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Basic notation

b compactly contained
⊕ direct sum of vector spaces
◦ composition of functions
RN N-dimensional Euclidean space
∂xif partial derivative of the function f with respect to xi
LN Lebesgue measure in RN

G a Carnot group
Hk k-th Heisenberg group
g Lie algebra of G
dcc Carnot-Carathéodory distance
d invariant distance on G
| · | Euclidean norm in RN

‖ · ‖ homogeneous norm in a Carnot group
χE characteristic function of a measurable set E ⊂ RN∫

average integral
µ E restriction of a measure µ to a set E
γ̇ time derivative of a curve γ
[X, Y ] commutator of vector fields X, Y ∈ g
τP left translation by an element P ∈ G
δλ homogeneous dilations in G
q homogeneous dimension of G
TM , TPM tangent bundle to a manifold M and tangent space at P
HM ,HPM horizontal subbundle to M and horizontal subspace at P
∇f Euclidean gradient of f
∇Gf horizontal gradient of f
νS(P ) horizontal normal to S at P ∈ S
Dφφ intrinsic gradient of φ
dφA intrinsic differential of φ at A
div(φ) divergence of φ
divG(φ) horizontal divergence of φ
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spt(f) support of f
Ck(Ω) continuously k-differentiable real functions in Ω
Ck
c (Ω) functions in Ck(Ω) with compact support in Ω

C1
G(Ω) continuously ∇G-differentiable functions in Ω

BV(Ω) space of functions with bounded variation in Ω
BVG(Ω) space of functions with bounded G-variation in Ω
|∂E|G G-perimeter measure of a measurable set E
∂∗GE reduced boundary of a measurable set E
Ht
e t-dimensional Hausdorff measure in RN in the Euclidean metric
Ht t-dimensional Hausdorff measure induced by invariant metric d
Ste t-dimensional spherical Hausdorff measure in RN in the Euclidean metric
St t-dimensional spherical Hausdorff measure induced by invariant metric d
U(P, r) open ball associated with d, centered at P having radius r
B(P, r) closed ball associated with d, centered at P having radius r
Mk×m the set of matrices with k rows and m columns
Im the unit matrix of order m
‖B‖ operator norm of a matrix B



Introduction

In this thesis we deal with a particular class of sub-Riemannian manifold, i.e. Carnot groups.
A sub-Riemannian manifold is defined as a manifold M of dimension N together with a

distribution D of m-planes (m ≤ N) and a Riemannian metric on D. From this structure,
a distance on M is derived as follows: the length of an absolutely continuous path tangent
to D is defined via the Riemannian metric on D, and the distance of two points of M is in
turn defined as the infimum of the lengths of absolutely continuous paths that are tangent
to D and join these two points.

Sub-Riemannian Geometry has been a research domain for many years, with motivations
and ramifications in several parts of pure and applied mathematics, namely: Control Theory
[18], [99]; Riemannian Geometry (of which Sub-Riemannian Geometry constitutes a natural
generalization); Analysis of hypoelliptic operators [55], [91].

We should mention also here Sobolev spaces theory and its connections with Poincaré-
type inequalities [20], [48], [57]; the theory of quasiconformal mappings [60], [61]; the theory
of convex functions [28], [37], [88], [100]; the theory of harmonic analysis on the Heisenberg
group [101], [56]. But this list of subjects is surely incomplete.

Now we recall the definition of Carnot-Carathéodory (CC) space. A CC space is an open
subset Ω ⊂ RN (or, more generally, a manifold) endowed with a family X = (X1, . . . , Xm)
of vector fields such that every two points P,Q ∈ Ω can be joined, for some T > 0, by an
absolutely continuous curve γ : [0, T ]→ Ω such that

γ̇(t) =
m∑
j=1

hj(t)Xj(γ(t)).

We call subunit such a curve and, according to the terminology in [50] and [83], we define
the Carnot-Carathéodory distance between P and Q as

dcc(P,Q) = inf
{
T ≥ 0 : there is a subunit curve γ : [0, T ]→ RN with γ(0) = P, γ(T ) = Q

}
.

The problem of connecting points by means of subunit curves was studied by Rashevsky
in [86] and Chow in [26]. They independently proved that a sufficient condition for connecti-
vity is that the distribution of subspaces Lie generating the whole tangent space at every
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point of Ω. This condition has subsequently played a key role in several branches of Ma-
thematics (e.g. Nonholonomic Mechanics, Subelliptic PDE’s and Optimal Control Theory),
under the different names of “Hörmander condition”, “total nonholonomicity”, “bracket
generating condition”, “Lie algebra rank condition” and “Chow condition”.

Hence, the Chow condition ensures dcc is a finite distance.
In particular, if the vector fields X1, . . . , Xm define a smooth distribution on Ω that

satisfy the Chow condition the resulting CC space is a sub-Riemmaninan space.
Among CC spaces, a fundamental role is played by Carnot groups. They seem to owe their

name to a paper by Carathéodory [22] (related to a mathematical model of thermodynamics)
dated 1909. The same denomination was then used in the school of Gromov [49] and it
is commonly used nowadays. In the literature, the name “stratified group” is also used,
following the terminology of [36].

A Carnot group G is a connected and simply connected nilpotent Lie group. Through
exponential coordinates, we can identify G with RN endowed with the group operation ·
given by the Baker-Campbell-Hausdorff formula. Classical references to the Carnot groups
are [35], [83], [104], [103], [17] and to the Baker-Campbell-Hausdorff formula are [52], [102].

If g denotes the Lie algebra of all left invariant first order differential operators on G,
then g admits a stratification g = g1 ⊕ g2 ⊕ · · · ⊕ gκ where κ is called the step of G. When
κ = 1, G is isomorphic to (RN ,+) and this is the only commutative Carnot group.

The stratification has the further property that the entire Lie algebra g is generated by
its first layer g1, the so-called horizontal layer, that is

(1)

{
[g1, gi−1] = gi if 2 ≤ i ≤ κ
[g1, gκ] = {0}

where [g1, gi] is the subspaces of g generated by the commutators [X, Y ] with X ∈ g1 and
Y ∈ gi. We remark that (1) guarantees that any basis of g1 satisfies the Chow condition and
so (G, dcc) is a metric space.

The stratification of g induces, through the exponential map, a family of non isotropic
dilations δλ for λ > 0. These maps δλ, called intrinsic dilations, are one of the most important
features of the group. They are compatible with the cc-metric in the sense that

dcc(δλP, δλQ) = λdcc(P,Q), for all P,Q ∈ G, λ > 0

and well behave with respect to the group operation δλ(P ·Q) = δλP · δλQ.
The intrinsic left translations of G are another important family of transformations of G:

for any P ∈ G the left translation τP : G→ G is defined as τPQ := P ·Q, for all Q ∈ G.
It is useful to consider on G a homogeneous norm, i.e. a nonnegative function P → ‖P‖

on G such that

1. ‖P‖ = 0 if and only if P = 0.
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2. ‖δλP‖ = λ‖P‖ for all P ∈ G and λ > 0.

3. ‖P ·Q‖ ≤ ‖P‖+ ‖Q‖ for all P,Q ∈ G.

Given any homogeneous norm ‖ · ‖, it is possible to introduce a distance in G given by

d(P,Q) = d(P−1Q, 0) = ‖P−1Q‖

for all P,Q ∈ G. This distance d is equivalent to dcc.
The importance of Carnot groups became evident in [76], where it was proved that a

suitable blow-up limit of a sub-Riemannian manifold at a generic point is a Carnot group.
In other words, Carnot groups can be seen [11] as the natural “tangent spaces” to sub-
Riemannian manifolds, and therefore can be considered as local models of general sub-
Riemannian manifolds. Therefore there is a comparison between sub-Riemannian Geometry
and Riemannian Geometry: Carnot groups are to sub-Riemannian manifolds what Euclidean
spaces are to Riemannian manifolds.

All these features could remind us of the familiar Euclidean structure, but as soon as we
consider non Abelian groups, we see that in many respects we are dealing with something
that is closer to the fractal geometry. We stress explicitly that, in general, cc-distances are
not Euclidean at any scale, and hence not Riemannian (see [93]). Indeed, there are no (even
local) bilipschitz maps from a general non commutative Carnot group G to Euclidean spaces.

Moreover, in the non Abelian case κ > 1 the Hausdorff dimension of G with respect to
the cc-distance is

q :=
κ∑
i=1

i dimgi

and q is always greater than the topological dimension of (G, dcc) which is equal to that of
G endowed the Euclidean distance. This is a typical feature of fractal objects.

A sub-Riemannian structure is defined on G as follows: we call horizontal bundle HG
the subbundle of the tangent bundle TG that is spanned by the left invariant vector fields
X1, . . . , Xm belonging to g1; the fibers of HG are

HGP = span{X1(P ), . . . , Xm(P )}, P ∈ G.

Then we consider G endowing each fiber of HG with a scalar product 〈·, ·〉P and a norm | · |P
making the basis X1(P ), . . . , Xm(P ) an orthonormal basis. That is if v =

∑m
i=1(v1)iXi(P )

and w =
∑m

i=1(w1)iXi(P ) are in HG, then 〈v, w〉P :=
∑m

i=1(v1)i(w1)i and |v|2P := 〈v, v〉P .
We will write, with abuse of notation, 〈·, ·〉 meaning 〈·, ·〉P and | · | meaning | · |P .

The sections of HG are called horizontal sections, a vector of HGP is an horizontal vector
while any vector in TGP that is not horizontal is a vertical vector. Each horizontal section
φ defined on an open set Ω ⊂ G can be written as φ =

∑m1

i=1 φiXi, where its coordinates are



CONTENTS 10

functions φi : Ω→ R. When considering two such sections φ and ψ, we will write 〈ψ, φ〉 for
〈ψ(P ), φ(P )〉P .

A classical theorem due to Pansu [83] states that Lipschitz maps between Carnot groups
have a differential which is a homogeneous homomorphism. In other words, Pansu extends
the Rademarcher’s Theorem to Carnot groups introducing a suitable notion of differentiabi-
lity. Let G(1) and G(2) be Carnot groups with homogeneous norm ‖·‖1, ‖·‖2 and let Ω ⊂ G(1)

be an open set. Then f : Ω → G(2) is P-differentiable in P ∈ Ω if there exists a H-linear
function l : G(1) → G(2) such that

‖(l(P−1Q))−1f(P )−1f(Q)‖2 = o(‖P−1Q‖1), as ‖P−1Q‖1 → 0.

Here the H-linear map l is called P-differential of f in P . The P-differentiability is an
intrinsic notion since it employs the group operation, dilations and the natural family of
“linear maps” of the group, i.e. H-linear maps. We recall that a H-linear map is a group
homomorphism that is homogeneous with respect to dilations.

We stress that for a function f : Ω ⊂ G → R the P-differentiability simply means
that f is continuous and its horizontal gradient ∇Gf = (X1f, . . . , Xmf) is represented, in
distributional sense, by continuous functions. In this case we write f ∈ C1

G(Ω).
The differentiability on Carnot groups also provides a natural way to introduce “intrinsic

regular surfaces”. This concept was first introduced by Franchi, Serapioni and Serra Cassano
in [44], [45], [47] in order to obtain a natural notion of rectifiability. Indeed the rectifiable
sets are classically defined as contained in the countable union of C1 submanifolds. A general
theory of rectifiable sets in Euclidean spaces has been accomplished in [34], [33], [72] while
a general theory in metric spaces can be found in [6].

More precisely, we say that a subset S ⊂ G is G-regular hypersurface (i.e. a topological
codimension 1 surface) if it is locally defined as a non critical level set of C1

G function; that
is if there is a continuous function f : G→ R such that locally

S = {P ∈ G : f(P ) = 0}

and the horizontal gradient ∇Gf is continuous and non vanishing on S. In a similar way, a
k-codimensional G-regular surface is locally defined as a non critical level set of a C1

G vector
function F : G→ Rk.

The notion of G-regularity can be extended to subsets of higher codimension and modeled
on the geometry of another Carnot group. This is precisely explained by the notion of
(G(1),G(2))-regular surface, introduced and studied by Magnani in [69], [70]. The author
distinguishes between two different classes of regular surfaces:

• (G(1),G(2))-regular surfaces of G(1) which are defined as level sets of P-differentiable
maps with “regular” surjective P -differential.
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• (G(1),G(2))-regular surfaces of G(2) which are defined as images of P-differentiable maps
with “regular” injective P -differential.

Here “regular” surjective (or injective) P -differential means that we consider a special
class of surjective (or injective)H-linear maps, calledH-epimorphisms (orH-monomorphisms),
that yield the natural splitting of G(1) (or G(2)) as a product of complementary subgroups.
We recall that M and W are complementary subgroups of G if they are both subgroups
closed under dilations and such that W ∩M = {0} and G = W ·M (here · indicates the
group operation in G and 0 is the unit element).

To obtain a complete classification of these surfaces we need find all possible factorization
of G(1) or of G(2). This is well known when we consider the Heisenberg groups where the only
intrinsic regular surfaces are the (Hn,Rk)-regular surfaces and the (Rk,Hn)-regular surfaces
for k = 1, . . . , n (see [46]). But, in a general Carnot group, the understanding of the intrinsic
regular surfaces is very far from being complete.

A fine characterization of (Hk,R)-regular surfaces of Hk as suitable 1-codimensional in-
trinsic graphs has been established in [7]. The main purpose of this thesis is to generalize
this result when we consider (G,Rk)-regular surfaces of G. Here (G,Rk)-regular surfaces of
G are simply called G-regular surfaces and the intrinsic graphs are defined as follows: let M
and W be complementary subgroups of G, then the intrinsic left graph of φ : W→M is the
set

graph (φ) := {A · φ(A) |A ∈W}.
Therefore the existence of intrinsic graphs depends on the possibility of splitting G as a
product of complementary subgroups and so it depends on the structure of the algebra g.
This concept is intrinsic because if S = graph (φ) then, for all λ > 0 and all Q ∈ G, τQ(S)
and δλ(S) are also intrinsic graphs.

Differently from the Euclidean case where setting C1 surfaces can be locally viewed as non-
critical level sets of C1-functions or, equivalently, graphs of C1 maps between complementary
linear subspaces, in Carnot groups the corresponding notion of G-regular surface is not
equivalent to that of intrinsic graph any more. The objective of our research is to study the
equivalence of these natural definitions in Carnot groups.

However, thanks to Implicit Function Theorem, proved in [44] for the Heisenberg group
and in [45] for a general Carnot group (see also Theorem 1.3, [70]) it follows that

S is a G-regular surface =⇒ S is (locally) the intrinsic graph of a map φ.

Here we say that φ is a parametrization of the G-regular surface.
Consequently, our main purpose is the following fact: given an intrinsic graph of conti-

nuous map φ, we want to find necessary and sufficient assumptions on φ in order that the
opposite implication is true.

We will see that these additional assumptions will be characterized in terms of an appro-
priate notion of differentiability, denoted intrinsic differentiability, for maps acting between
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complementary subgroups W and M of G. More precisely, a function is intrinsic differen-
tiable if it is well approximated by appropriate linear type functions, denoted intrinsic linear
functions.

When W and M are both normal subgroup, the notion of intrinsic differentiability cor-
responds to that of P-differentiability.

The title of the thesis is: “Intrinsic differentiability and Intrinsic Regular Surfaces in
Carnot groups”. We show that the intrinsic graph of uniform intrinsic differentiable maps
is (locally) a G-regular surface. In particular, the original contributions of the author in
collaboration with R. Serapioni are illustrated in Chapter 3.

Our aim is to examine the most basic properties of submanifolds in G from the viewpoint
of Geometric Measure Theory, considering for instance perimeter measures, area formulae,
parametrizations, etc.

In the last fifty years many authors have tried to develop a Geometric Measure Theory
in Carnot groups or more generally in CC spaces (see [33], [34], [72], [81], [97]). The first
result in this sense probably traces back to the proof of the isoperimetric inequality in the
Heisenberg group [84] (see also [20], [48]). An essential item of Geometric Measure Theory
such as De Giorgi’s notion of perimeter [30], [31] has been extended in a natural way to CC
spaces (see [20], [68], [43], [29], [16], [54]). In particular, in Carnot groups the G-perimeter
of a measurable set E ⊂ Ω is defined as

|∂E|G(Ω) := sup

{∫
E

divGφ dLN : φ ∈ C1
c(Ω, HG), |φ(P )| ≤ 1

}
where divGφ :=

∑m
j=1Xjφj.

The perimeter measure has good natural properties, such as an integral representation
[79] in case of sets with smooth boundary or its (q−1)-homogeneity in Carnot groups setting.

More generally, it is also possible to give a good definition of functions of bounded
variation [16], [20], [36], [43], which fits the one given for functions in general metric spaces
[75]. The theory of minimal surfaces has been investigated [25], [19], [48], [85], and also
differentiability of Lipschitz maps [83], [24], [106]; fractal geometry [10]; area and coarea
formulae [43], [69], [78] and the isoperimetric problem [64], [90], [53] provided prosperous
research themes. However, basic techniques of classical Euclidean Geometry do not admit
any counterpart in the CC settings, like Besicovitch covering theorem [89], while many others
are still open or only partially solved.

The structure of this thesis is the following. In Chapter 1 we present the basic theory
of Carnot groups together with several remarks. We consider them as special classes of
Lie groups equipped with a invariant distance and with the intrinsic dilations which are
automorphisms of group.
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In Section 1.1 we recall the definition of Carnot-Carathéodory distance and the Chow-
Rashevsky theorem, and then in Section 1.2 we go to a brief analysis of the Lie groups
and their Lie algebras of the left-invariant vector fields. Here we present some fundamental
results proved in [107]. In particular, Theorem 1.2.4 states the exponential map is a global
diffeomorphism from the Lie algebra g of a Lie group G to G.

Therefore in Carnot groups any point P ∈ G can be written in a unique way as P =
exp(p1X1 + · · ·+ pNXN) and we identify P with (p1, . . . , pN) and G with (RN , ·), where the
group operation · is determined by the Baker-Campbell-Hausdorff formula. In particular, in
Section 1.3.3, using well-behaved group of dilations, we equip Carnot groups with an explicit
group law (see Theorem 1.3.7).

A very special emphasis is given to the examples. In Section 1.4 we introduce and discuss
a wide range of explicit Carnot groups of step 2. Some of them have been known in specialized
literature for several years, such as the Heisenberg groups [21], [98]; the free step 2 groups
[17]; the H-type groups [58]; the H-groups in the Sense of Métivier [74]; the complexified
Heisenberg group [87]. Following [17], we show that these Carnot groups are naturally given
with the data on Rm+n of n suitable linearly independent and skew-symmetric matrices of
order m.

In Chapter 2 we provide the definitions and some properties about the differential calculus
within Carnot groups.

After a brief description of complementary subgroups of a Carnot group (Section 2.1), we
analyze the notion of H-linear maps. In particular, in Section 2.2.2 we investigate the alge-
braic conditions under which either surjective or injective H-linear functions are respectively
H-epimorphisms or H-monomorphisms. Here we present some results obtained in [70].

In Section 2.3 we give a detailed description of Pansu differentiability, with particular
emphasis on C1

G functions. Lemma 2.3.7 contains an estimate on horizontal difference quo-
tients of C1

G functions which will be crucial in the proof of Theorem 3.1.1, while the main
result of this section is Whitney Extension Theorem 2.3.8: its proof was proved in [44] for
Carnot groups of step 2 only, but here we give a complete one which is similar.

Then we define and characterize the notion of BVG function and of locally finite G-
perimeter set. In particular, Theorem 2.3.14 states the perimeter measure equals a constant
times the spherical (q−1)-dimensional Hausdorff measure restricted to the so-called reduced
boundary (Definition 2.3.6) when G is step 2 Carnot group.

In Section 2.4 we introduce one of the main objects of the book, namely G-regular
surfaces. This part is taken from a recent paper of Magnani [70]. In particular, Theorem
2.4.3 and 2.4.4 describe all regular surfaces of the Heisenberg groups and of complexified
Heisenberg group, respectively.

Section 2.4.2 is devoted to a brief survey of notion of rectifiability on step 2 Carnot groups,
presented and discussed in [47] and recently extended in [71]. We summarize (without proofs)
the results of [47] concerning rectifiability of locally finite G-perimeter sets. The main result
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in this sense is Theorem 2.4.7, whence it follows that the reduced boundary of a locally finite
G-perimeter set, up to Hq−1-negligible sets, is contained in a countable union of G-regular
hypersurfaces.

In Section 2.5 we talk about intrinsic graphs theory. Implicit Function Theorem 2.5.4
shows that any regular surface locally admits a parametrization. Following the recent papers
[39], [38], [94] we discuss about the intrinsic Lipschitz graphs and some their properties. We
also mention the paper [42], where this concept appears for the first time when G is an
Heisenberg group.

In Section 2.6, we give the general definition of intrinsic differentiability and then we
provide the basic tools for the analysis of parametrizations of G-regular surfaces. Namely,
for any fixed continuous function φ : E ⊂ W → M where M is horizontal subgroup (i.e. its
Lie algebra is contained in horizontal layer of G), it is possible to introduce a stronger, i.e.
uniform, notion of intrinsic differentiability in a Carnot group G = W ·M.

The main item of Chapter 3 is Theorem 3.1.1, where we prove that given a continuous
map φ : E ⊂W→M where M is horizontal subgroup, it parametrizes a G-regular surface if
and only if φ is a uniform intrinsic differentiable map. Moreover Theorem 3.1.5 states that
the class of uniform intrinsic differentiable functions is a large class of functions. Indeed it
includes the class of C1 functions.

We want to stress in particular the importance of the operator Dφ, which appears in the
proof of Theorem 3.1.1 and which seems to be the correct intrinsic replacement of Euclidean
gradient for C1 surfaces.

In Heisenberg groups, it is known after the results in [7], [15] that the intrinsic differen-
tiability of φ is equivalent to the existence and continuity of suitable ‘derivatives’ Dφ

j φ of φ.

The non linear first order differential operators Dφ
j were introduced by Serra Cassano et al.

in the context of Heisenberg groups Hn (see [95] and the references therein). Following the
notations in [95], the operators Dφ

j are denoted as intrinsic derivatives of φ and Dφφ, the
vector of the intrinsic derivatives of φ, is the intrinsic gradient of φ.

Regarding the operator Dφ, we also mention the papers [13], [14], [23], [80], [96] when G
is an Heisenberg group.

In Section 3.2 we analyze the G-regular hypersurfaces in a particular subclass of 2 step
Carnot groups. More precisely, we characterize the uniform intrinsic differentiable map
φ : E ⊂ W → M where M is 1 dimensional subgroup of G (and consequently horizontal) in
terms of suitable notions of weak solution for the non-linear first order PDEs’ system

(2) Dφφ = w in E ,

being w a prescribed continuous function and E ⊂ RN−1. In particular in [7] it was introduced
the concept of broad* solution of the system (2). They show that in H1 this notion extends
the classical notion of broad solution for Burger’s equation through characteristic curves



CONTENTS 15

provided φ and w are locally Lipschitz continuous. In our case φ and w are supposed to be
only continuous then the classical theory breaks down. On the other hand broad* solution
of the system (2) can be constructed with a continuous datum w.

More specifically, in Theorem 3.2.7 we prove that the intrinsic graph of continuous map
φ is a regular surface if and only if φ is broad* solution of (2) and it is 1/2-little Hölder
continuous. We also show that these assumptions are equivalent to the fact that φ and its
intrinsic gradient Dφφ can be uniformly approximated by C1 functions.
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anni di dottorato e in particolare al Prof. F.Serra Cassano.

Vorrei estendere la mia gratitudine a chi mi ha introdotto in questo percorso: il Prof.
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Chapter 1

Carnot groups

In this chapter, we introduce the main notations and the basic definitions concerning with
vector fields: algebras of vector fields, exponentials of smooth vector fields, Lie brackets.
Then we study Lie groups and the Lie algebra of their left invariant vector fields. Finally,
we introduce the main geometric structure investigated throughout the thesis: the Carnot
groups. We will take most of the material from [17], [69], [95], [105].

In Section 1.1 we provide a brief exposition of general features concerning Carnot Carathéo-
dory spaces (see [49], [78]); we recall the definitions of subunitary curve and of Carnot
Carathéodory metric, or cc-metric in short, which is an actual distance thanks to Theorem
1.1.6, so-called Chow-Rashevsky Theorem. Here Rashevsky in [86] and Chow in [26] inde-
pendently proved that a sufficient condition for connectivity is the distribution of subspaces
Lie generating the whole tangent space at every point.

Section 1.2 is entirely concerned with Lie groups and Lie algebras: we recall some ba-
sic facts about Lie groups, providing all the terminology and the main results about the
left invariant vector fields, the homomorphisms, the exponential map, the Baker-Campbell-
Hausdorff formula (see the monographs [27] and [102] for more references).

The importance of Lie algebras lies in the fact that there is a special finite dimensional
Lie algebra intimately associated with each Lie group, and that properties of the Lie group
are reflected in properties of its Lie algebra. For instance, the connected, simply connected
Lie groups are completely determined (up to isomorphism) by their Lie algebras. Therefore
the study of these Lie groups is limited in large part to a study of their Lie algebras. Theorem
1.2.1 and Theorem 1.2.4 are examples of this link.

In Section 1.3 we analyze the Carnot groups G with particular emphasis on their most
relevant peculiarities, such as dilations and invariant metrics in G. We recall that a Carnot
group of step κ is connected, simply connected Lie group whose Lie algebra admits a step κ
stratification. The Heisenberg groups Hk are the simplest but, at the same time, non-trivial
instance of non Abelian Carnot groups. They represent a precious source of manageable
examples.
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When κ = 1, G is isomorphic to (RN ,+) and this is the only commutative Carnot
group. Thus, when we talk about Carnot groups we always consider κ ≥ 2; in this case,
through the exponential map, a Carnot group G can be identified with RN , endowed with
a non commutative group operation given by the Baker-Campbell-Hausdorff formula. In
particular, in Section 1.3.3 using well-behaved group of dilations we equip Carnot groups
with an explicit group law.

In Section 1.3.5 and 1.3.6, we study the left invariant metrics in G, which are equivalent
to Carnot-Carathéodory metric (see Proposition 1.3.6). Non commutative Carnot groups,
endowed with their left invariant metric are not Riemannian manifolds, not even locally. In
fact they are particular instances of so-called sub Riemannian manifolds (see [11]).

In Section 1.4 we focus our attention on a subclass of Carnot groups of step 2 shown
in [17], Chapter 3: we call them groups of class B. To begin with, we show that they
are naturally given with the data on Rm+n of n linearly independent and skew-symmetric
matrices of order m. In particular, we show that the set of examples of groups of class B
contains the free step-two groups, H-type groups (see [58]), H-groups in the sense of Métivier
(see [74]).

1.1 Carnot Carathéodory spaces

1.1.1 Vector fields on RN

Let P = (p1, . . . , pN) ∈ RN and let X1, . . . , Xm be a family of smooth vectors fields on RN

Xj(P ) =
N∑
i=1

aij(P )∂pi for j = 1, . . . ,m

with aij : RN → R smooth functions. We also suppose that X1, . . . , Xm are linearly inde-
pendent. We define HPRN the horizontal subspaces at the point P the subspaces of TPRN

generated by X1(P ), . . . , Xm(P ). The collection of all horizontal fibers HPRN forms the
horizontal subbundle HRN of TRN .

Given two smooth vector fields on RN X1, X2 we define the commutator (or Lie bracket)
[X1, X2] as the smooth vector field given by X1X2−X2X1 (as common in literature, we tacitly
identify vector fields and first order operators); if X1(P ) =

∑N
i=1 ai(P )∂pi and X2(P ) =∑N

i=1 bi(P )∂pi then in coordinates [X1, X2] is given by

[X1, X2](P ) =
N∑

i,j=1

(
aj(P )∂pjbi(P )− bj(P )∂pjai(P )

)
∂pi .

This product is antisymmetric [X1, X2] = −[X2, X1] and satisfies Jacobi’s identity, i.e.

[X1, [X2, X3]] + [X2, [X3, X1]] + [X3, [X1, X2]] = 0.
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For example, for the following two vector fields on R3 (whose points are denoted by
P = (p1, p2, p3)) X1(P ) = ∂p1 + 2p2 ∂p3 and X2(P ) = ∂p2 − 2p1 ∂p3 , we have

[X1, X2](P ) = (X1(−2p1)−X2(2p2))∂p3 = −4∂p3 .

We say that the vector fields on RN X1, . . . , Xm satisfy the Chow-Hörmander condition
if there is an integer κ ≥ 1 such that the set of linear combinations of family of commutators
of X1, . . . , Xm up to the length κ, i.e.

X1, . . . , Xm, [Xi1 , Xi2 ], [Xi1 , [Xi2 , Xi3 ]], . . . , [Xi1 , [Xi2 , [. . . , Xiκ ] . . . ], 1 ≤ iδ ≤ m

is the tangent space to RN at every point of RN .

Remark 1.1.1. Let X1, . . . , Xm be left invariant vector fields on RN . In this case the Chow-
Hörmander condition is equivalent to

(1.1) dim(span{X1, . . . , Xm, [Xi1 , Xi2 ], . . . , [Xi1 , [Xi2 , [. . . , Xiκ ] . . . ]}(P )) = N

for all P ∈ RN .

1.1.2 Carnot Carathéodory distance

An absolutely continuous curve γ : [0, T ]→ RN is a subunit curve with respect toX1, . . . , Xm

if it is an horizontal curve, that is if there are real measurable functions h1(t), . . . , hm(t),
t ∈ [0, T ] such that

γ̇(t) =
m∑
i=1

hi(t)Xi(γ(t)), for a.e. t ∈ [0, T ],

and if
∑m

i=1 h
2
i ≤ 1.

Definition 1.1.1. We define the Carnot-Carathéodory distance (cc-distance) between the
points P,Q ∈ RN as

dcc(P,Q) = inf
{
T ≥ 0 : there is a subunit curve γ : [0, T ]→ RN with γ(0) = P, γ(T ) = Q

}
.

If the above set is empty we put dcc(P,Q) =∞.

Using the same approach followed in [78], our next task is to prove the following result:

Proposition 1.1.2. Let Ω ⊂ RN be an open set. If dcc is finite, i.e. dcc(P,Q) <∞ for all
P,Q ∈ RN , then (Ω, dcc) is a metric space.
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We need two lemmas. If Xj(P ) =
∑N

i=1 aij(P )∂pi for j = 1, . . . ,m, then we shall write
the coefficients aij in the (N ×m) matrix

B(P ) :=

a11(P ) . . . a1m(P )
...

. . .
...

aN1(P ) . . . aNm(P )


and we define its norm as

‖B‖ := sup
h∈Rm, |h|≤1

|Bh|.

Notice that
∑m

i=1 hi(t)Xi(γ(t)) = B(γ(t))h(t) for h(t) = (h1(t), . . . , hm(t)) and t ∈ [0, T ].

Lemma 1.1.3. Let Ω ⊂ RN be an open set. Let P ∈ Ω and r > 0 be such that U(P, r) :=
{Q ∈ RN | |Q− P | < r} b Ω . Moreover let α := supQ∈U(P,r) ‖B(Q)‖ and γ : [0;T ]→ Ω be
a subunit curve such that γ(0) = P . If αT < r then γ(t) ∈ U(P, r) for all t ∈ [0;T ].

Proof. By contradiction we suppose that

t̄ := inf{t ∈ [0, T ] : γ(t) /∈ U(P, r)} ≤ T.

Then

|γ(t̄)− P | =

∣∣∣∣∣
∫ t̄

0

γ̇(τ) dτ

∣∣∣∣∣ =

∣∣∣∣∣
∫ t̄

0

B(γ(τ))h(τ) dτ

∣∣∣∣∣
≤
∫ t̄

0

|B(γ(τ))h(τ)| dτ ≤
∫ t̄

0

‖B(γ(τ))‖|h(τ)| dτ

≤ t̄α ≤ Tα < r.

Consequently γ(t̄) ∈ U(P, r) because U(P, r) is open and this is in contradiction with the
definition of t̄.

Lemma 1.1.4. Let Ω ⊂ RN be an open set and let K ⊂ Ω be a compact set. Then there is
β > 0 such that

(1.2) dcc(P,Q) ≥ β|P −Q| for all P,Q ∈ K.

Proof. Fix P,Q ∈ K and let γ : [0, T ] → Ω be a subunit curve from P to Q. We choose
ε > 0 in order that if we put Kε := {P ∈ Ω : minQ∈K |P −Q| ≤ ε} then Kε b Ω. Moreover
if we define r := min{ε, |P −Q|}, then

|γ(T )− γ(0)| = |P −Q| ≥ r,

and by Lemma 1.1.3 we have αT ≥ r, where α := supQ∈Kε ‖B(Q)‖.
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Now we consider two case: r = ε or r = |P −Q|. If r = ε then

T ≥ ε

α
≥ ε

αρ
|P −Q|

where ρ := supP,Q∈K |P −Q|. If r = |P −Q| then T ≥ |P −Q|/α. As a consequence by the
definition of dcc we get

dcc(P,Q) ≥ T ≥ min

{
1

α
,
ε

αρ

}
|P −Q|

then the thesis follows with β := min
{

1
α
, ε
αρ

}
.

Now we are able to prove Proposition 1.1.2.

Proof. It is clear that dcc(P, P ) = 0. Moreover if P 6= Q by (1.2) it follows dcc(P,Q) > 0.
The symmetry property dcc(P,Q) = dcc(Q,P ) follows from the fact that if γ : [0, T ]→ Ω

is a subunit curve then γ̄(t) = γ(T − t) is a subunit curve too.
Finally, if γ1 : [0, T1] → Ω and γ2 : [0, T2] → Ω are subunit curves such that γ1(0) = P ,

γ1(T1) = G, γ2(0) = G and γ2(T2) = Q then

γ(t) =

{
γ1(t) if t ∈ [0, T1]
γ2(t− T1) if t ∈ [T1, T1 + T2]

is a subunit curve from P to Q. Taking the infimum we get that

dcc(P,Q) ≤ dcc(P,G) + dcc(G,Q),

i.e. the triangle inequality is true.

Remark 1.1.5. Inequality (1.2) shows that the Euclidean metric is continuous with respect
to the cc-metric dcc. The converse is in general not true. For example, consider in R2 the
vector fields X1 = ∂p1 and X2 = a(p1)∂p2 , where a : R → R is a Lipschitz map defined as
a(p1) = 0 if p1 ≤ 0 and a(p1) > 0 if p1 > 0. Any couple of points in R2 can be connected by
piecewise integral curves of X1 and X2, which therefore induce on R2 a finite cc-metric dcc.
But if p1 < 0 then

lim
p2→0

dcc((p1, p2), (p1, 0)) = 2|p1| 6= 0.

The following theorem, called Chow-Rashevsky Theorem, gives a sufficient condition in
order that dcc is finite. For a proof see for instance [11], Theorem 2.4. or [77], Theorem 1.6.2

Theorem 1.1.6. Let the vector fields X1, . . . , Xm in RN satisfy the Chow-Hörmander con-
dition. Then any two points in RN can be connected by horizontal curve and hence dcc is a
distance on RN .
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According to the terminology in [49] (see also [77]), we have the following definition:

Definition 1.1.2. The metric space (RN , dcc) is called Carnot-Carathéodory space (CC
space).

The CC spaces satisfying Chow-Hörmander’s condition are also called Sub-Riemannian
spaces. Classical examples of Carnot-Carathéodory spaces are the Carnot groups (see Section
1.3).

1.2 Lie groups and Lie algebras

Before stating the definition of Carnot groups, we want to briefly recall some basic facts on
Lie groups and Lie algebras: a more complete description of these structures can be found
in [102], [103], [104], [107].

Definition 1.2.1. A Lie group G is a manifold endowed with the structure of differential
group, i.e. a group where the map

G×G 3 (P,Q) 7−→ P−1 ·Q ∈ G

is of class C∞.

We denote by 0 the identity of the group, while we define, for any P ∈ G, the C∞ map
τP : G→ G as

Q 7→ τP (Q) := P ·Q.

We call τP the left translation by P .
The general notion of Lie algebra is the following

Definition 1.2.2. A Lie algebra g is a vector space together with a bilinear operation

[·, ·] : g× g→ g,

called the Lie bracket such that, for all X1, X2, X3 ∈ g, one has

1. anti-commutativity : [X1, X2] = −[X2, X1]

2. Jacobi identity : [X1, [X2, X3]] + [X2, [X3, X1]] + [X3, [X1, X2]] = 0.

A linear subspaces a ⊂ g is a Lie subalgebra of g if a is closed with respect to [·, ·], i.e.
[X1, X2] ∈ a for every X1, X2 ∈ a. Given two subalgebras a, b of a Lie algebra g we will
denote by [a, b] the vector subspace generated by the elements of {[X, Y ] : X ∈ a, Y ∈ b}.

An classical example of Lie algebra is Γ(TM), the linear space of smooth sections of TM
(with M a smooth manifold), with the product [X1, X2] = X1X2 −X2X1.
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Definition 1.2.3. A vector field X ∈ Γ(TG) on a Lie group G is left invariant if

X(P ) = dτP (X(0)), for all P ∈ G

where dτP : TG→ TG denotes the differential of the left translation by P .

A vector field X is left invariant if and only if

(Xf)(τPQ) = X(f ◦ τP )(Q)

for any f ∈ C∞(G) and P,Q ∈ G. 1

If X1, X2 are left invariant vector fields, then the Lie bracket [X1, X2] is also left invariant
(see Proposition 3.7 in [107]). This implies that by iterated brackets the left invariant vector
fields X1, . . . , Xm generate a Lie algebra.

Precisely, we define the Lie algebra of the Lie group G to be the Lie algebra of left
invariant vector fields on G.

This Lie algebra is denoted by g and, for every P ∈ G, is the vector space

span{X1, . . . , Xm, [Xi1 , Xi2 ], [Xi1 , [Xi2 , Xi3 ]], . . . , [Xi1 , [Xi2 , [. . . , Xiκ ] . . . ]}(P ).

g is canonically isomorphic to the tangent spaces T0G at the identity via the isomorphism

T0G 3 v ←→ X ∈ g such that X(P ) = dτP (v).

Example 1.2.1. We denote the Heisenberg group H1 = R3 with the group law given by

(p1, p2, p3) · (q1, q2, q3) = (p1 + q1, p2 + q2, p3 + q3 +
1

2
(p1q2 − q1p2)).

Note that (p1, p2, p3)−1 = (−p1,−p2,−p3) and the neutral element of the group is the origin.
The Heisenberg group H1 is an example of a Lie group, indeed the map

(P,Q) 7→ Q−1 · P = (p1 − q1, p2 − q2, p3 − q3 +
1

2
p2(p1 − q1)− 1

2
p1(p2 − q2))

is of class C∞.

1Let Ω ⊂ RN be an open set. We recall that if X =
∑N
j=1 aj∂pj and f : Ω→ R is a differentiable function,

then we denote by Xf the function on Ω defined by

Xf(P ) =

N∑
j=1

aj(P )∂pjf(P ), for P ∈ Ω.
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The class of left invariant vector fields can be identified with the tangent space T0H1 to
H1 at 0. Hence ∂p1 , ∂p2 and ∂p3 form a basis of T0H1. The corresponding left invariant vector
fields X1, X2, Y are

X1(P ) = dτP∂p1(0)

X2(P ) = dτP∂p2(0)

Y (P ) = dτP∂p3(0)

for P = (p1, p2, p3). Consequently, using the fact

dτP (0) =

 1 0 0
0 1 0
−1

2
p2

1
2
p1 1


we obtain

X1(P ) = (1, 0,−1

2
p2) = ∂p1 −

1

2
p2 ∂p3

X2(P ) = (1, 0,
1

2
p1) = ∂p2 +

1

2
p1 ∂p3

Y (P ) = (0, 0, 1) = ∂p3

The left invariant vector fields X1, X2, Y form a basis of left invariant vector fields for the
Lie algebra of H1. Moreover, since [X1, X2] = Y and since any commutator involving X1, X2

more than twice is identically zero, then the Lie algebra of H1 is span{X1, X2, [X1, X2]}.

1.2.1 Homomorphisms and isomorphisms

There is a special finite dimensional Lie algebra intimately associated with each Lie group,
and the properties of the Lie group are reflected in properties of its Lie algebra. Here we
show their connection in terms of Lie group homomorphism and Lie algebra homomorphism
(see [62], [107]).

Definition 1.2.4. Let (G, ·) and (H, ?) be Lie groups. A map F : G → H is said a Lie
group homomorphism if it belongs to C∞ and it is a group homomorphism, i.e.

F (P ·Q) = F (P ) ? F (Q), for all P,Q ∈ G.

A map F is an isomorphism of Lie groups if it is a Lie groups homomorphism and a diffeomor-
phism of differentiable manifolds. An isomorphism of G onto itself is called an automorphism
of G.

Definition 1.2.5. Let (g, [·, ·]g) and (h, [·, ·]h) be Lie algebras. A map f : g → h is said a
Lie algebra homomorphism if it is linear and it preserves brackets

f([X1, X2]g) = [f(X1), f(X2)]h for all X1, X2 ∈ g.



1.2 Lie groups and Lie algebras 24

A map f is an isomorphism of Lie algebras if it is a bijective homomorphism of Lie algebras.
An isomorphism of g onto itself is called an automorphism of g.

The first connection between Lie groups and their Lie algebras is that each Lie group
homomorphism indices a Lie algebra homomorphism: if F : G → H is a Lie group homo-
morphism, we have that F (0) = 0 and the differential at the identity dF0 : T0G→ T0H is a
linear transformation which preserves the bracket operation.

Viceversa, we have the following results:

Theorem 1.2.1 ([107], Theorem 3.27). Let G and H be two Lie groups with Lie algebras
g and h, respectively. Assume G simply connected. Let f : g → h be a Lie algebra ho-
momorphism. Then there exists a unique Lie group homomorphism F : G → H such that
dF = f .

Theorem 1.2.2 ([107], Corollary 3.28). If simply connected Lie groups G and H have iso-
morphic Lie algebras, then G and H are isomorphic.

1.2.2 Exponential map

In the theory of Lie groups we define the exponential map exp : g→ G as the map from the
Lie algebra g of Lie group G to G, given by

exp(X)(P ) := γXP (1)

where γXP : R→ G is the (unique) solution of the following Cauchy problem

(1.3)


γ̇(t) = X(γ(t))

γ(0) = P

We recall the following basic result proved in [107], Theorem 3.31:

Theorem 1.2.3. Let G be a Lie group with Lie algebra g. If X ∈ g then

1. exp((t+ s)X) = exp(tX) · exp(sX) for all t, s ∈ R

2. exp(−X) = (exp(X))−1

3. exp : g→ G is smooth and (d exp)0 is the identity map,

(d exp)0 = idg : g→ g

so exp gives a diffeomorphism of a neighborhood of 0 in g onto a neighborhood of 0 in
G.
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4. the left invariant vector fields are complete. 2

From the unique solvability of the Cauchy problem (1.3) related to smooth vector fields

1. exp(−tX)(P ) = exp(t(−X))(P )

2. exp(−tX)
(

exp(tX)(P )
)

= P

3. exp((t+ s)X)(P ) = exp(tX)
(

exp(sX)(P )
)

4. exp((ts)X)(P ) = exp(t(sX))(P )

for every X ∈ TG, P ∈ G and t, s ∈ R.

Moreover if G and H are two Lie groups with Lie algebras g and h, respectively, and
F : G→ H is a Lie group homomorphism, then the following diagram is commutative:

g −−−→
dF

h

exp

y yexp

G F−−−→ H

Example 1.2.2 (The exponential map on H1). Let us consider once again the Heisenberg
group H1. In Example 1.2.1, we showed that a basis for its Lie algebra h is given by X1, X2, Y
where X1 = ∂p1 − 1

2
p2∂p3 , X2 = ∂p2 + 1

2
p1∂p3 and [X1, X2] = Y = ∂p3 . Let us construct the

exponential map. We set, for (q1, q2, q3) ∈ R3

Z := q1X1 + q2X2 + q3Y =

 q1

q2

−1
2
q1p2 + 1

2
q2p1 + q3

 .

Hence for fixed P = (p1, p2, p3) ∈ H1, we have

exp(Z)(P ) = γZP (1),

where γZP (t) = γ(t) = (γ1(t), γ2(t), γ3(t)) is the solution of the Cauchy problem (1.3) , i.e.
γ̇(t) = (q1, q2, q3 − 1

2
q1γ2(t) + 1

2
q2γ1(t))

γ(0) = P

2A smooth vector field X on a Lie group G is complete if, for every P ∈ G, the integral curve γ of X
such that γ(0) = P is defined on the whole R (i.e. its maximal interval of definition is R).
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Solving the above system of ODE’s, one gets

exp

 q1

q2

−1
2
q1p2 + 1

2
q2p1 + q3

 (P ) =

 p1 + q1

p2 + q2

p3 + q3 + 1
2
(p1q2 − p2q1)

 .

Example 1.2.3 (Pyramid-shaped vector fields). Let us consider the Lie algebra TRN of the
vector fields on RN equipped with the product [X1, X2] = X1X2 −X2X1.

We consider in RN vector fields of the following type

(1.4) X =
N∑
j=1

aj(p1, . . . , pj−1)∂pj ,

where a1 = constant.
The function aj only depends on the variables p1, . . . , pj−1 when j > 1. Roughly speaking,

such a vector field is pyramid-shaped,

X =


a1

a2(p1)
a3(p1, p2)

...
aN(p1, . . . , pN−1)


For instance, the vector fields X1, X2, Y in above example have this form.

For any smooth vector field X of the form (1.4), the map (P, t) 7→ exp(tX)(P ) is well
defined for every P = (p1, . . . , pN) ∈ RN and t ∈ R and can be easily computed. Indeed, if
γXP = γ = (γ1, . . . , γN) is the solution to the Cauchy problem{

γ̇(t) = X(γ(t))
γ(0) = P

then γ̇1(t) = a1 and γ̇j(t) = aj(p1, . . . , pj−1) for j = 2, . . . , N . As a consequence,

γ1(t) = p1 + ta1, γj(t) = pj +

∫ t

0

aj(γ1(s), . . . , γj−1(s)) ds

and γj(t) is defined for every P ∈ RN and t ∈ R. Moreover γj(t) only depends on the first
components p1, . . . , pj of P = (p1, . . . , pN) for j = 1, . . . , N . Let us put A1(t) := ta1 and for
j = 2, . . . , N

Aj(p1, . . . , pj−1, t) :=

∫ t

0

aj(γ1(s), . . . , γj−1(s)) ds.
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Then, for all P = (p1, . . . , pN) ∈ RN we conclude that

exp(X)(P ) =


p1 + A1(1)

p2 + A2(p1, 1)
...

pN + AN(p1, . . . , pN−1, 1)


and the map P 7→ exp(X)(P ) is a global diffeomorphism of RN onto RN .

1.2.3 The Baker-Campbell-Hausdorff formula

The algebraic structure of g determines that of G, and precisely

exp(X1) exp(X2) = exp(C(X1, X2)), for all X1, X2 ∈ g

where C(X1, X2) is given by the following formula, called Baker-Campbell-Hausdorff formula
(1.5)

C(X1, X2) = X1 +X2 +
1

2
[X1, X2] +

1

12
[X1, [X1, X2]]− 1

12
[X2, [X1, X2]]

− 1

48
[X2, [X1, [X1, X2]]]− 1

48
[X1, [X2, [X1, X2]]] + {brackets of height ≥ 5}.

C(X1, X2) is an infinite linear combination of X1, X2 and their iterated commutators. It
defines a binary operation in g whenever the series converges.

Example 1.2.4. Let g be an abelian Lie algebra, i.e. a Lie algebra such that [X1, X2] = 0
for all X1, X2 ∈ g. Then

C(X1, X2) = X1 +X2

and consequently exp(X1) exp(X2) = exp(X1 +X2) for all X1, X2 ∈ g.

Example 1.2.5 (The Baker-Campbell-Hausdorff formula on H1). Let ξ, η ∈ R3 and Z :=
X1 +X2 +Y where X1, X2, Y is the basis for the Lie algebra of Heisenberg group H1 defined
in Example 1.2.1. We explicitly write down C(ξZ, ηZ) in H1, thus obtaining

C(ξZ, ηZ) = ξZ + ηZ +
1

2
[ξZ, ηZ] +

1

12
[ξZ, [ξZ, ηZ]] + . . .

= ξZ + ηZ +
1

2
[ξZ, ηZ]

(since any commutator involving X1, X2 more than twice is identically 0)

= ξ1X1 + ξ2X2 + ξ3Y + η1X1 + η2X2 + η3Y

+
1

2
[ξ1X1 + ξ2X2 + ξ3Y , η1X1 + η2X2 + η3Y ]

(here we use [X1, X2] = Y, [X1, Y ] = [X2, Y ] = 0)

= (ξ1 + η1)X1 + (ξ2 + η2)X2 + (ξ3 + η3 +
1

2
ξ1η2 −

1

2
ξ2η1)Y
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which is the group operation in H1.

1.2.4 Nilpotent groups

Definition 1.2.6 ([27]). Let g be a Lie algebra. For each s ∈ N we define by induction the
following sequence of subspaces

g(s) := g

g(s+1) := [g(s), g].

If there exists a positive integer κ ∈ N such that gκ 6= {0} and g(κ+1) = {0} we say that g is
a nilpotent Lie algebra. The integer κ is called the step of g. A Lie group G is nilpotent if
its Lie algebra is nilpotent..

Notice that if g is nilpotent of κ step, then for all s ∈ {1, . . . , κ} the subalgebra g(s+1) is
strictly contained in g(s).

Theorem 1.2.4 ([27], Theorem 1.2.1). Let G be a connected, simply connected nilpotent Lie
group, with Lie algebra g. Then

1. The exponential map exp : g→ G is an analytic diffeomorphism.

2. The Baker-Campbell-Hausdorff formula holds for all couple of elements of g.

Definition 1.2.7. Let G be a connected, simply connected nilpotent Lie group, with Lie
algebra g. Let {X1, . . . , XN} be a basis for g. A system of exponential coordinates associated
with the basis {X1, . . . , XN} of g is the map Ψ : RN → G

Ψ(p1, . . . , pN) := exp

(
N∑
i=1

piXi

)
.

An important application of Theorem 1.2.4 involves coordinates on G. Since the expo-
nential map exp : g → G is a global diffeomorphism, the map Ψ is also a diffeomorphism.
Consequently, any P ∈ G can be written in a unique way as P = exp(p1X1 + · · · + pNXN)
and we can identify P with the N -tuple (p1, . . . , pN) ∈ RN .

Using C(·, ·) the Baker-Campbell-Hausdorff formula (1.5), we define a group law on RN

as follows: let (p1, . . . , pN), (p′1, . . . , p
′
N) ∈ RN . If

C

(
N∑
i=1

piXi,
N∑
i=1

p′iXi

)
=

N∑
i=1

qiXi

then
(p1, . . . , pN) · (p′1, . . . , p′N) := (q1, . . . , qN).

In this way, (RN , ·) is a Lie group, whose Lie algebra is isomorphic to g. Moreover, thanks
to Theorem 1.2.2, we can identify G with (RN , ·).
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Example 1.2.6. The Heisenberg group H1 (see Example 1.2.1) is an example of 2 step
nilpotent Lie group.

Example 1.2.7 (A non-polynomial non-nilpotent Lie group on R2). The following operation
on R2

(p1, p2) · (q1, q2) = (p1 + q1, q2 + p2eq1)

defines a Lie group structure where (p1, p2)−1 = (−p1,−p2e−p1). Moreover a basis of the Lie
algebra associated is

Y1 = ∂p1 + p2∂p2 , Y2 = ∂p2

Hence, the Lie algebra is not nilpotent, for [Y2, Y1] = Y2, so that, inductively,

[. . . [Y2, Y1], Y1], Y1] . . . Y1]︸ ︷︷ ︸
k times

= Y2 for all k ∈ N.

1.3 Carnot groups of step κ

We now enter into the core of the chapter by introducing the central definition of this thesis,
i.e. Carnot groups. For a general account see e.g. [17], [35], [62], [95], [104], [103].

Definition 1.3.1. A Carnot group G = (G, ·, δλ) of step κ is a connected and simply con-
nected Lie group whose Lie algebra g admits a stratification, i.e. a direct sum decomposition
g = g1 ⊕ g2 ⊕· · ·⊕ gκ. The stratification has the further property that the entire Lie algebra
g is generated by its first layer g1, the so-called horizontal layer, that is

(1.6)

{
[g1, gi−1] = gi if 2 ≤ i ≤ κ
[g1, gκ] = {0}

where [g1, gi] is the subspaces of g generated by the commutators [X, Y ] with X ∈ g1 and
Y ∈ gi.

By Theorem 1.2.4, we can identify G with (RN , ·, δλ), where the group operation · is
determined by the Baker-Campbell-Hausdorff formula (see Section 1.2.3) and the family of
automorphisms {δλ}λ of G is defined in Section 1.3.2.

Let X1, . . . , Xm1 be a base for g1. The subbundle of the tangent bundle TG that is
spanned by the vector fields X1, . . . , Xm1 plays a particularly important role in the theory,
it is called the horizontal bundle HG; the fibers of HG are

HGP = span{X1(P ), . . . , Xm1(P )}, P ∈ G.

A sub Riemannian structure is defined on G, endowing each fiber of HG with a scalar
product 〈·, ·〉P and a norm | · |P making the basis X1(P ), . . . , Xm1(P ) an orthonormal basis.
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If v =
∑m1

i=1(v1)iXi(P ) and w =
∑m1

i=1(w1)iXi(P ) are in HG, then 〈v, w〉P :=
∑m1

i=1(v1)i(w1)i
and |v|2P := 〈v, v〉P . We will write, with abuse of notation, 〈·, ·〉 meaning 〈·, ·〉P and | · |
meaning | · |P .

The sections of HG are called horizontal sections, a vector of HGP is an horizontal vector
while any vector in TGP that is not horizontal is a vertical vector. Each horizontal section
φ defined on an open set Ω ⊂ G can be written as φ =

∑m1

i=1 φiXi, where its coordinates are
functions φi : Ω→ R. When considering two such sections φ and ψ, we will write 〈ψ, φ〉 for
〈ψ(P ), φ(P )〉P .

Remark 1.3.1. Let G be a Carnot group of step κ and let {X1, . . . , Xm1} be a basis of the
horizontal layer g1. By (1.6) we know that X1, . . . , Xm1 generates g by commutations and
consequently X1, . . . , Xm1 satisfy Chow-Hörmander condition (1.1).

1.3.1 Uniqueness of stratifications

The stratification of a Lie algebra is unique up to isomorphism. Hence, also the structure of
a Carnot group is essentially unique:

Proposition 1.3.2 ([63], Proposition 1.17). Let G be a Carnot group with Lie algebra g.
Suppose that g has two stratification, g = h1 ⊕ . . . ⊕ hκ and g = h′1 ⊕ . . . ⊕ h′r.

Then κ = r and there is a Lie algebra automorphism f : g→ g such that

f(hs) = h′s, for all s = 1, . . . , κ.

Proof. We begin observing the following simple fact (see Lemma 1.16 in [63]): if g = h1 ⊕
. . . ⊕ hκ, then g is nilpotent of step κ (see Definition 1.2.6) and g(s) = hs ⊕ . . . ⊕ hκ.

Consequently, g(s) = hs ⊕ . . . ⊕ hκ = h′s ⊕ . . . ⊕ h′r and so κ = r.
Now we consider the quotient mappings πs : g(s) → g(s)/g(s+1). We have that its restric-

tions πs|hs : hs → g(s)/g(s+1) and πs|h′s : h′s → g(s)/g(s+1) are linear isomorphisms.
For X ∈ hs and s = 1, . . . , κ, define fs : hs → h′s as

fs(X) :=
(
πs|h′s

)−1 ◦
(
πs|hs

)
(X).

More precisely, for X ∈ hs and Y ∈ h′s

(1.7) fs(X) = Y ⇐⇒ X − Y ∈ g(s+1)

In this way we can define a linear map f : g → g. This is clearly a linear isomorphism and
f(hs) = h′s for each s = 1, . . . , κ.

Consequently, it remains to show that f preserves brackets, i.e. f([X, Y ]) = [fX, fY ],
for all X, Y ∈ g. Let X, Y ∈ g with X =

∑κ
s=1 Xs and Y =

∑κ
s=1 Ys such that Xs, Ys ∈ hs.

Then

f([X, Y ]) =
κ∑

s,l=1

f([Xs, Yl]), [fX, fY ] =
κ∑

s,l=1

[fXs, fYl].
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Therefore it sufficient to prove that

(1.8) f([Xs, Yl]) = [fXs, fYl] for Xs ∈ hs, Yl ∈ h′l

First, notice that

[Xs, Yl]− [fXs, fYl] = [Xs − fXs, Yl]− [fXs, fYl − Yl] ∈ g(s+l+1)

because, on the other hand, Xs − fXs ∈ g(s+1), Yl ∈ h′l and consequently [Xs − fXs, Yl] ∈
g(s+l+1); on the other hand, fXs ∈ h′s, fYl − Yl ∈ g(l+1) and so [fXs, fYl − Yl] ∈ g(s+l+1).

Then by (1.7) and since [Xs, Yl] ∈ hs+l and [fXs, fYl] ∈ h′s+l

f([Xs, Yl]) = [fXs, fYl] ⇐⇒ [Xs, Yl]− [fXs, fYl] ∈ g(s+l+1)

i.e. (1.8) holds and so f preserves brackets.

Example 1.3.1. Not all nilpotent Lie algebras admit a stratification, see [51]. Indeed,
consider the 7-dimensional Lie algebra g generated by X1, . . . , X7 with only non trivial
brackets

[X1, X2] = X3, [X1, X3] = 2X4, [X1, X4] = 3X5,

[X2, X3] = X5, [X1, X5] = 4X6, [X2, X4] = 2X6,

[X1, X6] = 5X7, [X2, X5] = 3X7, [X3, X4] = X7.

This Lie algebra g is not stratifiable.

1.3.2 The dilation structure

The construction of the dilation structure deeply uses the stratification of the algebra g =
g1 ⊕ · · · ⊕ gκ. We denote by δλ : g→ g the family of (non isotropic) dilation defined by

δλ

( κ∑
i=1

Xi

)
:=

κ∑
i=1

λiXi, λ ≥ 0

where X =
∑κ

i=1 Xi with vi ∈ gi, 1 ≤ i ≤ κ. The dilations δλ are automorphisms of g and
are uniquely determined by the homogeneity conditions

δλXi := λiXi, ∀Xi ∈ gi, 1 ≤ i ≤ κ.

Moreover, from the grading, it is obvious that

1. δλη = δλ ◦ δη;

2. δλ([X, Y ]) = [δλX, δλY ];
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3. δλ(C(X, Y )) = C(δλX, δλY ), where C(·, ·) is given by (1.5).

By Theorem 1.2.4, in Carnot groups, the map exp : g → G is a diffeomorphism, so any
element P ∈ G can be represented as exp(X) for some unique X ∈ g, and therefore it can
be uniquely written in the form

exp

(
κ∑
i=1

Xi

)
, Xi ∈ gi, 1 ≤ i ≤ κ.

Therefore we can define a one-parameter group of automorphism of G, which we still
denote with {δλ}λ≥0 via the formula

δλ

(
exp

(
κ∑
i=1

Xi

))
:= exp

(
κ∑
i=1

λiXi

)
,

i.e. exp ◦δλ = δλ ◦ exp.
Let f : G→ G, then

X(f ◦ δλ)(P ) = (δλX)f(δλP ), for all P ∈ G, λ ≥ 0.

Indeed,

X(f ◦ δλ)(P ) =
d

dt
f ◦ δλ(P exp(tX))|t=0

=
d

dt
f(δλPδλ exp(tX))|t=0

=
d

dt
f(δλP exp(tδλX))|t=0

= (δλX)f(δλP ).

Then the map δλ : G→ G is the unique group homomorphism with δλ as differential, whose
existence is given by Theorem 1.2.1 since G is simply connected.

From the properties of dilations in Lie algebras we immediately deduce the associated
ones for dilations of Carnot group:

1. δλη = δλ ◦ δη, indeed

δλη(P ) = exp(δλη exp−1(P ))

= exp(δλδη exp−1(P ))

= exp(δλ exp−1(exp δη exp−1(P )))

= exp(δλ exp−1(δη(P )))

= δλδη(P ).
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2. δλ(P ·Q) = δλ(P ) · δλ(Q) for all P,Q ∈ G. Indeed

δλ(PQ) = exp
(
δλ exp−1(PQ)

)
= exp δλ(C(exp−1 P, exp−1Q))

= exp(C(δλ exp−1 P, δλ exp−1Q))

= exp(δλ exp−1 P ) exp(δλ exp−1Q))

= δλ(P )δλ(Q).

where C(·, ·) is given by (1.5).

1.3.3 The Composition Law of G
Following [17], in this section we give a structure theorem for the group operation in a Carnot
group G (see Theorem 1.3.7).

Let us introduce some notations. Let G be a Carnot group with Lie algebra g such that
g = g1 ⊕ g2 ⊕ · · · ⊕ gκ and, for s = 1, . . . , κ, let ns := dimgs and ms −ms−1 := ns with
m0 = 0 < m1 < · · · < mκ = N .

We say that a basis X of g is adapted to (g1, . . . , gκ) if

X = (X1
1 , . . . , X

1
n1
, . . . , Xκ

1 , . . . , X
κ
nκ)

where ns := dimgs and (Xs
1 , . . . , X

s
ns) is a basis for gs for all s = 1, . . . , κ.

Definition 1.3.2. Let G be a Carnot group with Lie algebra g. A system of exponential
coordinates Ψ : RN → G is a system of graded coordinates if it is associated with an adapted
basis of g.

Let Ψ : RN → G be a system of graded coordinates. For simplicity we denote with
δλ : RN → RN the dilations read in coordinates, so that δλ ◦Ψ = Ψ ◦ δλ. Then

(1.9) δλ(P ) = (λα1p1, . . . , λ
αNpN), ∀P = (p1, . . . , pN) ∈ RN

where 1 = α1 = · · · = αm1 < αm1+1 = 2 ≤ · · · ≤ αN = κ.

Now we show some basic properties of homogeneous functions and homogeneous differ-
ential operators with respect to the family {δλ}λ which is crucial for the proof of Theorem
1.3.7.

Definition 1.3.3. Let f : RN → R. We say that f is δλ-homogeneous of degree l ∈ R if f
does not vanish identically and, for every λ > 0, it holds

f ◦ δλ = λlf.



1.3 Carnot groups of step κ 34

Moreover a non-identically-vanishing linear differential operator X is called δλ-homogeneous
of degree l ∈ R if, for every g ∈ C∞(RN) and λ > 0, it holds

X(g ◦ δλ) = λl(Xg) ◦ δλ.

Remark 1.3.3. Let f be a smooth δλ-homogeneous function of degree l ∈ R and X be a
linear differential operator δλ-homogeneous of degree h ∈ R. Then Xf is a δλ-homogeneous
function of degree l − h (unless Xf ≡ 0). Indeed for every P ∈ G and λ > 0 we have

λh(Xf)(δλ(P )) = X(f(δλ(P ))) = X(λlf(P )) = λl(Xf)(P ).

Definition 1.3.4. Let G = (RN , ·, δλ) be a Carnot group of step κ where δλ is defined as
(1.9). Then given a multi-index β = (β1, . . . , βN) ∈ (N ∪ {0})N , we define the δλ-length (or
the G-length of β) as

|β|α :=
N∑
i=1

βiαi,

where α is given by (1.9). Moreover, if P : G→ R is a polynomial function (the sum below
is intended to be finite), i.e.

P(P ) =
∑
σ

cσP
σ, cσ ∈ R, 3

then we say that
degG(P) := max{|β|α : cβ 6= 0}

is the G-degree or δλ-homogeneous degree of P .

Notice that since P 7→ pj is δλ-homogeneous of degree αj, the function P 7→ P β is
δλ-homogeneous of degree |β|α.

Moreover, since ∂pj for j ∈ {1, . . . , N} is δλ-homogeneous of degree αj, the differential
operator Dβ is δλ-homogeneous of degree |β|α.

Proposition 1.3.4 (Smooth δλ-homogeneous functions). Let δλ be as in (1.9). Suppose that
f ∈ C∞(RN). Then f is δλ-homogeneous of degree l ∈ R if and only if f is a polynomial
function of the form

(1.10) f(P ) =
∑
|β|α=l

fβP
β

with some fβ ∈ R − {0}. As a consequence, the set of the degrees of the smooth δλ-
homogeneous functions is precisely the set of the nonnegative integer numbers

A = {|β|α : β ∈ (N ∪ {0})N},

with |β|α = 0 if and only if f is constant.
3 Pσ simply means pα1

1 pα2
2 . . . pαN

N for P = (p1, . . . , pN ) and α = (α1, . . . , αN ).
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Proof. It is clear that every polynomial function of the form (1.10) is δλ-homogeneous of
degree l. Consequently it remains to prove that if f is δλ-homogeneous of degree l ∈ R, then
f is a polynomial function of the form (1.10).

If f(Q) 6= 0 for some Q ∈ RN , then l ≥ 0. Indeed, from f(δλQ) = λlf(Q) we get

lim
λ→0

λl = lim
λ→0

f(δλQ)

f(Q)
=

f(0)

f(Q)
<∞.

Moreover, the continuous and δλ-homogeneous of degree 0 functions are precisely the constant
(non-zero) functions. Indeed,

f(P ) = f(δλ(P )) = lim
λ→0+

f(δλ(P )) = f(0).

Then we can suppose that f is a non constant map. Consequently Dβf is not identically zero
and since Dβf is smooth and δλ-homogeneous of degree l− |β|α , we have that l− |β|α ≥ 0.
This result can be restated as follows:

Dβf ≡ 0 ∀β such that |β|α > l.

Thus f is a polynomial function, i.e. f(P ) =
∑

β∈A fβP
β, where A is a finite set of multi-

indices and fβ ∈ R for every β ∈ A. Because f is δλ-homogeneous of degree l, we obtain∑
β∈A

λlfβP
β = λlf(P ) = f(δλ(P )) =

∑
β∈A

λ|β|αfβP
β.

Hence λlfβ = λ|β|αfβ for every λ > 0, so that |β|α = l if fβ 6= 0. Then f is a polynomial
function of the form (1.10), as desired.

Now we present some elementary properties of the δλ-homogeneous functions.

Lemma 1.3.5. Let δλ be as in (1.9). Let P : RN × RN → R be a smooth function with
the following property: there is j ∈ {1, . . . , N} such that for all P = (p1, . . . , pN) and
Q = (q1, . . . , qN)

1. P(δλ(P ), δλ(Q)) = λαjP(P,Q), for all λ > 0

2. P(P, 0) = pj

3. P(0, Q) = qj
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Then

P(P,Q) =

{
pj + qj if j ∈ {1, . . . ,m1}
pj + qj + P̃j(P,Q), if j ∈ {m1 + 1, . . . , N}

where P̃j is a polynomial and is the sum of mixed monomials in p1, . . . , pj−1, q1, . . . , qj−1.
Moreover, P̃j(δλ(P ), δλ(Q)) = λαj P̃j(P,Q). Finally, P(P,Q) only depends on the pk’s and
qk’s with αk < αj.

Proof. By Proposition 1.3.4, P is a polynomial function of the following type:

P(P,Q) =
∑

|σ|α+|ρ|α=αj

cσ,ρP
σQρ, cσ,ρ ∈ R

and by the properties 2. and 3. it follows that

pj = P(P, 0) =
∑
|σ|α=αj

cσ,0P
σ and qj = P(0, Q) =

∑
|ρ|α=αj

c0,ρQ
ρ.

Then

(1.11) P(P,Q) = pj + qj +
∑

|σ|α+|ρ|α=αj
σ,ρ6=0

cσ,ρP
σQρ.

We can complete the proof by noticing that the condition |σ|α + |ρ|α = αj, σ, ρ 6= 0 is empty
when j = 1, . . . ,m1, whereas it implies σ = (σ1, . . . , σj−1, 0, . . . , 0), ρ = (ρ1, . . . , ρj−1, 0, . . . , 0)
when j ≥ m1 + 1.

As for the last assertion of the lemma, being σ, ρ 6= 0 in the sum in the right-hand side
of (1.11), the sum itself may depend only on the σ’s and ρ’s with |σ|α + |ρ|α < αj, hence, on
the pk’s and qk’s with αk < αj.

Lemma 1.3.6. Let δλ be as in (1.9). Let P : RN ×RN → R be a smooth function. Assume
that there is l ≥ 0 such that for all P,Q ∈ RN and for all λ > 0 such that

P(δλ(P ), δλ(Q)) = λlP(P,Q).

Then
P 7→ ∂qjP(P, 0)

is δλ-homogeneous of degree l − αj (unless it vanishes identically).

Proof. By Lemma 1.3.5, P is a polynomial of the following type

P(P,Q) =
∑

|σ|α+|ρ|α=l

cσ,ρP
σQρ, cσ,ρ ∈ R.
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Then, denoting by ej the j-th element of the canonical basis of RN , we obtain

∂qjP(P,Q) =
∑

|σ|α+|ρ|α=l

cσ,ρρjP
σQρ−ej ,

so that, since |ej|α = αj,

∂qjP(P, 0) =
∑

|σ|α=l−αj
ρ=ej

cσ,ρP
σ

This ends the proof.

Now, we are in the position to prove the previously mentioned structure theorem for the
composition law of a Carnot group.

Theorem 1.3.7. Let G = (RN , ·, δλ) be a Carnot group of step κ. Then the group oper-
ation · has polynomial component functions. Furthermore, for each P = (p1, . . . , pN), Q =
(q1, . . . , qN) ∈ RN we have

(PQ)j =

{
pj + qj, for j = 1, . . . ,m1

pj + qj +Qj(P,Q) for j = m1 + 1, . . . , N

and the following facts hold:

1. Qj is a sum of mixed monomials in P,Q.

2. Qj(δλP, δλQ) = λαjQj(P,Q) for all P,Q ∈ G and λ > 0.

3. Qj(P,Q) only depends on the pk’s and qk’s with αk < αj.

More precisely,

(1.12) Qj(P,Q) =
∑
l,h

Rj
l,h(P,Q)(plqh − phql), for m1 < j ≤ N

where Rj
l,h are polynomials, homogenous of degree αj − (αl + αh) with respect to group dila-

tions, and the sum is extended to all l, h such that αl + αh ≤ αj.

Proof. Fix j = 1, . . . , N . We define

Qj : RN × RN → R Qj(P,Q) = (PQ)j.

Since δλ is an automorphism of G, we get

Qj(δλ(P ), δλ(Q)) = (δλ(PQ))j = λαj(PQ)j = λαjQj(P,Q).
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Moreover, because P · 0 = P , 0 ·Q = Q, we obtain that

Qj(P, 0) = pj, Qj(0, Q) = qj,

Hence we can apply Lemma 1.3.5 to Qj and consequently we obtain that the conditions
1-2-3 hold for all j = 1, . . . , N . Finally (1.12) follows from Proposition 2.2.22 (4) in [17].

It is useful to know that G = G1 ⊕ G2 ⊕ · · · ⊕ Gκ where Gi = exp(gi) = Rni is the ith

layer of G and to write P ∈ G as (p1, . . . , pκ) with pi ∈ Gi. According to this

(1.13) P ·Q = (p1 + q1, p2 + q2 +Q2(p1, q1), . . . , pκ + qκ +Qκ((p1, . . . , pκ−1), (q1, . . . , qκ−1))

for every P = (p1, . . . , pκ), Q = (q1, . . . , qκ) ∈ G.
From (1.12) it follows that for all P ∈ G

(1.14) Qs(P, 0) = Qs(0, P ) = 0 and Qs(P, P ) = Qs(P,−P ) = 0

for s = 2, . . . κ. Moreover for each E bounded subset of G there exists CE > 0 such that

(1.15)
|Qs(−P,Q)| ≤ CE(|q1 − p1|+ · · ·+ |qs−1 − ps−1|)

≤ CE(|(P−1Q)1|+ · · ·+ |(P−1Q)s−1|)

for all P,Q ∈ E . This fact follows from

Qj(−P,Q) =
∑
l,h

Rj
l,h(−P,Q)(−plqh + phql)

=
∑
l,h

Rj
l,h(−P,Q)(qh(ql − pl)− ql(qh − ph)),

Corollary 1.3.8. Let G = (RN , ·, δλ) be a Carnot group of step κ. Then for all Q ∈ G

Q−1 = −Q.

Proof. By the explicit form of the composition in Theorem 1.3.7 we deduce that if P ·Q = 0,
then

(1.16) pj = −qj whenever αj = 1.

Moreover if αj = 2 we have pj = −qj + Qj(P,Q), where Qj only depends on the pk’s and
qk’s with αk = 1 and consequently using (1.14) and (1.16)

pj = −qj +Qj((−q1, . . . ,−qm1), (q1, . . . , qm1)) = −qj whenever αj = 2.

This procedure can be iterated to get the thesis.
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Now we give two estimates (see [39]).

Proposition 1.3.9. If P,Q ∈ G then

P−1QP = Q+ P(P,Q),

where P(P,Q) = (P1(P,Q), . . . ,Pκ(P,Q)) with P1(P,Q) = 0 and for each s = 2, . . . κ,
Ps(P,Q) are (vector valued) polynomial functions δλ-homogeneous of degree s. Moreover, if
E ⊂ G is bounded, there exists CE = CE(G) > 0 such that for s = 2, . . . , κ

|Ps(P,Q)| ≤ CE
(
|q1|+ · · ·+ |qs−1|

)
,

for all P = (p1, . . . , pκ), Q = (q1, . . . , qκ) ∈ E.

Proof. By Theorem 1.3.7 we have

P−1QP = Q+Q(P,Q) +Q(−P,Q+ P +Q(P,Q))

=: Q+ P(P,Q),

for all P,Q ∈ G. Because Q1(P,Q) = 0 then P1(P,Q) = 0. Moreover thanks to (1.12) it
follows that Ps(P,Q) is the sum of monomials each one containing a positive power of some
qi for i = 1, . . . ,ms−1.

Corollary 1.3.10. There is a vector valued polynomial function P : G×G→ RN such that

G−1P−1QG = Q− P + P(G,P−1Q) ∀G,P,Q ∈ G.

Moreover if E ⊂ G is bounded, there is CE = CE(G) > 0 such that for s = 2, . . . , κ,

(1.17) |Ps(G,P−1Q)| ≤ CE
(
|(P−1Q)1|+ · · ·+ |(P−1Q)s−1|

)
∀G,P,Q ∈ E .

Proof. From Proposition 1.3.9 we have

G−1P−1QG = P−1Q+ P(G,P−1Q)

= Q− P +Q(−P,Q) + P(G,P−1Q).

We can estimate Q(−P,Q) with (1.15). From again Proposition 1.3.9 and (1.15) we get for
s = 2, . . . , κ

|Ps(G,P−1Q)| ≤ CE
(
|(P−1Q)1|+ · · ·+ |(P−1Q)s−1|

)
≤ CE

s−1∑
l=1

(
|(Q− P )l|+ |Ql(−P,Q)|

)
≤ ĈE

s−1∑
l=1

|(Q− P )l|

for all G,P,Q ∈ E .
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Example 1.3.2. The Euclidean group (RN ,+) is a Carnot group of step 1. Here, for any
λ > 0, the dilation is given by

δλ(A) = λA, for every A ∈ RN .

The Euclidean spaces are the only Carnot groups of step 1 and the only commutative Carnot
groups.

Consequently, a Carnot group is not the Euclidean group RN if and only if g2 6= {0}. In
this case, the first layer g1 must be at least 2 dimensional since [g1, g1] = g2 6= {0} and hence
the homogeneous dimension of non commutative Carnot group is larger than 4.

Example 1.3.3. The simplest example of a non-Abelian Carnot group is provided by Heisen-
berg group Hk = R2k+1. Exhaustive introductions to Heisenberg groups can be found in [21],
[98].

For P = (p1, . . . , p2k, p2k+1), Q = (q1, . . . , q2k, q2k+1) ∈ Hk we define the group operation
given by

P ·Q =

(
p1 + q1, . . . , p2k + q2k, p2k+1 + q2k+1 +

1

2

k∑
i=1

(piqk+i − pk+iqi)

)

and the family of (non isotropic) dilations

δλ(P ) := (λp1, . . . , λp2k, λ
2p2k+1), for all P ∈ Hk, λ > 0.

A basis of left invariant vector fields is given by

Xi = ∂pi −
1

2
pk+i ∂p2k+1

, for all i = 1, . . . , k

Xk+i = ∂pk+i +
1

2
pi ∂p2k+1

, for all i = 1, . . . , k

Y = ∂p2k+1

The only non trivial commutator relations being

[Xi, Xk+i] = Y i = 1, . . . , k.

Thus the vector fields X1, . . . , X2k satisfy Chow-Hörmander condition (1.1) and Hk is a step
2 Carnot group. Moreover the stratification of the Lie algebra h of the left invariant vector
fields is given by h = h1 ⊕ h2,

h1 = span{X1, . . . , X2k}, h2 = span{Y }.
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1.3.4 Left invariant vector fields

A basis of the Lie algebra g of G is given by the following N left invariant vector fields:

Proposition 1.3.11. Let G be a Carnot group identified with RN through graded coordinates
associated with a basis X1, . . . , XN . Let {∂pi}i=1,...,N be the standard basis of vectors of RN

and set Xj(P ) :=
∑N

i=1 aij(P )∂pi. If ms−1 < i ≤ ms, 1 ≤ s ≤ κ, then

(1.18) Xi(P ) = ∂pi +
N∑

j>ms

aji(P )∂pj

with
aji(P ) = ∂qiQj(P,Q)|Q=0

and such that aji(P ) = aji(p1, . . . , pms−1) and aji(0) = 0.

We highlighted that Xi defined as (1.18) are “pyramid”-shaped vector fields (see Example
1.2.3).

The proof of Proposition 1.3.11 relies on the following characterization of the smooth
δλ-homogeneous vector fields (see Proposition 1.3.5 in [17]).

Proposition 1.3.12. Let δλ be as in (1.9). Let X be a smooth non vanishing vector field
on RN ,

X(P ) =
N∑
i=1

ai(P )∂pi .

Then X is δλ-homogeneous of degree l ∈ R if and only if ai is a polynomial function δλ-
homogeneous of degree αi − l (unless ai = 0). Hence, the degree of δλ-homogeneity of X
belongs to the set of real (possibly negative) numbers

Ai = {αi − |β|α : β ∈ (N ∪ {0})N},

whenever i is such that ai is not identically zero.

For example, the vector fields X1 = ∂p1 − 1
2
p2∂p3 and X2 = ∂p2 − 1

2
p1∂p3 on R3 are

δλ-homogeneous of degree 1 with respect to the dilation

δλ(p1, p2, p3) = (λp1, λp2, λ
2p3).

Also, the vector fields p3
1X1 := p3

1∂p1− 1
2
p3

1p2∂p3 and p2X2 := p2∂p2− 1
2
p2p1∂p3 are respectively

δλ-homogeneous of degrees −2 and 0 with respect to the same dilation.
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Corollary 1.3.13. Let δλ be as in (1.9). Let X be a smooth non vanishing vector field on
RN . Then X is δλ-homogeneous of degree l ∈ R if and only if

δλ(X(P )) = λlX(δλ(P )).

Proof. Let X =
∑N

i=1 ai(P )∂pi . By Proposition 1.3.12, X is δλ-homogeneous of degree l if
and only if ai(δλ(P )) = λαi−lai(P ) for any i ∈ {1, . . . , N}. This is equivalent to

δλ(X(P )) = (λα1a1(P ), . . . , λαNaN(P ))

= λl(a1(δλ(P )), . . . , aN(δλ(P )))

= λlX(δλ(P )),

as desired.

Now we are able to show the proof of Proposition 1.3.11.

Proof. Let P = (p1, . . . , pN), Q = (q1, . . . , qN) ∈ G. Because Xi is a left invariant vector field
we have

Xif(P ) = ∂qif(PQ)
∣∣
Q=0

= ∂pif(P ) +
∑
j>ms

∂qiQj(P,Q)|Q=0 ∂pjf(P )

= ∂pif(P ) +
∑
j>ms

aji(P )∂pjf(P )

To conclude observe that from (1.13) in each polynomial Qj there is no term depending on
a single variable, hence aji(0) = ∂qiQj(P,Q)|Q=P=0 = 0.

Finally by Lemma 1.3.6 and Proposition 1.3.12 we obtain that aji(P ) is δλ-homogeneous
of degree αj − αi and consequently Xi is δλ-homogeneous of degree αi.

1.3.5 Metrics on Carnot groups

Let G = (RN , ·, δλ) be a Carnot group and let dcc be the cc-metric defined in Definition 1.1.1.
By Theorem 1.1.6 and Remark 1.3.1, (G, dcc) is a Carnot-Carathéodory space. Moreover

the presence of a stratification induces many “good” properties of dcc, with respect to both
left translations and dilations, which are collected in the following proposition.

Proposition 1.3.14. For any P,Q,Q′ ∈ RN and λ > 0 we have

1. dcc(τPQ, τPQ
′) = dcc(Q,Q

′)

2. dcc(δλQ, δλQ
′) = λdcc(Q,Q

′).
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Proof. The statement 1. of the thesis follows from the fact that γ : [0, T ]→ RN is a subunit
path from Q to Q′ if and only if γ̃ = τP ◦ γ : [0, T ]→ RN is a subunit path from PQ to PQ′.
In fact, if γ̇(t) =

∑n1

j=1 hj(t)Xj(γ(t)), then

˙̃γ(t) = dτP (γ(t)) γ̇(t) = dτP (γ(t))

m1∑
j=1

hj(t)Xj(γ(t)) =

m1∑
j=1

hj(t)Xj(γ̃(t)),

where dτP denotes the differential of the left translation by P .
Now we prove the statement 2. of the thesis. It will be sufficient to show that a path

γ : [0, T ] → RN from Q to Q′ is subunit if and only if so is the curve γλ : [0, λT ] → RN ,
joining δλ(Q) and δλ(Q

′), defined by

γλ(t) := δλ(γ(t/λ)).

Indeed, we know that

γ̇(t) =

m1∑
j=1

hj(t)Xj(γ(t)) =
N∑
l=1

(
m1∑
j=1

hj(t)alj(γ(t))

)
∂pl

and since αj = 1 for all j = 1, . . . ,m1, by Proposition 1.3.11 all the alj’s appearing in the
sum are δλ-homogeneous of degree (αl − 1) and so

γ̇λ(t) =
N∑
l=1

λαl−1

(
m1∑
j=1

hj(t/λ)alj(γ(t/λ))

)
∂pl

=
N∑
l=1

(
m1∑
j=1

hj(t/λ)alj(γλ(t))

)
∂pl =

m1∑
j=1

hj(t/λ)Xj(γλ(t)).

It is useful to consider on G a homogeneous norm:

Definition 1.3.5. A nonnegative function P → ‖P‖ on G is said a homogeneous norm if

1. ‖P‖ = 0 if and only if P = 0.

2. ‖δλP‖ = λ‖P‖ for all P ∈ G and λ > 0.

3. ‖PQ‖ ≤ ‖P‖+ ‖Q‖.

Given any homogeneous norm ‖ · ‖, it is possible to introduce a distance in G given by

(1.19) d(P,Q) = d(P−1Q, 0) = ‖P−1Q‖

for all P,Q ∈ G.
Both the cc-metric dcc and the metric d in (1.19) are invariant, i.e.
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Definition 1.3.6. Let G be a Carnot group. A invariant (or homogeneous) distance d on
G is a map d : G×G→ [0,+∞) with the following properties:

1. d(τPQ, τPQ
′) = d(Q,Q′), for all P,Q,Q′ ∈ G (Left invariance)

2. d(δλQ, δλQ
′) = λd(Q,Q′), for all Q,Q′ ∈ G and λ > 0 (Homogeneity)

The distance d in (1.19) is equivalent to dcc. More precisely

Proposition 1.3.15. Let d1 and d2 be invariant distances on G. Then they are equivalent,
i.e. there exist CM , Cm > 0 such that for all P,Q ∈ G

Cmd1(P,Q) ≤ d2(P,Q) ≤ CMd1(P,Q).

Proof. We define the sphere S := {P ∈ G : d1(P, 0) = 1} and the numbers

Cm := min{d2(0, Q) : Q ∈ S}, CM := max{d2(0, Q) : Q ∈ S}.

because d2(0, ·) is strictly positive and continuous on S, we deduce that CM and Cm are
positive constants. Then by homogeneity of d1 and d2 we get

Cmd1(0, Q) ≤ d2(0, Q) ≤ CMd1(0, Q)

for any Q ∈ G. Now the thesis follows from the left invariant property of distances d1 and
d2.

For any bounded subset Ω of G there exist c1 = c1(Ω), c2 = c2(Ω) > 0 such that

(1.20) c1|P −Q| ≤ d(P,Q) ≤ c2|P −Q|1/κ

for every P,Q ∈ Ω. Therefore, id : (G, d)→ (RN , | · |) is locally Lipschitz and id : (RN , | · |)→
(G, d) is locally C0,1/κ Hölder continuous.

By (1.20), we have that the topologies defined by d and by the Euclidean distance coin-
cide, and so the topological dimension of (G, d) is N ; but the invariant metric d is not
locally equivalent to the Euclidean distance. Indeed it was proved in [93] that there are no
bi-Lipschitz maps from from a general non commutative Carnot group G to any Euclidean
space.

Example 1.3.4. We present an example of homogeneous norm that is used in [44] and
denote by ‖ · ‖∞.

Let us consider the Heisenberg group Hk (see Example 1.3.3). For any P = (p1, p2) ∈ Hk

we define a homogeneous norm as

‖P‖∞ := max{|p1|, |p2|1/2}.
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Then the invariant distance associated to ‖ · ‖∞ is the continuous map d∞ : Hk × Hk → R
given by

d∞(P,Q) := ‖P−1Q‖∞
for all P,Q ∈ Hk.
It is clear that ‖P‖ = 0 if and only if P = 0, i.e. the condition 1. is true.
Moreover observe that for any P = (p1, p2) ∈ Hk

‖δλP‖∞ = max{|λp1|, |λ2p2|1/2} = λmax{|p1|, |p2|1/2} = λ‖P‖∞

i.e. the condition 2. holds.
Finally we show the triangle inequality. Let P = (p1, p2), Q = (q1, q2) ∈ Hk with p1, q1 ∈ R2k

and p2, q2 ∈ R. We have that

PQ = (p1 + q1, p2 + q2 +Q2(p1, q1))

with Q2(p1, q1) = 1
2

∑k
i=1 (piqk+i − pk+iqi). If ‖PQ‖∞ = |p1 + q1|, then

‖PQ‖∞ ≤ |p1|+ |q1| ≤ ‖P‖∞ + ‖Q‖∞.

On the other hand, if ‖PQ‖∞ = |p2 + q2 +Q2(p1, q1)|1/2, then

‖PQ‖2
∞ ≤ |p2|+ |q2|+ |p1||q1| ≤ ‖P‖2

∞ + ‖Q‖2
∞ + 2‖P‖∞‖Q‖∞.

and so the triangle inequality follows.

Example 1.3.5. (see Theorem 5.1 in [47]) Let G be a Carnot group of step κ then there
are constants ε1 = 1, . . . , εκ with εi ∈ (0, 1], such that the map ‖ · ‖ : G→ R defined as

(1.21) ‖(p1, . . . , pκ)‖ := max
s=1,...,κ

{
εs|ps|1/αs

}
is a homogeneous norm.

1.3.6 Hausdorff measures in a metric space: Application to Carnot
groups

In this section we provide the definition and basic properties of the notion of Hausdorff
measure in a general metric spaces and then we consider the specific case of a Carnot group
G equipped with an invariant distance (see Definition 1.3.6). The reader can see [33] and
[95].

For t > 0 let

α(t) :=
πt/2

Γ( t
2

+ 1)
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where Γ : (0,+∞) → R is the usual gamma function defined as Γ(t) =
∫∞

0
e−rrt−1 dr. We

recall that
LN(Be(x, r)) = α(N)rN

for all Euclidean balls B(x, r) ⊂ (RN , | · |).
Moreover we recall that if C is a subset of a separable metric space (G, d) then the diameter

of C is denoted as
diam(C) := sup{d(A,B) |A,B ∈ C}.

Definition 1.3.7. Let (G, d) be a separable metric space. Let U ⊂ G, 0 ≤ t < ∞ and
0 < δ ≤ ∞. Define

Ht
d,δ(U) := inf

{
∞∑
i=1

α(t)diam(Ci)t
∣∣∣ U ⊂ ∪∞i=1Ci, diam(Ci) ≤ δ

}
.

Then
Ht
d(U) = lim

δ→0
Ht
d,δ(U)

is called the t-dimensional Hausdorff measure of U .
We define Std the t-dimensional spherical Hausdorff measure of U , when the infimum is

taken over all possible coverings of U by a (finite or) countable family of balls {B(Pi, ri) :
i ∈ N}.

It is well know that Ht
d and Std are equivalent and they are Borel measures, i.e.

Ht
d(U1 ∪ U2) = Ht

d(U1) +Ht
d(U2), if dist(U1,U2) > 0.

Definition 1.3.8. Let (G, d) be a separable metric space and let U ⊂ G. We define the
Hausdorff (or metric) dimension of U as the value

Hdim(U) := inf{t ∈ [0,+∞) |Ht
d(U) = 0}.

Remark 1.3.16. Observe that if Hdim(U) = t, then

Hs
d(U) = 0 for all s > t

Hs
d(U) =∞ for all s < t

and Ht
d(U) may be any number between 0 and ∞, inclusive.

Because Ht
d,Std are equivalent, the notion of Hausdorff dimension can be equivalently

stated by means of measure Std. Moreover, the Hausdorff dimension is stable with respect to
equivalent metrics on G and with respect to the countable union, i.e.

Hdim(∪∞i=1Ui) = sup
i

Hdim(Ui) if Ui ⊂ G, i ∈ N.
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It is monotonous, i.e.

Hdim(U1) ≤ Hdim(U2) if U1 ⊂ U2 ⊂ G.

Let G be a Carnot group endowed with an invariant metric d. We denote by U(P, r) and
B(P, r), respectively, the open and closed ball centered at P and with radius r > 0, that is

U(P, r) = {Q ∈ G : d(P,Q) < r}, B(P, r) = {Q ∈ G : d(P,Q) ≤ r}.

By Proposition 2.4 in [47], we know that there is δ > 0 such that for all r ∈ (0, δ) and all
P ∈ G

diam(B(P, r)) = 2r.

Moreover because d is a left invariant distance, all Hausdorff measures are left invariant,
i.e.

Ht
d(τP (U)) = Ht

d(U), for all U ⊂ G, P ∈ U
and t homogeneous with respect to dilations δλ, i.e.

Ht
d(δλ(U)) = λtHt

d(U), for all U ⊂ G, λ > 0.

We denote by Ht
e the t-dimensional Hausdorff measure obtained from the Euclidean

distance in RN ' G, by Ht the t-dimensional Hausdorff measure obtained from the metric
d in G. Analogously, Ste St denote the corresponding spherical Hausdorff measure.

The following theorem, proved for the first time in [76], gives an explicit formula of the
metric dimension of Carnot group:

Theorem 1.3.17. Let G be a Carnot group endowed with an invariant metric. If we put

(1.22) q :=
N∑
j=1

αj =
κ∑
i=1

idimgi

then
Hdim(G) = q.

We call q the homogeneous dimension of G.

Remark 1.3.18. In the non-Abelian case κ > 1, one clearly has

N < q,

i.e. the topological dimension N is strictly less than the metric dimension q. The equality
holds if and only if G is a step 1 Carnot group, i.e. if G is isomorphic to Euclidean space
RN . For instance in the case of the Heisenberg group Hk = R2k+1 we have that

N = 2k + 1 < 2k + 2 = q.
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Proposition 1.3.19. Let G = (RN , ·) be a Carnot group. Then the N-dimensional Lebesgue
measure LN is the Haar measure of the group G. Indeed if E ⊂ RN is measurable then
LN(τP (E)) = LN(E) for all P ∈ G. Moreover if λ > 0 then LN(δλ(E)) = λqLN(E) and

(1.23) LN(B(P, r)) = LN(U(P, r)) = rqLN(B(P, 1)) = rqLN(B(0, 1))

where q is the homogeneous dimension of G defined as (1.22).

1.3.7 Sum of Carnot Groups

In this section, we show how to build a Carnot group starting from two fixed groups (see
Section 4.1.5 in [17]).

Let G(1) = (RN , ·, δ(1)
λ ), G(2) = (RM , ?, δ

(2)
λ ) be Carnot groups with dilations

δ
(1)
λ (P ) = (λp1, . . . , λpκ), P ∈ G(1)

δ
(2)
λ (Q) = (λq1, . . . , λqr), Q ∈ G(2)

where
ps ∈ Rns for s = 1, . . . , κ, n1 + · · ·+ nκ = N

qs ∈ Rls for s = 1, . . . , r, l1 + · · ·+ lr = M.

We define a Carnot group G on RN+M as follows.
Suppose r ≤ κ. We denote the points of G = RN+M by

R(P,Q) = (p1, q1, . . . , pr, qr, pr+1, . . . , pκ), for (P,Q) ∈ RN × RM .

Moreover the group law � and the dilation δλ on G are defined as follows: for every ξ =
R(P,Q), η = R(P ′, Q′) ∈ G

ξ � η = R(P · P ′, Q ? Q′),

δλ(ξ) = R(δ
(1)
λ (P ), δ

(2)
λ (Q)).

Then G = (RN+M , �, δλ) is a Carnot group of step κ and n1 + l1 generators.

Precisely if (g
(1)
1 , . . . , g

(1)
κ ) is a stratification of g(1), the Lie algebra of G(1), and (g

(2)
1 , . . . , g

(2)
r )

is a stratification of g(2), the Lie algebra of G(2), then

(g1, . . . , gκ) where gi =

{
(g

(1)
i , g

(2)
i ) for i = 1, . . . , r

gi = g
(1)
i for i = r + 1, . . . , κ

is a stratification of g, the Lie algebra of G.
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Example 1.3.6. If G(1) is the Euclidean group on R2 and G(2) is the Heisenberg group
H1, then the sum of G(1) and G(2) is the Carnot group on R5 (whose points are denoted
ξ = (p1, p2, q1, q2, q3) for P = (p1, p2) ∈ R2 and Q = (q1, q2, q3) ∈ H1 = R3) with the group
operation

(p1, p2, q1, q2, q3) � (p′1, p
′
2, q
′
1, q
′
2, q
′
3) =


p1 + p′1
p2 + p′2
q1 + q′1
q2 + q′2

q3 + q′3 + 1
2
(q1q

′
2 − q′1q2)


and

δλ(p1, p2, q1, q2, q3) = (λp1, λp2, λq1, λq2, λ
2q3).

1.4 Groups of class B
The aim of this section is to define and to collect some results and many explicit examples
of group of class B, which is a subclass of Carnot groups of step 2 shown in [17], Chapter 3.

1.4.1 Characterization of Carnot groups of Step 2

Let (Rm+n, ·) with the composition law · defined as

(1.24) (x, y) · (x′, y′) := (x+ x′, y + y′ +
1

2
〈Bx, x′〉), for all (x, y), (x′, y′) ∈ Rm+n

where 〈Bx, x′〉 := (〈B(1)x, x′〉, . . . , 〈B(n)x, x′〉), B(1), . . . ,B(n) are m × m matrices with real
entries and 〈·, ·〉 is the inner product in Rm.

Then (Rm+n, ·) is a Lie group where identity is the origin and the inverse is

(x, y)−1 = (−x,−y +
1

2
〈Bx, x〉).

Notice that the inverse map is the usual (−x,−y) if and only if, for every s = 1, . . . , n it
holds

〈B(s)x, x〉 = 0, for all x ∈ Rm

i.e. iff the matrices B(s)’s are skew-symmetric.
In particular we have the following result:

Proposition 1.4.1 ([17], Proposition 3.2.1). Let G be a Lie group on Rm+n such that the
dilation δλ : Rm+n → Rm+n defined as

(1.25) δλ(x, y) := (λx, λ2y), for all (x, y) ∈ Rm+n
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is an automorphism of G for every λ > 0.
Then G is equipped with the composition law defined as (1.24) where B(1), . . . ,B(n) are n

suitable m × m matrices. Moreover, a characterization of Carnot groups of step 2 and m
generators is given by the above G = (Rm+n, ·, δλ), where the skew-symmetric parts of the
B(s)’s are linearly independent.

Note that the above arguments show that there exist 2 step Carnot groups of any dimen-
sion m ∈ N of the first layer and any dimension

n ≤ m(m− 1)

2

of the second layer: it suffices to choose n linearly independent matrices B(1), . . . ,B(n) in the
vector space of the skew-symmetric m×m matrices (which has dimension m(m− 1)/2) and
then define the composition law as in (1.24).

Remark 1.4.2. We explicitly remark that the linear independence of the skew-symmetric
parts of B(1), . . . ,B(n) is necessary for G to be a Carnot group.

Indeed if B(s) = (b
(s)
ij )mi,j=1, then a basis of the Lie algebra g of G, is given by the m + n

left invariant vector fields

(1.26) Xj(x, y) = ∂xj +
1

2

n∑
s=1

(
m∑
i=1

b
(s)
ji xi

)
∂ys , Ys(x, y) = ∂ys ,

for j = 1, . . . ,m, and s = 1, . . . , n and it easy to see that

[Xj, Xi] =
n∑
s=1

1

2

(
b

(s)
ij − b

(s)
ji

)
∂ys =:

n∑
s=1

c
(s)
ij ∂ys

where we denote by C(s) = (c
(s)
ij )mi,j=1 the skew-symmetric part of B(s), i.e.

C(s) :=
1

2
(B(s) − (B(s))T ).

Moreover thanks to the linear independence of C(s) we have that the matrix m2 × n

c
(1)
11 . . . c

(n)
11

c
(1)
12 . . . c

(n)
12

... . . .
...

c
(1)
1m . . . c

(n)
1m

c
(1)
21 . . . c

(n)
21

... . . .
...

(proceed analogously up to)
... . . .

...

c
(1)
mm . . . c

(n)
mm


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has rank equal to n and consequently

span{[Xj, Xi] | i, j = 1, . . . ,m} = span{Y1, . . . , Yn}.

Therefore X1, . . . , Xm satisfy the Chow-Hörmander condition (1.1), i.e.

dim(span{X1, . . . , Xm, [Xj, Xi]}(x, y)) = m+ n

for all (x, y) ∈ G.

Example 1.4.1. We consider G = (R3+2, ·, δλ) with

B(1) =

( 1 1 0
−1 0 0
0 0 0

)
, B(2) =

( 0 0 −1
0 1 0
1 0 0

)
.

Then the composition law on G as in (1.24) becomes

(x1, x2, x3, y1, y2) · (x′1, x′2, x′3, y′1, y′2) =


x1 + x′1
x2 + x′2
x3 + x′3

y1 + y′1 + 1
2

(
x1x

′
1 + x′1x2 − x′2x1

)
y2 + y′2 + 1

2

(
x2x

′
2 − x′1x3 − x′3x1

)


and the dilation (1.25) is

δλ(x1, x2, x3, y1, y2) = (λx1, λx2, λx3, λ
2y1, λ

2y2).

In this case G is a Carnot group. Indeed the skew-symmetric parts of B(1) and B(2) are
linearly independent

1

2
(B(2) − (B(1))T ) =

( 0 1 0
−1 0 0
0 0 0

)
,

1

2
(B(2) − (B(2))T ) =

( 0 0 −1
0 0 0
1 0 0

)
Moreover we can compute the first three vector fields of the basis of Lie algebra g of G and
verify that they are Lie-generators for g,

X1 = ∂x1 +
1

2
(x1 + x2)∂y1 −

1

2
x3∂y2 ,

X2 = ∂x2 −
1

2
x1∂y1 +

1

2
x2∂y2 ,

X3 = ∂x3 +
1

2
x1∂y2 ,

[X1, X2] = −∂y1 ,
[X1, X3] = ∂y2 ,

[X2, X3] =
1

2
∂y2 .
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Example 1.4.2. We consider G = (R3+2, ·, δλ) where · is given by (1.24) with

B(1) =

( 1 1 0
−1 0 0
0 0 0

)
, B(2) =

( 0 −2 0
2 1 0
0 0 0

)

Then the explicit group operation on G is

(x1, x2, x3, y1, y2) · (x′1, x′2, x′3, y′1, y′2) =


x1 + x′1
x2 + x′2
x3 + x′3

y1 + y′1 + 1
2

(
x1x

′
1 + x′1x2 − x′2x1

)
y2 + y′2 + 1

2

(
x2x

′
2 − 2x′1x2 + 2x′2x1

)


and the dilation is

δλ(x1, x2, x3, y1, y2) = (λx1, λx2, λx3, λ
2y1, λ

2y2).

Here by Proposition 1.4.1 we have that G is not a Carnot group because the skew-symmetric
parts of B(1) and B(2) are linearly dependent,

1

2
(B(2) − (B(1))T ) =

( 0 1 0
−1 0 0
0 0 0

)
,

1

2
(B(2) − (B(2))T ) =

( 0 −2 0
2 0 0
0 0 0

)
.

On the other hand, the first three vector fields of the related basis of Lie algebra g of G
are not Lie-generators for g, since

X1 = ∂x1 +
1

2
(x1 + x2)∂y1 − x2∂y2 ,

X2 = ∂x2 −
1

2
x1∂y1 +

( 1

2
x2 + x1

)
∂y2 ,

X3 = ∂x3 ,

[X1, X2] = −∂y1 + 2∂y2 ,

[X1, X3] = [X2, X3] = 0.

Consequently span{[Xj, Xi] | i, j = 1, 2, 3} 6= span {∂y1 , ∂y2} and the Chow-Hörmander con-
dition (1.1) is not checked.

Proposition 1.4.3 ([17], Proposition 3.5.1). Let G = (Rm+n, ·, δλ) be equipped with a Lie
group structure by the composition law is (1.24) where B(1), . . . ,B(n) are fixed m×m matrices
and the dilation is (1.25).

Then G is isomorphic to the Lie group H = (Rm+n, �, δλ) where:
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1. δλ is the same non isotropic dilation as above.

2. � : Rm+n × Rm+n → Rm+n is defined by

(x, y) � (ξ, τ) =

(
x+ ξ, y + τ +

1

2
〈B̃x, ξ〉

)
where B̃ = (B̃(1), . . . , B̃(n)) and B̃(s) is the skew-symmetric parts of B(s) for every s =
1, . . . , n. Moreover the inverse map on H is (−x,−y).

3. the Lie group isomorphism is Ψ : H→ G with

Ψ(ξ, τ) =

(
ξ, τ +

1

4
〈B̃ξ, ξ〉

)
,

so that Ψ is the identity map iff all the B(s)’s are skew-symmetric.

4. if G is a Carnot group, then the same is true for H.

Example 1.4.3. If G = (R3+2, ·, δλ) is as in Example 1.4.1, then G is isomorphic to the
Carnot group H = (R3+2, �, δλ), where � is given by

(x, y) � (ξ, τ) =

(
x+ ξ, y + τ +

1

2
〈B̃x, ξ〉

)
where B̃ = (B̃(1), B̃(2)) and B̃(s) is the skew-symmetric parts of B(s), i.e.

B̃(1) =

( 0 1 0
−1 0 0
0 0 0

)
, B̃(2) =

( 0 0 −1
0 0 0
1 0 0

)
.

1.4.2 Groups of class B
Definition 1.4.1. We say that G := (Rm+n, ·, δλ) is a Carnot group of class B if there are
n linearly independent, skew-symmetric m×m real matrices B(1), . . . ,B(n) such that for all
(x, y), (x′, y′) ∈ Rm × Rn and for all λ > 0

(1.27) (x, y) · (x′, y′) = (x+ x′, y + y′ +
1

2
〈Bx, x′〉)

where 〈Bx, x′〉 := (〈B(1)x, x′〉, . . . , 〈B(n)x, x′〉) and 〈·, ·〉 is the inner product in Rm and

(1.28) δλ(x, y) := (λx, λ2y).
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Under these assumptions G is a Carnot group of step 2 with Rm the horizontal layer and Rn

the vertical layer (see Chapter 3 of [17]).

Moreover, if B(s) := (b
(s)
ij )mi,j=1, then a basis of the Lie algebra g of G, is given by the

n+m left invariant vector fields

(1.29) Xj(x, y) = ∂xj +
1

2

n∑
s=1

(
m∑
i=1

b
(s)
ji xi

)
∂ys , Ys(x, y) = ∂ys ,

for j = 1, . . . ,m, and s = 1, . . . , n. Finally, we make the following choice of the homogeneous
norm in G:

(1.30) ‖(x, y)‖ := max{|x|, ε|y|1/2}

for a suitable ε ∈ (0, 1] (see Example 1.3.5).

Remark 1.4.4. According to (1.22), if G is a Carnot group of class B then the homogeneous
dimension of G is

q = m+ 2n.

Remark 1.4.5. As we said, the space of skew-symmetric m × m matrices has dimension
m(m−1)

2
. Hence in any group G of class B the dimensions of the horizontal layer and of the

vertical layer are related by the inequality

n ≤ m(m− 1)

2
.

1.4.3 Example: Free Step 2 Groups

We present free step 2 groups which are an example of groups of class B.

Let m ≥ 2 be a fixed integer. We denote by (Fm,2, ?) the Carnot group on Rm×R
m(m−1)

2

with the composition law (1.27) defined by the matrices B(s) ≡ B(i,j) where 1 ≤ j < i ≤ m
and B(i,j) has entries −1 in position (i, j), 1 in position (j, i) and 0 everywhere else.

In the sequel of this section, we shall use the following notation, different from the one
used in the previous section: instead of using the notation τ for the coordinate in the vertical
layer of the group, we denote the points of Fm,2 by (x, τ), where the coordinates of τ ∈ Rn

are denoted by
τij where (i, j) ∈ I := {(i, j) : 1 ≤ j < i ≤ m}.

Here we have ordered I in an arbitrary (henceforth) fixed way. Then, the group operation
? is given by

(x, τ) ? (x′, τ ′) =

(
x+ x′

τlh + τ ′lh + 1
2
(xlx

′
h − xhx′l) (l, h) ∈ I

)
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A base of Lie algebra of Fm,2 is

Xi = ∂xi +
1

2

∑
1≤h<l≤m

( m∑
j=1

b
(l,h)
ij xj

)
∂τlh

=


∂x1 + 1

2

∑
1<l≤m xl∂τl1 if i = 1

∂xi + 1
2

∑
i<l≤m xl∂τli −

1
2

∑
1≤h<m xh∂τih if 1 < i < m

∂xm + 1
2

∑
1≤h<m xh∂τmh if i = m

Ylh = ∂τlh , (l, h) ∈ I.

Moreover, for every (l, h) ∈ I, we have the commutator identities

[Xl, Xh] =
1

2
(∂τlh − ∂τhl).

Remark 1.4.6. The Heisenberg group Hk is a free Carnot group if and only if k = 1. Indeed,
since the Lie algebra g of Hk has step 2 and 2k generators, a necessary condition for Hk to
be free is that

2k + 1 = dim g = 2k(2k + 1)/2,

i.e. that k = 1.

Example 1.4.4. We consider free step 2 group F3,2. Here m = 3, n = 3 and

B(2,1) =

( 0 1 0
−1 0 0
0 0 0

)
, B(3,1) =

( 0 0 1
0 0 0
−1 0 0

)
,

B(3,2) =

(0 0 0
0 0 1
0 −1 0

)
.

Hence the group operation ? is defined as

(x1, x2, x3, τ21, τ31, τ32) ? (x′1, x
′
2, x
′
3, τ
′
21, τ

′
31, τ

′
32) =


x1 + x′1
x2 + x′2
x3 + x′3

τ21 + τ ′21 + 1
2

(
x2x

′
1 − x1x

′
2

)
τ31 + τ ′31 + 1

2

(
x3x

′
1 − x1x

′
3

)
τ32 + τ ′32 + 1

2

(
x3x

′
2 − x2x

′
3

)


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and the dilation is

δλ(x1, x2, x3, τ21, τ31, τ32) = (λx1, λx2, λx3, λ
2τ21, λ

2τ31, λ
2τ32).

Moreover a basis of Lie algebra of F3,2 is given by

X1 = ∂x1 +
1

2

(
x2∂τ21 + x3∂τ31

)
,

X2 = ∂x2 +
1

2

(
x3∂τ32 − x1∂τ21

)
,

X3 = ∂x3 +
1

2

(
− x1∂τ31 − x2∂τ32

)
,

Y21 = ∂τ21 , Y31 = ∂τ31 , Y32 = ∂τ32 .

1.4.4 Example: H-Type Groups

Another examples of groups of class B are H-type Groups.
The groups of H-type were introduced by A. Kaplan in [58]. Kaplan’s definition of H-type

groups is more abstract than the one given here. In [17], Chapter 18 the authors show that,
up to an isomorphism, the two definitions are equivalent.

Definition 1.4.2. We say that a Lie group H = (Rm+n, ·, δλ) is H-type group if the dila-
tion is defined as (1.28) and the composition law is of the form (1.27) where the matrices
B(1), . . . ,B(n) have the following properties:

1. B(s) is an m×m skew-symmetric and orthogonal matrix for all s = 1, . . . n

2. B(s)B(l) = −B(l)B(s) for every s, l = 1, . . . , n with s 6= l.

Remark 1.4.7. Since conditions 1. and 2. we have that B(1), . . . ,B(n) are linear independent.
Indeed if η = (η1, . . . , ηn)−{0}, then 1

|η|
∑n

s=1 ηsB(s) is orthogonal (hence non-vanishing), as
the following computation shows,(

1

|η|

n∑
s=1

ηsB(s)

)(
1

|η|

n∑
s=1

ηsB(s)

)T

= − 1

|η|2
n∑

l,s=1

ηlηsB(l)B(s)

= − 1

|η|2
∑
l≤n

η2
l (B(l))2 − 1

|η|2
∑

l,s≤n, l 6=r

ηlηsB(l)B(s)

= Im

Here we used the following facts: (B(l))2 = −Im, since B(l) is skew-symmetric and ortho-
gonal;

∑
l 6=r ηlηsB(l)B(s) = 0 according to condition 2.
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Remark 1.4.8. Because B(s) is a m ×m skew-symmetric orthogonal matrix, we have Im =
B(s)(B(s))T = −(B(s))2, whence 1 = (−1)m(detB(s))2. As a consequence, the first layer of a
H-type group has even dimension m.

Remark 1.4.9. If G = (Rm+n, ·, δλ) is H-type group, then

{(0, y) | y ∈ Rn} is the center of G.4

Indeed, let (x, y) ∈ G be such that

(x, y) · (x′, y′) = (x′, y′) · (x, y) for all (x′, y′) ∈ G.

This holds if and only if
〈B(s)x, x′〉 = 〈B(s)x′, x〉

for all x ∈ Rm and for all s = 1, . . . , n. Then, since (B(s))T = −B(s), we have 〈B(s)x′, x〉 = 0
for every x ∈ Rm and s = 1, . . . , n. Consequently x = 0 because B(s) is orthogonal (hence
non singular).

Remark 1.4.10. The Heisenberg groups are H-type groups and consequently they are groups
of class B. Indeed in Hk = R2k × R the group law is of the form (1.27) with

B(1) =

(
0 Ik
−Ik 0

)
.

More specifically, the Heisenberg groups are the only, up to isomorphism, H-type group with
one-dimensional center.

Proposition 1.4.11. Let m,n be two positive integers. Then there exists a H-type group
of dimension m + n whose center has dimension n if and only if it holds n < ρ(m), where
ρ : N→ N is the so-called Hurwitz-Radon function, i.e.

ρ(m) := 8p+ q, where m = (odd) 24p+q, 0 ≤ q ≤ 3.

Notice that if m is odd, then ρ(m) = 0, whence the first layer of any H-type group has
even dimension.

Example 1.4.5. We conclude this section by presenting the complexified Heisenberg group
H1

2, which is an example of H-type group. More information on this group can be found in
[87].

We consider H1
2 = (R4+2, ·, δλ) where · is given by (1.24) with

B(1) =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , B(2) =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


4We recall that the center of G is {P ∈ G |PQ = QP, ∀Q ∈ G}.
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Then the explicit group operation on H1
2 is

(x1, x2, x3, x4, y1, y2) · (x′1, x′2, x′3, x′4, y′1, y′2) =


x1 + x′1
x2 + x′2
x3 + x′3
x4 + x′4

y1 + y′1 + 1
2

(
− x2x

′
1 + x1x

′
2 + x4x

′
3 − x3x

′
4

)
y2 + y′2 + 1

2

(
− x4x

′
1 + x3x

′
2 − x2x

′
3 + x1x

′
4

)


and the dilation is

δλ(x1, x2, x3, y1, y2) = (λx1, λx2, λx3, λx4, λ
2y1, λ

2y2).

Notice that H1
2 is H-type group whose center has dimension 2 and the first layer has

dimension 4. Moreover a basis of Lie algebra h1
2 of H1

2 is

X1 = ∂x1 −
1

2
(x2∂y1 + x4∂y2),

X2 = ∂x2 +
1

2
(x1∂y1 + x3∂y2),

X3 = ∂x3 +
1

2
(x4∂y1 − x2∂y2),

X4 = ∂x4 −
1

2
(x3∂y1 − x1∂y2),

Y1 = ∂y1 , Y2 = ∂y2

1.4.5 Example: H-groups in the Sense of Métivier

Following G. Métivier in [74] (see also [17]), we give the following definition.

Definition 1.4.3. Let g be a finite dimensional real Lie algebra, and let us denote by Z
its center. 5 We say that g is of H-type in the sense of Métivier if it admits a vector space
decomposition

g = g1 ⊕ g2

{
[g1, g1] ⊆ g2

g2 ⊆ Z

with the following additional property: for every η ∈ g∗2 (i.e. the dual space of g2) the
skew-symmetric bilinear form on g1 defined by

Bη : g1 × g1 → R, Bη(X1, X2) := η([X1, X2])

5The center of g is {Y ∈ g | [Y,X] = 0, ∀X ∈ g}.
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is non degenerate 6 whenever η 6= 0.
We say that a Lie group G is a H-group in the sense of Métivier, or a HM-group in short,

if its Lie algebra is of H-type in the sense of Métivier.

Proposition 1.4.12. The HM-groups are Carnot groups of step 2.

Proof. By definition we have that HM-type algebra is obviously nilpotent of step two. More-
over by g2 ⊆ Z and g1 ⊆ g we obtain

[g, g] = [g1 + g2, g + g2] = [g1, g1] ⊆ [g, g].

Consequently,

(1.31) [g, g] = [g1, g1].

Now we want to prove that

(1.32) [g, g] = g2.

From (1.31) and [g1, g1] ⊆ g2 we get that [g, g] = [g1, g1] ⊆ g2. Hence it remains to show
that

(1.33) g2 ⊆ [g, g].

Suppose to the contrary that there exists Y ∈ g2 such that Y /∈ [g, g] (and consequently
Y 6= {0}). Then there certainly exists η ∈ g∗2 such that g2(Y ) 6= 0 (whence η 6= 0) and
η vanishes identically on [g, g] because Y ∈ g2 − [g, g]. But this implies that, for every
X1, X2 ∈ g1, we obtain

Bη(X1, X2) = η([X1, X2]) = 0,

for [X1, X2] ∈ [g, g] and η|[g,g] = 0. This is in contradiction because Bη is non degenerate
and consequently (1.33) holds.

Now putting together (1.31) and (1.32), we get that a HM-type algebra is stratified:
indeed

g = g1 ⊕ g2 with [g1, g1] = g2 and [g1, g2] = {0},

and this completes the proof.

Collecting the above result, we have proved the following proposition.

6A bilinear map Bη on a finite dimensional vector space g1 is non degenerate if any (or equivalently, if
one) of the matrices representing it with respect to a fixed basis is non singular or, equivalently, if for every
v ∈ g1 − {0}, there exists w ∈ g1 such that Bη(v, w) 6= 0.



1.4 Groups of class B 60

Proposition 1.4.13 ([17], Proposition 3.7.3). A HM-group is a Carnot group G of step 2
such that if

g = g1 ⊕ g2 with [g1, g1] = g2, [g1, g2] = {0}
is any stratification of the Lie algebra g of G, then the following property holds: For every
non-vanishing linear map η from g2 to R, the (skew-symmetric) bilinear form Bη on g1

defined by
Bη(X1, X2) := η([X1, X2]), for all X1, X2 ∈ g1

is non degenerate.

Now we give a characterization of HM-groups:

Proposition 1.4.14. Let G = (Rm+n, ·, δλ) be a group of class B.
Then G is a HM-group if and only if every non vanishing linear combination of the

matrices B(s)’s is non singular.

Proof. If B(s) := (b
(s)
ij )mi,j=1, then a basis of the Lie algebra g of G, is given by the n+m left

invariant vector fields defined as (1.26), i.e.

Xj(x, y) = ∂xj +
1

2

n∑
s=1

(
m∑
i=1

b
(s)
ji xi

)
∂ys , Ys(x, y) = ∂ys ,

for j = 1, . . . ,m, and s = 1, . . . , n.
Moreover if η : g2 → R is a linear map, we know that there exist η1, . . . , ηn ∈ R such that

η(∂ys) = ηs for all s = 1, . . . , n.

In particular the map Bη : g1 × g1 → R, as in Proposition 1.4.13, can be explicitly written
as follows

if Z1 =
m∑
j=1

αjXj and Z2 =
m∑
j=1

α′jXj

then Bη(Z1, Z2) =
m∑

i,j=1

(
−

n∑
s=1

ηsb
(s)
ij

)
αiα

′
j.

In other words, the matrix representing the skew-symmetric bilinear map Bη with respect to
the basis X1, . . . , Xm of g1 is the matrix

η1B(1) + · · ·+ ηnB(n).

Hence, to ask for Bη to be non degenerate (for every η 6= 0) is equivalent to ask that any
linear combination of the matrices B(s)’s is non singular, unless it is the null matrix (recall
that the B(s)’s are linearly independent).
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Remark 1.4.15. Let G = (RN , ·) be a HM-group. It isn’t necessary that B(s), . . . ,B(n) are
skew-symmetric, but thanks to Proposition 1.4.3 G is isomorphic to H = (RN , �) where the
matrices B̃(1), . . . , B̃(n) associated to � are the skew-symmetric part of B(1), . . . ,B(n). Hence
we may also suppose that they are.

Remark 1.4.16. If G is a HM-group, then the B(s)’s are all non singular m × m matrices.
Moreover since the B(s)’s are also skew-symmetric, this implies that m is necessarily even.

Remark 1.4.17. Any H-type group (according to Definition 1.4.2) is a HM-group. Indeed,
as it can be seen from the computations on Remark 1.4.7, in a H-type group, for every
η = (η1, . . . , ηn) ∈ Rn − {0}, we proved that

∑n
s=1 ηsB(s) is |η| times an orthogonal matrix,

hence
∑n

s=1 ηsB(s) is non singular.
The converse is not true. For example, consider the group on R5 = R4 × R with the

composition law · given by (1.27) where

B =


0 1 0 0
−1 0 0 0
0 0 0 2
0 0 −2 0

 .

Then G = (R5, ·, δλ) is obviously a HM-group because B is a non singular skew-symmetric
matrix. But G is not a H-type group because B is not orthogonal. But more is true: G is
not even isomorphic to any prototype H-type group (Chapter 18, [17]).



Chapter 2

Differential calculus within Carnot
groups

In this chapter we provide the definitions and some properties of the differential calculus
within Carnot groups.

One of the main objects of this thesis is the notion of G-regular surfaces, that is related
to the notion of rectifiability. Indeed, rectifiable sets are classically defined as contained in
the countable union of C1 submanifolds: in Euclidean spaces one can see [33], [72] while a
general theory in metric spaces can be found in [34], [5], [6]. We also mention [73] for the
Heisenberg groups.

In Carnot groups, the importance of the G-regular surfaces became evident in [44], [47]
where Rectifiability Theorem on the class of 2 step Carnot groups is proved (see Theorem
2.4.7). Here the authors establish that the reduced boundary of a G-Caccioppoli set (see
Section 2.3.3) in a step two Carnot group is a countable union of G-regular surfaces up to
Hq−1-negligible sets, where q is the homogeneous dimension of the group. The validity of
this result for groups of higher step is partially solved in [71] to the much larger class of step
2 Carnot groups. On the other hand, in [47] there is a counterexample to the De Giorgi’s
(classical) method when G is a particular Carnot group of step three called Engels group.

According to the notion of Federer, a “good” surface in a metric space should be the image
of an open subset of an Euclidean space via a Lipschitz map. Unfortunately, this definition
is not appropriate in Heisenberg groups, and in many other Carnot groups. Indeed, in [6] the
authors show that the surfaces in Heisenberg groups would be not rectifiable in the Federer
sense.

On the other hand, in the Euclidean setting RN , a C1 hypersurface (i.e. a topological
codimension 1 surface) can be equivalently viewed as the level set of a function f : RN → R
with non vanishing gradient. Such a concept was easily transposed in [44] to the Heisenberg
group and in [45] to Carnot group by means of C1

G functions (see Definition 2.3.2): we con-
sequently define G-regular surfaces as non critical level sets of C1

G functions, i.e. continuous
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real functions on G whose horizontal derivatives are represented, in distributional sense, by
continuous functions.

In a similar way, a k-codimensional regular surface S ⊂ G is locally defined as a non
critical level set of a C1

G vector function F : G→ Rk (see Definition 2.4.5).
Another important object of this thesis is the notion of the intrinsic graph. The simple

idea of intrinsic graph is the following one: let M and W be complementary subgroups of G,
i.e. homogeneous subgroups such that W ∩M = {0} and G = W ·M, then the intrinsic left
graph of φ : W→M is the set

graph (φ) := {A · φ(A) |A ∈W}.

Hence the existence of intrinsic graphs depends on the possibility of splitting G as a
product of complementary subgroups. Hence it depends on the structure of the algebra g.

Differently from the Euclidean case where the surfaces can be locally defined as non
critical level sets or, equivalently, as continuously intrinsic differentiable graphs, in Carnot
groups the notion of regular surfaces is not equivalent to the notion of intrinsic graphs any
more. One of the main aim of this thesis is to find the additional assumptions in order that
they are equivalent in G.

More precisely, from Implicit Function Theorem, proved in [44] for the Heisenberg group
and in [45] for a general Carnot group (see also Theorem 1.3, [70]) it follows

S is a G-regular surface =⇒ S is (locally) an intrinsic graph of a map φ.

Consequently, given an intrinsic graph of φ, we want to find necessary and sufficient assump-
tions on φ in order that the opposite implication is true.

We will see that these additional assumptions will be characterized in terms of an appro-
priate notion of differentiability, denoted uniform intrinsic differentiability, for maps acting
between complementary subgroups of G. Quite precisely, a function is intrinsic differentiable
if it is well approximated by appropriate linear type functions, denoted intrinsic linear func-
tions. In Proposition 2.6.3 we prove that any intrinsic linear map acting between comple-
mentary subgroups of G, where one of these complementary subgroups is horizontal, can be
represented by a matrix denoted by Dφφ. We call Dφφ intrinsic gradient of map and it will
play a crucial role in the next chapter.

In Section 2.1 we focus our attention on the concept of subgroups of G: we begin by
recalling the concept of homogeneous, complementary and horizontal subgroup. Then we
present some results about projection maps on a subgroup.

Section 2.2 is entirely concerned with horizontal linear maps, in short H-linear maps. We
present some results given in [70] about the surjective or injective H-linear maps. Note that
we will frequently use the adjective “horizontal” to indicate objects related to the horizontal
subbundle and we will often use the prefix H. Here in Proposition 2.3.4 we see the link
between this notion and the horizontal subbundle.
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In Section 2.3 we introduce and analyze the Pansu differentiability in Carnot groups (see
[83]). Moreover we give a natural definition of bounded variation functions and of finite
perimeter sets. The main result of the section is Whitney’s Extension Theorem: its proof
was sketched in [47], here we give a complete one.

In Section 2.4, we define the (G(1),G(2))-regular surfaces where G(1),G(2) are Carnot
groups, according to [70]. Quite precisely, the author partially extends the definition of
G-regular surfaces introduced and studied in Heisenberg groups in [44], [45], [46]. We say
“partially” because there is not a complete classification of (G(1),G(2))-regular surfaces. We
stress that not all codomains G(2) are “good” to be considered; for instance, the family of
(Hn,Hk)-regular surfaces is empty whenever n > k (see Proposition 2.2.10).

In Section 2.4.2 we consider the surfaces (G(1),G(2))-regular surfaces when G(2) = Rk.
We simply call them G-regular surfaces and they are the main object of this thesis.

Section 2.5 is entirely devoted to the intrinsic graphs with particular emphasis on Lip-
schitz graphs. The notion of Lipschitz graphs in Heisenberg group appeared for the first time
in [44] and was studied, more diffusely, in [94], [46], [38], [39], [13], [15] and [42]. Intrinsic
Lipschitz functions play the same role as Lipschitz functions in Euclidean context.

First we propose here a geometric definition: a M-graph S is said to be an intrinsic
Lipschitz M-graph if S intersects intrinsic cones with axis M, fixed opening and vertex on S
only in the vertex (see Definition 2.5.4). Then in Proposition 2.5.10 we give an equivalent
analytic form. Finally, in Section 2.5.2 we characterize the intrinsic Lipschitz functions in
terms of boundedness of appropriately defined intrinsic difference quotients (see [94]).

In Section 2.6, we conclude this chapter with the definition and some important properties
of intrinsic differentiability (see Definition 2.6.2).

If we consider a map φ : W → M where M is a horizontal subgroup of G, then we can
define a quasi metric ρφ depends on φ, which we call “graph distance” because it is equivalent
to the invariant metric d restricted to the graph of φ, under suitable hypothesis. Moreover
using ρφ we can also introduce a stronger pointwise notion of intrinsic differentiability here
denoted as uniform intrinsic differentiability (see Definition 2.6.4).

2.1 Complementary subgroups

Now we introduce the concept of complementary subgroups.
An homogeneous subgroup W of G is a Lie subgroup such that δλA ∈W for every A ∈W

and for all λ > 0. Homogeneous subgroups are linear subspaces of G, when G is identified
with RN .

Definition 2.1.1. Let W, M be homogeneous subgroups of G. We say that W and M are
complementary subgroups in G, if W ∩M = {0} and if

G = W ·M,
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i.e. if for every P ∈ G there are PW ∈W and PM ∈M such that P = PWPM.

In particular through all this thesis we consider G = W ·M, where as usual W and M
are complementary subgroups of G and M is also a horizontal subgroup, i.e. the Lie algebra
of M is contained in the first layer g1 of G. More precisely, we assume the existence of
X1, . . . , Xk ∈ g1 such that

M := exp(span{X1, . . . , Xk}).
If W and M are complementary subgroups of G and one of them is a normal subgroup 1

then G is said to be the semi-direct product of W and M. Moreover if both W and M are
normal subgroups then G is said to be the direct product of W and M and in this case we
will also write that G = W×M.

The elements PW ∈ W and PM ∈ M such that P = PW · PM are unique because of
W∩M = {0} and are denoted as components of P along W and M or as projections of P on
W and M. We stress that each component PW and PM depends on both the complementary
subgroups W and M and also on the order in which they are taken. The projection maps
PW : G→W and PM : G→M defined

PW(P ) = PW PM(P ) = PM

are not always Lipschitz maps, when W and M are endowed with the restriction of the left
invariant distance of G (see Example 2.1.1). In Proposition 2.2.14 in [39], the authors prove
that the projection maps are C∞, as function from G ≡ RN to G ≡ RN .

Observe that, in general,

(PW)−1 6= (P−1)W and (PM)−1 6= (P−1)M.

Example 2.1.1. We consider the Heisenberg group H1 and

M := {P = (p1, p2, p3) ∈ H1 | p2 = p3 = 0} and W := {P = (p1, p2, p3) ∈ H1 | p1 = 0}.

Here M,W are complementary subgroup of H1 where W is normal and M is 1-dimensional
horizontal. Moreover

PW(P ) = (0, p2, p3 −
1

2
p1p2) PM(P ) = (p1, 0, 0).

The projection map PW is not Lipschitz. Indeed if we consider P = (1, 1, 0) and Qh =
(1 + h, 1 + h, 0), then

PW(P ) =

(
0, 1,−1

2

)
PW(Qh) =

(
0, 1 + h,−1

2
(1 + h)2

)
1We recall that W is a normal subgroup in G if it is a subgroup such that

P−1AP ∈W, for all P ∈ G, A ∈W.
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and consequently as h→ 0+

‖P−1Qh‖ = ‖(h, h, 0)‖ ≈ h

‖PW(P )−1PW(Qh)‖ = ‖(0, h,−h− h2/2)‖ ≈
√
h

We recall the following inequality proved in [9], Proposition 3.2 (see also [8])

Proposition 2.1.1. If W and M are complementary subgroups in G there is c0 = c0(W,M)
with c0 ∈ (0, 1] such that for each PW ∈W and PM ∈M

(2.1) c0(‖PW‖+ ‖PM‖) ≤ ‖PWPM‖ ≤ ‖PW‖+ ‖PM‖

Remark 2.1.2. By elementary fact in group theory if W,M are complementary subgroup of
G, so that G = W ·M then is also true that

G = M ·W,

that is, each P ∈ G can be written in a unique way as P = P̄MP̄W with P̄M ∈ M and
P̄W ∈ W. Rephrased differently, if W,M are complementary subgroup of G also M,W are
complementary subgroup of G.

Remark 2.1.3. The stratification of G induces a stratifications on the complementary sub-
groups W and M. If G as G = G1⊕· · ·⊕Gκ then also W = W1⊕· · ·⊕Wκ, M = M1⊕· · ·⊕Mκ

and Gi = Wi ⊕Mi. If M is horizontal then the complementary subgroup W is normal.

Remark 2.1.4. Complementary subgroups always exist in any Carnot group G. Indeed,
choose any horizontal homogeneous subgroup M = M1 ⊂ G1 and subgroup W = W1⊕ · · · ⊕
Wκ such that

M⊕W1 = G1

Ws = Gs for all s = 2, . . . , κ.

Then M,W are complementary subgroups in G and the product G = W ·M is semi-direct
because W is a normal subgroup.

Example 2.1.2. Let G be a Carnot group of step κ and let

M := {P ∈ G | p2 = · · · = pN = 0} and W := {P ∈ G | p1 = 0}.

Then W,M are complementary subgroups of G. Moreover M is horizontal subgroup and W
is normal.

Example 2.1.3. There are subgroups in Carnot groups without a complementary subgroup.
For instance, in Heisenberg group Hk if we consider the subgroup

M := {P = (p1, . . . , p2k+1) ∈ Hk | p1 = · · · = p2k = 0},

then there is not a subgroup W ⊂ Hk such that W ∩M = {0} and Hk = W ·M.
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Example 2.1.4. We now give an example of complementary subgroups of a Carnot group
which are not normal. Indeed, recalling Section 1.3.7, if we consider G equals to the sum
of G(1) = H1 with itself, then G = R4+2 is a group of class B where the group operation is
defined as (1.24) with

B(1) =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 B(2) =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


i.e.

(x1, x2, y1, y2, x3, y3) · (x′1, x′2, y′1, y′2, x′3, y′3) =(
x1 + x′1, x2 + x′2, y1 + y′1, y2 + y′2, x3 + x′3 +

1

2
(x1x

′
2 − x′1x2), y3 + y′3 +

1

2
(y1y

′
2 − y′1y2)

)
.

Moreover W := {(0, x2, y1, 0, x3, 0) |x2, x3, y1 ∈ R} and M := {(x1, 0, 0, y2, 0, y3) |x1, y2, y3 ∈
R} are complementary subgroups of G but both W and M are not normal; indeed if we con-
sider P = (x̂1, x̂2, 0, 0, 0, 0), Q = (0, 0, ŷ1, ŷ2, 0, 0) ∈ G then

P−1(x1, 0, 0, y2, 0, y3)P = (x1, 0, y2, x̂2x1, 0, y3) /∈M
Q−1(0, x2, y1, 0, x3, 0)Q = (0, x2, y1, 0, x3, ŷ2y1) /∈W.

Hence the product G = W ·M is not semi-direct.

Now we present an estimate which we will use later:

Lemma 2.1.5. Let G be a step κ Carnot group. There is C = C(G) > 0 such that

‖P−1Q−1PQ‖ ≤ C
(
‖P‖

1
κ‖Q‖

κ−1
κ + ‖P‖

κ−1
κ ‖Q‖

1
κ

)
for all P,Q ∈ G

and consequently

(2.2) ‖Q−1PQ‖ ≤ ‖P‖+ C
(
‖P‖

1
κ‖Q‖

κ−1
κ + ‖P‖

κ−1
κ ‖Q‖

1
κ

)
for all P,Q ∈ G.

Proof. By direct computation it can be checked

(P−1Q−1PQ)1 = 0

(P−1Q−1PQ)2 = Q2(−P,−Q) +Q2(P,Q)

(P−1Q−1PQ)s = Qs(−P,−Q) +Qs(P,Q) +Qs(−P −Q+Q(−P,−Q), P +Q+Q(P,Q)),

for each s > 2. As a consequence, from (1.12) we have that if s = 2 we can estimate

|(P−1Q−1PQ)2| 12 by ‖P‖ 1
2‖Q‖ 1

2 up to a constant factor depending only on G.
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On the other hand if s = 3, . . . , κ, since Theorem 1.3.7 we know that Qs(−P,−Q) +
Qs(P,Q) +Qs(−P − Q +Q(−P,−Q), P + Q +Q(P,Q)) are δλ-homogeneous polynomials
of degree s in the variables P and Q and by (1.14)

Qs(P, 0) = 0,

Qs(0, Q) = 0,

Qs(−P, 0) +Qs(P, 0) +Qs(−P +Q(−P, 0), P +Q(P, 0)) = 0,

Qs(0,−Q) +Qs(0, Q) +Qs(−Q+Q(0,−Q), Q+Q(0, Q)) = 0.

Hence Qs(−P,−Q) + Qs(P,Q) + Qs(−P − Q + Q(−P,−Q), P + Q + Q(P,Q)) contain
only mixed monomials in the variables P and Q and using again (1.12) we can estimate

|(P−1Q−1PQ)s| 1s by
∑s−1

i=1 ‖P‖i‖Q‖s−i up to a constant factor. More specifically because
‖P‖i‖Q‖s−i is estimated by ‖P‖‖Q‖s−1 when ‖P‖ ≤ ‖Q‖ and by ‖P‖s−1‖Q‖ when ‖P‖ ≥
‖Q‖, then

‖P‖i‖Q‖s−i ≤ ‖P‖‖Q‖s−1 + ‖P‖s−1‖Q‖, for all i = 1, . . . , s− 1.

Consequently, there exists Cs > 0 such that

|(P−1Q−1PQ)s|
1
s

≤ |Qs(−P,−Q)|
1
s + |Qs(P,Q)|

1
s + |Qs(−P −Q+Q(−P,−Q), P +Q+Q(P,Q))|

1
s

≤ Cs

(
‖P‖

1
s‖Q‖

s−1
s + ‖P‖

s−1
s ‖Q‖

1
s

)
.

Finally (2.2) follows from ‖Q−1PQ‖ ≤ ‖P‖+ ‖P−1Q−1PQ‖.

A direct consequence of Lemma 2.1.5 is the following corollary:

Corollary 2.1.6. Let G be a Carnot group of step κ where W,M are complementary sub-
groups of G. If A,A′ ∈W and B,B′ ∈M such that

AB = B′A′

then

‖A‖ ≤ 1

c0

‖A′‖+
C

c0

(
‖A′‖

1
κ‖B′‖

κ−1
κ + ‖A′‖

κ−1
κ ‖B′‖

1
κ

)
,

‖B‖ ≤ 1

c0

‖B′‖+
C

c0

(
‖A′‖

1
κ‖B′‖

κ−1
κ + ‖A′‖

κ−1
κ ‖B′‖

1
κ

)
,

where c0 is given by (2.1). Moreover for every δ > 0 there exists c(δ) = c(δ,W,M) > 0 such
that ‖AB‖ ≤ δ yields

‖A‖ ≤ c(δ)‖A′‖
1
κ and ‖B‖ ≤ c(δ)‖B′‖

1
κ .
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Proof. With the notation
AB = (B′A′)W(B′A′)M

by the uniqueness of the components, we obtain that

A = (B′A′)W = (B′A′B′−1)W and B = (B′A′)M = (A′−1B′A′)M.

Moreover from (2.1) and (2.2) follows

‖A‖ = ‖(B′A′B′−1)W‖ ≤
1

c0

‖B′A′B′−1‖ ≤ 1

c0

‖A′‖+
C

c0

(
‖A′‖

1
κ‖B′‖

κ−1
κ + ‖A′‖

κ−1
κ ‖B′‖

1
κ

)
‖B‖ = ‖(A′−1B′A′)M‖ ≤

1

c0

‖A′−1B′A′‖ ≤ 1

c0

‖B′‖+
C

c0

(
‖B′‖

1
κ‖A′‖

κ−1
κ + ‖B′‖

κ−1
κ ‖A′‖

1
κ

)
,

as desired. Finally we obtain that ‖A′‖, ‖B′‖ ≤ δ/c0 because ‖AB‖ ≤ δ.

2.2 H-linear maps

We introduce the concept of H-linear maps and we propose some properties proved in [69],
[95]. These functions play the same role of linear functions in Euclidean spaces; indeed the
class of H-linear maps coincides with that of linear maps when the group is an Euclidean
space (i.e. Carnot group of step 1).

Definition 2.2.1. Let G(1) and G(2) be Carnot groups with homogeneous norms ‖ · ‖1, ‖ · ‖2

and dilations δ
(1)
λ , δ

(2)
λ . Then l : G(1) → G(2) is said to be horizontal linear map or, shortly,

H-linear map if

1. l is a group homomorphism from G(1) to G(2).

2. l is homogeneous map, i.e. l(δ
(1)
λ P ) = δ

(2)
λ l(P ), for all P ∈ G(1) and λ > 0.

An invertible H-linear map will be called H-isomorphism.

Following [95], we denote by LH(G(1),G(2)) the set of all H-linear maps l : G(1) → G(2)

endowed with the norm defined as

‖l‖LH(G(1),G(2)) = ‖l‖ := sup{‖l(P )‖2 : ‖P‖1 ≤ 1}.

It has a natural structure of Lie group with respect to the following operations:

l · h(P ) := l(P )h(P ) and (l(P ))−1 := −l(P )

for any l, h ∈ LH(G(1),G(2)). Moreover there is a natural group of dilations defined as
δλl(P ) := δλ(l(P )) for λ > 0.
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If g(1), g(2) are the Lie algebra of G(1) and G(2) respectively, we also define LH(g(1), g(2))
as the set of all maps l̃ : g(1) → g(2) such that

exp2 ◦ l̃ ◦ exp−1
1 ∈ LH(G(1),G(2)).

Here expi : g(i) → G(i) for i = 1, 2 and exp−1 is the inverse map of exponential map (see
Theorem 1.2.4).

Consequently any function of LH(G(1),G(2)) induces uniquely a function of LH(g(1), g(2))
and viceversa.

Remark 2.2.1. Let l ∈ LH(g(1), g(2)). Then

1. l is linear map.

2. l preserves the bracket operation.

3. l(g
(1)
1 ) ⊂ g

(2)
1 where g

(i)
1 is the horizontal layer of g(i) for i = 1, 2.

The following results give a simply characterization of H-linear maps.

Proposition 2.2.2. Let l : G(1) → G(2) be an injective H-linear map and l(G(1)) = W.
Then W is a subgroup of G(2) and l−1 : W→ G(1) is H-linear.

Proposition 2.2.3. Let l : G(1) → G(2), h : G(2) → G(3) be H-linear maps. Then h ◦ l :
G(1) → G(3) is H-linear such that

‖h ◦ l‖ ≤ ‖h‖‖l‖.

Theorem 2.2.4 ([95], Theorem 3.2). Let G(1) and G(2) be Carnot groups of step κ with
homogeneous norms ‖ · ‖1, ‖ · ‖2. Let l : G(1) → G(2) be a homomorphism. Then the following
are equivalent:

1. l is H-linear map.

2. l is C∞ and Lipschitz.

3. l is C∞ and l(g
(1)
i ) ⊂ g

(2)
i for every i = 1, . . . , κ where g(j) is the Lie algebra of G(j) for

j = 1, 2.

Remark 2.2.5. Any H-linear map can be represented by a matrix with diagonal blocks. This
basically follows from l(g

(1)
i ) ⊂ g

(2)
i for every i = 1, . . . , κ, which stated in Theorem 2.2.4.

Indeed if g(1) = g
(1)
1 ⊕ · · · ⊕ g

(1)
κ and g(2) = g

(2)
1 ⊕ · · · ⊕ g

(2)
s we have that

l|g(1)i
: g

(1)
i → g

(2)
i
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for i = 1, . . . ,max{κ, s} (taking into account that spaces g
(1)
i and g

(2)
i are null spaces when

i is greater than the degree of nilpotency of the group).
We point out that the general explicit computation of the coefficient of l with respect to

a fixed basis can be very involved because the group operation given by the Baker-Campbell-
Hausdorff formula becomes a large polynomial expression as the step of the group increases.

Let us consider a simple example taken from [82].

Example 2.2.1. Let H1 = R3 and consider the basis X1 = ∂p1 − 1
2
p2 ∂p3 , X2 = ∂p2 +

1
2
p1 ∂p3 , Y = ∂p3 of Lie algebra of H1 (whose points are denoted by P = (p1, p2, p3)). All
H-linear maps l : H1 → H1 can be represented with respect to the basis (X1, X2, Y ) with
matrices of the following form (

B 0
0 det(B)

)
where B is (2× 2) matrix.

2.2.1 H-epimorphisms and H-monomorphisms

Concerning injective and surjective H-linear maps, we will use the classical terminology of
H-epimorphism and H-monomorphisms to indicate special classes of surjective and injective
H-linear maps. Indeed, we recall that a surjective linear mapping of vector spaces is cha-
racterized by the existence of a right inverse that is also linear. Analogously, injective linear
mappings are characterized by the existence of a linear left inverse mapping.

The analogous characterization for either surjective or injective algebra homomorphisms
is not true (see [70], Example 2.4). As a consequence, the existence of a right inverse
homomorphism is a stronger condition than surjectivity. This motivates the following

Definition 2.2.2 ([70], Definition 2.2). We say that an H-linear map is an H-epimorphism
if it has a right inverse that is also an H-linear map.

We say that an H-linear map is an H-monomorphism if it has a left inverse that is also
an H-linear map.

Proposition 2.2.6 (Characterization of H-epimorphisms). Let l : G(1) → G(2) be a surjec-
tive H-linear map and let W be its kernel. The following conditions are equivalent:

1. there exists a subgroup M complementary to W

2. l is an H-epimorphism

Moreover if 1. or 2. hold, then the restriction l|M : M→ G(2) is an H-isomorphism.
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Proof. Let us begin with the proof of the implication 1.⇒ 2.
Let h := l|M and let Q ∈ G(2). We know that there exists P ∈ G(1) such that l(P ) = Q.

Moreover since G(1) = W ·M, we have P = PWPM (where PW and PM are unique) and

Q = l(PWPM) = l(PW)l(PM) = l(PM) = h(PM).

Hence h is surjective. Moreover h is injective; indeed if h(Q) = 0, then Q ∈W∩M = {0} and
so h(Q) = 0 iff Q = 0. We have shown that h is a H-isomorphism. Clearly, h−1 : G(2) →M
is a H-linear map and satisfies l ◦ h−1 = idG(2) . Hence l is an H-epimorphism and the
implication 1.⇒ 2. is complete.

Now we want to show the converse, i.e. 2.⇒ 1.
If l is an H-epimorphism, then there exists a right inverse h : G(2) → G(1) that is also a

H-linear map. Let M := h(G(2)). It easy to see that W ∩M = {0}.
Let P ∈ G(1). We know that there is Q ∈ G(2) such that l(P ) = Q and, since Q = l(h(Q)),

we have that l(P ) = l(h(Q)). As a consequence, P−1h(Q) ∈W. Indeed,

l(P−1h(Q)) = l(P−1)l(h(Q)) = l(P−1)l(P ) = l(0) = 0.

Then
P = PP−1h(Q)

(
P−1h(Q)

)−1

where PP−1h(Q) ∈ M and (P−1h(Q))
−1 ∈ W. Hence G(1) = M ·W = W ·M (see Remark

2.1.2) and this concludes the proof.

Proposition 2.2.7 (Characterization of H-monomorphisms). Let h : G(1) → G(2) be a
injective H-linear map and let M be its image. The following conditions are equivalent:

1. there exists a normal subgroup W ⊂ G(2) complementary to M,

2. there exists an H-epimorphism l : G(2) →M such that l|M = idM

3. h is an H-monomorphism

We stress that the existence of H-epimorphism (or H-monomorphism) from G(1) to G(2)

is strictly linked with the existence of complementary subgroups of G(1) (or G(2)) and one of
them is also a normal subgroup. This fact has intrinsic limitations appearing already inside
Heisenberg. Indeed, low dimensional horizontal subgroups of Heisenberg groups Hn are not
normal subgroups, hence they cannot appear as kernels of H-linear map Hn → Rd. On the
other side, surjective H-linear map Hn → Hk do not exist, if n > k (see [6] and Proposition
2.2.10).
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2.2.2 H-quotients and H-embeddings

Following [70], in this section we investigate the algebraic conditions under which either
surjective or injective H-linear functions are H-epimorphisms or H-monomorphisms, re-
spectively.

Let G be a real Lie group and let W be a Lie subgroup of G. We recall that the quotient
G/W has a unique manifold structure that makes the projection π : G → G/W a smooth
mapping. G/W is called homogeneous manifold, (see Theorem 3.58, [107]).

If we consider a normal Lie subgroup W, then G/W is in addition a Lie group, according
to Theorem 3.64 in [107] and in this case π is a Lie group homomorphism. Moreover by
Theorem 3.14 in [107] it follows

dπ : g→ w is a Lie algebra homomorphism,

where g and w are the Lie algebras of G and G/W, respectively.

Definition 2.2.3 (H-quotients and H-embeddings). We say that G(2) is an H-quotient of
G(1) if there exists a normal homogeneous subgroup W ⊂ G(1) such that G(1)/W is H-
isomorphic to G(2).

Analogously, we say that G(1) is an H-embedding into G(2) if there exists a homogeneous
subgroup of G(2) which is H-isomorphic to G(1).

Proposition 2.2.8. Let G be a Carnot group and m1 be the dimension of horizontal layer
of the Lie algebra associated to G.

Rk is an H-quotient of G if and only if k ≤ m1.

Now we give a characterization of H-quotients and H-embeddings:

Proposition 2.2.9. Let G(1) and G(2) be a Carnot groups. Then G(2) is an H-quotient of
G(1) if and only if there exists a surjective H-linear map l : G(1) → G(2).

Moreover, G(1) H-embeds into G(2) if and only if there exists an injective H-linear map
l : G(1) → G(2).

The Heisenberg group Hk is not an H-quotient of Hn, whenever n > k, indeed

Proposition 2.2.10. Any H-linear map l ∈ LH(Hn,Hk), with n > k, is not surjective.

Proof. By Remark 2.2.5 we have

l(P ) = (Mp1, λp2), for all P = (p1, p2) ∈ Hn

where M : R2n → R2k is a linear map with respect to the field of real numbers and λ ∈ R.
We recall that p1 = (p1, . . . , p2n) and p2 = p2n+1.
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The homomorphism property implies that l(PQ) = l(P )l(Q) for every P = (p1, p2), Q =
(q1, q2) ∈ Hn, i.e.(

Mp1 +Mq1, λ

(
p2n+1 + q2n+1 +

1

2

n∑
i=1

(piqn+i − pn+iqi)

))

=

(
Mp1 +Mq1, λ

(
p2n+1 + q2n+1 +

1

2

n∑
i=1

(
(Mp1)i(Mq1)n+i − (Mp1)n+i(Mq1)i

)))
and consequently

(2.3) λ
n∑
i=1

(piqn+i − pn+iqi) = λ
n∑
i=1

(
(Mp1)i(Mq1)n+i − (Mp1)n+i(Mq1)i

)
for any p1, q1 ∈ R2n. By the fact that n > k we can take a non vanishing p̂ = (p̂1, . . . , p̂2n) in
the kernel ofM. Replacing p1 = p̂ and q1 = (−p̂n+1, . . . ,−p̂2n, p̂1, . . . , p̂n) in (2.3) we obtain
that λ = 0. Then l is not surjective.

2.3 P-differentiable functions and BVG functions

2.3.1 P-differentiability

Now we are able to define P-differentiability for functions acting between nilpotent groups
(see Section 1.2.4) which was introduced by Pansu in [83]. More specifically, we recall this
definition in a particular nilpotent groups, i.e. Carnot groups.

Definition 2.3.1. Let G(1) and G(2) be Carnot groups with homogeneous norm ‖ · ‖1, ‖ · ‖2

and let A ⊂ G(1) be an open set. Then f : A → G(2) is P-differentiable in P ∈ A if there
exists a H-linear function l : G(1) → G(2) such that

(2.4) ‖(l(P−1Q))−1f(P )−1f(Q)‖2 = o(‖P−1Q‖1), as ‖P−1Q‖1 → 0

where limt→0 o(t)/t = 0. Here the H-linear map l is called P-differential of f in P .

Proposition 2.3.1. Let f : A ⊂ G(1) → G(2) and P ∈ A. If there exists a H-linear function
l : G(1) → G(2) satisfying (2.4), then l is unique.

Definition 2.3.2. Let A be an open set in G(1). We denote by C1
H(A,G(2)) the set of all

continuous functions f : A → G(2) such that its P-differential l : A → LH(G(1),G(2)) is
continuous.

If G(1) = G and G(2) = Rk we simply denote C1
H(A,G(2)) as C1

G(A,Rk). In particular if
k = 1 we denote C1

H(A,G(2)) as C1
G(A).



2.3 P-differentiable functions and BVG functions 75

Notice that for a function f : A → R P-differentiability at P ∈ A simply means that
there exists a H-linear map l : G→ R such that

lim
Q→P

f(Q)− f(P )− l(P−1Q)

dcc(Q,P )
= 0.

The fundamental result where P-differentiability applies is the so-called Pansu-Rademarcher
Theorem for Lipschitz functions between Carnot groups:

Theorem 2.3.2 ([83]). Let G(1) and G(2) be Carnot groups with cc-metrics denoted by,
respectively, d1, d2. Let f : A ⊂ (G(1), d1) → (G(2), d2) be a Lipschitz continuous function
with A an open set.

Then f is P-differentiable at Q for LN -a.e. Q ∈ A.

2.3.2 C1
G functions

Once a generating family of vector fields X1, . . . , Xm1 is fixed, we define for any function
f : G → R for which the partial derivatives Xif exist, the horizontal gradient of f as the
horizontal section

∇Gf :=

m1∑
i=1

(Xif)Xi

whose coordinates are (X1f, . . . , Xm1f). If φ = (φ1, . . . , φm1) : G → Rm1 the horizontal
divergence of φ is defined as

divGφ :=

m1∑
j=1

Xjφj.

Remark 2.3.3. The notation we have used for the gradient in a group is partially imprecise,
indeed ∇Gf really depends on the choice of the basis X1, . . . , Xm1 . If we choose a different
base, say Y1, . . . , Ym1 then in general

∑m1

i=1(Xif)Xi 6=
∑m1

i=1(Yif)Yi. Only if the two bases
are one orthonormal with respect to the scalar product induced by the other, we have

m1∑
i=1

(Xif)Xi =

m1∑
i=1

(Yif)Yi.

On the other hand, the notation divG used for the divergence is correct. Indeed, divG
is an intrinsic notation and it can be computed using the previous formula for any fixed
generating family.

The following proposition shows that the P-differential of a P-differentiable map f is
represented by horizontal gradient ∇Gf :
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Proposition 2.3.4. If f : A ⊂ G→ R is P-differentiable at a point P and l is P-differential
of f at P , then

l(Q) =

m1∑
j=1

Xjf(P )qj, ∀Q = (q1, . . . , qN) ∈ A.

Then we can characterize C1
G maps as follows:

Proposition 2.3.5. A continuous map f : A → R belongs to C1
G(A) if and only if its

distributional derivatives Xjf are continuous in A for j = 1, . . . ,m1.

Consequently, C1
G(A,Rk) is the set of k-tuples F = (F1, . . . , Fk) : A → Rk such that

each Fi and X1Fi, . . . , Xm1Fi are continuous in A for i = 1, . . . , k. Observe that the intrinsic
gradient of F is

∇GF (Q) :=

∇GF1(Q)
...

∇GFk(Q)

 .

Definition 2.3.3. Let A be an open set in G, we denote by C1
G(A, HG) the set of all sections

φ of HG whose canonical coordinates φj ∈ C1
G(A) for j = 1, . . . ,m1.

Remark 2.3.6. C1(A) ⊂ C1
G(A). The following example shows that this inclusion is strict:

Let G = H1 and let f : H1 → R be defined as

f(p1, p2, p3) := p1 − g
(
p2, p3 −

1

2
p1p2

)
, for (p1, p2, p3) ∈ H1 = R3

where, for any α > 0, the map g : R3 → R is

g(q1, q2) :=

{
|q1|αq2
q41+q22

if (q1, q2) 6= (0, 0)

0, if (q1, q2) = (0, 0)

Then f ∈ C1
G(H1), but f is not locally Lipschitz continuous with respect to the Euclidean

metric of R3, when 3 < α < 4. Indeed, if α > 2, the map g ∈ C0(R2) ∩ C1(R2 − {(0, 0)})
whence

f ∈ C0(R3) ∩ C1(R3 − {(p, 0, 0) : p ∈ R}).

Moreover
X1f(p1, p2, p3) = 1 + p2 ∂q2g(p1, 2p1p2 + p3)

X2f(p1, p2, p3) = −∂q1g(p1, 2p1p2 + p3)

if (p2, p3) 6= (0, 0) and X1f(p1, 0, 0) = 1, X2f(p1, 0, 0) = 0. Therefore, if α > 3, X1f and
X2f are continuous functions on R3 and, by Proposition 2.3.5, f ∈ C1

G(H1).
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To prove that f is not locally Lipschitz continuous for 3 < α < 4, it is sufficient to notice
that for any r > 0

sup
{(0,p2,p3)∈B(0,r) : p3 6=0}

|f(0, p2, p3)− f(0, p2, 0)|
|p3|

=∞.

For C1
G functions we have the following Morrey type inequality (see also Lemma 3.2.2 in

[105]).

Lemma 2.3.7. Let P ∈ G and f ∈ C1
G(U(P, r0),Rk). Then there is C = C(P, r0) > 0 such

that, for each Q̄ ∈ U(P, r0/2) and r ∈ (0, r0/4),

|f(Q)− f(Q̄)−∇Gf(Q̄)(Q̄−1Q)1| ≤ Cd(Q, Q̄)‖∇Gf −∇Gf(Q̄)‖L∞(U(Q,2d(Q,Q̄)))

for all Q ∈ U(Q̄, r).

Proof. Fix Q̄ ∈ U(P, r0/2) and r ∈ (0, r0/4). Let f̂ : U(Q̄, r)→ Rk be defined as

Q 7→ f̂(Q) := f(Q)−∇Gf(Q̄)(Q̄−1Q)1.

Hence f̂(Q̄) = f(Q̄) and ∇Gf̂ = ∇Gf −∇Gf(Q̄). Moreover, (see Theorem 1.1. in [66]) there
are p > 1 and Ĉ > 0 such that for all Q ∈ U(Q̄, r)

|f̂(Q)− f̂(Q̄)| ≤ Ĉr

( ∫
U(Q̄,2r)

|∇Gf̂ |p dLN
)1/p

Then

|f(Q)− f(Q̄)−∇Gf(Q̄)(Q̄−1Q)1| = |f̂(Q)− f̂(Q̄)|

≤ 2Ĉ d(Q, Q̄)

( ∫
U(Q,2d(Q̄,Q))

|∇Gf̂ |p dLN
)1/p

= 2Ĉ d(Q, Q̄)

( ∫
U(Q,2d(Q̄,Q))

|∇Gf −∇Gf(Q̄)|p dLN
)1/p

≤ Cd(Q, Q̄)‖∇Gf −∇Gf(Q̄)‖L∞(U(Q,2d(Q,Q̄))).

We end this section by presenting Whitney’s extension Theorem for C1
G functions which

will be crucial in the Theorem 3.1.1. The proof we are going to present can be found in [47]
for Carnot groups of step two only, but it is identical for general Carnot groups. For the
Euclidean case the reader can see [33], Section 6.5.
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Theorem 2.3.8. Let F ⊂ G be a closed set and let f : F → Rk, g : F → Mk×m1 be
continuous functions. Let ρ : F × F → Rk be defined as

ρ(P,Q) :=
f(P )− f(Q)− g(Q)(Q−1P )1

‖Q−1P‖

where g(Q)(Q−1P )1 is the usual product between matrix and vector. For K ⊂ F and δ > 0
let

ρK(δ) := sup{|ρ(P,Q)| : P,Q ∈ K, 0 < d(P,Q) < δ}.

If, for all compact set K ⊂ F ,

(2.5) lim
δ→0

ρK(δ) = 0

then there exists f̂ ∈ C1
G(G,Rk) such that

f̂|F = f, ∇Gf̂|F = g.

Proof. Step 1.We start to introduce the map δ̂ : G→ R defined as

δ̂(p1, . . . , pN) :=

(
N∑
i=1

(εi|pi|)κ
α1...αN
αi

) 1
κα1...αN

where εi ∈ (0, 1] is given by (1.21) and αi is the homogeneity of the variable pi as in (1.9).
If we consider the function δ : G×G→ R as

(2.6) δ(P,Q) := δ̂(Q−1P ), for all P,Q ∈ G

we have that δ is comparable with the metric d associated to homogeneous norm ‖·‖, because
δ̂ ∈ C∞(G−{0}) and it is homogeneous of degree 1 with respect to the dilations of G. More
precisely,

c1δ(P,Q) ≤ d(P,Q) ≤ c2δ(P,Q) for P,Q ∈ G

with c1 := inf{d(G, 0) : δ̂(G) = 1} > 0 and c2 := sup{d(G, 0) : δ̂(G) = 1} <∞.
Let

r(P ) :=
1

20θ
min{1, dist(P,F)}, for all P ∈ G

where θ := c1
c2
> 1 and dist(P,F) := inf{d(P,Q) : Q ∈ F}. Thanks to Vitali covering

theorem (see [72]) we know that there exists a countable set N ⊂ G−F such that

G−F =
⋃
P∈N

U(P, 5r(P ))
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where the balls U(P, r(P )) are two by two disjointed.
For each Q ∈ G−F we define

NQ := {P ∈ N : U(Q, 10θr(Q)) ∩ U(P, 10θr(P )) 6= ∅}.

Here for all Q ∈ G−F ,

(2.7) Card(NQ) ≤ (120θ + 9)q

where q is the homogeneous dimension of G (see (1.22)). Indeed first we note that r(Q) is
comparable with r(P ) for all P ∈ NQ. More specifically, if dist(Q,F), dist(P,F) ≤ 1, then

20θr(Q) ≤ dist(Q,F)

≤ d(Q,P ) + dist(P,F)

≤ 10θ(r(P ) + r(Q)) + 20θr(P ),

that gives r(Q) ≤ 3r(P ). In the similar way we obtain r(P ) ≤ 3r(Q) and so

(2.8)
1

3
≤ r(Q)

r(P )
≤ 3 for all P ∈ NQ.

As a consequence, if P ∈ NQ, then P ∈ U(Q, 40θr(Q)) and

U(P, r(P )) ⊂ U(Q, 40θr(Q) + r(P )) ⊂ U(Q, (40θ + 3)r(Q)).

Now since the balls U(P, r(P )) are two by two disjointed and using (1.23), we conclude that

Card(NQ)LN(U(0, 1))

(
r(Q)

3

)q

≤
∑
P∈NQ

LN(U(P, r(P )))

≤ LN(U(Q, (40θ + 3)r(Q))

= LN(U(0, 1))(40θ + 3)qr(Q)q

i.e. (2.7) holds.
Step 2. Now, we construct the map f̂ ∈ C1

G(G,Rk) that we are looking for.
We introduce for each P ∈ N the function hP : G→ R given by

hP (G) := ĥ

(
δ(P,G)

5r(P )

)
where δ is defined as (2.6) and ĥ : R→ R is a smooth non increasing map defined as

ĥ(t) :=

{
1 if t ≤ 1/c1

0 if t ≥ 2/c1
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It is clear that hP ∈ C∞(G) and hP (G) ∈ [0, 1]. More precisely,

hP (G) =

{
1 for G ∈ U(P, 5r(P ))
0 for G ∈ G− U(P, 10θr(P ))

As a consequence, there exists c3 > 0 such that

(2.9) |XjhP (G)| ≤ c3

r(P )
≤ 3c3

2r(G)
, for j = 1, . . . ,m1 and for all G ∈ G

Indeed |XjhP (G)| 6= 0 only if G ∈ U(P, 10θr(P ))− U(P, 5r(P )) and

1

2
r(P ) ≤ r(G) ≤ 3

2
r(P ) for all G ∈ U(P, 10θr(P ))− U(P, 5r(P )).

Here we used the following fact: if dist(P,F), dist(G,F) ≤ 1, then

20θr(P ) ≤ dist(P,F) ≤ d(G,P ) + dist(G,F) ≤ 10θr(P ) + 20θr(G),

that gives 1
2
r(P ) ≤ r(G) and

20θr(G) ≤ dist(G,F) ≤ d(G,P ) + dist(P,F) ≤ 10θr(P ) + 20θr(P ),

that gives r(G) ≤ 3
2
r(P ) for all G ∈ U(P, 10θr(P ))− U(P, 5r(P )).

Now we define σ : G→ R as

σ(G) :=
∑
P∈N

hP (G).

Because hP = 0 on U(Q, 10θr(Q)) if P /∈ NQ, then the above sum is locally finite and so

σ =
∑
P∈NQ

hP in U(Q, 10θr(Q)).

Moreover, from (2.7) and (2.9) we have that

1. σ ∈ C∞(G−F).

2. σ ≥ 1 on G−F .

3. there is c4 > 0 such that |Xjσ(G)| ≤ c4
r(G)

, for all G ∈ G−F and j = 1, . . . ,m1.

Hence we can define a partition of unity subordinated to the family {U(P, r(P ))} as

vP (G) :=
hP (G)

σ(G)
.

For all G ∈ G−F
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1.
∑

P∈N vP (G) = σ(G)
σ(G)

= 1.

2.
∑

P∈N XjvP (G) = 0 for j = 1, . . . ,m1.

3. there is c5 > 0 such that |XjvP (G)| ≤ c5
r(G)

, for P ∈ N and j = 1, . . . ,m1.

Finally the extended function f̂ = (f̂1, . . . , f̂k) : G→ Rk is

f̂i(G) :=

{
fi(G) if G ∈ F∑

P∈N vP (G) (fi(P
′) + 〈gi(P ′), (P ′−1G)1〉) if G ∈ G−F

for i = 1, . . . , k and where for all Q ∈ G, Q′ is one of the points of F such that dist(Q,F) =
d(Q,Q′).
Step 3. We show that

(2.10) ∇Gf̂(Q) = g(Q), for all Q ∈ F .
Fix i = 1, . . . , k and Q ∈ F . It is sufficient to prove that

(2.11) |f̂i(G)− f̂i(Q)− 〈gi(Q), (Q−1G)1〉| = o(d(G,Q))

for d(G,Q) → 0. We have two case: G ∈ F or G ∈ G − F . In the first case, (2.11) follows
from (2.5). On the other hand, if G ∈ G−F then∣∣∣∣∣∑

P∈N

vP (G)
(
fi(P

′) + 〈gi(P ′), (P ′−1G)1〉
)
− fi(Q)− 〈gi(Q), (Q−1G)1〉

∣∣∣∣∣
≤

∣∣∣∣∣∑
P∈N

vP (G)
(
fi(P

′)− fi(Q)− 〈gi(Q), (Q−1P ′)1〉
)∣∣∣∣∣

+

∣∣∣∣∣∑
P∈N

vP (G)
(
〈gi(P ′), (P ′−1G)1〉+ 〈gi(Q), (Q−1P ′)1〉 − 〈gi(Q), (Q−1G)1〉

)∣∣∣∣∣
=: I1 + I2

Here

(2.12) I1 = o(d(Q,G)).

Indeed by (2.5) we have that I1 = o(d(Q,P ′)) and so (2.12) is true because if P ∈ NG, then

(2.13)

d(Q,P ′) ≤ d(Q,P ) + d(P, P ′)

≤ 2d(Q,P )

≤ 2[d(Q,G) + d(G,P )]

≤ 2[d(Q,G) + 10θ(r(G) + r(P ))]

(using (2.8))

≤ 2[d(Q,G) + 40θr(G)]

≤ (2 + 4θ)d(Q,G).
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Hence it remains to estimate I2. Notice that

〈gi(Q), (Q−1P ′)1〉 − 〈gi(Q), (Q−1G)1〉 = −〈gi(Q), (P ′−1G)1〉

and

(2.14) (G−1P ′)1 ≤ d(G,P ′) ≤ (3 + 4θ)d(Q,G).

Then recalling that
∑

P∈N vP (G) = 1 and using (2.13) and the continuity of gi, we deduce

I2 ≤

∣∣∣∣∣∑
P∈N

vP (G)
(
〈gi(P ′)− gi(Q), (P ′−1G)1〉

)∣∣∣∣∣ ≤ d(G,P ′)|gi(P ′)− gi(Q)| = o(d(Q,G)).

Consequently (2.11) is true and (2.10) is satisfied.
Step 4. We prove that f̂ ∈ C1

G(G,Rk).

Fix i = 1, . . . , k. Because f̂i ∈ C∞(G−F), we conclude that f̂i ∈ C1(G−F) ⊂ C1
G(G−F)

(see Remark 2.3.6). Moreover by (2.5) f̂i is intrinsic differentiable (see Section 2.6.2), hence
continuous, in F .

As a consequence it remains to show that Xj f̂i are continuous in F . Fix j = 1, . . . ,m1

and Q ∈ F . By (2.10), if G ∈ F then

|Xj f̂i(Q)−Xj f̂i(G)| = |gij(Q)− gij(G)| → 0, as d(G,Q)→ 0.

where gij(Q) is j-th component of gi(Q) = (gi1(Q), . . . , gim1(Q)). On the other hand, if
G ∈ G−F then

|Xj f̂i(G)−Xj f̂i(Q)| = |Xj f̂i(G)− gij(Q)|
≤ |Xj f̂i(G)− gij(G′)|+ |gij(G′)− gij(Q)|

Since gi is continuous and d(G′, Q) ≤ d(G′, G) + d(G,Q) ≤ 2d(G,Q) we have that

|gij(G′)− gij(Q)| → 0 as d(G,Q)→ 0.

Moreover
(2.15)

|Xj f̂i(G)− gij(G′)| =

∣∣∣∣∣ ∑
P∈NG

[
XjvP (G)

(
fi(P

′) + 〈gi(P ′), (P ′−1G)1〉
)

+ vP (G)(gij(P
′)− gij(G′))

]∣∣∣∣∣
≤ R1 +R2 +R3
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where

R1 :=

∣∣∣∣∣ ∑
P∈NG

XjvP (G)
(
fi(P

′)− fi(G′)− 〈gi(G′), (G′−1P ′)1〉
)∣∣∣∣∣

R2 :=

∣∣∣∣∣ ∑
P∈NG

XjvP (G)〈gi(P ′)− gi(G′), (P ′−1G)1〉

∣∣∣∣∣
R3 :=

∣∣∣∣∣ ∑
P∈NG

vP (G)(gij(P
′)− gij(G′))

∣∣∣∣∣
We start to consider R1. Recalling that |XjvP (G)| ≤ c5

r(G)
and using (2.5) and (2.7)

R1 ≤
∑
P∈NG

|XjvP (G)|
∣∣fi(P ′)− fi(G′)− 〈gi(G′), (G′−1P ′)1〉

∣∣
= o(d(P ′, G′))

∑
P∈NG

|XjvP (G)| ≤ o(d(P ′, G′))(120θ + 9)q
c5

r(G)
= c6

o(d(P ′, G′))

d(G,G′)
.

From (2.13) with Q = G′, we obtain that d(G′, P ′) ≤ 2(1 + 2θ)d(G′, G) and

(2.16) d(P ′, G′) ≤ d(P ′, Q) + d(Q,G′) ≤ (4 + 4θ)d(Q,G).

Then

(2.17) R1 ≤ c7
o(d(P ′, G′))

d(P ′, G′)
→ 0, as d(Q,G)→ 0.

Now we show that

(2.18) R2 → 0, as d(A,G)→ 0.

By (2.16) and (2.14)

R2 ≤
∑
P∈NG

|XjvP (G)| |gi(P ′)− gi(G′)| |(P ′−1G)1| ≤ c7ε(d(Q,G))d(Q,G)
∑
P∈NG

|XjvP (G)|

where ε(t)→ 0 as t→ 0. Hence because |XjvP (G)| ≤ c5
r(G)

we obtain R2 ≤ c840θε(d(Q,G)),

whence (2.18) holds. Finally by (2.16) and the continuity of gi, we conclude

(2.19) R3 → 0, as d(Q,G)→ 0.

Then putting together (2.15), (2.17), (2.18) and (2.19), one obtains

|Xj f̂i(G)− gij(G′)| → 0, as d(G,Q)→ 0

and so Xj f̂i is continuous in A, as requested. Hence f̂ ∈ C1
G(G,Rk) and the proof of theorem

is complete.
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2.3.3 BVG functions

The following definitions relate the notion of BV function and the Caccioppoli sets in Carnot
groups (see for instance [44], [47], [48]). For the Euclidean theory of BV functions and finite
perimeter sets the reader can see [4] and [33].

Definition 2.3.4. We say that f : Ω→ R is of bounded G-variation in an open set Ω ⊂ G
and we write f ∈ BVG(Ω), if f ∈ L1(Ω) and

‖∇Gf‖(Ω) := sup

{∫
Ω

f divGφ dLN : φ ∈ C1
c(Ω, HG), |φ(P )| ≤ 1

}
< +∞.

Analogously the space BVG,loc(Ω) is defined in the usual way.

Theorem 2.3.9 (Compactness). BVG,loc(G) is compactly embedded in Lploc(G) for 1 ≤ p <
q

q−1
, where q is the homogeneous dimension of G defined as (1.22).

As in the Euclidean case, an important property of BVG functions is the lower semicon-
tinuity of the G-variation with respect to the L1

loc convergence:

Theorem 2.3.10. Let f, fk ∈ L1(Ω) be such that fk → f in L1
loc(Ω). Then

‖∇Gf‖(Ω) ≤ lim inf
k→∞

‖∇Gfk‖(Ω).

In the setting of Carnot groups, the structure theorem for BVG functions reads as follows.

Theorem 2.3.11. If f ∈ BVG,loc(Ω) then ‖∇Gf‖ is a Radon measure on Ω. Moreover,
there is a ‖∇Gf‖ measurable horizontal section σf : Ω → HG such that |σf (P )| = 1 for
‖∇Gf‖-a.e. P ∈ Ω and ∫

Ω

fdivGξ dLN =

∫
Ω

〈ξ, σf〉 d‖∇Gf‖,

for every ξ ∈ C1
0(Ω, HG). Finally the notion of gradient ∇G can be extended from regular

functions to functions f ∈ BVG defining ∇Gf as the vector valued measure

∇Gf := −σf ‖∇Gf‖ = (−(σf )1 ‖∇Gf‖, . . . ,−(σf )m1 ‖∇Gf‖),

where (σf )i are the components of σf with respect to the base Xi.

Following [30] and [31], we give a classical definition of sets of finite perimeter:

Definition 2.3.5. A set E ⊂ G is a locally finite G-perimeter set, or a G-Caccioppoli set,
if χE ∈ BVG,loc(G), where χE is the characteristic function of the set E. In this case the
measure ‖∇GχE‖ will be called G-perimeter measure of E and will be denoted by |∂E|G.
Moreover we call generalized intrinsic normal of ∂E in Ω the vector νE(P ) := −σχE(P ).
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The G-perimeter is invariant under group translations, that is

|∂E|G(A) = |∂(τPE)|G(τPA),

for every P ∈ G and for any Borel set A ⊂ G. Moreover recalling that q is the homogeneous
dimension of G given by (1.22), then the G-perimeter is homogeneous of degree q−1 respect
to the dilations, that is

|∂(δλE)|G(A) = λ1−q|∂E|G(δλA),

for any Borel set A ⊂ G.
Fundamental estimates in geometric measure theory are the so-called relative and global

isoperimetric inequalities for Caccioppoli sets. The proof is established in [48], Theorem
1.18.

Theorem 2.3.12. There exists a constant C > 0 such that for any G-Caccippoli set E ⊂ G,
for every P ∈ G and r > 0

min{LN (E ∩ Ucc(P, r)) ,LN (Ucc(P, r)− E)}(q−1)/q ≤ C|∂E|G(Ucc(P, r))

and
min{LN (E) ,LN (G− E)}(q−1)/q ≤ C|∂E|G(G)

where Ucc denotes the open ball with respect to the cc-distance dcc.

The perimeter measure is concentrated in a subset of topological boundary of E, the
so-called reduced boundary ∂∗GE.

Definition 2.3.6 (Reduced boundary). Let E ⊂ G be a G-Caccioppoli set. We say that
P ∈ ∂∗GE if

1. |∂E|G(Ucc(P, r)) > 0, for all r > 0

2. there exists limr→0

∫
Ucc(P,r)

νE d|∂E|G

3.
∣∣∣limr→0

∫
Ucc(P,r)

νE d|∂E|G
∣∣∣ = 1

The reduce boundary of a set E ⊂ G is invariant under group translations, i.e.

Q ∈ ∂∗GE if and only if τPQ ∈ ∂∗G(τPE)

and also
νE(Q) = ντPE(τPQ).

Lemma 2.3.13 (Differentiation Lemma, [3]). If E ⊂ G is a G-Caccioppoli set, then
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lim
r→0

∫
Ucc(P,r)

νE d|∂E|G = νE(P ), for |∂E|G-a.e.P

and consequently |∂E|G-a.e. P ∈ G belongs to reduced boundary ∂∗GE.
The perimeter measure equals a constant times the spherical (q−1)-dimensional Hausdorff

measure restricted to the reduced boundary, indeed

Theorem 2.3.14 ([40], Theorem 4.18). Let G be a Carnot group of step 2, endowed with
the invariant distance d associated to the homogeneous norm (1.30). Let E ⊂ G be a G-
Caccioppoli set. Then

|∂E|G = cSq−1 ∂∗GE

where Sq−1 denotes the (q− 1)-dimensional spherical Hausdorff measure.

Finally, as it is usual in the literature, we can also define the measure theoretic boundary
∂∗,GE:

Definition 2.3.7. Let E ⊂ G be a measurable set. We say that P belongs to measure
theoretic boundary ∂∗,GE of E if

lim sup
r→0+

LN(E ∩ Ucc(P, r))
LN(Ucc(P, r))

> 0 and lim sup
r→0+

LN(Ec ∩ Ucc(P, r))
LN(Ucc(P, r))

> 0.

If E ⊂ G is G-Caccioppoli set, then

∂∗GE ⊂ ∂∗,GE ⊂ E.

Moreover, Sq−1(∂∗,GE − ∂∗GE) = 0.

2.4 G-regular surfaces

2.4.1 (G(1),G(2))-regular surfaces

A notion of intrinsic regular surfaces with different topological dimension, is introduced and
studied in Heisenberg groups by Franchi, Serapioni and Serra Cassano (see [44], [45], [46])
and then extended in Carnot groups [70] (see also [69], [68]).

Following [70], we have the following definitions

Definition 2.4.1. Let G(1) and G(2) be Carnot groups such that G(2) is an H-quotient of
G(1).

We say that a subset S ⊂ G(1) is (G(1),G(2))-regular surface of G(1) if for all P ∈ S,
there exists an open neighborhood U of P and a continuously P-differentiable mapping
F : U → G(2) such that

S ∩ U = F−1(0)

and the P-differential of F in P is an H-epimorphism from G(1) to G(2) for every P ∈ U .
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Definition 2.4.2. Let G(1) and G(2) be Carnot groups such that G(1) H-embeds into G(2).
We say that a subset S ⊂ G(2) is (G(1),G(2))-regular surface of G(2) if for all P ∈ S,

there exists an open neighborhood U ⊂ G(2) of P and V ⊂ G(1) of 0 ∈ G(1) along with a
continuously P-differentiable topological embedding F : V → G(2), such that

S ∩ U = F (V)

and the P-differential of F in Q is an H-monomorphism from G(1) to G(2) for every Q ∈ V .

Definition 2.4.3. When a subset S is either (G(1),G(2))-regular in G(1) or (G(1),G(2))-regular
in G(2), we simply say that it is (G(1),G(2))-regular without further specification, or we can
say that it is an intrinsically regular surface.

Remark 2.4.1. We stress that, in [70], G(2) is only graded group, i.e. a connected, simply
connected (and finite dimensional) Lie group, whose Lie algebra g admits a direct sum
decomposition g = g1 ⊕ g2 ⊕ · · · ⊕ gκ such that [gi, gj] ⊂ gi+j for 1 ≤ i, j ≤ κ.

It is clear that a Carnot group is a graded group. However, when we consider the
(G(1),G(2))-regular surface of G(1), thanks to Proposition 8.3 in [70], it always follows G(2) is
a Carnot group. This is not the case of (G(1),G(2))-regular surface of G(2).

Now we can define the “tangent cone” to (G(1),G(2))-regular surface as in [34], i.e.

Definition 2.4.4. Let G be a Carnot group and let S ⊂ G with P ∈ G. The homogeneous
tangent cone of S at P is the homogeneous subset

Tan(S, P ) =
{
Q ∈ G

∣∣ Q = lim
h→∞

δλh(P−1Ph), for some sequences (λh)h ⊂ R+,

(Ph)h ⊂ S, where Ph → P
}

Proposition 2.4.2 ([70], Corollary 10.3). Let S be a (G(1),G(2))-regular surface of G(1).
Then for all P ∈ S

Hdim(Tan(S, P )) = Hdim(G(1))− Hdim(G(2))

We observe that if P ∈ S̄, then Tan(S, P ) is not empty.
Proposition 2.4.2 suggests that the Hausdorff dimension of a (G(1),G(2))-regular surface

of G(1) should coincide with that of its homogeneous tangent cones, but this problem still
claims to be investigated.

Moreover the fact that tangent cones to a (G(1),G(2))-regular surface of G(1) have a
fixed Hausdorff dimension does not mean that they are all algebraically H-isomorphic (see
Example 10.4 in [70]).

It is apparent that the notion of (G(1),G(2))-regularity in higher codimension allows us
a certain amount of freedom in the choice of G(2), but not all codomains are “good” to be
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considered. For instance, the family of (Hn,Hk)-regular surfaces is empty whenever n > k.
This follows by the fact that there are no surjective H-linear maps between Hn onto Hk

(Proposition 2.2.10).
Quite precisely in [46], the authors show

Theorem 2.4.3. The only intrinsically regular surfaces of the Heisenberg group Hn are
contained in the following list

1. (Hn,Rk)-regular surfaces, for k = 1, . . . , n.

2. (Rk,Hn)-regular surfaces, for k = 1, . . . , n.

Theorem 2.4.4 ([70], Theorem 12.6). The only intrinsically regular surfaces of the com-
plexified Heisenberg group H1

2 (see Example 1.4.5) are contained in the following list

1. (H1
2,Rk)-regular surfaces, for k = 1, 2.

2. (Rk,H1
2)-regular surfaces, for k = 1, 2.

2.4.2 G-regular surfaces

Here we study the (G,Rk)-regular surfaces with k ≤ m1 (see Proposition 2.2.8). We simply
call them k-codimensional G-regular surfaces.

If G(2) = Rk, Definition 2.4.1 takes the form

Definition 2.4.5. S ⊂ G is a k-codimensional G-regular surface if for every P ∈ S there
exist a neighborhood U of P and a function F ∈ C1

G(U ,Rk) such that

S ∩ U = {Q ∈ U : F (Q) = 0}

and the (k ×m1) matrix ∇GF (Q) has rank k for all Q ∈ U .

Remark 2.4.5. The condition that rank of∇GF (Q) is maximum for every Q ∈ U is equivalent
to suppose that the P-differential of F at P is surjective for every Q ∈ U .

If k = 1 we say that S ⊂ G is a G-regular hypersurface (i.e. topological codimension 1
surface).

We stress that the class of G-regular surfaces is deeply different from the class of Eu-
clidean regular surfaces. In [59], the authors give an example of G-regular surfaces in
H1 = R3 that are (Euclidean) fractal sets. Conversely in R3 = H1, the Euclidean plane
{P = (p1, p2, p3) : p3 = 0} is a simply example of smooth Euclidean submanifold, that isn’t
G-regular hypersurfaces at origin.
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Definition 2.4.6. Γ ⊂ G is (q − 1)-dimensional G-rectifiable if there exists a sequence of
G-regular hypersurface (Sh)h∈N such that

Hq−1

(
Γ−

⋃
h∈N

Sh

)
= 0.

Both the notions of G-regular surfaces and of G-rectifiable sets are independent of the
chosen invariant distance d. Indeed, from the equivalence of invariant distances (see Propo-
sition 1.3.15) and from Definition 2.3.2 and Proposition 2.3.4, if S is a G-regular surface
with respect to an invariant distance d so it is with respect to any other invariant distance.
The same holds if S is a G-rectifiable set.

In [47], the rectifiability theorem is proved for step 2 Carnot groups and Blow-up Theorem
is the main key of the proof and also the reason of the restriction to step 2. Indeed there
is a counterexample regarding a particular step 3 Carnot group, called Engels groups, for
which Blow-up Theorem does not hold (see Example 3.2 in [47]). Recently in [71] the author
extends Blow-up Theorem (and Rectifiability Theorem) in a much larger class of step 2
Carnot groups, called Carnot groups of type ?.

Theorem 2.4.6 (Blow-up Theorem). Let G be a Carnot group of step 2 and let E ⊂ G be
a set with locally finite G-perimeter. If P ∈ ∂∗GE then

lim
r→0

χEr,P = χS+
G (νE(P )) in L1

loc(G)

where Er,P := δ1/r(τP−1E) = {Q : τP (δr(Q)) ∈ E} and

S+
G (νE(P )) := {Q = (q1, q2) ∈ G | 〈νE(P ), q1〉 ≥ 0}.

Moreover for all R > 0

lim
r→0
|∂Er,P |G(Ucc(0, R)) = |∂S+

G (νE(P ))|G(Ucc(0, R))

and
|∂S+

G (νE(P ))|G(Ucc(0, R)) = HN−1(T gG(νE(0)) ∩ Ucc(0, R))

where T gG(νE(0)) := {Q = (q1, q2) ∈ G | 〈νE(0), q1〉 = 0} is the topological boundary of
S+
G (νE(0)).

Theorem 2.4.7 (Rectifiability Theorem). Let G be a Carnot group of step 2 and let E ⊂ G
be a set with locally finite G-perimeter. Then

∂∗GE is (q− 1)-dimensional G-rectifiable,

that is ∂∗GE = N
⋃
h∈NKh, where Hq−1(N) = 0 and Kh is a compact subset of a G-regular

hypersurfaces Sh. Moreover νE(P ) is the G normal to Sh at P , for all P ∈ Kh.
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2.5 Intrinsic graphs

The intrinsic graphs came out naturally in [44], while studying level sets of Pansu differentia-
ble functions from Hk to R. They have been introduced with different degrees of generality
in [9], [13], [23], [38], [41], [46].

Definition 2.5.1. Let M be a homogeneous subgroup of G. We say that a set S ⊂ G is an
intrinsic (left) M-graph if S intersects each left coset of M in one point at most.

If W and M are complementary homogeneous subgroups in G, there is a one to one
correspondence between left coset of M and a points of W, hence S is a left M-graph if and
only if there is φ : E ⊂W→M such that

S = graph (φ) := {A · φ(A) |A ∈ E}.

By uniqueness of the components along W and M, if S = graph (φ) then φ is uniquely
determined among all functions from W to M. Hence the very existence of intrinsic graphs
depends on the possibility of splitting G as a product of complementary subgroups hence it
depends on the structure of the algebra g.

We call graph map of φ, the function Φ : E → G defined as

(2.20) Φ(A) := A · φ(A) ∀A ∈ E .

Hence S = Φ(E) is equivalent to S = graph (φ).
Let us point out that an intrinsic regular graph can be very irregular from the Euclidean

point of view: indeed, there are examples of intrinsic regular graphs in H1 which are fractal
sets in the Euclidean sense [59].

The concept of intrinsic graph is preserved by translation and dilation, i.e.

Proposition 2.5.1 (see Proposition 2.2.18 in [39]). If S is an intrinsic graph then, for all
λ > 0 and for all Q ∈ G, τQS and δλS are intrinsic graphs. In particular, if S = graph (φ)
with φ : E ⊂W→M, then

1. For all λ > 0, δλS = graph (φλ) with φλ : δλE ⊂ W → M and φλ(A) := δλφ(δ1/λA),
for A ∈ δλE.

2. For any Q ∈ G, τQS = graph (φQ) where φQ : EQ ⊂W→M, EQ = {A : PW(Q−1A) ∈
E} and φQ(A) := (PM(Q−1A))−1φ(PW(Q−1A)), for all A ∈ EQ.

Remark 2.5.2. From Proposition 2.5.1 and the continuity of the projections PM and PW it
follows that the continuity of a function is preserved by translations. Precisely given Q ∈ G
and φ : W → M, then the translated function φQ is continuous in A ∈W if and only if the
function φ is continuous in the corresponding point PW(Q−1A).
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Remark 2.5.3. The algebraic expression of the translated function φQ : EQ ⊂ W → M is
more explicit when W,M are normal subgroups of G. Precisely

1. If W is normal in G then φQ(A) = QMφ((Q−1A)W), for A ∈ EQ = QEQ−1
M

2. If M is normal in G then φQ(A) = (Q−1A)−1
M φ((Q−1

W A), for A ∈ EQ = QWE

3. If both W and M are normal in G then we get the well known Euclidean formula

φQ(A) = QMφ((Q−1
W A), for A ∈ EQ = QWE .

Following [70], we want to give a proof of Implicit Function Theorem. This theorem
states that any level set of C1

G function can be locally parameterized through the intrinsic
graph of a continuous map.

Theorem 2.5.4 (Implicit Function Theorem, see [70], Theorem 1.3). Let U be an open
subset of G. Let f ∈ C1

G(U ,Rk) and assume that ∇Gf(Q) has rank k for all Q ∈ U . We
assume that for a fixed P ∈ U there are complementary subgroups W and H of G where
W = ker(∇Gf(P )). Then there are I ⊂ W and J ⊂ H, open and such that PW ∈ I and
PH ∈ J and a continuous function φ : I → J such that

{Q ∈ IJ : f(Q) = f(P )} = graph (φ)

where IJ = {AB : A ∈ I, B ∈ J }. In particular, the mapping φ is 1/κ Hölder continuous.

Now we show some basic notions about the degree theory (see [65], [92]) which is crucial
for the proof of Theorem 2.5.4.

Definition 2.5.2. Let U be an open bounded set of Rk and let F ∈ C1(Ū ,Rk) and A /∈
F (ZF )∩F (∂U), where ZF is the set of critical points of F , i.e. points at which the Jacobian
JF of F vanishes. Then the degree of F at A with respect to U is defined by

deg(F,U , A) :=
∑

x∈F−1(A)

sgn (JF (x)) ,

where sgn(t) = 1 for t > 0 and sgn(t) = −1 for t < 0.

This definition can be extended to the continuous case as follows.

Definition 2.5.3. Let F ∈ C(Ū ,Rk) and A /∈ F (ZF ) ∩ F (∂U). We define deg(F,U , A), the
degree of F at A with respect to U , to be deg(F̃ ,U , A) for any F̃ ∈ C1(Ū ,Rk) such that
|F (x)− F̃ (x)| < dist(A, ∂U) for every x ∈ Ū . Here dist(A, ∂U) := inf{d(A,A′) : A′ ∈ ∂U}.
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Note that the last definition is well defined because if F̃1, F̃2 ∈ C1(Ū ,Rk) are such
that |F (x) − F̃1(x)|, |F (x) − F̃2(x)| < dist(A, ∂U) for every x ∈ Ū , then deg(F̃1,U , A) =
deg(F̃2,U , A).

Finally we need the following lemma:

Lemma 2.5.5 (Mean Value Inequality, see [70], Theorem 1.2). Let U be an open subset of
G and let f ∈ C1

G(U ,Rk). Let U1,U2 be open subsets of G such that U2 b G and

(2.21) {P ∈ G : dist(P,U1) ≤ c(G)diam(U1)} ⊂ U2

where c(G) > 0 is a suitable constant given by Lemma 4.6 in [70]. Then there is a constant
C only depending on G, on c(G) and on the modulus of continuity β of f on Ū2, i.e.

β(t) = max
P,Q∈Ū2
‖P−1Q‖≤t

|f(P )− f(Q)|

such that
|f(P )− f(Q)−∇Gf(P ) (P−1Q) |

‖P−1Q‖
≤ C

for every P,Q ∈ Ū1 with P 6= Q.

We presently have all the tools to prove Theorem 2.5.4.

Proof. Fix P ∈ G and let PW and PH the unique components of P along W and H respec-
tively. We show only the existence of φ.

Step 1. Let t, s > 0 and let I := B(PW, t) ∩W, J := B(PH, s) ∩ H such that I,J ⊂
U(P, r0). Here r0 > 0 is a constant which will be specified later.

We would like to prove that there is α > 0 such that

(2.22) α−1‖B′−1B‖ ≤ |f(AB′)− f(AB)| ≤ α‖B′−1B‖

for every A ∈ I and every B,B′ ∈ J .
By Proposition 2.2.6, the restriction ∇Gf(P )|H : H→ Rk is an H-isomorphism and so

min
B∈H
‖B‖=1

|∇Gf(P )(B)| > 0.

Moreover by the continuity of U ×H 3 (Q,B) 7→ |∇Gf(Q)(B)|, there is r > 0 such that

(2.23) α1 := min
Q∈U(P,r)

min
B∈H
‖B‖=1

|∇Gf(Q)(B)| > 0 and α2 := max
Q∈U(P,r)

max
B∈H
‖B‖=1

|∇Gf(Q)(B)| > 0
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with U(P, r) ⊂ U . Now if we consider r0 := r/(2 + 2c(G)) where c(G) > 0 is a suitable
constant given by Lemma 4.6 in [70], we have that (2.21) is satisfied. Consequently, by
Lemma 2.5.5 we conclude that there is C > 0 such that

|f(G)− f(Q)−∇Gf(G)
(
G−1Q

)
| ≤ C‖G−1Q‖

for every G,Q ∈ U(P, r0). Moreover using (2.23) it follows

(2.24) |f(G)− f(Q)| ≤ (C + α1)‖G−1Q‖, for all Q,G ∈ B(P, r0)

and for every A ∈ I and every B′, B ∈ J

(2.25) |f(AB′)− f(AB)| ≥ (α2 − C)‖B′−1B‖.

Here we used the fact ‖B′−1B‖ = ‖(AB′)−1(AB)‖. Now putting together (2.24) and (2.25)
and possibly considering a smaller radius of J , (2.22) follows.

Step 2. For each A ∈ I we define the continuous map FA : J → Rk given by

FA(B) := f(AB) for all B ∈ J .

Obviously FPW(PH) = f(P ) and by (2.22) we have

FPW(B) 6= f(P ), for all B ∈ ∂J

i.e. f(P ) /∈ FPW(∂J ). Moreover using again (2.22) we have that FPW is injective and by
Theorem 3.3.3 in [65]

(2.26) deg(FPW ,J , f(P )) ∈ {−1, 1}.

Now by the continuity of I 3 A 7→ maxB∈∂J |f(AB) − f(PWB)|, possibly considering a
smaller radius of I, we can assume that

max
B∈∂J

|f(AB)− f(PWB)| < s

2α

for every A ∈ I. Therefore using (2.22), we have that

(2.27) |FA(B)− f(P )| ≥ |FPW(B)− f(P )| − |FPW(B)− FA(B)| > s

α
− s

2α
=

s

2α

for every B ∈ ∂J and every A ∈ I. Consequently f(P ) /∈ FA(∂J ).
Now for any arbitrary A ∈ I we define the continuous curve γ : [0, 1] → I given by

γ(λ) := PWδλ(P
−1
W A). Notice that since W is homogeneous subgroup of G, then γ has image

in I. Then the map Γ : [0, 1]× J → Rk defined as

Γ(λ,B) := f(γ(λ)B)
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is a homotopy between FPW and FA, i.e. Γ is a continuous map such that Γ(0, B) =
f(γ(0)B) = FPW(B) and Γ(1, B) = f(γ(1)B) = FA(B) for all B ∈ J . Moreover, by (2.27),
Γ(λ,B) 6= f(P ) for each λ ∈ [0, 1] and each B ∈ ∂J . Thus, by the homotopy invariance of
degree (see Theorem 3.16 in [92]) and using (2.26), we obtain that

deg (FA,J , f(P )) = deg (FPW ,J , f(P )) 6= 0

and consequently there is at least one element B ∈ J , depending on A, such that FA(B) =
f(AB) = f(P ). By the injectivity of FA, B is unique and so there is a map φ : I → J ,
uniquely defined as φ(A) = B and such that

f(P ) = FA(B) = FA(φ(A)) = f(Aφ(A)).

Therefore the proof of the existence of a map φ is complete.

Now we present a general result about the (G(1),G(2))-regular surfaces (see Section 2.4.1)
which is an immediate consequence of the last theorem when we consider the G-regular
surfaces.

Proposition 2.5.6 ([70], Corollary 1.5). Every (G(1),G(2))-regular surface is locally an in-
trinsic graph.

A consequence of this proposition is that the topological codimension of (G(1),G(2))-
regular surface corresponds to the topological dimension of G(2).

2.5.1 Intrinsic Lipschitz graphs

It is well-know that in the Euclidean setting a Lipschitz graph S := {(A, φ(A)) : A ∈ ω},
with φ : ω ⊂ RN−1 → R can be equivalently defined

1. by means of cones : there exists C > 0 such that

C
(

(A, φ(A));
1

C

)
∩S = {(A, φ(A))}

for each A ∈ ω, where C((A, φ(A)); 1
C

) = {(B, t) ∈ RN−1×R : |B−A| ≤ 1
C
|t−φ(A)|}.

2. in a metric way : there exists C > 0 such that |φ(A) − φ(B)| ≤ C|A − B| for all
A,B ∈ ω.

In this section, first we present the two corresponding definitions in the case of Carnot
groups and then we show that these notions are equivalent (see Proposition 2.5.10).

The intrinsic Lipschitz functions in G are functions, acting between complementary sub-
groups of G, with graphs non intersecting naturally defined cones. Precisely a M-graph S
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is said to be an intrinsic Lipschitz M-graph if S intersects intrinsic cones with axis M, fixed
opening and vertex on S only in the vertex.

We begin with two definitions of intrinsic (closed) cones. The first one, Definition 2.5.4,
is more general because it does not require that M is a complemented subgroup.

Definition 2.5.4. Let M be a homogeneous subgroup of G and Q ∈ G. The cones
X(Q,M, α) with axis M, vertex Q, opening α ∈ [0, 1] are defined as

X(Q,M, α) = Q ·X(0,M, α)

where X(0,M, α) = {P : dist(P,M) ≤ α‖P‖} and dist(P,M) := inf{‖P−1Q′‖ : Q′ ∈M}.

Definition 2.5.5. If W,M are complementary subgroups in G, Q ∈ G and β ≥ 0. We can
define the cones CW,M(Q, β) with base W and axis M, vertex Q, opening β are given by

CW,M(Q, β) = Q · CW,M(0, β)

where CW,M(0, β) = {P : ‖PW‖ ≤ β‖PM‖}.

Remark 2.5.7. It is clear that

G = X(0,M, 1) = ∪β>0CW,M(0, β) and CW,M(0, 0) = X(0,M, 0) = M.

Moreover for all λ > 0 we have that δλ(CW,M(0, β1)) = CW,M(0, β1) and if 0 < β1 < β2, then

CW,M(Q, β1) ⊂ CW,M(Q, β2)

The cones CW,M(Q, β) are equivalent to cones X(Q,M, α):

Proposition 2.5.8. If W,M are complementary subgroups in G then, for any α ∈ (0, 1)
there is β ≥ 1, depending on α,W and M, such that

CW,M(Q, 1/β) ⊂ X(Q,M, α) ⊂ CW,M(Q, β).

For a proof of Proposition 2.5.8 see Proposition 3.1.1 in [39].
Now we introduce the basic definitions of this paragraph.

Definition 2.5.6. Let M be an homogeneous subgroup, not necessarily complemented in
G.

1. An M-graph S is an intrinsic Lipschitz M-graph if there is α ∈ (0, 1) such that,

S ∩X(P,M, α) = {P}, for all P ∈ S.
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2. If there is a subgroup W such that M,W are complementary subgroups in G, we say
that φ : E ⊂W→M is intrinsic Lipschitz in E when graph (φ) is an intrinsic Lipschitz
M-graph.

3. We say that φ : E ⊂ W → M is intrinsic CL-Lipschitz in E for some CL ≥ 0 if for all
C1 > CL

(2.28) CW,M(P, 1/C1) ∩ graph (φ) = {P} for all P ∈ graph (φ).

The Lipschitz constant of φ in E is the infimum of the C1 > 0 such that (2.28) holds.

We will call a set S ⊂ G an intrinsic Lipschitz graph if there exists an intrinsic Lipschitz
function φ : E ⊂W→M such that S = graph (φ) for suitable complementary subgroups W
and M.

The intrinsic Lipschitz M-graphs and the intrinsic Lipschitz functions are well behaved
with respect to left translations, indeed

Theorem 2.5.9. Let W,M be complementary subgroups in G and φ : E ⊂ W → M. Then
for all Q ∈ G, φ is intrinsic CL-Lipschitz if and only if φQ : EQ ⊂ W → M is intrinsic
CL-Lipschitz, where φQ is defined in Proposition 2.5.1.

We observe that the geometric definition of intrinsic Lipschitz graphs has equivalent
analytic forms (see Proposition 3.1.3. in [39]):

Proposition 2.5.10. Let W,M be complementary subgroups in G, φ : E ⊂ W → M and
CL > 0. Then the following statements are equivalent:

1. φ is intrinsic C-Lipschitz in E.

2. ‖PM(Q−1Q′)‖ ≤ CL‖PW(Q−1Q′)‖ for all Q,Q′ ∈ graph (φ).

3. ‖φQ−1(A)‖ ≤ CL‖A‖ for all Q ∈ graph (φ) and A ∈ EQ−1.

Moreover if W is a normal subgroup of G, the conditions 1.-2.-3. in Proposition 2.5.10
take a more explicit form. Indeed for all Q = Aφ(A), Q′ = Bφ(B) ∈ graph (φ) we have
PM(Q−1Q′) = φ(A)−1φ(B) and PW(Q−1Q′) = φ(A)−1A−1Bφ(A). Consequently, if W is a
normal subgroup of G then φ is intrinsic CL-Lipschitz if and only if

(2.29) ‖φ(A)−1φ(B)‖ ≤ CL‖φ(A)−1A−1Bφ(A)‖ ∀A,B ∈ E .

Remark 2.5.11. If φ : E ⊂W→M is intrinsic CL-Lipschitz in E then it is continuous. Indeed
if φ(0) = 0 then by the condition 3. of Proposition 2.5.10 φ is continuous in 0. To prove the
continuity in A ∈ E , observe that φQ−1 is continuous in 0, where Q = Aφ(A).
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Remark 2.5.12. A map φ is intrinsic CL-Lipschitz if and only if the distance of two points
Q,Q′ ∈ graph(φ) is bounded by the norm of the projection of Q−1Q′ on the domain E .
Precisely φ : E ⊂W→ V is intrinsic CL-Lipschitz in E if and only if there exists a constant
C1 > 0 satisfying

‖Q−1Q′‖ ≤ C1‖PW(Q−1Q′)‖,
for all Q,Q′ ∈ graph (φ). Moreover the relations between C1 and the Lipschitz constant CL
of φ follow from (2.1). In fact if φ is intrinsic CL-Lipschitz in E then

‖Q−1Q′‖ ≤ ‖PW(Q−1Q′)‖+ ‖PM(Q−1Q′)‖ ≤ (1 + CL)‖PW(Q−1Q′)‖

for all Q,Q′ ∈ graph (φ). Conversely if ‖Q−1Q′‖ ≤ c0(1 + CL)‖PW(Q−1Q′)‖ then

‖PM(Q−1Q′)‖ ≤ CL‖PW(Q−1Q′)‖

for all Q,Q′ ∈ graph (φ), i.e. the condition 2. of Proposition 2.5.10 holds.

We observe that in Euclidean spaces intrinsic Lipschitz maps are the same as Lipschitz
maps. The converse is not true (see Example 2.3.9 in [38]) and if φ : W → M is intrinsic
Lipschitz then this does not yield the existence of a constant C such that

‖φ(A)−1φ(B)‖ ≤ C‖A−1B‖ for A,B ∈W

not even locally.
In Proposition 3.1.8 in [39] the authors proved that the intrinsic Lipschitz functions, even

if non metric Lipschitz, nevertheless are Hölder continuous.

Proposition 2.5.13 (see Proposition 3.1.8 in [39]). Let W,M be complementary subgroups
in G and φ : E ⊂W→M be an intrinsic CL-Lipschitz function. Then, for all r > 0,

1. there is C1 = C1(φ, r) > 0 such that

‖φ(A)‖ ≤ C1 for all A ∈ E with ‖A‖ ≤ r

2. there is C2 = C2(CL, r) > 0 such that φ is locally 1/κ-Hölder continuous i.e.

‖φ(A)−1φ(B)‖ ≤ C2‖A−1B‖1/κ for all A,B with ‖A‖, ‖B‖ ≤ r.

Proof. We start to show the condition 1. Fix A ∈ E such that ‖A‖ ≤ R. With this notation

φ(A)−1A−1Bφ(B) = (φ(A)−1A−1Bφ(B))W(φ(A)−1A−1Bφ(B))M

by the uniqueness of the components, we know that

(φ(A)−1A−1Bφ(B))W = (φ(A)−1A−1B)W and (φ(A)−1A−1Bφ(B))M = (φ(A)−1A−1B)Mφ(B)
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and consequently by Proposition 2.5.10 we obtain that

(2.30) ‖(φ(A)−1A−1B)Mφ(B)‖ ≤ CL‖(φ(A)−1A−1B)W‖ for all B ∈ E .

Moreover using the triangle inequality and (2.1), it follows

‖φ(B)‖ = ‖B−1Aφ(A)φ(A)−1A−1Bφ(B)‖
≤ ‖B−1Aφ(A)‖+ ‖φ(A)−1A−1Bφ(B)‖
≤ ‖B−1Aφ(A)‖+ ‖(φ(A)−1A−1B)Mφ(B)‖+ ‖(φ(A)−1A−1B)W‖.

Hence since (2.30)

‖φ(B)‖ ≤ ‖B−1Aφ(A)‖+ (1 + CL)‖(φ(A)−1A−1B)W‖.

Thanks to the limitations on ‖A‖ and on ‖B‖ we get the condition 1.
Now we prove the condition 2. Thanks to Lemma 2.1.5 and the condition 1. we know

that there exist C1, C2 > 0 such that

(2.31) ‖φ(A)−1A−1Bφ(A)‖ ≤ C1‖A−1B‖
1
κ ,

(2.32) ‖φ(A)−1B−1Aφ(A)‖ ≤ C2‖B−1A‖
1
κ = C2‖A−1B‖

1
κ ,

for every A,B ∈ E with ‖A‖, ‖B‖ ≤ R. Moreover using again (2.1) we have

c0‖(φ(A)−1A−1B)W‖ ≤ ‖φ(A)−1A−1Bφ(A)‖

As a consequence, from (2.31)

(2.33) ‖(φ(A)−1A−1B)W‖ ≤
C1

c0

‖A−1B‖
1
κ

and from (2.30) and (2.33)

(2.34) ‖(φ(A)−1A−1B)Mφ(B)‖ ≤ CLC1

c0

‖A−1B‖
1
κ .

Finally, putting together (2.31), (2.32), (2.33) and (2.34) we conclude that

‖φ(A)−1φ(B)‖ ≤ ‖φ(A)−1B−1Aφ(A)‖+ ‖φ(A)−1A−1Bφ(B)‖
≤ C2‖A−1B‖

1
κ + ‖(φ(A)−1A−1B)W‖+ ‖(φ(A)−1A−1B)Mφ(B)‖

≤
(
C2 +

C1

c0

+
CLC1

c0

)
‖A−1B‖

1
κ

=: C3‖A−1B‖
1
κ

for every A,B ∈ E with ‖A‖, ‖B‖ ≤ R.
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2.5.2 Intrinsic difference quotients

We give another characterization of intrinsic Lipschitz functions in terms of boundedness of
appropriately defined intrinsic difference quotients. We present some results proved in [94].

For simplicity first we propose the definition in the particular case of a function vanishing
in the origin of the Carnot group and then we get the general definition extending the
particular case in a translation invariant way.

Let Y be an element of the Lie algebra w of W and φ : E ⊂ W → M with 0 ∈ E and
φ(0) = 0. We define the difference quotients of φ from 0 in direction Y as

∆Y φ(0, t) := δ1/tφ(δt expY )

for all t > 0 such that δt expY ∈ E . Then we extend this definition to any A ∈ E . Let
P = A · φ(A) ∈ graph (φ), then the translated function φP−1 defined in Proposition 2.5.1
vanishes in 0 ∈ EP−1 and we define

(2.35) ∆Y φ(A, t) := ∆Y φP−1(0, t) = δ1/tφP−1(δt expY )

for all t > 0 such that δt expY ∈ EP−1 .
The more explicit form of the translated function φP−1 allows a more explicit form of

difference quotients and we have the following

Definition 2.5.7. Let W,M be complementary subgroups in G, w be the Lie algebra of W
and φ : E ⊂W→ M. If A ∈ E and Y ∈ w, then we define the intrinsic difference quotients
of φ at A along Y as

∆Y φ(A, t) = δ1/t

(
(PM(φ(A)δt(expY )))−1φ(APW(φ(A)δt(expY )))

)
for all t > 0 such that APW(φ(A)δt(expY )) ∈ E .

Remark 2.5.14. Definition 2.5.7 gives the same notion of difference quotient as proposed in
(2.35). Indeed, if φ(A) = 0 then PM(φ(A)δt expY ) = 0 and APW(φ(A)δt expY ) = Aδt expY
and consequently

∆Y φ(A, t) = δ1/t

(
(PM(φ(A)δt(expY )))−1φ(APW(φ(A)δt expY ))

)
= δ1/tφ(Aδt expY ).

Moreover if P = Aφ(A) then φP−1(0) = 0 and so we obtain

∆Y φ(A, t) = ∆Y φP−1(0, t) = δ1/t(φP−1(δt expY )).

Remark 2.5.15. Recalling Remark 2.5.3 we get

1. If W is normal in G and Y ∈ w then

∆Y φ(A, t) = δ1/t

(
φ(A)−1φ

(
Aφ(A)δt expY φ(A)−1

))
because PM(φ(A)δt expY ) = φ(A) and APW(φ(A)δt expY ) = Aφ(A)δt expY φ(A)−1.
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2. If M is normal in G and Y ∈ w then

∆Y φ(A, t) = δ1/t

(
(δt expY )−1φ(A)−1(δt expY )φ (Aδt expY )

)
because PM(φ(A)δt expY ) = (δt expY )−1φ(A)δt expY and PW(φ(A)δt expY ) = δt expY .

3. If both W and M are normal in G then we get the well known expression for the
difference quotient:

∆Y φ(A, t) = δ1/t

(
φ(A)−1φ (Aδt expY )

)
.

Next Proposition gives a characterization of intrinsic Lipschitz functions:

Proposition 2.5.16. Let W,M be complementary subgroups in G, w be the Lie algebra of
W and φ : E ⊂W→M. Then the following are equivalent:

1. φ is intrinsic CL-Lipschitz in E

2. there is CL > 0 such that, for all Y ∈ w and for all A ∈ E

‖∆Y φ(A, t)‖ ≤ CL‖ expY ‖.

Proof. 1.⇒ 2. By (2.35) we have that if P = A · φ(A) ∈ graph (φ), then

‖∆Y φ(A, t)‖ = ‖∆Y φP−1(0, t)‖ =
1

t
‖φP−1(δt expY )‖

and consequently by Proposition 2.5.10

‖∆Y φ(A, t)‖ =
1

t
‖φP−1(δt expY )‖ ≤ CL

t
‖δt expY ‖ = CL‖ expY ‖

for all t > 0 and Y ∈ w. So the implication 1.⇒ 2. is complete.
Now we want to show the converse, i.e. 2. ⇒ 1. Fix A ∈ E and let P := A · φ(A). For

any B ∈ EP−1 , let Y ∈ w be such that B = expY . Then

‖φP−1(B)‖ = ‖φP−1(expY )‖ = ‖∆Y φ(A, 1)‖ ≤ CL‖ expY ‖ = CL‖B‖.

Hence the condition 3. of Proposition 2.5.10 holds and φ is intrinsic CL-Lipschitz.

The following definition shows as, in perfect analogy with Euclidean calculus, intrinsic
derivatives of functions acting between complementary subgroups of G can be obtained as
limits of intrinsic difference quotients (when these limits exist).
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Definition 2.5.8. Let W,M be complementary subgroups in G, w be the Lie algebra of W
and φ : E ⊂W→M. If A ∈ E , the intrinsic directional derivative of φ at A along Y ∈ w, is

(2.36) DY φ(A) := lim
t→0+

∆Y φ(A, t) = lim
t→0+

∆−Y φ(A, t)

provided the two limits on the right exist and are equal.

Remark 2.5.17. This Definition follows directly from Remark 2.5.14. Indeed

φ(A) = 0 =⇒ ∆Y φ(A, t) = δ1/tφ(δt expY )

hence, if the limits in (2.36) exist, then

φ(A) = 0 =⇒ DY φ(A) = Y φ(A).

2.6 Intrinsic differentiability

From now on we specialize our setting and we study an appropriate notion of differentiability
for a continuous function φ : W → H when H is an horizontal subgroup. We recall that
when H is horizontal, W is always a normal subgroup since, as observed in Remark 2.1.3, it
contains the whole strata G2, . . . ,Gκ.

Our first preliminary results are Proposition 2.6.7 and Proposition 2.6.8 where equivalent
formulations of Definition 2.6.2 are given.

2.6.1 Intrinsic linear functions

First we present the notion of intrinsic linear map.

Definition 2.6.1. Let W and H be complementary subgroups in G. Then ` : W→ H is an
intrinsic linear function if ` is defined on all of W and if graph (`) = {A`(A) : A ∈W} is a
homogeneous subgroup of G.

Intrinsic linear functions can be algebraically characterized as follows.

Proposition 2.6.1 (see Propositions 3.1.3 and 3.1.6 in [38]). Let W and M be complementary
subgroups in G. Then ` : W→M is an intrinsic linear function if and only if

`(δλA) = δλ(`(A)), for all A ∈W and λ ≥ 0

(2.37) `(AB) = (PH(`(A)−1B))−1`(PW(`(A)−1B)), for all A,B ∈W.
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In particular, if W is normal in G then

(2.38) `(AB) = `(A)`
(
`(A)−1B`(A)

)
, for all A,B ∈W.

Moreover ` is a polynomial function and it is intrinsic Lipschitz with Lipschitz constant
CL := sup{‖`(A)‖ : ‖A‖ = 1}. Note that CL < +∞ because ` is continuous. Moreover

‖`(A)‖ ≤ CL‖A‖, for all A ∈W.

For a proof of Proposition 2.6.1 see Proposition 3.1.3 and 3.1.6 in [38].

Remark 2.6.2. H-linear functions (see Definition 2.2.1) and intrinsic linear functions are in
general different. Indeed the intrinsic linear functions are not necessarily group homomor-
phisms between their domains and codomains, as the following example shows. Let W,H
be the complementary subgroup of Heisenberg group H2 defined as H := {(p1, 0, 0, 0, 0) :
p1 ∈ R} and W := {(0, p2, p3, p4, p5) : p2, p3, p4, p5 ∈ R}. For any fixed α ∈ R the function
` : H→W given by

`(p1, 0, 0) = (0, 0, αp1, 0,−αp2
1/2)

is intrinsic linear because graph (`) = {(t, 0, αt, 0, 0) | t ∈ R} is a 1-dimensional homogeneous
subgroup of H2 but ` is not a group homomorphism from H to W.

Moreover in [38] the authors show that if W,H are both normal subgroups of G, then
(2.37) becomes

(2.39) `(AB) = `(A)`(B), for all A,B ∈W

i.e. ` is homogeneous homomorphism from W to H. As a consequence, by Proposition 2.6.1
and (2.39) we obtain the following statement: if G is direct product of W and H then

(2.40) ` : W→ H is intrinsic linear function ⇐⇒ ` is H-linear function

We present a characterization of intrinsic linear function:

Proposition 2.6.3. Let W and H be complementary subgroups in G with H horizontal. Let
` : W→ H be an intrinsic linear function. Then ` depends only on the variables in the first
layer W1 := W ∩G1 of W. That is

(2.41) `(A) = `(A1) for all A = (A1, . . . , Aκ) ∈W.

Moreover `|W1 : W1 → H is euclidean linear and

(2.42) ‖`(A)‖ ≤ CL‖A1‖ = CL|A1|.
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Proof. In order to prove (2.41) first we prove that for all (x1, . . . , xκ) ∈W

(2.43) `(x1, . . . , xκ) = `(x1, . . . , xκ−1, 0).

Let Aκ := (0, . . . , 0, xκ) ∈W. From (1.13) we have `(Aκ)
−1 · Aκ · `(Aκ) = Aκ and by (2.38)

`(Aκ · Aκ) = `(Aκ) · `
(
`(Aκ)

−1 · Aκ · `(Aκ)
)

= `(Aκ) · `(Aκ) = 2`(Aκ).

Because Aκ · Aκ = (0, . . . , 0, 2xκ) = δ21/κAκ, then 2`(Aκ) = `(Aκ · Aκ) = `(δ21/κAκ) =
21/κ`(Aκ); hence

(2.44) `(Aκ) = 0.

Because (x1, . . . , xκ) = Aκ · (x1, . . . , xκ−1, 0), from (2.38) and (2.44) we get

`(x1, . . . , xκ) = `
(
Aκ · (x1, . . . , xκ−1, 0)

)
= `(Aκ) · `

(
`(Aκ)

−1 · (x1, . . . , xκ−1, 0) · `(Aκ)
)

= `(x1, . . . , xκ−1, 0),

and (2.43) is proved.
In the next step we prove that

(2.45) `(x1, . . . , xκ) = `(x1, . . . , xκ−2, 0, 0)

Let Aκ−1 := (0, . . . , 0, xκ−1, 0) ∈ W. From (1.13), there is x̂κ, depending on `(Aκ−1) and
Aκ−1, such that

`(Aκ−1)−1 · Aκ−1 · `(Aκ−1) = (0, . . . , 0, xκ−1, x̂κ).

From (2.38), (2.44) and the fact that (0, . . . , 0, xκ−1, x̂κ) = (0, . . . , 0, x̂κ) · Aκ−1 we get

`(0, . . . , 0, xκ−1, x̂κ) = `((0, . . . , 0, x̂κ) · Aκ−1)

= `(0, . . . , 0, x̂κ) · `
(
`(0, . . . , 0, x̂κ)−1 · Aκ−1 · `(0, . . . , 0, x̂κ)

)
= `(Aκ−1)

and consequently

`(Aκ−1 · Aκ−1) = `(Aκ−1) · `
(
`(Aκ−1)−1 · Aκ−1 · `(Aκ−1)

)
= `(Aκ−1) · `(Aκ−1).

Because Aκ−1 · Aκ−1 = (0, . . . , 0, 2xκ−1, 0) = δ21/κ−1Aκ−1 we have

2`(Aκ−1) = `(Aκ−1) · `(Aκ−1) = `(Aκ−1 · Aκ−1) = `(δ21/κ−1Aκ−1) = 21/κ−1`(Aκ−1).

Then `(Aκ−1) = 0 and also `(0, . . . , 0, xκ−1, x̂κ) = 0.
Because (x1, . . . , xκ) = (x1, . . . , xκ−2, 0, 0) · (0, . . . , 0, xκ−1, x̄κ) for appropriate x̄κ, we ob-

tain (2.45) from (2.38).
This procedure can be iterated to get (2.41).
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2.6.2 Intrinsic differentiability and graph distance

For functions acting between complementary subgroups of a Carnot group G there is an
appropriate notion of differentiability here denoted intrinsic differentiability. In this section
we recall definition and main features of intrinsic differentiability.

Following [95], we use intrinsic linear functions to define it as in the usual definition of
differentiability.

Definition 2.6.2. Let W and H be complementary subgroups in G and let φ : O ⊂W→ H
with O open in W. For A ∈ O, let P := A · φ(A) and φP−1 : OP−1 ⊂ W → H be the
translated function defined in Proposition 2.5.1. We say that φ is intrinsic differentiable in
A if there is a intrinsic linear dφA : W→ H such that

(2.46) ‖dφA(B)−1φP−1(B)‖ = o(‖B‖) for ‖B‖ → 0

The function dφA is called the intrinsic differential of φ at A.

Remark 2.6.4. Definition 2.6.2 is a natural one because of the following observations.
(i) Let φ : O ⊂ W → H be intrinsic differentiable in A ∈ O. Then the intrinsic

linear functional satisfying (2.46) is unique and φ is continuous at A (see Theorem 3.2.8 and
Proposition 3.2.3 in [38]).

(ii) The notion of intrinsic differentiability is invariant under group translations. More
precisely, let P := Aφ(A), Q := Bφ(B) ∈ graph (φ), then φ is intrinsic differentiable in A if
and only if φQP−1 ≡ (φP−1)Q is intrinsic differentiable in B.

The analytic definition of intrinsic differentiability of Definition 2.6.2 has an equivalent
geometric formulation. Indeed intrinsic differentiability in one point is equivalent to the
existence of a tangent subgroup to the graph.

Theorem 2.6.5 (Theorem 3.2.8. in [38]). Let W,H be complementary subgroups in G with
H one dimensional and let φ : O → H with O relatively open in W. If φ is intrinsic
differentiable in A ∈ ω and dφA is the intrinsic differential of φ at A, set T := graph (dφA).
Then

1. T is an homogeneous subgroup of G;

2. T and M are complementary subgroups in G;

3. P · T is the tangent coset to graph (φ) in P := Aφ(A).

Conversely, if P := Aφ(A) ∈ graph (φ) and if there is T such that (1), (2), (3) hold, then
φ is intrinsic differentiable in A and the differential dφA : W → H is the unique intrinsic
linear function such that T := graph (dφA).
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Remark 2.6.6. P-differentiability and intrinsic differentiability are in general different no-
tions. Indeed let W,H be the complementary subgroups of H2 defined as H := {(p1, 0, 0) :
p1 ∈ R} and W := {(0, p2, p3, p4, p5) : p2, p3, p4, p5 ∈ R}. As we said in Remark 2.6.2 the
map ` : H→W defined as

`(p1, 0, 0) = (0, 0, αp1, 0,−αp2
1/2), for any fixed α ∈ R.

is an example of intrinsic linear map. Obviously ` is intrinsic differentiable in P = 0 but ` is
not P-differentiable in 0. On the other hand, the homogeneous homomorphism h : H → W
given by

h(P ) = (0, 0, αp1, 0, 0), for any fixed α ∈ R

is P-differentiable in P = 0 but h is not intrinsic differentiable in 0.
Moreover writing explicit φP−1 in Definition 2.6.2 when W,H are both normal subgroups

of G, then φ : W→ H is intrinsic differentiable in P ∈W if

‖`(Q)−1φ(P )−1φ(PQ)‖ = o(‖Q‖), as ‖Q‖ → 0.

Consequently, by also (2.40) we get the following statement: if G is direct product of W and
H, then

φ : W→ H is P-differentiable ⇐⇒ φ is intrinsic differentiable

If we consider an horizontal valued function φ, the more explicit form of its translated
function φP−1 allows a more explicit form of intrinsic differentiability and we have the fol-
lowing

Proposition 2.6.7. Let H and W be complementary subgroups of G with H horizontal. Let
φ : O ⊂W→ H with O open in W. Then φ is intrinsic differentiable in A ∈ O if and only
if there is an intrinsic linear dφA : W→ H such that

(2.47) ‖φ(B)− φ(A)− dφA(A−1B)‖ = o(‖φ(A)−1A−1Bφ(A)‖) as B → A.

Proof. First notice that φ(B) − φ(A) − dφA(A−1B) = dφA(A−1B)−1φ(A)−1φ(B) because
both dφA and φ are valued in the horizontal subgroup H. Because W is normal in G, then
for P := Aφ(A) and for all B′ ∈ OP−1

φP−1(B′) = φ(A)−1φ(Aφ(A)B′φ(A)−1).

Then (2.46) yields that φ : O → H is intrinsic differentiable in A ∈ O if there is an intrinsic
linear map dφA : W→ H such that

‖dφA(B′)−1φ(A)−1φ(Aφ(A)B′φ(A)−1)‖ = o(‖B′‖) as ‖B′‖ → 0,
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that, setting B := Aφ(A)B′φ(A)−1 is equivalent to

‖dφA
(
φ(A)−1A−1Bφ(A)

)−1
φ(A)−1φ(B)‖ = o(‖φ(A)−1A−1Bφ(A))−1‖) as ‖A−1B‖ → 0.

Finally, from Proposition 2.6.3 we know that dφA depends only on the variables in the first
layer of W. The group operation on the first layer is commutative hence dφA (φ(A)−1A−1Bφ(A)) =
dφA (A−1B) and (2.47) is proved.

The quantity ‖φ(A)−1A−1Bφ(A)‖ in (2.47) plays the role of a “quasi distance” between
A and B, depending on the function φ. To make things more precise we begin with the
following definition.

Definition 2.6.3. Let H and W be complementary subgroups of G with H horizontal. For
φ : O ⊂W→ H, ρφ : O ×O → R+ is defined as

ρφ(A,B) :=
1

2

(
‖φ(A)−1A−1Bφ(A)‖+ ‖φ(B)−1B−1Aφ(B)‖

)
for all A,B ∈ O.

Then we have

Proposition 2.6.8. Let H and W be complementary subgroups of G with H horizontal. Let
φ : O ⊂W→ H with O open in W. Then φ is intrinsic differentiable in A ∈ E if and only
if there is an intrinsic linear function dφA : W→ H such that

(2.48) ‖φ(B)− φ(A)− dφA(A−1B)‖ = o(ρφ(A,B)) as B → A.

Proof. By Proposition 2.6.7 it is sufficient to prove that the following statements are equi-
valent:

1. there is an intrinsic linear function dφA : W→ H such that (2.47) is true.

2. there is an intrinsic linear function dφA : W→ H such that (2.48) is true.

The implication 1. =⇒ 2. follows from the elementary fact that when W is a normal
subgroup then

(2.49) (Φ(A)−1Φ(B))W = φ(A)−1A−1Bφ(A) and (Φ(A)−1Φ(B))H = φ(A)−1φ(B)

and so

(2.50) ‖φ(A)−1A−1Bφ(A)‖ ≤ 2ρφ(A,B) for all B ∈ O.
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Hence it remains to show 2. =⇒ 1.
In particular it is sufficient to prove that there are two positive constants C0 > 0 and r such
that

(2.51) ρφ(A,B) ≤ C0‖φ(A)−1A−1Bφ(A)‖,

for all B ∈ O such that ‖A−1B‖ ≤ r.
First we would like to show that there exist two positive constants C1 = C1(G), C2 =

C2(G) such that

(2.52) ρφ(A,B) ≤ C1‖Q‖+ C2

(
‖Q‖

1
κ‖G‖

κ−1
κ + ‖Q‖

κ−1
κ ‖G‖

1
κ

)
with Q = (Φ(B)−1Φ(A))W and G = (Φ(B)−1Φ(A))H for all B ∈ O such that ‖A−1B‖ ≤ r.
Let P ∈ G and P ′ := (P−1)W(P−1)HPH. Then P ′W = (P−1)W and P ′ = P−1

H P−1
W PH. As a

consequence, using (2.1) it follows that there is c0 > 0 such that

c0‖P ′W‖ ≤ ‖P ′‖ = ‖P−1
H P−1

W PH‖

and by (2.2) there exists C3 > 0 such that

‖(P−1)W‖ ≤
1

c0

‖P−1
H P−1

W PH‖

≤ 1

c0

‖PW‖+
C3

c0

(
‖PW‖

1
κ‖PH‖

κ−1
κ + ‖PW‖

κ−1
κ ‖PH‖

1
κ

)
.

Then if we choose P := Φ(B)−1Φ(A), (2.52) follows with C1 = c0+1
2c0

and C2 = C3

2c0
.

Now, by (2.52), applying Young’s inequality in a standard way we conclude that there is
C4 = C4(G, ε) > 0

ρφ(A,B) ≤ C4‖(Φ(A)−1Φ(B))W‖+ ε‖(Φ(A)−1Φ(B))H‖

and so by (2.49)

ρφ(A,B) ≤ C4‖φ(A)−1A−1Bφ(A)‖+ ε‖φ(A)−1φ(B)‖(2.53)

for all B ∈ O such that ‖A−1B‖ ≤ r, ε > 0. Hence it remains to show that

(2.54) ‖φ(A)−1φ(B)‖ ≤ C5ρφ(A,B)

for all B ∈ O such that ‖A−1B‖ ≤ r. Indeed, by the assumptions,

φ(A)−1φ(B) = dφA(φ(A)−1A−1Bφ(A))dφA(φ(A)−1A−1Bφ(A))−1φ(A)−1φ(B)

Thus by (2.42) and (3.2.1), (2.54) is true. Now putting together (2.53) and (2.54), there is
a suitable constant C0 > 0 such that (2.51) holds.
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Proposition 2.6.9. Let φ : O ⊂W→ H be an intrinsic CL-Lipschitz map in every relatively
compact subset of O. Then ρφ is a quasi-metric in every relatively compact subset of O.

Proof. Let F b O. It is sufficient to show that if φ is intrinsic CL-Lipschitz continuous in
F then ρφ is a quasi-metric in F and so the thesis follows by a standard covering argument.

It is clear that ρφ is symmetric and A = B yields ρφ(A,A) = 0. Then it remains to prove
the the weaker triangular inequality, i.e. there is C1 > 0 such that

(2.55) ρφ(A,B) ≤ C1(ρφ(A,D) + ρφ(D,B)), for all A,B,D ∈ F .

Using (2.1), (2.29) and (2.49), for all A,B,D ∈ F it follows

(2.56)

c0ρφ(A,B) ≤ ‖Φ(A)−1Φ(B)‖
≤ ‖Φ(A)−1Φ(D)‖+ ‖Φ(D)−1Φ(B)‖
≤ ‖φ(A)−1A−1Dφ(A)‖+ ‖φ(D)− φ(A)‖+ ‖φ(D)−1D−1Bφ(D)‖

+ ‖φ(B)− φ(D)‖
≤ 2(1 + CL)(ρφ(A,D) + ρφ(D,B)).

Therefore if we put C1 := 2(1 + CL)/c0 we obtain (2.55).

More precisely from (2.56) we conclude that

c0ρφ(A,B) ≤ d(Φ(A),Φ(B)) ≤ 2(1 + CL) ρφ(A,B)

for every A,B ∈ F . That is ρφ is equivalent to the metric d restricted to the graph map Φ.
In this way, we call ρφ “graph distance”.

The quantity ‖φ(A)−1A−1Bφ(A)‖, or better a symmetrized version of it, will play the
role of a quasi distance on E , depending on φ. This fact will be much used in the of this
thesis.

2.6.3 Uniformly Intrinsic differentiability

In order to introduce notion of intrinsic C1 functions for functions acting between comple-
mentary subgroups it is possible to introduce a stronger, i.e. uniform, notion of intrinsic
differentiability in the general setting of Definition 2.6.2. We will not use here this more
general notion and we limit ourselves to introduce the notion of uniform intrinsic differen-
tiability for functions valued in a horizontal subgroup of G.

Definition 2.6.4. Let H, W be complementary subgroups of G with H horizontal. Let O
be open in W and φ : O → H. We say that φ is uniformly intrinsic differentiable in A0 ∈ O
(or φ is u.i.d. in A0) if φ is intrinsic differentiable in A0 and if
(2.57)

lim
r→0+

= sup

{
‖φ(B)− φ(A)− dφA0(A

−1B)‖
‖φ(A)−1A−1Bφ(A)‖

: A 6= B, ‖A−1
0 A‖ < r, ‖A−1

0 B‖ < r

}
= 0.



2.6 Intrinsic differentiability 109

Analogously, φ is u.i.d. in O if it is u.i.d. in every point of O.

It is clear from (2.47) that if φ is u.i.d. at A0, then it is intrinsic differentiable at A0 and
the intrinsic differential dφ(A0) of φ at A0 is unique.

In the sequel we show some properties about uniformly intrinsic differentiable functions.
First we introduce the following definition:

Definition 2.6.5 ([67]). Let U ⊂ G be an open set. If β ∈ (0, 1) we denote as hβ(O) the set
of all little Hölder continuity functions of order β, i.e. the set of maps f ∈ C0(O) satisfying

lim
r→0+

sup

{
‖f(B)−1f(B′)‖
‖B−1B′‖β

: B,B′ ∈ O , 0 < ‖B−1B′‖ < r

}
= 0.

hβloc(O) denotes the set of function f ∈ C0(O) such that f ∈ hβ(O′) for all open set O′ b O.

Remark 2.6.10. Let β1 > β2. If f ∈ hβ1(O) then f ∈ hβ2(O).

Proposition 2.6.11. Let H, W be complementary subgroups of G with H horizontal. Let O
be open in W and φ : O → H be u.i.d. in O. Then

1. φ is intrinsic Lipschitz continuous in every relatively compact subset of O.

2. the map ρφ (see Definition 2.6.3) is a quasi-metric in every relatively compact subset
of O.

3. φ ∈ h1/κ
loc (O).

4. the function A 7→ dφA is continuous in O.

Proof. (1) For each A0 ∈ O there is r = r(A0) > 0 s.t. for all A,B ∈ U(A0, r) ∩ O

‖φ(B)− φ(A)− dφA0(A
−1B)‖ ≤ ‖φ(A)−1A−1Bφ(A)‖.

Moreover from Proposition 2.6.3, because the intrinsic linear function dφA0 depends only on
the variables on the first layer of W, we have

‖dφA0(A
−1B)‖ ≤ CL|(A−1B)1| ≤ CL‖φ(A)−1A−1Bφ(A)‖,

where CL is the intrinsic Lipschitz constant of dφA0 . Finally

‖φ(B)− φ(A)‖ ≤ ‖φ(B)− φ(A)− dφA0(A
−1B)‖+ ‖dφA0(A

−1B)‖
≤ (1 + CL)‖φ(A)−1A−1Bφ(A)‖.

Then (1) follows by a standard covering argument.
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(2) The proof follows from Proposition 2.6.9 and from the condition (1).

(3) For A0 ∈ O and r > 0 let

ρ(r) := sup

{
‖φ(B)− φ(A)− dφA0(A

−1B)‖
‖φ(A)−1A−1Bφ(A)‖

: A 6= B ∈ U(A0, r) ∩ O
}

We have limr→0 ρ(r) = 0 because φ is u.i.d. at A. Moreover, by (1) of this Proposition, we
know that φ is intrinsic Lipschitz in U(A0, r)∩O and by Proposition 2.5.13 (1) we have that
‖φ(A)‖ < C1 for all A ∈ U(A0, r) ∩ O.

From (2.2) with P = A−1B and Q = φ(A) we deduce the existence of C = C(C1) > 0
such that

‖φ(A)−1A−1Bφ(A)‖ ≤ C‖A−1B‖1/κ for all A,B ∈ U(A0, r) ∩ O.

Therefore using (2.42)

‖φ(B)− φ(A)‖
‖A−1B‖1/κ

≤ ‖φ(B′)− φ(B)− dφA0(A
−1B)‖

‖φ(A)−1A−1Bφ(A)‖
‖φ(A)−1A−1Bφ(A)‖
‖A−1B‖1/κ

+
‖dφA0(A

−1B)‖
‖A−1B‖1/κ

≤ Cρ(r) + C2r
1−1/κ

for all A,B ∈ U(A0, r) ∩ O with A 6= B. Hence ‖φ(B)−φ(A)‖
‖A−1B‖1/κ → 0 for r → 0 and the proof of

(2) is complete.

(4) Fix A0 ∈ O. By Proposition 2.6.3 we denote Dφφ(A0) the unique k ×m1 matrix for
which dφA0(A) = Dφφ(A0)x1, for all A = (x1, . . . , xκ) ∈W.

Suppose that the thesis is not true. Then there exist a δ > 0 and a sequence (Aj) ⊂ O
such that Aj → A0 and

(2.58) ‖Dφφ(Aj)−Dφφ(A0)‖ ≥ 3δ

where ‖Dφφ(A0)‖ is the usual matrix norm. Because φ is u.i.d. at A0 we can consider
U(A0, r) ∩ O (for r > 0) such that

(2.59) sup

{
‖φ(B)− φ(A)− dφA0(A

−1B)‖
‖φ(A)−1A−1Bφ(A)‖

: A 6= B, A,B ∈ U(A0, r) ∩ O
}
≤ δ

There is no loss of generality if we suppose that Aj = (x1,j, . . . , xκ,j) ∈ U(A0, r)∩O for each
j.

Now we show that for all Aj there is Bj = (y1,j, . . . , yκ,j) such that
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(2.60) ‖φ(Aj)−1(Aj)−1Bjφ(Aj)‖ = |y1,j − x1,j|.

Fix Aj = (x1,j, . . . , xκ,j) and let I := U(Aj, δ1) ∩ O with δ1 > 0. We define

A :=
{
B = (y1, . . . , yκ) ∈ I : ‖φ(Aj)−1(Aj)−1Bφ(Aj)‖ = |y1 − x1,j|

}
=
{
B = (y1, . . . , yκ) ∈ I : |ys − xs,j + Ps(φ(Aj), (Aj)−1B)| = 0 for s = 2, . . . , κ

}
where P is given by Corollary 1.3.10.

We would like to prove that there is δ2 > 0 with the property that for each y1 ∈ Rm1

with |y1−x1,j| ≤ δ2 there is (y2, . . . , yκ) with ys,j ∈ [xms−1+1− δ1, xms−1+1 + δ1]×· · ·× [xms−
δ1, xms + δ1] for s = 2, . . . , κ such that

ys = xs,j − Ps(φ(Aj), (Aj)−1B) for s = 2, . . . , κ

i.e. (y1, . . . , yκ) ∈ A.
First for all y1 ∈ Rm1 with |y1 − x1,j| ≤ δ2 we consider the function γ2,A : Rn2 → Rn2

given by
γ2,A(y2) := x2,j − P2(φ(Aj), (Aj)−1B).

Using (1.17) we have

|γ2,A(y2)− x2,j| = |P2(φ(Aj), (Aj)−1B)| ≤ C1|y1 − x1,j| ≤ C1δ2

Consequently, γ2,A is a map defined in [xm1+1 − δ1, xm1+1 + δ1] × · · · × [xm2 − δ1, xm2 + δ1]
into itself where

δ2 ≤
δ1

C1

.

Therefore the fixed point theorem guarantees that γ2,A has a fixed point y2 = y2(x1,j) if
|y1 − x1,j| ≤ δ2, so that

y2 = x2,j − P2(φ(Aj), (Aj)−1B).

Proceeding in the same way we obtain that there exists (y2, . . . , yκ) such that B =
(y1, . . . , yκ) ∈ A, i.e. (2.60) is true.

Now using the intrinsic differentiability of φ at Aj we can find a sequence of points
Bj = (y1,j, . . . , yκ,j) ∈ U(A0, r) ∩ O such that (2.60) holds and also

(2.61)
‖φ(Bj)− φ(Aj)− dφAj((Aj)−1Bj)‖

‖φ(Aj)−1(Aj)−1Bjφ(Aj)‖
≤ δ.
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Since (2.61) and the uniformly intrinsic differentiability of φ at A0, the vectors (y1,j−x1,j)
and (Dφ

i φ(Aj)−Dφ
i φ(A0)) are linearly dependent for i = 1, . . . ,m1 and consequently

‖dφAj((Aj)−1Bj)‖ = ‖Dφφ(Aj)−Dφφ(A0)‖|y1,j − x1,j|.

Moreover by (2.58) and (2.60), we have that ‖dφAj((Aj)−1Bj)‖ ≥ 3δ‖φ(Aj)−1(Aj)−1Bjφ(Aj)‖.
Then using also (2.61), we obtain

‖φ(Bj)− φ(Aj)− dφA0((A
j)−1Bj)‖

‖φ(Aj)−1(Aj)−1Bjφ(Aj)‖
≥

≥ ‖D
φφ(Aj)−Dφφ(A0)‖|y1,j − x1,j|
‖φ(Aj)−1(Aj)−1Bjφ(Aj)‖

− ‖φ(Bj)− φ(Aj)− dφAj((Aj)−1Bj)‖
‖φ(Aj)−1(Aj)−1Bjφ(Aj)‖

≥ 3δ|y1,j − x1,j|
|y1,j − x1,j|

− δ ≥ 2δ

which contradicts (2.59).



Chapter 3

Intrinsic Regular Surfaces in Carnot
groups

In this chapter we give some equivalent conditions in order that the intrinsic graph are locally
regular surfaces. All the results contained here have been obtained in [32] in collaboration
with R. Serapioni.

First we study the Carnot groups of step κ. More specifically, in Theorem 3.1.1 we cha-
racterize G-regular intrinsic graphs as graphs of uniformly intrinsic differentiable functions
φ : O ⊂ W → H where W,H are complementary subgroups of G, with H horizontal. This
result generalizes Theorem 1.2 in [7] proved in Heisenberg groups (see also [105]).

More precisely, we show that the uniform intrinsic differentiability is the additional con-
dition to obtain locally

graph (φ) is a G-regular surface ⇐⇒ φ is uniformly intrinsic differentiable map

A crucial role in proof of Theorem 3.1.1 is played by the matrix that represents the
intrinsic differential of φ (Proposition 2.6.3) and which we call intrinsic gradient Dφφ of φ.
This is the correct intrinsic replacement of Euclidean gradient for C1 surfaces. For instance,
we remark that intrinsic regular parametrizations have continuous intrinsic gradient (see
condition 3. of Proposition 2.6.11), exactly like parametrizations of regular C1 surfaces have
continuous gradient.

Moreover we stress that the class of uniform intrinsic differentiable functions is a large
class of functions. It actually includes the class of C1 functions (see Theorem 3.1.5).

In Section 3.2 we consider a more restrictive class of surfaces: the G-regular hypersurfaces
in groups of class B.

Here we consider a continuous map φ : O ⊂ W → H, where H is one dimensional
subgroup of G (and consequently horizontal). Therefore, we can identify φ with a real
valued map (see Remark 3.2.1).
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Table 3.1: C1 surfaces in Euclidean spaces and corresponding definitions in Carnot groups

Euclidean spaces Carnot groups

S = {P : F (P ) = 0} ⊂ RN S = {P : F (P ) = 0} ⊂ G
F ∈ C1(RN ,Rk) F ∈ C1

G(G,Rk)
∇F has rank k ∇GF has rank k

S = graph(φ) = {(A, φ(A)) : A ∈ W} S = graph(φ) = {A · φ(A) : A ∈W}
φ : W → H φ : W→ H
H = Rk and W = RN−k H and W are
H and W are complementary complementary homogeneous
linear subspaces subgroups
φ and ∇φ are continuous φ and Dφφ are continuous

If we consider φ a real valued continuous function defined on a one codimensional homo-
geneous subgroup of Heisenberg groups, then it is known, after the results in [7], [15], that
the intrinsic differentiability of φ is equivalent to the existence and continuity of suitable
‘derivatives’ Dφ

j φ of φ. The non linear first order differential operators Dφ
j were introduced

by Serra Cassano et al. in the context of Heisenberg groups (see [95] and the references
therein). Following the notations in [95], the operators Dφ

j are denoted as intrinsic deriva-

tives of φ and, as we said, from an intrinsic point of view, the operator Dφφ is the gradient of
φ. Moreover, in the first Heisenberg group H1 the intrinsic derivative Dφφ is to the classical
Burgers’ equation.

In [7], [13], [15] (see also [12], [14]) the authors study the suitable notions of weak solution
for the non-linear first order PDEs’ system

(3.1) Dφφ = w in ω,

being w a prescribed continuous function and ω ⊂ RN−1. In particular in [7], [15] the authors
solve this problem in Hk when φ and w are continuous functions; while in [13] w is only a
bounded measurable function (see also [1], [2]).

In particular in [7] it was introduced the concept of broad* solution of the system (3.1) (see
Definition 3.2.2). In H1 this notion extends the classical notion of broad solution for Burger’s
equation through characteristic curves provided φ and w are locally Lipschitz continuous. In
our case φ and w are supposed to be only continuous, so the classical theory breaks down.
On the other hand broad* solution of the system (3.1) can be constructed with a continuous
datum w.

In Section 3.2.2 we define the appropriate notion of intrinsic derivative in a group of
class B and we extend Theorem 1.3 and Theorem 5.7 in [7] proved in Hk. More precisely, in
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Theorem 3.2.7 we prove that the intrinsic graph of a real valued function φ defined on a one
codimensional homogeneous subgroup of a group of class B is a regular surface if and only if
φ is broad* solution of (3.1) and it is 1/2-little Hölder continuous (see Definition 2.6.5). We
also show that these assumptions are equivalent to the fact that φ and its intrinsic gradient
can be uniformly approximated by C1 functions.

Finally, if the vertical layer is 1 dimensional, we can omit the little Hölder continuity of
φ because each assumption implies it (see Theorem 3.2.8).

3.1 An characterization of G-regular surfaces

In this section we study the relation between the following facts: the intrinsic graph of
φ : O ⊂W→ H is a G-regular intrinsic graphs and φ is uniformly intrinsic differentiable in
O. If H is a horizontal subgroup we have the following theorem:

Theorem 3.1.1. Let G be a Carnot group, W and H complementary subgroups, with H
horizontal and k dimensional. Let X1, . . . , Xk be left invariant horizontal vector fields in g
such that H = exp(span{X1, . . . , Xk}). Finally, let O be open in W, φ : O ⊂ W → H and
S := graph (φ).
Then the following are equivalent:

1. there are U open in G and F = (F1, . . . , Fk) ∈ C1
G(U ;Rk) such that

S = {P ∈ U : F (P ) = 0}
det (XiFj) (Q) 6= 0, for all Q ∈ U .

2. φ is uniformly intrinsic differentiable in O.

Proof. Let us begin with the proof of the implication (1)⇒ (2). Denote ∇Gf =
(
M1 | M2

)
where

M1 :=

X1f1 . . . Xkf1
...

. . .
...

X1fk . . . Xkfk

 , M2 :=

Xk+1f1 . . . Xm1f1
...

. . .
...

Xk+1fk . . . Xm1fk

 .

Fix A ∈ O, let P = Aφ(A) := Φ(A) and r > 0 be such that Ir(A) := B(A, r) ∩W ⊂ O.
Let B,B′ ∈ Ir(A) then

|∇Gf(Φ(B))
(
Φ(B)−1Φ(B′)

)1|

= |f(Φ(B′))− f(Φ(B)) +∇Gf(Φ(B))
(
Φ(B)−1Φ(B′)

)1|
≤ C1ρ(δr) ‖Φ(B)−1Φ(B′)‖
≤ C1ρ(δr) (‖φ(B′)− φ(B)‖+ ‖φ(B)−1B−1B′φ(B)‖)

(3.2)
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where C1 is given by Lemma 2.3.7 and

ρ(δ) :=
{
‖∇Gf(·)−∇Gf(P )‖L∞(U(P,2d(P,P ′))) : P ′ ∈ Φ(Iδ(A))

}
.

Observe that
(
Φ(B)−1Φ(B′)

)1
=
(
φ(B′)− φ(B), (B−1B′)1

)
and so

(3.3) ∇Gf(Φ(B))
(
Φ(B)−1Φ(B′)

)1
=M1(Φ(B))

(
φ(B′)− φ(B)

)
+M2(Φ(B)) (B−1B′)1.

Now we would like to prove that there is a constant C > 0 such that

(3.4) ‖φ(B′)− φ(B)‖ ≤ C‖φ(B)−1B−1B′φ(B)‖.

Because ∇Gf is uniformly continuous we deduce that

(3.5) lim
r→0

ρ(δr) = 0.

Using (3.2) and (3.3) we get

(3.6)

∥∥∥φ(B′)− φ(B) +M−1
1 (Φ(B))M2(Φ(B)) (B−1B′)1

∥∥∥
=
∥∥∥M−1

1 (Φ(B))
(
M1(Φ(B))

(
φ(B′)− φ(B)

)
+M2(Φ(B)) (B−1B′)1

)∥∥∥
=
∥∥M−1

1 (Φ(B))∇Gf(Φ(B))
(
Φ(B)−1Φ(B′)

)1∥∥
≤ C1ρ(δr) ‖M−1

1 (Φ(B))‖
(
‖φ(B′)− φ(B)‖+ ‖φ(B)−1B−1B′φ(B)‖

)
for every B,B′ ∈ Iδr(A). Now by (3.5) we can take

C1ρ(δr̂) ‖M−1
1 (Φ(B))‖ ≤ 1

2

for a certain r̂ ∈ (0, r0/4), and so∥∥φ(B′)− φ(B)
∥∥ ≤ ∥∥∥φ(B′)− φ(B) +M−1

1 (Φ(B))M2(Φ(B)) (B−1B′)1
∥∥∥

+
∥∥∥M−1

1 (Φ(B))M2(Φ(B)) (B−1B′)1
∥∥∥

≤ 1

2

(
‖φ(B′)− φ(B)‖+ ‖φ(B)−1B−1B′φ(B)‖

)
+ C2|(B−1B′)1|

≤ 1

2

(
‖φ(B′)− φ(B)‖+ ‖φ(B)−1B−1B′φ(B)‖

)
+ C2‖φ(B)−1B−1B′φ(B)‖

for any B,B′ ∈ Iδr̂(A). This inequality imply that (3.4) holds.
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Now we are able to show the thesis, i.e. φ is uniformly intrinsic differentiable at A. First,
using (3.6) and (3.4) we remark that there exists a constant C3 > 0 for which∥∥∥φ(B′)− φ(B) +M−1

1 (Φ(B))M2(Φ(B)) (B−1B′)1
∥∥∥ ≤ C3ρ(δr)‖φ(B)−1B−1B′φ(B)‖.

Consequently,
(3.7)

1

‖φ(B)−1B−1B′φ(B)‖

∥∥∥∥φ(B′)− φ(B) +M−1
1 (Φ(A))M2(Φ(A)) (B−1B′)1

∥∥∥∥
≤ C3ρ(δr) + sup

Iδr (A)

∥∥∥M−1
1 (Φ(·))M2(Φ(·))−M−1

1 (Φ(A))M2(Φ(A))
∥∥∥

for any B,B′ ∈ Iδr(A) with r ≤ r̂. Finally (2.57) follows from (3.5), (3.7) and the fact that
f is of class C1

G. That is φ is uniformly intrinsic differentiable at A and moreover

(3.8) Dφφ(A) = −M−1
1 (Φ(A))M2(Φ(A)).

So the implication (1)⇒ (2) is complete.
Now we want to show the converse, i.e. (2)⇒ (1).
Let f : S → Rk and g : S →Mk×m1 be given by

f(Q) := 0, g(Q) :=
(
Ik | Dφφ(Φ−1(Q))

)
for all Q ∈ S, where Dφφ(Φ−1(Q)) is the unique k × m1 matrix associated to intrinsic
differential dφ(Φ−1(Q)) of φ at Φ−1(Q).

For any K compact in S let

ρK(δ) := sup

{
|g(Q)(Q−1Q′)1|
‖Q−1Q′‖

: Q,Q′ ∈ K, 0 < ‖Q−1Q′‖ < δ

}
.

Observe that

(3.9) lim
δ→0

ρK(δ) = 0.

Indeed because ‖φ(B)−1B−1B′φ(B)‖ ≤ 1
c0
‖Φ(B)−1Φ(B′)‖, we have that

|g(Q)(Q−1Q′)1|
‖Q−1Q′‖

≤ 1

c0

‖φ(B′)− φ(B)−Dφφ(B)(B−1B′)1‖
‖φ(B)−1B−1B′φ(B)‖

when B = Φ−1(Q) and B′ = Φ−1(Q′). Moreover by the u.i.d. of φ in O, for all B ∈ Φ−1(K)

sup

{
‖φ(B′)− φ(B)−Dφφ(B)(B−1B′)1‖

‖φ(B)−1B−1B′φ(B)‖
: B′ ∈ Φ−1(K), 0 < ‖φ(B)−1B−1B′φ(B)‖ < δ

}
→ 0
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as δ → 0 and so by compactness of K we conclude that

sup

{
‖φ(B′)− φ(B)−Dφφ(B)(B−1B′)1‖

‖φ(B)−1B−1B′φ(B)‖
: B,B′ ∈ Φ−1(K), 0 < ‖φ(B)−1B−1B′φ(B)‖ < δ

}
→ 0

as δ → 0. Hence (3.9) holds.
By Whitney’s extension Theorem (see Theorem 2.3.8) there is a function f̂ ∈ C1

G(G,Rk)
such that

f̂ = f = 0 in S

∇Gf̂(Q) = g(Q) =
(
Ik | Dφφ(Φ−1(Q))

)
for all Q ∈ S

and so rank∇Gf̂(Q) = k for all Q ∈ S. Consequently the proof is complete.

Remark 3.1.2. It follows from Theorem 3.1.1 and from Proposition 2.6.11 that if S =
graph (φ) is G-regular then the intrinsic gradient of φ is continuous.

Remark 3.1.3. Under the same assumptions of Theorem 3.1.1 with the additional condition
that H is a 1-dimensional subgroup of G, the intrinsic gradient of φ defined in (3.8) is

(3.10) Dφφ(A) = −
(
X2f

X1f
, . . . ,

Xm1f

X1f

)
(Φ(A))

We denote the horizontal normal to S at P ∈ S, the unit vector νS(P ) defined as

νS(P ) := − ∇Gf(P )

|∇Gf(P )|
.

Consequently, the horizontal normal to S at Φ(A) ∈ S is

νS(Φ(A)) =

(
± 1√

1 + |Dφφ(A)|2
,

Dφφ(A)√
1 + |Dφφ(A)|2

)
∈ Rm1 .

From Theorem 3.1.1, Proposition 2.6.11 it follows that

Corollary 3.1.4. Under the same assumptions of Theorem 3.1.1, if S = graph (φ) is a
G-regular surface then

φ ∈ h1/κ
loc (O).

Finally we show that C1 functions are uniformly intrinsic differentiable too.

Theorem 3.1.5. Under the same assumptions of Theorem 3.1.1 with the additional condition
that φ ∈ C1(O,H). Then φ is u.i.d. in O.
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Proof. Let f : G→ Rk defined as for all P = PW · exp(
∑k

i=1 tiXi) ∈ G

f(P ) = (t1 − φ1(PW), . . . , tk − φk(PW)).

It is clear that f(P ) = 0, for all P ∈ graph (φ), and that f ∈ C1(G,Rk). Hence f ∈
C1

G(G,Rk) and rank ∇Gf = k. Indeed

Xlfj(P ) =
d

ds
fj(P exp(sXl))|s=0 =

{
1, if j = l
0, if j 6= l

Now using Theorem 3.1.1, we obtain that φ is u.i.d. in O.

3.2 1-Codimensional Intrinsic graphs

In this section we characterize uniformly intrinsic differentiable maps φ : ω ⊂ W → V,
when V is one dimensional and horizontal, in terms of existence and continuity of suitable
intrinsic derivatives of φ. Intrinsic derivatives are first order non linear differential operators
depending on the structure of the ambient space G and on the choice of two complementary
subgroups W and V.

In order to do this we have to restrict the ambient space G under consideration to a
subclass of Carnot groups of step two. These groups, denoted here as groups of class B, are
described in the Section 1.4 where we follow the notations of Chapter 3 of [17].

3.2.1 The intrinsic gradient

Let G = (Rm+n, ·, δλ) be a group of class B as in Definition 1.4.1 and W, V be complementary
subgroups in G with V horizontal and one dimensional.

We are going to characterize uniformly intrinsic differentiable functions φ : W→ V (see
Definitions 2.6.2 and 2.6.4) in terms of existence and continuity of intrinsic derivatives of φ.

These intrinsic derivatives are non linear first order differential operators that can be
explicitly written in terms only of the matrices B(s).

Remark 3.2.1. To keep notations simpler, through all this section we assume, without loss
of generality, that the complementary subgroups W, V are

(3.11) V := {(x1, 0 . . . , 0)}, W := {(0, x2, . . . , xm+n)}.

This amount simply to a linear change of variables in the first layer of the algebra g. If
we denote M a non singular m×m matrix, the linear change is

(x, y) 7→ (ξ, y) = (Mx, y)
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The new composition law ? in Rm+n, obtained by writing · in the new coordinates, is

(ξ, y) ? (ξ′, y′) := (ξ + ξ′, y + y′ +
1

2
〈B̃ξ, ξ′〉),

where B̃ := (B̃(1), . . . , B̃(n)) and B̃(s) = (M−1)TB(s)M−1 for s = 1, . . . , n. It is easy to check
that the matrices B̃(1), . . . , B̃(n) are skew-symmetric and that (Rm+n, ?, δλ) is a Carnot group
of class B isomorphic to G = (Rm+n, ·, δλ).

When V and W are defined as in (3.11) we identify (0, x2, . . . , xm+n) ∈W with (x2, . . . , xm+n) ∈
Rm+n−1 and we use the same symbol ω for an open set in Rm+n−1 and an open set in W.
Moreover we identify φ : ω ⊂W→ V with the real valued ψ : ω ⊂ Rm+n−1 → R defined as

(3.12) φ(0, x2, . . . , xm+n) := (ψ(x2, . . . , xm+n), 0, . . . , 0).

Proposition 3.2.2. If φ : ω ⊂W→ V is continuous then, for all A = (x, y), B = (x′, y′) ∈
ω, the “graph distance” ρφ : ω × ω → [0,+∞), defined in Definition 2.6.3, takes the form
(3.13)

ρφ(A,B) :=
1

2
max

{
|x′ − x|, ε

∣∣∣y′ − y + 〈B(x′ − x), (ψ(A), 0, . . . , 0)〉 − 1

2
〈Bx, x′〉

∣∣∣ 12}
+

1

2
max

{
|x− x′|, ε

∣∣∣y − y′ + 〈B(x− x′), (ψ(B), 0, . . . , 0)〉 − 1

2
〈Bx′, x〉

∣∣∣ 12}
where ε ∈ (0, 1] is given by (1.30).

Proof. By direct computation it can be checked

(3.14)

φ(A)−1A−1Bφ(A) =

(
x′ − x, y′ − y + 〈B(x′ − x), (ψ(A), 0)〉 − 1

2
〈Bx, x′〉

)
φ(B)−1B−1Aφ(B) =

(
x− x′, y − y′ + 〈B(x− x′), (ψ(B), 0)〉 − 1

2
〈Bx′, x〉

)
for all A = (x, y), B = (x′, y′) ∈ ω.

It is clear from (3.14) that ρφ(A,B) defined as (3.13) is the symmetrized version of
‖φ(A)−1A−1Bφ(A)‖. Then we have

Proposition 3.2.3. Let W and V be complementary subgroups of G with V horizontal. Let
φ : ω ⊂ W → V with ω open in W. Then φ is u.i.d. in A0 ∈ ω if and only if φ is intrinsic
differentiable in A0 and if

lim
r→0+

sup

{
‖φ(B)− φ(A)− dφA0(A

−1B)‖
ρφ(A,B)

: A 6= B, ‖A−1
0 A‖ < r, ‖A−1

0 B‖ < r

}
= 0.



3.2 1-Codimensional Intrinsic graphs 121

Proof. The proposition follows from Proposition 2.6.8; indeed there is C > 0 such that

Cρφ(A,B) ≤ ‖φ(A)−1A−1Bφ(A)‖ ≤ 2ρφ(A,B)

for all A,B ∈ ω such that ‖A−1B‖ ≤ r (for r > 0).

We show here that (3.10) can be written as a combination of left invariant vector fields
defined as restrictions of the vector fields Xj, Ys in (1.29) which are a basis of the Lie algebra

g of G. More precisely, we recall that if B(s) = (b
(s)
ij )mi,j=1, then

Xj(x, y) = ∂xj +
1

2

n∑
s=1

(
m∑
i=1

b
(s)
ji xi

)
∂ys , Ys(x, y) = ∂ys ,

for j = 1, . . . ,m, and s = 1, . . . , n.

Proposition 3.2.4. With the notations of Definition 1.4.1, let G := (Rm+n, ·, δλ) be a Carnot
group of class B, V and W the complementary subgroups defined in (3.11). Let Ω be open in
G and f ∈ C1

G(Ω) with X1f > 0.

(i) Let S := {P ∈ Ω : f(P ) = 0} and assume that S 6= ∅. Then there are ω open in
W and φ : ω ⊂ W → V such that S = graph (φ). Moreover φ is uniformly intrinsic
differentiable in ω and, for all A := (x, y) ∈ ω, the intrinsic gradient Dφφ(A) =(
Dφ

2φ(A), . . . , Dφ
mφ(A)

)
takes the following form

(3.15) Dφ
j φ(A) = Xjψ(A) + ψ(A)

n∑
s=1

b
(s)
j1 Ysψ(A)

for j = 2, . . . ,m, where the equality (3.15) has to be meant in distributional sense.

(ii) Let E := {P ∈ Ω : f(P ) < 0}. Then E has locally finite G-perimeter in Ω and its
G-perimeter measure |∂E|G has the integral representation

(3.16) |∂E|G(F) =

∫
Φ−1(F)

√
1 + |Dψψ|2 dLm+n−1

for every Borel set F ⊂ Ω.

Proof. The existence of φ : ω ⊂ W → V such that S = graph (φ) follows from Implicit
Function Theorem. Moreover φ is uniformly intrinsic differentiable in ω by Theorem 3.1.1.
Let ψ : ω ⊂ Rm+n−1 → R be the real valued continuous function associated to φ as in (3.12).

By a standard approximation argument (see Theorem 2.1 in [45]) for any U b Ω and
0 < ε < 1, there are functions fε : U → R such that fε ∈ C1(U), X1fε > 0 on U ,

(3.17) fε → f and Xjfε → Xjf for j = 1, . . . ,m
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uniformly on U as ε→ 0+.
Because fε ∈ C1(U), by the standard implicit function theorem, there is ω′ ⊂ ω and

functions φε : ω′ ⊂W→ V such that fε(A · φε(A)) = 0 for all A ∈ ω′, and

(3.18) φε → φ

uniformly on ω′ for ε→ 0+.
Finally, we denote as ψε : ω′ ⊂ Rm+n−1 → R the functions associated to φε : ω′ ⊂W→ V

as in (3.12) and as Φε : ω′ → G the graph map of φε given by A 7→ Φε(A) := A · φε(A).
Clearly, ψε ∈ C1(ω′) and ψε → ψ uniformly on ω′ for ε→ 0+.

Differentiating the equality fε
(
A · φε(A)

)
= 0, for A = (0, x2, . . . , xm, y1, . . . , yn) ∈ ω′, we

get

∂xjψε(A) = −
∂xjfε(Φε(A))− 1

2
ψε(A)

∑n
s=1 b

(s)
j1 ∂ysfε(Φε(A))

X1fε(Φε(A))
, j = 2, . . . ,m

∂ysψε(A) = −∂ysfε(Φε(A))

X1fε(Φε(A))
, s = 1, . . . , n

and consequently, using also the skew symmetry of the matrices B(s),

− Xjfε(Φε(A))

X1fε(Φε(A))

= −
∂xjfε(Φε(A)) + 1

2

∑n
s=1

(
ψε(A)b

(s)
j1 +

∑m
i=2 xib

(s)
ji

)
∂ysfε(Φε(A))

X1fε(Φε(A))

= −
∂xjfε(Φε(A))− 1

2
ψε(A)

∑n
s=1 b

(s)
j1 ∂ysfε(Φε(A))

X1fε(Φε(A))
−

−

∑n
s=1

(
ψε(A)b

(s)
j1 + 1

2

∑m
i=2 xib

(s)
ji

)
∂ysfε(Φε(A))

X1fε(Φε(A))

= ∂xjψε(A) +
n∑
s=1

(
ψε(A)b

(s)
j1 +

1

2

m∑
i=2

xib
(s)
ji

)
∂ysψε(A).

Then, from (3.10)

Dφε
j φε(A) = ∂xjψε(A) +

n∑
s=1

(
ψε(A)b

(s)
j1 +

1

2

m∑
i=2

xib
(s)
ji

)
∂ysψε(A)

Letting ε→ 0+ and using (3.17) and (3.18), (3.15) holds as an equality of distributions.
Finally using again Implicit Function Theorem in [45], we know that

|∂E|G(Ū) =

∫
Iδ

|∇Gf(Φ(A))|
X1f(Φ(A))

dLm+n−1(A)
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and, consequently, the integral representation (3.16) is true because Dψ
j ψ = −Xjf

X1f
◦Φ for all

j = 2, . . . ,m (see Remark 3.1.3). This completes the proof.

From this proposition and Remark 3.1.3, we have that if graph (φ) is a G-regular hyper-
surfaces then the intrinsic gradient of ψ (where ψ is the function associated to φ as in (3.12))
takes the explicit form as in (3.15). This fact motivates the following definition of intrinsic
gradient operator.

Definition 3.2.1. Let ω be open in Rm+n−1 and ψ : ω ⊂ Rm+n−1 → R be continuous.
The intrinsic horizontal gradient Dψ associated with ψ is the family of (m − 1) first order
differential operators, or continuous vector fields,

Dψ := (Dψ
2 , . . . , D

ψ
m)

Dψ
j := ∂xj +

n∑
s=1

(
ψb

(s)
j1 +

1

2

m∑
i=2

xib
(s)
ji

)
∂ys = Xj |W + ψ

n∑
s=1

b
(s)
j1 Ys|W

(3.19)

for j = 2, . . . ,m.

The following Proposition gives a further geometric characterization of the vector field
Dψψ. Indeed, at least for regular maps, each intrinsic derivative Dψ

j ψ is the derivative of ψ

along the integral curves of the vector field Dψ
j .

Proposition 3.2.5. Let ω be an open subset of Rm+n−1 and let ψ : ω → R be intrinsic
differentiable in ω. Assume that, for j = 2, . . . ,m and δ > 0, γj : [−δ, δ]→ ω be an integral
curve of the vector field Dψ

j such that

t 7→ ψ(γj(t))

is of class C1([−δ, δ]). Then we have

(3.20) lim
t→0

ψ
(
γj(t)

)
−ψ
(
γj(0)

)
t

= Dψ
j ψ(γj(0)).

Proof. Fix j = 2, . . . ,m. Let A = (x, y) ∈ ω such that γj(0) = A. We know that γj(t) =(
γj2(t), . . . , γjm+n(t)

)
is given by

(3.21) γjh(t) =


xh h = 2, . . . ,m , h 6= j
xh + t h = j

yh + 1
2
t
∑m

i=2 xib
(h)
ji + b

(h)
j1

∫ t
0
ψ(γj(r)) dr h = m+ 1, . . . ,m+ n

Now we would like to show that

(3.22) ρφ(γj(t), A) ≤ C|t|



3.2 1-Codimensional Intrinsic graphs 124

for a certain C ≥ 1. First we observe that

ρφ(γj(t), γj(0)) =
1

2
max

{
|t|, ε

n∑
s=1

∣∣∣∣b(s)
1j

∫ t

0

ψ(γj(r)) dr − tb(s)
1j ψ

(
γj(0)

)∣∣∣∣ 12
}

+
1

2
max

{
|t|, ε

n∑
s=1

∣∣∣∣b(s)
1j

∫ t

0

ψ(γj(r)) dr − tb(s)
1j ψ

(
γj(t)

)∣∣∣∣ 12
}

=:
1

2
max

{
|t|, , ε

n∑
s=1

∣∣∆s(t)
∣∣ 12}+

1

2
max

{
|t|, , ε

n∑
s=1

∣∣Θs(t)
∣∣ 12}

So it is sufficient to show that
∣∣∆s(t)

∣∣≤ Ĉt2 and
∣∣Θs(t)

∣∣≤ Ĉt2 for all s = 1, . . . , n and for a

certain Ĉ > 0; indeed for h = m+ 1, . . . ,m+ n, we have that the map t 7→ γjh(t) is of class
C2 (because of (3.21) and the hypothesis that t 7→ ψ(γj(t)) is C1) and we also note that∑m

i=2 xib
(s)
ji is a finite sum of real numbers for each s = 1, . . . , n.

Then for s = 1, . . . , n

∆s(t) = b
(s)
1j

(∫ t

0

ψ(γj(r)) dr − tψ(γj(A))

)
= O(t2)

and

Θs(t) = b
(s)
1j

(∫ t

0

ψ(γj(r)) dr − tψ(γj(t))

)

= b
(s)
1j

(∫ t

0

(
ψ(γj(r))− ψ(A)

)
dr − t

(
ψ(γj(t))− ψ(A)

))
= O(t2).

As a consequence, (3.22) holds with C := max{1,
√
Ĉ}. Finally from (3.22) we get∣∣ψ(γj(t))−ψ(γj(0)

)
−Dψ

j ψ(A)t
∣∣

t
≤ C

∣∣ψ(γj(t))−ψ(A)− dψA
(
A−1γj(t)

)∣∣
ρφ(γj(t), A)

where dψA is the intrinsic differential of ψ at A. By letting t → 0 and using the intrinsic
differentiable of ψ at A, we obtain the thesis (3.20).

3.2.2 Broad∗ solutions and Dψ-exponential maps

In this section we introduce a generalized notion of solution of the equation

Dψψ = w

in an open set ω ⊂ W and we study its relations with the notion of uniform intrinsic
differentiability.
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Definition 3.2.2. Let ω ⊂ Rm+n−1 be an open set and w : ω → Rm−1 be a continuous
function. For any ψ ∈ C(ω), let Dψ be the differential operators defined in (3.19). We say
that ψ ∈ C(ω) is a broad* solution in ω of the system

Dψψ = w

if for every A ∈ ω and j = 2, . . . ,m there are 0 < δ2 < δ1 and m − 1 maps, called the
exponential maps of Dψ,

expA(·Dψ
j )(·) : [−δ2, δ2]× Iδ2(A)→ Iδ1(A)

(t, B) 7→ expA(tDψ
j )(B)

such that if γjB(t) := expA(tDψ
j )(B),

1. γjB ∈ C1([−δ2, δ2])

2.

{
γ̇jB = Dψ

j ◦ γ
j
B

γjB(0) = B

3. ψ(γjB(t))− ψ(γjB(0)) =
∫ t

0
wj(γ

j
B(r)) dr for all B ∈ Iδ2(A).

Remark 3.2.6. If the exponential maps of Dψ at A exist, then the map

[−δ2, δ2] 3 t 7−→ ψ

(
expA(tDψ

j )(B)

)
is of class C1 for every j = 2, . . . ,m and for each B ∈ Iδ2(A).

See also Theorems 1.2 and 1.3 of [7] when G is an Heisenberg group.

Theorem 3.2.7. Let G = W · V be a group of class B with V one dimensional and let
φ : ω → V be a continuous function, where ω is a relatively open subset of W and ψ : ω → R
is the map associated to φ as in (3.12). Then the following conditions are equivalent:

1. S := graph (φ) is a G-regular hypersurface.

2. φ is u.i.d. in ω.

3. there exists w ∈ C0(ω,Rm−1) such that, in distributional sense,

Dψψ = w in ω

and there is a family (ψε)ε>0 ⊂ C1(ω) such that, for any open ω′ b ω,

ψε → ψ and Dψεψε → w uniformly on ω′, as ε→ 0+.
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4. ψ ∈ h1/2
loc (ω) and ψ is a broad* solution of Dψψ = w in ω.

Proof. We split the proof in several steps.
(1) ⇐⇒ (2) see Theorem 3.1.1.
(2) =⇒ (3) We begin proving that for all A ∈ ω there are δ = δ(A) > 0 with Iδ(A) b ω

and a family (ψε)ε>0 ⊂ C1(Iδ(A)) such that

(3.23) ψε → ψ and Dψεψε → Dψψ uniformly on Iδ(A), as ε→ 0.

Fix A ∈ ω. Let P := Φ(A) where Φ is the graph map of φ defined as (2.20). Because
S := graph (φ) is a G-regular hypersurface we know that there are r > 0, δ > 0 and
f ∈ C1

G(U(P, r)) such that f ◦ Φ = 0 in Iδ(A).
Now we use some results proved in Implicit Function Theorem in [45] (see Theorem 2.1

in [45]). Arguing as in Step 1 of this theorem we can prove the existence of 0 < r′ < r and
of a family (fε)ε>0 ⊂ C1(U(P, r′)) such that

fε → f and ∇Gfε → ∇Gf uniformly on U(P, r′), as ε→ 0.

Moreover as in Step 3 of Implicit Function Theorem in [45] there is (ψε)ε>0 ⊂ C1(Iδ(A))
satisfying

ψε → ψ and − ∇̂Gfε
X1fε

◦ Φε → −
∇̂Gf

X1f
◦ Φ = Dψψ uniformly on Iδ(A), as ε→ 0

where ∇̂Gf := (X2f, . . . , Xmf) and Φε are the graph map of φε = (ψε, 0, . . . , 0) defined as
Φε(A) = A · φε(A). Hence fε ◦ Φε ≡ 0.
Moreover, the set Sε := {Q ∈ U(P, r′) : fε(Q) = 0} ⊃ Φε(Iδ(A)) is an Euclidean C1 surface.
Hence, because fε ∈ C1(U(P, r′)) ⊂ C1

G(U(P, r′)) (see Remark 2.3.6) and because of Theorem
3.1.1 we have that φε (i.e. the parametrization of Sε) is uniformly intrinsic differentiable and
by Remark 3.1.3 we get

Dψεψε = −∇̂Gfε
X1fε

◦ Φε,

completing the proof of (3.23).
From what proved up to now we know that for all B ∈ ω there is δ = δ(B) > 0 such that

Iδ(B) b ω and there is family A = A(B) of C1 functions defined as A := {ψε,B : Iδ(B) →
R}0<ε<1 such that (3.23) holds.

Now let F̂ := {Int(Iδ(B)) : B ∈ ω} be open covering of ω. Then there exists a locally
finite covering F of F̂ and {θh : ω → R |h ∈ N} a partition of the unity subordinate to F .

Let ψε,Bh : Ih → R, with ψε,Bh ∈ A. We consider ψε,h := ψε,Bh : Rm+n−1 → R where from
now on, if necessary, we use the convention of extending functions by letting them vanish
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outside their domain. Let ψε :=
∑∞

h=1 θhψε,h; by construction ψε ∈ C1(ω) and

Dψεψε =
∞∑
h=1

(
ψε,hD

ψεθh + θhD
ψεψε,h

)
on ω

Because the partition is locally finite, there are only a finite number of h1, . . . , hl such that
ω′∩ sptθhτ 6= ∅ for each τ = 1, . . . , l and ω′ ⊂

⋃l
τ=1sptθhτ . Then

ψε =
l∑

τ=1

θhτψε,hτ and ψ =
l∑

τ=1

θhτψ on ω′

Dψεψε =
l∑

τ=1

(
φε,hτD

ψε,hτ θhτ + θhτD
ψε,hτψε,hτ

)
on ω′

Putting together the last equalities and (3.23) we get

ψε → ψ and Dψεψε →
l∑

τ=1

(
ψDψθhτ + θhτD

ψψ
)

=: w uniformly on ω′, as ε→ 0

Note that for j = 2, . . . ,m

[Dψθhτ ]j := ∂xjθhτ +
N∑

s=m+1

Pj,s(ψ)∂xsθhτ

where Pj,s(ψ) are polynomials depending only on ψ, Q2, . . . ,Qκ. Using (3.23) we can see

that
∑l

τ=1 ψD
ψθhτ = 0 and so finally w = Dψψ ∈ C0(ω,Rm−1). This completes the proof of

the implication (2) =⇒ (3).

(3) =⇒ (4)

The proof of ψ ∈ h1/2
loc (ω) is the content of Theorem 3.2.8.

To prove that ψ is a broad∗ solution we have to show that for each A ∈ ω there ex-
ist δ1, δ2 > 0 with δ1 > δ2 such that for j = 2, . . . ,m there is the exponential maps
expA(tDψ

j )(B) ∈ Iδ1(A) b ω for all (t, B) ∈ [−δ2, δ2]× Iδ2(A); moreover,

wj(B) =
d

dt
ψ
(

expA(tDψ
j )(B)

)
|t=0

for all B ∈ Iδ2(A).
Fix j = 2, . . . ,m. For ε > 0 we consider the Cauchy problem

γ̇jB,ε(t) = Dψε
j (γjB,ε(t))

γjB,ε(0) = B
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which has a solution γε : [−δ2(ε), δ2(ε)] × Iδ2(ε)(A) → Iδ1(A). By Peano’s estimate on the
existence time for solutions of ordinary differential equations we get that δ2(ε) is greater
than C/‖Dψεψε‖L∞(Iδ2(ε)(A)), with C depending only on δ1. So it is sufficient to take δ2 >
0 such that δ2 ≤ δ2(ε) for all ε. Because γε are uniformly continuous on the compact
[−δ2, δ2]× Iδ2(A), by Ascoli-Arzelá Theorem, we have a sequence (εh)h such that εh → 0 as
h→∞ and γεh → γ uniformly on [−δ2, δ2]× Iδ2(A). Obviously,

γjB,εh(t) = B +

∫ t

0

D
ψεh
j (γjB,εh(r)) dr

ψεh(γjB,εh(t))− ψεh(γjB,εh(0)) =

∫ t

0

D
ψεh
j ψεh(γjB,εh(r)) dr

and for h→∞ using that all the involved convergences are uniform we conclude

γjB(t) = B +

∫ t

0

Dψ
j (γjB(r)) dr

ψ(γjB(t))− ψ(γjB(0)) =

∫ t

0

Dψ
j ψ(γjB(r)) dr

i.e. the conditions of the Definition 3.2.2 are satisfied.

(4) =⇒ (2).
Let us fix A = (x̄, ȳ) ∈ ω and set

w(A) :=
(
Dψ

2 ψ, . . . , D
ψ
mψ
)
(A) ∈ Rm−1.

First let B = (x, y), B′ = (x′, y′) ∈ Iδ(A) for a sufficiently small δ > 0.
Here we can not integrate along the vector field Dψ

j ; however this obstacle can be solved
using the exponential maps, more precisely by posing

Bi := expA(D̄i)(Bi−1) for i = 2, . . . ,m

where D̄ := (D̄2, . . . , D̄m) is the family of vector fields given by D̄j = (x′j − xj)D
ψ
j for

j ∈ {2, . . . ,m}. A computation gives that

Bj = (x′2, . . . , x
′
j, xj+1, . . . , xm, y

Bj)

with

yBjs = ys +

j∑
l=2

(
−b(s)

1l

∫ x′l−xl

0

ψ
(

expA(rDψ
l (Bl−1))

)
dr +

1

2
(x′l − xl)

( l∑
i=2

x′ib
(s)
li +

m∑
i=l+1

xib
(s)
li

))

= yBj−1
s − b(s)

1j

∫ x′j−xj

0

ψ
(

expA(rDψ
j (Bj−1))

)
dr +

1

2
(x′j − xj)

( j∑
i=2

x′ib
(s)
ji +

m∑
i=j+1

xib
(s)
ji

)
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for s = 1, . . . , n. Observe that B2, . . . , Bm are well defined for a sufficiently small δ. Because
ψ is of class C1 (see Remark 3.2.6) we have

ψ(B′)− ψ(B) = [ψ(B′)− ψ(Bm)] +
m∑
l=2

[ψ(Bl)− ψ(Bl−1)]

= [ψ(B′)− ψ(Bm)] +
m∑
l=2

(
D̄lψ(Bl−1) + o(|x′l − xl|)

)
Notice that in the last equality we used the fact

m∑
l=2

(
ψ(Bl)− ψ(Bl−1)

)
=

m∑
l=2

(∫ 1

0

(D̄lψ)(expA(rD̄l)(Bl−1)) dr

)
=

m∑
l=2

(
D̄lψ(Bl−1) + o(|x′l − xl|)

)
.

Now since

lim
δ→0

∑m
l=2 D̄lψ(Bl−1)− D̄ψ(A)

|x′ − x|
= 0

we have

ψ(B′)− ψ(B) = ψ(B′)− ψ(Bm) + D̄ψ(A) +

(
m∑
l=2

D̄lψ(Bl−1)− D̄ψ(A)

)
+ o(|x′ − x|)

= ψ(B′)− ψ(Bm) + 〈w(A), x′ − x〉+

(
m∑
l=2

D̄lψ(Bl−1)− D̄ψ(A)

)
+ o(ρφ(B,B′)).

Consequently, it is sufficient to show that ψ(B′) − ψ(Bm) = o(ρφ(B,B′)). First we observe
that

|ψ(B′)− ψ(Bm)|
ρφ(B,B′)

≤ Cψ(δ)
|y′ − yBm|1/2

ρφ(B,B′)

with

(3.24) Cψ(δ) := sup

{
|ψ(A′)− ψ(A′′)|
|A′−1A′′|1/2

: A′ 6= A′′, A′, A′′ ∈ Iδ(A)

}
.

We know also that limδ→0Cψ(δ) = 0 because ψ is C1 (see Remark 3.2.6). So it is evident

that remains to prove |y′ − yBm| 12/ρφ(B,B′) is bounded in a proper neighborhood of A.

If we put BM = max{b(s)
ij | i, j = 1, . . . ,m , s = 1, . . . , n} then
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|y′ − yBm| ≤
n∑
s=1

∣∣∣∣y′s − ys +
m∑
l=2

(
b

(s)
1l

∫ x′l−xl

0

ψ
(

expA(rDψ
l (Bl−1))

)
dr+

− 1

2
(x′l − xl)

( l∑
i=2

x′ib
(s)
li +

m∑
i=l+1

xib
(s)
li

))∣∣∣∣
≤

n∑
s=1

∣∣∣∣y′s − ys +
1

2
(ψ(B) + ψ(B′))

m∑
l=2

(x′l − xl)b
(s)
1l −

1

2
〈B(s)x, x′ − x〉

∣∣∣∣
+

n∑
s=1

∣∣∣∣−1

2
(x′l − xl)

( l∑
i=2

x′ib
(s)
li +

m∑
i=l+1

xib
(s)
li

)
+

1

2
〈B(s)x, x′ − x〉

∣∣∣∣
+

n∑
s=1

∣∣∣∣−1

2
(ψ(B) + ψ(B′))

m∑
l=2

(x′l − xl)b
(s)
1l +

m∑
l=2

b
(s)
1l

∫ x′l−xl

0

ψ
(

expA(rDψ
l (Bl−1))

)
dr

∣∣∣∣
≤ 1

ε2
ρφ(B,B′)2 +

1

2
nBM |x′ − x|2+

+
n∑
s=1

∣∣∣∣−1

2
(ψ(B) + ψ(B′))

m∑
l=2

(x′l − xl)b
(s)
1l +

m∑
l=2

b
(s)
1l

∫ x′l−xl

0

ψ
(

expA(rDψ
l (Bl−1))

)
dr

∣∣∣∣
where ε is given by (3.13). Note that we have used

1

2
〈B(s)x, x′ − x〉 − 1

2
(x′l − xl)

( l∑
i=2

x′ib
(s)
li +

m∑
i=l+1

xib
(s)
li

)
= −1

2
(x′l − xl)

( l∑
i=2

x′ib
(s)
li +

m∑
i=l+1

xib
(s)
li −

m∑
i=2

xib
(s)
li

)
≤ 1

2
nBM |x′ − x|2.

Finally, the last term

n∑
s=1

∣∣∣∣−1

2
(ψ(B) + ψ(B′))

m∑
l=2

(x′l − xl)b
(s)
1l +

m∑
l=2

b
(s)
1l

∫ x′l−xl

0

ψ
(

expA(rDψ
l (Bl−1))

)
dr

∣∣∣∣
≤ R1(B,B′) +R2(B,B′) +R3(B,B′)



3.2 1-Codimensional Intrinsic graphs 131

where

R1(B,B′) :=
n∑
s=1

m∑
l=2

∣∣∣∣b(s)
1l

∫ x′l−xl

0

ψ
(

expA(rDψ
l (Bl−1))

)
dr − 1

2
b

(s)
1l

(
ψ(Bl−1) + ψ(Bl)

)
(x′l − xl)

∣∣∣∣
R2(B,B′) :=

1

2

n∑
s=1

∣∣∣∣ m∑
l=2

b
(s)
1l (x′l − xl)

(
ψ(Bl−1)− ψ(B)

)∣∣∣∣
R3(B,B′) :=

1

2

n∑
s=1

∣∣∣∣ m∑
l=2

b
(s)
1l (x′l − xl)

(
ψ(Bl)− ψ(B′)

)∣∣∣∣
We would show that there exist C1, C2, C3 > 0 such that

(3.25) R1(B,B′) ≤ C1|x′ − x|2

(3.26) R2(B,B′) ≤ C2|x′ − x|2

for all B,B′ ∈ Iδ(A), and that for all r there is a δr ∈ (0, δ] such that for all δ0 ∈ (0, δr]

(3.27) R3(B,B′) ≤ C3|x′ − x|2 +
1

4
nBM(m− 1)r|y′ − yBm|

These estimates are sufficient to conclude; in fact, choosing r := 1
n(m−1)BM

and using

(3.25), (3.26) and (3.27) we deduce that

|y′−yBm | ≤ 1

ε2
ρφ(B,B′)2+

1

2
nBM |x′−x|2+C1|x′−x|2+C2|x′−x|2+C3ρφ(B,B′)2+

1

4
|y′−yBm|

Hence there is C4 > 0 such that

|y′ − yBm|
1
2 ≤ C4ρφ(B,B′)

which is the thesis.
We start to consider R1(B,B′). Fix l = 2, . . . ,m. For t ∈ [−δ, δ] we define

gl(t) :=
n∑
s=1

b
(s)
1l

(∫ t

0

ψ(expA(rDψ
l )(Bl−1)) dr − 1

2
t
(
ψ(Bl−1) + ψ

(
expA(tDψ

l )(Bl−1)
)))

working as in Proposition 3.2.5 we show the existence of Cl > 0 such that

|gl(t)| ≤ Clt
2, ∀t ∈ [−δ, δ]

So set t = x′l − xl we get
|gl(x′l − xl)| ≤ Cl(x

′
l − xl)2
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and consequently (3.25) follows from

m∑
l=2

|gl(x′l − xl)| ≤
m∑
l=2

Cl(x
′
l − xl)2 ≤ C1|x′ − x|2.

Now we consider R2(B,B′). Observe that

1

2

n∑
s=1

∣∣∣∣ m∑
l=2

b
(s)
1l (x′l − xl)

(
ψ(Bl−1)− ψ(B)

)∣∣∣∣≤ 1

2
nBM

m∑
l=3

|x′l − xl|
∣∣∣ψ(Bl−1)− ψ(B)

∣∣∣
≤ 1

2
nBM

m∑
l=3

|x′l − xl|
( l−1∑
i=2

|ψ(Bi)− ψ(Bi−1)|
)

≤ 1

2
nBM

m∑
l=3

|x′l − xl|
( l−1∑
i=2

∣∣∣ ∫ 1

0

(D̄iψ)(expA(rD̄i(Bi−1))) dr
∣∣∣)

≤ 1

2
nBM

m∑
l=3

|x′l − xl|
( l−1∑
i=2

∣∣∣(x′i − xi)(Dψ
i ψ(Bi−1) + o(1))

∣∣∣)
≤ 1

2
nBMC|x′ − x|2

Then (3.26) follows with C2 := 1
2
nBMC. Finally we have

R3(B,B′) ≤ 1

2
nBM

m∑
l=2

|x′l − xl|
∣∣ψ(Bl)− ψ(B′)

∣∣
≤ 1

2
nBM

m∑
l=2

(
|x′l − xl|

(m−1∑
i=l

|ψ(Bi)− ψ(Bi+1)|+ |ψ(Bm)− ψ(B′)|
))

≤ 1

2
nBM

m∑
l=2

(
|x′l − xl|

(m−1∑
i=l

∣∣∣ ∫ 0

1

(D̄i+1ψ)(expA(rD̄i+1(Bi))) dr
∣∣∣+ |ψ(Bm)− ψ(B′)|

))
≤ 1

2
nBMC|x′ − x|2 +

1

2
nBM

m∑
l=2

|x′l − xl||ψ(Bm)− ψ(B′)|

Moreover, we define Cψ as in (3.24), then we observe that Cψ(δ) → 0 for δ → 0 since ψ is
C1. Fix l = 2, . . . ,m and note that∣∣ψ(Bm)− ψ(B′)

∣∣|x′l − xl| ≤ 1

2

(
2Cψ(δ)|y′ − yBm|

1
2 |x′l − xl|

)
≤ 1

2

(
Cψ(δ)2|y′ − yBm|+ |x′l − xl|2

)
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Then for all r > 0 there is a δr > 0 such that for all δ0 ∈ (0, δr] we have Cψ(δ0)2 ≤ r and

R3(B,B′) ≤ 1

2
nBMC|x′ − x|2 +

1

4
nBM

m∑
l=2

(
r|y′ − yBm|+ |x′l − xl|2

)
≤ C3|x′ − x|2 +

1

4
nBM(m− 1)r|y′ − yBm |

where C3 := 1
4
nBM(2C + 1). So the inequality (3.27) is true and the (4) =⇒ (2) is proved.

We prove now that the solutions of the system Dψψ = w when w ∈ C0(ω,Rm−1) are
Hölder continuous.

Theorem 3.2.8. Let ψ ∈ C(ω) where ω is open in Rm+n−1. Assume that there exists
w := (w2, . . . , wm) ∈ C0(ω,Rm−1) such that, in distributional sense,

Dψψ = w in ω

and there is a family (ψε)ε>0 ⊂ C1(ω) such that, for any open ω′ b ω,

ψε → ψ and Dψεψε → w uniformly on ω′, as ε→ 0+.

Then, for ω′ b ω′′ b ω there exists α : (0,+∞) → [0,+∞) depending only on ω′′,
‖ψ‖L∞(ω′′), ‖Dψψ‖L∞(ω′′), on B(1), . . . ,B(n) and on the modulus of continuity of w on ω′′

such that

(3.28) lim
r→0

α(r) = 0

and

(3.29) sup

{
|ψ(A)− ψ(A′)|
|A− A′|1/2

: A,A′ ∈ ω′, 0 < |A− A′| ≤ r

}
≤ α(r).

Proof. It is sufficient to prove the theorem for ψ ∈ C1(ω). Indeed from the uniform conver-
gence of ψε and Dψεψε, we can estimate ‖ψε‖L∞(ω′), on ‖Dψεψε‖L∞(ω′) uniformly in ε for any
ω′ b ω. Moreover the uniform convergence of Dψεψε allows the choice of a modulus of conti-
nuity for Dψε

j ψε which is indipendent of ε for all j. Therefore there is α : (0,+∞)→ [0,+∞),
not depending on ε, such that (3.28) and (3.29) follow.

We are going to prove that for each point of ω′ there are sufficiently small rectangular
neighborhoods I b I ′ b ω and a function α : (0,+∞)→ [0,+∞) such that limr→0 α(r) = 0
and

(3.30) sup

{
|ψ(A)− ψ(A′)|
|A− A′|1/2

: A,A′ ∈ I ′, 0 < |A− A′| ≤ r

}
≤ α(r).
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By a standard covering argument the general statement follows.
Precisely we are going to prove (3.43) with α defined as

(3.31) α(r) :=
3 (1 + h)

BM
δ(r) +Nr1/2

where if we put

K := sup
A=(x,y)∈I′

m∑
i=2

|xi|, M := ‖ψ‖L∞(I′), N := ‖Dψψ‖L∞(I′)

and β : (0,+∞)→ [0,+∞), increasing, such that limr→0+ β(r) = 0 and

|w(A)− w(A′)| ≤ β(|A− A′|) for all A,A′ ∈ I ′

then h := (nBM(K +M))1/2, BM = max{b(s)
il : i, l = 1, . . . ,m and s = 1, . . . , n} and

δ(r) := max{r1/4; (BMβ(Er1/4))1/2}.

Here E > 0 is a constant such that |y − y′|+ BM(K + 2M)|y − y′|1/4 ≤ E|y − y′|1/4.
We split the proof in several steps.
Step 1. By standard considerations on ordinary differential equations, we know that for

each point of ω′ there are r0 > 0 and rectangular neighborhoods I b I ′ b ω such that for all
A = (x, y) ∈ I there is a unique solution γjA ∈ C1([xj−r0, xj +r0], I ′) of the Cauchy problem{

γ̇jA(t) = wj(γ
j
A(t)) = Xjψ(γjA(t)) + ψ(γjA(t))

∑n
s=1 b

(s)
j1 Ysψ(γjA(t))

γjA(xj) = A.

More precisely,

γjA(t) =
(
x2, . . . , xj−1, t, xj+1, . . . , xm, y

j
1,A(t), . . . , yjn,A(t)

)
, where

yjs,A(t) = ys +
1

2
(t− xj)

m∑
i=2

xib
(s)
ji + b

(s)
j1

∫ t

xj

ψ(γjA(r)) dr, for s = 1, . . . , n.
(3.32)

Moreover observe that

(3.33)
d2

dt2
yjs,A(t) =

d

dt

[ 1

2

m∑
i=2

xib
(s)
ji + b

(s)
j1 ψ(γjA(t))

]
= b

(s)
j1 wj(γ

j
A(t)).

Step 2. Assume A,B ∈ I with A = (x, y) and B = (x, y′). We prove that

(3.34)
|ψ(A)− ψ(B)|
|y − y′|1/2

≤ 3

BM
δ,
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where δ := δ(|y − y′|). Suppose on the contrary that (3.34) is not true, i.e.

|ψ(A)− ψ(B)|
|y − y′|1/2

>
3

BM
δ.

Let b
(s)
j1 6= 0 for some s ∈ {1, . . . , n} and j = 2, . . . ,m and let γjA and γjB with

γjA(t) = (x2, . . . , xj−1, t, xj+1, . . . , xm, y1(t), . . . , yn(t))

and
γjB(t) = (x2, . . . , xj−1, t, xj+1, . . . , xm, y

′
1(t), . . . , y′n(t)).

Suppose that ys ≥ y′s (for the other case it is sufficient to exchange the roles of A and B).
By (3.32) and (3.33), for t ∈ [xj − r0, xj + r0] we have

ys(t)− y′s(t)− (ys − y′s)

= b
(s)
j1

∫ t

xj

ψ(γjA(r))− ψ(γjB(r)) dr

=

∫ t

xj

[
ẏs(xj)− ẏ′s(xj) +

∫ r′

xj

(ÿs(r)− ÿ′s(r)) dr
]
dr′

= b
(s)
j1 (t− xj)(ψ(A)− ψ(B)) + b

(s)
j1

∫ t

xj

∫ r′

xj

(
wj(γ

j
A(r))− wj(γjB(r))

)
drdr′.

Now using the following facts

max
r
|ẏs(r)| = max

r

∣∣1
2

m∑
i=1

xib
(s)
ji + b

(s)
j1 ψ(γjA(r))

∣∣ ≤ BM(1

2
K +M

)
and

|γjA(r)− γjB(r)| ≤ |γjA(xj)− γjB(xj)|+ |r − xj|(max
r
|ẏs(r)|+ max

r
|ẏ′s(r)|)

≤ |A−B|+ |t− xj|(max
r
|ẏs(r)|+ max

r̂
|ẏ′s(r)|)

≤ |y − y′|+ |t− xj|BM(K + 2M)

we obtain

(3.35)

ys(t)− y′s(t)− (ys − y′s)
≤ b

(s)
j1 (t− xj)(ψ(A)− ψ(B)) + |b(s)

j1 |(t− xj)2 sup
r
β
(
|γjA(r)− γjB(r)|

)
≤ b

(s)
j1 (t− xj)(ψ(A)− ψ(B)) + |b(s)

j1 |(t− xj)2β (|y − y′|+ |t− xj|BM(K + 2M))
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So if b
(s)
j1 (ψ(A)−ψ(B)) > 0 put t := xj− |y−y

′|1/2
δ

in (3.35) and t := xj+
|y−y′|1/2

δ
otherwise.

Observe that in both cases we conclude that

(3.36) −|b(s)
j1 ||ψ(A)− ψ(B)| < −3δ|y − y′|1/2

Now if |y − y′| is “sufficiently small” γjA and γjB are well defined (it is sufficient to take
r0 ≥ |y− y′|1/4 ≥ |y− y′|1/2/δ = |t− xj| ) and using (3.35), (3.36) and the definition of β we
obtain in both cases

(3.37)

ys(t)− y′s(t) ≤ ys − y′s + |b(s)
j1 ||y − y′|1/2

−|ψ(A)− ψ(B)|
δ

+

+
1

δ2
|b(s)
j1 ||y − y′|β

(
|y − y|+ BM(K + 2M)

|y − y′|1/2

δ

)
≤ ys − y′s − 3|y − y′|1/2|y − y′|1/2 + |b(s)

j1 ||y − y′|
β
(
E|y − y′|1/4

)
δ2

≤ ys − y′s − 3|y − y′|+ BM
(

1

BM

)
|y − y′| = −|y − y′| < 0.

This leads to a contradiction, indeed if ys > y′s, then ys(·) and y′s(·) are solutions of the
same Cauchy problem
(3.38)

ẏs(r) =
1

2

m∑
i=2

xib
(s)
ji + b

(s)
j1 ψ(x2, . . . , xj−1, r, xj+1, . . . , xm, y1, . . . , ys−1, ys(r), ys+1, . . . , yn)

with initial data ys(xj) = ys and y′s respectively, but two such solutions cannot meet, while
ys(xj)−y′s(xj) > 0 and ys(t)−y′s(t) < 0 for a certain t ∈ (xj− r0, xj + r0) with r0 sufficiently
large.

On the other hand if ys = y′s, by (3.37) we conclude that ys(t) 6= y′s(t) for t = xj + |y−y′|1/2
δ

or t = xj − |y−y′|1/2
δ

. Then we have the contradiction because ys(·) and y′s(·) are solutions
of the same Cauchy problem (3.38) with initial data ys(t) and y′s(t) but two such solutions
cannot meet, while ys = y′s.

Hence (3.34) follows.
Step 3. Now let A,A′, B ∈ I with A = (x, y), A′ = (x′, y′) and B = (x, y′). We want to

show that

(3.39)
|ψ(B)− ψ(A′)|
|x− x′|1/2

≤ N |A− A′|1/2 +
3hδ

BM

where δ = δ(|A− A′|). We suppose on the contrary that

(3.40)
|ψ(B)− ψ(A′)|
|x− x′|1/2

> N |A− A′|1/2 +
3hδ

BM
.
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Set
Dj := γjDj−1

(xj) for j = 2, . . . ,m

with D1 := A′. A computation gives that

Dj = (x2, . . . , xj, x
′
j+1, . . . , x

′
m, y

Dj)

with

yDjs = y′s +

j∑
l=2

(
b

(s)
l1

∫ xl

x′l

ψ
(
γjDj−1

(r)
)
dr +

1

2
(xl − x′l)

( l∑
i=2

xib
(s)
li +

m∑
i=l+1

x′ib
(s)
li

))
for s = 1, . . . , n and consequently, recalling that h = (nBM(K +M))1/2

(3.41)
∣∣y′ − yDm∣∣ ≤ nBM (M +K) |x− x′| = h2|x− x′|.

Moreover we have
m∑
j=2

|ψ(Dj−1)− ψ(Dj)| =
m∑
j=2

∣∣∣∣∣
∫ xj

x′j

wj(γ
j
Dj−1

(t)) dt

∣∣∣∣∣ ≤ N |x− x′|

Then for x′−x sufficiently small (and precisely when N |x−x′|1/2 ≤ |x−x′|1/4 ≤ δ) by (3.40)
and (3.41) we get

|ψ(B)− ψ(Dm)| ≥ |ψ(B)− ψ(A′)| −
m∑
l=2

|ψ(Dl−1)− ψ(Dl)|

>

(
N |A− A′|1/2 +

3h

BM
δ −N |x− x′|1/2

)
|x− x′|1/2

≥ 3h

BM
δ|x− x′|1/2

≥ 3

BM
δ|y′ − yDm|1/2

so that we are in the first case again (see (3.34) with the couple B = (x, y′), Dm = (x, yDj)
instead A,B respectively) which we have seen is not possible. Hence (3.39) holds.

Step 4. Using Step 2. and Step 3. we deduce that

|ψ(A)− ψ(A′)|
|A− A′|1/2

≤ |ψ(A)− ψ(B)|
|y − y′|1/2

+
|ψ(B)− ψ(A′)|
|x− x′|1/2

≤ 3 (1 + h)

BM
δ(|A− A′|) +N |A− A′|1/2

= α(|A− A′|)
for all A = (x, y), A′ = (x′, y′), B = (x, y′) ∈ I. Then according to (3.43) and (3.31) we have
that limr→0 α(r) = 0 and we are able to control α with only K,M,N,BM and β.



3.2 1-Codimensional Intrinsic graphs 138

3.2.3 The case n = 1

Let G be a group of class B as above but we also assume that the vertical layer is 1 dimen-
sional, i.e. n = 1. We prove a Hölder regularity result for broad* solutions of the system
Dψψ = w in ω.

Theorem 3.2.9. Let G = Rm × R be a group of class B with a one dimensional vertical
layer. Let W and V be complementary subgroups with V horizontal and one dimensional.
Let ω be an open subset of W, ψ : ω → R and w : ω → Rm−1 be continuous functions. We
assume that ψ is a broad* solution of the system Dψψ = w in ω.

Then, for ω′ b ω′′ b ω there exists α : (0,+∞) → [0,+∞) depending only on ω′′,
‖ψ‖L∞(ω′′), ‖Dψψ‖L∞(ω′′), on the matrix B(1) and on the modulus of continuity of w on ω′′

such that limr→0 α(r) = 0 and

(3.42) sup

{
|ψ(A)− ψ(A′)|
|A− A′|1/2

: A,A′ ∈ ω′, 0 < |A− A′| ≤ r

}
≤ α(r)

Proof. We are going to show that for each point of ω′ there are sufficiently small rectangular
neighborhoods I b I ′ b ω and a function α : (0,+∞)→ [0,+∞) such that limr→0 α(r) = 0
and

(3.43) sup

{
|ψ(A)− ψ(A′)|
|A− A′|1/2

: A,A′ ∈ I ′, 0 < |A− A′| ≤ r

}
≤ α(r).

By a standard covering argument the general statement follows.
Fix A0 = (x0, y0) ∈ ω′. Then since ψ is a broad* solution of Dψψ = w in ω, there exist

0 < r2 < r1 and a family of exponential maps at A0

expA0
(·Dφ

j )(·) : [−r2, r2]× Ir2(A0)→ Ir1(A0)

for j = 2, . . . ,m, such that the conditions of the Definition 3.2.2 are satisfied.
Denote

I := Ir2(A0), I ′ := Ir1(A0), K := sup
A=(x,y)∈I′

|x|, M := ‖ψ‖L∞(I′), N := ‖w‖L∞(I′)

and BM = max{b(1)
il : i, l = 1, . . . ,m}. Let also β be the modulus of continuity of w on I ′.

We are going to prove (3.42) with α defined as

(3.44) α(r) :=
3 (1 + h)

BM
δ(r) +Nr1/2

where h := (BM(K +M))1/2 and

δ(r) := max{r1/4; (BMβ(Er1/4))1/2}.
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Here E > 0 is a constant such that |y−y′|+BM(K+2M)|y−y′|1/4 ≤ E|y−y′|1/4. Henceforth

we denote bil = b
(1)
il .

Step 1. Let A = (x, y) ∈ I and let us denote by γjA(t) := expA0
(tDψ

j )(A) if t ∈ [−δ2, δ2].
More precisely

γjA(t) = (x2, . . . , xj−1, xj + t, xj+1, . . . , xm, y(t)), where

y(t) = y +
1

2
t

m∑
i=2

xibji + bj1

∫ t

0

ψ(γjA(r)) dr

and consequently t 7→ y(t) is a solution of the Cauchy problem:

d2

dt2
y(t) = d

dt

[
1
2

∑m
i=2 xibji + bj1ψ(γjA(t))

]
= bj1wj(γ

j
A(t)), t ∈ [−δ2, δ2]

y(0) = y,

d
dt
y(0) = 1

2

∑m
i=2 xibji + bj1ψ(A)

Moreover observe that
expA0

(·Dψ
j )(·) : [−r2, r2]× I → I ′

provided

(3.45) r2 <
r1

2 + 1
2
KBM +MBM

.

Indeed if (t, A) ∈ [−r2, r2]× I then by definition of broad* solution

γjA(t)− A0 = (x2 − (x0)2, . . . , xj + t− (x0)j, . . . , xm − (x0)m, y(t)− y0) ∈ I ′

provided (3.45) follows.
Step 2. Assume A,B ∈ I with A = (x, y), B = (x, y′) and A 6= B. We prove that

(3.46)
|ψ(A)− ψ(B)|
|y − y′|1/2

≤ 3

BM
δ

where δ = δ(|y − y′|). Suppose on the contrary that (3.46) is not true, i.e.

|ψ(A)− ψ(B)|
|y − y′|1/2

>
3

BM
δ

Let bj1 6= 0 for some j = 2, . . . ,m and let γjA and γjB with

γjA(t) = (x2, . . . , xj−1, xj + t, xj+1, . . . , xm, y(t))
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and
γjB(t) = (x2, . . . , xj−1, xj + t, xj+1, . . . , xm, y

′(t)).

As in Step 2 of Theorem 3.2.8, if y > y′ (for the other case it is sufficient to exchange the
roles of A and B), we obtain the existence of t ∈ [−δ2, δ2] such that

y(t)− y′(t) < 0.

More specifically, if bj1(φ(A)−φ(B)) > 0 we have t := − (y−y′)1/2
δ

and t := (y−y′)1/2
δ

otherwise.
On the other hand in both cases we conclude that

(3.47) −|bj1||ψ(A)− ψ(B)| ≤ −3δ(y − y′)1/2.

Now if t = (y−y′)1/2
δ

let

t∗ := sup{ t ∈ [0, δ2] : y(t)− y′(t) > 0}

where the set { t ∈ [0, δ2] : y(t)− y′(t) > 0} is not empty because y(0)− y′(0) = y − y′ > 0.
Moreover 0 < t∗ < t < δ2 and

(3.48) y(t∗) = y′(t∗)

and so
(3.49)
ψ(x2, . . . , xj−1, xj + t∗, xj+1, . . . , xm, y(t∗)) = ψ(x2, . . . , xj−1, xj + t∗, xj+1, . . . , xm, y

′(t∗)).

On the other hand if t = − (y−y′)1/2
δ

we can assume t∗ := inf{ t ∈ [−δ2, 0] : y(t)− y′(t) > 0}.
Then t∗ satisfies (3.48) and (3.49) and −δ2 < t < t∗ < 0.

Let us prove now that
ψ(γjA(t∗)) 6= ψ(γjB(t∗))

and so by (3.49) we have a contradiction.
First we notice that

|γjA(r)− γjB(r)| ≤ |γjA(0)− γjB(0)|+ |r|(max
r
|ẏ(r)|+ max

r
|ẏ′(r)|)

≤ |y − y′|+ |t∗|BM(K + 2M)

for all |r| ≤ |t∗|. Now if bj1(ψ(A) − ψ(B)) < 0 using the last inequality, (3.47) and the
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definition of β we deduce

bj1
(
ψ(γjA(t∗))− ψ(γjB(t∗))

)
= bj1(ψ(A)− ψ(B)) + bj1

∫ t∗

0

(
wj(γ

j
A(r))− wj(γjB(r))

)
dr

≤ −3(y − y′)1/2δ + |bj1||t∗| β
(
|γjA(r)− γjB(r)|

)
≤ −3(y − y′)1/2δ + |bj1||t∗|β (|y − y′|+ BM(K + 2M)|t∗|)

≤ −3(y − y′)1/2δ + BM |t| β
(
|y − y′|+ BM(K + 2M)

|y − y′|1/2

δ

)
≤ −3(y − y′)1/2δ + BM(y − y′)1/2δ

β
(
E(y − y′)1/4

)
δ2

≤ (−3 + 1)(y − y′)1/2δ < 0,

i.e. ψ(γjA(t∗)) 6= ψ(γjB(t∗)). In a similar way, if bj1(φ(A)− φ(B)) < 0 we obtain the contra-
diction. Therefore (3.46) follows.

Step 3. Now let A,A′, B ∈ I with A = (x, y), A′ = (x′, y′) and B = (x, y′). We want to
prove that

(3.50)
|ψ(B)− ψ(A′)|
|x− x′|1/2

≤ N |A− A′|1/2 +
3h

BM
δ(|A− A′|).

To show this inequality we follow the arguments in Step 3 of Theorem 3.2.8. Observe
that, differently from Step 3 of Theorem 3.2.8, here ψ is not a C1 function, hence we cannot
integrate along the vector field Dψ

j , i.e. we cannot define intermediate points Bj := γjBj−1
(xj)

as in Theorem 3.2.8. We use the properties of the exponential maps, defining

Bj := expA0

(
(xj − x′j)D

ψ
j

)
(Bj−1) for j = 2, . . . ,m

with B1 := A′.
Then using (3.46) and (3.50) we conclude that

|ψ(A)− ψ(A′)|
|A− A′|1/2

≤ |ψ(A)− ψ(B)|
|y − y′|1/2

+
|ψ(B)− ψ(A′)|
|x− x′|1/2

≤ 3 (1 + h)

BM
δ(|A− A′|) +N |A− A′|1/2

= α(|A− A′|)

for all A = (x, y), A′ = (x′, y′), B = (x, y′) ∈ I ′. Hence according to (3.42) and (3.44) we
have that limr→0 α(r) = 0 and we are able to control α with only K,M,N,BM and β.
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This last theorem shows that the assumption ψ ∈ h
1/2
loc (ω) in Theorem 3.2.7 can be

omitted if we are inside a group of class B with one dimensional vertical layer.
See also Theorems 1.2 of [15] when G is an Heisenberg group.

Corollary 3.2.10. Under the same assumptions of Theorem 3.2.7, if the vertical layer is 1
dimensional then the following conditions are equivalent:

1. S := graph (φ) is a G-regular hypersurface.

2. φ is u.i.d. in ω.

3. there exists w ∈ C0(ω,Rm−1) such that, in distributional sense,

Dψψ = w in ω

and there is a family (ψε)ε>0 ⊂ C1(ω) such that, for any open ω′ b ω, we get

ψε → ψ and Dψεψε → w uniformly on ω′, as ε→ 0.

4. ψ is a broad* solution of Dψψ = w in ω.
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[55] L.Hörmander, Hypoelliptic second-order differential equations, Acta Math. 121, (1967),
147-171.

[56] R.Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math.
Soc. 3, (1980), 821-843.

[57] D.Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition,
Duke Math. Jour. 53, (1986), 503-523.

[58] A.Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composi-
tion of quadratic forms, Trans. Amer. Math. Soc. 258, (1980), 147-153.

[59] B.Kirchheim, F.Serra Cassano, Rectifiability and parametrization of intrinsic regular
surfaces in the Heisenberg group, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) III, (2004),
871-896.
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