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“Now many moons and many Junes,
Have passed since we made land.
A Salty Dog, the seaman’s log,
Your witness, my own hand.”

A Salty Dog - Procol Harum
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Abstract

Collisions with He+ are an important pathway for the destruction of complex organic
molecules in the interstellar medium (ISM). We have carried out dissociative charge
transfer reactions of He+ with two oxygen containing organic molecules, ubiquitous in
ISM: dimethyl ether (DME, CH3OCH3 ) and methyl formate (MF, HCOOCH3). Since
they have a prebiotic relevance, several models were developed to explain how these
molecules are formed and destroyed in the ISM.

The reactions have been investigated by using the home-built Guided-Ion Beam
Mass Spectrometer (GIB-MS) apparatus. Absolute cross sections and branching ratios of
the products have been measured as a function of the collision energy in the hyperther-
mal energy range (i.e. from about 0.1 eV to 7 eV). The presence of the molecular ion was
not observed among the products for these reactions, which means that the nascent DME
and MF radical cations are formed in a dissociative state. Insights on both the charge
transfer processes have been obtained by investigating the nature of the non-adiabatic
transitions between the reactant and product potential energy surfaces (PES). The PES
has been represented by using a semi-empirical method to model the inter-molecular
interactions. To explain the experimental evidence, two excited states of DME and MF
radical cations have been invoked: He+ captures an electron from inner valence orbitals
of both the organic molecules, having binding energies ∼ 10 eV higher than the HOMO.
An improved Landau-Zener-Stückelberg model has been developed to obtain the total
integral cross-section to be compared with the experimental results. Inter-molecular in-
teraction and electron densities of the orbitals involved in the reaction turned out to be
key points to describe the dynamics of the two studied dissociative charge transfers. A
very good agreement is obtained between the experimental and calculated total cross-
sections at low collision energy, which is the most relevant range for the interstellar en-
vironment. These results represent a significant starting point to estimate rate constants
for the total dissociation of DME and MF by collisions with He+ ions in the ISM at low
temperatures.
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Chapter 1

Introduction

“Controllori di volo pronti per il decollo
Telescopi giganti per seguire le stelle
Navigare navigare nello spazio nello spazio, di più
Seguimmo per istinto le scie delle Comete
Come Avanguardie di un altro sistema solare.”

No Time No Space - F. Battiato

1.1 The Space is not empty
Recent cosmological observations [1, 2] cast light on the composition of the Universe [3]. The
95.4% of its total mass is composed by dark energy and dark matter, and the remaining 4.6%
comprises atoms and molecules, which make possible the formation of galaxies, stars and planets.
The 98% of the "ordinary matter" (in opposition to the dark matter) is formed by atomic hydrogen
and helium with ratios relative to hydrogen nuclei (shown also in Table 1.1) respectively of 1 and
0.085 [4, 5] (∼ 90.3% of the total composition for H and ∼ 7.7% for He), while the remaining
2% is the contribution of "heavy" atoms such as carbon, nitrogen and oxygen (relative abundances
reported in Table 1.1). Despite their low abundances, these elements control the variety of complex
compounds revealed in the Universe. Heavier elements show lower abundances depending on the
nucleosynthetic processes occurring in stars. However, the abundances of these elements is lower
in the gas-phase and higher in dust grains. In fact, the interstellar matter consists not only of
gas but also of dust particles (of typical size around 0.1 µm), formed by silicate and carbonaceous
compounds. In particular, the dust-to-gas mass ratio is 0.01 in the Solar System, but this ratio can
vary among galaxies and even within the Milky Way, our galaxy.

The galaxies are characterized by the presence of "clouds", clumps or filament of interstellar
matter. Here, the physical conditions (of densities and temperatures) are extreme, ranging from 10
to 150 K in temperature and from 1 to 106 cm−3 in density and the respective data for some classes
of interstellar clouds are reported in Table 1.2 [6]. In particular, it is worth noting the case of the
diffuse clouds, in which atomic and molecular hydrogen coexist, but decreasing the temperature
the density increases. These clouds, therefore, start to be opaque to interstellar ultraviolet radiation
and H2 becomes the dominant form of hydrogen. In other words, at lower temperatures the diffuse
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Table 1.1: Abundances of elements in interstellar matter near the solar
neighborhood [4], defined as the space associated with a cylin-
der centered at the Sun and perpendicular to the Milky Way
disk. The atoms are sorted by increasing atomic number. It
is worth to note that the abundances of heavier elements cor-
respond to the dust grain abundances, because they tend to
exist in dust grains.

Element Relative Ab. Element Relative Ab.

H 1 Si 3.24× 10−5

He 0.085 P 2.57× 10−7

Li 1.12× 10−11 S 1.32× 10−5

Be 2.40× 10−11 Cl 3.16× 10−7

B 5.01× 10−10 Ar 2.51× 10−6

C 2.69× 10−3 K 1.07× 10−7

N 6.76× 10−5 Ca 2.19× 10−6

O 4.90× 10−4 Sc 1.41× 10−9

F 3.63× 10−8 Ti 8.91× 10−8

Ne 8.51× 10−5 V 8.51× 10−9

Na 1.74× 10−6 Cr 4.37× 10−7

Mg 3.98× 10−5 Mn 2.69× 10−7

Al 2.82× 10−6 Fe 3.16× 10−5

Table 1.2: Physical conditions in interstellar clouds [6]. The nH parame-
ter indicates the volume density of hydrogen nuclei.

Property
Cloud Type

Diffuse atomic Diffuse molecular Dense molecular

Typical nH [cm−3] 1-100 100-500 104-106

Typical T [K] 30-150 30-100 10-50

atomic clouds tend to become diffuse molecular clouds, generally considered as formation sites of
new stars and cradles of rich molecular chemistry.

Characteristic of the interstellar clouds is that they are weakly ionized and the main causes
of ionization are photons and cosmic-rays. In general, the ionization degree for diffuse clouds
is high as ∼ 10−4 because the UV radiation can easily penetrate, while it decreases down to ∼
10−8 in dense clouds, where only cosmic rays can contribute. Due to the already mentioned large
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number of H atoms (I.E.1 = 13.598 eV [7]), it is interesting to note that UV radiation with energy
higher than 13.60 eV is absent in the interstellar medium (ISM) [3]. Hence, species (such as N, O
atoms) with ionization potential higher than that of H atoms escape from photo-ionization, that is
efficient only for species with I.E. lower than 13.60 eV (e.g. C atom). On the contrary, in molecular
clouds where the density is higher, the interstellar UV radiation can not penetrate deeply. This is
the reason why photo-dissociation of molecular hydrogen is inefficient in the cloud core and most
of the hydrogen is in the H2 form. These types of clouds are defined "dark" because they can be
recognized as black areas obscuring the light of background stars (as the photograph of the dark
molecular cloud Barnard 68 shows in Figure 1.1). Since the UV radiation can not contribute to
cloud heating in which cosmic-rays play the major role, the gas kinetic temperature in the cloud
core (around 10-15 K) is much lower than that of a diffuse cloud (see Table 1.2).

To date, almost 200 molecules up to 12 atoms have been detected [9, 10, 11]. Most of these
species have been identified by radio observations of their rotational spectral lines, whereas oth-
ers by optical or infrared observations of their electronic or vibration-rotational spectra. In this
"molecular zoo", it is interesting to note the presence of:

• free radicals or molecular ions, very strong reactive species that can survive for a long time
in the ISM thanks to the extreme conditions of the clouds (very low density and tempera-
ture);

• large number of unsaturated hydrocarbons (e.g. CH3CCH) despite the ISM conditions dom-
inated by hydrogen;

• ionic species (e.g. HCO+, H3
+, C6H– ) allowed by the feature of the clouds to be weakly

ionized plasmas;

• complex organic molecules (in astrochemical jargon, the term complex refers to molecules
containing at least six atoms [12] and the abbreviation COMs is commonly used), such
as HCOOCH3 and CH3OCH3 suggesting an unexpected chemical evolution in interstellar
clouds despite the extreme physical conditions.

1.2 CH3OCH3 and HCOOCH3: an interstellar brotherhood
Among all of the interstellar COMs (defined as organic molecules containing at least six heavy
atoms [12]) two noteworthy molecules are dimethyl ether (CH3OCH3, DME) and methyl formate
(HCOOCH3, MF). These O-bearing molecules can be considered potential building blocks of bi-
ological molecules, such as sugars. Therefore, the prebiotic nature of these species evokes a po-
tential connection with the origin of life molecules on the Earth. Their detection in the ISM is of
paramount interest [13], opening the discussion on the life formation to the exogenous theory, in
which the organic matter should be delivered by meteorites and comets.

The observations show that these two molecules are ubiquitous in the ISM. In fact, hey have
been identified in:

• hot cores [14, 15, 16] and hot corinos [17, 18] (characterized by high density,> 106 cm−3, and
high temperatures, 100 - 500 K) associated with high- and low-mass star-forming regions;

• Galactic center cold clouds (T ∼ 50 - 200 K and an mean density of 104 cm−3) [19, 20];

1Ionization Energy
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Figure 1.1: Photograph of Barnard 68 (B68), dark molecular cloud that
represents very well the case of a compact, opaque and de-
fined object against the background star field (Image Credit:
ESO [8]).

• prestellar cores (T ≤ 30 K) [21, 22, 23, 13, 24].

Abundances with respect to methanol (CH3OH) for some example of ISM sources are summarized
in Table 1.3 [12].

2based on [17]
3based on [18]
4based on [19, 20]
5based on [14]
6based on [21]
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Table 1.3: Abundance ratios of MF (HCOOCH3) and DME (CH3OCH3)
with respect to CH3OH are report for some representative ISM
sources. Methanol abundances vary between 10−7 - 10−5 with
respect to H2 [12] .

Species
Low mass High mass Pre-stellar Core

I162932 N13 4A3 GC4 G327.35 B1-b6

MF 0.30 0.56 ∼ 0.04 0.08 2.3
DME 0.20 < 0.22 ∼ 0.04 ∼ 3 ≤ 0.8

Furthermore, from the observations of different ISM sources, a linear correlation between MF
and DME abundances can be derived, covering almost five orders of magnitude [24]. The correla-
tion implies that the two molecules must have the same precursor or one of the two must be the
precursor of the other. This conclusion about a common progenitor has been included recently in
astrochemical models.

In particular, the DME and MF detection in colder environments poses a real challenge to de-
termine the origin and abundances of these organic molecules. In fact, in warm and dense regions
(such as the high-mass protostars with T > 100 K and density higher than 106 cm−3), the presence
of COMs was established by several models [25, 26, 27] in which a "warm" gas-phase chemistry
is involved after heating of the ices and the emission in the gas phase of simple hydrogenated
molecules (e.g. H2CO, CH3OH, NH3). However, observation and experiments suggest that grain-
surface chemistry should be the responsible for the formation of most the observed COMs. In
this case, radicals trapped in the ices can react and acquire mobility when the dust temperature
is around 30 K [28]. On the contrary, in pre-stellar cores, where DME and MF have been recently
detected [23, 13], the temperature (T < 30 K) is not sufficient to give mobility to radicals. For this
reason, a new model has been formulated according to which DME and MF are formed by gas-
phase chemistry starting from the progenitor methoxy radical after desorption of methanol by the
ices via non-thermal processes [29].

1.3 Chemistry in ISM: the role of He+ ions
After discoveries of interstellar molecules, the new challenge is which chemical processes are at
basis of their production. For this reason, astrochemical networks are developed to interpret via
numerical simulations the observational data.

Constraints on reactions in interstellar clouds originate from the extreme conditions of the
ISM with low temperature (from 10 to 150 K) and low density (from 1 to 106 cm−3) in comparison
with the terrestrial ones. First, due to the low density, binary association reactions are not efficient.
In fact, considering the reaction:

A + B −−→ C (1.1)
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the excess energy produced by the C formation is not easily discarded by the new molecule, unless
a third body takes it away or the molecule spontaneously emits a photon. Since the probability
of a collision with a third body is negligible in ISM conditions, the unstable molecule tends to
dissociate. This is the case of the molecular hydrogen formation, that requires a gas phase-grain
surface process to occur. On the other hand, when surface chemistry is not involved, the most
general type of effective binary reactions is:

A + B −−→ C + D (1.2)

which gives two or more products, that, moving in opposite directions, can dissipate the redun-
dant energy through their kinetic energy.

Another requirement for interstellar reactions is that they must be exothermic without energy
barriers towards the products. In fact, since the kinetic temperature of the gas can be as low as
10-100 K for most cases, endothermic reactions can not proceed, as well as exothermic reactions
with an activation barrier sufficiently higher than the thermal energy of the reactants.

The ion-molecule reaction satisfies these conditions and for this reason, it plays a relevant role
in producing various molecules. For instance, it is worth noting the reactions of H3

+, one of the
most important species involved in the chemical evolution of the ISM. The life of the trihydrogen
cation starts from the ionization of H2 molecules, formed by association of H atoms adsorbed on
the surface of grains, via cosmic-rays:

H2 + cosmic rays −−→ H+ + H + e (1.3)

−−→ H2
+ + e (1.4)

The rate coefficients for H+, H2
+ formation are 1.2× 10−17 and 2.9× 10−19 s−1, respectively [3].

The H2
+ ions can further react with H2 to give H3

+ ions:

H2
+ + H2 −−→ H3

+ + H (1.5)

The H3
+ chemistry is dominated by proton transfer to other molecules:

H3
+ + A −−→ AH+ + H2 (1.6)

This type of reactions proceed very efficiently if the proton affinity of A is larger than that of H2.
More complex molecules can be therefore formed from AH+ species.

Besides formation processes also the destruction (unconventional term of the astrophysical
jargon that refers to the complete dissociation/fragmentation of a molecule) ones play a decisive
role in interstellar chemistry. Since in molecular clouds photo-dissociation processes are negligible,
one of the main fragmentation mechanism of molecules (in addition to cosmic-rays and X-ray
photons) is reactions with energetic ions such as He+ and H+, i.e. ionic destruction. In particular,
He+ ion efficiently extracts one electron from the neutral molecular reactant, ionizing and then
destroying the molecule. The efficiency of this charge transfer is so much dominated by the high
ionization potential of helium (I.E. ∼ 24.6 eV [7]) that the difference in I.E. between He and the
neutral target can be mostly assimilated as electronic excitation of the ionized molecule, leading
to dissociation. On the contrary, due to the low I.E. of atomic hydrogen the dissociation by H+ is
not as effective as that by He+, despite the higher abundance. The H+ only transfers the charge,
ionizing the molecule without dissociation in many cases and furthermore, a fraction of the ionized
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species tend to return to neutral species for electron recombination.
The timescale of neutral molecule (such as CO, the most abundant molecule other than H2

with relative abundance ∼ 1.4× 10−4) fragmentation by helium ons can be estimated as follows
[3]. Cosmic rays are the main ionization factor for He, while He+ is mainly lost by collisions with
neutral CO:

He + Cosmic Rays −−→ He+ + e− (1.7)

He+ + CO −−→ C+ + O + He (1.8)

The reaction of He+ with H2 to form H+ and H2
+ is not efficient (with rate constants in the range

10−14 to 10−13 cm3 s−1 [30, 31, 32] between 16-300 K). For this reason, this reaction can be ne-
glected in this estimate. The rate equation for He+ is therefore:

d[He+]

dt
= ζHe[He]− kHe[He+][CO] (1.9)

where ζHe is the effective ionization rate for He (equal to 6.5× 10−18 s−1 [3]) including ionization
by cosmic-ray-induce photons; kHe is the rate coefficient for the He+ + CO reaction (k=1.5× 10−9

cm3 s−1 at 8 K [33]). Therefore, the He+ abundance can be obtained under the steady-state approxi-
mation (although the molecular cloud is not always in chemical equilibrium):

d[He+]

dt
= ζHe[He]− kHe[He+][CO] = 0

[He+] =
ζHe[He]

kHe[CO]

From the latter equation, the timescale for destruction by He+ can be written as:

t =
1

kHe[He+]
=

[CO]

ζHe[He]

where the kHe[He+] term can be considered the frequency of the reaction expressed in s−1.
The timescale is therefore evaluated to be 3× 106 year (assuming [CO]/[He] = 7× 10−4),

much longer than the photo-dissociation timescale in diffuse clouds (100 year). Since correspond-
ing timescales for reaction with H+ are comparable or shorter than that for He+ reactions and the
dissociation via H+ is not efficient, the fragmentation timescale of neutrals in molecular clouds can
be approximated by the calculated timescale for He+ destruction.

In conclusion, as already explained, the modeling of the abundances of COMs, such as DME
and MF, is not trivial. New pathways of formation have been proposed, but accurate models must
consider also the dissociation processes, which are really efficient in the interstellar environment.
Furthermore, it is necessary that astrochemical models should be based on experimental rate con-
stants in order to minimize errors coming from estimates. For the best knowledge of the author,
experiments on DME and MF destruction via He+ collision have not been performed until now.
For this reason, the final aim of this thesis is the experimental study of the reactions between He+

and DME/MF, supported by a theoretical study able to cast light on the details that dominate the
charge exchange process and to give rate constant values at typical temperatures of the ISM.
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Chapter 2

Experimental Techniques and
Procedures

“Hoping for the best, but expecting the worst.”

Forever Young - Alphaville

In this section, a brief overview of the experimental techniques for studying the ion-neutral
reactions will be reported. Furthermore, it will be described the Trento apparatus giving details on
the methods utilized to analyze and to interpret the rough data. The used set-up is a home-built
guided ion beam-mass spectrometer (GIB-MS). In this work, the mentioned tandem mass spec-
trometer was used to investigate the products of the gas-phase reactions between an ion, selected
in terms of its mass to charge (m/z), and a neutral species. The most important parameters that
can be controlled during the experiments are the pressure of the neutral reactants and the relative
kinetic energy.

2.1 Experimental Techniques for Ion-Neutral Reactions

2.1.1 Laboratory Measurements
Laboratory experiments can provide different information. From experiments in which reactants
are thermalized at defined T, rate coefficient as a function of the temperature k(T) can be obtained.
For a second-order process (units of cm3 s-1), k(T) is measured from the variations in concentration
of the reactants with time. On the other hand, reactive total cross-section (σrxn, from now on
defined just as σ) can be measured from single collision experiments at controlled collision energy.
In fact, for collisions between two generic A and B species it is possible to define the effective
cross-sectional area, σcoll, that the centers of the two reactants must lie within if they are to collide
(the definition of cross-section will be explained more in detail in Chapter 3). This parameter,
which depends on energy, has therefore units of Å2. Since not all collisions lead to products, the
probability that after collision the system will evolve to give any reaction product (i.e. the total
reactive cross-section σ), is a fraction of σcoll. Therefore, σ is the microscopic or single-collision



10 Chapter 2. Experimental Techniques and Procedures

version of the rate constant and represents the reaction probability as an effective cross-sectional
area within which the reactants must collide in order for the reaction to occur.

Product yields for different reaction channels are another important result from both labora-
tory experiments. In fact, it is possible to define the branching ratio (BR) for a particular product
channel as the ratio of the yield of a product ion (Pi) formed by one channel with respect to the
amount of the total set of the possible products (Eqn. 2.1).

BRi =
Pi∑N
i=1 Pi

(2.1)

These parameters will be treated in detail thereafter.

2.1.2 Laboratory Methods
The experimental methods developed to obtain data on ion-neutral reactions can be divided in
two categories: those that measure rate constants and those that have the measuring of absolute
integral cross-section as final aim.

In 60s and 70s, many studies on ion-neutral reactions were carried out using ion cyclotron
resonance (ICR) or flowing afterglow (FA) methods. In ICR technique, ions are contained by a com-
bination of electric and magnetic fields: after the introduction of a neutral reactant, at a selected
time delay the ions are transferred from the source region through an analyzer region [34, 35].
The study of kinetics of ion-neutral reactions with this method was limited to room temperature
measurements [36]. For this reason, other trapping methods have been developed to measure rate
constants also at temperatures lower than room temperature, for instance using a Penning ion
trap [37, 38, 32, 39]. Gerlich and co-workers have started to work with 22-pole traps [40, 41, 42],
allowing study of ion-molecule reactions at low pressures and very low temperatures (down to
∼ 10 K). To reach the thermal equilibrium the technique of the buffer gas cooling is used. Such
a technique works, indeed, best if the interaction of the ion with the confining electric field of the
trap is limited to a minimum [43]. The radio frequency multipole traps satisfy this requirement,
offering a suppressed electric field in their center and an effective potential that increases steeply
moving away from the center.

In the FA method [44, 45, 46], the ions are obtained by a plasma afterglow in a suitable carrier
gas, usually helium, which transports them along a Pyrex tube (∼100 cm in length and ∼ 8 cm
of internal diameter). As the mixture of buffer gas and reactant flows in the reactor, reactions are
carried out with a neutral co-reactant, introduced with one or more injectors. In the end of the reac-
tion vessel, both primary and product ions are sampled by a mass spectrometer. Since the reaction
time is calculated through the ratio between the distance between the point of introduction of the
reactant gas and the mass spectrometer and the flow velocity, the depletion of the primary ion sig-
nal and the increase in the product signal can be interpreted in terms of rate coefficients.[44, 45, 46]
Furthermore, in more recent set-ups it is possible to vary the temperature from 82 to 600 K [46].

The simple FA has been supplanted by the selected ion flow tube (SIFT), developed by Adams
and Smith in 1976 [47, 48, 6]. In this technique a mass-selected positive ion beam, created by a low-
pressure microwave discharge in an appropriate gas, is focused into a quadrupole mass filter, that
allows mass selection of the reactant ions. After selection, the ion species of interest are focused
into a stainless-steel flow tube (100 cm in length and ∼ 7 cm of internal diameter), where they are
thermalized by collisions with a carrier gas and where they can react with neutral species. At the
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end of the reaction area the ions are sampled by a second quadrupole mass filter and detected.
Using a thermal and microwave discharge sources, this technique allows to study also reactions
in which radicals are involved. Furthermore, it is possible to cool (using liquid nitrogen) or to
heat (using a series of resistive heater) the flow tube, allowing to measure rate constants between
85-500 K [49, 50]. The entire heated (or cooled) region is surrounded by a vacuum box that acts as
a large Dewar.

Another major development of flow methods is represented by CRESU (Cinétique de Réac-
tion en Ecoulement Supersonique Uniforme, literally reaction kinetics in uniform supersonic flow)
apparatus [51, 52, 53, 54, 55, 56]. This set-up uses a supersonic jet generated by a convergent-
divergent Laval nozzle, that allows to prepare dense (from 1016 to 2× 1017 cm−3) and strongly
cooled gaseous beam (to 8 K). The possibility to cool down the reactant species provides impor-
tant information about the temperature dependency of the rate constants over an extended range.
While originally ions were created by irradiating the gas with an electron beam just outside the
Laval nozzle, recently they are formed by resonance-enhanced multiphoton ionization [57]. Fur-
thermore, the ion selection of parent and products is again operated with a mass spectrometer.

Another useful technique is the GIB-MS [58, 59, 60, 61, 62], that allows accurate measure-
ments of absolute cross-sections of ion-neutral reactions as a function of the collision energy (in
the center-of-mass frame). A guided ion beam experiment is defined as that in which the reaction
of interest is carried out inside a rf-only beam guide of n-pole (the octopole is the most common
configuration as it will be described) that cylindrically surrounds the ion beam path [59]. This type
of device permits to overcome two problems associated with integral cross-sections measurement:
the efficiency in the collection of all products and the possibility to study reactions at low energy
(below about 1 eV in laboratory). In fact, the ion guide acts as a transversal trap for the ions, per-
mitting an efficient collection, regardless of their scattering angle. Furthermore, the beam guide
allows experiments at low ion kinetic energies, avoiding space-charge effects that would disperse
the ion beam [59, 58]. Moreover, it is possible to couple this type of apparatus with a photo-
ionization source, allowing the preparation of state- or energy-selected reactant ions. In fact, by
using this technique the photon energy is finely controlled and ions in their ground states (or in
selected higher states) can be prepared with 100% purity. For this purpose, Ng and co-workers
developed a triple-quadrupole double-octopole (TQDO) photoionization mass spectrometer for
state-selected and state-to-state ion-molecule reaction studies [63]. The apparatus consists of a
VUV photo-ionization source (a discharge lamp that produces VUV radiation in the range from
7.5 to 21.4 eV with a wavelength resolution of 3-6 Å), a reactant quadrupole mass spectrometer
(QMS), a lower RF octopole ion guide reaction gas cell, a middle QMS, an upper RF octopole
ion guide reaction gas cell and a product QMS. In the VUV photo-ionization source, the neutral
precursor molecules are introduced in the form of a free jet.

2.2 The Trento GIB-MS
The guided ion beam mass spectrometer represents the method used for the work of this thesis
and details of this experimental set-up are treated in this section. In particular, the Trento ap-
paratus is a tandem mass spectrometer with an O1-Q1-O2-Q2 configuration (where Q stands for
quadrupole and O for octupole) [64, 65] and the scheme of the set-up is shown in Figure 2.1. The
primary positive charged ions are produced in an electron ionization source (EI, described in detail
in Sec. 2.2.1). Then, the ions are extracted by a set of conical extractor lenses and injected into a
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Figure 2.1: Scheme of the Trento GIB-MS

first octopole O1 (functioning and details of this device will be explained in Sec. 2.2.3). Since O1 is
surrounded by a cell, which is possible to be filled with an inert gas (e.g. He or Ar), this octopole is
generally used as energy quencher chamber, where excited ions can be cooled to the ground state
by collisions with the inert partner, reducing some of their internal energy (i.e. vibrational or elec-
tronic). The presence of an unknown amount of ions in excited states represents a complication in
the interpretation of the experimental results, because of the possibility to open endothermic chan-
nel avoided at the nominal collision energy. The first quadrupole Q1, connected with O1 via a set
of einzel lenses, is used to mass-select just the parent ion beam under investigation and the chosen
cations are subsequently directed towards the second octopole O2 ion guide through a series of
cylindrical lenses, the last of which operates as collimator of the beam, reducing its divergence
before the reaction chamber. The second octopole O2 is used again as guide: the ions inside are
trapped in the two transversal directions and forced to move towards the end of the set-up. O2
is surrounded by a scattering cell, where the incoming parent ions collide and react with a neu-
tral target (either a gas or the vapor pressure of a liquid chemical). The pressure of the neutral
compound inside the reaction chamber is monitored by a pressure gauge (spinning rotor vacuum
gauge system SRG2 MKS instrument [66]). This device works by measuring, on a magnetically-
levitated spinning metal sphere, the viscosity drag, which is directly correlated to the number of
particles (atoms or molecules) and therefore to the pressure. The pressure inside the scattering cell
is regulated to ensure the single-collision regime inside the cell (for multiple collision effects see
Appendix A).

Finally, the second quadrupole Q2 mass-selects the ionic products, focused as well as the
primary ion beam by a series of lenses. These lenses transport efficiently the ions exiting the
octopole O2, taking into account that the ions have a wide transversal velocity range due to the
oscillating trajectories imparted by the RF field of O2. At the end of the GIB-MS, the ions are
defecleted by 90◦ and transmitted to an electron multiplier, placed off axis with respect to the ion
source to avoid spurious signals hitting the detector.
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2.2.1 EI ion source
EI [67] is a well known ionization method in which atoms or molecules are bombarded with a
high-energy beam of electrons forming ions, as described by the following reaction:

M + e− −−→ M•+ + 2 e−

where M is a general particle (atom or molecule) and M•+ is its radical cation. Primary products
of ionization are positive ions unitary charged, formed when the high energy electrons collide
with the neutral particles, which lose an electron via electrostatic repulsion. Electrons are emitted
usually by a filament of tungsten or rhenium and accelerated by a potential in the range 40 to
100 V applied between the filament and an anode. The low mass and the very high energy of
the emitted electrons cause a vibro-rotational excitation of the particles. In the case of molecular
ionization, the relaxing of these excited states produces a huge fragmentation, forming cations at
several masses lower than the radical cation.

In the GIB-MS set-up, there are two rhodium-tungsten filaments placed in small compart-
ments and only one filament is operated at each time, emitting electrons in all the directions. A
gas or a vapor pressure of a neutral target is injected in the center of the source, in a cylindrical
zone where the filaments are facing. In this zone a cylindrical grid is placed and kept at a positive
potential with respect to the filament so that the emitted electrons are extracted and accelerated
towards the grid by a potential that can be changed from 40 V to 100 V. The design of this source
part is properly optimized to allow the creation of a constant field area. In the region of the cylin-
drical grid, the ions are created by the interaction between the neutral particles and the ionizing
electrons. The whole source system (filaments and grid) is contained in a steel-iron box, kept at
a negative potential with respect to filament and grid permitting the repulsion of the electrons.
After the grid there are two lenses as already said in Sec. 2.2: the first one repels the electrons and
squeezes the created ions to the latter that finally extracts the ions from the source system.

2.2.2 Quadrupole mass analyzer
Quadrupole mass analyzers are mass filters that allow to pass just ions of a certain mass-to-charge
ratio. The functioning principle of quadrupole mass filter is fully described by the Mathieu equa-
tion [62]. In particular, it consists of four cylindrical electrodes that are positioned in a radial array,
as shown in Figure 2.2. The opposite rods are connected to static (DC) and radio-frequency (RF)
oscillating voltages. With proper electric fields, a stable path is created for ions of a certain m/z ra-
tio: in fact, only ions within a narrow mass region (generally 1 u) are allowed to pass through the
device, while the trajectories of all the other ions are unstable, leading the ions to collide against
the rods. In general, this device has some advantages: small physical dimensions compared to the
resolving power, linearity in the mass scale, fast scanning, simplicity of construction and robust-
ness during use.

2.2.3 Octopole ion beam guide
After quadrupoles, octopole ion beam guides are the second most used RF devices in mass spec-
trometry [62]. In this case, the device is formed by eight rods placed in an octagonally symmetric
array around the beam path. RF electric potentials applied in opposite phases to alternate rods
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Figure 2.2: General scheme of a quadrupole mass analyzer [67].

produce an heterogeneous field which creates an effective radial potential well. The octopole
traps the ions in transversal directions not affecting the axial ion velocities. Furthermore, the trap-
ping ensures that ionic products are collected in spite of scattering angle, that could decrease the
collection efficiency. The most impressive application of beam guide is that it allows operation
at very low kinetic energies (<0.1 eV in the lab-frame), where space-charge seriously affects the
convergence of the ion beam [58, 59]. The expression for the effective radial potential [68] for a
multipole ion trap is:

Veff =
n2q2V 2

0

4mω2r2
0

·
(
r

r0

)2n−2

(2.2)

where 2n is the number of poles, q is the charge of the ion, m its mass, r is the radial distance
from the center-line and r0 is the inner radius of the multipoles. The RF potential applied to the
alternate rods is ±V0cos(ωt). From this formula it is easy to infer that the effective potential for
an octopole (n = 4) is proportional to r6. It follows that the octopole guide has a large tubular
trapping volume with steep walls near the poles and a low potential near the center, as shown in
Figure 2.3, in which the differences between a quadrupole and octopole potential are highlighted.
Results of these characteristics are a very effective ion trapping with only small perturbations of
the kinetic energies of the ions traveling into the octopole. On the other side, a quadrupole (n = 2)
varies as a function of r2, which leads to large perturbations of the kinetic energy and less effective
trapping power. In fact, it is possible to conclude that for the same applied RF field, an octopole
has a maximum trapping potential four times higher than a quadrupole [59] and in general, the
larger is the number of electrodes, the more homogeneous is the trapping field.
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Figure 2.3: Relative effective potential scaled for n2 as a function of the
ratio r/r0 for a quadrupole (dashed line) and for an octopole
(continous line). [59]

2.3 Theoretical procedures of data analysis
In a typical GIB-MS experiment, it is possible to measure:

• Mass spectra of the resulting ions using the quadrupole mass filter in order to determine
which products are formed; the measures are performed under different experimental con-
ditions of neutral gas pressure and collision energy.

• Ion intensities of the reactant and product ions, measured as a function of the collision
energy at a fixed pressure of the neutral target; in this case, the ion kinetic energy is varied,
including the region where the reactant ions no longer have enough energy to pass through
the octopole.

• Intensity of reagent and products signals as a function of the pressure of the neutral target
at a fixed collision energy.

To convert the raw data in a more usable form independent of the instrument used to acquire
them, several transformations are required. One involves the conversion of the kinetic energy of
the ion, the laboratory energy, in the center-of-mass energy (CM energy), the energy available to the
reaction system for chemical transformations. A second transformation involves the conversion of
the relative product ion intensities into the cross-sections, which represent the intrinsic probability
for the studied reaction.
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2.3.1 Absolute Zero of Energy and the Ion Energy Calibration
One of the principal features of GIB experiments is the possibility to control the collision energy
of the reaction. Hence, it is of paramount importance to have a reliable technique to measure the
collision energy and the zero of the energy scale. Experimentally, this can be difficult because the
effective potential values of the ion source and the collision cell may not equal to the applied po-
tentials: differences might be produced as consequences of contact potentials, field effects, space-
charge effects and surface charging [60].

In the mentioned apparatus, the octopole ion guide (the second octopole in Figure 2.1) can
be used as a highly efficient retarding field energy analyzer to accurately measure the zero of
the collision energy scale and the energy spread of the primary ion beam. In early ion beam
experiments, retarding methods were difficult because, due to the slow motion, ions were very
easily lost. In this case, the problem is solved by using the trapping characteristic of the octopole
ion guide. More in detail, the zero of the ion energy is calculated by measuring the reactant ion
intensity as a function of the DC bias potential applied to the second octopole as this is varied to
the zero of energy. This variation gradually cuts off the ions at lower energy than the applied DC
voltage, that literally repels such ions, so they no longer reach the detection system. It is possible to
note that the zero of energy formally corresponds to the potential applied to the source, where the
ions are formed. Since the retarding field and cross-section measurements for the ion-molecule
reaction under study are performed using the same physical part of the set-up, the deviations
produced by contact potentials and field, space charge and surface charging effects in the ion
source (already mentioned above) are eliminated.

The black line in Figure 2.4 is an example of retarding field curve for a beam of He+ ions.
In order to obtain a direct measure of the distribution of the ion kinetic energies, the resulting
retarding curve is differentiated. In general, the derivative (red curve in Figure 2.4) has a shape
close to that of a Gaussian function. The center of the peak is equal to the absolute value of the
zero energy (xC in Figure 2.4) and the full width at half maximum is the energy spread of the ion
beam. This latter value depends on several factors, e.g. electron energy and pressure in the ion
source, and widths of ≈ 1 eV are usually obtained.

2.3.2 The Laboratory and Center-of-Mass Energy
In measuring reactive cross-sections and branching ratios, it is fundamental to know how much
energy is available to the reaction system. The translational energy of two colliding particles can
be divided into two parts:

1. The relative translational motion of the two reactants;
2. The motion of the entire collision system in the laboratory reference frame.

Since the total mass of the system can not change during the reaction and the linear momentum
is conserved, the energy involved in the second part remains constant and therefore, unavailable
to induce chemical reactions. Hence, the fraction of the kinetic energy available for the chemistry
during the collision is the CM energy ECM . In GIB-MS experiments the stationary target limit
is effective, i.e. the neutral reactant is essentially stationary (v = 0) whereas the ions have an
appreciable velocity (v 6= 0). The laboratory energy, ELAB , is therefore defined as:

ELAB =
1

2
mIv

2
I +

1

2
mNv

2
N
∼=

1

2
mIv

2
I (2.3)
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Figure 2.4: Retarding field analysis of a reactant beam of He+ ions mass-
selected with Q1 at 4 m/z from electron ionization of He with
the EI source (in black). In the x axis are shown the O2 DC
potential values in V. The retarding field curve is differenti-
ated and the result is shown in red. The FWHM corresponds
to the spread in energy of the ion beam and xC is the absolute
zero of energy.

where mI and mN are the masses of ion and neutral target and vI and vN are their velocity,
respectively. The kinetic energy of the reactant ion is measured in the laboratory frame as the
potential difference between the ion source anode and the interaction region (i.e. the DC intensity
of the second octopole). Hence, the total kinetic energy of the system is defined as sum of a
contribution associated with the velocity of the CM of the collision partners (v = mIvI+mNvN

mI+mN
≡

mIvI
mI+mN

) and a contribution associated with their relative velocity (vREL = vI − vN ≡ vI ):

ELAB = E + ECM (2.4)
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where E is the kinetic energy of the CM, while ECM is the kinetic energy in the CM frame. From
Eqn. 2.4, ECM can be obtained:

ECM = ELAB − E =

=
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Therefore, from Eqn. 2.5 the laboratory energy can be converted into the collision energy in the
CM frame by using the following simple expression:

ECM =
mN

mN +mI
· ELAB (2.6)

This formula accurately describes the mean collision energy of the reactants.

2.3.3 Exothermic and Endothermic Reactions
An other information available studying ion-neutral reactions with the GIB-MS is whether they are
exothermic or endothermic processes, i.e. if they release or require energy in making products, re-
spectively. In case of exothermic reactions the energy requirement is related to the presence or ab-
sence of energy barriers to cross over a transition state. Specifically, in rarefied environments, such
as the gas phase, the long-range attractive interactions between charged particles often overcomes
barriers associated with reactions in condensed phases [61]. Consequently, exothermic ion-neutral
reactions are often observed to be barrier-less and occur with high efficiency. As for any exother-
mic barrier-less process, increasing the amount of energy available will decrease the probability of
the reaction. In other words, barrier-less exothermic reactions occur with the highest efficiency at
the smallest collision energies. In fact, when the collision energy is low, there is enough time for
long-range interactions to act on the particles, meaning large values of cross-section. Increasing
the collision energy, the attractive forces between the reactants are less efficient due to the low time
of interaction. In this case, the cross-sections is smaller than the one of the first case.

2.3.4 Determination of Cross-Sections
The total reaction cross-section is, as already mentioned, the intrinsic property of any reacting
systems and it describes the probability that two particles (in our case an ion and a neutral target)
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upon collisions will react to form all the possible products. For a reaction between two general
species A+ and B evolving into the products Pi, each one has a probability defined as σi:

A+ + B→ P1 σ1

→ P2 σ2

...

...

→ PN σN

the total cross-section is defined as:

σ =

N∑
i=1

σi

The definition of cross-sections starting from the ion intensity follows an expression that is equiv-
alent to the Lambert-Beer Law for light absorption through a sample. In fact, an ion beam with
intensity IR, defined as the number of reactant ions observed per unit time, is attenuated by col-
lisions as it passes through the collision cell filled with a gas at a pressure P. The intensity of ions
passing through the chamber that is not affected by collision is given by the following equation:

I0 = IR · exp(−ρ · σcoll · l) (2.7)

where I0 is the fraction of not attenuated beam, σcoll is the collision cross-section and l is the effec-
tive length of the reaction chamber; furthermore, the neutral target density ρ is directly connected
with its pressure P by the Ideal Gas Law:

ρ =
P

NA ·R · T
(2.8)

where ρ is given in particles cm−3, NA is the Avogadro Number, R is in mbar cm3 K−1 mol−1, T in
K and P in mbar. The intensities of ions that have undergone at least one collision, for example a
general product ion intensity, IP , is given by:

IP = IR · [1− exp(−ρ · σrxn · l)] (2.9)

where:

IR = I0 + IP

In the thin target limit, where the probability of collisions is small either for low pressures or for
small cross-sections or for a short interaction length (i.e. ρσrxnl� 1), the Eqn. 2.9 is simplified in:

IP = IR · (ρ · σrxn · l) (2.10)

Since P, T and l are known, the absolute reaction cross-section is easily determined by measuring
the ion intensities as a function of the neutral reactant pressure. In this way, the absolute cross-
section accuracy is primarily limited by measurement procedure of l and ρ. From this assumption,
it is possible to estimate and fix the accuracy within 30 %.
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It is interesting to note that in GIB-MS experiments the effective path length l is not equal to
the real physical length of the scattering cell (10 cm). In fact, the vacuum pumping takes place
just outside the cell, which is closed with exception for the entrance and exit apertures for the
ions; this implies that the neutral target pressure does not fall down immediately outside the
chamber, permitting more collisions before and after it. For this reason, the effective length has
been determined from a calibration process using the following reaction [58] as reference:

Ar+ + H2 → ArH+ + H (2.11)

To determine the effective length l in the Eqn. 2.10, experimental data as a function of the collision
energy were compared to the values of [58]. Results (shown in Figure 2.5) can be superimposed to
literature values when using an effective length of the cell equal to (8.0± 0.4) cm.
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Figure 2.5: Experimental data of cross-section as a function of colli-
sion energy in the CM frame for the reaction channel Ar+ +
H2 −−→ ArH+ + H: red-empty squares are values from our
measurements while black circles are from literature [58].
In blue is shown the resulting absolute value of the cross-
section.
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2.3.5 From Cross-Sections to Rate Constants
In the simplest form, the cross-section can be converted to a rate constant simply multiplying by
the velocity. Therefore, the phenomenological rate constant is given by the following expression:

k(v0) = v0 · σ(v0) (2.12)

with the nominal relative velocity v0 of the reactants defined as:

v0 =

(
2E

µ

)1/2

(2.13)

and the reduced mass of the reactants µ is:

µ =
mI ·mN

mI +MN
(2.14)

Because of the kinetic energy distribution of the reactants, the rate constants are better character-
ized as a function of the mean relative energy of the reactants:

〈E〉 = E +
3

2

( µ
m
· kB · T

)
(2.15)

Generally, rate constants measured with under equilibrium methods (e.g. at room temperature)
are functions of T, not of E. Since the beam guide technique should allow very low ion energies,
the rate constant nearly at room temperature could be obtained directly from the data at lowest
interaction energy. Unfortunately, this is not the case for our experiments due to the fact that with
our set-up it is not possible to reach so low collision energies.

Alternatively, true thermal rate constants as a function of temperature are obtained by aver-
aging the cross-section over a Maxwell-Boltzmann distribution of relative energies (Eqn. 2.16). Since
only the translational energy of the reactants is varied in GIB experiments, the results are actually
k(Tk), the rate constant as a function of translational temperature.

k(T ) =

(
1

πµ

)1/2

·
(

2

kBT

)3/2

·
∫ ∞

0

σ(E) · E · e−E/kBT dE (2.16)

The derivation of this formula will be treated in detail in the following Chapter.
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Chapter 3

Theoretical Methodologies

“If there’s a God or any kind of justice under the sky
If there’s a point, if there’s a reason to live or die
Ha, if there’s an answer to the questions we feel bound to ask.”

Innuendo - Queen

To understand the second part of this doctoral thesis, the attention of the author is moved
to the theoretical aspects used to interpret the experimental evidences and the mechanisms at
their basis. In particular, the aim of the considerations reported in this chapter was to develop
a theoretical framework for describing and understanding the chemical changes involved in the
studied ion-molecule reactions and for extending these insights to the astrophysical context.

In addition to the concepts essential to study the dynamics of the reactions object of this doc-
toral thesis and to calculate cross-sections to compare with the experimental data, in this chapter
the tools for a realistic representation of the potential energy surface (PES) for the reactive sys-
tem are also reported. Furthermore, quantum mechanical methods used to identify the electron
densities and the partial charges of the molecules are described.

3.1 Dynamics of reactive collisions
The molecular reaction dynamics has the final aim to deeply understand the chemical reactivity
and it represents a "bridge" between experiment and theory. The key concept in reaction dynamics
is the PES, that describes the potential energy of the system of interest as a function of the nuclear
coordinates of each atom involved in the reaction and of the electronic state of the system. Theo-
retically, once the PES is known, the dynamics of a reaction that involves just one electronic state
of the system may be understood completely. On the other hand, if multiple electronic states are
involved in the reactions, it is necessary to consider multiple PESs.

Another key point of the dynamics is the cross-section, since a chemical event may be imag-
ined in terms of a collision in which the involved species are transformed through the cleavage and
formation of chemical bonds. In fact, this is a concept that is commonly considered in situations
in which the collision energy is well defined or when the system is not at thermal equilibrium.
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Therefore, studying the cross-sections of a colliding system and their dependence on energy is of
high interest to understand the chemical reactivity.

3.1.1 The theory of collisions
In this section we will examine in more details the concept of cross-section for collisions among
two atoms/molecules, as already mentioned in Sec. 2.1.1. The simple model of a binary collision
between two reactants A and B, of mass mA and mB , respectively, is shown in Figure 3.1, where
the distance of closest approach in the absence of interaction between the two species is defined
as the impact parameter b. The parameter b can not be controlled experimentally, but it plays a

b

A

B

vrel

Figure 3.1: Representation of a colliding system between two reactants
A and B. In the figure, the impact parameter b is also re-
ported.

crucial role in the collision as will be explained thereafter. In the colliding system, the two species
approach each other with a fixed velocity (vrel = vA − vB , where vA and vB are the velocities of
the two reactants with respect a reference frame, e.g. in the laboratory). Classically, the impact
parameter can be directly linked to the orbital angular momentum,

−→
L , of the two reactants with

the following equation:

|
−→
L |=|

−→
R ×−→p |= µvrelb (3.1)

where µ is the reduced mass of A and B (see Eqn. 2.14),
−→
R is the relative position of B with respect

to A, and −→p is the momentum. In quantum mechanic theory, the orbital angular momentum is
defined as:

|
−→
L |= }

√
l (l + 1) (3.2)
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where } is the reduced Plank constant and l is the orbital angular momentum quantum num-
ber. From Figure 3.1, it is clear that the probability of the scattering event depends on the impact
parameter (or on the orbital angular momentum).

For reactions, the variation in the probability of the process with the impact parameter is
known as opacity function, P (b). Therefore, the reaction cross-section is given by integrating the
reaction probability as a function of the impact parameter from b = 0 (head on collision) to some
maximum value, bmax (i.e. the highest b for which a reaction can happen):

σ =

∫ bmax

0

P (b)2πbdb (3.3)

where the volume element 2πbdb is illustrated in Figure 3.2.

b

A

B2πbdb

Figure 3.2: The figure shows the approach of two spherical particles A
and B at impact parameter b. As discussed in the text, the
cross-section is defined as the integral of the reaction prob-
ability over all impact parameters in the volume element
2πbdb. In the figure, the impact parameter b is also reported.

In order to determine P (b) in detail, the simplest approximation is a unit step function:

P (b) =

{
1 b 6 bmax

0 b > bmax
(3.4)

where bmax is therefore the cut-off impact parameter. So using Eqn. 3.3, σ is simply:

σ = πb2max (3.5)

The resulting cross-section has the correct dimensions of area, as expected. Therefore, the cross-
section σ can be imagined as an effective target area within which the colliding particles must
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!ht

B

miss
hit

σ = πb2

Figure 3.3: Simple collision theory: the cross-section can be thought as
the effective target area of the reactants.

approach for occurring the processes of interest, as shown in Figure 3.3. Different types of colli-
sional process have different cross-sections, reflecting the different effective target areas. Reactions
characterized by PES with high barriers tend to have small reactive cross-sections, since the reac-
tion probability is small unless the system has sufficient energy to approach. On the other hand,
reactions on attractive surfaces (e.g. those occurring between an ion and a molecule with large
dipole moment, as in our cases) have large cross-section values.

Quantum mechanically, the integral in Eqn. 3.3 can be transformed to a sum over l, since from
equation 3.1 and 3.1 the relation between b and l is known as:

b =
~
√
l (l + 1)

µvrel
(3.6)

Furthermore, the momentum associated with the relative motion of the colliding particles can be
written as p = µvrel = k}, where k is the wavenumber (k = 2π/λ, where λ is the wavelentgh).
Hence, the corresponding quantum expression of Eqn. 3.3 for the cross-section is:

σ =
π

k2

∑
l

P (l)(2l + 1) (3.7)

in which σ is expressed as the weighted sum of reaction probabilities for each orbital angular
momentum.

In the classical capture model, the reaction can occur with unitary probability (P (b) = 1), if the
colliding system has sufficient translational energy to overcome the energy barrier for the reaction.
For reactions without an energy threshold, the only barrier is the centrifugal one. Since the reaction
dynamics is the solution of nuclear motion under forces, it is necessary to solve the Newton’s
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equation to define these forces:

−→
F = µ

d−→v
dt

= µ
d2−→R
dt2

= −dV (R)

dR
R̂ (3.8)

As written, the forces can be represented by the derivative of the inter-particle potential (V (R))
directed along the vector

−→
R .

During the time evolution of the vector
−→
R , a conservation condition must be active. For this

reason, it is more advisable to speak in terms of angular momentum
−→
L , that from Eqn. 3.1 can be

written as:

−→
L =

−→
R × µd

−→
R

dt
(3.9)

−→
L is the vector perpendicular to the plane defined by the position and momentum vectors (Right-
hand Rule) and during a collision of particles, it does not change over time:

d
−→
L

dt
=
d
−→
R

dt
× µd

−→
R

dt
+
−→
R × µd

2−→R
dt2

= 0 (3.10)

Therefore, the magnitude and the direction of
−→
L are constant in time. This condition implies

that there is a particular plane in which the collision is confined. Before the collision, this plane
is defined by

−→
R and −→v (initial relative velocity of the particle) and

−→
L is normal to this plane.

Since the direction of angular momentum is constant in time, also the time evolution of
−→
R will be

confined to the same single plane defined by the initial conditions. Thus, the position
−→
R can be

vR

v
v𝜗

𝜗

R

CM

Figure 3.4: Relative motion of a particle (in orange) respect of the CM.
In the figure, the velocity v and its components (vϑ and vR)
are indicated in orange, yellow and red, respectively.
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represented by its length R and its orientation ϑ with respect the CM, as shown in Figure 3.4. If
the particle moves with a velocity −→v , its kinetic energy (EK ) in the CM frame is:

EK =
1

2
µ−→v 2

Considering the velocity along the line centers (the radial velocity, vR) and the angular tangential
velocity (vϑ = R dϑ

dt
), the kinetic energy formula can be re-written as:

EK =
1

2
µ(−→vR2 +−→vϑ2) =

=
1

2
µ

[(
d
−→
R

dt

)2

+

(
−→
R
dϑ

dt

)2
]

= ER + Eϑ (3.11)

where ER is the colliding energy along the line between the particle and the CM, while the Eϑ can
be defined in term of angular momentum of the system. The angular velocity ( dϑ

dt
) is defined as:

d
−→
ϑ

dt
=

−→
L

|
−→
I |

=

−→
L

µR2
(3.12)

where
−→
I is the moment of inertia.

Therefore, Eϑ can be written as:

Eϑ =
1

2
µ

(
−→
R
dϑ

dt

)2

=

=
|
−→
L 2|

2µR2
=
Eb2

R2
(3.13)

and in terms of the quantum angular number, Eqn. 3.13 can be rewritten as:

Eϑ =
~2l(l + 1)

2µR2
(3.14)

In this form, Eϑ becomes formally potential energy and it corresponds to the centrifugal potential
(Eϑ ≡ VC ). Since it is positive for each value of R and l (or b), the centrifugal potential VC is
repulsive, forming a barrier to overcome to reach a reactive collision. Therefore, the effective
interaction potential for two colliding structure-less and spherical atoms can be written as:

Veff = V (R) +
Eb2

R2
= V (R) +

|
−→
L 2|

2µR2
(3.15)

where E is the relative kinetic energy, R the distance between the colliding particles,
−→
L is the

angular momentum (see Eqn. 3.1 for the relation between
−→
L and b) and µ the reduced mass of the

system. In this model, it is assumed that all the trajectories having sufficient energy to overcome
the centrifugal barrier will lead to reaction, and the cross-sections are completely determined by
long range attractive interactions between the approaching reactants. In this sense, when b = 0
all the collisions are reactive, while when b > 0 the system has non-zero angular momentum and
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Table 3.1: n and long range potential coefficients Cn. In table, it also
reported the type of interaction [69]. With Ii is indicated the
ionization potential of the interaction species.

n Interaction Cn

2 ion-dipole µ1q2
4πε0

3 dipole-dipole µ1µ2

2πε0

4 ion-induced dipole α1q2
2

8πε0

5 dipole-induced dipole µ1α2

4πε0

6 induced dipole-induced dipole α1α2I1I2
2(I1+I2)

reactive collisions are only those with sufficient energy to pass over the centrifugal barrier.
In the capture model, V (R) is approximated only using the long range interaction between

two particles , expressed as:

Vn(R) = −Cn
Rn

(3.16)

where Cn is the long range coefficient depending on the charges (q), dipole moments (µ), polariz-
abilities (α) and ionization potentials (I) of the two interacting species and n depends on the type
of the interaction (expressions of Cn are reported in Table 3.1). Therefore, the maximum of the
effective potential that occurs at a distance Rmax can be evaluated by imposing the condition that
the first derivative of Veff (R) should be equal to zero, as follows [69]:

d

dR
[Veff (R)]

∣∣∣∣
R=Rmax

=
nCn
Rn+1

− |
−→
L |2

µR3
= 0 (3.17)

Resolving Eqn. 3.17, an expression for Rmax is obtained as a function of
−→
L :

Rmax =

(
nCnµ

|
−→
L |2

) 1
n−2

(3.18)

Substituting Eqn. 3.18 in Eqn. 3.15, we can obtain an analytic expression for the effective potential:

Veff (Rmax) = − Cn
Rnmax

+
|
−→
L |2

2µRmax
=

(
|
−→
L |2

µ

)n/(n−2)
n− 2

2n
(nCn)−2/(n−2) (3.19)
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The trajectories are reactive when Veff (Rmax) ≤ E, condition to have a maximum value for |
−→
L |:

|
−→
Lmax|2 = µn(Cn)2/n

(
2E

n− 2

)(n−2)/n

(3.20)

From the relation between the orbital angular momentum and the impact parameter (Eqn. 3.1),
the corresponding maximum impact parameter is:

bmax =
|
−→
Lmax|
µv

(3.21)

Assuming P (b, E) = 1, from Eqn. 3.5 we have:

σ = πb2max =
π

2
n

(
2

n− 2

)(n−2)/2(
Cn
E

)2/n

(3.22)

This expression of σ can be used to calculated the rate constant of the process. As already
said above and in Sec. 2.3.5, thermal rate constants are linked to the cross-sections (σ). In fact,
considering the binary process:

A + B −−→ C (3.23)

the evolution in time of the concentrations [A], [B] and [C] (in molecules cm−3) is given by:

−d[A]

dt
= −d[B]

dt
=
d[C]

dt
= k(T )[A][B] (3.24)

where k(T ) is the temperature dependent reaction rate (cm−3s−1molecule−1).
Since the concept of rate constant implies that the system is at thermal equilibrium, each

state is populated according to the Boltzmann distribution law. Therefore, it can be obtained
from the integral cross-section by averaging over the Maxwell-Boltzmann distribution of veloc-
ities (f(vrel)):

k(T ) =

∫ ∞
0

vrelσ(vrel)f(vrel)dvrel (3.25)

For a particle with mass m, the Maxwell-Boltzmann velocity distributions (normalized so that∫∞
0
f(vrel) = 1) is given by:

f(vrel) = 4π

(
m

2πkBT

)3/2

v2
rele
−
mv2rel
2kBT (3.26)

Alternatively, the rate constant can be written as the integral over the relative kinetic energy (E =
1
2
µv2

rel):

k(T ) =

√
8kBT

πµ

1

(kBT )2

∫ ∞
0

σ(E)e
− E
kBT EdE (3.27)

From equations 3.25 and 3.27, it is possible to deduce that the thermal rate constant is a highly
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averaged quantity and for this reason, to gain the most insight into the dynamics of a reactions
and to quantify its rates it is better to use cross-sections. Therefore, from equations 3.22 and 3.27,
we have that:

k(T ) =

√
2π

µ
n

(
2

n− 2

)(n−2)/2

C2/n
n (kBT )(n−4)/2nΓ

(
2− 2

n

)
(3.28)

where the Gamma function Γ is defined as:

Γ(n) =

∫ ∞
0

xn−1e−xdx (3.29)

The Γ(n) has the following properties:

• Γ(1/2) =
√
π;

• it satisfies the relation Γ(n+ 1) = nΓ(n), e.g. Γ(3/2) = 1
2

√
π;

• for integer values we have Γ(n+ 1) = n!.

The results as a function of n are summarized in Table 3.2.
In case of a ion-neutral system, the formulation of the cross-section has been studied by

Langevin in 1905 [70, 71]. Assumptions at the basis of this model are:

• the neutral reactant has not dipole moment;

• the ion is represented as a point charge and therefore, it has no dipole moment (µ) neither
polarizability (α).

Hence, the reaction case is n = 4 (i.e. between an ion and an induced dipole, Table 3.1) and the
long range coefficient C4 is (Table 3.2):

C4 =
1

2

αq2

4πε0
(3.30)

where q is the charge of the ion and α is the polarizability in m3. From Eqn. 3.22, the cross-section
is thus:

σ(E) = q

√
πα

2ε0E
(3.31)

Substituting C4 into the capture rate coefficient (Table 3.2) (or integrating σ with Eqn. 3.27), we
obtain:

kLangevin(T ) =
2πq

4πε0

√
α

µ
(3.32)

It is interesting to note that kLangevin is independent of the temperature.
Until now, the mentioned treatment regards only isotropic potentials that describe very well

the interaction between two closed-shell atoms. The isotropic approximation fails when molecular
systems are considered: in this case, the potential depends on the orientation of the molecule,
even when it is apolar (anisotropic interaction). This is always true for short-range potentials,
while it can be neglected when only long-range interactions are considered. For this reason, the
simple "capture" model (for which the cross-section depends only on the dispersion term of the
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Table 3.2: Cross-sections σn(E) and rate constants kn(T ) for classical
capture theory. [69]

n σn(E) kn(T )

2 πC2
E 2

√
2π
µ C2(kBT )−1/2

3 3π
(
C3
2E

)2/3
4
√

π
3µΓ(1/3)(C3)

2/3(kBT )−1/6

4 2π
√

C4
E 2π

√
2C4
µ

5 5π
2

(
2
3

)3/5 (C5
E

)2/5
3
√

2π
µ Γ(3/5)(2/3)3/5(C5)

2/5(kBT )1/10

6 3π
(
1
2

)2/3 (C6
E

)1/3
211/6Γ(2/3)

√
π
µ(C6)

1/3(kBT )1/6

potential) can be applied not only to atom-atom systems, but also when apolar molecules are
involved, assuming that the long-range potential is isotropic. On the contrary, for polar molecules
the potential is always anisotropic, depending on the orientation of the permanent dipole and on
the distance between the reactants. For this reason, a model as the Langevin one is incomplete
for polar systems and an interesting case of study has been to extend the proposed model for for
ion-polar molecule reactions. The interaction of an ion with a molecule possesing a permanent
dipole was first investigated in the 60s by Hamill and co-workers [72, 73]. They pointed out two
conditions:

1. if no alignment of the dipole with the incoming ion occurs, the ion-dipole interactions
should average out to zero and only the ion-induced dipole interaction would be impor-
tant. In this case, the expressions obtained by the Langevin model for σ (Eqn. 3.31) and
k(T ) (Eqn. 3.32) would be applied;

2. if there is alignment between the dipole and the ion, and in particular, the molecule dipole
"locks-in" as the ion approaches, this ion-dipole interaction must be added to the long range
potential used by Langevin.

Hence, for the "locked-in" case, the interaction potential is given by:

V (R) = − αq2

8πε0

1

R4
− qµD

R2
(3.33)

where µD is the dipole moment of the molecule. Therefore, obtaining the maximum impact pa-
rameters from equations 3.17-3.21 and knowing the effective interaction potential, cross-section
(Eqn. 3.34) and rate constant (Eqn. 3.35) expressions for the locked-in case have been obtained.

σ(Rmax,E) = πR2
max +

πq2α

2ERmax
+
πqµD
E

(3.34)

k(T ) = q

√
πα

ε0µ
+
µDq

2ε0

√
2

µkBTπ
(3.35)
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Since the locked-in of the dipole does not necessarily occur [74], the values obtained with this
approximation are overestimated. Hence, a more appropriate extension of Eqn. 3.33 should be the
following expression:

V (R) = −1

2

αq2

4πε0
− qµD

R2
cosθ (3.36)

where θ is the angle that the dipole makes with the direction R of the incoming ion. For θ = 0◦,
Eqn. 3.36 becomes Eqn. 3.33. Most theories assume that θ has a distribution of values as a function
ofR: specifying this distribution, the anisotropic potential becomes a central potential. In 1973, Su
and Bowers [75] proposed the average dipole orientation theory, assuming that the sum of the ion-
dipole interaction and the rotational energy of the dipole is a constant. With this approximation, θ
could be determined as an average of angles (θ) of alignment between the dipole and the ion.

Searching a definitive solution, Su and Chesnavich [76] parametrized the results for extensive
trajectory calculation by using the classical equations of motion. They obtained [77, 78] a simple
formulation for the rate constant in terms of the Langevin one:

k

kL
= 0.4767x+ 0.6200 with x ≥ 2

k

kL
=

(x+ 0.5090)2

10.526
+ 0.9754 with x < 2

The formula is based on the parameter x, defined as:

x =
µD√

2αkBT

Explicating the dependence of k on T , the k can be written as:

k = c1 + c2T
−1/2 with x ≥ 2 (3.37)

where c1 = 0.62kL and c2 = 2.1179 µDe√
µkB

. For x < 2:

k = kL + b1T
−1/2 + b2T

−1 with x < 2 (3.38)

where b1 = 0.4296 µDe√
µkB

and b2 =
µ2
Dπe

10.526kB
√
αµ

. In Eqn. 3.37 if the second term (c2) is much

greater than the first one (c1) (e.g. at low temperatures), the Eqn. 3.37 reduces to c2T−1/2. In the
astrochemical databases (such as KIDA, OSU2009, UMIST), these formulas are used for giving rate
constant values to reactions in the situation where no experimental informations are available.
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3.1.2 The charge transfer process
Of fundamental importance for this thesis it is to understand the dynamics of an electron trans-
fer. The charge transfer between charged (A+) and neutral (B) species to form the neutral (A) and
charged (B+) counterparts is a typical example of a non-adiabatic process. Therefore to under-
stand this process, it is necessary to introduce new elements not considered by the simple collision
theory treated until now.

Since in the collision process and more generally in the chemical reaction a transformation
from reagent to product is involved , it is necessary to know the interaction energy of the configura-
tion of the system during this rearrangement. For this reason, it is appropriate to finally introduce
the concept of potential energy surface. Considering a simple case of an atom-diatom collision,
A + BC, the potential energy, interpreted as inter-atomic potential, is a function of the three inter-
atomic distances. Further simplifying the system in a collinear configuration (A – B – C), only two
independent inter-atomic distances remain to be considered, whereas the third one (A – C) is equal
to the sum of the other two (A – B and B – C). In this case, it is possible to build the potential as
a function of these two coordinates as a potential contour map (Figure 3.5), showing equipotential
lines in a two-dimensional plot as a topographical maps.

Figure 3.5: Contour map for the PES of the reaction A + BC. The solid
lines are contours of given potential energy and the dashed
line shows the minimum reaction path. [79]

In the potential plotted as a function of the two bond distances, we can have the old A – B bond
distance, in the reactant region where C is a infinite distance, and the new B – C bond one, in the
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product region with A far away. The reaction happens in the middle of these two regions (shown
with a X in Figure 3.5), where the potential energy surface mediates between the reactants’ and
products’ configuration. This region is at higher energy (threshold energy for the reaction) with
respect to the other two and the threshold energy represents the cost in energy required to cross
over from the reactants’ to the products’ regions. Because the reaction path passes through the
local minima of the surface (dashed line in Figure 3.5), near the activation barrier of the reaction
the potential surface has the form of a saddle. Therefore, the configuration of the system in the
saddle point of the PES is the transition state region, the height of the barrier along the minimum
reaction path is the lowest maximum of the potential between the reactants’ and products’ valleys.

Since molecular species are composed by electrons and atomic nuclei, the motion of these par-
ticles is determined by the molecular Hamiltonian, Ĥ . This Hamiltonian contains the nuclear ki-
netic energy (T̂n), the electron kinetic energy (T̂e), the Coulomb attraction of the electrons and nu-
clei (V̂ne) and the electron-electron (V̂ee) and nuclear-nuclear (V̂nn) Coulomb repulsion. In atomic
unit (e = ~ = me = 1), the Hamiltonian can be written as:

Ĥ = T̂n + T̂e + V̂ne + V̂ee + V̂nn

=

N∑
α=1

P̂α · P̂α
2Mα

+

Ne∑
i=1

P̂i · P̂i
2

+

N∑
α=1

Ne∑
i=1

Zα
Riα

+

Ne∑
i=1

Ne∑
j<i

1

Rij
+

N∑
α=1

N∑
β<α

ZαZβ
Rαβ

(3.39)

where N is the number of atomic nuclei, Ne of the electrons, Mα is the mass and Zα the charge
of nucleus α, P̂α is the operator for a Cartesian momentum vector for nucleus α, P̂i is that for the
momentum electron i, Riα is the distance between nucleus α and electron i, Rij is the distance
between electrons i and j, and Rαβ is the distance between nuclei α and β. The motion of the
nuclei is then completely described by the time-dependent Schrödinger equation:

i
δ

δt
Ψ(x,X, t) = ĤΨ(x,X, t) (3.40)

where x andX represent the Cartesian coordinates of all electrons and nuclei, respectively. Equiv-
alently, the time-independent Schrödinger equation (Eqn. 3.41) can be used to obtain any observ-
able associated with molecular motion.

ĤΨ(x,X) = EΨ(x,X) (3.41)

It is interesting to note that in the atomic units the nuclear mass is expressed in terms of electron
mass (me = 9.31× 10−31 kg). Therefore, Mα in Eqn. 3.39 is a large number (in the range 103-105)
and therefore, T̂n is much smaller than the other four terms in the Hamiltonian. Defining the
electronic Hamiltonian, Ĥe as:

Ĥe = T̂e + V̂ne + V̂ee + V̂nn (3.42)

the total Hamiltonian can be written as:

Ĥ = T̂n + Ĥe (3.43)
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Anticipating that T̂n is small, it is possible to find the eigenfunctions of Ĥe alone ignoring the
nuclear kinetic energy and fixing X :

Ĥeψi(x;X) = Ei(X)ψi(x;X) with i = 0, 1, 2, ... (3.44)

Even if the nuclear coordinates are fixed, the electronic energy (Ei) is different for different nuclear
positions. Considering T̂n in Eqn. 3.43 as a perturbation, the wavefunctions ψi(x;X) form a useful
basis set for the total wavefunction:

Ψ(x,X) =

∞∑
i=0

χi(X)ψi(x;X) (3.45)

where the coefficients χi(X) must be functions of the nuclear coordinates. Including Eqn. 3.45 in
the Schrödinger equation, Eqn. 3.41 becomes:

(T̂n + Ĥe)

∞∑
i=0

χi(X)ψi(x;X) = E

∞∑
i=0

χi(X)ψi(x;X) (3.46)

Dropping x and X from the notation of the wavefunctions for clarity, this gives:

∞∑
i=0

[
N∑
α=1

1

2Mα
52
α +Ĥe

]
χiψi = E

∞∑
i=0

χiψi

∞∑
i=0

[
N∑
α=1

1

2Mα
5α (ψi 5α χi + χi 5α ψi) + χiĤeψi

]
= E

∞∑
i=0

χiψi

∞∑
i=0

{
N∑
α=1

1

2Mα

[
ψi
(
52
αχi
)

+ 2 (5αχi) (5αψi) + χi
(
52
αψi
)]

+ χiEiψi

}
= E

∞∑
i=0

χiψi

Pre-multiplying this equation by ψ∗j and integrating over the electron coordinates (knowing that
different eigenfunctions are orthogonal), one can find that:

N∑
α=1

1

2Mα
52
α χj + Ej(X)χj−

−
∞∑
i=0

N∑
α=1

1

2Mα

{
2〈ψj | 5α | ψi〉

(
52
αχi
)

+ 〈ψj | 52
α | ψi〉χi

}
= Eχi (3.47)

The terms in curly brackets couple the nuclear wavefunction for the jth electronic state to nuclear
wavefunctions for all the other electronic states. In the Born-Oppenheimer (BO) approximation,
all these terms are neglected. Due to the fact that the nuclear masses are larger than the electron
ones, this is an accurate approximation, as long as the energy Ej(X) is not too close to the energy
of the other electronic states. Therefore, considering the remaining terms in Eqn. 3.47, after the BO
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approximation for each electronic state we have the nuclear Schrödinger equation:

Ĥnucχj =

[
N∑
α=1

1

2Mα
52
α +Ej(X)

]
χj(X) = Eχi(X) (3.48)

The Hamiltonian for the nuclear motion is the sum of the kinetic energy operator and the potential
energy (Ej(X)), which is the total electronic energy for electronic state j. It is possible to assume
that the general E(X) refers to the energy of any electronic state of interest and it is simply the
potential energy experienced by the nuclei (usually detonated with the symbol U(R)).

Qualitatively, the BO approximation is built on the fact that the nuclei are thousand times more
massive than electrons, and then move much more slowly. Therefore, the electron and nuclear
motions can be treated separately: the nuclei move in an average potential formed by the electrons,
while the electrons adjust instantaneously to a change in the nuclear geometry. This separation is
called adiabatic and consequently, when a chemical reaction does not involve different electronic
state, but its dynamics occurs on a single PES, it shows an adiabatic behavior. In the adiabatic
approach, the electrons have all the time to adjust for each configuration of the atom. In this case,
as said, the BO approximation is valid and the Hamiltonian is diagonalized with the nuclei in
fixed coordinates. Solution of the Hamiltonian diagonalization is U(R), i.e. the electronic potential
energy surface in which the nuclei move.

On the other hand, a charge transfer is a non-adiabatic process, meaning that the BO approxi-
mation fails under some circumstances and the nuclear dynamics occurs on two or more coupled
PES. During the collision, the nuclei moves at a velocity not negligible with respect to the velocity
of the electrons. This is the condition because of the adiabatic approximations fails because the
electrons have not enough time to adjust. Hence, for the charge transfer between charged (A+) and
neutral (B) species to form the neutral (A) and charged (B+) counterparts, the evolution from reac-
tants to products occurs in a time scale comparable to the electron motion. Furthermore, reactants
and products constitute two different electronic states and for this reason, the charge transfer hap-
pens in presence of coupling between the two different system configurations corresponding to
the different position of an electron. For a multi-surface reaction, as in this case, the terms in curly
brackets of Eqn. 3.47 can not be neglected and the treatment is very challenging, because the cou-
plings change rapidly with nuclear coordinates. Therefore, it is preferable a diabatic representation
of the PESs, in which the electronic configuration evolves smoothly with changes to the nuclear
coordinates, retaining predominant reactant or product character. In this work, the diabatic PESs
corresponding to reactant and product configurations have been developed by using semi-empirical
method and the detailed procedure will be treated in detail thereafter in this Chapter.

For a chemical reaction, the diabatic curves of the different electronic states can cross, as shown
by the dashed lines in Figure 3.6. On the other hand, for the adiabatic PESs (solid lines in Fig-
ure 3.6) the crossing is avoided (non-crossing rule). This can be demonstrated taking into account
two uncoupled, diabatic states, φ1 and φ2, orthornomal eigenstates of the Hamiltonian operator,
ĥ. They are mixed together by an additional weak coupling term (V̂ ) in a Hamiltonian operator
Ĥ = ĥ+ V̂ . The new Hamiltonian has eigenstates φ (i.e. the adiabatic states), that can be expressed
by linear combination of the diabatic basis functions:

φ = c1φ1 + c2φ2 (3.49)

where, c1 and c2 are two constants that describe the amounts of each diabatic state for contributing
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|ΔE|

U2(R)

U1(R)

V2(R)V1(R)

Reaction Pathway (R)

a

Rx

Figure 3.6: Schematic illustration of the crossing of diabatic states
(V (R)1 and V (R)2, dashed lines) and the avoided crossing
of the adiabatic states (U(R)1 and U(R)2, solid lines) in a
narrow region centered in Rx of interaction between of the
two electronic states, defined by the parameter a (in green).
In red the energy gap (| ∆E |) between the adiabatic curve
in the crossing region is reported.

to the adiabatic state. Inserting the linear combination into the Schrödinger equation, multiplying
from the left the resultant equation by either φ1 and φ2, and integrating, the energy levels can be
determined by solving the secular equation:[

H11 − E H12

H21 H22 − E

]
= 0 (3.50)

where:

Hij = 〈φi|Ĥ|φj〉 (3.51)

Therefore, solutions are:

E1,2 =
1

2
(H11 +H22)±

√
(H11 −H22)2 + 4|H12|2 (3.52)

The resulting energies are a function of the nuclear coordinates because the diabatic wavefunc-
tions, the Hamiltonian operators and the coupling terms all depend on the nuclear geometry. The
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two values of E of Eqn. 3.52 are equal only if the two following conditions are satisfied simultane-
ously:

H11 = H22

H12 = 0

In a diatomic molecule where only the inter-atomic distance R can be varied, this is impossible,
because the two conditions require two independently variable nuclear coordinates: hence, the
non-crossing of the two curves. However, avoided crossing are also possible in polyatomic sys-
tems [80]. Therefore, if the BO approximation fails, the electrons retain their configuration (either
reactant or product character) and the nuclear trajectory stays on the same diabatic curve at the
barrier. In the adiabatic approach, this is equivalent to a transition from one adiabatic curve to the
other one. Furthermore, the two electronic states are separated asymptotically by a fixed energy
gap, nevertheless a minimum distance between the two PESs exists in a localized region in the
configuration space of the nuclei (| ∆E(Rx) |). In fact, there is a distance Rx, where the electronic
energy is the same for the two different diabatic states. Near Rx the system can change its elec-
tronic state with only a very slight change in the kinetic energy of the nuclei [79], that makes the
process efficient. The convergence of two non-adiabatic PE curves in the coordinate Rx is known
as curve crossing. In this case, the adiabatic curves (under the BO approximation) do not cross, but
converge and then diverge at Rx.

The cross-section of a non-adiabatic event can be obtained by the semi-classical formulation of
Eqn. 3.3, equivalent to Eqn. 3.7. Therefore, it is necessary to define the probability P (l) of Eqn. 3.7
for the non-adiabatic transition, obtained by the following procedure.

To obtain P (l), it results convenient to introduce an adiabaticity parameter (ξ) defined by the
ratio between the time of a perturbation (linked to the duration of collision, τc) and the time scale
that a system needs to adjust its electronic configuration (τe) [79]:

ξ =
τc
τe

(3.53)

In case of short collision time or in other words, for high-velocity collision (sudden or non-adiabatic
limit) , we have that:

τc < τe (3.54)

For collisions occurring at low velocities, the system is better described following the adiabatic
limit, when the collision time is longer than the period of oscillation:

τc > τe (3.55)

The collision time τc is defined as:

τc =
a

v
(3.56)

where a is the narrow region of the diabatic crossing (Figure 3.6) and v is the relative velocity
during the collision. With a slow perturbation, the system has all the time to re-adjust into its
instantaneous state, e.g. the way in which the electrons adiabatically adjust after a motion of the
nuclei in the BO approximation.
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The system that crosses the region Rx in a generic time τ has an indefiniteness in energy h/τ .
We can have two cases:

1. if h/τ >| ∆E(Rx) |, the system can "jump" to the other curve, changing its adiabatic state;

2. if h/τ <| ∆E(Rx) |, the system remains on its own curve, maintaining the adiabatic state.

Therefore, the condition for an adiabatic behavior is that the passage through the crossing region
Rx must be sufficiently slow. Since in Eqn. 3.55 the time of the collision τc must be greater than the
time that the system needs to adjust its electronic state (τe), τe can be assumed as h

|∆E(Rx)| . The
adiabaticity parameter can be rewritten from Eqn. 3.53 as

ξ = τRx
| ∆E(Rx) |

h
(3.57)

where τRx refers not to the whole time of the collision (τc), but to the time in which the nuclei
are in the region Rx where the gap is small. Therefore, the transition between the two curves
occurs only during the time spent in vicinity of Rx and for this reason, v of Eqn. 3.56 becomes the
radial velocity at Rx. To evaluate τRx , it is necessary to define the spatial parameter a, that can
be estimated describing the diabatic curves as linear functions of R close to Rx. The adiabatic gap
can be thus defined as difference between the two potential energy curves (V (R)1 and V (R)2 in
Figure 3.6) in R:

∆E(R) = V1(R)− V2(R) (3.58)

that can be expanded as a Taylor series in Rx:

∆E(R) = V1(Rx) + (R−Rx)
dV1

dR

∣∣∣∣
Rx

− V2(Rx)− (R−Rx)
dV2

dR

∣∣∣∣
Rx

(3.59)

Knowing that V1(Rx) = V2(Rx) and (R−Rx) = a/2, we have:

|∆E(Rx)| = a

2

∣∣∣∣dV1

dR
− dV2

dR

∣∣∣∣
Rx

≡ a

2
|∆Fx| (3.60)

|∆Fx| is the absolute value of the differences in slopes atRx. From Eqn. 3.60, it is possible to obtain
a

a =
2|∆E(Rx)|
|∆Fx|

(3.61)

Since τRx can be expressed in terms of a and radial velocity (from the relation of Eqn. 3.61), the
Eqn. 3.57 becomes:

ξ = 2
|∆E(Rx)|2

hv|∆Fx|
(3.62)

Therefore, to define the semi-classical probability of a single non-adiabatic transition p, i.e. cor-
responding to approach the crossing region on adiabatic state and exiting on the other adiabatic
state, the Landau-Zener-Stückelberg formula [81, 82, 83, 84] (Eqn. 3.63) has been used. It repre-
sents the non-adiabatic transition probability (p) at an avoided crossing of adiabatic PESs taking



3.1. Dynamics of reactive collisions 41

into account the non-adiabatic jump at the crossing point (Rx) of the diabatic curves and it is based
on the adiabatic parameter ξ:

p = exp
(
−2π2ξ

)
= exp

(
−2π|∆E(Rx)|2

~v|∆Fx|

)
(3.63)

where |∆E(Rx)|2 is associated to the non-adiabatic coupling term between the two adiabatic po-
tential curves, Hx. The radial velocity v is given in terms of orbital angular momentum quantum
number l:

v2 =
2

µ

[
E

(
1− b2

R2
x

)
− Ex

]
=

=
2

µ

[
E

(
1− l(l + 1)

k2R2
i

)
− Ei

]
(3.64)

where E is the collision energy of the system, b the impact parameter, µ the reduced mass, k the
wavenumber already defined above as k = 2π/λ. The impact parameter b has been substituted
knowing the relation:

b =
[l (l + 1)]1/2

k

The total cross-section σ(E) is obtained by applying the Eqn. 3.7 in the range 0 to lmax. lmax, that
is given by the maximum value of l for which v is real:

lmax = kRx

(
1− Ex

E

)1/2

(3.65)

Therefore, the probability P (l) in Eqn. 3.7 is the total probability associated to the formation of
products after the charge transfer. In presence of just one crossing, P (l) would be the combination
of single probabilities (Eqn. 3.63) to jump or not between the two diabatic potential curves. Thus,
we can have two situations:

1. the system passes the crossing remaining on the diabatic curve of the reactants (1− p), but
passing again the crossing after the turning point and jumping to the other diabatic curve
(p);

2. the reactants system jumps to the products potential (p), but after the turning point, it re-
mains on this curve (p− 1).

The total probability P (l) is thus:

P (l) = p(p− 1) + (p− 1)p = 2p(p− 1) (3.66)

At this point, cross-sections of charge transfer processes are still far to be calculated, since
the method to represent the diabatic PESs of the electronic states corresponding to reactant and
product configuration is still not reported. In fact, to apply the Landau-Zener-Stückelberg for-
mula (Eqn. 3.63), it is necessary to know the crossing parameters (Rx, v and |∆Fx|). As already
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introduced above, the semi-empirical method has been chosen to determine the potential energy in-
teractions between the neutral and the charge particle. In the following Section, the fundamental
instruments used for this purpose are thoroughly reported.

3.2 Semi-empirical potential energy surfaces
The ab initio methods are grounded to the solution of the Schrödinger equation without any ref-
erence to experimental data. On the contrary, the semi-empirical method allows to represent the
potential energy surfaces from the global physical properties of the molecules. This method is a
valid choice for large inter-atomic and -molecular distances at which the two particles can be con-
sidered as two distinct entities without any perturbations on their physical properties. In general,
the interaction V between atomic or molecular systems is represented by several contributions.
For example, the interactions between charges (q), dipoles (µ) and multipoles (Q) define the elec-
trostatic components of the inter-molecular forces. Furthermore, q, µ,Q of a molecule might cause
phenomena of induction on another molecule, which will be characterized by µInd and QInd. Also
the induced multipole- induced multipole interaction plays a role in the total potential, determin-
ing the dispersion contribution. These three components have the common characteristic to arise
already for long particle distance and for this reason, they are called long range contributions; the
combination of these terms gives often an attractive potential, except when there are strong repul-
sive electrostatic interactions between, for example, charges of the same sign. To these long range
terms, it is requested to sum the other short range components:

• Repulsive contribution: it arises from the repulsion between nuclei and valence electrons
of the interacting species;

• Chemical contribution: coming from the possibility of two systems to share one or more
electrons.

The combination of attractive and repulsive contributions allows the formation of a poten-
tial well, with depth εm (shown in red in Figure 3.7). In other words, starting from large inter-
molecular distances and reducing R, V (R) tends first to decrease, passing to a well with εm depth
at a certain distance rm and then, it raises for the repulsive interactions at short r.

Focusing only on the long range contributions, we have the Eqn. 3.67.

V = VElectr + VInd + VDisp (3.67)

Before defining each single contribution of V, it is necessary to identify which parameters and
physical quantities are fundamental for the interaction potential. The first property that needs
to be mentioned is the total charge qi of each atom of a system. In case of distribution of par-
tial charges in non-spherically symmetric molecules, it is also important to consider, as already
said, the permanent dipole moment (µp) and the permanent quadrupole moment (Qp). Other important
properties are the ionization potential (Ii) and the electronic affinity (Ai).

Furthermore, the polarizability (α) represents an essential property to describe the interactions,
because it quantifies the possibility of chemical species to create instantaneous dipoles and to
deform its charge distribution, forming induced dipoles in presence of an external charge qi.
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R

Figure 3.7: Example of interaction potential between a homonuclear di-
atomic molecule and an atom (e.g. an ion) as a function of
R distance between the two species. In red the characteristic
parameters, εm and rm, of the potential are highlighted. The
decreasing dashed line indicates the attractive contribution,
while the increasing pointed line the repulsive one.

Considering a spherical atom in an electric field
−→
ξ e, the atom will be subjected to a deforma-

tion of its electronic distribution, forming an induced dipole moment (−→µ ind):

−→µ ind = α
−→
ξ e (3.68)

from which it is possible to define the potential created by the induced dipole in the electric field
(Vind):

Vind = −
∫ −→ξ e

0

−→µ indd
−→
ξ e = −1

2
α
−→
ξ 2
e (3.69)

On the other hand, in a Cartesian coordinate system, the polarizability of poly-atomic molecules
can be defined as a tensor in terms of the three principal components, αxx, αyy and αzz . The
simplest case is that of a diatomic homonuclear molecule with the inter-nuclear axis aligned along
the z-axis and exposed to a electric field

−→
ξ e, generated e.g. by an ion (Figure 3.8). Due to the

alignment between the bond and the z-axis, the tensor can be simplified in terms of parallel (α‖ =
αzz) and perpendicular (α⊥ = αxx = αyy) components. From a mathematical point of view, the
polarizability tensor is described by the diagonal matrix, α [85]:

αj =

α1⊥ 0 0
0 α2⊥ 0
0 0 α‖

 (3.70)
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Defined ϑ as the angle formed by the direction of the approaching atom and the bond of the
diatomic molecule in the CM (Figure 3.8), the angle-dependent polarizability can be written as:

α(ϑ) = α‖cos
2(ϑ) + α⊥sin

2(ϑ) (3.71)

The average value of the polarizability for the diatomic molecule corresponds to the average of

R

!dB

Figure 3.8: Homonuclear diatomic molecule of bond length dB , which
interacts with an ion, that produces an electric field. The an-
gle ϑ defines the direction of the approaching atom.

the three principal tensor components:

α =
α1⊥ + α2⊥ + α‖

3
(3.72)

A way to predict the polarizability of a polyatomic molecule is to consider the electronic
charge distribution around each molecular bond and then to sum each polarizability contribu-
tion to obtain the total polarizability [86]. Therefore, the average molecular polarizability αtot is
the sum of each j average bond component:

αtot =
∑
j

αj (3.73)

3.2.1 Electrostatic Potential (VElectr)
The first element of Eqn. 3.2 to define is VElectr , the electrostatic component that arises from the
interaction between charges and/or permanent dipoles and/or permanent multi-poles in the in-
teraction species. The interaction between two simple diatomic linear molecules, represented in
Figure 3.9, can be evaluated. In the figure, O and P are the CM of the molecules and q1, q2, q′1, q′2
the charges. Defining R as the distance between the centers of mass, if R >>> z1, z2, z

′
1, z
′
2, VElect
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Figure 3.9: System of two collinear diatomic molecule with charge dis-
tributions.

is described as a multipole expansion:

VElectr =
1

4πε0

(
qq′

R
+
µq′ − µ′q

R2
+
qQ′ + q′Q

R3
+

3µQ′ − 3µ′Q

R4
+

6QQ′

R5

)
(3.74)

where ε0 is the vacuum permittivity. In Eqn. 3.74, the physical quantities are:

• q = q1 + q2 and q′ = q′1 + q′2: the total charges of the two molecules;

• µ = q2z2 − q1z1 and µ′ = q′2z
′
2 − q′1z′1: the electric dipole moments;

• Q = q1(z1)2 + q2(z2)2 and Q′ = q′1(z′1)2 + q′2(z′2)2: the electric quadrupole moments.

Figure 3.10: System of two not collinear diatomic molecule with charge
distributions.

If the molecules are not collinear, the terms of Eqn. 3.74 have to be weighted for the different
configurations as a function of θ1, θ2, ϕ, defined in Figure 3.10.

For example, assuming q, q′, Q,Q′ = 0, Eqn. 3.74 becomes:

VElectr(R, θ1, θ2, ϕ) = −µµ
′Ar(θ1, θ2, ϕ)

4πε0R3
(3.75)

with Ar :

Ar(θ1, θ2, ϕ) = 2cosθ1cosθ2 − sinθ1sinθ2cosϕ (3.76)

These are the cases with fixed molecules. When it is requested to consider rotating molecules,
it is necessary to do a weighted mean of all the possible orientations. If the configurations are
equiprobable, all the terms in Eqn. 3.74 cancel out except the first one.

In case of a poly-atomic molecule interacting with an ion, the way to represent the electrostatic
potential is to consider the interaction between the ion and each of the atoms of the molecule,



46 Chapter 3. Theoretical Methodologies

characterized by a net atomic charge (also called partial charge). The partial charge is generated by
the asymmetric distribution of the electrons in a chemical bond, in which two electrically neutral
atoms of different electronegativity are connected. Therefore, the total electrostatic potential can
be written as:

VElectr =
q

4πε0

N∑
i

δqi
Ri

(3.77)

where N is the total number of the atoms of the poly-atomic molecule, δqi is the partial charge of
the i atom, andRi the distance between the ion and the i atom. Partial charges can be obtained ex-
perimentally, for example from measured dipole moments or by measuring the electron densities
using high resolution X-ray, gamma ray, or electron beam diffraction experiments.

When experimental data are not available, it is necessary to assign partial atomic charges from
quantum chemistry calculations. In this thesis, the natural orbital approach has been used for this
purpose and the details are given at the end of the Chapter.

3.2.2 Induction Potential (VInd)
This contribution to the total potential energy is due to the interaction between an induced mul-
tipole and the charges of the inducing species. If the electric field is produced by a charge q, the
VInd is defined as:

VInd = − 1

2(4πε0)2

q2α

r4
= −C4Ind

r4
(3.78)

where α is the polarizability of the molecule. The other terms, e.g. charge-induced quadrupole and
charge-induced octupole, which vary as a function of r−6 and r−8, respectively, are often ignored.

3.2.3 Dispersion Potential (VDisp)
The interaction between instantaneous multipoles and induced multipoles forms the dispersion
potential, VDisp, which is represented by the following expression:

VDisp(r) = −f6
C6Disp

r6
− f8(r)

C8

r8
− f10(r)

C10

r10
− ... (3.79)

where fi(r) are factors that tend to zero for short values of r, while fi(r)→ 1 for r →∞. For r in
the middle-long range, the resulting VDisp is:

VDisp = −C6eff

r6
(3.80)

The coefficient C6eff includes the first term and all the other ones, i.e. dipole-dipole, dipole-
multipole and multipole-multipole interactions. It tends to C6 for large r.
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Many attempts have been done to describe C6 and C6eff properly. In particular, Slater and
Kirkwood [87] demonstrated in 1931 the following semi-empirical expression for C6eff :

C6eff =
3eh

2m
1/2
e π

α1α2

( α1
Ne1

)1/2 + ( α2
Ne1

)1/2
(3.81)

where e and me are the electron charge and mass, h is the Planck constant and α1 and α2 are the
polarizability of the two interacting species, respectively. Ne1 and Ne2 are the numbers of electron
on the species 1 and 2, respectively, that contribute to the dipole formations, and therefore, α1

Ne1
and α2

Ne2
are the electron density reciprocals.

The formula allows an easy calculation of C6eff in terms of polarizability, but it requires a
correct evaluation of the electron numbersNe1 andNe2. As a general rule, the number of electrons
of the outer shells has been used for Ne1 and Ne2, but this approximation is too rude for many-
electron systems, in which also core electrons might have a contribution in the dipole formations.
In this context, Pitzer [88] first proposed to take different Ne1 and Ne2, higher than the number
of the valence shell electrons in order to consider the effect of inner electrons on the formation of
dipoles. Succesively, Koutselos and Mason [89] indicated that Ne1 and Ne2 depend on the overall
electronic structure of the atoms.

For atomic species, a progress has been achieved with a simple empirical formula [90] (Eqn.
3.82) to calculate Neff (effective electrons determining the long-range interactions) only in terms of
inner and outer orbital electron numbers (Ninn and Next, respectively). In fact, it is possible to
consider that:

• Neff must depend on the outer electron ratio Next
Ntot

, since Next give the bigger contribution
to the polarization;

• also the inner electrons contribute to the polarization;

• since the outer electrons are effected by "shield" phenomena, that might reduce the effective
electron number, Neff must depend on Ninn −Next.

On the basis of these observations, the authors of [90] proposed the following formula to calculate
Neff :

Neff
Next

= 1 + (1− Next
Ninn

)(
Ninn
Ntot

)2 (3.82)

with Ntot = Next + Ninn, the total number of the electrons of the atom. Eqn. 3.82 can be also
expressed in the following form:

Neff = Next + (
Next
Ntot

)(
Ninn
Ntot

)(Ninn −Next) (3.83)

For molecular systems, the formulas are basically the same, considering an average polariz-
ability, weighted for all the possible orientations (see equations 3.72 and 3.73). In this case, the
effective numbers of electrons must be calculated taking into account the electrons effectively in-
volved in the bonds (Nb) and the other external electrons not involved in bonds (Nnb). Core elec-
trons are ignored due to the minor effect on long-range interactions. For molecules made up of
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light atoms, an approximated formula can be written as follows:

Neff
Nt

= 1− NbNnb
N2
t

(3.84)

where the total external electron number (Nt) is given by the sum of Nb and Nnb. The remaining
electrons are considered being part of the core. When all the external electrons give bond (e.g. in
the molecule of H2 or in the hydrocarbons), Nt coincides with Neff .

The expressions for Neff can be used in Eqn. 3.81 giving C6eff coefficients in agreement with
experimental values [90].

The Lennard-Jones Potential and its improved versions

A simple and computationally light potential function for the dispersion interaction is the Lennard-
Jones one. In reduced unity, it is defined as:

vLJ(x) =
m

n−mx−n − n

n−mx−m (3.85)

where n = 12 and m = 6 for neutral-neutral interaction and x is the reduced distance, x = r
rm

.
The first term constitutes the repulsive contribution, while the second one is about the attrac-
tion. This function reproduces the characteristics of the potential well satisfactorily, but it fails in
the representation of both the short-range repulsion (too repulsive) and the long-range attraction
(overestimated as much as a factor two) [91]. Maitland and Smith suggested a correction in 1973
[92] with a [n(x), 6] function instead of the [12, 6] one. The suggestion of the authors [92] was to
define n(x) as:

n(x) = 13 + γ(x− 1) (3.86)

where 2 6 γ 6 10. From comparison between the behavior of the [n(x), 6] and [12, 6] potential
models, the formulation of the potential allows a significant improvement of the log range attrac-
tion representation using a γ=10, but still incomplete for the repulsive wall. Lower γ values give
a more reliable short range behavior, but determine a too large attraction.

In the 2000s, Pirani et al. [91, 93] proposed a modification of the Maitland formula with a
[n(x),m] function, called Improved Lennard-Jones potential, VILJ . According to this new formula-
tion, the Eqn. 3.85 becomes:

vILJ(x) =
V (r)

ε
=

m

n(x)−mx−n(x) − n(x)

n(x)−mx−m (3.87)

where parameter m is 6 for all neutral-neutral systems, 4 for ion-neutral and 1 for ion-ion cases
[93]. In this case, n(x) has a more pronounced dependence on the reduced distance x:

n(x) = β + 4x2 (3.88)

The factor β is related to the hardness/softness (and thus to the polarizability α) of the interacting
partners and it varies in a narrow range of values ( 7 6 β 6 9). The mentioned representation of
n(x) allows the correct characterization of the long-range attraction, as well as of the repulsive wall
at short distance, attenuating this contribution with respect to the Maitland and Smith correction.
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3.2.4 The correlation formulas
The correlation formulas allow the connection between the polarizability, α, and the properties
of the PES well, i.e. the depth and its location. As already said, since the interaction potential
is represented by attractive and repulsive contributions, in the intermediate region the balancing
of the two forces creates the potential well. The van der Waals forces are especially affected by
the polarizability, because it characterizes the long-range dispersion interactions. For this reason,
depth (ε) and position (rm) of the well are functions of α.

For neutral-neutral interactions between A and B species, it is possible to define rm [90, 94] as

rm = 1.767
α

1/3
A + α

1/3
B

(αAαB)γ
(3.89)

where rm is in Å, and polarizabilities αA and αB are in Å
3
. The coefficient and the exponent

(γ = 0.095 ± 0.005), are empirical values. [94] In Eqn. 3.89 the numerator represents the effect of
the repulsion, while the denominator is about the effect of the attraction. This formula and the
following one are obtained by a statistical analysis of a large number of van der Waals systems.
[94, 95]

Following the same procedure, the ε [90] is:

ε = 0.720
C6eff

r6
m

(3.90)

obtaining ε in meV from C6eff (defined in Eqn. 3.81) in meV Å and rm (Eqn. 3.89) in Å. The
coefficient 0.720 is a empirical value [94].

For ion-neutral (I and B, respectively) interactions, it is possible to use the same approach
used for the neutral-neutral systems. Again, since the polarizability is related to the size of the
outer electronic orbitals, it used to represent the mutual repulsion. For the attractive contribu-
tion, in addition to the multipole dispersion interaction, it is necessary to add the ion-induced
multipole interaction, function of the polarizability (Eqn. 3.78) and dominant at a large distance.
[96] To evaluate the contribution of both the interactions, it is essential to define (Eqn. 3.91 [96]) a
dimensionless parameter, ρ, as the ratio of the dispersion forces to the induction ones.

ρ =
VDisp
VInd

=
C6eff/R

6
m

C4eff/R4
m

=

= K
αIαB

[1 + (2αI/αB)2/3]α
3/2
B

(3.91)

where C6eff and C4eff are already defined in Eqn. 3.78 and Eqn. 3.81, respectively, and K is 1, if
the polarizabilities are in Å

3
. The exponent 3/2 of αB is related to the different R dependence of

the attraction terms (R−6 for the dipole-dipole interaction in the dispersion and R−4 fro the ion-
dipole interaction in the induction). In square brackets there is the normalization factor to take into
account the relative weights of the interaction contributions for a single ionized ion. Considering
the induction forces and the ρ term, Rm and ε can be obtained basically from the same formulas
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of the neutral-neutral case. So, for rm we can have:

rm = 1.767
α

1/3
I + α

1/3
B

(αIαB [1 + 1/ρ])γ
(3.92)

where γ and the coefficient 1.767 are the same of Eqn. 3.89. If the induction forces have a low
contribution (i.e. 1/ρ→ 0), Eqn. 3.92 becomes equal to Eqn. 3.89.

ε can be written as [96]:

ε = 5.20× 103 αB
R4
m

(1 + ρ) (3.93)

As above, if ρ → 0 (low contribution of dispersion forces), Eqn. 3.93 represents the effect of a
point-like ion-multipole interaction. On the contrary, for large values of ρ, Eqn. 3.93 is equal to the
neutral-neutral ε (Eqn. 3.90). It is interesting to note that, defining ε = k C4

r4m
(1 + ρ), the empirical

value k is the same of Eqn. 3.90 (0.72), meaning that in the well region the attraction and the
repulsion play the same relative role in the ion-neutral and neutral-neutral cases [97].

From the correlation formulas, it is possible to summarize:

• the physical properties directly affecting the principal features of the interaction are α, µ
and q (polarizability, dipole moment and charge);

• the correlation formulas are simple expressions for bond energies (εm);

• the bond energies are a defined percentage (72 − 85%) of the total attraction evaluated in
rm;

• all the formulas reported can be used to estimate the spherical (isotropic) component of the
interaction;

• introducing the reduced quantities, x = r
rm

and v(x) = V (x)
εm

, it is obtained that v(x) has a
similar behavior as a function of the parameter x for similar systems.

3.2.5 The anisotropic case
Until now, we have spoken only about atomic or spherically symmetrical molecular systems, char-
acterized by isotropic potentials. In anisotropic systems, it is necessary to include the angular
dependence in the potential expressions. Following the previously general definition of α(ϑ)
(Eqn. 3.71) for an ion-diatomic molecule, the depth (εm) and position (rm) of the potential well
can be expressed as a function of the angle (ϑ) [91]:

εm(ϑ) = ε⊥sin
2(ϑ) + ε‖cos

2(ϑ)

rm(ϑ) = r⊥sin
2(ϑ) + r‖cos

2(ϑ)

Furthermore, in a anisotropic potential model the specific role of any atom-bond in the atom-
molecule system has to be taken in account. In this case, the potential energy V of the many body
system can be represented as:

V =
∑
i>j

Vij +
∑
i>j>k

Vijk + · · · =
∑

V2bodies +
∑

V3bodies + · · · (3.94)
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Often, it is considered only the first term, assuming that total interaction energy is simply derived
from the sum of the all two bodies interactions, neglecting the higher order terms. V can be
represented also by an atom-bond approach (the same used to define the polarizability, in which a
poly-atomic molecule is conceived as an ensemble of diatoms, coinciding with the bonds) In this
case, the potential maintains its additive formulation, including high-order effects, and it can be
formed by atom-bond components Vab, e.g. described by a ILJ potential (see Eqn. 3.87).

V =
∑
b

Vab(rab, ϑab) (3.95)

where rab is the distance of the approaching probe atom a from the dispersion center localized on
the b bond (R in Figure 3.8) and ϑab is the angle ϑ of Figure 3.8.

3.3 Natural Bond Orbital (NBO) method
As already said, when experimental data are not available, the determination of the electronic
configuration and net charges associated with each atom in a poly-atomic molecule is often the fi-
nal goal of quantum chemical studies. The information concerning atomic charge distributions is
important, for example, to represent the electrostatic potential when an ion interacts with a poly-
atomic molecule (see Sec. 3.2.1). For this reason, the NBO analysis has been applied to obtain the
net charges of the methyl formate. However, quantifying the atomic charges and orbital popula-
tions represents a challenging problem, even when accurate wave functions are available. One of
the method proposed for atomic population analysis is that of Mulliken [98, 99], even if it fails to
give a useful and reliable characterization of the charge distribution in many cases:

• Mulliken populations can have negative values, which have no physical significance [100];

• for compounds with significant ionic character, Mulliken populations seem to give an un-
reasonable physical picture of the charge distribution [101];

Weinhold and co-workers [102, 103, 104, 105, 106, 107, 108, 109] proposed an alternative method
of population analysis, based on the construction of a set of "natural atomic orbitals" (NAOs) for
a given molecule in an arbitrary atomic orbital basis set. The NAOs are the orthonormal atomic
orbitals of maximal occupancy for the given wave function Ψ, and are obtained as eigenfunctions
of the atomic first-order density matrix Γ(1) [110], derived by averaging over all but one of the N
electronic space-spin coordinates:

Γ(1) = N

∫
|Ψ(1, 2, ..., N)|2dτ2dτ3...dτN (3.96)

The first order density matrix may be diagonalized, and the corresponding eigenvectors and eigen-
values are the natural orbitals (θk) and the occupation numbers, respectively.

Γ(1)θk = nkθk (3.97)

where nk is the occupancy (electronic population) of θk, subject to the Pauli exclusion limit (0 ≤
nk ≤ 2), and defined as:

nk = 〈θk|Γ(1)|θk〉 (3.98)
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The idea of Weinhold and co-workers was to deduce the shape of the atomic orbitals in the
molecule from the one-electron density matrix and the type of molecular bonds from the elec-
tron density between the atoms. This idea is known as Natural Atomic Orbital (NAO) and Natural
Bond Orbital (NBO) analysis.

Assuming that the basis functions have been arranged so that all orbitals located on center
A are before those on center B, which are before those on center C , etc. (where A, B, C, etc. are
the atoms of a poly-atomic molecule), the density matrix can be written in terms of blocks of basis
functions belonging to a specific center:

Γ =


ΓAA ΓAB ΓAC · · ·
ΓBA ΓBB ΓBC · · ·
ΓCA ΓCB ΓCC · · ·
· · · · · · · · · · · ·

 (3.99)

Therefore, the NAOs for a specific atom in the molecular environment can be obtained diagonal-
izing the density matrix block of the basis functions belonging to the specific atomic center (i.e. the
NAOs of the atom A are those that diagonalize the ΓAA block of matrix 3.99). In general, these
NAOs are not orthogonal and the orbital occupancy does not correspond to the total number of
electrons. Hence, the orbitals should be orthogonalized to have a well-defined division of system
electrons.

The NAOs resemble the pure atomic orbitals as calculated for an isolated atom. Furthermore,
they can be divided on the basis of the occupancy into a natural minimal basis, corresponding to the
occupied atomic orbitals for the isolated atoms, and a set of natural Rydberg orbitals, corresponding
to the remaining and formally unoccupied orbitals. The minimal set of NAOs is strongly occupied,
while the Rydberg one is weakly occupied (the occupancies are not necessarily zero, but these
orbitals play only a secondary role in describing the electron density associated with the atom).
Therefore, the procedure is the following:

1. Each of the atomic blocks in the density matrix Γ is diagonalized, producing a set of non
orthogonal NAOs (pre-NAOs);

2. the strongly occupied pre-NAOs for each center are made orthogonal to all the other pre-
NAOs on the other centers by an occupancy-weighted procedure;

3. the weakly occupied pre-NAOs on each center are made orthogonal to the strongly occu-
pied NAOs on the same center;

4. the weakly occupied NAOs are made orthogonal to all the weakly occupied NAOs on the
other centers by an occupancy-weighted procedure.

The diagonal elements of the density matrix in this basis are the orbital populations: to obtain the
atomic charge, all contributions from orbitals belonging to a specific atom have to be summed up.

From the off-diagonal blocks of the density matrix transformed to the NAO basis and their
occupation number, it is possible also identify the type of bonds between the atoms. We can have
different cases:
• the NAOs with occupation number close to 2 are core orbitals;
• if the occupation number is large (> 1.90), the NAOs are identified as lone pair orbitals;
• removing the previous contributions, only the two-by-two sub-blocks (of each pair of atoms)

remain in the density matrix. In this case NBO are the eigenvectors with large eigenvalues
(occupation number > 1.90);
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At this point, the obtained NBOs can be written as linear combination of NAOs, knowing which
atomic orbital are involved in the chemical bond.

For this thesis, the NBO analysis have been performed on geometric optimized dimethyl ether
and methyl formate by using Gaussian09 software [111]. M06-2X functional with cc-pVTZ/cc-
pVQZ basis sets have been chosen to perform the optimization of the molecule geometries. Details
on this DFT functional and the chosen basis sets are reported in Appendix B.
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Chapter 4

The Experimental Results

“Things get damaged
Things get broken
I thought we’d manage, but words left unspoken
Left us so brittle
There was so little left to give.”

Precious - Depeche Mode

In this chapter, the results of the experiments on the reaction of He+ with dimethyl ether
(CH3OCH3, DME) and with methyl formate (HCOOCH3, MF) will be presented and discussed.

4.1 Reaction of He+ with CH3OCH3 (DME)
For both DME and MF reactions, helium ions have been generated by electron ionization (see
Sec. 2.2.1) at electron energies in the range 90 eV to 100 eV. The neutral reagent used to fill the re-
action chamber was gaseous DME, purchased from SIGMA-ALDRICH (≥ 99.9%, GC purity). The
ionic products of the reaction He+ +DME have been explored by recording mass spectra at different
pressures of the neutral reagent and results are shown in Figure 4.1. The low pressure mass spectra
are shown in detail on the right panel of Figure 4.1. The spectra were obtained at a collision en-
ergy in the CM frame of about 1.6 eV, and with different pressures of DME inside the reaction cell:
1.9× 10−7 mbar (black), 4.6× 10−7 mbar (red), 9.9× 10−7 mbar (blue), 4.9× 10−6 mbar (green),
and 1.01× 10−5 mbar (orange) (Figure 4.1).

The first notable result is the absence, at all the explored pressure regimes, of a peak at m/z 46,
corresponding to the DME radical cation (H3COCH3

•+). In fact, the charge transfer process should
potentially give the following products:

He+ + H3COCH3 −−→ He + [(H3C)2O]•+ (m/z 46) (4.1)

The absence of this product means that React. 4.1 (∆rH
◦=14.562 eV) is completely dissociative,

leading to a series of products in which an ionic fragment is associated with one (or more) possible
neutral partners.
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Figure 4.1: Mass spectra of selected He+ ions reacting with DME at
different pressures inside the reaction cell: 1.9× 10−7 mbar
(black), 4.6× 10−7 mbar (red), 9.9× 10−7 mbar (blue),
4.9× 10−6 mbar (green), and 1.01× 10−5 mbar (orange) (on
the top). The collision energy in the CM-frame has been fixed
at 1.6 eV and the signal intensity of the He+ ion (100%) is
not shown. On the bottom, it is shown a zoomed view of
mass spectra in range 1× 10−7 mbar to 1× 10−6 mbar. Ionic
products and respective m/z values are reported to facilitate
reading.
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By thermodynamic considerations (as it will be discussed in the following), the fragmentation
channels that are compatible with the observed mass spectra and the detected ionic products are
the following:

He+ + H3COCH3 −−→ He + CH2
•+ (m/z 14) + CH3O• + H• (4.2)

−−→ He + CH2
•+ (m/z 14) + CH2O + 2 H• (4.3)

−−→ He + CH3
+ (m/z 15) + CH3O• (4.4)

−−→ He + CH3
+ (m/z 15) + CH2O + H• (4.5)

−−→ He + CH3
+ (m/z 15) + HCO• + 2 H• (4.6)

−−→ He + CH3
+ (m/z 15) + CO + 3 H• (4.7)

−−→ He + HCO+ (m/z 29) + CH4 + H• (4.8)

−−→ He + HCO+ (m/z 29) + CH3
• + H2 (4.9)

−−→ He + HCO+ (m/z 29) + CH3
• + 2 H• (4.10)

−−→ He + HCO+ (m/z 29) + CH2
• + H• + H2 (4.11)

−−→ He + HCO+ (m/z 29) + CH• + 2 H• + H2 (4.12)

−−→ He + CH3O+ (m/z 31) + CH3
• (4.13)

−−→ He + CH3O+ (m/z 31) + CH2
• + H• (4.14)

At pressures higher than about 2× 10−7 mbar, small peaks at m/z 45 and 47 are observed with
intensities that increase with the pressure. These products are CH3OCH2

+ (m/z 45) and protonated
(m/z 47) DME, respectively. According to Appendix A, their presence can be explained by the
secondary collisions of the most abundant primary products (HCO+ and CH3

+) with DME. This
hypothesis is validated by measurements of ion yields (m/z 45 and 47) as a function of the DME
pressure inside the reaction cell (see Figures 4.2 and 4.3 where pressure values have been trans-
formed into densities as explained in Chapter 2 in Sec. 2.3.4): in both cases, the yields show a
quadratic dependence from pressure, a clear indication of secondary collisions (see Appendix A).

In order to have a quantitative indication of the best fit, the adjusted R-square parameter 1

(fitting software output values, shown in Table 4.1 ) of linear and second order polynomial fit
might be used.

The adjusted R2 values shown in Table 4.1 confirm that second order polynomial is the best fit
and the ions are products of secondary collisions.

More specifically, the protonated DME ([HO(CH3)2]+ at m/z 47) might result from the proto-
nation of DME by HCO+, via the reaction:

HCO+ + H3COCH3 −−→ CO + HO(CH3)2
+ (m/z 47) (4.15)

1The quality of linear and polynomial regressions can be measured by the coefficient of determi-
nation (COD or better known as R2). The R2 can be calculated as:

R2 =
SXY

SXX · TSS = 1− RSS

TSS
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Figure 4.2: m/z 45 yield as a function of the DME density at ECM ∼
0.93 eV. In the figure, linear (dot) and second order polyno-
mial (dashed line) fits are reported. It is evident that the best
fit is the quadratic one.
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Figure 4.3: m/z 47 yield as a function of the DME density at ECM ∼
0.93 eV. In the figure, linear (dot) and second order polyno-
mial (dashed line) fits are reported. It is evident that the best
fit is the quadratic one.
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Table 4.1: The adjusted R2 for the fits of the experimental data of m/z 45
and 47 ion yield products as a function of DME density are
reported. The values confirm that second order polynomial is
the best fit and the ions are products of secondary collisions.

m/z adj. R 2

Linear Fit 2nd Ord. Pol. Fit

45 0.97155 0.99587
47 0.97793 0.99469

It is known from previous investigations that React. 4.15 occurs efficiently and leads to the exclu-
sive formation of protonated DME at thermal energies. Rate constants for the process are:

• k = (2.1± 0.5)× 10−9 cm3 molecule−1 s−1 at T=298 K [112];

• k= 1.71× 10−9 cm3 molecule−1 s−1 at T=300 K [113].

The CH3OCH2
+ product (sat m/z 45) can be generated by the hydride (H– ) abstraction reaction of

CH3
+ cation with DME:

CH3
+ + H3COCH3 −−→ CH4 + CH3OCH2

+ (m/z 45) (4.16)

For this reaction, two different rate constant values are reported:

• k = (3.5± 0.7)× 10−10 cm3 molecule−1 s−1 at T=295 K [114];

• k = 1.98× 10−9 cm3 molecule−1 s−1 at T=300 K [113].

Relative yields for the various products (including those from secondary reactions) have been
obtained by integrating the areas under the mass spectrum peaks registered at pressures in the
range 2.0× 10−6 to 4.9× 10−6 mbar. The relative yields of HCO+ and CH3

+ products have been
corrected taking into account the amounts of m/z 45 and 47 due to secondary reactions 4.15 and
4.16. The obtained BRs are reported in Table 4.2.

The proposed dissociative charge transfer reactions 4.2 - 4.14 are energetically favored. In
Table 4.3, the reaction enthalpies (∆rH

◦) have been estimated using values for the standard heat of
formation of reagent and products (∆fH

◦) [115]. Since the experimental set-up does not allow to
detected the neutral partners in the reactions, we can not differentiate between different channels

where SXY =
∑n
i=1(xi − x)(yi − y)2, SXY =

∑n
i=1(xi − x)2, RSS is the residual sum of square

(
∑n
i=1 ei =

∑n
i=1 wi(yi− ŷi), with wi that is measurement error reciprocal and ŷi, the fitted value)

and TSS is the total sum of square (
∑n
i=1(yi − y)2). Furthermore, the adjusted R2 is defined as:

R
2

= 1− RSS/dferror
TSS/dftotal

where dftotal are the total n degrees of freedom of the system, while dferror are the n − 1 degrees
of freedom. The adjusted R2 is a value between 0 and 1: a number close to 1 means that the fitting
model has a high degree of confidence.
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Table 4.2: Branching ratios of the products for the reaction He+ +
H3COCH3. Data have been obtained by averaging the ex-
perimental mass spectra taken at the same collision energy
ECM ∼ 1.6 eV and at different neutral pressures in the range
2.0× 10−7 mbar to 5.0× 10−6 mbar. The values have been
corrected for contributions from secondary reactions as out-
lined in the text.

m/z Product BR (%)
14 CH2

•+ 7.3± 0.8
15 CH3

+ 38.5± 3.7
29 HCO+ 53.6± 5.3
31 OCH3

+ 0.4± 0.7

(e.g. with React. 4.2 - 4.3). For this reason, the proposed channels in React. 4.2 - 4.14 and Table 4.3
include all the energetically allowed fragmentation processes.

Table 4.3: Experimental reaction enthalpies (∆rH
◦) for the possible dis-

sociative charge transfer channels of the reaction between He+

and DME. ∆rH
◦ values are obtained from the experimentally

determined heat of formation (∆fH
◦) of reagents and prod-

ucts, as available in literature [115].

m/z Product + He Eqn. ∆rH
◦ eV

14 CH2
•+ + CH3O• + H• 4.2 -5.8

14 CH2
•+ + CH2O + 2 H• 4.3 -5.0

15 CH3
+ + CH3O• 4.4 -11.2

15 CH3
+ + CH2O + H• 4.5 -10.3

15 CH3
+ + HCO• + 2 H• 4.6 -6.4

15 CH3
+ + CO + 3 H• 4.7 -5.7

29 HCO+ + CH4 + H• 4.8 -12.6
29 HCO+ + CH3

• + H2 4.9 -12.6
29 HCO+ + CH3

• + 2 H• 4.10 -8.1
29 HCO+ + CH2

• + H• + H2 4.11 -7.9
29 HCO+ + CH• + 2 H• + H2 4.12 -3.4
31 CH3O+ + CH3

• 4.13 -10.3
31 CH3O+ + CH2

• + H• 4.14 -5.5

The exothermicity of the fragmentation channels can be invoked to explain why the formyl
cation HCO+ is observed as the most abundant fragment, followed by the methyl cation CH3

+.
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Indeed, reactions 4.9 and 4.8 are more exothermic than React. 4.4 leading to the formation of the
methyl cation. At this level of the discussion a comparison with the electron ionization mass spec-
trum of DME (shown in Figure 4.4) might result interesting. From the NIST spectrum (Figure 4.4),

Figure 4.4: EI mass spectrum at 70 eV of DME from NIST database [115].

it is possible to observe that the most abundant products of the ionization at the nominal electron
energy of 70 eV are the DME radical cation (CH3OCH3

•+ at m/z 46) and the CH3OCH2
+ product (at

m/z 45). Products at m/z 29, 15 are also observed, but with lower abundances. Since the products
and their abundances are different between our experiments with He+ and ionization by electrons,
it can be inferred that the mechanisms leading to ionization and subsequent fragmentations are
different in the two cases. For instance, in collisions with He+, only the breaking of a C – O bond is
responsible for the fragmentation, because of the absence of the CH3OCH2

+ as first collision prod-
uct (C – H bond break). Furthermore, the absence of the CH3OCH2

+ product is mentioned in the
works of Butler [116] and Nishimura [117], in which the dissociation of state-selected DME cation
was studied by using threshold photo-electron-photo-ionization coincidence spectroscopy (TPEPICO). In
fact, in the two experiments a sharp rise of the m/z 29 breakdown curve is observed in the photon
energy range 14.0-14.9 eV, corresponding to a fall in the m/z 45 curve. This result indicates that
the ion at m/z 29 might be formed from m/z 45 according to the following reaction (equivalent for
our experiment to React. 4.8):

CH3OCH3
•+ −−→ CH3OCH2

+ + H −−→ HCO+ + CH4 + H (4.17)

This means that HCO+ ion is produced in a secondary process from the m/z 45 fragment ion. The
CH3

+ formation is also explained in terms of secondary ion dissociation from the m/z 45 (at photon
energy higher than 14.4 eV) according to the reaction (equivalent for our experiment to React. 4.5):

CH3OCH3
•+ −−→ CH3OCH2

+ + H −−→ CH3
+ + H2CO + H (4.18)

Therefore, in accord to the cited works it is possible to conclude that, when the DME is formed
in a highly excited state, the formation of HCO+ and CH3

+ ions are favored to the detriment of
CH3OCH2

+ ions.
The abundance of the HCO+ might be further explained in terms of CH3O+ instability. In

fact, this product at m/z 31 tends to fragment due to its instability into the resonance stabilised
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HCO+ cation by expelling an H2 molecule [118, 119, 120, 121, 122]. The process is a uni-molecular
decomposition of triplet methoxy cation (3CH3O+) to give the hydrogen molecule plus the formyl
cation (HCO+), both singlet species. We can have two possibilities [121] (shown by the schematic
PESs in Figure 4.5 [121, 123]):

1. the mechanism is concerted. The spin change and the [1,1]-elimination from the 3CH3O+ are
simultaneous, via MECP12 (at ∼ 0.57 eV above the triplet methoxy cation) of Figure 4.5:

3CH3O+ −−→ 1HCO+ + 1H2 (4.19)

2. the process occurs in a stepwise way:

3CH3O+ −−→ 1CH2OH+ −−→ 1HCO+ + 1H2 (4.20)

first the singlet hydroxymethyl cation (1CH2OH+) is formed by the hydrogen shift via the
MECP2 (at ∼ 0.62 eV above the triplet methoxy cation, as shown in Figure 4.5), concurrent
with the spin change, and then the products HCO+ + H2 are formed by a [1,2]-elimination
via a TS (at ∼ 0.11 eV with respect to the triplet methoxy cation).

Figure 4.5: Schematic singlet and triplet PESs of the [CH3O]+ system
calculated ate CCSD(T)/cc-pVTZ(-d)//B3LYP/6-31+G(d,p)
level of theory [121, 123]. The energies are expressed in
kcal mol−1. The figure is taken from [123].

Harvey and Aschi found that the concerted reaction occurs faster than the stepwise one, with rate
constant higher by about one order of magnitude [123]. This conclusion is supported by the higher
MEPC2 of the second pathway with respect to MEPC1 and by the presence of the TS. In conclusion,
the fragmentation of the DME radical cation can occur according to SCHEME 4.1 and insights on
the mechanism will be treated in detail in Chapter 5. The fragmentation of the methoxy cation will
be resumed at the end of this Chapter to explain the BRs obtained for the MF.

2minimum energy crossing point
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SCHEME 4.1: Fragmentation pathways of DME radical cation into
CH3

+, OCH3
+ and HCO+.

The absolute values of the reactive cross-section have been measured for the main channels,
in order to have quantitative information on the ion product yields. Using the procedure already
explained in Sec. 2.3.4, for ionic products of React. 4.4 - 4.14, the ratio IP /I0 has been measured
as a function of the DME reagent pressure at fixed ECM . Then, the absolute value of the cross-
section has been extrapolated by the slope of the lines using the effective length of the scattering
cell ((8.0± 0.4) cm). Data of IP /I0 for CH3

+ and HCO+ as a function of neutral gas density at fixed
ECM are reported in Figures 4.6 and 4.7.
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Figure 4.6: Density dependence of CH3
+ product. The data have been

recorded at ECM = 1.21 eV. Dashed line is linear fit of the
data.
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Figure 4.7: Density dependence of HCO+ product. The data have
been recorded at three different ECM (0.75 eV, 0.93 eV and
1.21 eV). Dashed lines are linear fits of the data.
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For the HCO+ channel, a deviation from the linearity is observed at density higher than
5.0× 1011 molecules cm−3 (corresponding to a DME pressure of ∼ 2.0× 10−5 mbar). This phe-
nomenon is caused by the presence of secondary collisions that makes to decrease the intensity of
the primary ion and thus, IP /I0. By using the linear fits, it is possible to estimate the absolute val-
ues of cross-section for the two measured products. The obtained values corrected for secondary
reactions are summarized in Table 4.4.

Table 4.4: Absolute values of the reactive cross-section for the ionic
products at m/z 15, 29 (CH3

+, HCO+, respectively) corrected
for secondary reactions.

ECM (eV)
σ (Å2)

m/z 29 m/z 15

0.75 27.0± 10.8 x
0.93 23.37± 0.93 x
1.21 33.6± 13.4 19.21± 0.77

For all the channels, relative cross-sections have been measured as a function of the collision
energy in the thermal- and hyperthermal-range (∼ 0.050 eV to 7 eV). The relative cross-section
values as a function of the collision energy have been re-scaled according to the absolute values
measured at fixed energies in the CM frame (see data in Table 4.4), corrected for secondary reac-
tions. The resulting absolute cross-sections are shown in Figure 4.8, in which the absolute value of
cross-sections for CH3

+, HCO+ are also shown with light-blue and orange stars, respectively. We
note that the absolute value for the CH2

+ and CH3O+ channels have not been obtained by mea-
surements of IP /I0 as a function of pressure, but it has been calculated using the branching ratio
values (Table 4.2) that are constant in the explored energy range.

From Figure 4.8, we can observe that all the fragmentation channels show a decreasing trend
and this observation confirms that all the channels are exothermic.
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Figure 4.8: Absolute cross-sections in Å2 for the production of HCO+

(red open dots), CH3
+ (blue filled triangles), CH2

•+ (green
open squares) and CH3O+ (orange filled diamonds) ionic
products are reported as a function of the collision energy,
from the title reaction. The absolute values of cross-section
for CH3

+, HCO+ are also shown with light-blue and orange
stars, respectively.
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4.2 Reaction of He+ with HCOOCH3 (MF)
For the reaction He+ + HCOOCH3, vapor pressure of MF has been used to fill the scattering cell.
The reagent has been purchased from SIGMA-ALDRICH in anhydrous form at 99% of purity.
The sample of the MF liquid once attached to the system has been additionally purified by freeze-
pump-thaw cycles with liquid nitrogen, in order to remove dissolved gases. As already done for
the reaction with the DME, mass spectra of the ionic products have been obtained at different
pressures of MF inside the reaction octupole at fixed collision energy (ECM ∼ 0.9 eV). Spectra
at 1.8× 10−7 (black line), 5.0× 10−7 (red line), 1.4× 10−6 (blue line), 5.2× 10−6 (green line),
1.61× 10−5 mbar (orange line) are shown in Figure 4.9. Also in this case, a first important result
is the absence of the MF radical cation peak ([HCOOCH3]•+ at m/z 60, ∆rH=13.755 eV) at all
the explored pressures is clear, speaking for a completely dissociative charge transfer process.
By thermodynamic considerations (as it will be discussed later on), the possible fragmentation
channels compatible with our experimental observations are the following:

He+ + HCOOCH3 −−→ He + CH2
•+ (m/z 14) + HCOO• + H• (4.21)

−−→ He + CH2
•+ (m/z 14) + CO2 + 2 H• (4.22)

−−→ He + CH2
•+ (m/z 14) + CO2 + H2 (4.23)

−−→ He + CH2
•+ (m/z 14) + HCO• + OH• (4.24)

−−→ He + CH3
+ (m/z 15) + HCOO• (4.25)

−−→ He + CH3
+ (m/z 15) + CO2 + H• (4.26)

−−→ He + CH3
+ (m/z 15) + CO + OH• (4.27)

−−→ He + HCO+ (m/z 29) + OCH3
• (4.28)

−−→ He + HCO+ (m/z 29) + CH2OH• (4.29)

−−→ He + CH3O+ (m/z 31) + HCO• (4.30)

−−→ He + CH3O+ (m/z 31) + CO + H• (4.31)

−−→ He + CO2
•+ (m/z 44) + CH4 (4.32)

−−→ He + CO2
•+ (m/z 44) + CH3 + H (4.33)

Already at the lowest pressure (1.8× 10−7 mbar), a notable peak at m/z 61 is observed. Con-
sidering the molecular weight of MF (60 u) and the absence of the molecular peak from the spectra,
such a peak can reasonably be attributed to protonated MF. In the absence of H+ as contaminant
of our He+ ion beam (that was carefully checked and avoided), the only way to generate the pro-
tonated MF ion is by secondary collisions of the most abundant primary product (HCO+, m/z 29)
with neutral MF, via the following reaction:

HCO+ + HCOOCH3 −−→ CO + CH3C(OH)2
+ (m/z 61) (4.34)

The React. 4.34 is very efficient at thermal energies and has as only product the protonated MF
(rate constant is k=(2.90± 0.25)× 10−9 cm3 molecule−1 s−1 at T=300 K [112]). To demonstrate the
origin of protonated MF via secondary reactions, the yield of m/z 61 ion was measured as function
of MF density and a quadratic trend was expected. Unfortunately, all the recorded data show
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Figure 4.9: Mass spectra of selected He+ ions reacting with MF at differ-
ent pressures inside the reaction cell: 1.8× 10−7 mbar (black
line), 5.0× 10−7 mbar (red line), 1.4× 10−6 mbar (blue line),
5.2× 10−6 mbar (green line) and 1.61× 10−5 mbar (orange
line) (on the top). The collision energy in the CM-frame
has been fixed at 0.9 eV and the signal intensity of the He+

ion (100%) is not shown. On the bottom, it is shown a
zoomed view of mass spectra in range 1× 10−7 mbar to
2× 10−6 mbar. Ionic products and respective m/z values are
reported in figure to facilitate reading.
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Figure 4.10: Density dependence of [MF]H+ product at m/z 61. The data
have been recorded at ECM = 0.87 eV. Dashed line is the
linear fit of the data. The linear trend of the values is clearly
visible.

a linear trend (Figure 4.10, with an adjusted R2 ∼ 0.99 ), but this unexpected behavior can be
rationalized following the lines of what is reported in Appendix A. So, despite the linear trend
with density, we can conclude that m/z 61 is formed by secondary collision of HCO+ with MF. In
addition to m/z 61, peaks unrelated to the title reaction appear at m/z 33 and 47. It is reasonable
to assume that the 1% impurity of anhydrous MF is composed by methanol (CH3OH, 32 u3) and
formic acid (HCOOH, 46 u), reagent compounds for the synthesis of MF4. For this reason, the
signal at m/z 33 might be caused by the secondary collision of HCO+ with methanol, forming
protonated methanol (CH3OH2

+, m/z 33) via the reaction:

HCO+ + HOCH3 −−→ CO + CH3OH2
+ (m/z 33) (4.36)

3unified atomic mass unit, symbol: u
4The most common esterification is the treatment of a carboxylic acid (in this case, formic acid)

with an alcohol (methanol) in presence of an acyd catalyst (H2SO4, ArSO3H or gaseous HCl) [124].
This process has the special name Fischer esterification from the German chemist, Emil Fischer
(1852-1919). For the MF, we can have the following reaction:

HCOOH + CH3OH
H+

−−⇀↽−− HCOOCH3 + H2O (4.35)

The Fischer esterification allows to prepare esters in high yields. Using a large excess of the alcohol,
the equilibrium is driven to the right, achieving a high conversion of carboxylic acid to its ester.
Water can be removed by azeotropic distillation with a Dean-Stark trap.
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that is very efficient and for which several different rate constants are reported in literature:

• k=from 1.4± 0.3× 10−9 to 2.4± 0.3× 10−9 cm3 molecule−1 s−1 at T=300 K [125, 126, 127];

• k=2.70± 0.15× 10−9 cm3 molecule−1 s−1 at T=298 K [112].

Although also m/z 33 comes from secondary collisions, the data as a function of density (Fig-
ure 4.11) show a linear trend (adjusted R2 ∼ 0.99), similar to what has been already observed for
the m/z 61 peak. Hence, it is possible to conclude that, in case of very efficient secondary collisions
as React. 4.34 and 4.36, the IP /I0 ratio can show a linear dependence on density. On the other
hand, the ionic product at m/z 47 has a clear quadratic trend of IP /I0 as a function of the neutral
density in the scattering cell as shown by data measured at ECM = 0.89 eV and reported in Fig-
ure 4.12. The data have been fitted with a second order polynomial with adjusted R2 ∼ 0.998. The
peak at m/z 47 can be assigned as protonated formic acid (second impurity of MF sample), coming
from the secondary reaction of HCO+ with HCOOH:

HCO+ + HCOOH −−→ CO + CH(OH)2
+ (m/z 47) (4.37)

In this case, the proton-transfer process shows a clear quadratic trend. The rate constants mea-
sured at thermal energies confirm this conjecture, since for React. 4.37 we have:

• k= 1.80± 0.15× 10−9 and 1.80± 0.30× 10−9 cm3 molecule−1 s−1 at T=298 K [112, 128];

• k=1.80± 0.15× 10−9 and 1.90± 0.30× 10−9 cm3 molecule−1 s−1 at T=300 K [126, 129].

Relative yields for the ionic products of the title reaction have been estimated by averaging
mass spectrum results obtained at pressures in the range 2× 10−7 to 5× 10−6 mbar. The rela-
tive yield of HCO+ has been corrected by considering the amounts of m/z 61, 33 and 47 due to
secondary React. 4.34, 4.36 and 4.37, respectively. The obtained branching ratios are reported in
Table 4.5.

Table 4.5: Branching ratios of the products for the reaction He+ +
HCOOCH3. Data have been obtained by averaging the ex-
perimental mass spectra taken at the same collision energy
ECM ∼ 0.9 eV and at different neutral pressures in the range
2.0× 10−7 mbar to 5.0× 10−6 mbar. The values have been
corrected for contributions from secondary reactions as de-
tailed in the text.

m/z Product BRs (%)
14 CH2

•+ 3.6± 0.3
15 CH3

+ 7.3± 0.3
29 HCO+ 83.2± 2.0
31 OCH3

+ 4.2± 0.8
44 CO2

•+ 1.3± 0.1

The proposed React. 4.21 - 4.33 are all energetically favored. The reaction enthalpies (∆rH
◦)

at 298 K are reported for all the hypothesized fragmentation channels in Table 4.6. They have
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Figure 4.11: Density dependence of CH3OH2
+ product at m/z 33. The

data have been recorded at ECM = 0.87 eV, 1.67 eV and
1.69 eV. Dashed lines are the linear fits of the data.
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Figure 4.12: m/z 47 yield as a function of the pressure atECM ∼ 0.89 eV.
In the figure, the second order polynomial (dashed line) fit
is reported.

been estimated (as done for the reaction of He+ + CH3OCH3) using values for the standard heat of
formation of reagent and products (∆fH

◦) [115, 130].
For products at m/z 29 and 31, the absolute values of the cross-section have been measured

(Table 4.7). The ratio IP /I0 has been measured as a function of the neutral reagent pressure (MF)
at fixed ECM . Then, the absolute value of the cross-section has been extrapolated by the slope of
the lines using the effective length of the scattering cell ((8.0± 0.4) cm). Data of IP /I0 for HCO+

and CH3O+ as a function of neutral gas density at fixed ECM are reported in Figure 4.13 and 4.14.
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Figure 4.13: Density dependence of OCH+ product. The data have
been recorded at three different ECM (0.87 eV, 1.67 eV and
1.69 eV). Dashed lines are linear fits of the data.
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Figure 4.14: Density dependence of OCH3
+ product. The data have

been recorded at three different ECM (0.87 eV, 1.67 eV and
1.69 eV). Dashed lines are linear fits of the data.
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Table 4.6: Experimental reaction enthalpies (∆rH
◦) for the possible dis-

sociative charge transfer channels of the reaction He+ + MF.
∆rH

◦ values are obtained from the experimentally deter-
mined heat of formation (∆fH

◦) of reagents and products, as
available in literature [115, 130].

m/z Product + He Eqn. ∆rH
◦ eV

14 CH2
•+ + HCOO• + H• 4.21 -5.7

14 CH2
•+ + CO2 + 2 H• 4.22 -6.3

14 CH2
•+ + CO2 + H2 4.23 -10.8

14 CH2
•+ + HCO• + OH• 4.24 -5.9

15 CH3
+ + HCOO• 4.25 -11.1

15 CH3
+ + CO2 + H• 4.26 -11.6

15 CH3
+ + CO + OH• 4.27 -10.5

29 HCO+ + OCH3
• 4.28 -12.4

29 HCO+ + CH2OH• 4.29 -12.6
31 CH3O+ + HCO• 4.30 -9.8
31 CH3O+ + CO + H• 4.31 -9.1
44 CO2

•+ + CH4 4.11 -12.2
44 CO2

•+ + CH3 + H 4.12 -7.6

Table 4.7: Absolute values of the reactive cross-section corrected for sec-
ondary reactions for the ionic products at m/z 29, 31 (HCO+

and OCH3
+, respectively).

ECM (eV)
σ (Å2)

m/z 29 m/z 31

0.87 49.6± 19.8 3.2± 1.3
1.67 41.5± 16.6 2.1± 0.8
1.69 34.4± 13.8 1.4± 0.6
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For the main channels, relative cross-sections have been measured as a function of the collision
energy in the thermal- and hyperthermal-range (∼ 0.050 eV to 7 eV), and results are shown in
Figure 4.15. By using the BRs reported in Table 4.5 relative cross-sections for all the other channels
have been re-scaled to their absolute values and summed to give the total absolute cross-sections.
From Figure 4.15, we can observe that all the fragmentation channels show a decreasing trend.
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Figure 4.15: Relative cross-sections for the production of HCO+ (red
open dots), CH3

+ (blue filled triangles), CH2
•+ (green open

squares) and OCH3
+ (orange open diamonds) ionic prod-

ucts as a function of the collision energy, from the title reac-
tion. Cross-sections for the very minor channel CO2

•+ (data
not shown) are in the range 1.0-0.7 arbitrary units.

According to Table 4.6, this observation confirms that all the channels are exothermic.
Again in the MF reaction, the formyl cation HCO+ is the most abundant fragment and its

formation reaction (React. 4.28) is the most exothermic. According to the work of Jackson et al.
(based on collisions of Ar+/N2

+ with MF [131]), the fragmentation process can occur by breaking
two different C – O bond. In fact, we can have:

1. the rupture of the HC(O) – OCH3 bond can give either HCO+ or CH3O+, that might again
fragment giving the formyl cation (see Reactions 4.19 and 4.20);

2. the rupture of the HC(O)O – CH3 gives exclusively the CH3
+ fragment plus the formyloxyl

radical HCOO; the formation of the formiloxyl ion is not preferred due to the instability of
HCOO, that tends to fragment in CO2 + H [131].

Despite the similarities with the experiments of Jackson et al. [131], in which the reaction of MF
with Ar+ and N2

+ is completely dissociative, the BRs are quite different, suggesting different mech-
anisms of dissociation. In fact, in the SIFT experiment with Ar+ and N2

+ [131], CH3O+ ion is the
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major product (BR ∼ 56-57%), with significant yields of HCO+ (BR ∼ 25-26%), while CH3
+ is a

minor product (BR ∼ 15-17%) . On the contrary, in our guided ion beam experiment with He+

the production of HCO+ is largely preferred over the formation of CH3
+ and CH3O+ (see BRs in

Table 4.5). The difference in BR of the CH3O+ can be explained in term of differences in ionization
energy of He and Ar/N2. In fact, after removing an electron, the excess energy of the nascent
MF radical cation is lower for Ar+/N2

+ (∆rH=−4.9 eV for Ar+ + MF, ∆rH=−4.7 eV for N2
+ + MF),

while for He+ it is ∆rH=−13.8 eV for He+ +MF. Such difference in energy can modify the pathway
of MF fragmentation leading to reaction with He+ to methoxy ion in triplet state (3CH3O+), that
dissociates rapidly in HCO+ + H2 (React. 4.19), while the reactions with Ar+ and N2

+ might lead
preferentially to CH2OH+ (React. 4.20), that dissociates less easily. Therefore, in collisions with
He+ the production of HCO+ might be enhanced by the direct dissociation of 3CH3O+, whereas in
collisions with Ar+ and N2

+ the hydroxymethyl contributes to a minor extent to the HCO+ forma-
tion.

Further considerations can be done when comparing our branching ratios with dissociative
ionization products due to soft X-rays (at 288.3 eV and 532.2 eV) [132], electron interactions at
70 eV [115] and UV photons at 18 eV [133] (Figure 4.16). Since the ionization via electron at 70 eV
and UV photons occurs in the valence shell while via soft X-rays in the inner shells, the differ-
ences in product ion yields between the various techniques are evident. The inner shell photo-
ionization process induces instabilities on molecular structure with strong nuclear rearrangements
[132], leading to small amounts of radical cation of MF and preferring the formation of fragments
(in particular, HCO+). This suggests that the ionization from inner and valence orbitals might lead

Figure 4.16: Comparison taken between mass spectra of MF fragments
obtained by dissociation by electron ionization at 70 eV
[115], by UV photons at 18 eV [133], and by soft X-rays at
288.3 eV and 532.2 eV[132]. The figure is taken from [132].
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to peculiar dissociation pathways. Since the branching ratios for the title reaction are still different
to the proposed cases, some similarities with the soft X-ray ionization products and yields evoke
that in the reaction of He+ + HCOOCH3 some inner valence shell ionization should be involved.
This will be confirmed by the theoretical considerations in Chapter 5.

From the calculated hypersurface of the fragmentation of the MF radical cation (Figure 4.17)
[134] it is possible to infer further conclusions about the product BRs of He+ + MF reaction.
Heinrich and co-workers [134] characterized the following product formation channels (see Fig-
ure 4.17):

1. formation of CH3OH+ (m/z 32) via 1 −−→ 5 −−→ CH3OH+ + CO: this is the pathway at
lowest energy, but no ion at m/z 32 is observed in our experiment;

2. formation of CH2OH+ (m/z 31) via 1 −−→ 2 −−→ 6 −−→ CH2OH+ + HCO at even higher
energy;

3. at even higher energy the HCO+ can be formed directly by the fragmentation of the rad-
ical cation; neutral counterparts can be the OCH3 radical (the channel is endotermic of
39.9 kcalmol−1) or the CH2OH (35.8 kcalmol−1). In our experiment, the formation of HCO+

(Reactions 4.28 and 4.29) is exothermic of ∼ −12 eV (Table 4.6).

4. CH3
+ and CH2

•+ can be produced via the fragmentation of CH3OH+ (giving CH3
+ + CO +

OH) and CH2OH+ (giving CH2
•+ + OH + HCO), possible at even higher energy, as sug-

gested by Heinrich and co-workers [134]. This might explain the presence of these two
ionic products in our experiment (Reactions 4.24 and 4.27) and the low abundance of CH3

+

and the absence of CH2
•+ in the Jackson’s experiment [131]. In fact, with Ar+/N2

+ instead of
He+ the CH3

+ production remains exothermic (∼−1.7 eV), while CH2
•+ formation becomes

endothermic (∼ 3 eV) and therefore, not possible for the Jackson’s experiment.

Figure 4.17: Calculated hypersurface for rearrangement and dissoci-
ation reactions of MF radical cation (MP3/6-31G**/6-
31G*+ZPVE). The energies are given in kcal mol−1. The fig-
ure is taken from [134].
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Chapter 5

The Theoretical Results

“Good time for a change
See, the luck I’ve had”

Please, Please, Please, Let Me Get What I Want - The Smiths

In this chapter, we report the theoretical investigation on the reactions He+ + CH3OCH3 and
He+ + HCOOCH3. We obtain insights into the dissociative charge electron transfer mechanism of
both reactions by investigating the nature of the non-adiabatic transitions between the relevant
potential energy surfaces. The well-known Landau-Zener-Stückelberg model has been used but
with an innovative approach. In fact, the attention of the author has been on improving the men-
tioned model, in order to apply it to the complex systems of an ion-permanent dipole reaction, in
which stereo-dynamics might play a crucial role. Three critical elements rule the charge exchange
processes: the strong anisotropy of the potential interactions of reagents, the position of the non-
adiabatic curve crossings, and the symmetry of the electron density distribution of the neutral
reagent orbital from which the electron jumps on the ion. Furthermore, final aims are the cross-
section calculation for the mentioned reactions in a wide collision energy range, in order to have
rate constants values for the processes from temperatures relevant for the interstellar medium (i.e.
as low as 10 K) to room temperature (300 K).

The used procedures, the improvements and the results of calculated cross-sections will be
reported in detail in the following sections.

5.1 Introduction
As explained previously (Sec. 3.1.1), during the years simplified models to estimate cross-sections
for ion-molecule reactions have been proposed, in order to give realistic estimates, particularly
in the complete absence of experimental data. Such empirical or semi-empirical models neglect
the detailed knowledge of the PESs, their short-range behaviors and the existence of crossings be-
tween entrance and exit channels of the diabatic curves. They focus exclusively on an effective po-
tential that only includes the long-range attraction of reactants, controlling their approaching, and
the centrifugal potential (Sec. 3.1.1) to create the so called centrifugal barrier. The cross-sections
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so evaluated are defined by a capture model (Sec. 3.1.1), according to which all trajectories having
enough energy to cross the centrifugal barrier will lead to reaction, thus providing an upper limit
to the actual value, especially in the range of thermal and sub-thermal collision energies. In the
case of point charge cations interacting with non-polar neutrals, the model leads to the well-known
Langevin expression (Eqn. 3.31), while in the case of neutrals with a dipole moment the depen-
dence of the potential on the dipole orientation should be taken into account (Eqn. 3.33). While for
simple systems the mentioned models give good estimation of integral cross-sections, the present
investigation demonstrates that this is not always the case, and the dynamics of non-dissociative
and dissociative charge transfer processes often require a more complete treatment for a correct
evaluation of the relevant observables. In fact, in Figure 5.1 total absolute σ (green dots) mea-
sured as a function of the collision energy (see Chapter 4) for the reaction He+ + CH3OCH3 (on the
left) and for the reaction He+ + HCOOCH3 (on the right) are reported together with the expected
dependence based on a simple Langevin model (red dashed line) and on the locked-dipole (blue
dashed line) approximations. Remarkably, experimental σ values do not follow the expected trend
based on simplified capture models, with a decrease in the cross-section with increasing energy
that is less steep than what was predicted by models. It is therefore intriguing to understand the
causes of such deviations exploiting a semi-empirical formulation of the involved PESs, providing
a proper analytic representation of the interaction in the full space of the configurations, and a
quantitative treatment of the charge transfer dynamics.
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5.2 Dynamics of the dissociative charge transfer process
for the reaction He+ + CH3OCH3

5.2.1 The PESs
In order to calculate the cross-sections with a Landau-Zener approach (see Sec. 3.1.2), the critical
point is the accurate description of the PESs, correlating asymptotically with the entrance and exit
charge transfer states (He+ + DME and He+ + DME•+, respectively).

Before reporting the details on the parametrization of the interaction potentials, it is necessary
to conveniently define the geometry of the [He – DME]+ using a reference frame centered on the
CM of the molecule, and the Cα – O – Cβ molecular plane coincident with the xy plane. The He+

and DME system is shown in Figure 5.2.
For the interaction potential, Cα and Cβ are considered as effective atoms, each having the mass

(15 u) and the polarizability of a methyl group. This "wrapping" of carbon and hydrogens in only
one atom corresponds to the united atom approximation, in which the interaction site coincides
with a specific functional group of the molecule and not with the single atoms that form it (all
atoms description) [91]. Since the description of the interaction potential is built on the assumption
of the pairwise atom-atom-like additivity (see Eqn. 3.95 in Sec. 3.2.5), the main advantage is the
reduction of the number of centers to consider.

In order to build the long range potential, it is fundamental to report the partition of the
molecular polarizability in the functional groups polarizabilities. The DME polarizability is equal
to 5.16 Å

3
[135] and it can be partitioned into three components, two assigned to the effective

atoms Cα and Cβ (each one 2.20 Å
3
), and one to the O atom (0.76 Å

3
). Already here, we can

anticipate that the molecular ion is formed in an excited state, by ejection of one electron from a
inner valence molecular orbital. For this reason, the polarizability (and the size) of DME•+ might
be determined by the energy and number of the most external electronic clouds and it is assumed
that this physical property is the same as for neutral DME. Therefore, it is partitioned in the same
way of the neutral DME. Regarding the geometry [136], a value of 1.41 Å is used for the C – O bond
length and 111.3◦ for the Cα – O – Cβ bond angle. In this reference frame, the Cartesian coordinate
(x, y, z) matrix has been defined as:

 xO yO zO

xCα yCα
zCα

xCβ yCβ
zCβ

 =

 0 −0.510 0
−1.175 +0.272 0
+1.175 +0.272 0

 (5.1)

The potential has been developed in terms of polar coordinates R, θ and ϕ (as shown in Fig-
ure 5.2). The vector R connects the CM of the molecule with the position of He+ in the entrance
channel, which is equivalent to the position of the He atom in the exit channel. The polar angle θ
defines the direction of the incoming He+ ion with respect to the z axis. For example, θ = 0◦ corre-
sponds to the He+ approaching perpendicular to xy plane, while with θ =90◦ the ion approaches
co-planar to the molecular plane. Finally, ϕ specifies the projection of theR vector on the xy plane,
e.g. ϕ = 0◦ corresponds to the positive value of the x axis (on the CH3-group of the Cα side ).
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R
θ

φ

Cα

Cβ

He+

Figure 5.2: Illustration of the relevant coordinates used to represent the
interaction potential between the He+ and DME. The axes
origin is positioned at the CM of the DME molecule and the
xy plane coincides with the plane defined by the Cα – O – Cβ
atoms.

Furthermore, it is convenient to define the distances in terms of Cartesian coordinates between
He+/He and O, Cα and Cβ (RO, RCα , RCβ , respectively). The expressions for RO, RCα , RCβ are
the following:

RO = RO−He =RO−He+ =
√

(xHe − xO)2 + (yHe − yO)2 + (zHe − zO)2

RCα = RCα−He =RCα−He+ =
√

(xHe − xCα)2 + (yHe − yCα)2 + (zHe − zCα)2

RCβ = RCβ−He =RCβ−He+ =
√

(xHe − xCβ )2 + (yHe − yCβ )2 + (zHe − zCβ )2

The x, y, z Cartesian coordinates of O, Cα and Cβ are the matrix elements of 5.1, while the
set of Cartesian coordinates (xHe, yHe, zHe) for the He+/He atom is given by the relationship with
polar coordinates:
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xHe = xHe+ = Rsinθcosϕ

yHe = yHe+ = Rsinθsinϕ

zHe = zHe+ = Rcosθ

Ranges of the polar coordinates are:

• R ∈ [0,+∞)

• θ ∈ [0, π)

• ϕ ∈ [0, 2π)

Due to the symmetry of the DME molecule, the PESs are symmetrical with respect to the xy and
zy planes, where PES values are repeated. Hence, the polar angle ranges can be reduced to:

• θ ∈
[
0, π

2

]
• ϕ ∈

[
−π

2
, π

2

]
Entrance channel: He+ + DME

The PES of the He+ ion interacting with DME is described in terms of the electrostatic potential
(VElectr) and the non-electrostatic one (VNElectr) (see the specific sections in Sec. 3.2).

The electrostatic component is defined as sum of Coulomb contributions between the He+ and
the charges on O, Cα and Cβ . Since the dipole moment (µD) of DME is 1.3 Debye, it is possible
to calculate the charges of all the atoms of the molecule. The resulting effective atomic charges
in terms of the electric charge, e 1, are −0.35e for O and +0.175e for Cα and Cβ . Therefore, the
electrostatic component (Eqn. 3.74) of the total interaction potential can be expressed as:

VElectr =
e

4πε0

(
− qO
RO

+
qCα
RCα

+
qCβ
RCβ

)
= cost×

(
−0.35

RO
+

0.175

RCα

+
0.175

RCβ

)
If cost = 14400, the Coulomb potential is given in meV.
The non-electrostatic component includes induction and dispersion potentials, active at large

distances, combined with the size repulsion effective at short distances. Hence, the VNElectr is
defined as a sum of contributions, due to the ion-neutral interaction pair, between the He+ ion and
each of the effective groups (O, Cα and Cβ) [91]. To describe this non-covalent interaction between
neutral and ionic partners, the improved Lennard-Jones model (VILJ ) has been chosen for the
advantages explained in Sec. 3.2. Since, in the entrance channel, a small atomic ion interacts with
a large neutral molecule, the induction component is the most relevant long-range component in
the VNElectr . For this reason, the m parameter of Eqn. 3.87 in Sec. 3.2 has been selected as 4, and
the values of ε and rm (depth and position of the potential well, respectively) have been predicted
by the correlation formulas, developed for ion-neutral systems and given in terms of polarizabilities

11.6021× 10−19 C
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Table 5.1: Potential parameters ε and rm defining VILJ potentials for the
pair of interest in the entrance channel.

Interacting system ε (meV) rm Å

He+ – O 125 2.39
He+ – Cα 312 2.58
He+ – Cβ

of the interacting partners (see equations 3.92 and 3.93). The ε and rm values of the relevant
interaction pairs are summarized in Table 5.1. In addition, β (Eqn. 3.88) has been chosen to be
equal to 7.

Therefore, the non-electrostatic component is then the sum of the three contributions:

VNElectr(R, θ, ϕ) = VILJ(RO) + VILJ(RCα) + VILJ(RCβ )

where RO, RCα , and RCβ are the same as previously defined. It is interesting to note that in the
entrance channel the long range interaction is dominated by the electrostatic component (dotted
curve in Figure 5.3).

He+ + DMEVElec 

VNElec

θ=90° φ=-90°

Figure 5.3: The resulting entrance channel (He+ + DME) potential (green
continuous line) for θ = 90◦ and ϕ = −90◦, defined as sum
of electrostatic potential (VElectr , dotted black line) and no-
electrostatic potential (VNElectr , dashed black line).
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Table 5.2: Potential parameters ε and rm defining VILJ potentials for the
pair of interest in the exit channel.

Interacting system ε (meV) rm Å

He – O 1.7 3.38
He – Cα 2.3 3.69
He – Cβ

Exit channel: He + DME•+

The PES in the exit channel (i.e. after the electron transfer from DME to He+) depends exclusively
on the balance of the non-electrostatic contributions, i.e. induction (VInd) and dispersion com-
ponents, that control the long-range interaction, combined with the size repulsion of short range
distances. The dispersion potential can be defined as van der Waals interaction (VvdW ) and it is ex-
pressed again by the improved Lennard-Jones function, describing the interaction pairs between
the He atom and each of the effective groups (O, Cα and Cβ).

VvdW (R, θ, ϕ) = V ′ILJ(RO) + V ′ILJ(RCα) + V ′ILJ(RCβ )

In this case, the dispersion component is the most relevant in VILJ . Therefore,m = 6 and β = 9 have
been used, whereas the values of ε and rm parameters have been again predicted by correlation
formulas, given in terms of polarizabilities of the interacting partners and reported in Table 5.2.

On the contrary, the induction contribution VInd is independent of the polar angles, since it
describes the interaction between a point charge on the DME and the He atom, the least polarizable
neutral atomic partner. The VInd formula has been already defined (Eqn. 3.78 in Sec. 3.2). To obtain
VInd in meV, we have:

VInd(R) = −7200
αHe

R4

where R is in angstrom and αHe is the polarizability of the He atom, amounting to 0.2 Å
3
. As

shown in Figure 5.4, the VvdW is the dominant interaction both at intermediate and at short range
for the exit channel, while the ion-induced dipole contribution (VInd) is added only as a perturba-
tive term.
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2 3 4 5 6
R [Å]

-14.6

-14.55

-14.5
V

 (H
e 

+ 
D

M
E.+

) [
eV

]

He + DME•+

VInd

VvdW

θ=90° φ=-90°

Figure 5.4: The resulting exit channel (He + DME•+) potential (red con-
tinuous line) for θ = 90◦ and ϕ =−90◦, defined as sum of van
der Waals potential (VvdW , dotted black line) and induction
potential (VInd, dashed black line). On the basis of the ∆rH
for the reaction He+ +DME −−→ He+DME•+, the asymptotic
value of the potential has been fixed at 14.56 eV.

Anisotropy of the PES

Due to the polarity of the molecule, the resulting PES is strongly anisotropic. To highlight such
a feature, the attractive and repulsive contributions have been represented using different colors
in Figure 5.5 (i.e. blue and orange, respectively, while white symbols specify the area where the
potential energy is zero).

The PES cut of Figure 5.5 is for the entrance channel, with the He+ ion approaching DME in xy
plane (i.e. θ=90◦). For the chosen geometry, the interaction anisotropy is such that a deep potential
well (∼−1.25 eV) located at distance of∼ 2 Å from the O atom is present when He+ ion collides on
the O-side of DME (ϕ=−90◦). When He+ ion approaches from the methyl side (ϕ=90◦) at the same
distance from the O atom the potential is only −0.370 eV. Therefore, the most attractive geometry
is when He+ lies on the DME plane on the oxygen side (i.e. θ=90◦, ϕ=−90◦). We can already
anticipate that the PES anisotropy plays a relevant role in the reaction dynamics, especially at low
collision energy, by orienting the DME molecule in a "natural" way at long distances.

To shed more light on the anisotropy of the PES, θ and ϕ dependence of the PES at fixed values
of R (corresponding to 3.0 Å, 5.0 Å, 10.0 Å, 15.0 Å and 20.0 Å) have been reported in Figure 5.6.

The figure on the left shows the anisotropy on the molecular plane (θ is fixed at 90◦): even at
intermediate and large distances (R ≥ 5 Å), the PES is strongly repulsive when He+ approaches
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from the methyl sides and strongly attractive on the O atom side, mainly because of the electro-
static component of the interaction.

It is convenient to define the PES anistropy ∆V (R) as the difference between the energy values
of the least and most stable configurations, for fixed R values. Interestingly ∆V (R) is still ∼
22 meV at 20.0 Å. Furthermore, in the region between the two methyl groups (ϕ=90◦), the potential
becomes attractive at short distances (albeit being repulsive at large distances), although much less
than on the O-side (ϕ=−90◦): at 3.0 Å the potential is around−1000 meV on the O-side and around
−250 meV on the CH3

+-side, while the PES anisotropy ∆V (R) is much larger (−5300 meV). The
right panel of Figure 5.6 presents the interaction when He+ approaches in a plane perpendicular
to the molecular one, i.e. the yz plane.

The most important consequence of that strong anisotropy of the entrance channel PES is that
the polar DME molecule can be induced spontaneously (i.e. without applied external fields) to
orient itself in the electric field gradient associated with the interaction with the He+ ion. For
gaining a better understanding of this phenomenon, it is useful to compare the PES anisotropy
(∆V (R)) with the mean rotational energy of DME (Er = 3/2kBT ), which amounts to ∼ 39 meV
at T=300 K. As already mentioned, the potential anisotropy ∆V (R) is ∼ 22 meV at 20.0 Å and
increases to ∼ 40 meV and 90 meV for R = 15.0 Å and 10 Å, respectively. At very large distances
(several tens of angstrom) the DME molecule can freely rotate (left panel of Figure 5.7), while
the rotations may be partially hindered already at a distance of 5.0 Å, mainly for low rotational
states. Rotations may become completely impeded at 10.0 Å, where the potential anisotropy is
almost twice the mean rotational energy (see right panel of Figure 5.7). Under these conditions,
the molecular collision complex is confined to a pendular state [137, 138], in which the hindered
molecular rotations transform into bending vibrations of the collision complex.

At 2-3 Å, the anisotropy can be even higher than 1 eV. The transformation of free rotations into
pendular states, driven by the natural electric field gradient generated by the interaction poten-
tial anisotropy, has been experimentally demonstrated via molecular beam scattering experiments
among water molecules or other polar molecules [139, 140]. In the present case, where the ion-
permanent dipole interaction is involved, the transformation must be much more efficient since
the potential anisotropy is at least ten times larger than the cited cases.

As explained in the following, it is expected that the strong anisotropic interaction between
the He+ and the DME controls the selective trapping of reagents in the entrance channel and drives
the charge transfer process only from selected configurations. In other words, during the collision
with He+, most of the DME molecules will be channeled within narrow angular cones confined
around the most attractive configuration of the interacting system.

In addition to energy considerations, it is interesting to note also the time scale of the collisions.
In fact, the probability of formation of pendular states is higher when the collision time is larger
or comparable with the average period of pendular motions, the latter being in the range 10−13 s
to 10−14 s (i.e. the standard timings for bending modes). Average collision times change with
the collision energy (hence, the velocity) and can be estimated by calculating the time taken by the
system to travel twice a distance of 15 Å, i.e. the largest distance at which the molecules are trapped
in the pendular states. In the collision energy range of the experiment, the average collision times
are in the range ∼ 4× 10−12 s to 2× 10−13 s and therefore, satisfy the condition of being longer
than the pendular motions, at least in the low and intermediate collision energy regimes. At high
collision energies, the interaction time between the colliding partners might be too short to obtain a
high degree of molecular orientation towards the most stable configurations because a substantial
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He+

DME 
in free thermal 

rotation
DME 

in pendular state 

Figure 5.7: Pictorial views of the thermal rotations of DME with respect
to an imaginary axis centered in the O atom and of the for-
mation of a pendular state in presence of the He+ ion.

fraction of molecules will have enough energy to escape from the "pendular trap", extending to a
wider region the narrow reactive cone.

5.2.2 Crossings between the entrance and exit channels
As already explained in Sec. 3.1.2, within the collision energy range (0.050 eV to 7 eV) operative in
our experiment, the transfer of the electron from DME to He+ occurs via non-adiabatic transitions
located at the crossings between the entrance and the exit channels, i.e. between the associated
PESs formulated in the diabatic representation. However, the charge transfer reaction is highly
exothermic, by (14.562± 0.025) eV, due to the significant difference in ionization energy between
He and CH3OCH3, 24.587 41 eV and 10.025± 0.025 eV, respectively [141, 116]. Assuming that the
transferred electron is ejected by the HOMO (Highest Occupied Molecular Orbital) of the DME form-
ing a ground state of the radical cation, the entrance and exit channels do not cross. To exemplify
the situation, a cut of the PESs, in the entrance (green solid curve) and exit (red solid curve) chan-
nels with the DME radical cation formed in its electronic state, is represented in Figure 5.8, where
the potential curves have been obtained by fixing θ=90◦ and ϕ=−90◦.

This geometry has been chosen since it represents the most attractive configuration, as said
already above, and things do not change much if other geometries are considered, since for all
geometries entrance and exit channels do not cross. On the contrary, if the electron is removed
from an inner orbital (as already hypothesized in Sec. 4) having a higher ionization potential, the
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1
2

He+ + DME
e- from 2b2

e- from 4a1

He + [DME•+]*

e- from 2b1 (HOMO)

He + DME•+ Ground

Figure 5.8: Potential energy curves of the entrance He+ + DME (green
curve) and exit He + DME•+ (red continuous curve) chan-
nels for θ=90◦ and ϕ=−90◦, with the DME radical cation
formed in its electronic ground state. The red dashed and
red dot-dashed curves represent the exit channels assuming
the removal of an electron from the inner valence orbitals
4a1 or 2b2, respectively. In this case the DME radical cation
is formed in a excited electronic state ([DME•+]*).

reduced exothermicity allows the entrance and exit channels to cross at distances suitable for the
charge exchange.

The electronic configuration of DME in its ground state can be written as

(core)6 (3a1)2(2b2)2(4a1)2︸ ︷︷ ︸
inner valence

(1b1)2(5a1)2(3b2)2(1a2)2(4b2)2(6a1)2(2b1)2︸ ︷︷ ︸
outer valence

The experimental (e, 2e) ionization potential spectrum of DME is well known and here, the results
at the impact energy of 1200 eV of Miao et al. are reported and shown in Figure 5.9 [142].

The resolved ionization bands are seven (with 0.7 eV as energy resolution). The first four
orbitals (2b1, 6a1, 4b2 and 1a2) have ionization potentials equal to 10.1 eV, 11.8 eV, 13.3 eV and
14.2 eV, respectively. Unfortunately, orbitals 3b2, 1b1, 5a1 are too close to be resolved (maximum
at 16.2 eV). Finally, the 4a1 and 2b2 orbitals are located at 21.2 eV and 23.3 eV, respectively. These
last orbitals have the appropriate energy to promote the reaction by electron exchange. Assuming
that the electron transferred to He+ belongs to either one of the inner valence orbitals (4a1 or 2b2),
the asymptotic value of the exit channel can be re-scaled accordingly to obtain the red dashed
and red dot-dashed curves in Figure 5.8. The reaction exothermicity is thus reduced to about
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Figure 5.9: The experimental (e,2e) ionization potential spectrum of
DME at the impact energy of 1200 eV (with 0.7 eV as energy
resolution)[142]. The labels over-written on the peaks indi-
cate the relative orbital from which the electron is removed.

3.4± 0.7 eV and 1.3± 0.7 eV, respectively. In all dynamics calculations, zero energy has been
fixed to the asymptotic value of the entrance channel.

In general, for a fixed geometry of the [He – DME]+ system, there are three diabatic potential
energy curves to be considered: the entrance channel (He+ – DME) and the two excited exit chan-
nels (He – [DME(4 a1)•+]* and He – [DME(2 b2)•+]*). Therefore, the nascent DME radical cation
has a high energy content, and it is expected to dissociate almost instantaneously.

At this level of the discussion, it is of interest to have some insights on the electron density
distribution of the DME molecular orbitals, from which the electron is removed. Furthermore, we
can anticipate that the electron density of those orbitals plays a role in defining the probability of
charge transfer to He+, since it affects the overlap between the orbitals involved in the electron
exchange. Hence, the electron densities of the relevant molecular orbitals 4a1 and 2b2 have been
calculated with NBO analysis (see Sec. 3.3) and the the results are shown in Figure 5.10.

The minimum energy structure of neutral DME has been determined with DFT, using the
M06-2X functional with the basis-set cc-pVTZ (for details see Appendix B). The results are shown
in Figure 5.11 and are in agreement with the experimental values reported in [136]. For the cal-
culated C – O bond the difference with respect to the experimental one is 0.008 Å (corresponding
to 0.6%), for the C – H bond is 0.002 Å (corresponding to 0.2%) and for the bond angle C – O – C
is 0.4◦ (0.9%). In addition to the electron densities of the molecular orbitals, the NBO analysis
has allowed to determine of which atomic orbitals the involved MO are combination. Actually,
the orbital 2b2, the most involved in the reaction for its crossing parameters and with the highest
contribution to the cross-sections according to our calculations, is combination of only C (33.93%)
and O (66.07%) atomic orbitals, whereas the orbital 4a1 is the lone pair of the oxygen. This result is
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Figure 5.10: Electron densities of 2b2 (on the left) and 4a1 (on the right)
molecular orbitals of neutral DME.

perfectly in agreement with the products obtained by the title reaction. In fact, in Sec. 4.1 we con-
cluded that a C – O break bond should be the responsible of the BRs of the reaction between He+

and DME. Now, we can confirm this experimental evidence correlating a specific orbital with the
charge transfer process and finding out that this MO corresponds precisely with our hypothesis.

1.403 Å 1.403 Å

1.087 Å

111.7° 

Figure 5.11: Neutral DME optimized at the M06-2X/cc-pVTZ level. The
significant bond distances (in Å) and bond angle are re-
ported. The data are in agreement with literature values
[136].

Therefore, at this point it is possible to define the most significant geometries in order to have
the crossing parameters (see Sec. 3.1.2). In fact, for the dynamics of the process we assume that
the orientation effects (Sec. 5.2.1) control the reaction. For this reason, the most attractive config-
urations, i.e. those corresponding to the He+ ion approaching the DME plane in the proximity
of the O-side (as already said, the highest attraction is exhibited by the co-planar configuration,
defined by θ=90◦ and ϕ=−90◦), have the most significant contribution to the cross-section calcula-
tion. Hence, it is possible to define an "effective cone" , that is confined around the C2v symmetry
axis of DME and is not symmetric, i.e. it is more open in the yz plane than in the xy plane, due to
the repulsion of the methyl groups.
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In addition to the anisotropy, the position and energy of crossings between the non-adiabatic
curves also need to be taken into account to define the most relevant θ and ϕ values. In fact,
while for the most stable co-planar configuration both the crossings are exothermic and therefore
are open at all the explorable collision energies, when He+ approaches, still from the O-side, but
closer to the methyl groups (−90◦ < θ < 0◦), the exothermicity of the crossings decreases and
eventually they become highly endothermic, thus no longer contributing to the charge transfer
process. As expected, the reaction probability is non-zero only in a narrow cone confined on the
yz plane in the direction opposite to the methyl groups.

For the dynamic calculations, a limited number of configurations, confined in this narrow an-
gular cone, have been selected. They must be considered as the most representative and efficient
geometries to carry out extensive integral cross-section calculations to be compared to the experi-
mental data. The values of polar angles defining the selected configurations for both exit channel
curves (i = 1 and 2 for the 2b2 and 4a1 crossings, respectively) are reported in Table 5.3, together
with the position Ri, value of energy Ei, and absolute difference of slope ∆i. Furthermore, a pic-
torial view of the effective cone is represented in Figure 5.12, in which the polar angle values are
reported. For the sake of completeness, we report also the parameters for the most (i.e. θ=90◦ and
ϕ=−90◦) and less (i.e. θ=90◦ and ϕ=90◦) attractive geometries. Finally, at each collision energy in
the CM frame, cross-sections from the different configurations are averaged to compare with the
experimental data.

θ = 25° 
φ = -90° θ = 30° 

φ = -81°

θ = 60° 
φ = -73°

θ = 90° 
φ = -65°

θ = 150° 
φ = -81°θ = 155° 

φ = -90°

θ = 120° 
φ = -73°

θ = 30° 
φ = -99°

θ = 60° 
φ = -107°

θ = 90° 
φ = -115°

θ = 120° 
φ = -107°

θ = 150° 
φ = -99°

Figure 5.12: Pictorial view of the base of the effective cone used to cal-
culate the cross-sections. It is a narrow non-symmetrical
slice of the space around the molecule, more open in the
yz plane than in the xy plane, due to the repulsion of the
methyl groups. The y-axis is perpendicular to the figure
plane.
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5.2.3 Calculation of cross-sections
A treatment based on the Landau-Zener-Stückelberg approach (see Chapter 3) has been used to
calculate transition probabilities at crossings between different electronic curves in a one dimen-
sional model, that is considering specific cuts of the PESs, in which, for fixed values of θ and ϕ
angles, the reaction coordinate is given by the polar coordinate R. Vibronic couplings have not
directly been taken into account, since the vibrational levels of DME to be considered are several
and closely spaced in energy, making their resolution impossible under the experimental condi-
tions adopted.

According to Eqn. 3.63, the probability of single diabatic passage through the i-th crossing
between two diabatic curves is:

pi(E, θ, ϕ, l) = exp

(
− 2πH2

i

~vR(l, E)∆i

)
(5.2)

where E is the collision energy, l is the quantum number representing the orbital angular momen-
tum of the collision complex, Hi is the non-adiabatic coupling term between the two potential
curves, ∆i as defined previously is the absolute value of the difference in slopes of the diabatic
potential curves calculated at the crossing point and vR is the radial velocity (Eqn. 3.64), that in
terms of l is given by:

v2
R =

2

µ

[
E

(
1− l(l + 1)

k2R2
i

)
− Ei

]
(5.3)

in which the impact parameter b has been substituted knowing the relation:

b =
[l (l + 1)]1/2

k

where k is the wavenumber defined as:

k =
(2Eµ)

~

In Eqn. 5.3, Ei is the value of the potential energy at the crossing (Ei < 0 for an exothermic
crossing), Ri is the position of the crossing and µ is the reduced mass of the He-DME system.

For each geometry (fixed θ and ϕ) and collision energy E, the total cross-section for charge
transfer to the i-th exit channel can be written as a sum of contributions from each l:

σi(E, θ, ϕ) =
π

k2

lmax∑
i=0

(2l + 1)Pi (E, θ, ϕ, l) (5.4)

lmax of Eqn. 5.4 can be defined as the maximum value of l for which the system has sufficient
energy to overcome the centrifugal barrier and reach the crossing point located at Ri. For high
collision energies, lmax is given by the maximum value of l for which the radial velocity vR is real:

lmax = kRi

√
1− Ei

E
(5.5)
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On the contrary, for exothermic crossings (Ei < 0) and low collision energies, lmax found by
Eqn. 5.5 generates a centrifugal barrier located at Rmax � Ri, higher than the available collision
energy (see Sec. 3.1.1). In Figure 5.13, the effective potential Veff (sum of the interaction poten-
tial V and the centrifugal one VC ) for the most attractive geometry (θ=90◦ and ϕ=−90◦) for two
different l at E=100 meV (dashed red line) is represented: the first curve (turquoise continuous
line) is the effective potential with lmax calculated by Eqn. 5.5 and it is evident that the generated
centrifugal barrier (at 4 Å) is impossible to overcome with the available collision energy. For this

2 3 4 5 6 7
R [ Å ]

-0.05

0

0.05

0.1

0.15

0.2

V
 [ 

eV
 ]

Figure 5.13: In the figure, the effective potential Veff is represented for
the most attractive geometry (θ=90◦ and ϕ=−90◦) at fixed
E=100 meV (dashed red line). The turquoise curve is the
effective potential with lmax calculated by Eqn. 5.5 and it
is evident that the generated centrifugal barrier (at 4 Å is
impossible to overcome with the available collision energy.
Using Eqn. 5.6, the lmax generates a smaller barrier (green
curve) surmountable with E=100 meV.

reason, lmax should be reduced in order to avoid the formation of a high centrifugal barrier (green
curve in Figure 5.13). Since the interaction potential V is represented in a complex analytic form,
an analytic expression for lmax can not be obtained. Therefore, for each energy E the maximum
value of l was calculated computationally. The adopted procedure was based on the solution of
Eqn. 5.6 in l, after finding Rmax (the coordinate R in which Veff is maximum) from the derivative
of Veff . The corresponding l that satisfies Eqn. 5.6 in Rmax (i.e. that specific l value for which
the effective potential is smaller than the collision energy E) is lmax, used then for calculating the
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cross-section.

Veff (Rmax, θ, ϕ, l) < E

V (Rmax, θ, ϕ) +
~l (l + 1)

2µR2
max

< E (5.6)

In Eqn. 5.4, Pi (E, θ, ϕ, l) is the total probability for formation of [DME]•+* in one of the two
excited states and takes into account the flux branching at each crossing adjusting Eqn. 3.66 in
Chapter 3. In this case, for each E, θ, ϕ, l and to form [DME]•+* removing the electron from the
2b2 orbital, we should have:

P1 = (1− p1)p1 + p1p
2
2(1− p1) + p1(1− p2)2(1− p1) (5.7)

where p1 and p2 are given by Eqn. 5.2. Using Figure 5.8, we can define:

• the first term (1−p1)p1 is the probability to jump once at the first crossing to the 2b2 product
curve, remaining on this after the turning point;

• the p1p
2
2(1 − p1) is the probability to jump to the 4a1 product curve at the second crossing

and to move to the 2b2 product at the first crossing;

• p1(1 − p2)2(1 − p1) is about the probability to jump twice at the second crossing, forming
the 2b2 product at the first crossing.

On the contrary, for [DME]•+*(4a1), the total probability should be:

P2 = p1[2p2(1− p2)] (5.8)

since to have 4a1 product it is necessary not to jump at the first crossing (p1), but jumping only at
second crossing (2p2(1− p2), according to Eqn. 3.66).

Equations 5.7 and 5.8 should be correct, if our charge transfer process was not dissociative.
Since the experimental evidence is that the reaction between He+ and DME is completely dissocia-
tive, equations 5.7 and 5.8 are not valid and the following expressions should be used instead:

P1 = (1− p1)(1 + p1p
2
2) (5.9)

P2 = p1(1− p2)(1 + p2) (5.10)

In fact, the new expressions for P1 and P2 are built considering that once the non-adiabatic tran-
sition from the entrance to one of the exit curves is operative, a fast electronic rearrangement in
the excited [DME]•+, leading to fragmentation, is triggered. It occurs on a much shorter time-scale
compared to the time taken by the collision partners to travel in the crossing region. For a com-
parison of timings, we note that the transit time of the collision partners over a distance of 0.5 Å is
in the range from 3× 10−14 s to 3× 10−15 s (for collision energies in the experimental range from
0.050 eV to 7 eV), while electron relaxation times are in the order of 10−15 s - 10−17 s. Therefore,
once the electron is transferred (jump to the product curve) the fragmentation of the molecule
takes place instantaneously and the system has no time to travel up to the turning point. For this
reason, the contribution in equations 5.7 and 5.8 of terms regarding the probabilities to stay on
the same curve or to jump on the other one, after the jump on the product curve, are neglected,
obtaining equations 5.9 and 5.10. Furthermore, it should be noted that in equations 5.9 and 5.10 a
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pi value equal to 1 signifies that the system remains on the diabatic curve, which means no charge
transfer reaction. On the other hand, pi=0 means that the non-adiabatic transition is complete.

To obtain the total cross-section, the cross-sections obtained from Eqn. 5.4 are summed over i:

σ (E, θ, ϕ) =

2∑
i=1

σi (E, θ, ϕ) (5.11)

The Hi term of Eqn. 5.4 is still undefined. This is the non-adiabatic coupling at each crossing
between the entrance and exit potential curves and it is introduced as a perturbation term that
promotes the non-adiabatic events. In general for collisions in low energy range, the Franck-Condon
factor can be negleted in the non-adiabatic coupling formulation [143]. In fact, this factor originates
from the idea that, during the electron transition, the nuclei distances and their relative momentum
do not vary, they remain unchanged due to the fact that the electron velocities are larger than
those for the nuclei. It is already demonstrated in Sec. 3.1.2 that for charge transfer processes
in ion-neutral molecule collisions the nuclear velocities can not be neglected, breaking the Born-
Oppenheimer approximation. Therefore, in cases when the nuclear velocity is comparable to the
electron one, during the transition the nuclei distances can strongly vary since the non-adiabatic
process can not be considered instantaneous, and also the Franck-Condon principle is not valid.

From this general starting point for the non-adiabatic coupling, we need to distinguish the
role of Hi in the inner (i = 2) and the outer (i = 1) case because of the different symmetries of
the molecular orbitals involved in the electron exchange process (see Figure 5.10). In particular,
the i=1 case is notable because of the nodal plane exhibited by the molecular orbital 2b2 along
the approach direction of He+ towards the most attractive configuration (θ=90◦ and ϕ=−90◦).
More in detail, we expect that the 2b2 molecular orbital (MO) gives the largest contribution to
the charge transfer cross-section due to the energetically favorable positions of crossings for all
the geometries. Unfortunately, this MO presents a node in the yz plane, that means a very small
overlap with the spherically symmetric atomic orbital of He+ (i.e. 2S1/2). Hence, the case implies
the paradox that the most attractive geometry (corresponding to He+ approaching the DME plane
from the O-side) is also the least efficient for the charge transfer process when molecular orbital
symmetries are considered.

Following previous investigation [144] and the treatment of Landau [68] of transitions be-
tween non-symmetric systems, we have decided to represent the non-adiabatic coupling H1 as
Coriolis coupling (Eqn. 5.12), since the electron is transferred between orbitals with different sym-
metry and therefore the crossings are heterogeneous.

H1 (l, E, θ, ϕ) = HC =
~2l

µR2
1

M (5.12)

where l, µ and R1 have been already defined. Furthermore, the Landau formula has been appro-
priately extended to include the dependence of the H1 coupling on the strong stereo-chemistry
involved in the process and hence, the dependence on the collision energy E and on the orig-
inal molecular orientation within the collision complex. In fact, the dependence of H1 on the
collision energy is expected to play a crucial role in the reaction: at low collision energies, the
"natural" orientation of DME, promoted by the electric field gradient associated with the strongly
anisotropic inter-molecular potential, is high, but it becomes inefficient at increasing values of E
since molecules have sufficient energy to escape from the potential gradient. Therefore,H1 should
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tend to be small when the molecules are oriented and the Coriolis coupling becomes weak. For
these reasons, the M term of Eqn. 5.12 has been extended to:

M = C

(∣∣∣∣ EE1

∣∣∣∣)γ (5.13)

where the dimensionless parameter C and the exponent γ have been chosen to obtain the best
agreement with the experimental data (while E and E1 have been already defined). For this rea-
son, C has been fixed to be equal to 6 and γ equal to 1/4.

It is intriguing to note that in the thermal collision energy range (∼ 50 meV to 100 meV) the
M value is in the 2-3.5 interval, in qualitative agreement with the expectations from theory [145,
146, 147, 148] that suggests M ∼ 1 for the pure Coriolis coupling. At the highest energy, the value
of M becomes equal to ∼ 9 and it increasingly accounts for the possibility that the non-adiabatic
transitions occur via a different mechanism, controlled by the overlap between the relevant atomic
and molecular orbitals.

On the contrary, the coupling H2 at the crossing with the He – DME•+*(4a1) exit channel, the
electron density of the involved 4a1 orbital is isotropic and gives a favorable overlap for several
geometries close to the most stable configuration of the collision complex. Hence, an explicit
dependence on the collision energy is not necessary. For the sake of simplicity, we have decided
to fix H2 at a constant value equal to 200 meV.

Using equations 5.4 and 5.11, cross-sections σ1(E), σ2(E) and total σ(E) have been calculated
as a function of the collision energy E for the chosen geometry (see Figure 5.12). The results are
shown in Figure 5.14 in which the contribution of both crossings i =1,2 and their sum are repre-
sented (in blue, red and black line, respectively) for each configuration. It is interesting to note that
the crossing i=1 gives the major contribution to the total cross-section in the whole energy range
investigated, while the crossing i=2 is a threshold process, giving lower cross-section values. The
experimental total cross-sections (green dots) are compared with the calculated ones (black line)
in Figure 5.16. The calculated cross-sections are in a very good agreement with the experimental
results. The deviation at high collision energies is attributed to the omission of strongly endother-
mic crossings, which are effective at high collision energy. In fact, other configurations falling
outside the "effective cone" defined above can now contribute to the cross-section, and a wider
cone should be considered in the calculations (see Appendix C).

Furthermore, in Figure 5.16 the result assuming no preferential orientation of the reactants
has been also reported with black dashed line. In this case, the cross-sections have been calculated
by using the same Landau-Zener model discussed above, but without considering stereo-chemical
effects (e.g. the strong alignment of the colliding system and the pendular state formation) in order
to demonstrate their crucial role in the reaction. The new calculation differs from the mentioned
one for the number of considered crossings (corresponding to different approaching positions
of He+) and for the expression of the non-adiabatic coupling. Furthermore, it is worth to note
that this calculation is completely different from the capture model such as the Langevin one (see
Section 3.1.1) for the following reasons:

1. the used opacity function in the cross-section expression (Eqn. 3.7 in Section 3.1.1) is the one
theorized by Landau-Zener-Stückelberg for a non-adiabatic transition (Equations 3.63 and
3.66 in Section 3.1.2), while in the capture model the opacity function is simply assumed to
be 1 if the colliding system has sufficient translational energy to overcome the centrifugal
barrier;
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Figure 5.14: Calculated contributions to the total cross-section for the ti-
tle reaction for selected configurations (fixed θ, ϕ values, as
indicated on top of each of the four graphs) confined in the
narrow angular cone most effective for the reaction. In blue
is σ1(E), in red is σ2(E) and in black is their sum σ(E).

2. in the capture model only the long-range dispersion potential is taken into account, while
in our calculation we use a realistic PES, sum of several contributions (electrostatic, disper-
sion and inductive potential) as already explained. In our representation, the short-range
contribution is considered with the long-range one in the dispersion potential (ILJ poten-
tial);

3. in the no-alignment calculations, the considerations on the electron density of the involved
MOs remains, whereas the capture model does not account for them.

Since in our model the alignment of the colliding system has been taken into account by the
Coriolis coupling (Equations 5.12 and 5.13), a new expression for the couplingH1 has been chosen
in order to neglect the stereo-chemical effects, but to consider the unfavorable overlap between
the atomic s orbital of He+ and the involved 2b2 molecular orbital of DME, anyway. Therefore, the
coupling term H1 has been represented as a constant value (H0=200 meV, according to the cou-
pling chosen for the second crossing) modulated by a (cosϕ)2 (according to previous treatments
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[149, 150, 151]) term. The latter brings the coupling to zero for geometries (e.g. ϕ=90◦, −90◦)
giving null overlap between the involved orbitals, while it makes the coupling maximum for ge-
ometries (e.g. ϕ=0◦, 180◦) giving the best overlap (corresponding to maximum of electron density
in the 2b2 MO). Finally, the total cross-sections have been calculated by averaging cross-sections
for an appropriate number of ϕ, θ couples representing different but equally probable directions
of approach for the He+ on the whole sphere surrounding the DME molecule.

The values of each ϕ, θ couple has been calculated by the following procedure. Considering a
sphere of radius r which is centered in the CM of the molecule, it is possible to divide it in n "par-
allels", characterized by a specific value of θ (namely θi) (the green circle in panel a of Figure 5.15).
The circumference of each parallel is:

xx
CM

sin θ

rθidφ
CM

dθ

Δθ

Δφ

a b

y

z z

y

Figure 5.15: Sphere of radius r and centered in the CM of the molecule.
In panel a the parameters fundamental to define the "par-
allel" are reported, while in panel b the meridian is repre-
sented.

Cparallel = 2πrsinθi (5.14)

Furthermore, a meridian of semi-circumference Cmeridian = πr must also be considered (the blue
semicircle in panel b of Figure 5.15). Defining nθ as the number of points on the meridian and nϕ
as those on the parallel, the distances between two consecutive points on the parallel (dϕ) and on
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the meridian (dθ) can be written as:

dϕ =
Cparallel
nϕ

=
2πrsinθi

nϕ

dθ =
Cmeridian

nθ
=
πr

nθ

Since an uniform distribution of points on the sphere is requested, dϕ must be equal to dθ :

dϕ = dθ

2π�rsinθ
nϕ

=
π�r
nθ

Defining the ratio π
nθ

as the angle subtended by dθ , ∆θ, the number of points on the parallel is:

nϕ =
2πsinθ

∆θ
(5.15)

∆ϕ is subsequently obtained by the following expression:

∆ϕ =
2π

nϕ
(5.16)

Using nθ = 10 (∆θ =18◦), a set of 108 equally distributed points on the sphere around the molecule
has been obtained.

As shown in Figure 5.16, the resulting data exhibit a really different trend compared to the
experimental one. The disagreement might be used as the further evidence that the dynamics
treatment should take into account the relevant role of the strong anisotropy of the PES in the
entrance channel.
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Figure 5.16: Comparison between calculated (in black) and experimen-
tal (in green) total cross-sections for the reaction He+ +
DME. Error bars represent an estimate of the accuracy of
the absolute values of the cross-section (40%) and account
for systematic errors. For the sake of clarity, the error bars
have been reported only on three experimental points. The
black dashed line results from the discussed model assum-
ing that during the reaction the reactants have not prefer-
ential orientations. It is evident that the stereo-chemistry
in the charge exchange process plays a crucial role in the
dynamics.
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5.3 Dynamics of the dissociative charge transfer process
for the reaction He+ + HCOOCH3

5.3.1 The PESs
The geometry of the [He – MF]+ interacting complex is conveniently defined using a reference
frame centered on the CM of the MF, and the H – C( –– Oα) – Oβ molecular plane coincident with
the xy plane, as shown in Figure 5.17. As already done with the DME molecule, the – CH3 group
is simplified in the “effective atom” C, having the mass and the polarizability of a methyl group.
The MF polarizability is equal to 5.050 Å

3
[135] and its dipole moment is (1.77± 0.03) Debye [152].

The polarizability has been further partitioned into five components, one for each group of the
molecule. For the Oβ – CH3 section, the same values of DME have been used (i.e. 0.76 Å

3
for Oβ

and 2.20 Å
3

for CH3). On the other side, for the H – C –– Oα section we have chosen 0.38 Å
3
, 0.76 Å

3

and 1.21 Å
3

for H, C, Oα, respectively.

R

θ

φ

Oα

He+

Oβ

 

 

x

y

z

Figure 5.17: Illustration of the relevant coordinates used to represent the
interaction potential between He+ and cis-MF. The axes ori-
gin is positioned at the CM of the MF molecule and the xy
plane coincides with the plane defined by the Oβ – C – Oα

atoms.

Since the RF power dissipation of the octople has a minimal effect on the temperature inside
the scattering cell [58], we can assume that the reaction is carried out close to room temperature
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Table 5.4: Bond lengths in Å and bond angles in degrees for the cis-
methyl formate.

Description Value

C –– Oα 1.200 Å
C – Oβ 1.334 Å
C – H 1.101 Å
H3C – Oβ 1.437 Å
Oα –– C – Oβ 125.9◦

Oα –– C – H 109.3◦

C – Oβ – CH3 114.8◦

with an upper limit on the gas temperature inside the scattering cell of about 305 K [58]. Since
the energy separation between the cis and trans isomers of the neutral MF is of 0.14 eV [153, 154],
it is reasonable to assume that only the cis conformer is present in the experiment and only this
isomer has been used to represent the interaction potential. Therefore, for the representation of
the interaction potential, the experimental geometry values of the cis-MF structure reported by
Hellwege et al. [155] have been adopted and the internal coordinates are summarized in Table 5.4.

In the CM frame, it is possible to define the Cartesian coordinates (x, y, z) as:
xH yH zH
xC yC zC

xOα yOα
zOα

xOβ yOβ
zOβ

xCH3 yCH3
zCH3

 =


−1.89 −0.42 0
−0.85 −0.09 0
−0.85 +1.11 0
+0.23 −0.87 0
+1.48 −0.17 0

 (5.17)

Also for the MF, the interaction potential of the system [He – MF]+ has been developed in
terms of the polar coordinates R, ϕ and θ (Figure 5.17), that are already defined in Sec. 5.2.1.
While θ defines the direction of the incoming He+ ion with respect to the z axis ( θ = 0◦ and 90◦

correspond to the He+ approaching perpendicularly and in the xy plane, respectively), ϕ indicates
the projection of theR vector on the xy plane. For example, ϕ = 0◦ corresponds to He+ approaching
on to the CH3-side, while ϕ = 180◦ corresponds to He+ approaching on to the H-side. Since the
set of Cartesian coordinates (xHe, yHe, zHe) is the same defined for the DME case in Sec. 5.2.1,
the distances in terms of Cartesian coordinates between He+/He and H, C, Oα, Oβ , CH3 are the
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following:

RH = RH−He = RH−He+ =
√

(xHe − xH)2 + (yHe − yH)2 + (zHe − zH)2

RC = RC−He = RC−He+ =
√

(xHe − xC)2 + (yHe − yC)2 + (zHe − zC)2

ROα = ROα−He = ROα−He+ =
√

(xHe − xOα)2 + (yHe − yOα)2 + (zHe − zOα)2

ROβ = ROβ−He = ROβ−He+ =
√

(xHe − xOβ )2 + (yHe − yOβ )2 + (zHe − zOβ )2

RCH3 = RCH3−He = RCH3−He+ =
√

(xHe − xCH3)2 + (yHe − yCH3)2 + (zHe − zCH3)2

where the x,y,z Cartesian coordinates of H, C, Oα, Oβ , CH3 are the matrix elements of 5.17.
Since the molecule has Cs symmetry, the PESs are symmetrical only with respect to the xy

plane and therefore, the range of θ can be reduced to [0, π/2] because PES values are repeated.
Due to the smaller symmetry of MF with respect to the DME molecule, the range of ϕ must be
[0, π/2).

Since no literature data are available to the authors’ knowledge, the effective partial charges
and the electron densities of the molecular orbitals have been obtained by NBO calculation (Sec. 3.3)
on the minimum energy structure of the neutral cis-MF, optimized at M06-2X/cc-pVQZ level. Re-
sulting bond lengths and bond angles are shown in Figure 5.18 and they are in a good agreement
with the literature data reported by Hellwege [155] (shown in Table 5.4). The percentage differ-
ences between calculated and experimental bonds are in the range 0.2%-0.6%, while for the angles
they are 0.3-0.4%. The calculated dipole moment is 1.87 Debye close to the experimental one, dif-
fering only by about 6% from the previously mentioned experimental value.

1.
19

4 
Å

1.095 Å

1.331 Å

1.428 Å

115.1° 

109.7° 

12
4.9

° 

Figure 5.18: Optimized geometry of the neutral cis-MF at the M06-
2X/cc-pVQZ level. The significant bond distances (in Å)
and bond angles are reported.

Entrance channel: He+ + MF

Also in this case, the PES of the interacting system He+ – MF can be written in terms of electrostatic
(VElectr) and non-electrostatic (VNElectr) components. As already defined above, the electrostatic
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component is defined as a sum of Coulomb contributions between the He+ ion and the calculated
partial charges of each group of the MF molecule.

Hence, the electrostatic contribution can be factorized as:

VElectr = 14400×
(
−0.585

ROα

− 0.495

ROβ

+
0.646

RC
+

0.125

RH
+

0.308

RCH3

)
where the effective atomic charges are in terms of electric charge and have been obtained with the
procedure described above. Using the 14 400 factor and the distances in Å, VElectr is obtained in
meV.

As already defined for DME, VNElectr arises from the ion-neutral interaction, i.e. between the
He+ and each of the atoms or effective groups of the MF molecule (namely H, C, Oα, Oβ , CH3).
Each contribution is described by the improved Lennard-Jones model VILJ(Ri), with Ri equal to
RH, RC, ROα , ROβ and RCH3 . While the m and β parameters are the same used to describe the
VNElectr of the system [He – DME]+ (m=4 and β=7, specific values for the ion-permanent dipole
interaction), the depth and the position of the potential well (rm and ε, respectively) have been
calculated by the correlation formulas and are summarized in Table 5.5. Hence, the non-electrostatic
potential is calculated as:

VNElectr(R, θ, ϕ) = VILJ(RH) + VILJ(ROα) + VILJ(ROβ ) + VILJ(RC) + VILJ(RCH3)

The total entrance channel potential and the single contributions for θ = 90◦ and ϕ = 90◦ are shown
in Figure 5.19 as example.

Table 5.5: Potential parameters ε and rm defining VILJ potentials for the
pair of interest in the entrance channel.

Interacting system ε (meV) rm Å

He+ – H 94.9 2.15
He+ – C 200.2 2.38
He+ – Oα 158.1 2.25
He+ – Oβ 125.3 2.39
He+ – CH3 312.2 2.58

Exit channel: He + MF•+

The exit channel is again the sum of van der Waals potential (VvdW , dispersion component) and of
the induction (VInd) one. Similarly to what has been done with DME and the entrance channel,
the improved Lennard-Jones model has been used to describe the VvdW . Since the interaction is
between the He atom and each of the atoms/effective groups (H, C, Oα, Oβ , CH3), we have:

VvdW (R, θ, ϕ) = V ′ILJ(RH) + V ′ILJ(ROα) + V ′ILJ(ROβ ) + V ′ILJ(RC) + V ′ILJ(RCH3)
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Figure 5.19: The resulting entrance channel (He+ + MF) potential (green
continuous line) for θ = 90◦ and ϕ = 90◦, defined as sum of
electrostatic potential (VElectr , dotted black line) and non-
electrostatic potential (VNElectr , dashed black line).

In this case, the m and β are equal to 6 and 9 and the fundamental parameters are summarized in
Table 5.6. The ion-induced dipole contribution is the same as defined in Sec. 5.2.1. All the contri-

Table 5.6: Potential parameters ε and rm defining V ′ILJ potentials for the
pair of interest in the exit channel.

Interacting system ε (meV) rm Å

He – H 1.06 3.09
He – C 2.04 3.40
He – Oα 2.10 3.22
He – Oβ 1.70 3.38
He – CH3 2.31 3.69

butions and the total exit channel interaction θ = 90◦ and ϕ = 90◦ are represented in Figure 5.20.
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Figure 5.20: The resulting exit channel (He + MF•+) potential (red con-
tinuous line) for θ = 90◦ and ϕ = 90◦, defined as sum of van
der Waals potential (VvdW , dotted black line) and induction
potential (VINd, dashed black line).

Anisotropy of the PES

Following the lines of the DME case, also in the case of MF it is interesting to analyze the anisotropy
of the interaction potential. Considering the He+ that approaches in the molecular plane (θ =
90◦), the cut of the multidimensional PES for the entrance channel (shown in Figure 5.21) presents
two deep potential wells (of about −1.73 eV and −0.70 eV) located at a distance of 2.8 Å from
the Oα atom of the carbonyl group and of 2.9 Å from the Oβ atom of the ester group. While
the interaction on the Oα-side is completely attractive, the second one is surrounded by a weak
repulsive potential. In panel b of Figure 5.21 it is clearly represented that the blue Oβ well is
completely isolated by the light-orange (repulsive) potential. For θ= 90◦ and ϕ = 270◦, this barrier
is ∼ 30 meV at ∼ 8 Å, as shown in Figure 5.22. Therefore, the most attractive geometries are when
He+ lies on the MF plane at the two oxygen side ( θ= 90◦, ϕ =90◦, 270◦), favoring at low collision
energy the Oα-side.



112 Chapter 5. The Theoretical Results
a

b

O
α

O
β

Figure
5.21:

D
ifferent

view
s

for
the

PES
of

the
entrance

channel
in

the
xy

plane
(θ=

9
0
◦):

panel
a

looking
from

the
O
β

–
C

H
3

side
(ϕ

=
3
1
5
◦)and

panelb
from

the
top.N

egative
potentialval-

ues
are

show
n

in
blue

and
the

positive
ones

are
in

orange,
w

hile
the

zero
values

are
reported

in
w

hite.In
the

top
view

,
a

pictorialim
agine

ofthe
M

F
structure

is
reported.



5.3. Dynamics of the dissociative charge transfer process for the reaction He+ +
HCOOCH3

113

-10-9-8-7-6-5-4-3-2
R [Å]

-30

-20

-10

0

10

20

30

V
 (H

e+  +
 M

F)
 [m

eV
]

He + MF•+

θ=90° φ=270°

Figure 5.22: Interaction potential for θ= 90◦ and ϕ = 270◦: to achieve
the well, it is necessary to overcome a repulsive barrier ∼
30 meV at ∼ 8 Å.

Similarly to the DME case, the potential anisotropy is such that the orientation of the MF
molecule is possible already at long distances. In fact, the electric field generated by He+ ion is able
to orient the permanent dipole of the polar MF molecule in the configuration of minimum energy.
Even at large distance (around 17 Å), the anisotropy equals the mean rotational energy of MF (∼
39 meV at 300 K) forcing the molecule in the most attractive geometries and confining the colliding
system in the already defined pendular state, in which molecular rotations are transformed into
bending vibrations of the collision complex (Figure 5.23). Therefore, the strong anisotropy of the
interaction between He+ and MF controls the reaction driving the process only through the most
attractive configurations.

A more quantitative representation of the attractive and repulsive regions of the PES is shown
in Figure 5.24, where the interaction potential is plotted as a function of ϕ and θ at fixed values of
R (corresponding to 3 Å, 5 Å, 10 Å, 15 Å and 20 Å). In the top panel, the PES on the xy molecular
plane (with θ=90◦) shows a strong repulsive behavior when He+ approaches from the methyl side
and from the proton side, but a strong attractive behavior on the two O atom sides. In particular,
it is possible to estimate the ratio between the negative potential areas, that will be of fundamental
importance to calculate the total cross-section of the charge exchange process. The obtained result
shows that the Oα-side is 9.9 times more attractive than the Oβ-side, normalized to 1 in the ratio
0.9/0.1. This means that the He+ prefers to collide with the neutral MF from the Oα-side (the
most attractive region of the PES), even if during the collision it might approach from either of the
two oxygen atoms. Even at large distances (20 Å), ∆V (R) (defined as the difference between the
energy values of the least and most stable configurations) is still ∼ 29 meV, exhibiting a stronger
anisotropy than the DME case. Furthermore, it is interesting to note that the H atom region is more
repulsive than the methyl one at short distances, but for higher R they build the repulsive barrier
around the attractive potential of the Oβ-side (i.e for 180◦ ≤ ϕ ≤ 360◦) together. This repulsive
potential is already active at 10 Å, where it fluctuates from 45 meV (ϕ = 200◦, H-side) to 22 meV
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He+

MF 
in free thermal 

rotation

MF
in pendular state 

Figure 5.23: Pictorial representation of the formation of a pendular state
during collision between He+ and MF. On the left: at large
distances the MF molecule can freely rotate (only rotation
around one imaginary axis centered in the Oβ is repre-
sented for clarity). On the right: at shorter distances MF is
“trapped” in its preferential orientation where only bend-
ing vibrations of the collision complex are possible.

and 30 meV (ϕ = 290◦ and 340◦, Oβ- and CH3-sides, respectively). That means that the reaction
can be carried out from the Oβ-side only when the collision energy is higher than these threshold
energies. The other two panels on the bottom present the interaction when He+ approaches in the
two planes perpendicular to the molecular one, i.e. the xz and yz planes.
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5.3.2 Crossings between the entrance and exit channels
At the collision energies used in our experiments, the electron transfer might be operative only
when the PESs of the entrance and exit channels given in the diabatic representation cross at dis-
tances for which the non-adiabatic coupling between the surfaces at the crossing is non-zero. As
Figure 5.25 shows, due to the significant difference in ionization energy between He (IE=24.58741
eV [141]) and MF (IE= 10.835eV [156]), assuming that the transferred electron is ejected by the
HOMO of MF (exothermic of (13.755± 0.025) eV), the entrance (green solid line in Figure 5.25)
and exit (red solid line in Figure 5.25) curves do not cross. The curves of Figure 5.25 have been
obtained by fixing θ= 90◦ and ϕ=90◦. This geometry was chosen since it represents the most at-
tractive configuration, however things do not change much if other geometries are considered (for
all geometries entrance and exit channels do not cross). Hence, to promote reaction the exchanged
electron should involve inner MOs of MF, having higher ionization energies than the HOMO, as
in the DME reaction and in accord to what has been found out in Sec. 4.2.

Given the electronic configuration of MF having Cs symmetry in its electronic ground state
[154],

(core)8(5a’)2(6a’)2(7a’)2(8a’)2(9a’)2(10a’)2(1a")2(11a’)2(2a")2(12a’)2(3a")2(13a’)2

it is possibile to reconduce the experimental ionization potentials of the two valence orbitals 8a’
and 7a’ to 19.9± 0.1 eV and 23.6± 0.1 eV [157, 158], respectively. When such orbitals are consid-
ered, the asymptotic value of the exit channels can be re-scaled accordingly to obtain the red dot-
dashed and red dashed curves of Figure 5.25, whose crossings with the entrance curve are marked
with black circles in Figure 5.25. The reaction exothermicity is reduced to about (4.69± 0.10) eV
and (0.99± 0.10) eV, respectively. In all dynamical calculations, the zero energy has been fixed to
the asymptotic value of the entrance channel. There are then two relevant crossing points that for
convenience are numbered i=1, 2, the first being the crossing occurring at larger R values, i.e. the
one leading to the [He – MF•+]*(7a’) exit channel.

As said previously, the electron densities of the involved orbitals have been calculated by NBO
analysis with DFT-M06-2X method. The results highlight that the inner valence orbitals 7a’ and 8a’
of MF show a series of nodal planes (Figure 5.26), being the electrons highly localized around some
specific atoms or atomic groups. As a consequence, when the molecular ion [MF•+]* is formed in a
highly electronically excited state, the dynamics immediately following the charge transfer occurs
on an exit PES that is only mildly attractive and anisotropic. In any case, the nascent [MF•+]*
has a high-energy content, and it is therefore expected to dissociate almost instantaneously, in
agreement with the measured branching ratios (Table 4.5) and the hypothesis done in Sec. 4.2.
Furthermore, from the NBO analysis the two MOs are formed by combination of only C and O
orbitals. This is in accord with the conclusions of Sec. 4.2, in which type of products and the BRs
have been explained in terms of only C – O bond breaks.

At this level of the discussion, it is possible to define the "effective cones" having, due to the
orientation effects explained above, the most significant contributions in the cross-section calcula-
tion. The most attractive geometries are those corresponding to the He+ ion approaching the MF
plane in the proximity of the Oα- and Oβ-sides (i.e. θ=90◦ and ϕ=90◦, 270◦). The two cones have
been chosen around these geometries and they are symmetric and with the same angular opening.
In order to consider the different depth and extension of the potential wells in the two configu-
rations, the total cross-sections have been obtained properly averaging the contributions coming
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Figure 5.25: Potential energy curves of the entrance He+ + MF (green
curve) and exit He + MF•+ (red continuous curve) channels
for θ= 90◦ and ϕ=90◦, with the MF radical cation formed in
its electronic ground state. The red dashed and dot-dashed
curves represent exit channels assuming the removal of an
electron from the inner valence orbitals 7a’ or 8a’.

Figure 5.26: Electron densities of 7a’ (on the right) and 8a’ (on the left)
MOs of neutral cis-MF.

from the two different effective cones, i.e. using the weighted average with the ratio 0.9/0.1 for the
Oα- and Oβ-side. For the dynamical calculations a limited number of configurations, confined in
the narrow angular cones, have been selected. They must be considered as the most representative
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Figure 5.27: Pictorial view of the effective cones used to calculated the
cross-sections. They are narrow symmetrical slices of the
space around the molecule: on the left the Oα-side cone is
represented, while on the right the Oβ-side cone. The y-axis
is orthogonal to the plane of the figure.

and efficient geometries to carry out extensive integral cross-section calculations to be compared
with the experimental data. The values of polar angles (θ and ϕ) defining the selected configura-
tions are reported in Figure 5.27 and summarized in Table 5.7, together with the positionRi, value
of energy Ei, and absolute difference of slopes ∆i for the various crossings i.
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5.3.3 Calculation of cross-sections
The Landau-Zener-Stückelberg model is the same used to calculate the DME cross-sections (see
Sec. 5.2.3). In fact, the MF case is almost similar to the DME one: the charge transfer is disso-
ciative, there are two crossings (i=1,2) to be considered with two involved MOs, on which the
non-adiabatic coupling Hi depends. The formulas used to calculate the single probability of non-
adiabatic transition and the total probabilities for i=1,2 crossings are equal to equations 5.2, 5.10
and 5.10 of Sec. 5.2.3. We also point out again that cross-sections are mostly due to collisions oc-
curring with large orbital angular momentum quantum numbers. However, at large distances the
centrifugal barrier can prevent the interacting partners to reach, in the low collision energy range,
the distance at which the crossing between entrance and exit channel is positioned, thus posing a
limitation to the quantum numbers contributing to the cross-sections (Eqn. 5.6).

The non-adiabatic couplingHi at each crossing i has been defined with the same formulation.
In fact, in this case it is not necessary to distinguish the role of the inner (i = 2) from the outer (i =
1) case (as done with the non-adiabatic coupling for the DME) because, due to their symmetries,
the molecular orbitals involved in the electron exchange present similar nodes in the electron den-
sities. Both molecular orbitals have a nodal plane (see Figure 5.26) along the approach direction of
He+ towards the most attractive configurations. The 7a’ and 8a’ orbitals present a node in the yz
plane, and therefore small overlaps with the spherically symmetric atomic orbital of He+(2S1/2).
Thus, the stereo-chemical paradox occurs also in this reaction: the most attractive geometries (θ
= 90◦ and ϕ =90◦, 270◦, corresponding to He+ approaching on the MF plane from the Oα- and
Oβ-side, respectively) are the least efficient for the charge transfer process when MO symmetries
are taken into account. Therefore, the reaction can be essentially promoted by the coupling be-
tween the rotational angular momentum of the nuclei within the collision complex and the orbital
angular momentum of the electron (Coriolis coupling, Eqn. 5.12). In the formulation of this type
of non-adiabatic coupling, the dependence on the collision energy has been again added in order
to consider the orientation effects promoted by the strong anisotropy of the PES and the small
overlap between the involved MOs and the s atomic orbital of He+.

In the cross-section calculation for the He+ +HCOOCH3 reaction, the dimensionless parameter
C of Eqn. 5.13 acquires a further new significance respect to the DME case. In fact, different C
values might be properly chosen for the two effective cones in order to consider the efficiency of
the overlap between the MO of the MF and the s atomic orbital of He+. For example, we focus on
the 7a’ MO. The electron density of this orbital is mainly distributed on the Oβ-side (ϕ = 270◦),
while it is more "rarefied" on the Oα-side (ϕ = 90◦). This means that the C parameter must be
higher for the He+ approaching on the Oβ-side and lower for the He+ approaching on the Oα-
side. Since the electron densities distribution of 7a’ MO is quite similar to the 2b2 MO of the DME
molecule, we can assume that C must be equal to 6 when He+ collides with the MF molecule on
the Oβ-side (corresponding to He+ that approaches the DME on the O-side). On the contrary, a
value of 4.75 has been chosen to represent the less efficient case, i. e. when He+ collides with the
MF molecule on the Oα-side. This treatment of the parameter C can be successfully extended also
to the 8a’ MO, since the electron densities show similar maxima and minima distributions.

For the chosen geometries (summarized in Figure 5.27 and in Table 5.7) and for both the Oα,
Oβ atom sides, cross-sections σ1(E) and σ2(E), as well as the total cross-section σ(E) have been
calculated as a function of the collision energy E and results are shown in Figure 5.28. For each
configuration, the contributions of both crossings i=1,2 and their sum are represented ( in blue, red
and black). It is interesting to note that the crossing i=1 (corresponding to remove the electron from
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the 7a’ MO) gives the major contribution to the total cross-section at the whole collision energy
range, despite the low value of the C parameter. The cross-section for the two cones, representing
the geometries for which the He+ approaches the MF on the Oα- (orange line) and Oβ-side (dark
green line) (see Figure 5.29) are obtained averaging the single contributions. In Figure 5.30, the
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2 ]
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Figure 5.29: Calculated contributions for the two geometries of interac-
tion, Oα- (orange line) and Oβ-side (dark green line).

experimental total cross-sections (green dots) are compared with the calculated ones (black line),
obtained according to the procedure discussed above. As done for the DME total cross-sections,
the result (blue line) obtained without the assumption of the strong stereo-chemical effect in the
reaction is shown in Figure 5.30. In this case, the total cross-sections have been obtained averaging
the cross-section for an appropriate combination of θ and ϕ, in order to consider the whole sphere
around the MF molecule. θ and ϕ couples (108 couples) have been obtained following the proce-
dure already mentioned in Sec. 5.2.3. We remind that Hi is not defined as Coriolis coupling and
without the explicit dependence from E. Accordingly with the electron densities of the molecular
orbitals and with what has been done for the DME reaction, we have decided to represent Hi for
i=1,2 as a function of the angle ϕ:

Hi = cost× (cosϕ)2

where cost is 200 meV. With this definition, Hi is equal to zero for geometries with ϕ=90◦ and
270◦, where the involved molecular orbitals 7a’ and 8a’ have the electron density node, and it is
equal to the constant for geometries with ϕ=0◦ and 180◦, where the electron densities have their
maximum. As Figure 5.30 shows, the cross-sections calculated with our model are in excellent
agreement with the experimental results. The disagreement of the results obtained without the
“alignment assumption” shows the importance of including stereo-chemical effects in the dynam-
ics treatment.
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Figure 5.30: Comparison between calculated (black line) and experi-
mental (green dots) total cross-sections for the reaction
He+ + MF. Error bars represent an estimate of the accu-
racy of the absolute values of the cross-section (40%) and
account for systematic errors. For the sake of clarity, the
error bars have been reported only on four experimental
points. The blue line results from the discussed model as-
suming that during the reaction the reactants have not pref-
erential orientations. It is evident that the stereo-chemistry
in the charge exchange process plays a crucial role in the
dynamics.

Summarizing on the basis of the excellent results obtained for the DME/MF reactions, it is
possible to outline the following general guidelines for modeling the charge transfer between He+

and a polar organic molecule:

• the total probability of non-adiabatic transition must take into account the dissociative na-
ture of the process (see for instance Equations 5.9 and 5.10);

• according to the anisotropy of the reactant potential energy hyper-surface, it must be evalu-
ated whether the reaction occurs in preferential configurations of the ion-molecule system.
Therefore, stereo-dynamical effects must be included in the model considering a reactive
narrow cone confined in a well defined region of the neutral molecule. Eventually, two or
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more reactive cones can be taken into account, if the entrance potential presents more than
one attractive well;

• the lmax calculation must be carried out carefully. In fact, it has been found out that the
constrain on the lmax (Eqn. 5.5) of the classic Landau-Zener model is not sufficient at very
low energy. In this case, values of l are included allowing the formation of a centrifugal
barrier higher than the collision energy. For this reason, it is necessary to reduce further the
angular momentum quantum number by putting the new constrain expressed in Eqn. 5.6;

• the electron densities of the MOs involved in the process must be evaluated, because they
play a decisive role in the expression of the non-adiabatic coupling. In fact, it is possible to
report two cases:

1. if the electron density distribution of the MO has the correct symmetry to overlap
with the electron density distribution of the AO of the ion accepting the electron, the
coupling can be treated as a constant;

2. if the MO presents a node along the most attractive configuration, it is necessary to
consider the low efficiency of the charge transfer due to the small overlap between
the involved MO and AO of the ion. Therefore, the non-adiabatic coupling must
be represented by using the Coriolis coupling (Eqn. 5.12), that allows the transition
considering a rotational contribution via the angular momentum quantum number l.
Since the lmax value increases at high collision energies, the Coriolis coupling has the
same trend: the lower is the collision energy, less efficient is the transition. Further-
more, to include also the strong alignment due to the anisotropy of the PES, a new
term has been implemented in the Coriolis formula, making stronger the dependence
on the collision energy. The M parameter of Eqn. 5.12 is now a function of a power
(γ) of E up to a multiplicative constant C (Eqn. 5.13), in which γ and C are fitting
parameters. For reactions between He+ and an oxygen-bearing polar molecule, it can
be suggested to take γ equal to 1/4, while C ≤ 6.
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Chapter 6

The Rate Constants and the
Astrochemical Network
Databases

“Ora le stelle stanno cadendo,
le nostre mura stanno tremando
e camminando e camminando
a piedi nudi ballano i Santi... ”

I Santi - A. Branduardi

In this chapter, the branching ratios and rate constant values for DME/MF reactions present
in astrochemical databases are reviewed and compared with results from our experiments (for
BRs) and from our calculations (for rate constants). It will be highlighted the striking differences
between the experimental branching ratios and the estimates used in the astrochemical network
databases. As explained in the previous chapter, the calculated cross-sections come from more
accurate evaluation of the conditions in which the helium cation collides with the methyl formate
and dimethyl ether. Hence, the rate constants obtained from our model might be considered a
more reasonable estimate with respect to the models used until now.

6.1 Introduction
In the KIDA database [77, 159] (KInetic Database for Astrochemistry), the suggested values for rate
constants as a function of temperature for He+ reactions with DME and MF are based on a modified
Arrhenius equation, using the parameters from the OSU2009 gas-phase chemistry database of E.
Herbst [160].

k(T ) = α

(
T

300

)β
e−γ/T [cm3 s−1] (6.1)
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where α is a parameter specific for each reaction, while the other two parameters are usually as-
sumed as β=−0.500, γ=0.00 and T in the range from 10 K to 280 K. It should be noted that the
above expression is an approximation (valid for low temperatures) of a more general expression,
which derives from an analytical fit of thermal rate coefficients calculated using the classical tra-
jectory method [76, 161]. The rate coefficients obtained by the classical trajectory method depend
only on the reduced mass of the reactants, on the polarizability and permanent dipole moment
of the neutral reactant. More generally, it is possible to calculate rate constants as a function of
temperature using the formulas already reported in Sec. 3.1.1 (equations 3.25 and 3.27).

In UMIST (University of Manchester Institute of Science and Technology) database for astro-
chemistry [162, 163], rate constants exhibit the same temperature dependence of OSU model (i.e.
T−0.5), but they are scaled to a measured or estimated value at 300 K. The Eqn. 6.1 is reduced to:

k(T ) = k300 K

(
T

300

)β
[cm3 s−1] (6.2)

where β=−0.500 and T in the range from 10 K to 41 000 K. A factor 2 accuracy in the rate
constant is also reported [25].

6.1.1 He+ + CH3OCH3 reaction
In KIDA, the reaction of He+ ions with DME is reported to give only two ionic products, each with
a branching ratio of 50.0%. The proposed reactions are the following:

He+ + CH3OCH3 −−→ He + H + H2CO + CH3
+ (6.3)

He+ + CH3OCH3 −−→ He + CH3 + H2COH+ (6.4)

On the contrary, in the UMIST database only React. 6.3 is reported with a CH3
+ yield of 100%.

The experimental evidence supported by the BRs of Table 4.2 in Sec. 4.1 (indicating that the most
abundant product is HCO+ with BR of 0.536 and that CH3

+, CH2
•+, OCH3

+ have BRs of 0.385,
0.073 and 0.004) rebuts these estimations, revealing a serious lack on the astrochemical database
estimates.

The Langevin rate constant for the process is kL=2.77× 10−9 cm3 s−1. The KIDA database
proposes k=7.23× 10−9 cm3 s−1 for both reactions 6.3 and 6.4 at 10 K, with a total k for the ti-
tle reaction equal to 1.45× 10−8 cm3 s−1. The used α parameter is 1.32× 10−9. At 280 K (upper
limit of Eqn. 6.1), the model gives a total k equal to 2.74× 10−9 cm3 s−1. In the UMIST database,
the k300 K is fixed to 2.00× 10−9 cm3 s−1, giving a rate constant at 10 K equal to 1.10× 10−8 and
2.07× 10−9 cm3 s−1 at 280 K. KIDA and UMIST rate constant values at 10 K and 280 K are sum-
marized in the left panel in Figure 6.1 with red diamonds and blue circles.

6.1.2 He+ + HCOOCH3 reaction
In the KIDA database, the reaction of He+ ions with MF is reported to give only the following
channel (hence with a branching ratio of 100.0%):

He+ + HCOOCH3 −−→ He + CH3 + HCOO+ (6.5)
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Also the UMIST database, gives React. 6.5 as the sole product channel for collisions of He+ ions
with MF. Again the BRs estimations disagree with the experimental data, indicating that the most
abundant product is HCO+ with BR of 0.880 with CH3

+, CH2
•+, OCH3

+ have BRs of 0.054, 0.023
and 0.043.

The Langevin rate constant for the title reaction is kL=2.78× 10−9 cm3 s−1, while the KIDA
value assuming α=3.54× 10−9 is equal to 1.94× 10−8 cm3 s−1 at 10 K and equal to 3.66× 10−9

cm3 s−1 at 280 K. In the UMIST database, the k300 K is fixed to 3.00× 10−9 cm3 s−1, giving a rate
constant at 10 K equal to 1.64× 10−8 and 3.11× 10−9 cm3 s−1 at 280 K. KIDA and UMIST rate
constant values at 10 K and 280 K are summarized in the right panel Figure 6.1 with red diamonds
and blue circles.

6.2 Resulting Rate Constants and Comparison with the
Database Values

Thermal rate constants as a function of temperature (k(T )) have been obtained by averaging the
total cross-sections (calculated in sections 5.2.3 and 5.3.3) over a Maxwell-Boltzmann distribu-
tion of collision energies E (Eqn. 2.16 in Sec. 2.3.5). The treatment based on the Landau-Zener-
Stückelberg approach defines the energy range within which cross-sections calculated using a
semi-classical method are meaningful. In particular, the validity of the adopted semi-classical
methodology is satisfied when the de Broglie wavelength λDB for the relative motion of the col-
liding partners is smaller than the distances at which the potential wells in the entrance and exit
channels are located. For example for DME, such distances are in the range 1.5 Å to 3 Å, while for
MF they are in the range 2 Å to 4 Å. Crossings among the entrance and exit potential energy curves
are located within the same range. To get a conservative estimate, it is assumed that λDB=1.5 Å,
resulting in a minimum energy E about 10 meV: below this value, the semi-classical treatment is
not reliable. On the other hand, Wakelam and co-workers [164] state that semi-classical models
might be used even for low T in the range 1 K to 10 K, in which the transition between classical
and semi-classical behavior of the rotational motions occurs. At lower T (� 1 K), a full quantum
mechanical treatment must be used, while at higher temperatures (10 K to 20 K) the rotational mo-
tion might be considered fully classical, allowing to apply classical trajectory methods. However,
to get a meaningful estimate of k(T ) at low T without errors coming from numerical artifacts,
cross-section values at energies smaller than 10 meV should be included. Since the energy range is
determining in rate constant calculation using Eqn. 2.16, Langevin rate constants for the reaction
He+ + CH3OCH3 at 10 K and 300 K have been calculated by using the expression already reported
in Chapter 3 (Eqn. 3.31):

kLangevin(T ) =
2πq

4πε0

√
α

µ
= 2.77× 10−9 cm3 s−1 (6.6)

This value has been compared with that obtained integrating the cross-section over the M-B dis-
tribution:

k(T )∗ =

(
1

πµ

)1/2

·
(

2

kBT

)3/2

·
∫ Emax

Emin

σLangevin(E) · E · e−E/kBT dE (6.7)



128 Chapter 6. The Rate Constants and the Astrochemical Network Databases

Table 6.1: Percentage error obtained comparing the real Langevin
rate constant for DME reaction (kL=2.77× 10−9 cm3 s−1)
with the results calculated by integrating over a Maxwell-
Boltzmann distribution the total cross-sections in different en-
ergy ranges. While the upper limit energy has been fixed
at Emax=10 000 meV, the lower limit (Emin) has been varied
from 10 meV to 0.001 meV.

Emin
Error (%)

10 K 300 K

10 meV 100.0 14.4
1 meV 49.1 0.56
0.1 meV 2.8 0.02
0.01 meV 0.1 0.0
0.001 meV 0.0 0.0

where σLangevin(E) = q
√

πα
2ε0E

and all the terms are already defined in Chapter 3. Fixing the

upper limit at Emax=10 000 meV, the error as a function of the lower limit energy (Emin) has been
calculated comparing the k(T )∗ values with the Langevin rate constant for DME reaction and
results are reported in Table 6.1. As shown in Table 6.1, while at 300 K the numerical error on
the calculated rate constant is negligible already starting from 0.1 meV, for k(10 K) it is necessary
to decrease the lower limit energy to 0.01 meV to have a relative error equal to the 0.1% and to
0.001 meV for zero error. Therefore, to avoid numerical errors and assuming that our model is a
very well estimation of reactive behavior of the studied colliding systems, the cross-sections have
been guessed in the energy range 0.01 meV to 10 meV with our developed model. Furthermore, to
estimate the differences on rate constants when cross-sections have different trends in this very low
energy range, an upper and lower limits for the cross-sections have been guessed in the 0.01 meV
to 10 meV energy range for the DME case, by assuming the following two different behaviors for:

1. cross-sections increasing with energy E: a function ∝ E2 has been chosen to represent σ
in the discussed energy range (see results labeled “our model: case 1" and represented by
dotted turquoise line in the right panel of Figure 6.1);

2. increasing cross-sections with decreasing the energyE: in this case, the developed Landau-
Zener-Stückelberg treatment has again been used, but the strength of the already mentioned
H1 coupling has been modulated (using C=7.4 in Eqn. 5.13 of the previous Chapter) by
obtaining calculated cross-section at the upper limit of the experimental determinations
(see results labeled “our model: case 2" and represented by dotted magenta line in the right
panel of Figure 6.1);

With cross-sections estimated by case 1, the resulting rate constant at 10 K is lower by a factor of
0.13 with respect to the one calculated with our model (black continuous line in the right panel
of Figure 6.1), whereas at 300 K the two values coincide. The upper limit rate constant (case 2) is
higher by a factor of 1.5-1.4 in the whole range of temperature. Simulations for MF have not been
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carried out, but we expect that the rate constants can vary also in this case in the same range of
values.

Finally, rate constants k(T ) resulting from our estimates in the temperature range 10 K to
300 K are compared with recommended values from KIDA and UMIST and are shown in Fig-
ure 6.1, where on the left the He+ – DME case is presented, while on the right the He+ – MF case
is reported. The differences between the calculated rate constant and the estimates of KIDA and
UMIST databases are evident.

For DME, we obtain k=5.69× 10−10 cm3 s−1 at 10 K and k=1.41× 10−9 cm3 s−1 at 280 K (at
300 K k=1.44× 10−9 cm3 s−1 ). At 10 K, the KIDA database overestimates by a factor of ∼ 26,
while the UMIST value is ∼ 20 times higher with respect to our calculations. At around 300 K,
the differences decrease between the calculated and estimated rate constants and the KIDA value
becomes ∼ 2 times higher than our value, while the UMIST one is ∼ 1.5 higher.

For MF, we obtain k=7.05× 10−10 cm3 s−1 at 10 K and k=1.44× 10−9 cm3 s−1 at 280 K (at
300 K k=1.48× 10−9 cm3 s−1). At 10 K, KIDA and UMIST recommend values ∼ 21, ∼ 24 times
higher than our value. Around 300 K, KIDA and UMIST overestimate the rate constants respec-
tively by a factor ∼ 2.5, ∼ 2. Therefore, the results show a high overestimation of the database
values, especially at 10 K. In MF case, the calculation of rate constants in the hypothesis of no
orientation of the reactants has been performed, giving, as expected, an overestimation of the rate
constant.

It is worth noting that the estimate of the astrochemical network database rate constants ex-
hibit a negative temperature dependence (anti-Arrhenius behavior), while the calculated ones
show an Arrhenius dependence (i.e. a positive dependence on T) even though the present charge
transfer is an exothermic barrier-less process. This unexpected behaviour as a function of the
temperature has been observed in other systems [165], in which Ar+ and N2

+ ions react with inter-
halogens (ICl, ClF) leading exclusively to dissociative and non-dissociative charge transfer pro-
cesses. Results of Shuman et al. [165] have been interpreted as consequences of the long-range
anisotropic interactions that affect specific surface crossings. In another investigation of rovibra-
tionally selected H2O+ ions reacting with H2, stereodynamic effects related to charge and dipole-
induced multipole anisotropic interactions have been invoked to explain reactivity [166]. Opposite
trends in the rate constants can alternatively be foreseen when long-range interaction potentials
reorient the reacting couple into preferred configurations that are also the most facile for reaction
[167].
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Chapter 7

Conclusions

“I would say I’m sorry
If I thought that it would change your mind
But I know that this time
I have said too much. ”

Boys Don’t Cry - The Cure

The work of this thesis is focused on two ion-neutral molecule reactions that play a significant
role in astrochemistry. The involved species are He+, one of the most relevant interstellar cations,
and dimethyl ether (DME) and methyl formate (MF), two of the most abundant complex organic
molecules, detected in star-forming region and in pre-stellar cores [13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 168, 169, 170, 171]. Since these O-bearing species can act as building blocks for
sugars and other bio-molecules, they can be considered as pre-biotic molecules. For this reason,
the mechanism of their formation, destruction and distribution within our Galaxy is of paramount
importance in the development of theories about the origin of life on Earth [172].

These reactions are an example of charge transfer processes, in which an electron is transferred
from the neutral molecule to the ionic reactant. To the authors’ knowledge, results on these reac-
tions are the first experimental measurements, and the experimental cross-sections and product
branching ratios can be used by theoreticians for achieving better modeling of the abundances of
complex organic molecules in the ISM.

The first result obtained by the guided ion beam experiments demonstrates that, due to the
differences between the respective ionization energies, the reactions of He+ are strongly exoer-
gic, causing the complete fragmentation of the molecular radical cation formed by the electron
exchange. This means that the considered reactions are no simple charge transfers, but also dis-
sociative processes, in which the neutrals are destroyed after the collision with helium cations.
Therefore, relative yields of the ionic products are important data obtained by this thesis work,
casting light on these reactions, until now unknown. Furthermore, the process efficiency is quan-
titatively determined with measures of the absolute cross-section values at thermal and hyper-
thermal energy range.

The theoretical investigations support the experimental evidences, confirming that the charge
transfer reaction between He+ and DME/MF can not produce the parent cation but only fragment
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ions. Indeed, the analysis of the interaction potential energy surfaces reveals that the diabatic reac-
tant surface does not cross the product surface that correlates asymptotically with the ground state
of both CH3OCH3

•+ and HCOOCH3
•+. Thus, an additional result is the discovery that the nascent

molecular radical cation in both reactions is formed in excited states that quickly dissociate. The
reason of this surplus in energy is that the charge exchange process is promoted by the removal of
an inner-valence electron: the instantaneous electronic rearrangement produces an highly excited
state of the molecular radical cation and it causes its explosion into fragments.

Another important aspect of the detailed representation of the PESs is the quantification of
the anisotropy of the interaction, that, in the studied cases, generates important stereo-dynamical
effects. In fact, the two polar molecules are forced to be oriented in a natural way during the
collision by the electric field gradient arising from the interaction with He+. The reaction dynamics
are hence limited to few geometries confined around the most stable configurations of the collision
complex systems (i.e. [He – DME]+ and [He – MF]+). These geometries are consistent, especially at
low collision energies, with the assumption of formation of a "pendular state", which arises from
the transformation of free/hindered molecular rotations in bending motion within the colliding
systems.

Since we find out that, at low collision energies, the most significant contribution to the reac-
tions between He+ and DME/MF molecules comes from the most attractive configurations, also
the electron density distributions of the involved MOs play a further important role in the dy-
namics treatment. In the mentioned most attractive geometries, the symmetry of the MOs are
unfavorable, implying a small and inefficient overlap with the s atomic orbital of the helium ion.
For this reason, the reactions are driven by the Coriolis coupling rather than by the orbital overlap.
Moreover, due to the formation of pendular states, the Coriolis coupling must become progres-
sively weaker at low collision energies. Such insights on the molecular orientation and on the
poor orbital overlaps suggest the surprising paradox that the most attractive geometries are also
the least reactive. This conclusion makes the charge transfer reaction at low collision energy less ef-
ficient than what predicted by a standard Landau-Zener treatment. This behavior is contradictory
to the usual assumption that cross-sections of exothermic barrier-less processes, as ion-molecule
reactions usually are, increase at low collision energy. As demonstrated, the thorough investiga-
tion of the most important factors involved in the proposed reactions is the only way to obtain
calculated cross-sections in excellent agreement with experimental ones.

Furthermore, the slack rise of the calculated cross-section values for decreasing collision ener-
gies is reflected in an Arrhenius behavior (i.e. positive dependence on the temperature) of the so
obtained rate constants. This result is in contrast with the models used by the astrochemical net-
work databases to estimate rate constants. In fact, the KIDA and UMIST databases recommend for
He+ + MF/DME reactions rate constants based on a modification of the Arrhenius equation sup-
ported by the well-known capture models. The resulting rate coefficients show an anti-Arrhenius
behavior (i.e. negative dependence on the temperature) that implies a relevant overestimation (es-
pecially at 10 K) if compared with the results of this thesis. As a consequence, the astrochemical
models, that try to determine accurately the abundances of DME and MF especially in cold inter-
stellar environments, are based on inaccurate assumptions of the rates for dissociation promoted
by He+ ions. Therefore, the immediate update of the network databases with the results of this
work is warmly suggested to improve, at least partially, the astrochemical models.

The absence of experimental data on the reaction between He+ and DME/MF suggests that the
dissociative charge exchange processes promoted by the helium cation are largely overlooked by
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the astrochemical databases. Therefore, this thesis represents a starting point to extend the study to
other COMs such as methanol CH3OH, ethanol C2H5OH (isomer of DME), acetic acid CH3COOH
and glycolaldehyde CH2OHCHO (isomers of MF), acetaldehyde CH3COH and ethylene oxide
(c – C2H4O), acetone (CH3COCH3) and propanal (C2H5COH).
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Appendix A

The multiple collisions

In any GIB-MS experiment, there is the possibility that the reactant ion can undergo more than
one collision with the neutral target or that a product of the first collision can undergo a collision
with the neutral. In fact, a sufficient neutral target gas pressure is necessary to be able to detect
the weaker single collision channels with sufficient statistics in a finite experimental run time. In-
evitably, there is then the possibility that reactive ions formed in the major channels can undergo
secondary reactions. For most early apparatuses, the experiments were not particularly sensitive
to these phenomenon. By improving of the sensitivity, these processes were more often observed
and it has been demonstrated that they could be characterized by their pressure dependence [59].
The prediction of the absolute intensity of ions coming from multiple collisions depends on the
cross-sections for these higher order reactions [61]. In general, it is not possible to assume that
the cross-sections for subsequent collisions and reactions are invariant. Collisions alter the kinetic
energy of the ions, which will affect the cross-section and changes in the subsequent reaction ther-
mochemistry can drastically influence the cross-section. [61]

If the cross-section for subsequent collisions is assumed to be invariant, then the relative in-
tensities of ions undergoing x or more collisions are given by the following equation:

Ix = IR · [1− exp(−ρ · σrxn · l)]x (A.1)

where IR is the intensity of the reactant ion, ρ is the density of the neutral target and l the effective
length of the scattering cell. The relative intensity of ions that have undergone exactly x number
of collisions is Ix − Ix+1. In the thin-target limit, Eqn. A.1 is simplified to:

Ix = IR · (ρ · σrxn · l)x (A.2)

Eqn. A.2 is generally not accurate for larger values of ρσrxnl.
When planning GIB-MS experiments, appropriate pressure values in the scattering cell should

be used so that the weaker single collision channels are visible and secondary reactions are kept
to a minimum. However, because it is impossible to completely remove the effects of secondary
collisions using experimental methods, cross-sections corresponding to single-collision conditions
could be acquired by linear extrapolating to zero pressure or by adding the cross-section for the
secondary products to those of the primary product [59].

According to Eqn. A.2, the cross-section as a function of the pressure will have a linear trend
when it is due to a primary process, while it will have a quadratic dependence when the reactant
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collides twice. These different behaviors of product trends are shown in Figure A.1, in which
the protonated DME (HO(CH3)2

+ (open blue circles)) is formed by secondary collisions of the
most abundant primary products (HCO+ (closed red squares)) with DME, in the reaction of He+ +
O(CH3)2 (DME). In fact, the protonated DME yield shows a quadratic dependence from density, a
clear indication of secondary collision.
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Figure A.1: Ion intensities (IP ) of HCO+ (closed red squares),
HO(CH3)2

+ (open blue circles) relative to the ion intensity
(I0 = IR) for reaction of He+ + O(CH3)2 (DME) at a collision
energy in the CM frame of about 1.6 eV as a function of the
DME reactant density. The lines show linear and quadratic
models of the density dependencies.

Apparently, intensity of secondary collision products should be lower than primary collision
ions in the whole range of studied neutral pressures. This assumption has been called into ques-
tion during the calibration of the instrument with the reference reaction Ar+ + CH4 [173, 174]. In
this case, as the mass spectra show in Figure A.3 an unusual relative abundance between primary
and secondary products, CH3

+ (15 m/z) and C2H5
+ (29 m/z), has been observed . More specifically,

the primary collision reaction that leads to methyl ion is:

Ar+ + CH4 −−→ Ar + CH3
+ + H (A.3)

while C2H5
+ might result from the reaction of CH3

+ with methane via a highly efficient process
(k in the range 1.0× 10−9 cm3molecule−1s−1 to 1.2× 10−9 cm3molecule−1s−1 at 300 K [175, 176,
177, 178, 179, 180, 181, 182, 183]):

CH3
+ + CH4 −−→ C2H5

+ + H2 (A.4)
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Furthermore, while in Tosi et al. [173, 174] a small amount (15%) of CH2
•+ at m/z 14 is detected, in

our experiment the ionic product CH2
•+ is not observed. The differences in BRs can be explained

in terms of internal energy of the produced methane radical cation [184, 174]. In fact, as reported
in the breakdown curves for methane (IE=12.61(1)eV [185], Figure A.2, adapted from [184, 174]),
obtained by using a threshold photoelectron-photoion coincidence technique in the photon energy
range13.8-16.4 eV [184], the fragmentation pattern of the molecular ion is related to its internal
energy. Figure A.2 shows that only CH4

•+ ions are produced if the nascent ion is formed with
an internal energy below 14.3 eV, while above this threshold CH3

+ appears and CH4
•+ begin to

decrease. The CH2
•+ ions start to appear at a threshold energy ∼ 15.2eV and their branching ratio

increases as the internal energy of CH4
•+ increases. Coming back to Ar+ experiments, the BRs of

the Ar+ + CH4 suggest that in Tosi et al. experiment the the internal energy of methane radical
cation is ∼ 2.7 eV (corresponding to have 85% of CH3

+ and 15% of CH2
•+ in the photo-ionization

breakdown diagram as shown by the red line in Figure A.2), whereas in our experiment the methyl
radical cation is formed with a lower internal energy (∼1.9-2.4 eV energy range corresponding to
have 100% of CH3

+as shown by the green area in Figure A.2).

Tosi et al. 
experiment

our 
experiment

Figure A.2: Breakdown curves (Figure A.2, adapted from [184, 174]) in
the 13.8-16.4 eV energy range for methane (IE=12.61(1)eV
[185]), obtained by using a threshold photoelectron-
photoion coincidence technique [184].

The behavior of the secondary product at 29 m/z is uncommon: it is more abundant than the
primary products in the studied methane pressure range and it shows a linear dependence on the
neutral density, as well. Verified the absence of impurities at same m/z value, it has been tried to
explain this unusual behavior modeling the product formation and destruction processes. Since
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Figure A.3: Mass spectra of selected Ar+ ions reacting with CH4 at differ-
ent pressures inside the reaction octopole: 8.0× 10−7 mbar
(black), 2.2× 10−6 mbar (red) and 5.3× 10−6 mbar (blue).
The signal intensity of the Ar+ ion (100 %) is not shown.

the reactive system is simplified to:

R + N→ P1

P1 + N→ P2

with R being the ion reagent intensity, N the neutral target intensity, P1 and P2 the primary and
secondary product intensities, and on the basis of the Lambert-Beer Law, the following initial con-
ditions have been fixed:

• dR
dx

= −σ1NR

• dP1
dx

= − dR
dx
− dP2

dx

• dP2
dx

= σ2NP1

• d[R+P1+P2]
dx

= −σ1NR+ σ1NR− σ2NP1 + σ2NP1 = 0 (Q.E.F.)
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The depletion of the ionic reactant is obtained integrating the first expression:∫ R

R0

dR̄

R̄
= −σ1N

∫ x

0

dx̄

ln(R̄)
∣∣∣R
R0

= −σ1Nx̄
∣∣∣x
0

ln(
R

R0
) = −σ1Nx

from which is possible to obtain the following equation equivalent to Eqn. 2.7 in Sec. 2.3.4 to
calculate the ionic reactant intensity after the first collision as a function of the effective length of
the scattering cell x:

R(x) = R0exp(−σ1Nx) (A.5)

For the first collision product (P1) we have that:

dP̄1

dx̄
= σ1NR(x)− σ2NP̄1

(A.6)

considering Eqn. A.5, it is possible to expand in:

dP̄1

dx̄
+ σ2NP̄1 = σ1NR0exp(−σ1Nx̄)

(A.7)

To resolve the ODE (Ordinary Differential Equation) it is necessary to multiply both member for
eσ2Nx̄:

exp(σ2Nx̄)
dP̄1

dx̄
+ σ2Nexp(σ2Nx̄)P̄1 = σ1NR0exp(σ2Nx̄)exp(−σ1Nx̄)

d

dx̄

[
exp(σ2Nx̄)P̄1

]
= σ1NR0exp [Nx̄(σ2 − σ1)]

(A.8)

Integrating, we obtain:

exp(σ2Nx)P1 = σ1NR0

∫ x

0

exp [Nx̄(σ2 − σ1)] dx̄

P1 = σ1��NR0exp(−σ2Nx) · exp [N(σ2 − σ1)x]− 1

��N(σ2 − σ1)

P1 = R0
σ1

σ2 − σ1
· [exp(���σ2Nx− σ1Nx−���σ2Nx)− exp(−σ2Nx)]

and finally,

P1(x) = R0
σ1

σ2 − σ1
· [exp(−σ1Nx)− exp(−σ2Nx)] (A.9)
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To check the truthfulness of this expression, it is considered the special case in which secondary
collisions are avoid (σ2 = 0): the Eqn. A.9 must be equal to Eqn. 2.9.

P1(x) = R0
σ1

0− σ1
· [exp(−σ1Nx)− exp(0)]

P1(x) = R0 −��
σ1

��σ1
· [exp(−σ1Nx)− 1]

P1(x) = R0 [(1− exp(−σ1Nx)] (Q.E.D.)

For P2 we have:

dP̄2

dx̄
= σ2NP1(x)

dP̄2

dx̄
= σ2NR0

σ1

σ2 − σ1
· [exp(−σ1Nx̄)− exp(−σ2Nx̄)]∫ P2

0

dP̄2 = σ2NR0
σ1

σ2 − σ1
·
[∫ x

0

exp(−σ1Nx̄)dx̄−
∫ x

0

exp(−σ2Nx̄)dx̄

]
=

=��NR0
��σ1ZZσ2

σ2 − σ1
·
{
− 1

��Nσ1

[exp(−σ1Nx)− 1] +
1

��NZZσ2
[exp(−σ2Nx)− 1]

}
and rather,

P2 = R0
σ1

σ2 − σ1
[exp(−σ2Nx)− 1]−R0

σ2

σ2 − σ1
[exp(−σ1Nx)− 1]

from which we obtain the expression for P2(x):

P2(x) =
R0

σ2 − σ1
[σ2 − σ1 + σ1exp(−σ2Nx)− σ2exp(−σ1Nx)]

If σ2 = 0, P2(x) should be equal to 0:

P2(x) =
R0

0− σ1
[0− σ1 + σ1exp(−0 ·Nx)− 0 · exp(−σ1Nx)]

P2(x) = −R0

σ1
[−σ1 + σ1]

P2(x) = 0 (Q.E.D.)

In Figure A.4, the comparison between the experimental data (blue diamonds and orange
squares for CH3

+ and C2H5
+) as a function of the neutral density and the modeled ones is shown.

Having reasonable values of R0=1.9× 105, σ1=27 Å
2

and σ2=23 Å
2
, both the linear trend and the

higher signal of the secondary product C2H5
+ with respect to the one of CH3

+ are well modeled
(continuous blue and orange lines) assuming that lσ2 > lσ1 (9 and 8 cm). The difference in effective
length of the scattering cell might mean that the kinetic energy of the primary and secondary
collision products is quite different causing different residing times in the scattering cell. Despite
the premises, the modeled relative intensity of C2H5

+ is underestimated.
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Figure A.4: Experimental CH3
+ and C2H5

+ yields as a function of the
neutral density are reported with blue diamonds and orange
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R0=1.9× 105, σ1=27 Å

2
, σ2=23 Å

2
, lσ2=9 cm and lσ1=8 cm.
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Appendix B

The M06-2X and the
cc-pVTZ/cc-pVQZ

For the work of this thesis, the M06-2X [186, 187, 188, 189] functional has been used.
Briefly, the DFT is a quantum theory formulated by Kohn and Sham in 1965 [190], in which

the many-body effect of electron correlation is modelled by a function of the electron density [191],
ρ(r), that can be also defined as probability density, i.e. the probability to find one of the any
N electrons of the system in a volume element dr. The electron density has several important
properties: [190, 192]

• ρ(r) is always a positive physical quantity;

• it depends only on the spatial variables;

• ρ(r)→ 0 for r →∞;

• its integral defines the N number of electrons;

• the cusps in the density define the position of the nuclei and their heights the nuclear
charges;

• it is a physical observable and it can be obtained by X-Ray diffraction experiments.

The main impact of the DFT method, illustrated by the first Hohenberg-Kohn theorem [193], is to
establish a connection between the energy of a system and its electron density, declaring that the
first one is functional 1 of the second one. From this theorem and from the exact electron density,
all the properties of the ground state of a system can be obtained.

For a many body system under the BO approximation, the time-independent Schrödinger
equation can be written as:

ĤΨ =
[
T̂ + V̂ + Û

]
= EΨ (B.1)

1A function is a prescription for producing a number from a set of variables, e.g. the coordinates
of a system. A functional is a prescription for producing a number from a function, which depends
on variables. Therefore, we can define the wave function and the electron density as functions,
while the energy depending on the wave function or on the electron density is a functional. The
functional is denoted with F [f ]. [191]
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where Ĥ is the Hamiltonian, E the total energy, T̂ the kinetic energy, V̂ the potential energy of
the external field and Û the electron-electron interaction energy (for a detailed description of the
Hamiltonian and the BO approximation see Sec. 3.1.2). In DFT, the Ψ0 of the ground state is
defined as functional of the ground state density ρ(r)0:

Ψ0 = Ψ [ρ0] (B.2)

So, for the ground state, the electron energy E[ρ0] can be expressed as:

E0 = E[ρ] = 〈Ψ [ρ0] |T̂ + V̂ + Û |Ψ [ρ0]〉 (B.3)

The functionals T [ρ] and U [ρ] are called universal functionals, while V [ρ] is the non-universal func-
tional, because it depends on the specific system of interest. Therefore, working on a specific sys-
tem, V [ρ] is known and the problem can be solved minimizing the functional E[ρ], having reliable
expressions for T [ρ] and U [ρ].

At this point, the suggestion of Kohn and Sham [190] was to consider a reference system, in
which the N electrons are non-interacting and exposed to the same external potential. The energy
functional becomes:

Es[ρ] = 〈Ψs [ρ] |T̂s + V̂s|Ψs [ρ]〉 (B.4)

where T̂s is the kinetic energy operator of the non-interacting system and V̂s is a external effective
potential in which the particles move. The relation ρs(r) = ρ(r) is valid only if V̂s = V̂ +Ĵ+T̂−T̂s.
In general, the DFT energy expression can be re-written as:

EDFT [ρ] = Ts[ρ] + V [ρ] + J [ρ] + Exc[ρ] (B.5)

where Ts[ρ] is the kinetic energy of non-interacting electrons, J [ρ] is the classical Coulomb po-
tential energy and Exc[ρ] is the exchange correlation energy, due to interacting electrons. Exc can
be represented as sum of kinetic energy deviation from the reference system (∆T [ρ], kinetic cor-
relation energy of the electrons) and the electron-electron interaction deviation from the classical
system (∆U [ρ], potential exchange-correlation energy):

Exc[ρ] = ∆T [ρ] + ∆U [ρ] = (T [ρ]− Ts[ρ]) + (U [ρ]− J [ρ]) (B.6)

The challenge of Kohn-Shame theory is to approximate formulations of the unknown Exc
term. From the different forms of that term, it is possible to obtain:

• Local Density Approximation (LDA), in which it is assumed that the density can be treated
locally as a uniform gas. In general, if α and β spin densities are not equal, it is used the
Local Spin Density Approximation (LSDA).

• Generalized Gradient Approximation (GGA): to improve the LSDA method is necessary to
consider a non-uniform electron gas; for this reason, it is requested that the Exc does not
depend only on the electron density, but also on its derivative, including the first derivative
as variable. The GGA methods are non-local methods.

• meta-Generalized Gradient Approximation (m-GGA): the Exc depends on higher order deriva-
tives of the electron density.
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Table B.1: Mean Signed Error (MSE) and Mean Unsigned Error (MUE) in
kcal mol−1 for ionisation potential (IP), electron affinity (EA),
proton affinity (PA) and in kcal mol−1 per bond (PB) for atom-
ization energy (AE). Average (DFT) is the average of several
DFT methods, while Average (All) is the average of DFT and
HF methods reported in the original table [189].

Method AE IP EA PA

MSEPB MUEPB MSE MUE MSE MUE MSE MUE

M06-2X −0.18 0.40 1.06 2.54 1.30 2.07 −0.19 1.75
Average (DFT) −0.47 1.32 1.45 3.62 1.24 2.85 0.93 1.83
Average (All) −2.27 3.05 0.34 4.46 2.76 4.27 1.04 1.91

• hybrid-Generalized Gradient Approximation (h-GGA): the Exc is written as a combination of
LSDA and a gradient correction term.

The functional used for the work reported in this thesis (the M06-2X) is one of the hybrid-
GGA methods developed by Zhao and Thrular in Minnesota since 2005: all the functionals have
the same name form, i.e. Myz or Myz-suffix, in which M indicates Minnesota or meta and the yz
indicates the year (20yz) [194]. The M06-2X depends on three variables:

• the spin density (ρσ);

• the gradient of the spin density (xσ = |∆ρσ|
ρ
3/4
σ

);

• the density of spin kinetic energy (τσ = 1
2

∑Occ
i | 5Ψiσ|2).

The exchange- correlation energy is written as:

Exc =
X

100
EHFx + (1− X

100
)EDFTx + EDFTc (B.7)

where EHFx is the non-local exchange HF energy, X is the percentage of the HF exchange in the
hybrid functional, EDFTx and EDFTc are the exchange and correlation DFT energies. In M06-2X,
the exchange percentage value X is 54% [194].

From Mean Signed Error (MSE) and Mean Unsigned Error (MUE) in kcal mol−1 for ionisation
potential (IP), electron affinity (EA), proton affinity (PA) and in kcal mol−1 per bond (PB) for at-
omization energy (AE) (reported in Table B.1), this functional shows an improvement of ∼ 9-13%
with respect to the average of the other DFT functionals [186, 187, 188, 189].

For the DFT calculations of this thesis work, the cc-pVTZ and cc-pVQZ (correlation consistent
polarized Valence Triple/Quadrupole Zeta) basis sets have been used. This type of basis set was pro-
posed by Dunning and co-workers [195, 196]. The acronym cc (correlation consistent) refers to the
correlation energy of the valence electrons: the functions of these basis sets include a contribution
similar to that due to correlation energy, independent of the function type. This type of basis set
is, therefore, geared towards recovering the correlation energy of the valence electrons and it is
designed so that functions that contribute similar amounts of correlation energy are included at
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the same stage. The s- and p- basis sets exponents are optimized at HF level for the atoms, while
the polarization exponents are optimized at the CISD level (Configuration Interaction including
single and double excitations from occupied to unoccupied orbitals). The V refers to the fact that
only valence orbital functions, that are involved in molecular bond, are multiplied, neglecting the
core orbitals, essentially independent of the chemical environment (split valence basis). Finally, the
letter x indicates the different sizes in terms of final number of contracted functions.



147

Appendix C

Classical trajectory:
The He+ + DME case

The strong anisotropic non-covalent interaction between He+ and a polar species, such as DME,
induces a pronounced stereo-chemical effect in the ion-molecule reaction (as already explained in
detail in Chapter 5). Thus, the charge transfer process takes place at low collision energy only from
selected configurations confined in the region where the interaction is highly attractive (the O-side
for the DME molecule). To have a further evidence of this phenomenon, the classical trajectory
for the reaction He+ + DME have been studied sampling the position of the He+ in proximity of
the DME molecule. Since for the mentioned collision system the rotational motion of the target
molecule has to be taken into account together with the translational motion of the ion, the study
has been carried out using a modified velocity Verlet algorithm [197] that improves the velocity
Verlet with considering the rotational motion. The work has been performed in collaboration with
Dr. G. Garberoglio, senior researcher at the FBK-ECT*-LISC center in Trento.

Before explaining this upgraded method, it results convenient to report the "normal" velocity
Verlet algorithm, formulated to solve the Newton equation of motions with assigned positions
(−→x (t)) and velocities (−→v (t)) at a certain time t0 (for the sake of simplicity the vector symbol will
be omitted from now). In a interacting system in which is active a potential V (x), the acceleration
is expressed as a position-dependent force term:

d2x(t)

t2
= a(t) =

1

m
F (x(t)) = − 1

m
∇V (x(t)) (C.1)

The steps to perform the velocity Verlet algorithm are:

1. Advance the velocity at a time t+ δt/2:

v(t+ δt/2) = v(t) +
1

2m
F (t)δt (C.2)

2. Advance the positions at time t+ δt:

x(t+ δt) = x(t) + v(t+ δt/2)δt (C.3)
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3. Calculate the new force at time t+ δt:

F (t+ δt) = −∇V (x(t+ δt)) (C.4)

4. Complete the velocity move at time t+ δt:

v(t+ δt) = v(t+ δt/2) +
1

2m
F (t+ δt)δt (C.5)

As said above, the modified velocity Verlet [197] includes the rotations of a rigid body (in
this case the DME molecule), target of a body that moves with a translational motion (the ion).
This method involves the use of quaternions (denoted by qk with k =0 · · · 3) for representing
orientations and rotations of the rigid molecule in the three dimension 1. Therefore, the rotation
matrix that allows to transform the coordinates of a vector from the laboratory reference frame to
the molecular frame is the following:

E(q) =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (C.6)

Consequently, the equation of motion for the quaternions is:

q̇ =


q̇0
q̇1
q̇2
q̇3

 =
1

2


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0




0
wmx
wmy
wmz

 = Q(q)Wm (C.7)

where wmi is the i-component of the angular velocity in the molecular frame (indicated by the
superscript m, while from now the laboratory frame is indicated by the superscript l), that can be
easily evaluated by the angular momentum of the rigid molecule L and the rotation matrix C.6:

wm = I−1E(q)Ll (C.8)

I is the inertia tensor expressed in the molecular frame, where it is diagonal.
Given the basis for the rotational motion, the modified velocity Verlet algorithm evolves as

follows [197]:

1. The first step of the velocity Verlet for the center of mass coordinates have to be performed
(Eqn. C.2);

2. The angular velocities and the quaternion derivative at time t (using Eqn. C.8 and Eqn. C.7,
respectively) have to be calculated:

q̇(t) =
1

2
Q(q(t))

[
I−1E(q(t))L(t)

]
=

1

2
Q(q(t))wm(t) (C.9)

1Quaternions are preferred with respect to the Euler angles (commonly used to describe the
angular velocities of a rigid body). In fact, the representation of a rotation matrix with Euler
angles can lead to the loss of one degree of freedom in a three dimensional (a.k.a. gimbal lock),
causing serious effects in any numerical integration.
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3. Evaluate the quaternions at mid-step (t+ δt/2):

q(t+ δt/2) = q(t) + q̇(t)δt/2 (C.10)

4. Advance the angular momentum at mid-step using the torques N 2 at time t:

L(t+ δt/2) = L(t) +N(t)δt/2 (C.11)

5. Calculate the angular velocity and quaternion derivative at mid-step (t+ δt/2):

wm(t+ δt/2) = I−1E(q(t+ δt/2))L(t+ δt/2) (C.12)

q̇(t+ δt/2) =
1

2
Q(q(t+ δt/2))wm(t+ δt/2) (C.13)

6. From the quaternion derivative calculated in the previous step, advance quaternions at time
t+ δt:

q(t+ δt) = q(t) + q̇(t+ δt/2)δt (C.14)

7. Advance the velocity and angular momentum from the forces and torques at time t+ δt.

Therefore, to perform the algorithm for the specific He+ + DME system the following input
are necessary:

• The He+ position in Cartesian coordinates with respect to the CM of the molecule, far
enough so that the interaction potential is negligible (e.g. [50.0 Å 0 0]).

• The He+ velocity, of which only the x-component has been considered. The approximation
is allowed since the molecule rotates freely with a random initial position. The translation
depends on the collision energy (ECM ) of the ions as the following expression shows:

vx =

√
2ECM
mHe

(C.15)

where mHe is the mass of helium. Since the ECM of the calculated cross-sections is in the
range from 0.010 to 6 eV, vx ranges from ∼ 6.95× 102 to 1.70× 104 m s−1.

• Position of the CM and translational velocity of DME that are set equal to zero;

• The Cartesian coordinates reported in Chapter 5 are used to set the position of the atoms of
DME with respect the CM of the molecule (molecular frame): O

Cα
Cβ

 =

 0 −0.510 0
1.175 0.272 0
−1.175 0.272 0

 (C.16)

• To calculate the acceleration and therefore the force in Eqn. C.1, it is necessary to know
the potential of interaction for the examined system. Obviously, in this case the potential
representation for the He+ + DME reported in detail in Chapter 5 has been used.

2Torque is defined as the cross product of the distance vector and the force vector.
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• The inertia tensor (diagonal in the molecular frame) has been calculated as follows:

I =

Ixx 0 0
0 Iyy 0
0 0 0Izz

 =

=

6.38 0 0
0 41.42 0
0 0 47.80

 (C.17)

where Ixx = mO(dyO)2 + 2mCH3(dyCH3
)2, Iyy = 2mCH3(dxCH3

)2 and Izz = mO(dyO)2 +

mCH3

[
(dxCH3

)2 + (dyCH3
)2
]
. diO and diCH3

are the distances between the O atom/methyl
groups with respect to the CM of the molecule, and mO and mCH3 are the masses of the O
atom and the methyl groups, respectively.

• The quaternions that are chosen random by using the MT19937 generator developed by M.
Matsumoto and T. Nishimura [198]. Constraint is that the valid values are contained in a
sphere of radius equal to 1.

• The angular momentum of the molecule that depends on its rotational temperature (about
300 K). The Gaussian distribution of random variables generated by MT19937 has been
used. The function has mean zero and standard deviation equal to the angular momentum
(σL) at room temperature:

σL =
√
kBTIi

where kB is the Boltzmann’s constant, T the temperature and I is the moment of inertia.

• the Verlet step has been chosen equal to 0.01: from this value the calculated trajectories
converge. Since the fixed natural units are the mass (m=1 uma), the energy (E=1 eV) and
the distance (r=1 Å), it results that:

t =

√
m · r2

E

from which the typical time of the Verlet algorithm is 10−14 s.

Since the final aim of the trajectory study is to demonstrate the strong stereo-dynamical effect
at low energy, it has been decided to sample the position of He+ at 2.3 Å with respect to the CM
at the lowest (0.010 eV) and highest (6 eV) energy to verify if the ion approaches the molecule
in preferred directions. The 2.3 Å distance has been chosen to include the potential well on the
O-side and the number of simulated trajectories for each energy to have an acceptable statistic is
one thousand.

Results are shown in Figure C.1 and they confirm (at least partially) our hypothesis. The three
2D-panels (from the left to the right: xz, xy and yz planes) of Figure C.1 show where He+ hits the
"imaginary" sphere of 2.3 Å radius at ECM=0.010 eV (black dots) and at ECM=6 eV (red dots).
It is clear that at 0.010 eV the ion prefers to hit the area characterized by negative values of the
y-axes (O-side of the molecule), while it avoids the methyl-side (characterized by positive values
of the y-axes) as the high concentration of black dots demonstrates in the central and right panels
of Figure C.1. The difference between the low and high energy results is significant: in fact, the
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red dots are more distributed around the molecule (except for the repulsive area occupied by the
methyl) than the black ones. This means that at high energy the ion-molecule system has not
enough time to align and to approach along the most attractive geometry. For these reasons, it
is evident (left and right panels) that at high energy a wider reactive cone should be consider in
order to take into account the differences between the low and high energy cases. Furthermore, it
is interesting to note that our cone (qualitatively estimated as reported in Chapter 5 and shown in
Figure C.1 with green diamonds) is in good agreement with the one estimated with the trajectory
method at 0.010 eV, even if the latter is quite wider and have a less tapered shape that the former
3. This comparison suggests the power of the trajectory method for estimating the reactive cone
and it represents an interesting starting point for further developments of the "Improved Landau-
Zener method" reported in this doctoral thesis.

3It is worth noting that in our model we approximated using only the external points of the
cone: since the solid angle should also taken into account in the weighted average of the cross-
section, the σ calculated along the perimeter of the cone would be heavier in the average than the
internal ones.
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