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ABSTRACT 
 
Prostate cancer is a highly heterogeneous disease and its manifestations can vary from 

indolent localized tumor to widespread metastases. This heterogeneity is also observed at 

the molecular level both inter- and intra-patient. Intra-patient heterogeneity in the clinical 

setting of men with castration resistant prostate cancer (CRPC) might be informative in 

terms of treatment decision. Here I present analytical work on two approaches relevant to 

the characterization of intra-patient heterogeneity and applied to unpublished CRPC 

patients sequencing data. The first is based on the genome wide interrogation of multiple 

metastatic and primary tissue biopsies from single patients. I present genomic analyses to 

decipher the content of multiple tumor biopsies from CRPC patients and provide 

comparisons to highlight similarities and differences and to identify alternative patterns of 

aberrations. The second approach, alternative to tissue biopsies that might under-represent 

the genomic landscape of the patient’s disease, relies on liquid biopsies, a minimally 

invasive test that is also amenable to serial sampling. Liquid biopsies contain circulating cell 

free DNA (cfDNA) released from widespread tumor cells, potentially uncovering the full 

tumor landscape. By using next generation sequencing on cfDNA obtained from plasma, I 

developed strategies aimed at systematically tracking the reiterative process of genetic 

diversification leading to disease evolution and to detect genomic aberrations. I specifically 

focused on an ad hoc computational procedure (ABEMUS) to detect somatic point mutations 

that could emerge under treatment pressure and as drug resistance mechanism. The work 

I present is relevant to the context of precision oncology that exploits detailed patient-specific 

molecular information to diagnose and follow cancer progression with the ultimate goal of 

promptly guiding treatment decisions to improve clinical outcome with transdisciplinary 

strategies. The analytical work I developed can be applied to the study of any tumor type. 
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INTRODUCTION 
 

I first introduce tumor evolution models and the importance of tumor heterogeneity in the 

context of patient treatment and then focus on prostate cancer genomics and on the 

molecular pathways involved in its oncogenesis, progression and treatment resistance 

mechanisms. Advantages and drawbacks of both well-established and innovative clinical 

strategies to study tumor genomics through diverse next generation sequencing assays are 

also described. 

 

1. Clonal evolution in cancer 
In 1976 Peter Nowell published a landmark perspective on cancer as an evolutionary 

process that is driven by stepwise, somatic-cell mutations with sequential, subclonal 

selection 1. Thus, tumor evolution is a Darwinian evolutionary system for the selection of the 

fittest heritable genetic variant. In this setting, the population of cancer cells, influenced by 

endogenous and exogenous mutational processes, provides the fuel for selection to act. 

Modern cancer biology together with the large amount of genomic data obtained from tissue 

sections, small biopsies and more recently single-cell analysis and genomics have validated 

cancer as complex, Darwinian, adaptive system. 

Cancers evolve by an iterative process of clonal expansion, genetic diversification and 

clonal selection within the adaptive landscapes of tissue ecosystems 2. Its evolution is 

conceptually similar to asexual microorganisms and should be governed by the dynamic 

interplay of the same three basic processes: a) The generation of heritable variation; b) The 

influence of random birth and death events on the fate of new genotypes, referred to as 

genetic drift; and c) Darwinian selection, which changes the frequency genotypes in the 

population based on their relative fitness advantage. The acquisition of heritable alterations 

(heritable somatic variation encompasses genetic alterations such as point mutations, 

insertions, deletions, and chromosomal aberrations, as well as epigenetic changes that are 

heritable over cell generations) and genetic drift are both random processes, while 

Darwinian selection is a deterministic process. During clonal selection, a new mutation that 

increases the ability of the cell to survive and reproduce under particular environmental 

conditions will gradually increase in its abundance within the population. Multiple 

intratumoral subclones harbouring different driver mutations, displaying distinct phenotypes, 

and evolving with branched phylogenies were identified in many cancer types. The presence 
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of multiple subclones within a tumor can lead to clonal competition and the fitness of an 

individual subclone is then defined in relation to the fitness of other competing clones.  

 

1.1 Gradualism and punctuated evolution 
Gradual mutation accumulation occurs to some degree in all cancers, representing 

perpetual adaptation to the tumor environment but may be punctuated by highly disruptive 

episodes. Such a dichotomy has been framed in the context of micro- versus macro-

evolution, with gradual accumulation of point mutations (micro-evolution) presented in 

opposition to “saltationist” view, which emphasizes the importance of large-scale 

chromosomal alterations and bursts of mutations (macro-evolution) 3. Examples of these 

catastrophic events are mutational phenomena termed kataegis, a localized hypermutation 

that often colocalizes with somatic rearrangements and chromotripsis, a single event that 

causes genome shattering and reassembly, resulting in a characteristic pattern of oscillating 

copy number and up to several hundred genomic rearrangements localized to one or a few 

chromosomes. Additionally, WGS analysis of prostate tumors by Baca et al. 4 described 

large chains of rearrangements that coordinately affect multiple chromosomes in prostate 

cancer, a phenomenon defined as chromoplexy. 

Thus, cancer genome evolution may not always be a gradual stepwise and the observation 

that tumors with an extreme level of chromosomal instability appear associated with 

improved prognosis 5, compared to intermediate levels, supports the hypothesis that there 

may be a delicate balance between too much and too little instability and that there may be 

potent selection pressures in cancer evolution for a “just-right” level of cell-to-cell variation. 

 

1.2 Clonal heterogeneity 
Tumoral clones evolve through the interaction of selectively advantageous “driver” lesions, 

selectively neutral “passenger” lesions and deleterious lesions. In addition, “mutator” lesions 

increase the rate of other genetic changes 6,7. In this scenario, selective pressures allow 

some mutant subclones to expand while others become extinct or remain dormant. The 

mutational profile of a tumor represents a historical record of alterations that have 

accumulated during its evolutionary history. These data together with heterogeneity among 

cancer cells can be used to understand the temporal order of mutational events. Alterations 

identified in every sequenced cancer cell can be considered to form the trunk of a cancer’s 

somatic evolutionary tree, while subclonal mutations, present in only a subset of cancer 

cells, make up the branches.  Bioinformatics tools have been developed to help decipher 
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the temporal order of mutations and determine which are clonal or subclonal 8. Somatic 

mutations within cancer genes that confer a clonal advantage are causally implicated in 

oncogenesis and are positively selected during cancer evolution. Accumulating evidence 

suggests that certain driver alterations may be more likely to be subclonal than others 3,9–14 

and other driver mutations exhibit a tendency to be clonal in certain cancer type, but not 

others 9,14,15. Such differences may reflect the importance of epistasis in cancer evolution 

and are in agreement with findings that co-occurrence and mutual exclusivity relationships 

between cancer driver alterations can vary extensively in different cancer types 16.  

 

2. Tumor heterogeneity 
As a result of evolutionary forces of variation and selection, extensive genetic and 

phenotypic variations exist not only between tumours (inter-tumor heterogeneity) but also 

within individual tumours (intra-tumor heterogeneity).  

Tumours that originate from different tissues and cell types vary in terms of their genomic 

landscapes, prognosis and their response to treatments. Mutational frequencies of 

oncogenes and tumor suppressors vary between tumours of different tissues, probably 

reflecting the importance of distinct tissue dependent signalling pathways. Additionally, 

recent advances in Next Generation Sequencing (NGS) have revealed that very few 

mutations were observed in more than 5-10% of tumours of a particular tissue type 17. 

Nevertheless, studies described that histone-modifying genes are recurrently mutated in a 

range of tumors 17–19 and genomic instability, occurring through various distinct routes 20–22, 

is a unifying feature of many genetically diverse malignancies.   

Within tumors, genetically distinct subclonal populations of cells arise through inter-cellular 

genetic variation, followed by selective outgrowth of clones that have a phenotypic 

advantage within a given tumor environmental context 1,23. If a new clone takes over the 

entire population by replacing ancestral ones, this will result in a homogenous cell 

population. Otherwise, if during linear evolution a new clone fails to outcompete its 

predecessors, a degree of heterogeneity will be observed 24 and if distinct subclones evolve 

in parallel (branched tumor evolution) this will result in extensive subclonal diversity 2. 

Analysis of large cancer databases support evidences of the genetic heterogeneity between 

cancers and even within individual cancer types. For instance, when the Cancer Genome 

Atlas (TCGA) Project analysed 489 high-grade serous ovarian cancers 25 only 10 among 

the thousands of identified somatic mutations identified were recurrently mutated cancer 

genes, and all but TP53 mutations were present in less than 10% of cases. The genomic 
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analysis of 77 estrogen-receptor-positive breast cancers also identified that most recurrent 

mutations occur infrequently, but they do cluster within a limited number of cellular pathways 

that are central to tumour biology 26. In addition to the heterogeneity of cancer genes, there 

is considerable diversity in the nature, number and distribution of mutations within and 

across different cancer histologies 27. These studies have revealed that the degree of intra-

tumor heterogeneity can be highly variable, with between zero and thousands coding 

mutations found to be heterogeneous within primary tumors or between primary and 

metastatic or recurrence sites 28. Genomic copy number heterogeneity can also be 

extensive within tumors. Large scale chromosomal alterations may have profound impact 

upon the genome, disrupting hundreds of genes, and can be considered macro-evolutionary 

events, which may contribute to tumor progression 15,29,30. 

Sequential analysis of tumors has also revealed evidence that intra-tumor heterogeneity 

temporally evolves during the disease course and can have important implications for 

predictive or prognostic biomarker strategies.  

 

2.1 Clinical implications of intra-tumor heterogeneity 
Recognition of tumor heterogeneity led to the concept of personalized cancer medicine: 

deciphering individual cancer genomic profiles should provide precise insights into disease 

biology and allow the targeting of genetically encoded susceptibilities for therapeutic benefit. 

At the same time, observation of intra-tumor heterogeneity pose a challenge to targeted 

therapies and raise important questions regarding future drug-development strategies. 

Indeed, intra-tumor genetic heterogeneity results in phenotypic diversity affecting clinically 

relevant parameters such as gene expression signatures that reflect prognosis and 

response to therapeutic agents. It is also important to note that phenotypic heterogeneity is 

not only mediated through genetic diversity; genetically homogenous subclones can behave 

in functionally distinct ways after exposure to chemotherapy 31. Therapeutic intervention may 

destroy subclones and alter their favourable microenvironment, but it can also provide a 

potent selective pressure for the expansion of resistant variants. Increasing evidence 

suggests that efforts to forecast outcome of an individual cancer require the identification of 

low-frequency genetically and functionally distinct subclones at diagnosis 32. Indeed, tumor 

deep-sequencing analyses attempt to stratify therapeutics based on identification of 

“actionable mutations” where a clinician matches a tumor aberration to a cancer drug. 
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3. Primary and metastatic tumors 
Tumor metastasis is frequently cited to be responsible of about 90% of all cancer-related 

deaths 33. The process has been linked to a speciation event with macro-evolutionary leaps 

required to endow a tumor cell with metastatic potential 34. Next-generation DNA sequencing 

has made it apparent that most primary tumours do not consist of a single population of 

genetically identical cells. Instead they are a collection of subpopulations of genetically 

identical cells that can be distinguished from other subclones by the mutations they harbour. 

The evolutionary paths from primary tumors to metastasis that are taken by tumour cells are 

many and represent a challenging research issue. It is often assumed that one disseminated 

tumour cell initiates metastatic outgrowth (monoclonal seeding) and there is debate about 

whether metastases derive from multiple branched spreading events involving disseminated 

cells from the primary tumour as well as metastases (polyclonal seeding). Many studies 

have shown that primary prostate cancers are multifocal and separate foci are not only 

spatially and pathologically distinct, but are composed of multiple distinct cancer cell clones 
35. An open question is if and how these independent multiclonal tumor foci that are present 

in the primary tumor give rise to multiclonal or monoclonal metastases 36. The monoclonal 

origin model indicates that all metastatic lesions are derived from a common cancer cell 

ancestor traceable back to one distinct focus that is present in the primary prostate tumor 
37,38. In the polyclonal origin model, multiple genomically distinct foci in the primary tumor, 

without sharing a common cancer cell ancestor, can independently progress and 

metastases can harbour multiple distinct clonal aberrations originating from the primary 

tumor 37,39. Additionally, in both models the acquisition of subsequent mutations can also 

occur during disease progression and/or metastasis-to-metastasis cross-seeding (in which 

subclones within a metastasis originated from another metastatic site, rather than from the 

primary tumour) 37,39, leading to substantial genomic diversity. 

 

4. Prostate cancer 
Prostate cancer is a significant public health burden and a major cause of morbidity and 

mortality among men. Worldwide, prostate cancer is the second most frequently diagnosed 

cancer and the fifth leading cause of cancer death among men. Its greater prevalence in the 

west and migration population implicates lifestyle and environmental as risk factors 40. 

Established risk factors for prostate cancer are limited to advancing age, ethnicity, a family 

history of this malignancy (the risk for first-degree relatives of men with prostate cancer is 

about twice that for men in the general population 41) and certain genetic polymorphisms 42. 
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Genetic predisposition can result from penetrant mutations, from genetic variants associated 

with risk, or from a combination of these two. Most men are diagnosed at an early stage and 

are either followed with active surveillance or treated with curative intent where the choice 

of therapy depends upon clinical features such as tumor stage, Gleason grade and serum 

prostate specific antigen (PSA) levels. Despite best attempts at risk stratification the 

overtreatment of patients with indolent disease and the potential undertreatment of patients 

with aggressive disease remain a concern. 

Prostate cancer is commonly multifocal often harbouring pathologically and genomically 

distinct foci 35. Comparison of the genomic landscape in both inter-related and 

geographically distinct regions within prostates has revealed independent tumour origins in 

different studies 35,43,44. Additionally, whole genome sequencing (WGS) data of multiple 

metastatic sites from 10 tumours has revealed a common clonal origin containing 40-90% 

of total mutations and the majority of driver mutations suggesting that metastases originate 

from only one tumor foci 37. In another recent study, WGS data of multiple tumor foci in 

patients with clinically localized prostate cancer indicates quiet point mutation profiles but 

extensive structural heterogeneity between foci. Overall, the observation of very few copy 

number alterations shared between tumour foci supports the independent origin of distinct 

foci 45. 

 

4.1 Androgen dependent prostate cancer 
The androgen receptor (AR) signalling axis plays a critical role in the development, function 

and homeostasis of the prostate. The classical action of AR is to regulate gene 

transcriptional processes via AR nuclear translocation, binding to androgen response 

elements on target genes and recruitment of, or crosstalk with, transcription factors. Prostate 

cancer initiation and progression is also uniquely dependent on AR 46. 

Next generation sequencing has allowed characterisation of the clonal hierarchy of genomic 

lesions in prostate tumours, providing information about carcinogenesis and identification of 

genomic rearrangements that result in androgen-driven ETS gene expression. These 

rearrangements are clonal, suggesting that they occur early and might result from activated 

androgen receptors generating DNA damage through transcription at AR binding sites 47. 

However, ETS gene fusions alone are not sufficient to result in cancer and other genomic 

events, such as activation of the PI3K/AKT by PTEN loss, are needed 48,49. Several studies 

exploiting whole exome sequencing (WES) data indicate that prostate cancer genome is 

characterised by relatively few focal chromosomal gains or losses and overall low mutation 
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rate (roughly one per megabase) 4,50–52. SPOP, TP53 and PTEN are among the most 

frequently mutated genes across several studies of localised prostate cancers 50,53. About 

50-60% of PSA-screened prostate cancers have recurrent gene fusions, typically fusing the 

5’ untranslated region of an androgen-regulated gene (i.e. TMPRSS2) to nearly the entire 

coding sequence of an ETS transcription factor family member (i.e. ERG) 54. Genomic, 

epigenetic, and expression profiling studies support the premise that tumors with ETS 

fusions (ETS-positive) are distinct from those without (ETS-negative); driving changes in 

several genes have been identified that occur exclusively in ETS-negative prostate cancers 
51,55. Mutations in SPOP, which cluster in the encoded protein’s substrate binding cleft, occur 

in about 5-10% of prostate cancers, and SPOP mutated cancers are exclusively ETS-

negative 47,50–52. Loss or mutation of the tumor-suppressor genes PTEN and TP53 are 

among the most frequent events in prostate cancer, and occur in both ETS-positive and 

ETS-negative cancers. 

 

4.1.1 The androgen receptor pathway 
The human AR gene is a nuclear transcription factor and a member of the steroid hormone 

receptor superfamily of genes. It is located on the X chromosome (q11-12) and consists of 

8 exons. It codes for a protein of 919 amino acids with a mass of 110 kDa. The AR consists 

of four structurally and functionally distinct domains; a poorly conserved N-terminal domain, 

a highly conserved DNA-binding domain and a moderately conserved ligand-binding 

domain. A short amino acid sequence separates the ligand-binding domain from the DNA-

binding domain and also contains part of a bipartite ligand-dependent nuclear localization 

signal for AR nuclear transport.  

The AR ligand-binding domain (LBD, amino acids 669-919) facilitates binding of the AR 

ligands testosterone and dihydrotestosterone (DHT) which represents the primary control 

mechanism of the androgen-signalling pathway. The cytochrome P450 enzyme converts 

testosterone to DHT and both can bind to and activate AR under physiological conditions, 

with DHT having a significantly greater affinity for AR. In the absence of ligands, the AR is 

located primarily in the cytoplasm where it associates with heat shock proteins (HSP)-90, -

70, -56, cytoskeletal proteins and other chaperones. Binding of ligand to the AR ligand-

binding pocket induces a conformational change in AR within the LBD, forming the principal 

protein-protein interaction surface that facilitates intramolecular and intermolecular 

interaction resulting in the dimerization of AR. Several AR-associated coactivators facilitate 

the nuclear targeting of AR and once inside the nucleus, AR binds to specific recognition 
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sequences known as androgen response elements (AREs) in the promoter and enhancer 

regions of target genes. The AR transcriptional complex is completed by recruitment of 

coregulators, which ultimately results in modulation of target genes expression. 

 

4.2 Primary prostate cancer 
Men with localised prostate cancer can have very different prognoses and face a wide array 

of treatment options. Men are advised on treatment based on risk assessments that often 

combine patient age, clinical tumor stage, serum PSA, Gleason score, number of positive 

prostate biopsies and amount of malignant tissue per core to select patients for treatment 

ranging from active surveillance alone through multimodality treatment. Active surveillance 

protocols that are amenable to a subset of low-grade localised prostate cancer patient avoid 

unnecessary treatments and typically monitor patients over time with serum PSA 

measurements, repeated prostate biopsies and MRI.  For prostate cancer patients who do 

not favour or are not eligible for active surveillance protocols, radical prostatectomy, 

external-beam radiotherapy and brachytherapy are standard local treatments.  

Multiple studies have identified recurrent somatic mutations, copy number alterations, and 

oncogenic structural DNA rearrangements in primary prostate cancer 4,50,51,54. These include 

point mutations in SPOP, FOXA1, and TP53; copy number alterations involving MYC, RB1, 

PTEN, and CHD1; and ETS fusions, among other biologically relevant genes. While certain 

primary prostate cancer alterations or signatures have prognostic clinical significance, the 

therapeutic impact of primary prostate cancer genomic events has not yet been realized. 

 
4.3 Castration resistant prostate cancer 
In many cases, local therapy is not effective and rising of PSA levels indicates disease 

recurrence. First-line therapeutic intervention for metastatic prostate cancer is hormone 

deprivation therapy, which is designed to ablate AR activity. Although initially effective, 

hormone therapy resistant tumors arise, representative of the transition to incurable 

castration resistant prostate cancer (CRPC). Frequent reactivation of AR signalling has 

been reported in studies of CRPC patients as well as frequent disruption of chromatin and 

histone modellers and tumor suppressors. Indeed, frequent copy number gains of 8q as well 

as copy number losses of 8p, 13q, 16q, and 18q were observed and the landscape of copy 

number alterations is characterized by recurrent amplification peaks (frequent AR, 8q gain) 

and deletion peaks (CHD1, PTEN, RB1, TP53).  To provide a systematic analysis of the 

genomic landscape of CRPC and its potential relevance for patient care, the Stand Up To 
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Cancer (SU2C)-Prostate Cancer Foundation (PCF) International Dream Team pursued 

whole-exome and transcriptome sequencing of 150 biopsies from metastatic CRPC 

(mCRPC) 56. Results indicate presence of established biological “driver” aberrations in a 

cancer-related gene (i.e., known oncogenes or tumor suppressors) in nearly all the cases. 

While 99% of the CPRC cases harbours a potential driver single nucleotide variant (SNV) 

or indel, other classes of driver aberrations were also highly prevalent. These include driver 

gene fusions in 60%, driver homozygous deletions in 50% and driver amplifications in 54%. 

While informative mutations were present in virtually all CRPC cases, 63% harbored 

aberrations in AR. 

 

4.4 DNA repair and cell cycle defects in prostate cancer 
Prostate carcinogenesis is mediated, as other cancers, by the accumulation of genetic and 

epigenetic aberrations; these molecular changes can be inherited or be the result of altered 

AR transcriptional activity, changes in chromatin architecture, oncogenic replication, error-

prone DNA repair, or defective cell division. Deficient DNA repair response and defective 

apoptotic checkpoint control can then lead to permanent incorporation of these genome 

abnormalities. 

 

4.4.1 Overview of the DNA damage response pathway 
DNA damage continuously occurs in human cells. If repair mechanisms are impaired, 

genome stability is compromised, therefore contributing to tumorigenesis. Damage can 

occur endogenously (due to spontaneous hydrolysis of bases or reaction of DNA with 

naturally occurring reactive oxygen species or alkylating agents) or can be induced by 

exogenous agents (i.e. radiation and toxins). In order to protect their genome, cells have 

evolved several biological pathways with complementary and partially overlapping functions 

for recognizing and accurately repairing damages. Different forms of DNA damage trigger a 

response from different branches of this complex system. The main workflow is as follows; 

when genomic insults are detected, cell-cycle checkpoints are activated to halt the cell cycle 

and allow the cellular machinery to repair the DNA damage. If the repair is successful, the 

cell continues its normal cycle; otherwise, programmed cell death or senescence programs 

are triggered. If the DNA repair mechanisms are dysfunctional, genomic instability, which is 

one of the hallmarks of carcinogenesis, occurs. When damage is limited to one of the DNA 

strands (single-strand breaks or base modifications), different repair mechanisms can be 

deployed. These include base-excision repair (BER), single-strand break repair (SSBR), 
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nucleotide-excision repair (NER), and mismatched repair (MMR). Each of these pathways 

uses the complementary undamaged strand as a template to ensure fidelity of repair. The 

primary mechanisms involved in DNA double-strand break (DSB) repair comprise the 

homologous recombination (HR) system and the non-homologous end joining (NHEJ). HR 

requires a sister chromatid as template and is therefore restricted to the S/G2 phases of the 

cell cycle. It restores the original DNA code error-free. Key mediators of this pathway include 

BRCA1, BRCA2, PALB2, ATM, ATR, RAD51, MRE11, CHEK2, and XRCC2/3. In contrast, 

NHEJ functions by ligating broken DNA ends without the use of a template and is therefore 

functional throughout the cell cycle. The error-prone mode of NHEJ action leads to errors 

that are permanent and can drive genomic instability. 

 

4.4.2 The role of DNA repair defects in prostate cancer  
Interestingly, prostate cancer is often characterized by high numbers of genomic 

rearrangements. Many of these tumors have oncogenic mutations in the SPOP gene that 

stabilize proteins including AR and its transcriptional regulators 57. Mechanistically, SPOP 

mutant tumors rely predominantly on NHEJ-based DSB repair (while reducing error-free HR-

mediated DSB repair activity). The pattern of genomic aberrations may partly depend on 

deficiencies in specific DNA repair pathway branches. It has been shown that loss of MMR 

function induces a hyper-mutated microsatellite unstable genotype 56. Somatic complex 

rearrangements in MSH2 and MSH6, as well as somatic and germline truncating mutations 

in these two genes, have been described as the most common mechanism for MMR-

deficient prostate tumors 58. BRCA2-deficient prostate cancers also present specific 

mutation signatures enriched in deletions and with higher mutational burden than BRCA2 

wild type tumors 59. Moreover, hereditary germline mutations in DNA repair genes are 

associated with a higher risk of prostate cancers. This results in one gene allele being 

dysfunctional in every cell, with the second allele commonly lost by a second hit (mutation, 

deletion, epigenetic silencing) 60. While the proportion of patients carrying a germline 

BRCA1/2 mutation is low (1–2%) among the general population of primary prostate cancer 

patients, a multicenter study lead by the SU2C PCF consortium in metastatic CRPC patients 

estimated the prevalence of germline BRCA2 mutations as 5.3% in the setting of advanced 

disease; when a panel of 20 DNA repair genes was considered, 82/692 (11.8%) of patients 

with metastatic disease carried an underlying germline mutation 61.  
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4.5 The tumor suppressor RB1 gene in prostate cancer 
The retinoblastoma gene (RB1) is implicated in many cellular processes such as regulation 

of the cell cycle, DNA-damage response, DNA repair, DNA replication, protection against 

apoptosis, and differentiation, all of which contribute to its function as a tumor suppressor 

(the first one to be cloned). The retinoblastoma protein (RB, encoded by RB1) has a key 

role in repressing the transcriptional activity of the activator class of E2F transcription factors 
62,63. Briefly, E2Fs regulate the expression of several genes and particularly they control the 

transcriptional regulation of genes required for cell cycle, nucleotide synthesis, and 

checkpoint control. During early cell cycle phase G1, the RB and the RB-related p107 and 

p130 (altogether known as the “pocket protein” family of cell cycle regulators) bind to the 

E2F transcription factors. Specifically, RB binds and represses activator E2F transcription 

factors (E2F1–E2F3), while p107 and p130 bind E2F4 and E2F5 to form complexes that 

repress transcription of G1 to S promoting factors. Upon the decision to progress past the 

G1 checkpoint, cyclin D forms a complex with cyclin dependent kinases (CDK) CDK4 and 

CDK6, which in turn phosphorylate the pocket proteins. The phosphorylation causes the 

release of their bound targets, thereby relieving the repression of the E2F1-3 activators and 

translocating repressor E2F4-5 from the nucleus to cytoplasm. This results in the 

transcriptional activation of downstream targets which promote the G1 to S transition 

(mediated by cyclin E in complex with CDK2). 

Although RB plays an important role in the response to hormone therapy in vitro 64, the 

frequency and impact of RB deregulation during prostate cancer development and 

progression is not well defined. Based on the observation that in prostate cancer RB1 copy 

number loss is overrepresented in metastatic and CRPC 56,65,66, data suggested that RB 

deficiency may be specifically associated with the transition to castration resistance rather 

than with tumor initiation 66. RB deficiency alone did not confer a significant tumor growth 

advantage in vivo, however castration of host animals with RB-depleted unmasked a growth 

advantage specific to RB-deficient tumors. These data suggest that RB depletion is sufficient 

to induce castration-resistant tumor growth as monitored by tumor growth kinetics and 

serum PSA level, the latter one indicative of enhanced AR signalling. Since CRPC 

phenotype is associated with alterations of the AR pathway, RB loss may act in concert with 

or impinge upon the AR axis. Under conditions mimicking therapeutic intervention (androgen 

ablation, AR antagonist bicalutamide and a combination of both) RB-depleted cells showed 

significantly higher AR target expression suggesting that aberrations in RB function result in 

enhanced AR signalling 66.  
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By exploiting double knockout and triple-knockout mice (with RB1 deletion and RB1 plus 

TP53 deletion, respectively) using a PTEN-null mouse model of prostate, authors showed 

in a recent study that loss of RB1 drives increased epigenetic deregulation, metastatic 

progression, and lineage plasticity. Moreover, additional loss of TP53 converts the disease 

into a fully antiandrogen-resistant, neuroendocrine variant and causes upregulation of stem 

cell reprogramming factors. These data indicate that RB1 and TP53 cooperate to suppress 

lineage plasticity, metastasis, and resistance to antiandrogens in prostate cancer 67 and 

therefore nominate RB1 as main player in advanced prostate cancer. 

 

5. Circulating tumor DNA and liquid biopsy  
The presence of fragments of cell-free nucleic acids in human blood was first described in 

1948 by Mandel and Metais. In healthy individuals, cell free DNA (cfDNA) concentrations 

tend to range between 1 and 10 ng ml-1 in plasma 68,69. Although it is unclear what are the 

release and clearance mechanisms, raised levels of cfDNA were observed in the serum of 

patients with cancers 70 and is thought to be released from tumoral cells. The modal size of 

cfDNA was first determined by gel electrophoresis as ~180bp and later by sequencing-

based approaches refining this measure as 166bp 71,72. These measures indicate that 

cfDNA is likely to be associated with nucleosomes. In 1994, Sorenson et al. 73 discovered 

that the KRAS mutated sequence found in the plasma was identical to the patient’s tumor, 

thereby confirming that the mutant DNA fragments in the plasma were of tumor origin 73. 

Since mutations in cfDNA are highly specific markers for cancer, this observation gave rise 

to the term circulating tumor DNA (ctDNA).  

The development of NGS-based technologies has facilitated the interrogation of the genome 

at a broader scale than previously possible. Studies in the last decades explored the ctDNA 

as a prognostic and predictive biomarker supporting its potential in the clinical setting 74,75. 

Although the levels of ctDNA in different clinical contexts were not yet accurately defined, 

the concentration of ctDNA in plasma has been shown to correlate with tumor size and stage 

and variability in inter-individual ctDNA concentration is partially explained by differences in 

the extent of disease burden 72,76. Analysis of ctDNA ranges in scale from single mutations 

(custom assay to achieve high sensitivity) to whole-genome assays. Since conventional 

sampling methods such as needle biopsies are subject to experimental complications 

(difficulty in obtaining sufficient material of adequate quality for genomic profiling) and 

biological limitations (sampling bias from genetic heterogeneity), the analysis of tumoral 

material obtained in a minimally invasive manner through blood sampling (liquid biopsy) 



	 14	

could represent an extreme valid alternative to produce clinical benefit in multiple areas of 

oncology such as cancer diagnosis and prognosis, treatment selection and monitoring of 

treatment response and disease burden. Even if it is unclear whether all tumor subclones 

contribute proportionately to the total ctDNA pool or whether their representation in the 

bloodstream is biased by other biological factors, liquid biopsies sample ctDNA released 

from multiple tumor regions and thereby reflect both intra-tumor heterogeneity and spatially 

separated disease foci. Although individual tumor biopsies from different tumour regions 

may differ in their mutation profiles owing to intra-tumor heterogeneity, ctDNA analysis has 

detected mutations that have been missed in corresponding tissue samples 77–79. 

Appropriately designed assays allow interrogating ctDNA also for the detection of copy 

number alteration. Indeed, in a cohort of 80 patients with prostate cancer, AR copy number 

gain before anti-androgen (abiraterone) therapy predicted a worse overall survival, thus 

identifying patients with primary resistance 80. The ease and reduced risk of repeating liquid 

biopsies enables to use them for real-time monitoring of cancer burden in response to 

therapy.  

A better understanding of the origin and biology of cfDNA and ctDNA would aid 

implementation of liquid biopsies. Indeed, the limited understanding of the release and 

clearance mechanisms of cfDNA should be explored to better define the relative 

contributions of apoptosis, necrosis and active release and moreover to improve the 

interpretation of current research studies. So far, proof-of-concept studies have provided an 

excellent starting point for larger prospective studies of the clinical utility of cfDNA and have 

demonstrated that ctDNA may be useful research tool for the study of intra-tumor 

heterogeneity and clonal evolution. In June 2016, the FDA approved the first companion 

diagnostic test based on ctDNA. The test is designed for the detection of exon 19 deletions 

or exon 21 (L858R) substitution mutations in the epidermal growth factor receptor (EGFR) 

gene to identify pateints with metastatic non-small cell lung cancer (NSLC) eligible for 

treatment with erlotinib. However, randomized trials comparing ctDNA-guided decision-

making against standard of care would be definitive to demonstrate the potential utility 

across a range of applications for patients benefit. 

 

6. High-throughput DNA sequencing 
Since the completion of the human genome project in 2003, extraordinary progress has 

been made in genome sequencing technologies, which has led to a decreased cost per 

megabase (US$1,000 is currently the average cost of sequencing of a human genome) 81. 
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These NGS strategies, that in a short period of time transitioned from novelty to almost 

routine approaches in biomedical research, are providing researchers and clinicians with a 

variety of experimental assays to profile genomes in greater depth and to translate genomic 

information into clinically actionable results. Some approaches maximise the number of 

bases sequenced in the least amount of time, generating a wealth of data that can be used 

to understand increasingly complex phenotypes. Alternatively, other approaches now aim 

to sequence longer contiguous pieces of DNA, which are essential for resolving structurally 

complex regions. WGS is becoming one of the most widely used applications in NGS. 

Through this technology, the most comprehensive view of genomic information can be 

obtained revealing the complete DNA make-up of an organism. Whole-exome and targeted 

sequencing are also providing invaluable advantages to sequencing research. By reducing 

the size of targeted DNA sequence and by limiting the amount of the genomic material used, 

more individual samples can be sequenced within a single sequencing run, which can 

increase both the breadth and the depth of a genomic study. Indeed, a WES experiment 

targets the set of exons representing nearly the 2% or 55 Mb, of the euchromatic human 

genome (2.85 Gb). Targeted sequencing assays further reduce the size of DNA to be read 

by focusing on a limited number of genes (i.e. cancer related genes) or other genomic 

regions of interest.  

Although exciting, these advancements are not without limitations. As new technologies 

emerge, existing problems are exacerbated or new problems arise. NGS platforms provide 

vast quantities of data but the associated error rates (~0.1-15%) are higher and the read 

(the sequence of bases from a single molecule of DNA) lengths generally shorter (35-700bp) 

than those of traditional Sanger sequencing platforms 82, requiring careful examination of 

the results, particularly for variants discovery. 
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RATIONALE 
 

Analyses of large cancer datasets support evidence of the genetic heterogeneity among 

cancers types and even within individual cancer types. Prostate cancer is a highly 

heterogeneous disease where multiple and coexisting aberrant molecular mechanisms 

make challenging the selection of effective clinical treatments. The improvements in 

genomic studies and their association to clinical properties have been driven by the last 

sequencing methods and proper development of specific algorithms and bioinformatics 

methodologies have proved useful for defining the mutations, genes and molecular networks 

that drive diverse cancer phenotypes and that determine clonal architectures in tumor 

samples. This scenario raises the purpose to quantify the level of inter- and intra-tumor 

heterogeneity and to explore alternative molecular mechanisms causing the inactivation of 

key player cancer genes in prostate cancer by setting an automated analysis of high-

throughput sequencing data (WGS, WES and targeted) with the goal of being quantifiable, 

analysable, scalable and reproducible. Tumor DNA from tissue biopsies represent a reliable 

source to examine intra-tumor heterogeneity, nonetheless this strategy can be unpractical 

due to complications and pain. Cell free DNA released in blood stream from widespread 

metastatic cells can be exploited as alternative. Particularly, detection of hot-spot mutations 

in serum and plasma is challenging since this biological scenario is characterized by little 

DNA material and high admixture. Allele-specific PCR methods and some assays are 

available as kits that were approved for clinical use 83,84, but have limited analytical 

sensitivity. Since these assays rely on differential binding affinities of mutant and wild-type 

alleles, they require primers or probes that are specific to each genomic locus of interest; 

this issue limits the multiplexing capacity and reduces the number of mutations that can be 

investigated concurrently. Conversely, targeted sequencing using PCR amplicons or hybrid 

capture are used to interrogate a larger number of loci simultaneously. However, sequencing 

platforms are limited by errors which makes single-nucleotide variant (SNV) detection 

challenging. The limit of detection represents the threshold below which mutations cannot 

be confidently discriminated from background noise; for sequencing-based approaches, this 

is often determined by technical artefacts such as PCR and/or sequencing errors. To 

improve SNVs detection using this technology, there is a clear need to quantify these 

limitations and exploit them as useful information. Indeed, my research aimed to set up 

computational methodology to discriminate between biological and artefactual signals by 

using locus-specific and data-driven thresholds instead of general and a priori selected 
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ones. I also investigated the hypothesis that some genomic loci are more prone than others 

to be sequenced wrongly and I checked whether this drawback depends on diverse library 

preparation kits and sequencing chemistries. 

 

RESULTS 
 

In line with the nature of this work, the Results section includes both clinically and biologically 

relevant results (sections 3, 6, 8 and 9), and technical advances and analysis approaches I 

designed and developed to proper address the biological questions (sections 2, 4 and 5). 

The Results section also includes description of bioinformatics strategies aimed to assemble 

an efficient computational workflow (section 1) and to achieve methodological improvements 

(section 7). For clarity, I organized the result and method sections in two parts, a. Multi-
sampling tissue biopsies and b. Cell free DNA in plasma samples. Each results part is 

followed by relevant methods. 
 

a. Multi-sampling tissue biopsies  
 
The future of cancer treatment is represented by personalized clinical strategies designed 

to specifically target tumorigenic cell populations present in one individual. Although very 

promising, this scenario is often complicated due to mutagenesis that plays a key role in 

shaping the cell subpopulations that characterize patient tumors and this heterogeneity may 

show dramatic differences in drug response, with the limit condition that some tumor cells 

are very sensitive and some other show high resistance to the same drug. As a 

consequence, the treatment may promote the emergence of resistant and more aggressive 

tumors85. Even if a single biopsy produces only limited information on the site from which it 

is taken, multiples biopsies, when possible, are a reliable strategy for examining different 

foci within a primary tumor or disseminated metastatic sites. At present, most precision 

medicine programs rely on high-throughput sequencing (or more commonly NGS) to 

examine tumor DNA from patient samples and ad-hoc computational methods can be 

applied to gain proper assessment of the major oncogenic drivers in an individual.  

 

1. Computational toolbox for studying cancer genomes 
Here I describe the workflow (Figure 1) I assembled to exploit diverse computational tools 

in order to retrieve an exhaustive genomic characterization of a tumor sample and its 
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matched germline both profiled via NGS techniques. Each element of this pipeline is 

described in detail in Methods sections 1a-6a. 

	
Figure 1. Computational toolbox for studying cancer genomes. 
 

2. Comparative analysis of computational tools for WES data segmentation 
Somatic copy number alterations (SCNAs), defined as duplication and deletion genomic 

events that occur in somatic cells, are common in cancer genomes and recurrent alterations 

of gatekeeper genes have been associated with specific cancer types86. SCNAs can result 

both in the amplification of oncogenes and in the deletion of tumor suppressors, significantly 

contributing to cancer genesis and progression. The advent of massively parallel 

sequencing methods has revolutionized structural variation studies by exploiting the single-

base resolution provided by deep sequencing data to precisely predict boundaries of altered 

genomic regions. In particular, the identification of somatic genetic alterations from WES 

data is an active research field because it is a cost-effective and powerful technology that 

represents a valid alternative to whole genome sequencing. Moreover, large-scale 

collaborative efforts such as TCGA87 are generating thousands of WES experiments for 

multiple tumor types amenable for SCNAs analysis. However, WES data are generally 
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affected by a non-uniform read-depth among scattered genomic target regions, making the 

analysis of structural variants particularly challenging. In this context, although several 

algorithms have been recently developed, key differences in sensitivity and specificity make 

none of the computational tools eligible as gold standard method88. 

I therefore performed an analytical comparative analysis to assess the power of three recent 

computational methods and an in-house developed method tailored on SCNAs detection 

from WES data. Selected computational tools EXCAVATOR89, ADTEx90 and Control-

FREEC91 implement different algorithms to split chromosomes into segments with the same 

putative DNA copy number. The comparison is made by considering a prostate cancer data 

set including 16 tumors and matched normal tissues4,92. For these samples, regions of 

SCNAs were previously detected by SNP array (reference data), FISH assay 

(TMPRSS2:ERG fusion) and segmented regions generated through the processing of WGS 

data. 

Concordance among SCNA callers and reference data has been tested looking at regions 

spanning a set (N=822) of selected cancer related genes (Figure 2A, 3A) and a set of 

equally spaced (1Mb) positions across the genome (Figure 2B, 3B). First, I estimated mean 

correlations among methods considering the overall dataset, both in the gene-based and in 

the genomic-sampling context (Figure 2). Next, to avoid samples heterogeneity issues, a 

one-by-one sample analysis was conducted estimating correlations between each method 

and reference data (Figure 3).  

 
Figure 2. Concordance among SCNA callers and reference data tested (A) looking at regions 
spanning a set of selected cancer related genes (N=822) and (B) a set of equally spaced (1Mb) 
positions across the genome. 

A B

in-house 
method
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Figure 3. One-by-one sample analysis estimating correlations between each method and reference 
data looking at regions spanning a set (N=822) of selected cancer related genes (A) and a set of 
equally spaced (1Mb) positions across the genome (B). 
 
Figure 4 shows the distributions of log2 ratio values computed by each method for segments 

spanning the ETS2 gene (located within the 3Mb interstitial deletion between ERG and 

TMPRSS2 genes) in each sample. Blue and red boxes represent distributions of ETS2 log2 

ratio values of samples annotated as TMPRSS2:ERG deletion positive or not by in-situ 

FISH. 
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Figure 4. Log2 ratio distributions computed by each method for segments spanning the ETS2 gene 
in each sample. 
 

These formal analyses suggest that, on average, EXCAVATOR achieves higher 

concordance than ADTEx and Control-FREEC both with SNP array data (Spearman’s 

correlation: 0.799, 0.536, 0.451, respectively) and WGS segmented regions (Spearman’s 

correlation: 0.728, 0.579, 0.565, respectively).  

 

3. Tumor heterogeneity in castration resistant prostate cancer patients  
I studied a cohort composed by 10 advanced prostate cancer patients looking for evidence 

of intra- and inter-patient tumor heterogeneity (Table 1 and supplementary Table 1). This 

work was performed in collaboration with Prof. Johann De Bono and members of his team 

(ICR London, UK). The manuscript is in preparation (Nava Rodrigues D*, Casiraghi N*, et 

al). 
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Table 1. List of patients and samples included in the study cohort. All tissue samples are incisional 

biopsies. WGS, whole genome sequencing; WES, whole exome sequencing; TURP, Transurethral 

resection of the prostate; LN, lymph node. 

Patient ID Tumor ID Sequencing 
data Sites Site classification 

904 LP2000338 WGS Left Axillary LN Metastatic tumor 
904 LP2000339 WGS Inguinal LN Metastatic tumor 

V4002 LP2000360 WGS Anterior left 
supraclavicular LN Metastatic tumor 

V4002 LP2000361 WGS Posterior left 
supraclavicular LN Metastatic tumor 

V4038 LP2000301 WGS Right Supraclavicular LN Metastatic tumor 
V4038 LP2000302 WGS Right Retropectoral LN Metastatic tumor 
V4074 LP2000115 WGS Dorsal Glans Metastatic tumor 
V4074 LP2000116 WGS Ventral Glans Metastatic tumor 
V4074 LP2000117 WGS Right Coronal Sulcus Metastatic tumor 
V4074 Sample_A34_0001 WES TURP Primary tumor 
V5033 LP2000119 WGS Liver Metastatic tumor 
V5033 LP2000120 WGS Thigh Muscle Metastatic tumor 
V5128 LP2000184 WGS Right Inguinal LN Metastatic tumor 
V5128 LP2000185 WGS Left Supraclavicular LN Metastatic tumor 
V5149 LP2000304 WGS Right Supraclavicular LN Metastatic tumor 
V5149 LP2000305 WGS Left Supraclavicular LN Metastatic tumor 

V5149 Sample_B16_0001 WES Prostatectomy 
microdissected area Primary tumor 

V5149 Sample_B16_0002 WES Prostatectomy 
microdissected area Primary tumor 

V5162 LP2000341 WGS Left Inguinal LN Metastatic tumor 
V5162 LP2000342 WGS Right Inguinal LN Metastatic tumor 

V5162 Sample_B16_0004 WES Prostatectomy 
microdissected area Primary tumor 

V5162 Sample_B16_0005 WES Prostatectomy 
microdissected area Primary tumor 

V5164 LP2000313 WGS Left Supraclavicular node Metastatic tumor 
V5164 LP2000314 WGS Liver Metastatic tumor 
V5191 LP2000363 WGS Left axillary LN Metastatic tumor 
V5191 LP2000364 WGS Right Axillary LN Metastatic tumor 

 

The genomic profiles of primary (N=4) and metastatic (N=21) samples (Figure 5) have been 

generated by applying the computational workflow described in section 1. Primaries tissue 

samples were formalin-fixed paraffin-embedded (FFPE) and WES was performed, where 

metastatic tissue samples were fresh-frozen (FF) tissue samples and WGS was performed.  

Overall, the total number of non-synonymous SNVs and the burden of genomic copy number 

alterations are concordant among tumors within the same patient. These genomic features 

and additional analysis did not show evidence of tumor heterogeneity in most cancer genes 

but interesting results emerged when I focused the analysis on a subset of key player 

prostate cancer genes. Indeed, in two patients I observed intra-patient heterogeneity in the 

genomic status of RB1, the gene encoding for the retinoblastoma protein RB. In one patient, 

only one (out of two) metastatic site has sequencing reads supporting the presence of a 
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single base substitution introducing a premature stop codon in exon 7 and then causing a 

truncated product. In the second patient, the allele specific copy number status of RB1 is 

different between two metastatic sites: the first shows a heterozygous deletion, the latter a 

neutral loss of heterozygosity. Additionally, the WGS data allowed extending the analysis to 

structural variants detection. While focusing on RB1, I found putative structural genomic 

rearrangements whose breakpoints lie within the coding region of RB1 in 3 of the 10 

patients. Sequencing-based genomic analysis results were integrated and validated by 

experimental in situ assays (supplementary Table 2) to estimate RB1 copy number 

(fluoresce in situ hybridization) and RB quantification (immunohistochemistry). In summary, 

the genomic status of RB1 at different metastatic sites is altered by heterogeneous 

aberrations such as point mutations, deletion events and structural variants that together 

can cause RB functionality impairment. 

 

 
 
Figure 5. Clinical and genomic profiles of the study cohort. Top left, schematic illustrating biopsies 
at primary (green) and metastatic (orange) sites. Primary sites and metastatic sites were profiled 
throughout whole-exome and whole-genome sequencing, respectively. Main figure, focus on study 
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cohort most aberrant cancer related genes. Each row represents a gene and each column a tumour 
sample. Samples have been sorted accordingly with the genomic status of a subset of cancer related 
genes. Specifically, the genomic status (wild type or mutated) is here established based on the 
presence or absence of at least one missense somatic point mutation. Grey bars at top correspond 
to the fraction of genome altered by a SCNA event (Copy Number Altered Fraction, CNAF) and to 
the total number of somatic non-synonymous SNVs. Grey bars on the left indicate, for each gene, 
the fraction of samples affected by somatic missense SNV (violet), copy number loss (blue) or focal 
amplification (red). In this study, small cell carcinoma status was determined based on histology and 
lack of AR protein expression. Polyploidy here refers to samples with more than 2 paired sets of 
chromosomes. The quantification of number of paired sets of chromosomes is based on 
computational genomic analysis. Overall, the total number of non-synonymous SNVs and CNAFs 
indicate low intra-patient tumor heterogeneity. Analysis focused on a reduced set of known cancer-
associated genes revealed heterogeneous genomic status of RB1 in patients V5128 and V5033.  
 
3.1 Limited intra-tumor heterogeneity 
As first genomic characterization and genomic instability measure, I counted the total 

number of SNVs detected in coding regions for each tumoral sample analysed. A median 

number of 170 SNVs are found considering all tumor samples (min = 70, max = 494, mean 

= 220). The set of primary samples and metastatic sites have a median number of 103 

(mean = 112, SD = 50) and 173 (mean = 241, SD = 109) SNVs, respectively. When the 

analysis is stratified by using information provided by functional annotation, the median 

number of non-synonymous SNVs observed across primary and metastatic samples is 44 

(mean = 44, SD = 15) and 43 (mean = 60, SD = 30), respectively.  

However, genomic instability is mainly caused by extended rearrangements, such as 

duplications or losses of DNA portions, that alter the normal architecture of the genome. 

Thus, I estimated for each sample the fraction of the genome that is affected by a somatic 

copy number alteration, defined as Copy Number Altered Fraction (CNAF). The median 

CNAF across all tumors is 0.83 (mean = 0.72, SD = 0.25). CNAF computed separately in 

primary and metastases is 0.13 (mean = 0.35, SD = 0.45) and 0.82 (mean = 0.78, SD = 

0.16), respectively. Overall, these results confirm that primary samples are less aberrant 

than metastatic ones and genomic profiles of tumor samples within the same patient are 

fully comparable indicating a low level intra-tumor heterogeneity. 

The number of non-synonymous SNVs and the CNAFs are reported as barplots at the top 

of Figure 5. 

 
3.2 Allelic Fraction (AFs) comparison and evolutionary trees 
For each patient, available tumor samples have been compared pairwise looking at SNVs 

detected in coding regions. The fraction of SNVs that is shared between tumors or private 
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to only one sample varies across patients. Generally, AFs of missense somatic point 

mutations that are shared between tumor samples are higher than AF of private ones. 

Moreover, to better represent and highlight the evolutionary process of tumorigenesis, SNVs 

and SCNAs affecting a set of cancer genes were used to build phylogenetic trees in each 

patient. In Figure 6 are reported pairwise comparison between metastatic samples of patient 

V4074 (Figure 6A) and V4002 (Figure 6B).    

 

 
 
Figure 6. Genomic comparison between metastatic sites from patient V4074 (A) and V4002 (B). 
Left panels show pairwise comparison of variant allelic fractions of SNVs detected in two metastatic 
sites. Each dot is a somatic SNV; red and blue dots indicate missense SNVs private to the metastatic 
site on x-axis and y-axis, respectively. Green dots indicate missense SNVs shared between the two 
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samples. Grey dots indicate private/shared SNVs located in UTR or intronic regions. On the right, 
phylogenetic trees built from allele-specific copy-number and single-nucleotide variant calls are 
shown. The length of each branch is proportional to the number of aberrant cancer related genes 
that are shared by all samples (red), by more than one but not all samples (green), private to primary 
or to metastatic sites (yellow and violet). Clonality of aberrations is not considered. Color of tree 
leaves distinguishes between primary and metastatic sites. 
 
3.3 Different molecular mechanism for RB1 inactivation 
I focused the study of tumor heterogeneity by considering genomic aberrations affecting a 

subset of known cancer-associated genes (N=231) (Figure 5 central heatmap). Evidence 

of tumor heterogeneity can be observed in two patients: metastatic sites of patient V5033 

differ in RB1 genomic status by somatic single nucleotide variant and metastatic sites of 

patient V5128 differ in RB1 genomic status by somatic copy number status. 

 
3.3.1 Diverse RB1 genomic status by somatic single nucleotide variant 
In patient V5033, heterogeneity in the genomic status of RB1 is represented by the presence 

of a single nucleotide substitution only in one metastatic site. The Guanine (G) to Thymine 

(T) substitution in position chr13:48934155 (hg19) causes a premature stop codon with 

consequent protein truncation (p.Glu204*). Sequencing reads mapped on 40bp region 

spanning upstream region of RB1 exon 7 and supporting the presence of the alternative 

allele T can be observed exclusively in the thigh metastasis (Figure 7). 

Immunohistochemistry analysis shows absence of RB protein expression at both sites and 

FISH data indicates loss of one allele, in agreement with NGS data (Figure 5). 

 

 
 
Figure 7. Metastatic sites of patient V5033 differ in RB1 genomic status by somatic single nucleotide 
variant. (A) Each track shows sequencing reads (horizontal grey bars) mapped on a 40bp region 
spanning the upstream region of RB1 exon 7 from two metastatic samples (top first and second 
tracks) and matched germline (bottom track). Red highlights the nucleotide base Thymine (T) in 
mapped reads crossing position chr13:48934155 (hg19) (reference allele is Guanine (G)). This 
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single nucleotide substitution, observed only in one metastatic site, causes a premature stop codon 
with consequent protein truncation (p.Glu204*). Variant allelic fraction is indicated with AF. (B) Left, 
immunohistochemistry of metastatic samples for RB. Right, FISH data for RB1 (target probes in red 
and reference probes in green). 
 
 
3.3.2 Diverse RB1 genomic status by copy number status 
In patient V5128, data show that the copy number status of RB1 is compatible with a 

heterozygous loss event (loss of one allele) in the right inguinal lymph node and, differently, 

with a copy-number neutral loss of heterozygosity event (two copies of the same allele and 

none of the other one) in the left supraclavicular lymph node (Figure 8). 
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Figure 8. Metastatic sites of patient V5128 differ in RB1 genomic status by somatic copy number. 
(A) Schematic representation of the allele specific copy number space is shown on top. Each dot is 
a genomic segment; position in the x-y space reflect allele A and B copy number estimates by 
CLONET (values are discretized copy numbers where CN A represents the major allele, while CN 
B the minor allele). Data show that RB1 copy number status (red dot) of patient V5128 is compatible 
with monoallelic loss (loss of one allele) in the right inguinal lymph node (bottom left) and with a 
copy-number neutral loss of heterozygosity (two copies of the same allele and none of the other 
one) in the left supraclavicular lymph node (bottom right). (B) RB immunohistochemistry and RB1 
FISH data (target probes in red, reference probes in green) in metastatic samples s184 (left) and 
s185 (right). IHC data shows comparable expression levels of RB (Hscores = 100) in both sites. RB1 
hemizygous deletion is supported by FISH data in s184; non homogenous signal is observed for 
sample s185. 
 
3.4 Alternative molecular mechanism causing RB1 inactivation in patient V4074 
The paired-end whole genome sequencing data available for metastatic samples allowed to 

extend the analysis to structural variants detection. Data inspection at BreakDancer 

identified break points reveals that all the 3 metastatic sites of patient V4074 share structural 

variant break points within RB1 (Figure 9A). Analysis of orientation and insert size of paired 

reads spanning the break points indicates that some pairs of reads have an anomalous 

orientation that is compatible with a tandem duplication event involving exons 7 to 17 altering 

the normal RB1 genomic architecture (Figure 9C). RNA sequencing data were also queried 

for anomalous pair orientations and reads supporting the structural variant were found 

around expected junctions (Figure 9B). Moreover, available WES data for the V4074 patient 

allowed to verify that coverage increases in exons involved in the tandem duplication as 

carefully described in next section 3.4.1.  

 
3.4.1 Tandem duplication analysis in patient V4074 
Data inspection at BreakDancer identified break points in the 3 metastatic sites of patient 

V4074 revealed paired reads with anomalous orientations suggesting that a genomic 

segment of DNA spanning RB1 7 to 17 exons is duplicated and inserted adjacent to the 

original sequence. I checked if the tandem duplication event is also supported by increased 

coverage in the genomic region comprised between the two putative break points with 

respect to both upstream (exons 1 to 6) and downstream (exons 18 to 27) RB1 regions.  

To confirm this yet unknown mechanism of potential RB1 impairment, I queried WES and 

RNA sequencing data available for the same patient from the PCF SU2C56 cohort. I 

computed the following steps on WES data to verify the presence of the tandem duplication 

event: 
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1. Compute the mean coverage of each RB1 exon in tumor sample; 

2. Normalize the mean coverage of each RB1 exons on the total coverage of all RB1 

exons in tumor sample; 

3. Repeat step 1 and 2 on matched normal sample; 

4. For each RB1 exon, compute the ratio between tumor and matched normal 

normalized mean coverages; 

5. Compute the median ratio grouping exons 1 to 6 (Rupstream), 7 to 17 (Rtandem_duplication) 

and 8 to 27 (Rdownstream). 

 

Among WES data of the PCF SU2C cohort (N=149), tumor sample of patient V4074 shows 

the highest ratios Rtandem_duplication / Rupstream and Rtandem_duplication / Rdownstream (specifically 1.75 

and 2.18) indicating a significant enrichment in the coverage of exons involved in the tandem 

duplication (Figure 9E).  
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Figure 9. Alternative molecular mechanism causing RB1 inactivation in patient V4074. (A) Paired-
end whole genome sequencing data mapped on RB1 locus for 3 metastatic sites of patient V4074. 
Histograms at the top of each alignment track show coverage profiles. Grey sequencing reads 
indicate expected (correct orientation and insert size of paired reads) mapping. Vertical black lines 
indicate break points detected by BreakDancer algorithm. Green highlights pairs of reads with 
anomalous orientation compatible with a tandem duplication event. (B) Paired-end RNA sequencing 
reads from V4074 supporting (green) the tandem duplication event involving exons 7 to 17. (C) 
Schematic representation of detected tandem duplication. On the top it is shown the potential RB1 
genomic architecture when tandem duplication involving exons 7 to 17 occurs (black boxes). Read 
pairs with coordinates or insert size spanning break points (conjunctions between yellow and black 
boxes) will correctly map (grey reads) on the reference genome (bottom), while read pairs with insert 
size spanning the region between the repeated region (conjunctions between consecutive black 
boxes) will map with an anomalous orientation (green reads). (D) Left, immunohistochemistry of 
metastatic samples for RB show absence of expression. Right, FISH data for RB1 (target probes in 
red and reference probes in green) support concordantly hemizygous loss across all sites. (E) 
Analysis extended to PCF SU2C cohort (N=149) confirms that the event is detectable in WES data 
by ad hoc coverage bases computation. In red, the median tumor/normal normalized coverage log-
ratio profile (y-axis) computed across RB1 exons (grouped as indicated on x-axis) for a metastatic 
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site of patient V4074 affected by the tandem duplication. Grey lines represent profiles of all other 
PCF SU2C patients. 
 
3.5 Genomic data explains RB protein levels  
In order to have an exhaustive characterization of RB1 in tumor samples, genomic and 

experimental data have been integrated and analysed together. Results show that 

immunohistochemistry (IHC) Retinoblastoma protein levels correlate with the number of 

genomic aberrations at RB1 genomic locus with potential damaging functional impact. 

Indeed, data show that the higher the number of genomic aberrations at RB1 the lower the 

protein level measured. Specifically, tumors carrying none (N=7), one (N=8) or two (N=6) 

genomic aberrations in RB1 have a median IHC score of 120 (mean = 120, SD = 35.11), 65 

(mean = 61.25, SD = 57.92) and 0 (mean = 0, SD = 0), respectively (Figure 10). 

 

 

 
 
Figure 10. Genomic data explains Rb protein levels. (Left) Immunohistochemistry Retinoblastoma 

protein levels against the number of genomic aberrations at RB1 genomic locus with potential 

damaging functional impact. (Right) Pie chart summarizing genomic data: the external level indicates 

the number of samples carrying none, one or two (yellow, orange and red sections, respectively) 

putative deleterious genomic hits in RB1. Inner level specifies the type of RB1 aberrations (light blue, 

copy number loss; pink, missense SNV; green, structural variant) affecting samples in each previous 

section. 
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METHODS (Section a) 
 
1a. Characterization of germline single nucleotide polymorphisms 
Germline single nucleotide polymorphisms (SNPs) are called using HaplotypeCaller tool 

from GATK package. The HaplotypeCaller is capable of calling SNPs via local de-novo 

assembly of mapped reads in a region demonstrating signal of variation from existing 

mapping information. This allows the tool to be more accurate at complex sites, for instance 

containing different types of variants close to each other. The web-based ANNOVAR tool 

(wANNOVAR)93 was used to annotate functional consequences of detected germline 

genetic variants. Effects of coding non-synonymous variants on protein function and carrier's 

phenotype were estimated by considering the functional importance scores predicted by the 

SIFT algorithm (included in wANNOVAR output)94. The SIFT prediction score ranges from 

0 to 1 and corresponds to the scaled probability of an amino-acid substitutions being 

tolerated. Amino-acid substitutions with scores below 0.05 are predicted to affect the protein 

function. 

 

2a. Check normal-tumor pairs consistency 
In order to surmise whether or not the matched samples originate from the same patient, 

genotypes of 334 high MAF SNPs, selected to be well represented also on most WES 

platforms, are computed using and the genotypic distance of these SNPs are calculated for 

each sample using the SNP panel identification assay (SPIA)95. These 334 SNPs are 

chosen such that the genotypes of the 334 SNPs should be very similar in paired 

tumor/control samples that originate from the same patient versus paired samples that 

originate from different patient. For a negative control the genotype distance between the 

paired tumor/control samples with a random sample that originates from a different patient 

is also computed.  

 
3a. Detection of somatic single nucleotide variants in exons 
To identify and characterize somatic single-nucleotide variants (SNVs) in exons, MuTect96 

from the Broad Institute Genome Analysis Toolkit is applied; MuTect uses Bayesian 

statistical analysis to nominate putative SNVs upon coverage, allelic fraction, and base-

qualities information. In order to reduce false positives, calls are refined using a pileup 

approach using ASEQ97. Stringent filtering quality criteria were applied and for each tumor 

sample are retained only those SNVs for which no reads supporting any alternative allele at 
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the genomic locus in the matched germline sample were present. Using the same ad-hoc 

pileup approach, a SNV is considered private of a tumor sample if and only if no more than 

two reads supporting an alternative allele are observed at the same genomic position in 

other tumor samples of the same patient. Finally, each SNV is annotated with genomic 

features and effect predictions using SnpEff software98.  
 

4a. Genomic structural variations  
For each tumor and matched normal sample WGS data, the BreakDancer algorithm has 

been run with default parameters to detect genomic structural variations99.  

 

The raw output of BreakDancer was filtered using the following criteria: 

- Quality score ≥ 95; 

- Minimum number of reads supporting the structural variant ≥ 30; 

- At least one of the two break points of the structural variant located within a coding 

region of a gene of interest; 

- Retain structural variants identified as inter-chromosomal (CTX) and intra-

chromosomal translocations (ITX). 

 

All results are visually inspected using the Integrative Genome Viewer (IGV). Specifically, 

sequencing reads are coloured “by pair orientation” or “by insert size” to flag anomalous pair 

orientations or insert sizes, respectively. 

 

5a. Estimates of somatic copy number alterations 
For WGS data, the reference genome is partitioned by using the BICseq algorithm100 using 

default parameters except for lambda (set to 50) and bin size (set to 1000) when to 

accommodate for high mean coverage of the study data. Somatic copy number alterations 

(SCNA) in WES samples are instead identified from the read count based EXCAVATOR 

software89 with default parameters and somatic mode which performs a pairwise tumor-

normal comparison for each case by minimizing systematic biases, such as guanine-

cytosine (GC) content, mappability, and exon length (EXCAVATOR software was selected 

based on results from tools comparison analysis described in section 2). Thus, each 

segment data generated using BICseq and EXCAVATOR is represented by the log2 of the 

ratio between values proportional to the tumor and normal local coverage within the genomic 

segment.  
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6a. Ploidy and purity 

Segmented data generated using BICSeq and EXCAVATOR were used by CLONET8 to a) 

estimate ploidy and purity for each tumor sample; b) adjust log2 ratios for tumor ploidy and 

purity; c) to determine the copy-number landscape through allele-specific copy-number 

analysis as previously described65. 

 
7a. Sequencing data  
Study patient’s tumor biopsies from metastatic sites (N=21) and matched germline samples 

were profiled with whole genome sequencing (WGS) protocol. Available specimens from 

primary tumor sites (N=4) from 3 patients were profiled with whole exome sequencing 

(WES) protocol using Agilent Sure Select Human All Exon V4 kit. Paired-end sequencing 

reads generated from both protocols were aligned using Illumina Isaac aligner101 to the 

human reference genome (GRCh37/hg19). The Genome Analysis Toolkit (GATK)102 best 

practices for variant calling that include marking of duplicate reads, recalibration of base 

quality scores and local realignment were adopted for all aligned samples. 

 
8a. Immunohistochemistry 
A mouse monoclonal anti-RB1 antibody (Clone G3-245, BD Biosciences, San Jose – CA, 

USA) was selected for this study. For validation of specificity, protein lysates were isolated 

from 22RV1 and MDA-MB-468 cell lines and run on western blot for positive and negative 

controls, respectively. Immunohistochemistry (IHC) staining was performed using 

conventional diaminobenzidine method using cell pellets of the aforementioned cell lines as 

positive and negative controls. Briefly, FFPE samples were cut at 4um thick sections onto 

superfrost glass slides and heat based antigen retrieval was performed by boiling slides in 

a pressure cooker at 125ºC for 2 minutes then 90°C for 1 minute in a pH 6 citrate buffer 

solution. Endogenous peroxide was blocked using a 3% H2O2 solution. Non-specific 

staining was blocked using Dako protein block serum-free X0909. RB1 staining was semi-

quantitatively assessed by means of an H-Score determined by the formula: (% of weak 

positivity)x1 + (% of moderate positivity)x2 + (% of strong positivity)x3, yielding a result 

between 0 and 300 103. Immunohistochemistry was performed and evaluated at ICR by Dr. 

Daniel Nava Rodrigues. 
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9a. Fluorescent in situ Hybridisation 
Fluorescent in situ Hybridisation (FISH) was performed to determine copy number status of 

RB1. Dual color FISH assay was optimized; commercially available FISH probes for 13q14, 

~202 Kb locus spanning RB1, and 13q34, ~612 Kb locus in the subtelomeric region of 13q 

were used (Abbot Laboratories, Lake Bluff, IL-USA). Up to 50 intact non-overlapping nuclei 

were counted per sample and the number of cells with >2, 2, 1, or 0 signals was recorded 

for both probes. FISH was performed at evaluated at ICR by Dr. Daniel Nava Rodrigues. 
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b. Cell free DNA in plasma samples 
 
To overcome limitations due to intra-patient tumor heterogeneity in the clinical setting, here 

I report studies aimed to characterize the genomics of metastatic prostate cancer through 

“liquid biopsy”, i.e. plasma form patient’s blood samples. Cell free DNA (cfDNA) released in 

blood stream from widespread metastatic cells is exploited as alternative to multiple 

metastatic tissue biopsies that are unpractical due to complications and pain104–108. This 

approach could provide the full landscape of all tumor lesions present at a certain time point; 

that is knowledge is key information to evaluate treatments response/resistance and thus 

the most effective clinical therapy. Moreover, by exploiting serial sampling and looking for 

specific somatic aberrations, liquid biopsies can provide the opportunity to survey genetic 

material potentially representative of multiple metastases and efficiently track tumoral clones 

evolution. My work in the context of cancer patient cell free DNA quantification and 

interpretation for the understanding of patient’s heterogeneity ranged from advanced quality 

control procedure that highlighted generalizable features highly relevant for optimized 

design of targeted sequencing assay, detection of alternative mechanisms of AR 

enhancement during abiraterone treatment, to the development of a per-base error measure 

(pbem) for local sequencing error to accurately detect single nucleotide variants in highly 

challenging samples.   

 
4. Quality control assessment of sequencing targeted panel  
Recently published works from my laboratory showed the efficacy of the NGS targeted 

assay to systematically track tumor evolution and evaluate response to treatments by 

detecting somatic aberrations in circulating-free DNA from advanced castration resistance 

prostate cancer patients’ plasma80,109. Nevertheless, in some cases the biological 

interpretation of experimental data was extremely challenging due to a non-homogeneous 

distribution of the sequencing signal across amplicons capturing different genomic regions 

within the same sample. In particular, the estimation of copy number variations (gain or loss 

of genomic regions) required the implementation of sophisticated computational methods 

able to deal with biological signal fluctuations which combined tumoral and control sample’s 

data. In addition, quantitative analysis showed that the efficacy (that is proportional to the 

number of sequencing reads aligned on the corresponding genomic region) of a specific 

amplicon varies across samples making, in some cases, comparisons unconfident and 
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hence requiring preprocessing computational steps able to identify and filter out amplicons 

demonstrating excessive instability.  

To investigate the potential source of both intra-sample and inter-samples amplicon 

instability, I evaluated a deep sequencing targeted panel used in Carreira et al.109 and in 

Romanel et al.80 covering 8 genomic regions for a total of about 40 kb using 367 amplicons 

optimized for IonTorrent Personal Genome Machine (PGM). Specifically, data suggests that 

this targeted deep sequencing panel was affected, in specific target regions, by sub-optimal 

depth of coverage both at gene and amplicon level. The aim of my analysis was to 

understand whether particular intrinsic genomic features or other technical aspects could 

explain these problems. Thus, I estimated the mappability of target regions, I studied the 

relationships between GC content and both amplicons length and depth of coverage and I 

characterized possible undesired drawbacks caused by inaccurate primers design.  

 

4.1 Sequencing coverage and GC content bias 
Amplicons included in the targeted panel were stratified based on type of genomic region 

covered (87 coding, 114 intronic, 166 intergenic) and lengths (7 bins of 10bp range, 

minimum length is 68, maximum length is 141bp). The median GC content for the entire set 

of amplicons is 44.1%. Specifically, the median GC content estimated for coding, intronic 

and intergenic amplicons is 54.3%, 40.7% and 43.6%, respectively. As shown in Figure 11, 

GC content is higher in coding than non-coding (intronic and intergenic) amplicons (p-value 

= 1.537e-14, Welch Two Sample t-test) and this is in line with previous observations that 

chromosomal regions of high GC exhibit higher genes density110,111 and human 

housekeeping genes contain relatively high GC content and were found to include short 

introns112.  

 



	 38	

 
Figure 11. GC content comparison among amplicons covering coding, intronic and intergenic 

genomic regions. Data show that GC content is higher in coding than non-coding (intronic and 

intergenic) amplicons (p-value = 1.537e-14, Welch Two Sample t-test). 

 

Next, I investigated the relationship between GC content and amplicon size in each class. 

Amplicons shorter than 80bp and covering coding regions have a median GC content 

significantly lower than larger amplicons of the same class and this characteristic is 

observed also for intronic amplicons. Instead, the size of amplicons covering intergenic 

regions does not associate with the median level of GC content that is stable around 40% 

across length bins (Figure 12). 
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Figure 12. GC content and amplicon size in coding (A), intronic (B) and intergenic (C) amplicons. 

Barplots on the left show amplicon length distributions for each amplicon class. On the right, boxplots 

show distribution of GC content stratified by bins of size. Dashed horizontal green and blue lines 

indicates the median GC content computed across all coding and intronic amplicons, respectively. 

 

To understand if this behavior is peculiar only for the considered amplicons or it is a general 

genomic sequence property, I performed the same GC content versus size analysis on 

random genomic regions. Specifically, the GC content distribution observed for each 

amplicon bin size is compared with the GC content distribution computed in 25K randomly 

sampled regions with comparable size. This exercise was performed in the three amplicon 

classes (coding, intronic, intergenic) separately and by performing random sampling of 

genomic regions belonging to the considered amplicon class (i.e. the GC content computed 

in n amplicons of length in range 90-100bp and targeting coding regions will be compared 

with the GC content computed in 25K coding regions of 90-100bp randomly sampled 

genome wide). As a result, designed coding amplicons have generally a median GC content 

that is comparable with randomly sampled positions whose median is stable around 50% 

across bins of size considered; unique exception is represented by the bin with the shortest 

sizes that have a median GC content significantly lower than random one. Supporting the 
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previous observation, both sets of random intronic and random intergenic amplicons have a 

median GC content that is lower with respect to that observed in coding ones. Intronic 

amplicons with size in range 76-90bp have a lower GC content than that computed in the 

corresponding random sets; for larger sizes the two distributions are fully comparable. 

Finally, the median GC content computed in intergenic amplicons is comparable with that 

computed in all corresponding random sets across the whole size range (Figure 13). 
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Figure 13. Comparison, stratified by lengths, between GC content computed in designed and 

random amplicons covering coding (A), intronic (B) and intergenic (C) genomic regions. For each 

panel, on y-axis is reported the GC content and on the x-axis the bins of lengths by which amplicons 

are grouped. Blue and red boxplots show the GC content distribution computed in designed 

amplicons and in a set of 25K randomly sampled amplicons with comparable size and type of 

genomic region covered. 

 

Effects of extreme GC content are evaluated in terms of sequencing coverage level (Figure 
14). Indeed, amplicons having a GC content in range 40-60% (N=199) have a median 

coverage of 1205. Amplicons with GC content lower than 40% (N=132) or higher than 60% 

(N=36) suffer decrease in their median coverage: 1132 and 631, respectively (p-value = 

2.2e-16, Kruskal-Wallis rank sum test). In addition, as shown in Figure 15, high GC content 

levels associate with decreased amplicon coverage stability, hence partially explaining this 

phenomena for a subset of amplicons. 

 
 
Figure 14. Effects of extreme GC content on median coverage. Amplicons with GC content lower 

than 40% (N=132) or higher than 60% (N=36) suffer decrease in their median coverage (p-value = 

2.2e-16, Kruskal-Wallis rank sum test). 
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Figure 15. Amplicon sequencing coverage stability and GC content stratified in three main intervals. 

Two different GC content discretization intervals (left and right panels) have been considered 

producing the same result.  

 

4.2 Genomic alignment and mappability 
Mean mappability of each amplicon sequence was evaluated in terms of alignability and 

uniqueness measures. The mean alignability is optimal (equal to 1) for most of the designed 

amplicons except for a relevant fraction of those covering PTEN (21 out of 73, 29%) and 

FOXA1 (5 out of 14, 36%) genes. These amplicons are also characterized by suboptimal 

mean values of uniqueness, a more stringent measure of mappability (Figure 16). 

Amplicons covering genes FOXA1 and particularly PTEN are enriched for sub-optimal 

mappability measures (Figure 17). More generally, amplicons characterized by sub-optimal 

mappability measures result more problematic in terms of sequencing coverage stability 

(Figure 18). 
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Figure 16. Measures of mappability. Median and mean uniqueness (top) and alignability (bottom) 

computed in amplicons (each coloured square) covering genes (depicted in different colors) targeted 

in the assay. Amplicons covering PTEN (green) and FOXA1 (violet) show sub-optimal (lower than 

1) levels mappability both in terms of uniqueness and alignability. At top of each panel, parameter k 

indicates, the size of the sliding window used to compute alignability and uniqueness, m indicates 

the maximum number of mismatches allowed during sequence search genome wide. 
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Figure 17. Comparison of mappability in amplicons covering FOXA1 and PTEN versus amplicons 

covering all other panel genes. From left to right, boxplots report on y-axis mean alignability 

(computed with parameter k=36), mean alignability (k=100) and mean uniqueness (k=35). In each 

panel, left distribution is computed in amplicons covering FOXA1 and PTEN, right distribution show 

mappability distribution computed in all other amplicons. 

 
Figure 18. Amplicon stability versus amplicon mappability measures. Distributions of amplicon 

stability measure (y-axis) compared between optimal (left boxplot in each panel) and sub-optimal 

(right boxplot in each panel) values of median (top boxplots) and mean (bottom boxplots) mappability 

measures. From left to right, mappability measures considered are alignability (computed with 

parameter k=36), alignability (k=100) and uniqueness (k=35). 

 

4.3 Characterization of multiplex PCR primers to avoid or be aware of possible 
undesired amplification products 

I designed a computational strategy to verify if drops in coverage observed in specific target 

regions can be caused by poor primers design that can compromise their activity during the 

DNA amplification step by multiplex PCR during library preparation. First, I quantified how 
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much a designed primer is specific to the targeted genomic region by looking for all possible 

hits (allowing none, one or more than one mismatches) of the studied primer sequence 

across the genome. Second, since multiplex PCR uses multiple pairs of primers to amplify 

different genomic regions in a single reaction, I checked if two primers, given their expected 

or/unexpected hits on the DNA sequence, can sit on the genome at reasonable distance 

and right orientation to properly work and give rise to undesired PCR amplification products. 

Indeed, amplicons amplified by primers that have multiple hits along the genome (not 

specific for a single genomic region) are less represented than expected in the sequencing 

library and thus their sequencing coverage is negatively influenced. Moreover, undesired 

PCR products can subtract sequencing reads from targeted regions and decrease their 

median coverage. Results show that amplicons having both primers that align only to the 

sequence of interest (the targeted one) have the higher median coverage. Instead, the set 

of amplicons having one or both primers that can align to sequences different from the 

targeted one, have lower median coverage.  

 

5. Design of a new custom sequencing targeted panel  
Results and computational strategies derived from the in-silico characterization of the 

targeted sequencing panel used in Carreira et al.109 and in Romanel et al.80 was exploited 

to design a new amplicon-based assay for targeted resequencing. The novel targeted panel 

was designed in collaboration with Illumina company and based on the TruSeq Custom 

Amplicon (TSCA) assay. Most of the TSCA’s amplicons were designed to cover genomic 

regions found to be frequently aberrant in both primary and advanced prostate cancers 

(N=20 genes). Additionally, a set of amplicons is dedicated to cover non-aberrant regions 

(N=3 genes): this will assure the presence of reference controls regions within the assay 

that can be used to improve copy number evaluation. The designed custom panel including 

includes 1161 amplicons designed to cover approximately 105 kb in genomic regions of 

interest (on-targets) and also 671 potential amplicons that may amplify non-targeted regions 

(off-targets). All amplicons are summarized in a file provided by Illumina called TSCA 

Manifest. 

Taking advantage of strategies developed for estimating tumor purity and lesion hierarchy 

from whole-genome sequencing8, the targeted panel aimed to exploit the genetic information 

of single individuals at heterozygous SNPs, informative SNPs, to computationally determine 

the fraction of total DNA in circulation that contained common monoallelic deletions. Thus, 

SNPs at high MAF were covered by amplicons within commonly aberrant genomic regions 
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(21q, NKX3-1, PTEN, MYCN, CHD1, MYC, ATM, BRCA2, RB1, MAP2K5, CYLD, FANCA, 

TP53, BRCA1, AURKA) and control genes (HP1BP3, FGFBP2, UGT2B17). Additionally, all 

AR exons were covered.  

Moreover, I designed amplicons to cover missense somatic point mutations in BRAF, PTEN, 

ATM, BRCA2, RB1, FOXA1TP53, BRCA1, SPOP, AR genes previously reported in 

extended cohorts56,87. Amplicons covering regions dense of somatic point mutations of 

interest, were designed taking into account that the number of point mutations that lie 

underneath one of the probes is limited. Specifically, probe (both forward and reverse) 

design can tolerate up to 3 point mutations and they are still functional. The position of the 

SNVs within the probe does matter: forward probes cannot include SNVs in the last third of 

the probe and reverse probes cannot include SNVs within the centre of the probes.  

As quality control, I estimated the GC content for forward probes, reverse probes and target 

regions comprised between them. The median GC content values are 43.48%, 45.45%, 

41.07%, respectively. The median mappability values are 77.32%, 75.86%, 74.73%, 

respectively. As expected, I observed that GC content is slightly higher in target regions 

located in exonic regions respect to intronic and intergenic ones. Similarly, amplicons 

covering exonic regions are characterized by better mappability values respect to other 

amplicons. There are 24 target regions (2.5%) that show a GC content higher than 70% and 

74 (8%) with a mappability value lower that 30%. There are 17 forward probes (1.8%) that 

show a GC content higher than 70% and 91 (9.7%) with a mappability value lower that 30%. 

There are 10 reverse probes (1%) that show a GC content higher than 70% and 95 (10%) 

with a mappability value lower that 30%. Differently from PGM technology, probes in this 

design can tolerate very wide range of GC content because of diverse amplification process. 

Indeed, hybridization and extension-ligation processes are not strict (in terms of annealing 

temperature and time) as in a typical PCR reaction that allows higher hybridization 

specificity. 

 

5.1 Comparative analysis of sequencing data generated by two sequencing targeted 
assays 

Explorative analyses were performed using DNA extracted from different sources: plasma 

and serum of both prostate cancer patients and healthy individuals, tumor biopsies and 

matched germline controls from prostate cancer patients, four prostate cancer cell lines 

(DU145, LNCAP, PC3, RWPE) and four HAPMAP samples. All samples were sequenced 

using Illumina MiSeq. Preliminary results suggest that TSCA-MiSeq output data 
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characteristics are comparable with data generated using the first custom panel sequenced 

on the IonTorrent PGM. In particular, TSCA technology does not provide evident 

improvements in terms of amplicon signal stability. 

 

5.2 Qualitative and quantitative assessment of plasma and serum samples using 
TSCA panel 

Overall statistics on sequencing data were performed for qualitative and quantitative 

assessment of plasma and serum samples from low-grade prostate cancer patient.  

The library prepared with cfDNA extracted from plasma sample was sequenced in 3 different 

sessions. The total number of reads generated per plasma sample in each session was 

1205858, 1085458 and 1642594. Plasma samples showed an average fraction of mapped 

reads and properly-paired reads of 0.78 and 0.74 indicating good quality reads and 

successful alignment procedure. Plasma samples mean coverages in the three sessions 

were 754.13, 651.49 and 977.14. In each session, plasma samples have about 5% of the 

reads mapped in off-targets and this value is in line with expected fraction. 

DNA extracted from serum sample was used included in 2 libraries. The first library was 

sequenced twice (first and third sequencing session) and the second library once (second 

sequencing session). Both library preparations provided comparable sequencing outputs: 

mean coverages of library one were 1050.32 and 1155.61, 942.52 for library two; the 

fractions of mapped reads (and properly-paired reads) were 0.82 (0.78) and 0.79 (0.76) for 

library one and 0.80 (0.75) for library two. The two libraries slightly differ in the fraction of 

reads mapped in off-targets of Manifest: 5% and 9% for library one and two, respectively.  

In order to obtain a unique BAM file for plasma and serum samples, reads generated in the 

three sequencing sessions were merged together. Merged plasma and serum samples 

reached a mean coverage of 2382.76 and 3148.46. With respect to the total number of 

reads, more than 77% are successfully mapped and more than 73% are mapped as 

properly-paired in both sample types. Reads in off-targets account for approximately 6% of 

the total filtered reads mapped to regions in Manifest file. 

 

6. Plasma AR and abiraterone-resistant prostate cancer  
Androgen receptor (AR) gene aberrations are rare in prostate cancer before primary 

hormone treatment but emerge with castration resistance. To determine AR gene status 

using a minimally invasive assay that could have broad clinical utility, in collaboration with 

Dr. Gerhardt Attard at the Royal Mardsen, we developed a targeted next-generation 
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sequencing approach amenable to plasma DNA, covering all AR coding bases and genomic 

regions that are highly informative in prostate cancer. Here I present part of results from the 

analysis of 274 sequenced plasma samples from 97 castration-resistant prostate cancer 

patients treated with abiraterone at two institutions80. cfDNA in patients’ circulation was 

analyzed and for 217 samples (80 patients) there was sufficiently high tumor DNA fraction 

to quantify AR copy number state (tumor DNA fraction above 7.5%) (Figure 19). Through 

computational analysis the genomic status of AR in terms of somatic point mutations and 

somatic copy number was determined for all considered tumoral patient's samples.    

 

 
 
Figure 19. Study profile showing the number of patients and samples with next-generation 

sequencing data and with a circulating tumor DNA fraction ≥ 0.075. Twenty-six patients (*) and one 

patient (†) had pre-abiraterone samples only. 

 

6.1 Mutant AR alleles do not acquire copy number gain 
We detected (Methods section 4b) somatic AR non-synonymous point mutations described 

recently in sequencing studies of CRPC tissue56 in 41 plasma samples (15%) from 16 

patients. W742C and W742L AR mutations were observed in the same sample collected 

prior to initiation of abiraterone in a patient who had progressed on and discontinued 

bicalutamide 36 days previously. L702H was only observed in patients (five) receiving 
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prednisolone. The L702H, H875Y and T878A mutations were validated using digital droplet 

PCR (Figure 20).  

 

 
 
Figure 20. The allelic frequencies of the AR mutations 2105T>A (L702H), 2632A>G (T878A) and 

2623C>T (H875Y) were determined with ddPCR as a validation of the sequencing estimation. For 

samples with sufficient input DNA (6ng) PCR reactions were setup in duplicate with primer/probe 

mixes detecting either the wild type and mutant allele for L702H (top panel), T878A (middle panel) 

and H875Y (bottom panel). Based on the number of droplets positive for the mutant or wild type 

allele the allelic frequency was calculated (red circles) and compared to the sequencing estimation 

(white squares). 

 

Amongst samples with detectable DNA fraction, we observed a significant inverse 

correlation between detection of AR copy number gain and AR point mutation (Figure 21A) 

and no instances where the fraction of reads suggested gain of a mutant AR allele. As we 

had sequence data on all the bases in coding regions of the AR, we proceeded to identify a 

significantly higher rate of non-synonymous with respect to synonymous AR point mutations 

in the samples with no AR gain compared to those with gain, supporting selection of non-

synonymous mutations in the absence of gain (Figure 21B). To identify AR point mutations 

that specifically associate with resistance to abiraterone, we selected lesions that were 

consistently detected and showed an increase in circulating abundance with disease 

progression. We included 59 patients with both baseline and progression samples. AR-

L702H (three patients) and AR-T878A (four patients) were the only two mutations that met 

these criteria (Figure 21C). Both mutations are activated by non-androgenic ligands present 

at increased levels in patients treated with abiraterone8,109. Overall, we observed emergence 

of T878A or L702H AR amino acid changes in 13% of tumors at progression on abiraterone. 
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Figure 21. AR gain in non-mutant AR alleles. (A) Distribution of AR point mutations in all samples, 

stratified by AR copy number (CN) status. OR, odds ratio. (B) The prevalence of nonsynonymous 

(Ka) and synonymous (Ks) substitutions in AR gain and AR CN neutral samples. Fisher’s exact test 
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was applied to test differences between the number of mutated (Mut) versus wild-type (WT) samples 

across AR gain and AR CN neutral (A) and nonsynonymous versus synonymous substitutions in AR 

gain versus AR copy number neutral samples (B). Fisher’s exact test was applied to test differences 

between the number of mutated (Mut) versus wild-type (WT) samples across AR gain and AR CN 

neutral (A) and nonsynonymous versus synonymous substitutions in AR gain versus AR copy 

number neutral samples (B). (C) Presence of AR point mutations (PM) in serial plasma samples from 

study patients. For every patient, the temporal pattern of mutation detection is shown, distinguishing 

baseline (green), on-treatment (yellow), and progression (red) samples, along with fractions of 

circulating tumor DNA (TC). Mutations are marked with different colors and symbols, and the 

corresponding allelic fractions (AF) corrected for tumor DNA fraction are reported. Temporal patterns 

observed for each specific patient/mutation combination are annotated as emergence (E), 

persistence (P), or loss of detection (L and marked with a red box). Stars are used to mark AR point 

mutations that are consistently detected with disease progression. Corresponding to original Figure 

2 in manuscript Romanel et al. 80. 

 

7. Improved detection of somatic point mutations in circulating free DNA 
Building on data features I observed during the assessment of mutant AR alleles via 

sequencing targeted assay, I recognized the need for a dedicated computational method 

that combines genetic knowledge and empirical signal to readily detect and quantify somatic 

point mutations in cfDNA by fully exploiting single base resolution information from targeted 

sequencing data using patient’s plasma (case) and matched germline sample (control). I will 

here describe the main steps of the approach ABEMUS (Adaptive per Base Error Model for 

Ultra-deep Sequencing data) and then present the results I obtained on WES data of 36 

CRPC patients samples from the Caryl and Israel Englander Institute for Precision Medicine 

(New York Presbyterian Hospital-Weill Cornell Medicine). 

First, each targeted base is genotyped in controls to build the allelic fraction distribution 

necessary to determine the cut-off to call a somatic point mutation with a desired specificity 

in plasma samples. Analyses showed that the estimation of this threshold is more stable by 

increasing the number of controls and furthermore its value significantly varies according to 

coverage levels (Figure 22).  
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Figure 22. AF thresholds (computed at 99.5% detection specificity) vary across coverage levels 

(blue lines) and are getting more accurate by increasing the number of germline samples used (x-

axis) for the computation. 

 

Second, control samples are exploited to build a genomic locus-specific error model to 

estimate the probability that observed case allelic fraction is indeed evidence of a somatic 

event. Specifically, this error model is computed for each locus as the ratio between the 

number of reads supporting alleles different from the reference one (alternative allele) and 

the total coverage across all control samples.  

Third, plasma samples are analysed and only targeted positions passing stringent custom 

filtering criteria are retained for next analysis. Indeed, by exploiting results computed in the 

first step, the combination of desired detection specificity and locus coverage gives the most 

appropriate allelic fraction cut-off to apply to the interrogated position. Loci passing also the 

ad hoc allelic fraction filtering constitute the set of putative somatic point mutations.  

Fourth, additional filtering analyses based on the computed base-error model and aimed to 

mitigate effects of potential experimental biases (i.e. strand bias effect) are used to end up 

with a final set of putative somatic point mutations. 

Next paragraphs are dedicated to a detailed description of the method. 
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7.1 From BAM file to per-base pileup 
NGS sequencing files (BAM files) are read in order to extract information available for 

genomic positions covered by a sequencing assay. Currently, the here presented strategy 

is optimized for the analysis of sequencing information ranging from targeted panels (in the 

order of kb) to whole exome sequencing assay (in the order of Mb). The pileup format 

(PILEUP) describes the base-pair information at each genomic locus interrogated. Proper 

input for this computational workflow requires that the PILEUP must have the following 

information: 

 

a. Chromosome, genomic position and Reference allele (In this study, the assembly 

GRCh37/hg19 of the Human Genome was used for all the analyses); 

b. Flag if the locus is a known single nucleotide polymorphism as reported in the dbSNP 

catalogue (In this study, the release 144 was used for all the analyses); 

c. Coverage, that is the total number of reads spanning the genomic locus; 

d. Number of reads supporting each of the 4 possible bases at that genomic locus; 

e. The variant Allelic Fraction (AF), in case of reads supporting an allele different from 

the reference one. AF is computed as the ratio between the number of reads 

supporting the most represented alternative base and the total number of reads 

covering the position. Whether two or more alternative bases have the same 

coverage, no AF is computed.   

 

During the pileup process, quality filtering criteria were applied to ensure reliability of 

downstream analyses. Specifically, for each position only reads showing both read quality 

and base quality values greater than 20 were considered. Moreover, all genomic positions 

showing at least one read supporting a base different from the reference one were saved 

also in a separate file, indicated as SNVS format. In addition to information saved in the 

PILEUP format, the SNVS format reports following information: 

 

a. The putative alternative allele, that is the alternative base with the highest coverage; 

b. For each base, the number of reads covering the forward and reverse strand. This 

information is used to compute strand bias. 

 

To efficiently scale the computational process, both PILEUP and SNVS formats are 

generated split by chromosomes. Although ad-hoc in-house tools were used to provide 
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PILEUP and SNVS files from BAM files, any other NGS pipeline providing outputs in the 

required formats can be used. 

 

7.2 Annotations of targeted genomic regions 
The second required input is the list of genomic regions, covered by the sequencing assay, 

provided as BED format (each entry indicates a genomic range). Since the aim of this 

strategy is to characterize single loci, the BED input is processed to obtain a file where each 

entry indicates a single genomic locus. Whether an entry is a known single nucleotide 

polymorphism this will be flagged with the corresponding identifier reported in the dbSNP 

catalogue. Each entry is annotated with values (min = 0, max = 1) of mean uniqueness, 

mean mappability and GC content computed for the target region (default setting) in which 

the entry is located. 

 

7.3 Retrieve information at each genomic locus across germline samples 
In this step of the computation, the workflow considers data from normal-germline samples 

only.  

For each targeted genomic position, corresponding PILUEP information are extracted from 

the set of germline sample and collected together. For the sake of clarity, a temporary output 

table is generated for each position interrogated in the sequencing assay; each entry of this 

table reports PILEUP information of that entry computed in each of the N germline samples 

considered. These data are exploited to build the overall distribution of variant allelic 

fractions observed in the set of germline samples (global sequencing error estimation) and 

to compute a locus-specific measure that indicates the probability of observing in that 

position a sequencing read supporting an allele different form the reference one (local 

sequencing error estimation). 

Operatively, the collection process is performed in parallel by distributing on k threads the 

step of extracting M loci of interest across germline sample PILEUPs. 

 

7.3.1 Collect AFs stratified by bins of coverage for global sequencing error 
estimation 

As described in PILEUP format, each locus is characterized by a value of coverage and a 

value of allelic fraction (AF is zero if there are not reads supporting alternative alleles). To 

increase true positives (here intended as real sequencing errors), loci that were flagged as 

previously reported germline SNPs or having an AF higher than 10% will not be considered 
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as element of the overall variant AF distribution. Indeed, this two information suggest that 

the position in the normal sample is a germline variant and not an artefactual error. AFs 

measured in all retained positions are saved accordingly with their coverage level in pre-

defined bins. Reasonable bins of coverage can be specified by the user depending on the 

median coverage of germline BAMs. 

 

7.3.2 Per-base error measure (pbem) for local sequencing error estimation 
For each locus, the pbem is computed as the ratio between the total number of sequencing 

reads supporting an allele different from the reference one in that locus and the total 

coverage of that locus across germline samples (Figure 23). The pbem is computed also in 

positions that were flagged as germline SNPs and the AF cut-off to retain or not the 

considered position in a germline sample can be modulated. 

A more allele-specific version of the pbem, indicated as pbem_allele is computed for each 

locus as the ratio between the total number of sequencing reads supporting a specific 

alternative base (i.e. the base A) and the total coverage of that locus across germline 

samples. 

Besides the pbem and pbem_allele, additional information computed using the germline set 

is saved for each position: 

 

a. Locus total coverage; 

b. Total coverage of each base; 

c. Number of germline sample in which the considered position has enough coverage 

(default min coverage = 10) to be included in the computation; 

d. Number of germline samples in which the considered position has an allelic fraction 

higher than a specified AF cut-off (default 10%). 
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Figure 23. Sketch showing the computation of the per-base error measure (pbem) by exploiting 

mapped sequencing reads (coloured arrows) collected from a set of germline samples. 

 

7.4 Assessment of coverage-dependent and independent AF thresholds 
The overall AF distribution, built as described in section 7.3.1, is used to estimate the most 

suitable threshold to discriminate between sequencing errors (false positives) and somatic 

point mutations (true positives). Once a desired level of specificity is decided, the AF 

threshold represents the corresponding quantile within the overall AF distribution (coverage 

independent AF threshold). Additionally, since AF were stratified also by coverage levels, 

the workflow provides AF thresholds by considering AF distributions at each coverage bin 

(coverage independent AF thresholds) (Figure 24). 
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Figure 24. Germline data-driven threshold to accurately call somatic SNV. 

 

7.5 Calling somatic point mutations in tumour samples 
Here the workflow analyses tumour samples with matched normal-germlines.  

For each tumor samples, its SNVS file is read and the list of positions found is extracted 

from the PILEUP of the matched germline sample. This operation allows to fully compare 

information available for a considered position both in tumor and matched germline samples. 

Two consequential filtering steps are then performed. 

First, a somatic putative SNV is filtered out if the AF of the corresponding position in the 

matched germline sample has an AF lower than a settled threshold (default is 0) or there 

are less than x sequencing reads (default is 0) supporting an alternative allele.  

Second, filtering criteria is applied to the AF of the somatic putative SNVs. The method 

allows to use alternatively a user-defined threshold, the coverage-independent or -

dependent AF thresholds (both computed as described in section 7.4). In the first two cases 

(user-defined and coverage-independent thresholds) the same AF cut-off is applied 

indistinctly to all putative somatic SNVs. Otherwise, the coverage in the tumor samples of 

the considered somatic SNV is retrieved and the AF threshold computed using germline 

positions in the corresponding coverage bin is applied. As a result, putative somatic SNVs 

with different coverage will be examined using different AF thresholds. 
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Outputs of this step are two tables listing putative somatic SNVs passing only the first or 

both the filtering criteria. 

 

7.6 Additional refinement of the set of putative somatic point mutations 
Both lists of putative somatic SNVs generated at step 5 are annotated with information 

computed as described in section 7.3.2. Specifically, AF in matched germline, pbem and 

pbem_allele allow to define 5 classes of putative somatic SNVs (Table 2). 

 
Table 2. Classes of putative somatic SNVs based on AF observed in matched germline, pbem and 

pbem_allele values. 

 Computed on matched germline Computed on a set of germline samples 

CLASS Allelic Fraction in germline 
Per-base error 
Locus specific 

(pbem) 

Per-base error 
Allele specific 
(pbem_allele) 

1 0 0 0 
2 0 > 0 0 
3 0 > 0 > 0 
4 > 0 > 0 0 
5 > 0 > 0 > 0 

 

Putative SNVs for which none alternative alleles are observed across all germline samples 

(matched normal included) belong to class 1. This class is the most reliable. Class 2 and 3 

indicate that there are no evidences of alternative alleles in the matched sample but these 

are observed in the whole set of germline sample. More precisely, class 2 indicates that the 

alternative allele of the putative SNV observed in tumor is never found in one or more non-

matched germline samples, conversely class 3 specifies that the somatic alternative allele 

is found in the set of non-matched germline samples.  

Class 4 indicates, since the pbem_allele is 0, that the alternative allele observed in tumor 

and in matched germline is different. Class 5 indicates that the same alternative allele can 

be observed both in plasma and in matched germline or other germline samples show that 

alternative allele. Summarizing, the higher the class the higher the probability of observing 

a systematic error or a germline SNPs, and not a somatic SNV, in tumor sample. Finally, 

the computational workflow outputs a final table containing the refined set of putative 

somatic SNVs and functionally annotated using the software tool Annovar 93. 
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7.7 DNA damage as cause of sequencing errors  
Costello et al. 113 observed that as a consequence of oxidative stress generated by acoustic 

sharing of DNA during sequencing library preparation step, DNA lesion 7,8-dihydro-8-

oxoguanine (8-oxo-dG) can emerge. As main consequence, the 8-oxo-dG is often missed 

by a polymerase as a Thymine (T) instead of a Guanine (G) and analysis of both tumor and 

normal samples evidenced an enrichment of Cytosine>Adenine and Guanine>Thymine 

transversion genomic variants occurring at low allelic fraction in targeted capture data. 

Moreover, a recent study 114 described the impact of this bias in confounding variant 

identification in extend public genomic datasets. Based on these observations, I decided to 

include in the workflow a step in which this source of artefactual bias can be quantified. 
 

7.7.1 Assessment of alternative alleles occurrences 
For each patient, genomic loci in germline samples having at least one read supporting an 

allele different from the reference one are studied. In these positions, the occurrence of each 

alternative allele observed and the occurrence of each reference-to-alternative change are 

quantified. The same count is performed in the matched plasma samples. Together, these 

data allow for the comparison of the probability to observe a specific base as an alternative 

and a certain transition/transversion event. This assessment can be used to check for DNA 

damage status looking, for example, at levels of C>A and G>T transversions. Additionally, 

putative somatic point mutations can be evaluated in terms of how frequent is to observe 

that allele and that reference-to-alternative change across all the positions showing one 

alternative allele. For example, in a plasma sample a putative somatic point mutation is 

observed as transition C>T. Based on the hypothesis that all transitions/transversion events 

occurs at the same frequency, if the frequency of the C>T event is significantly 

overrepresented with respect to all other transition/transversion events in plasma and/or 

germline sample, the considered variant is more likely to be a false positive. All identified 

putative somatic point mutations are hence annotated indicating which of them support 

transitions/transversions that are overrepresented in the corresponding sample. 

 
8. The pbem is a sequencing platform dependent feature 
I formally tested the hypothesis that sequencing errors, quantified using the pbem, depend 

on the experimental platform used (platform is here intended to include both the library 

preparation kit and the machine/chemistry adopted to sequence a DNA sample). To test this 

hypothesis, I collected normal samples that have been profiled using different platforms as 
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reported in Table 3. Thus, I first exploited a set of 113 germline samples sequenced on 

IonTorrent PGM using a custom targeted panel covering a total of 40 kbp. Samples were 

randomly divided into two random subsets including 56 and 57 samples respectively. I 

computed the pbem for all targeted genomic loci independently using the two subsets of 

normal samples. As a result, each targeted locus is characterized by two values of pbem 

that were then tested for correlation. Distributions of pbem and coverage in the two subsets 

are fully comparable and the correlation (Pearson’s product-moment correlation) between 

pbems in S1 and S2 is 0.72 (Figure 25A, S1 and S2). Then I considered 20 normal samples 

equally profiled using a WES assay (Agilent HaloPlex Exome) covering 36 Mbp. As in the 

previous experiment, I split the set into two subsets each including 10 normal samples to 

compute independently pbems. The correlation between pbems at corresponding targeted 

loci is 0.13 (Figure 25A, S3 and S4). Finally, I made two subsets of same cardinality using 

20 normal samples sequenced with a targeted panel (Roche NimbleGen N250 targeted 

panel) covering approximately 3 Mbp across 250 genes of relevant clinical interest. Again, 

the distribution of pbem and the coverage are fully comparable and the correlation between 

pbems at corresponding targeted loci is 0.47 (Figure 25A, S5 and S6). 

Next I compared normal samples profiled through two partially overlapping targeted panels 

(Ion AmpliSeq Targeted Custom Amplicon Panel and Illumina True Seq Custom Amplicon) 

and different sequencing machines: IonTorrent PGM and Illumina MiSeq. Specifically, for 

this experiment I used data derived from 3 DNA samples and each of them was profiled on 

both considered platforms. The pbems were computed and compared on the 7201 bp 

shared between the two targeted designs. Results show lack of correlation (r = -0.02) 

between pbems at corresponding loci in samples sequenced using different platforms 

(Figure 25B, S7 and S8). Similarly, in the next experiment I selected 40 normal samples 

sequenced using both NimbleGen (Roche NimbleGen SeqCap Exome v3) and HaloPlex 

(Agilent HaloPlex Exome) WES kits. As in previous experiment, no correlation (r = 0.03) 

results when comparing pbems at corresponding loci shared (N=31 Mbp) between the two 

assays (Figure 25B, S9 and S3+S4). The experiments clearly indicate the majority of pbems 

of sets of normal samples sequenced using the same platform are concordant, either equal 

or greater than zero. Conversely, in experiments considering samples profiled with different 

platforms, genomic loci are annotated with discordant pbems. Indeed, approximately 50% 

of targeted positions show evidence of errors (pbem > 0) only when data are derived from 

one platform (Figure 25C). Altogether these results suggest that some targeted loci are 
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recurrently subject to sequencing errors and this propensity strictly depends on the 

sequencing platform used. 

 
Table 3. Information on normal samples collected to study the relationship between sequencing 

platform and pbems. Column “Target” reports the extended name of the sequencing assay; the 

corresponding abbreviation used in Figure 25 legend in brackets. 

 

Target Sequencing Target size 
Number of 

Normal samples 
Institution 

Ion AmpliSeq 

Targeted Custom 

Amplicon panel 

(AmpliSeq) 

IonTorrent PGM 40 kbp 113 
The Institute of 

Cancer Research 

(London) 

Illumina True Seq 

Custom Amplicon 

(TSCA) 
Illumina MiSeq 110 kbp 3 

Computational 

Oncology 

Laboratory 

(Trento) 

Roche NimbleGen 

SeqCap Exome v3 

(NimbleGen) 

Illumina HiSeq 

2000 
64 Mbp 40 

Weill Cornell 

Medicine 

Englander Institute 

for Precision 

Medicine 

(New York) 

Roche NimbleGen 

N250 targeted 

panel 

(NimbleGen_N250) 

Illumina HiSeq 

2000 
3.2 Mbp 20 

Weill Cornell 

Medicine 

Englander Institute 

for Precision 

Medicine 

(New York) 

Agilent HaloPlex 

Exome 

(HaloPlex) 

Illumina HiSeq 

2000 
36 Mbp 40 

Weill Cornell 

Medicine 

Englander Institute 

for Precision 

Medicine 

(New York) 
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Figure 25. (A) Good correlations among pbems when computed using sets of normal samples 

sequenced on the same platform. S1 (N=56) and S2 (N=57) are normal samples sequenced using 

AmpliSeq (40kbp; IonTorrent PGM); S3 (N=20) and S4 (N=20) are normal samples sequenced using 

HaloPlex (36Mbp; Illumina HiSeq2000); S5 (N=10) and S6 (N=10) are normal samples sequenced 

using NimbleGen_N250 (3.2Mbp; Illumina HiSeq 2000). (B) Low correlation among pbems when 

computed using sets of normal samples sequenced on different platforms. S7 (N=3) and S8 (N=3) 

loci shared (7 kbp) between targeted custom AmpliSeq TSCA; S9 (N=40) and S3+S4 (N=40) loci 

shared (26Mbp) between NimbleGen (64Mbp; Illumina HiSeq 2000) and HaloPlex. (C) Proportion of 

concordant and discordant pbems when comparing samples profiled using the same platform (yellow 

polygons) or different ones (light blue polygons). R1 and R4 axes indicate the proportion of loci 

characterized by two concordant pbems since they are both equal or greater than zero, respectively. 

R2 and R3 axes indicate the proportion of genomic loci with discordant pbems: a genomic locus 

showing the first pbem equal to zero and the second one greater than zero, or contrariwise.    
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9. Somatic point mutations in plasma and matched tissue biopsies 
The method described in section 7 has been partially exploited to detect somatic point 

mutations in 36 plasma WES samples. Matched control samples (buffy-coat) were available 

for all 36 patients; moreover, matched tissues biopsies (one or more) with matched germline 

(blood) were also available for 34 (94%) patients considered. The aim of the study was to 

quantitatively compare somatic point mutations detected in plasma and matched tissue 

biopsies. The set of 36 control samples was used to estimate overall and allele specific per-

base error measures as described in sections 7.3.2 and ad-hoc stringent filtering criteria 

were applied as described in Methods section 8b.  

455 putative SNVs were detected across the 34 plasma samples by applying an AF 

thresholds of 0.05. Among these, 42% (N=191) were observed exclusively in plasma 

samples and 53% (N=239) were found in plasma and in all other biopsies available. Lastly, 

25 SNVs (5%) were detected in one or more, when available, biopsies. Fractions change by 

considering only the 10 plasma samples for which 2 or more biopsies are available. Indeed, 

the total number of SNVs detected is 249 (AF ≥ 0.05%); 19%, 70% and 10% are the fraction 

of SNVs found only in plasma, shared among plasma and all biopsies and found in at least 

one biopsy, respectively. Decreasing the AF threshold down to 0.03 and 0.01 the total 

number of detected SNVs and specifically the fraction of somatic point mutations detected 

exclusively in plasma increases (Figure 26).  
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Figure 26.  Top barplot, number of putative somatic SNVs called in 36 plasma samples and stratified 

by classes as described in section 7.3.2. Bottom, coloured barplots represents the fraction of SNVs 
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detected in plasma and biopsies using different AF thresholds and considering samples for which at 

least one (N=34, panel B) and at least two (N=10, panel C) matched tissue biopsies are available.   

 

The median AF of SNVs detected (AF ≥ 0.05%) in plasma and all biopsies is 0.15 

(mean=0.17, SD=0.09), that is higher than the median of SNVs found only in plasma 

(median=0.07, mean=0.08, SD=0.05) or in at least one biopsy (median=0.08, mean=0.10, 

SD=0.05). This suggests that mutations are those more clonal in metastatic lesions and 

more represented in ctDNA. Outliers in the AF distributions of SNVs detected only in plasma 

or in only some tissue biopsy will be object of further investigations. An example of this AF 

outlier is observed in patient PM189 (Figure 27). Indeed, a missense somatic SNV 

(previously reported in SU2C dataset) is detected with an AF of 0.39 but not evidences of 

this mutation are found in matched tissue biopsy. Additionally, other 7 SNVs are found only 

in plasma but with AF ranging between 0.02 and 0.07. 9 SNVs are detected in both plasma 

and biopsy. Interestingly, plasma-biopsy shared SNVs detected at low AF in plasma (0.07, 

0.06 and 0.03) belong to class 1 providing robustness to the classification method based on 

the per-base error measures. 
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Figure 27. AF comparison among SNVs detected in plasma and tissues biopsies in patient PM189. 
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plasma (AF=0.2, class 1) of SPOP missense mutation p.F133I (previously reported in both 

SU2C-PCF and TCGA-PRAD datasets), detected also in all 6 available biopsies accordingly 

is an evidence that aberrations in this gene represent early and driver events in prostate 

tumorigenesis. Similar scenario is observed among samples of patient PM161 (Figure 28B) 

where clonal mutation p.I195T affecting TP53 is detected (AF=0.41, class 1) in plasma and 

all 3 tissue biopsies. Finally, 9 SNVs (all previously reported in SU2C-PCF dataset) are 
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detected in plasma (0.13 ≤ AF ≤ 0.05, class 2 and 3) and in only 2 out of 3 biopsies 

suggesting a probable polyclonal metastatic seeding.  

 

 
 
Figure 28. AF comparison among SNVs detected in plasma and tissues biopsies in patients PM90 

(A) and PM161 (B). SNVs are sorted by decreasing AF as measured in plasma sample. On the left 

of each row is depicted the class of the corresponding SNV: Dark green class 1, light green class 2, 

light blue class 3. P plasma, CP plasma-matched control, BN tissue biopsies, CB biopsy-matched 

control. 
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METHODS (Section b) 
 

1b. Measures of genomic mappability 
ENCODE mappability tracks provide a measure of how often the sequence found at the 

particular location will align within the whole genome115–117. Depending on the number of 

mismatched tolerated during search alignment across the genome, mappability can be 

expressed as uniqueness and alignability. Unlike measures of uniqueness (none 

mismatches tolerated), alignability will tolerate up to 2 mismatches. These tracks are in the 

form of signals ranging from 0 to 1. Indeed, mappability scores are calculated as 1/the 

number of places a sequence of length k maps (0 mismatches for uniqueness, up to 2 

mismatches for alignability) to the genome. Mappability of a single position is then computed 

as the average mappability scores from the k sliding sequences of length k spanning that 

position.  

 

2b. Amplicon stability measure 
To minimize non-informative signal, we applied amplicon selection for autosomal and non-

autosomal regions, separately, based on the germline sample set. For each germline 

sample, we calculated the amplicon mean coverage distribution. Mean and standard 

deviation (SD) of that distribution were then computed. Amplicon stability is measured as 

the fraction of samples for which the mean coverage of the considered amplicon is in range 

[mean-SD, mean+SD]. 

 

3b. Analysis of sequencing data from plasma and serum samples 

DNA extracted from plasma and serum samples were sequence in 3 sessions through 

paired-end sequencing protocol on Illumina MiSeq set to generate reads of 150bp length. 

Reads (FASTQ files) were mapped with Isaac Genome Alignment Software (human 

genome reference sequence hg19/GRC37) to targeted regions reported in the TSCA 

Manifest file provided by Illumina. First, the total number of reads generated for each 

sequenced sample was estimated by flagstat utility included in samtools software118. I 

stratified this analysis making distinction among total, mapped and properly-paired reads 

(mates of a read pair map to the same chromosome, oriented towards each other, and with 

a sensible insert size). Second, the mean sequencing coverage across designed on-targets 

was computed with the computational tool DepthOfCoverage included in the Genome 

Analysis Tool Kit (GATK) software package for analysis of high-throughput sequencing 
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data102. For this analysis, I considered only reads with mapping quality and base quality 

greater than 20. Third, an ad-hoc coverage estimation is performed in Manifest on- and off-

targets by retaining only properly-paired reads characterized by a mapping quality greater 

than 20. 

 

4b. Detection of candidate somatic point mutations 
Strict criteria were applied for the detection of somatic point mutations (PM) to contribute to 

the assessment of tumor content. Similar to previous work109, the detection procedure 

includes the following filters: 
a. the local total coverage is >=100; 

b. the alternative base is supported by at least 5 reads; 

c. the allelic fraction (AF) >=1%; 

d. if any, the same alternative base is detected in additional samples from the same 

individual; 

e. exclusion of all genomic positions close to amplicon edges (<=4 bases from internal 

edges); 

f. exclusion of all positions not satisfying strand bias criteria; 

g. the allelic fraction of the position for the patient normal sample is <1%. 

Filters from a-f apply to all patients’ plasma samples. The strand bias filter (f) combines the 

Fisher Exact Test and an ad-hoc test that computes the strand bias distribution from all 

candidate PMs across all tumour samples and retains only first quartile values. To decrease 

the impact of false positives, we retain PMs present in single samples only if the AF>=2%. 

 

5b. Specificity and false positives of point mutation detection 
Specificity of point mutation detection was computed from the distribution of AFs at all 

positions except for germline SNPs across all germline and HV samples; the proportion of 

positions with local coverage >=100 and an alternative base supported by at least 5 reads 

was computed. The specificity resulted in 99.63% with a median AF for false positives of 

2% (with standard deviation of 3%). 

 

6b. Synonymous and non-synonymous substitutions rates (Ks and Ka) 
Within a genomic region, Ks and Ka rates are defined as the number of synonymous 

substitutions per synonymous sites and the number of nonsynonymous substitutions per 

nonsynonymous sites, respectively119. To quantify Ks and Ka for each study sample, I first 
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considered genomic positions within AR coding regions spanning 9 exons and covered by 

targeted amplicons (in this targeted design, all exons are fully covered except for exon 1 

where amplicons cover 86% of the entire coding region). SNPs loci were excluded. Given 

the reference base (allele; GRCh37/hg19) at each locus, I simulated all possible transition 

and transversion events. Then, I annotated as synonymous or not the amino acid changes 

caused by each combination of reference and simulated alternative alleles. The total number 

of synonymous and nonsynonymous sites, denominators of Ks and Ka rates respectively, 

are computed by summing the proportions of synonymous or nonsynonymous simulated 

events across considered loci. Next, based on the annotation of synonymous and 

nonsynonymous sites, Ks and Ka rates were computed for each sample based on the 

number of synonymous and nonsynonymous point mutations detected in the AR region of 

interest. In this study, among the 2469 loci selected in AR coding regions the analysis 

annotated 570 and 1899 as synonymous and nonsynonymous sites. 

 

7b. Plasma samples from CRPC patients 
Whole exome sequencing is performed for matched circulating tumor DNA, germline DNA, 

and metastatic biopsies from 34 patients with CRPC using minimum 50ng DNA, Roche 

NimbleGen SeqCap EZ Human Exome Kit v3.0 library prep, Illumina platform (mean 

coverage in ctDNA >300X).  

 

8b. Detection of somatic point mutations in plasma and matched biopsies 
For plasma samples, 3 starting sets of putative somatic point mutations were generated 

requiring an AF ≥ 0.01, 0.03 and 0.05, respectively.  For each position, the corresponding 

locus in all matched controls (plasma-matched and biopsy-matched) samples were checked 

and required to have an AF = 0. Using classification criteria described in section 7.3.2, only 

variants belonging to classes 1, 2 and 3 were considered. Passing loci were functionally 

annotated using Oncontator 120 software and further filtered by keeping only those variants 

labelled as missense and nonsense. Finally, to increase true positives, I retained only 

variants affecting a cancer related gene (Ngenes=1391) or previously reported in TCGA-

PRAD (Nvariants=24844) or SU2C-PCF (Nvariants=21406) datasets. 
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DISCUSSION 
 
Recent work highlighted the spread of tumor heterogeneity in advanced prostate cancer 

patients as evidenced by tissue based and circulating material studies 37,39,109. The extent 

to which this is relevant in the context of patients’ treatment is still poorly understood, 

partially due to sub-optimal characterization approaches. To help address this clinical 

question, I focused on two strategies, a tissue based and a cell free DNA based one. Upon 

the setup of a computational toolbox for studying cancer genomes by fully exploiting high 

resolution data provided by next generation sequencing experiments, I generated 

exhaustive genomic characterization of a cohort of 25 samples from 10 advanced CRPC 

patients for which multiple biopsies from primary and metastatic lesions were sampled and 

genomically profiled via whole exome and whole genome sequencing. Based on global 

CNAF assessment and the genomic status of a comprehensive cancer genes list, the results 

showed overall modest intra-patient tumor heterogeneity. However, key genes as RB1 

demonstrated variable genomic status across metastases; for instance, in liver and thigh 

metastases of patient V5033 and in inguinal and supraclavicular lymph nodes of patient 

V5128. Metastases of patient V5033 have lost one allele of RB1 (hemizygous deletion 

revealed by genomic data and validated by FISH) and do not express RB protein (IHC data); 

the impairment of the last RB1 allele can be explained by genomic data only for the liver 

metastasis where a disruptive somatic point mutation is detected. Since none RB1 

aberrations are found, RB inactivation in the thigh metastasis is caused by a different 

molecular mechanism. In patient V5128, intra-tumor heterogeneity is disclosed as different 

RB1 copy number status. Specifically, hemizygous loss and neutral loss of heterozygosity 

(two copies of one allele, none for the other one) is revealed by genomic data and FISH 

assays. RB protein level has been measured in both lymph nodes and found to be 

expressed at comparable levels. Whole genome data allowed to discover a never reported 

alternative molecular mechanism for RB1 inactivation (V4074). Indeed, a tandem duplication 

event damaging the canonical RB1 architecture is detected in all the 3 metastatic sites 

studied in this patient. This event, concomitant with hemizygous loss of one RB1 allele as 

detected by genomic data and validated by FISH, explains full lack of RB expression in all 

the 3 lesions. Although the specific 7-17 tandem duplication is not frequent in CRPC, as 

demonstrated by the focused analysis of 149 additional patients from the SU2C-PCF cohort 
56, this result suggest that RB1 inactivation might exist by multiple deleterious molecular 

mechanisms in addition to point mutations and genomic loss, leading to retinoblastoma 
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protein functionality impairment (Nava Rodrigues D*, Casiraghi N*, et al, in preparation). 

Understanding these mechanisms in prostate cancer is important also in the context of 

recent studies showing that inactivation of RB1 when combined with TP53 loss promotes 

lineage plasticity, metastasis and antiandrogen resistance 67,121 and for ongoing clinical trials 

of CDK4/6 inhibitors that imply careful patient selection. In the presented study, a 

comprehensive assessment of tumor heterogeneity was limited by the few number of 

primary tissue samples available and lack for these samples of both IHC and FISH data. 

The second part of this thesis work focused on the genomic analysis of plasma samples. 

Using a targeted assay covering all the AR coding regions we sequenced plasma samples 

from CRPC patients immediately before starting abiraterone, on treatment, and after 

progression, concurrently evaluating both copy number and somatic point mutations. 

Amongst the samples with detectable DNA fraction, we observed a significant inverse 

correlation between detection of AR copy number gain and AR point mutation. Moreover, 

we identified a significantly higher rate of non-synonymous with respect to synonymous AR 

point mutations in the samples with no AR gain compared with gain, supporting selection of 

non-synonymous mutations in the absence of gain. Finally, abiraterone resistance in up to 

30% of patients with no detectable AR gain at progression was associated with an AR 

somatic point mutation, which is often observed several months before confirmed clinical 

progression and putatively activated by nonandrogenic ligands. This suggests that analysis 

of plasma AR, whose genomic status may be predictive for abiraterone resistance, could 

complement other modalities for evaluating CRPC patients and allow early treatment 

change before overt radiological progression. This work was published in 2015 in Science 

Translational Medicine 80 and has been since highly cited. 

Challenges posed by this study, such as a biological scenario characterized by little DNA 

material and high admixture, represented the rationale to develop a computational strategy 

to readily detect and quantify somatic point mutations in sequencing data from patient’s 

plasma and by fully exploiting matched germline DNA. The method I implemented provides 

data-driven AF thresholds, extensive estimations of per-base sequencing errors and 

indicators for experimental biases to limit false positives within the final set of putative 

somatic point mutations. First, I used the per-base sequencing error measure (pbem) to 

show that some targeted loci are recurrently subject to sequencing errors. This observation 

indicates that, in addition to randomly distributed noise, sequencing assays can be affected 

by error hot-spots. Moreover, by comparing different experimental conditions (number of 

samples, size of the sequencing assay, DNA library preparation, sequencing machine) I 
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demonstrated that these hot-spots are consistent only among DNA samples profiled using 

the same library preparation kit and sequencing machine.  

Second, I used the developed computational strategy to detect somatic point mutations in 

ctDNA profiled via whole exome sequencing and sampled from 34 CRPC patients. This is 

the first study to show that WES of ctDNA is feasible in CRPC and can help elucidate intra-

patient heterogeneity. Analysis showed that, depending on the AF, the fraction of mutations 

detected in both ctDNA and in available biopsies vary. Overall, 53% of highly trustable 

somatic SNVs detected (AF ≥ 0.05) in plasmas are also observed in biopsies, supporting 

the advantage of liquid biopsy to outline lesions mutational landscape. Mutations found only 

in plasma samples showing high AF (20% with AF ≥ 0.05) could help to better outline the 

landscape of circulating tumoral clones possibly released by not collected tissue biopsies. 

Data show that fractions of SNVs found only in plasma increases by lowering the AF 

threshold. Indeed, ability to detect mutations occurring only in plasma at low frequencies 

(AF ≤ 0.03) is helpful to accurately shape the profile of clonal/subclonal aberrations but still 

present challenging discrimination between true and false positives. The ABEMUS 

methodology (Casiraghi N, et al, manuscript in preparation) can be used for the detection of 

SNV in any challenging tumor/normal sample pair. To improve ABEMUS methodology, 

ongoing analyses are dedicated to better delineate the pbem underlying features with the 

final goal to enhance its power as filtering criteria. Moreover, further analyses are now 

focused on the comparison between the ABEMUS and existing computational tools 

expressly developed for somatic SNVs detection. Indeed, in-silico normal and tumoral 

samples will be generated through an ad-hoc computational procedure to obtain fully 

customizable datasets where teste methods will be evaluated based on precision and recall 

measures. Then, tools comparison exercises will be performed also considering an 

extended set of ctDNA profiled via WES and sampled from CRPC patients. 
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SUPPLEMENTARY INFORMATION 
 
Supplementary Table 1. Additional information on tumor samples included in the study cohort. 

 

Patient ID Tumor ID Sites Size 
Tumor purity 

based on 
Histology (%) 

904 LP2000338 Left Axillary LN 6.2x0.82mm 60 

904 LP2000339 Inguinal LN 4.1x0.86mm 90 

V4002 LP2000360 
Anterior left 

supraclavicular LN 
2.73x2mm 70 

V4002 LP2000361 
Posterior left 

supraclavicular LN 
3.5x1.3mm 80 

V4038 LP2000301 Right Supraclavicular LN 7.9x1.4mm 90 

V4038 LP2000302 Right Retropectoral LN 4x0.67mm 40 

V4074 LP2000115 Dorsal Glans 3.34x2.5mm 80 

V4074 LP2000116 Ventral Glans 6.7x3.8mm 80 

V4074 LP2000117 Right Coronal Sulcus 7.9x4.0mm 80 

V4074 Sample_A34_0001 TURP NA 70 

V5033 LP2000119 Liver 3.8x0.83mm 10 

V5033 LP2000120 Thigh Muscle 3.8x1.57mm 60 

V5128 LP2000184 Right Inguinal LN 1.5x0.61mm 60 

V5128 LP2000185 Left Supraclavicular LN 1.9x1.37mm 80 

V5149 LP2000304 Right Supraclavicular LN 7.38x0.62mm 60 

V5149 LP2000305 Left Supraclavicular LN 5.27x0.8mm 60 

V5149 Sample_B16_0001 
Prostatectomy 

microdissected area 
NA NA 

V5149 Sample_B16_0002 
Prostatectomy 

microdissected area 
NA NA 

V5162 LP2000341 Left Inguinal LN 7.12x0.88mm 80 

V5162 LP2000342 Right Inguinal LN 11x0.88mm 90 

V5162 Sample_B16_0004 
Prostatectomy 

microdissected area 
NA NA 

V5162 Sample_B16_0005 
Prostatectomy 

microdissected area 
NA NA 

V5164 LP2000313 Left Supraclavicular node 7x1.2mm 60 

V5164 LP2000314 Liver 2.6x0.6mm 25 

V5191 LP2000363 Left axillary LN 3.68x1.18mm 80 

V5191 LP2000364 Right Axillary LN 8.7x1.3mm 60 
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Supplementary Table 2. RB1 copy number (average ratios target over control probes) and RB 

quantification estimated by FISH and IHC, respectively. 

 
Patient ID Tumor ID Sites FISH IHC 

904 LP2000338 Left Axillary LN 1.031 100 

904 LP2000339 Inguinal LN 1.022 100 

V4002 LP2000360 
Anterior left 

supraclavicular LN 
1.020 120 

V4002 LP2000361 
Posterior left 

supraclavicular LN 
1.040 120 

V4038 LP2000301 Right Supraclavicular LN 1.614 150 

V4038 LP2000302 Right Retropectoral LN 1.220 190 

V4074 LP2000115 Dorsal Glans 0.977 0 

V4074 LP2000116 Ventral Glans 1.048 0 

V4074 LP2000117 Right Coronal Sulcus Na 0 

V5033 LP2000119 Liver 0.494 0 

V5033 LP2000120 Thigh Muscle 0.540 0 

V5128 LP2000184 Right Inguinal LN 0.885 100 

V5128 LP2000185 Left Supraclavicular LN 1.072 100 

V5149 LP2000304 Right Supraclavicular LN 0.685 30 

V5149 LP2000305 Left Supraclavicular LN 0.663 100 

V5162 LP2000341 Left Inguinal LN 1.000 130 

V5162 LP2000342 Right Inguinal LN 1.011 80 

V5164 LP2000313 Left Supraclavicular node 0.615 0 

V5164 LP2000314 Liver 0.841 10 

V5191 LP2000363 Left axillary LN 0.638 0 

V5191 LP2000364 Right Axillary LN 0.831 0 
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