lombardi work and wants to contact him. We can see that:

1. First, the information that p4 needs is distributed in the network and the problem

is knowing where the different pieces are stored

2. Second, the different peers can call the same person using different names, e.g., Prof.

Lombardi, George Lombardi, G. Lombardi. In our example, this means that p4 need

to be sure that the other peers (i.e., p1, p2 and p3) are all referring to the same

person as he is.

3. Third, the contact information can change in time. The work email of Prof. Lom-

bardi will change if his affiliation changes, his phone numbers can change at any

time, and his address will change if he changes residence.

4. Finally, the privacy and the sensitiveness of the information have to be considered.

Most likely the phone number and address of the home of prof. Lombardi would be

more private than the university email. As a consequence, p3 will not share such

information with everyone.

5.2 A name-based overlay for linking directories

A name-based overlay can be build by formalizing a model that link data from different

directories. We propose a model that distinguishes between a Digital Entity (DE) and a

Real World Entity (WE).

5.2.1 Formalization of the model elements

A DE is defined as a local representation of an entity that exist in the real world. Its

formal definition was introduced in Chapter3, however, for the sake of simplicity we use

a minimal version of such definition in this chapter to represent DEs. A URL (Uniform

Resource Locator) is used in order to uniquely identify a DE and it can be used (by

dereferencing) to obtain the full local description (i.e., based on attributes). We also

consider a set of names {N} as the human readable identifiers used in DEs to refer to a

WE and distinguish it from others. Formally,

DE = 〈URL, {N}〉 (5.1)

On the other hand, we referred before to real world entities without formally defining

them. In this chapter, we introduce a formal representation for WEs as part of the model

that is proposed in this section. A WE represents the real world entity and is modeled

A name-based overlay for linking directories 49

as a class of DEs. We use a URI (Uniform Resource Identifier) to uniquely identify each

WE. Formally,

WE = 〈URI, {URL}〉 (5.2)

where {URL} is a non-empty set of identifiers of different DEs that describe WE. As a

consequence of the composition of these definitions we can see that multiple sets of names

are given to a WE through DE definitions from different peers that describe the same

WE.

In the second part of Figure 5.1 (lower part) we show how the example from Sec-

tion 5.1 can be formalized in terms of these notions (i.e., DEs and WEs). We can see

a one-to-one mapping between the WE from an entity directory and the real person

represented in different contact lists. Moreover, we see that an entry from a contact list

is translated into a DE in the directory (i.e., also a one-to-one mapping). There is a

one-to-many relation between WEs and DEs which shows that each single entry in a

contact list correspond to one person but one person can be described in many different

entries (possibly from different peers). Finally, the relation between Names and WEs

introduces a name matching problem that is better discussed in the following section.

Note that these notions allow the separation between “what” is being represented and

“where” is being represented. This separation is needed in order to model the issues stated

in items 1 and 2 from the example of Section 5.1. The DEs model the different pieces of

information that p4 needs and their URLs tell us where they are. The WE models the

link that connects different DEs and its URI identify what they represented. Regarding

item 2, we can see that different sets of names are given in DEs, which models the fact

that p1, p2 and p3 can define the different names that they use to call an entity.

On the other hand, the distinction between the two notions (DE and WE) also provide

the infrastructure to deal with the issues introduced by the other two items (i.e., items 3

and 4 in Section 5.1). The dynamism of the information about the entities and the privacy

of local data are constrained to affect DEs. In this way, when the email of Prof. Lombardi

changes (see Figure 5.1), p2 (the researcher) updates its local representation (i.e., the

DE). The corresponding WE definition is not affected by this update, nevertheless the

information (available in the P2P network) about Prof. George Lombardi is updated.

Similarly, access control can be implemented over the data associated to each single DE

representation, which do not affect WE definitions. Note that such implementation (i.e.,

access control implementation) is out of the scope of this paper, but the interested readers

are invited to see (for example) [Giunchiglia et al., 2008].

50 A name-based approach to search in the DCM system

5.2.2 Building the name-based overlay

After the elements of the name-based overlay has been formally defined, the information

about entities can be organized by incorporating the notions of WE and DE. These

notions allow the separation of the problem of finding the DEs that represent different

versions of a WE from the problem of finding WEs that are identified with multiple

names. We exploit this separation by building two different indexes, one to deal with

each problem.

A DEindex is created to map WEs (i.e., URIs) to DEs (i.e., URLs) and can be

formally defined as,

DEindex = {WE → DE |6 ∃WE ′ → DE ∈ DEindex s.t.,WE ′ 6= WE} (5.3)

We can see that this index encodes the one-to-many relation between WEs and DEs

because the mapping of different WEs to the same DE is not allowed. On the other

hand, a WEindex is created to map the names that are given (in local representations) to

WEs (i.e., URIs). Let us call {NDE} to the set of names of a digital entity DE. Then,

the WEindex can be formally defined as,

WEindex = {N → WE | ∃WE → DE ∈ DEindex s.t., N ∈ {NDE}} (5.4)

We can see that this index encodes the many-to-many relation between Names and

WEs because the only constraint on the mappings is related to the existence of a local

representation that gives “support” to such mapping.

Let us now discuss in more details how the publication, maintenance and search of

entities are done over this name-based overlay (also called EntityDirectory):

• The publication and deletion of DEs in the network are the two main events that

modify the EntityDirectory by affecting the content of the indexes defined above.

The publication of a DE affects both indexes in a straightforward manner. First, the

DE is associated to the WE that it represents by adding the corresponding mapping

(i.e., WE → DE) to the DEindex. Second, the mappings NDE
i → WE, of each

name NDE
i in {NDE} to the WE that is associated to the DE, are added to the

WEindex. In order to do this, we assume that the peer locally caches the identifier

(i.e., the URI) of the WE that is represented by its DE4. On the other hand, when

a DE is deleted from the network, only the DEindex is directly affected. The same

mapping WE → DE that is added when the DE is published, is then removed

from the DEindex when the peer deletes the DE. Regarding the WEindex, we say

4Note that the initial identification of the WE described by a DE is a problem of identity management and

is out of the scope of this work. See for example [Hogan et al., 2012; Bouquet et al., 2008]

A name-based overlay for linking directories 51

that it is not directly affected because the mappings of names can be removed only

after verifying that they are no longer valid to identify the corresponding WE. Such

verification is further discussed as part of the EntityDirectory maintenance.

• The maintenance of the EntityDirectory is performed through periodic checks over

the indexes in order to detect and remove entries that are no longer valid. In the

DEindex, an entry can be considered invalid if it contains mapping to a DE that

has been unreachable for a long time. In order to detect this situation, each entry

is attached with a timestamp corresponding to the last time when the DE was

reachable. This timestamp is updated in every periodic check. When the DE is

not reachable, the interval between the last reachable time and the current time

is verified. The corresponding entry is removed from the DEindex if such interval

exceeds a given threshold. An entry from the WEindex, on the other hand, is

considered invalid if it contains a mapping that do not complies with the constraint

established by the index definition presented in equation 5.4. This means that a

mapping between N and WE has to be removed from the WEindex when there are

no DEs in the network using the name N to refer to such WE. In other words,

when none of the available entities provide support to such mapping.

• Search in the EntityDirectory can be performed using two different types of iden-

tifiers, URIs and names. In this context, having as input a URI means that the

target WE has been uniquely and fully identified. Therefore, the goal of the search

is to obtain all the different representations (i.e., the DEs) of the WE. On the other

hand, in a search based on names, we need to find the candidates WEs (to be the

right answer) as a consequence of the many-to-many relation between names and

WEs. After the candidates WEs has been found, we can use the search by URI

to find the different representations of them. In what follows, the search by names

is considered in more details while the search by URIs is included as a part of the

former.

A query is formally defined as Q = {NQ}, where {NQ} is the non-empty set of names

used to identify one target WE. Then, the problem of searching entities based on their

names can be seen as retrieving WEs that are described in the network by at least one

DE, such that, the intersection between {NDE} and {NQ} is not empty. This definition

considers a partial matching between {NDE} and {NQ} in order to allow finding a WE

from any of the names given to it on different DEs. In turn, this can be translated in the

formal definition of the Query Answer (QA) as follows:

QA = {〈WE, {DE}〉 | ∃N ′ ∈ {NQ} : N ′→WE ∈ WEindex

∧ ∀DE ′ ∈ {DE} : WE → DE ′ ∈ DEindex}
(5.5)

52 A name-based approach to search in the DCM system

As we mentioned before, this answer is build in two steps. The algorithms that perform

the two steps are presented in Section 5.4.

5.3 Name matching

Names are human readable identifiers that serve the purpose of distinguish an entity from

others. They are labels composed by a combination of words, numbers and symbols [Hol-

loway and Dunkerley, 2004]. In the context of our entity directory, we define the set of

names that identify a WE as the union of the names used in DEs that locally represent

that WE in different peers. Names are different from other attributes because they play

the role of keywords rather than been mapped to concepts from a knowledge base. As

such, names can suffer from different types of variations. Following the results from the

study performed in [Bignotti, 2012], we can distinguish among the following types:

• Format. The format variations have a strong dependence with entity type and

affect mostly to people names. They include the variation of the order in which

the words of a name can be written (e.g., George Lombardi and Lombardi, George)

and the multiple abbreviations that can exist for the same full name (e.g., Giulio

Augusto Lombardi can be abbreviated as G. A. Lombardi, Giulio A. Lombardi and

others). It is also important to notice that the abbreviation of a name can be a

valid reference to many different full names (e.g., G. Lombardi is valid for George

Lombardi but also for Giulio Lombardi).

• Full translations. Names sometimes are written differently in different languages

(e.g., Trento in Italian, Trient in German or Trent in English).

• Part-of translations. In other cases only one part of the name changes in different

languages. This is the case of names composed by common and proper nouns, where

the common noun is called trigger word in [Bignotti, 2012] and is the only part that

is affected by the translation (e.g., University of Trento vs. Università di Trento).

• Misspellings. Names can be misspelled, either in the definition of a DE or during

the specification of a search query. The misspellings can be a consequence of varia-

tions in the punctuation, capitalization, spacing, omissions, additions, substitutions,

phonetic variations (e.g., Fasuto vs. Fausto, G Lombardi vs. G. Lombardi).

• Pseudonyms. Entities also have pseudonyms that are not (necessarily) variations

of a name but rather alternative names for an entity, which can be defined (and

used) in different contexts. This is the case for some arbitrary nicknames that are

sometimes used by peers to refer to a DE (e.g., Fede is commonly used as a nickname

Algorithms 53

for Federico or Federica and The King of Rock and Roll is a common nickname for

Elvis Presley).

The name variations together with the DE definition presented above, show that the

relation between names and DEs is of the type many-to-many. In turn, this leads to

a name-matching problem when we intend to search an entity based on its names [Hol-

loway and Dunkerley, 2004]. This problem, in the context of the entity directory, can be

decomposed in:

1. The problem of matching names inside the network: A name used in a DE can

be a variation of the name used in another DE that represent the same WE. We

need to take into consideration all the multiple names (including name variations)

used in the network to identify a WE and match them to all the different DEs that

describe WE. In the example from Figure 5.1, if the user is searching an entity

with the name “George Lombardi”, the directory should be able to return all the

DEs (i.e, p1/entity/2, p2/entity/1 and p3/entity/9) that represent the different

versions of uri/entity/1 rather than only returning the one that give it such name

(i.e., p3/entity/9).

2. The problem of matching queries with the names used in the network: This case

considers query names that are unknown to the entity directory, but that are however

variations of one or more known names. We say that a name is unknown to the

directory if there is no DE in the network that uses such name to identify a WE.

The easiest example is a query name that is misspelled with regard to the DEs of

the directory. In the example from Figure 5.1, if the user input the query “Goerge

Lombardi”, the search should be able to find that “George Lombardi” is a candidate

match.

5.4 Algorithms

We assume that the indexes offer non-blocking APIs (to allow the parallelization of index

lookups), which mean that a call to the GET function on the indexes returns immediately

a reference to an object that will be filled with the results from the index lookup. In

Algorithm 1, we define the global data structures, which are strictly related to the indexes.

They are used across the different functions involved in the search. We use the statement

for all (line 6 in Algorithm 2 and line 8 in Algorithm 3) to denote the concurrent execution

of the statements that are in its body (i.e., line 7 in Algorithm 2 and lines 9 to 24 in

Algorithm 3).

54 A name-based approach to search in the DCM system

The Search Entity function is presented in Algorithm 2 and is the main entry point

for the search by names. This function receives the query names and returns a set of

candidate WEs according to the constraints given in Equation 5.5. In order to measure

how relevant each candidate WE is, we count the number of query names that match

with the names associated to the WE. This relevance is associated to each candidate WE

and included in the resultset. In line 7, the first step of the search by names is initiated

with the call to the GetWEindex function of the WEindex. The object returned by the

function is given to the corresponding handler function, which knows how to process it.

Algorithm 1 Global Data Structures

1: WEAnswer : 〈isComplete, name, weAnsValues〉
2: DEAnswer : 〈isComplete, URI, deAnsValues〉
3: isComplete : boolean . TRUE when the index lookup is finished

4: weAnsValues : NULL OR {URI} OR {URL} OR {{URI} ∪ {URL}}
5: deAnsValues : {URL} . not empty set of URLs

Algorithm 2 Search Entity

1: function SearchEntity(names : {name}) → {〈WE, relevance〉}
2: WEs : {〈WE, relevance〉} . stores search results

3: WE : 〈URI, {URL}〉 . {URL}.size == 1 when URI == NULL

4: relevance : integer

5: WEs := {}
6: for all name ∈ names do . Parallel threads

7: HandleWEAnswer(GetWEindex(name), WEs)

8: end for

9: return WEs

10: end function

The Algorithm 3 shows the HandleWEAnswer function, which is in charge of pro-

cessing the values retrieved from the WEindex. We can see from lines 4 to 6 the loop

that waits until the answer is completed. Then, in line 8, we start one execution thread

to process each retrieved value. A value returned from the WEindex represents a WE,

it can be a URI or a URL (see line 4 from Algorithm 1). In the former case, we say that

the WE identity is known. The corresponding instance is created (line 10 in Algorithm 3)

with the global identifier and an (up to now) empty set of DEs. In the later case, the

URL identifies a WE with no global identifier and we assume that there is only one DE

that describes it (line 18 in Algorithm 3).

In lines 11 and 19, we check whether the WE is already in the result-set. If it is, we

Algorithms 55

call the function relevanceWE++, which increments the count of the relevance that is

associated with the WE. Otherwise, we add the WE to the result-set with a relevance

count initiated to 1 (lines 14 and 22). At this point, if we are in the case of a WE with

global identifier (i.e., with a URI), the second step of the search is initiated with the call

to the GetDEindex function of the DEindex (see line 15). The object returned by the

function is given to the HandleDEAnswer function, which then process it.

Algorithm 3 Handler of the WE Answers

1: function HandleWEAnswer(weAnswer : WEAnswer, WEs : {〈WE, relevance〉})
2: waitingTime : integer

3: waitingTime := 5 . parameterizable waiting time

4: while weAnswer.isComplete = FALSE do

5: WAITms(waitingTime) . specified in milliseconds

6: end while

7: if weAnswer.weAnsValues 6= NULL then

8: for all weAnsValue ∈ weAnswer.weAnsValues do . Parallel threads

9: if isURI(weAnsValue) then

10: wEntity := 〈weAnsValue,{}〉
11: if wEntity ∈ WEs then

12: relevanceWE++(WEs, wEntity)

13: else

14: add(WEs,〈wEntity,1〉)
15: HandleDEAnswer(GetDEindex (weAnsValue), WEs)

16: end if

17: else

18: wEntity := 〈NULL,{weAnsValue}〉
19: if wEntity ∈ WEs then

20: relevanceWE++(WEs, wEntity)

21: else

22: add(WEs, 〈wEntity,1〉)
23: end if

24: end if

25: end for

26: end if

27: end function

Finally, the Algorithm 4 shows how the values retrieved from the DEindex are han-

dled. First, we wait until the answer is completed (see the loop from line 4 to line 6)

and then the values are used to update the resultset. Note that the function addDE2WE

56 A name-based approach to search in the DCM system

Algorithm 4 Handler of the DE Answers

1: function HandleDEAnswer(deAnswer : DEAnswer, WEs : {〈WE, relevance〉})
2: waitingTime : integer

3: waitingTime := 5

4: while deAnswer.isComplete = FALSE do

5: WAITms(waitingTime)

6: end while

7: addDE2WE(WEs, deAnswer.key, deAnswer.deAnsValues)

8: end function

takes the key (i.e., the URI) to identify, in the resultset, the WE that has to be updated.

The values (i.e., the URLs) are then associated to such WE in order to complete the

QA. We say that this function (called in line 7 in Algorithm 4) adds DEs to a given WE

from a given set.

5.5 Summary

We presented an approach to build a distributed directory of entities in the DCM system

that distinguishes between the notions of Digital Entity (DE) and Real World Entity (WE)

in order to link local directories of different peers. The directory provides search services

based on entity identifiers. In particular, we presented the algorithms for searching entities

based on their names. We discussed the name matching problem that appears as a

consequence of the many-to-many relation between names and (WEs). Then, we showed

that, by its design, our approach deals with the problem of matching names inside the

network (i.e., the first part of the name matching problem).

The data from peers are stored locally, only the identifiers and the links to the lo-

cal representations are indexed. This infrastructure allows the implementation of access

control mechanisms on the local representations in order to deal with privacy issues. At

the same time, the changes made by peers in local representations, are available in the

directory in a straightforward manner. Moreover, these features of the approach are in-

dependent from the specific underlying implementation of the indexes. In other words,

the indexes can be stored in a centralized or distributed manner, while data will be still

distributed.

Chapter 6

A description-based approach to

search in the DCM system

Classifications are trees where links between nodes are commonly used to codify the fact

that a node lower in the hierarchy describes a topic (and contains information about this

topic) which is more specific than the topic of the node one level above. Some well known

examples of these type of hierarchical structure are, email directories, file systems, web

directories, and so on. In most of this examples classifications are usually intended to

classify (i.e., organize) documents based on the topics that are included in their content.

In our approach, we generalize this notions by looking at a document as a type of entity

where topics described in its content and the content itself are modeled as attributes.

Further, we use this generalized notion of classification and apply it to classify entities

describing contacts in the DCM system.

In this chapter we see the DCM network (described in Chapter 4) as a network of peers

where each peer stores various objects (i.e., entities) with certain characteristics that are

of interest to its users. Moreover, we see these objects organized in tree-like hierarchies

or classifications (i.e., classification of objects CO as we defined in Section 3.4.2). An

abstract example of user generated classifications of several peers in the DCM system can

be seen in Figure 6.1.

These classification hierarchies, also called lightweight ontologies [Giunchiglia and Za-

ihrayeu, 2008], are very common in knowledge organization systems as an effective and

intuitive way to organize knowledge of humans according to their subjective view of the

world [Giunchiglia and Zaihrayeu, 2008; Giunchiglia et al., Winter 2006]. On one hand,

58 A description-based approach to search in the DCM system

Facility

Hotels Restaurants

Person

Professor Doctor

Dermatologist Allergist

Steak
house

Vegetarian

Italy Paraguay

Professor

Knowledge
Management

India Italy

Person

Professor Dermatologist

Trento Milan

Peer 1

Peer 2

Peer 3

Spain

Figure 6.1: DCM Network of User-Generated Classifications

single nodes in the classification describe characteristics of entities in which the peer is

interested. For example, the user of Peer1 is interested in entities that refer to Derma-

tologists(i.e., entities with the profession dermatologist). On the other hand, the whole

classification specifies the user interest profile. For example, the user of Peer 3 is in-

terested in doctors with various kinds of specializations, and the user of Peer 2 is more

interested in professors from different parts of the world that are specialized in knowledge

management. Notice, that a user can build more than one classification in order to rep-

resent the diversity of its interests. For instance, the user of Peer 3 classify facilities and

people separately.

The goal of this chapter is to show how multiple classifications can be exploited to

help the peer in finding contacts with certain characteristics that are of its interest. For

example, a peer that is interested in finding a doctor that is an expert on some rare skin

disease might benefit from finding peers who know many dermatologists. Moreover, even

a peer that already knows many dermatologists may be interested in contacting not only

those doctors that he knows, but also other doctors that are known by them or by any

of their friends. In this work we also aim to avoid the imposition of a global structure

for the classification of different peers in the network (i.e., a pre-established and shared

ontology).

Motivating example 59

In the following sections, we present models that allow us to build distributed yellow

pages for contacts of peers in the DCM network and propose an approach to search

contacts based on their descriptions in a distributed manner. The models are based on

the following key ideas:

1. The first is that the links connecting nodes inside a classification can be combined

with links that codify semantic relations among classifications in order to form a

semantic overlay network that can be exploited to perform a semantic search on

nodes.

2. The second is that semantic search on nodes is implemented by flooding the links

of the semantic overlay network in order to propagate the query to those peers

having relevant nodes in their classifications. Differently from “normal” flooding

as it happens, for instance, in Gnutella [Gnu], these links carry meaning and more

precisely, codify the semantic relation (i.e. equivalence, more or less general) holding

between any two nodes and allow, therefore, for “more informed” query propagation.

3. The third and last is that semantic search inside a peer is performed by extending

to notions of concept search (C-Search) [Giunchiglia et al., 2009b] for entities (a se-

mantics enabled information retrieval approach) thus exploiting as much as possible

the advantages of a syntactic search and also a semantic search, as a function of the

available background knowledge [Giunchiglia et al., 2006].

The rest of the chapter is organized as follows. We start by introducing a motivating

example in Section 6.1. Then, we define a semantic overlay across the directories of peers

from DCM network in Section 6.2. In Section 6.3, we discuss the problem of discovering

links across classifications, while in Section 6.4 we show how these links can be exploited

to perform search. Finally, in Section 6.5 we conclude the chapter with a summary.

Acknowledgement. The work presented in this chapter was performed in collabora-

tion with Uladzimir Kharkevich and Prof. Fausto Giunchiglia. Most of the content was

published in [Giunchiglia et al., 2010] and [Giunchiglia et al., 2011].

6.1 Motivating example

Let us consider the example of contact lists in devices from different peers of a network

connecting friends among each other, their respective family members, etc. In Figure 6.2

we see again the contact list of each device as a local directory of people, where peers

p1 and p2 are linked by their friendship; and peers p2 and p3 are linked by a family tie

(i.e., they are cousins). In these directories, we also see that different peers can have

60 A description-based approach to search in the DCM system

Fabrizio	 Colombo	 (myself)	
Dermatologist	 (Specialty:	 …)	
home:	 0461	 554322	
mobile:	 346	 0087686	
office:	 0461	 531511	
address:	 Via	 Perini	 4,	 Trento,	 TN	

Giuliano	 De	 Luca	
home:	 0461	 925924	

…	

Dr.	 Paola	 ,	 G.	
mobile:	 346	 0088686	

Dr.	 Carlo	 	
Allergist	
mobile:	 348	 6677898	

Dr.	 Fabrizio	 Colombo	 (cousin)	
home:	 0461	 554322	
address:	 Via	 Perini	 4,	 Trento,	 TN	

Dr.	 Leandro	 Con7	
Pediatrician	
office:	 0461	 285526	

…	

Dr.	 Lara	 Rossi	
email:	 l.rossi@gmail.com	

George	 Lombardi	
home:	 0461	 444322	

…	

p1

p2

p3
friend-of

family-of

Figure 6.2: Example of Contacts with Similar Characteristics

information about people with similar characteristics (e.g., same profession, living at the

same city, etc.). At the same time peers can have different level of details about the

people in their contact lists.

For example, suppose that peer p1 needs to find a doctor that is specialized in a rare

skin disease for his daughter. She has been recently diagnosed by her pediatrician but he

is not specialized in that area and can not help her or guide the treatment. On the other

hand, p2 (a friend of p1) is also interested in doctors and has the contact of a number of

them. In p2 contact list we can find the contact information of his general doctor (Dr.

Paola G.), his allergist (Dr. Carlo), his cousin (Dr. Fabrizio Colombo), and his son’s

pediatrician (Dr. Leandro Conti). Finally, p3 (the cousin of p2) is a doctor (Dr. Fabrizio

Colombo) and he is actually dermatologist with a lot of experience in many rare diseases

that affect the skin. However, p2 (Dr. Fabrizio’s cousin) do not know this level of detail

about Fabrizio’s profession. For p2 contact list is enough to say that Fabrizio is a doctor.

Taking into consideration the original problem that p1 has (i.e., finding an specialist

for his daughter), we can see that:

1. The contact information that p1 needs is in the network, in fact, the person he needs

to contact is in the network.

2. The peers that can help to solve the problem might be already connected, but the

lack of meaningful links prevents us from exploiting these connections in an efficient

manner. In our example, this means that the fact that p2 is a friend of p1 and the

cousin of p3 is not enough to realize that he can help solving p1’s problem.

3. The relevance of the peers that can contribute to solve p1’s information need is

given by the characteristics of the contacts in their contact lists. In our example this

A semantic overlay for linking directories 61

means that the important link between p1, p2, and p3 in this case is that they have

the contact information (with different levels of details) of doctors.

4. Finally, relevant peers might not even be aware of the fact that they can contribute

to solve the problem. Most likely, p2 does not even know what is Fabrizio’s specialty,

he knows only that it is a dermatologist.

6.2 A semantic overlay for linking directories

In order to build a semantic overlay linking directories of different peers in the DCM

network that have contacts with similar characteristics, we are mainly interested in the

notion of classification of objects COs as defined in Section 3.4. A CO is aimed to classify

entities describing contacts based on their characteristics as objects from the real world.

It can be defined as,

CO = 〈{n}, {e}, {l}〉

where,

• {n} is a set of nodes;

• {e} is a set of edges on {n};

• {l} is a set of labels expressed in natural language, such that for any node n ∈ {n}
there is a label l ∈ {l} associated with n.

Moreover, the label of a node in a CO is used to describe a characteristic that is intended

on entities contained by the node. An example of a user-generated classification is shown

in Figure 6.3a.

The limitation of this definition is that its representation lacks of a level of formal-

ity that can allow automatic reasoning. In order to enable automatic reasoning about

classifications and their content, we convert each CO into a Normal Formal Classifica-

tion (NFC) [Giunchiglia et al., Winter 2006], which is a full-fledged lightweight ontol-

ogy [Giunchiglia and Zaihrayeu, 2008]. It is important to note that the interpretation

given to classifications and their elements (i.e., labels and nodes) is highly-dependent on

the context in which they are used. The approach presented in [Giunchiglia et al., Winter

2006] to convert informal classifications into NFCs declares that its context is mainly

the classification of documents and therefore the semantics of the classification is defined

accordingly.

In our work, we intent to use classifications to organize (i.e., classify and search) real

world entities based on different characteristics that describe them. Following the notions

62 A description-based approach to search in the DCM system

Person

Professor Doctor

Dermatologist Allergist

Italy Paraguay

<Type: Person; null>

<Type: Person;
Profession: Professor>

<Type: Person;
Profession: Doctor>

<Type: Person;
Specialization: Dermatologist>

<Type: Person;
Specialization: Allergist>

<Type: Person;
Residence: Italy>

<Type: Person;
Residence: Paraguay>

(a) Natural Language (b) Formal

Figure 6.3: Classification

of entities discussed in Chapter 3, we actually consider document as a type of entity where

the title, topics in its content and the content itself (among other characteristics) can be

represented as attributes. As a consequence, the process to follow for the conversion of

a CO into a NFC is similar to the one discussed in [Giunchiglia et al., Winter 2006;

Zaihrayeu et al., 2007] but the details regarding the semantics of classifications are re-

defined as follows:

Labels. A label can describe a type of entity or a property (i.e., attribute). The meaning

of the label in the classification is the set of entities that are of the given type or

have the given attribute. For example, the semantics of the label “Person” is the set

of entities (i.e., {DE}) referring to persons (i.e., are instances of the corresponding

ET person). On the other hand, the semantics of the label “lives in Italy” is the set

of entities having an attributes A stating “Place of residence: Italy”. In the case of

labels, their semantics is completely captured by the label itself.

Nodes. A node represent a complex constraint, similar to the specification of a search

request based on an entity description. This complex constraint is formed by com-

bining the constraint in the label of the node with the constraints in the labels of

all the nodes that are in the path to the root of the classification. The meaning

of a node in the classification is then the set of entities (i.e., {DE}) that satisfy

the complex constraint represented by the node. For example, the semantics of the

node “Italy” in the classification of Figure 6.3(a) is the set of entities that refer to

persons, who are a doctors, are specialized in dermatology and live in Italy. In the

case of nodes, their semantics is defined by the labels of the nodes that are in the

path to the root of the classification.

A semantic overlay for linking directories 63

Classification. The semantics of all the nodes in the classification and the set of entities

that classified by them define the semantics of the classification itself. As defined

in [Giunchiglia et al., Winter 2006], the semantics of the whole classification (in the

most general case) is defined by the nodes’ labels, the structure of the classification

and the classification algorithm that is used.

To convert a classification into a NFC, the models for the representation of knowledge

presented in Chapter 3 and the background knowledge (BK) [Giunchiglia et al., 2006] of

the peer are used. The BK represents the knowledge of the peer about concepts and

their relationships over a specific domain or a limited set of domains. We assume the

BK follows the DERA methodology [Giunchiglia et al., 2014] for the representation of

domains.

Then, the conversion is performed by executing the following steps:

• Step 1: Translate the label of each node in a classification to a pair 〈ET,A〉. In

order to translate each label of a classification node ni into a constraint, the label

has to be mapped to a concept CET of a corresponding entity type ET ni or to an

attribute Ani . If ET ni is not specified in the label and ni is the root node in the

classification, then ET ni is set to a generic entity type “Thing”. If ni is not the

root node, then ET ni is set as the entity type of ni’s parent node (i.e., ni inherits

the ET of its parent node in the classification). On the other hand, if ET ni is

specified in the label and ni is not the root node, then ET ni must be compatible

with the ET of its parent node. In fact, the entity type ET ni of a node ni must be

equivalent or more specific than the type of its parent node, otherwise it is invalid

(i.e., the classification will not be valid). Finally, if the label does not specifies

an attribute, then Ani is assigned with null. The classification that results from

computing the pair 〈ET ni , Ani〉 for all the nodes ni in the classification, is called

Formal Classification (FC). The part (b) of the Figure 6.3 shows an example of a

FC created from the classification in the part (a) of the same figure.

• Step 2: Compute the meanings of nodes in the classification. In order to encode

meaning of nodes in the classification, the notion of concept at node from [Giunchiglia

et al., 2007a] is applied. As a consequence, the meaning Mn of a node n is defined

as the conjunction of the meanings of the nodes that are in the path to the root

from n. Namely,

Mn = 〈ET,A〉n1 u 〈ET,A〉n2 u . . . u 〈ET,A〉ni = 〈ET n, {A}n〉

where ET n is the most specific entity type among all ETs in {ET n1 , ET n2 , . . . , ET ni}
and {A}n = {An1 , An2 , . . . , Ani}. The resulting classification, in which meanings of

nodes Mn are computed for all the nodes in the classification, is a NFC.

64 A description-based approach to search in the DCM system

<Type: Person; null>

<Type: Person;
Profession: Medic>

<Type: Person;
Specialization:
Dermatologist>

<Type: Person;
Profession: Doctor>

Peer 3 Peer N Peer M

Figure 6.4: A Semantic Overlay Network

After a NFC has been created, entities (i.e., DEs) can be automatically classified to

nodes in the classification by using the get-specific principle [Giunchiglia et al., 2007b].

In order to follow the get-specific principle, an entity DE should be classified under

those classification nodes that (i) have meanings that are more general than the entities

themselves, and (ii) have no child nodes that can describe the entity more specifically.

Formally, a set of entities S(n) classified in a sub-tree of node n is defined as follows:

S(n) = {DE | DE vMn} (6.1)

If node n has a set of child nodes Childs(n), then a set of entities D(n) classified to node

n is defined as follows:

D(n) = S(n)−
⋃

ni∈Childs(n)

S(ni) (6.2)

To make the peers in the CDM Network able to reason about the content of each

other, semantic links, expressed in the C-OWL language [Bouquet et al., 2004], can be

created between related nodes in their classifications. C-OWL envisions a wide range

of possible semantic relations that can hold between related nodes in different classifica-

tions. For the goals of this approach we concentrate on the following links: (i) equivalence

links (represented as A
≡−→ B), (ii) more general links (A

w−→ B), and (iii) more spe-

cific links (A
v−→ B). For example, in Figure 6.4, the link between nodes with labels

“Medic” and “Dermatologist” is used to specify that the meaning of the former node

(〈Type : Person;Profession : Medic〉) is more general than the meaning of the lat-

ter node (〈Type : Person;Specialization : Dermatologist〉). Note that, according to

Equation 6.1, all the entities which are classified in the subtree of the latter node can be

classified also in the subtree of the former node.

The set of links which connect nodes inside a classification plus C-OWL links across

Semantic link discovery 65

classifications constitute a semantic overlay network which can be built on top of any

underlying set of peers and their physical connections.

6.3 Semantic link discovery

When a new peer joins the network, there are no semantic links connecting the nodes

in the classifications of this peer with the nodes in classifications of other peers in the

network. Another example where links can be missing is when a new node is created in a

classification, e.g. because the peer became interested in a new property or characteristic.

In the following, it is discussed how new semantic links can be discovered in these and

other similar situations.

If the two classifications which need to be connected are known in advance, then

semantic links between these classifications can be created manually by the users or they

can be automatically computed by using semantic matching (S-Match) [Giunchiglia et al.,

2007a] approach to compare the meaning of nodes from the given classifications.

On the other hand, when the relevant classifications are not known, the initial links

that the peer will have to other peers in the DCM network will be given by its contact

list. The contacts from this list that are also users of the DCM system, and therefore

are also peers in the DCM network, can be identified. Then, S-Match can be executed

between the given classification (from the local peer) and all the classifications from the

identified known peers. The problem with this approach is that the number of peers can

be big and, therefore, running S-Match for all the possible combinations of classifications

can become unfeasible.

In order to reduce the number of peers to contact for discovering links, the user can

select only a subset of the known peers to run S-Match with their classifications. The

selection of the subset can be done in two ways:

• (i) by selecting a node from its classification of subjects CS, for example the peer may

decide to constraint the discovery of relevant links to the group of “close friends”;

and

• (ii) by selecting a node from its classification of objects CO, for example the peer

may decide to constraint the discovery of relevant links to a group of contacts with

certain characteristics (e.g., contacts who are doctors, contacts that live in Italy,

etc.).

The limitation of this approach is that the peer is only able to build links to peers that

are already known. This means that in the cases in which there are not known peers,

the approach will not be applicable. Moreover, the peer will not be able to discover links

66 A description-based approach to search in the DCM system

to peers that contain relevant information but are no known for him (i.e., are not in the

peers’ contact list).

Alternatively, we propose to use the distributed entity directory that was proposed in

Chapter 5. In particular, searching an entity by name (i.e., identifiers) in this directory

allows the peer to find other peers in the network having information about such entity.

When this entity refers to an object (physical or abstract) from the real world in which

the local peer is interested, the search result can be used to identify peers with a common

interest. Let us consider again the example of a peer trying to find contacts of doctors

that are experts in a disease called mm. The peer can, first, query the entity directory in

order to get the set {SURL} corresponding to other peers that store information about

mm. Then, for each SURLi ∈ {SURL} the peer Pi owner of it can be identified. Under

the assumption that Pi is also interested in the disease and may know doctors that are

specialized on treating it, S-Match can be run to compute the semantic links between the

classifications of the local peer and Pi.

6.4 Algorithms

The actual implementation and evaluation of the approach presented in this Chapter was

done based on entities of the type Document. Therefore, the algorithms described in this

section present the search process applied to documents.

Documents are considered a particular type of entity where the main attribute encod-

ing its meaning is the document “subject”. We assume that the constrains represented by

the nodes in the classification and by the query will mainly refer to this attribute, which

encodes the meaning of the content, called Cd (i.e., the complex concept at the docu-

ment). With a similar reasoning, the meaning at the node Mn is called Cn to represent a

complex concept encoded by the node. Additionally, the entity type ET is the same for

the whole classification (namely, documents) and can be omitted.

The problem of searching documents based on the description of its content (or subject)

is then considered as the process of finding documents which are semantically related to

the user information needs and which are stored in a document collection distributed

among all the peers in the network. When a user searches for documents, she, first,

selects a node n in the classification. The root node of the classification serves as a

default node for search if no other node is selected. Second, the user issues the query

q. The query is converted into an expression in LC using the same technique used for

creation of concept at nodes. Let Cn be a complex concept at node n and Cq be a complex

concept extracted from query q. The goal of the search algorithm is to find documents

d stored in the network, such that, concept of document Cd is more specific than the

Algorithms 67

concept at node Cn and there exists a concept C described in d which is more specific

than the query concept Cq. Formally a query answer A(Cn, Cq) is defined as follows:

A(Cn, Cq) = {d | Cd v Cn and ∃C ∈ d, s.t., C v Cq} (6.3)

The problem of a semantic search in the P2P network can be decomposed into three

subproblems:

1. Identifying semantically relevant peers.

2. Searching inside relevant peers.

3. Aggregation of the search results.

Let us consider these three subproblems in detail.

6.4.1 Identifying semantically relevant peers

A peer is considered to be semantically relevant to a query if there are nodes in the peer’s

classification which are relevant to the node selected by the user. Moreover, some of the

documents classified in these nodes should be relevant to the user query. In order to

store the information about potentially relevant peers, the initiator peer pI creates a peer

information list, defined as follows:

peerinfos(n) = [〈p, nodeinfos(p, n), stat〉],

where p is a relevant peer, stat is a status of p: NQ - peer is not queried, QU - peer is

already queried, or RE - response is returned, and nodeinfos(p, n) is a list which stores

information about nodes n′ from peer p which are semantically related to node n plus a

set {l} of incoming links l for node n′:

nodeinfos(p, n) = [〈n′, {l}〉]

Initially, peerinfos(n) contains information only about the peer pI : peerinfos(n) =

[〈pI , [〈n, ∅〉], NQ〉]. After peerinfos(n) is initialized, pI starts an infinite loop, where a

single iteration is performed as follows:

• Select the first (if any) peer info 〈p, nodeinfos(p, n), stat〉 from peerinfos(n), such

that, stat = NQ.

• If there are no such peer infos, wait until the peerinfos(n) list is modified and

perform the previous step again.

• Form a query request 〈Cn, Cq〉 and submit it to peer p.

68 A description-based approach to search in the DCM system

• Change the status of peer p to stat = QU .

When peer p receives the query request, it locally computes a set of links L, such that,

each of the target nodes has a complex concept which is more specific than the complex

concept Cn. Note that, at the same time, the concept of the target node in a link can be

equivalent, more specific, or more general than the concept of the source node. All the

links in L are sent back to the initiator peer pI
1. Peer pI updates the peerinfos(n) list by

using information from links in L. peerinfos(n) list is then sorted in a decreasing order

of the number of incoming links. It is assumed that, in this way, peers are queried in a

decreasing order of their importance.

Every node n′ in nodeinfos(p, n) has only the documents with complex document

concepts Cd which are more specific than the complex concept Cn. This is because, from

Cd v Cn′
and Cn′ v Cn, it follows that Cd v Cn. In spite of this, links between nodes

do not describe all complex concepts C, which can be found in the documents classified

to these nodes. Therefore, it can be the case that node n′ has no documents which

are relevant to the query concept Cq. The portion of such nodes can increase when a

concept Cn becomes more and more general. In the worst case, i.e. when Cn ≡ >, all

the nodes which can be reached by all the links can be added to nodeinfos(p, n) and all

the corresponding peers p can be queried. Semantic Flooding, in this case, is reduced to

normal flooding and, in general, can be very inefficient.

In order to implement a more efficient selection of semantically relevant peers, it is

proposed in this paper to use a measure of semantic similarity SS(Cn′
, Cq) between com-

plex concepts at node Cn′
and the complex query concept Cq (see, for example, [Borgida

et al., 2005]). As a simple example of a semantic similarity measure SS(Cn′
, Cq), let us

consider the following measure:

SS(Cn′
, Cq) =

 1 if Cn′ v Cq

0 otherwise

Observe that for n′ with SS(Cn′
, Cq) = 1, concepts Cd, for all the documents classified to

n′, are more specific than query concept Cq. It is because, from Cd v Cn′
and Cn′ v Cq,

it follows that Cd v Cq. Given that Cd is built from concepts C found in the document

d, it is likely that d is relevant to query q. Note that the following measure of semantic

similarity is actually used:

SS(Cn′
, Cq) =

∑
Aq∈Cq

1

10
min

An′∈Cn′
(dist(An′ ,Aq))

(6.4)

1Note that by doing this, the search process by itself can be used to discover new links.

Algorithms 69

where Aq is an atomic concept in the concept at query Cq, An′
is an atomic concept in the

concept at node Cn′
and dist(An′

, Aq) is the distance between the two atomic concepts in

the background knowledge (BK) of the user. The distance is measured by the minimum

number of edges that connect the two atomic concepts in the hierarchy of concepts. Now,

instead of just the number of incoming links, peerinfos(n) list is sorted in a decreasing

order of the peer scores computed as a sum of node scores score(n′, q). A node score

score(n′, q) is computed as follows:

score(n′, q) = (Nl + 1) ∗ (SS(Cn′
, Cn) + SS(Cn′

, Cq)), (6.5)

where, Nl is a number of incoming links for node n′. Note that only links for those nodes

which are relevant for current search request are considered while sorting peerinfos(n).

6.4.2 Searching inside a relevant peer

On receiving a search request 〈Cn, Cq〉, peer p performs search for relevant documents in

a local document collection by using the C-Search [Giunchiglia et al., 2009b]. C-Search is

an IR approach which is based on retrieval models and data structures of syntactic search,

but which searches for complex concepts C rather than words W . The key idea is that

syntactic matching of words is extended to semantic matching [Giunchiglia et al., 2007a] of

complex concepts, where semantic matching is implemented by using positional inverted

index. The output of C-Search is a list of documents ordered by their relevance to the

query. A list of top k ranked documents, nodes to which the documents are classified, and

the information about frequencies of atomic concepts A ∈ Cq in the retrieved documents

and in the whole local document collection are sent back to the initiator peer pI . Peer

pI updates the peerinfos(n), i.e. the status of p is changed to stat = RE. In order to

store the information about the relevant documents, the initiator peer pI uses a document

information list:

docinfos(q) = [〈d, n′, [〈A, tf(A, d)〉]〉],

where d is a document which is classified to node n′, and which is also relevant to query

q, tf(A, d) is a number which represents the importance of document d to an atomic

concept A ∈ Cq. Moreover, in order to store the global information about the importance

of atomic concepts A ∈ Cq, pI uses term information lists for all A:

terminfos(A) = [〈p, numDocsp, docFreqp(A)〉],

where docFreqp(A) is a number which represents the frequency of atomic concept A in the

document collection of peer p which has numDocsp documents in total. When receiving

new results, a peer pI updates the docinfos(q) and terminfos(A) tables.

70 A description-based approach to search in the DCM system

The search process terminates when: (i) the required number (e.g. 100) of documents

is retrieved; or (ii) all the relevant documents are retrieved; or (iii) the search time exceeds

some predefined limits; or (iv) the user terminates the process.

6.4.3 Aggregation of search results

After the search process is terminated, the peer pI merges query answers from different

peers into a single query answer. First, the cosine similarity cos(d, q) from the vector

space model is computed for every retrieved document d. Terms are weighted by the

tf-idf weight measure used in Lucene [Luc], where an inverse document frequency idf(A)

is estimated as follows:

idf(A) = 1 + log(
numDocs

docFreq(A) + 1
),

where numDocs is computed as a sum of all the numDocsp, and docFreq(A) is computed

as a sum of all the docFreqp(A). Second, the cosine similarity cos(d, q) is combined with

the score score(n, q) of the node n to which the document is classified in order to compute

the final score of the document score(d, q):

score(d, q) = score(n, q) + cos(d, q)

Finally, documents are ordered according to the relevance score and presented to the user

in the decreasing order of relevance.

6.5 Summary

In this chapter it was shown how the notion of classification of objects COs, as defined

in Section 3.4, can be exploited to build a semantic overlay linking directories of different

peers in the DCM network. The set of links which connect nodes inside a classification

plus C-OWL links across classifications constitute a semantic overlay network which can

be built on top of any underlying set of peers and their physical connections. Thus

allowing peers to semantically search contacts that are distributed in the DCM network

and have certain characteristics.

In order to build a semantic overlay, we discussed how new semantic links can be

automatically computed by using semantic matching (S-Match) approach between two

known classifications. This was shown to be particularly relevant when a new peer joints

the network or when a new node is created in a classification. When relevant classifications

are not known the user can select a subset of the known peers, by selecting a node from

its classification of subjects CS or from its classification of objects CO, and run S-Match

Summary 71

with their classifications. As another alternative we proposed to use the distributed entity

directory to find other peers in the network having relevant information but that are not

in the local contact list, and run S-Match with their classifications.

Next, we presented an implementation of the approach that is based on entities of the

type Document and decomposes the problem into three subproblems. The first, identifying

semantically relevant peers, defined as those having nodes in their classifications which

are relevant to the search request. The second, searching inside relevant peers, which is

done by using C-Search [Giunchiglia et al., 2009b]. And the third, aggregation of the

search results, which includes merging query answers from different peers into a single

query answer and computing a relevance score for each answer. The relevance score in

the implementation presented is done using cosine similarity and tf-idf weight measure

used in Lucene [Luc].

Similar to the entity directory, also in this approach the data from peers are stored

locally. The links to classifications from other peers are also stored locally. This means

that the modifications made by peers to the local representation of their contacts are

available in the semantic overlay network also in a straightforward manner. Moreover,

this infrastructure can also benefits from the implementation of access control mechanisms

on the local representations in order to deal with privacy issues.

72 A description-based approach to search in the DCM system

Chapter 7

The distributed contact management

(DCM) system

In previous chapters we have presented the proposed reference architecture (Chapter 4) for

the DCM system, an approach to search entities based on their identifiers (called names in

general) (Chapter 5) and another approach to search entities based on their descriptions

(Chapter 6). In this chapter we present the Distribute Contact Management (DCM)

System by framing the two search approaches into the architecture, defining additional

application specific notions, and presenting an extensive description of usage scenarios.

In order to frame the search approaches in the architecture we will describe how each

type of search is used in the system, which components affect, when is used and what

subproblems helps to solve.

Additional application specific notions include: (i) First, the definition of Presentation

Cards (PCs) as a generalization of the usage of business cards. A PC constitute an

abstraction of the contact profile for a peer, who can create many PCs including different

information, in order to use them in different contexts. (ii) Second the definition of DCM

Users in terms of the data structure used to represent them in the system.

Finally, the description of usage scenarios presents the dynamics of the system in

more details. The scenarios are grouped according to the three high-level use cases that

we identified in Chapter 4 (Section 4.4) and are meant to illustrate the main functionalities

and features of the system. We describe them in terms of user actions, which are then

mapped onto the set of system actions needed to support the scenario.

74 The distributed contact management (DCM) system

7.1 Presentation Cards

To support the exchanging of contact information between peers, we introduce the notion

of Presentation Card (PC). A peer in the DCM system can create one or more presentation

card(s) to be shared in different contexts (i.e., personal, business, party, advertisement,

etc). We use these cards as generalizations of the notion of business cards which were

extensively used for many years in formal introductions of individual and companies.

Note that with the arrival of electronic communication mechanisms, the kind of in-

formation included in business cards evolved to include, for example, e-mail addresses,

websites, and social media addresses (e.g., Facebook, Linkedln, Twitter, etc.). Further,

with the evolution of technology, the notion of business cards evolved to electronic for-

mats, which resulted in the definition of new standards for electronic business cards (e.g.,

vCard1, xCard2, etc.) to allow representing and exchanging contact information using

different types of information systems. In the DCM system, we focus the attention on the

model that is behind the creation of presentation cards, their purpose and how to manage

them as a mechanism to manage the peers identities within the system.

Within the system the characteristic of peers are represented using the notion of en-

tities (as defined in Chapter 3, Section 3.1). Consequently, we define a Presentation

Card (PC) to denote a profile created to present one view (perspective) of a particular

entity DE. Formally, it is defined as the tuple

PC = 〈NamePC , SURL, SURI, {N}, ET, {A}, PP 〉

where,

• NamePC denotes a label (i.e., arbitrary set of characters and numbers) used by the

peer to recognize and uniquely identify the card. The peers could use this name as

a reminder of the context for which the card was intended, or of the attributes that

the card includes. The name of the card is never revealed to other peers;

• SURL denotes the unique identifier of the entity instance DE to which this card is

presenting;

• SURI denotes the unique identifier of the real world entity WE to which the card

refers;

• {N} denotes the subset of names from the corresponding DE that are included in

the card;

1RFC 6350 - vCard Format Specification (http://tools.ietf.org/html/rfc6350)
2RFC 6351 - xCard: vCard XML Representation (http://tools.ietf.org/html/rfc6351)

http://tools.ietf.org/html/rfc6350
http://tools.ietf.org/html/rfc6351

Presentation Cards 75

• ET represents the entity type of the corresponding DE (i.e., the type of entity that

the card is presenting);

• {A} denotes the subset of the entity attributes (entity type dependent) of the cor-

responding DE that are included in the card;

• PP denotes a set of privacy preferences applicable to the information in the presen-

tation cards.

Furthermore, PCs exist only in the context of the digital representation of an entity

DE (i.e., the context of the entity they describe). As such, the definition of DEs that

was introduced in Chapter 3 is extended as follows,

DE = 〈SURL, SURI, {N}, ET, {A}, {PC}〉

where, SURL is unique identifier of the DE; SURI is a unique identifier of the real

world entity that DE is describing; {N} is a set of strings representing names used by

the corresponding description DE to identify a real world entity; ET is the entity type

among those defined in the knowledge schema of the system; {A} is a non-empty set of

attributes describing the characteristics of the entity; and {PC} is a set of presentation

cards associated to DE.

Additionally, we define the following set of rules for the above DE definition:

1. The content of a presentation card can only be modified by its owner peer.

2. The owner of a presentation card PCi is defined as the peer that is acting in the

system on behalf of an entity from the real world described by DE, such that

PCi ∈ DE.{PC} and PCi.SURL = DE.SURL

3. The PCi.SURI should always correspond to DE.SURI for every PCi ∈ DE.{PC}

4. The PCi.ET should always correspond to DE.ET for every PCi ∈ DE.{PC}

5. Conceptually, the set of attributed that describe a DE is now defined as the union

between all the attributes DE.{A} from the digital entity and all the attributes

defined by its presentation cards. Formally, it is defined as the set,

{DE.{A} ∪
⋃

PCi∈DE.{PC}

PCi.{A}}

there should be no difference for the peer, independently from where or how they

are stored.

6. In turn, the previous has the following consequence for PCi ∈ DE.{PC}:

76 The distributed contact management (DCM) system

• If DE is the owner of PCi, we say that PCi is constraint to contain only

attributes that are in DE.{A} (i.e., a subset of DE’s original attribute).

• If DE is NOT the owner of PCi, we say that PCi can conceptually extend the

attribute set of DE.

The Figure 7.1 shows an example of the representation of a person (i.e., “Mario Rossi”)

that has defined two presentation cards, one for business related purposes (called “work”)

and the other for a more informal context (called “friends”).

Instance-‐of	 PERSON	

URL:	 p1/en&ty/1	
URI:	 uri/en&ty/2	
Name:	 Carlo	 Rossi;	 C.	 Rossi	

Gender:	 Male	
Date	 of	 Birth:	 1980-‐01-‐24	
Age:	 34	
Phone	 Number:	 +39	 0461	 …	
Mobile	 Number:	 +39	 346	 …	
E-‐mail:	 rossi@disi.unitn.it;	 carlo.rossi@gmail.com	
LinkedIn:	 …	
Facebook:	 …	
…	

Type:	 PERSON	

Name:	 {String}	

Gender:	 String	

Date	 of	 Birth:	 date	

Phone	 Number:	 numeric	

Mobile	 Number:	 numeric	

…	

Schema Knowledge

Work	

URL:	 p1/en&ty/1	
URI:	 uri/en&ty/2	
Name:	 Carlo	 Rossi	

Gender:	 Male	
Age:	 34	
E-‐mail:	 rossi@disi.unitn.it	
LinkedIn:	 …	

Friends	

URL:	 p1/en&ty/1	
URI:	 uri/en&ty/2	
Name:	 Carlo	 Rossi	

Gender:	 Male	
Birthday:	 Jan-‐24	
Mobile	 Number:	 +39	 346	 …	
E-‐mail:	 carlo.rossi@gmail.com	
Facebook:	 …	

Figure 7.1: Example of Person Presentation Cards

An important feature of presentation cards is the inclusion of privacy preferences. The

aim is to encode within the cards the privacy policies that apply to the information that

is in it. When the user exchange cards with other users, these policies should travel

with the data in the form of sticky policies as defined in [PrimeLife, 2011]. However,

the representation of privacy policies and the implementation of privacy enhancing tech-

nologies that can enforce them is out of the scope of this thesis and are left as future

work. We include the notion of privacy preferences here and we refer to them again in the

description of scenarios in order to show that the DCM system proposed here provide a

DCM Users 77

privacy-friendly design that can facilitate the adoption of appropriate privacy preserving

tools in the future.

7.2 DCM Users

When a peer creates an account in the DCM platform, he/she becomes a DCM User.

Formally, we define a DCM User as the tuple U = 〈uName∗, password∗, ET ∗, DE〉 where:

• uName∗ is a unique user identifier.

• password∗ is the secret code that allows the user the authentication.

• ET ∗ is the entity type of the user and it has to be the same as the ET of the

corresponding DE (when this is given).

• DE is the digital entity that corresponds to the user, it is optional (i.e., the user

might decide to remain anonymous) and the same entity can create more than one

user.

In order to become DCM Users, peers are required to provide a minimal set of information

that includes only mandatory elements, which are marked with (∗), from the tuple defined

above. User interactions with the application are performed on behalf of an entity from the

real world. If such entity is linked to the user (i.e., if DE is not NULL), the user becomes

identifiable in the real world. Otherwise they are only identifiable through a pseudonym in

the platform, we call these anonymous3 users. In the context of the architecture presented

in Chapter 4, DCM users are stored at the corresponding UB (at the portal and/or at

the peer), however, the UB stores only the references (i.e., a link or an identifier) to the

ET and DE, which are actually defined at the corresponding EB.

The user owns a contact list that digitally represent entities which are known by the

user and for which the user has some contact information. We distinguish between three

types of contacts:

• A NON-USER, represents an entity from the real world that is not a DCM user;

• A USER, represents an entity from the real world that is a DCM user; and

• A SYNCH-USER, represents a real world entity, who is a user of the DCM ap-

plication and for which the system has contact information that is maintained in

synchrony (i.e., a DE that has PCs associated to it).

3Although they are not really anonymous in the strict sense of the term.

78 The distributed contact management (DCM) system

7.3 Usage scenarios

7.3.1 Initialization Scenarios

The scenarios called of initialization correspond to the first interactions that peers have

with the system, those that happen during the initialization phase, when the peer starts

using the DCM system.

7.3.1.1 Creating an user account

Personas:

Alice is a researcher, she heard about the features of the DCM app and decided to try it

out in her smart-phone.

Description:

• Alice wishes to download the DCM app.

• In order to download the DCM app, Alice has to be registered as a DCM user.

• After the DCM portal let her know that she does not need to give personal infor-

mation for the creation of the account, she decides to register.

• Alice creates a DCM user account at the DCM portal.

• Then, she downloads the application and installs it in her smart-phone.

System Actions:

• The DCM portal requires a new peer to create a user account.

• For the creation of the account, the portal presents the peer a form where she can

input a user name uName and password. The form also shows to the peer a list of

entity types and requires her to select the one that will be associated with the new

user account (e.g., Person, Facility, Organization, etc.).

• The system stores the tuple of 〈uName, password, ET,NULL〉 in the portal’s UB.

• Notice that the entity DE of the peers’s user is NULL up to now and the system

knows the peer only by a pseudonym (i.e., its user name).

• The DCM portal now allows the peer to login and download the application.

Usage scenarios 79

7.3.1.2 Starting to use the DCM app

Personas:

Alice is a researcher, she heard about the features of the DCM app. After creating an

user account, she has (recently) installed the DCM app on her smart-phone.

Description:

• After installation, Alice is using the DCM app for the first time.

• The DCM app shows a login interface that requests Alice to provide her user name

and password.

• A note in the main screen provides an explanation of the purpose for which such

information is requested. The DCM app notifies Alice that as part of the initializa-

tion of the app, her login information will be send to the DCM portal in order to

authenticate the account.

• After authentication, she is invited to define one or more Presentation Cards in order

to pre-define different profiles that she might want to share with others.

• Alice notices that she can use also the information from her other existing accounts

(e.g., Facebook, Skype, Whatsapp, etc) to automatically fill in her information and

her presentation cards.

• Next, Alice is invited to initialize her contact list.

• Alice is then invited to join the DCM network. This means connecting with the

network of DCM users where she can publish and search information. In fact, she

learns that she can decide to work online or offline at any point.

• Initially, all of her contacts are marked as NON-USER contacts.

• She then receives a notification regarding a contact matching process that will be

initiated in the background over the local contacts, in order to find which of them are

actually contacts of type USER (i.e., contacts that are also DCM users). However,

the result of this process will be seen in future interactions with the app.

• Alice can now start using the application.

System Actions:

• The DCM app requires registration of the user when it is started for the first time.

It also requires internet connection in order to verify and authenticate the user.

80 The distributed contact management (DCM) system

• After authenticating the user, the user information is stored locally in the peer’s

UB.

• If the peer selects the “create card” option, then the Scenario 7.3.1.3 is started.

• If the peer selects the “initialize contact list” option, then the app shows a list with

the available options that include: importing contacts (Scenario 7.3.1.4) and input

contacts manually (Scenario 7.3.1.5) by typing their information.

• Next, the DCM app starts a contact matching process in the background, on the

local contacts. This process requires querying the DCM portal in order to find if

there are local contacts of the peer that match with existing DCM users. The DCM

app will update the type of the contacts that match with existing users. The results

of this step will be seen in future interactions with the app.

7.3.1.3 Creating presentation cards

Personas:

Alice is a researcher and a new user of the DCM app.

John is a researcher, he is a new colleague of Alice.

Enrico is also a researcher, he is a colleague and a good friend of Alice.

Description:

• Alice is interested in sharing some contact information with her new colleague John.

She would like also to share more personal contact information (like phone number

and social networks accounts) with close friends like Enrico and all her contact

information with her family.

• Alice decides to create 3 different presentation cards to share with these different

groups of people.

• Alice first creates a “work” card to share it with John, she adds her university email

address, office phone number and the url of her linkedln profile.

• She assigns public permissions to her work presentation card (containing only basic

information). This means that the application will give access to Alice’s work contact

information to any requesting peer.

• Then, she creates a “close friends” card (to share it with Enrico and other friends)

with her cellphone number, personal email address and her different social network

profiles.

Usage scenarios 81

• Finally, Alice defines a “family” card, where she adds all her personal and social

contact information, including her home telephone number and home address.

• She also assigns permissions so family members can access her family presentation

card.

System Actions:

For each presentation card,

• The DCM app creates the card for the DCM user that is currently logged in.

• First, the app retrieves the user entity DEu (i.e., the entity associated to the user in

the peer’s UB). If the user entity is null, then the app creates a new entity instance,

stores it in the peer’s EB and associates it to the user in the peers’s UB.

• Next, the peer is requested to input a name for the card.

• Then, the app presents a form to the peer (as a template) that allows the definition

(or selection) of the attributes to be included in the card. Notice that:

– the form is ET dependent, which means that it is based on the ET of DEu;

and

– the peer can select attributes that are already defined in DEu or can input new

attributes.

• If the peer inputs new attributes or new attribute values, the app has to verify if

the identifiers of DEu are affected.

• Now the app asks the user to set up the privacy preferences related to the card.

• The privacy preferences may refer to publishing, sharing, re-distributing and others

options that will be explored in the following scenarios.

• Finally, when the peer saves the new card, DEu is updated accordingly in the peer’s

EB.

7.3.1.4 Importing existing contacts

Personas:

Alice is a researcher and new user of the DCM app. She heard about the features of the

DCM app, she installed it, and now she is starting to use it.

Ana is an old friend of Alice, they know each other since they were kids.

Enrico is also a researcher, he is a colleague and a good friend of Alice.

Description:

82 The distributed contact management (DCM) system

• Alice wants to initialize her contact list, but she would like to do it in a semi-

automatic manner.

• The app allows Alice to import existing contacts from the native contact list of her

smart-phone.

• She selects the import option and waits while the system performs the importing.

• Alice can now see notifications about the contact of Ana because the DCM app

detected duplicate entries for her. Alice decides to merge the two entries in her

contact list.

• Then, she is invited to import contacts also from other accounts (e.g., Facebook,

Skype, Google Plus, etc).

• Alice selects the import contacts option and then chooses Facebook and Skype as

sources.

• She authorizes the app to access her Facebook and Skype data.

• Alice’s contact list is automatically updated with the contacts imported from ex-

ternal accounts. Some of them are also automatically merged, as she has the same

person as a contact in different accounts. For example, Alice has the contact of

Enrico in the contact list of her phone and he is also a friend of her in Facebook.

• Next, Alice notes that the contact of Enrico is automatically updated with his Face-

book user account, i.e., Facebook is added as a possible mean to communicate with

Enrico.

• On the other hand, the DCM app shows a notification regarding the contact of Ana,

which might be again duplicated. A contact from the native contact list and another

contact from Facebook, seems to refer to the same person, i.e., Ana.

• When Alice confirms that both refer to the same person, the system suggests to

merge the contacts.

• She now, sees only one contact of Ana with a set of attributes that is the result of

merging the attributes from the matching contacts.

System Actions:

• Contacts imported from any source are represented as entities in the system.

• If the contacts has to be imported from an external account, the app:

Usage scenarios 83

– (i) requests user’s authorization to access the external account, and

– (ii) notifies the user how the data from the external account will be used.

• Then, the app performs the following steps for each imported contact:

– The imported contact is modeled as a digital entity DEn.

– The app searches in the peer’s EB for existing entities that match with DEn.

– If a perfect match (above some threshold) is found, the exiting entity is updated

with the information in DEn. This can be also seen as an automatic merge

operation of both entities.

– If no match is found, DEn is added as a new entity. This, in turn, implies that:

∗ First, the DCM app generates a new SURL for DEn;

∗ Second, if DEn has enough information to be globally identifiable4, then a

new SURI is generated and assigned to it;

∗ Third, DEn is permanently stored as a new entity in the peer’s EB.

– If partial matches are found, DEn and the entities that partially match with it,

are included in a list of potential duplicates. Such list will be later presented

to the user, who can decide what to do with them.

• When merging contacts, a preferred name is selected and then the set of attributes

that describe the merged contacts, in turn, are merged.

• In order to merge two attribute sets, the attribute definitions ADs from both sets

are compared. If two ADs match (i.e., if ADi.C is equivalent to ADj.C), then the

set of values of the corresponding attributes are merged.

7.3.1.5 Adding a contact by hand

Personas:

John is a researcher at the university of Trento. He is attending a conference where he

has to present a paper. He has a smart-phone and uses the DCM app to manage his

contacts. Federico is another researcher that is also participating to the conference and

he wishes to interact with other people having similar research interests. He also has a

smart-phone but does not use any particular app (besides the native one) to manage his

contacts. Paolo is an old friend of John and he is traveling to the city where John is

attending to a conference.

Description:

4if it has at least one identifying set of attributes (as defined in [Pane, 2012])

84 The distributed contact management (DCM) system

• John and Federico meet at the conference, they agree on exchanging contact infor-

mation.

• Federico does not uses the DCM app, so he has to give his contact information to

John by voice and John has to input the information on his DCM contact list by

hand.

• Federico tells John his full name, affiliation and gives him his email address from

university because that is the one he uses for work related things.

• Next, John opens the DCM app on his smart-phone, selects the options for creating

a new contact and inputs Federico’s email address.

• When finishing typing Federico’s contact information, John saves the contact in his

contact list.

• During the same trip to the conference, John meets Paolo. They are old friends

from when they were kids but they haven’t see each other for a long time.

• After talking for a while, John asks to Paolo his phone number in order to stay in

touch.

• John opens the DCM app and inputs the contact information of Paolo.

• When he tries to save the information, the app shows a notification telling John that

he already has a contact (in his contact list), which apparently corresponds to the

same person.

• John realizes that he has an old and outdated contact information of Paolo.

• Instead of creating a new contact, John selects the option of updating the information

of the existing contact.

System Actions:

• The app first asks the peer to select the type of contact among the ETs locally

defined (e.g., person, facility, etc.).

• Then, an ET dependent form is displayed to the peer. The attributes that are

mandatory are highlighted in the form.

• The peer edits the form’s fields in order to input the attributes for the contact, while

the app verifies that the given attribute values are valid and that all mandatory

attributes are provided.

Usage scenarios 85

• A new entity instance DEn is created with the information provided by the peer

(i.e., first, Federico’s contact information and then Paolo’s).

• The DCM app performs a local search to check if the peer’s EB already contains an

entity that matches with DEn.

• If no match is found, DEn is added as a new entity. This, in turn, implies:

– First, the DCM app generates a new SURL for DEn;

– Second, if DEn has enough information to be globally identifiable, then a new

SURI is generated and assigned to it;

– Third, DEn is permanently stored as a new entity in the peer’s EB.

• If at least a partial match is found, the peer is notified. DEn and the entity that

partially matches with it are shown to the peer as potential duplicates. The peer can

now decide if they have to be merged, maintained separated (because they actually

refer to different entities), etc.

• When merging contacts, a preferred name is selected and then the set of attributes

that describe the merged contacts, in turn, are merged.

• In order to merge two attribute sets, the attribute definitions ADs from both sets

are compared. If two ADs match (i.e., if ADi.C is equivalent to ADj.C), then the

set of values of the corresponding attributes are merged.

7.3.2 Sharing Scenarios

The scenarios presented in this section are called of sharing, they include activities related

to share, publish and exchange contacts in the DCM system.

7.3.2.1 Sharing the own contact with a non-user of the DCM app

Personas:

John is a researcher at the university of Trento. He is attending the ISWC conference

where he has to present a paper. He has a smart-phone and uses the DCM app to manage

his contacts.

Federico is another researcher attending the ISWC conference and he wishes to interact

with other people having similar research interests. He has a smart-phone and uses only

the native application to manage his contacts.

Description:

86 The distributed contact management (DCM) system

• John and Federico meet at the conference, they agree on exchanging contact infor-

mation.

• John wishes to provide to Federico his contact information related to work. He

wants to give his email address, Linkedln profile, Skype user name and the phone

number of his office at the university, which he has included in a presentation card

called “work”.

• From the menu in the DCM app, John selects the “send card” option and then he

selects his “work” card.

• John has the contact information of Federico in his contact list because he previously

added it by hand (see Scenario 7.3.1.5).

• When the app asks John to input the destination to send the card, he searches in

his contact list and selects Federico’s contact.

• John has the email address of Federico, so the DCM app generates an email to send

Federico the information contained in John’s work card.

• On receiving the email, Federico can manually add the information to his contact

list (i.e., copy/paste). If he decides to start using the DCM app, he should be

able to import automatically the contact from the received email to his contact list.

Moreover, with the DCM app he will be able to maintain the received information

updated.

System Actions:

• On selecting the “send card” option, the DCM app retrieves the entity DEp associ-

ated to the peer.

• Next, the app retrieves the presentation cards DEp.{PC} associated to DEp and

presents them to the user (i.e., the list of available predefined PCs are retrieved).

• After the user selects a presentation card PCi ∈ DEp.{PC}, the app shows the list

of contacts allowing the peer to select the destination to send it. The peer can also

input manually to whom and how to send the card.

• If the peer selects a NON-USER contact, the card cannot be sent though the DCM

system and the system proceeds to identify other mechanisms that can be used to

send PCi (based on the contact information of the selected contact). In this case

the system identifies that PCi can be sent by email.

Usage scenarios 87

• Next, the system takes the information in PCi and generates a file in the appropriate

format standard (e.g., VCard), depending on the mechanism selected to send.

• The DCM app calls another application in the smart-phone (e.g., the preferred email

client of the peer) and requests it to send an email, where the contact information

can be added as attachment and the destination should be set according to the

corresponding attribute (i.e., email address) in the selected target contact.

• After sending the information in PCi to a NON-USER contact, the system loses

control over the sent data.

7.3.2.2 Sharing the own contact with other users of the DCM app through the

DCM portal

Personas:

NGI is a company, an internet service provider. The company outsources the installation

services for its client.

Franco is a technician (independent worker) who works as an outsourced technician for

NGI. He also performs reparations of different types of electronic devices. He uses the

DCM app to manage his contact list.

Description:

• Potential clients for Franco are those referred to him by NGI and other people to

whom his current clients recommend him. As an independent worker, Franco wishes

to publish his contact information in order to allow clients (or potential clients) to

find him.

• Franco opens the DCM app and from the menu selects the option “share contact”

which allows him to share his own contact information using the DCM system.

• Then, he selects the option to upload a card into the DCM portal.

• Next, he selects a presentation card called “work” and decides to make it publicly

available in the system.

• When publishing, Franco assigns public permits, allowing every user of the DCM

system to find his contact information. He also includes the permissions allowing

other users to import the contact information (to their own contact list), to share

the contact with third parties and to allow synchronization.

System Actions:

88 The distributed contact management (DCM) system

• On selecting the “share” option, the DCM app retrieves from the local peer’s EB

the entity DEp associated to the peer.

• Next, the DCM app shows to the peer the different alternatives that are available

to share contact information:

– To index the DEp in the DCM portal but without uploading the actual data;

– To upload a presentation card to the DCM portal;

• In order to upload a card into the portal, the DCM app retrieves the presentation

cards DEp.{PC} associated to DEp and ask the peer to select a card to publish.

• After the peer selects a presentation card PCi ∈ DEp.{PC}, the system retrieves

the privacy settings associated to the card allowing the peer to verify, modify it

and/or approve them.

• If the privacy settings associated to PCi are modified, the modifications are high-

lighted and the approval of the peer is requested.

• Then, the system starts a thread to upload and index PCi in the portal.

• If the peer decides to index without upload a card, then anyone will be able to find

the SURL of the peer (i.e., of Ep) in the directory and when dereferencing the SURL,

the information from some PCj ∈ DEp.{PC} should be returned. Which PCj is

returned will depend on the privacy settings of the peer.

7.3.2.3 Exchanging the own contacts face to face

Personas:

John is a researcher at the university of Trento. He is attending to a conference where

he has to do a presentation of a paper. He has a smart-phone and uses the DCM app to

manage his contacts.

Peter is another researcher that is also participating to the same conference. He wishes

to interact with other people having similar research interests. He also uses the DCM app

in his smart-phone to manage his contacts.

Description:

• Peter meets John in person and they start discussing some ideas related to John’s

presentation.

• They agree to stay in contact for (possible) future collaborations, they need to

exchange their contact information for this.

Usage scenarios 89

• John opens the DCM app and from a menu selects the option “exchange contact”.

• Because they are close to each other, John’s phone can detect Peter’s phone and

send a request to exchange contacts.

• Peter receives the exchange contact request through the DCM app running in his

device.

• Peter accepts the request and selects which contact card to send.

• John also selects which card to send and then the exchange is made directly between

the two devices.

• Now, they will be able to contact each other.

System Actions:

• On selecting the “exchange contact” option, the DCM app broadcasts a contact

exchange request and then scans searching for an answer from a DCM user nearby

accepting the request. This could be enabled, for example, by NFC5 technology.

• After the DCM app detects another peer, the two devices can establish a connection6.

• Now the app retrieves the cards DEp.{PC} from the entity of the peer (from the

local EB).

• After the local peer selects a presentation card PCi ∈ DEp.{PC} to be exchanged,

a “contact” message containing the SURI, SURL, and the entity attributes from

PCi is sent to the target peer.

• On receiving back a “contact” message from the target peer (as respond of the

exchange), the message is parsed to retrieve PCn the presentation card of the new

contact.

• The peer is given the options of “copy” or “link/synchronize” the contact.

• If the peer selects the“copy” option, a new entity instance DEn is created from the

information in PCn where:

– DEn.SURI = PCn.SURI, i.e., the SURI from PCn is assigned to DEn

– All the other attributes from PCn are imported as attributes of DEn

5http://en.wikipedia.org/wiki/Near_field_communication
6using for example Bluetooth (http://en.wikipedia.org/wiki/Bluetooth) or Wi-Fi Direct (http://en.

wikipedia.org/wiki/WiFi_Direct)

http://en.wikipedia.org/wiki/Near_field_communication
http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/WiFi_Direct
http://en.wikipedia.org/wiki/WiFi_Direct

90 The distributed contact management (DCM) system

• If the peer selects the “link/synchronize” option, a new entity instance DEn is

created where:

– DEn.SURI = PCn.SURI, i.e., the SURI from PCn is assigned to DEn

– The DCM app retrieves the names of the received contact from PCn and assigns

them DEn, i.e., DEn.{N} = PCn.{N}

– PCn is added as a presentation card to DEn

• Then, the DCM app performs a local search to check if the peer’s EB already contains

an entity that matches with DEn.

• If a perfect match (above some threshold) is found, the exiting entity is updated

with the information in DEn. This can be also seen as an automatic merge of both

entities.

• If no match is found, a new SURL is generated for DEn and DEn is permanently

stored as a new entity in the peer’s EB.

• If a partial match is found, DEn and the entity that partially matches with it are

included in a list of potential duplicates. The list is presented to the user, who can

decide what to do with them (e.g., merge, discard, etc.).

7.3.2.4 Sharing the contact of third parties

Personas:

NGI is a company, an internet service provider.

Alice is a new client of NGI. She subscribed to an internet service package and is currently

waiting for the installation to be performed.

Franco is a technician that performs different types of antenna installations for different

companies offering services like internet, sky, and others.

Description:

• Franco is hired by NGI as an outsourced technician to perform the installation of

the internet antenna at Alice’s apartment.

• Franco and NGI use the DCM application to exchange information about clients.

• Alice gives NGI the permissions to share her contact information with the technician

that has to install the internet antenna at her house.

• NGI sends Franco the contact information that Alice gave them, which is needed for

the installation.

Usage scenarios 91

• Franco calls Alice and they agree on a day and time for the installation.

• When Franco finishes the installation, Alice decides to cancel the permission that

Franco has over her contact information.

• When the DCM app in Franco’s device receives the update of the permissions, Alice’s

contact information is removed from his contact list.

System Actions:

• On selecting the “send” option, the DCM app retrieves from the local peer’s EB

the entity DEp associated to the peer.

• Then, the DCM app allows the peer to select a presentation card PCi ∈ DEp.{PC}.

• The selected card PCi is assigned with permissions (i.e., PCi.PP) that allows the

recipient of the card to re-distribute the information, but notifying its owner.

• ...

• After some time, the peer might decide to verify the access control list associated

to the card PCi and remove the permissions that another peer has. When this

happen, the DCM app notifies the modification to other peers that are affected by

the changes. The DCM app at those peers verify that the access to PCi has been

cancelled and remove the contact from the contact list of the peers.

7.3.3 Search Scenarios

Some examples of usage scenarios showing the envisioned search features of the proposed

application are:

7.3.3.1 Search a contact by name

Personas:

Enrico is a researcher at the University of Trento.

John is originally from the south of Italy and recently moved to Trento after getting a

position at the University of Trento. He is a new colleague of Enrico, he has a smart-phone

and he uses the DCM app to manage his contacts information.

The “Green Tower” is a restaurant located in the city center of Trento that serves typical

local dishes.

Description:

92 The distributed contact management (DCM) system

• John would like to go out for dinner and try local dishes. Unfortunately, she does

not know any restaurant.

• He asks to Enrico for some recommendations, he suggests the restaurant Green

Tower.

• John would like to make a reservation, so she asks Enrico if he can give him a

telephone number to which he can call for that.

• Enrico do not have the number but he knows that the contact of the restaurant is

in the directory of the DCM.

• Enrico also knows that John is a DCM user, so he tells him that the contact of the

restaurant can be found in the DCM directory.

• John searches the“Green Tower” restaurant in the directory and imports it to his

contact list. He finds that the restaurant has also a web page and a skype account

through which clients can make reservations.

System Actions:

• On selecting the “search by name” option, the application allows the peer to search

for information about an entity based on its name.

• The peer has to input the pair 〈N,ET 〉, where N is the name of the target entity

and ET is its type (e.g., person, facility, etc.), which is not mandatory.

• The DCM app queries the Entity Directory to find candidate entities matching the

given parameters.

• The directory returns the SURLs of the candidates entities.

• On dereferencing a SURL the DCM app receives a “contact” message.

• Let us call pi to the initiator peer that requests the dereferentiation of the SURL

and ps to the source peer that owns the information.

• At this point, we assume that pi provides its credentials when requesting the deref-

erentiation of the SURL and access control rules are evaluated at ps based on the

credentials given by pi.

• If the application can not contact ps (the source of information) to dereference a

SURL, it moves to the next available source. At this point, the next available source

may be the DCM portal (if the peer uploaded its presentation card there).

Usage scenarios 93

• On receiving the “contact” message, the message is parsed to obtain PCn the pre-

sentation card of the target entity.

• Now the peer has the options of “copy” or “link/synchronize” the contact (as de-

scribed in Scenario 7.3.2.3).

7.3.3.2 Search based on existing Non-User contact (to match them to DCM Users)

Personas:

Alice is a researcher, she is also a new user of the DCM app.

Enrico is also a researcher, he is a colleague of Alice at the University of Trento and is

also good friend of her.

John is originally from the south of Italy but he moved to Trento when he got a position

at the University of Trento. He is a new colleague of both, Alice and Enrico. He has a

smart-phone and he uses the DCM app to manage his contacts information.

Description:

• Alice finished setting up the DCM application and she starts to use it.

• She starts a search/matching process that tries to find out which of her contacts are

also DCM users.

• After a while, Alice receives a notification from the DCM app. The app shows the

number of contacts from her contact list that match with a DCM user.

• By scanning through her contact list, she can visually distinguish that John is a

DCM user (through a different icon, different color, etc.)

• Alice is notified about the number of possible matching contacts. She has the option

of verifying/confirming them manually.

• By scanning the possible matchings, she finds the contact of Enrico, and she confirms

that the matching is correct.

• Now Alice can also distinguish (visually) the contact of Enrico as a DCM user.

System Actions:

On starting the process of matching existing contacts, the DCM app starts a new thread

that runs in the background and for each NON-USER contact DEi carries out the fol-

lowing steps,

• The DCM App sends a request to search for a user, in the UB of the portal, that is

associated to an entity, in the EB of the portal, matching with DEi.

94 The distributed contact management (DCM) system

• If a perfect match is found (i.e., above a predefined threshold), the DCM app receives

from the DCM portal the SURI of the matching entity and the user name uNamei

of the corresponding user.

• Now, the DCM app updates DEi in the EB of the peer and makes it a USER

contact, which means that:

– uNamei is added as an attribute to DEi

– DEi.SURI is updated using the SURI received from the portal

• If only partial matches are found, the peer can to be involved in order to evaluate

the options.

• When a NON-USER contact is updated to a USER contact, the peer may decide to

“search” available presentation cards based on the existing DCM user contact (see

Scenario 7.3.3.3).

7.3.3.3 Search based on existing DCM User contact (to get a card and make it a

sync contact)

Note that this type of search is an example of a scenario that can also be triggered

periodically in the background with the purpose of automatically finding more information

about an existing contact and to suggest the peer to link it and maintain the contact

updated.

Personas:

Alice is a researcher at the University of Trento and she is a new user of the DCM app.

John is also a researcher, he is a colleague of Alice at the University of Trento.

Description:

• John has been using the DCM application for quite some time now, while Alice is a

new user of it.

• During the initialization of the app, the contact of John in Alice’s contact list has

changed from normal NON-USER contact to USER contact.

• Alice has only the university email address of John and she would like to get more

contact information of him.

• If possible, she would also like to maintain John’s contact updated in the future.

• She searches John’s card in the network.

Usage scenarios 95

• Next, Alice receives John’s presentation card and she finds out that he also has a

LinkedIn profile, a website and an office phone number.

• On receiving the card, Alice has two options: “copy” or “import and maintain

updated”.

• She selects the “import and maintain updated” option.

• Next, Alice can see that John’s contact information is updated. She can also distin-

guish (visually) that John’s contact information is now synchronized (i.e., is up to

date).

System Actions:

• On selecting the “search card” option for an existing USER contact DEi, the DCM

app queries the DCM portal providing DEi.SURI and the credentials of the local

peer pl.

• If the portal has a card for DEi and is authorized to share it with DCM users, then

this card is return to pl.

• When pl receives the card PCi, the DCM app starts a new thread that runs in the

background retrieving PCi.SURL (i.e., the SURL of the card) and uses it to request

more contact information directly to the owner of the card.

• In parallel, the DCM card gives pl the options of “copy” the information from the

card or “link/synchronize” it. Then, DEi will be updated accordingly in the EB of

pl.

• It is important to note that DEi.SURI should be equal to PCi.SURI, at this point.

• If the peer selects the“copy” option, all the attributes from PCi are imported as

attributes of DEi.

• If the peer selects the “link/synchronize” option:

– The DCM app retrieves the names of the contact from PCi and adds them to

DEi, i.e., PCi.{N} ∈ DEi.{N}

– PCi is added as a presentation card to DEi

• If at any point the DCM app receives more information about this contact (i.e.,

directly from the owner), then DEi is updated again accordingly and based on the

option (“copy” or “link/synchronize”) previously selected by the peer pl.

96 The distributed contact management (DCM) system

7.3.3.4 Search by description

Personas:

Federico recently found out that his younger daughter has rare skin disease. He is a user

of the DCM system.

Description:

• Federico do not know where he can find a doctor to treat his daughter.

• He decides to search in the DCM network, to see if someone knows about a derma-

tologist that is specialized in his daughter’s disease.

• He selects the search contact by description option.

• Next, Federico inputs the query where he specifies that it is searching the contact of

a “person”, with a degree in “medicine”, who is specialized in “dermatology”, and

that is an expert in the disease “sss”.

• He selects a node in his classification that correspond people that are doctors, and

issues the query.

• Federico finds the contact of a relevant doctor, he imports the presentation card

PCd of the doctor and the next day he calls to fix an appointment.

• After talking to the doctor, Federico finds out that the doctor is a friend of his

cousin. However, his cousin did not know what was the specialization of his friend

(he knew only that he was a doctor).

System Actions:

• On selecting the “search by description” option, the peer DCM app allows the peer

to specify a query Q.

• Next, the app retrieve the classification of the peer and allows him to select a node.

• The meaning Mn of the selected node is retrieved.

• A search request 〈Q,Mn〉 is, first, evaluated locally in order to find local contacts

that can match the request and links to other peers that are relevant to the request.

Let us call {lr} to the set of relevant links.

• From {lr} the DCM app obtain the set {Pr} of relevant peers.

• The DCM app contacts the DCM network by sending the search request 〈Q,Mn〉
to each peer Pri ∈ {Pr} (i.e., the search is started following the approach proposed

in Chapter 6).

Summary 97

7.4 Summary

The Distribute Contact Management (DCM) System was presented in this chapter, en-

closing the reference architecture and the search approaches previously discussed. In order

to do so, two application specific notions were introduced, Presentation Card (PC) and

DCM User.

The PCs were formally defined to support the exchanging of contact information be-

tween peers. A PC denotes a profile created to present one view (perspective) of a

particular contact, represented in the system as an entity DE. On the other hand, a DCM

User was defined as a peer having an account in the DCM platform.

The rest of the chapter presented different types of usage scenarios illustrating the

main functionalities and features of the system. Namely,

• The initialization scenarios correspond to the first interactions that the peers have

with the system, when the peer is starting to use the DCM system. They describe

activities like, creation of an user account, creation of presentation cards, importing

contacts, and creating them by hand.

• The sharing scenarios correspond to interactions that peers can have with other

peers (users and not users of the system) using the DCM application. They include

activities related to sharing, publishing and exchanging the own contact information

as well as the contact of third parties.

• The search scenarios, show examples of the envisioned search features of the proposed

application including activities like searching contacts by name, based on existing

contact information, and by description.

98 The distributed contact management (DCM) system

Part III

Evaluation

Chapter 8

Experimental evaluation of

name-based search

This chapter is aimed to discuss the evaluation of the distributed directory presented

in Chapter 5. We implement the distributed directory on top of a P2P network, where

the distribution of the indexes is done using a Distributed Hash Table (DHT). DHTs1

are distributed systems that allow the peers participating in the network to store and

retrieve pairs of key and value. Then, we perform a preliminary evaluation of performance.

PlanetLab2 is used as a testbed for the evaluation, we believe it gives us realistic network

conditions.

8.1 Implementation

Different DHT protocols and implementations can be found in the literature. In particular,

Chord and Kademlia, are two relevant protocols calling our attention.

Chord, which has been used in prominent research projects network, provide an efficient

routing performance in terms of number of hops. However, in a real network setting “close

neighbors” according to the protocol can be physically located far away in the network.

Chord builds a ring topology and uses unidirectional metric (clockwise circle metric),

which allows the convergence along the same path for all the lookups of the same key.

Kademlia, which has been successfully used in real distributed applications (e.g., Bit-

1http://en.wikipedia.org/wiki/Distributed_hash_table
2https://www.planet-lab.eu/

http://en.wikipedia.org/wiki/Distributed_hash_table
https://www.planet-lab.eu/

102 Experimental evaluation of name-based search

Torrent’s distributed tracker, Kad network and others), is able to route queries through

low-latency paths making it more suitable for real applications scenarios. It uses XOR

metric, which is also unidirectional. The topology has also the property that every mes-

sage exchanged conveys or reinforces useful contact information. Differently from Chord’s

ring topology, Kademlia’s XOR topology is also symmetric and this allows the nodes in

Kademlia to learn useful routing information from queries they receive. Kademlia per-

forms the caching of 〈key, value〉 pairs along the lookup path to alleviate hot spots.

Finally, Kademlia is the first DHT approach that exploits the fact that node failures are

inversely related to uptime.

We believe that Kademlia’s protocol has a number of features that made it more

suitable for real applications. Now, the Table 8.1 summarizes characteristics of existing

implementations of this protocol that we analyze under the light of our requirements

for the implementation of the distributed directory. Given the model for the directory

presented in Section 5.2, we require an implementation that supports (or can be easily

extended to support): (i) storing multiple values mapped to the same key, and (ii) multiple

indexes.

Table 8.1: Implementations of Kadelmlia protocol.

Characteristics

Implementations Features Documentation Programing

lenguaje

License

MainLine DHT A plug-in im-

plementation

for Azureus. Is

the standard

DHT used by

BitTorrent

No documenta-

tion

Java GNU Gen-

eral Public

License

(version 2,

June 1991)

Implementation 103

TomP2P Implements

a XOR-based

iterative rout-

ing based on

Kademlia. Ex-

tended DHT

operations and

supports custom

operations. Di-

rect and indirect

replication.

Unit tests

and examples

within the

source code.

Basic manual

of use for

developers.

Java Apache

License

(Version

2.0, January

2004).

Plan-x Library that

allows instantia-

tion of Kademlia

nodes, support-

ing the storage

and retrieval

of serializable

objects.

The javadoc

of its API is

available but

there is neither

documentation

nor examples

about how to

use the library.

Java Open

Source

LibTorrent A BitTorrent

implementation,

which include

some extensions

to the Main-

line kademlia

protocol (to

provide support

for trackerless

torrents).

The docu-

mentation

of its API

is available

at http:

//www.

rasterbar.

com/

products/

libtorrent/

manual.html.

C++ Released

under the

BSD-license

(http:

//www.

opensource.

org/

licenses/

bsd-license.

php).

http://www.rasterbar.com/products/libtorrent/manual.html
http://www.rasterbar.com/products/libtorrent/manual.html
http://www.rasterbar.com/products/libtorrent/manual.html
http://www.rasterbar.com/products/libtorrent/manual.html
http://www.rasterbar.com/products/libtorrent/manual.html
http://www.rasterbar.com/products/libtorrent/manual.html
http://www.rasterbar.com/products/libtorrent/manual.html
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php

104 Experimental evaluation of name-based search

Daylight Library that pro-

vides a simple

interface to de-

velop distributed

applications tar-

geting the .Net

and Mono plat-

forms.

No documenta-

tion

C# GNU Li-

brary or

Lesser Gen-

eral Public

License

(LGPL).

BitDHT General purpose

DHT library

that is com-

patible with

bittorrent’s

DHT.

Basic unit

tests and ex-

ample code

of how to use

libbitdht are

provided.

C++ GNU Li-

brary or

”Lesser”

General

Public

License

version 3.0

(LGPLv3).

JKad Implementation

of kademlia

protocol used

in the JMule

application (a

Java based client

for eDonkey2000

networks).

There is no

documentation

about how to

use it.

Java GNU Gen-

eral Public

License

(GPL)

The implementations developed in Java are more relevant for compatibility reasons

with other existing implementations in the Knowdive3 group. Among them, we discard

MainLine DHT as it is not a stand alone application and has no documentation. These is-

sues make its use difficult outside the originally intended environment (i.e., inside Azureus

application). Then, in the case of Plan-x and JKad4 their main drawback is the lack of

proper documentation.

For our implementation, we use TomP2P5, an advanced DHT library that extends the

3http://disi.unitn.it/~knowdive/
4JKad is a java implementation of kademlia protocol developed as part of the JMule project (http://jmule.

org/)
5http://www.tomp2p.net/

http://disi.unitn.it/~knowdive/
http://jmule.org/
http://jmule.org/
http://www.tomp2p.net/

Evaluation 105

basic functions of DHTs. The library supports storing multiple values mapped to the same

key and distinguishes between different index domains. The execution of the operations

over different index domains can be seen as having different DHTs, i.e., one for the

DEindex and other for the WEindex. This library also offers some basic documentation

and has a (responsive and active) community of users and developers providing supports

through a mailing list.

8.2 Evaluation

We are interested in the evaluation of the approach under realistic network conditions and

we want to measure how much the performance decreases when the size of the network

grows (i.e., the scalability). The performance is considered here in terms of the time that

takes the system to process a query. We use PlanetLab6 as a testbed because we believe

it gives us the realistic network conditions that we need. PlanetLab provides a network

of computers (i.e., nodes) that are distributed around the world, connect to each other

through the internet and are available for research purposes. We perform the evaluations

on networks of 50, 100 and 150 peers and the data extracted from the proceedings of

the International Joint Conference on Artificial Intelligence (IJCAI)7 are used to generate

the data-sets. We use the titles of publications, names of authors and names of locations

related to the conference.

Each data-set is produced by generating triples of 〈Name, URI, URL〉. The names

and URIs are replicated in order to simulate different WEs having the same name and

different peers storing DEs that describe the same WE. Let us call pn to the popularity

of a name n (i.e., number of WEs that are called by n) and pwe to the popularity of a WE

(i.e., number of DEs that represent WE). First, for each name n, we generate pn triples

with the same name (different URI and URL). Second, for each URI, we generate pwe

triples with the same name and URI but with different URLs. The popularities pn and

pwe follow a Zipf8 distribution, which means that there is a long tail of unpopular names

and WEs. The distribution of both popularities are independent, which means that a

popular WE do not necessarily has a popular name and vice versa. We assume that the

local entity base of each peer contains, in average, 2000 DEs. We have overall around

100000, 200000 and 300000 DEs. The query set for each peer is generated by randomly

selecting a set of 1400 names from the initial set of entity names.

During the evaluation, we first index the data-set for the corresponding network size

and then the peers begin the search evaluation process pseudo-simultaneously. In this

6https://www.planet-lab.eu/
7http://ijcai.org/
8http://en.wikipedia.org/wiki/Zipf’s_law

https://www.planet-lab.eu/
http://ijcai.org/
http://en.wikipedia.org/wiki/Zipf's_law

106 Experimental evaluation of name-based search

process, each peer performs the following steps: (i) takes a query from the query set, (ii)

runs the search, (iii) measures and logs the time that the system takes to respond to the

query, (iv) waits a random interval of time (between 1 and 3 seconds), and (v) go back to

step (i). These steps are repeated until the end of the set of queries. Once all the peers

end the search process, we compute the average query time for the network. We show the

results for the different network sizes in Table 8.2. The values for the average query times

Table 8.2: Average query time

Network Size 50 peers 100 peers 150 peers

Avg. Query Time (in seconds) 2.77 2.75 2.61

are stable with the network growth and we believe this is a promising result regarding the

scalability of the directory. On the other hand, when comparing to information retrieval

systems (in general), the average times for search are still high.

In order to have better understanding of the query times that contribute to these

averages, we analyze the distribution of the query time in the different networks. In

Figure 8.1 we show the results of this analysis, where we can see that also the query time

distribution is stable with regard to the network growth. Also in Figure 8.1 we can notice

that more than 55% of the queries are actually answered in less than a second, while in

almost 70% of the cases the response arrives in less than 2 seconds (which is less than the

average time). Moreover, only 9% of queries take more than 5 seconds to be answered.

56.42%	 55.27%	 56.28%	

12.19%	 11.92%	 13.31%	

22.63%	 23.12%	 22.61%	

8.76%	 9.68%	 7.80%	

0%	

20%	

40%	

60%	

80%	

100%	

50	 peers	 100	 peers	 150	 peers	

	 t	 >	 5	 s.	

2	 s.	 <	 t	 <=	 5	 s.	

1	 s.	 <	 t	 <=	 2	 s.	

t	 <=	 1	 s.	

Figure 8.1: Query time of different networks

It has to be noted that the results are returned after the query answer is complete,

i.e., once all the lookups involved in the query have ended. This means that a single slow

lookup is enough to delay the computation of a query answer and therefore increase the

query time. Furthermore, we know that particularly slow peers can produce this problem

Summary 107

when a lookup has to be routed through them. We believe that, in the big picture, the

scalability of the approach is a promising and important result. On the other hand, there

are some techniques to perform result catching or to avoid routing through slow peers

(see for example Rhea et al. [2005]) that can be implemented to reduce the effect of slow

peers at query time.

8.3 Summary

This chapter reported the outcome of the experimental evaluation of the distributed di-

rectory, which was proposed in Chapter 5 to perform name-based search of contacts in a

distributed network of peers, i.e., a P2P network.

The implementation was done using a Distributed Hash Table (DHT) for the storage

of indexes. Two DHT protocols were mainly considered, Chord and Kademlia, the latter

was selected because of several features that make it better for real applications. Next, a

comparison of existing implementations of the Kademlia protocol was presented. TomP2P,

an advanced DHT library that extends the basic functions of DHTs, was selected.

The evaluation was done using PlanetLab as a testbed. PlanetLab provides a network

of computers that are distributed around the world, providing a realistic scenario in

terms of network conditions. Networks of 50, 100 and 150 peers were configured assuming

that the local entity base of peers contains, in average, 2000 DEs. When running the

evaluation process, the peers are activated pseudo-simultaneously and execute a set 1400

queries randomly selected from an initial set of entity names. Once all the peers ended

the search process, the average query time for the network was computed.

It was shown that the average query time (2.7 seconds) was stable with regard to the

network growth, which is considered a promising result for the scalability of the directory.

Moreover, the distribution of the query time with regard to the network growth was also

stable in networks of different sizes. It was also noted that more than 55% of queries were

actually computed in less than a second and 70% of them in less than 2 seconds.

108 Experimental evaluation of name-based search

Chapter 9

Experimental evaluation of

description-based search

In this chapter we discuss de evaluation of the approach presented in Chapter 6, which

allows peers to search contacts by their description, by conducting simulation experiments.

The results of the proposed algorithm, called Semantic Flooding, and the centralized C-

Search algorithm are compared1. The key intuition here is to see how much the distributed

search approach looses to the centralized one, in terms of the number of results which

are retrieved by the centralized approach and which are missing from the results of the

distributed approach.

The work presented in this chapter was performed in collaboration with Uladzimir Kharke-

vich and Prof. Fausto Giunchiglia.The content was published in [Giunchiglia et al., 2011].

9.1 Implementation

In the experiments, C-Search algorithm was implemented on top of Lucene [Luc] as de-

scribed in [Giunchiglia et al., 2009b]. A P2P network and the P2P Concept Search [Giunchiglia

et al., 2009a] algorithm were simulated on a single machine. Semantic Flooding algorithm

was implemented on top of this simulation as described in Chapter 6.

The accuracy of search results returned by Semantic Flooding algorithm is measured

1Note that comparing performance of distributed and centralized information retrieval systems is a standard

way of evaluating in P2P information retrieval (e.g. see [Tang et al., 2003]).

110 Experimental evaluation of description-based search

depending on the number of visited peers, where the accuracy is defined as follows:

Accuracy =
|RCS ∩RSF |
|RCS|

∗ 100%,

where RCS are results returned by C-Search and RSF are results returned by Semantic

Flooding on the same data-set. In the evaluation, only the first 10 ranked results were

used to compute the accuracy. The accuracy measure considers the results returned by

C-Search, as the desired results and estimates the ability of Semantic Flooding algorithm

to approximate these results by querying only a limited number of peers.

The number of queried peers can be used to estimate the number of messages Mnum

generated to answer a query in the best and the worse case scenarios. In the best case

scenario, no link discovery is needed because all the relevant links are already computed.

The number of generated messages in this case can be estimated as follows:

Mnum = 2 ∗m,

where m is the number of queried peers.

In the worst case scenario, the relevant links need to be computed by the link discovery

mechanism. If P2P Concept Search is used for link discovery, then the number of messages

can be estimated by using the following formula:

Mnum = log p + k + (2 ∗m),

where p is number of peers in the network, m is the number of queried peers and

k is the number of atomic concepts that are used by P2P Concept Search algorithm

(see [Giunchiglia et al., 2009a] for details). In the evaluation, k was limited to 10.

9.2 Evaluation

9.2.1 Data-set generation

In order to generate data-sets (which reproduce a realistic scenario) for the evaluation of

the proposed Semantic Flooding algorithm, the data from the Open Directory Project

(also known as DMoz [DMo]) and the public tags of about 950000 users from Deli-

cious [Del] (obtained from [Wetzker et al., 2008]) were used. DMoz is a multilingual

open content directory of World Wide Web links that is constructed and maintained by a

community of over 80000 volunteer editors. The DMoz directory uses a hierarchical struc-

ture to organize links into topics and closely related topics are grouped into categories.

DMoz contains over 590000 multilingual categories and over 4500000 web sites classified

to these categories. Delicious is a bookmarking service allowing users to mark web pages

Evaluation 111

with tags (words describing the bookmark), store the bookmarks and then share them

with other users. The tags were used in this work to identify users who are interested

in a web page. The two sources were merged together by matching users from Delicious

to nodes in DMoz classification. First, the intersection of URLs from both sources was

computed. Second, users which tagged an URL in Delicious were matched to the node

n in DMoz which classifies the document with the same URL. As a result, we obtained

491414 users matched to 45545 nodes.

Four data-sets were generated by randomly selecting sub-sets of 10, 100, 1000, and

10000 users (one user is assigned to one peer). For each user u, the generation of its

classification was performed as follows. A classification hierarchy was formed by the nodes

matched to a user. For each node n in the user’s classification, a sub-set of documents

Dn classified to node n in DMoz were selected. All the documents that were tagged

by the user were selected at first, and then a random sub-set of spare documents (i.e.

documents classified to n that were not tagged by user) were also selected. Documents

in the data-set were created by concatenating titles and descriptions of web-sites. On

average, a classification of each peer had 21 nodes and 385 documents.

For each data-set, a C-Search index ICS was created. All the documents in the data-set

were indexed in ICS. WordNet was used in C-Search as a background knowledge. Indexes

of each single peer were created by filtering ICS. Distributed Background Knowledge

(DBK) [Giunchiglia et al., 2009a], that provides access to the BK of each peer in the P2P

network, was used to index concepts and relations from WordNet in the P2P network.

By using DBK, a peer can exploit the knowledge of other peers in the network when an

atomic concept is missing in the local BK of the peer. The DBK can be seen as the sum

of the BKs of all the peers in the network. By using the same BK in both centralized

and distributed approaches, the fairness of comparison of the results produced by these

approaches is ensured.

A query set was generated by randomly selecting a set of Nq (100) queries from the

AOL query log [Pass et al., 2006] for each data-set. One word queries; queries which

contained punctuation, special symbols, or boolean operators (e.g. ’+’, and ’ ?’); queries

which contain the words shorter than 3 letters; and queries which had less than 10 results

in ICS were filtered out. For each query, a node n in DMoz classification were randomly

selected, such that, a query request 〈Cn, Cq〉 have at least 10 relevant documents as

computed by C-Search.

Given that our data-sets are generated from the data produced by the real users, nodes

matched to users provide us with knowledge about real user interest profiles. Note that

interests and accordingly classifications of different users can partially overlap, where the

overlap has a higher probability for popular topics (e.g. Top/Computers and Top/News).

112 Experimental evaluation of description-based search

0

3000

6000

9000

12000

15000

18000

21000

24000

27000

30000

33000

36000

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Rank

F
re
q
u
e
n
c
y

Figure 9.1: Topics Popularity Distribution

In the following the distribution of peers’ interests over the set of topics from DMoz is

analyzed. In Figure 9.1, the distribution of the popularity of topics in our data-set is

shown. Topics are ranked according to the popularity. The most popular topic occupies

the first position in the ranking, followed by the second most popular, and so on. From

Figure 9.1, the rapid decrease in the frequency can be observed (from 35503 for the most

popular topic, to 29690 for the second most popular). Even more, only moving 50 places

down in the ranking the frequency decreases to 8066. And there are only 121 topics that

have more than 1% of peers interested on them. This behavior provides evidence of the

existence of a “long tail” of unpopular topics.

In order to see how popularity of topics affect the performance of different approaches,

two query sets for the data-set consisting of 10000 peers were additionally generated. The

first query set consists of popular queries (i.e. queries related to topics that are in the first

200 positions in the popularity ranking, see Figure 9.1) and the second query set consists

only of unpopular queries (i.e. queries related to topics in the position 400 or above in

the popularity ranking, see Figure 9.1).

9.2.2 Evaluation of results

The evaluation results for randomly selected queries are reported in Figure 9.2. The

performance achieved by Semantic Flooding is compared when: (i) the query request

〈Cn, Cq〉 consists of a starting node n with concept Cn and of a query q with a concept

Cq; (ii) the query request is 〈>, Cq〉, namely the same as in (i) but with no starting node,

i.e. Cn ≡ >; and (iii) the same as (ii) but the semantic similarity SS(Cn′
, Cq) is not

used. Note that in P2P networks of 10 and 100 peers, the total number of queried peers

Evaluation 113

semantic flooding no starting node no semantic similarity

N = 10

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10

Queried peers

A
c

c
u

ra
c

y

N = 100

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10

Queried peers

A
c

c
u

ra
c

y

N = 1000

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30 35 40 45 50

Queried peers

A
c

c
u

ra
c

y

N = 10000

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30 35 40 45 50

Queried peers

A
c

c
u

ra
c

y

Figure 9.2: Evaluation Results: Random queries

was set to 10, whereas in P2P networks of 1000 and 10000 peers, it was set to 50. It

can be seen from Figure 9.2, that when peers are selected without using the similarity

function and also without a starting node specified (see “no semantic similarity” lines in

Figure 9.2), accuracy decreases very quickly with the total number of peers in the network.

The situation improves when semantic similarity is used and only starting node is missing

(see “no starting node” lines in Figure 9.2). When the starting node n is selected, i.e.

concept Cn is provided, the accuracy of Semantic Flooding becomes close to the accuracy

of the centralized C-Search approach (see “semantic flooding” lines in Figure 9.2). In

fact, in the network of 10000 peers, on average only 50 peers need to be queried in order

to achieve 70% of accuracy. Note that if we need to retrieve one relevant result (i.e. 10%

of accuracy), on average only one peer needs to be queried.

The evaluation of results for popular/unpopular queries are reported in Figure 9.3.

From Figure 9.3, it can be seen that even a normal flooding approach can achieve a high

accuracy for popular queries. This is because there are many peers which can provide

answers to such queries. On the other hand, for unpopular queries the accuracy of results

114 Experimental evaluation of description-based search

semantic flooding no starting node no semantic similarity

N = 10000 (popular queries)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30 35 40 45 50

Queried peers

A
c

c
u

ra
c

y

N = 10000 (unpopular queries)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30 35 40 45 50

Queried peers
A

c
c

u
ra

c
y

Figure 9.3: Evaluation Results: Popular vs. Unpopular Queries

provided by the normal flooding decrease substantially (i.e. the accuracy has decreased

4 times), whereas the Semantic Flooding approach can still provide good accuracy (i.e.

the accuracy has only decreased by 22%). Overall, Figure 9.3 shows that the Semantic

Flooding approach can provide results of high accuracy for both popular and unpopular

queries.

9.3 Summary

The results of an experimental evaluation for a description-based approach to search in

the DCM system was presented in this chapter. The algorithm proposed in Chapter 6

builds distributed yellow pages for contacts of peers by creating a semantic overlay that

links directories of different peers in the DCM network. This semantic overlay is then

flooded to search contacts based on their descriptions in a distributed manner, hence the

name Semantic Flooding. It is important to note that the evaluation of the approach

presented in this Chapter was applied to documents, i.e., we assumed entities of the type

Document.

The accuracy of the proposed algorithm was compared against that of the centralized

C-Search. In order to achieve this, the C-Search algorithm was implemented on top of

Lucene [Luc], while the Semantic Flooding algorithm was implemented by simulating the

underlying network on a single machine. The dataset for the evaluation was generated

by mapping the public tags of about 950000 users from Delicious [Del] to the data from

the Open Directory Project (DMOZ) [DMo]. Then, four data-sets were generated by

randomly selecting sub-sets of 10, 100, 1000, and 10000 users. On the other hand, AOL

query log [Pass et al., 2006] was used for the generation of query sets.

Summary 115

During the evaluation, the total number of queried peers was set to 10 for networks of

10 and 100 peers, and to 50 for networks of 1000 and 10000 peers. In fact, it was shown

that on average only 50 peers need to be queried in order to achieve 70% of accuracy in

a network of 10000 peers. Note that if we need to retrieve only one relevant result (i.e.

10% of accuracy), on average only one peer needs to be queried. Moreover, the accuracy

of the approaches were also compared with popular and unpopular queries. Finally, it

was shown that the accuracy of results for unpopular queries decreases substantially when

using normal flooding while the proposed approach (Semantic Flooding) can still provide

good accuracy.

116 Experimental evaluation of description-based search

Part IV

Conclusions

Chapter 10

Related work

The work presented in this thesis can be related with approaches from different areas,

we focus mainly in three of them. First, we consider the approaches related with contact

and identity management as a whole. Then, we discuss approaches that can be related

with the two proposed search approaches, namely, a name-based approach to search and

a description-based approach to search.

10.1 Contact and Identity Management

A number of existing applications deal with contact management on personal devices,

focusing their attention on the data level. Some relevant examples are, Duplicate Contact

Manager, Contacts+, GO Contacts, SIM Contacts Manager, TAP Contact Exchange,

Copy Contacts, Linkle Contact Exchange. Among the variety of operations that they

support, we can mention, creation of groups, importing of contacts from different accounts,

matching of contacts, information exchange and some form of contact linkage. Although

there is some shallow notion of multiple versions for the same contact in the existing

applications, we see that most of the operations they support are mainly though in the

context of services that integrate data from different devices of the same user in order to

maintain them in synchrony. The navigation and search across different contact lists are

not only not supported but they are not possible by design. In other words, by focusing

on the data level, these approaches are not able to support complex reasoning on contacts

and this can be considered the main difference with regard to the solution proposed in

this thesis.

120 Related work

We can also find many web-based systems dealing with contact directories. They can

support services that are similar to those offered by the contact management applications

discussed above, actually they are sometimes integrated as the web versions of the applica-

tions for personal devices. However, we can also identify many web-based systems manag-

ing contacts with a focus on building datasets, which are then used to offer different types

of services. Based on their scope we can distinguish between (i) those that work locally,

for instance, within the boundaries of specific institutions (e.g., https://directory.

uchicago.edu/, http://web.mit.edu/people.html); and (ii) those that work glob-

ally (e.g., http://www.whitepages.com/, https://www.yellowpages.com/whitepages,

https://www.yellowpages.com.au/, http://www.whitepages.com.au/, http://www.

anywho.com/whitepages). Our work differentiates from these approaches because its

aim is not massive dataset building but we rather focus on the network of contacts that

can emerge from linking individual contact lists of peers. Moreover, these approaches do

not focus on the owners of the information, which prevents them from being in control of

their data.

On the other hand, we have approaches that deal with identity management from

different perspectives. Taking into account the goals that they focus on, we can classify

them as follows:

• Focus on generation and assignment of identifiers Pane [2012]; Bouquet et al. [2008,

2007].

• Focus on the identity of individuals with regard to privacy, legal aspects and privacy-

enhancing technologies Ahn et al. [2009]; PrimeLife [2011].

• Focus on user authentication and networking issues Jøsang and Pope [2005]; El Ma-

liki and Seigneur [2007].

Our approach is complementary to some of these approaches. The most relevant to our

work is Pane [2012]. The main difference is give by the introduction of the notion of

profiles associated to the representation of digital entities and our focus on search.

10.2 Distributed entity directory

In this section we discuss approaches that are capable of managing information about

entities in a P2P network. More specifically, those that deals with the distributed indexing

and searching of entities based on their identifiers. To the best of our knowledge, at the

time of the analysis no approaches that integrates these areas can be found, i.e., that

perform search of entities over a P2P network. Nevertheless, we give an overview of

related approaches from both areas.

https://directory.uchicago.edu/
https://directory.uchicago.edu/
http://web.mit.edu/people.html
http://www.whitepages.com/
https://www.yellowpages.com/whitepages
https://www.yellowpages.com.au/
http://www.whitepages.com.au/
http://www.anywho.com/whitepages
http://www.anywho.com/whitepages

Distributed entity directory 121

Some entity aware approaches concentrate the attention on the definition of models

and structures for the representation of entities [Bazzanella et al., 2008]. In [Bouquet

et al., 2008] an entity name system (ENS) is proposed in order to provide support for

the generation and reuse of globally unique identifiers for entities across different and

independent RDF repositories. The local repository of a single user is not considered as a

source of data and the users need a special access permit in order to contribute with the

definition of entities. As a first step towards searching, the work presented in [Bazzanella

et al., 2009] proposes a model that analyzes the query specification and performs the

disambiguation of the desired type of entity. In [Paşca, 2007], named entities are extracted

by analyzing queries based on syntactic matching of patterns. These approaches do not

directly address the search, but their results are relevant for the definition of the directory

proposed in this thesis.

Other approaches that perform search following an entity centric perspective can be

found in the literature [Cheng and Chang, 2007; Hu et al., 2006; Hogan et al., 2011]. Entity

search engines are proposed in [Cheng and Chang, 2007; Hogan et al., 2011], heuristic rules

are used in [Hu et al., 2006] to identify entities appearing in a collection of documents and a

service to find documents that contain statements about particular resources is provided in

Sindice [Oren et al., 2008]. Most of these approach collect data from multiple web sources

(i.e., by crawling) but do not consider distribution at the level of single users (i.e., a P2P

network). In particular, [Hogan et al., 2011] automatically aggregates descriptions from

the different sources and allows subsequent navigation to related entities. Distribution is

considered in terms of clusters of computers that allow parallel processing and scalable

storage but the search is centralized (i.e., they build centralized indexes). In contrast

to these approaches, our approach performs a distributed search in a P2P network and

allows users to maintain their data locally.

On the other hand, we have P2P approaches, which perform distributed search but

are not aware of entities [Risson and Moors, 2006; Lua et al., 2005]. They are mainly

classified as unstructured and structured approaches. The first unstructured networks

(e.g., Gnutella1) have scalability problems due to the number of messages generated and

do not guarantee that all answers will be found. Other approaches use clustering tech-

niques [Bawa et al., 2003; Cohen et al., 2003; Spripanidkulchai et al., 2003; Crespo and

Garcia-Molina, 2005; Joseph, 2002], their goal is to find the best group to answer a query

and then send the query to the peers in that group. Our approach can find all available

answers and has proven to be promising in terms of scalability.

We can find also more structured approaches that aim to guarantee the location of

the content shared on the network (e.g., CAN [Ratnasamy et al., 2001], Chord [Stoica

1http://en.wikipedia.org/wiki/Gnutella

http://en.wikipedia.org/wiki/Gnutella

122 Related work

et al., 2001] Pastry [Druschel and Rowstron, 2001] and Tapestry [Zhao et al., 2004]

They store pairs of 〈key, value〉 in a Distributed Hash Table (DHT) and then retrieve the

value associated with a given key. Other approaches perform multi-keyword search using

DHTs but they can be very expensive in terms of required storage and generated traffic

(e.g., see [Li et al., 2003]). Hierarchical structures combine clustering techniques with the

structure of DHTs [Ganesan et al., 2004; Janakiram et al., 2011; Papapetrou et al., 2010;

Garcés-Erice et al., 2003]. In general, P2P approaches provide the techniques needed in

order to build our solution. The novelty of our approach is in the domain of application

of such techniques.

10.3 Semantic flooding

A number of P2P search approaches have been proposed in the literature (for an overview

see [Risson and Moors, 2006]). The algorithm implemented by Gnutella is the classical

example of a query flooding algorithm. In early versions of Gnutella, connections between

peers were made mainly chaotically. A P2P network was completely unstructured, i.e. it

did not have any predefined structure. The query sent by a peer was propagated to all the

actively connected peers within a predefined number of hops from the query sender. The

search process was blind, i.e. peers have no information related to the resource location.

The lack of scalability was recognized as the main problem of the Gnutella. Various

techniques were adopted in later versions of the Gnutella protocol in order to make the

search process more scalable. Super-peers were introduced to utilize the heterogeneity

between peers in computer power, bandwidth and availability. Informed search, i.e. when

peers maintain additional information about resource locations which can be useful for the

search, replaced blind search. In Gnutella, informed search is implemented by using Query

Routing Protocol (QRP). Query Routing Tables (QRT) consisting of hashed keywords

are exchanged between peers. During query routing, search request is propagated only to

those peers which have all of the query words in its QRT. In [Crespo and Molina, 2002],

a peer uses Routing Indices to forward queries to neighbors that are more likely to have

answers. Query topics are compared to neighbor’s expertise to select relevant peers. In

our approach, search for relevant peers is implemented by using semantic links created

between nodes in classifications of different peers.

The basic idea of [Bawa et al., 2003; Cohen et al., 2003; Spripanidkulchai et al., 2003;

Zhu and Hu., 2004; Crespo and Garcia-Molina, 2005; Joseph, 2002] is to organize peers

into Similar Content Groups on top of unstructured P2P systems, i.e. a peer clustering

approach is implemented. Peers from the same group tend to be relevant to the same

queries. A query is guided to Similar Content Group that is more likely to have answers

Semantic flooding 123

to the given query and then the query is flooded within this group. For instance, in

Semantic Overlay Networks (SONs) [Crespo and Garcia-Molina, 2005], peers that have

similar documents are clustered at the same group. A predefined classification hierarchy is

used to classify the peers’ documents. Thus two peers belong to the same SON if some of

their documents classified under the same concept in this global classification. Peers can

belong to more than one SON. In our approach, peers with similar content are connected

to each other by creating semantic links between nodes in classifications of these peers.

Differently from [Crespo and Garcia-Molina, 2005], a global classification is not required

and users are free to create their own classification hierarchies.

As mentioned in the previous section, CAN [Ratnasamy et al., 2001], Chord [Stoica

et al., 2001], Pastry [Druschel and Rowstron, 2001], and Tapestry [Zhao et al., 2001] use

another approach to the routing and topology organization of P2P networks, and they are

highly structured. Here we analyze them under the light of a semantic flooding approach.

The topology is tightly controlled and documents (or information about documents) are

placed at the precisely specified locations defined by their keys. A data clustering approach

is implemented, i.e. similar data (meta-data) is placed in the same place. Search in these

systems is limited to an exact key search. Mercury [Bharambe et al., 2004] supports

multi-attribute range queries, e.g. each query is a conjunction of ranges in one or more

attributes. Examples of how a full text retrieval can be implemented on top of structured

P2P networks are described in [Li et al., 2003; Luu et al., 2008; Bender et al., 2005; Tang

et al., 2003]. A straightforward way to implement syntactic search is to use the DHT

to distribute peers’ inverted indices in the P2P network [Risson and Moors, 2006]. In

order to find a set of documents which contain a term, the peer responsible for this term

has to be contacted and the corresponding posting list need to be retrieved. In order

to search for more than one term, first, the posting list for every single term need to be

retrieved, and then all these posting lists have to be intersected. The above approach

can potentially be very expensive in terms of required storage and generated traffic (see

e.g. [Li et al., 2003]). For instance, posting lists need to be transferred when peers

join or leave the network. Searching with multiple terms requires intersection of posting

lists, which also need to be transferred. In the case of huge posting lists, a bandwidth

consumption can exceed the maximum allowed limits. In [Li et al., 2003], it is shown

that the efficiency of DHT can be even worse than the efficiency of a simple flooding

algorithm. Some of optimization techniques (e.g. Bloom Filters), which can improve the

performance of posting lists intersecting, are summarized in [Li et al., 2003]. In [Luu

et al., 2008], indexing is performed by terms and term sets appearing in a limited number

of documents. Different filtering techniques are used in [Luu et al., 2008] in order to make

vocabulary to grow linearly with respect to the document collection size. In Minerva

124 Related work

[Bender et al., 2005] DHT holds only compact, aggregated meta-information about the

peers’ local indexes which is used to efficiently select promising peers from across the peer

population that can best locally execute a query. In our approach, a DHT based P2P

Concept Search is used only for indexing and retrieval of nodes from classifications and

not documents. The problem with storage is reduced since inverted indices for nodes are

usually smaller than those for documents which are classified to these nodes. Moreover,

the generated traffic is reduced because, in P2P Concept Search, a query consisting of a

single complex concept do not require the intersection of inverted indices.

All of the described so far approaches are based on syntactic matching of words and,

therefore, the quality of results produced by these approaches can be negatively affected by

the problems related to the ambiguity of natural language. Some P2P search approaches

use matching techniques which are based on the knowledge about term relatedness (and

not only syntactic similarity of terms). For instance, statistical knowledge about term co-

occurrence is used in [Tang et al., 2003]. Knowledge about synonyms and related terms is

used in [Ma et al., 2007]. In our approach, the problem of ambiguity of natural language

is dealt with by using semantic matching of complex concepts. Different semantic search

approaches are also used in [Zhuge et al., 2005; Xiao and Cruz, 2006; Nejdl et al., 2002;

Haase et al., 2004; Löser et al., 2010]. A semantic link P2P network (P2PSLN) [Zhuge

et al., 2005] specifies and manages semantic relationships between peers’ data schemas. A

semantic-based peer similarity measurement is used for efficient query routing. A schema

mapping algorithm is used for query reformulation and heterogeneous data integration.

Ontology-based P2P data management system (OPDMS) [Xiao and Cruz, 2006] is based

on ontology mapping and query processing. Edutella [Nejdl et al., 2002] and Bibster

[Haase et al., 2004] are built on JXTA framework and aim to combine meta-data with

P2P networks. Each peer is described and published using an advertisement, which is an

XML document describing a network resource. For example in the Bibster [Haase et al.,

2004] system, these expertise descriptions contain a set of topics that the peer is an expert

in. Peers use a shared ontology to advertise their expertise in the Peer-to-Peer network.

INGA [Löser et al., 2010] creates personal shortcuts by analyzing the queries issued by the

local peer and the queries that are routed through the local peer. Query routing is made

by analyzing shortcuts and their similarity to the query and a common topic hierarchy is

assumed for the evaluation of this similarity. In our approach, semantic links are created

between semantically related nodes in classifications of different peers and not between

data schemas of the peers, as in [Zhuge et al., 2005]. Moreover, differently from [Haase

et al., 2004; Löser et al., 2010], our approach does not assume a shared ontology.

In Table 10.1, we provide a summary of the search methods discussed in this section.

S
em

a
n

tic
fl

ood
in

g
125

Table 10.1: Search Methods in P2P networks.

Network

structure
Clustering

Identifying semantically

relevant peers

Search

method

Gnutella

[Risson and Moors, 2006]
Unstructured - Blind Keyword

Routing Indices

[Crespo and Molina, 2002]
Unstructured - Informed Keyword

SETS

[Bawa et al., 2003]
Unstructured Peers Informed Keyword

Associative overlay

[Cohen et al., 2003]
Unstructured Peers Informed Keyword

Interest-based overlay

[Spripanidkulchai et al., 2003]
Unstructured Peers Informed Keyword

ESS

[Zhu and Hu., 2004]
Unstructured Peers Informed Keyword

SONs

[Crespo and Garcia-Molina, 2005]
Unstructured Peers Informed Keyword

12
6

R
ela

ted
w

o
rk

NeuroGrid

[Joseph, 2002]
Unstructured Peers Informed Keyword

P2PSLN

[Zhuge et al., 2005]
Unstructured Peers Informed Semantic

OPDMS

[Xiao and Cruz, 2006]
Unstructured Peers Informed Semantic

INGA

[Löser et al., 2010]
Unstructured Peers Informed Semantic

EDUTELA

[Nejdl et al., 2002]
Hybrid Peers Informed Semantic

Bibster

[Haase et al., 2004]
Hybrid Peers Informed Semantic

pSearch

[Tang et al., 2003]
Structured Data Informed Semantic

Concept Index in P2P

[Ma et al., 2007]
Structured Data Informed Semantic

CAN

[Ratnasamy et al., 2001]
Structured Data Informed Key

Chord

[Stoica et al., 2001]
Structured Data Informed Key

S
em

a
n

tic
fl

ood
in

g
127

Pastry

[Druschel and Rowstron, 2001]
Structured Data Informed Key

Tapestry

[Zhao et al., 2001]
Structured Data Informed Key

Mercury

[Bharambe et al., 2004]
Structured Data Informed Keyword

MINERVA

[Bender et al., 2005]
Structured Data Informed Keyword

AlvisP2P

[Luu et al., 2008]
Structured Data Informed Keyword

128 Related work

Chapter 11

Conclusions and future work

11.1 The context

This PhD Thesis deals with the problem of contact and identity management in a world

of people relying on personal devices for their every day communication activities. In

particular, we focus the attention directories of contacts or contact lists used to organize

information in a network of peers. Within this context, the foundational notions for this

thesis were first introduced in order to use them for building the Distributed Contact

Management System (DCM system) on top of them. Namely,

• A contact was defined as an entity from the real world that is somehow contactable

by possibly diverse means;

• A peer was defined as a user of the system, maintaining a contact list and capable

of participating in communication activities; and

• An entity represents an abstract of physical object that exist in the real world, it

has a type and is described by a set of attributes.

In this manner, an entity-centric approach was adopted for the representation of contacts

and peers.

Related with the adoption of a model based on entities for representing information

in the system, the notion of a knowledge schema was presented as a mean to achieve

interoperability between peers. The knowledge schema defines templates for the different

types of entities used in the system, establishing restrictions on the set of attributes used

to describe a given type. These templates are then instantiated into Digital Entities

130 Conclusions and future work

(DEs) and their Attributes (As) to actually represent knowledge about entities from the

real world. Two types of identifiers were introduced in association to entities in order to

distinguish among many possibly different descriptions of the same real world entity. A

semantic URL (SURL) represents a particular description, while a semantic URI (SURI)

represents the actual entity without attaching it to any specific description.

Then, it was also discussed how the hierarchical structure of classifications (also called

lightweight ontologies [Giunchiglia and Zaihrayeu, 2008]) can be exploited to organize

contacts. On one hand, the notion of classification of subjects was presented as a mean

to organize contacts with whom the user is connected through social ties. On the other

hand, the classification of objects was presented to organize contacts based on their char-

acteristics (i.e., as objects described by certain attributes).

11.2 The contributions

Taking into account the described context, this thesis considered two dimensions of the

problem of managing peers contacts. First, the local dimension of peers needing to orga-

nize and find information that allow them to contact other peers, and second, the global

dimension of peers having multiple identities and needing to stay in control of them. Four

contributions were presented to address this twofold problem.

The reference architecture for the DCM System. First, the analysis of the system

requirements was presented. The outcome of such analysis was discussed in terms

of: (i) data storage for an inherently distributed scenario, (ii) peers interaction and

linking, (iii) services that the system needs to offer, (iv) possible privacy concerns

that may arise, and the (v) the system performance.

Tanking into consideration the identified requirements a general view of the system

was presented. In it, the different (external) actors that can interact with the DCM

system were defined, as well as the nature and mechanisms for these interactions.

Next, the system logical view introduced the DCM Portal, DCM App and DCM

Network as key system components allowing peers to create accounts, interact with

each other and access to different type of services. Last, a dynamic view of the

system was presented, showing a simplified view of different interactions among

system components. Three types of interactions were distinguished: initialization,

sharing and search.

A distributed directory of entities. We presented an approach to build a distributed

directory of entities in the DCM system that distinguishes between the notions of

Digital Entity (DE) and Real World Entity (WE) in order to link local directories of

The contributions 131

different peers. The directory provides search services based on entity identifiers. In

particular, we presented the algorithms for searching entities based on their names.

We discussed the name matching problem that appears as a consequence of the

many-to-many relation between names and (WEs). Then, we showed that, by its

design, our approach deals with the problem of matching names inside the network

(i.e., the first part of the name matching problem).

The data from peers are stored locally, only the identifiers and the links to the

local representations are indexed. This infrastructure allows the implementation of

access control mechanisms on the local representations in order to deal with privacy

issues. At the same time, the changes made by peers in local representations, are

available in the directory in a straightforward manner. Moreover, these features of

the approach are independent from the specific underlying implementation of the

indexes. In other words, the indexes can be stored in a centralized or distributed

manner, while data will be still distributed.

A semantic overlay linking directories of different peers. It was shown how the

notion of classification of objects COs, as defined in Section 3.4, can be exploited to

build a semantic overlay linking directories of different peers in the DCM network.

The set of links which connect nodes inside a classification plus C-OWL links across

classifications constitute a semantic overlay network which can be built on top of

any underlying set of peers and their physical connections. Thus allowing peers

to semantically search contacts that are distributed in the DCM network and have

certain characteristics.

In order to build a semantic overlay, we discussed how new semantic links can be

automatically computed by using semantic matching (S-Match) approach between

two known classifications. This was shown to be particularly relevant when a new

peer joints the network or when a new node is created in a classification. When

relevant classifications are not known the user can select a subset of the known peers,

by selecting a node from its classification of subjects CS or from its classification of

objects CO, and run S-Match with their classifications. As another alternative we

proposed to use the distributed entity directory to find other peers in the network

having relevant information but that are not in the local contact list, and run S-

Match with their classifications.

Next, we presented an implementation of the approach that is based on entities

of the type Document and decomposes the problem into three subproblems. The

first, identifying semantically relevant peers, defined as those having nodes in their

classifications which are relevant to the search request. The second, searching inside

132 Conclusions and future work

relevant peers, which is done by using C-Search [Giunchiglia et al., 2009b]. And the

third, aggregation of the search results, which includes merging query answers from

different peers into a single query answer and computing a relevance score for each

answer. The relevance score in the implementation presented is done using cosine

similarity and tf-idf weight measure used in Lucene [Luc].

Similar to the entity directory, also in this approach the data from peers are stored

locally. The links to classifications from other peers are also stored locally. This

means that the modifications made by peers to the local representation of their

contacts are available in the semantic overlay network also in a straightforward

manner. Moreover, this infrastructure can also benefits from the implementation of

access control mechanisms on the local representations in order to deal with privacy

issues.

The Distribute Contact Management (DCM) System. The DCM System was pre-

sented to enclose the reference architecture and the search approaches previously

discussed. In order to do so, two application specific notions were introduced, Pre-

sentation Card (PC) and DCM User.

The PCs were formally defined to support the exchanging of contact information

between peers. A PC denotes a profile created to present one view (perspective) of

a particular contact, represented in the system as an entity DE. On the other hand,

a DCM User was defined as a peer having an account in the DCM platform.

Then, different types of usage scenarios illustrating the main functionalities and

features of the system were presented. Namely,

• The initialization scenarios correspond to the first interactions that the peers

have with the system, when the peer is starting to use the DCM system. They

describe activities like, creation of an user account, creation of presentation

cards, importing contacts, and creating them by hand.

• The sharing scenarios correspond to interactions that peers can have with other

peers (users and not users of the system) using the DCM application. They

include activities related to sharing, publishing and exchanging the own contact

information as well as the contact of third parties.

• The search scenarios, show examples of the envisioned search features of the

proposed application including activities like searching contacts by name, based

on existing contact information, and by description.

The evaluations 133

11.3 The evaluations

Experimental evaluations were performed for the two search approaches of the DCM

system. Namely, the name-based approach proposed to search for contacts in a distributed

directory of entities, and the description-based approach proposed to search contacts in

a semantic overlay of linked directories from different peers.

The evaluation of the name-based approach. The implementation was done using

a Distributed Hash Table (DHT) for the storage of indexes. Two DHT protocols were

mainly considered, Chord and Kademlia, the latter was selected because of several

features that make it better for real applications. Next, a comparison of existing

implementations of the Kademlia protocol was presented. TomP2P, an advanced

DHT library that extends the basic functions of DHTs, was selected.

The evaluation was done using PlanetLab as a testbed. PlanetLab provides a network

of computers that are distributed around the world, providing a realistic scenario

in terms of network conditions. Networks of 50, 100 and 150 peers were configured

assuming that the local entity base of peers contains, in average, 2000 DEs. When

running the evaluation process, the peers are activated pseudo-simultaneously and

execute a set 1400 queries randomly selected from an initial set of entity names.

Once all the peers ended the search process, the average query time for the network

was computed.

It was shown that the average query time (2.7 seconds) was stable with regard to

the network growth, which is considered a promising result for the scalability of the

directory. Moreover, the distribution of the query time with regard to the network

growth was also stable in networks of different sizes. It was also noted that more

than 55% of queries were actually computed in less than a second and 70% of them

in less than 2 seconds.

The evaluation of the description-based approach. It was performed by simulat-

ing a distributed yellow pages for contacts of peers, which creates a semantic overlay

that links directories of different peers in the DCM network. This semantic over-

lay was then flooded to search contacts based on their descriptions in a distributed

manner, i.e., a Semantic Flooding was performed. It is important to note that the

evaluation of this approach was applied to documents, i.e., we assumed entities of

the type Document.

The accuracy of the proposed algorithm was compared against that of the centralized

C-Search. In order achieve this, the C-Search algorithm was implemented on top of

Lucene [Luc], while the Semantic Flooding algorithm was implemented by simulating

134 Conclusions and future work

the underlying network on a single machine. The dataset for the evaluation was

generated by mapping the public tags of about 950000 users from Delicious [Del]

to the data from the Open Directory Project (DMOZ) [DMo]. Then, four data-sets

were generated by randomly selecting sub-sets of 10, 100, 1000, and 10000 users.

On the other hand, AOL query log [Pass et al., 2006] was used for the generation of

query sets.

During the evaluation, the total number of queried peers was set to 10 for networks

of 10 and 100 peers, and to 50 for networks of 1000 and 10000 peers. In fact, it

was shown that on average only 50 peers need to be queried in order to achieve

70% of accuracy in a network of 10000 peers. Note that if we need to retrieve

only one relevant result (i.e. 10% of accuracy), on average only one peer needs

to be queried. Moreover, the accuracy of the approaches were also compared with

popular and unpopular queries. Finally, it was shown that the accuracy of results

for unpopular queries decreases substantially when using normal flooding while the

proposed approach (Semantic Flooding) can still provide good accuracy.

11.4 Future work

A number of paths with opportunities to extend the scope of this thesis were left for future

work1, either for lack of time or limitation of resources. In what follows we describe some

of these paths.

The first and most obvious is to analyse and implement possible improvements to pro-

posed approaches, as well as their evaluations. For instance, in the name-based search, we

would like to integrate techniques that can reduce the effects at query time of having slow

peers in the network. We are also interested in returning results in real time, as lookups

are completed, in order to avoid waiting until all the lookups in the query have ended.

In the case of the description-based search, we performed the evaluation by simulating

the network itself. We are interested to see how the approach performs, both in terms of

query time and the cost of maintaining the semantic overlay, in more realistic settings.

Another aspect that we are interested is the exploration of other, possibly broader,

scenarios. This would include, the application of the proposed models and search ap-

proaches. For instance, an interesting scenario to consider would be the extension of the

notion of contact to profiles of peers in terms of their knowledge, capabilities, resources

and other aspects. In this way, peer search approaches would be enabled to find peers

based on characteristics that allow them to perform certain activities or provide a given

1Future work is highly framed in the context of SmartSociety Project (EU FP7 Grant n. 600854, http:

//www.smart-society-project.eu/).

http://www.smart-society-project.eu/
http://www.smart-society-project.eu/

Future work 135

service. On one hand the main challenge to address in this scenario is scalability, since

is not only contact information that we will be dealing with. On the other hand, in our

approach data from profiles are maintain in the local directories of their owners and the

extra load is given only by indexes.

By last, we mentioned throughout the thesis that our work takes into consideration

main privacy principles, proposing a privacy-friendly design that facilitate the adoption of

privacy enhancing technologies. As part of the future work, we are interested in extending

the proposed approaches to integrate privacy preserving tools. This requires a more deeply

study of privacy issues in the context of the DCM system, which may in turn require a re-

design of some of the proposed models. Moreover, the outcome of such study should result

in the integration of mechanisms to represent, understand and enforce privacy policies.

Although we are aware of the challenges of this line of work, we also believe it represents

the most interesting path for a future work.

Bibliography

Dmoz: http://www.dmoz.org/.

Delicious: http://www.delicious.com/.

Gnutella. URL http://en.wikipedia.org/wiki/Gnutella.

Lucene: http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/search/Similarity.html.

Ahn, Gail-Joon; Ko, Moonam, and Shehab, M. Privacy-enhanced user-centric identity management. In Commu-

nications, 2009. ICC ’09. IEEE International Conference on, pages 1–5, June 2009. doi: 10.1109/ICC.2009.

5199363.

Bawa, M.; Manku, G., and Raghavan, P. Sets: Search enhanced by topic segmentation. In Proceedings of ACM

SIGIR Conference, pages 306–313, 2003.

Bazzanella, Barbara; Chaudhry, Junaid Ahsenali; Themis Palpanas, , and Stoermer, Heiko. Towards a Gen-

eral Entity Representation Model. 5th Workshop on SWAP, 2008. URL http://disi.unitn.it/~themis/

publications/swap08.pdf.

Bazzanella, Barbara; Stoermer, Heiko, and Bouquet, Paolo. Searching for individual entities: a query analysis.

Technical report, University of Trento, 2009.

Bender, Matthias; Michel, Sebastian; Triantafillou, Peter; Weikum, Gerhard, and Zimmer, Christian. Minerva:

Collaborative p2p search. In Proceedings of VLDB, pages 1263–1266, 2005.

Bharambe, A.; Agrawal, M., and Seshan, S. Mercury: Supporting multi-attribute range queries. In Proceedings

of ACM SIGCOMM, 2004.

Bignotti, Enrico. Semantic name matching. Master’s thesis, University of Trento, 2012.

Borgida, Alexander; Walsh, Thomas, and Hirsh, Haym. Towards measuring similarity in description logics. In

Proceedings of the 2005 International Workshop on Description Logics (DL2005), 2005.

Bouquet, P.; Giunchiglia, F.; van Harmelen, F.; Serafini, L., and Stuckenschmidt, H. Contextualizing ontologies.

In Journal of Web Semantics, volume 1, pages 325–343, 2004.

Bouquet, Paolo; Stoermer, Heiko, and Giacomuzzi, Daniel. Okkam: Enabling a web of entities. I3, 5:7, 2007.

Bouquet, Paolo; Stoermer, Heiko; Niederee, Claudia, and Maña, Antonio. Entity name system: The back-bone

of an open and scalable web of data. In Proceedings of the 2nd IEEE ICSC, pages 554–561, Washington,

DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3279-0. doi: 10.1109/ICSC.2008.37. URL http:

//portal.acm.org/citation.cfm?id=1446294.1446425.

http://www.dmoz.org/
http://www.delicious.com/
http://en.wikipedia.org/wiki/Gnutella
http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/search/Similarity.html
http://disi.unitn.it/~themis/publications/swap08.pdf
http://disi.unitn.it/~themis/publications/swap08.pdf
http://portal.acm.org/citation.cfm?id=1446294.1446425
http://portal.acm.org/citation.cfm?id=1446294.1446425

138 Bibliography

Camp, L.J. Digital identity. Technology and Society Magazine, IEEE, 23(3):34–41, Fall 2004. ISSN 0278-0097.

doi: 10.1109/MTAS.2004.1337889.

Cheng, Tao and Chang, Kevin Chen-Chuan. Entity search engine: Towards agile best-effort information integra-

tion over the web. In CIDR 2007, pages 108–113, 2007.

Cohen, E.; Kaplan, H., and Fiat, A. Associative search in peer to peer networks: Harnessing latent semantics. In

Proceedings of IEEE INFOCOM, 2003.

Crespo, A. and Molina, H. Garcia. Routing indices for peer-to-peer systems. In Proceedings of the 22nd IEEE

International Conference on Distributed Computing Systems (ICDCS), 2002.

Crespo, Arturo and Garcia-Molina, Hector. Semantic overlay networks for p2p systems. In Moro, Gianluca;

Bergamaschi, Sonia, and Aberer, Karl, editors, Agents and Peer-to-Peer Computing, volume 3601 of Lecture

Notes in Computer Science, pages 1–13. Springer Berlin / Heidelberg, 2005. URL http://dx.doi.org/10.

1007/11574781_1. 10.1007/11574781 1.

Do Van Thanh, Ivar Jørstad. The ambiguity of identity. Identity Management, page 3, 2007.

Druschel, P. and Rowstron, A. Pastry: scalable, distributed object location and routing for large-scale peer-to-peer

systems. In Proc.of ACM SIGCOM, 2001.

El Maliki, T. and Seigneur, J. M. A survey of user-centric identity management technologies. In Emerging

Security Information, Systems, and Technologies, 2007. SecureWare 2007. The International Conference on,

pages 12–17, Oct 2007. doi: 10.1109/SECUREWARE.2007.4385303.

European Commission, . Directive 95/46/ec of the european parliament and of the council of 24 october 1995 on the

protection of individuals with regard to the processing of personal data and on the free movement of such data,

November 1995. URL http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:

HTML.

European Commission, . Proposal for a regulation of the european parliament and of the council on the protection

of individuals with regard to the processing of personal data and on the free movement of such data (general

data protection regulation), com(2012) 11 final 2012/0011 (cod), January 2012. URL http://ec.europa.eu/

justice/data-protection/document/review2012/com_2012_11_en.pdf.

Ganesan, Prasanna; Gummadi, Krishna, and Garcia-Molina, H. Canon in g major: designing dhts with hierar-

chical structure. In ICDCS’04, pages 263 – 272, 2004. doi: 10.1109/ICDCS.2004.1281591.

Garcés-Erice, Luis; Biersack, Ernst W.; Felber, Pascal; Ross, Keith W., and Urvoy-Keller, Guillaume. Hierarchical

peer-to-peer systems. In Euro-Par, pages 1230–1239, 2003.

Giunchiglia, Fausto and Hume, Alethia. Distributed name-based entity search. In Workshop on Discovering

Meaning On the Go in Large and Heterogeneous Data (LHD-12), 2012.

Giunchiglia, Fausto and Hume, Alethia. A distributed directory system. In 9th International Workshop on

Scalable Semantic Web Knowledge Base Systems (SSWS 2013), page 97, 2013a.

Giunchiglia, Fausto and Hume, Alethia. A distributed entity directory. In The Semantic Web: ESWC 2013

Satellite Events, pages 291–292. Springer, 2013b.

Giunchiglia, Fausto and Zaihrayeu, Ilya. Lightweight ontologies. In The Encyclopedia of Database Systems, 2008.

http://dx.doi.org/10.1007/11574781_1
http://dx.doi.org/10.1007/11574781_1
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML
http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf
http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf

Bibliography 139

Giunchiglia, Fausto; Shvaiko, Pavel, and Yatskevich, Mikalai. Discovering missing background knowledge in

ontology matching. In Proc. of ECAI, pages 382–386, 2006.

Giunchiglia, Fausto; Yatskevich, Mikalai, and Shvaiko, Pavel. Semantic matching: Algorithms and implementa-

tion. Journal on Data Semantics (JoDS), 9:1–38, 2007a.

Giunchiglia, Fausto; Zaihrayeu, Ilya, and Kharkevich, Uladzimir. Formalizing the get-specific document classifica-

tion algorithm. In Kovács, László; Fuhr, Norbert, and Meghini, Carlo, editors, ECDL, volume 4675 of Lecture

Notes in Computer Science, pages 26–37. Springer, 2007b. ISBN 978-3-540-74850-2.

Giunchiglia, Fausto; Zhang, Rui, and Crispo, Bruno. Relbac: Relation based access control. In Proceedings of the

2008 Fourth International Conference on Semantics, Knowledge and Grid, SKG ’08, pages 3–11, Washington,

DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3401-5. doi: 10.1109/SKG.2008.76. URL http:

//dx.doi.org/10.1109/SKG.2008.76.

Giunchiglia, Fausto; Kharkevich, Uladzimir, and Noori, Sheak Rashed Haider. P2P Concept Search: Some

preliminary results. In SemSearch2009 workshop at WWW, 2009a.

Giunchiglia, Fausto; Kharkevich, Uladzimir, and Zaihrayeu, Ilya. Concept search. In Aroyo, Lora; Traverso, Paolo;

Ciravegna, Fabio; Cimiano, Philipp; Heath, Tom; Hyv√∂nen, Eero; Mizoguchi, Riichiro; Oren, Eyal; Sabou,

Marta, and Simperl, Elena, editors, The Semantic Web: Research and Applications, volume 5554 of Lecture

Notes in Computer Science, pages 429–444. Springer Berlin Heidelberg, 2009b. ISBN 978-3-642-02120-6. doi:

10.1007/978-3-642-02121-3 33. URL http://dx.doi.org/10.1007/978-3-642-02121-3_33.

Giunchiglia, Fausto; Kharkevich, Uladzimir; Hume, Alethia, and Chatvorawit, Piyatat. Semantic flooding: search

over semantic links. In Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Conference on,

pages 191–196. IEEE, 2010.

Giunchiglia, Fausto; Kharkevich, Uladzimir, and Hume, Alethia. Semantic flooding: Semantic search across

distributed lightweight ontologies. World Wide Web, pages 1–19, 2011. ISSN 1386-145X. URL http://dx.

doi.org/10.1007/s11280-010-0108-y. http://dx.doi.org/10.1007/s11280-010-0108-y.

Giunchiglia, Fausto; Dutta, Biswanath, and Maltese, Vincenzo. From knowledge organization to knowledge

representation. Knowledge Organization, 41(1), 2014.

Giunchiglia, Fausto; Marchese, Maurizio, and Zaihrayeu, Ilya. Encoding classifications into lightweight ontologies.

In Journal on Data Semantics (JoDS) VIII, Winter 2006.

Haase, Peter; Broekstra, Jeen; Ehrig, Marc; Menken, Maarten; Mika, Peter; Plechawski, Michal; Pyszlak, Pawel;

Schnizler, Björn; Siebes, Ronny; Staab, Steffen, and Tempich, Christoph. Bibster - a semantics-based biblio-

graphic peer-to-peer system. In Proceedings of the 3rd ISWC, pages 122–136, 2004.

Hogan, Aidan; Harth, Andreas; Umbrich, JÃrgen; Kinsella, Sheila; Polleres, Axel, and Decker, Stefan. Searching

and browsing linked data with swse: The semantic web search engine. JWS: Science, Services and Agents

on the World Wide Web, 9(4):365 – 401, 2011. ISSN 1570-8268. doi: 10.1016/j.websem.2011.06.004. URL

http://www.sciencedirect.com/science/article/pii/S1570826811000473.

Hogan, Aidan; Zimmermann, Antoine; Umbrich, Juergen; Polleres, Axel, and Decker, Stefan. Scalable and dis-

tributed methods for entity matching, consolidation and disambiguation over linked data corpora. JWS:

Science, Services and Agents on the World Wide Web, 10, 2012. ISSN 1570-8268. URL http://www.

websemanticsjournal.org/index.php/ps/article/view/224.

http://dx.doi.org/10.1109/SKG.2008.76
http://dx.doi.org/10.1109/SKG.2008.76
http://dx.doi.org/10.1007/978-3-642-02121-3_33
http://dx.doi.org/10.1007/s11280-010-0108-y
http://dx.doi.org/10.1007/s11280-010-0108-y
http://www.sciencedirect.com/science/article/pii/S1570826811000473
http://www.websemanticsjournal.org/index.php/ps/article/view/224
http://www.websemanticsjournal.org/index.php/ps/article/view/224

140 Bibliography

Holloway, Geoff and Dunkerley, Mike. The Math, Myth and Magic of Name Search and Matching. Search Software

America, 5th edition, 2004.

Hu, Guoping; Liu, Jingjing; Li, Hang; Cao, Yunbo; Nie, Jian-Yun, and Gao, Jianfeng. A supervised learning

approach to entity search. In AIRS’06, volume 4182 of LNCS, pages 54–66. 2006. URL http://dx.doi.org/

10.1007/11880592_5.

Janakiram, Dharanipragada; Giunchiglia, Fausto; Haridas, Harisankar, and Kharkevich, Uladzimir. Two-layered

architecture for peer-to-peer concept search. In 4th Int. Sem Search Workshop, 2011.

Jøsang, Audun and Pope, Simon. User centric identity management. In AusCERT Asia Pacific Information

Technology Security Conference, page 77. Citeseer, 2005.

Joseph, Sam. Neurogrid: Semantically routing queries in peer-to-peer networks. In Gregori, Enrico; Cherkasova,

Ludmila; Cugola, Gianpaolo; Panzieri, Fabio, and Picco, Gian, editors, Web Engineering and Peer-to-Peer

Computing, volume 2376 of Lecture Notes in Computer Science, pages 202–214. Springer Berlin / Heidelberg,

2002. doi: 10.1007/3-540-45745-3 18. URL http://dx.doi.org/10.1007/3-540-45745-3_18.

Li, Jinyang; Thau, Boon; Joseph, Loo; Hellerstein, M., and Kaashoek, M. Frans. On the feasibility of peer-to-peer

web indexing and search. In IPTPS’03, 2003.

Löser, Alexander; Staab, Steffen, and Tempich, Christoph. Semantic social overlay networks. In Shen, Xuemin;

Yu, Heather; Buford, John, and Akon, Mursalin, editors, Handbook of Peer-to-Peer Networking, pages 189–

219. Springer US, 2010. ISBN 978-0-387-09751-0. URL http://dx.doi.org/10.1007/978-0-387-09751-0_8.

10.1007/978-0-387-09751-0 8.

Lua, Eng Keong; Crowcroft, Jon; Pias, Marcelo; Sharma, Ravi, and Lim, Steven. A survey and comparison of

peer-to-peer overlay network schemes. IEEE Communications Surveys and Tutorials, 7:72–93, 2005.

Luu, Toan; Skobeltsyn, Gleb; Klemm, Fabius; Puh, Maroje; Žarko, Ivana Podnar; Rajman, Martin, and Aberer,

Karl. AlvisP2P: scalable peer-to-peer text retrieval in a structured p2p network. In Proc. VLDB Endow., 2008.

Ma, Wenhui; Fang, Wenbin; Wang, Gang, and Liu, Jing. Concept index for document retrieval with peer-to-peer

network. In Proc. SNPD ’07, 2007. ISBN 0-7695-2909-7. doi: http://dx.doi.org/10.1109/SNPD.2007.216.

Nejdl, W.; Wolf, B.; Qu, C.; Decker, S.; Sintek, M.; Naeve, A.; Nilsson, M.; Palmer, M., and Risch, T. Edutella:

A p2p networking infrastructure based on rdf. In Proceedings of WWW’02, 2002.

Oren, E.; Delbru, R.; Catasta, M.; Cyganiak, R.; Stenzhorn, H., and Tummarello, G. Sindice. com: a document-

oriented lookup index for open linked data. International Journal of Metadata, Semantics and Ontologies, 3

(1):37–52, 2008.

Paşca, Marius. Weakly-supervised discovery of named entities using web search queries. In Proceedings of the six-

teenth ACM conference on CIKM ’07, pages 683–690, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-803-

9. doi: http://doi.acm.org/10.1145/1321440.1321536. URL http://doi.acm.org/10.1145/1321440.1321536.

Pane, Juan. Distributed Identity Management. Phd thesis, University of Trento, 2012.

Papapetrou, Odysseas; Siberski, Wolf, and Nejdl, Wolfgang. Pcir: Combining dhts and peer clusters for efficient

full-text p2p indexing. Computer Networks, 54(12):2019–2040, 2010.

Pass, Greg; Chowdhury, Abdur, and Torgeson, Cayley. A picture of search. In InfoScale’06: Proceedings of the

1st international conference on Scalable information systems, New York, NY, USA, 2006. ACM.

http://dx.doi.org/10.1007/11880592_5
http://dx.doi.org/10.1007/11880592_5
http://dx.doi.org/10.1007/3-540-45745-3_18
http://dx.doi.org/10.1007/978-0-387-09751-0_8
http://doi.acm.org/10.1145/1321440.1321536

BIBLIOGRAPHY 141

PrimeLife, . PrimeLife - Privacy and Identity Management in Europe for Life, Policy Languages. Available from

http://primelife.ercim.eu/images/stories/primer/policylanguage-plb.pdf, 2011.

Ratnasamy, Sylvia; Francis, Paul; Handley, Mark; Karp, Richard, and Shenker, Scott. A scalable content-

addressable network. In Proc. of SIGCOMM’01, pages 161–172, NY, USA, 2001. ACM. ISBN 1-58113-411-8.

doi: http://doi.acm.org/10.1145/383059.383072. URL http://doi.acm.org/10.1145/383059.383072.

Rhea, Sean; Chun, Byung-Gon; Kubiatowicz, John, and Shenker, Scott. Fixing the embarrassing slowness of

opendht on planetlab. In Proc. of the 2nd conference on Real, Large Distributed Systems, WORLDS’05, pages

25–30, Berkeley, CA, USA, 2005. URL http://dl.acm.org/citation.cfm?id=1251522.1251527.

Risson, John and Moors, Tim. Survey of research towards robust peer-to-peer networks: Search meth-

ods. Computer Networks, 50:3485–3521, 2006. doi: http://dx.doi.org/10.1016/j.comnet.2006.02.001. URL

http://dx.doi.org/10.1016/j.comnet.2006.02.001.

Spripanidkulchai, Kunwadee; Maggs, Bruce, and Zhang, Hui. Efficient content location using interest-based

locality in peer-to-peer systems. In Proceedings of IEEE INFOCOM, volume 3, pages 2166–2176, 2003.

Stoica, Ion; Morris, Robert; Karger, David; Kaashoek, M. Frans, and Balakrishnan, Hari. Chord: A scalable

peer-to-peer lookup service for internet applications. In Proc. of SIGCOMM’01, pages 149–160, NY, USA,

2001. ACM.

Tang, Chunqiang; Xu, Zhichen, and Dwarkadas, Sandhya. Peer-to-peer information retrieval using self-organizing

semantic overlay networks. In Proceedings of ACM SIGCOMM, pages 175–186, 2003.

Wetzker, R.; Zimmermann, C., and Bauckhage, C. Analyzing social bookmarking systems: A del. icio. us

cookbook. In Mining Social Data (MSoDa) Workshop Proceedings, ECAI, pages 26–30, 2008. URL http:

//www.dai-labor.de/fileadmin/files/publications/wetzker_delicious_ecai2008_final.pdf.

Windley, Phillip. Digital Identity. O’Reilly Media, Inc., 2005. ISBN 0596008783.

Xiao, H. and Cruz, I. F. Ontology-based query rewriting in peer-to-peer networks. In Proceedings of the 2nd Int.

Conf. on Knowledge Engineering and Decision Support, pages 11–18, 2006.

Zaihrayeu, I.; Sun, L.; Giunchiglia, F.; Pan, W.; Ju, Q.; Chi, M., and Huang, X. From web directories to

ontologies: Natural language processing challenges. In 6th International Semantic Web Conference (ISWC

2007). Springer, 2007.

Zhao, B. Y.; Kubiatowicz, J., and Joseph, A. Tapestry: An infrastructure for fault-tolerant wide-area location

and routing. Technical report, Computer Science Department, University of California, 2001.

Zhao, B.Y.; Huang, L.; Stribling, J.; Rhea, S.C.; a.D. Joseph, , and Kubiatowicz, J.D. Tapestry: A Resilient

Global-Scale Overlay for Service Deployment. IEEE Journal on Selected Areas in Communications, 22(1):

41–53, January 2004. ISSN 0733-8716. doi: 10.1109/JSAC.2003.818784. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=1258114.

Zhu, Yingwu and Hu., Yiming. Ess: Efficient semantic search on gnutella-like p2p system. Technical report,

Department of ECECS, University of Cincinnati, 2004.

Zhuge, Hai; Liu, Jie; Feng, Liang; Sun, Xiaoping, and He, Chao. Query routing in a peer-to-peer semantic link

network. Computational Intelligence, 21:197–216, 2005.

http://primelife.ercim.eu/images/stories/primer/policylanguage-plb.pdf
http://doi.acm.org/10.1145/383059.383072
http://dl.acm.org/citation.cfm?id=1251522.1251527
http://dx.doi.org/10.1016/j.comnet.2006.02.001
http://www.dai-labor.de/fileadmin/files/publications/wetzker_delicious_ecai2008_final.pdf
http://www.dai-labor.de/fileadmin/files/publications/wetzker_delicious_ecai2008_final.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1258114
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1258114

	I General Notions
	Introduction
	The context
	The problem
	The solution
	Structure of the thesis

	The problem
	Problem setting scenarios
	Discussion

	Ground knowledge
	Fundamental notions
	Knowledge schema
	Instantiation of knowledge
	Entity identifiers
	Entity instances

	Contacts classification
	Classification of subjects
	Classification of objects

	Summary

	II The Proposed Approaches and System
	Reference architecture
	Requirements
	High-level design
	System logical view
	Contact management portal
	Contact management application
	Contact management network

	System dynamic view
	Summary

	A name-based approach to search in the DCM system
	Motivating example
	A name-based overlay for linking directories
	Formalization of the model elements
	Building the name-based overlay

	Name matching
	Algorithms
	Summary

	A description-based approach to search in the DCM system
	Motivating example
	A semantic overlay for linking directories
	Semantic link discovery
	Algorithms
	Identifying semantically relevant peers
	Searching inside a relevant peer
	Aggregation of search results

	Summary

	The distributed contact management (DCM) system
	Presentation Cards
	DCM Users
	Usage scenarios
	Initialization Scenarios
	Sharing Scenarios
	Search Scenarios

	Summary

	III Evaluation
	Experimental evaluation of name-based search
	Implementation
	Evaluation
	Summary

	Experimental evaluation of description-based search
	Implementation
	Evaluation
	Data-set generation
	Evaluation of results

	Summary

	IV Conclusions
	Related work
	Contact and Identity Management
	Distributed entity directory
	Semantic flooding

	Conclusions and future work
	The context
	The contributions
	The evaluations
	Future work

	Bibliography

