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1. Regularity of subFinsler distances

SubRiemannian geometry, as part of Geometry and Analysis on Metric
Spaces, has several historical roots. Mostow’s Rigidity Theorem ignited the
interest in quasi-conformal mappings on metric spaces, [31, 32, 17, 35, 10,
20, 21, 39]. The characterization of groups with polynomial growth posed a
bridge between Abstract Algebra and Metric Geometry on Lie groups, [42, 6,
19, 18, 34, 7, 8]. The study of hypoelliptic operators found deep connections
with the geometry of subRiemannian metrics, [22, 41, 38, 33]. Finally, the
point of view of Control Theory plays an important role in the study of the
regularity of such distances and their geodesics, [1, 3].

Unlike on Riemannian manifolds, in subRiemannian geometry topological
and Hausdorff dimensions may differ, the square of the distance function
may be not smooth near the diagonal and small spheres may be not smooth.
We are interested in such phenomena on subFinsler manifolds, the general
notion of Carnot-Carathéodory spaces.

Let G be a smooth manifold, ∆ ⊂ TG a bracket-generating subbundle
and ‖ · ‖ : ∆ → [0,+∞) a continuous function whose restriction to each
fiber of ∆ is a norm. An horizontal curve is an absolutely continuous curve
γ : [0, 1] → G such that γ′(t) ∈ ∆ for almost all t ∈ [0, 1]. The length of
a horizontal curve γ is `(γ) :=

∫ 1
0 ‖γ′(t)‖ dt. The subFinsler distance, or

Carnot-Carathéodory distance, is defined for p, q ∈ G as

dCC(p, q) := inf {`(γ) : γ is a horizontal curve from p to q} .
If the norm ‖ · ‖ is induced by a smooth scalar product on G, then dCC is
said to be a subRiemannian distance.

The space of all Lipschitz curves γ : [0, 1]→ (G, dCC) has a natural struc-
ture of Banach manifold and the End-point map is the smooth map γ 7→ γ(1).

5



6 INTRODUCTION

A curve is regular, respectively singular, if it is a regular, respectively singu-
lar, point of the End-point map. SubRiemannian regular length-minimizers
behave like Riemannian geodesics. For instance, they are smooth. Moreover,
if p ∈ M and Σ ⊂ M is the set of points q ∈ M \ {o} such that there is
a unique length minimizer from p to q and such curve is regular, then Σ is
open dense in M and q 7→ dCC(p, q) is smooth on Σ, see [2]. We extended
the subRiemannian result to a very general class of subFinsler manifolds.

Theorem 1.1 (with Le Donne, [A]). Let (G, dCC) be a subFinsler manifold
of constant-type norm. Fix p ∈ G and let q ∈ G be such that all the length-
minimizing curves from p to q are regular. Then there are a neighborhood U
of q and a Riemannian distance ρ on U such that the map x 7→ dCC(p, x) is
Lipschitz on U with respect to ρ.

A subFinsler structure (G,∆, ‖ · ‖) is of constant-type norm if there is
a normed vector space (E, | · |) and a bundle morphism f : G × E → TG
such that Im(f) = ∆ and for every v ∈ ∆p we have ‖v‖ = inf{|e| : e ∈
E, f(p, e) = v}.

In the subRiemannian case it is possible to prove a very strong result
for spheres as well. Indeed, if all length minimizers are regular, then for
almost every r > 0 the sphere centered at p and of radius r in (G, dCC)
is a Lipschitz hypersurface, see [36]. By Lipschitz hypersurface we mean
a topological hypersurface S ⊂ G such that for every x ∈ S there is a
neighborhood U of x so that S ∩ U is the graph of a Lipschitz function in
some coordinates on U .

Such a property is a consequence of the semi-concavity of the subRieman-
nian distance in absence of singular geodesics. However, general Carnot-
Carathéodory distances are not quasi-concave, as simple examples of norm
distances on R2 show. Using the homogeneity of the distance, we proved
Lipschitz regularity for spheres in Carnot groups. A subFinsler manifold
(G, dCC) is a Carnot group if G is a simply connected Lie group whose Lie
algebra g admits a stratification of step s (i.e., a decomposition g =

⊕s
i=1 Vi

with [V1, Vi] = Vi+1 for i ∈ {1, . . . , s − 1} and [V1, Vs] = {0}), ∆ is the left-
invariant subbundle induced by the first stratum V1 and ‖·‖ is left-invariant.
It follows that dCC is left-invariant on G.

Theorem 1.2 (with Le Donne, [A]). Let (G, dCC) be a Carnot group without
non-constant singular length-minimizers. Fix a left-invariant Riemannian
metric ρ on G and an open neighborhood U of 0. Then

(1) the step of G is 1 or 2;
(2) the function x 7→ dCC(0, x) is Lipschitz with respect to ρ on G \ U ;
(3) the function x 7→ dCC(0, x)2 is Lipschitz with respect to ρ on U ;
(4) spheres are Lipschitz hypersurfaces.

In this setting, we proved that on Carnot groups the absence of singular
geodesics is equivalent to other three well-known properties. See Appendix
in [A].
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2. Self-similar Lie groups

In the study of Carnot groups, many propositions are proven thanks to
the interaction between dilations and distance. Moreover, metric spaces
endowed with dilations may arise as tangent cones or asymptotic cones. For
these reasons we started to investigate self-similar Lie groups.

A self-similar Lie group is defined as a metric Lie group (G, d) that admits
a metric dilation that is an automorphism. More precisely, (G, d) is a self-
similar Lie group if G is a Lie group, d a left-invariant distance inducing the
manifold topology and there are an automorphism δ : G → G and a scalar
λ > 1 such that d(δp, δq) = λd(p, q) for all p, q ∈ G.

In the paper [C], we gave a metric characterization of self-similar Lie
groups. See also [26] for a similar characterization of Carnot groups.

Theorem 2.1 (with Cowling, Kivioja, Le Donne, Ottazzi, [C]). The self-
similar Lie groups are the only metric spaces that are

(1) locally compact,
(2) connected,
(3) isometrically homogeneous,
(4) and admit a metric dilation.

Self-similar Lie groups have a very rich structure, as we now recall. Fol-
lowing [27], a graduable Lie group is a simply connected Lie group G whose
Lie algebra g admits a grading, i.e., a decomposition g =

⊕
i∈(0,+∞) Vi such

that for all i, j > 0 it holds [Vi, Vj ] ⊂ Vi+j . Graduable Lie groups are nilpo-
tent and in particular G is diffeomorphic to g via the exponential map. If the
grading is fixed, we say that G is a graded Lie group. Stratified Lie groups
are examples of graded Lie groups. Thanks to [40], self-similar Lie groups
are graduable Lie groups with a grading induced by the metric dilation. A
graded Lie group is endowed with standard dilations defined as the Lie group
automorphisms δt : G→ G such that (δt)∗ : g→ g is the map (δt)∗(v) = tiv,
for all v ∈ Vi and t > 0.

Together with my advisor, we extended some of the results obtained for
Carnot groups to self-similar Lie groups.

Theorem 2.2 (with Le Donne, [A]). Let G be a graded group. For p ∈ G,
define δ̄(p) := d

dt |t=1δtp ∈ TpG, where δt : G→ G are the standard dilations.
Let d be a left-invariant distance on G such that d(δtq, δtp) = td(q, p) for all
p, q ∈ G and all t > 0. Let p ∈ G be such that

(1) dLp(V1) + dRp(V1) + span{δ̄(p)} = TpG.

Then there is a neighborhood U of p such that x 7→ d(0, x) is Lipschitz on U
and the sphere of radius d(0, p) is a Lipschitz hypersurface in U .

In the case G is a stratified group, condition (1) implies that all horizontal
curves from 0 to p are regular. Indeed, the left-hand side of (1) is contained
in the image of the differential of the End-point map, because δ̄ is a contact
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vector field, see [28]. In this respect, Theorem 2.2 is a generalization of
Theorem 1.2.

3. From homogeneous metric spaces to Lie groups

The metric characterization for self-similar Lie groups of Theorem 2.1 is
part of a broader effort to characterize nilpotent metric Lie groups. If two
nilpotent metric Lie groups are isometric, then they are isomorphic, see [24].
It still remains unknown if a similar result can be obtained with less regular
maps, for example biLipschitz homeomorphisms or quasi-isometries. For
instance, it is known that quasi-isometric Carnot groups are isomorphic as
stratified Lie groups.

We recall that, given L,C > 0, a function f : M → N is a (L,C)-
quasi-isometry between metric spaces (M,d) and (N, d) if 1

Ld(x, y) − C ≤
d(f(x), f(y)) ≤ Ld(x, y) + C for all x, y ∈ M , and every point in N lies at
most at distance C from the image of f .

In the paper [C], we prove that solvable metric Lie groups represent, up
to quasi-isometry, a large class of isometrically homogeneous metric spaces.

Theorem 3.1. Let (M,d) be a metric space that is
(1) locally compact,
(2) connected,
(3) isometrically homogeneous.

Then it is (1,C)-quasi-isometric to a simply connected solvable metric Lie
group (H, dH), for some C > 0.

As a consequence, any connected metric Lie group is quasi-isometric to a
solvable metric Lie group.

4. Asymptotic estimates

Carnot groups have an important role as asymptotic cones of finitely gen-
erated groups with polynomial growth. Part of my research on Carnot groups
is motivated by the aim of better understanding the asymptotic behaviour
of such discrete groups.

If Γ is a group generated by a finite and symmetric set S containing the
neutral element e, we say that Γ has polynomial growth if it holds

(2) ∃Q,V > 0, ∀k ∈ N #(Sk) ≤ V kQ.
Here Sk = {s1 · · · sk : si ∈ S} is the ball of radius k and center e for
the left-invariant word distance ρS induced by S. The property of being of
polynomial growth and the exponent Q do not depend on the generating set.

A celebrated theorem in Geometric Group Theory (see [42, 6, 18]), states
that a finitely generated group has polynomial growth if and only if it has a
nilpotent subgroup with finite index. The key point is that the asymptotic
cone of such (Γ, ρS) is a subFinsler Carnot group. The asymptotic cone of
(Γ, ρS) is the limit in Gromov-Hausdorff sense of the pointed metric spaces
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(Γ, 1nρS , e), where e is the neutral element of Γ and n→∞. Similar results
can be obtained in the class of compactly generated groups, see [19, 7].

A further analysis gives also an interpretation for the optimal constants
V and Q, see [34]. We will describe such interpretation in a subclass of
finitely generated groups, see [8] and [7] for a general discussion. Let G be
a stratified Lie group and let S ⊂ G be a finite symmetric set generating a
cocompact subgroup Γ ⊂ G. Let ‖ · ‖∞ be the norm on the first stratum
V1 of g whose unit ball is the convex hull of the projection of exp−1(S) into
V1 along

⊕s
i=2 Vi. Let d∞ be the corresponding subFinsler distance on G.

Then (G, d∞) is a Carnot group and it is the asymptotic cone of (Γ, ρS). Let
Q be the Hausdorff dimension of (G, d∞), i.e., Q =

∑s
i=1 i dim(Vi), and V

the volume of the unit ball in (G, d∞) with respect to the Haar measure on
G such that the lattice Γ has co-volume 1. Then the property (2) improves
into

(3) #(Sk) = V kQ + o(kQ).

There are three kinds of open problems. First, one would like to have
a stronger estimate for the error term in (3); for instance, one could ask
whether o(kQ) can be replaced with O(kQ−1). Second, one would like to ap-
proximate, quantitatively, the word distance ρS with a subFinsler distance dS
on G; usually, one consider the Stoll distance dS , that is, the subFinsler dis-
tance on G whose norm is induced by the convex hull of S. Third, one would
like to estimate the difference |d1 − d2| between two asymptotically equiva-
lent left-invariant subFinsler distances on G; in particular, we are interested
in |dS − d∞|. In [8] it is shown that, if d1 and d2 are subFinsler distances on
a stratified group G of step s, then the following statements are equivalent:

(i) limp→∞
d1(0,p)
d2(0,p)

= 1, i.e., d1 and d2 are asymptotically equivalent;

(ii) |d1(0, p)− d2(0, p)| = O(d1(0, p)
1
s ).

This equivalence is not always sharp. However, we obtained in [B] the fol-
lowing stronger estimate in the Heiseneberg group.

Theorem 4.1 (with Le Donne, Sambusetti, [B]). Let d1 and d2 be two left-
invariant subRiemannian or Riemannian distances on the first Heisenberg
group H1. Then, the following are equivalent:

(i) limp→∞
d1(0,p)
d2(0,p)

= 1;
(ii) ∃C > 0, ∀p ∈ H1 |d1(0, p)− d2(0, p)| ≤ C.

Moreover, if d1 is a left-invariant Riemannian distance on H1, then there
exists a unique left-invariant subRiemannian (not Riemannian) distance d2
such that

(4) ∃C > 0, ∀p ∈ H1 |d1(0, p)− d2(0, p)| ≤
C

d2(0, p)
.

Notice that (4) expresses a really strong asymptotic property. Indeed, we
used it for the computation of the horoboundary of the Riemannian Heisen-
berg group.
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Corollary 4.2 (with Le Donne, Sambusetti, [B]). The horoboundary of the
Riemannian Heisenberg group coincides with the horoboundary of the sub-
Riemannian Heisenberg group.

For a precise description for the horoboundary of the subRiemannian
Heisenberg group see [25].

5. Minimal surfaces in the Heisenberg group

Geometric Measure Theory grew enormously in the 1950s and 1960s thanks
to De Giorgi, Federer and Fleming [11, 12, 29]. Since then, a great advance
has been seen, with generalizations to metric measure spaces [4, 5] and to
Carnot-Carathéodory spaces [9, 16, 13]. Notice that a purely metric ap-
proach to Carnot-Carathéodory spaces does not lead very far. For instance,
the subRiemannian first Heisenberg group H1 is a totally non-rectifiable
metric space. In particular, any topological surface in H1 has Hausdorff di-
mension larger or equal to three, whence the boundary of any open set is
never contained in the image of any Lipschitz map R2 → H1.

De Giorgi’s fundamental work hinges on two results: a structure theorem
for sets of finite perimeter, which describes the regularity of the boundary of
such sets; and a regularity theorem for perimeter minimizers, which improves
regularity of the boundary in the case of additional variational properties.

The first Heisenberg group H1 is the unique non-Abelian nilpotent simply
connected Lie group of dimension three. It is a stratified group of step 2, in
fact the smallest stratified group that is not Abelian. A smooth vector field
on H1 is called horizontal if it takes values in the left-invariant subbundle
generated by the first layer V1 of the stratification. If we fix a scalar product
〈·, ·〉 on the first layer V1 of the stratification, we can define a subRiemannian
distance and the intrinsic perimeter. The intrinsic perimeter of a measurable
set E ⊂ H1 in an open set Ω is defined as

P (E; Ω) := sup

∫

E
divV dµ,

where the supremum is taken among all horizontal vector fields V ∈ Vec(H1)
with spt(V ) ⊂⊂ Ω and 〈V, V 〉 ≤ 1, see [13, 14].

A structure theorem for the intrinsic perimeter in the Heisenberg group
has been proven in [14]. Namely, the reduced boundary ∂∗E of E, i.e., the
support of the Radon measure induced by Ω 7→ P (E; Ω), is the countable
union of compact subsets of C 1

H-hypersurfaces, up to a set of S 3
CC-measure

zero. Here S 3
CC is the spherical Hausdorff measure given by the Carnot-

Carathéodory metric on H1. A C 1
H-hypersurface in H1 is locally the zero level

of a function H1 → R with continuous derivatives along horizontal vector
fields. C 1

H-hypersurfaces may be fractals from the Euclidean point of view: in
[23] it has been shown the existence of a C 1

H-hypersurface that has Hausdorff
dimension larger that 2 with respect to any Riemannian metric on H1.
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A measurable set E is a locally perimeter minimizer if for every bounded
open set Ω ⊂ H1 and every measurable set F ⊂ H1 with symmetric difference
compactly contained in Ω,

we have
P (E; Ω) ≤ P (F ; Ω).

In this case the reduced boundary ∂∗E of E is called minimal surface. There
are no strong results of regularity for minimal surfaces in H1. In fact, there
are examples of non-smooth minimal surfaces, see [37, 30].

A C 1
H-hypersurface is locally the intrinsic graph of a C 1

W-function. The
notion of C 1

W-function is a little involved, but very well suited for the non-
commutative geometry of the Heisenberg group. Let δt be the standard
dilations on H1 induced by the stratification. Let W be a 2-dimensional
normal δt-homogeneous subgroup of H1 and V a 1-dimensional subgroup
whose Lie algebra is a subspace of V1 such that W ∩ V = {e}. Then H1 =
WoV, i.e., for every p ∈ H1 there are unique pW ∈W and pV ∈ V such that
p = pWpV. If f : W→ V is a function, then the intrinsic graph of f is

Γf := {pf(p) : p ∈W} ⊂ H1.

Left-translations and dilations of intrinsic graphs are again intrinsic graphs.
A function dfp : W→ V is the intrinsic differential of f at p ∈W if

Γdfp = lim
ε→0

δε−1

(
(pf(p))−1Γf

)
,

where the limit is intended as a Kuratowski limit of sets. A function f :
W→ V is said to be of class C 1

W if for every p ∈W there is a linear intrinsic
differential dfp of f at p and the map p 7→ dfp is continuous.

If we adapt the Bernstein’s Problem to the language of Geometric Measure
Theory in H1, we obtain the following problem: If f ∈ C 1

W is such that Γf
is a minimal surface, is then Γf a vertical plane? This question has been
already answered positively in the case f ∈ C 1(R2), see [15], and negatively
if f is not assumed to be in C 1

W, see [30].
The classical approach to Bernstein’s Problem would involve a variational

method along a one-parameter family of diffeomorphisms. However, there
are two issues. On the one side, the only diffeomorphisms that keep finite
the intrinsic perimeter are of contact type, see [D] for a proof. On the other
side, the following result shows that diffeomorphisms of contact type are too
poor.

Theorem 5.1 ([D]). There are functions f ∈ C 1
W whose intrinsic graph Γf is

not a minimal surface, but it is a locally area minimizer along all variations
by diffeomorphisms of contact type.

The main difficulty arises from the non-linear behaviour of the opera-
tor f 7→ dfp. In fact, the differential dfp is completely determined by a
number, so it is equivalent to a function ∇ff : W → R, the intrinsic gra-
dient of f , that is represented by ∇ff = ∂ηf + f∂τf in a suitable choice
of coordinates (η, τ) for W.
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The non-linearity that appears in the intrinsic differential brings to a new
phenomenon: the space of all functions of class C 1

W is not a vector space.
Indeed, there is a C 1

W-function f such that Γf+1 cannot be the boundary
of a set of locally finite intrinsic perimeter (e.g., consider the example in
[23]). In other words, f + 1 is not even of bounded variation. This leads to
the question whether C 1

W is a Banach manifold. In particular, we could ask
if the topological space C 1

W is topologically homogeneous. More precisely,
given f, g ∈ C 1

W, we could seek a continuous transformation Φ : C 1
W → C 1

W
such that Φ(f) = g.
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Abstract. We study left-invariant distances on Lie groups for which
there exists a one-parameter family of homothetic automorphisms. The
main examples are Carnot groups, in particular the Heisenberg group
with the standard dilations. We are interested in criteria implying that,
locally and away from the diagonal, the distance is Euclidean Lipschitz
and, consequently, that the metric spheres are boundaries of Lipschitz
domains in the Euclidean sense. In the first part of the paper, we con-
sider geodesic distances. In this case, we actually prove the regularity
of the distance in the more general context of sub-Finsler manifolds
with no abnormal geodesics. Secondly, for general groups we identify
an algebraic criterium in terms of the dilating automorphisms, which
for example makes us conclude the regularity of every homogeneous dis-
tance on the Heisenberg group. In such a group, we analyze in more
details the geometry of metric spheres. We also provide examples of
homogeneous groups where spheres present cusps.
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1. Introduction

The study of the asymptotic geometry of groups lead us to investigate
spheres in homogeneous groups, examples of which are asymptotic cones of
finitely generated nilpotent groups. A homogeneous group is a Lie group
G endowed with a family of Lie group automorphisms {δλ}λ>0 and a left-
invariant distance d for which each δλ multiplies the distance by λ, see
Section 2.2. An algebraic characterization of these groups is known by
[29]. In fact, the Lie algebra g of G admits a grading, i.e., a decomposi-
tion g =

⊕
i≥1 Vi such that [Vi, Vj ] ⊂ Vi+j . For simplicity, we assume that

the dilations are the ones induced by the grading. Namely, the dilation of
factor λ relative to the grading is the one such that (δλ)∗(v) = λiv for all
v ∈ Vi. We denote by 0 the neutral element of G and by Sd the unit sphere
at 0 for a distance d on G, i.e., Sd := {p ∈ G : d(0, p) = 1}.

In this paper we want to exclude cusps in spheres since their presence in
the asymptotic cone of a finitely generated nilpotent group may give a slower
rate of convergence in the blow down, see [8]. We find criteria implying that
the metric spheres are boundaries of Lipschitz domains and in fact that the
distance function from a point is a locally Lipschitz function with respect
to a Riemannian metric.

First, we address the case where the distance d is a length distance.
Thanks to a characterization of Carnot groups, see [18], the group G is in
this case a stratified group and d is a sub-Finsler distance. Being a stratified
group means that the grading of g is such that the first layer V1 generates g.
Being a sub-Finsler distance means that there are a left-invariant subbundle
∆ ⊂ TG and a left-invariant norm ‖·‖ on ∆ such that the length induced by

d of an absolutely continuous curve γ : [0, 1] → G is equal to
∫ 1
0 ‖γ′(t)‖ dt,

where ‖γ′(t)‖ = +∞ if γ′(t) /∈ ∆. The left-invariant subbundle ∆ is in fact
the one generated by V1.

In the sub-Finsler case, an obstruction to Lipschitz regularity of the sphere
comes from the presence of length-minimizing curves (also called geodesics)
that are not regular, in the sense that the first variation parallel to the
subbundle ∆ does not have maximal rank, see Definition 2.6.

Theorem 1.1. Let G be a stratified group endowed with a sub-Finsler metric
d. Let d0 : G → [0,+∞), p 7→ d(0, p). Let p ∈ G be such that all geodesics
from 0 to p are regular. Then for any Riemannian metric ρ on G the function
d0 is Lipschitz with respect to ρ in some neighborhood of p.

We will actually state and prove Theorem 1.1 in the more general setting
of sub-Finsler manifolds of constant-type norm, see Section 2.1.
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In case of homogeneity, the regularity of the distance implies also the
regularity of the spheres. Hence, using Theorem 1.1 we easily get the second
result for sub-Finsler homogeneous groups.

Theorem 1.2. Let G be a stratified group endowed with a sub-Finsler metric
d. Let p ∈ Sd be such that all geodesics from 0 to p are regular. Then, in
smooth coordinates, the set Sd is a Lipschitz graph in some neighborhood of
p. In particular, if all non-constant geodesics are regular, then metric balls
are Lipschitz domains.

Notice that a ball may be a Lipschitz domain even if the distance from a
point is not Lipschitz (we give an example in Remark 5.5). In Section 5 we
also present examples of sub-Riemannian and sub-Finsler distances whose
balls have a cusp.

At a second stage, we drop the hypothesis of d being a length distance
and we present a result similar to the previous Theorem 1.2 in the context
of homogeneous groups. Hereafter we denote by Lp and Rp the left and the

right translations on G, respectively, and by δ̄(p) the vector d
dtδt(p)

∣∣
t=1
∈

TpG, where {δt}t>0 are the dilations relative to a grading.

Theorem 1.3. Let (G, d) be a homogeneous group with dilations relative to
a grading, see Definition 2.12. Assume p ∈ Sd is such that

(1.1) dLp(V1) + dRp(V1) + span{δ̄(p)} = TpG.

Then, in some neighborhood of p we have that the sphere Sd is a Lipschitz
graph and the distance d0 from the identity is Lipschitz with respect to any
Riemannian metric ρ.

The similarity between Theorem 1.2 and Theorem 1.3 consists in the fact
that, if d is a sub-Finsler distance, then condition (1.1) implies that all
geodesics from 0 to p are regular, see Remark 4.5.

The equality (1.1) or the absence of non-regular geodesics are actually
quite strong conditions. However, in general we can give an upper bound for
the Hausdorff dimension of spheres. In fact, if d is a homogeneous distance
on a graded group of maximal degree s, then

(1.2) dimρ
H(G)− 1 ≤ dimρ

H(Sd) ≤ dimρ
H(G)− 1

s
,

where dimρ
H is the Hausdorff dimension with respect to some (therefore any)

Riemannian metric ρ. We show with Proposition 5.1 that this estimate is
sharp.

In the last part of the paper, we analyze in more details an important
specific example: the Heisenberg group. In this graded group we consider all
possible homogeneous distances and prove that in exponential coordinates

(i) the unit ball is a star-shaped Lipschitz domain (Proposition 6.1);
(ii) the unit sphere is a locally Lipschitz graph with respect to the di-

rection of the center of the group (Proposition 6.2).
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We also give a method to construct homogeneous distances in the Heisen-
berg group with arbitrary Lipschitz regularity of the sphere. Namely, the
graph of each Lipschitz function defined on the unit disk, up to adding to it
a constant, is the sphere of some homogeneous distance, see Proposition 6.3.
The investigation of this class of examples is meaningful in connection to
Besicovitch’s covering property as studied in [21] and [22].

The paper is organized as follows. In section 2 we will present all prelim-
inary notions needed in the paper. We introduce sub-Finsler manifolds of
constant-type norm, graded and homogeneous groups and Carnot groups.
Section 3 is devoted to the proof of Theorem 1.1; first in the setting of
sub-Finsler manifolds, see Theorem 3.1 proved in Section 3.4, then with a
more specific result for Carnot groups, see Proposition 3.3. In Section 4 we
see metric spheres as graphs over smooth spheres. Hence, we show Theo-
rem 1.2, the inequalities (1.2), and Theorem 1.3. In Section 5 we present six
examples: three different grading of R2, the Heisenberg group, a sub-Finsler
sphere with a cusp and a sub-Riemannian sphere with a cusp. In Section 6
we prove stronger properties for spheres of homogeneous distances on the
Heisenberg group.

2. Preliminaries

2.1. Sub-Finsler structures. Let M be a manifold of dimension n. We
will write TM for the tangent bundle and Vec(M) for the space of smooth
vector fields on M .

Definition 2.1 (Sub-Finsler structure). A sub-Finsler structure (of constant-
type norm) of rank r on a manifold M is a triple (E, ‖ · ‖, f), where (E, ‖ · ‖)
is a normed vector space of dimension r and f : M × E→ TM is a smooth
bundle morphism with f({p} × E) ⊂ TpM , for all p ∈M .

We added the specification “of constant-type norm” because the norm
‖ · ‖ defined on the fibers of M × E does not depend on the base point of
each fiber.

Definition 2.2 (Horizontal curve). A curve γ : [0, 1] → M is a horizontal
curve if it is absolutely continuous and there is u : [0, 1] → E measurable,
which is called a control of γ, such that

γ′(t) = f(γ(t), u(t)) for a.e. t ∈ [0, 1].

In this case γ is called integral curve of u and we write γu.

Definition 2.3 (Space of controls). The space of L∞-controls is defined as1

L∞([0, 1];E) :=

{
u : [0, 1]→ E measurable, ess sup

t∈[0,1]
‖u(t)‖ <∞

}
.

This is a Banach space with norm ‖u‖L∞ := ess supt∈[0,1] ‖u(t)‖.

1 Among the three norms L1, L2 and L∞ for controls, we chose the latter because the
unit ball in L1([0, 1];E) is not weakly compact and the L2-space is not a Hilbert space in
our context.
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Thanks to known results for ordinary differential equations, see [27], given
a control u ∈ L∞([0, 1];E) and a point p ∈M there is a unique solution γu,p
to the Cauchy problem{

γu,p(0) = p

γ′u,p(t) = f(γu,p(t), u(t)) for a.e. t in a neighborhood of 0.

Remark 2.4. We will always assume that every u ∈ L∞([0, 1];E) and every
p ∈M the curve γu,p is defined on the interval [0, 1]. This happens in many
cases, for example for left-invariant sub-Finsler structures on Lie groups, in
particular in Carnot groups.

Definition 2.5 (End-point map). Fix o ∈ M . Define the End-point map
with base point o, Endo : L∞([0, 1];E)→M , as

Endo(u) = γu,o(1).

By standard result of ODE the map Endo is of class C 1, see [27].

Definition 2.6 (Regular curves). Given o ∈M , a control u ∈ L∞([0, 1];E)
is said to be regular if it is a regular point of Endo, i.e., if dEndo(u) :
L∞([0, 1];E) → TEndo(u)M is surjective. A singular control is a control that
is not regular.

Definition 2.7 (Sub-Finsler distance). The sub-Finsler distance, also called
Carnot-Carathéodory distance, between two points p, q ∈M is

d(p, q) := inf

{∫ 1

0
‖u(t)‖ dt : u ∈ L∞([0, 1];E) with Endp(u) = q

}
.

Clearly (M,d) is a metric space, even though it might happen d(p, q) =∞.
Let `d(γ) be the length of a curve γ with respect to d, see [4]. It can be proven
that a curve γ : [0, 1]→ (M,d) is Lipschitz if and only if it is horizontal and
it admits a control in L∞([0, 1];E). Moreover, if γ is Lipschitz, then

`d(γ) = inf

{∫ 1

0
‖u(t)‖dt : u ∈ L∞([0, 1];E) control of γ

}
.

We will use the term geodesic as a synonym of length-minimizer.
The distance can be expressed by using the L∞-norm, i.e., for every p, q ∈

M
d(p, q) = inf {‖u‖L∞ : u ∈ L∞([0, 1];E) with Endp(u) = q} .

Moreover, if u realizes the infimum above, then its integral curve γu starting
from p is a length-minimizing curve parametrized by constant velocity, i.e.,

d(p, q) = ‖u‖L∞ = `d(γu) = ‖u(t)‖, for a.e.t ∈ [0, 1].

Notice that the L∞-norm plays a similar role here as the L2-energy in sub-
Riemannian geometry.

Definition 2.8 (Bracket-generating condition). Let A be the Lie algebra
generated by the set

{p 7→ f(p,X(p)) with X : M → E smooth} ⊂ Vec(M).

We say that the sub-Finsler structure (E, ‖ · ‖, f) on M satisfies the bracket-
generating condition if for all p ∈M

{V (p) : V ∈ A } = TpM.
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As a consequence of the Orbit Theorem [17], we have the following basic
well-known fact.

Lemma 2.9. If (E, ‖ · ‖, f) satisfies the bracket-generating condition, then
the distance d induces the original topology of M and (M,d) is a locally
compact and locally geodesic length space.

By the Hopf-Rinow Theorem, see [9], the assumption in Remark 2.4 im-
plies that (M,d) is a complete, boundedly compact metric space.

2.2. Graded groups. All Lie algebras considered here are over R and
finite-dimensional.

Definition 2.10 (Graded group). A Lie algebra g is graded if it is equipped
with a grading, i.e., with a vector-space decomposition g =

⊕
i>0 Vi, where

i > 0 means i ∈ (0,∞), such that for all i, j > 0 it holds [Vi, Vj ] ⊂ Vi+j .
A graded Lie group is a simply connected Lie group G whose Lie algebra is
graded. The maximal degree of a graded group G is the maximum i such
that Vi 6= {0}.

Graded groups are nilpotent and the exponential map exp : g → G is a
global diffeomorphism. We will denote by 0 the neutral element of G and
identify g = T0G.

Definition 2.11 (Dilations). In a graded group for which the Lie algebra
has the grading g =

⊕
i>0 Vi, the dilations relative to the grading are the

group homomorphisms δλ : G→ G, for λ ∈ (0,∞), such that (δλ)∗(v) = λiv
for all v ∈ Vi.

In the definition above, φ∗ denotes the Lie algebra homomorphism asso-
ciated to a Lie group homomorphism φ, in particular, φ ◦ exp = exp ◦φ∗.
Since a graded group is simply connected, δλ is well defined. Notice that,
for any λ, µ > 0, δλ ◦ δµ = δλµ.

Definition 2.12 (Homogeneous distances). Let G be a graded group with
a dilations {δλ}λ>0, relative to the grading. We say that a distance d on
G is homogeneous if it is left-invariant, i.e., for every g, x, y ∈ G we have
d(gx, gy) = d(x, y), and one-homogeneous with respect to the dilations, i.e.,
for all λ > 0 and all x, y ∈ G we have d(δλx, δλy) = λd(x, y). If d is one such
a distance, then (G, d) is called homogeneous group (with dilations relative
to the grading).

Remark 2.13. A graded group admits a homogeneous distance if and only
if for i ∈ (0, 1) we have Vi = {0}, see [16].

Given a homogeneous distance d, the function p 7→ d0(p) := d(0, p) is
a homogeneous norm. Here with the term homogeneous norm we mean a
function N : G→ [0,+∞) such that for all p, q ∈ G and all λ > 0 it holds

(1) N(p) = 0 ⇔ p = 0;
(2) N(pq) ≤ N(p) +N(q);
(3) N(p−1) = N(p);
(4) N(δλp) = λN(p).
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In fact, homogeneous distances are in bijection with homogeneous norms on
G through the formula d(p, q) = N(p−1q).

Homogeneous distances induce the original topology of G, see [22]. More-
over, given two homogeneous distances d1, d2 on G, there is a constant C > 0
such that for all p, q ∈ G

(2.1)
1

C
d1(p, q) ≤ d2(p, q) ≤ Cd1(p, q).

Lemma 2.14. Let G be a graded group and 0 < k1 ≤ k2 such that Vi = {0}
for all i < k1 and all i > k2. Let d be a homogeneous distance and ρ a
left-invariant Riemannian metric on G. Then there are C, ε > 0 such that
for all p, q ∈ G with ρ(p, q) < ε it holds

(2.2)
1

C
ρ(p, q)

1
k1 ≤ d(p, q) ≤ Cρ(p, q)

1
k2 .

In particular, the homogeneous norm d0 is locally 1
k2

-Hölder.

Proof. We identify G = g via the exponential map. So, if p ∈ G, we denote
by pi the i-th component in the decomposition p =

∑
i pi with pi ∈ Vi. Fix

a norm | · | on g. For any pair (p, q) ∈ G×G define

η(p, q) := η(0, p−1q), where η(0, p) := max
i

(|pi|)
1
i .

The function η is a so-called quasi-distance, see [22]. In particular, η is
continuous, left-invariant and one-homogeneous with respect to the dilations
δλ. Therefore, if d is a homogeneous distance, then there is C > 0 such that

1

C
η(p, q) ≤ d(p, q) ≤ Cη(p, q).

So, we can prove (2.2) only for η.
Let C, ε > 0 be with Cε < 1 and such that, if ρ(0, p) < ε, then

(2.3)
1

C
ρ(0, p) ≤ max

i
|pi| ≤ Cρ(0, p).

Therefore, if ρ(p, q) < ε, then |(p−1q)i| ≤ Cρ(p, q) < 1 for all i and

(2.4) max
i
|(p−1q)i|

1
k1 ≤ max

i
(|(p−1q)i|)

1
i = η(p, q) ≤ max

i
|(p−1q)i|

1
k2 ,

thanks to the monotonicity of the function x 7→ ax for 0 < a < 1. The thesis
follows immediately from (2.3) and (2.4) combined. �

Next lemma gives a characterization of sets that are the unit ball of a
homogeneous distance. In this paper, we denote by int(B) the interior of a
subset B.

Lemma 2.15. Let G be a graded group with dilations δλ, λ > 0. A set
B ⊂ G is the unit ball with center 0 of a homogeneous distance on G if and
only if B is compact, 0 ∈ int(B), B = B−1 and

(2.5) ∀p, q ∈ B, ∀t ∈ [0, 1] δt(p)δ1−t(q) ∈ B.
The proof of the latter fact is straightforward and hence omitted. One

only needs to show that the function N(p) := inf{t ≥ 0 : δt−1p ∈ B} is a
homogeneous norm and B = {p : N(p) ≤ 1}.
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Definition 2.16 (Stratified group). A stratified group is a graded group G
such that its Lie algebra g is generated by the layer V1 of the grading of g.

Notice that in a stratified group G the maximal degree s of the grading
equals the nilpotency step of G and it holds g =

⊕s
i=1 Vi with [V1, Vi] = Vi+1

for all i ∈ {1, . . . , s}, with Vs+1 = {0}. We also remark that all stratifications

of a group G are isomorphic to each other, i.e., if g =
⊕s′

i=1Wi is a second
stratification, then there is a Lie group automorphism φ : G→ G such that
φ∗(Wi) = Vi for all i, see [19].

In a stratified group, the map f : G × V1 → TG, f(g, v) := dLg(v), is a
bundle morphism with f(g, v) ∈ TgG. So, if ‖·‖ is any norm on V1, the triple
(V1, ‖ · ‖, f) is a sub-Finsler structure on G. The stratified group G endowed
with the corresponding sub-Finsler distance d is called Carnot group. Such
a d is an example of a homogeneous distance on G.

Remark 2.17. As already stated, singular curves play a central role in our
analysis, because they disrupt the Lipschitz regularity of the distance func-
tion. We recall that every Carnot group of nilpotency step s ≥ 3 has singular
geodesics, see Appendix A. More precisely, there is X ∈ V1 such that the
curve t 7→ exp(tX) is a singular geodesic. In particular, if all non-constant
length-minimizing curves are regular, then the step of the group is necessar-
ily at most 2.

3. Regularity of sub-Finsler distances

We will prove in this section that sub-Finsler distances are Lipschitz when-
ever all length-minimizing curves are regular, see Theorem 3.1. Theorem 1.1
expresses this result for Carnot groups.

It is important to remind what is known in the sub-Riemannian case. A
sub-Riemannian distance is a sub-Finsler distance whose norm on the bundle
E is induced by a scalar product. Rifford proved in [26] that, if there are no
singular length-minimizers, for all o ∈ M , not only do is locally Lipschitz,
but also the spheres centered at o are Lipschitz hypersurfaces for almost
all radii. The key points of his proof are the tools of Clarke’s non-smooth
calculus (see [12]) and a version of Sard’s Lemma for the distance function
(see [25]). An exhaustive exposition of this topic can be found in [2].

In Rifford’s version of Sard’s Lemma, one uses the fact that the L2 norm
in the Hilbert space L2([0, 1];E) is smooth away from the origin. If E is
equipped with a generic norm, instead, the Lp norm on Lp([0, 1];E) with
1 ≤ p ≤ ∞ may be non-smooth, hence the proof does not work in the
sub-Finsler case.

The non-smoothness of the norm can be seen in another dissimilarity
between sub-Riemannian and sub-Finsler distances. Sub-Riemannian dis-
tances are proven to be locally semi-concave when there are no singular
length-minimizing curves. We remind that a function f : Rn → R is semi-
concave if for each p ∈ Rn there exists a C 2 function g : Rn → R such that
f ≤ g and f(p) = g(p), see [27]. Semi-concavity is a stronger property than
being Lipschitz. However, semi-concavity fails to hold in the sub-Finsler
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case. For example, the `1-distance d(0, (x, y)) := |x| + |y| on R2 is a sub-
Finsler distance that is not semi-concave along the coordinate axis, although
all curves are regular.2

We restrict our analysis to the Lipschitz regularity of the distance func-
tion, from which we deduce regularity properties of the spheres by means
of the homogeneity of Carnot groups. With this aim in view, the core of
the proof of Theorem 3.1 is the bound on the point-wise Lipschitz con-
stant (see (3.5) at page 14), which already appeared in the sub-Riemannian
context, see [1]. Our approach differs from the sub-Riemannian case for
the fact that the set of optimal curves joining two points on a sub-Finsler
manifold may not be compact in the W 1,∞ topology. As an example, con-
sider the set of all length-minimizers from (0, 0) to (0, 1) for the `∞-distance
d(0, (x, y)) := max{|x|, |y|} on R2.3 However, we are still able to obtain a
bound on the pointwise Lipschitz constant, i.e., to prove (3.5), by use of the
weak* topology on controls.

Theorem 3.1. Let (E, ‖ · ‖, f) be a sub-Finsler structure on M with sub-
Finsler distance d. Fix o and p in M . If all the length-minimizing curves
from o to p are regular, then for every Riemannian metric ρ on M there are
a neighborhood U of p and L > 0 such that

(3.1) ∀q1, q2 ∈ U do(q1)− do(q2) ≤ Lρ(q1, q2).

The proof is presented in Section 3.4.

Remark 3.2. Theorem 3.1 can be made more quantitative. Define

τ0 := inf {τ( dEndo(u)) : Endo(u) = p and ‖u‖L∞ = d(o, p)} ,
where, for any linear operator L, τ(L) the minimal stretching, which we will
recall in Definition 3.4. Then, for every L > 1

τ0
, there exists a neighborhood

U of p such that (3.1) holds. The hypothesis of regularity of all length-
minimizing curves from o to p is equivalent to τ0 > 0.

In the case of Carnot groups (of step 2, see Remark 2.17), we can obtain
the following more global result.

Proposition 3.3. Let (G, d) be a Carnot group without non-constant singu-
lar geodesics. Then for every left-invariant Riemannian metric ρ and every
neighborhood U of 0 the function d0 : x 7→ d(0, x) is Lipschitz on G \ U .
Moreover, the function d20 : x 7→ d(0, x)2 is Lipschitz in a neighborhood of 0.

Proof. Thanks to Theorem 3.1, one easily shows that there are L > 0 and
an open neighborhood Ω of the unit sphere {p : d(0, p) = 1} such that d0 is
L-Lipschitz on Ω.

2 We show that d : R2×R2 → R is not locally semi-concave at the point ((0, 0), (1, 0)).
Suppose there is a function φ ∈ C 2(R2 × R2) with φ((0, 0), (1, 0)) = d((0, 0), (1, 0)) = 1
and φ((x, y), (x̄, ȳ)) ≥ d((x, y), (x̄, ȳ)) for (x, y) ∼ (0, 0) and (x̄, ȳ) ∼ (1, 0). Set ψ(t) :=
φ((0, 0), (1, t)). Then ψ ∈ C 2(R), ψ(0) = 1 and ψ(t) ≥ 1 + |t|, which is impossible.

3 If f : [0, 1]→ R is a 1-Lipschitz map with f(0) = 0 and f(1) = 0, then γ(t) := (t, f(t))
is a length-minimizer from (0, 0) to (0, 1) for the `∞-distance on R2. Moreover, convergence
in W 1,∞([0, 1]) and in W 1,∞([0, 1];R2) are equivalent for such curves. Hence, the set of
all length-minimizers from (0, 0) to (0, 1) contains as a closed subset the unit ball of
W 1,∞([0, 1]), which is not compact.
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Next, we claim that d0 is locally L-Lipschitz on G \Bd(0, 1). Indeed, let
r > 0 be such that Bρ(x, r) ⊂ Ω for all x ∈ Sd(0, 1). If q1, q2 ∈ G \ Bd(0, 1)
are such that ρ(q1, q2) < r, then there is o ∈ G such that d(0, q1) = d(0, o) +
d(o, q1) and d(o, q1) = 1, therefore

d0(q2)− d0(q1) ≤ d(o, q2)− d(o, q1) ≤ Lρ(o−1q2, o−1q1) = Lρ(q2, q1).

In the second step of the proof, we prove that d0 is L-Lipschitz on G \
Bd(0, 1). Let p, q ∈ G \ Bd(0, 1) and γ : [0, 1] → G a ρ-length minimizing
curve from p to q. If =γ ⊂ G \ Bd(0, 1), then there are 0 = t0 ≤ t1 ≤
· · · ≤ tk+1 = 1 such that d0(γ(ti)) − d0(γ(ti+1)) ≤ Lρ(γ(ti), γ(ti+1)) for all
i. Hence

d0(p)− d0(q) =

k∑

i=0

d0(γ(ti))− d0(γ(ti+1))

≤ L
k∑

i=0

ρ(γ(ti), γ(ti+1)) = Lρ(p, q).

If instead =γ ∩ Bd(0, 1) 6= ∅, then there are 0 < s < t < 1 such that
d0(γ(s)) = d0(γ(t)) = 1 and γ([0, s]) ⊂ G \ Bd(0, 1) and γ([t, 1]) ⊂ G \
Bd(0, 1). Then

d0(p)− d0(q) = d0(p)− d0(γ(s)) + d0(γ(t))− d0(q)
≤ L (ρ(p, γ(s)) + ρ(γ(t), q)) ≤ Lρ(p, q).

Finally, let p, q ∈ G \ Bd(0, r) for 0 < r < 1. Then δr−1p, δr−1q ∈ G \
Bd(0, 1) and we have
(3.2)

d0(p)− d0(q) = r(d0(δr−1p)− d0(δr−1q)) ≤ Lrρ(δr−1p, δr−1q) ≤ CL

r
ρ(p, q),

where we used in the last step the fact that there exists C > 0 such that

∀p, q ∈ G, ∀r ∈ (0, 1) ρ(δr−1p, δr−1q) ≤ Cr−2ρ(p, q).

Now, we need to prove that d20 is Lipschitz on Bd(0, 1). We first claim that
d20 is locally 4L-Lipschitz on Bd(0, 1) \ {0}. Indeed, if p, q ∈ Bd(0, 1) \ {0}
are such that

1

2
≤ d0(p)

d0(q)
≤ 2,

then

0 < d0(p) + d0(q) ≤ 4 min{d0(p), d0(q)}.
Therefore, using (3.2),

d0(p)
2 − d0(q)2 = (d0(p) + d0(q))(d0(p)− d0(q))

≤ (d0(p) + d0(q))
CL

min{d0(p), d0(q)}
ρ(p, q)

≤ (d0(p) + d0(q))
4CL

d0(p) + d0(q)
ρ(p, q) = 4CLρ(p, q).

Finally, using again the fact that ρ is a geodesic distance, we get that d20 is
4CL Lipschitz on Bd(0, 1) \ {0} and therefore on Bd(0, 1). �
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3.1. About the minimal stretching.

Definition 3.4 (Minimal Stretching). Let (X, ‖ ·‖) and (Y, ‖ ·‖) be normed
vector spaces. We define for a continuous linear map L : X → Y the minimal
stretching

τ(L) := inf{‖y‖ : y ∈ Y \ L(BX(0, 1))}
where BX(p, r) = {q ∈ X : ‖q − p‖ < r}.

It is easy to prove that τ : L(X;Y ) → [0,+∞) is continuous, where
L(X;Y ) is the space of continuous linear mappings X → Y endowed with
the operator norm.

The next proposition applies this notion to smooth functions and it is a
restatement of [15, Theorem 1].

Proposition 3.5. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be two Banach spaces and
F : Ω → Y a C 1 map, where Ω ⊂ X is open. Fix x̂ ∈ Ω and let τ0 :=
τ( dF (x̂)) > 0. Then for every C > 1 there is ε̂ > 0, such that for all
0 < ε < ε̂ it holds

BY (F (x̂), ε) ⊂ F
(
BX(x̂,

C

τ0
ε)

)
.

3.2. The End-point map is weakly* continuous. As before, let (E, f, ‖·
‖) be a sub-Finsler structure on a manifold M . We want to prove the
following proposition.

Proposition 3.6. Fix o ∈ M and let ok ∈ M be a sequence converging to
o. Let uk ∈ L∞([0, 1];E) be a sequence of controls weakly* converging to
u ∈ L∞([0, 1];E). Let γk (resp. γ) be the curve with control uk (resp. u) and
γk(0) = ok (resp. γ(0) = o). Then γk uniformly converge to γ.

In particular, it follows that the End-point map Endo : L∞([0, 1];E)→M
is weakly* continuous.

Proof. Since the sequence uk is bounded in L∞([0, 1];E) by the Banach-
Steinhaus Theorem and the sequence ok is bounded in (M,d), then there is
a compact set K ⊂ M such that γk ⊂ K for all k. Let R > 0 be such that
‖uk‖L∞ ≤ R for all k ∈ N.

Thanks to the Whitney Embedding Theorem, we can assume that M is
a submanifold of RN for some N ∈ N. Fix a basis e1, . . . , er of E and define
the vector fields Xi : M → RN as

Xi(p) := f(p, ei).

Since they are smooth, they are L-Lipschitz on K for some L > 0. We
extend the vector fields Xi : M → RN to smooth functions Xi : RN → RN .

Define ηk : [0, 1]→ RN as

ηk(t) := ok +

∫ t

0
uik(s)Xi(γ(s)) ds.

Since t 7→ Xi(γ(t)) ∈ RN are continuous, then uikXi(γ)
∗
⇀ uiXi(γ), for all

i ∈ {1, . . . , r}. In particular, ηk(t)→ γ(t) for each t ∈ [0, 1]. Moreover, since
the ηk’s have uniformly bounded derivative, they are a pre-compact family



12 LE DONNE AND NICOLUSSI GOLO

of curves with respect to the topology of uniform convergence. This fact
and the pointwise convergence imply that ηk → γ uniformly on [0, 1].

Set εk := supt∈[0,1] |ηk(t) − γ(t)| + 2|ok − o|, so that εk → 0, where | · | is

the usual norm in RN .
By Ascoli-Arzelá Theorem, the family of curves {γk}k is also precompact

with respect to the uniform convergence. Hence, if we prove that the only
accumulation curve of {γk}k is γ, then we obtain that γk uniformly converges
to γ. So, we can assume γk → ξ uniformly for some ξ : [0, 1] → M . Then
we have (sums on i are hidden)

|γk(t)− γ(t)| ≤ |ok − o|+
∣∣∣∣
∫ t

0
uik(s)Xi(γk(s))− ui(s)Xi(γ(s)) ds

∣∣∣∣

≤ |ok − o|+
∫ t

0
|uik(s)Xi(γk(s))− uik(s)Xi(γ(s))| ds+

+

∣∣∣∣
∫ t

0
uik(s)Xi(γ(s))− ui(s)Xi(γ(s)) ds

∣∣∣∣

≤ 2|ok − o|+ rRL

∫ t

0
|γk(s)− γ(s)|ds+ |ηk(t)− γ(t)|

≤ rRL
∫ t

0
|γk(s)− γ(s)|ds+ εk.

Passing to the limit k →∞, we get for all t ∈ [0, 1]

(3.3) |ξ(t)− γ(t)| ≤ rRL
∫ t

0
|ξ(s)− γ(s)|ds.

Starting with the fact that ‖ξ− γ‖L∞ ≤ C for some C > 0 and iterating the
previous inequality, we claim that

|ξ(t)− γ(t)| ≤ C (rRLt)j

j!
∀j ∈ N, ∀t ∈ [0, 1].

Indeed, by induction, from (3.3) we get

|ξ(t)− γ(t)| ≤ rRL
∫ t

0
C

(rRL)j

j!
tj ds = C

(rRL)j+1

j!

tj+1

j + 1
.

Finally, since limj→∞
(rRLt)j

j! = 0, we have |ξ(t)− γ(t)| = 0 for all t. �

3.3. The differential of the End-point map is an End-point map.
The End-point map behaves like the exponential map: its differential is again
an End-point map. In order to make this statement precise, we consider the
case M = Rn. Notice that we don’t need any bracket-generating condition.
In Corollary 3.8 we will use the results on Rn to prove a statement for all
manifolds.

Let f : Rn × E→ Rn be a smooth map. Given a basis e1, . . . , er of E, we
define the vector fields Xi : Rn → Rn as

Xi(p) := f(p, ei).

The differential of the End-point map with base point 0 is the map

dEnd0 : L∞([0, 1];E)× L∞([0, 1];E) → Rn
(u, v) 7→ dEnd0(u)[v].
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Define Yi, Zi : Rn × Rn → Rn × Rn for i = 1, . . . , r as
{
Yi(p, q) := (Xi(p), dXi(p)[q])

Zi(p, q) := (0, Xi(p))

where dXi(p) : Rn → Rn is the differential of Xi at p. These vector fields
induce a new End-point map

End00 : L∞([0, 1];E× E)→ Rn × Rn

with starting point (0, 0) ∈ Rn × Rn.

Proposition 3.7. For all u, v ∈ L∞([0, 1];E) it holds

(End0(u), dEnd0(u)[v]) = End00(u, v).

The proof is immediate, and hence omitted, once one has an explicit
representation of the differential dEnd0(u)[v], see [23]. This result, together
with Proposition 3.6, gives us the weakly* continuity of the differential of
the End-point map. The next corollary is an application.

Corollary 3.8. Let (E, f, ‖ · ‖) be a sub-Finsler structure on a manifold
M and o ∈ M . Let ρ be a Riemannian metric on M . Then the map
L∞([0, 1];E)→ [0,+∞), u 7→ τ( dEndo(u)) is weakly* lower semi-continuous,
where τ is the minimal stretching computed with respect to the norm given
by ρ.

Proof. Let {uk}k ⊂ L∞([0, 1];E) be a sequence with uk
∗
⇀ u ∈ L∞([0, 1];E).

Let γu be the curve with control u and starting point o. We can pull back
the sub-Finsler structure from a neighborhood of γu to an open subset of Rn
via a covering map, so that we reduce the statement to the case M = Rn.

We need to prove

(3.4) lim inf
k→∞

τ( dEndo(uk)) ≥ τ( dEndo(u)).

Set τ̂ := τ( dEnd0(u)). If τ̂ = 0, then (3.4) is fulfilled, so we assume τ̂ > 0.
Let τ̂ > ε > 0. Then there exists a finite-dimensional vector space W ⊂
L∞([0, 1];E) such that

BEnd0(u)(0, τ̂ −
ε

2
) ⊂⊂ dEnd0(u)[BL∞(0, 1) ∩W ],

where, for p ∈ Rn, Bp denotes a ball in Rn = TpRn with respect to the norm
given by ρ at p, and BL∞ denotes a ball in L∞([0, 1];E) with respect to the
L∞-norm induced by ‖·‖. Since dimW <∞ and by Propositions 3.6 and 3.7,
the maps dEnd0(uk)|W strongly converge to dEnd0(u)|W . Moreover, the
norm on Rn = TpRn given by ρ continuously depends on p ∈ Rn. Therefore,
for k large enough we have

BEnd0(uk)(0, τ̂ − ε) ⊂ dEnd0(uk)[BL∞(0, 1) ∩W ].

Hence

lim inf
k→∞

τ( dEnd0(uk)) ≥ τ̂ − ε.

Since ε is arbitrary, (3.4) follows. �
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3.4. The sub-Finsler distance is Lipschitz in absence of singular
geodesics. The proof of Theorem 3.1 is divided into the next two lemmas
from which Theorem 3.1 follows.

Lemma 3.9. Let o, p ∈ M such that all d-minimizing curves from o to p
are regular. Then there exist a compact neighborhood K ⊂ M of p and a
weakly* compact set K ⊂ L∞([0, 1];E) such that:

(1) Endo : K → K is onto;
(2) dCC(o, Endo(u)) = ‖u‖L∞ for all u ∈ K ;
(3) every u ∈ K is a regular point for Endo.

Proof. For any compact neighborhood K of p, define the compact set

K (K) := {u ∈ L∞([0, 1];E) : Endo(u) ∈ K and d(o, Endo(u)) = ‖u‖L∞} .
Since the metric d is geodesic, the End-point map Endo : K (K) → K is
surjective, for all K. Moreover, the second requirement holds by definition.
Finally, suppose that there exist a sequence pk → p and a sequence uk ∈
L∞([0, 1];E) such that Endo(uk) = pk, d(0, pk) = ‖uk‖L∞ and uk is a singular
point for Endo, for all k. Since the sequence uk is bounded, thanks to
the BanachAlaoglu Theorem there is u ∈ L∞([0, 1];E) such that, up to a

subsequence, uk
∗
⇀ u. By the continuity of Endo, we have Endo(u) = p. By

Corollary 3.8, we have τ( dEndo(u)) ≤ lim infk τ( dEndo(uk)) = 0. Finally,
by the lower-semicontinuity of the norm with respect to the weak* topology,
we have

‖u‖L∞ ≤ lim inf
k→∞

‖uk‖L∞ = lim inf
k→∞

d(o, pk) = d(o, p) ≤ ‖u‖L∞ .

So, u is the control of a singular length-minimizing curve from o to p, against
the assumption. Therefore, there exists a neighborhood K of p such that
K (K) contains only regular points for Endo. �
Lemma 3.10. Let o ∈M , and K ⊂M compact. Suppose there is a weakly*
compact set K ⊂ L∞([0, 1];E) that satisfies all three properties listed in
Lemma 3.9. Then for every Riemannian metric ρ on M there exists L > 0
such that the function do : p 7→ d(o, p) is locally L-Lipschitz on the interior
of K.

Proof. Let ρ be a Riemannian metric on M . We first prove that

(3.5)
∃L > 0, ∀q ∈ K, ∃ε̂q > 0 ∀q′ ∈ K[

ρ(q, q′) < ε̂q ⇒ do(q
′)− do(q) ≤ Lρ(q, q′)

]
.

Since K is a weakly* compact set of regular points for Endo, then by Corol-
lary 3.8 the function u 7→ τ( dEndo(u)) admits a minimum on K that is
strictly positive. By Proposition 3.5, there is L > 0 such that for every
u ∈ K there is ε̂u > 0 such that

(3.6) Bρ (Endo(u), ε) ⊂ Endo (BL∞(u, Lε)) ∀ε < ε̂u.

Let q, q′ ∈ K be such that q = Endo(u) with u ∈ K and ε := ρ(q, q′) < ε̂u.
Then, by the inclusion (3.6), there is u′ ∈ BL∞(u, Lε) with Endo(u

′) = q′. So

do(q
′)− do(q) ≤ ‖u′‖L∞ − ‖u‖L∞ ≤ ‖u′ − u‖L∞ ≤ Lε = Lρ(q, q′).

This proves the claim (3.5).
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Finally, if p is an interior point of K, then there is a ρ-convex neigh-
borhood U of p contained in K (see [24]). So, if q, q′ ∈ U , then there is
a ρ-geodesic ξ : [0, 1] → U joining q to q′. Since the image of ξ is com-
pact, there are 0 = t1 < s1 < t2 < s2 < · · · < sk−1 < tk = 1 such that
ρ(ξ(ti), ξ(si)) < ε̂ξ(ti) and ρ(ξ(si), ξ(ti+1)) < ε̂ξ(ti+1). Therefore

do(q
′)− do(q) ≤

k−1∑

i=1

do(ξ(ti+1))− do(ξ(si)) + do(ξ(si))− do(ξ(ti))

≤ L
k−1∑

i=1

ρ(ξ(ti+1), ξ(si)) + ρ(ξ(si), ξ(ti)) = Lρ(q, q′).

�

4. Regularity of spheres in graded groups

This section is devoted to the proof of Theorems 1.2 and 1.3 and of the
inequalities (1.2).

4.1. The sphere as a graph. Let (G, d) be a homogeneous group and ρ
a Riemannian distance on G. Theorem 1.2 and the estimate (1.2) are both
based on the following remark.

Remark 4.1. Let g = ⊕i>0Vi be a grading for the Lie algebra of G. Let | · | be
the norm of a scalar product on g that makes the layers orthogonal to each
other and let S = exp({v : |v| = 1}) ⊂ G. The hypersurface S is smooth
and transversal to the dilations, i.e., for all p ∈ S we have d

dt |t=1δtp /∈ TpS.
Define

φ : S × (0,+∞) → G \ {0}
(p, t) 7→ δ 1

t
p.

Since S is transversal to the dilations, φ is a diffeomorphism. Moreover, if
Γ := {(p, d0(p)) : p ∈ S} ⊂ S × (0,+∞) is the graph of the function d0
restricted to S, then

Sd = φ(Γ).

Thanks to the last remark, the estimate (1.2) follows from the next lemma.

Lemma 4.2. Let Ω ⊂ Rn be an open set and let f : Ω→ R be an α-Hölder
function, i.e., for all x, y ∈ Ω we have

|f(x)− f(y)| ≤ C|x− y|α,
for some C > 0, where α ∈ (0, 1]. Define the graph of f as

Γf := {(x, f(x)) : x ∈ Ω} ⊂ Rn+1.

Then

n ≤ dimH Γf ≤ n+ 1− α,
where dimH is the Hausdorff dimension. Moreover, this estimate is sharp,
i.e., there exists f such that dimH Γf = n+ 1− α.
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The proof is straightforward by use of a simple covering argument or by an
estimate of the Minkowski content of the graph. The sharpness of this result
has been shown in [5] for the case n = 1. The general case, as stated here, is
a simple consequence. Indeed, if g : (0, 1) → R is a α-Hölder function such
that dimH(Γg) = 2−α, then the graph of the function f(x1, . . . , xn) := g(x1)
is Γf = Γg × (0, 1)n−1. Therefore, dimH(Γf ) = n+ 1− α.

In the next easy-to-prove lemma we point out that a homogenous distance
is locally Lipschitz if and only if the spheres are Lipschitz graphs in the
directions of the dilations.

Lemma 4.3. Let d be a homogeneous distance on G. Let S and Sd be as in
Remark 4.1 and p ∈ S. Then the following conditions are equivalent:

(i) Setting p̂ := δd0(p)−1(p) ∈ Sd, the sphere Sd is a Lipschitz graph in

the direction δ̄(p̂) in some neighborhood of p;
(ii) d0|S : S → (0,+∞) is Lipschitz in some neighborhood of p in S;

(iii) d0 is Lipschitz in some neighborhood of δλp for one, hence all, λ > 0.

Thanks to Lemma 4.3, Theorem 1.2 is a consequence of Theorem 1.1.

4.2. An intrinsic approach. In this section we will prove Theorem 1.3.
We define a cone in Rn as

Cone(α, h, v) := {x ∈ Rn : |x| ≤ h and ∠(x, v) ≤ α} ⊂ Rn,

where α ∈ [0, π], h ∈ (0,+∞], v ∈ Rn is the axis of the cone, and ∠(x, v) is
the angle between x and v. The following lemma is a simple calculus exercise
and it will be used later in the proof of Theorem 1.3. Roughly speaking, it
states that a small smooth deformation of a cone still contains a cone with
the same tip.

Lemma 4.4. Let m, k, n ∈ N, p ∈ Rm and y0 ∈ Rk. Let φ : Rm × Rk →
Rn be a smooth map such that d(φp)(y0) : Rk → Rn is surjective, where

φx(y) := φ(x, y). Let C ′ ⊂ Rk be a cone with axis v′ ∈ Rk. Then there exist
a cone C ⊂ Rn with axis d(φp)(y0)v

′ and an open neighborhood U ⊂ Rm of
p such that for all q ∈ U

φq(y0) + C ⊂ φq(y0 + C ′).

Proof of Theorem 1.3. In this proof, we consider the dilations δλ as defined
for λ ≤ 0 too, with the same definition as for λ > 0. Notice that in this way
the map G× R→ G, (p, λ) 7→ δλp, is a smooth map.

Let v1, . . . , vr be a basis for V1 and set pi := exp(vi) ∈ G. Up to a
rescaling, we can assume d0(pi) < 1 for all i. For p ∈ G define φp : R2r+1 →
G as

φp(u1, . . . , ur, s, v1, . . . , vr) = δu1p1 · · · δurpr · δsp · δv1p1 · · · δvrpr.
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Let x̂ ∈ R2r+1 be the point with ui = 0, s = 1 and vi = 0, so that φp(x̂) = p.
The differential of φp at x̂ is given by the partial derivatives

∂φp
∂ui

(x̂) =
d

dt
|t=0 (δtpi · p) = dRp

(
d

dt
|t=0(δtpi)

)
= dRp(vi),

∂φp
∂s

(x̂) =
d

dt
|t=1 (δtp) = δ̄(p),

∂φp
∂vi

(x̂) =
d

dt
|t=0 (p · δtpi) = dLp

(
d

dt
|t=0(δtpi)

)
= dLp(vi).

Therefore, if p ∈ Sd is such that the condition (1.1) is true, then the differ-
ential dφp has full rank at x̂, hence in a neighborhood of x̂.

Define

∆ := {(u1, . . . , ur, s, v1, . . . , vr) ∈ R2r+1 : s+
r∑

i=1

(|ui|+ |vi|) ≤ 1}.

We identify G with Rn through an arbitrary diffeomorphism. By Lemma 4.4,
there is a cone C with axis δ̄(p) and a neighborhood U of p such that for all
q ∈ U

q + C ⊂ φq(∆).

Up to restricting U , for all q ∈ U there are cones Cq with axis δ̄(q), fixed
amplitude and fixed height such that q + Cq ⊂ q + C. Notice that for all
q ∈ Sd we have φq(∆) ⊂ B̄d(0, 1) and φq(∆) ∩ Sd = {q}. In particular, for
all q ∈ Sd∩U , we have q+Cq ⊂ B̄d(0, 1) and (q+Cq)∩Sd = {q}, i.e., Sd∩U
is a Lipschitz graph in the direction of the dilations. Thanks to Lemma 4.3,
we get that d0 is Lipschitz in a neighborhood of p. �

Finally, some considerations on condition (1.1) are due.

Remark 4.5. If (1.1) holds at p ∈ G and u ∈ L∞([0, 1];V1) is a control such
that End0(u) = p, then the differential dEnd0(u) is surjective, i.e., p is a
regular value of End. Indeed, by [20] (see (2.6) and (2.11) there), we have

dLp(V1) + dRp(V1) + span{δ̄(p)} ⊂ =( dEnd0(u)),

because q 7→ δ̄(q) is a contact vector field of G.

Proposition 4.6. Let X ∈ V1. If (1.1) holds for p = exp(X), then

g = V1 + [X,V1].

Proof. Let X1, . . . , Xr be a basis for V1 and Y1, . . . , Y` a basis for [X,V1].

Let αij ∈ R be such that [X,Xi] =
∑`

j=1 α
i
jYj . First, notice that

T0G = dLexp(−X)

(
dLexp(X)(V1) + dRexp(X)(V1)

)

= V1 + dLexp(−X) ◦ dRexp(X)(V1)

= V1 + Adexp(X)(V1).
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Then, using the formula Adexp(X)(Y ) = eadX (Y ) =
∑∞

k=0
1
k!adkX(Y ), we

have

Adexp(X)(Xi) = Xi +

( ∞∑

k=1

1

k!
adk−1X ([X,Xi])

)

= Xi +



∞∑

k=1

adk−1X (
∑̀

j=1

αijYj)




= Xi +
∑̀

j=1

αij

( ∞∑

k=1

adk−1X (Yj)

)
.

It follows that dim
(
V1 + Adexp(X)V1

)
≤ r + ` and therefore dim g ≤ r + `,

i.e., g = V1 + [X,V1]. �
Proposition 4.7. Let Z ∈ Vk, where k > 0 is such that Vi = {0} for all
i > k. If (1.1) holds for p = exp(Z), then

g = V1 + span{Z}.
Proof. Since [Z, g] = {0}, we have Rp = Lp. Moreover, δ̄(p) = dLp(kZ).
So, condition (1.1) becomes dLp(V1) + dLp(span{Z}) = TpG. �

In particular, if (1.1) holds for all p ∈ G \ {0}, then g = V1 ⊕ V2 with
dimV2 ≤ 1 and [X,V1] = V2 for all non-zero X ∈ V1.

5. Examples

5.1. Three gradings on R2. We will present three examples of dilations
on R2. In particular we want to illustrate two applications of Theorem 1.3
and show the sharpness of the dimension estimate (1.2). In Remark 5.5
we give an easy example of a homogeneous distance whose unit ball is a
Lipschitz domain, but the distance is not locally Lipschitz away from the
diagonal.

The first and the easiest is

δλ(x, y) := (λx, λy),

which gives rise to the known structure of vector space. Here, homogeneous
distances are given by norms and balls are convex, hence Lipschitz domains.
It’s trivial to see that condition (1.1) holds for all p ∈ R2.

The second example is given by the dilations

δλ(x, y) := (λx, λ2y).

In this case, R2 = V1 ⊕ V2 with V1 = R × {0} and V2 = {0} × R, and
δ̄(x, y) = (x, 2y). Condition (1.1) holds for all (x, y) ∈ R2 with y 6= 0. One
can actually show that, for any homogeneous metric on (R2, δλ) with closed
unit ball B centered at 0, the set I = {x ∈ R : (x, 0) ∈ B} is a closed interval
and there exists a function f : I → R that is locally Lipschitz on the interior
of I such that

Sd ∩ {(x, y) : y ≥ 0} = {(x, f(x)) : x ∈ I}.
We will prove a similar statement in the Heisenberg group with an argument
that applies here too, see Section 6.
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The third example is given by the dilations

(5.1) δλ(x, y) := (λ2x, λ2y),

and it is interesting because of the next proposition.

Proposition 5.1. There exists a homogeneous (with respect to dilations
(5.1)) distance d on R2 whose unit sphere has Euclidean Hausdorff dimen-
sion 3

2 .

Notice that 3
2 is the maximal Hausdorff dimension that one gets by the

estimate (1.2).
For proving Proposition 5.1, we need to find a set B ⊂ R2 that satisfies

all four conditions listed in Lemma 2.15, in particular

(5.2) ∀p, q ∈ B, ∀t ∈ [0, 1] t2p+ (1− t)2q ∈ B.

One easily proves the following preliminary facts.

Lemma 5.2. Let p, q ∈ R2 and γ : [0, 1]→ R2, γ(t) := t2p+ (1− t)2q.
(1) The curve γ is contained in the triangle of vertices 0, p, q.
(2) The curve γ is an arc of the parabola passing through p and q and

that is tangent to the lines span{p} and span{q}.
(3) If B satisfies (5.2) and A : R2 → R2 is a linear map, then A(B)

satisfies (5.2) as well.

Lemma 5.3. For 0 < C ≤ 1, define

YC := {(x, y) : |x| ≤ 1, y ≤ 1 + C
√
|x|}.

Then YC satisfies (5.2).

Proof. Let p, q ∈ YC and set γ(t) = (γx(t), γy(t)) := t2p+ (1− t)2q.
If both p and q stay on one side with respect to the vertical axis, then

γ(t) ∈ YC for all t ∈ [0, 1] thanks to the first point of Lemma 5.2 and because
the two sets YC ∩ {x ≥ 0} and YC ∩ {x ≤ 0} are convex.

Therefore, we suppose that

p = (−px, py) q = (qx, qy)

with px, qx > 0. Let t0 ∈ [0, 1] be the unique value such that γx(t0) =
0. Then the curve γ lies in the union of the two triangles with vertices
0, γ(0), γ(t0) and 0, γ(1), γ(t0), respectively. Therefore, γ lies in YC if and
only if γy(t0) ≤ 1. Solving the equation γx(t0) = t20(qx−px)−2qxt0+qx = 0,
one gets

t0 =

√
qx√

qx +
√
px
, (1− t0) =

√
px√

qx +
√
px
.

From the expression of γy(t0) = t20py + (1 − t0)2qy, we notice that, px and
qx fixed, the worst case is when py and qy are maximal, i.e.,

py = 1 + C
√
px, qy = 1 + C

√
qx.
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Finally

γy(t0) = t20py + (1− t0)2qy
=

qx
(
√
qx +

√
px)2

(1 + C
√
px) +

px
(
√
qx +

√
px)2

(1 + C
√
qx)

=
1

(
√
qx +

√
px)2

(qx + px + Cqx
√
px + Cpx

√
qx)

= 1 +
−2
√
pxqx + Cqx

√
px + Cpx

√
qx

(
√
qx +

√
px)2

= 1 +
√
pxqx

−2 + C(
√
qx +

√
px)

(
√
qx +

√
px)2

.

Since −2 + C(
√
qx +

√
px) ≤ 0, then we have γy(t0) ≤ 1, as desired. �

Lemma 5.4. Let α, β > 0. For all 0 < ε ≤ α and all 0 < C ≤ β√
α

, the set

Y (ε, β, C) := {(x, y) : |x| ≤ ε, y ≤ β + C
√
|x|

satisfies (5.2).

Proof. Define the linear map A(x, y) := (αx, βy) and set C ′ := C
√
α
β ≤ 1.

Then one just needs to check that

Y (ε, β, C) = A(YC′) ∩ {(x, y) : |x| ≤ ε},

where YC′ is defined as in the previous Lemma 5.3. �

Proof of Proposition 5.1. First of all, let θ0 > 0 be such that for all |θ| ≤ θ0
it holds

(5.3)
|θ|
2
≤ | cos(

π

2
+ θ)| = | sin θ| ≤ 2|θ|.

Moreover, let L,m,M,C > 0 be such that

L
√

2√
m
≤ C ≤ m√

2Mθ0
.

Let f : R→ (0,+∞) be a function such that

(5.4) ∀s, t ∈ R |f(t)− f(s)| ≤ L
√
|t− s|,

(5.5) ∀t ∈ R m ≤ f(t) ≤M.

We claim that, for |θ| ≤ θ0, we have

(5.6) f
(π

2
+ θ
)
·
(

cos(
π

2
+ θ), sin(

π

2
+ θ)

)
∈ Y

(
2Mθ0, f(

π

2
), C

)

where Y
(
2Mθ0, f(π2 ), C

)
is defined as in Lemma 5.4. Indeed, we have on

one side

|x| := |f(
π

2
+ θ) cos(

π

2
+ θ)| ≤M2|θ| ≤ 2Mθ0.
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On the other side,

y := f(
π

2
+ θ) sin(

π

2
+ θ) ≤ f(

π

2
+ θ)

≤ f(
π

2
) + f(

π

2
+ θ)− f(

π

2
) ≤ f(

π

2
) + L

√
|θ|

≤ f(
π

2
) + L

√
2 cos(π2 + θ)f(π2 + θ)√

f(π2 + θ)
≤ f(

π

2
) +

√
2L√
m

√
|x|

≤ f(
π

2
) + C

√
|x|.

So (5.6) is satisfied.
Since for α := 2Mθ0 and β := f(π2 ) we have

β√
α

=
f(π2 )√
2Mθ0

≥ m√
2Mθ0

≥ C,

Lemma 5.4 applies and we get that Y
(
2Mθ0, f(π2 ), C

)
satisfies (5.2).

For any θ we set Aθ to be the counterclockwise rotation of angle θ:

Aθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Define the curve φ(t) := f(t)(cos t, sin t). Notice that Aθφ(t) = f((t − θ) +
θ)(cos(t+ θ), sin(t+ θ)) and that the function s 7→ f(s+ θ) is still satisfying

both (5.4) and (5.5). So we have that, for |t|, |s| < θ0
2 ,

φ(
π

2
+ t) ∈ As[Y (2Mθ0, f(

π

2
+ s), C)]

and the set As[Y (2Mθ0, f(π2 + s), C)] satisfies (5.2).
Set

B :=
⋂

|s|< θ0
2

(
As[Y (2Mθ0, f(

π

2
+ s), C)] ∩ −As[Y (2Mθ0, f(

π

2
+ s), C)]

)
.

The set B satisfies all three conditions of Lemma 2.15, hence it is the unit
ball of a homogeneous metric. Moreover,

{φ(
π

2
+ t) : |t| < θ0

2
} ⊂ ∂B.

The statement of Proposition 5.1 follows because there are functions f :
R → [0,+∞) that satisfy (5.4) and (5.5) and such that the image of the
curve φ has Hausdorff dimension 3

2 . Indeed, the image of φ has the same
Hausdorff dimension of the graph of f , and then one uses the sharpness of
Lemma 4.2. �

Remark 5.5. Using the same arguments as in the proof of Lemma 5.3, one
easily shows that the set

B := {(x, y) ∈ R2 : |x| ≤ 1, −f(−x) ≤ y ≤ f(x)},
where

f(x) :=

{
1 x ≤ 0

1 +
√
x x > 0,
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is the unit ball of a homogeneous distance on R2 with dilations (5.1). Notice
that such B is a Lipschitz domain, but the associated homogeneous distance
is not Lipschitz in any neighborhood of the point (0, 1), thanks to Lemma 4.3.

5.2. The Heisenberg groups. In the Heisenberg groups Hn (for an intro-
duction see [10]) condition (1.1) holds at every non-zero point. Therefore,
balls of any homogeneous metric on Hn are Lipschitz domains. We will treat
more in detail the first Heisenberg group in Section 6.

5.3. A sub-Finsler sphere with a cusp. Let H be the first Heisenberg
group (see Section 6 for the definition). The group G = H×R is a stratified
group with grading (V1×R)⊕V2, where V1⊕V2 is a stratification for H. The
line {0H} × R is a singular curve in G. Moreover, it has been shown in [8]
that there exists a sub-Finsler distance on G whose unit sphere Sd has a cusp
in the intersection Sd∩({0H}×R). However, for sub-Riemannian metrics we
still have balls that are Lipschitz domains, as the following Proposition 5.7
shows. But let us first recall a simple fact:

Lemma 5.6. Let A and B be two stratified groups with stratifications
⊕
Vi

and
⊕
Wi, respectively. Endow V1 and W1 with a scalar product each and

let dA, dB be the corresponding homogeneous sub-Riemannian distances.
Then A× B is a Carnot group with stratification

⊕
i Vi ×Wi and metric

d((a, b), (a′, b′)) :=
√
dA(a, a′)2 + dB(b, b′)2,

which is the sub-Riemannian metric generated by the scalar product on V1×
W1 induced by the scalar products on V1 and W1.

One proves this lemma by using the fact that the energy of curves on
A×B (i.e., the integral of the squared norm of the derivative) is the sum of
the energies of the two components of the curve.

Proposition 5.7. Any homogeneous sub-Riemannian metric on H × R is
locally Lipschitz away from the diagonal.

Proof. First of all, we show that, up to isometry, there is only one homoge-
neous sub-Riemannian distance on H×R. Let (X1, Y1, T1) and (X2, Y2, T2)
be two bases of V1×R that are orthonormal for two sub-Riemannian struc-
tures, respectively. We may assume T1, T2 ∈ {0} ×R. Notice that [Xi, Yi] /∈
V1 × R. The linear map such that X1 7→ X2, Y1 7→ Y2, T1 7→ T2, [X1, Y1] 7→
[X2, Y2] is an automorphism of Lie algebras and induces an isometry between
the two sub-Riemannian structures.

Denoting by dH and dR the standard metrics on H and R, respectively,
we prove the proposition for the product metric as in Lemma 5.6. Namely,
we need to check that the function

(5.7) (p, t) 7→ d((0, 0), (p, t)) =
√
dH(0, p)2 + t2

is locally Lipschitz at all (p̂, t̂) 6= (0, 0). This follows directly from Proposi-
tion 3.3. �
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5.4. A sub-Riemannian sphere with a cusp.

Proposition 5.8. Let G be a Carnot group of step 3 endowed with a sub-
Riemannian distance dG. Then the sub-Riemannian distance d on G × R
given by

d((p, s), (q, t)) =
√
dE(p, q)2 + |t− s|2

has a unit sphere with a cusp at (0G, 1).

Proof. Let g =
⊕3

i=1 Vi be the Lie algebra of G and fix Z ∈ V3 \ {0}. We
identify g with G through the exponential map.

The intersection of the unit sphere in (G×R, d) with the plane span{Z}×R
is given by all points (zZ, t) such that

(5.8) dG(0, zZ)2 + t2 = 1.

Since dG is homogeneous on G, there exists C > 0 such that for all z ∈ R

(5.9) dG(0, zZ) = C|z| 13 .
Putting together (5.8) and (5.9) we obtain that this intersection consists of
all the points (zZ, t) such that

|z| =
(

1 + t

C2

) 3
2

· (1− t) 3
2 .

One then easily sees that this set in R2 has a cusp at (0, 1). �

6. A closer look at the Heisenberg group

The Heisenberg group H is the easiest example of a stratified group that
is not Abelian and for this reason it has been studied in large extend. The
most common homogeneous metrics on H are the Korányi metric and the
sub-Riemannian metric. Sub-Finsler metrics on H arise in the study of
finitely-generated groups, see [7] and references therein. The geometry of
sub-Finsler spheres has been studied in [21] and [14].

The Lie algebra h of the Heisenberg group is a three dimensional vec-
tor space span{X,Y, Z} with a Lie bracket operation defined by the only
nontrivial relation [X,Y ] = Z.

We identify the Heisenberg group H again with span{X,Y, Z}, where we
define the group operation

p · q := p+ q +
1

2
[p, q] ∀p, q ∈ H.

Hence h is the Lie algebra of H and the exponential map h → H is the
identity map. Notice that the inverse of an element p is p−1 = −p.

The Heisenberg Lie algebra admits the stratification h = V1 ⊕ V2 with
V1 = span{X,Y } and V2 = span{Z}. Denote by π the linear projection
h → V1 along V2. Notice that this map, regarded as π : (H, ·) → (V1,+), is
a group morphism.

The dilations δλ : H→ H are explicitly expressed by

δλ(xX + yY + zZ) = xλX + yλY + zλ2Z, ∀λ > 0.



24 LE DONNE AND NICOLUSSI GOLO

These are both Lie algebra automorphisms δλ : h → h and Lie group auto-
morphisms H→ H.

Three are the main results of this section.

Proposition 6.1. Let N : H→ [0,+∞) be a homogeneous norm. Then the
unit ball

B := {p ∈ H : N(p) ≤ 1}
is a star-like Lipschitz domain.

Proof. One easily shows that condition (1.1) holds for all p ∈ H \ {0}. In
order to prove that B is star-like, one first notice that if p ∈ B, then −p ∈ B,
hence δt(p)δ1−t(−p) = (2t − 1)p ∈ B for all t ∈ [0, 1], and this is a straight
line passing through zero. �
Proposition 6.2. Let N and B as in Proposition 6.1. Set K := π(B) ⊂ V1.
Then K is a compact, convex set with K = −K and K = cl(int(K)), and
there exists a function f : K → [0,+∞), locally Lipschitz on int(K), such
that

(6.1) B = {v + zZ : v ∈ K, −f(−v) ≤ z ≤ f(v)}.
The proof is postponed to Section 6.1.
We remark that homogeneous distances and sub-Finsler homogeneous

distances on H have a precise relation. Indeed, if d is a homogeneous distance
on H, then it is easy to show that the length distance generated by d is
exactly the sub-Finsler distance that has the norm on V1 generated by the
set K defined in Proposition 6.2.

Proposition 6.3. Let K ⊂ V1 be a compact, convex set with −K = K and
0 ∈ int(K). Let g : K → R be Lipschitz. Then there exists b ∈ R such that
for f := g + b the set B as in (6.1) is the unit ball of a homogeneous norm.

The proof will appear in Section 6.2.
As a consequence of Proposition 6.3, we get the existence of homogeneous

distances on H that are not almost convex in the sense of [13]. Indeed, one
can take the distance associated to g(xX + yY ) = |x| from Proposition 6.3.

6.1. Proof of Proposition 6.2.

Lemma 6.4. Let B ⊂ H be an arbitrary closed set satisfying (2.5). If
p = v + zZ ∈ B with v = π(p) ∈ V1, then v + szZ ∈ B, for all s ∈ [0, 1]. In
particular,

(1) π(B) = B ∩ V1;
(2) π(B) ⊂ V1 is convex.

Proof. We have that for all t ∈ [0, 1]

B 3 δtp · δ1−tp = v + (t2 + (1− t)2)zZ.
Since the image of [0, 1] through the map t 7→ (t2 + (1 − t)2) is [12 , 1], then

it follows v+ szZ ∈ B for all s ∈ [12 , 1]. Iterating this process and using the
closeness of B, we get v + szZ ∈ B for all s ∈ [0, 1]. For the last statement,
take v, w ∈ π(B) ⊂ B and notice that tv + (1 − t)w = π(δtv · δ1−tw) ∈
π(B). �
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Let B = {N ≤ 1} be the unit ball of a homogeneous norm and set
K := π(B) ⊂ V1 and Ω := int(K). First, we check that Ω̄ = K. On the one
hand, clearly we have Ω̄ ⊂ K. On the other hand, if v ∈ K, then for any
t ∈ [0, 1) we have N(δtv) = tN(v) < 1, i.e., δtv = tv ∈ intB ∩V ⊂ Ω. Hence
v ∈ Ω̄.

If we define f : K → [0,+∞) as f(v) := max{z : v + zZ ∈ Q}, then we
have (6.1). In order to prove that f is locally Lipschitz on Ω, we need to
prove

(6.2)
∀p ∈ ∂B ∩ {z ≥ 0} ∩ π−1(Ω),

∃U 3 p open , ∃C vertical cone, s.t.
∀q ∈ U ∩ ∂B it holds q + C ⊂ B.

Here a vertical cone is a Euclidean cone with axis −Z and non-empty inte-
rior.

So, fix p ∈ ∂Q ∩ {z ≥ 0} such that π(p) ∈ Ω. Define for θ ∈ R and ε > 0

vθ := xθX + yθY := ε cos(θ)X + ε sin(θ)Y.

For ε > 0 small enough, π(p) + vθ ∈ Ω for all θ. Define

φ(t, θ) := δ(1−t)p · δt(π(p) + vθ).

Clearly φ(t, θ) ∈ B for t ∈ [0, 1] and θ ∈ R, and φ(0, θ) = p for all θ.
Geometrically, φ([0, 1] × R) is a “tent” inside B standing above the whole
vertical segment from π(p) to p. Notice that p 6= π(p), indeed N(p) = 1
while N(π(p)) < 1, because π(p) ∈ Ω.

We only need to prove that the curves t 7→ φ(t, θ) meet this vertical
segment by an angle bounded away from 0. Some computations are needed:
set p = p1X + p2Y + p3Z, then

φ(t, θ) = π(p) + tvθ +

(
1

2
t(1− t)(p1yθ − p2xθ) + (1− t)2p3

)
Z.

We take care only of the third coordinate. Set

g(t) : =
1

2
t(1− t)(p1yθ − p2xθ) + (1− t)2p3

= t2 (−1

2
(p1yθ − p2xθ) + p3) + t (

1

2
(p1yθ − p2xθ)− 2p3) + p3.

Saying that the angle between the curve t 7→ φ(t, θ) and the vertical segment
at p is uniformly grater than zero, is equivalent to give an upper bound to
the derivative of g at 0 for all θ. Since

g′(0) =
1

2
(p1yθ − p2xθ)− 2p3,

we are done.
Finally, since both ε and g′(0) depend continuously on p, then (6.2) is

satisfied. �

6.2. Proof of Proposition 6.3. We consider the bilinear map ω : V1×V1 →
R given by

ω(v1X + v2Y,w1X + w2Y ) := v1w2 − v2w1.
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Lemma 6.5. For any continuous function f : K → [0,+∞), the set B as
in (6.1) is the unit ball of a homogeneous norm on H if and only if

(6.3)
∀v, w ∈ K ∀t ∈ [0, 1]

f(tv + (1− t)w)− t2f(v)− (1− t)2f(w)− t(1−t)
2 ω(v, w) ≥ 0.

Proof. One easily sees that B = B−1. Notice that B is the unit ball of a
homogeneous norm if and only if it satisfies (2.5).
⇒ Assume that B satisfies (2.5). Then for any v, w ∈ K we have

B 3 δt(v + f(v)Z) · δ(1−t)(w + f(w)Z) =

= tv + (1− t)w +

(
t2f(v) + (1− t)2f(w) +

1

2
t(1− t)ω(v, w)

)
Z,

hence

t2f(v) + (1− t)2f(w) +
1

2
t(1− t)ω(v, w) ≤ f(tv + (1− t)w).

⇐ Suppose f satisfies (6.3). Define

B+ := {v + zZ : v ∈ K and z ≤ f(v)},
B− := {v + zZ : v ∈ K and − f(−v) ≤ z}.

We will show that both B+ and B− satisfy (2.5), from which it follows that
B = B+ ∩B− satisfies (2.5) as well.

So, let v, w ∈ K and z1, z2 ∈ R such that v + z1Z,w + z2Z ∈ B+. Then
the third coordinate of δt(v + z1Z) · δ(1−t)(w + z2Z) satisfies

t2z1 + (1− t)2z2 +
1

2
t(1− t)ω(v, w) ≤

≤ t2f(v) + (1− t)2f(w) +
1

2
t(1− t)ω(v, w) ≤ f(tw + (1− t)v),

therefore we have δt(v + z1Z) · δ(1−t)(w + z2Z) ∈ B+ for all t ∈ [0, 1].

The calculation for B− is similar. �

The verification of the next lemma is simple and therefore it is omitted.

Lemma 6.6. Suppose that g : K → R is a continuous function such that
there is a constant A ∈ R with

(6.4)
∀v, w ∈ K, ∀t ∈ [0, 1]

g(tv + (1− t)w)− t2g(v)− (1− t)2g(w) ≥ At(1− t).
Then f := g +B satisfies (6.3) with

B := sup
v,w∈K

1

2

(
1

2
ω(v, w)−A

)
=

1

4

(
sup
v,w∈K

ω(v, w)

)
− 1

2
A.

Lemma 6.7. Let g : K → R be L-Lipschitz. Then g satisfies (6.4) for

A := −2Ldiam(K)− 4 sup
p∈K
|g(p)|.
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Proof. Notice that we need to show that (6.4) holds only for t ∈ (0, 1) and
that (6.4) is symmetric in t and (1 − t). So, it is enough to consider only
the case t ∈ (0, 12 ]:

g(tv + (1− t)w)− t2g(v)− (1− t)2g(w)

t(1− t)

=
g(w + t(v − w))− g(w)

t(1− t) +
(1− (1− t)2)g(w)

t(1− t) − t

1− tg(v)

≥ −L‖v − w‖
1− t +

2− t
1− tg(w)− t

1− tg(v)

≥ −2Ldiam(K)− 4 sup
p∈K
|g(p)|.

�
Putting together Lemmas 6.7, 6.6, and 6.5, we get Proposition 6.3. �

Appendix A. Equivalence of some definitions and existence of
singular minimizers

We shall prove that on Carnot groups the absence of singular geodesics
is equivalent to other three well-known properties. Consequently, we will
prove that Carnot groups of step larger than 2 always have singular length
minimizers, as we stated in Remark 2.17. Corollary A.2, and hence Theorem
A.1, cannot be extended to the more general setting of sub-Finsler manifolds.
Namely, it has been proven in [11] that a generic distribution of rank m ≥ 3
on a manifold M does not have singular curves. Note that if dim(M) ≥ 2m,
then the step of all distributions of rank m is larger than 2.

Before stating the theorem, we briefly introduce four classical properties
present in literature. Let G be a stratified group with Lie algebra g and
first layer V1 of the stratification. The stratified Lie algebra g is said to be
strongly bracket generating if for all X ∈ V1 \ {0} it holds

g = V1 + [X,V1].

A stratified step-two Lie algebra g = V1⊕V2 is of Métivier type if there is a
scalar product 〈·, ·〉 on g such that for all Z ∈ V2 \{0} the map JZ : V1 → V1
defined by

∀X,Y ∈ V1 〈JZX,Y 〉 = 〈Z, [X,Y ]〉
is injective. The main examples of groups of Métivier type are those of
H-type. See [6] for further reference.

We write Γ(V1) for the space of all vector fields of G with values in the
left-invariant tangent subbundle of G generated by V1. A stratified group G
is fat if for every vector field X ∈ Γ(V1) with X(0) 6= 0 it holds

g = V1 + [X,Γ(V1)]0,

where [X,Γ(V1)]0 = span{[X,Y ](0) : Y ∈ Γ(V1)}. See [27, 3] for reference.
A sub-Finsler manifold is said to be ideal if, except the constant curve,

there are no singular length minimizers. The terminology is taken from [27].

Theorem A.1. If G is a Carnot group with stratified Lie algebra g, then
the following properties are equivalent:
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(i) g is strongly bracket generating;
(ii) g is of Métivier type;

(iii) G is fat;
(iv) G is an ideal sub-Finsler manifold.

Moreover, these properties imply that g has step one or two.

A direct consequence of the proof of the latter theorem is the following
Corollary.

Corollary A.2. In all sub-Finsler Carnot groups of step at least 3, there
exists a one-parameter subgroup that is a singular non-constant length min-
imizer.

Proof of Theorem A.1. (i) ⇒ (ii). We give a proof by contraposition. If
g is not a of Métivier type, then there are a scalar product 〈·, ·〉 on g and
Z ∈ V2\{0} such that JZ : V1 → V1 is not injective. So, there is X ∈ V1\{0}
with JZX = 0. Therefore, for all Y ∈ V1 we have 〈Z, [X,Y ]〉 = 〈JZ , Y 〉 = 0,
i.e., Z /∈ [X,V1], so g is not strongly bracket generating.

(ii) ⇒ (i). We give a proof by contraposition. Suppose g is not strongly
bracket generating and let 〈·, ·〉 be a scalar product on g. Then there are
X ∈ V1 \ {0} and Z ∈ V2 \ {0} such that Z is orthogonal to [X,V1]. Hence,
for all Y ∈ V1 we have 〈JZX,Y 〉 = 〈Z, [X,Y ]〉 = 0, i.e., g is not of Métivier
type.

(iii)⇒ (i). The implication is trivial.
(i)⇒ (iii). Let X1, . . . , Xr be a basis for V1 and X =

∑r
i=1 aiXi ∈ Γ(V1)

with ai ∈ C∞(G) with X(0) 6= 0, where Xi are considered as left-invariant

vector fields. Set X̃ :=
∑r

i=1 ai(0)Xi ∈ V1 \ {0}. Since g is strongly bracket

generating, [X̃, V1] = V2. Since [X,Xj ] = [X̃,Xj ] +
∑n

i=i(Xja)Xi, for j ∈
{1, . . . , r}, one easily sees that

V1 + [X,Γ(V1)]0 = V1 + span{[X,Xj ]0 : j = 1, . . . , r} = g.

(i)⇒ (iv). This implication is well known. See for example [20, Remark
2.7].

(iv) ⇒ (i). Before starting, recall that any horizontal one-parameter
subgroup in a sub-Finsler Carnot group is length minimizer.

We begin by claiming that if G is a Carnot group, X ∈ V1 \ {0}, and
γ : [0, 1]→ G, γ(t) := exp(tX), is a regular curve then

(A.1) adX : Vk → Vk+1 is surjective, for all k ∈ {1, . . . , s− 1}.
Indeed, for all v ∈ V1 we have

Adexp(tX)v = eadtXv =
∞∑

k=0

tk

k!
adkXv

= v + t[X, v] +
t2

2
[X, [X, v]] +

t3

6
[X, [X, [X, v]]] + . . .

Therefore,

span
{

Adγ(t)[V1] : t ∈ [0, 1]
}
⊂ span{adkX [V1] : k ∈ {0, . . . , s}}.

Thanks to [20, Proposition 2.3] the left hand side is Lie(G), since γ is regular.

Hence, since adkX [V1] ⊂ Vk+1, then adkX [V1] = Vk+1 and we get (A.1). To
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conclude the proof of the theorem, it is enough to show that ifG is a stratified
group of step s such that (A.1) holds for all X ∈ V1 \ {0}, then s ≤ 2. If
s > 3, we can take the normal subgroup H = exp (

⊕s
i=4 Vi), so that the

quotient G/H is a stratified group of step 3. By taking a further quotient
we may assume that the third layer V3 has dimension 1. The quotient still
satisfies (A.1) for all X ∈ V1 \ {0}.

Therefore, we just need to show that there are no stratified groups of step
3 with dim(V3) = 1 that satisfy (A.1) for all X ∈ V1 \ {0}. Let r := dimV1.
Since for any X ∈ V1 \ {0} the map adX : V1 → V2 is surjective and has
non-trivial kernel, then m := dimV2 < r. Let Y1, . . . , Ym be a basis of V2.
Since V3 ' R, we can interpret each adYi as an element of (V1)

∗. Since
m < r, then span{adY1 , . . . , adYm}⊥ 6= {0}, i.e., there exists X ∈ V1 \ {0}
such that adYi(X) = 0 for all i ∈ {1, . . . ,m}. We get now a contradiction
with (A.1), because

{0} 6= V3 = adX(V2) = span{[X,Yi] : i ∈ {1, . . . ,m}} = {0}.
�
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Abstract. The paper is devoted to the large scale geometry of the
Heisenberg group H equipped with left-invariant Riemannian metrics.
We prove that two such metrics have bounded difference if and only if
they are asymptotic, i.e., their ratio goes to one, at infinity. Moreover,
we show that for every left-invariant Riemannian metric d on H there
is a unique subRiemanniann metric d′ for which d − d′ goes to zero
at infinity, and we estimate the rate of convergence. As a first imme-
diate consequence we get that the Riemannian Heisenberg group is at
bounded distance from its asymptotic cone. The second consequence,
which was our aim, is the explicit description of the horoboundary of
the Riemannian Heisenberg group.
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1. Introduction

In large-scale geometry, various notions of space at infinity have received
special interest for differently capturing the asymptotic geometric behavior.
Two main examples of spaces at infinity are the asymptotic cone and the
horoboundary. The description of the asymptotic cone for finitely gener-
ated groups is a crucial step in the algebraic characterization of groups of
polynomial growth, [21, 30, 13, 34, 23, 3]. The notion of horoboundary has
been formulated by Gromov [12], inspired by the seminal work of Busemann
on the theory of parallels on geodesic spaces [6]. The horoboundary has a
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fully satisfying visual description in the framework of CAT (0)-spaces and
of Gromov-hyperbolic spaces, [11, 2, 4]. It plays a major role in the study
of dynamics and rigidity of negatively curved spaces, [15, 22, 11, 29, 24,
27]. The visual-boundary description breaks down for non-simply connected
manifolds [9] and when the curvature has variable sign, as we will make
evident for the Riemannian Heisenberg group.

This paper contributes to the study of the asymptotic geometry of the sim-
plest non-Abelian nilpotent group: the Heisenberg group. The asymptotic
cone of the Heisenberg group equipped with a left-invariant Riemannian met-
ric dR is the Heisenberg group equipped with a Carnot-Carathéodory metric
dCC , see [23] and also [3]. Our contribution is a finer analysis of the asymp-
totic comparison of dR and dCC . This leads to the explicit knowledge of the
(Riemannian) horoboundary. We remark that the Heisenberg group is not
hyperbolic, hence one does not consider its visual boundary.

We recall the definition of horoboundary. Let (X, d) be a metric space.
We consider the space of continuous real functions C (X) endowed with the
topology of uniform convergence on compact sets. We denote by C (X)/R
the quotient with respect to the subspace of constant functions. The map
x 7→ d(x, ·) induces an embedding X ↪→ C (X)/R. The horoboundary of
X is defined as ∂hX := X̄ \ X ⊂ C (X)/R. See Section 5 for a detailed
exposition.

The horoboundary has been investigated for finite-dimensional normed
vector spaces, [31], for Hilbert geometries, [32], and for infinite graphs [33].
For non-simply connected, negatively curved manifolds it has been studied
in [9]. Nicas and Klein computed the horoboundary of the Heisenberg group
when endowed with the Korany metric in [17], and with the metric dCC in
[18].

We will show that the horoboundary of the Heisenberg group endowed
with a left-invariant Riemannian metric dR coincides with the second case
studied by Nicas and Klein, see Corollary 1.4. This will be an immediate
consequence of our main result Theorem 1.3, which implies that the difference
dR − dCC converges to zero when evaluated on points (p, qn) with qn being
a sequence that leaves every compact set.

Remark 1.1. Another term for Carnot-Carathéodory metric is subRieman-
nian metric. In this paper we should discuss subRiemannian metrics that
may actually be Riemannian. Therefore we follow the convention that sub-
Riemannian geometry includes as a particular case Riemannian geometry.
This is in agreement with several established references in the field, see [1,
26, 16]. In the presence of a subRiemannian metric that is not Riemannian
we shall use the term strict subRiemannian.

1.1. Detailed results. The Heisenberg group H is the simply connected Lie
group whose Lie algebra h is generated by three vectors X,Y, Z with only
non-zero relation [X,Y ] = Z. A left-invariant Riemannian metric d on H is
determined by a scalar product g on h; a left-invariant strictly subRieman-
nian metric d is induced by a bracket generating plane V ⊂ h and a scalar
product g on V (see Section 2 for detailed exposition). In both cases we say
that d is subRiemannian with horizontal space (V, g), where dimV is either
2 or 3.
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We are interested in the asymptotic comparison between these metrics.
Given two left-invariant subRiemannian metrics d and d′ on H, we deal with
three asymptotic behaviors, in ascending order of strength, each of which
defines an equivalence relation among subRiemannian metrics:

(i) limd(p,q)→∞
d(p,q)
d′(p,q) = 1;

(ii) There exists c > 0 such that |d(p, q)− d′(p, q)| < c, for all p, q;
(iii) limd(p,q)→∞ |d(p, q)− d′(p, q)| = 0.
A first example of the implication (i) ⇒ (ii) was proved by Burago in

[5] for Zn-invariant metrics d on Rn, by showing that d and the associated
stable norm stay at bounded distance from each other. This result has been
extended quantitatively for Zn-invariant metrics on geodesic metric spaces
in [8]. Gromov and Burago asked for other interesting cases where the same
implication holds. Another well-known case where (i) is equivalent to (ii)
is that of hyperbolic groups. Beyond Abelian and hyperbolic groups, Krat
proved the equivalence for word metrics on the discrete Heisenberg group
H(Z), [19]. For general subFinsler metrics on Carnot groups it has been
proven in [3], following [28], that (i) is equivalent to the fact that the projec-
tions onto H/[H,H] of the corresponding unit balls coincide, see (c) below.
Our first result shows that this last condition is equivalent to each one of (i)
and (ii) in the case of the Heisenberg group endowed with subRiemannian
metrics.

Theorem 1.2. Let d and d′ be two left-invariant subRiemannian metrics on
H whose horizontal spaces are (V, g) and (V ′, g′) respectively. Let π : h →
h/[h, h] be the quotient projection and π̂ : H → h/[h, h] the corresponding
group morphism.

Then the following assertions are equivalent:
(a) there exists c > 0 such that |d(p, q)− d′(p, q)| < c, for all p, q;

(b) d(p,q)
d′(p,q) → 1 when d(p, q)→∞;

(c) π̂ ({p ∈ H : d(0, p) ≤ R}) = π̂ ({p ∈ H : d′(0, p) ≤ R}), for all R >
0, here 0 denotes the neutral element of H;

(d) π ({v ∈ V : g(v, v) ≤ 1}) = π ({v′ ∈ V ′ : g′(v′, v′) ≤ 1});
(e) there exists a scalar product ḡ on h/[h, h] such that both
π|V : (V, g)→ (h/[h, h], ḡ) and π|V ′ : (V ′, g′)→ (h/[h, h], ḡ)

are submetries, i.e., they map balls to balls.

Next, we prove that in every class of the equivalence relation (iii) there is
exactly one strictly subRiemannian metric. To every left-invariant subRie-
mannian metric d we define the associated asymptotic metric d′ as follows.
If d is Riemannian defined by a scalar product g on h, then d′ is the strictly
subRiemannian metric for which the horizontal space V is g-orthogonal to
[h, h] and the scalar product is g|V . If d is strictly subRiemannian, then
d′ = d.

Theorem 1.3. Let d and d′ be two left-invariant subRiemannian metrics on
H. Their associated asymptotic metrics are the same if and only if

(1) lim
d(p,q)→∞

|d(p, q)− d′(p, q)| = 0.
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Moreover, if (1) holds, then there is C > 0 such that

(2) |d(p, q)− d′(p, q)| ≤ C

d(p, q)
, ∀p, q ∈ H.

We remark that the estimate (2) in Theorem 1.3 is sharp, as we will show
in Remark 4.2.

The above result can be interpreted in terms of asymptotic cones. Namely,
if d is a left-invariant Riemannian metric on H and d′ is the associated
asymptotic metric, then (H, d′) is the asymptotic cone of (H, d). For the
analogous result in arbitrary nilpotent groups see [23]. By Theorem 1.3,
more is true: (H, d) is at bounded distance from (H, d′). Notice that this
consequence cannot be deduced by the similar results for discrete subgroups
of the Heisenberg group in [19] and [10], because the word metric is only
quasi-isometric to the Riemannian one. Moreover, we remark that there are
examples of nilpotent groups of step two that are not at bounded distance
from their asymptotic cone, see [3].

We now focus on the horoboundary. As a consequence of Theorem 1.3
and of the results of Klein-Nikas [18], we get:

Corollary 1.4. If dR is a left-invariant Riemannian metric on H with as-
sociated asymptotic metric dCC , then the horoboundary of (H, dR) coincides
with the horoboundary of (H, dCC); hence, it is homeomorphic to a 2-dimen-
sional closed disk D̄2.

More precisely, let g be the scalar product of dR on h and W ⊂ h the
orthogonal plane to [h, h]. Define the norm ‖w‖ :=

√
g(w,w) on W . Fix

a orthonormal basis (X,Y ) for W and set Z := [X,Y ] ∈ [h, h], so that
(X,Y, Z) is a basis of h. We identify h ' H via the exponential map, which
is a global diffeomorphism. So, we write p = w + zZ with w ∈ W and
z ∈ R for any point p ∈ H. We say that a sequence of points {pn}n∈N ⊂ H
diverges if it leaves every compact set. Moreover, we shall use the following
terminology for a diverging sequence of the form pn = wn + znZ:

(1) vertical divergence, if there exists M < ∞ such that ‖wn‖ < M for
all n;

(2) non-vertical divergence with quadratic rate ν ∈ [−∞,+∞], if wn di-
verges and1 limn→∞ zn

4‖wn‖2 = −ν.
Then, according to [18] (see Corollary 5.6, 5.9 and 5.13 therein), we deduce
the following description of the Riemannian horofunctions:
(v): a vertically diverging sequence pn = wn+ znZ converges to a horofunc-

tion h if and only if wn → w∞, and in this case

h(w + zZ) = ‖w∞‖ − ‖w∞ − w‖;
(nv): a non-vertically diverging sequence pn = wn+znZ with quadratic rate

ν converges to a horofunction h if and only if wn
‖wn‖ → ŵ, and then

h(w + zZ) = g(Rϑ(−ŵ), w)

1 From the paper [18], there is an extra 4 and a change of sign due to our different
choice of coordinates.
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where Rϑ is the anti-clockwise rotation in W of angle ϑ = µ−1(ν),
and µ : [−π, π]→ R is the extended Gaveau function

µ(ϑ) :=
ϑ− sinϑ cosϑ

sin2(ϑ)
.

Moreover, all the horofunctions of (H, dR) are of type (v) or (nv), by The-
orem 5.16 in [18]; it is also clear that neither is of both types.

In section 5 we will also determine the Busemann points of ∂h(H, dR), that
is those horofunctions obtained by points diverging along quasi-geodesics (see
Definition 5.1). We obtain, as in the subRiemannian case:

Corollary 1.5. The Busemann points of (H, dR) are the horofunctions of
type (nv) and can be identified to the boundary of the disk D̄2.

The paper is organized as follows. In Section 2 we introduce the main
objects and their basic properties. In Section 3 we estimate the difference
between any two strictly subRiemannian left-invariant metrics on H. In
Section 4 we compare any Riemannian left-invariant metric on H and its
associated asymptotic metric. At the end of the section we shall prove The-
orems 1.2 and 1.3. In Section 5 we concentrate on the horofunctions and
we prove Corollaries 1.4 and 1.5. Appendix A is devoted to the explicit
description of subRiemannian geodesics.

Acknowledgments. The initial discussions for this work were done at the
‘2013 Workshop on Analytic and Geometric Group Theory‘ in Ventotene.
We express our gratitude to the organizers: A. Iozzi, G. Kuhn and M. Sageev.
We also thank the anonymous referee for several improving suggestions.

2. Preliminaries

2.1. Definitions. The first Heisenberg group H is the connected, simply
connected Lie group associated to the Heisenberg Lie algebra h. The Heisen-
berg Lie algebra h is the only three dimensional nilpotent Lie algebra that
is not commutative. It can be proven that, for any two linearly indepen-
dent vectors X,Y ∈ h \ [h, h], the triple (X,Y, [X,Y ]) is a basis of h and
[X, [X,Y ]] = [Y, [X,Y ]] = 0.

We denote by ωH : TH → h the left-invariant Maurer-Cartan form.
Namely, denoting by 0 the neutral element of H and identifying h with T0H,
we have ωH(v) := dL−1p v for v ∈ TpH, where Lp is the left translation by p.

Let π : h → h/[h, h] be the quotient projection. Notice that h/[h, h] is a
commutative 2-dimensional Lie algebra. So the map π induces a Lie group
epimorphism π̂ : H→ h/[h, h] ' H/[H,H].

2.2. SubRiemannian metrics in H. Let V ⊂ h be a bracket generating
subspace. We have only two cases: either V = h or V is a plane and h =
V ⊕ [h, h]. In both cases the restriction of the projection π|V : V → h/[h, h]
is surjective. Let g be a scalar product on V and set the corresponding norm
‖v‖ :=

√
g(v, v) for v ∈ V .
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An absolutely continuous curve γ : [0, 1] → H is said to be horizontal if
ωH(γ′(t)) ∈ V for almost every t. For a horizontal curve we have the length

`(γ) :=

∫ 1

0
‖ωH(γ′(t))‖ dt.

A subRiemannian metric d is hence defined as

d(p, q) := inf {`(γ) : γ horizontal curve from p to q} .
SubRiemannian metrics on H are complete, geodesic, and left-invariant.

They are either Riemannian, when V = h, or strictly subRiemannian, when
dimV = 2. The pair (V, g) is called the horizontal space of d.

Since π|V : V → h/[h, h] is surjective, it induces a norm ‖·‖ on h/[h, h] such
that π : (V, ‖ · ‖)→ (h/[h, h], ‖ · ‖) is an submetry, i.e., for all w ∈ h/[h, h] it
holds ‖w‖ = inf{‖v‖ : π(v) = w}. Here we use the same notation for norms
on V and on h/[h, h], because there will be no possibility of confusion. The
norm on h/[h, h] is characterized by

(3) π ({v ∈ V : ‖v‖ ≤ R}) = {w ∈ h/[h, h] : ‖w‖ ≤ R},
for all R > 0.

Proposition 2.1. Let d be subRiemannian metric on H with horizontal space
(V, g). Then for all R > 0

π ({v ∈ V : ‖v‖ ≤ R}) = π̂ ({p ∈ H : d(0, p) ≤ R}) .
In particular, π̂ : (H, d) → (h/[h, h], ‖ · − · ‖) is a submetry, i.e., for all
v, w ∈ h/[h, h]

‖v − w‖ = inf{d(p, q) : π̂(p) = v, π̂(q) = w}.
Proof. ⊂ Let v ∈ V with ‖v‖ ≤ R. Set γ(t) := exp(tv). Then γ : [0, 1]→ H
is a horizontal curve with d(0, exp(v)) ≤ `(γ) = ‖v‖ ≤ R. Since π̂(exp(v)) =
π(v), then we have proven this inclusion.
⊃ Let p ∈ H with d(0, p) ≤ R and let γ : [0, T ] → H be a d-length-

minimizing curve from 0 to p parametrized by arc-length, so T = d(0, p).
Then π̂ ◦ γ : [0, T ]→ h/[h, h] is a curve from 0 to π(p) and

‖π̂(p)‖ ≤
∫ T

0
‖(π̂ ◦ γ)′(t)‖ dt

=

∫ T

0
‖π ◦ ωH(γ′(t))‖ dt

≤
∫ T

0
‖ωH(γ′(t))‖ dt

= `(γ) = d(0, p).

In the first equality we used the fact that π̂ is a morphism of Lie groups
and its differential is π, i.e., ωH/[H,H] ◦ dπ̂ = π ◦ ωH, where ωH/[H,H] is the
Mauer-Cartan form of H/[H,H]. �
Proposition 2.2. Let d, d′ be two subRiemannian metrics on H such that

lim
p→∞

d(0, p)

d′(0, p)
= 1.
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Then

(4) π̂ ({p ∈ H : d(0, p) ≤ R}) = π̂
(
{p ∈ H : d′(0, p) ≤ R}

)
.

Proof. Let ‖ · ‖ and ‖ · ‖′ be the norms on h/[h, h] induced by d and d′,
respectively. We will show that

(5) lim
v→∞

‖v‖
‖v‖′ = 1,

which easily implies ‖·‖ = ‖·‖′, because for any fixed v ∈ h/[h, h] one has 1 =

limt→∞
‖tv‖
‖tv‖′ = ‖v‖

‖v‖′ . Moreover, the equality (4) follows from Proposition 2.1
combined with (3) and (5).

Since both maps π̂ : (H, d)→ (h/[h, h], ‖ · ‖) and π̂ : (H, d′)→ (h/[h, h], ‖ ·
‖′) are submetries, for every v ∈ h/[h, h] there are pv, p′v ∈ H such that
π̂(pv) = π̂(p′v) = v, ‖v‖ = d(0, pv) and ‖v‖′ = d′(0, p′v).

Moreover it holds ‖v‖′ ≤ d′(0, pv) and ‖v‖ ≤ d(0, p′v), again because π̂ is
a submetry in both cases. Therefore

d(0, pv)

d′(0, pv)
≤ ‖v‖‖v‖′ ≤

d(0, p′v)
d′(0, p′v)

Finally, if v →∞, then both d(0, pv) and d(0, p′v) go to infinity as well. The
relation (5) is thus proven. �

2.3. Balayage area and lifting of curves. Let V ⊂ h be a two-dimensional
subspace with V ∩ [h, h] = {0}. Then [h, h] = [V, V ], i.e., V is bracket gener-
ating. Moreover, π|V : V → h/[h, h] is an isomorphism.

If ρ : [0, T ] → h/[h, h] is a curve with ρ(0) = 0, then there is a unique
ρ̃ : [0, T ]→ H such that

{
ρ̃(0) = 0,

ωH(ρ̃′(t)) = π|−1V (ρ(t)′).

Since (π ◦ ρ̃)′ = ρ′, then π ◦ ρ̃ = ρ. So, ρ̃ is called the lift of ρ.
The previous ODE system that defines ρ̃ can be easily integrated. Let

X,Y ∈ V be a basis, set Z := [X,Y ], so that (X,Y, Z) is a basis of h. Let
(x, y, z) = exp(xX + yY + zZ) be the exponential coordinates on H defined
by (X,Y, Z). Using the Backer-Campbell-Hausdorff formula, one shows that
X,Y, Z induce the following left-invariant vector fields on H:

X̂ = ∂x −
y

2
∂z, Ŷ = ∂y +

x

2
∂z, Ẑ = ∂z.

Thanks to these vector fields, we can describe the Maurer-Cartan form as

ωH(aX̂ + bŶ + cẐ) = aX + bY + cZ.

The lift of ρ is hence given by the ODE




ρ̃′1 = ρ′1,

ρ̃′2 = ρ′2,

ρ̃′3 = 1
2 (ρ1ρ

′
2 − ρ2ρ′1) .
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Take the coordinates (x, y) on h/[h, h] given by the basis (π(X), π(Y )) and
define the balayage area of a curve ρ : [0, T ]→ h/[h, h] as

(6) A (ρ) =
1

2

∫

ρ
(x dy − y dx).

If ρ(0) = 0, then the balayage area of ρ corresponds to the signed area
enclosed between the curve ρ and the line passing through 0 and ρ(T ).

It follows that
ρ̃(t) =

(
ρ1(t), ρ2(t),A (ρ|t0)

)
.

In an implicit form we can write

(7) ρ̃(t) = exp
(
(π|V )−1(ρ(t)) + A (ρ|t0)Z

)
.

Notice that the lift ρ̃ of a curve ρ depends on the choice of V . Moreover,
both the area and the Balayage area in h/[h, h] depend on the choice of the
basis (X,Y ). Nevertheless, once a plane V ⊂ h is fixed, the lift ρ̃ does not
depend on the choice of the basis X,Y .

If g is a scalar product on V and d is the corresponding strictly sub-
Riemannian metric, the balayage area gives a characterization of d-length-
minimizing curves. Let ḡ be the scalar product on h/[h, h] induced by g.
Then the d-length of a curve ρ̃ : [0, T ]→ H equals the length of ρ = π ◦ ρ̃.

Therefore, given p = (x, y, z) ∈ H, we have

d(0, p) = inf {`(ρ) : ρ : [0, 1]→ h/[h, h], ρ(0) = 0, ρ(1) = π̂(p),A (ρ) = z} .
This express the so-called Dido’s problem in the plane, and the solutions are
arc of circles. It degenerates into a line if z = 0. We can summarize the last
discussion in the following result.

Lemma 2.3. A curve ρ̃ : [0, 1] → H is d-length-minimizing from 0 to p =
(x, y, z) if and only if ρ := π̂ ◦ ρ̃ is an arc of a circle from 0 to π̂(p) with
A (ρ) = z.

3. Comparison between strictly subRiemannian metrics

The present section is devoted to comparing strictly subRiemannian met-
rics. For such metrics, Proposition 3.1 gives the only non-trivial implication
in Theorem 1.2. The general case will follow from Proposition 4.1.

Proposition 3.1. Let d and d′ be two strictly subRiemannian metrics on
H with horizontal spaces (V, g) and (V ′, g′), respectively. Suppose that there
exists a scalar product ḡ on h/[h, h] such that both

π|V : (V, g)→ (h/[h, h], ḡ) and π|V ′ : (V ′, g′)→ (h/[h, h], ḡ)

are submetries.
Then

(8) sup
p∈H
|d(0, p)− d′(0, p)| <∞.

Moreover, if d 6= d′, then

(9) lim sup
p→∞

|d(0, p)− d′(0, p)| > 0.
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In the proof we will give the exact value of the supremum in (8). Indeed,
by (11) and (12), we get supp∈H |d(0, p)− d′(0, p)| = 2|h|, where h is defined
below. For (8), we will first prove that two of such subRiemannian metrics
are isometric via a conjugation x 7→ gxg−1 for some g ∈ H and then we
apply Lemma 3.2. For (9), we will give a sequence pn → ∞ and a constant
c > 0 such that |d(0, pn)− d′(0, pn)| > c for all n ∈ N.

3.1. Proof of (8). Since dimV = dimV ′ = 2, then π|V and π|V ′ are isomor-
phisms. Therefore by the assumption they are isometries onto (h/[h, h], ḡ).

Let X ∈ V ∩ V ′ be with g(X,X) = 1. Then g′(X,X) = 1 as well.
Let Y ∈ V be orthogonal to X with g(Y, Y ) = 1. Then Z := [X,Y ] 6= 0

and (X,Y, Z) is a basis of h.
Let Y ′ := π|−1V ′ (π(Y )) ∈ V ′. Then g′(Y ′, Y ′) = 1 and g′(X,Y ′) = 0.

Moreover, there is h ∈ R such that Y ′ = Y +hZ. In particular, [X,Y ′] = Z.
Using the formula Adexp(hX)(v) = eadhXv = v + h[X, v], we notice that

(10)





Adexp(hX)(X) = X,

Adexp(hX)(Y ) = Y ′,

Adexp(hX)(Z) = Z.

In particular Adexp(hX)|V : (V, g)→ (V ′, g′) is an isometry.
Therefore, the conjugation

Cexp(hX)(p) := exp(hX) · p · exp(hX)−1

is an isometry Cexp(hX) : (H, d)→ (H, d′).
We can now use the following Lemma 3.2 and get

(11) sup
p∈H
|d(0, p)− d′(0, p)| ≤ 2|h|.

Lemma 3.2. Let G be a group with neutral element e and let d, d′ be two
left-invariant distances on G. If there is g ∈ G such that for all p ∈ G

d′(e, p) = d(e, gpg−1),

then for all p ∈ G
|d(e, p)− d′(e, p)| ≤ 2 min{d(e, g), d′(e, g)}.

Proof. Note that, since d is left invariant, then for all a, b ∈ G we have
d(e, ab) ≤ d(e, a) + d(e, b) and d(e, a) = d(e, a−1). On the one side, we
have d′(e, p) = d(e, gpg−1) ≤ d(e, p) + 2d(e, g). On the other side, we have
d(e, p) = d(e, g−1gpg−1g) ≤ d(e, g−1) + d(e, gpg−1) + d(e, g) = 2d(e, g) +
d′(e, p). Hence |d(e, p) − d′(e, p)| ≤ 2d(e, g). By symmetry, we have also
|d(e, p)− d′(e, p)| ≤ 2d′(e, g). �

3.2. Proof of (9). We keep the same notation of the previous subsection.
Up to switching V with V ′, we can assume h > 0.

Let (x, y, z) be the exponential coordinates on H induced by the basis
(X,Y, Z) of h, i.e., (x, y, z) = exp(xX + yY + zZ) ∈ H. Similary, on h/[h, h]
we have coordinates (x, y) = xπ(X) + yπ(Y ).
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For R > 0, define

pR :=

(
0, 2R,

πR2

2
+ 2hR

)
.

We will show that

(12) lim
R→∞

d(0, pR)− d′(0, pR) = 2h.

Fix R > 0. Let γ : [0, T ] → H be a d′-minimizing curve from 0 to pR.
Then π̂ ◦ γ : [0, T ]→ h/[h, h] is half circle of center (0, R) and radius R. The
balayage area of π̂ ◦ γ is

A (π̂ ◦ γ) =
πR2

2
.

Let η : [0, T ] → H be the d-length-minimizing curve from 0 to pR. Then
π̂ ◦ η : [0, T ]→ h/[h, h] is an arc of a circle of radius SR whose balayage area
is

(13) A (π̂ ◦ η) =
πR2

2
+ 2Rh = A (π̂ ◦ γ) + 2Rh.

It is clear that SR > R and that the circle of π̂ ◦ η has center (µR, R) for
some µR > 0. So we have

S2
R = R2 + µ2R.

It is also clear from the picture that

(14)
πS2

R

2
+ 2RµR ≤ A (π̂ ◦ η) ≤ πS2

R

2
+ 2SRµR.

Now, let’s look at the lengths. First of all, notice that `d′(γ) = `(π̂ ◦ γ)
and `d(η) = `(π̂ ◦ η). For one curve we have

`(π̂ ◦ γ) = πR,

Figure 1. Curves in h/[h, h] for the proof of (9).
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for the other we have the estimate

πSR + 2µR ≤ `(π̂ ◦ η),

which is clear from the picture. Hence

lim inf
R→∞

d(0, p)− d′(0, p) = lim inf
R→∞

`(π̂ ◦ η)− `(π̂ ◦ γ)

≥ lim
R→∞

πSR + 2µR − πR
= lim

R→∞
π(SR −R) + 2µR.

We claim that

(15) lim
R→∞

π(SR −R) + 2µR = 2h.

Let us start by checking that,

(16) µR < h.

Indeed, from the first inequality of (14) together with (13) it follows

πS2
R

2
+ 2RµR ≤

πR2

2
+ 2hR.

Since SR > R, then

0 <
πS2

R

2
− πR2

2
≤ 2R(h− µR),

i.e., the inequality (16).
From the second inequality of (14) together with (13) we get

πR2

2
+ 2Rh ≤ πS2

R

2
+ 2SRµR.

Using the facts µR ≤ h and SR ≤ R+µR ≤ R+h, from the above inequality
one gets

0 ≤ 2(h− µR) ≤ (SR −R)
1

R

(π
2

(SR +R) + 2µR

)

≤ (SR −R)

(
π +

h

R
(
π

2
+ 2)

)
(17)

Moreover, since h2 ≥ µ2R = S2
R −R2 = (SR −R)(SR +R), we also have

(18) lim
R→∞

(SR −R) = 0.

Finally, from (18) and (17) we obtain (15), as claimed. This completes
the proof of (12) and of Proposition 3.1.

4. Comparison between Riemannian and strictly subRiemannian
metrics

Let dR be a Riemannian metric on H with horizontal space (h, g).
Let V ⊂ h be the plane orthogonal to [h, h] and let dCC be the strictly

subRiemannian metric on H with horizontal space (V, g|V ).
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Fix a basis (X,Y, Z) for h such that (X,Y ) is an orthonormal basis of
(V, g|V ) and Z = [X,Y ]. The matrix representation of g with respect to
(X,Y, Z) is

g =




1 0 0
0 1 0
0 0 ζ2




where ζ > 0.
Let dCC be the strictly subRiemannian metric on H with horizontal space

(V, g|V ).
Our aim in this section is to prove the following proposition.

Proposition 4.1. If dCC(0, p) is large enough, then:

(19) 0 ≤ dCC(0, p)− dR(0, p) ≤ 4π2

ζ2
1

dCC(0, p)− 23/2π
ζ

.

In particular it holds

(20) lim
p→∞

|dCC(0, p)− dR(0, p)| = 0.

For the proof of this statement, we need to know length-minimizing curves
for dR and dCC , and a few properties of those, see the exposition in the
Appendix A.

Proof. Let (x, y, z) be the exponential coordinates on H induced by the basis
(X,Y, Z) of h, i.e., (x, y, z) = exp(xX+yY +zZ) ∈ H. Fix p = (p1, p2, p3) ∈
H.

Notice that both dR and dCC are generated as length metrics using the
same length measure `, with the difference that dR minimizes the length
among all the curves, while dCC takes into account only the curves tangent
to V . This implies that

∀p, q ∈ H dCC(p, q) ≥ dR(p, q),

therefore we get the first inequality in (19). We need to prove the second
inequality of (19).

If p ∈ {z = 0}, then dCC(0, p) = dR(0, p) by Corollary A.7, and the claim
is true.

Suppose p /∈ {z = 0} and let γ : [0, T ] → H be a dR-length minimizing
curve from 0 = γ(0) to p = γ(T ). Since p /∈ {z = 0} and since we supposed
that dCC(0, p) is large enough, then by Corollary A.5 we can parametrize
γ in such a way that γ is exactly in the form expressed in Type II in
Proposition A.2 for some k > 0 and θ ∈ R.

By Corollary A.4 it holds

(21) kT ≤ 2π.

Moreover, by Corollary A.8

(22) dR(0, p) = ‖ωH(γ′)‖ · T =

√
1 +

k2

ζ2
· T.
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Figure 2. Curves for Case 1 and Case 2.

Let η : [0, T ] → H be the dCC-length-minimizing curve corresponding to
γ as shown in Corollary A.8. Then we know that dCC(0, η(T )) = `(η) = T ,
and

(23) p = γ(T ) = η(T ) + (0, 0,
kT

ζ2
).

Hence by Corollary A.8 and (21)

dCC(0, p) ≤ dCC(0, η(T )) + dCC(η(T ), γ(T )) ≤ T +
23/2π

ζ
,

i.e.,

(24)
1

T
≤ 1

dCC(0, p)− 23/2π
ζ

.

Since η is a dCC-rectifiable curve, then η(T )3 = A (π̂ ◦ η), where η(T )3
is the third coordinate of the point in the exponential coordinates. Since
π̂ ◦ γ = π̂ ◦ η, then we have by (23)

(25) p3 = A (π̂ ◦ γ) +
kT

ζ2
.

Notice that π̂ ◦ γ is an arc of a circle in h/[h, h] of radius 1
k , see Proposi-

tion A.2.
Now we want to define a horizontal curve ρ̃ : [−ε, T + ε]→ H, where ε > 0

has to be chosen, such that ρ̃(−ε) = 0 and ρ̃(T + ε) = p. We first define a
curve ρ : [−ε, T + ε]→ h/[h, h] and then take its lift to H.

For the definition of ρ we follow two different strategies for two different
cases:

Case 1. Suppose that π̂◦γ doesn’t cover the half of the circle, i.e., T ≤ π
k .

Set λ = π̂(p) ∈ h/[h, h]. Then T is smaller than the circle of diameter ‖λ‖,
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i.e.,

(26) ‖λ‖ ≥ T

π
.

Let λ⊥ ∈ h/[h, h] be the unit vector perpendicular to λ and forming an angle
smaller than π/2 with the arc π̂ ◦ γ. Let ε > 0 such that

(27) ε · ‖λ‖ =
kT

ζ2
.

Now, define ρ : [−ε, T + ε]→ h/[h, h] as

ρ(t) =





(t+ ε)λ⊥ for − ε ≤ t ≤ 0

ελ⊥ + π̂ ◦ γ(t) for 0 ≤ t ≤ T
ελ⊥ + π̂ ◦ γ(T )− (t− T )λ⊥ for T ≤ t ≤ T + ε

Notice that

A (ρ) = A (π̂ ◦ γ) + ε · ‖λ‖ = A (π̂ ◦ γ) +
kT

ζ2
(25)
= p3

and that ρ(T+ε) = π̂◦γ(T ) = π̂(p). Then the horizontal lift ρ̃ : [−ε, T+ε]→
H of ρ is a dCC-rectifiable curve from 0 to p.

Case 2. Suppose that π̂ ◦ γ covers more than half of the circle. Let
λ ∈ h/[h, h] be the diameter of the circle that contains 0. Since T is shorter
than the whole circle, then

(28) ‖λ‖ ≥ T

π
.

Let λ⊥ be the unit vector perpendicular to λ and forming an angle smaller
than π/2 with the arc π̂ ◦ γ. Let ε > 0 be such that

(29) ε · ‖λ‖ =
kT

ζ2
.

Now, define ρ : [−ε, T + ε]→ h/[h, h] as

ρ(t) =





(t+ ε)λ⊥ for − ε ≤ t ≤ 0

ελ⊥ + π̂ ◦ γ(t) for 0 ≤ t ≤ π‖λ‖
2

ελ⊥ + λ− (t− π‖λ‖
2 )λ⊥ for π‖λ‖

2 ≤ t ≤ π‖λ‖
2 + ε

π̂ ◦ γ(t− ε) for π‖λ‖
2 + ε ≤ t ≤ T + ε

where we used the fact λ = π̂ ◦ γ(π‖λ‖2 ). Notice that

A (ρ) = A (π̂ ◦ γ) + ε · ‖λ‖ = A (π̂ ◦ γ) +
kT

ζ2
= p3.

Then the horizontal lift ρ̃ : [−ε, T + ε] → H of ρ is a dCC-rectifiable curve
from 0 to p.

In both cases ρ̃ is a horizontal curve from 0 to p of length

(30) `(ρ̃) = T + 2ε
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Moreover, from (26) and (27) (respectively (28) and (29)) we get

(31) ε =
kT

ζ2‖λ‖ ≤
kT

ζ2
π

T

(21)
≤ 2π

ζ2
π

T
=

2π2

ζ2T

Finally using in order (22), (30), (31), (24)

dCC(0, p)− dR(0, p) ≤ `(ρ̃)−
√

1 +
k2

ζ2
· T ≤

≤ T + 2ε−
√

1 +
k2

ζ2
· T ≤ 2ε ≤ 2

2π2

ζ2T
≤ 4π2

ζ2
1

dCC(0, p)− 23/2π
ζ

.

�
Remark 4.2. The inequality (2) is sharp. Indeed, for z →∞, we have the
asymptotic equivalence

(32) dCC(0, (0, 0, z))− dR(0, (0, 0, z)) ∼ 4π2

ζ2
1

dCC(0, (0, 0, z))
.

Proof of (32). We claim that, for z > 0 large enough,

(33) dR(0, (0, 0, z)) = 2
√
π

√
z − π

ζ2
.

Let γ : [0, T ]→ H be a dR-length-minimizing curve from 0 to (0, 0, z). Since
z is large, we assume that γ is of (Type II), see Proposition A.2, for some
k > 0 and θ = 0. Since the end point is on the Z axis, we have

(34) kT = 2π

and z = T
2k + kT

ζ2
, from which follows

(35) T 2 = 4π

(
z − 2π

ζ2

)
.

We know also the length of γ (see Corollary A.8) and so we get

dR(0, (0, 0, z)) = `(γ) = T‖ωH(γ′)‖ = T

√
1 +

k2

ζ2
=

√
T 2 +

4π2

ζ2

=

√
4π

(
z − 2π

ζ2

)
+

4π2

ζ2
= 2
√
π

√
z − π

ζ2
.

Claim (33) is proved. From Corollary A.6 we get dCC(0, (0, 0, z)) = 2
√
π
√
z

and

dCC(0, (0, 0, z))− dR(0, (0, 0, z)) = 2
√
π

(√
z −

√
z − π

ζ2

)

=
2
√
π√
z

π
ζ2

1 +
√

1− π
ζ2z

=
1

2
√
π
√
z

4π2

ζ2
1

1 +
√

1− π
ζ2z

.

�
We are now ready to give the proof of the main theorems:
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Proof of Theorem 1.2. The implication (a)⇒ (b) is trivial. The implication
(b) ⇒ (c) is proven in Proposition 2.2. The equivalence (c) ⇔ (d) follows
from Proposition 2.1. The assertion (e) is a restatement of (d). For (d)⇒ (a)
one uses Proposition 4.1 in order to reduce to the case when both d and d′
are strictly subRiemannian and then one applies Proposition 3.1. �

Proof of Theorem 1.3. This is a consequence of Propositions 4.1 and of the
sharpness result (9) of Proposition 3.1. �

5. The horoboundary

Let (X, d) be a geodesic space and C (X) the space of continuous functions
X → R endowed with the topology of the uniform convergence on compact
sets. The map ι : X ↪→ C (X), (ι(x))(y) := d(x, y), is an embedding, i.e., a
homeomorphism onto its image.

Let C (X)/R be the topological quotient of C (X) with kernel the constant
functions, i.e., for every f, g ∈ C (X) we set the equivalence relation f ∼ g ⇔
f − g is constant.

Then the map ι̂ : X ↪→ C (X)/R is still an embedding. Indeed, since the
map C (X)→ C (X)/R is continuous and open, we only need to show that ι̂
is injective: if x, x′ ∈ X are such that ι(x)− ι(x′) is constant, then one takes
z ∈ Z such that d(x, z) = d(x′, z), which exists because (X, d) is a geodesic
space, and checks that

d(x, x′) = ι(x)(x′)− ι(x′)(x′) = ι(x)(z)− ι(x′)(z) = 0.

Define the horoboundary of (X, d) as

∂hX := cl(ι̂(X)) \ ι̂(X) ⊂ C (X)/R,

where cl(ι̂(X)) is the topological closure.
Another description of the horoboundary is possible. Fix o ∈ X and set

C (X)o := {f ∈ C (X) : f(o) = 0}.
Then the restriction of the quotient projection C (X)o → C (X)/R is an
isomorphism of topological vector spaces. Indeed, one easily checks that it
is both injective and surjective, and that its inverse map is [f ] 7→ f − f(o),
where [f ] ∈ C (X)/R is the class of equivalence of f ∈ C (X).

Hence, we can identify ∂hX with a subset of C (X)o. More explicitly:
f ∈ C (X)o belongs to ∂hX if and only if there is a sequence pn ∈ X such
that pn → ∞ (i.e., for every compact K ⊂ X there is N ∈ N such that
pn /∈ K for all n > N) and the sequence of functions fn ∈ C (X)o,

(36) fn(x) := d(pn, x)− d(pn, o),

converge uniformly on compact sets to f .

Proof of Corollary 1.4. Let us first remark that if d, d′ are two geodesic dis-
tances on X and

(37) lim
d(p,q)+d′(p,q)→∞

|d′(p, q)− d(p, q)| = 0.

then
∂h(X, d′) = ∂h(X, d).
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Indeed, first of all the space C (X)o depends only on the topology of X.
Moreover, if f ∈ ∂h(X, d), let pn ∈ X be a sequence as in (36) and set
f ′n(x) := d′(pn, x)− d′(pn, o). Then

|f ′n(x)− fn(x)| ≤ |d′(pn, x)− d(pn, x)|+ |d′(pn, o)− d(pn, o)|,
and as a consequence of (37) we get f ′n → f uniformly on compact sets. This
shows ∂h(X, d) ⊂ ∂h(X, d′). The other inclusion follows by the simmetry of
(37) in d and d′.
Now, if dR and dCC are metrics on H like in Corollary 1.4, then (37) is easily
satisfied thanks to Theorem 1.3, and therefore ∂h(H, dR) = ∂h(H, dCC) if the
Riemannian metric dR and the subRiemannian metric dCC are compatible.
The conclusion follows from [18]. �

The Busemann points in the boundary ∂h(X, d) are usually defined as
the horofunctions associated to sequences of points (pn) diverging to infinity
along rays or “almost geodesic rays”. However, in literature there are different
definitions of almost geodesic rays, according to the generality of the metric
space (X, d) under consideration ([14], [25], [9]). A map γ : I = [0,+∞) →
(X, d) into a complete length space is called
• a quasi-ray, if the length excess

∆N (γ) = sup
t,s∈[N,+∞)

`(γ; t, s)− d(γ(t), γ(s))

tends to zero for N → +∞;
• an almost geodesic ray, if

ΘN (γ) = sup
t,s∈[N,+∞)

d(γ(t), γ(s)) + d(γ(s), γ(0))− t

tends to zero for N → +∞.
(Notice that the second definition depends on the parametrization, while the
first one is intrinsic). We will use here a notion of Busemann points which
is more general than both of them:

Definition 5.1. A sequence of points (pn) diverging to infinity in (X, d) is
said to diverge almost straightly if for all ε > 0 there exists L such that for
every n ≥ m ≥ L we have

(38) d(pL, pm) + d(pm, pn)− d(pL, pn) < ε

It is easy to verify that points diverging along a quasi-ray or along an almost-
geodesic ray diverge almost straightly. We then define a Busemann point as a
horofunction f which is the limit of a sequence
fn(x) = d(pn, x) − d(pn, o), for points (pn) diverging to infinity almost
straightly.

To prove Corollary 1.5, we need the following lemma. We remind that a
metric space is boundedly compact if closed balls are compact.

Lemma 5.2. Let (X, d) be a boundedly compact geodesic space, o ∈ X and
{pn}n∈N ⊂ X a sequence of points diverging almost straightly. Then:

(i) the sequence fn(x) = d(pn, x)−d(pn, o) converges uniformly on com-
pacts to a horofunction f ;

(ii) limn→∞ f(pn) + d(o, pn) = 0.
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Proof. Since the 1-Lipschitz functions fn are uniformly bounded on com-
pact sets and (X, d) is boundedly compact, then the family {fn}n∈N is pre-
compact with respect to the uniform convergence on compact sets. Hence,
if we prove that there is a unique accumulation point, then we obtain that
the whole sequence {fn}n∈N converges.

So, let g, g′ ∈ C (X) and let {fnk
}k∈N and {fn′

k
}k∈N be two subsequences

of {fn}n∈N such that fnk
→ g and fn′

k
→ g′ uniformly on compact sets. We

claim

(39) ∀ε > 0 ∃Rε ∈ R ∀x ∈ X |g′(x) +Rε − g(x)| ≤ ε.
Let ε > 0. Let L ∈ N be such that (38) holds for every n ≥ m ≥ L. Define
for x ∈ X

gL(x) := lim
k→∞

d(pnk
, x)− d(pnk

, pL) = g(x)− g(pL)

g′L(x) := lim
k→∞

d(pn′
k
, x)− d(pn′

k
, pL) = g′(x)− g′(pL).

Then for ni ≥ n′j ≥ L, we get for all x ∈ X

d(pni , x)− d(pni , pL)− d(pn′
j
, x) + d(pn′

j
, pL)

≤ d(pni , pn′
j
)− d(pni , pL) + d(pn′

j
, pL) ≤ ε.

By taking the limit i→∞ and j →∞, we obtain for all x ∈ X
gL(x)− g′L(x) ≤ ε.

By the symmetry of the argument, also g′L(x)− gL(x) ≤ ε holds. Therefore
for all x ∈ X

ε ≥ |g′L(x)− gL(x)| = |g′(x)− g(x) + g(pL)− g′(pL)|.
Setting Rε = g(pL)− g′(pL), we conclude the proof of claim (39).

It is now easy to conclude (i) from (39). Indeed, taking x = o, we have
|Rε| ≤ ε, therefore for all ε > 0 and for all x ∈ X |g(x) − g′(x)| ≤ 2ε, i.e.,
g = g′. This completes the proof of (i).

To prove assertion (ii), fix ε > 0 and let L ∈ N be as above. Then we have
for all n ≥ m ≥ L

0 ≤ d(pm, pn)− d(pn, o) + d(pm, o)

= d(pm, pn) + d(pL, pm)− d(pL, pn) +

+ d(pL, pn)− d(pn, o)− d(pL, pm) + d(pm, o)

≤ ε+ d(pL, pn)− d(pn, o)− d(pL, pm) + d(pm, o).

Taking first the limit n→∞ and then m→∞ in the above lines, we obtain
the estimate

0 ≤ lim inf
m→∞

f(pm) + d(pm, o)

≤ lim sup
m→∞

f(pm) + d(pm, o) ≤ ε+ f(pL)− f(pL) = ε.

Since ε > 0 is arbitrary, then (ii) holds true. �

Then, the proof of Corollary 1.5 runs similarly to Theorem 6.5 of [18].
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Proof of Corollary 1.5. The horofunctions of type (nv) clearly are Buse-
mann points, as they are limits, in particular, of the Riemannian geodesic
rays which are the horizontal half-lines issued from the origin and which are
always minimizing, see Proposition A.2 and Corollary A.3 in the Appen-
dix. On the other hand, consider a horofunction of type (v), hu = (v, z) =
|u| − |u − v|, for u ∈ W . Assume that there exists an almost straightly
diverging sequence of points pn = vn+znZ converging to hu. By Lemma 5.2
(ii), we deduce that

lim
n→∞

fu(pn) + dR(o, pn) = lim
n→∞

|u| − |u− vn|+ dR(o, pn) = 0,

hence {vn}n∈N is necessarily an unbounded sequence. By Corollary 1.4 and
the following description of horofunctions, it follows that hu should be of
type (nv), a contradiction. �

5.0.1. Concluding remarks. The Riemannian Heisenberg group shows a num-
ber of counterintuitive features which is worth to stress:
(i) in view of Corollary 1.4, all Riemannian metrics on H with the same as-
sociated asymptotic metric have the same Busemann functions, though they
are not necessarily isometric (in contrast, notice that all strictly subRieman-
nian metrics on H are isometric). However, this is not surprising, because
all left-invariant Riemannian metrics on H are homothetic.

(ii) there exist diverging sequences of points {pn}n∈N that visually converge
to a limit direction v (that is, the minimizing geodesics γn from o to pn
tend to a limit, minimizing geodesic γv with initial direction v), but whose
associated limit point h{pn} is not given by the limit point γv(+∞) of γv.
This happens for all vertically divergent sequences {pn}n∈N, as the limit
geodesic γv is horizontal in this case (see Proposition A.2 and Corollary A.4
in the Appendix).

(iii) there exist diverging trajectories {pn}n∈N, {qn}n∈N staying at bounded
distance from each other, but defining different limit points (e.g., vertically
diverging sequences of points with different limit horofunctions).

(iv) it is not true that, for a cocompact group of isometries G of (H, dR),
the limit set of G (which is the set of accumulation points of an orbit Gx0
in ∂(H, dR)) equals the whole Gromov boundary; for instance, the discrete
Heisenberg group G = H(Z), has a limit set equal to the set of all Busemann
points, plus a discrete subset of the interior of the disk boundary D̄2. Also,
the limit set may depend on the choice of the base point x0 ∈ H.

(v) The functions appearing in (nv) coincide with the Busemann functions of
a Euclidean plane in the direction Rϑ(v̂∞); that is, the horofunction h(v, z)
associated to a diverging sequence Pn = (vn, zn) of (H, dR) is obtained just
by dropping the vertical component z of the argument, and then applying to
v the usual Euclidean Busemann function in the direction which is opposite
to the limit direction of the vn’s, rotated by an angle ϑ depending on the
quadratic rate of divergence of the sequence (ϑ is zero for points diverging
sub-quadratically, and ϑ = ±π when the divergence is sup-quadratical).
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These properties mark a remarkable difference to the theory of nonposi-
tively curved, simply connected spaces.

Appendix A. Length-minimizing curves for dCC and dR

In the Heisenberg group, locally length-minimizing curves are smooth so-
lutions of an Hamiltonian system both in the Riemannian and in the subRie-
mannian case. Locally length-minimizing curves are also called geodesics.

Let dR be a Riemannian metric on H with horizontal space (h, g). Let V ⊂
h be the plane orthogonal to [h, h] and let dCC be the strictly subRiemannian
metric on H with horizontal space (V, g|V ).

Fix a basis (X,Y, Z) for h such that (X,Y ) is an orthonormal basis of
(V, g|V ) and Z = [X,Y ]. Set ζ =

√
g(Z,Z). The basis (X,Y, Z) induces the

exponential coordinates (x, y, z) on H, i.e., (x, y, z) = exp(xX + yY + zZ).
We will work in this coordinate system.

The Riemannian and subRiemannian length-minimizing curves are known
and we recall their parametrization in the following two propositions. Sub-
Riemannian geodesics can be found with different notation in [7]. Riemann-
ian geodesics are found in [20], in different coordinates and with parametriza-
tion by arc-length.

Proposition A.1 (subRiemannian geodesics). All the non-constant locally
length-minimizing curves of dCC starting from 0 and parametrized by arc-
length are the following: given k ∈ R \ {0} and θ ∈ R

(Type I) The horizontal lines t 7→ (t cos θ, t sin θ, 0);
(Type II) The curves t 7→ (x(t), y(t), z(t)) given by





x(t) =
1

k
(cos θ(cos(kt)− 1)− sin θ sin(kt))

y(t) =
1

k
(sin θ(cos(kt)− 1) + cos θ sin(kt))

z(t) =
1

2k
t− 1

2k2
sin(kt).

Here the derivative at t = 0 is (− sin θ, cos θ, 0).

Proposition A.2 (Riemannian geodesics). All non-constant locally length-
minimizing curves of dR parametrized by a multiple of arc-length and starting
from 0 are the following: given k ∈ R \ {0} and θ ∈ R

(Type 0) The vertical line t 7→ (0, 0, t);
(Type I) The horizontal lines t 7→ (t cos θ, t sin θ, 0);

(Type II) The curves t 7→ (x(t), y(t), z(t)) given by




x(t) =
1

k
(cos θ(cos(kt)− 1)− sin θ sin(kt))

y(t) =
1

k
(sin θ(cos(kt)− 1) + cos θ sin(kt))

z(t) =
1

2k
t− 1

2k2
sin(kt) +

k

ζ2
t.

Here the derivative at t = 0 is (− sin θ, cos θ, k
ζ2

), which has Rie-

mannian length
√

1 + k2

ζ2
.
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The expression of geodesics helps us to prove the following facts.

Corollary A.3. The horizontal lines of Type I are globally dR- and dCC-
length-minimizing curves.

Corollary A.4. Both dR- and locally dCC-length-minimizing curves γ of
Type II are not minimizing from 0 to γ(t) if |t| > 2π

k .

Proof. This statement depends on the fact that in both cases, if we fix k ∈
R \ {0}, then for all θ the corresponding length-minimizing curves γk,θ of
Type II meet each other at the point γk,θ(2π/k). �

Corollary A.5. The locally dR-length-minimizing curve γ of Type 0, t 7→
(0, 0, t), is not minimizing from 0 to γ(t) for |t| > 2π

ζ2
.

Proof. For k > 0 let γk be the dR-length-minimizing curve of Type II with
this k and θ = 0. Then (γk)3(

2π
k ) = π

k2
+ 2π

ζ2
. Letting k → ∞ we obtain

ẑ := 2π
ζ2
. This means that for every ε > 0 there is z ≤ ẑ + ε and k > 0 such

that γk(2πk ) = (0, 0, z). Therefore t 7→ (0, 0, t) cannot be minimizing after z,
and therefore after ẑ. �

Corollary A.6. If p = (x, y, p3) and q = (x, y, q3), then

dCC(p, q) = 2
√
π ·
√
|p3 − q3|.

Proof. First suppose p = 0: we have to prove that dCC(0, (0, 0, z)) = 2
√
π
√
|z|.

This is done by looking at the length-minimizing curves: they come from
complete circle of perimeter 2πR = d and area πR2 = |z|, so that we have

dCC(0, (0, 0, z)) = 2π

√
|z|
π = 2

√
π
√
|z|. The general case follows from the

left-invariance of dCC :

dCC((x, y, p3), (x, y, q3)) = dCC(0, (x, y, p3)
−1(x, y, q3))

= dCC(0, (0, 0, q3 − p3)).
�

Corollary A.7. If p ∈ {z = 0}, then
dCC(0, p) = dR(0, p)

Corollary A.8. dR- and dCC-length-minimizing curves of Type II are in
bijection via the following rule: If η : [0, T ]→ H is a dCC-length-minimizing
curve of Type II, then

γ(t) = η(t) +

(
0, 0,

kt

ζ2

)

is dR-length-minimizing of Type II, where k ∈ R is given by η. Moreover,
it holds

‖ωH(γ′)‖2 = 1 +
k2

ζ4

and

dCC(γ(t), η(t)) = 2
√
π

√
kt

ζ2
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Proof. All the statements come directly from the expression of the geodesics.
Notice that a dCC-length-minimizing curve η of Type II is parametrized by
arc-length, i.e., ‖ωH(η′)‖ ≡ 1. On the other hand, the corresponding dR-
length-minimizing curve γ has derivative ωH(γ′) = ωH(η′) + k

ζ2
Z, where

ωH(η′) is orthogonal to Z. Hence ‖ωH(γ′)‖2 = 1 + k2

ζ4
�
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Abstract. We study connected, locally compact metric spaces with
transitive isometry groups. For all ε ∈ R+, each such space is (1, ε)-
quasi-isometric to a Lie group equipped with a left-invariant metric.
Further, every metric Lie group is (1, C)-quasi-isometric to a solvable
Lie group, and every simply connected metric Lie group is (1, C)-quasi-
isometrically homeomorphic to a solvable-by-compact metric Lie group.
While any contractible Lie group may be made isometric to a solvable
group, only those that are solvable and of type (R) may be made iso-
metric to a nilpotent Lie group, in which case the nilpotent group is
the nilshadow of the group. Finally, we give a complete metric char-
acterisation of metric Lie groups for which there exists an automorphic
dilation. These coincide with the metric spaces that are locally compact,
connected, homogeneous, and admit a metric dilation.
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1. Introduction

1.1. Overview. This paper presents some links between Lie theory and
metric geometry. We study connected locally compact metric spaces with
transitive isometry groups. Prototypical examples are Lie groups equipped
with a left-invariant metrics. We assume that distance functions are compat-
ible with the topology but not that they are Riemannian, or even geodesic.
This permits us to consider a very broad setting including sub-Riemannian
groups and their subgroups, as well as homogeneous groups in the sense of
Folland and Stein. Nilpotent and solvable Lie groups play a special role in
our analysis. We recall a number of developments that underlie our work.

First, in the 1960s, Harish-Chandra, Helgason, and many others devel-
oped the theory of semisimple Lie groups and Riemannian symmetric spaces;
see [28] for an overview of the geometric aspects of this work. Then Milnor
[43], Wolf [59], Gordon and Wilson [23, 24], and Wilson [58], amongst others,
made important contributions to the theory of Riemannian Lie groups. In
a parallel development, following Hörmander [29], in the 1970s Folland and
Stein [21] and Rothschild and Stein [50] showed that nilpotent Lie groups are
good model spaces for the study of subelliptic operators much as Euclidean
space is a model for the study of elliptic operators. These operators lead
naturally to distance functions on the group that are not Riemannian. They
may be Carnot–Carathéodory distance functions, or be given by homoge-
neous norms, which in general are not geodesic. For more on analysis on
nilpotent groups and on groups of polynomial growth, we refer to the mono-
graphs of Dungey, ter Elst and Robinson [18], of Corwin and Greenleaf [16]
and of Goodman [22]. At about the same time, Gromov [25] combined ab-
stract metric space ideas with group theory to prove his celebrated theorem
that finitely generated groups of polynomial growth are virtually nilpotent.
This is the discrete version of the Lie group theorem proved by Guivarc’h
[26] and Jenkins [32]. Subsequently, Pansu shed light on the growth of
nilpotent groups by showing that the asymptotic cones of nilpotent groups
are Carnot groups [47]. Further, analysis on Carnot groups was used in
complex geometry, to study CR manifolds by Korányi and Reimann [36],
and to reprove some of Mostow’s rigidity results by Pansu [48]. Finally,
many authors, including Belläıche [4], Hamenstädt [27], Montgomery [45],
and Strichartz [53], developed the links between sub-Riemannian geometry
on Lie groups and nonholonomic mechanics.

Today, the study of Lie groups equipped with general metrics is a thriving
field of research, as evidenced by the work of Breuillard [7], Cornulier [17],
Cornulier and de la Harpe [14], Cornulier and Tessera [15], Pauls [49], Stoll
[52], and Tessera [56]. The connections with analysis on metric spaces and
sub-Riemannian geometry became stronger after the work of Cheeger and
Kleiner [10, 11] and Lee and Naor [42]. There are also developments in
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geometric measure theory on homogeneous groups; see, for example, Le
Donne and Rigot [38, 39].

In this paper, we prove that Lie groups are models for connected locally
compact homogeneous metric spaces up to quasi-isometry. More precisely,
in Theorem 1.1, we show that for all ε ∈ R+, each such space is (1, ε)-
quasi-isometric to a Lie group equipped with left-invariant metric, and hence
that any homogenous metric space is (1, C)-quasi-isometric to a solvable Lie
group. In Theorem 1.2, we prove that every simply connected metric Lie
group is (1, C)-quasi-isometrically homeomorphic to a solvable-by-compact
metric Lie group. We observe that any contractible Lie group may be made
isometric to a solvable group (Remark 3.10). However, in Theorem 1.3, we
see that only those that are solvable and of type (R) may be made isometric
to a nilpotent Lie group, in which case the nilpotent group is the nilshadow
of the group, in the sense of Auslander and Green [2]. Finally, we give a
complete metric characterisation of those metric Lie groups that admit an
automorphic dilation: according to Theorem 1.4, these coincide with the
metric spaces that are connected, locally compact and homogeneous and
admit a metric dilation.

1.2. Statements of the results. In this paper, metric spaces are always
assumed to be connected and locally compact, unless explicitly stated oth-
erwise. Some of our results may be proved in greater generality, but this
assumption will save space. The main additional assumption is that the
isometry group acts transitively, in which case we talk of a homogeneous
metric space. The prototypical examples are connected locally compact
groups with left-invariant metrics, such as Riemannian and sub-Riemannian
Lie groups. Starting with these, one may obtain new examples by consider-
ing `p products, passing to subgroups, and composing the distance function
with concave functions, as in the snowflake construction. We consider lo-
cally compact groups and Lie groups equipped with admissible left-invariant
distance functions, which we call metric groups and metric Lie groups; by
admissible we mean that the distance function induces the manifold topol-
ogy. We stress that we do not restrict to quasigeodesic nor proper spaces.

Using the Gleason–Yamabe–Montgomery–Zippin structure theory of lo-
cally compact groups (see [55]), we reduce the study of homogeneous metric
spaces to the study of metric Lie groups, up to quasi-isometry. Moreover,
using the Levi decomposition and Iwasawa decompositions, we reduce fur-
ther to the consideration of simply connected solvable groups. Before we
state our main results, we state our convention on constants: these are al-
ways nonnegative real numbers, possibly with additional restrictions, and
may vary from one occurrence to the next. These are often denoted by C,
L, Q or ε; we do not specify that these letters denote constants when they
occur. As usual, we use ε for a positive constant that may be chosen to be
arbitrarily small.

Theorem 1.1. Let M be a homogeneous metric space. Then M is

(a) (1, ε)-quasi-isometric to a connected metric Lie group, and
(b) (1, C)-quasi-isometric to a simply connected solvable metric Lie group.
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Part (a) of this theorem is related to the following result of Montgomery
and Zippin [44, p. 243]: a homogeneous space that is locally compact, locally
connected and has finite topological dimension may be identified with a quo-
tient of a Lie group by a compact subgroup. Part (b) is known for geodesic
distance functions; see for example [7, Proposition 1.3].

One of our aims is to study the following relation between metric groups.
Given two topological groupsG andH, we say thatG may be made isometric
to H if there exist admissible left-invariant distance functions dG and dH
such that the metric spaces (G, dG) and (H, dH) are isometric. Moreover,
if G is already a metric group, then we may impose the extra condition
that the new distance function is (1, C)-quasi-isometric to the initial one; in
this case, the Gromov–Hausdorff distance of the new metric space from the
original one is bounded.

As a consequence of our next theorem, every simply connected Lie group
may be made isometric to a direct product of a solvable and a compact Lie
group.

Theorem 1.2. Let (G, dG) be a simply connected metric Lie group. Then
there are a solvable Lie group S, a compact Lie group K, and admissible
left-invariant distance functions d′G and dS×K such that

(i) the spaces (G, d′G) and (S ×K, dS×K) are isometric, and
(ii) the identity map on G is a (1, C)-quasi-isometry from dG to d′G.

In this theorem, S and K are constructed explicitly: if R is the radical of
G, L is a Levi subgroup of G, and K1AN is the Iwasawa decomposition of
L, then we may decompose K1 as V ×K, where V is a vector group and K
is compact; we take S to be (RoAN)× V .

The theorem still holds if we assume that R ∩ L is trivial instead of as-
suming that G is simply connected. This is the case if G is semisimple; see
Corollary 3.9 and Corollary 3.11.

The next step in our analysis is to consider metric Lie groups of polyno-
mial volume growth. A compactly generated locally compact group G, with
Haar measure µ, is said to be of polynomial growth if there is a compact
generating neighbourhood U of the identity in G

(1.1) µ(Un) ≤ CnQ ∀n ∈ Z+.

We recall that a Lie group is of polynomial growth if and only if its Lie
algebra is of type (R); see [26, 31].

It is known that groups of polynomial growth with quasigeodesic distance
functions are quasi-isometric to nilpotent groups; see [7]. We generalise
this to quasigeodesic homogeneous spaces in Corollary 4.17. It is not clear
whether this generalisation holds for all admissible metrics.

We refine Theorem 1.2, and study when a Lie group may be made isomet-
ric to a nilpotent group. This question is tackled in Section 4.4; the main
tools are the modifications of Gordon and Wilson [24].

Theorem 1.3. Let H and N be connected simply connected Lie groups and
assume that N is nilpotent. The following are equivalent:

(i) H may be made isometric to the nilpotent group N ;
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(ii) H is a modification of N ;
(iii) H is solvable and of polynomial growth, and N is its nilshadow.

The nilshadow of a Lie group is uniquely defined up to isomorphism;
see Section 4.3 for the definition following [18]. Hence for every solvable
simply connected Lie group G of polynomial growth, there exists exactly
one nilpotent Lie group N , its nilshadow, with the property that G and N
are isometric when these groups are appropriately metrised.

It is easy to construct groups that are not nilpotent but may be made
isometric to nilpotent groups. For example, take a nilpotent group N with a
one-parameter isometry group of automorphisms, such as a Euclidean space,
a generalised Heisenberg group, or a free nilpotent Lie group. Then R acts by
isometries on N , and the direct product N×R is a nilpotent group isometric
to the semidirect product N o R, which is not nilpotent. Moreover, N × R
is a Carnot group when N is a Carnot group.

Further, if H admits a quasigeodesic distance function d making it isomet-
ric to (N1, d1) and another quasigeodesic distance function d′ making it iso-
metric to (N2, d2), then necessarily (N1, d1) and (N2, d2) are quasi-isometric.
However, the classification of nilpotent groups up to quasi-isometry is an im-
portant unsolved problem. Still, our theorem implies that N1 and N2 are
isomorphic.

Parts of Theorem 1.3 were proved by Breuillard [7] and Gordon and Wil-
son [24], see also [12]; however our proof is different and more direct.

A map δ : X → Y between metric spaces is called a metric dilation
if δ is bijective and d(δ(x), δ(x′)) = λd(x, x′) for all x, x′ ∈ X, for some
λ ∈ (1,∞), and a self-similar group is a metric group (G, d) that admits
a map δ : G → G that is both a metric dilation and an automorphism.
Finite dimensional normed spaces and Carnot groups are self-similar groups;
the homogeneous groups of Folland and Stein [21], equipped with Hebisch–
Sikora distance functions [39], are more general examples.

Theorem 1.4. If a metric space is locally compact, connected, isometrically
homogeneous, and it admits a metric dilation, then it is isometric to self-
similar Lie group. Moreover, all metric dilations of a self-similar Lie group
are automorphisms.

As a consequence of [51, Proposition 2.2] and [34], if a metric space M is
isometric to a self-similar Lie group (G, d ′), then G is a gradable, connected
simply connected nilpotent Lie group isomorphic to the nilradical of Iso(M).
However, M may also be isometric to a Lie group that is not nilpotent. As
discussed after Theorem 1.3, there are metric groups that are not nilpotent
but which are isometric to self-similar metric Lie groups; it follows from
Theorem 1.4 that if M is a metric Lie group and δ is a metric dilation, then
δ is an automorphism if and only if M is nilpotent.

Theorem 1.4 generalises a result of [40], where it is shown that a space
is a sub-Finsler Carnot group if and only if the conditions in Theorem 1.4
hold and moreover the distance function is geodesic.

The scheme of the proof of Theorem 1.4 is the following. We show that
a metric space satisfying the hypotheses of the theorem is doubling. Then
we show that its isometry group G is a Lie group of polynomial growth,
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whence every Levi subgroup of G is compact. However, the metric space is
contractible, so the stabiliser K of a point is a maximal compact subgroup
containing a Levi subgroup. This allows us to find a subgroup S of G that
is transverse to K: namely, the orthogonal complement of K with respect
to the Killing form. This subgroup S induces the group structure on the
metric space.

To link the doubling property of a metric space with the polynomial
growth of its isometry group, we introduce a notion of polynomial growth
for homogeneous metric spaces. Consider a Radon measure m on a homo-
geneous metric space M that is invariant under isometries, which exists and
is unique up to a multiplicative constant. We say that M is of polynomial
growth if for one point, and hence for all points o ∈M ,

(1.2) m(B(o, r)) ≤ CrQ

for all sufficiently large r. At this point, for a metric Lie group we have
two notions of polynomial growth, which in general are not equivalent. For
instance, R is a group of polynomial growth, but if we define the metric d
on R by

d(x, y) := log(|x− y|+ 1) ∀x, y ∈ R,
then (R, d) is not of polynomial growth. Nonetheless, if a homogeneous
metric space M is of polynomial growth as in (1.2), then its isometry group
Iso(M) is of polynomial growth in the sense of (1.1); see Lemma 2.21. In
particular, a metric Lie group that is of polynomial growth as a metric space
is also of polynomial growth as a group.

Let (M,d) be a connected locally compact homogeneous metric space of
polynomial growth. If d is a quasigeodesic distance function, then (M,d) is
quasi-isometric to a simply connected nilpotent Riemannian Lie group; see
Corollary 4.17. If, in addition, M is contractible, then the quasi-isometry
may be chosen to be a homeomorphism; see Corollary 4.16.

Polynomial growth is often linked with the property of being doubling
at large scale. We observe that these two notions are not equivalent in our
setting. More precisely, if a metric space M is doubling at large scale, it may
fail to be of polynomial growth; for instance, the space R with the distance
function d given by d(x, y) = min{|x − y|, 1} is trivially doubling at large
scale, but is evidently not of polynomial growth. However, if M is doubling
at large scale and proper, then it is of polynomial growth; see Remark 2.18.
Conversely, if M is of polynomial growth, then it is proper, but it does not
need to be doubling at large scale; see Remarks 2.19 and 2.20. Finally,
if M is proper and quasigeodesic, then it is of polynomial growth if and
only if it is doubling at large scale; see, for instance, [13]. This paradoxical
behaviour reflects the fact that polynomial growth and properness are not
quasi-isometric invariants.

1.3. Structure of the paper. This paper is organised as follows. Section 2
contains several useful preliminary results. In particular, in Section 2.2, we
consider homogeneous metric spaces, and in Section 2.3, we discuss con-
tractibility in locally compact groups. In Section 2.4, we establish some Lie
theory, and in Section 2.5, we deal with polynomial growth. While some of
the results in Section 2 may be familiar to the expert, we decided to include
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proofs if we could not find an explicit proof in the literature or if we could
give an easier one. In Section 3, we prove Theorems 1.1 and 1.2 and consider
some of their consequences. Section 4 contains the proof of Theorem 1.3. In
particular, we establish the preliminary results on modifications and nilshad-
ows that are important for this proof in Sections 4.2 and 4.3. In Section 4.5,
we prove a stronger version of Theorem 1.2 for homogeneous spaces of poly-
nomial growth and quasigeodesic distance functions. In Section 5, we prove
Theorem 1.4.

2. Preliminaries

In this section, we recall some more or less familiar facts. First, we discuss
homogeneous metric spaces, then contractibility. Third, we bring in some
Lie theory, and finally, we discuss polynomial growth.

2.1. Notation. If (M,d) is a metric space, we sometimes write just M ,
leaving the metric d implicit. We denote by B(x, r) or Bd(x, r) the open
ball {y ∈ M : d(x, y) < r}, and by B̄(x, r) or B̄d(x, r) the closed ball
{y ∈M : d(x, y) ≤ r}.

A function f : (M1, d1)→ (M2, d2) is an (L,C)-quasi-isometry if

L−1d1(x, y)− C ≤ d2(f(x), f(y)) ≤ Ld1(x, y) + C

for all x, y ∈ M1, and for every z ∈ M2 there is x ∈ M1 such that
d2(f(x), z) ≤ C. If such a function exists between two metric spaces, then
we say that they are (L,C)-quasi-isometric.

We denote by eG, or more simply e, the identity element of a group G.
We denote the Lie algebra of a Lie group G by the corresponding fraktur
letter g or by Lie(G).

2.2. Homogeneous metric spaces. We define an isometry of a metric
space (M,d) to be a surjective map f on M such that

d(f(x), f(y)) = d(x, y) ∀x, y ∈M.

We denote by Iso(M,d) the group of all isometries of (M,d), where the
group law is composition. A metric space (M,d) is said to be homogeneous
if its isometry group acts transitively.

We recall our convention that metric spaces are connected and locally
compact unless explicitly stated. We prove that Iso(M,d) is a topological
group (Lemma 2.1), that is metrisable (Proposition 2.7), locally compact
and σ-compact (Proposition 2.11), and whose identity component acts tran-
sitively (Proposition 2.13) with compact stabiliser (Lemma 2.9). The main
result of this section, Proposition 2.7, is that, for every ε > 0, Iso(M,d)
may be metrised so that the identity component is (1, ε)-quasi-isometric
to (M,d).

Lemma 2.1. Let (M,d) be a metric space, not necessarily connected or
locally compact. The group Iso(M,d), endowed with the topology of pointwise
convergence, is a topological group, and its action on M is a topological
action.
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Proof. First, we show that the map (f, g) 7→ f−1 ◦ g is continuous from
Iso(M,d) × Iso(M,d) to Iso(M,d). Let {fν}ν∈N and {gν}ν∈N be nets in
Iso(M,d) that converge to f and g. For each p ∈M ,

d(f−1ν (gν(p)), f−1(g(p)))

≤ d(f−1ν (gν(p)), f−1ν (g(p))) + d(f−1ν (g(p)), f−1(g(p)))

= d(gν(p), g(p)) + d(g(p), fν(f−1 ◦ g(p))) −→ 0,

that is, the net {f−1ν ◦ gν}ν∈N converges to f−1 ◦ g.
Next, we show that the map (f, p) 7→ f(p) from Iso(M,d) ×M to M is

jointly continuous. Let {fν}ν∈N and {pν}ν∈N be nets in Iso(M,d) and M
that converge to f and p. Then

d(fν(pν), f(p)) ≤ d(fν(pν), fν(p)) + d(fν(p), f(p))

= d(pν , p) + d(fν(p), f(p))→ 0,

that is, {fν(pν)}ν∈N converges to f(p). �
Remark 2.2. The topology of uniform convergence on compacta and the
topology of pointwise convergence agree on Iso(M,d), since Iso(M,d) is an
equicontinuous family of maps; see [33, p. 232].

To pass from local to global statements, we introduce the following nota-
tion. For ` ∈ R+ and a subset A of M , define the sets Vn(A, `) by iteration
on n ∈ N: first, V0(A, `) := A, and then

(2.1) Vn(A, `) :=
⋃

y∈Vn−1(A,`)

B̄(y, `)

when n ∈ Z+. We usually write Vn(p, `) rather than Vn({p}, `).
Lemma 2.3. Let A be a nonempty subset of a homogeneous metric space
(M,d). Then M =

⋃
n∈N Vn(A, `) for all ` ∈ R+. If moreover A is com-

pact, then there exists ` ∈ R+ such that Vn(A, `) is compact for all n ∈ N.
Consequently, (M,d) is σ-compact.

Proof. It is easy to see that
⋃
n∈N Vn(p, `) is a nonempty open and closed

set in M , so it coincides with the connected set M .
Since (M,d) is homogeneous, all closed balls with the same radius are

homeomorphic. Take ` ∈ R+ such that the closed balls of radius 2` are
compact, and a nonempty compact subset A of M . We prove by induction
that Vn(A, `) is compact for all n ∈ N. By definition, V0(A, `) is compact.
Further, if Vn(A, `) is compact, then there are finitely many balls B(xi, `)
such that Vn(A, `) ⊆ ⋃iB(xi, `); it follows that Vn+1(A, `) is contained in
the finite union of compact balls

⋃
i B̄(xi, 2`), and hence is compact. �

Lemma 2.4. Let (M,d) be a homogeneous metric space. Then every distance-
preserving map is surjective. Consequently, Iso(M,d) is closed in the space
of all maps on M equipped with the pointwise topology.

Proof. Take a distance-preserving map f on M ; we must show that f is
surjective. By homogeneity, we may assume without loss of generality that
f fixes a point o. Take ` ∈ R+ such that the sets Vn(o, `) are compact, as in
Lemma 2.3. Now f is a distance-preserving map from Vn(o, `) into Vn(o, `)
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for all n ∈ N. By [9, Theorem 1.6.14], a distance-preserving map from a
compact metric space into itself is surjective. Hence f(Vn(o, `)) = Vn(o, `)
for all n ∈ N. By Lemma 2.3, f is surjective. Finally, if f is the pointwise
limit of a net of isometries, then f is distance-preserving, and hence an
isometry. Thus Iso(M,d) is closed in the space of all functions on M . �

The hypothesis of homogeneity is important: the set R+ with the metric
d given by d(x, y) = |x− y| is not homogeneous, and the map x 7→ x+ 1 is
distance-preserving but not surjective.

To metrise the isometry group, we introduce more terminology.

Definition 2.5. Let (M,d) be a homogeneous metric space and fix o ∈M .
A Busemann gauge on (M,d) with base point o is a function ρ : M → [0,+∞)
such that

(1) ρ(o) = 0 and d(o, p) ≤ ρ(p) for all p ∈M ,
(2) a subset A of M is precompact if and only if supp∈A ρ(p) <∞.

Remark 2.6. Every homogeneous metric space admits a Busemann gauge,
for instance,

(2.2) ρ(p) := `min{n ∈ N : p ∈ Vn(o, `)},
where ` is such that Vn(o, `) is compact for all n ∈ N, as in Lemma 2.3.
Indeed, define ρ as in (2.2). Clearly ρ(o) = 0. If ρ(p) = `n, then there
are points p0, p1, . . . , pn in M such that d(pi−1, pi) ≤ ` for all i = 1, . . . , n
and p0 = o while pn = p; hence d(o, p) ≤ n` = ρ(p). Next, if r ≥ 0,
then {p : ρ(p) ≤ `r} = Vbrc(o, `). Thus, if supp∈A ρ(p) ≤ `r, then A is

precompact. Conversely, if A ⊆ M , then Ā may be covered by the sets
Vn(o, `) as n increases; notice that the interior of Vn(o, `) contains Vn−1(o, `);
if A is precompact, then there exists n such that A ⊆ Vn(o, `).

Proposition 2.7. Let (M,d) be a homogeneous metric space and G be a
subgroup of Iso(M,d) that acts transitively on M . Take o ∈M and ε ∈ R+,
and fix a Busemann gauge ρ with base point o. Then the Busemann distance
function dG on G, defined by

dG(g, h) := sup{d(gp, hp)e−ρ(p)/ε : p ∈M},
is an admissible left-invariant distance function on G and the map π : g 7→
g(o) from (G, dG) to (M,d) is 1-Lipschitz and a (1, 2ε/e)-quasi-isometry. In
particular, Iso(M,d) is metrisable.

Proof. Remark 2.6 exhibits an explicit Busemann gauge. The Busemann
distance function dG is clearly left-invariant; we need to show that it is
admissible. Let {gν}ν∈N be a net in G.

On the one hand, if gν → g in (G, dG), then

d(gν(p), g(p)) ≤ eρ(p)/εdG(gν , g),

for all p ∈M , and hence gν converges to g pointwise, and so in G.
On the other hand, if gν → g in G, then the convergence is uniform on

compacta, by Remark 2.2. Fix η ∈ (0, 1). Then there is R ∈ R+ such that

te−t/ε < η whenever t > R. Define A to be the closure of {p ∈ M : ρ(p) ≤
R}. Then A contains o and is compact in M by the definition of a Busemann
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gauge. Hence there is ν0 ∈ N such that d(gν(p), g(p)) ≤ η for all p ∈ A and
all ν ≥ ν0. Therefore

d(gν(p), g(p))e−ρ(p)/ε ≤ η,
if ν ≥ ν0 and p ∈ A, while if ν ≥ ν0 and p /∈ A, then

d(gν(p), g(p))e−ρ(p)/ε

≤ (d(gν(p), gν(o)) + d(gν(o), g(o)) + d(g(o), g(p))) e−ρ(p)/ε

≤ (2d(o, p) + η) e−ρ(p)/ε

≤ (2ρ(p) + η) e−ρ(p)/ε

≤ 2η + η = 3η.

We conclude that dG(gν , g) ≤ 3η for all ν ≥ ν0. As η may be arbitrarily
small, gν → g in (G, dG).

By definition, d(π(g), π(h)) = d(go, ho) ≤ dG(g, h) for all g, h ∈ G, so π
is 1-Lipschitz. Moreover, π is surjective by assumption, and

dG(g, h) ≤ sup{(d(gp, go) + d(go, ho) + d(ho, hp))e−ρ(p)/ε : p ∈M}
≤ d(go, ho) sup{e−ρ(p)/ε : p ∈M}

+ 2 sup{d(o, p)e−ρ(p)/ε : p ∈M}
≤ d(π(g), π(h)) + 2ε/e

for all g, h ∈ G, whence π is a (1, 2ε/e)-quasi-isometry. �
Lemma 2.8. Let (M,d) be a homogeneous metric space and G be a subgroup
of Iso(M,d) that acts transitively on M . Take ` ∈ R+ and o ∈ M , and set
U := {f ∈ G : f(o) ∈ B̄(o, `)}. Then for all n ∈ N,

(2.3) Un = {f ∈ G : f(o) ∈ Vn(o, `)}.
Proof. If n = 1, then (2.3) holds by definition. Assume that (2.3) holds when
n = k. On the one hand, if f ∈ Uk+1, then f = gh where g ∈ Uk and h ∈ U ,
so f(o) ∈ g(B̄(o, `)) = B̄(g(o), `) ⊆ Vk+1(o, `). On the other hand, suppose
that f(o) ∈ Vk+1(o, `). Since G acts transitively on M , there is g ∈ G such
that g(o) ∈ Vk(o, `) and f(o) ∈ B̄(g(o), `). First, g ∈ Uk by assumption.
Second, g−1f(o) ∈ B̄(o, `), that is, g−1f ∈ U , since B̄(g(o), `) = g(B̄(o, `)).
We conclude that f ∈ Uk+1. By induction, (2.3) holds for all n. �
Lemma 2.9. Let (M,d) be a homogeneous metric space. If A,B are com-
pact subsets of M , then the set U(A,B), given by

U(A,B) := {f ∈ Iso(M,d) : f(A) ⊆ B},
is compact. In particular, the stabiliser of a point is compact.

Proof. Fix compacta A,B in M . By Lemma 2.3, there is ` ∈ R+ such that
the sets Vn(A, `) are compact. Note that f(Vn(A, `)) = Vn(f(A), `) for all
f ∈ Iso(M,d).

By Remark 2.2 and the Ascoli–Arzelà theorem (see [33, p. 233]), we need
to show that

(a) U(A,B) is closed in the space of continuous functions on M in the
topology of uniform convergence on compacta,
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(b) {f(p) : f ∈ U(A,B)} has compact closure for every p ∈M ,
(c) the family U(A,B) is equicontinuous.

First, U(A,B) is clearly closed in Iso(M,d), which is closed in the space
of all continuous functions on M by Lemma 2.4. Second, for all p ∈ M ,
the set {f(p) : f ∈ U(A,B)} has compact closure in M : indeed, for each
p ∈M , there is n ∈ N such that p ∈ Vn(A, `) and thus if f ∈ U(A,B), then
f(p) ∈ f(Vn(A, `)) ⊆ Vn(B, `), that is, {f(p) : f ∈ U(A,B)} ⊆ Vn(B, `).
Finally, the family of isometries U(A,B) is equicontinuous because Iso(M,d)
is. By the Ascoli–Arzelà theorem, U(A,B) is compact. �
Remark 2.10. If M = Z and d(m,n) = 0 if m = n and 1 otherwise, then the
metric space (M,d) is locally compact and homogeneous but not connected,
and the stabiliser of 0 is not compact. In this space, distance-preserving
mappings need not be surjective.

Proposition 2.11. Let (M,d) be a homogeneous metric space. Then the
group Iso(M,d) is locally compact, σ-compact and second countable. Hence
if G is a closed subgroup of Iso(M,d) that acts transitively on M and S is the
stabiliser in G of a point o in M , then the map gS 7→ go is a homeomorphism
from G/S to M .

Proof. Fix ` ∈ R+ such that B̄(o, 2`) is compact. Define

U := {f ∈ Iso(M,d) : f(o) ∈ B̄(o, `)};
then U is a neighbourhood of the identity element in Iso(M,d). By Lem-
mas 2.8 and 2.9, the set Un is compact for all n ∈ N, hence Iso(M,d)
is locally compact and σ-compact. Since Iso(M,d) is also metrisable by
Proposition 2.7, it is second countable. The last part of the proposition
follows from [28, Theorem 3.2, p. 121]. �
Lemma 2.12. Let (M,d) be a homogeneous metric space and G be a group
of isometries of (M,d). If there are ` ∈ R+ and o ∈ M such that B̄(o, `) ⊆
Go, then G acts transitively on M . In particular, every open subgroup of
Iso(M,d) acts transitively.

Proof. We show by induction on n that Vn(o, `) ⊆ Go for all n ∈ N. If
n = 0, then there is nothing to prove. Assume that Vn(o, `) ⊆ Go and take
x ∈ Vn+1(o, `). Then there is y ∈ Vn(o, `) such that x ∈ B̄(y, `). Since
Vn(o, `) ⊆ Go, there is g ∈ G such that go = y, hence d(x, go) ≤ `, that is,
g−1x ∈ B̄(o, `). Since B̄(o, `) ⊆ Go by hypothesis, there is f ∈ G such that
fo = g−1x and thus x = gfo ∈ Go. This implies that Vn+1(o, `) ⊆ Go and
the inductive step is proved. It follows that Go = M by Lemma 2.3.

Finally, suppose that G is a open subgroup of Iso(M,d). By Proposi-
tion 2.11, the map f 7→ fo from Iso(M,d) to M is open. Hence there is
` ∈ R+ such that B̄(o, `) is compact and is a subset of Go. Therefore G acts
transitively on M , by the first part of the lemma. �
Proposition 2.13. Let (M,d) be a homogeneous metric space. The con-
nected component G of Iso(M,d) acts transitively on M .

Proof. The totally disconnected locally compact group Iso(M,d)/G has a
neighbourhood base N of the identity consisting of open and closed sub-
groups, ordered by reverse inclusion; see [54, Proposition 4.13]. For each
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ν ∈ N, let Gν be the preimage of ν in Iso(M,d). Then {Gν}ν∈N is a net
of open and closed subgroups of Iso(M,d) such that G =

⋂
ν∈NGν , and Gν

acts transitively on M for every ν ∈ N by Lemma 2.12.
Take o, p ∈M . For each ν ∈ N, there is gν ∈ Gν such that gν(o) = p. By

Lemma 2.9, U({o}, {p}) is compact; since gν ∈ U({o}, {p}), we may assume
that gν converges to g ∈ U({o}, {p}) by passing to a subnet if necessary.
For each ν ∈ N, gν′ ∈ Gν when ν ′ ≥ ν, and hence g ∈ Gν . In conclusion,
g ∈ ⋂ν∈NGν = G and go = p. �
2.3. Contractibility. We will need some information about maximal com-
pact subgroups of locally compact groups. The following result is almost
standard and may be extended (see [1]); compact contractibility is the only
new ingredient. We say that a topological space M is compactly contractible
if, for each compact subset S of M , there are x ∈M and a continuous map
F : [0, 1]× S →M such that F (0, s) = s and F (1, s) = x for all s ∈ S.

Lemma 2.14. If K is a compact subgroup of a connected locally compact
group G, then the following are equivalent:

(i) K is a maximal compact subgroup of G;
(ii) G/K is homeomorphic to a Euclidean space;

(iii) G/K is contractible;
(iv) G/K is compactly contractible.

Proof. By [44, p. 188], (i) implies (ii). It is trivial that (ii) implies (iii) and
(iii) implies (iv). We prove that (iv) implies (i) by modifying the argument
of [1, Theorem 1.3].

Suppose that (iv) holds. By [3], there is a maximal compact subgroup K0

of G that contains K, and then by [44, p. 188], there is a map Φ : Rn → G
such that the map (x, y) 7→ Φ(x)y is a homeomorphism from Rn × K0 to
G. Hence G/K is homeomorphic to Rn × K0/K. The contraction of the
compact set K0/K in G/K composed with the projection onto K0/K is a
contraction of K0/K. From Antonyan [1], K0/K is contractible if and only
if K = K0, so K is maximal. �
2.4. Lie theory. The main result of this section, Proposition 2.17, is an
algebraic criterion for the existence of closed subgroups of the isometry group
of a homogeneous metric space that act simply transitively.

Recall that if G is a Lie group with Lie algebra g and h is a subalgebra of
g, then there is a Lie subgroup H of G whose Lie algebra is h, but H need
not be closed. Moreover, if H is a Lie subgroup of G, then H with its own
Lie structure is analytically immersed, but not necessarily embedded, in G.
Recall also that if H and K are subgroups of a group G, then HK denotes
the subset {hk : h ∈ H, k ∈ K} of G. The next lemma gives a criterion for
H to be closed.

Lemma 2.15. Suppose that K is a closed subgroup of a connected Lie group
G and denote by π the quotient map from G to G/K. Let H be a Lie subgroup
of G such that g = h⊕ k as vector spaces. Then

(i) G = HK,
(ii) the map π|H : H → G/K is a covering map,

(iii) H is closed in G if and only if H ∩K is discrete in G, and
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(iv) if G/K is simply connected, then H ∩K = {e} and H is closed.

Proof. Denote by M the quotient space G/K, which is a connected manifold,
and by o the point K in G/K. The restriction to H of the action of G on
M is analytic. Since the map π|H : H → M is smooth and its differential
at eH is a linear isomorphism, there are an open neighbourhood U of eH in
H and an open neighbourhood V of o in M such that π|H : U → V is a
homeomorphism.

By introducing an auxiliary G-invariant metric on M and by Lemma 2.12,
we deduce that Ho = M ; it follows immediately that G = HK. Indeed, if
g ∈ G, then there is h ∈ H such that h−1go = o, that is, h−1g ∈ K, and (i)
is proved.

Since H acts continuously on M , the stabiliser of o in H is closed. Since
h ∩ k = {0}, the intersection H ∩ K is discrete in H. Therefore, after
shrinking the set U that we produced above if necessary, we may assume
that Uk∩Uk′ = ∅ when k, k′ ∈ H∩K and k 6= k′. If p ∈M , then p = ho for
some h ∈ H, so π|−1H (hV ) is equal to

⋃
k∈H∩K hUk, a disjoint union of open

sets on each of which π|H is a homeomorphism onto hV . Thus π|H : H →M
is a covering map, which proves (ii).

If H is closed, then H ∩ K is a closed zero-dimensional subgroup of G,
and hence is discrete. Conversely, if H ∩ K is discrete, then there is an
open subset Ω of G such that Ω ∩ H ∩ K = {eG}. By shrinking the set
U produced above if necessary, we may assume that U−1U ⊆ Ω. The map
ϕ : (h, k) 7→ hk from U × K into G is trivially continuous; we claim that
it is also injective. Indeed, assume that h1, h2 ∈ U and k1, k2 ∈ K. If
h1k1 = h2k2, then

h−12 h1 = k2k
−1
1 ∈ U−1U ∩H ∩K,

whence h1 = h2 and k1 = k2. Again by invariance of domain, ϕ is a
homeomorphism from U × K onto its image, and U is closed in the open
subset UK of G. Hence H is closed in G, and (iii) holds.

Finally, if M is simply connected, then π|H is a homeomorphism, whence
H ∩K = {e}. From part (iii), H is closed in G. �
Remark 2.16. We recall an elementary fact that will be useful. If G acts
transitively on a set M , then the stabilizers of two points in M are conju-
gated with each other. Hence, if a normal subgroup of G is contained in
one of the stabilizers, then it is contained in all stabilizers, i.e., it fixes all
points. In particular, if G acts faithfully and transitively on a set, then no
normal subgroups of G are contained in a stabilizer.

To state our next result, we introduce more notation. We denote by r and
n the radical and nilradical of a Lie algebra g, and by B its Killing form.
We define the annihilator sB of a subspace s of g by

sB = {X ∈ g : B(X, s) = {0}}.
The following result is close to and inspired by [24, Lemma 1.8].

Proposition 2.17. Let K be a compact subgroup of a connected Lie group
G with Lie algebra k, let h be kB, and let H be the connected Lie subgroup
of G with Lie algebra h. Suppose that K contains a Levi subgroup of G and
acts effectively on G/K. Then
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(i) g = h⊕ k as vector spaces, and
(ii) n ⊆ h ⊆ r, and h is a solvable ideal of g.

Moreover, if G/K is simply connected, then H is closed, G = HK and the
map h 7→ hK from H to G/K is a diffeomorphism.

Proof. First we show that −B is positive definite on k. Since K is compact,
if X ∈ k, then adX is semisimple and has eigenvalues iλ1, . . . , iλn, where
each λi ∈ R. Hence B(X,X) = −(λ21 + · · · + λ2n), and so B(X,X) = 0
implies that adX = 0. As G is connected, the one-parameter subgroup
{exp(tX) : t ∈ R} ⊂ K is central in G, whence X = 0 by Remark 2.16.

Since K acts effectively on G/K, so does {exp(tX) : t ∈ R}, whence
X = 0 by Lemma ??.

It follows that h ∩ k = {0}. Note that h is the kernel of the map X 7→
B(X, ·) from g to the dual k∗. Therefore

dim(g) ≤ dim(h) + dim(k) ≤ dim(g),

from which it follows that g = h⊕ k, and (i) holds.
We now prove (ii). Let l be a Levi subgroup of g contained in k. Since

l = [l, l] ⊆ [g, g], and B(r, [g, g]) = {0} by [30, Theorem 5, Chapter III], it
follows that B(r, l) = {0}. Now if Z ∈ h and Z = X + Y , where X ∈ r and
Y ∈ l, then

0 = B(Z, Y ) = B(X,Y ) +B(Y, Y ) = B(Y, Y ),

so Y = 0 and Z ∈ r. Thus h ⊆ r.
If X ∈ n and Y ∈ g, then B(X,Y ) = 0; see [6, Chapter I, Section 4,

Proposition 6]. It follows that n ⊆ h. Moreover, h is an ideal since

[g, h] ⊆ [g, r] ⊆ n ⊆ h.

Finally, the last statement follows from Lemma 2.15. �

2.5. Polynomial growth. Let G be a locally compact group, equipped
with a left-invariant Haar measure µ. If K is a compact subgroup of G and
π : G→ G/K is the quotient map, then there is a unique G-invariant Radon
measure m on G/K such that

(2.4) m(U) = µ(π−1(U))

for all Borel subsets U of G/K; see [20] or [46]. From Proposition 2.11, if
(M,d) is a homogeneous metric space and G is the identity component of
Iso(M,d), then M may be identified with G/K for some compact subgroup
K of G.

We now recall some standard terminology. First, a metric space M is
said to be proper if bounded sets are relatively compact, or equivalently, a
subset is compact if and only if it is closed and bounded. Next, M is said to
be doubling if there is a constant N such that each ball of radius 2r may be
covered by at most N balls of radius r for all r ∈ R+. Finally, M is (L,C)-
quasigeodesic if for every x, y ∈ M there are n ∈ N and x0, x1, . . . , xn ∈ M
such that d(xj−1, xj) < C when j ∈ {1, . . . , n} and

∑n
j=1 d(xj−1, xj) ≤

Ld(x, y) + C.
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Remark 2.18. If a homogeneous metric space is proper and doubling, then
it is of polynomial growth. Indeed, if every ball of radius 2r may be covered
by N balls of radius r, then one may check that

m(B(o, r)) ≤ Nm(B(o, 1))rlog2(N)

when r > 1.

Remark 2.19. A space of polynomial growth need not be doubling. The next
example shows that having polynomial growth does not even imply being
doubling at large scale.

Consider the piecewise linear function D : [0,+∞)→ [0,+∞) with nodes

at (0, 0), (1, 1), and (xn, yn), where n ∈ N, given by xn = 22
n+1

and yn = 22
n
.

The nodes all lie on the graph y = x1/2, so D is evidently increasing and
concave. Hence d(x, y) := D(|x− y|) is a translation-invariant metric on R,
and |B(x0, r)| = 2D−1(r) for all r ∈ [0,+∞).

Take r = yn, and consider the ratio

|B(0, 2r)|
|B(0, r)| =

D−1(2yn)

D−1(yn)
=
D−1(2yn)

xn
.

We will now show that the right hand fraction is unbounded in n, which
shows that d is not a doubling metric.

If (x, y) lies on the line segment between (xn, yn) and (xn+1, yn+1), then

y − yn
x− xn

=
yn+1 − yn
xn+1 − xn

=
y2n − yn
y4n − y2n

=
1

yn(yn + 1)
,

so
x = xn + yn(yn + 1)(y − yn).

Since 2yn ≤ yn+1, if D(x) = 2yn, then (x, 2yn) lies on the line segment, and
so x = xn + xn(yn + 1) and

D−1(2yn)

xn
=

x

xn
= yn + 2,

which tends to infinity as n increases.
The same argument also shows that if (x, y) lies on this line segment, then

|B(0, y)| = 2x = 2xn + 2yn(yn + 1)(y − yn)

≤ 2y2n + 2yny(yn + 1) ≤ 2y2 + 2y2(y + 1),

and it follows that d is of polynomial growth.

Remark 2.20. If (M,d) is a homogeneous metric space of polynomial growth,
then it is proper. Indeed, if there were a noncompact closed ball B̄(p, r),
then there would be ε ∈ R+ and points xi in B̄(p, r), where i ∈ N, such that
d(xi, xj) > 2ε if i 6= j. But then it would follow that

C(r + ε)Q ≥ m(B̄(p, r + ε)) ≥
∑

i∈N
m(B(xi, ε)) =∞,

which would be a contradiction.

A quasigeodesic homogeneous metric space is of polynomial growth if and
only if its isometry group if of polynomial growth. For general metric spaces,
the following implication may be proved.
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Lemma 2.21. If M is a homogeneous metric space of polynomial growth,
then Iso(M) and its identity component are of polynomial growth.

Proof. Let G be either Iso(M) or its identity component. By Lemma 2.3,
we may fix o ∈ M and ` ∈ R+ such that the sets Vn(o, `) are compact for
all n ∈ N. By Lemma 2.9, the set U := {f ∈ G : f(o) ∈ B̄(o, `)} is a
compact neighbourhood of the identity element in G. By Lemma 2.8 and
Proposition 2.13,

Un = {f ∈ G : f(o) ∈ Vn(o, `)}.
Let µ be a Haar measure on G and m be an invariant measure on M such

that (2.4) holds, as discussed at the beginning this section, and suppose that
m(B(o, r)) ≤ CrQ for all sufficiently large r. Then

µ(Un) = m(Vn(o, `)) ≤ C`Q(n+ 1)Q

since Vn(o, `) ⊆ B(o, (n+ 1)`). �

If G is a connected Lie group, then it is of polynomial growth if and
only if its Lie algebra g is of type (R), that is, the eigenvalues of adX are
purely imaginary for each X ∈ g. For instance, nilpotent Lie groups are of
polynomial growth. For more on this, see [32, 26].

Lemma 2.22. Let G be a connected Lie group of polynomial growth. Then
each Levi subgroup of G is compact. If moreover G is simply connected, then
G = R o L, where R is the radical and L is semisimple and compact. If G
is also contractible, then G is solvable.

Proof. Let G̃ be the universal cover of G. Since G is of polynomial growth,
the Lie algebra of G, and of G̃, is of type (R), hence G̃ is of polynomial

growth. Since G̃ is connected and simply connected, G̃ = R̃ o L̃, where
R̃ is the radical of G̃ and L̃ is a semisimple Lie subgroup of G̃; this is the
Levi decomposition; see, for example, [57, Theorem 3.18.13]. Since G̃ is of

polynomial growth, L̃ is compact; see, for example, [18, Theorem II.4.8].

Let π : G̃ → G be the quotient projection, and write R and L for π(R̃)

and π(L̃). The subgroup R is the radical of G, and L is a Levi subgroup of

G, which is compact as L̃ is. Since all Levi subgroups of G are conjugate to
each other, all Levi subgroups of G are compact.

If G is contractible, then G is the topological product of R and L and
thus L is contractible. A contractible compact Lie group is trivial, by
Lemma 2.14, so G coincides with R and is solvable. �

3. From homogeneous spaces to solvable Lie groups

In this section, we first discuss some modifications of a metric space that
do not change its quasi-isometry class. Next, we prove a key technical result;
finally, we prove Theorems 1.1 and 1.2.

3.1. From spaces to groups. In this subsection, we first treat distance
functions on quotients, in Lemma 3.1, and then we show how to enlarge
isometry groups in Lemma 3.3. Finally, in Corollary 3.7, we use the solution
to Hilbert’s fifth problem to relate homogeneous metric spaces to Lie groups.
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We will often deal with metric groups. Each element g of a metric group
(M,d) is associated to a left translation map Lg : p 7→ gp and a right trans-
lation map Rg : p 7→ pg; left translations are isometries of M by definition,
while right translations need not be.

Lemma 3.1. Suppose that K is a compact group of isometries of a metric
space (M,d) such that

C := sup{d(kp, k′p) : k, k′ ∈ K, p ∈M} <∞,
and define the function d′ on the orbit space K\M by

d′(Kx,Ky) := min{d(fx, f ′y) : f, f ′ ∈ K} ∀x, y ∈M.

Then d′ is an admissible distance function, and

(3.1) d(x, y)− C ≤ d′(Kx,Ky) ≤ d(x, y) ∀x, y ∈M,

that is, the quotient map π : p 7→ Kp from (M,d) to (K\M,d′) is 1-Lipschitz
and (1, C)-quasi-isometric.

Proof. Since d′(Kx,Ky) = min{d(x, ky) : k ∈ K} for all x, y ∈ M , it is
clear that (K\M,d′) is a metric space. Moreover, if x, y ∈M , then

d(x, y) ≤ d(x, ky) + d(ky, y) ≤ d(x, ky) + C

for all k ∈ K, from which the first inequality of (3.1) follows. The second
inequality of (3.1) follows straight from the definition of d′.

Now we need to show that d′ is admissible, that is, that d′ induces the
quotient topology on K\M . We recall that a subset U of K\M is open if
and only if π−1(U) is open in M . On the one hand,

π−1(Bd′(Kx, r)) =
⋃

y∈Kx
Bd(y, r);

this right hand side is clearly open in M for all x ∈ M and r ∈ R+; conse-
quently, Bd′(Kx, r) is open in K\M . On the other hand, suppose that U is
an open subset of K\M and fix a point x ∈ M such that Kx ∈ U . Define
ρ : K → [0,+∞] by

ρ(k) := inf{d(kx, y) : y ∈M,π(y) /∈ U}.
The function ρ is clearly lower semicontinuous and strictly positive. Since
K is compact, r0, the minimum of ρ on K, is strictly positive. Therefore
Bd(kx, r0) ⊆ π−1(U) for all k ∈ K and Bd′(Kx, r0) ⊆ U . We conclude that
U is open with respect to d′. �

Corollary 3.2. Let (M,d) be a metric group and K be a compact normal
subgroup of M . Then there is a distance function d′ on the quotient group
M/K such that the quotient map π : x 7→ xK from (M,d) to (M/K, d′) is
1-Lipschitz and a (1, diam(K))-quasi-isometry.

Proof. Since K is normal, left and right cosets coincide and diam(Kp) =
diam(K) for all p ∈M . Lemma 3.1 may now be applied. �

Lemma 3.3. Let (M,d) be a locally compact metric space. Let A be a group
of homeomorphisms of (M,d) that is compact in the topology of uniform
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convergence on compacta and that normalises a group J of isometries of M .
Define

dA(x, y) := max{d(ax, ay) : a ∈ A} ∀x, y ∈M.

Then dA is a JA-invariant admissible metric on M , that is,

dA(gax, gay) = dA(x, y) ∀x, y ∈M, ∀g ∈ J, ∀a ∈ A.
If all the maps in A are (L,C)-quasi-isometries, then the identity map on
M is an (L,C)-quasi-isometry from d to dA.

Proof. Since A is compact and acts continuously on M , dA is finite-valued.
Clearly dA is a metric and d(x, y) ≤ dA(x, y) for all x, y ∈M .

Now we show that d and dA induce the same topology. Fix x ∈ M and
ε ∈ R+. On the one hand, if dA(x, y) < ε, then d(x, y) < ε. On the
other hand, by the Ascoli–Arzelà theorem, A is an equicontinuous family of
functions. Hence there is η ∈ R+ such that d(kx, ky) < ε for all k ∈ A and
all y ∈ Bd(x, η). Thus dA(x, y) < ε if d(x, y) < η.

If x, y ∈M , g ∈ J and k ∈ A, then

dA(gkx, gky) = max{d(k′gkx, k′gky) : k′ ∈ A}
= max{d((k′gk′−1)k′kx, (k′gk′−1)k′ky) : k′ ∈ A}
= max{d(k′′x, k′′y) : k′′ ∈ A} = dA(x, y),

since A normalises J . Hence dA is JA-invariant.
The last statement is trivially true. �

Corollary 3.4. Let (M,d) be a locally compact metric group and K be
a subgroup of M ; write α(k) for the inner automorphism x 7→ kxk−1 of
M . Suppose that α(K) is a compact group of automorphisms of M . Then
there is an M -left-invariant, K-right-invariant admissible distance function
dK on M such that the identity map from (M,d) to (M,dK) is a (1, C)-
quasi-isometry. If K is itself compact, then there is an admissible distance
function d′K on M/K such that the quotient map p 7→ pK from (M,d) to
(M/K, d′K) is a (1, C ′)-quasi-isometry.

Proof. Set A := α(K). By assumption, A is a compact group of homeo-
morphisms of M that normalises the group J of left translations of M .
Indeed, if p, x ∈M and k ∈ K, then

α(k) ◦ Lp ◦ α(k)−1(x) = kp(k−1xk)k−1 = (kpk−1)x.

Lemma 3.3 above constructs a JA-invariant admissible distance function
dK on M . Since Rk = Lk ◦ α(k−1) for all k ∈ K, the distance function dK
is also K-right-invariant.

On the one hand, one easily shows that

d(α(k)x, α(k)y) ≤ d(x, y) + 2d(e, k)

for all k ∈ K and x, y ∈M . On the other hand, since α(k)−1 = α(k−1) and
d(e, k) = d(e, k−1),

d(x, y) = d(α(k−1)α(k)x, α(k−1)α(k)y) ≤ d(α(k)x, α(k)y) + 2d(e, k)

for all k ∈ K and x, y ∈ M . Since α is an open map onto A and A is
compact, there is a constant r such that A = α(Bd(e, r)). Therefore α(k)
is a (1, 2r)-quasi-isometry and by Lemma 3.3, the identity map from (M,d)
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to (M,dK) is a (1, 2r)-quasi-isometry. If K is compact, then one may take
r equal to diamd(K).

Assume that K is compact. Observe that dK(p, pk) = dK(e, k) for all p ∈
M and k ∈ K, so, with respect to dK , the diameter of each orbit pK is equal
to the diameter of K. Therefore by Lemma 3.1, applied to the group of right
translations by K, the composition of the identity map on M with a change
of metric from d to dK and the quotient map form (M,dK) to (M/K, d′K)
is a (1, C)-quasi-isometry, where C = diamd(K) + diamdK (K). �

The next lemma restates the solution to Hilbert’s fifth problem by Glea-
son, Yamabe, Montgomery and Zippin. We quote [55].

Lemma 3.5. Let G be a locally compact group. There is an open subgroup
G′ of G with the property that every neighbourhood U of the identity element
of G′ contains a normal compact subgroup K of G′ such that G′/K is a Lie
group.

Proposition 3.6. Let (M,d) be a homogeneous metric space and G be the
connected component of the identity in Iso(M,d). For each ε ∈ R+, there
is a compact normal subgroup Kε of G such that G/Kε is a Lie group and
the orbit space Kε\M is an analytic manifold. Moreover, there is a distance
function dε on Kε\M such that G/Kε acts transitively and effectively by
isometries on (Kε\M,dε). The quotient map from (M,d) to (Kε\M,dε) is
1-Lipschitz and a (1, ε)-quasi-isometry.

Proof. We apply Lemma 3.5 to G, which is locally compact by Proposi-
tion 2.11. The open subgroup G′ of the lemma above coincides with G,
because G is connected. Fix o ∈ M and ε ∈ R+, and let B be a compact
ball with center o and radius less than ε. The set U = {f ∈ G : f(o) ∈ B}
is a neighbourhood of the identity element in G. By Lemma 3.5, there is a
compact normal subgroup Kε of G, contained in U , such that G/Kε is a Lie
group. Let S be the stabiliser of o in G. The stabiliser of Kεo in G/Kε is
(SKε)/Kε, which is a compact subgroup of the Lie group G/Kε. Hence the
orbit space Kε\M is homeomorphic to G/(SKε) and is an analytic manifold.

If p ∈ M and f ∈ Kε, then there are g ∈ G with g(o) = p and f ′ ∈ Kε

such that fg = gf ′. Thus

(3.2) d(f(p), p) = d(fg(o), g(o)) = d(gf ′(o), g(o)) ≤ ε,
that is, the diameter of Kεp is no greater than ε for all p ∈M .

The proposition now follows from Lemma 3.1. �

Corollary 3.7. Let (M,d) be a homogeneous metric space. For all ε ∈ R+,
there is a connected metric Lie group (Gε, dε) that is (1, ε)-quasi-isometric
to (M,d).

Proof. Let G be the connected component of the identity in Iso(M,d).
Proposition 3.6 guarantees the existence of a subgroup Kε of G such that
Gε := G/Kε is a Lie group, Mε := Kε\M is an analytic manifold endowed
with a distance function d′ε so that Gε acts transitively and effectively by
isometries on (Mε, d

′
ε), and the projection map from (M,d) to (Mε, d

′
ε) is a

(1, ε/2)-quasi-isometry.
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Now Gε acts transitively and effectively by isometries on Mε, so from
Proposition 2.7 we deduce that there is an admissible left-invariant distance
function dε on Gε such that the projection from (Gε, dε) to (Mε, d

′
ε) is a

(1, ε/2)-quasi-isometry.
Therefore (M,d) is (1, ε)-quasi-isometric to (Gε, dε). �

3.2. From groups to solvable groups. The aim of this section is to prove
Theorem 3.8. More precisely, given a connected Lie group G, we construct
a solvable group that is a model space for G.

We will use several well-known facts about semisimple Lie groups, for
which see [28] or [35]. Let L be a connected semisimple Lie group, with
Iwasawa decomposition ANK, where A, N and K are closed Lie subgroups,
A is a vector group, N is nilpotent and simply connected, and the map
(a, n, k) 7→ ank from A ×N ×K to G is a diffeomorphism. Then AN is a
solvable Lie subgroup of L, the center Z(L) of L is discrete and contained in
K, and K/Z(L) is compact. We denote by ZF the intersection of the kernels
of all finite-dimensional representations of L. Then ZF < Z(L); further,
Z(L)/ZF is finite and K/ZF is compact. We may further decompose K as
V × K0, where V is a closed vector subgroup of K and K0 is a maximal
compact subgroup of L. The center Z(L) is thus the direct product ZV ×Z0,
where ZV is a lattice in V and Z0 is a finite subgroup of K0.

Theorem 3.8. If G is a connected Lie group, then there exists a connected
Lie group H with the following properties.

(1) H = H0 ×K0, where H0 is solvable and K0 is compact.
(2) H acts analytically and transitively on G, with finite stabiliser. In

particular, the analytic map h 7→ h . eG from H to G is a finite
covering map, whose degree is bounded by the cardinality of R ∩ L,
where R is the radical of G and L is a Levi subgroup.

(3) There is a connected solvable subgroup S of H0 whose action on G
is simple and cocompact.

(4) If d is an admissible left-invariant distance function on G, then there
exists an admissible left-invariant distance function dG on G such
that the action of H on (G, dG) is by isometries and the identity
map (G, d)→ (G, dG) is a (1, C)-quasi-isometry.

(5) There is an admissible left-invariant distance function dS on S such
that the map s 7→ s . eG is an isometric embedding of (S, dS) into
(G, dG) and a (1, C)-quasi-isometry.

Proof. Let G = RL be a Levi decomposition of G, where R is the radical
of G, and L is a connected semisimple Lie subgroup. Using the notation
introduced at the beginning of this section, we fix an Iwasawa decomposition
ANK of L, and we further decompose K as V ×K0.

Define Γ to be R ∩ L. Note that L does not need to be closed in G, but
since R is normal and closed, Γ is a closed normal zero-dimensional subgroup
of L, so it is central and discrete in L.

Note that ZF ⊆ Z(L) ∩ Z(G), where Z(G) is the center of G. Write ∆
for Γ ∩ ZF ∩ ZV . We claim that Γ/∆ is finite. Indeed, algebraically,

Γ/∆ ' Γ(ZF ∩ ZV )/(ZF ∩ ZV ) < Z(L)/(ZF ∩ ZV ).
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Second, since ZF ∩ZV is the kernel of the restriction to ZF of the projection
from ZV × Z0 onto the second factor Z0 and Z0 is finite, ZF /(ZF ∩ ZV ) is
finite. Third, Z(L)/ZF is finite, and

Z(L)/ZF '
(
Z(L)/(ZF ∩ ZV )

) / (
ZF /(ZF ∩ ZV )

)
.

Therefore Z(L)/(ZF ∩ZV ) is finite and thus Γ/∆ is finite too, and the claim
is proved.

Define H ′ to be (RoAN)×K and Ψ : H ′ ×G→ G by

Ψ
(
(x, y), g

)
:= Lx ◦Ry−1(g) = xgy−1,

for all (x, y) ∈ H ′ and all g ∈ G. The analytic map Ψ defines a left action
of H ′ on G. We write (x, y) . g for Ψ

(
(x, y), g

)
.

The action is transitive, because if g ∈ G then there are r ∈ R, a ∈ A,
n ∈ N , and k ∈ K such that rank−1 = g, that is, g = (ran, k) . eG.
Consequently, all stabilisers are conjugate to the stabiliser StabH′(eG) of
eG in H ′, which is {(x, x) : x ∈ Γ}. The kernel ker Ψ of the action is
{(x, x) : x ∈ Z(G) ∩ Γ}. Indeed, on the one hand, if x ∈ Z(G) ∩ Γ then
(x, x) . g = xgx−1 = g for all g ∈ G. On the other hand, if (x, y) . g = g for
all g ∈ G, then xy−1 = e, that is, x = y ∈ Γ, and x ∈ Z(G).

Define ∆̃ to be {(x, x) : x ∈ ∆}, and the groups H0 and H by

H0 := ((RoAN)× V )/∆̃ and H := H0 ×K0.

Note that H is equal to H ′/∆̃, since ∆ ∩K0 = {e}. Now ∆ ⊆ Z(G), so ∆̃
is a central subgroup of (R o AN) × V and therefore H0 is a solvable Lie

group. Since ∆̃ is contained in the kernel of the action of H ′, the group H
still acts transitively on G. Moreover, StabH(eG), the stabiliser of eG in H,

is StabH′(eG)/∆̃, which is isomorphic to the finite group Γ/∆.
Parts (1) and (2) of the theorem are proved. Now we will prove (3). Let

V2 be the linear span in V of the set Γ ∩ V . We claim that

(3.3) Γ ⊆ V2 ×K0.

Indeed, Z(L) = ZV × Z0, where Z0 is a finite subgroup of K0 and ZV is a
subgroup of V , so if γ ∈ Γ is written as (zV , z0) ∈ ZV ×Z0, then γn = (znV , e),
where n is the order of Z0. Hence zV ∈ V2 and (3.3) is proved.

Let V1 be a subspace of V complementary to V2, so V = V1 × V2, and
take S to be (RoAN)× V1, which is a connected solvable subgroup of H ′,
and so acts on G. Now S ∩ StabH′(eG) = {e} since Γ ⊆ V2 ×K0, and thus
S acts simply on G and is a subgroup of H.

In general, S does not act transitively on G; however, the orbit space S\G
is compact. Indeed, topologically,

S\G ' S\
(
H ′/StabH′(eG)

)
'
(
S\H ′

)
/StabH′(eG) ' (V2 ×K0)/Γ.

Moreover, (V2 ×K0)/Γ is compact. Indeed, write Γ0 for Γ ∩K0 and Γ2 for
Γ ∩ V2; then Γ2 × Γ0 ⊆ Γ and thus

(V2 ×K0)/Γ '
(
(V2 ×K0)/(Γ2 × Γ0)

) / (
Γ/(Γ2 × Γ0)

)

'
(
(V2/Γ2)× (K0/Γ0)

) / (
Γ/(Γ2 × Γ0)

)
,

where (V2/Γ2)× (K0/Γ0) is compact. This completes the proof of (3).
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To prove (4), we define the analytic map ψ : s 7→ s . eG from S to G, that
is,

ψ(ran, v1) = ranv−11 .

Since the action of S is simple, the map ψ is injective. We prove that ψ is a
topological embedding, that is, that the inverse ψ−1 is continuous from ψ(S)
to S. Let pi = (riaini, vi) ∈ S be a sequence such that limi→∞ ψ(pi) = ψ(p)
for some p = (ran, v) ∈ S. We need to show that pi → p. Consider
the quotient R\G, which is a connected semisimple Lie group isomorphic
to L/(L ∩ R) = (ANV1) · ((V2K0)/Γ). Consider also the quotient map
π̃ : G→ R\G, and the standard isomorphism τ : R\G→ L/(L ∩ R). Then
limi→∞ τ ◦ π̃ ◦ ψ(pi) = τ ◦ π̃ ◦ ψ(p) by continuity. Since τ ◦ π̃ ◦ ψ(pi) =
ainiv

−1
i and ANV1 is the topological product of A, N and V1, it follows that

limi→∞ ai = a, limi→∞ ni = n and limi→∞ vi = v. Therefore limi→∞ ri =
limi→∞ riainiv

−1
i (anv−1)−1 = r, and we conclude that pi → p.

Suppose that d is an admissible left-invariant distance function on G.
Note that K need not be compact (for instance, if L is the universal covering
group of SL(2,R)); however, it is still true that K/Z(G) is compact, because
ZF ⊆ Z(G). By Corollary 3.4, there is an admissible distance function dG on
G that is G-left-invariant and K-right-invariant and such that the identity
map on G is a (1, C)-quasi-isometry from d to dG. Therefore H ′ acts by
isometries on (G, dG), and thus both H and S also act by isometries. This
proves (4).

Define dS on S by

dS(p, q) := dG(ψ(p), ψ(q)).

Since ψ : S → ψ(S) is a homeomorphism, dS is an admissible distance
function on S. Further, dS is left-invariant on S. Indeed, if p̄, p, p′ ∈ S, then

dS(p̄p, p̄p′) = dG((p̄p).eG, (p̄p
′).eG)

= dG(p̄.(p.eG), p̄.(p′.eG))

= dG(p.eG, p
′.eG)

= dS(p, p′).

Finally, we show that ψ : (S, dS) → (G, dG) is a (1, C)-quasi-isometry
or, equivalently, a C-neighbourhood of ψ(S) with respect to dG covers G.
If {Un}n∈N is a nested sequence of precompact open sets in G such that
eG ∈ Un for all n and G =

⋃
n Un, then π(Uk) = S\G for some k because

S\G is compact. Set

C := max{dG(eG, x), x ∈ Ūk},

and observe that if y ∈ G, then there are x ∈ Uk and s̄ ∈ S such that
ϕ(s̄)x = y, whence

dG(y, ψ(S)) = inf{dG(y, ϕ(s)eG) : s ∈ S}
≤ dG(ϕ(s̄)x, ϕ(s̄)eG) = dG(x, eG) ≤ C.

The proof of (5) is now complete. �
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3.3. Proof of Theorem 1.1. The first part of Theorem 1.1 is the content
of Corollary 3.7. We recall here the statement of the second part for the
reader’s convenience.

Theorem. If (M,d) is a homogeneous metric space, then it is (1, C)-quasi-
isometric to a simply connected solvable metric Lie group.

Proof. By part A of Theorem 1.1, (M,d) is (1, C)-quasi-isometric to a metric
Lie group (G, dG). By Theorem 3.8, there is a connected solvable metric Lie
group (H, dH) that is (1, C)-quasi-isometric to (G, dG). We will prove that
there is a simply connected solvable metric Lie group (J, dJ) that is (1, C)-
quasi-isometric to (H, dH).

Let K be a maximal compact subgroup of H. We may assume that K
acts effectively on H/K, by taking the quotient of H by the kernel K ′ of the
action of H on H/K otherwise. Indeed, K ′ is a compact normal subgroup
of H, and Corollary 3.2 applies.

Note that the Levi subgroup of H is trivial because H is solvable. The
quotient space H/K is simply connected by Lemma 2.14. Now we may
apply Proposition 2.17 to obtain a simply connected closed normal solvable
subgroup J of H such that the restricted quotient map from J to H/K is a
homeomorphism. Moreover, H/J ' K is compact. Therefore, (J, dH) is a
metric Lie group (1, C)-quasi-isometric to (H, dH).

Finally, (M,d) is (1, C)-quasi-isometric to the simply connected solvable
metric Lie group (J, dJ). �

3.4. Proof of Theorem 1.2. Let G be a connected Lie group with radical
R and Levi subgroup L. Let H be the group constructed in Theorem 3.8. If
R ∩ L = {e}, then the stabiliser of eG in H is trivial. There are two simple
cases in which this happens: if G is simply connected, because then G =
RoL, and if L is semisimple, because then R = {e}. If the stabiliser of eG in
H is trivial, then the covering map h 7→ h.eG described in Theorem 3.8.(2)
is a homeomorphism and we can pull back from G to H the distance dG
given by Theorem 3.8.(4). We denote by dH the new distance on H. Since
the action of H on (G, dG) is by isometry, then dH is left-invariant. Indeed,
if h, h1, h2 ∈ H, then

dH(hh1, hh2) = dG(hh1.eG, hh2.eG) = dG(h1.eG, h2.eG) = dH(h1, h2).

Therefore we obtain the following results, which contain a restatement of
Theorem 1.2.

Corollary 3.9. Suppose that (G, d) is either a simply connected metric
Lie group or a connected semisimple metric Lie group. Then there exist a
connected Lie group H that is the product of a solvable and a compact Lie
group, and admissible left-invariant distance functions dG and dH such that
(G, dG) and (H, dH) are isometric and the identity map on G is a (1, C)-
quasi-isometry from d to dG.

Remark 3.10. If G is a contractible Lie group, then the group H given by
Corollary 3.9 has no nontrivial compact subgroup, by Lemma 2.14, whence
H is solvable and G may be made isometric to a solvable Lie group.



24 COWLING, KIVIOJA, LE DONNE, NICOLUSSI GOLO, AND OTTAZZI

Corollary 3.11. Let G be a connected semisimple Lie group with Iwasawa
decomposition ANK. Write K as V ×K ′, where V is a vector group and
K ′ is compact. Then G may be made isometric to the direct product AN ×
V ×K ′.

4. Nilpotent groups and polynomial growth

The aim of this section is to prove Theorem 1.3 and discuss when a ho-
mogeneous metric space is quasi-isometric to a simply connected nilpotent
Lie group. We first recall some definitions and results, on modifications
of nilpotent Lie algebras and groups in Section 4.2, and on nilshadows of
solvable Lie groups in Section 4.3. These notions are then used to prove
Theorem 1.3 in Section 4.4. In Section 4.5, we deduce that quasigeodesic
homogeneous spaces of polynomial growth are quasi-isometric to nilpotent
groups.

4.1. Notation. We write Aut(G) for the group of automorphisms of a Lie
group G, and Aff(G) for the Lie group of affine transformations of G, which
may be identified with GoAut(G). Given a Lie algebra g, we write nil(g) for
the nilradical of g, and der(g) and Aut(g) for the Lie algebra of derivations
of g and the group of Lie algebra automorphisms of g. The Lie algebra
of Aut(g) coincides with der(g). For A ∈ Aut(G), we denote by A∗ the
corresponding Lie algebra morphism of g. In general, the map A 7→ A∗
is a homomorphism from Aut(G) to Aut(g); it is an isomorphism if G is
connected and simply connected.

4.2. Modifications of algebras and groups. We define modifications
of nilpotent Lie algebras. A modification map according to our definition
coincides with what Gordon and Wilson [24, (2.2) and (2.4)] call a normal
modification map. More precisely, they give a more general definition of
modification map for solvable Lie algebras, and then prove that modification
maps on nilpotent Lie algebras are normal in [24, (2.5)].

In this section, n denotes a nilpotent Lie algebra.
Consider the semidirect sum of Lie algebras n⊕der(n) whose Lie product

is defined by

[X +D,X ′ +D′] = [X,X ′] +DX ′ −D′X +DD′ −D′D
for all X,X ′ ∈ n and all D,D′ ∈ der(n), From the definition, adD|n coincides
with D.

Definition 4.1. A linear map σ : n → der(n) is called a modification map
of the nilpotent Lie algebra n if

(m1) σ is a Lie algebra homomorphism,
(m2) exp(σ(n)) is precompact in Aut(n), and
(m3) [σ(n), n] ⊆ ker(σ).

Remark 4.2. From (m1) and (m2), the closure of exp(σ(n)) is a compact
nilpotent Lie group, hence σ(n) is abelian and [n, n] ⊆ ker(σ).

Remark 4.3. From (m3) and Remark 4.2, Gr(σ), the graph of σ, that is, {X+
σ(X) : X ∈ n}, is a Lie subalgebra of n⊕der(n). Moreover, [Gr(σ),Gr(σ)] ⊆
n, so Gr(σ) is solvable.
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Remark 4.4. From (m2) and Remark 4.2, there exists a scalar product on
n such that each element in σ(n) is a skew-symmetric transformation of n.
Fix such a scalar product and denote the orthogonal complement of ker(σ)
in n by w. Using (m3), one may easily show that

(4.1) n = ker(σ)⊕w and [σ(n),w] = {0}.
Lemma 4.5. Let σ : n → der(n) be a linear map. Assume that σ has
property (m2), that σ(n) is abelian and that Gr(σ) is a Lie subalgebra of
n⊕ der(n). Then σ is a modification map.

The proof is postponed to the end of this subsection.

Definition 4.6. Let N be a connected Lie group. A Lie group homomor-
phism ϕ : N → Aut(N) is called a modification map if

(M1) ϕg(ker(ϕ)) ⊆ ker(ϕ) for all g ∈ N ,
(M2) ϕ(N) is precompact in Aut(N),
(M3) there is a submanifold P of N containing e and transverse to ker(ϕ)

such that ϕg(p) = p for all p ∈ P and g ∈ N .

Remark 4.7. It follows immediately from the definition that ker(ϕ)P is a
neighbourhood of the identity element. Hence

(4.2) ϕ(x) = (ϕ ◦ ϕg)(x) ∀g, x ∈ N.
Lemma 4.8. Assume that N is a simply connected nilpotent Lie group with
Lie algebra n. Let ϕ : N → Aut(N) be a Lie group homomorphism with
induced Lie algebra homomorphism σ : n → der(n). Then the following are
equivalent:

(i) σ is a modification map, and
(ii) ϕ is a modification map.

Proof. We may identify ker(σ) with the tangent space Te ker(ϕ). Suppose
that w is a subspace of TeN complementary to ker(σ); define

L := {A ∈ Aut(N) : A∗(ker(σ)) ⊆ ker(σ), A∗|w = Id}
= {A ∈ Aut(N) : A(ker(ϕ)) ⊆ ker(ϕ), A|exp(w) = Id},

which is a closed subgroup of Aut(N), and hence a Lie group, whose Lie
algebra we denote by l. One may check directly that

l := {D ∈ der(n) : D(ker(σ)) ⊆ ker(σ), D(w) = {0}}.
We show that (i) implies (ii). Since ϕ(N) = exp(σ(n)), (M2) follows

from (m2). Let w be as in Remark 4.4 and U be an open neighbourhood
of 0 in n on which exp is a diffeomorphism. Then P := exp(U ∩ w) is a
submanifold of N that contains e. Now σ(n) ⊆ l, so ϕ(N) ⊆ L, that is, ϕ
satisfies both (M1) and (M3).

Now we prove that (ii) implies (i). Property (m1) holds by assumption.
Next, (m2) holds since ϕ(N) = exp(σ(n)). We take w to be TeP , and see
that ϕ(N) ⊆ L, whence σ(n) ⊆ l, and (m3) holds. �
Lemma 4.9. Let ϕ be a modification map on a simply connected nilpotent
Lie group N . Then the graph of ϕ, that is,

Gr(ϕ) := {Ln ◦ ϕn : n ∈ N} ⊆ Aff(N),
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is a closed Lie subgroup of Aff(N) homeomorphic to N , with Lie algebra
Gr(ϕ∗).

Proof. To show that Gr(ϕ) is a subgroup of Aff(N), we take g1, g2 ∈ N ,
choose g := g1ϕg1(g2), and prove that Lg ◦ ϕg = Lg1 ◦ ϕg1 ◦ Lg2 ◦ ϕg2 . Since
ϕ is a homomorphism,

ϕg = ϕ(g1ϕg1(g2)) = ϕ(g1)ϕ(ϕg1(g2)) = ϕg1 ◦ ϕg2 ,
by (4.2). Since ϕg1 is an automorphism,

Lg(x) = g1ϕg1(g2ϕ
−1
g1 (x)) =

(
Lg1 ◦ ϕg1 ◦ Lg2 ◦ ϕ−1g1

)
(x)

for all x ∈ N . Therefore

Lg ◦ ϕg =
(
Lg1 ◦ ϕg1 ◦ Lg2 ◦ ϕ−1g1

)
◦ ϕg1 ◦ ϕg2 = Lg1 ◦ ϕg1 ◦ Lg2 ◦ ϕg2 .

This shows that Gr(ϕ) is closed under composition. Similarly, one may
prove that if g′ := ϕ−1g (g−1), then Lg′ ◦ ϕg′ = (Lg ◦ ϕg)−1, hence Gr(ϕ) is
also closed under inversion.

Now we prove that Gr(ϕ) is closed in Aff(N). Take gi ∈ N such that
Lgi ◦ ϕgi → f , where f ∈ Aff(N). We define g to be f(e) and observe that
gi = Lgi ◦ ϕgi(e)→ g. Since ϕ is continuous,

f = lim
i→∞

Lgi ◦ ϕgi = Lg ◦ ϕg ∈ Gr(ϕ),

and Gr(ϕ) is closed. Since Aff(N) is a Lie group, Gr(ϕ) is a closed Lie
subgroup thereof.

Finally, ψ : g 7→ Lg ◦ ϕg from N to Aff(N) is an analytic homeomor-
phism onto Gr(ϕ), and dψ(e)(TeN) = Te Gr(ϕ). By direct computation,
dψ(e)(v) = v + ϕ∗(v) for all v ∈ n. In particular,

Lie(Gr(ϕ)) = Te Gr(ϕ) = dψ(e)(TeN) = Gr(ϕ∗),

and we are done. �

Definition 4.10. Let N be a simply connected nilpotent Lie group. A Lie
group G is called a modification of N if there is a modification map ϕ on N
such that G is isomorphic to Gr(ϕ).

In light of Lemmas 4.8 and 4.9, a Lie group G is a modification of N if
and only if G is simply connected and there exists a modification map σ on
n such that g is isomorphic to Gr(σ).

4.2.1. Proof of Lemma 4.5. Let n be a nilpotent Lie algebra and σ be as
in the hypotheses of Lemma 4.5. Since Gr(σ) is a Lie algebra and σ(n) is
abelian,

[X + σX, Y + σY ] = [X,Y ] + [X,σY ] + [σX, Y ] ∈ Gr(σ) ∩ n,

and hence

(4.3) σ[X,Y ] = σ[σY,X]− σ[σX, Y ]

for all X,Y ∈ n. If moreover Z ∈ n, then σZ ∈ der(n), and

(4.4) [σZ, [X,Y ]] = [[σZ,X], Y ] + [X, [σZ, Y ]].
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These two formulae imply the following, which will be used extensively: for
all X1, X2, X3 ∈ n,

(4.5) σ[[X1, X2], X3]

= σ
(
[σ[σX1, X2], X3]− [σ[σX2, X1], X3]− [σ[σX3, X1], X2]

+ [σ[σX3, X2], X1] + [σX2, [σX3, X1]]− [σX1, [σX3, X2]]
)
.

Let {nk}sk=1 be the ascending central sequence of n. Since the abelian
algebra σ(n) acts on n by skew-symmetric maps, we may write n as a direct

sum
⊕J

j=1wj , where each wj is a minimal irreducible subspace of n for σ(n).

In particular, dim(wj) is either 1 or 2. Moreover, we may assume that for

each k there exists Jk such that nk =
⊕Jk

j=1wj .

Claim 4.11. If σ(nk) = {0}, then σ[σXi, Xj ] = 0 for all Xi ∈ wi and Xj ∈ wj

such that [Xi, Xj ] ∈ nk+1.

To prove Claim 4.11, we may assume that Xi and Xj have norm one.
In the case where dim(wi) = 2, we define Xi∗ to be a unit vector in wi

orthogonal to Xi. We define Xj∗ similarly. We consider four cases:

(a) i = j and dim(wi) = 2;
(b) i 6= j, dim(wi) = 2 and dim(wj) = 2;
(c) i 6= j and dim(wi) + dim(wj) = 3;
(d) i 6= j, dim(wi) = 1 and dim(wj) = 1.

In case (a), we need to show that σ[σXi, Xi∗] = σ[σXi, Xi] = 0. By
assumption, there are ai, ai∗ ∈ R such that

[σXi, Xi] = −aiXi∗, [σXi, Xi∗] = aiXi,

[σXi∗, Xi] = −ai∗Xi∗, [σXi∗, Xi∗] = ai∗Xi.

By hypothesis and (4.5),

0 = σ[[Xi, Xi∗], Xi] = −(a2i + a2i∗)σXi∗,

0 = σ[[Xi, Xi∗], Xi∗] = (a2i + a2i∗)σXi.

Hence ai = ai∗ = 0 or σXi = σXi∗ = 0. In both cases,

σ[σXi, Xi∗] = aiσXi = 0 and σ[σXi, Xi] = −aiσXi∗ = 0.

To treat case (b), we may assume that [wi,wi] ⊆ n(k). By case (a),
[σU, V ] = 0 for all U, V ∈ wi. Thus there are aj , aj∗, bi, bi∗, bj , bj∗ ∈ R such
that

[σXi, Xi] = 0 [σXi, Xi∗] = 0

[σXi∗, Xi] = 0 [σXi∗, Xi∗] = 0

[σXj , Xj ] = −ajXj∗ [σXj , Xj∗] = ajXj

[σXj∗, Xj ] = −aj∗Xj∗ [σXj∗, Xj∗] = aj∗Xj

[σXi, Xj ] = −biXj∗ [σXi, Xj∗] = biXj

[σXi∗, Xj ] = −bi∗Xj∗ [σXi∗, Xj∗] = bi∗Xj

[σXj , Xi] = −bjXi∗ [σXj , Xi∗] = bjXi

[σXj∗, Xi] = −bj∗Xi∗ [σXj∗, Xi∗] = bj∗Xi.
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By hypothesis and (4.5),

0 = σ[[Xj , Xi], Xi] = −2bibj∗σ(Xi∗)− b2iσ(Xj)(4.6)

0 = σ[[Xj∗, Xi], Xi] = −2bibjσ(Xi∗) + b2iσ(Xj∗)(4.7)

0 = σ[[Xj , Xi∗], Xi∗] = (b2j∗ + bi∗bj∗)σ(Xi)− b2i∗σ(Xj)(4.8)

0 = σ[[Xi∗, Xj ], Xj ] = (bi∗aj∗ + 2bibj)σ(Xj∗)− ajbj∗σ(Xi)(4.9)

− b2jσ(Xi∗) + ajbi∗σ(Xj)

We will show that

σ[σXi, Xj ] = −biσXj∗ = 0 and σ[σXj , Xi] = −bjσXi∗ = 0.

We apply (4.6) to Xi∗ and deduce that bibj = 0. Hence (4.7) reduces to
biσ(Xj∗) = 0. If bj = 0, then bjσ(Xi∗) = 0. Otherwise, bj 6= 0, and by
applying (4.8) to Xi, we deduce that bi∗bj = 0. Hence bi∗ = 0 and (4.8)
reduces to bj∗σ(Xi) = 0. Finally, (4.9) simplifies to bjσ(Xi∗) = 0.

In case (c), if dim(wj) = 1, then σ[σXi, Xj ] = 0 trivially. So we show
that σ[σXi, Xj ] = 0 when dim(wi) = 1 and dim(wj) = 2. Fix Xi ∈ wi \{0},
and take bi ∈ R such that

[σXi, Xj ] = −biXj∗ and [σXi, Xj∗] = biXj .

By hypothesis and (4.5),

0 = σ[[Xj∗, Xi], Xi] = −b2iσ(Xj∗).

In case (d), σ[σXi, Xj ] = 0 trivially.
Claim 4.11 is now proved. To finish the proof of Lemma 4.5, we need to

show that σ is a homomorphism and [σ(n), n] ⊆ ker(σ).
Since σ(n) is abelian, σ is a Lie algebra homomorphism if and only if

[n, n] ⊆ ker(σ). By (4.3), we only have to show (m3).
By linearity, (m3) is equivalent to the condition that

(4.10) σ[σXi, Xj ] = 0 ∀Xi ∈ wi ∀Xj ∈ wj .

But Claim 4.11 implies (4.10) for all Xi, Xj by induction on k. Indeed,
if [Xi, Xj ] ∈ n1, then (4.10) follows directly from the fact that n0 = {0}
and Claim 4.11. If (4.10) holds for all Xi, Xj with [Xi, Xj ] ∈ nk, then
σ(nk) = {0} by (4.3) and because nk is spanned by elements of the type
[Xi, Xj ]. Thus (4.10) holds also for all Xi, Xj with [Xi, Xj ] ∈ nk+1 by
Claim 4.11. �
4.3. Nilshadows of solvable groups of polynomial growth. In this
section, we follow [18] and [7].

For each element X of a Lie algebra, the linear map adX admits a unique
Jordan decomposition as a sum of a semisimple map, denoted by ads(X),
and a nilpotent map.

Let g be a solvable Lie algebra of type (R). Let v be a subspace of g such
that

(4.11) g = nil(g)⊕ v and ads(v)v = {0},
which exists by [7, p. 689]. Let πv : g → v be the projection with kernel
nil(g). On the vector space g, define the new Lie product [X,Y ]nil by

[X,Y ]nil := [X,Y ]− ads(πv(X))Y + ads(πv(Y ))X.
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The Lie algebra (g, [·, ·]nil) is the nilshadow of g, which is nilpotent and
unique up to isomorphism; see, for example, [18].

We show now that the modifications of a nilpotent Lie algebra n are
exactly the Lie algebras whose nilshadow is n.

Proposition 4.12. If n is a nilpotent Lie algebra and σ is a modification
map on n, then ker(σ) = nil(Gr(σ)) and the nilshadow of Gr(σ) is isomor-
phic to n.

Proof. Set k := n⊕ σ(n). Take X ∈ n. Since adX|kn = 0 for some k ∈ N, we

see that adX|k+1
n⊕der(n) = 0. Thus

(4.12) ads(X + σ(X))|k = adσ(X)|k ∀X ∈ n,

since σ(n) is commutative, σ(n) ⊆ ker(adσ(X)) and adσ(X) is semisimple
on k by Remark 4.4.

Now we claim that ker(σ) = nil(Gr(σ)). Since Gr(σ) is solvable by Re-
mark 4.3, we only need to show that the nilpotent elements of Gr(σ) are
those in ker(σ). On the one hand, if σ(X) = 0, then adX + σ(X) is nilpotent
on n⊕der(n), and in particular on Gr(σ). On the other hand, if adX + σ(X)
is nilpotent on Gr(σ), then adσ(X)|Gr(σ) = 0, by (4.12), which implies that

0 = adσ(X)(Y + σ(Y )) = σ(X)(Y )

for all Y ∈ n, and thus σ(X) = 0.
Let w be the subspace of n defined in Remark 4.4, and set

v := {X + σ(X) : X ∈ w}.
Clearly Gr(σ) = nil(Gr(σ)) ⊕ v and ads(v)v = {0}, by (4.12) and (4.1).
From (4.12), we also see that ads(πv(X + σ(X))) = adσ(X). So

[X + σ(X), Y + σ(Y )]nil = [X,Y ] ∀X,Y ∈ n.

This shows that the map X 7→ X + σ(X) is an isomorphism from n to the
nilshadow of Gr(σ). �

The converse of the previous proposition also holds: every simply con-
nected solvable group of polynomial growth is a modification of its nil-
shadow. We will not use this, but see Remark 4.14 for more.

Proposition 4.13. If g is a solvable Lie algebra of type (R) and v is chosen
such that (4.11) holds, then the map σ : X 7→ ads(πv(X)) from g to gl(g) is
a modification map of (g, [·, ·]nil) and Gr(σ) is isomorphic to g.

4.4. Proof of Theorem 1.3. Let (N, d) be a connected simply connected
nilpotent metric Lie group and G be the connected component of the identity
of Iso(N, d). We aim to characterise the Lie groups H that may be equipped
with a metric dH so that (H, dH) is isometric to (N, d).

As G is of polynomial growth, so is H, and H is contractible since it is
isometric to N . By Lemma 2.22, H is solvable. It is reasonable to expect
that there are similarities between H and N ; in fact we will see that H is a
modification of N and N is the nilshadow of H.

We restate Theorem 1.3 for the reader’s convenience.

Theorem. Let N and H be simply connected Lie groups and assume that
N is nilpotent. The following are equivalent:
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(i) H and N may be made isometric;
(ii) H is a modification of N ;

(iii) H is solvable and of polynomial growth and N is its nilshadow.

We shall prove the claim by establishing that (i) implies (ii), that (ii)
implies (iii), and that (iii) implies (i); we discuss other implications after
the proof. We point out that Breuillard [7] also showed that (iii) implies
(i), and Gordon and Wilson [24] showed essentially that (i) and (ii) are
equivalent.

Proof. We start by showing that (i) implies (ii). Let dN and dH be admis-
sible left-invariant distance functions on N and H and let F : (N, dN ) →
(H, dH) be an isometry. As the distance functions are left-invariant, we
may assume that F (eN ) = eG without loss of generality. The groups
Iso(H, dH) and Iso(N, dN ) are naturally endowed with Lie group structures;
see, for example, [34, Section 2.1]. Define Ψ : Iso(H, dH) → Iso(N, dN ) by
Ψ(f) := F−1◦f ◦F . The map Ψ is a continuous group isomorphism, hence a
diffeomorphism. In particular, F is also smooth, because it is a composition
of smooth maps: indeed, F (x) = Ψ−1(Lx)(eN ) for all x ∈ N . Since N is
nilpotent, the stabiliser Stab(eN ) is a subgroup of Aut(N) and Iso(N, dN ) is
a closed subgroup of Aff(N); see [34]. Therefore Ψ is a smooth embedding
of Iso(H, dH) in Aff(N). Define the linear map σ : n→ der(n) by

(4.13) σ := π∗ ◦Ψ∗ ◦ ( dF )eN ,

where π : Aff(N) = N o Aut(N)→ Aut(N) is the quotient map.
We first prove that

(4.14) Gr(σ) = Ψ∗(h),

that is, Gr(σ) is isomorphic to h. Recall that Lie(Iso(N, dN )) may be
represented as a Lie algebra of smooth vector fields on N whose flows
are one-parameter groups of isometries. In this representation, a vector
X ∈ n corresponds to the right-invariant vector field X† on N such that
X†(eN ) = X, and the Lie algebra of the stabiliser of eN corresponds to the
space of vector fields that vanish at eN . Moreover, if Y ∈ h, then Ψ∗(Y ) ∈
Lie(Iso(N, dN )) corresponds to the vector field F ∗Y † on N . So take X ∈ n
and set Y := ( dF )eN (X) ∈ TeHH = h. Then (F ∗Y †−X†)(eN ) = 0, that is,
Ψ∗ ◦ ( dF )eN (X)−X ∈ der(n). It follows that σ(X) = Ψ∗ ◦ ( dF )eN (X)−X
and thus

X + σ(X) = Ψ∗ ◦ ( dF )eN (X) ∈ Ψ∗(h).

This shows that Gr(σ) ⊆ Ψ∗(h). Since Gr(σ) has the same dimension as n
and thus as Ψ∗(h), we conclude that (4.14) holds.

We need to show that σ is a modification map. Since N is simply con-
nected and nilpotent, it is contractible and so H is also contractible. More-
over, H is of polynomial growth, because N is. By Lemma 2.22, H is solv-
able. Observe that σ(n) = π∗(Ψ∗(h)), where Ψ∗(h) is a solvable Lie algebra
and π∗ is a Lie algebra homomorphism. Hence σ(n) is a solvable subalgebra
of Lie(Stab(eN )), which is a compact Lie algebra, and thus σ(n) is abelian.
Property (m2) is easily checked because σ(n) ⊆ Lie(Stab(eN )). Lemma 4.5
yields that σ is a modification map. Now Lemma 4.8 and Lemma 4.9 imply
(ii).
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Remark 4.3 and Proposition 4.12 show that (ii) implies (iii).
Finally, from [7, Lemma 3.11], on each simply connected solvable group

of polynomial growth there exists a Riemannian metric that is left-invariant
for both the original Lie structure and for the nilshadow Lie structure, so
(iii) implies (i). �

Remark 4.14. Note that if (iii) holds, then, as already stated, the natural
map from N to H is an isometry for some left-invariant distance functions.
One may then show that the modification map on n constructed in showing
that (i) implies (ii) is the differential of a modification map ϕ on N that

satisfies L
(N)
p ◦ ϕp = L

(H)
p , where the superscript indicates the group law

for the left translation. Using the formula for the nilshadow product [7,
p. 690], one deduces that the modification map ϕ is the group homomor-
phism T with differential X 7→ ads(πv(X)). This last observation motivates
Proposition 4.13.

Remark 4.15. To see that (ii) implies (i), note that there is a left-invariant
Riemannian distance function dN on N that is also ϕ(N)-invariant, since
ϕ(N) is precompact in Aut(N). Hence we define

dGr(ϕ)(Lx ◦ ϕx, Ly ◦ ϕy) := dN (x, y)

for all x, y ∈ N ; it is easy to check that the map x 7→ Lx ◦ ϕx is an isom-
etry from the metric Lie group (Gr(ϕ), dGr(ϕ)) to (N, dN ) (recall Proposi-
tion 4.12).

Here are more observations about Theorem 1.3. We may change a met-
ric on an isometrically homogeneous metric space and change the isometry
group by doing so. For instance, we may equip R2 with any one of the
biLipschitz equivalent translation-invariant metrics

d((x1, y1), (x2, y2)) = (|x1 − x2|p + a|y1 − y2|p)1/p ,

where 1 ≤ p <∞ and 0 < a <∞. When p = 2, the isometry group includes
rotations, but otherwise it does not. And when p = 2, the rotation group
depends on the parameter a. However, each of the isometry groups act by
bi-Lipschitz transformations with respect to all the other metrics.

However, we may equip a simply connected solvable group G with a left-
invariant distance function d so that (G, d) cannot be bi-Lipschitz equivalent
to N endowed with a left-invariant distance function.

The universal covering group H of the group R2 o SO(2) of orientation-
preserving rigid motions of R2 is a simply connected three-dimensional solv-
able Lie group that admits a left-invariant distance function d such that
(H, d) is not bi-Lipschitz equivalent to any nilpotent group. Indeed, the two
simply connected three-dimensional nilpotent Lie groups are the abelian
group R3, which is the nilshadow of H, and the nonabelian Heisenberg
group H. However, if d is a suitable left-invariant sub-Riemannian distance
function on H, then (H, d) is not even quasiconformally equivalent to either
R3 or H; see [19]. Nevertheless, (H, d) is locally bi-Lipschitz to H with the
standard sub-Riemannian distance function.
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4.5. Metric spaces of polynomial growth. We now derive some conse-
quences of Theorem 1.3. These results are not surprising since we consider
distance functions that are proper and quasigeodesic.

Corollary 4.16. Let (M,d) be a homogeneous metric space of polynomial
growth. Suppose that M is a contractible manifold and that d is quasi-
geodesic. Then (M,d) is quasi-isometrically homeomorphic to a simply con-
nected nilpotent Riemannian Lie group.

Proof. Let G be the connected component of Iso(M,d) that contains the
identity and K be the stabiliser in G of a point o ∈M . By Proposition 2.11,
M is homeomorphic to G/K. By Lemma 2.14, K is a maximal compact
subgroup of G. Moreover, G is a Lie group; see [44, p. 243] or the statement
after Theorem 1.1.

Let L be a Levi subgroup of G. By Lemma 2.21, G is of polynomial
growth, so L is compact by Lemma 2.22. Therefore, after a conjugation if
necessary, L is contained in K. By Propositions 2.17 and 2.11, there is a
solvable Lie subgroup H in G such that the map f 7→ f(o) is a homeomor-
phism from H to M . Let dH be the distance function on H pulled back from
that on M , which is left-invariant and admissible since H acts by isometries
on (M,d). Hence (M,d) is isometric to the simply connected solvable metric
Lie group (H, dH).

Let N be the nilshadow of H. By Theorem 1.3, there are distance func-
tions d′H and d′N on H and N such that (H, d′H) and (N, d′N ) are isometric.
We may assume that d′H and d′N are Riemannian, by [34, Section 2.3]. Since
d is assumed to be of polynomial growth, (H, dH) is proper by Remark 2.20.
Finally, admissible proper left-invariant quasigeodesic distance functions on
a Lie group are quasi-isometric (see [8]), and d is assumed to be quasi-
geodesic, so the identity map on H is a quasi-isometry from dH to d′H . �

Corollary 4.17. Let (M,d) be a homogeneous metric space of polynomial
growth. Suppose that the distance function d is quasigeodesic. Then (M,d)
is quasi-isometric to a simply connected nilpotent Riemannian Lie group.

Proof. Let G be the connected component of the identity in the group of
isometries of (M,d) and dG be a Busemann distance function on G, as
defined in Proposition 2.7 (using the transitivity of G established in Propo-
sition 2.13). Let µ be a Haar measure on G and m be a Radon measure on
M such that (2.4) holds. Using the fact that the quotient map from (G, dG)
to (M,d) is a (1, C)-quasi-isometry and the relation (2.4) between the mea-
sures, one may easily show that the metric space (G, dG) is of polynomial
growth.

Let K0 be a maximal compact subgroup of G and define M ′ to be G/K0.
By Lemma 2.14, M ′ is a contractible manifold. By Corollary 3.4, there is
an admissible G-invariant distance function d′ on M ′ such that the quotient
map from (G, dG) to (M ′, d′) is a (1, C)-quasi-isometry. Let m′ be a G-
invariant Radon measure on M ′ such that (2.4) holds. Using the relation
(2.4) between the measures and the fact that the quotient map from (G, dG)
to (M ′, d′) is a (1, C)-quasi-isometry, we may now prove that (M ′, d′) is of
polynomial growth.
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Since (M ′, d′) is quasi-isometric to (M,d), the metric d′ is quasigeodesic.
We conclude by applying Corollary 4.16 to (M ′, d′). �

5. Characterisation of self-similar Lie groups

5.1. Basic properties of self-similar Lie groups. We recall the defini-
tion of self-similar Lie group and we present some examples and properties.

Definition 5.1. A self-similar Lie group is given by (G, d, δ) where G is a
connected Lie group, d is a left-invariant distance onG inducing the manifold
topology and δ : G→ G is an automorphism such that d(δx, δy) = λd(x, y)
for some λ 6= 1.

The basic examples of self-similar Lie groups are normed vector spaces of
finite dimension with a dilation δv = λv. Several other examples are already
available using G = R2.

If α, β ≥ 1, the automorphisms δλ =

(
λα 0
0 λβ

)
are all dilations of factor

λ for several distances such as d((x, y), (x′, y′)) = max{|x−x′|1/α, |y−y′|1/β}
or, if α = β, d(x, y) = ‖x − y‖1/α where ‖ · ‖ is a norm on R2. It has been
shown in [37] that, for α = 2, there exists a homogeneous distance d whose
spheres are fractals in R2.

The automorphisms δλ = λα
(

cos(log λ) − sin(log λ)
sin(log λ) cos(log λ)

)
are dilations of

factor λ for the distance d(x, y) = ‖x − y‖ 1
α , where ‖ · ‖ is the Euclidean

norm and α ≥ 1.
If α > 1, then there is a left-invariant distance d on R2 for which the

automorphisms δλ =

(
λα λα log(λα)
0 λα

)
are dilations of factor λ. These

dilations appear in [5] in the study of visual boundaries of Gromov hyperbolic
spaces. See also [60] for furter results and examples in Rn. In [39] the authors
have studied those self-similar Lie groups that admit a Besicovitch covering
property. See also [41] for further references.

Definition 5.2. A (positive) grading of a Lie algebra g is a splitting g =⊕
t>0 Vt so that [Vs, Vt] ⊂ Vs+t for all s, t > 0. A Lie group G is graduable if

it is simply connected and its Lie algebra admits a grading.

Notice that only a finite number of Vt’s are not {0}, because g has finite
dimension. Moreover, a graduable group is necessarily nilpotent. If G is a
graduable Lie group with grading g =

⊕
t>0 Vt, we may define the standard

dilations δλ : G → G by imposing (δλ)∗v = λtv for all v ∈ Vt. It is known
that a distance d exists on G so that (G, d, δλ) is a self-similar group if and
only if Vt = {0} for all t < 1, see [39] for references.

Graduable groups are in fact the only Lie groups that support a dilation
by the following theorem due to Siebert [51].

Theorem 5.3 (Siebert). Let G be a connected Lie group and let δ : G→ G
be a Lie group automorphism such that for all g ∈ G

lim
n→∞

δng = eG.

Then G is graduable, nilpotent and simply connected.



34 COWLING, KIVIOJA, LE DONNE, NICOLUSSI GOLO, AND OTTAZZI

The proof constructs a grading for G as follows. One denotes by gC the
complexified Lie algebra and by Wα the generalized eigenspace of (δ∗)C :
gC → gC with respect to α ∈ C, that is,

Wα = {v ∈ gC : ∃n ∈ N ((δ∗)C − αId)nv = 0}.
It can be proven that [Wα,Wβ] = Wαβ and that (δ∗)CWα = Wα, for all
α, β ∈ C. Thus, one has that Vt = g ∩⊕log |α|=−tWα defines the layers of a

grading for g.

Corollary 5.4. If (G, d, δ) is a self-similar Lie group, then G is graduable,
nilpotent and simply connected. Moreover, all metric dilations on (G, d) are
Lie group automorphisms of G.

Proof. Since on a self-similar Lie group one has a contractive automorphism,
the first statement follows from Theorem 5.3. Recall that a metric dilation
on a metric space (G, d) is a bijection f : G→ G such that d(f(x), f(y)) =
µd(x, y) for all x, y ∈ G and some µ 6= 1. Notice that such a map is also
an isometry from (G,µd) to (G, d). By [34], isometries between connected
nilpotent Lie groups are Lie group isomorphisms. �
5.2. Proof of Theorem 1.4. The last sentence in Theorem 1.4 has been
proven in Corollary 5.4. We restate the first part of Theorem 1.4 for the
reader’s convenience.

Theorem. If a metric space is locally compact, connected, isometrically
homogeneous, and it admits a metric dilation, then it is isometric to self-
similar Lie group.

The converse part of the theorem is obvious. Hence we focus on metric
spaces with a dilation. Throughout this section, we assume that (M, d)
is a homogeneous metric space, λ > 1, and δ is a bijection of M such
that d(δx, δy) = λd(x, y) for all x, y ∈ M . Since M is locally compact
and isometrically homogeneous, it is complete, and the Banach fixed point
theorem shows that δ has a unique fixed point, o say. As usual, G denotes the
connected component of the identity in Iso(M). We prove a few preliminary
results.

Lemma 5.5. The metric space (M,d) is proper and doubling.

Proof. The ball B(o, r) is relatively compact for all sufficiently small r; using
the dilation we see that this holds for all r ∈ R.

We now show that (M, d) is a doubling metric space. Since B̄(o, λ) is
compact, there are points x1, . . . , xk ∈ B̄(o, λ) such that

B̄(o, λ) ⊆
k⋃

i=1

B(xi, 1/2).

Take R ∈ R+, and let n := blogλRc, so that 1 ≤ λ−nR < λ. Then

δnB(xi, 1/2) ⊆ δnB(xi, λ
−nR/2) = B(δnxi, R/2),

and so

B(o,R) = δn(B(o, λ−nR)) ⊆ δn(B(o, λ)) ⊆
k⋃

i=1

B(δnxi, R/2).
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Since (M, d) is isometrically homogeneous, (M, d) is doubling. �

Lemma 5.6. The space M is an analytic contractible manifold and G is
a Lie group that acts on M analytically and transitively. Moreover G is of
polynomial growth.

Proof. Let π : f 7→ fo be the map from G to M . Define T : G → G by
Tf = δ ◦ f ◦ δ−1; then π ◦T = δ ◦π. Let K be the maximal compact normal
subgroup of G. Note that T (K) = K, since T is an automorphism of G.
Then π(K) is a compact subset of M : let r := max{d(o, p) : p ∈ π(K)}.
Then

π(K) = πT−1(K) = δ−1π(K) ⊆ B(o, λ−1r),

that is, r = 0. Therefore π(K) = {o}, and K is contained in the stabiliser
of o in G. Since G acts transitively by Proposition 2.13, K = {eG}. By
Proposition 2.11 and Lemma 3.5, G is a Lie group, M is a manifold and the
action of G on M is analytic.

Since M is a manifold and admits a metric dilation, it is compactly
contractible, and hence contractible by Lemma 2.14. Since moreover M
is doubling and proper, it is of polynomial growth by Remark 2.18. By
Lemma 2.21, G is a group of polynomial growth. �

Proof of Theorem 1.4. Let (M, d) be a homogeneous metric space. Let δ be
a metric dilation of factor λ ∈ (1,∞) and with fixed point o. Let G denote
the connected component of the identity in Iso(M). By Lemma 5.6, G is a
Lie group of polynomial growth and M may be identified with G/K, where
K is the stabiliser of o in G.

We will apply Proposition 2.17. Since G is of polynomial growth, each
Levi subgroup of G is compact, by Lemma 2.22. Since G/K is contractible
by Lemma 5.6, K is a maximal compact subgroup by Lemma 2.14, and
therefore K contains a Levi subgroup.

From Proposition 2.17, there exists a connected Lie subgroup H of G
such that the restricted quotient map h 7→ ho from H to M is a homeomor-
phism. We use this homeomorphism to make H into a self-similar Lie group
isometric to (M,d).

Define the distance function dH on H by dH(h, h′) = d(ho, h′o). It is
clear that this is an admissible metric, and it is left-invariant because

dH(hh′, hh′′) = d(h(h′(o)), h(h′′(o))) = d(h′o, h′′o) = dH(h′, h′′)

for all h, h′, h′′ ∈ H. Further, define the map T on G by

Tg := δ ◦ g ◦ δ−1.
Then T is a Lie group automorphism of G. Since TK = K and the Killing
form is invariant under automorphisms, TH = H. Thus T |H is a Lie group
automorphism of H.

We note that after the identification of H with M , the map T |H coincides
with δ. Indeed,

(Th)(o) = (δhδ−1)(o) = δ(ho),

and the proof is complete. �
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SOME REMARKS ON CONTACT VARIATIONS
IN THE FIRST HEISENBERG GROUP

SEBASTIANO GOLO

Abstract. We show that in the first sub-Riemannian Heisenberg group
there are intrinsic graphs of smooth functions that are both critical
and stable points of the sub-Riemannian perimeter under compactly
supported variations of contact diffeomorphisms, despite the fact that
they are not area-minimizing surfaces. In particular, we show that if
f : R2 → R is a C 1-intrinsic function, and ∇f∇ff = 0, then the first
contact variation of the sub-Riemannian area of its intrinsic graph is
zero and the second contact variation is positive.
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1. Introduction

We want to address some new features of the sub-Riemannian perimeter
in the Heisenberg group. The notion of sub-Riemannian perimeter in the
Heisenberg group, the so-called intrinsic perimeter, has been enstablished as
a direct and natural extension from the Euclidean perimeter in Rn. However,
in many aspects, there are fundamental differences that lead to new open
questions [6, 7, 10, 18, 16].

Before a detailed explanation, let us introduce some basic notions and
notations we need in this introduction. The (first) Heisenberg group H is a
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three dimensional Lie group diffeomorphic to R3. However, when endowed
with a left-invariant sub-Riemannian distance, it becomes a metric space
with Hausdorff dimension equal to four; see [3].

By standard methods of Geometric Measure Theory, one defines the in-
trinsic perimeter P (E; Ω) of a measurable set E ⊂ H in an open set Ω ⊂ H.
We will denote it also by A (∂E ∩ Ω).

Regular surfaces are topological surfaces in H that admit a continuously
varying tangent plane and they play an important role in the theory of sets
with finite intrinsic perimeter. They are the sub-Riemannian counterpart of
smooth hypersurfaces in Rn. Regular surfaces are locally graphs of so-called
C 1-intrinsic functions R2 → R. We will focus on these functions and their
graphs.

The space of all C 1-intrinsic functions will be denoted by C 1
W and the

graph of f : R2 → R by Γf ⊂ H. It is well known that f ∈ C 1
W if and only if

f ∈ C 0(R2) and the distributional derivative

∇ff = ∂ηf +
1

2
∂τ (f2)

is continuous, where we denote by (η, τ) the coordinates on R2; see [1, 18].
If ω ⊂ R2, the intrinsic area of Γf above ω is

A (Γf ∩ Ωω) =

∫

ω

√
1 + (∇ff)2 dη dτ,

where Ωω = {(0, η, τ) ∗ (ξ, 0, 0) : (η, τ) ∈ ω, ξ ∈ R}, with ∗ denoting the
group operation in H.

An important open problem concerning C 1
W is Bernstein’s problem: If the

graph Γf of f ∈ C 1
W is a locally minimizer of the intrinsic area, is Γf a plane?

See Section 2.4 for a precise statement and [2, 4, 17, 9] for further reading.
In the study of perimeter minimizers in H, we identify three main issues

that mark the gap from the Euclidean theory. First, the map f 7→ ∇ff
is a nonlinear operator. Such non-linearity reflects on the fact that basic
function spaces like C 1

W itself, or the space of functions with bounded intrinsic
variation, are not vector spaces. See Remark 2.3 for details.

Second, the area functional is not convex (say on C 1(R2)). In particular,
there are critical points that are not extremals, see [4]. In other words, a
first variation condition

(1)
d

dε

∣∣∣∣
ε=0

A (Γf+εφ ∩ (Ωω)) = 0 ∀φ ∈ C∞c (ω)

does not characterize minimizers. However, if f ∈ C 1(R2), a second variation
condition d2

dε2

∣∣∣
ε=0

A (Γf+εφ ∩ (Ωω)) ≥ 0 does, see [9].
Third, there are objects among sets of finite intrinsic perimeter with

very low regularity, see Remark 2.3. The standard variational approach
as in (1) fails when applied to these objects. More precisely, if f ∈ C 1

W,
then A (Γf+εφ ∩ (Ωω)) may be +∞ for all ε 6= 0, all ω ⊂ R2 open and
all φ ∈ C∞c (ω) \ {0}. In another approach, one can consider smooth one-
parameter families of diffeomorphisms Φε : H → H with Φ0 = Id and
{Φε 6= Id} ⊂⊂ Ω, and take variations of A (Φε(Γf ) ∩ Ω). However, it may
happen again that A (Φε(Γf ) ∩ Ω) = +∞ for all ε 6= 0.
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After further considerations, one understands that we need to restrict the
choice of Φε to contact diffeomorphisms, see Proposition 5.1. See also [3]
and [12] for references on contact diffeomorphisms. In this setting, we ad-
dress the question whether, despite this restriction, conditions on the first
and second variations with contact diffeomorphisms can single out minimal
graphs. Our answer is no:

Theorem 1.1. There is f ∈ C 1
W such that, for all Ω ⊂ H open and all

smooth one-parameter families of contact diffeomorphisms Φε : H→ H with
Φ0 = Id and {Φε = Id} ⊂⊂ Ω, it holds

d

dε

∣∣∣∣
ε=0

A (Φε(Γf ) ∩ Ω) = 0 and
d2

dε2

∣∣∣∣
ε=0

A (Φε(Γf ) ∩ Ω) ≥ 0,

but Γf is not an area-minimizing surface.

In fact, all smooth solutions to the equation ∇f (∇ff) = 0 are examples
of the functions appearing in the theorem.

The proof of Theorem 1.1 is based on a “Lagrangian” approach to C 1
W.

Indeed, a function f ∈ C 1
W is uniquely characterized by the integral curves

of the planar vector field ∇f = ∂η + f∂τ . We will thus take variations of
f via smooth one-parameter families of diffeomorphisms φε : R2 → R2, i.e.,
by smoothly varying the integral curves of ∇f ; see Section 4. We will then
prove that this approach is equivalent to the use of contact diffeomorphisms
Φε : H→ H; see Section 5.

Finally, we will consider functions f ∈ C 1
W that are solutions to the equa-

tion ∇f∇ff = 0 in a Lagrangian sense, that is, functions such that ∇ff is
constant along the integral curves of ∇f . We will characterize such functions
as the ones for which the integral curves of ∇f are parabolas, or, equivalen-
tely, as the ones whose graph Γf is ruled by horizontal straight lines. These
functions are the ones appearing in Theorem 1.1.

The paper is organized as follows. Section 2 is devoted to the presenta-
tion of all main definitions. In the next Section 3, we study solutions to the
equation ∇f∇ff = 0. We construct a Lagrangian variation of a function
f ∈ C 1

W in Section 4. In Section 5, we prove some basic properties of con-
tact diffeomorphisms. Section 6 is devoted to the first contact variation and
Section 7 to the second contact variation for functions f ∈ C 1

W. Finally, in
Section 8 we prove our main theorem. An Appendix is added as a reference
for a few equalities that are applied all over the paper.

The author thanks his advisor Francesco Serra Cassano for many fruitful
discussions and Katrin Fässler for her comments and corrections on a draft
of this paper.

2. Preliminaries

2.1. The Heisenberg group. The first Heisenberg group H is the con-
nected, simply connected Lie group associated to the Heisenberg Lie algebra
h. The Heisenberg Lie algebra h is the only three-dimensional nilpotent Lie
algebra that is not commutative. It can be proven that, for any two linearly
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independent vectors A,B ∈ h \ [h, h], the triple (A,B, [A,B]) is a basis of h
and [A, [A,B]] = [B, [A,B]] = 0. The Heisenberg group has the structure of
a stratified Lie group, i.e., h = span{A,B} ⊕ span{[A,B]}, see [13, 14].

We then identify H = (span{A,B, [A,B]}, ∗), where

p ∗ q := p+ q +
1

2
[p, q].

In the coordinates (x, y, z) = xA+ yB + z[A,B], which are the exponential
coordinates of first kind, we have

(a, b, c) ∗ (x, y, z) = (a+ x, b+ y, c+ z +
1

2
(ay − bx)).

The inverse is (x, y, z)−1 = (−x,−y,−z).
The elements A,B, [A,B] ∈ h induce a frame of left-invariant vector fields

on H:

X := ∂x −
1

2
y∂z, Y := ∂y +

1

2
x∂z, Z := ∂z.

The horizontal subbundle is the vector bundle

H :=
⊔

p∈H
span{X(p), Y (p)} ⊂ TH.

The maps δλ(x, y, z) := (λx, λy, λ2z), λ > 0, are called dilations. They
are group automorphisms of H and for all λ, µ > 0 it holds δλ ◦ δµ = δλµ.

2.2. Intrinsic graphs and intrinsic differentials. A vertical plane is a
plane containing the z-axis. Explicitly, for θ ∈ R,

Wθ := {(η sin θ, η cos θ, τ) : η, τ ∈ R} ⊂ H.

Vertical planes are the only 2-dimensional subgroups of H that are δλ-
homogeneous, i.e., δλ(Wθ) = Wθ for all λ > 0.

The intrinsic X-graph (or simply intrinsic graph) of a function f : R2 → R
is the set1

Γf :=
{

(0, η, τ) ∗ (f(η, τ), 0, 0) : η, τ ∈ R2
}

=

{
(f(η, τ), η, τ − 1

2
ηf(η, τ)) : η, τ ∈ R2

}
.

If one look at f as a function W0 → span{A}, then Γf = {p∗f(p) : p ∈W0}.
Left translations and dilations of an intrinsic graph are also intrinsic graphs.
For α ∈ R, the vertical plane Warctan(α) is the intrinsic graph of the function
f(η, τ) = αη. We will use the map πX : H→ R2, πX(x, y, z) = (y, z + 1

2xy).
Note that πX(p ∗ f(p)) = p.

For (η0, τ0) ∈ R2 and f : R2 → R continuous, set f0 := f(η0, τ0) and
p0 := (0, η0, τ0)∗(f0, 0, 0) = (f0, η0, τ0− 1

2η0f0). We say that f is intrinsically
C 1, or belonging to C 1

W, with differential ψ : R2 → R, if δλ(p−1
0 Γf ) converge

to Warctan(ψ(η0,τ0)) in the sense of the local Hausdorff convergence of sets as
λ→∞, and the convergence is uniform on compact sets in (η0, τ0).

1 In a different choice of coordinates in H, we can have (0, η, τ) ∗ (f(η, τ), 0, 0) =
(f(η, τ), η, τ). For instance, we will use these coordinates in Section 5.2
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Notice that δλ(p−1
0 Γf ) = Γf(η0,τ0);λ , where

f(η0,τ0);λ(η, τ) = λ
(
−f0 + f(η0 +

η

λ
, τ0 + f0

η

λ
+

τ

λ2
)
)
.

Therefore, f belongs to C 1
W with differential ψ if and only if f(η0,τ0);λ converge

uniformly on compact sets to the function (η, τ) 7→ ψ(η0, τ0)η, as λ→ +∞,
and the convergence is uniform on compact sets in (η0, τ0). Notice that ψ
has to be continuous.

The intrinsic gradient of a function f : R2 → R is the vector field on R2

defined as
∇f := ∂η + f∂τ .

We can express the intrinsic differentiability in terms of the differentiability
of f along the integral curves of ∇f : from [18, Theorem 4.95] we obtain the
following characterisation, which justify the notation ∇ff for the differential
ψ of f ∈ C 1

W.

Lemma 2.1. A continuous function f : R2 → R is in C 1
W with differential ψ

if and only if for every p ∈ R2 there exists a C 2-function gp : I → R, where
I ⊂ R is a neighbourhood of 0, such that




gp(0) = 0,

g′p(t) = f(p+ (t, gp(t))) ∀t ∈ I,
g′′p(t) = ψ(p+ (t, gp(t))) ∀t ∈ I.

Note that t 7→ p + (t, gp(t)) is an integral curve of ∇f and that gp is not
unique in general. Another interpretation of these curves will be useful:
Lemma 2.2. Let f ∈ C 1

W. A curve γ : I → R2 of class C 1, where I ⊂ R is an
interval, is an integral curve of ∇f if and only if the curve t 7→ γ(t)∗f(γ(t)) ∈
Γf is a curve of class C 1 tangent to the horizontal bundle H.

Remark 2.3. In [11] it has been shown that there exists f ∈ C 1
W whose

intrinsic graph Γf has Euclidean Hausdorff dimension (seen as a subset of
the Euclidean R3) strictly larger than two. It is possible to prove, for example
using Lemma 5.4, that Γf+1 does not have locally finite intrinsic perimeter
and in particular f + 1 /∈ C 1

W. This shows that C 1
W is not a vector space.

2.3. Smooth approximation. A sequence {fk}k∈N ⊂ C 1
W converges to f

in C 1
W if fk and ∇fkfk converge to f and ∇ff uniformly on compact sets.

The following lemma has been proven in [1].
Lemma 2.4. If f ∈ C 1

W then there is a sequence of functions {fk}k∈N ⊂
C∞(R2) that converges to f in C 1

W.

2.4. Perimeter and Bernstein’s Problem. The Lebesgue measure L 3

in R3 is a Haar measure on H in the exponential coordinates introduced
Section 2.1. Notice that for any measurable set E ⊂ H1 and any λ > 0 it
holds L 3(δλ(E)) = λ4L 3(E).

Let 〈·, ·〉 be the left-invariant scalar product on the subbundle H such
that (X,Y ) is an orthonormal frame and set ‖v‖ :=

√
〈v, v〉 for v ∈ H. The

sub-Riemannian perimeter of a measurable set E ⊂ H1 in an open set Ω is

P (E; Ω) := sup

{∫

E
divV dL 3 : V ∈ Γ(H), spt(V ) ⊂⊂ Ω, ‖V ‖ ≤ 1

}
,
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where Γ(H) contains all the smooth sections of the horizontal subbundle and
divV is the divergence of vector fields on R3. One can show that, for every
V1, V2 ∈ C∞(R3),

div(V1X + V2Y ) = XV1 + Y V2.

A set E has locally finite perimeter if P (E; Ω) < ∞ for all Ω ⊂ H open
and bounded. If E has locally finite perimeter, the function Ω 7→ P (E; Ω)
induces a Radon measure |∂E| on H1, which is concentrated on the so-called
reduced boundary ∂∗E ⊂ ∂E. Moreover, up to a set of |∂E|-measure zero
and a rotation around the z-axis, ∂∗E is the countable union of intrinsic
graphs of C 1

W functions. See [6] and [7] for further reading.
A measurable set E has minimal perimeter if, for every bounded open

set Ω ⊂ H1 and every measurable set F ⊂ H1 with symmetric difference
E∆F ⊂⊂ Ω, we have

P (E; Ω) ≤ P (F ; Ω).

In this case, the reduced boundary ∂∗E of E is called area-minimizing sur-
face. We are interested in area minimizers that are global intrinsic graphs.

Conjecture 2.5 (Bernstein’s Problem). If f ∈ C 1
W is such that Γf is an

area-minimizing surface, then Γf is a vertical plane up to left-translations.

Such conjecture has been proven in the case f ∈ C 1(R2) in [9], while it
has been presented a counterexample in [17] with f ∈ C 0(R2) \ C 1

W.
For an open domain ω ⊂ R2, set

Ωω := {(0, η, τ) ∗ (ξ, 0, 0) : (η, τ) ∈ ω, ξ ∈ R}.
If f ∈ C 1

W and Ef = {(0, η, τ) ∗ (ξ, 0, 0) ∈ R2, ξ ≤ f(η, τ)}, then

P (Ef ; Ωω) =

∫

ω

√
1 + (∇ff)2 dη dτ.

If Ef has minimal perimeter, then, for every g ∈ C 1
W with {f 6= g} ⊂⊂ ω, it

holds ∫

ω

√
1 + (∇ff)2 dη dτ ≤

∫

ω

√
1 + (∇gg)2 dη dτ.

It is not known whether the converse implication holds.

3. Lagrangian solutions to ∆ff = 0

For f ∈ C 1
W and v ∈ C 2(R2), we define the differential operator

(2) ∆fv := ∂2
ηv + 2f∂η∂τv + f2∂2

τv +∇ff∂τv.
Notice that, if f ∈ C 2(R2), then

∆fv = ∇f (∇fv).

The next lemma will be a fundamental tool for extending some results beyond
the smooth case via approximation. The proof trivially follows from the
explicit expressions of the differential operators ∇f and ∆f .

Lemma 3.1. If {fk}k∈N ⊂ C 1
W and {vk}k∈N ⊂ C 2(R2) are sequences con-

verging to f and v in their respective spaces, then the sequences {∇fkvk}k∈N
and {∆fkvk}k∈N converge to ∇fv and ∆fv uniformly on compact sets.
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If f ∈ C 2(R2) is such that Γf is a minimal surface in H, then one shows
that f satisfies the differential equation (see [2])

(3) ∇f
(

∇ff√
1 + (∇ff)2

)
= 0.

Equation (3) is equivalent, for f ∈ C 2(R2), to

(4) ∆ff = 0.

For a generic f ∈ C 1
W, equation (4) has not the classical interpretation (2).

However, using a “Lagrangian interpretation” of ∇f (∇ff) = 0, we give the
following definition:

Definition 3.2. A function f ∈ C 1
W satisfies ∆ff = 0 in weak Lagrangian

sense, if for every p ∈ R2 there is an integral curve γ of ∇f passing through
p such that ∇ff is constant along γ.

If f ∈ C 2(R2) then ∆ff = ∇f (∇ff) = 0 if and only if ∇ff is constant
along all integral curves of ∇f , i.e., ∆ff = 0 holds in a strong Lagrangian
sense, see Remark 3.7.

Lemma 3.5 will characterize such functions by the integral curves of ∇f .
Lemma 3.3. Let A,B ∈ C 0(R). The map R2 → R2 given by

G : (t, ζ) 7→
(
t,
A(ζ)

2
t2 +B(ζ)t+ ζ

)

is a homeomorphism if and only if
(1) For all ζ, ζ ′ ∈ R

(1a) either A(ζ) = A(ζ ′) and B(ζ) = B(ζ ′),
(1b) or 2

(
A(ζ)−A(ζ ′)

)
(ζ − ζ ′) >

(
B(ζ)−B(ζ ′)

)2.
(2) If there exists ζ0 ∈ R such that A(ζ0) > 0, then

lim sup
ζ→∞

(
ζ − B(ζ)2

2A(ζ)

)
= +∞.

(3) If there exists ζ0 ∈ R such that A(ζ0) < 0, then

lim inf
ζ→−∞

(
ζ − B(ζ)2

2A(ζ)

)
= −∞.

Proof. Define g(t, ζ) = A(ζ)
2 t2 + B(ζ)t + ζ, so that G(t, ζ) = (t, g(t, ζ)). We

first show that G is injective if and only if property (1) holds. For ζ ′ > ζ,
define the quadratic polynomial

Qζ′,ζ(t) = g(t, ζ ′)− g(t, ζ) =
A(ζ ′)−A(ζ)

2
t2 + (B(ζ ′)−B(ζ))t+ (ζ ′ − ζ).

The map G is injective if and only if for all ζ ′, ζ ∈ R with ζ ′ > ζ the
polynomial Qζ′,ζ has no zeros. If A(ζ ′) = A(ζ), then Qζ′,ζ is in fact linear,
thus it has no zeros if and only if B(ζ ′) = B(ζ) and we obtain property (1a).
If A(ζ ′) 6= A(ζ), then Qζ′,ζ has no zeros if and only if its discriminant is
strictly negative, i.e., property (1b) holds.

Next, we assume that G is injective, i.e., that property (1) holds, and we
will show that G is surjective if and only if properties (2) and (3) hold. By
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the Invariance of Domain Theorem, the fact that G is surjective is equivalent
to G being a homeomorphism. Notice that, since Qζ′,ζ(0) = ζ ′ − ζ > 0 for
all ζ ′ > ζ, we have

(5) ζ ′ > ζ ⇒ ∀t ∈ R g(t, ζ ′) > g(t, ζ).

Suppose that G is surjective, hence a homeomorphism. Suppose ζ0 ∈ R
is such that A(ζ0) > 0. By (1) we have that A is monotone increasing,
therefore A(ζ) > 0 for all ζ ≥ ζ0. It follows that if ζ ≥ ζ0 then

ζ − B(ζ)2

2A(ζ)
= inf

t∈R
g(t, ζ).

For M ∈ R define KM = {(η, τ) ∈ R2 : g(η, ζ0) ≤ τ ≤M}. Since A(ζ0) > 0,
the set KM is compact (possibly empty) for all M ∈ R. Next, for ζ ∈ R
define Uζ = G(R × (−∞, ζ)) = {(η, τ) : τ < g(η, ζ)}. Since G is surjective,
the open sets Uζ cover R2. Hence, there is ζ1 ≥ ζ0 such that KM ⊂ Uζ1 .
Using (5), we obtain

∀ζ ≥ ζ1 inf
t∈R

g(t, ζ) ≥M.

Since M is arbitrary, we have proven (2). Property (3) is proven with a
similar argument.

Now we prove the converse implication. Suppose that A and B satisfy
properties (2) and (3). In order to prove that G is surjective, we need only
to prove that limζ→∞ g(t, ζ) = +∞ and limζ→−∞ g(t, ζ) = −∞, for every
t ∈ R.

If A(ζ) = A(0) for all ζ ≥ 0, then g(t, ζ) = g(t, 0) + ζ and therefore
limζ→∞ g(t, ζ) = +∞. If A(ζ) ≤ 0 for all ζ ∈ R, then there is C > 0 such
that 0 ≤ A(ζ)−A(0) ≤ C for all ζ > 0. We may suppose A(ζ) > A(0) for ζ
large enough. Thus, using (1b),

g(t, ζ) ≥ A(0)

2
t2 +B(0)t+ ζ + (B(ζ)−B(0))t

≥ A(0)

2
t2 +B(0)t+ ζ − |t|

√
2(A(ζ)−A(0))ζ

≥ A(0)

2
t2 +B(0)t+ ζ − |t|

√
2C
√
ζ.

The limit limζ→∞ g(t, ζ) = +∞ follows. Finally, if A(ζ0) > 0 for some
ζ0 ∈ R, then for all ζ ≥ ζ0 we have inft∈R g(t, ζ) = ζ − B(ζ)2

2A(ζ) . Property (2)
implies that limζ→∞ g(t, ζ) = +∞.

The limit limζ→−∞ g(t, ζ) = −∞ is deduced similarly from (3). �
Remark 3.4. If A,B ∈ C (R) satisfy properties (1), (2) and (3) of the
previous Lemma 3.3, then the function f defined by f(G(t, ζ)) = ∂tg(t, ζ) =
A(ζ)t+B(ζ) belongs to C 1

W by Lemma 2.1. Moreover, the curves t 7→ g(t, ζ)

are integral curves of ∇f along which ∇ff(G(t, ζ)) = ∂2
t g(t, ζ) = A(ζ) is

constant. So, ∆ff = 0 in weak Lagrangian sense. The graphs of these
functions are examples of “graphical strips” as introduced in [4]. For example,
for any A ∈ C 0(R) non-decreasing, we can define g(t, ζ) := A(ζ)t2 + ζ and
we obtain a well defined f ∈ C 1

W with ∆ff = 0 given by

f(t, A(ζ)t2 + ζ) = 2A(ζ)t.
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The converse also holds, as the next lemma shows.

Lemma 3.5. Let f ∈ C 1
W satisfying ∆ff = 0 in weak Lagrangian sense.

Then the curves t 7→ (t, g(t, ζ)), where ζ ∈ R and

(6) g(t, ζ) =
∇ff(0, ζ)

2
t2 + f(0, ζ)t+ ζ,

are the integral curves of ∇f along which ∇ff is constant. Moreover, the
functions ζ 7→ ∇ff(0, ζ) and ζ 7→ f(0, ζ) satisfy the conditions (1), (2) and
(3) in Lemma 3.3. In particular, τ 7→ ∇ff(η, τ) is non-decreasing, for all
η ∈ R.

Proof of Lemma 3.5. Given a function gp : I → R like in Lemma 2.1 along
which ∇ff is constant, we have g′′p(t) = ∇ff(p) for all t ∈ I, i.e., gp is
a polynomial of second degree. Moreover, such a gp is unique for every p,
because it is completely determined by f(p) and ∇ff(p).

It follows that gp is defined on R. Indeed, suppose I = (a, b) and set
q = limt→b p+ (t, gp(t)), which exists because gp is a polynomial. If gq : J →
R is a function like in Lemma 2.1 along which ∇ff is constant, then gq is
uniquely determined by f(q) and ∇ff(q), where

f(q) = lim
t→b

f(p+ (t, gp(t))) = lim
t→b

g′p(t),

∇ff(q) = lim
t→b
∇ff(p+ (t, gp(t))) = lim

t→b
g′′p(t).

Hence, gq(t) = gp(b + t) for t < 0 and so gp can be extended beyond b.
Similarly, we can extend gp to values below a.

If we consider p = (0, ζ), then gp(t) = g(t, ζ), where g(t, ζ) is given in (6).
If p ∈ R2, then the curve t 7→ p+(t, gp(t)) intersects the axis {0}×R at some
point, and thus gp is of the form described in (6) up to a change of variables
in t. We conclude that the map (t, ζ) 7→ (t, g(t, ζ)) is a homeomorphism.
Therefore, the conditions stated in Lemma 3.3 hold true.

Finally, since (f(0, ζ)−f(0, ζ ′))2 ≥ 0, then ζ 7→ ∇ff(0, ζ) is non-decreasing.
Since ∇ff(t, g(t, ζ)) = ∇ff(0, ζ) and since, for t ∈ R fixed, the map ζ 7→
g(t, ζ) is a ordering-preserving homeomorphism R → R, then the map τ 7→
∇ff(η, τ) is non-decreasing as well, for all η ∈ R. �

Remark 3.6. Lemma 3.5 states in particular that, if ∆ff = 0 in weak
Lagrangian sense then Γf is foliated by horizontal straight lines. Indeed,
notice that any parabola t 7→ g(t, ζ) in R2 lifts to a straight line in Γf . In [9,
Theorem 3.5] Galli and Ritoré are able to prove that, if f ∈ C 1(R2) and if
Γf is a minimal surface in H, then Γf is foliated by horizontal straight lines,
i.e., ∆ff = 0 holds in weak Lagrangian sense.

Remark 3.7. One may wonder wether Definition 3.2 for weak Lagrangian
solutions to ∆ff = 0 is equivalent to a stronger condition, namely that ∇ff
is constant along all integral curves of∇f . This is the case when f ∈ C1(R2),
because integral curves are unique at each point. The following example
shows that strong and weak conditions are not equivalent. Indeed, there are
functions for which the curves t 7→ (t, g(t, ζ)) described in Lemma 3.5 do not
exhaust all the integral curves of ∇f .
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Let h ∈ C 2(R) and define k : R2 → R by requiring that for each s ∈ R
the function t 7→ k(t, s) is the unique polynomial of second degree with
k(s, s) = h(s), ∂tk(s, s) = h′(s) and ∂2

t k(s, s) = h′′(s). Explicitly, we have

k(t, s) =
h′′(s)

2
t2 + (h′(s)− h′′(s)s)t+ h(s)− h′(s)s+

h′′(s)
2

s2.

If the map K(t, s) = (t, k(t, s)) is a homeomorphism R2 → R2, then we may
define a function f ∈ C 1

W by f(K(t, s)) = ∂tk(t, s), as we did in Remark 3.4.
Then t 7→ K(t, s) are integral curves of ∇f and ∇ff(K(t, s)) = ∂2

t k(t, s) =
h′′(s). It follows that ∆ff = 0 holds in weak Lagrangian sense. However,
s 7→ K(s, s) = (s, h(s)) is an integral curve of ∇f , because f(K(s, s)) =
h′(s). Since ∇ff(K(s, s)) = h′′(s), there is no need for ∇ff to be constant
along this curve.

As an example, consider h(s) = s3, for which we have k(t, s) = 3st2 −
3s2t + s3. We show that the map K is in this case a homeomorphism.
Define ζ(s) = s3, A(ζ(s)) = 6s = 6ζ1/3, B(ζ(s)) = −3s2 = −3ζ2/3 and
the functions g(t, ζ) and G(t, ζ) as in Lemma 3.3. Since K(t, s) = G(t, ζ(s))
and since ζ(·) is a homeomorphism R → R, we need only to show that G
is a homeomorphism R2 → R2, i.e., that the functions A and B satisfy all
conditions of Lemma 3.3:

(1): Let ζ = ζ(s), ζ ′ = ζ(s′) ∈ R. If A(ζ) = A(ζ ′), then s = s′ and thus
B(ζ) = B(ζ ′). If instead A(ζ) 6= A(ζ ′), then s 6= s′ and thus

2(A(ζ)−A(ζ ′))(ζ − ζ ′)− (B(ζ)−B(ζ ′))2

= 2(6s− 6s′)(s3 − s′3)− 9(s′2 − s2)2 = 3(s− s′)4 > 0.

(2)&(3): Since ζ− B(ζ)2

2A(ζ) = 1
4s

3 and since ζ → ±∞ if and only if s→ ±∞, then

limζ→+∞ ζ − B(ζ)2

2A(ζ) = lims→+∞ 1
4s

3 = +∞ and limζ→−∞ ζ − B(ζ)2

2A(ζ) =

lims→−∞ 1
4s

3 = −∞.
The function f can be explicitly computed as f(η, τ) = 3η2 − 3(τ − η3)2/3.
Finally, as we noticed before, s 7→ (s, s3) is an integral curve of ∇f and
∇ff(s, s3) = 6s is not constant.

Lemma 3.8. Let f ∈ C 1
W. If ∆ff = 0 in weak Lagrangian sense, then there

is a sequence {fk}k∈N ⊂ C∞(R2) converging to f in C 1
W such that ∆fkfk = 0

for all k ∈ N.

Proof. Let {ρε}ε>0 ⊂ C∞(R) be a family of mollifiers with spt(ρε) ⊂ [−ε, ε],
ρε ≥ 0, ρε(0) > 0 and

∫
R ρε(r) dr = 1. Fix f ∈ C 1

W with ∆ff = 0. Set
A(ζ) := ∇ff(0, ζ) and B(ζ) := f(0, ζ). Define

Aε(ζ) :=

∫

R
∇ff(0, ζ − r)ρε(r) dr,

Bε(ζ) :=

∫

R
f(0, ζ − r)ρε(r) dr,

gε(t, ζ) :=
Aε(ζ)

2
t2 +Bε(ζ)t+ ζ.

We claim that, for all ε > 0, all conditions stated in Lemma 3.3 hold for
Aε and Bε. Let ζ, ζ ′ ∈ R with ζ < ζ ′. First, suppose that Aε(ζ) = Aε(ζ

′).
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Notice that A(ζ−r)−A(ζ ′−r) ≤ 0 for all r ∈ R, because A is non-decreasing.
Thus, we deduce from

0 = Aε(ζ)−Aε(ζ ′) =

∫

R
(A(ζ − r)−A(ζ ′ − r))ρε(r) dr

that (B(ζ− r)−B(ζ ′− r))ρε(r) = 0 for all r ∈ R and therefore that Bε(ζ) =
Bε(ζ

′), i.e., (1a) holds
Second, suppose that Aε(ζ) 6= Aε(ζ

′). Using Jensen’s inequality, we have

2
(
Aε(ζ)−Aε(ζ ′)

)
(ζ − ζ ′)

=

∫

R
2
(
A(ζ − r)−A(ζ ′ − r)

)(
(ζ − r)− (ζ ′ − r)

)
ρε(r) dr

>

∫

R

(
B(ζ−r)−B(ζ ′−r)

)2
ρε(r) dr ≥

(∫

R
(B(ζ − r)−B(ζ ′ − r))ρε(r) dr

)2

.

So, condition (1b) is also verified.
Suppose that Aε(ζ0) > 0 for some ζ0 ∈ R. By the monotonicity of A and the
positivity of ρε, we may assume A(ζ0) > 0. Let M > 0. Since property (2)
of Lemma 3.3 holds for A, there is ζ1 > ζ0 so that for all ζ > ζ1

M < ζ − B(ζ)2

2A(ζ)
=

2A(ζ)ζ −B(ζ)2

2A(ζ)
.

Using Jensen inequality, we have for all ζ > ζ1 + ε

2Aε(ζ)ζ −Bε(ζ)2 ≥
∫

R

(
2ζA(ζ − r)−B(ζ − r)2

)
ρε(r) dr

= 2

∫

R
A(ζ − r)rρε(r) dr +

∫

R

(
2(ζ − r)A(ζ − r)−B(ζ − r)2

)
ρε(r) dr

≥ −2ε

∫

R
A(ζ − r)ρε(r) dr + 2M

∫

R
A(ζ − r)ρε(r) dr = 2Aε(ζ)(M − ε).

Thus, M−ε < ζ− Bε(ζ)2

2Aε(ζ)
for all ζ > ζ1 +ε. SinceM was arbitrary, we obtain

property (2) of Lemma 3.3. Property (3) can be similarly obtained.
The functions Gε : R2 → R2, Gε(t, ζ) := (t, gε(t, ζ)), are homeomorphisms

and, as ε → 0, they converge to G0 uniformly on compact sets. It follows
that G−1

ε also converge to G−1
0 , as ε→ 0.

For ε > 0, define fε ∈ C∞(R2) via

fε(t, gε(t, ζ)) = Aε(ζ)t+Bε(ζ).

By the continuity of Gε and G−1
ε in ε, fε and ∇fεfε converge to f0 and ∇f0f0

uniformly on compact sets. Finally, ∆fεfε = 0 by construction. �

4. A Lagrangian approach to contact variations

Proposition 4.1. Let φ = (φ1, φ2) : R2 → R2 be a C∞-diffeomorphism. Let
f ∈ C 1

W and assume

(7) ∇fφ1(p) 6= 0 ∀p ∈ R2.

Define f̄ : R2 → R as

f̄ ◦ φ =
∇fφ2

∇fφ1
.
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Then f̄ ∈ C 1
W and

(8) ∇f̄ f̄ ◦ φ =
∆fφ2

(∇fφ1)2
− ∇fφ2

(∇fφ1)3
∆fφ1.

Notice that, if f ∈ C 1(R2), then f̄ ∈ C 1(R2) as well.

Remark 4.2. If {φε}ε>0 is a smooth one-parameter family of diffeomor-
phisms φε : R2 → R2 with φ0 = Id, then, for ε > 0 small enough, the
functions fε defined by

fε ◦ φε =
∇fφε2
∇fφε1

.

belong to C 1
W and converge to f in C 1

W.

Proof. The idea is to transform via φ the integral curves of ∇f into the ones
of ∇f̄ . Fix p = (η, τ), let q := (η̄, τ̄) := φ(p) and let gp : I → R be like in
Lemma 2.1. Thanks to the condition ∇fφ1 6= 0 and the Implicit Function
Theorem, there exist two C 2-function s : I → R and ḡq : s(I) → R, such
that

q + (s, ḡq(s)) = φ(p+ (t, gp(t)), ∀t ∈ I.
Therefore {

s(t) = φ1(η + t, τ + gp(t))− η̄
ḡq(s(t)) = φ2(η + t, τ + gp(t))− τ̄ .

We define
f̄(q) := ḡ′q(0).

Notice that this value does not depend on the choice of gp, as far as t 7→
(t, gp(t)) is an integral curve of ∇f .

We want to write ḡ′q(0). Set

pt := (η + t, τ + gp(t)).

First
d

dt
s(t) = ∂ηφ1(pt) + ∂τφ1(pt)g

′
p(t) = ∇fφ1(pt),

d

dt
ḡq(s(t)) = ∂ηφ2(pt) + ∂τφ2(pt)g

′
p(t) = ∇fφ2(pt).

Since
d

dt
ḡq(s(t)) = ḡ′q(s(t)) ·

d

dt
s(t),

we have for s = 0 = t

f̄(q) =
∇fφ2(p)

∇fφ1(p)
.

∇f̄ f̄(q) is the derivative of f̄ along the curve q + (s, ḡq(s)) at s = 0, i.e.,

∇f̄ f̄(q) = ḡ′′q (0).

As above, we want to write down ḡ′′q (0) in a more explicit way.

d2

dt2
s(t)|t=0 = ∂2

ηφ1(p) + ∂τ∂ηφ1(p)f(p)+

+ ∂η∂τφ1(p)f(p) + ∂2
τφ1(p)(f(p))2 + ∂τφ1(p)∇ff(p) = ∆fφ1(p).
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d2

dt2
ḡq(s(t))|t=0 = ∂2

ηφ2(p) + ∂τ∂ηφ2(p)f(p)+

+ ∂η∂τφ2(p)f(p) + ∂2
τφ2(p)(f(p))2 + ∂τφ2(p)∇ff(p) = ∆fφ2(p)

Since

d2

dt2
ḡq(s(t)) = ḡ′′q (s(t)) ·

(
d

dt
s(t)

)2

+ ḡ′q(s(t)) ·
d2

dt2
s(t),

we have

∇f̄ f̄(q) = ḡ′′q (0) =
d2

dt2
ḡq|t=0 − ḡ′q(0) · d2

dt2
s|t=0

( d
dts|t=0)2

=
1

(∇fφ1(p))2
·
(

∆fφ2(p)− ∇
fφ2(p)

∇fφ1(p)
·∆fφ1(p)

)
.

By Lemma 2.1, the function f̄ belongs to C 1
W. �

5. Contact transformations

A diffeomorphism Φ : H → H is a contact diffeomorphism if dΦ(H) ⊂
H, see [3, 12]. Contact diffeomorphisms are the only diffeomorphisms that
preserve the sub-Riemannian perimeter.

Proposition 5.1. Let Φ : H → H be a diffeomorphism of class C 2. If, for
all E ⊂ H measurable and all Ω ⊂ H open, it holds

(9) P (E; Ω) <∞ ⇒ P (Φ(E); Φ(Ω)) <∞,

then Φ is contact.

We will show in this section that any variation of an intrinsic graph Γf
via contact diffeomorphisms is equivalent to a variation of f via the trans-
formations of Proposition 4.1 and Remark 4.2.

Proposition 5.2. Let φ : R2 → R2 be a C∞-diffeomorphism and f, f̄ ∈ C 1
W

as in Proposition 4.1. Then there is a contact diffeomorphism Φ : Ω→ Φ(Ω),
where Ω and Φ(Ω) are open subsets of H with Γf ⊂ Ω, such that Φ(Γf ) = Γf̄ .

Proposition 5.3. Let Φε : H → H, ε ∈ R, be a smooth one-parameter
family of contact diffeomorphisms such that there is a compact set K ⊂ H
with Φε|H\K = Id for all ε and Φ0 = Id. Let f ∈ C∞(R2). Then there is
ε0 > 0 such that for all ε with |ε| < ε0, the maps φε : R2 → R2,

φε(p) := πX ◦ Φε(p ∗ f(p)),

form a smooth family of C∞-diffeomorphism of R2.
Moreover, if f ε is the function defined via f and φε as in Proposition 4.1,

then

Φε(Γf ) = Γfε .
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5.1. Proof of Proposition 5.1. We use an argument by contradiction.
Assume that Φ is not a contact diffeomorphism. Then there is an open
and bounded set Ω ⊂ H such that for all p ∈ Ω it holds dΦ(Hp) 6⊂ HΦ(p).
Thanks to the following lemma and Remark 2.3, we get a contradiction with
the property (9).

Lemma 5.4. Let Φ : H → H be a diffeomorphism of class C 2. Let Ω ⊂ H
be an open and bounded set such that for all p ∈ Ω

dΦ(Hp) 6⊂ HΦ(p).

Let E ⊂ H be measurable. If P (E; Ω) < ∞ and P (Φ(E); Φ(Ω)) < ∞, then
E has finite Riemannian perimeter in Ω.

Proof. We extend the scalar product 〈·, ·〉 to the whole TH in such a way that
(X,Y, Z) is an orthonormal frame. The Riemannian perimeter is defined as

PR(E; Ω) := sup

{∫

E
divU dL 3 : U ∈ Vec(TH), sptU ⊂⊂ Ω, ‖U‖ ≤ 1

}
.

Let U ∈ Vec(TH) with spt(U) ⊂⊂ Ω and ‖U‖ ≤ 1. Then there are
V,W ∈ Vec(TH) with spt(V ) ∪ spt(W ) = spt(U), V + W = U , V (p) ∈ Hp

for all p, ‖V ‖ ≤ K and ‖W‖ ≤ K, and Φ∗W (p) ∈ Hp for all p, where K ≥ 0
depends on Φ and Ω, but not on U .

Remind that, if W is a smooth vector field on H, then2

div(Φ∗W ) = div(W ) ◦ Φ−1 · J(Φ−1).

Hence,
∫
E divW dL 3 =

∫
Φ(E)(divW )◦Φ−1JΦ−1 dL 3 =

∫
Φ(E) div(Φ∗W ) dL 3.

Moreover, since Ω is bounded, we can assume ‖dΦ(v)‖ ≤ K‖v‖ for all
v ∈ TΩ, where K ≥ 0 is the same constant as above. Therefore

∫

E
divU dL 3 =

∫

E
divV dL 3 +

∫

E
divW dL 3

=

∫

E
divV dL 3 +

∫

Φ(E)
div(Φ∗W ) dL 3

≤ KP (E; Ω) +K2P (Φ(E); Φ(Ω)).

This implies that PR(E; Ω) ≤ KP (E; Ω) +K2P (Φ(E); Φ(Ω)) <∞. �

5.2. Proof of Proposition 5.2. In this case our choice of coordinates is
not helpful. So, we consider the exponential coordinates of second kind
(ξ, η, τ) 7→ exp(ηB + τC) ∗ exp(ξA), using the notation of Section 2.1.

We define the map Φ as

Φ (ξ, η, τ) :=

(∇ξφ2

∇ξφ1
(η, τ), φ1(η, τ), φ2(η, τ)

)

Clearly, Φ is well defined and smooth on the open set

Ω := {(ξ, η, τ) : ∇ξφ1(η, τ) 6= 0},

2A sketch of the proof of this formula: it is clearer to show the dual formula div(Φ∗W ) =
div(W ) ◦ Φ · J(Φ); consider W as a 2-form and the divergence as the exterior derivative
d; remind that dΦ∗ = Φ∗ d; the formula follows.
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Γf ⊂ Ω by the hypothesis of Proposition 4.1 and Φ(Γf ) = Γf̄ . In these
coordinates, the differential of Φ is

dΦ(ξ, η, τ) =



∂ξ

(
∇ξφ2
∇ξφ1

)
∂η

(
∇ξφ2
∇ξφ1

)
∂τ

(
∇ξφ2
∇ξφ1

)

0 ∂ηφ1 ∂τφ1

0 ∂ηφ2 ∂τφ2




Since φ is a diffeomorphism, Φ is a diffeomorphism if and only if ∂ξ
(
∇ξφ2
∇ξφ1

)
6=

0. A short computation shows that

∂ξ

(∇ξφ2

∇ξφ1

)
=

det( dφ)

(∇ξφ1)2
,

which is non-zero.
Now, we need to show that Φ is a contact diffeomorphism. In this system

of coordinates, the left-invariant vector fields X,Y, Z are written as

X̃(ξ, η, τ) = ∂ξ, Ỹ (ξ, η, τ) = ∂η + ξ∂τ , Z̃(ξ, η, τ) = ∂τ .

We have

dΦ
(
X̃(ξ, η, τ)

)
= ∂ξ

(∇ξφ2

∇ξφ1

)
X̃(Φ(ξ, η, τ)),

dΦ
(
Ỹ (ξ, η, τ)

)
= ∇ξ

(∇ξφ2

∇ξφ1

)
X̃(Φ(ξ, η, τ)) +∇ξφ1Ỹ (Φ(ξ, η, τ)).

Therefore, dΦ(H) ⊂ H. �

5.3. Proof of Proposition 5.3. The functions φε : R2 → R2 are well
defined and smooth for all ε ∈ R. Since Φε and all its derivative converge to
Id uniformly on H, there exists ε0 > 0 such that for all ε with |ε| < ε0, the
vector fieldX is not tangent to Φε(Γf ) at any point. Therefore, det( dφε) 6= 0
for all such ε. Since φε|πX(K) = Id, φε is a covering map and therefore it is
a smooth diffeomorphism.

The last statement is a direct consequence Lemma 2.2. �

6. First Contact Variation

Similar formulas for the first and the second variation for the sub-Rieman-
nian perimeter in the Heisenberg group can be found in [4, 5, 8, 15].

In all the formulas below, we set ψ := ∇ff .
Proposition 6.1. Let f ∈ C 1

W be such that Γf is an area-minimizing surface.
Then for all V1, V2 ∈ C∞c (R2) it holds

(10) 0 =

∫

R2

[
ψ√

1 + ψ2

(
−2ψ · ∇fV1 − f ·∆fV1

)
+
√

1 + ψ2∂ηV1

]
dη dτ.

and

(11) 0 =

∫

R2

[
ψ√

1 + ψ2
∆fV2 +

√
1 + ψ2∂τV2

]
dη dτ.

Proposition 6.2. Let f ∈ C∞(R2) be such that for all V2 ∈ C∞c (R2) the
equation (11) holds. Then (10) holds as well for all V1 ∈ C∞c (R2).
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Proposition 6.3. A function f ∈ C∞(R2) satisfies (11) for all V2 ∈ C∞c (R2)
if and only if

(12) (∇f + 2∂τf)∇f
(

ψ√
1 + ψ2

)
= 0.

6.1. Proof of Proposition 6.1. Let f ∈ C 1
W, ω ⊂ R2 an open and bounded

set and V = (V1, V2) : R2 → R2 a smooth vector field with sptV ⊂⊂ ω. Let
φε : R2 → R2 be a smooth one-parameter family of diffeomorphism such that
{φε 6= Id} ⊂ sptV for all ε > 0 and, for all p ∈ R2,

{
φ0(p) = p

∂εφ
ε(p)|ε=0 = V (p).

Notice that ∇fφε1 = ∂ηφ
ε
1 + f∂τφ

ε
1 is not zero for ε small enough, because

∇fφε1 converges to 1 uniformly as ε→ 0. Hence, by Proposition 4.1, there is
an interval I = (−ε̂, ε̂) such that the function given by

(13) fε ◦ φε =
∇fφε2
∇fφε1

is well defined for all ε ∈ I. Define γ : I → R as

γ(ε) :=

∫

ω

√
1 + (∇fεfε)2 dη dτ

=

∫

ω

√
1 + ((∇fεfε) ◦ φε)2Jφε dη dτ,

where we performed a change of coordinates via φε and

Jφε = ∂ηφ
ε
1∂τφ

ε
2 − ∂τφε1∂ηφε2

is the Jacobian of φε. Using equality (8) and Lemma 3.1, it is immediate to
see that γ is continuous.

Lemma 6.4. The function γ : I → R is continuously differentiable and

(14) γ′(ε) =

∫

ω

[
((∇fεfε) ◦ φε)√

1 + ((∇fεfε) ◦ φε)2
Af (ε)Jφε+

+
√

1 + ((∇fεfε) ◦ φε)2∂εJφε

]
dη dτ,

where

(15) Af (ε) :=
∆f∂εφ

ε
2

(∇fφε1)2
− 2

∆fφε2
(∇fφε1)3

∇f∂εφε1+

− ∇
f∂εφ

ε
2

(∇fφε1)3
∆fφε1 + 3

∇fφε2
(∇fφε1)4

∇f∂εφε1 ·∆fφε1 −
∇fφε2

(∇fφε1)3
∆f∂εφ

ε
1.

Proof of Lemma 6.4. First, suppose f ∈ C∞(R2). Then γ ∈ C∞(I) and

γ′(ε) =

∫

ω

[
((∇fεfε) ◦ φε)√

1 + ((∇fεfε) ◦ φε)2
∂ε((∇fεfε) ◦ φε)Jφε+

+
√

1 + ((∇fεfε) ◦ φε)2∂εJφε

]
dη dτ.
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Applying the formula in Proposition 4.1 and the identity ∇f∂ε = ∂ε∇f , one
obtains

∂ε((∇fεfε) ◦ φε) = Af (ε)

and thus formula (14) holds in the smooth case.
Next, suppose f = f∞ is the limit in C 1

W of a sequence fk ∈ C∞(R2), as
in Lemma 2.4. Notice that ∇fkφε1 is not zero for ε small enough and k large
enough. Indeed, |∇fkφε1 − ∇f∞φε1| ≤ ‖fk − f‖L∞(sptV )‖∂τφε1‖L∞(sptV ) and
∇f∞φε1 converges to one uniformly on R2 as ε→ 0. Hence, there is an interval
I ⊂ R centered at zero such that the functions fk,ε as in Proposition 4.1 are
well defined for ε ∈ I and, without loss of generality, for all k ∈ N ∪ {∞}.
For k ∈ N ∪ {∞}, define γk : I → R as

γk(ε) :=

∫

ω

√
1 + (∇fk,εfk,ε)2 dη dτ

Define also the function η : I → R as the right-hand side of (14). From
Lemma 3.1, it follows that {Afk}k∈N converges to Af uniformly on I. There-
fore, we have that {γk}k∈N and {γ′k}k∈N converge to γ and η uniformly on
I. We conclude that γ ∈ C 1(I) and γ′ = η. �

In order to evaluate γ′(0), notice that

∇fφ0
1 = 1 ∇fφ0

2 = f

∇f∂εφε1|ε=0 = ∇fV1 ∇f∂εφε2|ε=0 = ∇fV2

∆fφ0
1 = 0 ∆fφ0

2 = ψ

∆f∂εφ
ε
1|ε=0 = ∆fV1 ∆f∂εφ

ε
2|ε=0 = ∆fV2.

Therefore
Af (0) = ∆fV2 − 2ψ∇fV1 − f∆fV1.

Moreover, using the facts ∂τφ0
1 = ∂ηφ

0
2 = 0 and ∂ηφ0

1 = ∂τφ
0
2 = 1 and that

the derivatives ∂ε, ∂η and ∂τ commute, we have

∂εJφε |ε=0 = ∂ηV1 + ∂τV2.

Putting all together, we obtain

γ′(0) =

∫

ω

[
ψ√

1 + ψ2

(
∆fV2 − 2ψ · ∇fV1 − f ·∆fV1

)
+

+
√

1 + ψ2(∂ηV1 + ∂τV2)

]
dη dτ.

Since Γf is an area-minimizing surface, then γ′(0) = 0 for all V1, V2 ∈
C∞c (R2). Since this expression is linear in V , then we obtain both conditions
(10) and (11). �
6.2. Proof of Proposition 6.2. Let V1 ∈ C∞(R2) and set V2 := fV1 ∈
C∞c (R2). Then

0 =

∫

R2

[
ψ√

1 + ψ2
∆fV2 +

√
1 + ψ2∂τV2

]
dη dτ

=

∫

R2

[
ψ√

1 + ψ2
(∇fψV1 + 2ψ∇fV1 + f∆fV1)+
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+
√

1 + ψ2(∂τfV1 + f∂τV1)

]
dη dτ

=

∫

R2

[
ψ√

1 + ψ2
(2ψ∇fV1 + f∆fV1)+

+

(
ψ∇fψ√
1 + ψ2

+
√

1 + ψ2∂τf

)
V1+

+
√

1 + ψ2(∇fV1 − ∂ηV1)

]
dη dτ

=

∫

R2

[
ψ√

1 + ψ2
(2ψ∇fV1 + f∆fV1)−

√
1 + ψ2∇fV1+

+
√

1 + ψ2(∇fV1 − ∂ηV1)

]
dη dτ

=

∫

R2

[
ψ√

1 + ψ2
(2ψ∇fV1 + f∆fV1)−

√
1 + ψ2∂ηV1)

]
dη dτ.

Hence (10) holds true for V1 as well. �

6.3. Proof of Proposition 6.3. We have for all V2 ∈ C∞c (R2)

∫

R2

[
ψ√

1 + ψ2
∇f∇fV2 +

√
1 + ψ2∂τV2

]
dη dτ

= −
∫

R2

[
∇f
(

ψ√
1 + ψ2

)
∇fV2 +

∂τfψ√
1 + ψ2

∇fV2 + ∂τ (
√

1 + ψ2)V2

]
dη dτ

=

∫

R2

[
∇f∇f

(
ψ√

1 + ψ2

)
V2 + ∂τf∇f

(
ψ√

1 + ψ2

)
V2+

+∇f (∂τf)
ψ√

1 + ψ2
V2 + ∂τf∇f

(
ψ√

1 + ψ2

)
V2 + (∂τf)2 ψ√

1 + ψ2
V2+

− ψ√
1 + ψ2

∂τψV2

]
dη dτ.

Therefore, using the fact that ∂τψ = ∇f (∂τf) + (∂τf)2, we get that (11) is
equivalent to

∇f∇f
(

ψ√
1 + ψ2

)
+ 2∂τf · ∇f

(
ψ√

1 + ψ2

)
= 0.

�

7. Second Contact Variation

Similarly to the previous sections, we set ψ := ∇ff .
Proposition 7.1. If the intrinsic graph of f ∈ C 1

W is an area-minimizing
surface, then, for all V1, V2 ∈ C∞c (R2), we have:
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(16) 0 ≤ IIf (V1, V2) :=

∫

R2

[
(∆fV2 − 2ψ∇fV1 − f∆fV1)2

(1 + ψ2)
3
2

+

+
ψ

(1 + ψ2)
1
2

(
−4∆fV2 · ∇fV1 − 2∇fV2 ·∆fV1+

+6f · ∇fV1 ·∆fV1 + 6ψ · (∇fV1)2
)

+

+ 2
ψ

(1 + ψ2)
1
2

(∆fV2 − 2ψ∇fV1 − f∆fV1)(∂ηV1 + ∂τV2)+

+ 2(1 + ψ2)
1
2 (∂ηV1∂τV2 − ∂τV1∂ηV2)

]
dη dτ.

7.1. Proof of Proposition 7.1. Let ω ⊂ R2 be an open and bounded set
and V = (V1, V2) : R2 → R2 a smooth vector field with sptV ⊂⊂ ω. Let φε =
(φε1, φ

ε
2) : R2 → R2 be a smooth one-parameter family of diffeomorphism such

that {φε 6= Id} ⊂ sptV for all ε > 0 and, for all p ∈ R2,
{
φ0(p) = p

∂εφ
ε(p)|ε=0 = V (p).

Define Wi(p) := ∂2
εφ

ε
i(p)|ε=0. Then W = (W1,W2) : R2 → R2 is a smooth

vector field with sptW ⊂⊂ ω.
As for the first variation, see Section 6.1, define

γ(ε) :=

∫

ω

√
1 + (∇fεfε)2 dη dτ.

Lemma 7.2. The function γ : I → R is twice continuously differentiable
and

(17) γ′′(ε) =

∫

ω

[
Af (ε)2

(1 + (∇fεfε ◦ φε)2)
3
2

Jφε +
(∇fεfε ◦ φε)Bf (ε)

(1 + (∇fεfε ◦ φε)2)
1
2

Jφε+

+ 2
(∇fεfε ◦ φε)Af (ε)

(1 + (∇fεfε ◦ φε)2)
1
2

∂εJφε + (1 + (∇fεfε ◦ φε)2)
1
2∂2

ε Jφε

]
dy dz,

where Af (ε) is defined as in (15) and

Bf (ε) :=
∆f∂2

εφ
ε
2

(∇fφε1)2
− 2

∆f∂εφ
ε
2 · ∇f∂εφε1

(∇fφε1)3
+

− 2
∆f∂εφ

ε
2 · ∇f∂εφε1

(∇fφε1)3
− 2

∆fφε2 · ∇f∂2
εφ

ε
1

(∇fφε1)3
+ 6

∆fφε2 · (∇f∂εφε1)2

(∇fφε1)4
+

− ∇
f∂2

εφ
ε
2 ·∆fφε1

(∇fφε1)3
− ∇

f∂εφ
ε
2 ·∆f∂εφ

ε
1

(∇fφε1)3
+ 3
∇f∂εφε2 ·∆fφε1 · ∇f∂εφε1

(∇fφε1)4
+

+ 3
∇f∂εφε2 · ∇f∂εφε1 ·∆fφε1

(∇fφε1)4
+ 3
∇fφε2 · ∇f∂2

εφ
ε
1 ·∆fφε1

(∇fφε1)4
+

+ 3
∇fφε2 · ∇f∂εφε1 ·∆f∂εφ

ε
1

(∇fφε1)4
− 12

∇fφε2 · (∇f∂εφε1)2 ·∆fφε1
(∇fφε1)5

+

− ∇
f∂εφ

ε
2 ·∆f∂εφ

ε
1

(∇fφε1)3
− ∇

fφε2 ·∆f∂2
εφ

ε
1

(∇fφε1)3
+ 3
∇fφε2 ·∆f∂εφ

ε
1 · ∇f∂εφε1

(∇fφε1)4
.
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Proof of Lemma 7.2. This lemma is a continuation of Lemma 6.4.
First, suppose f ∈ C∞(R2). Then, the function γ is smooth and its second

derivative is

γ′′(ε) =

∫

ω

[
(∂ε(∇fεfε ◦ φε))2

(1 + (∇fεfε ◦ φε)2)
3
2

Jφε+

+
(∇fεfε ◦ φε)∂2

ε (∇fεfε ◦ φε)
(1 + (∇fεfε ◦ φε)2)

1
2

Jφε+

+ 2
(∇fεfε ◦ φε)∂ε(∇fεfε ◦ φε)

(1 + (∇fεfε ◦ φε)2)
1
2

∂εJφε+

+ (1 + (∇fεfε ◦ φε)2)
1
2∂2

ε Jφε

]
dy dz.

One checks by direct computation that

∂ε(∇fεfε ◦ φε) = Af (ε),

∂2
ε (∇fεfε ◦ φε) = Bf (ε),

thus (17) is proven in the smooth case.
Next, suppose f = f∞ is the limit in C 1

W of a sequence fk ∈ C∞(R2),
as in Lemma 2.4. Define fk,ε and I ⊂ R and γk : I → R as in the proof
of Lemma 6.4. Define also η : I → R as the right-hand side of (17). By
Lemma 3.1, {Afk}k∈N and {Bfk}k∈N converge to Af and Bf uniformly on I.
Therefore, we have that the convergences γk → γ and γ′k → γ′ and γ′′k → η
are uniform on I. We conclude that γ ∈ C 2(I) and γ′′ = η. �

Next, one can directly check that

γ′′(0) =

∫

ω

[
(∆fV2 − 2ψ∇fV1 − f∆fV1)2

(1 + ψ2)
3
2

+

+
ψ

(1 + ψ2)
1
2

(∆fW2−f ·∆fW1−2ψ ·∇fW1−4∆fV2 ·∇fV1−2∇fV2 ·∆fV1+

+ 6f · ∇fV1 ·∆fV1 + 6ψ · (∇fV1)2)+

+ 2
ψ

(1 + ψ2)
1
2

(∆fV2 − 2ψ∇fV1 − f∆fV1)(∂ηV1 + ∂τV2)+

+ (1 + ψ2)
1
2 (∂ηW1 + ∂τW2 + 2(∂ηV1∂τV2 − ∂τV1∂ηV2))

]
dη dτ.

Finally, if Γf is an area-minimizing surface, then γ′(0) = 0 and γ′′(0) ≥ 0.
Notice that the terms containing W1 and W2 in the expression of γ′′(0) are
zero because γ′(0) = 0. So, the second variation formula (16) is proven. �

8. Contact variations in the case ∆ff = 0

In this final section we prove our main result. We show that there is a
quite large class of functions in C 1

W that satisfy both conditions on the first
and second contact variation. Since we know that the only intrinsic graphs
of smooth functions that are area minimizers are the vertical planes, our
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result shows that variations along contact diffeomorphisms are not selective
enough.

As usual, we set ψ := ∇ff .
Lemma 8.1. Let f ∈ C∞(R2) be such that ∆ff = 0. Then

IIf (V1, V2) =

∫

R2

[
(∆fV2 − 2ψ∇fV1 − f∆fV1)2

(1 + ψ2)
3
2

+

+ ∂τ

(
ψ

(1 + ψ2)
1
2

)(
∇fV2 −∇f (fV1)

)2
]

dη dτ.

The proof is very technical and it is postponed to the last section below.

Theorem 8.2. Let f ∈ C 1
W be such that ∆ff = 0 in weak Lagrangian sense.

Then both equalities (10) and (11) and also the inequality (16) are satisfied
for all V1, V2 ∈ C∞c (R2).

Proof. We first prove that both equalities (10) and (11) are satisfied. Let
{fk}k∈N ⊂ C∞(R2) be a sequence converging to f in C 1

W and such that
∆fkfk = 0, as in Lemma 3.8. Fix V1, V2 ∈ C∞c (R2). Then (12) and (10) are
satisfied by all fk thanks to Propositions 6.2 and 6.3. Passing to the limit
k →∞, we prove that f satisfies them too.

Now, we prove that the inequality (16) holds true. If f ∈ C∞(R2), then

we can apply Lemma 8.1, where ∂τ
(

ψ

(1+ψ2)
1
2

)
= ∂τψ

(1+ψ2)
3
2
≥ 0 because of

Lemma 3.5. So, (16) is proven for f smooth. For f ∈ C 1
W, let {fk}k∈N ⊂

C∞(R2) as in Lemma 3.8. From Lemma 3.1 follows that, for fixed V1, V2 ∈
C∞c (R2), it holds

lim
k→∞

IIfk(V1, V2) = IIf (V1, V2),

thus IIf (V1, V2) ≥ 0. �

8.1. Proof of Lemma 8.1. The proof of this lemma is just a computation,
but quite elaborate. For making the formulas more readable, we decided to
drop the sign of integral along the proof. In other words, all equalities in
this section are meant as equalities of integrals on R2. We will constantly
use the formulas listed in Appendix A together with ∇fψ = 0.

Before of all, we reorganise the integral in (16):

(∆fV2 − 2ψ∇fV1 − f∆fV1)2

(1 + ψ2)
3
2

+( a©)

+
ψ

(1 + ψ2)
1
2

(
+6f · ∇fV1 ·∆fV1 + 6ψ · (∇fV1)2

)
( b©)

+ 2
ψ

(1 + ψ2)
1
2

(
−2ψ∇fV1 − f∆fV1

)
∂ηV1( c©)

+ 2
ψ

(1 + ψ2)
1
2

∆fV2∂τV2( d©)

+
ψ

(1 + ψ2)
1
2

(
−4∆fV2 · ∇fV1 − 2∇fV2 ·∆fV1

)
( e©)
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+ 2
ψ

(1 + ψ2)
1
2

(
∆fV2∂ηV1 + (−2ψ∇fV1 − f∆fV1)∂τV2

)
( f©)

+ 2(1 + ψ2)
1
2 (∂ηV1∂τV2 − ∂τV1∂ηV2).( g©)

In the following lemmas we will study b©+ c©, d© and e©+ f©+ g© separately
in order to obtain the expansion of the square in the second term of the
integral in Lemma 8.1.

Lemma 8.3.

b©+ c© = ∂τ

(
ψ

(1 + ψ2)
1
2

)(
∇f (fV1)

)2
.

Proof of Lemma 8.3.

b© =
ψ

(1 + ψ2)
1
2

(
6f∇fV1∆fV1 + 6ψ(∇fV1)2

)

=
ψ

(1 + ψ2)
1
2

(
3f∇f (∇fV1)2 + 6ψ(∇fV1)2

)

= 3
ψ

(1 + ψ2)
1
2

(
∇f (f(∇fV1)2) + ψ(∇fV1)2

)

= −3
ψ

(1 + ψ2)
1
2

f∂τf(∇fV1)2 + 3
ψ2

(1 + ψ2)
1
2

(∇fV1)2

= −3

2

ψ

(1 + ψ2)
1
2

∂τ (f2)(∇fV1)2 + 3
ψ2

(1 + ψ2)
1
2

(∇fV1)2.

c© = −2
ψ

(1 + ψ2)
1
2

(2ψ∇fV1 + f∆fV1)∂ηV1

= −2
ψ

(1 + ψ2)
1
2

(2ψ∇fV1 + f∆fV1)(∇fV1 − f∂τV1)

= −4
ψ2

(1 + ψ2)
1
2

(∇fV1)2 + 4
ψ2

(1 + ψ2)
1
2

f∇fV1∂τV1+

− 2
ψ

(1 + ψ2)
1
2

f∆fV1∇fV1 + 2
ψ

(1 + ψ2)
1
2

f2∆fV1∂τV1.

We have two particular terms in this expression:

α© := 4
ψ2

(1 + ψ2)
1
2

f∇fV1∂τV1 + 2
ψ

(1 + ψ2)
1
2

f2∆fV1∂τV1

= 2
ψ

(1 + ψ2)
1
2

∇f (f2∇fV1)∂τV1

= −2
ψ

(1 + ψ2)
1
2

(f2∇fV1)∇f∂τV1 − 2∂τf
ψ

(1 + ψ2)
1
2

(f2∇fV1)∂τV1

= −2
ψ

(1 + ψ2)
1
2

f2∇fV1(∇f∂τV1 + ∂τf∂τV1)
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= −2
ψ

(1 + ψ2)
1
2

f2∇fV1∂τ∇fV1

= − ψ

(1 + ψ2)
1
2

f2∂τ (∇fV1)2

= ∂τ

(
ψ

(1 + ψ2)
1
2

)
f2(∇fV1)2 +

ψ

(1 + ψ2)
1
2

∂τ (f2)(∇fV1)2

and

β© := −2
ψ

(1 + ψ2)
1
2

f∆fV1∇fV1

= − ψ

(1 + ψ2)
1
2

f∇f (∇fV1)2

=
ψ2

(1 + ψ2)
1
2

(∇fV1)2 +
ψ

(1 + ψ2)
1
2

f∂τf(∇fV1)2

=
ψ2

(1 + ψ2)
1
2

(∇fV1)2 +
ψ

(1 + ψ2)
1
2

∂τ (f2)

2
(∇fV1)2.

Therefore:

c© = −4
ψ2

(1 + ψ2)
1
2

(∇fV1)2 + α©+ β©

= −3
ψ2

(1 + ψ2)
1
2

(∇fV1)2 + ∂τ

(
ψ

(1 + ψ2)
1
2

)
f2(∇fV1)2+

+
3

2

ψ

(1 + ψ2)
1
2

∂τ (f2)(∇fV1)2.

Putting this together,

b©+ c© = ∂τ

(
ψ

(1 + ψ2)
1
2

)
f2(∇fV1)2

= ∂τ

(
ψ

(1 + ψ2)
1
2

)
(∇f (fV1)− ψV1)2

= ∂τ

(
ψ

(1 + ψ2)
1
2

)
((∇f (fV1))2 + (ψV1)2 − 2∇f (fV1)ψV1)

= ∂τ

(
ψ

(1 + ψ2)
1
2

)
((∇f (fV1))2 − (ψV1)2 − f∇f (ψV 2

1 ))

(∗)
= ∂τ

(
ψ

(1 + ψ2)
1
2

)
((∇f (fV1))2 − (ψV1)2 +∇ffψV 2

1 )

= ∂τ

(
ψ

(1 + ψ2)
1
2

)
(∇f (fV1))2.

In (∗) we used formula (18). �
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Lemma 8.4.

d© = ∂τ

(
ψ

(1 + ψ2)
1
2

)
(∇fV2)2.

Proof of Lemma 8.4.

d© = 2
ψ

(1 + ψ2)
1
2

∆fV2∂τV2

(∗)
= −2

ψ

(1 + ψ2)
1
2

∇fV2∂τ∇fV2

= − ψ

(1 + ψ2)
1
2

∂τ (∇fV2)2

= ∂τ

(
ψ

(1 + ψ2)
1
2

)
(∇fV2)2.

In (∗) we used formula (18). �

Lemma 8.5.

e©+ f©+ g© = −2∂τ

(
ψ

(1 + ψ2)
1
2

)
∇f (fV1)∇fV2.

Proof.

g© = 2(1 + ψ2)
1
2 (∂ηV1∂τV2 − ∂τV1∂ηV2)

= 2(1 + ψ2)
1
2 ((∇fV1 − f∂τV1)∂τV2 − ∂τV1(∇fV2 − f∂τV2))

= 2(1 + ψ2)
1
2 (∇fV1∂τV2 − ∂τV1∇fV2).

f© = 2
ψ

(1 + ψ2)
1
2

(
∆fV2∂ηV1 + (−2ψ∇fV1 − f∆fV1)∂τV2

)

= 2
ψ

(1 + ψ2)
1
2

(
∆fV2(∇fV1 − f∂τV1)− 2ψ∇fV1∂τV2 − f∆fV1∂τV2

)

= 2
ψ

(1 + ψ2)
1
2

(
−f∂τV1∆fV2 − f∂τV2∆fV1 + ∆fV2∇fV1 − 2ψ∇fV1∂τV2

)

(∗)
= 2

ψ

(1 + ψ2)
1
2

(
ψ∂τV1∇fV2 + f∂τ (∇fV1)∇fV2 + ψ∂τV2∇fV1+

+f∂τ (∇fV2)∇fV1 + ∆fV2∇fV1 − 2ψ∇fV1∂τV2

)

= 2
ψ

(1 + ψ2)
1
2

(
ψ∂τV1∇fV2 + f∂τ (∇fV1)∇fV2+

+f∂τ (∇fV2)∇fV1 + ∆fV2∇fV1 − ψ∇fV1∂τV2

)
.

In (∗) we used formula (18).

f©+ g© = 2
(1 + ψ2)

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2)+
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+ 2
ψ

(1 + ψ2)
1
2

(
ψ∂τV1∇fV2 + f∂τ (∇fV1)∇fV2+

+f∂τ (∇fV2)∇fV1 + ∆fV2∇fV1 − ψ∇fV1∂τV2

)

= 2
1

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2)+

+ 2
ψ

(1 + ψ2)
1
2

(
f∂τ (∇fV1∇fV2) + ∆fV2∇fV1

)
.

e©+ f©+ g© =
ψ

(1 + ψ2)
1
2

(
−4∆fV2∇fV1 − 2∇fV2∆fV1

)
+ f©+ g©

= 2
ψ

(1 + ψ2)
1
2

(
−∆fV2∇fV1 −∇fV2∆fV1 + f∂τ (∇fV1∇fV2)

)
+

+ 2
1

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2)

= 2
ψ

(1 + ψ2)
1
2

(
−∇f (∇fV2∇fV1) + f∂τ (∇fV1∇fV2)

)
+

+ 2
1

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2)

= 2
ψ

(1 + ψ2)
1
2

∂τf∇fV2∇fV1 − 2∂τ

(
ψ

(1 + ψ2)
1
2

)
f∇fV1∇fV2+

− 2
ψ

(1 + ψ2)
1
2

∂τf∇fV1∇fV2 + 2
1

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2)

= −2∂τ

(
ψ

(1 + ψ2)
1
2

)
f∇fV1∇fV2 +2

1

(1 + ψ2)
1
2

(∇fV1∂τV2−∂τV1∇fV2).

In particular, we have

1

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2) = − 1

(1 + ψ2)
1
2

∂τ∇fV2V1+

+ ∂τ

(
1

(1 + ψ2)
1
2

)
∇fV2V1 +

1

(1 + ψ2)
1
2

∂τ∇fV2V1

= ∂τ

(
1

(1 + ψ2)
1
2

)
∇fV2V1

and

∂τ

(
1

(1 + ψ2)
1
2

)
= − 1

(1 + ψ2)
3
2

ψ∂τψ = −ψ∂τ
(

ψ

(1 + ψ2)
1
2

)
.

Therefore

e©+ f©+ g© =
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= −2∂τ

(
ψ

(1 + ψ2)
1
2

)
f∇fV1∇fV2 + 2

1

(1 + ψ2)
1
2

(∇fV1∂τV2 − ∂τV1∇fV2)

= −2∂τ

(
ψ

(1 + ψ2)
1
2

)
f∇fV1∇fV2 − 2ψ∂τ

(
ψ

(1 + ψ2)
1
2

)
∇fV2V1

= −2∂τ

(
ψ

(1 + ψ2)
1
2

)
∇f (fV1)∇fV2.

�

Appendix A. Useful formulas

In the case f ∈ C∞(R2), the adjoint operator of ∇f is

(∇f )∗ = −∇f − ∂τf,
i.e., if A,B ∈ C∞(R2) and one of them has compact support, then∫

R2

A · ∇fB dη dτ = −
∫

R2

[
∇fA ·B + ∂τf ·A ·B

]
dη dτ.

Notice that, if f is smooth, the following holds:

∂η = ∇f − f∂τ ,
∂τ∇f = ∇f∂τ + ∂τf∂τ .

If A,B,C ∈ C∞(R2) and one of them has compact support, then
(18)∫

R2

A · ∂τB · ∇fC dη dτ = −
∫

R2

(
∇fA · ∂τB · C +A · ∂τ∇fB · C

)
dη dτ.
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