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Chapter 1

Introduction

Video understanding is one of the long-standing goals of the computer

vision and multimedia communities. The ability to automatically under-

stand video content opens the door to a huge pool of potential applica-

tions such as automatic video analysis, video indexing and retrieval, video

surveillance, virtual reality, human-computer interaction, robot learning,

etc. Video is one of the most notorious multimedia content for entertain-

ment and communication. A statistical study1 reveals that on YouTube

there are currently updated more than 300 hours of video every minute,

each day YouTube users watch more than a billion hours of video. This

explosive growth in video content continues to have a fulminant increase,

for instance Cisco forecast2 mentioned that the IP video would account for

80% of all IP traffic by 2019. Given this fulminant growth in video content,

the capability of computers to perform video classification becomes very

challenging and crucial for various purposes such as search, recommenda-

tion, ranking, etc.

Computers are far behind humans in understanding video content. Be-

sides the enormous amount of video content, it is very challenging to per-

form video classification due to many reasons such as large intra-class varia-

1https://www.youtube.com/yt/about/press/
2http://newsroom.cisco.com/press-release-content?articleId=1644203
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tions, viewpoint changes, background clutter, high dimension of video data,

low video resolution, camera motion, etc. All of these make video classifi-

cation a very challenging and computationally demanding task, however,

video classification has received a sustained attention from the research

community due to the unlimited potential of real-life applications.

The aim of this PhD thesis is to make a step forward towards teaching

computers to understand videos in a similar way as humans do. In this

work we tackle the video classification and/or action recognition tasks.

This thesis was completed in a period of transition, the research commu-

nity moving from traditional approaches (such as hand-crafted descriptor

extraction) to deep learning. Therefore, this thesis captures this transition

period, however, unlike image classification, where the state-of-the-art re-

sults are dominated by deep learning approaches, for video classification

the deep learning approaches are not so dominant. As a matter of fact,

most of the current state-of-the-art results in video classification are based

on a hybrid approach where the hand-crafted descriptors are combined

with deep features to obtain the best performance. This is due to several

factors, such as the fact that video is a more complex data as compared

to an image, therefore, more difficult to model and also that the video

datasets are not large enough to train deep models with effective results.

The pipeline for video classification, illustrated in Figure 1.1, can be

broken down into three main steps: feature extraction, encoding and clas-

sification. While for the classification part, the existing techniques are

more mature, for feature extraction and encoding there is still a significant

room for improvement. In addition to these main steps, the framework con-

tains some pre/post processing techniques, such as feature dimensionality

reduction, feature decorrelation (for instance using Principal Component

Analysis - PCA) and normalization, which can influence considerably the

performance of the pipeline.
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This thesis is mainly based on three works. The first work focuses on

descriptor extraction, which is an important step in the video classification

pipeline. The second and the third works tackle the feature encoding part

which is highly dependent on the descriptor extraction step. At the end, the

feature encoding approach drastically influences the classifier performance.

One of the bottlenecks of the video classification pipeline is represented

by the feature extraction step, where most of the approaches are extremely

computationally demanding, what makes them not suitable for real-time

applications. In this thesis, we tackle this issue, propose different speed-

ups to improve the computational cost and introduce a new descriptor

that can capture motion information from a video without the need of

computing optical flow (which is very expensive to compute). Another

important component for video classification is represented by the feature

encoding step, which builds the final video representation that serves as

input to a classifier. During the PhD, we proposed several improvements

over the standard approaches for feature encoding. We also propose a new

feature encoding approach for deep feature encoding. To summarize, the

main contributions of this thesis are as follows3:

• We propose several speed-ups for descriptor extraction, providing a

version for the standard video descriptors that can run in real-time.

We also investigate the trade-off between accuracy and computational

efficiency.

• We provide a new descriptor for extracting information from a video,

which is very efficient to compute, being able to extract motion infor-

mation without the need of extracting the optical flow.

• We investigate different improvements over the standard encoding

approaches for boosting the performance of the video classification

3Source code is available at: https://iduta.github.io/software.html
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pipeline.

• We propose a new feature encoding approach specifically designed for

encoding local deep features, providing a more robust video represen-

tation.

The remainder of this thesis is organized as follows:

• In Chapter 2, we present our work on descriptor extraction for video

classification, where we address one of its issues: high computational

cost. Specifically, the contributions are: (1) We propose several speed-

ups for densely sampled HOG (Histogram of Orientated Gradients),

HOF (Histogram of Optical Flow) and MBH (Motion Boundary His-

tograms) descriptors and release Matlab code; (2) We investigate the

trade-off between accuracy and computational efficiency of descriptors

in terms of frame sampling rate and type of Optical Flow method;

(3) We investigate the trade-off between accuracy and computational

efficiency for computing the feature vocabulary, using and compar-

ing most of the commonly adopted vector quantization techniques:

k-means, hierarchical k-means, Random Forests, Fisher Vectors and

Vector of Locally Aggregated Descriptors (VLAD).

• Chapter 3 continues with the work on descriptor extraction and also

makes the transition from descriptor extraction to feature encoding.

Specifically, the contributions are: (1) We introduce a new descriptor,

which captures the motion information using a simple temporal deriva-

tion, without the need of using the costly optical flow. We make the

code for descriptor extraction available. (2) We propose a new encod-

ing method, which captures shape information within the encoding

process, providing the best trade-off between accuracy and compu-

tational cost. We make the code for descriptor encoding available.

(3) We adopt several speed-ups, such as fast aggregation of gradient
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responses, reuse subregions of aggregated magnitude responses, and

frame subsampling, which make the pipeline more efficient. (4) We

propose an integration of our descriptor and encoding method in a

specifically designed video classification framework which allows for

real-time performance while maintaining the high accuracy of the re-

sults.

• Chapter 4 continues the work on feature encoding. Specifically, the

contributions are: (1) Provide a new encoding approach specifically

designed for working with deep features. We exploit the nature of deep

features, with the goal of capturing the highest feature responses from

the highest neuron activation of the network. (2) Efficiently incorpo-

rate the spatio-temporal information within the encoding method by

taking into account the features position and specifically encode this

aspect. Spatio-temporal information is crucially important when deal-

ing with video classification. (3) Provide an action recognition scheme

to work with deep features, which can be adopted to obtain impres-

sive results with any already trained network, without the need for

re-training or fine tuning on a particular dataset. Furthermore, our

framework can easily combine different information extracted from dif-

ferent networks. In fact, our pipeline for action recognition provides

a reliable representation outperforming the previous state-of-the-art

approaches, while maintaining a low complexity.

• Chapter 5 concludes this thesis and presents the future research work.
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Chapter 2

Video classification with densely

extracted HOG/HOF/MBH

features: an evaluation of the

accuracy/computational efficiency

trade-off1

A widely used framework in video classification is based on Bag-of-Words

using local visual descriptors. Most commonly these are Histogram of Ori-

ented Gradient (HOG), Histogram of Optical Flow (HOF) and Motion

Boundary Histogram (MBH) descriptors. While such approach is very

powerful for classification, it is also computationally expensive. This work

addresses the problem of computational efficiency. Specifically: (1) We

propose several speed-ups for densely sampled HOG, HOF and MBH de-

scriptors and release Matlab code; (2) We investigate the trade-off between

accuracy and computational efficiency of descriptors in terms of frame sam-

pling rate and type of Optical Flow method; (3) We investigate the trade-off

1Uijlings, J.R.R.; Duta, I.C.; Sangineto, E. and Sebe, N. ”Video classification with Densely

extracted HOG/HOF/MBH features: an evaluation of the accuracy/computational efficiency

trade-off”. In International Journal of Multimedia Information Retrieval, 4(1):33-44, March

2015.
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between accuracy and computational efficiency for computing the feature

vocabulary, using and comparing most of the commonly adopted vector

quantization techniques: k-means, hierarchical k-means, Random Forests,

Fisher Vectors and VLAD.

2.1 Introduction

The Bag-of-Words method [14, 72] has been successfully adapted from the

domain of still images to the domain of video by using local, visual, space-

time descriptors (e.g. [46, 19, 41, 66, 67, 86]). Successful applications range

from Human Action Recognition [46, 44, 63] to Event Detection [73] and

Concept Classification [74, 73]. However, analyzing video is even more

computationally expensive than analysing images. Hence, in order to deal

with the enormous, growing amount of digitalized video it is important to

have not only accurate, but also computationally efficient methods.

In this work we take a powerful, commonly used Bag-of-Words pipeline

for video classification and investigate how we can make it more computa-

tionally efficient while sacrificing as little accuracy as possible. The general

pipeline is visualized in Figure 2.1. In this pipeline we focus on densely

sampled local visual descriptors only, since dense sampling has been found

to be more accurate than keypoint-based sampling, both in images [37] and

in video [90]. As type of local visual descriptors, we focus on the standard

ones, which are based on local 3D volumes of Histograms of Oriented Gra-

dients (HOG) [15], Histograms of Optical Flow (HOF) [16, 46] and Motion

Boundary Histograms (MBH) [16]. For transforming the set of local de-

scriptors extracted from a video into a fixed-length vector necessary for

classification, we compare a variety of techniques: k-means, hierarchical

k-means, Random Forests [7, 31], Fisher Vectors [61] and Vector of Lo-

cally Aggregated Descriptors (VLAD) [35]. Starting from this pipeline,

10



this evaluation chapter makes the following contributions:
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Figure 2.1: General framework for video classification using a Bag-of-Words pipeline. The

methods evaluated in this work are instantiated in this diagram.

Fast Dense HOG/HOF/MBH. We exploit the nature of densely

sampled descriptors in order to speed up their computation. HOG, HOF

and MBH descriptors are created from subvolumes. These subvolumes can

be shared by different descriptors similar to what was done in [83]. In

this work we generalize their idea of reusing subregions to 3 dimensions.

Matlab source code is available2.

Evaluation of frame subsampling. Videos consist of many frames,

making them computational expensive to analyze. However, subsequent

frames also largely carry the same information. In this work we evaluate the

trade-off between accuracy and computational efficiency when subsampling

video frames.

Evaluation of Optical Flow. Calculating optical flow is generally

expensive and takes up much of the total HOF and MBH descriptor ex-

traction time. But for optical flow there is also a trade-off between com-

putational efficiency and accuracy. Moreover, optical flow methods are

generally tested against optical flow benchmarks such as [3, 10], but it is

not immediately obvious that methods which perform well on these bench-

marks would automatically also yield better HOF and MBH descriptors.

2https://iduta.github.io/software.html
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Therefore in this work we evaluate optical flow methods directly in our

task of interest: video classification. Specifically, we compare the opti-

cal flow methods of Lukas-Kanade [49], Horn-Schunk [32], Farnebäck [28],

Brox 04 [8], and Brox 11 [9].

Evaluation of descriptor encoding. The classical way of transform-

ing a set of local visual descriptors into a single fixed-length vector is by

using a k-means visual vocabulary and assign local descriptors to the mean

of the nearest cluster (e.g. [14]). However, both hierarchical k-means and

Random Forests [53, 83] are viable fast alternatives. Furthermore, the

Fisher Vector [61] significantly outperforms classical k-means representa-

tion in many tasks, whereas VLAD [35] can be considered a simplified

non-probabilistic version of the Fisher Vector [64] and it is computationally

more efficient. In this work we evaluate the accuracy/efficiency trade-off

of all five methods above in the context of video classification.

2.2 Related work

The most used local spatio-temporal descriptors are modeled after SIFT [48]:

each local video volume is divided into blocks, for each block one aggregates

responses (either oriented gradients or optical flow), and the final descriptor

is a concatenation of the aggregated responses of several adjacent blocks.

Both Dalal et al. [16] and Laptev et al. [46] proposed to aggregate 2D

Oriented Gradient Responses (HOG) and Optical Flow responses (HOF).

Additionally, Dalal et al. [16] also proposed to calculate changes of optical

flow, or Motion Boundary Histograms (MBH). Both Scovanner et al. [67]

and Kläser et al. [41] proposed to measure oriented gradients also in the

temporal dimension, resulting in 3-dimensional gradient responses. Everts

et al. [26] extended [41] to include color channels. As Wang et al. [90]

found little evidence that the 3D responses of [41] are better than HOG,

12



in this chapter we implemented and evaluated the descriptors which are

most widely used: HOG, HOF and MBH.

Wang et al. [90] evaluated several interest point selection methods and

several spatio-temporal descriptors. They found that dense sampling meth-

ods generally outperform interest points, especially on more difficult datasets.

As this result was earlier found in image analysis [37, 65], this work focuses

on dense sampling for videos. In [90] the evaluation was on accuracy only.

In contrast, this work focuses on the trade-off between computational effi-

ciency and accuracy.

Wang et al. [86] proposed to use dense trajectories. In their method, the

local video volume moves spatially through time; it tries to stay on the same

part of the object. Additionally, they use changes in optical flow rather

than the optical flow itself. They show good improvements over normal

HOG, HOF and MBH descriptors. Nevertheless, combining their dense

trajectory descriptors with both normal HOG, HOF and MBH descriptors

still gives significant improvements over dense trajectories alone [39, 86].

In this work we focus on HOG, HOF and MBH. Note that we evaluate the

accuracy/efficiency trade-off for several optical flow methods which may

be of interest also when using dense trajectories.

In [65], Sangineto proposes to use Integral Images [85] to efficiently

compute densely extracted SURF features [5] in still images. The work of

Uijlings et al. [83] proposes several methods to speed up the Bag-of-Words

classification pipeline for image classification and provides a detailed eval-

uation on the trade-off between computational efficiency and classification

accuracy. In this work we perform such evaluation on video classification.

Inspired by [83] we propose accelerated densely extracted HOG, HOF and

MBH descriptors and provide efficient Matlab implementations. Addition-

ally, we evaluate various video-specific aspects such as frame sampling rate

and the choice of optical flow method.

13



The Fisher Vector [61] has been shown to outperform standard vector

quantization methods such as k-means in the context of Bag-of-Words.

On the other hand, the recently proposed VLAD descriptors [35] can be

seen as a non-probabilistic version of Fisher Vectors which are faster to

compute [35, 64]. In this work we evaluate the accuracy/efficiency trade-

off using Fisher Vector and VLAD in the context of video classification.

2.3 Bag-of-Words for video

In this section we explain in detail the pipeline that we use. We mostly

use off-the-shelf yet state-of-the-art components to construct our Bag-of-

Words pipeline, which is necessary for a good evaluation. Additionally,

we explain how to create a fast implementation of densely sampled HOG

and HOF descriptors, and also implicitly for MBH, being MBH based on

HOG and Optical Flow. We make the HOG/HOF/MBH descriptor code

publicly available.

2.3.1 Descriptor extraction

In this section we describe the details of our implementation for dense

extraction of HOG, HOF and MBH descriptors. Specifically, in Section

2.3.1 we show how HOG and HOF can be efficiently extracted and ag-

gregated from video blocks. Then, in Section 2.3.1 we deal with MBHs,

which are largely based on HOG. Finally, since in this work we compare

our implementation with the widely used available code of Laptev [46], in

Section 2.3.1, we show the parameters we have adopted in using Laptev’s

code. Both ours and the Laptev’ system work on grey-values only. Note

that Laptev’s implementation does not include MBH descriptors, thus the

comparison performed in our experiments only concerns HOG and HOF.

14



Fast dense HOG/HOF descriptors

For both HOG and HOF descriptors, there are several steps. First one

needs to calculate either gradient magnitude responses in horizontal and

vertical directions (for HOG), or optical flow displacement vectors in hor-

izontal and vertical directions (for HOF). Both result in a 2-dimensional

vector field per frame. Then for each response the magnitude is quantized

in o orientations, usually o = 8. Afterwards, one needs to aggregate these

responses over blocks of pixels in both spatial and temporal directions. The

next step is to concatenate responses of several adjacent pixel blocks. Fi-

nally, descriptors have to be normalized and sometimes PCA is performed

to reduce their dimensionality, often leading to computational benefits or

improved accuracy.

To calculate gradient magnitude responses we use HAAR-features. These

are faster to compute than Gaussian Derivatives and have proven to work

better for HOG [15]. Quantization in o orientations is done by dividing

each response magnitude linearly over two adjacent orientation bins.

We use the classical Horn-Schunk [32] method for optical flow responses

as a default. We use the version implemented by the Matlab Computer

Vision System Toolbox. Additionally, we evaluate four other optical flow

methods: Lucas-Kanade [49], also using the Matlab Computer Vision Sys-

tem Toolbox, the method of Färneback [28], using OpenCV3 with the mex-

opencv interface4, Brox 04 [8], and Brox 11 [9] using the author’s publicly

available code.

Both HOG and HOF descriptors are created out of blocks. By choosing

the sampling rate identically to the size of a single block, one can reuse

these blocks. Figure 2.2 shows an example on how a video volume can be

divided into blocks. Once responses per block are computed, descriptors

3http://opencv.org
4https://github.com/kyamagu/mexopencv
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Figure 2.2: Blocks in a video volume can be reused for descriptor extraction. In our work

descriptors consist of 3 by 3 blocks in space and 2 blocks in time, shown in blue.

can be formed by concatenating adjacent blocks. In this work we use

descriptors of 3 by 3 blocks in the spatial domain and 2 blocks in the

temporal domain, as shown in blue in Figure 2.2, but these parameters

can be easily changed. Hence each block is reused 18 times (except for the

blocks on the borders of the video volume).

To aggregate responses over space we use the Matlab-friendly method

proposed by [83]: Let R be an N ×M matrix containing responses in a

single orientation (be it gradient magnitude or optical flow magniture). Let

BN and BM be the number of elementary blocks from which HOG/HOF

features are composed. Now it is possible to construct (sparse) matrices O

and P of respectively BN ×N and M ×BM such that ORP = A, where A

is a BN × BM matrix containing the aggregated responses for each block.

O and P resemble diagonal matrices but are rectangular and the filled in

elements follow the ’diagonal’ of the rectangle instead of positions (i, i). By

proper instantiation of these matrices we perform interpolation between

blocks, which provides the descriptors some translation invariance. For

integration over time we add the responses of the frames belonging to a
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single block. For more details we refer the reader to the work of [83].

In this work, we extract descriptors on a single scale where blocks consist

of 8 by 8 pixels by 6 frames, which at the same time is our dense sampling

rate. Descriptors consist of 3 by 3 by 2 blocks. Both for HOG and HOF

the magnitude responses are divided into 8 orientations, resulting in 144

dimensional descriptors. PCA is performed to reduce the dimensionality

by 50% resulting in 72 dimensional vectors. Afterwards, normalization is

performed by the L1-norm followed by the square root, which effectively

means that Euclidean distances between descriptors in fact reflect the often

superior Hellinger distance [1].

Motion Boundary Histograms descriptor

Another commonly used descriptor for video classification tasks is Motion

Boundary Histogram (MBH), proposed by Dalal et al. [16], who proved its

robustness to camera and background motion. The intuitive idea of MBH

is to represent the oriented gradients computed over the vertical and the

horizontal optical flow components. The advantage of such representation

is that constant camera movements tend to disappear and the description

focuses on optical flow differences between frames (motions boundaries).

In more detail, the optical flow’s horizontal and vertical components

are separately represented using two scalar maps, which can be seen as

gray-level “images” of the motion components. Histograms of oriented

gradients are then computed for each of the two optical flow component

images, using the same approach used for computing HOG in still images.

Taken into account only flow differences, the information about changes in

motion boundaries is kept and the constant motion information is removed,

which leads to the cancelation of most of the effects of camera motion.

In our MBH implementation we follow the pipeline suggested in [16] and

mentioned above. Once computed the horizontal and vertical optical flow
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components, histograms of oriented gradients are computed on each image

component using the same efficient approach and the same parameters

shown in Section 2.3.1. Also the block-based aggregation step is analogous

to what described in Section 2.3.1.

The outcome of this process is a pair of horizontal (MBHx) and vertical

(MBHy) descriptors [16], each one composed of 144 dimensions. We sep-

arately apply PCA to both MBHx and MBHy and we obtain two vectors

of 72 dimensions each. The (PCA-reduced) MBHx and MBHy vectors can

then be either separately used in the subsequent visual word assignment

and classification stages (Figure 2.1) or combined in order to get a unique

descriptor. In [86] the authors state that late fusion of MBHx and MBHy

gives a better performance than concatenating the two descriptors before

the visual word assignment step. Hence in this work we will report results

for MBHx and MBHy separately, and a late fusion of the two which we

simply denote as MBH. This late fusion combines the outcomes of the two

(independent) classifications with equal weights. Finally, in Section 2.4.6,

we will also show results concerning a late fusion strategy involving all the

descriptors (MBHx, MBHy, HOG and HOF).

Existing HOG/HOF descriptors

We use the existing implementation of Laptev et al. [46]. We use the default

parameters as suggested by the authors, which compared to our descriptors

are as follows: They perform a dense sampling at multiple scales. At the

finest scale, blocks are 12 by 12 pixels by 6 frames, sampling rate is every

16 pixels by every 6 frames. They consider 8 spatial scales and 2 temporal

scales for a total of 16 scales, where each scale increases the descriptor size

by a factor of
√

2. In the end, they generate around 33% less descriptors

than our single scale dense sampling method.

Unlike our descriptor extraction, the implementation of [46] uses 4 ori-
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entations for HOG and 5 orientations for HOF, resulting in respectively 72

and 90 dimensional descriptors.

2.3.2 Visual word assignment

We use five different ways of creating a single feature representation of

a set of descriptors extracted from a single video: k-means, hierarchical

k-means, Random Forests [7, 31], VLAD [35] and Fisher Vectors [61].

For hierarchical k-means we use the implementation made available by

VLFeat [84]. For the regular k-means assignment, we make use of the

fact that the descriptors are L2-normalised: Euclidean distances are pro-

portional to dot products (cosine of angles) between the vectors. Hence

finding the minimal euclidean distance is equivalent to finding the maxi-

mal dot product, yet more efficient to compute [83]. For both hierarchical

k-means and regular k-means, we use 4096 visual words. For hierarchical

k-means, we learn a hierarchical tree of depth 2 with 64 branches per node

of the tree (preliminary experiments showed a large decrease in accuracy

when using a higher depth with fewer branches, but only marginal im-

provements in computational efficiency, data not shown). We normalize

the resulting frequency histograms using the square root, which discounts

frequently occurring visual words, followed by L1-normalization.

Random Forests are binary decision trees which are learned in a super-

vised way by randomly picking several descriptor dimensions at each node

with several random thresholds and choose the one with the highest En-

tropy Gain. We follow the recommendations of [83], using 4 binary decision

trees of depth 10, resulting in 4096 visual words. The resulting vector is

normalized by taking the square root followed by L1.

The Fisher Vector [33] as used in [61] encodes a set of descriptors D

with respect to a Gaussian Mixture Model (GMM) which is trained to be

a generative model of these descriptors. Specifically, the set of descrip-
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tors is represented as the gradient with respect to the parameters of the

GMM. This can be intuitively explained in terms of the EM algorithm for

GMMs: Let Gλ be the learned GMM with parameters λ. Now use the

E-step to assign the set of descriptors D to Gλ. Then the M-step yields

a vector F with adjustments on how λ should be updated to fit the data

(i.e. how the GMM clusters should be adjusted). This vector F is exactly

the Fisher Vector representation. We follow [61] and normalize the vector

using a square root of the absolute values and afterwards keep the original

sign ((sign(fi))
√
|fi|), followed by L2. In this work we use two common

cluster sizes for the GMM: 64 and 256 clusters [61]. Without a spatial pyra-

mid [47], for our 72 dimensional HOG/HOF/MBHx/MBHy features this

will yield vectors of 9,216 and 36,864 dimensions respectively. While not

comparable with the dimensionality of other methods, Fisher Vectors (and

VLAD) allow for linear Support Vector Machines rather than Histogram

Intersection or χ2-kernels. Hence efficiency-wise, the simpler classifiers will

compensate for the larger dimension of the feature vectors.

The recently proposed VLAD [35] representation can be seen as a sim-

plification of the Fisher Vector [35, 64] in which: (1) a spherical GMM

is used, (2) the soft assignment is replaced with a hard assignment and

(3) only the gradient of Gλ with respect to the mean is considered (first

order statistics). This leads to a lower dimensional representation, half of

the dimensions of a Fisher Vector, in which second order statistics are also

used. Following [35] we use for VLAD the same normalization scheme used

for Fisher Vectors: We square-root the VLAD vectors while keeping their

sign, followed by L2-normalisation. For good comparison to the Fisher

Vectors, we use a dictionary of 128 and 512 clusters respectively, leading

to features of dimensionality identical to the Fisher Vectors: 9,216 and

36,864 dimensions.

We use the Spatial Pyramid [47] in all our experiments. Specifically, we
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divide each video volume into the whole video and into three horizontal

parts which intuitively roughly corresponds to a ground, object, and sky

division (in outdoor scenes).

2.3.3 Classification

For classification we use Support Vector Machines which are powerful and

widely used in a Bag-of-Words context (e.g. [14, 47, 83, 84]). For k-means,

hierarchical k-means, and Random Forests, we use SVMs with the His-

togram Intersection kernel, using the fast classification method as proposed

by [50]. For the Fisher Vector and VLAD, we use linear SVMs. For both

types of SVMs, we make use of the publicly available LIBSVM library [11]

and the fast Histogram Intersection classification of [50].

2.4 Experiments

Our baseline consists of densely sampled HOG, HOF and MBH(x/y) de-

scriptors, all consisting of blocks of 8 by 8 pixels by 6 frames. For HOF

and MBH(x/y), optical flow is calculated using Horn-Schunk. Gradient

and flow magnitude responses are quantized in 8 bins. The final descrip-

tors consist of 3 by 3 by 2 blocks. PCA always reduces dimensionality of

descriptors by 50%. We use a spatial pyramid division of 1 × 1 × 1 and

1 × 3 × 1 [47] (we have no temporal division). Normalisation after word

assignment is done by either taking the square root while keeping the sign

followed by L2 for the Fisher Kernel, or by the square root plus L1 for all

other methods. We use SVMs for classification, with either a linear kernel

for the Fisher Vectors or histogram intersection kernel for all other visual

word assignment methods.

Starting from our baseline we perform four experiments: (1) We com-

pare five different visual word assignment methods: k-means, hierarchical
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k-means, Random Forests, VLAD and the Fisher Kernel; (2) We compare

our densely extracted descriptors with the descriptors provided by Laptev

et al. [46]; (3) We evaluate the efficiency/accuracy trade-off by subsam-

pling video frames for the descriptor extraction process; (4) For HOF and

MBH(x/y) descriptors, we compare five different optical flow implementa-

tions: Horn-Schunk, Lukas-Kanade, Farnebäck [28], Brox 04 [8] and Brox

11 [9].

All timing experiments are performed on a single core of an Intel(R)

Xeon(R) CPU E5620 2.40GHz. We use mainly Matlab, but most tool-

boxes used by us have mex-interfaces to c++ implementations for critical

functions. All implementations are heavily optimized for speed. Since

the computation involves many common operations that use standardized

and optimized libraries (e.g. convolutions, matrix multiplications) on large

quantities of data, virtually the entire time is spent on core calculations

while the overhead is negligible; using only c++ will not result in noticeable

differences in the overall timing results presented in this work.

Based on our experiments we provide two recommendations, one for

real-time video classification and one for accurate video classification. Fi-

nally we give a comparison with the state-of-the-art.

2.4.1 Dataset

We perform all experiments on the UCF50 Human Action Recognition

dataset [63]. This dataset contains 6600 realistic videos taken from Youtube

and as such has large variations in camera motion, object appearance and

pose, illumination conditions, scale, etc. The 50 human action categories

are mutually exclusive and include actions such as biking, diving, drum-

ming, and fencing. The frames of the videos are 320 by 240 pixels. The

video clips are relatively short with a length that varies around 70-200

frames. The dataset is divided in 25 predefined groups. Following the
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standard procedure we perform a leave-one-group-out cross-validation and

report the average classification accuracy over all 25 folds. Optimization

of the SVM slack parameter is done for every class for every fold on the

training set (containing 24 groups).

2.4.2 Visual word assignment

In this experiment we compare the following visual word assignment meth-

ods: k-means, hierarchical k-means, Random Forests, VLAD and Fisher

Vector. K-means, hierarchical k-means and Random Forests are similar

in the sense that the final vector represents visual word counts. To com-

pare these methods we ensure that all have 4096 visual words. For k-

means this means performing clustering with k=4096. For hierarchical

k-means we use a hierarchy of depth 2 with 64 branches at each node. The

Random Forest consists of 4 trees of depth 10. We choose to base our

Fisher Vectors on standard sizes for the number of clusters: 64 and 256

clusters [61, 12]. While Fisher Vectors are of higher dimensionality, the

vectors work with linear classifiers. This means that Fisher Vectors are

best compared with the other visual word assignment methods in terms of

the accuracy/efficiency trade-off. Similarly, we adopted 2 standard clus-

ter sizes for VLAD: 128 and 512 dimensions respectively [35] and we used

linear classifiers as well.

The accuracy and computational efficiency for the various word assign-

ment methods for our HOG, HOF and MBH(x/y) features are presented in

Figure 2.3 and Table 3.2. The first thing to notice is that the Fisher Vector

with 256 clusters has the best accuracy of 0.765 for HOG, 0.795 for HOF,

0.796 for MBHx and 0.804 for MBH, while taking 3.39 seconds per video

(per descriptor type). K-means has also good accuracy at 0.728 for HOG,

0.791 for HOF, 0.782 for MBHx and 0.8 for MBH. However, the compu-

tational time is at 1.81 seconds per video. This means that the Fisher
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Figure 2.3: Accuracy/Efficiency trade-off for various word assignment methods and fea-

tures. For a better readability of the figure, we omitted the results concerning MBHx and

MBHy (see Table 3.2).

Vector (with 256 clusters) for video classification is superior in accuracy

but slightly slower compared to k-means. For computational efficiency, the

Random Forest is by far the fastest and takes 0.1 seconds per video. The

hierarchical k-means (hk-means) is four times slower at 0.47 seconds per

video, and performs slightly worse on HOG (0.718 hk-means vs. 0.729 RF)

but significantly better on HOF (0.780 hk-means vs. 0.732 RF) and on

MBHx, MBHy and MBH (respectively, 0.774 vs 0.738, 0.763 vs. 0.739 and

0.791 vs 0.765).

24



k-means hk-means RF FV 64 FV 256 VLAD 128 VLAD 512

HOG Acc 0.728 0.718 0.729 0.746 0.765 0.653 0.671

HOF Acc 0.791 0.780 0.732 0.779 0.795 0.751 0.783

MBHx Acc 0.782 0.774 0.738 0.767 0.796 0.749 0.774

MBHy Acc 0.772 0.763 0.739 0.759 0.787 0.737 0.765

MBH Acc 0.800 0.791 0.765 0.786 0.804 0.769 0.792

sec/video 1.81 0.51 0.10 1.10 3.39 0.19 0.47

frame/sec 108 387 1910 180 58 1011 415

Table 2.1: Trade-off accuracy/efficiency for the following visual word assignment methods:

k-means, hierarchical k-means (hk-means), Random Forest (RF), Fisher Kernel with 64

and 256 clusters (FK 64 and FK 256). Assignment time for HOG and HOF is the same.

In terms of classification time per video, we measure 0.017 seconds per

video when using the fast Histogram Intersection based classification for

SVMs [50] for k-means, hk-means, and Random Forests. We measure

0.001 seconds per video for the linear classifier used on the Fisher Vector

representation with 256 clusters. This means that the classification time

is negligible compared to the word assignment time and is of little concern

for video classification.

For the remainder of this work, we choose to perform our evaluation on

two word assignment methods: the Fisher Vector, which yields the most

accurate results, and hk-means, which is the second fastest after Random

Forests, while its accuracy for HOF and MBH(x/y) is much higher than

using Random Forests.

2.4.3 Comparison with Laptev et al.

In this experiment we compare the publicly available code from [46] with

our implementation. We compare only to the dense sampling option as [90]

has already proven that dense sampling outperforms the use of space-time

interest points. Moreover, only HOG and HOF features are used for com-
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Figure 2.4: Accuracy comparison between [46] and our HOG/HOF descriptors

parison because the code in [46] does not include any implementation for

MBH features. Results are presented in Figures 2.4 and 2.5 and in Ta-

ble 2.2.

hk-means FV 256 efficiency

HOG HOF HOG HOF sec/vid frame/sec

[46] 0.657 0.590 0.670 0.725 141 1.4

ours 0.718 0.780 0.765 0.795 15 12.8

Table 2.2: Comparing the dense HOG/HOF implementation of [46] and ours. The de-

scriptor extraction time is measured for extracting both HOG and HOF features, as the

binary provided by [46] does always both. Descriptor extraction time is independent of

the visual word assignment method (RF or FV 256).

The results show that for all settings there is a significant difference in

accuracy between the dense implementation of [46] and our method. For

the Fisher Vector, HOG descriptors yield 0.670 accuracy for [46] and 0.765

accuracy for our implementation and HOF descriptors yield 0.725 accuracy
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Figure 2.5: Computational Efficiency comparison between [46] and our HOG/HOF de-

scriptors

for [46] and 0.795 accuracy for our implementation. These are accuracy

increases of 9% and 7% respectively. Similar differences are obtained using

hk-means. Part of the difference can be explained by the fact that we sam-

ple differently: because we reuse blocks of the descriptors, our sampling

rate is defined by the size of a single block. This means we sample descrip-

tors every 8 pixels and every 6 frames at a single scale, whereas [46] samples

every 16 pixels and every 6 frames at 10 increasingly course scales. For our

method this yields around 150 descriptors per frame or around 29,000 de-

scriptors per video whereas [46] generates around 90 descriptors per frame

or around 17,500 descriptors per video, which means we generate 66% more

descriptors. While this may seem unfair towards [46], in this work we are

interested in the trade-off between accuracy and computational efficiency,

which makes the exact locations from where descriptors are sampled irrel-

evant.

In terms of computational efficiency our method is more than 9 times

faster: their method takes 141 seconds per video while our method takes

15 seconds per video. Our method is faster because we reuse blocks in our

dense descriptor extraction method. Note that because the method of [46]

samples fewer descriptors, visual word assignment time is faster. But by

using [46] the overall computation time will be completely dominated by

descriptor extraction.
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Figure 2.6: Trade-off accuracy/efficiency when varying sampling rate. F stands for frames

per block and it is directly related to sampling rate.

To conclude, our implementation is significantly faster and significantly

more accurate than the version of [46].

2.4.4 Subsampling video frames

In video, subsequent video frames largely contain the same information.

As the time for descriptor extraction is the largest bottleneck in video

classification, we investigate how the accuracy behaves if we subsample

video frames and hence speed-up the descriptor extraction process.

For a fair comparison, we want the descriptors always to describe the

same video volume. In our baseline, each descriptor block consists of 8 by 8
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HOG

(
frames/block
sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
hk-means 0.718 0.716 0.712 0.719

FV 256 0.765 0.759 0.760 0.762

sec/vid 6.5 4.5 3.9 3.3

frame/sec† 30.2 43.7 50.3 58.9

HOF

(
frames/block
sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
hk-means 0.780 0.773 0.766 0.762

FV 256 0.795 0.791 0.784 0.763

sec/vid 8.9 5.9 4.8 3.8

frame/sec† 22.1 33.5 40.7 51.8

MBHx

(
frames/block
sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
hk-means 0.774 0.767 0.769 0.758

FV 256 0.796 0.794 0.788 0.771

sec/vid 9.4 6.1 5.0 3.9

frame/sec† 20.9 32.1 39.4 50.7

MBHy

(
frames/block
sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
hk-means 0.763 0.757 0.752 0.741

FV 256 0.787 0.785 0.772 0.750

sec/vid 9.4 6.1 5.0 3.9

frame/sec† 20.9 32.1 39.4 50.7

MBH

(
frames/block
sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
hk-means 0.791 0.788 0.787 0.772

FV 256 0.804 0.803 0.800 0.775

sec/vid 13.7 8.3 6.5 4.6

frame/sec† 14.3 23.6 30.1 42.9

Table 2.3: Trade-off between frame sampling rate and accuracy. We keep video volumes

from which desciptors are extracted the same for all sampling rates. †Frames/second is

measured in terms of the total number of frames of the video, not in terms of how many

frames are actually processed during descriptor extraction.
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pixels by 6 frames. To subsample in such a way that every block describes

the same video volume regardless of the sampling rate, we do the following:

if we sample every 2 frames, we aggregate responses over 3 frames (i.e. of

frame 2, 4 and 6). When sampling every 3 frames, we aggregate responses

over 2 frames (i.e. frame 2 and 5), and when sampling every 6 frames in

which we only consider a single frame per descriptor block (i.e. frame 3).

Results are presented in Figure 2.6 and Table 3.7.

For HOG descriptors, subsampling video frames has surprisingly little

effect on the accuracy, both for hk-means and Fisher Vectors: using Fisher

Vectors, a sampling rate of 1 yields an accuracy of 0.765 while a sampling

rate of 6 yields 0.762 accuracy. The result of hk-means is basically constant,

with slight oscillations. In terms of computational efficiency, a significant

speed-up is achieved: sampling every 6 frames instead of every frame gives

a speed-up from 6.5 seconds per video to 3.3 seconds per video.

For HOF descriptors, subsampling has a bigger impact: For the Fisher

Vector accuracy is 0.795 using a sampling rate of 1, maintains a respectable

0.791 accuracy at a subsampling rate of 2 frames, while dropping signifi-

cantly to 0.763 for sampling every 6 frames. Accuracy with hk-means is

less affected and drops from 0.78 at sample rate of 1 to 0.762 at sample rate

6. Again, a good speed-up is obtained by subsampling. While descriptor

extraction takes 8.9 seconds when using every frame, a sampling rate of 2

yields a factor 1.5 speed-up while sampling every 6 frames yields a factor

2.34 speed-up.

The remaining rows of Table 3.7 present results obtained with different

combinations of the vertical and the horizontal components of the Motion

Boundary Histograms (Section 2.3.1). Note that when calculating both

components of the MBH features, the optical flow has to be calculated

only once, so computation time is faster than simply adding the times of

MBHx and MBHy.
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We observe a particular order of accuracy among these three combina-

tions: using the only horizontal component (MBHx) always results in a

higher accuracy than using the only vertical component (MBHy), indepen-

dently of whether Fisher Vectors or hk-means is used as word assignment

method. This sharp difference is probably due to the fact that in the

test videos the horizontal motion is more frequent than the vertical one.

Moreover, as expected, late fusion of the two components (MBH), always

outperforms using MBHx only. Concerning the drop of accuracy depend-

ing on the sample rate, for all the three descriptor combinations (MBHx,

MBHy, MBH) and both word assignment methods (Fisher Vectors and

hk-means), the accuracy loss as a function of the sample rate is similar to

what happens with HOF and much higher than HOG. We believe that this

is due to the fact that HOG are basically ”static” features, representing

the appearance of a given image window independently of possible motion

information. As a consequence, they are less affected by optical flow errors

(which is used to compute both HOF and MBH(x/y)) and better exploit

the redundancy of consecutive video frames.

As for HOG and HOF and also for MBH(x/y) and MBH, we observe a

significant computational efficiency gain using subsampling. For instance,

sampling every 6 frames yields a factor of 2.4 speed-up for MBH(x/y) and

a factor of 3 speed-up for MBH with respect to using all the frames.

To conclude, HOG descriptors can be sampled every 6 frames with neg-

ligible loss of accuracy yielding a speed-up of a factor 2. HOF and MBH

descriptors can be sampled every 2 frames with negligible loss of accuracy

yielding a speed-up of a factor 1.5 and 1.7 respectively. When speed is

more important than accuracy, both HOF and MBH descriptors can also

be sampled every 6 frames leading to 1-3% accuracy loss while gaining a

significant speed-up of a factor 2.3-3.
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2.4.5 Choice of Optical Flow

The results reported in the previous section show that both the HOF and

the MBH(x/y) descriptors are much more expensive to extract than the

HOG descriptors (Table 3.7). This is because calculating the optical flow

is computationally expensive. Additionally, not much research has been

done on how different optical flow methods affect HOF/MBH descriptors.

Therefore in this experiment we evaluate five available optical flow imple-

mentations to investigate both their computational efficiency and accuracy.

In particular, we compare: (1) Farnebäck [28] from OpenCV using the mex-

opencv interface, (2) Lucas-Kanade [49] and (3) Horn-Schunk [32] from the

Matlab Computer Vision Systems Toolbox, (4) Brox 04 [8] and (5) Brox

11 [9] using the available author’s code.

Results are presented in Tables 2.4 and 2.5. Specifically, while in Ta-

ble 2.4 we used the same setting adopted in the other experiments of this

work, in Table 2.5 we downscaled the frame resolution of all the videos by

a factor of 4 (i.e., using 80× 60 pixel frames) and we subsampled every 6

frames (see Section 2.4.4). This scale and time subsampling was necessary

in order to process our large video dataset with both Brox 04 and Brox 11,

two state-of-the-art dense optical flow methods not able to process videos

in real time. In fact, processing all the frames of our 6600 videos at full

spatial resolution with Brox 11 would require a few months.

With the original frame resolution (Table 2.4), and with both hk-means

and Fisher Vectors, the three computationally feasible optical flow methods

have the same ranking in terms of accuracy. For the Fisher Vector, Horn-

Schunk performs best at an accuracy of 0.795, followed by Lucas-Kanade

at an accuracy of 0.747, while the method of Farnebäck performs relatively

poorly with an accuracy of 0.641. These results show that the optical flow

method is crucial to the performance of the HOF descriptor: the choice of
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Horn-Schunk Lucas-Kanade Färneback

hk-means 0.780 0.750 0.652

FV 256 0.795 0.747 0.641

sec/video 8.8 7.2 19.0

frame/sec 22 27 10

Table 2.4: Comparison of different optical flow methods used to compute HOF features.

Results obtained with no frame subsampling and at full original spatial resolution (320×
240 pixels).

Horn-Schunk Lucas-Kanade Färneback Brox 04 Brox 11

hk-means 0.713 0.681 0.529 0.548 0.552

FV 256 0.718 0.697 0.542 0.638 0.652

sec/video 2.9 2.8 0.76 7.2 12.4

frame/sec 68 69 257 27.4 16

Table 2.5: Comparison of different optical flow methods used to compute HOF features.

Results obtained subsampling a frame every 6 and at reduced spatial resolution (80× 60

pixels).

33



optical flow affects the results by up to 15%(!).

In terms of computational efficiency, Lucas-Kanade is the fastest at 27

frames/second, followed by Horn-Schunk at 22 frames per second, while

Farnebäck is slower with 10 frames/second. However, while Lucas-Kanade

is faster, its trade-off between efficiency and accuracy is not good: As seen

in Table 3.7 Horn-Shunk with a frame sampling rate of 2 outperforms the

Lukas-Kanade results in Table 2.4 in both speed (33 frames vs 27 frames)

and accuracy (0.77 vs 0.75).

Table 2.5 reports results when we subsample frames and reduce the

frame size by a factor 4, enabling comparison with the Brox methods. Note

that for a fair comparison these times include the computation for reducing

the frame sizes (although these times are negligible compared to the total

description extraction time). It can be seen that both Brox methods are

better than Farneback, but surprisingly not better than the Horn-Shunk

and Lucas-Kanade method. One explanation is that this is due to the

low resolution of the frames, which makes dense optical flow extraction

not sufficiently accurate. Another possibility is that optical flow methods

performing better on optical flow benchmarks are not necessarily optimal

for use in classification; reducing mistakes in most parts of the flow may

introduce artifacts elsewhere that negatively affect results in a classification

framework.

In terms of computational efficiency, Brox 11 is the slowest, followed by

Brox 04: even subsampled on reduced frames Brox 04 still processes only

27 frames/sec. In contrast to results without downsampling, Farnebäck is

here the fastest method. Apparently, there is some overhead in the Matlab

optical flow implementations.

To conclude, the choice of optical flow method drastically influences the

power of the resulting HOF descriptor and it is not necessarily correlated

with the performance on optical flow benchmarks. Additionally, many op-
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Figure 2.7: Recommended pipeline for accurate video classification. This pipeline yields

an accuracy of 0.818 on UCF50 while processing 9 frames per second.

Figure 2.8: Recommended pipeline for realtime video classification. This pipeline yields

an accuracy of 0.790 on UCF50 while processing 28 frames per second.

tical flow methods aim for accuracy rather then computational efficiency

(e.g. Sun et al. [77] provide a very good overview for accuracy but do not

report computational efficiency). Indeed, except the Horn-Schunk, Lucas-

Kanade, and Farnebäck methods we did not find any other freely avail-

able optical flow method fast enough for use in our classification pipeline.

Our evaluation shows that the Horn-Schunk method has the best trade-off

between accuracy and computational efficiency and that subsampling ev-

ery two frames works better than switching to Lucas-Kanade optical flow.

Horn-Schunk is therefore the current method of choice.
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2.4.6 Recommendations for practitioners

Based on the results of the previous experiments, we can now give several

recommendations when accuracy or computational efficiency is preferred.

For calculating Optical Flow, Section 2.4.5 showed that the Matlab im-

plementation of Horn-Schunk is always the method of choice. In terms of

frame sampling rate, for HOG descriptors we always recommend a sam-

pling rate of every 6 frames. For HOF descriptor, if one wants accuracy

we recommend a sampling rate of every 2 frames and if one wants com-

putational efficiency we recommend a sampling rate of 6. The same holds

for MBH(x/y) descriptors. For the word assignment method, the Fisher

Vector is the method of choice for accuracy. For computational efficiency

there are two candidates: hierarchical k-means and the Random Forest.

Observe first that the descriptor extraction time is the most costly phase

of the pipeline: Extracting HOF descriptors with a sampling rate of 6

frames takes 3.8 seconds per video to compute. And while the Random

Forest is five times faster than hierarchical k-means, the difference is only

0.41 seconds per video, which is very small compared to the descriptor

extraction phase. Furthermore, Table 3.2 showed a significant drop of ac-

curacy from 0.780 for hierarchical k-means to 0.732 for Random Forests

(and a similar drop of accuracy is observed with MBH(x/y)). Therefore

we recommend using hierarchical k-means for a fast video classification

pipeline.

We found that late fusion of the classifier outputs gave slightly better

results than early fusion of the descriptors (e.g. concatenating HOG and

HOF). Hence in our recommendations we perform a late fusion with equal

weights.

We tested different descriptor combinations, using equal-weights-based

late fusion and with the goal of selecting: (1) the most accurate set of
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Method Accuracy

Wang et al. [86] (2013) 0.856%

This work 0.818%

Reddy et al. [63] (2012) 0.769%

Solmaz et al. [75] (2012) 0.737%

Everst et al. [26] (2013) 0.729%

Kliper-Gross et al. [42] (2012) 0.727%

Table 2.6: Comparison with the State-of-the-Art.

descriptors, possibly taking into account the complementarity of appear-

ance/motion information of different features, and (2) the fastest solution

with a sufficiently good accuracy degree. The final recommended pipelines

are visualized in Figures 2.7 and 2.8.

The most accurate pipeline (Figure 2.7) combines all the descriptors

we adopted in this work: HOG, HOF, MBHx and MBHy. HOG are ex-

tracted using all the frames, while HOF and MBH(x/y) are extracted with

a sampling rate of 2. The word assignment method used in this case is

the Fisher Vector. Using this pipeline we can process 11 frames per second

(for video frames of 320 by 240 pixels) at an accuracy of 0.818 on UCF50.

Conversely, our recommended pipeline for computational efficiency (Fig-

ure 2.8) is based on late fusion of only HOG and HOF, both extracted with

a sampling rate of 6 and using hk-means. This second pipeline can process

28 frames per second at a respectable accuracy of 0.790.

2.4.7 Comparison to state-of-the-art

In this section we compare our descriptors to the state-of-the-art. Results

of several recent works are given in Table 3.10. This comparison is done

in terms of accuracy only, as most compared methods evaluate accuracy

only. This work in Table 3.10 indicates the late fusion of all the descriptors

(HOG, HOF, MBH(x/y)): see Section 2.4.6 and Figure 2.7.
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As can be seen, the method of [86] yields the best results. This method is

a combination of Dense Trajectories and STIP features [46]. As our results

are better than [46], we expect that a combination of dense trajectories

with our method would increase results further. In general, our method

yields good performance compared to many recently proposed methods,

which shows that we provide a strong implementation of densely sampled

HOG, HOF and MBH(x/y) descriptors.

2.5 Conclusion

this work presented an evaluation of the trade-off between computational

efficiency and accuracy for video classification using a Bag-of-Words pipeline

with HOG, HOF and MBH descriptors. Our first contribution is a strong

and fast Matlab implementation of densely sampled HOG, HOF and MBH

descriptors, which we make publicly available.

In terms of visual word assignment, the most accurate method is the

Fisher Kernel. Hierarchical k-means is more than 6 times faster while

yielding an accuracy loss of less than 2% and is the method of choice for a

fast video classification pipeline. HOG descriptors can be subsampled every

6 frames with a negligible loss in accuracy, while being 2 times faster. HOF

and MBH descriptors can be subsampled every 2 frames with negligible loss

in accuracy, being 1.5 - 1.7 times faster. When speed is essential, HOF and

MBH descriptors may be subsampled every 6 frames.

For the HOF and MBH descriptors, we showed that the choice of optical

flow algorithm has a large impact on the final performance. The differ-

ence between the best method, Horn-Schunk, and the second best method,

Lucas-Kanade, is already 5%, while the difference with Färneback is a

full 15%. Brox 04 and Brox 11 are computationally very demanding, and

cannot be used in a real time video classification scenario.
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Compared to the state-of-the-art, the Dense Trajectory method of [86]

obtains better results. Nevertheless, the huge difference for the choice of

optical flow methods suggests this would also influence dense trajectories.

Furthermore, Dense Trajectories still benefit from a combination with nor-

mal HOG, HOF and MBH descriptors [39, 86]. Finally, comparisons with

other recent methods on UCF50 shows that we provide a strong implemen-

tation of dense HOG, HOF and MBH descriptors to the community.

The next chapter continues the work on descriptor extraction by propos-

ing a new efficient descriptor to capture motion information. Furthermore,

the next chapter makes the transition to the next important step in video

classification, feature encoding, by proposing an important improvement

over the existing encoding method VLAD (Vector of Locally Aggregated

Descriptors).
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Chapter 3

Efficient Human Action Recognition

using Histograms of Motion

Gradients and VLAD with

Descriptor Shape Information1

Feature extraction and encoding represent two of the most crucial steps

in an action recognition system. For building a powerful action recogni-

tion pipeline it is important that both steps are efficient and in the same

time provide reliable performance. This work proposes a new approach for

feature extraction and encoding that allows us to obtain real-time frame

rate processing for an action recognition system. The motion information

represents an important source of information within the video. The com-

mon approach to extract the motion information is to compute the optical

flow. However, the estimation of optical flow is very demanding in terms

of computational cost, in many cases being the most significant processing

step within the overall pipeline of the target video analysis application. In

1Duta, I.C.; Uijlings, J.R.R.; Aizawa, K.; Hauptmann, A.G.; Ionescu, B. and Sebe, N. ”Effi-

cient Human Action Recognition using Histograms of Motion Gradients and VLAD with Descrip-

tor Shape Information”. In Multimedia Tools and Applications (MTAP), DOI: 10.1007/s11042-

017-4795-6, 2017.
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this work we propose an efficient approach to capture the motion infor-

mation within the video. Our proposed descriptor, Histograms of Motion

Gradients (HMG), is based on a simple temporal and spatial derivation,

which captures the changes between two consecutive frames. For the en-

coding step a widely adopted method is the Vector of Locally Aggregated

Descriptors (VLAD), which is an efficient encoding method, however, it

considers only the difference between local descriptors and their centroids.

In this work we propose Shape Difference VLAD (SD-VLAD), an encoding

method which brings complementary information by using the shape infor-

mation within the encoding process. We validated our proposed pipeline

for action recognition on three challenging datasets UCF50, UCF101 and

HMDB51, and we propose also a real-time framework for action recogni-

tion.

3.1 Introduction

Over the recent years an explosive growth in video content has occurred

and continues growing. As an example of this fulminant increase, Cisco

forecast2 mentioned that the IP video would account for 80% of all IP traffic

by 2019. With this huge amount of multimedia content, computational

efficiency has become as important as the accuracy of the techniques.

Even though in the past several years there has been an important

progress in video analysis techniques, in particular on improving the ac-

curacy of human action recognition in videos [86, 88, 70, 82, 51, 52, 87],

the current methods in terms of computational time are able to run with

1-3 frames per second. For instance, in [82] is reported that the popular

approach in [45] runs with 1.4 frames per second. Fast video analysis is

important in many applications and this issue of efficiency became very

2http://newsroom.cisco.com/press-release-content?articleId=1644203
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important for large-scale video indexing systems or automatic clustering

of large video collections.

The Bag of Visual Words (BoVW) framework with its variations [46,

86, 88] has been widely used and showed its effectiveness in video analy-

sis challenges. The schematic view for a BoVW pipeline is represented in

Fig. 3.1, which contains in general three main steps: feature extraction,

feature encoding and classification. In addition to these main steps, the

framework contains some pre/post processing techniques, such as PCA,

feature decorrelation and normalization, which can influence considerably

the performance of the pipeline. The commonly used approach for classifi-

cation is employing a fast SVM classifier over the resulted video represen-

tations. The encoding step creates a final representation of the video and

a very widely used approach is counting the frequency of the visual words.

However, recently super-vector based encoding methods, such as Vector of

Locally Aggregated Descriptors (VLAD) [36] and Fisher Vector (FV) [61],

obtained state-of-the-art results for many tasks.

The video contains two important sources of information: the static

information in the frames and the motion between frames. The feature

extraction step focuses mainly on these two directions. The first direction

has the goal to capture the appearance information in frames, such as His-

togram of Oriented Gradients (HOG) [15, 46]. The other direction is based

on optical flow fields like Histogram of Optical Flow (HOF) [46] and Motion

Boundary Histograms (MBH) [16]. These descriptors are extracted and

combined using Space Time Interests Points (STIP) [45], dense sampling

[90, 82] or extracting the descriptors along some trajectories [78, 86, 88].

The pipeline in Fig. 3.1 represents also the common main phases for

an action recognition framework. For the classification part, the used

approaches are already mature, i.e., most of the existing works, such as

[86, 88, 81, 58, 82], use linear SVM, as this is a very fast and effective
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Figure 3.1: The general pipeline for video classification.

method. However, for descriptor extraction and encoding there is still

room for improvement. For an efficient video classification system it is

necessary that both, descriptor extraction and encoding, to be efficient,

otherwise if one of them is not competitive regarding the performance,

then the target cannot be reached. As one of the goals of this work is

to provide a very efficient system for video classification, we propose new

solutions for both steps: descriptor extraction and encoding.

Temporal variation within the videos provides an important source of

information about its content. Usually, the temporal information is com-

puted with an optical flow method. There is a large number of approaches

for extracting the optical flow fields, from relatively classic methods, such

as [49, 32] to relatively recent approaches like [28, 8, 97, 9], which use com-

plex algorithms to compute the motion information. The main drawback

of those methods is the high computational cost. This shortcoming be-

comes the bottleneck in many applications. For instance, the authors in

[86] report that optical flow takes more than 50% of the total time for fea-

ture extraction. We present in this work a new efficient descriptor, called

Histograms of Motion Gradients (HMG), which is based on the motion

information. The proposed HMG descriptor captures the motion infor-

mation using a very fast temporal derivation, which enables us to have

similar computational cost as HOG but with a significant improvement in

accuracy.

The final representation of the video is one of the key factors for visual

recognition such as human action recognition. We can see that in most
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of the research works in computer vision and multimedia [88, 58, 82] the

super vector-based encoding methods are shown to outperform the other

encoding methods. Vector of Locally Aggregated Descriptors (VLAD) [36]

is one of the most popular and efficient super vector-based encoding meth-

ods which proved its efficiency in creating the final representation of a video

for action recognition tasks. Besides its performance, VLAD has several

drawbacks. It considers only the mean to represent a cluster of features and

also keeps only the first-order statistics and ignores other source of informa-

tion. The mean is not enough to reflect a distribution, but in general, the

mean and the standard deviation can be enough to capture the statistics.

To address this issue, this work proposes to improve VLAD by keeping the

standard deviation information and incorporating shape information as the

difference of standard deviations between the altered standard deviation of

local descriptors and the standard deviation of the visual word. This new

encoding method, Shape Difference for VLAD (SD-VLAD), captures the

distribution shape of the features and brings complementary information

to the original VLAD.

The main contributions of this work can be summarized with the fol-

lowing:

• We introduce a new descriptor (HMG), which captures the motion

information using a simple temporal derivation, without the need of

using the costly optical flow. We make the code for descriptor extrac-

tion available3;

• We propose a new encoding method (SD-VLAD), which captures

shape information within the encoding process, providing the best

trade-off between accuracy and computational cost. We make the

code for descriptor encoding available3;

3 https://iduta.github.io/software.html
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• We adopt several speed-ups, such as fast aggregation of gradient re-

sponses, reuse subregions of aggregated magnitude responses, and

frame subsampling, which make the pipeline more efficient;

• We propose an integration of our descriptor and encoding method

in a specifically designed video classification framework which allows

for real-time performance while maintaining the high accuracy of the

results.

The rest of the chapter is organized as follows. Section 3.2 presents the

related work. Section 3.3 introduces our new proposed descriptor with

the adopted approaches for improving the efficiency. The new encoding

method is presented in Section 3.5.4. The experimental evaluation and

the comparison with state-of-the-art are presented in Section 3.5. Finally,

Section 3.6 concludes this work.

3.2 Related work

There are mainly two directions to extract features from a video: hand-

crafted and deep learning. One of the state-of-the-art approaches in the

hand-crafted category is represented by Improved Dense Trajectory (IDT)

[88], where the main goal is to track some points through the video and

to extract different descriptors along the trajectories of the points. The

work in[88] is an extension of [86] by using an algorithm to cancel the

camera motion to obtain more reliable features. The work in [45] proposes

Space Time Interests Points (STIP), it has successfully adapted interest

points from the domain of images to the domain of video by extending the

Harris detector to space-time interest points. The work in [90, 82, 23] uses

dense sampling approach. The authors of [90] evaluated several interest

point selection methods and several spatio-temporal descriptors. They
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found that dense sampling methods generally outperform interest points,

especially on more difficult datasets.

The previously mentioned methods establish the region of extracting

for several standard descriptors, such as Histogram of Oriented Gradi-

ents (HOG) [15, 46], Histogram of Optical Flow (HOF) [46] and Motion

Boundary Histograms (MBH) [16]. The work in [47, 46] considers Spatial

Pyramid (SP) approach to capture the information about features loca-

tion. The works in [38, 62] focus on improving the efficiency of action

recognition by exploring different alternatives for the computation of the

standard optical flow.

Recently, the approaches based on Convolutional Neural Networks (CNN)

[40, 71, 70, 96, 79, 56, 6] have proven to obtain very competitive results

compared to traditional hand-crafted methods. In general, for action recog-

nition tasks, these works use the two-stream approach where one network is

trained on the static images and another network is trained on the optical

flow fields. In the end there is a fusion over the output of both networks

to provide the final result. In [25, 20] propose solutions for feature encod-

ing specifically designed for deep features. The work in [17] uses a hybrid

representation by combining hand-crafted with deep features and takes ad-

vantage of different techniques to boost the performance. The work in [93]

is fully based on deep features, modeling long-range temporal structure

and using a series of good practices to improve the network performance.

The feature encoding is a very important step for action recognition and

influences considerably the performance of the general framework. Vec-

tor based approaches showed to be very competitive for this step. The

most popular super vector encoding methods are: Fisher Vector (FV) [61],

Vector of Locally Aggregated Descriptors (VLAD) [36] and Super Vector

Coding (SVC) [99]. FV was initially introduced for large-scale image cate-

gorization [61]. This encoding method combines the benefits of generative

47



and discriminative approaches and aggregates the first- and the second-

order statistics. FV is performing a soft assignment which in general gives

better performance, however, this affects the computational cost. The work

in [43] proposes an extension to Spatial Fisher Vector (SFV) which com-

putes per visual word the mean and variance of the 3D spatio-temporal

location of the assigned features. VLAD encoding method can be viewed

as a simplification of FV which keeps only first-order statistics and per-

forms hard assignment, which makes it much faster than FV. SVC method

keeps the zero-order and first-order statistics, thus SVC can be seen as a

combination between Vector Quantization (VQ) [72] and VLAD.

There are many precursors who focus on improving VLAD representa-

tion, as this is an efficient super vector based encoding method with very

competitive results in many tasks. The work in [52] proposes to use Ran-

dom Forest in a pruned version for the trees to build the vocabulary and

then they additionally concatenate second-order information, similar as in

FV. Differently from their approach, in this article we keep k-means as

clustering method and incorporate second-order information by difference

of standard deviations. Another recent work which boosts the performance

of VLAD is presented in [57], where the authors suggest improving VLAD

by concatenating the second- and third-order statistics, and using super-

vised dictionary learning. Our approach is different as we consider addi-

tionally only the second-order information and build the dictionary in an

unsupervised manner. Furthermore, we have a different definition for the

first-order statistics by incorporation in the representation the standard

deviation, and also our second-order statistics is different in a main key

point that we consider an altered standard deviation of local descriptors

by counting on the global mean of the cluster instead of local mean of

the descriptors. The work in [22] focuses on improving VLAD by using

a double assignment approach, and the work in [21] incorporates within

48



the encoding process the spatio-temporal information showing a consistent

improvement in accuracy.

The work in [2] proposes to use intra-normalization to improve VLAD

performance. The impact of this approach is to suppress the negative effect

of the high values within the vector, which can dominate the similarity

between vectors. The authors propose to L2 normalize the aggregated

residuals within each VLAD block. We consider also intra-normalization

in our framework. Furthermore, they use vocabulary adaptation as an

efficient approach to extend the vocabulary to another dataset. In [1] it

is proposed RootSIFT normalization to improve the performance of the

framework for object retrieval. This normalization approach is based on

the idea to reduce the influence of large bin values, by computing square

root of the values.

Inspired by these previous works, in this work we propose a new head-

crafted descriptor and an extended version for VLAD. The proposed de-

scriptor, Histograms of Motion Gradients (HMG), is computed by initially

extracting the motion information by applying a fast temporal derivation

between two consecutive frames, then for the resulted ”motion image” we

compute the horizontal and vertical gradients. From the obtained gradients

we compute the magnitude and the angle, and we apply then the quanti-

zation and aggregation step to create the final descriptor for a video. For

the encoding method, we propose Shape Difference for VLAD (SD-VLAD)

where initially a codebook is learnt with k-means and then we compute the

final representation with two formulas, one is based on the residual infor-

mation and the other is focalized on capturing the information regarding

the distribution shape by computing the difference between standard de-

viations. Both source of information are complementary to each other and

their combination boosts the performance of the encoding method while

achieving a low computational complexity. Our new approach for feature
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Figure 3.2: Visualization of the process for capturing the motion information for the

HMG descriptor. We initially perform a fast temporal derivation over each two consecutive

frames, which provides us the motion image. Then we compute the horizontal and vertical

gradients for the resulted motion image. The pixels depicted in blue color represent the

negative values after temporal derivation.

extraction and encoding allows us to build a very efficient pipeline for video

classification, being able to run at more than real-time frame rate.

3.3 Proposed HMG method for descriptor extraction

In this section we introduce the proposed method for capturing motion

information from the video. We present several speed-ups that make the

framework very efficient, being able to achieve real-time processing.

3.3.1 Histograms of Motion Gradients (HMG)

Our descriptor, Histograms of Motion Gradients (HMG), is based on a tem-

poral derivation to compute the motion information and it is integrated in
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the first step of an action recognition framework Fig. 3.1. The illustra-

tion of the process of capturing the temporal information is presented in

Fig. 3.2. For each two consecutive frames we first compute the temporal

derivation:

T(i,i+1) =
∂(Fi, Fi+1)

∂t
(3.1)

where Fi is the frame at time index i.

The temporal derivative is computed very effectively by applying a sim-

ple and fast filter window [1 -1] for each two consecutive frames (Fi, Fi+1).

The result of this operation is illustrated in the middle image of Fig. 3.2,

where we can observe that the information about the motion between two

frames is kept. We can call the output of the applied temporal derivative

”motion image”. Obviously, after applying the temporal derivation some

values are negative, depending on the result of derivation between the pix-

els in frame i and frame i + 1, we represent the negative values with blue

color in Fig. 3.2.

After the computation of the temporal derivative, we compute the spa-

tial gradients of the resulted motion image, which allows us to compute the

magnitude and the angle of the gradient responses. In the right part of Fig.

3.2 there are represented the horizontal and vertical gradients, computed

with:

X(i,i+1) =
∂T(i,i+1)

∂x
, Y(i,i+1) =

∂T(i,i+1)

∂y
(3.2)

For the computation of spatial gradients we use also the simple and

fast filter window [1 0 -1], similar as for HAAR-features. The gradients

with this mask are computed much faster than, for instance, Gaussian

derivatives. Basically, the gradients with this filter are obtained by making

the difference between a frame and its shifted values with one position, once

horizontally and once vertically. This makes the computation of gradients

very fast.
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After we obtain the spatial derivatives, similar as for HOG, we compute

the magnitude and the angle:

mag =
√
X2 + Y 2, θ = arctan

(
Y

X

)
(3.3)

where each operation from the above formulas is element-wise.

The result of these operations is a 2-dimensional vector field per each

new motion frame. We quantize the orientation (θ) in 8 directions/bins and

then we accordingly accumulate the magnitude corresponding to each bin.

This is similar to how gradient responses are accumulated in SIFT [48].

The next step is to perform the aggregation of those quantized responses

over blocks in both spatial and temporal direction. Then we concatenate

the responses over several adjacent blocks. We provide in the next subsec-

tion the details about the procedure of dividing the video in blocks and

volumes. Afterwords, the pipeline in Fig. 3.1 continues with the next step

by applying some pre-processing operations before feature encoding, such

as normalization and PCA with decorrelation of features. The next steps

after the descriptor extraction are very important for the performance of

our descriptor. For instance, the descriptors obtained from the motion im-

age may include noise which can result in high peaks that can dominate

the entire vector representation. To reduce the negative influence of this

aspect, over the initial representation of the descriptors we apply Root-

SIFT normalization [1], which penalizes more the high values within the

vector, contributing to creating a smoother vector (without large peaks)

to represent each local extracted descriptor.

3.3.2 Speed-up HMG extraction

For our proposed descriptor we use a dense sampling strategy to extract the

features. In addition to the presented approach for capturing the motion

information very efficiently and using fast filters for derivatives, we describe
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Figure 3.3: The process of dividing the video in blocks and volumes. The part depicted

in green represents an illustration of a volume created from 3 by 3 by 2 blocks.

several speed-ups that improve the efficiency of the descriptor extraction

process of HMG. The efficiency improvement is performed by taking the

advantage of the densely sampled approach and by adopting to our new

descriptor several speed-ups presented in [82].

1) Reuse of blocks: Our choice to establish the region of the descriptor

extraction is the use of dense sampling strategy since this method has a

big potential for efficiency. It can be also easily extended to an even faster

version using parallelization. Furthermore, in several works, it has been

found to be more accurate than keypoint-based sampling in images [37]

and videos [90, 58]. We take advantage of the densely sampled descriptor

nature in order to speed up the feature extraction time. Fig. 3.3 illustrates

an example for dividing the video into blocks, and how a volume is created

of several adjacent blocks. Our HMG descriptor is extracted on a single

scale over each block, which consists of 8 by 8 pixels by 6 frames. The

size of the blocks is also our dense sampling rate. The green part from

the Fig. 3.3 represents a video volume, where the responses over several

adjacent blocks are concatenated for creating the final descriptor. Each
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video volume consists of 3 by 3 by 2 blocks, corresponding to x, y and t

axis. By choosing the sampling rate equally with the block size, then we can

reuse the blocks for making the descriptor extraction efficient. Therefore,

the representation for a block is computed only once and then use it for

the construction of all the volumes around that block. For instance, each

block can be reused for 18 times (excepting the blocks on the borders) for

the current size of the video volume: 3 by 3 by 2 blocks.

2) Fast aggregation of responses: After we compute the magnitude and

the angle, the resulted responses are aggregated for each block. We adopted

the approach in [83]. Basically we compute the aggregation of all the frame

pixels by doing just a multiplication of three matrices. After the spatial

aggregation of 8 by 8 pixels and the temporal aggregation of 6 frames,

each block is characterized by 8 values as we consider 8 orientations for

quantization of responses. Having 8 bins and a size of 3 by 3 by 2 for video

volume, the original dimensionality of our descriptor is therefore 144.

3) Frame subsampling: For efficiency reasons we evaluate HMG by sub-

sampling video frames. Subsequent frames contain redundant information,

and the computational cost can be substantially improved by frame sub-

sampling. We evaluate the impact on the accuracy and efficiency of our

descriptor by skipping frames. A detailed analysis of the trade-off between

accuracy and computational time is presented with the experimental re-

sults.

3.4 Proposed SD-VLAD method for descriptor en-

coding

In this section we present our encoding method for human action recogni-

tion. We first review the original VLAD representation.
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3.4.1 VLAD representation

VLAD is initially proposed in [36] and can be seen as a simplification of the

FV. For the VLAD pipeline first a codebook of k visual words is learned

with k-means, M = {µ1, µ2, ..., µk}, which are the means for each cluster.

For each visual word a subset of local descriptors is assigned based on the

nearest neighborhood criterion, Xi = {x1, x2, ..., xni}, where x is a feature

vector and ni is the number of assigned features to the i-th visual word.

The idea of VLAD is to accumulate for each visual word the residuals (the

differences between the assigned descriptors and the centroid):

vi =

ni∑
j=1

(xj − µi) (3.4)

The final VLAD representation is a concatenation of all vectors vi and

the final dimensionality of VLAD is k × d, where d is the dimension of

the descriptors. The VLAD performance can be boosted by using intra-

normalization [2], which normalize independently each VLAD block vi:
vi
||vi||p

, usually p = 2 (i.e., the L2 norm).

3.4.2 Shape Difference for VLAD

The original VLAD is based only on the mean as statistical information,

however, for describing a set of descriptors it is more informative to have at

least the mean and standard deviation of them. The residuals computed by

VLAD algorithm can provide only partial cluster distribution information.

Fig. 3.4 shows a case when VLAD fails to provide a good discriminative

representation. Even if the centroids µ1 and µ2 are completely different

and the feature distribution assigned to each cluster differs significantly,

the standard VLAD returns the same representation, therefore, the sums

over the residuals v1 and v2 are completely equal ([1 -8]). Also in the case

when the features are distributed in a symmetrical arrangement around
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Figure 3.4: An illustrative example when VLAD fails to provide a reliable representation.

Each descriptor is assigned to its nearest centroid, µ1 or µ2. Even though the distribution

of the assigned descriptors to each visual word is completely different, the result of VLAD

representation (computed with the standard formula (3.4)) is equal with [1 -8] for both,

v1 and v2. In this case, only the computation of the residuals is not enough for obtaining

a reliable description.
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the centroid, then the sum over the residuals is a vector of zeros, this lead-

ing to making no difference between the results of a cluster with features

distributed symmetrically and a cluster with no features assigned.

For providing a more discriminative representation, it is necessarily to

introduce more statistical information. We propose Shape Difference for

VLAD (SD-VLAD), which captures information related to the distribution

shape of the descriptors. Our final representation is computed with two

formulas. Similar to FV, for the first formula, the residuals are divided

by standard deviation, and our first part of the final representation is

represented as:

vµi =
1

ni

ni∑
j=1

xj − µi
σi

(3.5)

where ni is the number of descriptors assigned to the cluster µi and σi is

the standard deviation of the cluster with the mean µi.

The division by the number of descriptors, that switches sum pooling

to average pooling, is a very simple technique to deal with the problem

of burstiness when some parts of VLAD can dominate the entire repre-

sentation. In the end, these components will have a greater weight for

the classifier and influence negatively the performance. This normaliza-

tion, with the number of descriptors assigned, becomes more important if

no intra-normalization technique is used. Intra-normalization is a better

strategy to deal with the problem of burstiness, but there are some cases

when intra-normalization is not recommended. For instance, in [58] it is

underlined that intra-normalization may have a negative effect for sparse

features like STIPs.

By considering the normalization (with the number of descriptors as-
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signed) for VLAD, the Equation (3.4) becomes:

v̄i =
1

ni

ni∑
j=1

(xj−µi) =
1

ni
(

ni∑
j=1

(xj)−niµi) =
1

ni

ni∑
j=1

(xj)−µi = µ̂i−µi (3.6)

where µ̂i is the mean of the local descriptors assigned to the cluster µi.

In this way, VLAD can be seen as the difference between the mean of the

local descriptors and its assigned visual word.

To address the shortcoming of VLAD considering only the mean as sta-

tistical information, we consider in our representation the shape informa-

tion. Starting from the Equation (3.6) we can go further with the analogy

(the difference between standard deviations) and build the shape difference

representation as following:

vσi = σ̂i − σi =

(
1

ni

ni∑
j=1

(xj − µi)2

) 1
2

− σi (3.7)

where σ̂i is the altered standard deviation of the local descriptors assigned

to cluster µi and σi is the standard deviation of the cluster µi; the power

of a vector is the element-wise power. We compute the standard deviation

for the local descriptors by using the mean of the cluster and not the local

mean of assigned descriptors due to the fact that the local mean of the

assigned descriptors may not contain statistical information, as there are

many cases when too few descriptors (even one or two descriptors) are

assigned to a cluster, especially when the number of clusters is increased.

Making the difference of descriptors and their local mean can lead to cases

with no information. Instead, by considering the mean of the cluster, which

is computed on a large number of descriptors, the difference is more stable,

especially for the cases with less descriptors assigned to a cluster.

The shape difference brings complementary information related to the

mean, in the experimental part of the chapter we show that it is beneficial

for the classifier. For our final SD-VLAD representation we concatenate
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the resulting vectors from vµ and vσ (Equation (3.5) and Equation (3.7)).

We apply also intra-normalization L2 for each vµi and vσi .

3.5 Experimental Evaluation

The general pipeline used for evaluation is the one presented in Fig. 3.1,

and more details for each step are presented in the remaining part of the

chapter.

In the following we present: the datasets used for evaluation (Section

4.5.1); experimental setup (Section 3.5.2); comparison of the proposed de-

scriptor with other dense methods (Section 3.5.3); evaluation of the pro-

posed encoding method together with different standard approaches (Sec-

tion 3.5.4); comparison of our proposed descriptor with Improved Dense

Trajectories approach (Section 3.5.5); the impact of the frame subsampling

on the accuracy and on the computational cost (Section 3.5.6); the pro-

posed pipeline for real-time video classification (Section 3.5.7); comparison

with the state-of-the-art approaches (Section 3.5.8).

3.5.1 Datasets

We evaluate our framework on three of the most popular and challenging

datasets for action recognition: UCF50 [63], UCF101 [76] and HMDB51

[44].

The UCF50 dataset [63] contains 6,618 realistic videos taken from YouTube.

There are 50 human action categories mutually exclusive, which range from

general sports to daily life exercises. The videos are split into 25 prede-

fined groups. We follow the recommended standard procedure and perform

leave-one-group-out cross validation and report average classification accu-

racy over all 25 folds.

The UCF101 dataset [76] is a widely adopted benchmark for action
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recognition, consisting in 13,320 realistic videos, which are divided into 25

groups for each action category. This dataset contains 101 action classes

and there are at least 100 video clips for each class. We follow for evalua-

tion the recommended default three training/testing splits. We report the

average recognition accuracy over these three splits.

The HMDB51 dataset [44] contains 51 action categories, with a total

of 6,766 video clips extracted from various sources, such as Movies, the

Prelinger archive, Internet, Youtube and Google videos. It is one of the

most challenging dataset with realistic settings. We use the original non-

stabilized videos, and we follow the original protocol using three train-test

splits [44]. We report average accuracy over the three splits as performance

measure.

3.5.2 Experimental setup

For evaluation of our proposed HMG descriptor the baseline is to use dense

sampling with 8 by 8 pixels by 6 frames as in [81, 82] and the gradient mag-

nitude quantized in 8 orientations. The final descriptor is a concatenation

of 3 by 3 by 2 blocks. For the pre-processing step we perform RootSIFT

[1] normalization and then we apply PCA to reduce the dimensionality by

a factor of two and decorrelate the features. This yields a final descriptor

dimension of 72. We use spatial pyramid in all our experiments, we di-

vide all the frames of the video into three horizontal parts which roughly

correspond to a ground, object, and sky division.

The codebook for each experiment needed for feature encoding is built

from randomly sampled 500K features of the training set for the specific

tested dataset. For the resulted vectors after descriptor encoding we apply

power normalization followed by L2 for the super-vector based encoding

methods and power normalization followed by L1 for all other visual word

assignment methods. The parameter α for power normalization is initially
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descriptor HOG HOF MBHx MBHy HMG

accuracy 0.762 0.799 0.784 0.792 0.814

seconds/video 2.67 4.03 4.37 4.37 2.73

frames/second 73.50 48.61 44.80 44.84 71.73

Table 3.1: Accuracy and efficiency comparison of various dense descriptors (results re-

ported on the UCF50 dataset, best result is in bold).

fixed to 0.5. We perform the classification with SVMs, with a linear kernel

for super-vector based encoding methods and histogram intersection kernel

for all other encoding methods, with C = 100.

We initially compare our descriptor with dense HOG, HOF, MBHx and

MBHy using the available code from [81, 82]. For these descriptors we

use the same settings and speed-ups as presented for HMG, see Section

3.3. The optical flow for HOF, MBHx and MBHy is computed with Horn-

Schunck method [32] using the Matlab Computer Vision System Toolbox

as recommended in [82]. In [82] is presented a detailed evaluation of using

different optical flow approaches with the conclusion that Horn-Schunck

method provides the best trade-off between the accuracy and computa-

tional efficiency. The timing measurements are performed on a single core

Intel(R) Xeon(R) CPU E5-2690 2.60GHz, using 500 randomly sampled

videos (10 videos for each class) from the UCF50 dataset. We report the

average of the number of seconds per video and the number of frames per

second that the system can process. We perform the parameter tuning on

the UCF50 dataset.

3.5.3 Comparison to dense descriptors

In this part we present a first comparison between the proposed HMG de-

scriptor and popular dense descriptors for action recognition: HOG, HOF,

MBHx and MBHy [82]. The comparison is conducted in terms of accuracy
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and computational cost. All the descriptors benefit of the same settings and

the same speed-up approaches presented above for the HMG descriptor. All

dense descriptors are extracted using only the intensity information. All

the computational time measurements for descriptor computation include

also the loading time of the video and converting the frames to graylevel.

For this set of experiments we use Fisher Vector (FV) [61] as encoding

method, with the common setting of 256 clusters. We choose FV for this

set of experiments as this is a standard widely used encoding method for

action recognition task, thus, the direct comparison with other approaches

is straight forward.

The comparative results are presented in Table 3.1. Our approach of

computing the motion information by applying a simple and efficient tem-

poral filter does not affect significantly the computational cost as compared

with the fast HOG descriptor. While the efficiency is preserved, in terms

of accuracy our HMG descriptor outperforms with a large margin HOG,

by 5.2 percentage points. This significant performance improvement while

preserving the efficiency shows that the motion information captured by

our descriptor is very discriminative for videos and can be considered as

a good option for the applications based on video analysis, especially for

those where the computational cost is crucially important. Remarkably,

HMG outperforms even descriptors based on classical optical flow which

are more demanding for computational cost. For instance, HMG outper-

forms HOF by 1.5 percentage points in terms of accuracy, moreover, the

descriptor extraction for HMG runs with approximately 72 frames/second

while HOF runs only at around 49 frames/second. This big difference in

efficiency is due to the optical flow computation, which can take up to 50%

of the cost for HOF extraction.
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3.5.4 Feature Encoding

In this set of experiments we make the first comparison of our proposed

encoding method, SD-VLAD, with the other standard approaches for cre-

ating a final representation that serves as input for a classifier.

In this part we compare our dense HMG descriptor with dense HOG,

HOF, MBHx and MBHy for Bag-of-Visual-Words (BoVW) using three ap-

proaches for visual word assignment: k-means, hierarchical k-means (hk-

means) and Random Forests (RF) [7]. In addition we use other three

variations of BoVW: Fisher Vectors (FV) [61] and Vector of Locally Aggre-

gated Descriptors (VLAD) [36], and the proposed method Shape Difference

VLAD (SD-VLAD). For k-means and hk-means we use the implementation

made available with VLFeat [84]. For both we create a codebook of 4,096

visual words. For hk-means we learn a hierarchical tree of depth 2 with

64 branches per node. RF are well-known for their speed, they are binary

decision trees, learned in a supervised manner by randomly picking several

descriptor dimensions at each node with several random thresholds. The

split with the highest Entropy Gain is selected. We follow the recommen-

dations of [83, 81, 82], using 4 binary decision trees of depth 10, which

create a codebook of 4,096 visual words.

For FV we keep the codebook size of 256 clusters. We test VLAD

representation with 256 and also with 512 visual words for making the

comparison between super vector-based encoding methods more fair. For

SD-VLAD we fix the codebook size to the standard 256 words. For VLAD

and SD-VLAD we apply also intra-normalization L2 as explained in the

previous section.

The results for different encoding methods are presented in Table 3.2,

which confirm that super-vector encoding methods give a better video rep-

resentation than the other encoding approaches. The superiority of super-
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k-means hk-means RF FV VLAD VLAD SD-VLAD

(256) (512)

HOG 0.731 0.720 0.718 0.762 0.712 0.731 0.768

HOF 0.789 0.779 0.738 0.799 0.810 0.815 0.833

MBHx 0.772 0.760 0.731 0.784 0.782 0.795 0.800

MBHy 0.783 0.774 0.750 0.792 0.799 0.814 0.820

HMG 0.781 0.759 0.735 0.814 0.805 0.822 0.834

sec/video 8.42 0.37 0.05 2.09 0.37 0.56 0.38

frame/sec 24 526 3788 94 532 352 513

Table 3.2: Accuracy vs. processing time for different encoding methods and using several

dense descriptors (results reported on the UCF50 dataset, best results are in bold).

vector encoding methods is due to the fact that they capture information

related to the mean and variance/standard deviation of the features and

not only the membership information of the features to the clusters. Our

HMG descriptor is very competitive for all the encoding methods, espe-

cially for super-vector encoding methods, which outperforms all the other

descriptors, with an accuracy of 0.834 accuracy for SD-VLAD.

The computational cost for the encoding step is not dependent on the

type of features, it depends on the number of visual words and the dimen-

sionality of descriptors. As all our descriptors have the same dimension-

ality, we reported the computational cost for encoding a descriptor (can

be any) with 72 dimensions. The RF approach for encoding step is by far

the fastest and takes 0.05 seconds per video, however, the accuracy drops

significantly for all descriptors related to the best encoding method for the

performance. The results for hk-means represents a good trade-off between

accuracy and computational efficiency. It can process the video at a frame

rate of 526. When the speed is crucially important then RF is the best

choice, encoding the features with 3,788 frames per second.

After these experiments we can take the conclusion that super-vector
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Figure 3.5: Impact of the normalization parameter on the Fisher Vector performance for

the UCF50 dataset.

based encoding methods give the best performance. For SD-VLAD the

most demanding part for the computational cost is the the codebook as-

signment and this is the reason that the efficiency of SD-VLAD is similar

to the baseline VLAD256. The computation of an extra representation for

SD-VLAD does not increase significantly the computational cost. For fea-

ture encoding, SD-VLAD represents the best trade-off between accuracy

and computational efficiency, running at a frame rate of 513 frames/second.

Regarding the encoding method, our goal is to find the best approach for

the accuracy of the system and the method with best trade-off between

computational cost and accuracy of the pipeline. Considering this, for the

further experiments we use only super vector-based encoding methods and

we perform some supplementary tests to establish the best approach for

the encoding choice.
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Figure 3.6: Impact of the normalization parameter on the SD-VLAD performance for the

UCF50 dataset.

Improving the performance

The post-processing step after the encoding method can boost the per-

formance of the system by preparing the input for the classifier. After

feature encoding, for the resulted vector of the video representation we ap-

ply before classification Power Normalization followed by L2-normalization

(||sign(x)|x|α||, where 0 ≤ α ≤ 1 is the normalization parameter), we call

this PNL2. The effect of this normalization is reducing the peaks within

the vector. It is very important for the performance of the system that

the values within the vector are not spread on a large interval, since high

peaks will dominate the distances between the vectors. As the classifier re-

ceives as input the distances between the vectors, the peaks receive a higher

weight and the other components of the vector will contribute less, in the

end this may influence negatively the classifier output. The α parameter

from PNL2 controls the level of penalization, by giving a smaller α, the
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large values are shrinked more and reduce the peaks within the vector.

We perform the α parameter tuning within the interval [0.1; 1], with

the step 0.1. Fig. 3.5 presents the graphs with the impact of the normal-

ization for FV. We can see that the accuracy is drastically affected by the

α normalization parameter for PNL2. There is a continuous increase in

performance of all the descriptors when choosing a smaller α. The α = 1

actually means that only L2 normalization is applied, and the performance

boost between α = 1 and α = 0.1 is 18.1 percentage points on HOG, 14.9

on HOF, 12.2 on MBHx, 13.8 on MBHy and 14.5 for HMG. This consider-

able increase in performance for FV when PNL2 is applied with a small α

is due to the fact that the resulted final vector after applying the encoding

contains large peaks, having a large interval for the values. This is caused

by the FV formulation which is built using two different formulas that

provide in the end different intervals for the values. PNL2 with a small α

helps in bringing the values in a smaller interval, reducing the peaks, and

therefore, the distances between vectors are more reliable. For all the next

experiments we set α = 0.1 for PNL2 when using FV as encoding method.

Fig. 3.6 shows the parameter tuning for PNL2 when using SD-VLAD as

encoding method. In this case the influence of α normalization parameter

is not that radical. This is due to the fact that we apply intra-normalization

L2 when encoding the features with SD-VLAD and therefore, the peaks

within the vector are already reduced. However, if intra-normalization is

not used during the encoding process then we recommend to use PNL2

with a very small α for the resulted vector, similar as for FV. For all the

next experiments we keep the initial setting of PNL2 with α = 0.5 for

VLAD and SD-VLAD.
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Improving the efficiency

From the previous experiments we can take the conclusion that FV and

SD-VLAD provide the best results. SD-VLAD is the choice for a trade-

off between the computational cost and accuracy. One of the reasons for

which VLAD and SD-VLAD are more efficient than FV is the assignment

approach. The VLAD based encoding methods use hard assignment while

FV uses soft assignment making this step more demanding for the compu-

tational cost.

VLAD and SD-VLAD are the choices for a trade-off between accuracy

and computational cost. In this set of experiments we investigate how

we can improve the computational cost for VLAD and SD-VLAD methods

without affecting negatively the accuracy. The assignment step is the most

demanding part for the computational time of an encoding method. To

decide to which centroid a feature belongs, it is necessary to compute the

distance to all centroids of the codebook and to assign the feature to the

closer visual word. We evaluated two approaches to compute the distances.

First approach is to use the standard Euclidean distance. After we compute

the distances we take the minimum value to decide to which visual word the

feature belongs. The second approach is to use inner product to compute

the distances. By making unit length for both vectors for which we compute

the distance we can apply inner product operation as a measurement for

the distance. In this case, to decide to which centroid a feature belongs

we take the maximum value among the computed inner products. If all

feature vectors have the same length (e.g. unit length), then taking the

maximum inner product is equivalent to taking the minimum Euclidean

distance.

Table 3.3 presents the comparison results between Euclidean distance

and the inner product used for the assignment step within the encoding
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VLAD256 VLAD512 SD-VLAD

E. dist. inner p. E. dist. inner p. E. dist. inner p.

HOG 0.712 0.717 0.731 0.735 0.768 0.772

HOF 0.810 0.812 0.815 0.823 0.833 0.835

MBHx 0.782 0.789 0.795 0.801 0.800 0.802

MBHy 0.799 0.802 0.814 0.816 0.820 0.822

HMG 0.805 0.809 0.822 0.823 0.834 0.834

sec/video 0.37 0.20 0.56 0.32 0.38 0.23

frame/sec 532 971 352 620 513 848

Table 3.3: Performance comparison between Euclidean distance (E. dist.) and inner

product (inner p.) used for the assignment step during the encoding process (results

reported on the UCF50 dataset, best results are in bold).

process. We can see that the encoding method is much faster when using

the inner product than in the case of Euclidean distance, being able to

improve the computational cost from 513 to 848 frames per second for SD-

VLAD. The slight improvement of the accuracy is the effect of applying L2

norm for making unit length when we compute the inner product. For all

next experiments we use the inner product for the assignment step when

VLAD-based methods are used for encoding.

Closer comparison of SD-VLAD with direct competitors

Our proposed encoding method, SD-VLAD, provides the best trade-off

between the accuracy and computational cost. We provide a direct com-

parison of our method with the closest approaches for the encoding step.

The closest approaches to ours are represented by VLAD [36] and the work

in [57]. The authors in [57] use high-order statistics for VLAD and dictio-

nary learning to boost the performance. They use three order statistics,

which makes the final vector three times bigger than VLAD.

The goal of this comparison is to discover which formulas are better
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to compute the final representation that will serve as input for the clas-

sifier. Of course, in this comparison all the methods benefit of the same

settings including using intra-normalization L2 and inner product for the

assignment step. As in the previous experiments, the computational time

reported includes also the time for making the unit length for the vectors

needed for inner product and also the time for intra-normalization. Fur-

thermore, besides the fact that the vocabulary is build in the same way

for all approaches, for VLAD256, H-VLAD [57] and for SD-VLAD we use

also the same codebook (this is straight forward as we use for all 256 visual

words for the codebook size), which makes the comparison more reliable

as the randomness of constructing the codebook is excluded.

Table 3.4 presents the efficiency and performance comparison for all

five dense descriptors. In terms of accuracy our approach outperforms

the other methods for all descriptors by a large margin. Furthermore,

the dimensionality of our final vector is 33% less than the representation

in [57], as we concatenate two order information and they concatenate

three order statistics. In general, high order information leads to a good

improvement compared to the original VLAD. In terms of computational

cost, VLAD256 is the fastest. VLAD512 and H-VLAD are almost twice

as slow with moderate accuracy improvements. In contrast, SD-VLAD is

almost as fast as VLAD256 yet gives the highest accuracies of all encoding

methods.

For a better understanding of the performance contribution, Table 3.5

presents the accuracy comparison of each representation component of SD-

VLAD with the similar approach [57]. We report the comparison for first-

and second-order statistics, and as we do not consider the third-order statis-

tics we just report the performance of [57] in this case. We can see that

our formulation for first-order statistics gives slightly better results than

the approach in [57], which for their first order statistics represents the
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HOG HOF MBHx MBHy HMG sec/video frame/sec

VLAD256 0.717 0.812 0.789 0.802 0.809 0.20 971

VLAD512 0.735 0.823 0.801 0.816 0.823 0.32 620

H-VLAD [57] 0.755 0.825 0.800 0.809 0.820 0.38 520

SD-VLAD 0.772 0.835 0.802 0.822 0.834 0.23 848

Table 3.4: A closer comparison of the computational cost and the accuracy with the

direct competitors on the encoding approach (results reported on the UCF50 dataset,

best results are in bold).

HOG HOF MBHx MBHy HMG

H-VLAD [57] first-order (=VLAD256) 0.717 0.812 0.789 0.802 0.809

SD-VLAD first-order 0.721 0.812 0.793 0.805 0.816

H-VLAD [57] second-order 0.724 0.809 0.774 0.782 0.786

SD-VLAD second-order 0.760 0.822 0.785 0.796 0.810

H-VLAD [57] third-order 0.606 0.709 0.708 0.705 0.700

Table 3.5: A deeper comparison: for each component. We report the performance com-

parison for each part of our formulation of the encoding method with the approach [57]

(results reported on the UCF50 dataset, best results are in bold, in italic are represented

the results for the third-order statistics of [57], as we do not use the third-order informa-

tion, it is not possible a direct comparison).

71



HOG HOF MBH HMG sec/video frames/sec

IDT [88] 0.826 0.851 0.889 - 50.5 3.9

dense 0.820 0.834 0.832 0.850 10.9 18.0

Table 3.6: Comparison to IDT [88] in terms of accuracy and computational cost on the

UCF50 dataset.

original VLAD formulation. This slightly improvement is mainly due to

the standard deviation integration from Equation (3.5).

The main difference in performance is reflected for the second-order

statistics, where SD-VLAD outperforms [57] consistently for all five de-

scriptors. This consistent improvement for the second-order of VLAD-DV

is mainly due to the consideration of the global mean of the cluster in-

stead of the local mean of the descriptors when computing the standard

deviation for the local descriptors. Remarkably that the shape difference

formulation of our SD-VLAD provides only by itself a better representa-

tion than VLAD. For example, VLAD obtains for HOG an accuracy of

0.717, while the shape difference for SD-VLAD (from Equation (3.7)) ob-

tains an accuracy of 0.760, and in this case the vector lengths are equal

and the computational costs are similar. Therefore, the shape difference

for SD-VLAD can replace directly VLAD in many situations. After this

set of experiments we can take the conclusion that SD-VLAD is a proper

method for a trade-off between the efficiency and the performance, thus,

for the next experiments we will continue with FV as the choice when

accuracy is crucially important and with SD-VLAD for the trade-off.

3.5.5 Comparison with Improved Dense Trajectories

The Improved Dense Trajectories (IDT) [88] represents a state-of-the-art

video representation approach. We compare our descriptor extraction ap-

proach with IDT in terms of accuracy and of computational efficiency. As
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in [88] where there are reported the results for FV with 256 clusters, we

perform the comparison with our dense approach using the same encoding

method. As the code in [88] provides four main descriptors (HOG, HOF,

MBHx and MBHy), for a fair comparison we compare its extraction time

with dense extraction time also for four descriptors: HOF, MBHx, MBHy

and HMG. Notice that dense HOG and HMG have similar computational

time, so it is not relevant for time measurement which one is selected. The

comparison with IDT is presented in Table 3.6. For the computational ef-

ficiency the dense approach outperforms by a large margin IDT, being 4.6

times faster. The dense approach is able to process a video with 18 frames

per second while IDT can process only 3.9 frames per second. Even though

[88] provides a fast code in C++, the Matlab implementation for dense de-

scriptors is considerably less demanding for the computational cost due to

several factors. First, IDT uses a more complicate algorithm to extract

the descriptors and furthermore, their approach improves the accuracy by

canceling the camera motion. For doing this it is necessary to compute

two times the optical flow, which makes the algorithm more demanding for

computational efficiency. Another reason is that the dense descriptors are

computed more efficiently, being able to reuse the blocks for many times

and without the need to compute any trajectories. Very interesting is the

fact that our HMG descriptor is able to compete even with HOF from IDT,

with almost similar performance of 0.85.

3.5.6 Frame subsampling

Subsequent video frames contain similar information. In this set of exper-

iments we investigate the impact on the accuracy results when frames are

skipped, with the goal of speeding up the feature extraction process. We

evaluate when skipping 2, 3 and 6 frames. The modality of frame subsam-

pling is similar as in [82]. For a fair comparison, the features describe the
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(
frames/block
sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
HOG

SD-VLAD 0.772 0.768 0.770 0.775

FV 0.820 0.817 0.814 0.820

sec/video 2.67 1.54 1.15 0.78

frame/sec† 73.50 127.07 170.99 250.79

HOF

SD-VLAD 0.835 0.823 0.812 0.798

FV 0.834 0.820 0.817 0.799

sec/video 4.03 2.28 1.68 1.06

frame/sec† 48.61 86.04 116.27 184.73

MBHx

SD-VLAD 0.802 0.793 0.792 0.778

FV 0.816 0.806 0.797 0.779

sec/video 4.37 2.45 1.80 1.12

frame/sec† 44.80 80.03 108.96 174.60

MBHy

SD-VLAD 0.822 0.816 0.811 0.796

FV 0.824 0.819 0.814 0.794

sec/video 4.37 2.44 1.80 1.12

frame/sec† 44.84 80.27 108.67 174.37

HMG

SD-VLAD 0.834 0.835 0.835 0.822

FV 0.850 0.845 0.843 0.829

sec/video 2.73 1.59 1.19 0.80

frame/sec† 71.73 123.47 164.17 245.45

Table 3.7: Trade-off between frame sampling rate and accuracy for the UCF50 dataset. We

keep video volumes from which descriptors are extracted the same for all sampling rates.
†Frames/second is measured in terms of the total number of frames of the original video,

not in terms of how many frames are actually processed during descriptor extraction.
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(
frames/block
sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
HOG

SD-VLAD 0.653 0.658 0.662 0.664

FV 0.708 0.719 0.721 0.722

HOF
SD-VLAD 0.740 0.725 0.719 0.697

FV 0.741 0.729 0.719 0.700

MBHx
SD-VLAD 0.709 0.703 0.696 0.681

FV 0.729 0.718 0.708 0.688

MBHy
SD-VLAD 0.728 0.723 0.717 0.701

FV 0.742 0.731 0.723 0.707

HMG
SD-VLAD 0.747 0.753 0.745 0.743

FV 0.771 0.780 0.771 0.757

Table 3.8: Trade-off between frame sampling rate and accuracy for the UCF101 dataset.

We keep video volumes from which descriptors are extracted the same for all sampling

rates.

(
frames/block
sample rate

) (
6
1

) (
3
2

) (
2
3

) (
1
6

)
HOG

SD-VLAD 0.367 0.380 0.378 0.380

FV 0.406 0.399 0.390 0.399

HOF
SD-VLAD 0.433 0.420 0.411 0.392

FV 0.433 0.424 0.408 0.388

MBHx
SD-VLAD 0.399 0.395 0.393 0.376

FV 0.407 0.400 0.397 0.371

MBHy
SD-VLAD 0.395 0.405 0.397 0.384

FV 0.405 0.402 0.401 0.377

HMG
SD-VLAD 0.418 0.417 0.408 0.409

FV 0.440 0.438 0.435 0.414

Table 3.9: Trade-off between frame sampling rate and accuracy for the HMDB51 dataset.

We keep video volumes from which descriptors are extracted the same for all sampling

rates.
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same video volume for the process of subsampling frames. For instance, if

we sample every 2 frames, our baseline for the size of the block of 8 by 8

pixels by 6 frames is changing to 8 by 8 by 3 frames; for skipping 3 frames

we have only 8 by 8 pixels by 2 frames; and when sampling every 6 frames

the block size became 8 by 8 pixels by 1 frame.

The results for frame subsampling are presented in Table 3.7 for UCF50

dataset, in Table 3.8 for UCF101 and in Table 3.9 for HMDB51. In Table

3.7 we present the computational cost for the descriptor extraction. We

reported the computational cost measurements only for UCF50 dataset in

Table 3.7, as the video resolution is similar for all tree datasets, thus, the

numbers reported for the measurements for the frames per second are valid

also for UCF101 and HMDB51 datasets.

By subsampling frames the computational cost is significantly improved,

making the pipeline more efficient. HOG descriptor is not negatively af-

fected by skipping frames because this descriptor captures the appear-

ance information and subsequent video frames contain similar information.

Therefore, for HOG descriptor we can skip frames with a step of 6 without

loosing accuracy for both FV and SD-VLAD, being able to process more

than 250 frames from the video per second. For the descriptors based on

optical flow a frame sampling rate of 3 gives a good trade-off, improv-

ing considerably the computational cost. HMG with SD-VLAD can have

a frame sampling rate of 6 without decreasing significantly the accuracy,

and a frame sampling rate of 2 almost without affecting accuracy.

3.5.7 Real-time video classification

For a real-time video classification system we propose the framework illus-

trated in Fig. 3.7. We use dense descriptors due to their efficiency, addi-

tionally we speed-up the pipeline by using a frame sampling rate (FSR)

of 6 (thus, frames/block=1) for HOG and HMG and a FSR of 3 (thus,
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Figure 3.7: The pipeline for real-time video classification. This framework can process the

video at a speed of 39 frames/second and yields an accuracy of 0.845 on UCF50 dataset,

0.767 on UCF101 and 0.470 on HMDB51.

frames/block=2) for HOF, MBHx add MBHy. It is recommended that the

FSR to be equal for all descriptors based on optical flow for the reason of

computing the optical flow only once and use it for all of them. After we

extract the descriptors, each of them follows its separate path through the

pipeline.

We initially normalize each descriptor using RootSIFT [1], then we apply

PCA to reduce their dimension by a factor of 2 (from 144 dimensions to 72).

Before encoding we apply a spatial pyramid representation (SP), dividing

(in 3 rows) the descriptors based on their location in the frame, in bottom,

middle and top part of the frame. Then for each group of the descriptors

we apply our efficient encoding method, SD-VLAD, with 256 visual words.

The output vector of the encoding method is normalized using PNL2 with

α = 0.5. In the end we perform an early fusion by concatenating all five

descriptors, then we apply L2 normalization on the final representation

for making unit length. After we compute the distances we feed them to

a linear SVM (C = 100) to get the final result, the predicted class for a

video.

The pipeline from Fig. 3.7 is able to obtain more than real-time pro-
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Figure 3.8: The pipeline for accurate video classification. This framework yields an

accuracy of 0.930 on UCF50 dataset, 0.881 on UCF101 and 0.610 on HMDB51, but can

process only 3 frames/second.

cessing rate, being capable to run with 39 frames per second and to obtain

an accuracy of 0.845 for UCF50 dataset, 0.767 on UCF101 and 0.470 on

HMDB51.

3.5.8 Comparison to state-of-the-art

When accuracy is crucially important for the application we recommend

using Fisher Vector (with 256 clusters) for feature encoding and combin-

ing our HMG descriptor with IDT descriptors. The HMG descriptor is

used in this case without skipping frames. Our pipeline for accurate action

recognition can be visualized in Fig. 3.8. We extract all the descriptors of

IDT (HOG, HOF, MBHx and MBHy) with the default settings provided

in [88]. We perform early fusion between HMG and IDT by concatenating

all features. For all features we apply separately, before early fusion, PNL2

normalization with α = 0.1. This combination improves the accuracy from

0.912 reported in [88] (for IDT) to 0.930 for UCF50 dataset, from 0.859 [89]

to 0.881 for UCF101 and from 0.572 [88] to 0.610 for HMDB51. This signif-

icant improvement in performance shows that our HMG descriptor brings

complementary information for IDT and can be used to boost the perfor-
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UCF50 (Acc.) UCF101 (Acc.) HMDB51 (Acc.)

Kliper-Gross et al. [42] 0.727 Karpathy et al. [40] 0.654 Jain et al. [34] 0.521

Solmaz et al. [75] 0.737 Wang et al. [89] 0.859 Oneata et al. [55] 0.548

Reddy et al. [63] 0.769 Wang et al. [87] 0.860 Park et al. [56] 0.562

Uijlings et al. [81] 0.809 Peng et al. [57] 0.877 Wang et al. [88] 0.572

Uijlings et al. [82] 0.818 Peng et al. [58] 0.879 Sun et al. [79] 0.591

Wang et al. [86] 0.856 Simonyan et al. [70] 0.880 Simonyan et al. [70] 0.594

Wang et al. [88] 0.912 Sun et al. [79] 0.881 Peng et al. [57] 0.598

Wang et al. [87] 0.917 Park et al. [56] 0.891 Wang et al. [87] 0.601

Peng et al. [58] 0.923 Bilen et al. [6] 0.891 Bilen et al. [6] 0.652

HMG + iDT 0.930 HMG + iDT 0.881 HMG + iDT 0.610

Table 3.10: Comparison to the state-of-the-art.

mance of the system. However, using IDT and FV makes the pipeline more

demanding for the computational cost, enabling to process only around 3

frames per second, making it not suitable for real-time applications.

Table 3.10 presents the performance comparison of our accurate pipeline

from Fig. 3.8 with state-of-the-art approaches. The proposed combination

for accuracy between HMG and IDT obtains state-of the art results on

UCF50 and competitive results on UCF101 and HMDB51. Our framework

outperforms all the methods based on hand-crafted features, including the

recent work of [87], which considers as encoding method the spatial FV [43]

together with spatio-temporal pyramid [46]. Our results are better than

[87] which considers a hybrid representation by combining two different

representations. While the approaches based on learned features (deep

learning) such as [6, 56] obtain state-of-the-art results, remarkably that our

pipeline is able to outperform many other well-known approaches based on

deep learning such as [40, 70].
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3.6 Conclusion

In this work we propose an efficient pipeline for action recognition. As two

critical factors for a powerful action recognition pipeline are represented

by descriptor extraction and descriptor encoding steps, we propose a new

solution for both of them. We introduce in this work a new descriptor,

Histograms of Motion Gradients (HMG), that captures motion informa-

tion without the need of computing the optical flow, which obtains very

competitive results while achieving a low computational complexity. Re-

garding the descriptor encoding we propose Shape Difference for VLAD

(SD-VLAD). This approach captures information regarding the distribu-

tion shape of the descriptors, providing the best trade-off between compu-

tational cost and accuracy.

Based on our solutions for descriptor extraction and encoding, we pro-

pose an accurate and a real-time video classification pipeline. We test

our approach on the challenging datasets: UCF50, UCF101 and HMDB51,

being able to outperform well-know competitive approaches on this task.

The next chapter continues to work on feature encoding by proposing a

new feature encoding approach specifically designed for deep features.
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Chapter 4

Spatio-Temporal Vector of Locally

Max Pooled Features for Action

Recognition in Videos1

We introduce Spatio-Temporal Vector of Locally Max Pooled Features (ST-

VLMPF), a super vector-based encoding method specifically designed for

local deep features encoding. The proposed method addresses an important

problem of video understanding: how to build a video representation that

incorporates the CNN features over the entire video. Feature assignment

is carried out at two levels, by using the similarity and spatio-temporal

information. For each assignment we build a specific encoding, focused on

the nature of deep features, with the goal to capture the highest feature

responses from the highest neuron activation of the network. Our ST-

VLMPF clearly provides a more reliable video representation than some of

the most widely used and powerful encoding approaches (Improved Fisher

Vectors and Vector of Locally Aggregated Descriptors), while maintaining

a low computational complexity. We conduct experiments on three action

recognition datasets: HMDB51, UCF50 and UCF101. Our pipeline obtains

1Duta, I.C.; Ionescu, B.; Aizawa, K. and Sebe, N. ”Spatio-Temporal Vector of Locally Max

Pooled Features for Action Recognition in Videos”. In Computer Vision and Pattern Recognition

(CVPR), 2017.
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state-of-the-art results.

4.1 Introduction

Action recognition is still a very challenging and high computationally de-

manding task in computer vision, receiving a sustained attention from the

research community due to its huge pool of potential applications. Its

pipeline can be broken down into three main steps: feature extraction,

encoding and classification. While for the classification part, the existing

techniques are more mature, for feature extraction and encoding there is

still a significant room for improvement. There are two main directions

for feature extraction: hand-crafted and learned features (deep features).

For hand-crafted category the most popular descriptors are represented

by Histogram of Oriented Gradients (HOG) [15, 46], Histogram of Optical

Flow (HOF) [46] and Motion Boundary Histograms (MBH) [16]. These de-

scriptors are extracted from a video using different approaches to establish

the region of extraction, such as at interest points [45], using a dense sam-

pling [82, 90], along motion trajectories [78, 86, 88]. Recently, the features

learned with a deep neural network represent a breakthrough in research,

obtaining impressive results [6, 40, 56, 70, 71, 79, 80, 92, 96].

The feature encoding is one of the crucial steps for the system perfor-

mance. Super vector-based encoding methods represent one of the most

powerful solutions to build the final representation that servers as an in-

put for a classifier. Improved Fisher Vectors (iFV) [61] and Vector of

Locally Aggregated Descriptors (VLAD) [36] proved their superiority over

other encoding methods in many works and are presented as state-of-the-

art approaches for the encoding step [24, 52, 59, 81, 82, 88]. One of the

shortcomings for current standard encodings is the lack of considering the

spatio-temporal information, which is crucially important, especially when
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Figure 4.1: The ST-VLMPF framework for deep features encoding.

dealing with videos. These encoding approaches are built around hand-

crafted features. However, a new trend is using deep features, as they

obtain promising results over the traditional hand-crafted features. Many

recent works apply these encoding methods also on deep features. Nev-

ertheless, there is not yet a mature pipeline established for using these

new features as their nature and behavior are implicitly different from the

hand-designed category.

Deep features are learned throughout a deep neural network, providing

high discriminative power on the upper layers of the network, with high

level information such as objects, while hand-crafted features are manually

designed and usually contain low-level information such as edges. Deep fea-

tures are characterized also by their high sparsity. For instance, in [71, 92]

the feature maps extracted from the upper layers of the networks (which

are often used in the works as features), can contain a sparsity level of

more than 90%, while for hand-crafted features, as in [82, 90], the level of

sparsity is negligible. Most of the current encoding methods, such as iFV

and VLAD, are built to capture high statistical information to improve the

performance. In general, for hand-crafted features, iFV works better than

VLAD [59, 82] due to the fact that iFV captures first- and second-order
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statistics, while VLAD is based only on first order. While for hand-crafted

features using more statistical information improves significantly the per-

formance, considering the difference between them, for deep features using

high-order statistics may not guarantee the performance improvement. As

a matter of fact, in many recent works, as in [94], VLAD encoding is un-

derlined as outperforming iFV, when using deep features. This aspect is

also verified in our experiments, where iFV does not guarantee a better

performance than VLAD. This shows that a simpler encoding method can

perform better than an approach which rely on high order information.

This is a completely opposite behavior in comparison with hand-crafted

features. Considering all of these, we argue that a new encoding method,

specifically designed for deep features, can provide better results.

With the current high availability of off-the-shelf pre-trained neural net-

works, many researchers use them only as feature extraction tools, as re-

training or fine tuning is more demanding in many aspects. Thus, it is nec-

essary for a performant deep features encoding approach. One of the major

shortcomings of the current ConvNets-based approaches is represented by

the fact that the networks take into account one or several staked frames

(for instance, 10-staked optical flow fields [70, 92]). Each sampled input

for the network is assigned to the overall video label from which it belongs

to. The issue is that if we consider such a short number of frames as input

to the network, then it may not correctly reflect the overall video label,

resulting in a false label input. The current ConvNets approach individ-

ually obtains the prediction scores from all sampled inputs from a video.

Then, the final prediction for a video is computed by aggregating all these

prediction scores resulted from each sampled input. However, this simple

aggregation cannot completely solve the aforementioned issue. This work

tackles this important problem by learning a new general representation

which reflects the overall video label. This approach gives to the classifier
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access to the deep features extracted over the entire video.

In this work, we propose the following main contributions: (i) provide

a new encoding approach specifically designed for working with deep fea-

tures. We exploit the nature of deep features, with the goal of capturing

the highest feature responses from the highest neuron activation of the net-

work. (ii) efficiently incorporate the spatio-temporal information within the

encoding method by taking into account the features position and specifi-

cally encode this aspect. Spatio-temporal information is crucially impor-

tant when dealing with video classification. Our final proposed encoding

method (illustrated in Figure 4.1), Spatio-Temporal Vector of Locally Max

Pooled Features (ST-VLMPF), performs two different assignments of the

features. One is based on their similarity information, the other on the

spatio-temporal information. For each resulted assignment we perform a

specific encoding, by performing two max-poolings and one sum-pooling of

the information. (iii) provide an action recognition scheme to work with

deep features, which can be adopted to obtain impressive results with any

already trained network, without the need for re-training or fine tuning on

a particular dataset. Furthermore, our framework can easily combine dif-

ferent information extracted from different networks. In fact, our pipeline

for action recognition provides a reliable representation outperforming the

previous state-of-the-art approaches, while maintaining a low complexity.

We make the code for our proposed ST-VLMPF encoding publicly available

(https://iduta.github.io/software.html).

The rest of the chapter is organized as following: Section 4.2 summarizes

the related works. Section 4.3 introduces our encoding method. Section

4.4 presents the local deep feature extraction pipeline. The experimental

evaluation is presented in Section 4.5. The conclusions are drawn in Section

4.6.
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4.2 Related work

There are many works focusing on improving the feature encoding step, as

the resulted final representation, which serves as input for a classifier, is a

key component for the system performance. Super vector-based encoding

methods are among the most powerful representation generators. Improved

Fisher Vectors (iFV) [61] is one of the state-of-the-art super vector-based

encoding methods which performs a soft assignment of the features and

incorporates first- and second-order information. Vector of Locally Aggre-

gated Descriptors (VLAD) [36] is a simplification of iFV capturing only

first-order information and performing a hard assignment of the features.

Super Vector Coding (SVC) [99] method keeps the zero-order and first-

order statistics, thus SVC can be seen as a combination between Vector

Quantization (VQ) [72] and VLAD.

Many recent works try to improve the aforementioned methods. The

work in [57] proposes to improve VLAD by concatenating the second- and

third-order statistics, and using supervised dictionary learning. The work

in [52] proposes to use Random Forests in a pruned version for the trees to

build the vocabulary and then additionally concatenate second-order in-

formation similar as iFV. The works in [46, 47] consider a Spatial Pyramid

approach to capture the information about features location, however, the

scalability is an issue for this method, as it increases considerably the size

of the final representation and it is not feasible for dividing the video in

more than 4 segments. The work in [2] proposes to use intra-normalization

to improve VLAD performance. In [22] is proposed a double assignment

for VLAD to boost the accuracy. The work in [60] uses a multi-layer

nested iFV encoding to boost the performance. Different from aforemen-

tioned methods which are initially built to encode hand-crafted features,

our work proposes a method specifically designed for local deep features
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encoding.

Recently, encouraged by deep learning breakthroughs, many works [6,

40, 56, 70, 71, 79, 80, 92, 96] encapsulate all three main steps: feature

extraction, encoding and classification, in an end-to-end framework. The

work in [70] uses two streams, to capture both appearance and motion

information. The works in [29, 30] are based on rank pooling for encod-

ing; the authors in [6] extend this idea to dynamic images to create a

video representation. Over the aforementioned approaches, our proposed

method has the advantage of being able to use any available trained net-

work without the need to train, re-train or fine tune it, obtaining impressive

performance, even improving the original network results. Furthermore,

our method can easily combine different networks, with different source of

information, to create a competitive video representation.

4.3 Proposed ST-VLMPF encoding method

In this section we introduce our proposed encoding approach for deep

features, Spatio-Temporal Vector of Locally Max Pooled Features (ST-

VLMPF). We initially learn a codebook, C, using k-means, from a large

subset of randomly selected features extracted from a subset of videos from

the dataset. The outcome represents k1 visual words, C={c1, c2, ..., ck1},
which are basically the means of each feature cluster learned with k-means.

When we extract the features we also retain their location within the video.

For each feature we associate a position p:

p = (x̄, ȳ, t̄); x̄ =
x

h
, ȳ =

y

w
, t̄ =

t

#fr
(4.1)

where h, w and #fr represent the height, width and the number of frames

of the video. Therefore, x̄, ȳ, t̄ correspond to the normalized x, y, t position

with respect to the video. This normalization guarantees that the position

values range between the same interval [0;1] for any video.
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In parallel with the first codebook C, we also learn with k-means a

second codebook, PC={pc1, pc2, ..., pck2}, from the corresponding selected

feature locations. The size of PC is k2 and the outcome represents the po-

sitions codebook. The codebook PC is computed from the location infor-

mation of the features used for the first codebook C. This is an automatic

way to propose a k2 spatio-temporal video divisions.

After building the codebooks, we can start creating the final video rep-

resentation, which serves as input for a classifier. Figure 4.1 sketches the

pipeline that a video traverses to obtain its final representation. The frame-

work starts by extracting the local features from the video (see Section 4.4).

The video is represented by its extracted local features X={x1, x2, ..., xn} ∈
Rn×d, where d is the feature dimensionality and n is the total number of

the local features of the video. Together with the local features, we retain,

as explained above, their positions P={p1, p2, ..., pn} ∈ Rn×3.

Our proposed encoding method performs two hard assignments using

the obtained codebooks, the first is based on the features similarity and

the second is based on their positions. For the first assignment each local

video feature xj (j=1, ..., n) is assigned to its nearest visual word from the

codebook C. Then, over the groups of features assigned to a cluster ci

(i=1, ..., k1) we compute a vector representation vci=[vci1 , v
ci
2 , ..., v

ci
d ], where

each vcis (s iterates over each dimension of the vector, s=1, ..., d) is formally

computed as following:

vcis = sign(xj,s) max
xj:NN(xj)=ci

|xj,s| (4.2)

where NN(xj) denotes the nearest neighborhood centroid of the codebook

C for the feature xj, basically it guarantees that we perform separately the

pooling over each group of features that are assigned to a visual word; the

sign function returns the sign of a number and |.| represents the absolute

value.
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Basically, Equation 4.2 obtains the maximum absolute value while keep-

ing the initial sign for the returned final result. In Figure 4.1 we name this

similarity max-pooling over features, as the features are grouped based on

their similarity and then perform max-pooling over each resulted group.

The concatenation of all vectors [vc1, vc2, ..., vck1 ], represents the VLMPF

(Vector of Locally Max Pooled Features) encoding, with final vector size

(k1×d).

After the first assignment, we also retain the centroid membership of

each feature, with the objective of preserving the associated similarity-

based cluster information. For each feature, we represent the membership

information by a vector m with the size equal to the number of visual words

k1, where all the elements are zero, except one value (which is equal to 1)

that is located on the position corresponding to the associated centroid.

For instance, m=[0100...00] maps the membership feature information to

the second visual word of the codebook C.

We perform a second assignment based on the features positions. The

bottom part of Figure 4.1 shows this path. Each feature position pj from

P is assigned to its nearest centroid from codebook PC. After we group

the features based on their location we compute another vector represen-

tation, by performing two pooling strategies: one max-pooling over the

spatio-temporal clustered features and another sum-pooling over the cor-

responding spatio-temporal clustered features membership. We concate-

nate the results of these two poolings from each cluster pcr (r=1, ..., k2).

Therefore, for each spatio-temporal group of features we compute a vector

representation vpcr=[vpcr1 , vpcr2 , ..., vpcrd ], where each vpcrs is formally computed
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as following:

vpcrs = cat
[

sign(xj,s) max
pj :NN(pj)=pcr

|xj,s|,( ∑
pj :NN(pj)=pcr

mj,i

)α ] (4.3)

where cat denotes the concatenation and NN(pj) denotes the nearest

neighborhood visual word of the codebook PC for the feature position

pj. Due to the fact that the sum-pooling over the membership information

can create peaks within the vector we normalize the result of sum-pooling

similar to power normalization, with standard α=0.5. Basically, in this

case we perform square root over the result of the sum-pooling to reduce

the peaks within the final vector.

Differently from Equation 4.2, in Equation 4.3 we group the features

based on the spatio-temporal information and then we compute the maxi-

mum absolute value while keeping the original sign over the features. We

also concatenate in Equation 4.3 the membership information regarding

the feature similarity obtained from the first assignment with the goal of

encapsulating together with spatio-temporal information also the similar-

ity membership of the spatio-temporal grouped features. We concatenate

all these vectors [vpc1, vpc2, ..., vpck2 ] to create the ST (Spatio-Temporal) en-

coding, which results in a (k2×d+ k2×k1) vector size.

Finally, we concatenate the ST and VLMPF encodings to create the final

ST-VLMPF representation, which serves as input the classifier. Therefore,

the final size of the vector for ST-VLMPF representation is (k1× d)+(k2×
d+ k2×k1). The goal of ST-VLMPF is to provide a reliable representation

which incorporates the deep features over the entire video, providing to

the classifier a more complete information for taking the right decision.
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4.4 Local deep features extraction

This section presents the pipeline for local deep features extraction. The

approaches based on convolutional networks (ConvNets) [6, 40, 56, 70, 71,

79, 80, 92, 96] have recently obtained very competitive results over tradi-

tional hand-crafted features. The videos contain two main sources of infor-

mation: appearance and motion. In our pipeline for feature extraction we

individually use three streams: a spatial stream for capturing the appear-

ance, a temporal stream for capturing the motion and a spatio-temporal

stream for capturing at the same time both appearance and motion in-

formation. The pipeline for local deep feature extraction is illustrated in

Figure 4.2, where for a given video we extract, independently for each of

three networks, the features maps with spatial information.

For capturing the appearance information in our spatial stream we use

the VGG ConvNet in [71], which is a network with 19 layers. The local

deep feature extraction pipeline for this network is depicted in the up-

per part of Figure 4.2. The input of VGG19 ConvNet is an image with

224×224 resolution and three channels for the color information. After we

extract the individual frames from a video, we accordingly resize them to

the required input size of the network. For each individual frame we take

the output of the last convolutional layer with spatial information, pool5.

Our choice for the convolutional layer is motivated by the fact that the

deeper layers provide high discriminative information. By taking a layer

with spatial information we can extract local deep features for each frame

of the video, containing also the details about spatial membership of the

features. The output of pool5 is a feature map with a spatial size of 7×7

and 512 channels. For extracting local deep features from a feature map

we individually take each spatial location and concatenate the values along

all 512 channels, obtaining local deep features with 512 dimensions. Thus,
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Figure 4.2: The framework for deep local feature extraction pipeline.

from each frame we obtain 7×7=49 local deep features and each feature

is a 512 dimensional vector. Therefore, for each video we obtain in total

#frames×49 local deep features. SCN refers to the features extracted

with this Spatial Convolutional Network.

For the motion information we use the re-trained network in [92]. This

deep network, also VGG, is initially proposed in [71] and contains 16 layers.

The authors in [92] re-trained the VGG ConvNet for a new task with new

input data using several good practices for the network re-training, such

as pre-training to initialize the network, smaller learning rate, more data

augmentation techniques and high dropout ratio. The VGG ConvNet is

re-trained for action recognition task using the UCF101 dataset [76]. The
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input to the temporal ConvNet is 10-stacked optical flow fields, each of

them with one image for vertical and one image for horizontal motion.

Therefore, in total there are 20-staked optical flow images as one input

to the network. To extract optical flow fields we use the OpenCV imple-

mentation of the TVL1 algorithm [97]. For the temporal ConvNet we also

take the output of the last convolutional layer with structure information

(pool5). The pool5 layer has the spatial size of feature maps of 7×7 and 512

channels. The final local deep features for an input are obtained by con-

catenating the values from each spatial location along all the channels, re-

sulting in 49 local features for an input. This results in (#frames−9)×49

local deep features for a video using the temporal ConvNet. TCN refers

to the features extracted with this Temporal Convolutional Network.

For the spatio-temporal stream, represented at the bottom part of Fig-

ure 4.2, we use the 3D ConvNet [80]. This network is trained on Sports-1M

dataset [40] and contains 16 layers. The network is designed to capture

both appearance and motion information by using 3D convolutional ker-

nels. The input of the network is a 16 frame-long clip extracted from the

video. Similar to the previous two networks used in our pipeline, we use

a sampling step size of one frame to iterate over the frames of the video

for creating the input clips. As the last layer of this network with spatial

information has the size of the feature maps of only 4×4, we consider in

our pipeline one layer before, which is called conv5b. The conv5b layer

has a similar spatial size of the feature maps as the previous two networks

i.e., 7×7 and similar number of channels i.e., 512. However, the conv5b

layer contains two features maps, each of them 7×7×512. In our pipeline,

for this network, for an input, we build only one feature map of 7×7×512

by taking the maximum value for each position of the both feature maps

from conv5b. Then, we can extract the local deep feature similar to the

previous two networks. For the 3D network, the total number of local
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deep features is (#frames−15)×7×7 for an input video. Each resulted

local deep feature is a vector with also 512 dimensions. We refer to the

features extracted with this Convolutional 3D network as C3D. For all

resulted local deep features from these three networks, the normalized po-

sitions, needed for ST-VLMPF, are extracted based on the localization on

the feature maps.

4.5 Experimental Evaluation

This section presents the experimental part, where we test our proposed

framework in the context of action recognition.

4.5.1 Datasets

We evaluate our framework on three of the most popular and challenging

datasets for action recognition: HMDB51 [44], UCF50 [63], and UCF101

[76].

The HMDB51 dataset [44] contains 51 action categories, with a total of

6,766 video clips. We use the original non-stabilized videos, and we follow

the original protocol using three train-test splits [44]. We report average

accuracy over the three splits as performance measure.

The UCF50 dataset [63] contains 6,618 realistic videos taken from YouTube.

There are 50 human action categories mutually exclusive and the videos

are split into 25 predefined groups. We follow the recommended standard

procedure and perform leave-one-group-out cross validation and report av-

erage classification accuracy over all 25 folds.

The UCF101 dataset [76] is a widely adopted benchmark for action

recognition, consisting in 13,320 realistic videos and 101 action classes.

We follow for evaluation the recommended default three training/testing

splits and report the average recognition accuracy over these three splits.
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4.5.2 Experimental setup

For the motion stream of the local deep feature extraction pipeline, the

work in [92] provides three trained models for each split of the UCF101

dataset. We accordingly use the models for each split of the UCF101 for

feature extraction. For the other two datasets, HMDB51 and UCF50, we

use only the model trained on the split1 of UCF101 to extract the local

deep features.

We compare our proposed ST-VLMPF encoding method with two state-

of-the-art approaches for feature encoding: improved Fisher Vectors (iFV)

[61] and Vector of Locally Aggregated Descriptors (VLAD) [36]. We create

the codebooks from 500K random selected features extracted from a subset

of videos. We set the size of the codebook to 256 visual words, which

is the standard adopted size, widely used by the community when using

super vector-based encoding methods. Setting also the size of codebook

C (k1=256) for ST-VLMPF the same as for the other encoding methods

makes easier to compare them and also it is a fair comparison having a

similar number of visual words for all super vector-based encoding methods.

When using our encoding method, ST-VLMPF, we L2 normalize the

final video representation vector before classification. Many works, such as

[82, 88], indicate that iFV and VLAD perform better if after feature encod-

ing the Power Normalization (PN) is applied followed by L2-normalization

(||sign(x)|x|α||). We follow this line for iFV and VLAD, setting α to the

standard widely used value of 0.5. The reason for which iFV and VLAD

work better when using PN is due to the fact that their resulted final rep-

resentation contains large peaks within the vector and PN helps to reduce

them and make the vector smoother. Instead, in our application, ST-

VLMPF does not provide a final vector containing large peaks, therefore,

it is not necessary to apply also PN. For the classification part, in all the
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Figure 4.3: Evaluation of the spatio-

temporal divisions of the video.
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Figure 4.4: Evaluation of the dimensionality

reduction with PCA.

SCN TCN C3D

256 512 256 512 256 512

VLMPF 43.5 44.7 56.6 58.8 52.8 53.4

ST-VLMPF 47.0 49.8 58.9 61.3 55.1 56.3

Table 4.1: The final accuracy on HMDB51 using 32 spatio-temporal video divisions, with

256 and 512 feature dimensionality. We report also the results when the spatio-temporal

information is not used (VLMPF).

experiments we use a linear one-vs-all SVM with the parameter C=100.

4.5.3 Parameter tuning

We present the parameter tuning regarding the number of divisions of

a video and the features dimensionality. All the tuning experiments are

reported on the HMDB51 dataset.

Figure 4.3 presents the evaluation of parameter k2, which denotes the

size of codebook PC. The k2 parameter represents the number of video

divisions used for our ST-VLMPF encoding approach. We report the eval-

uation on all three local deep features considered: SCN, TCN and C3D;

keeping all 512 dimensions of the original local deep features. The 0 value
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illustrated in Figure 4.3 represents the case when the spatio-temporal in-

formation is not considered, which refers to the VLMPF encoding from

Figure 4.1. Remarkably, the performance of ST-VLMPF for all three fea-

tures has a continuous significant boost in accuracy when increasing the

video divisions, until k2=32. This graph clearly shows that our approach to

incorporate spatio-tempral information within the encoding process brings

significant gain on the final accuracy for an action recognition system.

While for the C3D features the increase in the accuracy stops around the

value of k2=32, for the SCN and TCN the accuracy still continue to have a

slight increase. However, we set k2=32 for our ST-VLMPF encoding in all

remaining experiments in this work, as this value provides a good trade-off

between accuracy and computational cost and the size of the final video

representation.

Figure 4.4 illustrates the evaluation when using PCA to reduce the

feature dimensionality and decorrelate the data. From the graph we can see

that for all features the accuracy is drastically influenced by the number of

dimensions kept. Decreasing the features dimensionality from the original

size of 512 to 64 causes a considerable drop in accuracy for SCN from 0.498

to 0.464, for TCN from 0.613 to 0.545 and for C3D from 0.563 to 0.525. For

the next experiments we will consider the original features dimensionality

of 512 and also when the dimensionality is decreased to 256.

Table 4.1 summarizes the performance numbers obtained for all three

features. This table includes the results with two settings for feature di-

mensionality: 256 and 512. We report also the results when the spatio-

temporal information is not used within the encoding process (VLMPF).

In this way we can directly observe the benefit of incorporating the spatio-

temporal information in the encoding method over for the performance of

the system.
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HMDB51 (%) UCF50 (%) UCF101 (%)

SCN TCN C3D SCN TCN C3D SCN TCN C3D

256 512 256 512 256 512 256 512 256 512 256 512 256 512 256 512 256 512

iFV 36.6 41.8 51.0 56.6 46.1 49.0 75.7 81.0 95.2 96.1 84.7 88.8 67.8 74.1 84.1 85.4 77.7 79.8

VLAD 37.2 40.3 51.1 53.9 46.8 49.1 78.4 80.2 95.5 95.4 86.4 89.0 69.9 73.4 83.7 85.2 78.6 81.4

ST-VLMPF 47.0 49.8 58.9 61.3 55.1 56.3 86.3 87.7 97.1 97.2 94.1 94.7 80.4 81.8 86.6 87.3 85.5 86.2

Table 4.2: Accuracy comparison on all three datasets. Best results are in bold.

4.5.4 Comparison to other encoding approaches

In this part we present the comparison of our ST-VLMPF encoding method,

with VLAD and iFV, in terms of accuracy and computational efficiency.

Accuracy comparison. We present the comparison of ST-VLMPF

with VLAD and iFV in terms of accuracy over three datasets: HMDB51,

UCF50 and UCF101. We report the comparison results with the features

dimensionality of 256 and the 512. Table 4.2 shows the comparison accu-

racy results for all three datasets. On the challenging HMDB51 dataset

ST-VLMPF clearly outperforms by a large margin iFV and VLAD for all

three features. For instance, for SCN with 256 dimensionality, ST-VLMPF

obtains with 9.8 percentage points more than VLAD and with 10.4 per-

centage points more than iFV. Similar results are reported for UCF50

and UCF101 respectively, where we can see that our proposed encoding

method, ST-VLMPF, outperforms also by a large margin iFV and VLAD

in all the cases, showing the effectiveness of our representation. We can also

see from Table 4.1 that our method without spatio-temporal information,

still outperforms iFV and VLAD.

Efficiency comparison. Table 4.3 presents an efficiency comparison

of our ST-VLMPF with iFV and VLAD. The timing measurements are

performed on a single core Intel(R) Xeon(R) CPU E5-2690 2.60GHz, using

500 randomly sampled videos from HMDB51 dataset.

We report the average number of frames per second and number of sec-
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SCN 256 SCN 512 TCN 256 TCN 512 C3D 256 C3D 512 256 512

fr/sec sec/vid fr/sec sec/vid fr/sec sec/vid fr/sec sec/vid fr/sec sec/vid fr/sec sec/vid dim dim

iFV 253.2 0.357 168.7 0.536 301.4 0.300 197.6 0.457 308.7 0.293 202.3 0.447 131,072 262,144

VLAD 1967.5 0.046 1143.8 0.079 2213.8 0.041 1299.5 0.070 2372.5 0.038 1375.0 0.066 65,536 131,072

VLMPF 2049.4 0.044 1192.6 0.076 2329.2 0.039 1370.9 0.066 2455.0 0.037 1426.0 0.063 65,536 131,072

ST-VLMPF 1531.1 0.059 964.7 0.094 1741.0 0.052 1062.0 0.085 1769.6 0.051 1086.5 0.083 81,920 155,648

Table 4.3: Computational efficiency comparison. We report the number of frames per

second (fr/sec) and seconds per video (sec/vid). Last two columns show the dimensionality

generated by each encoding method for 256 and 512 feature dimensionality. Best results

are in bold.

onds per video that an encoding method can process for creating a video

representation. For our encoding method we report also the results without

using the spatio-temporal information (VLMPF) for directly observing the

cost of adding the spatio-temporal encoding. We can see that by far the

most expensive method for the computational cost is iFV. This is due to

the fact that the method uses soft assignment and high order statistics to

create the final representation. The VLAD encoding is slightly slower than

VLMPF and this is due to the computation of the residuals. The compu-

tational cost for our ST-VLMPF is comparable with VLAD, however, it is

more efficient than iFV, being more than 5 times faster.

The last two columns of Table 4.3 present the dimensionality of the

generated video representations for each encoding method. We can see

that iFV is more demanding, generating a large dimensionality, while ST-

VLMPF is comparable to VLAD. Even though the generated dimension-

ality is relatively high, in the case of a linear SVM (as we use in this work)

for ST-VLMPF with 512 feature dimensionality, the classification time to

get the predicted class for a given video representation is less than 0.001

seconds, therefore, this is a negligible cost.
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HMDB51 (%) UCF50∗ (%) UCF101 (%)

DF DF+HMG DF+HMG+iDT DF DF+HMG DF+HMG+iDT DF DF+HMG DF+HMG+iDT

Early 68.6 69.5 71.7 95.0 95.3 96.7 93.5 94.0 94.3

sLate 66.4 66.5 68.8 94.2 94.4 95.6 92.0 92.5 92.4

wLate 67.6 67.8 70.9 94.8 95.1 96.6 92.2 92.7 93.4

sDouble 68.3 68.4 70.3 94.6 94.9 96.1 92.6 93.1 92.8

wDouble 69.5 70.3 73.1 95.1 95.4 97.0 93.6 94.0 94.3

Table 4.4: Fusion strategies. DF (Deep Features) represent all three local deep features

(SCN, TCN, C3D), HMG (Histograms of Motion Gradients) [23] and iDT (improved

Dense Trajectories) [88] is represented with HOG, HOF, MBHx and MBHy. The best

performance results are in bold for each fusion type over each feature representation

combination. The best result over each dataset is also underlined. (∗TCN features are

not considered for UCF50 dataset as explained above.)

4.5.5 Fusion strategies

The previous results show that our ST-VLMPF approach obtains the best

accuracy on all datasets and for all feature types. Also we show that the

accuracy drops significantly when the features dimensionality decreases,

therefore, to obtain the final score we use all 512 feature dimensions.

Combining deep features with hand-crafted features can boost the per-

formance of the system. Therefore, in this work we report three feature

combinations: DF, DF+HMG and DF+HMG+iDT. DF (Deep Features)

is represented by SCN, TCN and C3D, all deep features are encoded with

our ST-VLMPF method. As previously pointed, to extract the TCN fea-

tures we use a ConvNet, which is trained on the split1 of UCF101. As

the UCF101 is an extension of the UCF50 dataset, to avoid the risk of

overfitting, for any further fusion and for the comparison with the state-of-

the-art, we excluded TCN features for the UCF50 dataset results. HMG

(Histograms of Motion Gradients) [23] is a hand-crafted descriptor which

efficiently captures motion information. We used the code provided by

the authors with default settings for descriptor extraction, and we encode

100



the descriptors accordingly as recommended in the paper, using iFV. iDT

(improved Dense Trajectories) [88] is a state-of-the-art hand-crafted ap-

proach, and is represented in our work by four individual hand-crafted

descriptors (HOG, HOF, MBHx, MBHy). We also use the authors pro-

vided code to extract the descriptors with default settings, and create the

final representation as recommended also using iFV. For all hand-crafted

features we individually apply before classification PN (α=0.1) and then

L2 as recommended in [23]. For these four feature combinations we evalu-

ate different fusion strategies: Early, where after we individually build the

final representation for each feature type and normalize it accordingly, we

concatenate all resulted representations in a final vector, we apply L2 nor-

malization for making unit length and then perform the classification part;

sLate, where we make late fusion by making sum between the classifiers

output from each representation; wLate, where we give different weights

for each feature representation classifier output, and then we perform the

sum. The weight combinations are tuned by taking values between 0 and

1 with the step 0.05; sDouble, where besides summing the classifier out-

put from the individual feature representations, we also add the classifier

output resulted from the early fusion; wDouble, where we tune the weight

combinations for the sum, similar to wLate.

Table 4.4 shows that early fusion performs better than late fusion. Dou-

ble fusion combines the benefit of both, early and late fusion, and boosts

further the accuracy. For more challenging datasets such as HMDB51,

combining deep features with hand-crafted features improves considerably

the accuracy, while for less challenging datasets such as UCF50, the hand-

crafted features do not bring significant contribution over deep features.

With this framework, we obtain outstanding final results of 73.1% on

HMDB51, 97.0% on UCF50 and 94.3% on UCF101.
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HMDB51 (%) UCF50∗ (%) UCF101(%)

Jain et al. [34] (2013) 52.1 Solmaz et al. [75] (2013) 73.7 Wang et al. [89] (2013) 85.9

Zhu et al. [100] (2013) 54.0 Reddy et al. [63] (2013) 76.9 Karpathy et al. [40] (2014) 65.4

Oneata et al. [55] (2013) 54.8 Shi et al. [69] (2013) 83.3 Simonyan et al. [70] (2014) 88.0

Wang et al. [88] (2013) 57.2 Wang et al. [86] (2013) 85.6 Wang et al. [87] (2015) 86.0

Kantorov et al. [38] (2014) 46.7 Wang et al. [88] (2013) 91.2 Sun et al. [79] (2015) 88.1

Simonyan et al. [70] (2014) 59.4 Ballas et al. [4] (2013) 92.8 Ng et al. [96] (2015) 88.6

Peng et al. [60] (2014) 66.8 Everts et al. [27] (2014) 72.9 Tran et al. [80] (2015) 90.4

Sun et al. [79] (2015) 59.1 Uijlings et al. [81] (2014) 80.9 Wang at al. [92] (2015) 91.4

Wang et al. [87] (2015) 60.1 Kantorov et al. [38] (2014) 82.2 Wang et al. [91] (2015) 91.5

Wang et al. [91] (2015) 65.9 Ciptadi et al. [13] (2014) 90.5 Zhang et al. [98] (2016) 86.4

Park et al. [56] (2016) 56.2 Narayan et al. [54] (2014) 92.5 Peng et al. [59] (2016) 87.9

Seo et al. [68] (2016) 58.9 Uijlings et al. [82] (2015) 81.8 Park et al [56] (2016) 89.1

Peng et al. [59] (2016) 61.1 Wang et al. [87] (2015) 91.7 Bilen et al. [6] (2016) 89.1

Yang et al. [95] (2016) 61.8 Peng et al. [59] (2016) 92.3 Diba et al. [18] (2016) 90.2

Bilen et al. [6] (2016) 65.2 Duta et al. [23] (2016) 93.0 Fernando et al. [29] (2016) 91.4

Fernando et al. [29] (2016) 66.9 Seo et al. [68] (2016) 93.7 Yang et al. [95] (2016) 91.6

Our ST-VLMPF(DF) 69.5 Our ST-VLMPF(DF) 95.1 Our ST-VLMPF(DF) 93.6

Our best 73.1 Our best 97.0 Our best 94.3

Table 4.5: Comparison to the state-of-the-art. Our ST-VLMPF(DF) represents the results

obtained with only our representation over deep features (SCN, TCN and C3D). Our best

is the final result from the best combination of our ST-VLMPF with hand-crafted features

HMG [23] and iDT (HOG, HOF, MBHx, MBHy) [88]. (∗TCN features are not considered

for UCF50 dataset as explained above.)

4.5.6 Comparison to state-of-the-art

Table 4.5 presents the comparison of our final results with the state-of-the-

art approaches on HMDB51, UCF50 and UCF101. For this comparison we

report two final results. First result, represents only our ST-VLMPF(DF),

which is obtained by using our proposed encoding method over all three

deep features (SCN, TCN and C3D). The second one, is our best result

reported in this work, obtained using ST-VLMPF(DF) + HMG + iDT.

Our ST-VLMPF representation outperforms the state-of-the-art ap-
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proaches by a large margin on all three datasets, which demonstrates that

our method provides a powerful video representation with very competitive

results. Furthermore, with our best results, which use also hand-crafted

features, we improve the state-of-the-art by 6.2 percentage points on the

challenging HMDB51 dataset, by 3.3 percentage points on UCF50 and by

2.7 percentage points on UCF101. It is important to highlight that these

results are obtained using pre-trained networks which are not re-trained

or fine-tuned on our particular datasets (except TCN features for UCF101

dataset). For instance, for HMDB51 dataset all three networks did not see

any training example from this dataset, and we still obtain impressive re-

sults. Therefore, our approach is also suitable in various practical scenarios

when re-training or fine-tuning is more difficult to accomplish.

4.6 Conclusion

In this work we introduced the Spatio-Temporal Vector of Locally Max

Pooled Features (ST-VLMPF), a super vector-based encoding method specif-

ically designed for encoding local deep features. We also efficiently incor-

porate the spatio-temporal information within the encoding method, pro-

viding a significant boost in accuracy. ST-VLMPF outperforms two of the

most powerful encoding methods by a large margin (Improved Fisher Vec-

tors and Vector of Locally Aggregated Descriptors), while maintaining a

low computational complexity. Our approach provides a solution for in-

corporating deep features over the entire video, helping to solve the issue

with the false label assigned to the network input. The comparison of our

action recognition pipeline with the state-of-the-art approaches over three

challenging datasets proves the superiority and robustness of our video

representation.
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Chapter 5

Conclusions and Future Work

In this thesis, we tackled the video classification task, which is the core com-

ponent of countless practical applications such as video indexing, human-

computer interaction, sports analytics, elderly-care, healthcare. Two key

steps for the performance of the video classification pipeline are represented

by the feature extraction and encoding. This thesis focussed on providing

solutions to improve these two steps.

One of the shortcomings of the descriptor extraction approaches is rep-

resented by the efficiency, which in many cases is extremely demanding

for the computational cost. In Chapter 2 we proposed several solutions to

speed-up the descriptor extraction step and investigated different trade-offs

between accuracy and computational efficiency. We concluded the work by

providing a video classification framework that is able to run in real-time

frame rate.

In Chapter 3 we continued the work on descriptor extraction by pro-

viding a very efficient descriptor, Histograms of Motion Gradients (HMG),

which is able to extract motion information in an efficient way, being able

to run in real-time frame rate. This chapter made also the transition from

descriptor extraction to another key component for video classification:

feature encoding. We proposed to improve the popular approach VLAD
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(Vector of Locally Aggregated Descriptors) by incorporating shape infor-

mation. The results supported the benefits of the proposed approach. We

concluded also this work by incorporating the proposed approaches in a

real-time video classification framework.

In Chapter 4 we continued the work on feature encoding by proposing

a new approach for local deep feature encoding. With this transition from

hand-crafted features to deep features, it is necessary to design new encod-

ing approaches that are effective and efficient to work with deep features.

In this chapter we proposed a specifically designed encoding approach for

deep features, which provided better performance in comparison with the

traditional approaches when applied on deep features.

While there has been an important progress in video classification in the

last several years, there is still a big room for improvement. In our vision,

video understanding is much more than video classification. In fact, video

classification can be considered just a fragment of video understanding.

For a meaningful video understanding concept we need to combine differ-

ent fields of research, such as machine learning, computer vision, natural

language processing, multimedia. For instance, over a video we need to run

different algorithms, such as object detection/recognition, object tracking,

text/speech recognition, face detection/recognition, body pose estimation,

action detection/recognition, etc. Then all this information should be com-

bined to provide a deep understanding of the video. As an example, the

user can make a query over his personal video library: ”return the video

where my brother dressed in a blue t-shirt is biking for a while, then he

falls down”. For this query we need to combine most of the aforemen-

tioned tasks to be able to extract such information. In summary, we just

scratched the surface of what means video understanding, there are many

aspects which request improvements, therefore, this is going to be a very

important research direction.
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Our future research direction will be focused on the following points:

• With this fulminant growth in multimedia content, we will focus on

building scalable algorithms to combat this information explosion.

• Most of the current contributions in the community are made on top

of supervised learning algorithms. In general it is very costly to get

labeled data to train these algorithms. In particular for video it is even

more demanding to label big datasets. In our future research we will

focus to develop approaches which can extract meaningful information

in an unsupervised fashion.

• Integration of knowledge from multiple sources (video, images, audio,

text) to build real-life applications.

• Specifically for video classification we will focus to push forward the

deep learning approaches to reduce the gap with image classification.

In particular, we will also focus on building very efficient and effective

3D convolutional neural networks, which make it possible to avoid

the computation of the optical flow for extracting motion informa-

tion (which is a bottleneck in the video classification pipeline). These

3D convolutional neural networks are able to capture both appear-

ance and motion information. Our future work will also focus on

approaches for untrimmed videos and more complex events.
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[52] Ionuţ Mironică, Ionuţ Cosmin Duţă, Bogdan Ionescu, and Nicu Sebe.

A modified vector of locally aggregated descriptors approach for fast

video classification. Multimedia Tools and Applications, pages 1–28,

2016.

114



[53] Frank Moosmann, Eric Nowak, and Frederic Jurie. Randomized clus-

tering forests for image classification. TPAMI, 30(9):1632–1646, 2008.

[54] Sanath Narayan and Kalpathi R Ramakrishnan. A cause and effect

analysis of motion trajectories for modeling actions. In CVPR, 2014.

[55] Dan Oneata, Jakob Verbeek, and Cordelia Schmid. Action and event

recognition with fisher vectors on a compact feature set. In ICCV,

2013.

[56] Eunbyung Park, Xufeng Han, Tamara L Berg, and Alexander C Berg.

Combining multiple sources of knowledge in deep cnns for action

recognition. In WACV, 2016.

[57] Xiaojiang Peng, Limin Wang, Yu Qiao, and Qiang Peng. Boosting

vlad with supervised dictionary learning and high-order statistics. In

ECCV. 2014.

[58] Xiaojiang Peng, Limin Wang, Xingxing Wang, and Yu Qiao. Bag of

visual words and fusion methods for action recognition: Comprehen-

sive study and good practice. arXiv:1405.4506, 2014.

[59] Xiaojiang Peng, Limin Wang, Xingxing Wang, and Yu Qiao. Bag of

visual words and fusion methods for action recognition: Comprehen-

sive study and good practice. CVIU, 150:109–125, 2016.

[60] Xiaojiang Peng, Changqing Zou, Yu Qiao, and Qiang Peng. Action

recognition with stacked fisher vectors. In ECCV, 2014.

[61] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving

the fisher kernel for large-scale image classification. In ECCV. 2010.

[62] Stergios Poularakis, Konstantinos Avgerinakis, Alexia Briassouli,

and Ioannis Kompatsiaris. Computationally efficient recognition of

activities of daily living. In ICIP, 2015.

115



[63] Kishore K Reddy and Mubarak Shah. Recognizing 50 human ac-

tion categories of web videos. Machine Vision and Applications,

24(5):971–981, 2013.

[64] Jorge Sánchez, Florent Perronnin, Thomas Mensink, and Jakob Ver-

beek. Image classification with the fisher vector: Theory and practice.

IJCV, 105(3):222–245, 2013.

[65] Enver Sangineto. Pose and expression independent facial landmark

localization using dense-surf and the hausdorff distance. TPAMI,

35(3):624–638, 2013.

[66] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing

human actions: a local svm approach. In ICPR, 2004.

[67] Paul Scovanner, Saad Ali, and Mubarak Shah. A 3-dimensional sift

descriptor and its application to action recognition. In ACM MM,

2007.

[68] Jeong-Jik Seo, Hyung-Il Kim, Wesley De Neve, and Yong Man Ro.

Effective and efficient human action recognition using dynamic frame

skipping and trajectory rejection. IVC, 2016.

[69] Feng Shi, Emil Petriu, and Robert Laganiere. Sampling strategies

for real-time action recognition. In CVPR, 2013.

[70] Karen Simonyan and Andrew Zisserman. Two-stream convolutional

networks for action recognition in videos. In NIPS, 2014.

[71] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

116



[72] Josef Sivic and Andrew Zisserman. Video google: A text retrieval

approach to object matching in videos. In Computer Vision, 2003.

Proceedings. Ninth International Conference on, pages 1470–1477,

2003.

[73] Alan F Smeaton, Paul Over, and Wessel Kraaij. Evaluation cam-

paigns and trecvid. In Proceedings of the 8th ACM international

workshop on Multimedia information retrieval, 2006.

[74] Cees GM Snoek, Marcel Worring, Jan C Van Gemert, Jan-Mark

Geusebroek, and Arnold WM Smeulders. The challenge problem

for automated detection of 101 semantic concepts in multimedia. In

ACM MM, 2006.

[75] Berkan Solmaz, Shayan Modiri Assari, and Mubarak Shah. Classify-

ing web videos using a global video descriptor. Machine vision and

applications, 2013.

[76] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101:

A dataset of 101 human actions classes from videos in the wild. arXiv

preprint arXiv:1212.0402, 2012.

[77] Deqing Sun, Stefan Roth, and Michael J Black. A quantitative anal-

ysis of current practices in optical flow estimation and the principles

behind them. IJCV, 106(2):115–137, 2014.

[78] Ju Sun, Xiao Wu, Shuicheng Yan, Loong-Fah Cheong, Tat-Seng

Chua, and Jintao Li. Hierarchical spatio-temporal context model-

ing for action recognition. In CVPR, 2009.

[79] Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram E Shi. Human action

recognition using factorized spatio-temporal convolutional networks.

In ICCV, 2015.

117



[80] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and

Manohar Paluri. Learning spatiotemporal features with 3d convolu-

tional networks. In ICCV, 2015.

[81] Jasper R. R. Uijlings, Ionut C. Duta, Negar Rostamzadeh, and Nicu

Sebe. Realtime video classification using dense hof/hog. In ICMR,

2014.

[82] Jasper R. R. Uijlings, Ionut C. Duta, E Sangineto, and Nicu Sebe.

Video classification with densely extracted hog/hof/mbh features: an

evaluation of the accuracy/computational efficiency trade-off. Inter-

national Journal of Multimedia Information Retrieval, 4(1):33–44,

2015.

[83] Jasper R. R. Uijlings, Arnold WM Smeulders, and Remko JH Scha.

Real-time visual concept classification. Transactions on Multimedia,

12(7):665–681, 2010.

[84] Andrea Vedaldi and Brian Fulkerson. Vlfeat: An open and portable

library of computer vision algorithms. In ACM Multimedia, 2010.

[85] Paul Viola and Michael Jones. Rapid object detection using a boosted

cascade of simple features. In CVPR, 2001.

[86] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu.

Dense trajectories and motion boundary descriptors for action recog-

nition. IJCV, 103(1):60–79, 2013.

[87] Heng Wang, Dan Oneata, Jakob Verbeek, and Cordelia Schmid. A

robust and efficient video representation for action recognition. IJCV,

2015.

[88] Heng Wang and Cordelia Schmid. Action recognition with improved

trajectories. In ICCV, 2013.

118



[89] Heng Wang and Cordelia Schmid. Lear-inria submission for the thu-

mos workshop. In ICCV Workshop, 2013.

[90] Heng Wang, Muhammad Muneeb Ullah, Alexander Klaser, Ivan

Laptev, and Cordelia Schmid. Evaluation of local spatio-temporal

features for action recognition. In BMVC, 2009.

[91] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with

trajectory-pooled deep-convolutional descriptors. In CVPR, 2015.

[92] Limin Wang, Yuanjun Xiong, Zhe Wang, and Yu Qiao. Towards

good practices for very deep two-stream convnets. arXiv preprint

arXiv:1507.02159, 2015.

[93] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xi-

aoou Tang, and Luc Van Gool. Temporal segment networks: towards

good practices for deep action recognition. In ECCV, 2016.

[94] Zhongwen Xu, Yi Yang, and Alex G Hauptmann. A discriminative

cnn video representation for event detection. In CVPR, 2015.

[95] Xiaodong Yang, Pavlo Molchanov, and Jan Kautz. Multilayer and

multimodal fusion of deep neural networks for video classification. In

ACMMM, 2016.

[96] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijaya-

narasimhan, Oriol Vinyals, Rajat Monga, and George Toderici. Be-

yond short snippets: Deep networks for video classification. In

CVPR, 2015.

[97] Christopher Zach, Thomas Pock, and Horst Bischof. A duality based

approach for realtime tv-l 1 optical flow. In Pattern Recognition.

2007.

119



[98] Bowen Zhang, Limin Wang, Zhe Wang, Yu Qiao, and Hanli Wang.

Real-time action recognition with enhanced motion vector cnns. In

CVPR, 2016.

[99] Xi Zhou, Kai Yu, Tong Zhang, and Thomas S Huang. Image clas-

sification using super-vector coding of local image descriptors. In

Computer Vision–ECCV 2010, pages 141–154. 2010.

[100] Jun Zhu, Baoyuan Wang, Xiaokang Yang, Wenjun Zhang, and

Zhuowen Tu. Action recognition with actons. In ICCV, 2013.

120


	Introduction
	Video classification with densely extracted HOG/HOF/MBH features: an evaluation of the accuracy/computational efficiency trade-off
	Introduction
	Related work
	Bag-of-Words for video
	Descriptor extraction
	Visual word assignment
	Classification

	Experiments
	Dataset
	Visual word assignment
	Comparison with Laptev et al.
	Subsampling video frames
	Choice of Optical Flow
	Recommendations for practitioners
	Comparison to state-of-the-art

	Conclusion

	Efficient Human Action Recognition using Histograms of Motion Gradients and VLAD with Descriptor Shape Information
	Introduction
	Related work
	Proposed HMG method for descriptor extraction
	Histograms of Motion Gradients (HMG)
	Speed-up HMG extraction

	Proposed SD-VLAD method for descriptor encoding
	VLAD representation
	Shape Difference for VLAD

	Experimental Evaluation
	Datasets
	Experimental setup
	Comparison to dense descriptors
	Feature Encoding
	Comparison with Improved Dense Trajectories
	Frame subsampling
	Real-time video classification
	Comparison to state-of-the-art

	Conclusion

	Spatio-Temporal Vector of Locally Max Pooled Features for Action Recognition in Videos
	Introduction
	Related work 
	Proposed ST-VLMPF encoding method 
	Local deep features extraction 
	Experimental Evaluation 
	Datasets
	Experimental setup
	Parameter tuning
	Comparison to other encoding approaches
	Fusion strategies
	Comparison to state-of-the-art

	Conclusion 

	Conclusions and Future Work
	Bibliography

