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Abstract 

Remote sensing techniques could enable remarkable advances in characterizing rivers 

hydromorphology by providing spatially and temporally explicit information. Remote mapping of 

hydromorphology can play a decisive role in a wide range of river science and management 

applications including habitat modeling and river restoration. High resolution satellite imagery 

(HRSI) has recently emerged as potentially powerful means of mapping riverine environments. 

This research aims to develop advanced methodologies for processing HRSI to map and quantify a 

set of key hydromorphological attributes including: (1) river boundaries, (2) bathymetry and (3) 

riverbed types and compositions. 

Boundary pixels of rivers are subject to spectral mixture that limits the accuracy of river areas 

extraction using conventional hard classifiers. To address this problem, unmixing and super 

resolution mapping (SRM) are focused as two steps, respectively, for estimation and then spatial 

allocation of water fractions within the mixed pixels. Optimal band analysis for NDWI (OBA-

NDWI) is proposed to identify the pair of bands for which the NDWI values yield the highest 

correlation with water fractions. The OBA-NDWI then incorporates the optimal NDWI as a 

predictor of water fractions through a regression model. Water fractions obtained from the OBA-

NDWI method are benchmarked against the results of simplex projection unmixing (SPU) 

algorithm. The pixel swapping (PS) and interpolation-based algorithms are applied on water 

fractions for SRM. In addition, a simple modified binary PS (MBPS) algorithm is proposed to 

reduce the computational time of the original PS method. Water fractions obtained from the 

proposed OBA-NDWI method are demonstrated to be in good agreement with those of SPU 

algorithm (R2=90%, RMSE=7% for WorldView-2 (WV-2) image and R2=87%, RMSE=9% for 

Geoeye image). The spectral bands of WV-2 provide a wealth of choices through the proposed OBA-

NDWI to estimate water fractions. The interpolation-based and MBPS methods lead to sub-pixel 

maps comparable with those obtained using the PS algorithm, while they are computationally more 

effective. SRM algorithms improve user/producer accuracies of river areas about 10% with respect 

to conventional hard classification. 

This research introduces multiple optimal depth predictors analysis (MODPA) that combines 

previously developed depth predictors along with other measures such as the intensity components 

of HSI color space. To avoid over-fitting of the linear model, statistically optimal predictors are 

selected based on one of partial least square (PLS), stepwise and principal component (PC) 

regressions. The primary focus of this study is on shallow and clearly flowing streams where 
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substrate variability could have pronounced effect on depth retrievals. Spectroscopic experiments 

are performed in controlled condition of a hydraulic laboratory to examine the robustness of 

bathymetry models with respect to changes in bottom types. Further, simulations from radiative 

transfer modeling are used to extend the analysis by isolating the effect of inherent optical 

properties (IOPs) and also by investigating the performance of bathymetry models in optically 

complex and also deeper streams. Bathymetry of Sarca, a shallow river in Italian Alps, is also 

mapped using a WorldView-2 (WV-2) image where the atmospheric compensation (AComp) 

product is evaluated for the first time. Results indicate the robustness of multiple-predictor models 

particularly MODPA rather than single-predictor models such as optimal band ratio analysis 

(OBRA) with respect to heterogeneity of bottom types, IOPs and atmospheric effects. This study 

suggests extra predictors when the multiple regression is assisted with an optimal predictors 

selection process (e.g. MODPA). The extra predictors enhance the accuracy of depth retrievals 

particularly in optically complex waters and also for low spectral resolution imagery (e.g. GeoEye). 

Further, enhanced spectral resolution of WV-2 compared to GeoEye improves the bathymetry 

retrievals. MODPA based on PLS regression provided improvements on the order of 0.05 R2 and 

0.7 cm RMSE compared to multiple Lyzenga and 0.18 R2 and 2 cm RMSE compared to OBRA using 

AComp reflectances of WV-2 for Sarca River with a maximum 0.8 m depth. In addition, a 

theoretical approach namely hydraulically assisted bathymetry (HAB) is assessed and further 

modified for calibration of bathymetry models that provided comparable results with the empirical 

calibration approach. 

Substrate mapping in fluvial systems has not received as much attention as that in nearshore 

optically shallow waters of inland and coastal areas. The research to date has been primarily based 

on surface spectral reflectance data without accounting for water column attenuations. This study 

aims at retrieving the bottom reflectances in shallow rivers and then examining the effectiveness of 

inferred bottom spectra in mapping of substrate types. Bathymetry and diffuse attenuation 

coefficient (kd) are derived from above-water reflectances for which some in-situ/known depths are 

required. Following the retrievals of depth and kd, bottom reflectances are estimated based on a 

water column correction method. Moreover, the efficacy of vegetation indices (VIs) is examined for 

making distinction among the densities of submerged aquatic vegetation (SAV) using either above-

water or retrievals of bottom reflectances. This research benefits, for the first time, from three 

different approaches including controlled spectroscopic measurements in a hydraulic lab, 

simulations from radiative transfer modeling and an 8-band WordView-3 (WV-3) image. The 

results indicate the significant enhancements of streambed mapping using inferred bottom 

reflectances than using above-water spectra. This is evident, for instance, on clustering of three 

bottom types using simulated spectra with 20% enhancement of overall accuracy. Deep-water 
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correction demonstrated to have most of an impact on retrievals of bottom reflectances only in NIR 

bands when the water column is relatively thick (> 0.5 m) and/or when the water is turbid. The 

red-edge (RE) band of WV-3/WV-2 improves remarkably the detection of SAV densities based on 

the VIs either using above-water or retrieved bottom spectra. Further, the simulated spectra 

suggest that enhanced spectral resolution of 8-band WV-3 leads to improvements in streambed 

mapping compared to traditional 4-band imagery. This study demonstrated the feasibility of 

retrieving bottom reflectances and mapping SAV densities from space in a shallow river using the 

WV-3 image (user and producer accuracies of 67% and 60% in average for three levels of SAV 

densities). Moreover, the feasibility of mapping grain size classes is assessed using spectral 

information based on laboratory experiments coupled with simulations. The changes in grain sizes 

affect the magnitude of reflectances while the shape of spectra remains almost identical. This 

characteristic feature demonstrated high potentials for mapping grain size classes by retrieving the 

bottom reflectances. 

In summary, HRSI provided promising results and effective means of mapping the selected 

hydromorphological attributes of shallow rivers in spatially continuous and in large extents. 
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1.1 Rivers Hydromorphology 

Fluvial geomorphology, hydraulics and hydrology are closely linked to each other so that their 

relevant attributes are frequently described together as ―hydromorphology‖ (Orr et al., 2008, 

Vaughan et al., 2009; Belletti et al., 2014; Woodget, 2015; Rinaldi et al., 2017). The key attributes 

describing the hydromorphology of rivers encompass dimensions and shape of the channel, 

continuity and connectivity of the stream, inclination or slope angle of the channel, bed 

topography, substrate type and size, water depth and flow velocity. The description of a river 

system can be enhanced by means of knowledge about hydrological and geomorphological 

processes (e.g. sediment transport), and the spatiotemporal arrangement of the 

hydromorphological units (Poff et al., 1997; Maddock, 1999; Gilvear et al., 2004; Vaughan et al., 

2009). 

Mapping and monitoring of rivers hydromorphological features are of particular importance in 

river restoration (Sundermann et al., 2011; Poppe et al., 2016; Pi gay et al., 2016; Marteau et al., 

2017), characterizing aquatic habitats (Parasiewicz, 2007; Conallin et al., 2010; Bergeron and 

Carbonneau, 2012; Demarchi et al., 2016; Belletti et al., 2017), making linkages between physical 

and biological conditions of riverine environments for understanding biodiversity and ecosystem 

functioning (Poole, 2010; Elosegi et al., 2010; Belletti et al., 2017), hazard identifications and 

management applications (Legleiter et al., 2002; Neal et al., 2009; Bizzi et al., 2016; Rinaldi et al., 

2017). More specifically, assessment of hydromorphological conditions of river systems could be 

considered as the backbone of common habitat simulation models such as MesoHABSIM 
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(Parasiewicz, 2001). In this regard, there is a very close correspondence between 

hydromorphological units and meso-habitats so that they are usually used as synonyms 

(Parasiewicz, 2001; Maddock and Bird, 1996). 

The hydromorphology and ecology of fluvial systems interact through complex processes that 

opens up interdisciplinary researches for managing and conservation of rivers and enhancement 

of ecosystem services (Vaughan et al. 2009; Meitzen et al., 2013; Rinaldi et al., 2017). These 

interactions have recently received many attentions so that an ―ecohydromorphology‖ field has 

been suggested for further developments in river sciences (Clarke et al., 2003; Vaughan et al. 

2009; Meitzen et al., 2013). A schematic overview of interactions among geomorphology, 

hydrology and ecology of riverine systems is illustrated in Figure 1.1. 

 

 

 

 

 

 

 

Figure 1.1 The structure of direct and indirect interactions among hydrology, geomorphology and ecology 

at different scales (Trepel and Kluge, 2002). 

Hydromorphological attributes of rivers are traditionally being mapped based on field surveys 

(Vezza et al., 2014; Belletti et al., 2017). Field measurements are based on series of survey forms 

and can be supported by topographic instruments (e.g. total stations, GPS devices) and mobile 

mapping tools (e.g. ArcPAD, QGIS Mobile) to record spatial features of hydromorphological 

attributes along with parameters such as flow depth and velocity and substrate type (Parasiewicz, 

2007; Vezza et al., 2014; Belletti et al., 2017). However, filed surveys are subject to fundamental 

shortcomings so that ―they do not meet the requirements of the increasingly recognized 

‘riverscape’ paradigm (Woodget, 2015)‖. In-situ observations are limited to small spatial extents 
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of accessible reaches and at discrete sampling locations (Moody and Troutman, 2002, Leckie et 

al., 2005; Carbonneau and Piégay, 2012; Marcus et al., 2012; Woodget, 2015). Further, the 

frequency of field-based measurements is not sufficient enough for understanding temporal 

variability of hydromorphological attributes (Poole et al., 1997; Leuven et al., 2002; Legleiter et 

al., 2002; Casado et al., 2015). In-situ measurements are time/cost consuming and rely on the 

expertise of the surveyor for the identification of hydromorphological features that hinders the 

objective reassessment of field records (Casado et al., 2015; Bizzi et al., 2016). In this regard, 

remote sensing provides alternative for mapping and characterization of riverine systems. In this 

work, original methodologies are presented to extract key hydromorphological attributes 

including river boundaries, bathymetry and riverbed properties for high resolution satellite 

imagery (HRSI). 

1.2 Remote Sensing of Hydromorphology 

Remote sensing techniques can be an alternative to traditional field-based measurements and 

also have the potential to enhance our understanding of fluvial systems by providing spatially and 

temporally explicit information (Marcus and Fonstad, 2008; Marcus and Fonstad, 2010; Legleiter 

and Overstreet, 2012; Shintani and Fonstad, 2017; Demarchi et al., 2017). Remote sensing and 

image processing techniques have long been interesting for a wide range of fluvial science and 

management applications (Winterbottom and Gilvear, 1997; Legleiter et al., 2002; Marcus et al, 

2003; Leckie et al., 2005; Legleiter, 2013; Marcus and Fonstad, 2010; Hugue et al., 2016). With 

the advancement of aerial imagery, remotely mapping of rivers at large scales also has been 

emerged and developed. However, interpretation of airborne images in conjunction with field 

observations has been used generally for mapping of usually single or limited number of 

attributes (Lapointe and Carson, 1986; Gilvear et al., 1995; Gilvear et al., 1999; Leuven et al., 

2002; Gilvear and Bryant, 2003; Bertoldi et al., 2011). 

Remotely sensed data from either active or passive sensors has been used for characterization of 

different hydromorphological attributes. Synthetic aperture radar (SAR) is used for mapping 

flood extents and to extract some basic geometric features such as channel dimensions and 
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planforms as well as monitoring river morphology (Neal et al. 2009; Mitidieri et al., 2016). Light 

detection and ranging (LiDAR) data providing digital surface models (DSMs) can be used for 

inferring channel slope and dimensions (Biron et al. 2013). Optical imagery (multi/hyperspectral) 

are frequently used for mapping and monitoring of different hydromorphological attributes such 

as delineation of river area (Fisher et al. 2013; Niroumand-Jadidi and Vitti, 2015) and bathymetry 

(Winterbottom and Gilvear, 1997; Legleiter, 2013; Niroumand-Jadidi and Vitti, 2016b). Marcus et 

al. (2003) used airborne 128-band hyperspectral imagery with high spatial resolution (1 m) to 

map in-stream habitats, depths, and woody debris where they found good agreements with field 

observations. Pi gay et al. (2009) used aerial photographs for spatiotemporal census 

investigation of braided rivers in the French Alps. Legleiter (2012) investigated the mapping of 

river channel form by fusion of LiDAR and optical imagery. Michez et al. (2013) characterized 

several attributes of riparian zones using aerial LiDAR data applied to Houille river (Belgium and 

France). Demarchi et al. (2016) delineated in-stream mesohabitats of Orco river (Italy) with very 

high accuracy based on an object-based classification and by fusing very high resolution (0.4 m) 

airborne imagery and LiDAR point clouds. Demarchi et al. (2017) produced a database of 

hydromorphological attributes for a large area of river floodplains using very high resolution (0.4 

m) aerial imagery and low-resolution LiDAR data. There are several research concerned with 

grain size mapping using optical imagery that they are mostly based on texture analysis over 

exposed bed materials (Adams, 1979; Ibbeken and Schleyer, 1986; Butler et al., 2001; Carbonneau 

and Lane 2004; Arif et al., 2016). For instance, Carbonneau and Lane (2004) used airborne 

digital imagery for mapping grain sizes of exposed bed materials along river channel where they 

found that only very high resolution imagery (3 cm) allow automated grain size mapping based on 

analyzing the texture or local image semivariance. 

The advancement of water-penetrating green LiDAR systems has recently opened up new 

possibilities for studying rivers hydromorphology (Kinzel et al., 2013; Legleiter et al., 2016). Using 

green/bathymetric LiDARs, it is possible to infer water depths and map submerged and surface 

elevations without using any field data for calibration (Legleiter et al., 2016). Kinzel et al. (2013) 

evaluated the potentials of green LiDAR for mapping the bathymetry of rivers. Mandlburger et al. 

(2015) developed techniques for modeling the water surface and depth using airborne 
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bathymetric LiDAR in order to map and monitor hydromorphological units in Pielach river 

(Austria). Pan et al. (2015) proposed a continuous wavelet based approach for processing high 

resolution airborne full waveform LiDAR for bathymetry of Snake, Blue and Colorado rivers 

(USA). Legleiter et al. (2016) compared the capabilities of hyperspectral imagery and bathymetric 

LiDAR for depth retrievals in a range of riverine environments with different optical properties of 

water column. They found that bathymetric LiDAR yield relatively low accuracies so that unable 

to detect very shallow depths (< 10 cm deep). 

Remote sensing using unmanned aerial vehicles (UAVs) has received growing recent interest for 

characterizing rivers hydromorphology (Overstreet and Legleiter, 2017). Flynn and Chapra (2014) 

used an RGB digital camera mounted on a UAV for mapping green algae of Clark Fork river 

(USA) with shallow and clearly flowing water. Tamminga et al. (2015) used a small quadcopter 

UAV to map a set of hydromorphological attributes including bathymetry, grain sizes, undercut 

banks, forested channel margins, and large woods for suitability analysis of aquatic habitat in 

Elbow river (Canada). Visser et al. (2015) investigated the bathymetry mapping of Wylye and 

Frome rivers (UK) using spectral measurements from a UAV. Bathymetric LiDAR systems are 

also becoming available for UAVs with some applications for mapping rivers hydromorphology 

(Mandlburger et al. 2016). 

Structure-from-motion photogrammetry (SfM) has been also recently emerged as an advancing 

tool for studying fluvial hydromorphology (Fonstad et al. 2013; Marteau et al., 2017). SfM is 

capable of generating three dimensional (3D) geometry of a scene using a series of overlapping 

2D images (Woodget, 2015). Fonstad et al. (2013) demonstrated the applicability of SfM for 

producing digital elevation models (DEMs) of riverine environments from low-altitude platforms. 

Javernick et al. (2014) performed a comprehensive analysis on terrain models achieved from SfM 

techniques in braided Ahuriri river (New Zealand). Woodget (2015) demonstrated the potentials 

of SfM techniques applied to imagery acquired by a UAV for mapping key in-stream habitat 

indicators including topography and flow depth, substrate size and surface flow types. More 

recently, the application of SfM photogrammetry has been explored for mapping and evaluation 

of the geomorphic changes associated with river restoration actions based on UAV observations 

(Marteau et al., 2017). 
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The increased number of satellite missions together with the enhancements in spatial and 

spectral resolutions can also provide remarkable benefits for fluvial studies (Legleiter and 

Overstreet, 2012; Hugue et al., 2016; Niroumand-Jadidi and Vitti, 2016a). More specifically, 

advances in simultaneous acquisition of both high spatial and spectral resolutions from 

spaceborne sensors can lead potentially to interesting applications for fluvial studies applicable 

even for small rivers (Legleiter and Overstreet, 2012; Hugue et al., 2016; Niroumand-Jadidi and 

Vitti, 2016b). For instance, WorldView-2 (WV-2) provides 1.85 m spatial resolution with 8 

multispectral bands (see Table 1.1) that recently have been used for river bathymetry (Legleiter 

and Overstreet, 2012; Niroumand-Jadidi and Vitti, 2016a; Niroumand-Jadidi and Vitti, 2016b). 

On the other hand, the recently launched twin satellites of Sentinel-2A and Sentinel-2B provide 

medium resolution images (10-60 m) with high spectral and temporal resolution which are freely 

available for public. Applications of Sentinel-2 data in fluvial hydromorphology have been 

emerged in a few recent researches such as for grain size mapping (Marchetti, 2017). 

Marcus and Fonstad (2010) announced the emergence of a major sub-discipline in river sciences 

termed ―Fluvial Remote Sensing‖ due to the growing integration of remote sensing and fluvial 

studies. Considering the more recent advances in fluvial remote sensing according to the 

abovementioned elements, the remote sensing of fluvial systems is now in a revolutionary era. 

These key elements are summarized in Figure 1.2. 
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Figure 1.2 The recent key advances revolutionizing the remote sensing of fluvial systems. 

Although airborne and UAV-based sensors can provide high-resolution data, either spatially or 

spectrally, they are limited in terms of spatial coverage, temporal resolution and accessibility to 

remote areas. In contrast, spaceborne sensors provide global spatial coverage with high temporal 

resolution that can facilitate long-term and large-scale studies of rivers. Whited et al., (2011) used 

imagery from Landsat and Quickbird satellites for analyzing some geometric features of Pacific 

Rim rivers (e.g. channel length, sinuosity, number and density of nodes) as well as the percentage 

of wetted and vegetated areas. An object-based classification approach has been applied on 

Landsat and Aster imagery for mapping of some hydromorphological attributes including 

whitewater (an indicator for water turbulence in order to identify rapids, pools, etc.), islands and 

bank cover as well as qualitative depth classes in Congo River (Ridgeway, 2006). 

With the recent enhancements in spatial resolution of the satellite sensors, new opportunities 

have emerged for fluvial applications and in particular for studying small/medium rivers 

(Legleiter and Overstreet, 2012; Hugue et al., 2016). Legleiter and Overstreet (2012) performed a 

feasibility analysis on mapping river bathymetry from space and using WV-2 imagery. Hugue et 
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al., (2016) used WV-2 image to map structural patterns in hydraulic habitat availability of the 

Kiamika River (Canada) by inferring the water depths based on empirical ratio models and then 

cross-sectional estimations of flow velocity assuming a known discharge. 

1.2.1 High Resolution Satellite Imagery (HRSI) 

This section summarizes specifications of the main high resolution satellites including WV-2 and 

GeoEye which are used in this study. There have been dramatic enhancements in the highest 

spatial resolution achieved from satellites since the launch of first earth observation satellite in 

1972 (Figure 1.3). 

 

Figure 1.3 Time evolution of the highest resolution multispectral sensors onboard land imaging civilian 

satellites adapted from (Belward and Skøien, 2015). Note that the resolutions are shown with a logarithmic 

scale. 

With the launch of first high resolution satellite (IKONOS) in 1999, new opportunities opened up 

for studying land/water surfaces at high spatial resolution. A decade later, a new generation of 

HRSI became available with the launch of WV-2 satellite. WV-2 is the first satellite which 

provides a unique combination of high spatial and spectral resolutions (DigitalGlobe, 2009). The 

previous multispectral high resolution sensors (e.g. IKONOS, QuickBird, Geoeye) record the 

spectral responses of land/water surfaces in three visible bands (RGB) and one near-infrared 

(NIR) band. This is while, WV-2 provides 8 spectral bands ranging from visible (400 nm) to NIR 

(1040 nm) at a spatial resolution of 1.84 m (Table 1.1). In addition to the traditional RGB-NIR 

bands, four new spectral bands have been added which include coastal blue (400-450 nm), yellow 
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(585-625 nm), red-edge (705-745 nm) and NIR-2 (860-1040 nm). The main specifications of high 

spatial resolution satellites are listed in Table 1.1. Note that this table includes only satellites 

launched by DigitalGlobe Company which are the main and widely used sensors for remote 

sensing applications at high resolution. The WV-3 satellite launched in 2014 is the first super-

spectral sensor that provides 8 additional bands in shortwave infrared (SWIR). The very recent 

satellite of DigitalGlobe namely WV-4 provides RGB-NIR bands as continuity of the previous 4-

band missions. 

Table 1.1 High resolution satellites launched by DigitalGlobe (2017) and their specifications. Pan and 

MS denote panchromatic and multispectral, respectively. 

Satellite 
Launch 
year 

Swath 
width 

Spatial 
resolution 

Spectral resolution 
Dynamic 

range 

Average 

revisit at 

40°N 

latitude 

IKONOS 1999 11.3 km 
Pan: 0.82 m 

MS: 3.2 m 

1 Pan Band 

526 – 929 nm 

4 MS Bands 

Blue: 445 – 516 nm 
Green: 506 – 595 nm 
Red: 632 – 698 nm 
NIR: 757 – 853 nm 

11 bits ~ 3 days 

Quickbird 2001 14.9 km 
Pan: 0.55 m 

MS: 2.16 m 

1 Pan Band 

405 - 1053 nm 

4 MS Bands 

Blue: 430 - 545 nm 
Green: 466 - 620 nm 
Red: 590 - 710 nm  
NIR: 715 - 918 nm 

11 bits 2-12 days 

WorldView-1 2007 17.7 km Pan: 0.5 m 
1 Pan Band 

397 – 905 nm 
11 bits 1.7 days 

GeoEye 2008 15.3 km 
Pan: 0.41 m 

MS: 1.64 m 

1 Pan Band 

450–800 nm 

4 MS Bands 

Blue: 450 - 510 nm 
Green: 510 - 580 nm 
Red: 655 - 690 nm  
NIR: 780 - 920 nm 

11 bits < 3 days 

WorldView-2 2009 16.4 km 
Pan: 0.46 m 

MS: 1.85 m 

1 Pan Band 

450–800 nm 

8 MS Bands 

Coastal: 400 - 450 nm 

11 bits 1.1days 
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Blue: 450 - 510 nm 
Green: 510 - 580 nm 
Yellow: 585 - 625 nm 
Red: 630 -690 nm 
Red Edge: 705 - 745 nm 
NIR-1: 770 - 895 nm 
NIR-2: 860 - 1040 nm 

WorldView-3 2014 13.2 km 

Pan: 0.31 m 

MS: 1.24 m 

SWIR: 3.7 m 

CAVIS: 30 m 

1 Pan Band 

450–800 nm 

8 MS Bands 

Coastal: 397–454 nm 
Blue: 445–517 nm 
Green: 507–586 nm 
Yellow: 580–629 nm 8  
Red: 626–696 nm 
Red Edge: 698–749 nm 
NIR-1: 765–899 nm 
NIR-2: 857–1039 nm 

8 SWIR Bands 

SWIR-1: 1184–1235 nm 
SWIR-2: 1546–1598 nm 
SWIR-3: 1636–1686 
nm 
SWIR-4: 1702–1759 nm 
SWIR-5: 2137–2191 nm 
SWIR-6: 2174–2232 
nm 
SWIR-7: 2228–2292 
nm 
SWIR-8: 2285–2373 
nm 

12 CAVIS Bands 

Desert Clouds: 405- 
420 nm 
Aerosol-1: 459- 509 nm 
Green: 525- 585 nm 
Aerosol-2: 635- 685 nm 
Water-1: 845- 885 nm 
Water-2: 897- 927 nm 
Water-3: 930- 965 nm 
Cirrus: 1365 - 1405 nm 
Snow: 1620 - 1680 nm 
Aerosol-1: 2105 - 2245 
nm 
Aerosol-2: 2105 - 2245 
nm 

Pan & MS: 

11 bits 

SWIR: 14 

bits 

1 day 

WorldView-4 2016 13.1 km 

Pan: 0.31 m 

MS: 1.24 m 

 

1 Pan Band 

450–800 nm 

4 MS Bands 

Blue: 450 - 510 nm 
Green: 510 - 580 nm 
Red: 655 - 690 nm  
NIR: 780 - 920 nm 

11 bits 1 day 
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This research benefits from 8-band WV-2 imagery for extractions of hydromorphological 

attributes. In addition, GeoEye images are also used to get more insights into the effectiveness of 

WV-2’s additional bands compared to traditional 4-band HRSI. 

1.2.2 Optical Remote Sensing of Rivers 

This section provides an overview about principles of optical remote sensing over water bodies 

and in particular rivers. Specific theoretical background and state of the art concerned with each 

objective of the research are discussed in details at the beginning of corresponding chapters. 

Passive optical remote sensing has a sound background in coastal research for instance for 

bathymetry, mapping seagrass and coral reef as well as retrieval of water quality indicators 

(Lyzenga, 1978, Lyzenga, 1981; Philpot, 1988; Louchard et al., 2003; Lesser and Mobley, 2007; 

Pahlevan et al., 2017a). The remote sensing techniques for studying inland waters and fluvial 

systems are mainly adapted from the traditional ocean color methods (Legleiter et al., 2004; 

Legleiter et al., 2016b; Niroumand-Jadidi and Vitti, 2016a; Overstreet and Legleiter, 2017). In 

this regard, Legleiter et al. (2004) carried out for the first time a comprehensive study on the 

physical concept of remotely mapping of shallow streams in order to gain insights into potentials 

of optical imagery for studying rivers hydromorphology and in particular bathymetry. In this way, 

they have investigated the radiative transfer model and the interaction of light with different 

environments (i.e. atmosphere, water surface, water column and stream bed) through its 

traveling pass from sun to reflecting back to the sensor. 

In summary, total at-sensor radiance over water bodies (L
T
), encompass four different 

components of radiances upwelling from water body’s bed (L
b
), water column (L

c
), water surface 

(L
S
), and the atmosphere (L

P
). Each component depends on the wavelength (λ) which can be 

associated to a spectral band. The radiance components are summarized in Equation 1.1 and 

shown in Figure 1.4. 

L
T
() = L

b
() + L

c
() + L

S
() + L

P
()                               (1.1) 
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Figure 1.4 Four components involved in the total at-sensor radiance through passive remote sensing of 

shallow to deep waters. 

According to a basic physical concept recognized as Beer-Lambert law, attenuation of the light 

through traveling water column can be described as an exponential model (Equation 1.2) which is 

central for characterizing the effect of water column on total-at-sensor radiance and consequently 

retrieval of key parameters such as water depths and bottom reflectances. 

Downwelling irradiance 
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kdeII  0                                                    (1.2) 

where I0 is the intensity of incident light, e is the Euler number. k stands for the attenuation 

coefficient (a constant indicating the strength of absorption per unit depth) and I is the intensity 

of light in a given water depth of d (Denny, 2003). 

Considering the Beer-Lambert’s law and expanding the Equation 1.1 reveal the main parameters 

involved in passive remote sensing of river bodies: 

LT = Ed CT(Rb − Rc)exp(−kd) + EdCTRc + TLk + LP                          (1.3) 

where Ed is the downwelling solar irradiance. Rb and Rc denote the bottom and volume reflectance 

of water body, respectively. C and T stand for transmission across air–water interface and 

atmosphere transmittance, respectively. The reflectance of the air–water interface is denoted by 

. Diffuse sky radiance and path radiance from the atmosphere are denoted by Lk and Lp, 

respectively. 

Aside Lp, each of the above-mentioned radiance components can be associated to a specific 

property of the water body. For instance, surface component of the radiance can be linked to the 

roughness of the water surface which in turn is a function of local hydraulics in riverine 

environments and can potentially reveal information about the flow velocity (Overstreet and 

Legleiter, 2017). The bathymetry information is embedded in the bottom component of radiance 

which is affected not only by water depth but also by the bottom type (Lee et al., 1998; Stumpf et 

al., 2003; Legleiter et al., 2009). Thus, in order to retrieve the water depth, it is essential to 

remove or reduce the following effects from total at-sensor radiance: (a) radiance components 

upwelling from water column, water surface and the atmosphere, and (b) substrate variability 

(Legleiter et al., 2004; Legleiter et al., 2009). As evident in Figure 1.4, bottom reflected radiance 

is the dominant component of total at-sensor radiance with respect to the signal upwelling from 

water body in shallow waters and it would be negligible over deep waters (Legleiter et al., 2004; 

Legleiter et al., 2009; Niroumand-Jadidi and Vitti, 2016a). This would be beneficiary for 

bathymetry retrieval in shallow rivers due to having a strong signal from bottom. However, the 

substrate variability can complicate depth retrievals. 
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In summary, it is essential to isolate the radiance component of interest or to reduce the effect of 

other undesirable components to retrieve a parameter of interest. The radiance components and 

their affecting parameters are listed in Table 1.2. For instance, the component of radiance 

associated with the water column is affected by the inherent optical properties (IOPs) of the water 

column including total suspended sediment (TSS), chlorophyll-a (Chl-a) and colored dissolved 

organic matter (CDOM). 

Table 1.2 The radiance components of total at-sensor radiance observed over river bodies and their 

influencing parameters, adapted from (Legleiter et al., 2004 and Legleiter et al., 2009). 

 

 

 

 

 

In this work, a set of spectra is simulated using Hydrolight radiative transfer modeling (Mobley 

and Sundman, 2008) in order to understand the spectral responses of shallow waters with respect 

to some of abovementioned parameters including water depth, bottom type, TSS and CDOM. 

Figure 1.5 shows the remote sensing reflectances (Rrs) defined as ratio of water-leaving radiance 

to the total downwelling irradiance just above water (Mobley, 1994). The spectra are convolved to 

match the spectral bands of WV-2 sensor which is the satellite of interest in this research. As 

shown in Figure 1.5a, the long wavelengths (NIR) are very sensitive to the changes in water 

depths in very shallow waters. This is unlike the relatively deep waters in coastal environments 

where NIR bands become saturated due to the strong absorption by pure water in this spectrum. 

The substrate type also affects the spectra, which are illustrated for three different materials in a 

constant water depth and IOPs (Figure 1.5b). The impacts of changes in TSS and CDOM are also 

illustrated in Figures 1.5c and 1.5d, respectively. As evident, the increased TSS make the water 

appear brighter which is due to increased volume scattering within the water column (Legleiter et 

al., 2009). The increase in CDOM increases the absorption of light in short wavelengths (Mobley, 

1994). 

Radiance component Influencing parameters 

Stream bed water depth, substrate type 

Water column TSS, Chl-a, CDOM 

Water surface  surface roughness and viewing geometry 

Atmosphere water vapor, aerosols, etc. 
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                             (a) Variable water depth                              (b) Variable bottom type  

  

                                     (c) Variable TSS                                 (d) Variable CDOM  

Figure 1.5 Rrs of shallow waters in a range of (a) water depths, (b) bottom types, (c) CDOM and (d) TSS. 

The values of CDOM are expressed by the absorption coefficient (aCDOM) at the 440 nm. The fixed 

parameters where applicable are as follows: dolomite bottom type, 0.5 m water depth, TSS=3 g/m3, Chl-a= 2 

mg/m3 and aCDOM= 0.14 1/m. 

These illustrations from radiative transfer modeling show some simple examples about the 

spectral signature of shallow waters associated with riverine environments in a range of 

parameters. In this work also spectroradiometric experiments are conducted along with 

simulations to develop and assess the methods in line with the research objectives. 

1.3 Research Objectives 

This research aims to develop advanced methods for analyzing HRSI to map and quantify three 

fundamental hydromorphological aspects of riverine environments including: (a) river 

boundaries, (b) bathymetry and (c) riverbed types and compositions. Comprehensive assessments 
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are conducted to elaborate the capabilities of 8-band WV-2 and 4-band GeoEye imagery for 

extraction of aforementioned hydromorphological elements. The research gaps followed by the 

objectives of this study are presented in the following for each of three topics. 

 Delineation of river boundaries 

The extraction of river boundaries is an essential aspect of characterizing the hydromorphology of 

a river (Güneralp et al., 2014; Demarchi et al., 2017). The common methods for delineation of 

river areas from optical imagery rely on hard classification approaches where each pixel can be 

assigned to a single land cover class such as water or non-water classes (Mather, 2004; Foody, 

2006). This approach is subject to uncertainty when dealing with the mixed pixels that the 

presence of which is remarkably pronounced at river boundaries. The pixels forming the river 

boundaries are mostly mixed with the riparian zone so that hard labeling of pixels lead to 

uncertainties by neglecting decomposition of the spectral mixture. This can affect the estimation 

of wetted area, construction of cross-sections and consequently the accuracies of estimating 

hydraulic parameters such as discharge and cross-sectional velocity (Jiang et al., 2014; Wang et 

al., 2015b; Horkaew and Puttinaovarat, 2017). To tackle this problem, this research aims at 

reconstruction of river boundaries at sub-pixel resolution considering the spectral mixture issue. 

In this regard, two key steps are followed: (a) estimation of water fractions (i.e. unmixing) and 

then (b) spatial allocation of the fractions (i.e. super resolution mapping, SRM) within the mixed 

pixels. The following specific objectives are followed accordingly: 

 developing a new method based on normalized difference water index (NDWI) to 

estimate water fractions and assessing the method’s performance with respect to an 

advanced existing unmixing algorithm; 

 spatial allocation of water fractions based on known SRM methods (e.g. pixel swapping) 

and enhancement of the methods to speed-up the mapping processes; 

 assessing the impact of unmixing process on the final sub-pixel map by applying the SRM 

methods to semi-simulated fractions; 

 assessing the accuracies of river boundaries extracted at sub-pixel resolution and 

comparing them to the conventional hard classification methods; 
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 assessing the potentials and drawbacks of conventional threshold-based methods for 

hard classification of water bodies; 

 assessing the effectiveness of additional bands of WV-2 for extraction of river boundaries 

compared to the GeoEye imagery. 

 River bathymetry 

Bathymetry of rivers is still little explored from space and the techniques are being recently 

translated from conventional methods of ocean color remote sensing. Lyzenga’s model (Lyzenga, 

1978; Lyzenga, 1981) and optimal band ratio analysis (OBRA) developed by Legleiter et al. (2009) 

are the main empirical techniques to retrieve bathymetry from optical imagery. The existing 

models assume a linear relation between image-derived predictor/s and water depths either using 

single bands or band ratios. However, these methods are built solely upon single/multiple 

Lyzenga predictor/s or a single ratio predictor through a linear regression model. In this research, 

existing depth predictors and also some extra predictors are combined to take advantage from 

multiple informative predictors. Statistically significant predictors are then selected as optimal 

predictors for mapping the bathymetry. Further, a thorough analysis is conducted on the 

performance of proposed method compared to the existing methods with respect to several 

parameters affecting the optical properties of river bodies. The main objectives are listed as 

follows: 

 developing a new method for bathymetry retrieval based on combining existing 

predictors and also defining extra predictors from color space transformation; 

 selection of the optimal predictors based on partial least squares (PLS), stepwise and 

principal component (PC) regressions; 

 assessing the performance of proposed bathymetry method compared to other techniques 

with respect to factors complicating the optical properties of river body including: 

variations in bottom types and IOPs (Chl-a, TSS and CDOM) and also atmospheric 

effects; 

 assessing and modification of a theoretical approach for calibration of bathymetry 
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models; 

 taking the advantage from spectroradiometric experiments and radiative transfer 

modeling to assess the performance of models with controlled parameters; 

 assessing the potentials of WV-2’s additional bands for river bathymetry. 

 Riverbed mapping 

Mapping of riverbed types and compositions is a very recent application of remote sensing to 

fluvial systems (Legleiter et al., 2016b). However, most of the existing research attempted to map 

the bottom properties in very shallow rivers without considering the attenuation effects of the 

water column. This research aims to adapt the techniques from ocean color remote sensing in 

order to estimate the diffuse attenuation coefficient (kd) and then to retrieve the bottom 

reflectances. The effectiveness of retrieved bottom reflectances is assessed for riverbed mapping 

and in particular for classification of the submerged aquatic vegetation (SAV) densities. The 

following objectives are then perused: 

 retrieving the kd parameter using above-water spectra for some know water depths; 

 assessing the accuracies of bottom reflectance retrievals in visible and NIR bands; 

 assessing the effect of deep-water correction on bottom reflectance retrieval and 

streambed mapping; 

 assessing the effectiveness of bottom reflectance retrievals compared to the above-water 

spectra for classification of the riverbed; 

 assessing different vegetation indices for estimation of SAV densities using either 

retrieved bottom reflectances or above-water spectra; 

 taking the advantage from spectroradiometric experiments and radiative transfer 

modeling to assess the performance of bottom reflectance retrieval with controlled 

parameters; 

 evaluating the potentials of WV-2’s additional bands for streambed mapping and in 

particular the effectiveness of red-edge band for detection of SAV densities. 
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1.4 Thesis Structure 

The thesis is structured in five chapters which is illustrated in Figure 1.6. Chapters 2, 3 and 4 are 

associated with one of the hydromorphological elements considered in this study: delineation of 

river boundaries, bathymetry and riverbed mapping, respectively. Each of these chapters includes 

an introductive section presenting the state of the art and background information. As data and in 

particular spectroradiometric experiments and simulations are slightly different for each element, 

the dataset and experiments setup are then described for each chapter individually. Then the data 

analysis and results are presented in each chapter. Finally, Chapter 5 provides an overview and 

discussions about the key findings from each chapter along with making some suggestions for 

future works. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Thesis structure and main aspects of each chapter.  
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2 Chapter 2: Delineation of River Boundaries 

 

 

 

 

 

 

2.1 Introduction 

Extraction of river area is the primary task required for a wide range of remote sensing 

applications in fluvial systems spanning from hydrological, ecological, and morphological studies 

to mapping the habitat suitability for different aquatic species (Legleiter et al., 2004; Marcus and 

Fonstad, 2010; Hirpa et al., 2013; Feyisa et al., 2014; Güneralp et al., 2014). Thresholding on 

spectral bands (e.g. NIR band) or on water indices such as normalized difference water index 

(NDWI), as well as image classification (supervised or unsupervised) are the main techniques for 

delineation of water bodies from optical imagery (Jiang et al., 2014; Xie et al., 2016). However, 

most of the techniques consider a hard labeling approach for producing the water mask. This 

means that mixtures within the pixels are considered very roughly so that each pixel can be 

assigned to only a single water/non-water class which represents the most abundant class within 

the pixel. The spectral mixture can occur at every spatial resolution, particularly in the boundary 

pixels (Mather, 2004; Foody, 2006). This point deserves more attention in terms of remotely 

mapping of rivers, as the boundaries of river channels are inevitably subject to uncertainties 

concerned with mixture of water with surrounding land covers. Mixed boundary pixels can 

suppress the extraction of river area, geometric features, as well as construction of cross-sections. 

Accordingly, accurate mapping of river area and construction of boundaries can play a decisive 

role in studying rivers morphodynamics, ecological restoration, estimation of hydraulic 

parameters (e.g. discharge) and management of water resources (Jiang et al., 2014; Wang et al., 

2015b; Horkaew and Puttinaovarat, 2017). 
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To address the problem of spectral mixture, a wide variety of unmixing and soft classification 

algorithms including physics-based and data driven techniques are developed (Keshavaand and 

Mustard, 2002; Bioucas-Dias et al., 2012; Heylen et al., 2014; Tran et al., 2014). These techniques 

estimate the fraction of each class within the pixels and is representing on a set of grayscale 

images. Although soft classifiers can reveal sub-pixel information, spatial distribution of fractions 

still remains unknown. To tackle this problem, super resolution mapping (SRM) techniques such 

as pixel swapping (Atkinson, 2005) are developed in order to spatially allocate the sub-pixels 

corresponding to fractions obtained from soft classification. 

This research aims first at the estimation of water fractions within the mixed pixels (i.e. 

unmixing) and then at the spatial allocation of corresponding sub-pixels (i.e. SRM) in order to 

map river boundaries at the sub-pixel level. To this end, NDWIs are leveraged for the estimation 

of water fractions. As different combinations of spectral bands can be used in the structure of 

NDWI, a full search approach is proposed to identify the optimal pair of bands leading to the 

highest correlation of NDWI values with water fractions. The effectiveness of a regression model 

is explored for estimation of water fractions from NDWI values. The accuracy of the proposed 

method is compared against an advanced unmixing method, namely fully constrained simplex 

projection unmixing (SPU). A thorough investigation is carried out on the performance of SRM 

techniques in the context of river mapping. Several SRM techniques are focused including spatial 

optimization techniques such as pixel swapping (PS) as well as some interpolation-based 

algorithms. Furthermore, the PS algorithm is modified to speed up the binary water/non-water 

classification. Both semi-simulated and the fractions derived from real imagery are used for 

evaluation of SRM techniques. The first of these provides the possibility of accuracy assessment of 

the sole spatial allocation of sub-pixels task, while the latter considers also the uncertainties 

involved in estimation of water fractions. In addition, effectiveness of current thresholding 

methods on NDWIs is examined for hard water/non-water classification. Small rivers have been 

the interest of this study and, accordingly, HRSI including WorldView-2 (WV-2) and Geoeye 

imagery are used to exercise the implementations. 

The remainder of this chapter is organized as follows: the following Section provides a brief 

overview about the sub-pixel reconstruction of river boundaries. Section 2.3 describes the 
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proposed methodology encompassing estimation of water fractions as well as SRM techniques. 

The case studies and the results of implementations are outlined in Sections 2.4 and 2.5, 

respectively. 

2.2 Sub-pixel Reconstruction of River Boundaries 

Labeling of each pixel purely as water or non-water has been a long-standing approach for 

masking out water features from the optical imagery. The techniques range from single-band 

thresholding (Jain et al., 2005) and water indices thresholding (McFeeters,1996; Xu, 2006; 

Feyisa et al., 2014) to supervised and unsupervised classifications (Thomson, 1998; Lira, 2006). 

Apart from some inherent shortcomings of these techniques such as challenges of defining robust 

thresholds for single bands or water indices (Ji et al., 2009), the classified maps are subject to 

uncertainties of partially neglecting the fractions of other classes within the mixed pixels. This 

problem would be highly pronounced for river boundaries that in vast majority of the cases run 

through the pixels leading to mixture with surrounding land covers. 

Although several techniques are applied for retrieving sub-pixel details, most of the research has 

been limited to the estimation of water proportions regardless of sub-pixel mapping (e.g. Wang et 

al., 2015b; Ji et al., 2015). Concerned with sub-pixel mapping, there have been some attempts to 

apply SRM techniques for shoreline and waterline detection (Foody et al., 2003; Foody et al., 

2005; Muslim et al., 2007), flood inundation mapping (Li et al., 2015a; Li et al., 2015b), as well as 

for river mapping (Niroumand-Jadidi and Vitti, 2015). Two key steps are required in order to 

address the problem in a proper way. First, water fractions should be estimated and then spatial 

distribution of the fractions is to be determined within each pixel. The former step is known 

widely as unmixing and the latter as SRM. Both of these steps are addressed herein in order to 

develop and evaluate the unmixing and SRM techniques for reconstruction of river channel 

boundaries at the sub-pixel resolution. 
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2.3 Proposed Methodology 

As mentioned, estimation of water fractions is central for the sub-pixel mapping of river 

boundaries, which provides the input for SRM algorithms. Both real and semi-simulated water 

fractions are considered in order to isolate and examine the effect of fractions on final sub-pixel 

maps. The ―semi-simulated‖ fractions are contrived input for SRM algorithms with known water 

fractions. As the real geometry of the river is considered for simulations, the term ―semi-

simulated‖ is preferred rather than ―simulated‖. On the other hand, the ―real fractions‖ refers to 

the fractions obtained from unmixing of real imagery. These two testing scenarios are highlighted 

in the general workflow of the proposed methodology in Figure 2.1. The proposed methodology is 

elaborated in detail in the following sub-sections emphasizing both unmixing and SRM steps. 
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Figure 2.1 Flowchart of the proposed methodology for the mapping and assessment of river 

boundaries at the sub-pixel resolution using both real and semi-simulated fractions, ZF 

represents the zoom factor. 

2.3.1 Estimation of Water Fractions 

2.3.1.1 Semi-simulated Fractions 

The accuracy of estimated water fractions can inescapably affect the output sub-pixel maps of 

SRM techniques. In order to evaluate the performance of SRM algorithms only through the 

spatial arrangement of sub-pixels, it is essential to supply the algorithms with fractions of no 

uncertainty. In support of this objective, semi-simulated fractions are contrived in such a way to 

provide known and free of error water fractions. The term ―semi-simulated‖ is chosen because the 
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river area corresponding to the fractions is derived from real imagery and hence it has the natural 

shape and morphology of the real river. 

 The river area is initially masked out on the high resolution image using a hard classifier to take it 

as the reference map which has binary water/non-water labels. Then, a moving window with the 

dimensions equivalent to the desired zoom factor (ZF) is applied on the reference map. The 

number of water pixels is counted in each window which can be simply converted to the fractions 

in the [0, 1] range. The content of each window (i.e. number of water pixels) is known from the 

high resolution reference map; thereby the fractions can be considered known and with no 

uncertainty. For instance, semi-simulated fractions are calculated by moving a 5×5 window 

(ZF=5) on the reference water map in Figure 2.2. The semi-simulated fractions can provide free-

of-error inputs not only for SRM algorithms but also for hard classifiers. This is because the most 

abundant class is known within the windows (coarse pixels). Therefore, a water/non-water label 

can be assigned without the usual uncertainties of hard classifiers concerned with spectral 

confusions and similarities existing among different land cover classes (Figure 2.2c). After the 

simulation of water fractions, SRM algorithms and conventional hard classification can be applied 

and compared. A possible random arrangement of sub-pixels for the given example is presented 

in Figure 2d where the goal of SRM algorithms is to find the proper spatial distribution of sub-

pixels. 

        

                       (a)                                            (b)                                         (c)                                        (d) 

Figure 2.2 (a) Reference high resolution map, (b) semi-simulated fractions with ZF=5, (c) hard classified 

map, and (d) a possible random sub-pixel map. 

100 %        68 % 

52 %        20 % 
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2.3.1.2 Real Fractions 

Real fractions are used to examine the accuracy of the entire procedure of sub-pixel mapping 

considering both unmixing and SRM stages. To this end, a new method based on water indices 

(i.e. OBA-NDWI) is developed for estimation of water fractions. The proposed method is 

compared with an advanced spectral unmixing method, namely the fully constrained simplex 

projection unmixing (SPU) developed by Heylen et al. (2011).  

According to the proposed methodology (Figure 2.1), the river area and a buffer zone along the 

channel is initially masked by applying an unsupervised clustering followed by a morphological 

dilation. This is for ease of computations and selection of training samples. However, the 

unmixing procedure can be applied on the entire image scene. The unmixing methods are then 

applied on down-sampled imagery (with the same ZF of desired sub-pixel map) so that the hard 

classification of original high resolution images are considered as reference maps for accuracy 

assessment of sub-pixel maps (see Figure 2.1). 

 Optimal Bands Analysis for NDWI (OBA-NDWI) 

Making use of water indices has been a long-standing interest of researchers for delineating water 

features (McFeeters, 1996; Xu, 2006; Li et al., 2013, Xie et al., 2016). McFeeters (1996) developed 

the original normalized difference water index (NDWI) based on green (G) and near-infrared 

(NIR) bands of multispectral imagery (Equation 2.1). Afterward, Xu (2006) presented the 

modified NDWI (MNDWI) by replacing the NIR band with the shortwave-infrared (SWIR) band. 

NIRG

NIRG
originalNDWI




_                           (2.1) 

The spectral channels of WV-2 provide a wealth of choices for developing different types of 

spectral indices (e.g. water, vegetation and soil indices) compared to the conventional HRSI (e.g. 

Geoeye images). Different combinations of spectral bands can be considered for calculation of 

NDWI from WV-2 images; for instance, (G, NIR-2) and (coastal-blue (CB), NIR-2) are pairs of 

bands used in some previous research (Xiaocheng et al., 2012; Wolf, 2012; Maglione et al., 2014). 

More recently, Xie et al. (2016) considered the normalized ratio of a relatively high-reflective 
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band (bh) and a low-reflective band (bl) for which different pairs of bands can be employed for the 

computation of NDWI according to the following equation: 

lh

lh

bb

bb
XieNDWI




_                          (2.2) 

The outputs of NDWIs range from -1 to 1 where selection of an appropriate threshold is the main 

barrier to distinguish among water and non-water pixels (Ji et al., 2009; Feyisa et al., 2014). 

McFeeters (1996) and Xu (2006) considered zero as the threshold when they introduced NDWI 

and MNDWI. Ji et al. (2009) have investigated the efficiency of NDWIs by considering different 

combination of spectral bands on coarse and moderate-resolution imagery (e.g. MODIS and 

Landsat ETM+). They have determined threshold values based on synthetic mixture of the three 

dominant land-cover types (water, vegetation and soil). Moreover, Otsu’s thresholding method 

(Otsu, 1979), which is based on the maximum between-class variance criterion, is used in several 

articles to mask out water pixels (Du et al. 2012; Li et al. 2013; Du et al., 2014). However, the 

main aim of previous research is mainly binary (hard) classification of water features whereas the 

estimation of water fractions received less attention. 

In this research, image-derived spectra for the afore-mentioned major land-cover types (i.e. 

water, vegetation and bare earth/soil) are mixed linearly with all the possible fractions of the 

classes with one percent intervals. This approach has been adapted from Ji et al. (2009); however, 

in the case of presence of an outstandingly different major class (endmember), number of classes 

can be increased. Note that the number of classes cannot exceed the number of spectral bands to 

solve the common unmixing methods such as linear spectral unmixing and SPU (Mather, 2004). 

This issue can limit the number of unmixing classes using imagery with low spectral resolution. 

However, the mentioned three major classes which can be derived from grouping the sub-classes 

with similar spectral characteristics are representative for a wide range of applications and 

particularly for the riparian zones. This assumption on the number and type of major classes 

(endmembers) is well-established in the previous research (Wu, 2004; Ji et al., 2009; Wetherley 

et al., 2017). 
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Figure 2.3 The scheme for linear spectral mixture of three dominant endmembers of land surface 

(i.e. water, vegetation and soil). Each point inside the triangle represents a possible combination of 

fractions; adapted from Ji et al. (2009). 

After producing the synthetic spectra with all the possible fractions of the three classes, the NDWI 

values of the spectra are regressed against known water fractions. In this regard, an Optimal Band 

Analysis for NDWI (OBA-NDWI) is proposed to identify the pair of bands for which the 

corresponding NDWI values yield the highest correlation with the water fractions. All the possible 

combinations of spectral bands are considered to calculate the NDWI values (Equation 2.3) in 

order to examine their potential for estimation of water fractions by assessing the coefficient of 

determination and RMSE of the regression models. This provides a full search among all the 

possible options for choosing a pair of spectral bands which is also common in other applications 

such as bathymetry from optical imagery (Legleiter et al., 2009). 
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                  (2.3) 

After identification of the optimal combination of bands to be used for calculation of NDWI, the 

corresponding regression model is used to predict the water fractions of the image pixels. The 

regression-based approaches are previously used for estimation of fractional vegetation coverage 

using vegetation indices (Hurcom and Harrison, 1998; Elmore et al., 2000; Xiao and Moody, 

2005) but have not been explored yet for estimation of water fractions based on water indices. 

Moreover, the effectiveness of common thresholding methods is examined for the hard 

classification of river area using HRSI. In this regard, the sensitivity of thresholding methods on 

different NDWIs is investigated and accordingly the relevant cut-off water fraction for each NDWI 
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is determined. The determination of minimum water fraction within the masked pixels can reveal 

the performance of hard classification built upon each of thresholding methods. This is because, 

considering the concept of hard classification for binary mapping, at least half of a pixel should be 

occupied by the desired class (water) to be assigned to that class. 

 Simplex Projection Unmixing (SPU) 

The recent and advanced algorithm of SPU is also applied on the imagery to evaluate the 

efficiency of proposed OBA-NDWI method for estimation of water fractions. The SPU is a 

technique ensuring sum-to-unity as well as positivity of fractions. These constraints are 

prerequisites for most of SRM techniques such as the PS algorithm. The SPU method is built 

upon the geometrical interpretation of unmixing problem (Heylen et al., 2015). This algorithm 

uses a sequence of orthogonal projections on sub-simplexes formed by the endmembers. The 

solution derived from the SPU algorithm minimizes the least squares error while firmly 

respecting the sum-to-unity and non-negativity constraints on the fractions (see Heylen et al., 

2011 for further mathematical details). 

2.3.2 Super Resolution Mapping 

SRM is required for spatial allocation of water fractions in order to reconstruct the river area at 

the sub-pixel level. Most of the SRM algorithms rely on maximizing the spatial proximity of sub-

pixels with the same labels in their neighborhood (Atkinson, 2009; Wang et al., 2015). Several 

techniques are developed based on artificial intelligence optimization techniques such as genetic 

algorithms (Mertens et al., 2003; Tong et al., 2016) and neural networks (Tatem et al., 2001; 

Zhang et al., 2008) and also other methods based on Markov random fields (Wang and Wang, 

2013). Besides these methods, the PS algorithm (Atkinson, 2005) is a widely-used and efficient 

method for SRM purposes (Xu and Huang, 2014). On the other hand, interpolation-based 

approaches could be considered as alternatives for SRM. These algorithms are non-iterative 

which can be an advantage when the computation time is considered. Although some 

interpolation methods (e.g. IDW and kriging) are tested for SRM using simulated imagery (Ling 

et al., 2013), a comparative analysis with respect to iterative techniques remains poorly 

investigated, particularly in terms of mapping water bodies. This research concentrates on the PS 
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algorithm as an iterative technique and a couple of interpolation methods as non-iterative 

solutions for sub-pixel mapping of river boundaries. In addition, a non-iterative approach is 

proposed for improving the speed of PS algorithm. 

2.3.2.1 Pixel Swapping (PS) 

The number of sub-pixels corresponding to the fraction of a given class within each pixel can be 

calculated based on the desired ZF according to the following equation: 

),( 2ZFFroundN kk                            (2.4) 

where 
kN and 

kF  stand respectively for the number of sub-pixels and fraction of the class k 

within a pixel. For the binary water/non-water classification, the number of sub-pixels is 

calculated for water class based on the Equation 2.4, and then its subtraction from ZF2 gives the 

number of sub-pixels for the non-water class. 

The PS algorithm (Atkinson, 2005; Thornton et al., 2006) allocates sub-pixel labels in random 

positions within each pixel. Then, the attractiveness of each sub-pixel with respect to a particular 

class is predicted as a distance-weighted function of its neighbors according to the following 

equation: 

,
1





n

i i

k

ik

d

F
A                            (2.5)

 

where Ak denotes the attractiveness of a sub-pixel with respect to the class k, 
k

iF is the fraction of 

class k in the i-th neighbor pixel. The number of neighbor pixels is n, and di is the distance of the 

i-th neighbor pixel from the sub-pixel for which the attractiveness is computed. 

Considering the attractiveness values of the class k in a pixel, the least attractive sub-pixel 

location initially allocated to the desired class (e.g. water) should be identified as well as the most 

attractive location initially allocated to the other class (e.g. non-water). If the attractiveness of the 

least attractive location is less than that of the most attractive location, then the classes are 

swapped, otherwise no change is made (Thornton et al., 2006; Atkinson, 2009). After applying 
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the swapping process on all image pixels, this process should be iterated until reaching a point 

that the algorithm is not able to perform anymore swaps. An example of the swapping process is 

illustrated in Figure 2.4 where the central pixel with 58% water fraction is divided to nine sub-

pixels (ZF=3) and the attractiveness of each sub-pixel is calculated based on the eight neighboring 

pixels. 

        
 

               (a)          (b)                 (c)      (d)             (e) 

Figure 2.4 Water fractions and the PS process for spatial allocation of sub-pixels for a given pixel; (a) water 

fractions, (b) random allocation of sub-pixels, (c, d, e) swaps (candidate sub-pixels for swapping are 

highlighted by dash-lines); values of sub-pixels represent their attractiveness toward water class. 

 

2.3.2.2 Modified Binary Pixel Swapping (MBPS) 

After calculation of the attractiveness values for sub-pixel locations, the original PS algorithm 

commences with a random allocation of sub-pixels and then maximizes the spatial dependency in 

an iterative manner. This can be a barrier in terms of computational time when applying the 

algorithm on large extents. To tackle this problem, a simple non-iterative solution is examined in 

this research for the spatial allocation of binary classes (e.g. water and non-water). The proposed 

method suggests to simply allocate the sub-pixels of the desired class (water) in the Nk locations 

with the highest attractiveness values toward that class. The remaining sub-pixel locations are 

then directly assigned to the other class (non-water). The proposed modified binary PS (MBPS) 

method is applied on the same example discussed in Figure 2.4. In this case, the resultant sub-

pixel map is the same as that of the original PS algorithm (Figure 2.5). 
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(a)                                      (b)                            (c)   

Figure 2.5 Water fractions and the proposed MBPS for spatial allocation of sub-pixels for a given pixel; (a) 

water fractions, (b) identification of sub-pixel locations with highest attractiveness, highlighted by dash-

lines, (c) allocation of water and non-water sub-pixels; values of sub-pixels represent their attractiveness 

toward water class. 

2.3.2.3 Interpolation-based SRM 

The interpolation methods can be employed to develop non-iterative SRM. Assigning the 

fractions of classes to the center of the corresponding pixels, sub-pixel fractions can be estimated 

using common interpolation methods. In this research, several techniques including bilinear, 

bicubic and lanczos3 are tested; an example using bilinear method is shown in Figure 2.6. A hard 

labeling process can be applied then on interpolated points (i.e. sub-pixels) in such a way to 

assign each sub-pixel to the class with the highest estimated fraction. The main advantage of this 

technique is that the labeling procedure can be done in a single step which can improve the 

computational efficiency. 

   
                  (a)                   (b)   

Figure 2.6 An example of bilinear interpolation of water fractions; (a) water fractions at the pixel level, (b) 

interpolated water fractions at the sub-pixel level with ZF=5. 

2.4 Study Area and Dataset 

Sarca and Noce, two Alpine rivers located in northeast Italy, are considered as the case studies 

(Figure 2.7). The areas of interest are about 19 km and 8 km long reaches, for Sarca and Noce 

rivers, respectively. As the studied rivers are narrow (about 20 m mean channel width), HRSIs 
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including a WV-2 image of the Sarca and Geoeye image of the Noce are selected. The use of both 

WV-2 and Geoeye images can also reflects the influence of additional spectral bands of WV-2 

sensor for river mapping issues. It should be noted that the image of Sarca River is captured by 

the WV-3 sensor. However, only the 8-bands corresponding to that of the WV-2 are used, and 

then it is herein referred to the WV-2 sensor. 

  
                           (a)                       (b) 

Figure 2.7 True color composites of (a) WV-2 image of Sarca River and (b) Geoeye image of Noce River; the 

river channels are highlighted by blue lines. 

2.5 Implementations and Results 

2.5.1 Estimation of Water Fractions 

Semi-simulated fractions are produced along the two rivers based on the methodology described 

in Section 2.3.1.1. As discussed in detail, this provides an input without any error for SRM 

methods as well as for the hard classification. The sub-pixel detail neglected by hard classifiers 

and the performance of SRM methods through allocation of sub-pixels are investigated 

thoroughly (Section 2.5.2). 

Toward estimation of real water fractions using the proposed method relying on OBA-NDWI, 

training samples for the three desired classes (i.e. water, vegetation and soil) are selected from the 

imagery. The spectra of the endmembers are estimated based on the average values of the 

samples which are selected from different spots distributed along the rivers. For each 

endmember, about 30 pixels are selected by visual interpretation. Then the linear mixture is 
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performed to simulate all the possible fractions concerned with the three endmembers. NDWIs 

with all the possible combinations of spectral bands are applied on the synthetic WV-2 and 

Geoeye spectra; the outputs are plotted against the known values of water fractions (some 

examples are shown in Figures 2.8 and 2.9). The regression model providing the highest 

correlation is then used to predict the water fractions of all image pixels. In addition, zero-

thresholds and Otsu’s thresholds are applied on NDWI values to assess these two conventional 

threshold methods for hard delineation of water bodies. 

 

 

Figure 2.8 The regressions of NDWI values with different band combinations obtained from synthetic WV-

2 spectra against known water fractions; the pair of bands used for calculation of NDWI is indicated on each 

graph (CB and RE stand for coastal-blue and red-edge bands, respectively); zero-threshold and Otsu’s 

threshold are illustrated respectively with blue (dashed) and red (dot-dashed) lines. 
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Figure 2.9 The regressions of NDWI values with different band combinations obtained from synthetic 

Geoeye spectra against known water fractions; the pair of bands used for calculation of NDWI is indicated on 

each graph; zero-threshold and Otsu’s threshold are illustrated respectively with blue (dashed) and red (dot-

dashed) lines. 

As evident in Figure 2.8 and 2.9, the water fractions corresponding to zero-threshold and also 

Otsu’s threshold are variable for different NDWIs and their difference can be outstanding. The 

minimum water fraction associated with zero-threshold on WV-2 image is significantly variable, 

from 87% to 35% for the NDWIs constructed respectively by two band combinations of (CB, 

NIR1) and (B, RE). This variation ranges from 91% to 67% for the Otsu’s threshold with the same 

NDWIs. These fluctuations also exist for the Geoeye image for which the minimum water fraction 

for zero-threshold ranges from 57% to 75%, and for the Otsu’s threshold from 75% to 85%, 

respectively using NDWIs based on (B, NIR) and (G, NIR) pairs of bands (Figure 2.10). Therefore, 

the range of water fractions of masked out pixels based on common thresholding methods can be 

variable depending on the spectral bands used in the calculation of NDWI. With generalization of 

all the classes excluding the water class to a single non-water class, each pixel with a minimum 

50% water content can be labeled as water. This is a binary hard classification scheme which can 

be considered for delineation of water bodies based on thresholding on NDWI values. Keeping 

this in mind, Figure 10 reveals that Otsu’s thresholding most probably occurs above the 50% 

water fraction which leads to underestimation of water pixels. For instance, the pixels with 

fractions ranging from 50% to 85% will be mislabeled as non-water pixels for the NDWI based on 

(B, NIR1) bands. On the other hand, zero-thresholding deals with both underestimation and 

overestimation of water pixels. For instance, every pixel with the minimum 35% water content 

will be labeled as water by applying zero-threshold on NDWI obtained from (B, RE) bands. This 

kind of mislabeling at the pixel level can increase the uncertainty of water mask in mixed 
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boundary pixels. However, extraction of the pure (near pure) water pixels in the main river 

channel would be less challenging. 

 

Figure 2.10 Minimum water fractions corresponding to zero-threshold and Otsu’s threshold for several 

NDWIs using synthetic WV-2 and Geoeye spectra; CB and RE stand, respectively, for coastal-blue and red-

edge bands. 

The proposed OBA-NDWI method is applied on the synthetic spectra in order to exploit the 

strongest relation between water fractions and NDWI values (the regression lines are illustrated 

on Figure 2.8 and Figure 2.9). The OBA-NDWI performs quadratic regression of NDWI values 

versus water fractions for all possible combinations of spectral bands in order to identify the 

optimal pair of bands which their corresponding NDWI yields the highest coefficient of 

determination (R2). Consideration of all the possible pair of bands is a systematic approach to 

identify the optimal structure of the NDWI that the results are in line with the assumption of Xie 

et al. (2016) regarding the use of a relatively high-reflective band and a low-reflective band for 

calculation of the NDWI. As illustrated in Figure 2.11, coastal-blue (CB), blue (B), and green (G) 

bands can be considered as optimal high-reflective bands (bh) while the portion of spectrum 

covering red-edge (RE), NIR1, and NIR2 could be effective as low-reflective bands (bl) using the 

WV-2 image. In particular, CB and RE bands provide the strongest relation with an R2 on the 

order of 97% and an RMSE of 2%. Blue and NIR are the optimal pair of bands for the Geoeye 

image. Their corresponding NDWI yields an R2 value of 92% and an RMSE value of 7% through a 

quadratic relation with water fractions (Figure 2.12). 
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             (a)       (b) 

Figure 2.11 OBA-NDWI for the synthetic WV-2 spectra; all possible combinations of spectral bands are 

considered in the structure of NDWI to perform a quadratic regression against water fractions. Values of (a) 

R2 and (b) RMSE are represented by color bars. 

 

 
              

              (a)                   (b) 

Figure 2.12 OBA-NDWI for the synthetic Geoeye spectra; all possible combinations of spectral bands are 

considered in the structure of NDWI to perform a quadratic regression against water fractions. Values of (a) 

R2 and (b) RMSE are represented by color bars. 

The quadratic model obtained for the optimal pair of bands is used to predict the water fractions 

of all image pixels. Moreover, the same endmembers used for linear mixtures are introduced to 
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the SPU algorithm and the resultant fractions are compared with those obtained from the 

proposed method (Figure 2.13). In general, a strong correlation (R2=90%, RMSE=7% for the WV-

2 image and R2=87%, RMSE=9% for the Geoeye image) is observed between the estimated 

fractions of the proposed OBA-NDWI method and the SPU algorithm. 

         

       (a)          (b) 

Figure 2.13 Water fractions of the WV-2 image obtained from (a) proposed OBA-NDWI method and (b) 

SPU algorithm. 

2.5.2 Super Resolution Mapping (SRM) 

The semi-simulated as well as the real water fractions are used as inputs for SRM algorithms. The 

super resolved maps obtained from the semi-simulated fractions are represented for a river 

segment in Figure 2.14. The sub-pixel mapping procedure of interpolation-based techniques is 

also illustrated in Figure 2.15 where the interpolated water fractions are represented (Figure 

2.15d) along with the hard labels assigned to each sub-pixel (Figure 2.15e). As it is clear from the 

illustrations, hard classification is very rough on the river boundaries while the SRM techniques 

reconstruct boundaries with sub-pixel details. 

 

  

 

100 

80 

60 

40 

20 

0 

[%] 



 

 

39 

 

        

 (a)          (b)          (c)            (d)  

      

(e)                           (f)                    (g)    

Figure 2.14 Sub-pixel maps resultant from different SRM algorithms using semi-simulated water fractions: 

(a) reference map, (b) semi-simulated water fractions (ZF=5), (c) hard classified map, sub-pixel maps of (d) 

PS, (e) bilinear, (f) bicubic, and (g) lanczos3 algorithms; reference river boundaries are represented by red 

lines on each map. 

 

            

      (a)                                                      (b)                                        (c) 

     

         (d)              (e) 

Figure 2.15 Interpolation-based SRM using semi-simulated water fractions: (a) reference map, (b) semi-

simulated water fractions (ZF=5), (c) hard classifed map, (d) bicubic interpolation and (e) sub-pixel map. 
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User and producer accuracies of the river area extracted from hard classification and SRM of 

semi-simulated fractions are presented in Figures 2.16 and 2.17 for Sarca and Noce rivers, 

respectively. 

   

Figure 2.16 User and producer accuracies of hard classification and SRM algorithms using semi-simulated 

water fractions across a range of ZF for Sarca River; (HC: hard classification, PS: pixel swapping, MBPS: 

modified binary PS, BL: bilinear, BC: bicubic, L3: lanczos3). 

 

  

Figure 2.17 User and producer accuracies of hard classification and SRM algorithms using semi-simulated 

water fractions across a range of ZF for Noce River; (HC: hard classification, PS: pixel swapping, MBPS: 

modified binary PS, BL: bilinear, BC: bicubic, L3: lanczos3). 

The user/producer accuracies of hard classification are remarkably lower than that of sub-pixel 

maps. This emphasizes the weakness of this type of classifier in the presence of mixed boundary 

pixels. For instance, the error maps of hard classification and a sub-pixel map of same area are 

represented in Figure 2.18 which shows that the hard classified map encompasses a large number 

of misclassified pixels. This issue gets worse with higher ZF where the difference between the 

accuracies of hard classification and SRM methods reaches above 10%. In general, interpolation-

based SRM and MBPS lead to comparable accuracies with respect to the PS algorithm except at 
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higher zoom factors (ZF=10) where the producer accuracies of interpolation-based techniques are 

lower. 

 

        

   (a)      (b) 

Figure 2.18 Error maps of (a) hard classification and (b) sub-pixel map obtained from MBPS for a segment 

of Sarca River using the WV-2 image with ZF=6, red and blue pixels show erroneously committed and 

omitted water pixels, respectively. 

The real water fractions obtained from the SPU algorithm as well as those obtained from the 

proposed OBA-NDWI are used to supply the SRM algorithms. This provides the possibility of 

investigating the effect of uncertainties associated with water fractions on the final sub-pixel 

maps. Figure 2.19 illustrates the sub-pixel maps based on water fractions derived from the OBA-

NDWI method. In Figure 20, outputs of the PS/MBPS algorithms are selected from parts of maps 

where some isolated groups of sub-pixels exist inside the river channel, which is due to errors of 

estimated water fractions. However, applying a majority filter on the resultant sub-pixel maps can 

reduce this drawback in order to produce homogenous maps (Figure 2.20e). These gaps, caused 

by underestimation of water fractions by unmixing methods either the OBA-NDWI or the SPU, 

obviously are not apparent on the maps of interpolation-based SRM methods due to interpolated 

values of fractions. 
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          (a)                (b)                 (c)   

      

          (d)                (e)               (f)   

Figure 2.19 Sub-pixel maps obtained from real water fractions based on OBA-NDWI algorithm for Sarca 

River: (a) reference map, sub-pixel maps of (b) PS, (c) MBPS, (d) bilinear, (e) bicubic, and (f) lanczos3 

algorithms, ZF=5. 

 

  
(a)      (b) 

   

   (c)      (d) 

  

   (e)      (f) 

  

   (g)      (h) 

Figure 2.20 Sub-pixel maps obtained from real water fractions based on OBA-NDWI algorithm for Noce 

River: (a) reference map, (b) real water fractions based on OBA-NDWI algorithm; sub-pixel maps of (c) PS, 

100 

50 

0 

% 



 

 

43 

 

(d) MBPS, (e) majority filter applied on MBPS, (f) bilinear, (g) bicubic, and (h) lanczos3 algorithms, ZF=5. 

User and producer accuracies of the sub-pixel river maps resultant from SRM of real fractions 

associated with the SPU and the OBA-NDWI algorithms are illustrated respectively in Figures 

2.21 and 2.22 for Sarca and Noce rivers, respectively. 

    

                                            (a)                       (b) 

 

                                            (c)                       (d) 

Figure 2.21 User and producer accuracies of SRM algorithms using real water fractions of: (a, b) the SPU 

algorthom, and (c, d) the OBA-NDWI algorithm across a range of ZF for Sarca River; (PS: pixel swapping, 

MBPS: modified binary PS, BL: bilinear, BC: bicubic, L3: lanczos3). 
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 (a)                 (b) 

  

(c)                 (d) 

Figure 2.22 User and producer accuracies of SRM algorithms using real water fractions of: (a, b) the SPU 

algorithm, and (c, d) the OBA-NDWI algorithm across a range of ZF for Noce River; (PS: pixel swapping, 

MBPS: modified binary PS, BL: bilinear, BC: bicubic, L3: lanczos3). 

Obviously, the accuracies of sub-pixel maps are decreased in the presence of uncertainties related 

to unmixing. However, the sub-pixel maps are accurate up to 90% with ZF≤5. The accuracies of 

sub-pixel maps associated with water fractions derived from the proposed OBA-NDWI are 

comparable with those obtained from the SPU. This is while the proposed method is simpler and 

easy to be numerically implemented and applied for water mapping issues. 

Regarding the computational cost of SRM techniques, interpolation-based techniques and the 

MBPS algorithm are on average 20 times and 3 times faster than the original PS algorithm, 

respectively. This is because the interpolation-based and MBPS algorithms allocate sub-pixels in a 

non-iterative process and also the calculation of attractiveness for sub-pixel locations is not 

required for interpolation-based SRM. 
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3 Chapter 3: River Bathymetry 

 

 

 

 

 

 

3.1 Introduction 

Bathymetry is one of the key applications of remote sensing to fluvial systems that facilitates 

understanding the river form, process and function (Shintani and Fonstad, 2017). Information on 

water depth can play a decisive role in, for instance, mapping in-stream habitats (Bergeron and 

Carbonneau, 2012; Carbonneau et al., 2012; Hugue et al., 2016), parameterization and analysis of 

hydro-morphological processes (Bryant and Gilvear, 1999; Flener et al., 2012; Demarchi et al., 

2016) as well as river management (Legleiter et al., 2002; Bizzi et al., 2016; Rinaldi et al., 2017). 

Optical sensors onboard aerial and satellite platforms have long been used for studying shallow 

coastal environments (Lyzenga, 1978; Lyzenga, 1981, Philpot, 1988; Dierssen et al., 2003; 

Louchard et al., 2003; Lesser and Mobley, 2007). Because of their smaller spatial scales, fluvial 

systems have mostly utilized aerial imagery (Winterbottom and Gilvear, 1997; Jordan and 

Fonstad 2005; Walther et al., 2011; Legleiter, 2013). With the recent enhancements in spatial 

resolution of satellite imagery, river bathymetry from space is receiving more interest due to 

larger spatial coverage and higher temporal resolution of satellite sensors than those onboard 

aerial platforms. Legleiter and Overstreet (2012) performed a feasibility assessment on mapping 

bathymetry of gravel-bed rivers for the first time from space and in particular using WorldView-2 

(WV-2) imagery. The theoretical basis of bathymetric models in the context of riverine 

environments is built upon the research conducted in coastal settings (Legleiter et al., 2004; 

Legleiter et al., 2009). The primary work of Lyzenga (1978, 1981) provides a backbone for physics-

based retrieval of water depths from optical imagery. Lyzenga’s model assumes a linear relation 
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between an image-derived quantity (X) and the water depth (d) where X is a predictor obtained 

from log-transformation of image values in a given spectral band. Multiple regression (Lyzenga, 

1985; Lyzenga et al., 2006) and ratio methods (Stumpf et al., 2003) enhance the robustness of 

bathymetry retrievals with respect to substrate variability and water quality heterogeneity. The 

first employs multiple spectral bands to perform a multiple linear regression between image-

derived predictors (X) and water depths (d) while the latter model considers a log-transformed 

band ratio as a predictor of the water depth. Each type of predictor is reported as an efficient one 

in different case studies (Legleiter et al., 2012; Bramante et al., 2013; Jawak and Luis, 2016). 

More recently, an enhanced ratio model called optimal band ratio analysis (OBRA) has been 

developed to identify a pair of bands among all the possible pairs for which the ratio model yield 

the strongest correlation with water depths (Legleiter et al., 2009). Three main objectives are 

followed in this study: (1) developing a new approach called multiple optimal depth predictors 

analysis (MODPA) for bathymetry retrieval by identifying and incorporating optimal depth 

predictors: the initial predictors space is expanded by considering all the possible Lyzenga and 

ratio predictors as well as some extra predictors from color space transformation. Then a set of 

optimal predictors are selected among the others to estimate the parameters of a linear model. 

The selection of optimal predictors is performed based on several feature selection methods 

including partial least square (PLS), stepwise and principal component (PC) regressions; (2) 

assessing the robustness of proposed MODPA compared to currently available models with 

respect to changes in substrate types, inherent optical properties (IOPs) and atmospheric effects: 

bathymetry models are comprehensively examined using spectroscopic experiments, simulations 

from radiative transfer modeling as well as WV-2 imagery. The Spectroscopic experiments are 

conducted in controlled condition of a hydraulic laboratory to collect a set of spectra in a range of 

water depths with variable substrates. The effects of IOPs including chlorophyll-a (Chl-a), total 

suspended solids (TSS) and colored dissolved organic matter (CDOM) are isolated using 

simulations from radiative transfer modeling. Moreover, an optically complex testing scenario is 

considered where bottom type and IOPs are all assumed as variables. Further, the proposed 

technique is examined on bathymetry mapping of Sarca River, a shallow and narrow alpine river 

in Italy, using WV-2 imagery. This reflects the performance of MODPA compared to other models 

in a spectrally complex environment of a real river. Moreover, the effect of atmospheric correction 
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is examined on bathymetry models due to remarkable contribution of atmosphere in the total at 

sensor radiance over water bodies (Gitelson and Kondratyev, 1991; Pahlevan et al., 2017b; Mouw 

et al., 2015). The newly released surface reflectance product of DigitalGlobe (2016) called 

atmospheric compensation (AComp) is assessed to understand the effect of atmospheric 

corrections on retrieving the river bathymetry from WV-2 imagery; (3) assessing the efficacy of 

WV-2 sensor’s additional spectral bands compared to traditional 4-band high resolution satellite 

imagery (HRSI) such as GeoEy: to investigate this issue, the spectral data are matched with WV-2 

and GeoEye bands using spectral convolution when needed. 

The following Section outlines the theoretical background concerned with bathymetry from 

optical imagery. Section 3.3 introduces the proposed MODPA for bathymetry retrieval. The 

spectroscopic experiments conducted in the hydraulic laboratory, simulations from radiative 

transfer modeling and also in-situ measurements of water depths associated with HRSI of the 

study area are described in Section 3.4. Section 3.5 presents the results of implementations. 

3.2 Bathymetry from Optical Imagery 

Regarding optical remote sensing of water bodies, the total radiance reaching to the sensor at a 

given wavelength, )(TL , consists of four main components upwelling from bottom, )(bL , 

column, )(cL , and surface, )(sL , of the water body as well as the atmospheric effects, )(pL , 

which are summarized in the following equation (Legleiter et al., 2004; Legleiter et al., 2009): 

)()()()()(  pscbT LLLLL                          (3.1) 

Aside )(pL , each of the above-mentioned radiance components can be associated to a specific 

property of the water body. For instance, surface component of the radiance can be linked to the 

roughness of the water surface which in turn is a function of local hydraulics in riverine 

environments and can potentially reveal information about the flow velocity (Overstreet and 

Legleiter, 2017). The bathymetry information is embedded in the bottom component of radiance 
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which is affected not only by water depth but also the bottom type (Lee et al., 1998; Stumpf et al., 

2003; Legleiter et al., 2009). Thus, it is essential to isolate the radiance component of interest or 

to reduce the effect of other undesirable components to retrieve a desired parameter which is the 

water depth in this study. 

Lyzenga’s model (1978, 1981) permits bathymetry retrieval from optical imagery, the model is 

built upon Beer-Lambert law to describe the exponential attenuation of light through travelling 

the water column. This model (see Equation 3.2) considers a deep-water correction to account for 

the undesirable radiance components upwelling from water column, water surface and 

atmospheric path radiance. The contribution of bottom reflected radiance can be considered 

negligible for radiances observed over optically deep water ( )(wL ). Therefore, subtraction of 

)(wL from all water pixels leaves out the bottom component of radiance which is desirable for 

bathymetry mapping. Lyzenga’s model hence reads: 

)()()()()),()(ln(  pscwwT LLLLLLX                       (3.2) 

According to Lyzenga’s model, the water depth (d) depends linearly on the single predictor (X) 

derived from the image values at a given spectral band: 

d= aX + b                            (3.3) 

The unknown parameters of the linear model (a, b) can be estimated by means of a simple 

regression between the values of single predictor (X) and in-situ depths (d). The deep-water 

correction accounts for the undesirable radiance components in order to isolate the signal 

upwelling from bottom. However, this correction approach would be subject to some 

uncertainties regarding the local/pixel based variations in inherent optical properties (IOPs) of 

the water column, water surface roughness and the atmospheric effects (Legleiter et al., 2009). In 

addition, the reflectance properties of the bottom material are not accounted for in the Lyzenga’s 

single predictor which can suppress the robustness of the model. To deal with these problems, 

multiple regression is suggested to make use of all predictors derived from different spectral 

bands in order to enhance the robustness of the linear depth predictor model (Lyzenga 1985; 
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Lyzenga 2006). Equation 3.4 indicates the multiple regression of predictors derived from an n-

band image with in-situ depths in order to establish a linear bathymetry model. 

bXaD
n

i

ii 
1                           

 (3.4) 

Stumpf et al. (2003) proposed to use a ratio model for depth retrievals to mitigate the undesirable 

effect of variations in bottom reflectance (Equation 3.5). Their model relies on the fact that 

different substrates at the same depth have approximately equal values of the ratio between total 

radiances at two different wavelengths. 
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X                             (3.5) 

Such a ratio can be used as a single and to some extent robust depth predictor with respect to 

substrate variability (Stumpf et al., 2003; Flener, 2013). Legleiter et al. (2009) extended the idea 

of ratio model in the form of optimal band ratio analysis (OBRA) in order to choose the optimal 

pair of bands for which the ratio predictor provides the highest correlation with depths. The 

OBRA examines all the possible pair of bands through the ratio model to identify the optimal pair 

by comparing the coefficient of determination of the regression model. 

The bathymetric models known in literature are originally developed for coastal environments 

and they are just recently being translated to the fluvial systems particularly using HRSI 

(Legleiter and Overstreet, 2012). The key distinctive feature of the riverine environments would 

be the thinner water column compared to the coastal settings. Therefore, a relatively high 

contribution from river substrate and a relatively low contribution from the water column can be 

expected particularly for shallow and clearly flowing streams. Although this is a promising point 

for depth retrievals due to having strong desired signal (i.e. bottom radiance), the pronounced 

effect of the substrate variability can make the depth retrieval complicated. Note that the deep-

water correction required for Lyzenga’s model demonstrated to be negligible for shallow rivers 

(Mumby and Edwards, 2000; Flener et al., 2012; Flener, 2013). This is mainly because the bottom 

signal is the dominant component of radiance reaching to the sensor particularly for the 

atmospherically corrected imagery. Therefore, it is less likely to approach to the deep-water signal 

in shallow and clear rivers (Legleiter et al., 2009). 
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3.3 Multiple Optimal Depth Predictors Analysis (MODPA) 

The existing bathymetric models individually employ single/multiple Lyzenga predictors or a 

single ratio predictor. Although OBRA identifies the optimal ratio predictor, the model is based 

on a sole ratio predictor. The selection between predictor types (Lyzenga or ratio) can be 

challenging in practice as the results of previous studies indicate that each type of predictors can 

possibly lead to more accurate results than the other depending on the case study. For instance, 

Jawak and Luis (2016) reported that the Lyzenga model derived the bathymetry of a shallow lake 

more precisely (with 15% higher R2 and 0.98 m lower RMSE) than the ratio model using WV-2 

imagery. On the other hand, the regression type (simple or multiple) defines the number of 

predictors in the linear regression model. The bathymetry models relied on simple regression (e.g. 

OBRA) explain the dependent variable (i.e. depth) by only one predictor where other informative 

predictors can potentially be neglected. 

This research aims at extending the initial depth predictors by considering all of the possible 

Lyzenga and ratio predictors rather than relying upon one of predictor types. In addition, some 

extra predictors can be considered from the RGB to HSI color space transformation. In this 

regard, the intensity component of the HSI space is added to the original image feature space and 

the associated Lyzenga and ratio predictors are included in the predictors. Note that the color 

space transformation can be applied to each combination of three spectral bands so that several 

intensity bands can be added to the feature space (e.g. four intensity bands can be derived for a 4-

band GeoEye image). A multiple regression approach is then considered to keep most of the 

variability of predictors. However, making use of all the predictors may lead to over-

parameterization of the model due to possibility of high correlation among the predictors. For 

example, 36 initial predictors can be derived from 8-band WV-2 imagery (8 Lyzenga predictors 

and 28 ratio predictors) while this number can be even increased by considering extra predictors. 

Therefore, performing a dimensionality reduction on all the possible predictors is necessary. This 

study suggests to select the optimal predictors by using three different regression methods of 

partial least square (PLS), stepwise and principal component (PC). The resultant optimal 

predictors can then be a combination of Lyzenga, ratio and the extra predictors. 
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Stepwise regression is a systematic method for adding and removing terms (predictors) from a 

linear model based on their statistical significance in explaining the response variable. The 

stepwise regression uses the p-value of an F-statistic to test models with and without a potential 

term at each step. PC and PLS are both regression methods that construct new predictors called 

components as linear combination of the original predictors. Then a subset of components can be 

selected as optimal predictors in such a way to keep most of the variability of the original 

predictors. The number of components can be chosen by looking at the percent of variance 

explained in the response variable as a function of the number of components. However, PC 

creates the components without considering the response variable (i.e. depth) while PLS takes the 

response variable into account (Haenlein, M., Kaplan, A.M., 2004; Matlab, 2016). These methods 

provide powerful modeling tools to deal with large number of predictors when the collinearity 

among the variables is strong (Abdi, 2003; Li et al., 2014). 

The proposed bathymetry model, MODPA, selects the optimal (statistically significant) depth 

predictors from all the possible Lyzenga and ratio predictors as well as extra predictors derived 

from the color space transformation. Once the linear model is created, it can be used to predict 

the bathymetry of all image pixels within the river channel. The proposed method is validated and 

compared with Lyzenga’s model and OBRA using independent known/in-situ check points. 

3.4 Theoretical Calibration of Bathymetric Models 

The calibration is critical for all of discussed bathymetric models to form linear relation between 

image derived values (X) and water depths (d). Empirical calibration is the widely used approach 

for estimation of unknown parameters of the linear relation (i.e. a and b). In this regard, field 

measurements of water depths are required for a limited number of points inside the river 

channel. Unknown parameters of the linear model can be then estimated by assigning the 

corresponding image values to the measured depths. However, this calibration approach is 

subject to couple of limitations and drawbacks (Fonstad and Marcus, 2005; Legleiter et al., 

2009): 

 Field measurements are usually time and cost consuming. 
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  Field surveys are needed to be carried out as simultaneous as possible with the imaging 

time that hinders the applicability of empirical methods for inaccessible rivers. Moreover, 

the usage of archive imagery would be limited only to the scenes with available in-situ 

data. 

 Precise coregistration of field data and imagery is critical to preserve the accuracy of 

calibration. As coregistration of points inside the river is very challenging either by visual 

interpretation or using automatic matching techniques, few ground control points outside 

the channel are required for coregistration. Accurate positioning devices (e.g. RTK GPS) 

should be used for collection of field data. 

 The usage of advanced tools of depth measurement (e.g. sonar devices) is limited in 

shallow rivers. Common measurement tools such as graduated poles provide point-wise 

depth information while an image value is corresponding to a pixel location (a few square 

meters for HRSI). Therefore, the number and horizontal distance of sampling points 

should be sufficient regarding the spatial resolution of imagery. 

Regarding the inescapable limitations of empirical approach for calibration of bathymetry 

models, theoretical approaches have recently received attention. In this way, some researches 

(Legleiter, 2015; Fonstad and Marcus, 2005;) have tried to integrate the principles of open 

channel flow in calibration of the bathymetric models. In this study, Hydraulically Assisted 

Bathymetry (HAB) model developed by Fonstad and Marcus (2005) is investigated for theoretical 

calibration of bathymetry models and a simple modification is applied to the original model. 

The HAB model starts with flow resistance equation of Manning (Equation 3.6) to estimate the 

mean water depth in a cross-section. 

                                           (3.6) 

where V denotes the cross-sectional average velocity. R is the hydraulic radius which can be 

replaced with the average depth ( ) and S represents the average energy gradient (channel 

slope) which can be extracted from digital elevation model or counter maps (Fonstad and Marcus, 

2005). An estimation of n (hydraulic resistance) is required depending on the type of river. 

nSRV 2/13/2

d
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Fonstad and Marcus (2005) have used Jarrett’s (1984) equation to estimate n for mountain 

streams which is also used in this study (Equation 3.7). 

                                       (3.7) 

Combining the Manning’s equation with the basic formula of discharge (Equation 3.8), mean 

depth for the ith cross-section ( ) can be estimated which is a function of width (Wi), slope (S) 

and the discharge (Q): 

                                       (3.8) 

                                                    (3.9) 

In addition, HAB model approximates the maximum depth of each cross-section ( ) based on 

Robison and Beschta’s (1989) assumption (Equation 3.10). Also minimum depth ( ) is 

considered as a small value (e.g. 5 cm). 

                                                  (3.10) 

Following the estimation of average, maximum and minimum depth for a cross-section, they can 

be linked to the average, maximum and minimum image values (X) of that cross-section in order 

to estimate the calibration parameters. However, HAB model considers some assumptions about 

minimum and maximum depth in each cross-section. More specifically, considering a small value 

(e.g. 5 cm) for minimum depth and finding the corresponding image value may lead to significant 

uncertainties. This is because image value of minimum depth is usually influenced with the 

surrounding land covers due to mixed pixels problem particularly in the river boundary. To deal 

with this problem, this research proposes a modification of HAB model. In this regard, the 

assumption on minimum depth (i.e. 5 cm) is suggested to be removed. Mean and max depths are 

estimated for multiple cross-sections based on the same models described for HAB model. Then 

the unknown parameters of the model are estimated based on least square estimation with high 

degree of freedom considering a sufficient number of cross-sections. 
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3.5 Dataset 

The effectiveness of MODPA compared to the Lyzenga’s model and OBRA is examined using three 

different approaches and a wide range of analysis: (a) spectroscopic experiments are performed at 

a hydraulic laboratory to acquire controlled measurements of spectral and bathymetric data. As 

substrate variability would be the key challenge for bathymetry retrieval in shallow and clearly 

flowing streams, robustness of the models is examined considering two bottom types for the 

experiments. Suspended sediment is considered as the main parameter defining the water 

column properties due to the fact that sediment load is the primary control on IOPs of clear rivers 

(Legleiter and Overstreet, 2012; Legleiter et al., 2016). The details of spectroscopic experiments 

are described in section 3.4.1; (b) radiative transfer modeling is used to produce synthetic data 

representative for most of alpine rivers in Italy (e.g. Sarca River). The ranges of IOPs used for 

simulations are associated with long-term (some decades) field observations of the parameters 

reported by environmental agencies (Giardino et al., 2007). This provides the possibility of 

analyzing the performance of depth retrieval methods also in extreme conditions of IOPs 

(relatively turbid waters) in the study area (see Section 3.4.2 for more details); (c) WV-2 image is 

used to map the bathymetry of Sarca River from space. In-situ depths are gathered using a RTK 

GPS to calibrate and assess the models (see Section 3.4.3). Moreover, the surface reflectance 

product of DigitalGlobe (i.e. AComp) is examined for the first time for the bathymetry of rivers 

using WV-2 imagery. In this regard, the accuracies of bathymetry retrievals are compared for top 

of atmosphere (TOA) and AComp reflectances. 

3.5.1  Laboratory Measurements 

Spectroscopic measurements are performed on a water flume as part of facilities available at 

hydraulic laboratory of University of Trento. Hydraulic flumes are widely used for simulation and 

investigation of flow field in riverine systems. However, to our knowledge, this is the first time 

that spectroscopic and hydraulic measurements are integrated in an indoor laboratory 

environment particularly for characterizing bathymetry and bottom properties from spectral data. 
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A set of spectral measurements is performed to test bathymetry models under controlled 

conditions of illumination, water level, IOPs and bottom properties. Two water flumes with 

different bottom properties are used to examine depth retrieval from spectral measurements. 

Flume-1 is an 18 m long, 1 m wide and 0.7 m high channel and its bottom is covered by a layer of 

uniform fine sand. Flume-2 is a 6 m long, 0.4 m wide, and up to 0.4 m deep with a gravel bed 

composed of semi-natural material. The substrate of flume-2 characterized by natural sands in 

the background combined with larger (3 cm diameter) ball-shape gravels with plastic material. 

The channels are equipped with flowmeter to measure the discharge and an adjustable tailgate 

weir located at the end of flume to ensure a uniform flow condition and to control the water level. 

Experiments are focused on a spot in the longitudinal and cross-sectional middle of each channel 

to ensure a well-developed flow and also to mitigate as much as possible the reflections and 

shadows from the sides. The water depths are measured using a point-gage along the test spot. 

The spectra are collected by installing a fiber optic jumper cable over the test spot connected to an 

Analytical Spectral Devices (ASD) HandHeld 2 spectroradiometer in the 325–1075 nm spectral 

range with 1 nm resolution. The unstable sources of lights from surrounding environment are 

eliminated by covering the experiment spot on the flume-1 while the flume-2 is entirely located in 

a darkroom. A standard ASD illuminator is used to produce highly stable light across the full 

visible/NIR spectral range (350 – 2500 nm). The illumination geometry is modified in such a way 

to remove the self-shadings of the instrument over the flume (Gordon and Ding, 1992). The 

spectra are collected over the two flumes by changing the water level with one cm increments. 

Three spectra are recorded for each flow condition that each of which is an average of 25 

individual samples. Dark current and white reference measurements are taken and updated for 

each spectral recording in order to calibrate the spectra into the reflectances. The spectra 

observed over two flumes are supplied to the bathymetry models to investigate their robustness 

mainly with respect to substrate variability. Also a little degree of water column heterogeneity can 

be assumed which is imposed by slightly different suspended sediment concentrations of two 

flumes. Figure 3.1 shows the experiments setup over the two flumes. 
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                 (a) Flume-1 

   

             (a) Flume-2 

Figure 3.1 Spectroscopic experiments in a range of water depths on (a) flume-1 with a sand bed and (b) 

flume-2 with a gravel bed composed of semi-natural material. 

3.5.2 Synthetic Data 

Radiative transfer modeling provides a unique means of understanding the interactions of light 

through its traveling path from atmosphere reaching to water surface, water column and the 

bottom and then upwelling back to the sensor (Mobley, 1994). This type of simulations is 

previously used in few researches to elaborate the efficiency of OBRA with isolating the effect of 

substrate type as well as TSS concentration in shallow rivers (Legleiter et al., 2009; Legleiter and 

Roberts, 2009). This research benefits from simulations using Hydrolight radiative transfer 

modeling (Mobley and Sundman, 2008) to examine the proposed MODPA compared to the other 

bathymetry models by isolating the effect of IOPs including Chl-a, TSS and CDOM. Although the 

main focus of this study is on clearly flowing streams, the simulations are considered in a wider 

range of IOPs to be representative for extreme conditions for the rivers of interest. A long-term 

(some decades) in-situ measurements of water quality parameters reported by environmental 

agencies are considered to define the range of IOPs for alpine rivers in Italy which can be 
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characteristic for similar rivers as well. The effect of each IOP is isolated by considering constant 

values for the other IOPs (Table 3.1). Note that a dolomite bottom type is considered for these 

simulations and the water depth varies from 2 cm to 2 m with 2 cm intervals. The CDOM 

absorption at 440 nm (aCDOM @ 440 nm) is chosen to quantify the concentrations of this IOP 

(Kirk, 1996). 

Table 3.1 The range of IOPs considered for radiative transfer modeling. In each simulation scenario, the 

effect of variations in one of IOPs is isolated by considering constant values for the other IOPs. 

 

 

 

In addition, an optically complex condition is also considered to explore the effectiveness of 

bathymetry models by assuming all the IOPs as variable parameters and also considering variable 

bottom types. The range of IOPs and water depths are as same as previous simulations and three 

different bottom types are considered including sediment, macrophyte and dolomite. 

3.5.3 HRSI and In-Situ Measurements 

HRSI including an 8-band WV-2 image and its convolution to the 4-band GeoEye image are used 

to map the bathymetry of Sarca River located in northeast Italy. It is a mountain-piedmont gravel 

bed river flowing from the Adamello glaciers down to the Garda lake. Sarca is a shallow (depth < 1 

m), narrow (mean width < 30 m) and clearly flowing stream which is regulated by an upstream 

dam that retains the water level very consistent during a long period over several years. A WV-2 

image is used for which both TOA and AComp reflectances are available. Moreover, convolution 

of WV-2 to GeoEye bands is used to gain more insights into the additional spectral bands of the 

WV-2 imagery with respect to traditional 4-band (RGB-NIR) HRSI in terms of mapping river 

bathymetry. The WV-2 sensor provides four additional bands located at coastal blue (400-450 

nm), yellow (585-625 nm), red-edge (705-745 nm) and long-wavelength NIR (860-1040 nm) 

which are denoted respectively as CB, Y, RE and NIR-2 hereafter. 

The field survey is carried out in three reaches well-distributed along the river (Figure 3.2). The 

in-situ depths are recorded with precise coordinates using a RTK GPS at dense points along cross-

Isolated IOP (variable) Other IOPs (constant) 

Chl-a (mg/m3) = {1, 3, 5}  TSS= 3 g/m3, CDOM= 0.22 m-1 

TSS (g/m3) = {0, 3, 6} Chl-a= 3 mg/m3, CDOM= 0.22 m-1 

aCDOM@ 440 nm (m-1) = {0.07, 0.22, 0.36} Chl-a= 3 mg/m3, TSS= 3 g/m3 
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sections (Figure 3.3). An ordinary kriging is used to interpolate the measured depths at the pixel 

level that enables a pixel-to-pixel comparison of in-situ depths with the image-derived estimates 

(Legleiter and Overstreet, 2012). One-half of the data is used for calibration of models and the 

remaining half as check-points for accuracy assessment. 

 

Figure 3.2 In-situ reaches surveyed for calibration and validation of the bathymetry models in Sarca River. 

  

Figure 3.3 In-situ measurements of water depths in Sarca River using a RTK GPS along the cross-sections. 

3.6 Results 

The bathymetry models are applied to spectroscopic data collected in the laboratory, synthetic 

data from radiative transfer modeling and HRSI. Findings are presented and discussed in the 

following sections. 



 

 

59 

 

3.6.1 Laboratory Experiments 

The spectra observed over the two flumes are convolved with spectral responses of WV-2 and 

GeoEye sensors. The parameters of the bathymetric models are then estimated using random half 

of the spectra observed over both flumes to get insights into the robustness of models with respect 

to substrate variations between the flumes. The depth retrieval models are validated using second 

half of the spectra and associated bathymetry information as of independent check points. Figure 

3.4 shows predicted vs. observed depths as well as the residuals of the predicted depths based on 

discussed bathymetry models applied on the laboratory spectra convolved to WV-2 bands. 

              
(a) Single Lyzenga predictor derived from NIR-1 band 

             
(b) OBRA identified Y/RE ratio as optimal predictor 
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(c) Multiple Lyzenga 

       
(d) MODPA 

Figure 3.4 Validation of depth retrieval from laboratory spectra convolved to the WV-2 bands based on (a) 

single Lyzenga predictor, (b) OBRA, (c) multiple Lyzenga predictors and (d) MODPA based on PLS 

regression. 

In Figure 4, the validation of single Lyzenga predictor is presented for the NIR-1 band that yielded 

the strongest linear relation among the other bands. OBRA matrix is illustrated in Figure 3.5 

which shows the R2 and RMSE of the ratio model for all the possible combination of spectral 

bands where the highest regression R2 occurred for the ratio between the yellow and the red-edge 

bands (Y/RE). 
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Figure 3.5 Optimal band ratio analysis (OBRA) of laboratory spectra convolved to the WV-2 bands 

representing R2 and RMSE of the ratio bathymetry model for all the possible combination of spectral bands. 

As illustrated in Figure 3.4, the residuals from Lyzenga single predictor can be clearly 

distinguished into two separate patterns that indicate the high sensitivity of this model to the 

substrate types of the two flumes. This would be interpreted as relatively bright substrate of the 

flume-1 which is confused with shallower depths while the darker bottom type of the flume-2 

caused to an overestimation of depths. The OBRA shows some improvements but still suffering 

from the same drawback. Multiple Lyzenga model and MODPA are both robust with respect to 

substrate variability. However, the residuals from MODPA are lower than those of multiple 

Lyzenga (0.35 cm and 1.2 cm RMSEs, respectively). 

The accuracy statistics of bathymetry models with and without extra predictors derived from the 

intensity component of the HSI color space are compared for the laboratory spectra convolved to 

both WV-2 and GeoEye bands (Figure 3.6). The three different regression approaches (i.e. PLS, 

stepwise and PC) provided high accuracies through the proposed MODPA. However, MODPA 

based on PLS regression is slightly more accurate than others, which is composed of one Lyzenga 

predictor derived from RE band and three ratio predictors derived from G/NIR-1, Y/RE and 

R/RE ratios for the laboratory spectra convolved to the WV-2 bands. The extra predictors 

improve the accuracies of bathymetry retrievals. The improvements are more pronounced for the 

spectra convolved with lower number of bands (i.e 4-band GeoEye). It can be also inferred that 

the enhanced spectral resolution of WV-2 leads to more accurate depth retrievals than GeoEye. 
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(a) Laboratory spectra convolved to WV-2 bands   

  

(b) Laboratory spectra convolved to GeoEye bands 

Figure 3.6 Accuracy statistics (R2 and RMSE) of bathymetry models with (W) and without (W/O) extra 

predictors applied on laboratory spectra convolved to match (a) WV-2 and (b) GeoEye bands. 

3.6.2 Synthetic Data Analysis 

The effect of each IOP including TSS, Chl-a and CDOM is explored on depth retrievals by 

changing the desired IOP and keeping the two other IOPs as constant parameters (see Table 1). 

Moreover, the performances of bathymetric models are evaluated regarding the optically complex 

testing scenario described in Section 3.4.2. Note that the bathymetry models are applied without 

extra predictors for isolating the effect of each IOP. This is because the MODPA yielded very high 

accuracies without extra predictors so that no further improvement was required. However, the 

depth retrievals are improved for the optically complex example by considering extra predictors 

(see Section 3.5.2.4).  

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Single
Lyzenga

OBRA Multiple
Lyzenga

PLS
MODPA

Stepwise
MODPA

PC
MODPA

R
2 W/O extra predictors

W extra predictors

0

0.5

1

1.5

2

2.5

3

3.5

Single
Lyzenga

OBRA Multiple
Lyzenga

PLS
MODPA

Stepwise
MODPA

PC
MODPA

R
M

SE
 (

cm
)

W/O extra predictors

W extra predictors

0.75

0.8

0.85

0.9

0.95

1

Single
Lyzenga

OBRA Multiple
Lyzenga

PLS
MODPA

Stepwise
MODPA

PC
MODPA

R
2 W/O extra predictors

W extra predictors

0

0.5

1

1.5

2

2.5

3

3.5

4

Single
Lyzenga

OBRA Multiple
Lyzenga

PLS
MODPA

Stepwise
MODPA

PC
MODPA

R
M

SE
 (

cm
)

W/O extra predictors

W extra predictors



 

 

63 

 

3.6.2.1 Isolating the Effect of TSS 

The effect of variations in TSS is evaluated on bathymetry of up to 2 m deep waters. Figure 3.7 

indicates the match-up validations for different bathymetry models using independent check-

points. 

 
(a) Simple Lyzenga derived from R band 

  
(b) OBRA identified B/Y ratio as optimal predictor 

  
(c) Multiple Lyzenga 
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(d) MODPA 

Figure 3.7 Match-up validation of depth retrievals by isolating the effect of TSS. 

As evident in Figures 7a and 7b, simple Lyzenga’s model and OBRA are sensitive to changes in 

TSS concentrations. The multiple Lyzenga model shows better performance though there are still 

some patterns in the residuals. The proposed MODPA yields a robust retrievals and with a very 

good match-up (RMSE of 1 mm). 

3.6.2.2  Isolating the Effect of Chl-a 

Figure 3.8 illustrates the match-up analysis for the bathymetry models by isolating the effect of 

Chl-a. The MODPA provides robust and perfect depth retrievals (Figure 3.8d). 
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(b) OBRA identified Y/R ratio as optimal predictor. 

 
(c) Multiple Lyzenga 

 
(d) MODPA 

Figure 3.8 Match-up validation of depth retrievals by isolating the effect of Chl-a. 
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3.6.2.3  Isolating the Effect of CDOM 

The results concerned with the effect of changes in CDOM indicate the better performance and 

robustness of the MODPA compared to the others (Figure 3.9). 

 
(a) Simple Lyzenga derived from R band 

 
(b) OBRA identified Y/R ratio as optimal predictor 
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(d) MODPA 

Figure 3.9 Match-up validation of depth retrievals by isolating the effect of CDOM.  

3.6.2.4  The Optically Complex Example 

To get more insights into performance of the bathymetry models, a set of simulated spectra 

representative of an optically complex river in the study area is taken into account. This testing 

strategy considers the bottom type and all IOPs as variable parameters (see Section 3.4.2). The 

vertical patterns on the graphs associated with simple Lyzenga model (Figure 10a) indicate 

saturation of the single band predictor for depths above ~1 m. Note that in this analysis, the NIR-

1 band providing the highest correlation has been selected as the optimal single predictor which is 

highly affected by absorption of pure water. Therefore, the saturation for relatively deep waters 

could be expected using this spectral band. Figure 3.10 shows the match-up validations where 

MODPA leads to the highest correlation with known depths (R2 = 0.98 and RMSE= 6 cm without 

considering extra predictors). Including the extra predictors enhances further the depth retrievals 

using MODPA (RMSE= 3 cm, i.e. 3 cm further improvement). This demonstrates the effectiveness 

of extra predictors for improving the robustness of bathymetry models in optically complex 

waters. 
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(a) Simple Lyzenga derived from NIR-1 band 

 
(b) OBRA identified G/R ratio as optimal predictor 

 
(c) Multiple Lyzenga 
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(d) MODPA 

 
(e) MODPA with Extra predictors 

Figure 3.10 Match-up validation of depth retrievals for optically complex spectra with variable IOPs and 

bottom types. 

3.6.3 High Resolution Satellite Imagery 

The atmospheric effects can contribute remarkably at TOA radiance due to low level of reflectivity 

from water bodies (Gordon, 1990; Pahlevan et al., 2017b). The AComp reflectances (i.e. surface 

reflectances) are compared with the TOA reflectances in a range of water depths along the Sarca 

River for the WV-2 image (Figure 3.11). For each water level, the average of image-derived 

reflectances is estimated for the pixels with the depth of interest known from the field survey. As 

evident in Figure 11, atmospheric effects are significant at short wavelengths where the Rayleigh 

scattering is dominant (Gordon 1990; Pahlevan et al., 2017b). The AComp spectra show a higher 

distinction among different water depths rather than those of TOA spectra. Moreover, a transition 

crossover can be identified between scattering- and absorption-dominated regions at around 550 
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nm. This is mainly because the suspended sediment is the primary control on the IOPs of the 

water column in clear-flowing rivers that cause to an increase in reflectance at short wavelengths 

by increasing the water depth (Legleiter et al., 2009; Legleiter et al., 2016). However, the spectra 

are dominated by absorption by pure water at long wavelengths where reflectance decreases with 

water depth. AComp and TOA reflectances of the WV-2 image are supplied to the bathymetry 

models to investigate the performance and robustness of the models with respect to the 

atmospheric effects. 

     

Figure 3.11 Comparison of AComp and TOA reflectances of WV-2 image in a range of water depths along 

the Sarca River. 

According to the analysis performed on laboratory and simulated spectra, bathymetry model 

based on a single Lyzenga predictor is highly dependent to the substrate and IOP variability. This 

model is then eliminated from the studied models for mapping the river bathymetry from HRSI. 

Figure 3.12 illustrates the validation of bathymetry models using the TOA reflectances of WV-2 

image. 
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(a) OBRA 

    

(b) Multiple Lyzenga 

        
 (c) MODPA  

Figure 3.12 Validation of depth retrieval from TOA reflectances for WV-2 image based on (a) OBRA, (b) 

Multiple Lyzenga and (c) MODPA based on PLS regression. 

Figure 3.13 represents the OBRA matrix obtained from TOA reflectances of WV-2 image for which 

G/R ratio yielded the highest observed vs. predicted R2 (0.53) with an RMSE of 9 cm. The matrix 
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indicates that band ratios with a B or G numerator and a RE or NIR-1 denominator as well as 

Y/RE ratio also provide comparable results with the optimal band ratio (i.e. G/R). This 

demonstrates the potential of long wavelengths across the near-infrared spectrum in retrieving 

the bathymetry in shallow and clear waters as the water column depth and IOPs are not in a range 

to fully absorb the signal. 

 

Figure 3.13 Optimal band ratio analysis (OBRA) of TOA reflectances for WV-2 image representing R2 and 

RMSE of the ratio model for all the possible combination of spectral bands. 

The bathymetry maps obtained from TOA reflectances of WV-2 image are compared with the in-

situ depths along the three reaches (Figure 3.14). 
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Figure 3.14 Comparison of (a) in-situ depths with bathymetry maps derived from (b) OBRA, (c) Multiple 

Lyzenga model and (d) MODPA. 
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The accuracy statistics of bathymetry models with and without extra predictors are compared for 

WV-2 image and its convolution to GeoEye bands. In addition, AComp reflectances are examined 

against the TOA reflectances using the WV-2 image (Figure 3.15). In general, the AComp 

reflectances yielded higher accuracies than TOA reflectances. However, the accuracy 

enhancement is more pronounced for OBRA while the MODPA is less affected by atmospheric 

effects. Again, the three approaches for selection of optimal predictors provided comparable 

results whereas the method based on PLS regression is to some extent more accurate than others. 

This model applied on WV-2 image is composed of three Lyzenga predictors derived from CB, G 

and RE bands and two ratio predictors derived from G/R and G/NIR-1 ratios. 

    
(a) WV-2 image 

     

(b) GeoEye image 
Figure 3.15 Accuracy statistics (R2 and RMSE) of bathymetry models with (W) and without (W/O) extra 

predictors applied on (a) WV-2 and (b) GeoEye images. The comparison also performed for the TOA and 

AComp reflectances of the WV-2 image. 
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As it can be inferred from Figure 15, the extra predictors in general lead to an increase of R2 for all 

the models except for the Lyzenga’s multiple regression model. This is mainly because making use 

of all the Lyzenga predictors derived from RGB and HSI color spaces increase the chance of 

having correlated predictors and then over-parameterization problem. As an interesting point, 

extra predictors for the GeoEye image increase remarkably the accuracy of OBRA (about 0.1 

enhancement of R2). This is shown in Figure 3.16 where the optimal ratio model is derived from 

intensity (I) bands (extra predictors). 

 

 

Figure 3.16 Optimal band ratio analysis (OBRA) of GeoEye image where the OBRA matrix derived from the 

original image bands (RGB color space) is highlighted with a red box. The optimal band ratio model is 

derived from extra predictors. 

Figure 3.17 illustrates the bathymetry retrievals along some randomly selected cross-sections 

compared to the in-situ depths using WV-2 image. 
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Figure 3.17 Comparing the results of bathymetry models considering extra predictors with field 

observations along a cross-section of Sarca River using WV-2 image. 

Figure 3.18 illustrates the bathymetry map retrieved from WV-2 image for about five km long 

reach using the proposed MODPA and based on PLS regression. 

 

Figure 3.18 Bathymetry map derived from the proposed MODPA based on PLS regression using WV-2 

image. 
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3.6.4 Theoretical Calibration of MODPA 

Figure 3.19 illustrates the results of theoretical calibration of MODPA based on original and 

modified HAB models compared to the in-situ map of bathymetry. The match-up validation of 

HAB model shows 0.61 R2 with an RMSE of 0.08 m. Modified HAB model improves R2 on the 

order of 5% and RMSE on the order of 2 cm compared to original HAB model. This demonstrates 

that the theoretical calibration of bathymetric models and particularly using modified HAB model 

can provide comparable results with the empirical approaches. 

 

       

                  (a) in-situ                                     (b) HAB                                             (c) Modified HAB 

Figure 3.19 Theoretical calibration of MODPA using (b) HAB and (c) modified HAB models compare to in-

situ data.  
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4 Chapter 4: Riverbed Mapping 

 

 

 

 

 

 

4.1 Introduction 

Information on riverbed has been always an area of interest for a wide range of science and 

management applications in fluvial systems (Ashworth and Ferguson, 1986; Westaway et al., 

2001; Woodget et al., 2014). Bottom type/composition along with the topography of riverbed 

defines morphology, controls flow and sediment transport and provides physical habitat (Newson 

and Newson, 2000; Lane et al., 2010; Legleiter et al., 2016b). For instance, submerged aquatic 

vegetation (SAV) plays a critical role in structuring ecological, morphological and hydraulic 

conditions of riverine environments. SAV provides habitat for a wide range of aquatic fauna such 

as fish, waterfowl, shellfish and invertebrates (Carpenter and Lodge, 1986; Strayer and Malcom, 

2007) and can be considered as an indicator of water quality and general stream health 

(Dennison et al., 1993; Legleiter et al., 2016b). Moreover, accounting for the presence of SAV is of 

particular importance in hydraulic and morphodynamic modeling (Ghisalberti and Nepf, 2004; 

Vargas-Luna et al., 2015). 

Conventional methods of field observations for collecting information about riverbed are costly, 

time consuming, and spatially and temporally sparse (Flynn et al. 2002; Visser et al., 2013; Villa 

et al., 2014). Remote sensing approaches provide an efficient means of characterizing fluvial 

systems across large spatial and temporal extents (Legleiter et al., 2009; Woodget et al., 2014). 

From a remote sensing point of view, a riverbed can be characterized based on its geometrical and 

spectral features. The analysis of geometry or topography of riverbed has long used aerial or 

close-range through-water photogrammetry techniques (Westaway et al., 2001) and recently 
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incorporates innovate approaches including bathymetric light detection and ranging, LiDAR 

(Bailly et al., 2010; Mandlburger et al., 2015) and structure-from-motion (SfM) photogrammetry 

using unmanned aerial vehicles, UAVs (Javernick et al., 2014; Woodget et al., 2014). However, in-

stream spectral analysis has been mostly limited to bathymetry so that characterization of bottom 

types and compositions is still less explored in riverine environments (Legleiter et al., 2016b). 

In spite of sound background in remote sensing of coastal waters, remote sensing of bottom 

properties in the context of riverine systems still requires significant amount of research (Visser et 

al., 2013; Legleiter et al., 2016b). Flynn and Chapra (2014) used supervised classification of RGB 

images acquired by a UAV to map nuisance green algae. Object based analysis is used to 

discriminate submerged macrophyte species from terrestrial and UAV images with very high 

spatial resolution (Visser et al., 2013). Anker et al. (2014) identified spatial resolution more 

influential than spectral resolution for mapping macrophyte cover in a small stream by comparing 

the results obtained from aerial digital photography and hyperspectral imagery (4 cm vs. 1 m 

spatial resolution, respectively). The key point is that most of the previous research is based upon 

above-water reflectance data for mapping bottom properties which is also reported by Legleiter et 

al. (2016b). However, above-water reflectances/radiances are influenced by attenuation of light in 

water column that can be a limiting factor for characterization and classification of substrate 

types from optical imagery (Visser et al., 2013). More recently, Legleiter et al. (2016b) examined 

the possibility of retrieving bottom reflectance by accounting for depth and inherent optical 

properties (IOPs) of water column in order to map the riverbed composition. They measured 

diffuse attenuation coefficient (kd) directly in the field and then retrieved the bottom reflectances 

to classify sediment facies and algal density of Snake River (Wyoming, USA) from field spectra 

and also airborne hyperspectral imagery. In spite of their preliminary results indicating the 

failure of bottom reflectance retrieval in enhancing the accuracy of riverbed classification 

compared to that of above-water reflectance, more investigations are still needed (Legleiter et al., 

2016b). 

This research addresses the applicability and potentials of retrieving bottom reflectance in 

shallow rivers by pursuing the following objectives: (1) examining a bottom reflectance retrieval 

method built upon estimations of diffuse attenuation coefficient (kd); (2) using radiative transfer 
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modeling and lab spectroradiometry to investigate kd and bottom reflectance retrieval 

methodologies in a very controlled condition of spectral measurements and determination of 

submergence depths, IOPs and bottom compositions associated with fluvial environments; (3) 

testing the impact of deep-water correction in the process of retrieving kd and bottom 

reflectances; (4) assessing the effectiveness of retrieved bottom reflectances rather than above-

water reflectances in mapping the bottom types and also in extraction of SAV using vegetation 

indices (VIs); (5) assessing the effectiveness of enhanced spectral resolution of 8-band WV-3 

imagery with respect to conventional 4-band (RGB-NIR) high resolution satellite imagery such as 

GeoEye in terms of streambed mapping and SAV detection; and (6) retrieving the bottom 

reflectances with a focus on SAV detection for the first time from space and using WV-3 imagery 

in riverine environments. 

The spectral characteristic of riverbed is influenced not only by the type but also the roughness of 

substrates. Motivated by this assumption, potential of optical imagery for mapping grain size of 

shallow rivers is also examined in this research. Mapping of grain sizes in riverine systems can 

enhance the understanding from fluvial processes particularly in terms of sediment 

transportation (Hoey and Ferguson, 1994; Rice and Church, 1996) morphology and habitat 

suitability (Legleiter et al., 2016b). However, retrieval of grain sizes from optical imagery and in 

general remote sensing techniques has been less explored yet. The previous works on grain size 

mapping are all built upon texture analysis on very high spatial resolution (i.e. cm resolution) 

imagery collected over exposed bed materials. Arif et al. (2016) used 1 cm resolution imagery 

acquired by a UAV to map grain sizes based on texture parameters. Local image textures and 

semivariances are also used as predictors for estimation of grain sizes using cm resolution 

imagery (Carbonneau et al., 2004). The texture-based approach, however, is subject to some 

limitations and drawbacks: access to imagery with the spatial resolution suitable for texture 

analysis is not feasible in most of cases and more importantly, the areas with exposed substrates 

would be very limited along the river channel so that the extracted grain sizes would be 

representative only for small reaches. Therefore, developing a framework is essential to extract 

grain sizes information from submerged areas and based on spectral responses rather than 

texture features. However, this issue has not been yet addressed (Legleiter et al., 2016b) and this 
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study attempts to assess, for the first time, the feasibility of inferring grain sizes from spectral 

reflectances. The main assumption of the study is that the spectral responses of a streambed are 

not only affected by substrate types but also with the roughness/sizes of the bottom. To 

investigate this assumption, spectroscopic experiments are conducted in the hydraulic flume 

considering different grain sizes. The effect of changes in grain sizes are investigated on the 

spectra observed over substrates with same materials. The spectra observed for different grain 

sizes are introduced as bottom spectra for simulations through radiative transfer modeling. Then 

the effectiveness of bottom reflectance retrieval method is investigated for classifying the grain 

sizes using simulated spectra. 

The following section outlines the theoretical background and the methodology of research. 

Section 4.3 represents the study area as well as description of spectral data including 

spectroscopic experiments, simulated spectra derived from radiative transfer modeling, and a 

satellite image. The results of implementations are presented in Section 4.4. 

4.2 Methods 

Bottom reflectance retrieval and mapping of underwater features have a sound background in 

coastal research. The early work of Lyzenga (1978, 1981) provides a physical basis for water 

column correction and estimation of depth-invariance indices to map bottom properties in coastal 

settings. A review of bottom mapping techniques developed for remote sensing of coral reef, algae 

and seagrass is provided by Zoffoli et al. (2014). However, relatively coarse spatial resolution of 

satellite imagery and difficulties in dealing with the strong water column attenuation are reported 

as long-standing barriers in fluvial studies (Marcus and Fonstad 2008; Visser et al., 2013). With 

the increasing availability of HRSI, applications of remote sensing have recently been expanded to 

fluvial systems as well (Legleiter and Overstreet, 2012; Hugue et al., 2016; Legleiter et al., 2016b). 

Bottom mapping is poorly studied in the context of fluvial systems and has been mostly based on 

above-water reflectances which neglect the attenuation effects of water column. The first attempt 

to apply existing water column correction techniques in a riverine environment is the very recent 

work by Legleiter et al. (2016b) wherein limited field and spectral measurements have been 
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applied. Their results demonstrated that sediment facies and algal densities can be characterized 

based on spectral information while retrievals of bottom reflectances were unnecessary. However, 

they indicated that the results would be subjective so that more systematic studies including 

radiative transfer modeling are necessary to explore the potentials of bottom reflectance retrieval. 

This research attempts to employ similar physics-based approach to map bottom types using 

spectral data. Here, the bottom reflectance retrieval is assisted by inferring the diffuse attenuation 

coefficient (kd) from image values and using some known water depths to eliminate field 

spectroradiometry. Then the objectives of research are followed using different source of spectral 

data including lab spectroscopy, radiative transfer modeling and WV-3 imagery. 

The remote sensing reflectance ( rsR ) is an apparent optical property needed essentially for 

interpretation of optical imagery over water bodies (Mobley, 1999; Mobley et al., 2005; Pahlevan 

et al., 2017a). The rsR is defined as ratio of water-leaving radiance to the total downwelling 

irradiance just above water (Pahlevan et al., 2017a). A radiometric calibration and atmospheric 

correction is required to derive rsR  above the water surface ( ArsR , ) from top of atmosphere 

(TOA) radiance values. Then,
 rsR  just beneath the water surface ( WrsR , ) can be estimated to 

account for transmission and refraction at the air-water interface (Lee et al., 2002; Legleiter et al., 

2016b): 
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Thereafter, the remote sensing reflectance of bottom ( BrsR , ) can be estimated according to the 

following equation (Maritorena et al. 1994; O'Neill et al., 2011; Legleiter et al. 2016b): 
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where BrsR ,  and DrsR ,  denote remote sensing reflectance of bottom and optically deep water, 

respectively. Note that kd is wavelength dependent (λ), however, we drop λ for brevity in the 
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notations. The parameter kd is the spectral diffuse attenuation coefficient that characterizes the 

propagation of light through the water column (Lee et al., 2005; Mishra et al., 2005). Legleiter et 

al. (2016b) estimated kd by directly measuring the vertical profile of downwelling irradiance 

within water column using a spectroradiometer with waterproof accessories. In this study, we 

solve for kd using water-leaving reflectances observed for different known depths and a 

homogenous bottom type adapted from (Mumby and Edwards, 2000; Kabiri et al., 2013). This 

would eliminate the field efforts for underwater spectroradiometry. Considering a small reach of 

river with homogenous bottom type, the changes in the bottom reflectance can be assumed 

negligible for a given pair of pixels ( )()( 2,1,  BrsBrs RR  ). Then, kd can be estimated by 

rearranging Equation 4.2 for each pair of pixels with different water depths (d1, d2): 
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This approach requires reflectance values coupled with corresponding depth information. Water 

depth can be measured in the field or inferred from the image using bathymetry models discussed 

in Chapter 3 such as proposed MODPA. Some in-situ depths are required for calibration of 

aforementioned bathymetry techniques through forming a regression model between spectral 

(image-derived) quantities and water depths. This study estimates the depths of image pixels 

within the river channel using proposed MODPA which provides robust bathymetry retrievals 

with respect to substrate variability and water column heterogeneity.  

Note that deep-water correction (Rrs, D in Equations 4.2 and 4.3) is challenging in fluvial systems 

due to lack of optically deep pixels. However, the effect of the deep-water correction is most 

important when the signal approaches the deep water signal (i.e. the bottom-reflected signal goes 

to zero). In the case of shallow and clear rivers that the bottom reflectance is the dominant 

component of TOA radiance, deep-water correction can be dispensed particularly when the image 

is atmospherically corrected (Mumby and Edwards, 2000; Flener et al., 2012; Flener, 2013). That 

is why in most of the research in riverine environments, deep-water correction is considered 

negligible (Flener 2013; Niroumand-Jadidi and Vitti, 2016). However, Flener (2013) proposed an 

iterative procedure to estimate deep-water radiance in the absence of deep water in shallow 



 

 

84 

 

rivers. The deep-water radiance (Lw) can be estimated by starting with an initial value for Lw and 

then its modification in an iterative process in such a way to maximize the correlation between 

image derived quantities (X) and the water depths. Legleiter et al. (2016b) collected the spectra 

over the deepest part of channel (about 2 m deep) as the remote sensing reflectance of optically 

deep water ( DrsR , ) needed for bottom reflectance retrieval (Equation 4.2). However, this 

assumption is subject to uncertainties and not feasible in very shallow streams. In this research, 

the deep-water correction is performed by Flener’s method (2013) and its impact is examined on 

retrieving kd and bottom reflectances in shallow rivers. 

Figure 4.1 illustrates the overall workflow for mapping of bottom types using two different data 

sources: (A) above-water reflectances and (B) bottom reflectances. Then the bottom information 

extracted from both approaches are assessed with respect to the reference data to compare the 

potentials of above-water and retrieved bottom reflectances for characterizing substrate types and 

compositions of shallow rivers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Flowchart for the mapping of streambed and delineation of SAV via (A) retrieving bottom 

reflectance and (B) above-water reflectance. The depth information required for kd estimation can be 

collected either in the field or derived from image/spectra (shown by dashed lines). 

In this research, extraction of SAV is focused as a prominent bottom property in riverine 

environments. In this regard, VIs with different band combinations are used to identify the SAV 

based on both above-water and retrieved bottom reflectances. The normalized difference 

vegetation index (NDVI) is very common for extraction and monitoring of terrestrial vegetation 

(Table 4.1). This index is developed based on characteristic feature of vegetation for which there is 

a sharp increase of reflectance in the transmission region from red to NIR spectrum (Jensen, 

2000; Cho et al., 2012). In spite of similarities among the spectral signatures of terrestrial and 

aquatic vegetation, the water column characteristics such as depth and IOPs can influence 

substantially the spectral response observed above the water surface (Silva et al., 2008; Wolf et 
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al., 2013; Villa et al., 2014). More specifically, the distinctive vegetation feature becomes 

attenuated due to strong pure water absorption in the NIR region. Recently, a water adjusted 

vegetation index called WAVI (Table 4.1) is developed to account for the background water 

response (Villa et al., 2014). However, this index is developed and tested only in lake 

environments. This research investigates the effectiveness of main terrestrial and aquatic VIs for 

detection of SAVs in shallow rivers. The visible and NIR bands of WV-3 sensor provides 8 bands 

equivalent to those of WV-2 with enhanced spectral resolution compared to the traditional 4-

band (RGB-NIR) sensors with high spatial resolution (e.g. GeoEye and Quickbird). More 

specifically, an additional spectral band located in the red to NIR transition spectrum called red-

edge (RE) and also two bands over the NIR region (NIR1 and NIR2) provide more options to 

compute VIs. In this study, reflectance values associated with RE and NIR-2 bands are employed 

in the structure of NDVI and WAVI by replacing them with the traditional NIR band used in 

original indices. All the band combinations considered for computation of VIs using the WV-3 

sensor are listed in Table 4.1. 

Table 4.1 Vegetation indices (VIs) used to study SAV. 

VIs Original formula 
Band combinations 

for WV-3 sensor 

Terrestrial 
RNIR

RNIR

RR

RR
NDVI




  

(NIR1, R) 
(NIR2, R) 

(RE, R) 

Aquatic 5.0,)1( 



 L

LRR

RR
LWAVI

BNIR

BNIR  (NIR1, B) 
(RE, B) 

 

The VIs such as NDVI are widely used as indicators for fractional vegetation coverage where a 

strong correlation among VIs values and vegetation fractions has been demonstrated (Hurcom 

and Harrison, 1998; Elmore et al., 2000; Xiao and Moody, 2005). A regression among VIs values 

and known SAV fractions is used to evaluate the effectiveness of these indices for detection and 

mapping the density of SAV by using either above-water or retrieved bottom reflectances. 
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4.3 Datasets 

This study applies three different spectral radiometric datasets, measured in laboratory, 

simulated using radiative transfer modeling, and collected by satellite sensors to perform a 

comprehensive assessment of the bottom reflectance retrieval methodology described above. As 

the main focus of research is on narrow rivers which require high spatial resolution imagery, the 

spectra collected in the laboratory and also simulated data are convolved with spectral responses 

of WV-3 and GeoEye sensors. The IOPs of water column are characterized by concentrations of 

TSS, Chl-a and absorption of CDOM at 440 nm wavelength. Summary and brief descriptions of 

the datasets are provided in Table 4.2 while more details can be found in the following 

subsections. 

Table 4.2 Datasets used in this study and their attributes. 

Datasets Spectral characteristics Bottom types Water depths IOPs 

Laboratory 

Spectroradiometry with 1 

nm resolution convolved to 

WV-3 and GeoEye bands 

Gravel with different 

sizes, SAV with 

different densities  

0 to 0.4 m with 1 

cm intervals 

Clear water with low 

TSS (~ 2 g/m3) 

Synthetic 

Hydrolight simulations with 

10 nm resolution convolved 

to WV-3 and GeoEye bands 

Sediment, Macrophyte 

and Dolomite, 

laboratory measured 

spectra for different 

grain sizes 

0 to 1 m with 2 cm 

intervals 

TSS= 2-6 g/m3 

Chl-a=1-5 g/m3 

aCDOM @ 440 nm= 

0.07-0.22 m-1 

Satellite WV-3 image 
SAV with different 

densities 
0 to 0.8 m 

TSS ~ 3 g/m3 

Chl-a ~ 2 g/m3 

aCDOM @ 440 nm~ 

0.09 m-1 

 

4.3.1 Laboratory Measurements 

Spectroscopic measurements are performed on the flume-2 described in Section 3.5.1. These 

facilities provide the possibility of defining bottom composition and controlled measurements of 

both hydraulic and spectral data. The spectral data are recorded by pointing a fiber optic jumper 

cable in a near-nadir viewing angles from 30-cm above water surface. Similar to the experiments 

associated with bathymetry analysis in Chapter 3, field of view of the sensor is focused on a cell in 

the middle of channel to observe the spectral response of the target flow avoiding any probable 

adjacency effects. Three spectra are recorded for each flow condition each of which is an average 

of 25 individual samples. Radiometric calibrations including white reference and dark current 
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observations are updated for recording each spectral data in order to obtain the reflectance 

values.  

Four sets of data are collected considering different bottom types including non-vegetated gravel 

bed and three submerged vegetation fractions. The latter includes high-, medium-, and low-

density SAVs. For each set of data, first the reflectance of dry bottom (representing exposed 

material) is measured as reference bottom reflectance and then measurements are continued with 

1 cm increments of water level up to maximum 40 cm (Figure 4.2). 

   

           (a)                                                                 (b)                                                              (c) 

Figure 4.2 Spectroscopic experiments on a hydraulic flume representing spectral measurements over (a) 

non-vegetated gravel bed, (b) SAV and (c) white reference. 

In addition, the spectra of substrates with same materiel but different grain sizes (fine, medium 

and coarse) are measured to investigate the effect of substrate roughness on the spectral signature 

(Figure 4.3). 

   

                (a) Fine                                               (b) Medium                            (c) Coarse 

Figure 4.3 Substrates with the same material types and different grain sizes  
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4.3.2 Synthetic Data 

Simulated spectra from radiative transfer modeling have been used previously for bathymetry 

retrieval in shallow rivers (Legleiter and Roberts, 2009; Legleiter et al., 2009). However, this 

study would benefit for the first time from simulated spectra to gain more insights on streambed 

mapping in shallow submerged areas of riverine environments. These spectral data can provide a 

unique means of development and assessment of kd and bottom reflectance retrieval models by 

having under control the main affecting parameters (i.e. bottom types, water depths and IOPs). 

The remote sensing reflectances above the water surface (Rrs,A) as well as the associated kd values 

across the spectrum are simulated using widely used Hydrolight radiative transfer model 

(Mobley, 1994; Mobley and Sundman, 2008) for three different bottom types (macrophyte, dark 

sediment and dolomite) and a range of IOPs representative of Sarca River and other alpine rivers. 

Maximum and minimum values of the IOPs are selected based on long-term (some decades) 

observations of water quality indicators documented by local environmental agencies and 

reported also in the literature (Giardino et al., 2007). A database of simulations including more 

than 20,000 individual spectra was produced. As most of the previous modeling studies on 

simulations, an analysis is performed on the spectra without allocating them spatially to pixel 

locations. 

 In addition, an image-derived bathymetry map representing a reach of Sarca River is used to 

spatially allocate the simulated spectra to individual pixels. This provides almost a realistic 

frequency of water depths and also a better visual perception. The channel is divided into three 

segments with different IOPs from clear to turbid water. Also each segment has one dominant 

bottom type but mixed up to 50% with two other bottom types. A linear mixture model is used to 

mix the spectra with different bottoms fractions. Figure 4.4 shows the inputs for simulating the 

spectra over the river channel. 
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         (a) Water depth             (b) Inherent optical properties (IOPs) 

      

  (c) Fractions of sediment bottom                        (d) Fractions of macrophyte bottom 

 

(e) Fractions of dolomite bottom 

Figure 4.4 Inputs for simulation of river spectra. 

 

The spectra observed over dry bottoms with different grain sizes suggest that reflectances increase 

with increasing the grain sizes (Figure 4.5). Note that the shapes of the spectra are identical and 

only the reflectance magnitudes are scaled across the spectrum depending on the grain sizes. 
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Figure 4.5 Spectral reflectances observed over dry bottoms with same materials and different grain 

sizes. 

Similar to the simulations for studying bottom types, another set of spectra are simulated for 

studying grain size mapping. The spectra observed in the laboratory for different grain sizes (see 

Figure 4.5) are introduced to radiative transfer modeling as bottom types. Again, the simulated 

spectra are allocated to individual pixel locations using bathymetry map of a reach of Sarca River 

(Figure 4.6). The channel is divided into three segments with three levels of turbidity (IOPs). The 

bottom spectra for each segment are associated with one of the grain sizes. Figure 4.6 illustrates 

the bathymetry map and the three segments with different IOPs and grain sizes. 

                 

 (a)            (b) 

Figure 4.6 Inputs for radiative transfer modeling: (a) bathymetry (b) IOPs and grain sizes. Substrates 

are associated with different grain sizes. 

The spectra are simulated for the channel and convolved with the band passes of desired sensors 

(i.e. WV-3 and GeoEye). Figure 4.7 shows true color composites for the bottom (riverbed) and the 

above-water reflectances derived from the testing scenario associated with different bottom types. 
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                         (a) Riverbed, WV-3                               (b) Above-water, WV-3  

    
                         (a) Riverbed, GeoEye                               (b) Above-water, GeoEye  

Figure 4.7 True color composite of simulated spectra associated with different bottom types coevolved with 

band passes of WV-3 and GeoEye. 

As it is clear from true color images of above-water reflectances shown in Figure 4.7, the colors of 

upstream (with dominant sediment bottom) are similar to downstream colors (with dominant 

dolomite bottom). However, midstream (with dominant macrophyte bottom) shows relatively 

distinctive colors. Also two spots are highlighted by red circles on above-water reflectances of 

WV-3 image for which the bottom reflectances are dominant so that can be observed from above 

the water. This is mainly because the water is very shallow (< 20 cm) in these spots (see Figure 

4.4a). The similar patterns can also be identified on above-water reflectances of the GeoEye 

image. 

The simulated spectra associated with different grain sizes are shown in Figure 4.8.  
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          (a)                                   (b) 

Figure 4.8 True color composite of simulated spectra associated with different grain sizes coevolved 

with band passes of WV-3. 

4.3.3 High Resolution Satellite Imagery 

An 8-band image of WV-3 sensor (equivalent to WV-2 bands) over Sarca River acquired on 1 

September 2015 is also used to examine the bottom reflectance retrieval methodology for 

mapping SAV densities. Sarca is a shallow river in Italian Alps fed by melting from the Adamello 

glaciers and flowing down to the Garda Lake (Figure 4.9). In-situ water depths and also 

information on SAV densities are recorded using a RTK GPS rover (Figure 4.10). The in-situ 

depth measurements are conducted at dense points along cross-sections in three reaches. The 

image was georeferenced, however, some control points are collected outside the river channel for 

coregistration of the in-situ data with the satellite coordinates. To link the field depths to the 

image pixels, an ordinary kriging is used to interpolate the measured depths at the pixel level 

(Legleiter and Overstreet, 2012). One-half of the data is used for calibration of the proposed 

bathymetry model in Chapter 3 (i.e. MODPA) and the second half as check-points for accuracy 

assessment. The riverbed in the study area is composed of gravels (dolomite as the dominant 

material) with patches of SAV (Figure 4.10b). For each patch of SAV, approximate areal coverage 

is documented to further measure the performance of SAV mapping. 
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Figure 4.9 Sarca River located in Italian Alps is the main inflow of Garda Lake (shown in downstream of 

the river). 

 

   

  (a) GPS coordinates of depths and SAV            (b) Sample of SAV     (c) Cross-sectional depth records 

Figure 4.10 Field observations of water depths and SAV using a precise RTK GPS in Sarca River. 

4.4 Implementations and Results 

The kd and bottom reflectance retrieval methods are applied to the spectral data and a wide range 

of analysis is performed to investigate the objectives of research. In the following, the results are 

presented for each type of data source which provide complementary insights into benthic 

mapping in shallow rivers. 
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4.4.1 Laboratory Experiments 

The above-water reflectances along with the bathymetry data collected over non-vegetated gravel 

bed are used to estimate kd. Figure 4.11 shows kd retrievals with and without applying deep-water 

correction which are used for estimation of the bottom reflectances. As it is clear, the impact of 

deep-water correction is not significant so that comparing kd retrievals with and without applying 

deep-water correction, root mean square difference (RMSD) equals 0.05 1/m across the spectral 

channels. Direct measurement of the kd was not possible due to not having access to water-proof 

spectroscopy accessories. However, measurements of substrate reflectances provide the 

possibility of assessing the accuracies of bottom reflectance retrievals. Though, retrieved kd shows 

a reasonable trend across the spectrum so that the relatively high attenuation over coastal blue 

and blue bands (λ< 480 nm) can be interpreted as the impact of scattering by suspended 

sediment. Moreover, long wavelengths (NIR bands) show a significant increase in kd due to the 

absorption by pure water. 

  

Figure 4.11 Estimated diffuse attenuation coefficient using reflectance measurements over the hydraulic 

flume with and without applying deep-water correction (WD, WoD). 

The bottom reflectances are then retrieved from above-water reflectances using the estimated kd. 

For instance, the average retrieved bottom reflectances are presented for the changing water level 

of the flume with non-vegetated gravel and high-density SAV substrates compared to the 

measured reflectances over the corresponding dry bottoms (Figure 4.12). Note that reflectances 

(R) are calculated from Rrs considering a Lambertian surface assumption (R= π×Rrs). 
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                                             (a) Gravel                                                  (b) High-density SAV 

Figure 4.12 Comparison of measured bottom reflectances with average bottom reflectances retrieved over a 

range of water depths in hydraulic flume for (a) non-vegetated gravel bed and (b) high density SAV using the 

spectra convolved to WV-3 bands. 

The root mean square errors (RMSEs) are calculated to assess the performance of bottom 

reflectance retrievals (Equation 4.4). 





N

i

retrievedmeasured NiRiRRMSE
1

2 /))()((                        (4.4) 

The reflectance for band i is denoted by R(i) with a subscript referring to measured or retrieved 

spectra. N is the number of bands for which visible and NIR (λ > 700 nm) bands are analyzed 

separately. The retrievals of bottom reflectances show good agreements with the measured 

reflectances particularly across the visible spectrum and the deep-water correction slightly 

improves the results (Figure 4.13). The retrievals from spectra convolved with GeoEye spectral 

responses led to lower RMSEs over NIR spectrum compared to those of WV-3 which would be 

because of the extra band of WV-3 spanning over longer wavelength (NIR-2). The error bars 

shown on Figure 4.13 denote the effect of changing water level so that their small values 

demonstrates the effectiveness of water column correction over the range of water level 

considered in the experiments. 
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(a) WV-3                             (b) GeoEye 

Figure 4.13 RMSEs of retrieved bottom reflectances with and without applying deep-water correction (WD, 

WoD) across visible and NIR bands using the lab spectra convolved to (a) WV-3 and (b) GeoEye bands. 

Error bars show the effect of variable water depth. 

One of the key objectives of the research is to examine the effectiveness of bottom reflectance 

retrieval (i.e. water column correction) for identification of substrate properties compared to 

simply using above-water reflectances. In Figure 4.14, the above-water reflectances are compared 

with the corresponding retrieved bottom reflectances for 40 cm deep water considering low, 

medium and high densities of SAV. As it is clear the characteristic feature of vegetation (i.e. high 

spectral response in NIR) is very strong and detectable on retrievals of bottom reflectances. This 

is while this feature tends to fade for above-water reflectances where it totally disappears for the 

low-density SAV. 

         

Figure 4.14 Comparison of reflectances before and after water column correction (solid- and dash-lines, 

respectively) above 40 cm deep water with different SAV densities in the hydraulic flume. 
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The terrestrial and aquatic VIs are applied to both above-water reflectances and retrievals of 

bottom reflectances for SAV with different densities. The VIs derived from each of band 

combinations lead to clusters which are associated with the four SAV densities (see Figure 4.15, 

zero density denotes non-vegetated gravel bed). The clusters of VIs derived from above-water 

reflectances show considerable overlaps which mitigates the separability among different SAV 

densities. To elaborate more on this, k-means algorithm is applied to VIs to cluster them into four 

classes. The overall accuracies and the kappa coefficients are presented for VIs with different 

band combinations (Figure 4.15). The VIs built upon RE band demonstrated better performance 

compared to the other band combinations using above-water reflectances. More specifically, the 

(RE, R) band combination yields the highest accuracy with 92 % overall accuracy and kappa 

coefficient of 89 %. Aquatic VIs provide no further benefit for clustering SAV densities using 

above-water reflectances. The clusters obtained from retrieved bottom reflectances show perfect 

distinction among SAV densities for all the band combinations. As it is shown on Figure 4.15b, the 

clusters are much separated which provides a perfect distinction among different SAV densities. 

On the other hand, they are very compact that reveals the little effect of changing water depth on 

VI values for each cluster which confirms the successful correction of the water column effect. 

However, it should be considered that the results are based on observations which are limited to a 

maximum 40 cm deep and clearly flowing water. The results are shown only for the case without 

applying deep-water correction as it provides the perfect clusters and no more enhancements are 

required. 
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        (a) Before water column correction                                     (b) After water column correction 

Figure 4.15 Evaluating the effectiveness of VIs in distinguishing among SAV with different densities using 

(a) above water reflectances and (b) retrieved bottom reflectances without deep-water correction over the 

hydraulic flume. Error bars indicate the effect of variable water depth. 

4.4.2  Synthetic Data Analysis 

Here, using simulated data, we examine the performance of kd retrievals in various water-column 

conditions across the river channel. This provides an investigation on a wide range of water 

column properties (IOPs and water depth) and bottom compositions. The kd parameter is 

estimated using the above-water reflectances for the simulated river channel presented in Section 

4.3.2. In this regard, two retrievals are considered: (a) upstream composed of dominant substrate 

type of sediment and clear water and (b) downstream including dominant substrate type of 

dolomite and relatively turbid water. The estimations with and without applying deep-water 

correction are compared with the average simulated kd for entire channel using WV-3 bands 

(Figure 4.16). This is to investigate the effectiveness of kd retrieval in the case of variable IOPs 

across the river channel. A limited number of pixels (~ 20) are taken as samples for each kd 

retrieval. 
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                 (a) WV-3, without deep water correction                             (b) WV-3, with deep water correction                        

Figure 4.16 Diffuse attenuation coefficient (kd) retrievals for the simulated river channel compared to 

known values from Hydrolight simulations. 

Figure 4.17 shows the RMSEs of upstream and downstream kd retrievals with and without 

applying deep-water correction. Downstream estimations of kd are more accurate than upstream 

retrievals particularly for the visible bands. This was expected because downstream IOPs are 

more representative for entire stream rather than upstream (downstream is a larger segment with 

more pixels). Deep-water correction also leads to improvements of kd retrievals. Similar to the 

results of lab experiments, simulated GeoEye spectra provide slightly lower RMSEs of kd 

retrievals in NIR spectrum. 

 

         (a) WV-3                 (b) GeoEye 

Figure 4.17 Performance of kd retrievals for upstream (Up) and downstream (Down) of the simulated 

channel with and without deep water correction (WD, WoD) expressed in terms of RMSE (1/m). Hatched 

bars are used for downstream to make them distinctive from upstream data. 
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Following by estimation of kd, bathymetry map of the simulated channel is also retrieved which is 

required for inferring the bottom reflectance of each individual pixel. To calibrate the bathymetry 

model only 1% of the channel depths are selected randomly. Then MODPA is applied between 

spectra-derived quantities and the associated water depths. The spectra-derived depth map is 

illustrated in Figure 4.18a for WV-3 bands. The validation is performed by matching up the 

retrieved depths against the known values for the entire channel. The resultant R2 of 0.99 and 

RMSE of 0.01 m indicate the high performance of MODPA in a variable IOPs and substrate types 

(Figure 4.18b). 

 

              
               (a) Bathymetry derived from synthetic data                              (b) Match-up validation 

Figure 4.18 (a) Bathymetry map retrieved for the simulated channel based on the spectra convolved to 

band passes of WV-3 and (b) match-up validation of retrieved depths versus known values. 

Figure 4.19 shows the true color composite of bottom reflectance retrievals considering upstream 

and downstream kd estimations of the simulated river channel without applying deep-water 

correction. 
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             (a) WV-3, upstream kd retrieval                                      (b) WV-3, downstream kd retrieval  

      
           (c) GeoEye, upstream kd retrieval                    (d) GeoEye, downstream kd retrieval  

Figure 4.19 True color composite of retrieved riverbed without deep water correction based on upstream 

and downstream kd retrievals of the simulated channel. 

The performance of the bottom reflectance retrievals is assessed using a clustering method. The 

k-means (Hartigan and Wong, 1979) algorithm, a frequently used unsupervised classifier, is 

applied to above-water and the retrieved bottom reflectances to map the riverbed classes. As a 

reference map for accuracy assessment, each segment of the river channel is labeled with the 

bottom type dominant in that segment. As evident in Figure 4.20, above-water reflectances lead 

to considerable number of misclassified pixels particularly with a confusion between the bottom 

types of the upstream (dominant sediment) and downstream (dominant dolomite) segments. This 

was expected to some extent by the existing visual similarities between true color composites of 

above-water reflectances for these two segments (Figures 4.7b and 4.7d). 
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(a) WV-3        (b) GeoEye 

Figure 4.20 Clustering of riverbed using above-water reflectances of the simulated channel. 

 

Figure 4.21 demonstrates the substrate clusters derived from bottom reflectance retrievals 

without applying deep-water correction which shows considerably less misclassified pixels 

compared to those of obtained from above-water reflectances. 

 

           
                       (a) WV-3, upstream kd retrieval                                         (b) WV-3, downstream kd retrieval  

        
                   (c) GeoEye, upstream kd retrieval                                    (d) GeoEye, downstream kd retrieval  

Figure 4.21 Clustering of riverbed using retrieved bottom reflectances without deep-water correction based 

on upstream and downstream kd retrievals of the simulated channel. 
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The quality of bottom maps is assessed quantitatively by calculating the overall accuracies and 

kappa coefficients. In the reference map needed for building the confusion matrix, obviously, each 

pixel is assigned to the bottom type with the most abundance which yields to three distinct 

clusters corresponding to the before-mentioned three river segments. The retrievals of bottom 

reflectances yield significant improvements (about 20% overall accuracy and 30% kappa 

coefficient) in mapping bottom types with respect to above-water reflectances either using WV-3 

or GeoEye bands (Figure 4.22). Deep-water correction improves slightly the bottom mapping 

(about 2-3%). Further, downstream kd retrievals yield slight improvements compared to upstream 

retrievals (about 2-3%) which shows insignificant impact of IOPs variability on the substrate 

mapping process in the range of parameters discussed in this study. However, this probably 

would have considerable effects when detailed spectral information is required for mapping the 

substrate properties (e.g. bottom types with very similar spectral responses such as different types 

of SAV) or in the case of high level of variability in IOPs which requires more investigations. 

         

Figure 4.22 Overall accuracies and kappa coefficients of the bottom maps obtained from above-water and 

retrieved bottom reflectances (denoted by Above and Bottom, respectively). The statistics are presented for 

upstream (Up) and downstream (Down) kd retrievals with and without deep-water correction (WD, WoD) 

for the spectral convolution to WV-3 and GeoEye bands. 

To evaluate the effectiveness of VIs for detection of SAV densities, a regression of VIs versus the 

known SAV (macrophyte) fractions is performed. The coefficient of determination (R2) and RMSE 

of regressions indicate the significantly stronger correlation between VI values and SAV densities 

for inferred bottom reflectances than for above-water spectra based on all of band combinations 

(Figure 4.23). The strongest correlation is for (RE, R) band combination for both above-water 
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reflectances (R2 = 0.48 and RMSE = 0.2) and inferred bottom spectra (R2 = 0.85 and RMSE = 

0.07). This demonstrates the significance of the RE band of WV-3 for mapping benthic vegetation 

in shallow rivers which is missing for the GeoEye sensor. There are also some evidences from 

studies in wetlands demonstrating usefulness of the RE band for mapping benthic vegetation and 

without applying any water column correction (Lane et al., 2014; Whiteside and Bartolo, 2015). 

Deep-water correction also slightly improves the regression statistics. 

 

Figure 4.23 R2 and RMSE of regressions between VI values and macrophyte fractions for above-water and 

inferred bottom (Bottom) reflectances. 

Additional analyses are performed on the database of simulated spectra to elaborate the 

performance of bottom reflectance retrievals in different levels of water depths and IOPs. Figure 

4.24 indicates the RMSEs of inferred bottom reflectances across a range of water depths 

considering constant IOPs and using the spectra convolved to the band passes of WV-3. In 

general, visible bands are retrieved with high accuracies and the water depth has less of an effect 

on RMSEs of these bands. The RMSEs of NIR bands increases sharply by water depth particularly 

without applying deep-water correction. The effect of deep-water correction is pronounced for 

relatively deep water (depth > 0.5 m) where improves the bottom reflectance retrievals 

particularly in NIR spectrum. 
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            (a) Dolomite                                    (b) Macrophyte                                           (c) Sediment 

Figure 4.24 RMSEs of bottom reflectance retrievals across a range of water depths and three bottom types 

with and without deep water correction (WD, WoD) using simulated spectra convolved to WV-3 spectral 

bands. IOPs are constant (TSS = 4 g/m3, Chl-a = 3mg/m3, CDOM= 0.14 m-1). 

Further, three levels of turbidity are assumed associated with the range of IOPs for Sarca River 

and similar Alpine rivers: low (TSS= 2 g/m3, Chl-a= 1 mg/m3, CDOM= 0.07 m-1), medium (TSS= 

4 g/m3, Chl-a= 3 mg/m3, CDOM= 0.14 m-1) and high (TSS= 6 g/m3, Chl-a= 5 mg/m3, CDOM= 

0.22 m-1). The efficacy of bottom reflectance retrievals is then evaluated in constant and thick 

water column (1 m). The RMSE of bottom reflectance retrievals in NIR bands increases by 

increasing the turbidity while the retrievals in visible bands are less affected. Deep-water 

correction improves the retrievals of bottom reflectances particularly for NIR bands (Figure 4.25). 

   

           (a) Dolomite                                          (b) Macrophyte                                       (c) Sediment 

Figure 4.25 RMSEs of bottom reflectance retrievals across a range of IOPs and three bottom types with and 

without deep water correction (WD, WoD) using simulated spectra convolved to WV-3 spectral bands. Water 

is constantly 1 m deep. 

The effectiveness of bottom reflectance retrieval method is also examined for making distinction 

among grain sizes. The bottom reflectances are retrieved for the simulated channel with different 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1

R
M

SE

Water depth (m)

Visible WoD
Visible WD
NIR WoD
NIR WD

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.2 0.4 0.6 0.8 1

R
M

SE
Water depth (m)

Visible WoD
Visible WD
NIR WoD
NIR WD

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1

R
M

SE

Water depth (m)

Visible WoD
Visible WD
NIR WoD
NIR WD

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.1 1.1 2.1

R
M

SE

Turbidity

Visible WoD
Visible WD
NIR WoD
NIR WD

Low Medium High
0

0.02

0.04

0.06

0.08

0.1

0.12

0.1 1.1 2.1

R
M

SE

Turbidity

Visible
WoD
Visible WD

Low Medium High
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.1 1.1 2.1

R
M

SE

Turbidity

Visible
WoD
Visible WD

Low Medium High



 

 

107 

 

grain sizes (Figure 4.26a). Then, k-means algorithm is applied on the retrieved bottom 

reflectances to cluster the streambed into three grain size classes (Figure 4.26b). The resultant 

overall accuracy of 92% and kappa coefficient of 0.88 indicate high potentials of bottom 

reflectance retrieval for mapping grain sizes in shallow rivers and in the range of IOPs discussed 

in this study. 

            

                  (a)                    (b) 

Figure 4.26 (a) true color composite of retrieved bottom reflectances and (b) grain size clusters. 

4.4.3 High Resolution Satellite Image  

The 8-band WV-3 image of the study area is first atmospherically corrected using the MODTRAN 

model. Then the kd parameter is estimated using in-situ depths and associated above-water 

remote sensing reflectances over a segment of Sarca River with homogenous bottom type with 

and without deep-water correction. The bathymetry map of the channel is estimated by 

calibrating the MODPA with random half of the in-situ measured depths. The image-derived 

depth map is shown in Figure 4.27b for a reach of the river interested for SAV mapping compared 

to the field observation for the same area (Figure 4.27a). The validation of depth retrievals is 

performed based on the remaining half of the in-situ depths as independent check points (Figure 

4.27c). 
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      (a) in-situ depths                           (b) image-derived depths                  (c) validation of depth retrievals 

Figure 4.27 Image-derived bathymetric map of Sarca River compared to the in-situ depths and match-up 

validations using independent check points. 

Samples of retrieved bottom reflectances compared to corresponding above-water reflectances 

are illustrated in Figure 4.28 for different SAV densities observed in Sarca River. The 

characteristic feature of vegetation becomes sharply detectable on retrievals of bottom 

reflectances and deep-water correction slightly impacts the spectra (Figure 4.28b). 

         
                                       (a) above-water                  (b) retrieved bottom 

Figure 4.28 Samples of (a) above-water reflectances of SAV with different densities observed by the WV-3 

sensor over Sarca River and (b) associated retrieved bottom reflectances with and without deep-water 

correction (WD, WoD). The spectra are selected in 30-40 cm water depths. 

The areal coverage data of SAV patches gathered in the field are converted to a density index by 

dividing the observed area of a patch by the sensor’s pixel coverage (1.6 m ×1.6 m for the WV-3 

data used in this study). Then the index values are clustered using k-means algorithm to three 

density classes to be used as reference map (Figure 4.29a). The effectiveness of VIs is examined in 

terms of making distinction among SAV densities by using both above-water and inferred bottom 

reflectances. The VIs derived from spectral data are clustered using k-means algorithm and 
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compared with the in-situ reference map. The best results are achieved based on the (RE, R) band 

combination for both above-water and retrieved bottom spectra (Figures 4.29b and 4.29c).   

    

          

       (a) In-situ reference map                            (b) Above-water                                (c) Retrieved bottom  

Figure 4.29 Clustering of SAV densities using the VI values derived from (RE, R) band combination for (b) 

above-water and (c) retrieved bottom reflectances compared to the (a) in-situ reference map. 

The user and producer accuracies of SAV density clusters indicate that the retrieved bottom 

reflectances yield remarkable higher accuracies than above-water spectra for all the SAV 

densities. However, the accuracies of clustering from above-water spectra increase by increasing 

the density of SAV (45% user accuracy and 57% producer accuracy for high density SAV). This is 

also valid for clustering from retrieved bottom reflectances with a lower magnitude (Figure 4.30). 

         
Figure 4.30 User and producer accuracies of SAV density clusters derived from (RE, R) band combination 

for the VI using above-water and retrieved bottom reflectances.  
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5 Chapter 5: Discussion and Conclusions 

 

 

 

 

 

 

This final chapter provides a summary and discussion about key findings of the three main 

research elements. Overall conclusions and suggestions are then provided in the last section of 

chapter. 

5.1 Delineation of River Boundaries 

Addressing the problem of mixed boundary pixels can enhance the accuracy of remote sensing 

applications in the river science. Unmixing and SRM are considered as key tools respectively to 

spectral and spatial decomposition of the mixture in river boundaries. The former estimates the 

water fractions and the latter allocates the fractions in proper sub-pixel locations. Both of these 

steps have been the focus of this study in order to examine and develop the techniques for 

mapping of river boundaries at the sub-pixel resolution. Two different testing approaches are 

considered to survey the efficiency of SRM algorithms, while accounting for absence and presence 

of uncertainty in the input data (i.e. fractions obtained from unmixing). Semi-simulated fractions 

are used as a contrived input with known fractions which provide a unique means of assessing the 

performance of the spatial allocation of sub-pixels. Moreover, the comparison between hard 

classification and SRM algorithms can be facilitated. This is because the hard labeling of pixels 

also can be applied on semi-simulated fractions without any uncertainty by deciding on the most 

abundant class (water/non-water) within the pixels. In the second testing approach, real water 

fractions are estimated based on a proposed method, namely OBA-NDWI, as well as using the 

fully constrained algorithm of SPU. The rationality behind the proposed OBA-NDWI is to take 

advantages from the ease of use of water indices in order to estimate water fractions. The OBA-
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NDWI performs the NDWI with all the possible combinations of spectral bands to identify the 

pair of bands for which the NDWI values yield the highest correlation with water fractions. To 

analyze the relation of NDWI values and water fractions through OBA-NDWI, a linear mixture of 

image-derived spectra is used to simulate all the possible mixing fractions of selected 

endmembers. The proposed OBA-NDWI method permits a systematic approach to find the 

optimal combination of bands for calculation of NDWI which can also be instrumental for images 

with high spectral resolution. This benefits both hard and soft classification of water features 

where the highly correlated NDWI to water fractions can enhance the accuracy of the extraction of 

water features either at the pixel or sub-pixel level. The semi-simulated and real fractions are 

employed for SRM based on the PS algorithm as well as interpolation-based techniques. 

Moreover, the MBPS algorithm is developed to provide a non-iterative alternative to the 

traditional PS. The accuracy and computational proficiency of the techniques are explored on two 

case studies using HRSI. 

Results obtained from SRM of semi-simulated fractions demonstrate that hard classification is 

suffering remarkably from the mixture in boundary pixels where the extracted border lines are 

very rough and are missing the detailed proximity with riparian zone. In this regard, the user and 

producer accuracies of the hard classified river map would be lower over than 10% compared to 

the SRM techniques. In general, interpolation-based techniques, as well as the proposed MBPS 

algorithm, produce comparable results with the PS algorithm. However, it seems that the 

producer accuracy of interpolation-based techniques decreases much faster than PS/MBPS from 

an increase in ZF. As another key point, increasing the ZF leads to a higher degree of uncertainty 

in allocating the fractions in sub-pixel locations. So, a trade-off between the accuracy of SRM 

algorithms and ZF should be taken into account.  

The resultant real water fractions from the proposed OBA-NDWI are coherent and very close to 

the results of SPU method and show promising outputs especially for ZF≤ 5. However, the 

computational complexity of estimating water fractions based on the OBA-NDWI method is 

significantly less than that of the SPU algorithm. Comparing the two testing approaches reveals 

that the spatial allocation process of sub-pixels using SRM techniques is very accurate in the 

context of mapping river boundaries (above 95% user/producer accuracy for ZF≤ 6). This is 
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while, considering the entire sub-pixel mapping process, the importance of the estimating water 

fractions (unmixing) seems to be more crucial than spatial allocation of the sub-pixels. The PS 

and MBPS algorithms preserve the input water fractions while the fraction values can be not 

respected through interpolation-based SRM. In the discussed case studies, some isolated non-

water sub-pixels appear on the PS and MBPS maps that applying a majority filter (mainly with a 

kernel size corresponding to the ZF) reduced this effect properly. The main advantage of 

interpolation-based and MBPS algorithms is their high computational efficiency which are, 

respectively, 20 times and 3 times faster than the PS algorithm. 

The common thresholding methods, including Otsu’s method and simple zero-thresholding, are 

applied through OBA-NDWI to investigate their effectiveness in hard classification of water 

features. According to the results, Otsu’s threshold value and corresponding cut-off water fraction 

significantly depend on the spectral bands used for the calculation of the NDWI. The minimum 

water fraction in Otsu’s water mask is, in general, observed higher than adequate amount (50%) 

for binary hard classification. The zero-thresholding suffers from both underestimation and 

overestimation of water pixels. This shortcoming of thresholding methods can suppress the 

labeling of boundary mixed pixels. The proposed OBA-NDWI method has the potential for 

selecting the proper threshold for hard classification using NDWI values and requires more 

investigation. 

5.2  River Bathymetry 

Thin and less complex water column of shallow and clearly flowing rivers permits the bottom 

component of radiance to reach sufficiently to the sensor. Although this radiance component is 

desired for bathymetry retrieval, it is affected not only by water depth but also by substrate types 

and compositions. Development of methods robust to the substrate variability is then essential to 

retrieve the bathymetry of shallow and clear rivers from optical imagery. Mapping of river 

bathymetry from satellite imagery is relatively new and the techniques are being adapted from 

conventional coastal studies. The existing empirical models employ one type of Lyzenga or ratio 

predictors through a linear regression to build the depth prediction model. Simple regression 
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models use only one predictor either Lyzenga or ratio where OBRA identifies the optimal single 

ratio predictor among all the possible ratio predictors. There is also a multiple regression model 

which is based on Lyzenga predictors in order to enhance the robustness of model with respect to 

substrate variability and water quality heterogeneity. This research introduced MODPA to take 

the advantages of both Lyzenga and ratio predictors and also to integrate extra predictors 

obtained from the intensity component of HSI color space. In this regard, all the possible Lyzenga 

and ratio predictors derived from original image as well as the intensity bands of HSI color space 

are considered as initial predictors. A set of optimal predictors can be then selected based on one 

of PLS, PC or stepwise regressions.  

To support the objectives of research, spectroscopic experiments are performed in the hydraulic 

laboratory that allowed controlled conditions for measuring reflectances with associated water 

depths as well as defining the bed compositions. The spectra are convolved with WV-2 and 

GeoEye spectral responses for further analysis. Further, simulated spectra derived from radiative 

transfer modeling are used to extend the bathymetry analysis to a wider range of water depths 

and IOPs and also to consider more variability in bottom types. A WV-2 image and its spectral 

convolution to GeoEye bands are used to examine the bathymetry models where the additional 

bands of WV-2 are also assessed for depth retrievals in Sarca River. Moreover, the newly released 

AComp product is evaluated for the first time to understand the robustness of MODPA and other 

bathymetry methods with respect to the atmospheric effects. 

Lyzenga’s single predictor is demonstrated to be very sensitive to substrate types so that the 

residuals of predicted depths showed distinct patterns for the two substrate types used in the two 

flumes. Although this predictor is not appropriate for depth retrieval, it might have the potential 

for classification of riverbed compositions. The OBRA also showed a poor robustness with respect 

to substrate variability existing between two flumes. Despite identification of optimal pair of 

bands for the ratio model, OBRA is a single predictor model and most likely neglects other 

explanatory variables. Multiple Lyzenga predictors enhance the robustness of model with respect 

to variable bottom types. However, this model does not account for any process to select optimal 

predictors that most likely lead to over-parameterization problem. This problem would arise more 

significantly when hyper-spectral imagery or extra predictors are used. As it can be inferred from 
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the results, the multiple Lyzenga model with extra predictors is less accurate than that of without 

any extra predictor using WV-2 data. This suggests making use of extra predictors when a 

selection process is performed on the predictors. As OBRA and proposed MODPA identify the 

optimal predictor/s, they yield improved results with extra predictors. More specifically, the 

single optimal predictor of OBRA for the GeoEye image is resultant from extra predictors. This 

shows the effectiveness of extra predictors for bathymetry mapping from the imagery with low 

spectral resolution. The results of bathymetry models applied on simulated spectra suggest the 

robustness of MODPA with respect to changes in each of IOPs (TSS, Chl-a and CDOM) and also in 

optically complex rivers where all the IOPs as well the bottom types are variable. The extra 

predictors improved the results of MODPA in the testing scenario associated with the optically 

complex rivers (3 cm improvement of RMSE for depths up to 2 m). The simulated spectra 

comprise high concentrations of IOPs which are representative for turbid rivers in the study area 

(alpine rivers such as Sarca). However, more research should be dedicated to study turbid rivers 

to further explore the potentials of bathymetry models. 

The enhanced spectral resolution of WV-2 showed benefits for mapping the bathymetry of 

shallow rivers. For instance, the long-wavelength bands including RE and NIR-1 demonstrated to 

be useful as Lyzenga predictors or as denominator of ratio predictors. This is mainly because the 

attenuation of light in shallow and clear rivers does not get saturated even for long/highly-

absorbing wavelengths. On the other hand, short-wavelength bands (e.g. B, CB, G and Y) 

performed as appropriate numerator bands for the ratio predictor. In summary, WV-2 sensor 

provides wealth of options for selecting either Lyzenga or ratio predictors and leads to higher 

accuracies than when using conventional 4-band HRSI (e.g. improvements of R2 and RMSE 

respectively on the order of 9% and 1 cm using TOA reflectances without extra predictors). The 

first tests on DigitalGlobe AComp indicate the effectiveness of this product for mapping the 

bathymetry of shallow and clearly flowing rivers. Comparing the TOA and AComp reflectances 

over a range of field-measured depths shows reasonable correction of atmospheric effects (e.g. 

appropriate removal of Rayleigh scattering over short wavelengths). AComp reflectances yield 

relatively higher accuracies than TOA data which is more pronounced for OBRA (improvements 

of R2 and RMSE on the order of 11% and 1 cm, respectively). However, multiple-predictor models 
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particularly MODPA showed robust bathymetry retrievals with respect to atmospheric effects. 

More studies should be dedicated to comprehensively analyze the quality of AComp product for in 

general aquatic remote sensing. 

The proposed MODPA provided promising results and improvements for bathymetry retrieval in 

shallow and clearly flowing rivers using HRSI. The best result derived from MODPA based on PLS 

regression using AComp reflectances of WV-2 where the R2 and RMSE are estimated as 0.82 and 

5.8 cm, respectively. Although three investigated regression methods provided very comparable 

results, the PLS-based regression showed slightly accurate results. 

5.3 Riverbed Mapping 

Although studies on bathymetry of rivers are becoming relatively mature, little work has been 

done to explore other essential attributes such as streambed compositions. In this research, 

retrieval of bottom reflectances and mapping riverbed types and compositions are addressed 

comprehensively. Unlike most of previous research, a physics-based approach is pursued to map 

the bottom properties by retrieving the bottom reflectances rather than using the above-water 

spectra. The proposed methodology accounts for the attenuation of the light in water column by 

estimation of the kd parameter for which some known depths are required over a homogenous 

bottom type. Water depth of each pixel is needed along with the kd parameter to retrieve the 

bottom reflectance. The proposed MODPA is used to derive the bathymetry that provided robust 

depth retrievals with respect to substrate and IOPs variability. The main advantage of the 

proposed framework is that the bottom reflectance retrieval is followed by bathymetry. This 

means that the portion of in-situ depths used for calibration of the bathymetric model and/or 

image-derived depths over a homogenous bottom type can be used for estimation of kd, i.e. the 

key parameter for bottom reflectance retrieval, so that no further in-situ efforts are required for 

direct measurement of the kd parameter. 

As mapping the bottom compositions is at early stages in riverine environments, the bottom 

reflectance retrieval and accordingly mapping of substrate types are explored using a wide range 

of spectral data in this research. The spectroscopic measurements in the hydraulic lab and 
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simulations from radiative transfer modeling provided the study with a thorough understanding 

of streambed mapping and impacting factors such as water depth, IOPs, deep-water correction 

and spectral resolution. Further, as a first attempt to map substrate properties from space, 8-

band WV-3 image of a reach in Sarca River is analyzed to classify SAV densities. The results from 

spectroscopic measurements and simulations suggest that the kd and bottom reflectance retrievals 

are more accurate in the visible bands than in long wavelengths (i.e. NIR bands) particularly for 

relatively deep water (> 0.5 m). This would be attributed to the rapid attenuation of the NIR 

wavelengths in water column particularly when it is thicker. However, deep-water correction 

demonstrated to be effective to enhance the retrievals in NIR spectrum when the water goes 

deeper. This is reasonable as the main effect of deep-water correction is when the bottom 

reflectance approaches to zero. However, the effect of deep-water correction is negligible for 

visible bands in the range of water depths discussed in this study (< 1 m) as well as for the NIR 

bands in very shallow depths (< 0.5 m). Moreover, the effect of IOPs variability is investigated on 

the bottom reflectance retrieval of the simulated channel. It is inferred that when the depth 

samples, required for the kd retrieval, are chosen from the part of simulated channel which is 

more representative for the IOPs of entire channel (i.e. downstream), the streambed clusters 

would be slightly more accurate. However, the results of clustering would be subjective to the 

level of spectral discrepancy of the bottom types. Further analysis regarding the impact of IOPs 

magnitude (level of turbidity) on the bottom reflectance retrievals revealed that the level of 

turbidity would have less of an impact on the reflectance retrievals in the visible bands while the 

RMSE of retrievals showed an upward trend for NIR bands by increasing the turbidity. However, 

the deep-water correction again mitigates the effect of turbidity on retrievals of bottom 

reflectances. For instance, the RMSE of reflectance retrieval for the macrophyte bottom reduces 

from 0.09 to 0.02 when applying the deep-water correction in the highly turbid water (Figure 

4.26b). Another key finding is that the retrieved bottom reflectances lead to significantly more 

accurate results in mapping the substrate types rather than above-water spectra. For instance, the 

retrievals of three bottom types (dolomite, macrophyte and sediment) in the simulated channel 

enhanced the results of riverbed clustering on the order of 20% of overall accuracy and 30% of 

kappa coefficient compared to those of obtained from above-water spectra. This is also 

demonstrated in making distinction among SAV densities based on VIs where retrievals of bottom 
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reflectances yielded VI values strongly correlated to the macrophyte fractions. Of all band 

combinations used for terrestrial and aquatic VIs, the terrestrial VI with (RE, R) band 

combination is found to provide the highest correlation with the SAV fractions either using 

inferred bottom reflectances (R2 = 0.85 and RMSE = 0.07) or above-water spectra (R2 = 0.48 and 

RMSE = 0.2). This band combination also yielded the most accurate clusters of SAV densities 

using the lab spectra as well as the WV-3 image. More generally, the above-water spectra showed 

some potentials for detection of SAV with high densities using the WV-3 image (user accuracy= 

45% and producer accuracy= 57%). This indicates the effectiveness of RE band of WV-2/WV-3 

sensor in mapping the SAV densities which is strategically located over the characteristic spectral 

feature of vegetation (705-745 nm). In addition, the aquatic VIs yielded accuracies no higher than 

the terrestrial indices in terms of clustering SAV densities. Moreover, enhanced spectral 

resolution of the 8-band WV-3/WV-2 sensor provided higher accuracies (on the order of 5%) in 

mapping the streambed using simulated spectra. Note that the kd retrieval in the NIR2 band is 

slightly less accurate than short wavelengths in NIR region (e.g. the NIR band of GeoEye). 

However, the improved clustering accuracies using 8-band WV-3/WV-2 indicate the overall 

efficacy of enhanced spectral resolution of this sensor compared to the traditional 4-band HRSI to 

map bottom compositions. 

This study addressed the mapping of grain sizes as a key in-stream morphological attribute 

through a preliminary view about the feasibility of grain sizes/roughness retrieval using spectral 

data. The main assumption of the research was that the spectral signature of a streambed is 

influenced not only by the type but also by the size/roughness of the substrate. This assumption is 

validated by means of spectroscopic measurements over substrates with same material and 

different grain sizes. The spectroscopic observations suggest that an increase in the substrate sizes 

makes the bottom to appear brighter. This would be because of multiple scatterings occurred in 

the larger/rougher grains which reflect a larger portion of the downwelling radiance back to the 

sensor’s field of view. The experiments demonstrate that the shapes of the spectra remain 

identical while the reflectance magnitudes (i.e. brightness) changes by an approximately constant 

scale depending on the change in grain sizes. Motivated by this finding, the simulations are 

performed with the bottom spectra associated with the different grain sizes observed in the lab to 
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investigate the feasibility of bottom reflectance retrieval and then clustering of the riverbed into 

grain size classes. The results from spectroscopic experiments and also simulations indicate the 

effectiveness of the water column correction method to retrieve bottom reflectances in a sufficient 

accuracy for clustering the grain sizes classes. The three grain size classes (fine, medium and 

coarse) are clustered using the retrieved bottom spectra for the simulated channel with overall 

accuracy of 92 % and kappa coefficient of 0.88 that indicates the high potential of spectral data 

for remotely mapping of grain sizes. Note that the existing variable IOPs across the channel 

imposes more complexities to the bottom reflectance retrieval and accordingly grain size 

clustering processes. However, the water column correction method demonstrated high 

performance to retrieve the bottom spectra. 

5.4  Overall Conclusions and Suggestions 

The exploitation of remote sensing techniques is of increasing importance for studying fluvial 

systems. Understanding and isolating the effect of each riverine attribute on the overall spectral 

response of water body would unlock valuable information contributing to a wide range of 

applications in fluvial systems. This can provide spatiotemporal insights into hydromorphological 

and ecological processes and could allow effective management of fluvial systems. 

This research investigated three main elements of rivers hydromorphology including river 

boundaries, bathymetry and riverbed types and compositions. As first main goal of the research, 

reconstruction of river boundaries at sub-pixel resolution is investigated based on unmixing and 

SRM. The proposed OBA-NDWI for estimation of water fractions (i.e. unmixing) demonstrated 

that additional spectral bands of WV-2 imagery provide a couple of choices for selecting the 

proper pair of bands to form NDWI equation. Although the (CB, RE) pair is selected as the 

optimal combination of bands for Sarca River, other combinations such as (CB, NIR-2), (B, RE), 

and a few other combinations also demonstrated a strong relation with water fractions. In this 

regard, making use of several NDWIs to establish a multiple regression for the prediction of water 

fractions can potentially lead to maximum benefit from spectral bands which can be an area of 

investigation for future studies. Furthermore, the number and quality of endmembers can affect 
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the results of unmixing methods. The assumption regarding the three aforementioned 

endmembers is valid for constitution of the major land cover types (Ji et al., 2009; Wetherley et 

al., 2017). This is mainly because each of classes is representative for a major land cover which 

can consists of sub-classes with similar spectral responses (e.g. different vegetation types can be 

grouped into only one major vegetation class). However, in case of presence of an obviously 

different endmember in the riparian/buffer zone of river, the number of endmembers can be 

increased through the unmixing process using OBA-NDWI. In this case, identification of the 

optimal bands would be performed locally. The OBA-NDWI method can be applied in a segment-

based approach to identify the optimal bands for each desired segment of the channel. 

The second main goal of the research was focused on bathymetry retrieval where the proposed 

MODPA provided robust retrievals with respect to changes in bottom types, IOPs and 

atmospheric effects. This research suggests to explore additional extra predictors that can 

possibly be considered as extra predictors through MODPA such as spectral water indices. This 

would be beneficiary particularly for low spectral resolution imagery or for studies on optically 

complex waters. Also further studies should be dedicated to investigate the quality of AComp 

product for applications in aquatic remote sensing. The HAB model by incorporating some 

principles of open channel flow with bathymetric models demonstrated high potentials for 

inferring river bathymetry from optical imagery and only with known discharge. The future 

research would address the possibility of addressing river discharge and flow velocity from 

spectral data that only very recently some researches are emerging in this area (Legleiter et al., 

2017a; Legleiter et al., 2017b). 

The first attempt to retrieve bottom reflectances from space with a focus on mapping SAV 

densities demonstrated promising results and high potentials of the HRSI for substrate mapping 

in riverine environments. However, further studies needs to be dedicated to investigate this 

potential for mapping different benthic covers. This study also presented first experiences in 

mapping the grain sizes from spectral data. More investigations are needed to explore in detail 

the potentials and shortcomings of proposed methodology in real case studies and also by 

considering a wide range of bottom types and sizes as well as IOPs. This research also 

demonstrated the effectiveness of spectroscopic experiments in an indoor environment of a 
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hydraulic laboratory to study the bathymetry of very shallow waters considering variable bottom 

types. Experiments of this kind can be extended to study further attributes of fluvial systems such 

as flow velocity and water quality indicators (IOPs). 
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