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Abstract 
Background and rationale 

Translation is a fundamental biological process occurring in cells, carried out by 
ribosomes simultaneously bound to an mRNA molecule (polyribosomes). It has been 
exhaustively demonstrated that dysregulation of translation is implicated in a wide 
collection of pathologies including tumours and neurological disorders. Latest findings 
reveal the existence of translational regulatory mechanisms acting in cis or trans with 
respect to the mRNAs and governing the movement and the position of ribosomes 
along transcripts or directly impacting on the ribosome catalogue of its constituent 
proteins. For this reason, translational controls also account for widespread 
uncoupling between transcript and protein abundances in cells. 

To explain the poor correlation between transcripts and protein levels, many 
computational models of translation have been developed. Usually, these approaches 
aim at predicting protein abundances in cells starting from the mRNA abundance. 
Despite the efforts of these modelling studies, a consensus model remains elusive, 
drawing to contradictory conclusions concerning the role of mRNA regulatory 
elements such as the usage of codons (codon usage bias) and slowdown mechanism at 
the beginning of the coding sequence (ramp). More recently, following the rapid and 
widespread diffusion of ribosome footprinting assays (RiboSeq), which enables the 
dissection of translation at single nucleotide resolution, a number of computational 
pipelines dedicated to the analysis of RiboSeq data have been proposed. These tools 
are typically designed for extracting gene expression alterations at the translational 
level, while the positional information describing fluxes and positions of ribosomes 
along the transcript is still underutilized.  

Therefore, the polysome organization, in term of number and position of ribosomes 
along the transcript and the translational controls directed in shaping cellular 
phenotypes is still open to breakthrough discoveries. 

Broad objectives 

The aim of my thesis is the development of mathematical and computational tools 
integrated with experimental data for a comprehensive understanding of translation 
regulation and polysome organization rules governing the number of ribosomes per 
polysome and the ribosome position along transcripts. 
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Project design and methods 

With this purpose, I developed riboWaves, an integrated bioinformatics suite divided 
in two branches. riboWaves includes in the first branch two modeling modules: 
riboAbacus, predicting the number of ribosomes per transcript, and riboSim, predicting 
ribosome localization along mRNAs. In the second branch, riboWaves provides two 
pipelines, riboWaltz and riboScan, for detailed analyses of ribosome profiling data 
aimed at providing meaningful and yet unexplored ribosome positional information. 
The models and the pipelines are implemented in C and R, respectively. riboAbacus 
and riboWaltz are available on GitHub. 

Results 

To predict the number of ribosomes per transcript and the position of ribosomes on 
mRNAs, I applied riboAbacus and riboSim, respectively, to transcriptomes of different 
organisms (yeast, mouse, human) for understanding the role of translational 
regulatory elements in tuning polysome in different organisms. First, I trained and 
validated performances of riboAbacus taking advantage of Atomic Force Microscopy 
images of polysomes, while performances of riboSim were assessed employing 
ribosome profiling data. Predictions provided by riboAbacus and riboSim were 
evaluated in parallel. I showed that the average number of ribosomes translating a 
molecule of mRNA can be well explained by the deterministic model, riboAbacus, that 
includes as features the mRNA levels, the mRNA sequences, the codon usage bias and 
a slowdown mechanism at the beginning of the CDS (ramp hypothesis). The 
predictions of ribosome localization by riboSim that used as features the mRNA 
sequence, the codon usage and the ramp, were run for yeast, mouse and human. I 
observed a good similarity between the predicted and experimental positions of 
ribosomes along transcripts in yeast, while poor similarity was obtained between 
predicted and experimental ribosome positions in the two mammals, suggesting the 
presence of more elaborate controls that tune ribosomes movement in higher 
eukaryotes than in simple species. 

After having developed two tools for the analyses of RiboSeq data and extraction of 
positional information on ribosome localization along transcripts, I applied both 
riboWaltz and riboScan in a case study. The aim was to dissect possible defects in 
ribosome localization in tissues of a mouse model of Spinal Muscular Atrophy (SMA). 
SMA is a neurodegenerative disorder caused by low levels of the Survival of Motor 
Neuron protein (SMN) in which translational impairments are recently emerging as 
possible cause of the disease. I analysed ribosome profiling data obtained from three 
different types of RiboSeq variants in healthy and SMA-affected mouse brains at the 
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early-symptomatic stage of the disease. I observed i) a significant drop-off of 
translating ribosomes along the coding sequence in the SMA condition (using 
riboWaltz); ii) in SMA-affected mice, the possible accumulation of ribosomes along the 
3' UTR in neuro-related mRNAs (using riboScan); iii) the involvement of SMN-
specialized ribosomes in playing a very intimate role with the elongation stage of 
translation of the first codons of transcripts (riboWaltz), iv) the loss of ribosomes at the 
3rd codon in SMA in transcripts bound by SMN-specialized ribosomes and v) a 
remarkable connection between SMN and the down-regulation of genes in SMA-
affected mice. Overall, these findings confirmed previous observation about possible 
SMN-related dysregulations of local protein synthesis in neurons. More importantly, 
they unravel a completely new role of SMN in tuning translation at multiple levels 
(initiation, elongation and the recycling of terminating ribosomes), opening new 
hypotheses and scenarios for explaining the most devastating genetic disease, leading 
cause worldwide of infant mortality. 

Conclusions 

The present work provides a new comprehensive and integrated scenario for better 
understanding translation and demonstrates that this approach is a very powerful 
strategy to pave the way for new understanding of fine alteration in polysome 
organization and functional control in both physiological and pathological conditions. 
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1 Introduction 
In this chapter I present the biological aspects related to this work. I start introducing 
the central dogma of biology, focusing on the eukaryotic translation and on the main 
elements involved in the process and discussing the integration of the translational 
machinery with a variety of regulatory factors. I then give an overview on the 
experimental assays employed to study translation. Finally, I illustrate the relationship 
between translation and motor neuron diseases discussing the case of Spinal Muscular 
Atrophy. 

1.1  From DNA to proteins 
The central dogma of molecular biology describes the processes that guarantee the 
maintenance of the genetic information throughout cell division and cell life and its 
flow from DNA to RNA and from RNA to proteins1. It consists of three fundamental 
stages: replication, transcription and translation. Replication is in charge of duplicating 
the DNA, the primary source of the genetic information stored in the nucleus of 
eukaryotic cells and the starting point for the processes resulting in the production of 
functional proteins. DNA is used as template during transcription, which produces 
different types of RNA by copying portions of the genomic sequences, called genes. 
Some RNAs (small nuclear RNAs, small nucleolar RNAs, micro RNAs and long non 
coding RNAs) resulting from this process are engaged in post-transcriptional or 
translational regulation of gene expression2–4 while other (transfer RNAs, ribosomal 
RNAs and messenger RNAs) are intimately involved in translation, that is the last step 
of the central dogma. In the next chapter I outline how translation works in eukaryotic 
organisms.  

1.2  Translation 
Translation is the process by which polypeptide chains (i.e. proteins and peptides) are 
produced using a molecule of mature messenger RNA (mRNA) as a template. A typical 
mRNA is composed of two untranslated regions (UTRs) placed at the extremity of the 
mRNA (called 5’ and 3’ end) and of a central region, the coding sequence (CDS), that 
contains the information for synthesising the new protein (Figure 1.1A). Groups of 
three consecutive nucleotides, called codons or triplets, encode specific amino acids, 
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sequence of 3 nucleotides that can base-pair with a triplet, and the associated amino 
acid.  

The relationship between triplets and amino acids is contained in the genetic code13 
that is highly but not fully conserved among different species14,15. Arranging 4 
nucleotides in triplets there are 64 possible combinations, each encoding for one 
amino acid. However, only 20 different amino acids are used to synthesised protein, 
meaning that in some case the same amino acid is encoded by multiple codons, 
namely synonymous codons. In fact, different tRNAs characterized by similar 
anticodons bring the same amino acid, leading to the so called "codon degeneracy" 
(Figure 1.1D). Usually, many ribosomes are translating in parallel the same mRNA 
forming the so-called polyribosome or polysome16–18. 

In eukaryotes translation occurs in the cytoplasm and consists of four main phases: 
initiation, elongation, termination and recycling. The initiation phase19 (Figure 1.2) 
starts with the recruitment on the small subunit of the ribosome of multiple initiation 
factors (eIF1, eIF1A, eIF3, eIF2–GTP–Met-tRNAMeti and probably eIF5, in eukaryotes), 
what give rise to the pre-initiation complex 43S20. Next step is the interaction of the 
pre-initiation complex with a mature mRNAs decorated by additional proteinaceous 
factors (e.g. eIF4F and PABPs), resulting into the initiation complex 48S. During this 
phase, the 40S scans the mRNA until it reaches the translation initiation site (TIS or 
start codon). TIS is located at the beginning of the coding sequence (i.e. its 5’ 
extremity). Once the small subunit reaches the TIS, both binding of the ribosomal large 
subunit (60S) and formation of the ribosome (80S) occur, ending the initiation phase.  
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Figure 1.2. Translation initiation. The 40S subunit, eIF2–GTP–Met-tRNA ternary complex, eIF1, 
eIF1A, eIF3, and eIF5 assemble in the 43S pre-initiation complex. The 43S complex binds near 
to the 5’ cap and scans the 5’ UTR in a 5’ to 3’ direction to find the initiation codon. Once 
found, the 48S initiation complex is formed by switching the scanning complex to a ‘closed’ 
conformation. The 60S subunits joins the 48S complexes, the release of eIF5B and eIF1A occurs 
and 80S ribosomes are assembled. Adapted from Jackson et al21. 
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During the elongation phase22 (Figure 1.3) the ribosome reads the CDS moving towards 
its 3’ end by three nucleotides at a time, adding at each step the correct amino acids to 
the nascent peptide chain. More in detail, the elongation factor eEF1A-GTP binds the 
aa-tRNA complex forming the so-called ternary complex. Upon ATP hydrolysis of eEF3-
ATP the ternary complex enters the A-site of the ribosome and the hydrolysis of 
eEF1A-GTP occurs. This reaction leads to conformational changes of the ribosome and 
the formation of the peptide bond between the new amino acid and the nascent 
peptide. In particular, during the ribosome translocation step the tRNA placed in the P-
site and the A-site move close, leading to rotated state of the ribosomes containing an 
hybrid state A/P-tRNA23. eEF1A and eEF3 are then released, while the GTPase eEF2, 
upon GTP hydrolysis, binds the A-site promoting the advancement of the ribosome 
towards the 3' end of the mRNA. Finally, eEF2 and the tRNA are released and another 
cycle can start.  

 

Figure 1.3. Translation elongation. eEF1A-GTP-aminoacyl-tRNA ternary complex binds to the 
ribosomal A site. Following release of eEF1A-GDP, the peptide bond between the amino acid in 
the A-site and the nascent peptide in the P-site is formed. Binding of eEF2-GTP promotes 
translocation of the tRNAs into the P and E-sites, and is followed by release of eEF2-GDP. 
Adapted from Dever and Green24. 

When a ribosome reaches the last codon of the CDS (stop codon), the termination 
phase25 (Figure 1.4) takes place and the termination factor eRF3, together with eRF1 
and ATPase ABCE1,binds the ribosome in the A-site, causing the release of the new-
formed protein. eRF3 then promotes dissociation of ribosome subunits form the 
transcript. Note that the latter step may be altered by the binding of IF3 to the pre-
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termination complex, which makes ribosomes skip the termination phase causing the 
readthrough of the stop codon26. 

Finally, if the termination phase properly occurs the ribosomes leaving the stop codon 
may be recycled, i.e. they have a higher probability to start another cycle of translation 
on the same mRNA rather than turn up in the group of free subunits24,27. 

 

Figure 1.4. Translation termination and recycling. Upon the recognition of a stop codon, the 
eRF1-eRF3-GTP ternary complex binds to the A site of the ribosome. Following GTP hydrolysis, 
eRF3 is released. ABCE1/Rli1 binds and facilitates the accommodation of eRF1. ATP hydrolysis 
finally releases the subunits. Adapted from Dever and Green24. 

While the translation phases and the initiation, elongation and termination factors 
involved in the process have been described for eukaryotes, the abovementioned 
steps are general and highly conserved in all organisms, from prokaryotes to 
eukaryotes. In addition, many translation factors have been demonstrated to control 
translation in a wide range of species, from bacteria to human. For example, 
hypusination of eIF5A lead to control of both initiation and elongation phases28–30, 
ribosome translocation is tuned through the phosphorylation of the elongation factor 
eEF2a31–33 and the activity of eIF4E and eIF6 may promote the translation of specific 
mRNAs34. Nevertheless, in the last decades a growing body of evidence showed that 
organisms control translation using additional and sometimes very sophisticated 
mechanisms and plenty of molecules to regulate almost each step of protein synthesis, 
as discussed in the next section. 

1.3 Translation regulation 
Translation is the most energy consuming process in cells35,36 and a primary 
mechanism for regulating protein expression in a variety of fundamental physiological 
processes37–40. Dysregulation of translational control is implicated in a wide collection 
of pathologies associated to cell proliferation41–46. Furthermore, recent findings also 
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reveals that loss of translational controls connects with the pathogenesis of several 
neurological diseases, including Alzheimer’s disease, fragile X syndrome and spinal 
muscular atrophy47–52. 

It is not surprising that protein levels are largely controlled at the translational rather 
than transcriptional level53. In fact, latest evidences show a widespread uncoupling 
between transcript and protein abundances in cells54,55. This uncoupling can be only 
partially explained by transcription alone (around 40%)56. These observations point at 
post-transcriptional and translational controls as fundamental players in shaping 
proteomes. Latest findings highlight the complexity of translation and the existence of 
a wide collection of translational regulatory mechanisms acting both in cis (mRNA 
sequences and secondary structures)57,58 and trans (ncRNA and RNA binding 
proteins)59,60. Interestingly these controls can govern translation or even the 
movement and the position of ribosomes along the mRNAs61,62. This information may 
lead to new insights into how translational machinery can be controlled through a 
number of regulatory elements within ribosomes and polysomes. 

While ribosomes have been widely studied in various organisms63–66 providing 
intriguing evolutionary insights67, their organization and coordinated functioning in 
polysomes is not yet studied in detail. The emerging hypothesis that in cells do indeed 
exist specialized ribosomes68–71 that can be post-translationally modified57 open new 
scenarios about in situ translational controls of architectural features of polysomes as 
unexplored players in tuning translation. This hypothesis is supported by analogous 
conclusions drawn for transcription, where the structure of the chromatin, a complex 
DNA/protein/RNA ultra-structural domain within the genome, has been demonstrated 
to be of crucial importance in tuning gene expression72–75. This assumption clearly 
points to a better understanding of the organizing rules of ribosomes along the 
transcripts, governing parameters such as the number of ribosomes and their 
positional organization. Acquiring such information would be an important advance to 
disclose possible causes of the poor correlation between cellular transcriptome and 
proteome.  

Albeit polysomes have been initially described merely as multiple ribosomes moving 
on a single messenger RNA, recent findings present them as complex integrated 
platforms where many cis and trans regulatory elements converge, acting at each 
phase of translation57–60. 
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The initiation phase strongly depends on the 5’ cap and its interaction with the 
initiation factors20, the presence of secondary structures of the 5’ UTR76,77 and the 
recognition of the correct translation initiation site78. 

The elongation phase is tuned through many regulatory elements acting both in 
cis57,58,79–82 and trans37,59,60,62,83. Cis regulatory elements mainly consist in the 
nucleotide composition and GC content80 of the coding sequence that may cause 
mRNA secondary structures81,82 and different usage of the codons codifying for the 
same amino acid (codon usage bias, see next section)79. Trans regulatory elements 
include RNA binding proteins that bind the mRNAs59,60, non-coding RNAs that bind 
ribosomes62 and specialised ribosomes37,83 that have been demonstrated to determine 
ribosomal pauses and slowdowns, eventually increasing the complexity of the 
translational regulatory mechanism. 

The canonical termination phase may also be altered leading to either alternative and 
premature translation termination84,85 and ribosome drop-off86,87, or the stop codon 
readtrhought88,89. 

Finally, investigations of polysomes by cryo-electron tomography and atomic force 
microscopy90–96 demonstrate the presence of tight ribosome-ribosome interactions 
and of ribosome cliques (namely clusters) separated by naked portion of mRNAs95, 
revealing highly-organised three dimensional polysomal structures.  

1.3.1 Codon usage bias 
Among the many translational controls discussed above those acting in cis are the 
most studied. The codon usage bias is a prominent example, since it has been object of 
several investigations due to its strong association with the nucleotide composition of 
the mRNAs and consequently its potential role in controlling protein production. 
Nevertheless, even though its impact on ribosome pauses97,98 and drop offs99,100 have 
been largely discussed, its contribution in controlling and translation remains unclear. 

The term “codon usage bias” refers to the different frequency (“usage”) of codons that 
codify for the same amino acid (synonymous codons) in a transcriptome of an 
organism. Its possible relationship with gene expression and specifically with 
translation has been proposed in the ’80s79,101,102, but only in the last years its 
connections with the movement of ribosomes along the transcripts has been 
examined103–106. Recently the “codon optimality”, a scale describing the ratio between 
the supply of aa-tRNA in the cytoplasmic pool and the frequency of codons along the 
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mRNAs, has been defined107. Codon optimality allows to discriminate between optimal 
codon (decoded with high speed) and non-optimal codons (slowly translated)105,108.  

Many hypotheses have been proposed concerning the role played by the codon usage 
and codon optimality in modulating translation. It has been demonstrated that specific 
triplets stabilize the mRNAs facilitating ribosome translocation107. In addition, different 
usage of codons also implies a different usage of synonymous and non-synonymous 
aa-tRNAs. The well-known variability of tRNAs concentration in cells correlating with 
the frequency of the corresponding codon109–112 creates a direct link between the 
nucleotide composition of the mRNAs and the speed of the ribosomes in the 
elongation phase. In fact, it has been demonstrated that rare tRNAs induce slowdown 
of ribosomes on non-optimal codon, while frequent tRNAs reduce the time ribosomes 
spend on optimal codons113. The presence of rare codons along mRNAs has been 
shown to increase the efficiency of protein folding105,114 and a reduced ribosomal 
traffic jam along the filaments115, leading to a better control of translation. 

Experimental and computational approaches have been employed to investigate the 
role of codon usage bias in translation. For example, the correlation between the 
codon usage bias of specifically engineered sequences and the protein abundance 
obtained after their translation has been computed116, demonstrating that particular 
sequence of codons may leads to secondary structures along the coding sequence 
controlling the movement of ribosomes116. Moreover, many bioinformatics analyses 
examined the relationship between the frequency of synonymous codons along the 
mRNAs and the correct folding of the nascent peptides during translation117, as well as 
the connection between the codon usage bias and the experimentally observed 
enrichments of ribosomes at the beginning of the coding sequences113. Nevertheless, 
the results of these studies suffer from different criteria and computational methods 
used to define the “optimality” of codons, which is not universally established118,119. 
Therefore the precise role of codon usage in tuning translation, particularly in 
controlling the number and the localization of ribosomes along the mRNAs is still 
under debate. 

1.3.2 Ramp 
One of the most controversial issues related to the codon usage bias is the potential 
connection with a slow-down mechanism at the very beginning of the coding 
sequence, known as ramp hypothesis. 

The ramp is a region of the coding sequence close to the start codon with an high 
ribosome density associated to a reduced elongation speed with respect to the 
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remaining CDS120–125. The ramp has been identified by computational investigation of 
ribosome profiling data126 in many organisms (bacteria127,128, yeast115,122,129, 
mouse81,121 and human82,113) as a sequence ranging from 5 to 50 nucleotides in length, 
depending on the species82,127. This phenomenon has been extensively studied and a 
wide range of possibilities about its origin and its effects on translation have emerged 
over the years. The ramp may be caused by specific nucleotide sequences at the 
beginning of the coding region and by accumulation of non-optimal codons113,122,127 as 
discussed in the previous section. The ribosome slowdown has been also associated to 
2D structures of mRNAs116,127, rapid initiation rates129 or to a concurrence of multiple 
causes81,115,128. This mechanism of ribosome stalling at the beginning of the coding 
sequence is supposed to reduce the ribosomal traffic jam127,128, minimizing errors in 
protein synthesis and enhancing protein production115 improving translation. 
However, as for the codon usage bias, the real contribution of the ramp to the number 
and the localization of ribosomes along mRNAs remain unclear. 

1.4  Experimental techniques for study 
translation at the genome-wide level 

Classical gene expression studies have been based for several years on the assumption 
that transcriptional levels and corresponding protein level are linearly correlated. In 
the last years much effort has been directed to investigate the relationship between 
total mRNA and protein abundances in cells and tissues53,56,130–132, finding that the 
abovementioned assumption is an oversimplified view and that translation is a major 
player in shaping the cellular proteome. To further investigate this hypothesis high-
throughput techniques such as microarray and Next Generation Sequencing (NGS) 
have been recently employed for developing genome-wide methods to investigate 
translation with increasing resolution (Figure 1.5)133,134. 

In this section I first present polysome profiling followed by microarray or RNA-Seq 
analysis135–137 and ribosome profiling138 as basic technique for portraying translational 
controls and translation events. Indeed, these are the most commonly used techniques 
to study translation at the genome-wide level in addition to ribosome 
immunoprecipitation that exploits the expression in tissues of a ribosomal protein 
genetically fused to a tag, which allows the identification of ribosome-associated 
transcripts in vivo (e.g. Translating Ribosome Affinity Purification or TRAP139). 
Moreover, polysome and ribosome profiling have been exploited not only for 
investigating mRNA levels in cell cultures and tissues in different conditions, but also to 
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Second, I briefly examine the use of imaging approaches for obtaining ultrastructural 
information of ribosome and polysomes at nearly sub-nanometric resolution. In 
particular, I discuss the use of images of polysomes acquired with an Atomic Force 
Microscope to compute the number of ribosomes per polysome. 

1.4.1 Polysome profiling 
Polysome profiling is a classical technique that allows to separate proteins and RNAs 
(both coding and non-coding) associated to different numbers of ribosomes per 
polysome, i.e. per transcript. After the removal of mitochondria and nuclei, the cellular 
lysates are ultracentrifuged on a linear sucrose gradient. Separation of free RNAs (i.e. 
not-associated to ribosomes), the small (40S) and the large (60S) ribosomal subunits, 
monosomes (80S) and polysomes can be easily obtained using a fraction collector and 
employed for indirectly deducing the number of ribosomes per polysome137. Typically, 
polysome profiling is coupled to high-throughput techniques such as RNA-Seq or 
microarray for the quantification of the transcripts and the determination of the RNA 
levels at a genome-wide level38,143. In fact, this technique has been used to analyse the 
variation of mRNAs uploading on polysomes144, to identify mRNAs controlled at the 
post-transcriptional levels by RBPs or nc-RNAs145–148, and study the uncoupling 
between transcription and translation54. 

In addition, by measuring the RNA abundance in each sucrose fraction and knowing 
the sedimentation coefficient of ribosomes, it is also possible to indirectly derive the 
distribution of the number of ribosomes per transcript137. 

The estimation of the number of ribosome per transcript provided by this approach is 
unfortunately indirect and imprecise. For example, polysome fractions collected for 
microarray analysis may not be clearly resolved and transcripts in specific fractions 
containing multiple polysomal peaks cannot always be directly assigned to an 
unambiguous number of ribosomes per polysome. Furthermore, polysomes in higher 
eukaryotes are known to be associated to a large number of proteins such as enzymes, 
RNA binding proteins and ncRNAs149 that can affect the separation and quantification 
of large polysomes.  

1.4.2 Ribosome profiling 
Ribosome profiling (RiboSeq) is an experimental technique designed to investigate 
translation at single nucleotide resolution and genome-wide scale123,150. It is based on 
the identification of short RNA fragments protected by ribosomes (RPF) from nuclease 
digestion followed by NGS 97,151. Typically, the isolation of RPF is performed starting 
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from a whole cytoplasmic lysate, that includes both polysomes and 80S monosomes 
(Figure 1.6), that have been demonstrated to be not-translating18,152–155, even if this is 
a matter of debate since decades156–158.  

 

Figure 1.6. Different classes of ribosomes. Representative absorbance profile displaying the 
position of three classes of ribosomes: non-translating ribosomes, non-translating ribosomes 
associated to polysomes and actively translating ribosomes.  

To avoid the isolation of RPF associated to monosomes, ribosome profiling can be 
applied to already purified polysomes159. The pre-purification of polysomes removes 
any possible contamination associated not only to the monosome but also to mRNA 
fragments associated to the preinitiation complex (48S). Nevertheless, it does not 
discriminate between ribosomes that are actively translating and ribosomes that might 
be stalled on transcripts. In fact, it is known that especially in neuronal tissues, 
physiological paused polysomes do exists160,161. Therefore to overcome possible 
misleading information about the translational state of transcripts from ribosomes 
profiling analysis, a third version of ribosome profiling developed by Immagina 
BioTechnology exploits a new technology called RiboLaceTM to isolate fragments of 
mRNAs exclusively protected by active ribosomes. 

Briefly, Active-RiboSeq uses RiboLace™, a new method based on a modified puromycin 
coupled to magnetic beads. By binding close to the A-site of the ribosome in the not-
rotated state, when the acceptor site accommodates the aminoacyl-tRNA engaged by 
eEF1α, the puromycin analog can be successfully used to capture active ribosomes. 

The pre-print version of the paper, now available in bioRxiv162, shows that this new 
tool can be employed to (i) enrich samples with proteins that are either constituent 
component of the ribosome (RPL26, RPS6)and associated to functional polysomes 
(eIF4B, PABP, H3K9, eEF1α), only under conditions of active translation; (ii) capture 
transcripts undergoing translation in eukaryotic in vitro and in vivo systems; (iii) 
describe the variations at the transcript level more precisely than total or polysomal 
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RNA. For further details about the RiboLace™ technology and the Active-RiboSeq 
protocol please refer to Clamer et al.162. 

Ribosome profiling coupled with RNA-Seq analysis has been mainly used for computing 
transcript-specific translation efficiencies (TE)126 and performing TE-based differentially 
analyses163. This information is basically identical to what can be obtained by classical 
polysomal profiling coupled to NGS or microarray137,164. Importantly, the possibility to 
obtain the precise localization of ribosomes along the mRNAs is unique to Ribo-Seq 
and is still largely unexploited in the vast majority of published ribosome profiling 
analysis. Only the last few years have witnessed a rapid adoption of this technique for 
extracting positional information describing fluxes of ribosomes along the RNA at sub-
codon resolution140–142. This type of analysis is typically based on the so-called 
ribosome occupancy profiles, i.e. transcript-specific curves showing for each nucleotide 
along the mRNA sequence the height of the reads signal expressed as the probability 
to find a ribosome. Analysing ribosome occupancy profiles it is possible for example to 
reveal novel translated regions165–167 and ribosome read-through on 3’ UTRs141,168. 
Furthermore, RiboSeq allows to derive translation initiation and elongation rates169 
and estimate codon usage bias identifying translation pauses170 or ribosomes in 
specific conformations during the elongation step of translation171. 
 

Analysis of ribosome profiling data 
Following the rapid diffusion of ribosome profiling assays, many computational tools 
and pipelines dedicated to the analysis of RiboSeq data have been developed in the 
last years. As already mentioned in the previous paragraph, most computational tools 
are aimed at just computing transcript-specific translation efficiencies for differential 
analyses in multiple organisms, treatments or conditions (see Babel163, Xtail172, 
RiboDiff173, RUST174). Typically, these methods do not take into consideration any 
positional information provided by RiboSeq, since they are based only on the 
expression levels, i.e. the abundance of mapped RPFs (reads) and on the level of 
mRNAs obtained by transcriptome analysis that is typically run in parallel to each 
ribosome profiling. 

Occupancy profiles are also the starting point for investigating the presence of 
alternative translational starting sites i.e. of novel open reading frames (ORF) in known 
protein coding transcripts or ncRNAs (see AltORFev166, PROTEOFORMER175, SPECtre176, 
RiboTaper177 and others167,178,179). They are typically based on statistical methods177 
such as Hidden Markov Model and Bayesian approaches167,179 and rely on the 
identification of the ribosome P-site within the reads177,179. The P-sites position is 
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employed for the extraction of positional information describing fluxes of ribosomes 
along the RNA at sub-codon resolution140,141 and conformational changes in ribosomes 
during the elongation step of translation171. Moreover, the identification of ribosome 
P-site is used for verifying the trinucleotide periodicity of translating ribosomes along 
coding regions123,180, obtain reliable translation initiation169 and elongation rates169,181–

183 and accurately estimate codon usage bias184. Nevertheless, only very recently and 
after almost 8 years from the introduction of ribosome profiling two pipelines, 
specifically dedicated to the identification of the P-site, have been released (Plastid185 
and RiboProfiling186). 

Despite the vast availability of tools for handling ribosome profiling data, carry out a 
comprehensive analysis of ribosome profiling data is still a complex and time-
consuming task. In fact, most of the above-mentioned pipelines perform only one of 
the many possible RiboSeq data analyses (differential expression analysis, detection of 
novel ORF, identification of P-site etc.). To overcome this problem, user-friendly 
genome browsers and on-line environments designed for the storage, the visualization 
and widespread analyses of ribosome profiling data arose187–189. 

Overall, these applications point to ribosome profiling as a mayor assay for the study 
of translation from many points of view: the investigation of the role played by 
controls of translation (e.g. the nucleotide composition of the CDS); the comparison of 
translational abundances of specific transcript in different conditions; the 
characterization of polysomes in terms of ribosome number and localization. 
Nevertheless, both alignment and preprocessing of RiboSeq data may be the cradle of 
many biases190,191 determined, for example, by PCR duplicates192 ambiguous reads 
mapped to mRNA isoforms, missing normalizations193–195. These biases may lead to 
particularly noisy occupancy profiles, making the identification of regions associated to 
ribosome pauses and slowdowns a difficult task. Few works propose original 
procedures to get rid of RiboSeq bias and improve data analysis61,170,196 but a 
conclusive approach for the extraction of meaningful positional information is still 
missing. 

1.4.3 Atomic force microscopy 
A more precise way for obtaining information concerning the number of ribosomes 
bound to an mRNA is the use of imaging techniques. Given the dimension of ribosomes 
(around 25 nm in diameter64,154) and of polysomes (ranging between 50-200 nm95), 
imaging approaches that reaches sub-nanometric resolution can be employed. Among 
these, Electron Microscopy (EM), cryo-EM and Atomic Force Microscopy (AFM) have 
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been proven to be appropriate for obtaining structural and ultra-structural information 
on ribosomes in polysomes90–96. Electron microscopes allow to obtain high-resolution 
information about ribosome–ribosome interactions and the 3D organization of 
polysomes90–94. Nevertheless, these methods cannot be employed to identify naked 
filaments of mRNAs, precluding the possibility to precisely count the number of 
ribosomes per transcript. Moreover, compared to cryo-EM, AFM doesn’t need any ex-
post image reconstruction procedures thus allowing the acquisition of thousands 
images of single polysome and no post-processing or reconstruction analysis. From 
these images the number of ribosomes per polysome can easily obtained with high 
accuracy95,96. 

With respect to estimating the number of ribosomes per polysome using the above-
mentioned and indirect fraction by fraction polysome profiling, AFM has some 
advantages: it can acquire images at single ribosome-resolution, returning a highly 
resolved distribution of directly counted ribosomes per transcript; it avoids possible 
biases due to sedimentation characteristics of polysomes (e.g. composition, shape, 
diffusion coefficients) or dissimilarities in sedimentation in different organism. 
Therefore, AFM can be of great help for precisely counting the number of ribosomes in 
thousands of transcripts purified from cells or tissues96. The main drawback of the use 
of AFM images is that it cannot distinguish a transcripts from another, meaning that is 
possible to obtain the distribution of the number of ribosomes per polysome for a 
whole transcriptome but it is not possible to obtain transcript-specific information 
unless using in vitro translation systems of single transcripts at a time.  

1.5  Mathematical models 
The first interactions between mathematics and biological phenomena date back to 
the XII century, when some probabilistic hypotheses concerning population growth 
and mortality rates were formulated by Leonardo Fibonacci197. More recently, similar 
mathematical approaches were used to study the widespread effects of what is now 
known as vaccination against specific diseases. For example, in 1760 the Swiss 
mathematician Daniel Bernoulli investigated the benefits of smallpox exposure against 
the disease by employing probabilistic procedures198. From then on, connections 
between mathematics and biology have been reinforcing, also supported by the 
advent of the first computers. Nowadays a well-established relationship between 
mathematical models and the dynamics of biological systems does indeed exist and 
several applications in population ecology199, epidemiology200, biophysics (e.g. 
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crystallography201 and electrophysiology202) and cellular biology203 and more recently 
molecular biology204 have been experienced. 

Generally speaking, a model is an object that represents and simulates a natural 
process. A mathematical model is a mathematical theory that well explains natural 
mechanisms or processes through mathematical entities such as functions, equations, 
variables, probabilities etc. In this chapter I present the most widespread 
mathematical models and discuss their applications in the study of translation. 

1.5.1 Deterministic models 
A deterministic model describes the dynamics of a system through states connected by 
events, which correspond to the either reversible or irreversible transitions between 
the states. Each state is associated to specific quantities of all elements involved in the 
system, represented by variables, and each transition corresponds to an ordinary 
differential equation (ODE), i.e. a relation between a function 𝑓 and its derivatives of 
the form: 

 
𝑑 𝑓(𝑥)

𝑑𝑥
= 𝑔(𝑓(𝑥)) 

It is called ordinary differential equation if it contains only one independent variable. 
Practically, the function 𝑓 describes a physical quantity and its derivatives represent 
the rate of its change either in time or space. 

Solving these models consists in finding their steady state, starting from a given initial 
state. This means that the steady state reaches a point such that the variables defining 
the process do not change neither in time nor in space. In this condition the function(s) 
describing the system must satisfy the following equality: 

𝑑 𝑓(𝑥)

𝑑𝑥
= 0 

The major advantage in using deterministic models is that, knowing the dynamics of 
the state transitions in the system, a given initial state always leads to the same 
solution. In fact, since the system is fully described by selected assumptions and 
parameters are known with certainty, the predictions are never influenced by 
uncertain events. Therefore, it is possible to determine the exact state of the system at 
any time. Nevertheless, deterministic models rely on known parameters and their use 
is penalised due to the great number of parameters that cannot be experimentally 
described and that can be represented only as random variables. For example, if the 
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transition between two states cannot be fully described by one or multiple variables, 
this event must be either simplified of excluded from the model, making the 
predictions inaccurate.  
 

Deterministic models of translation 
As previously discussed, multiple controls involved in translation may help 
understanding the reason behind the well-known general uncoupling between 
transcript and protein abundances in cells54,55 In fact, studying variables in many 
deterministic models of translation developed since the 1960s205 can increase the 
prediction of global and transcript-specific protein production rates (hence protein 
abundances), thus increasing the low correlation observed between transcriptome and 
proteome in cells. 

Typically the deterministic approaches rely on a simplistic representation of 
translation, modelled as a system composed by a transcript and an infinite pool of aa-
tRNAs and ribosomes coupled with ribosome kinetics during the previously described 
phases of translation: initiation, elongation and termination206,207. In order to find the 
limiting-step of translation, these models have been also employed to specifically 
investigate initiation, elongation and termination rates208. To do this, the models 
complexity has been increased over the years, for example by introducing aminoacyl-
tRNA or ribosome competition (i.e. nonspecific binding of aminoacyl-tRNAs in the 
ribosome A-site209 and a limited supply of free ribosomes in cells210, respectively). By 
introducing these additional assumptions, it was demonstrated that limitation in the 
number of free ribosomes in cells may prevent ribosomes from stalling along mRNAs 
during the elongation phase210. Additionally, the aminoacyl-tRNA competition was 
found to be irrelevant for the final protein production rate, even though decrease in 
ribosome translocation rates may occur under these conditions209. Similar results were 
obtained by Zhang and Ignatova211 showing that different levels of aminoacyl-tRNAs 
and their competition negatively affect ribosome movement along the transcript. 
Moreover, they showed that the presence of stretches of non-optimal codons within 
the coding sequences globally influences protein production rates. Nevertheless, 
opposite findings by Zouridis and Hatzimanikatis212 revealed that the codon usage bias 
tunes ribosome elongation rates and increases the protein production rate to 
maximum levels. Finally, the crucial role in controlling ribosome translocation by the 
nucleotide composition of the mRNA has been confirmed by other studies213, where 
the involvement of the codon usage bias in slowing down the translation initiation 
phase have been also discussed214.  
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Though many efforts to dissect the mechanism of translation by using deterministic 
approaches has been put in last years, the existing models point to contradictory 
conclusions concerning the role of mRNA determinants such as the codon usage and 
the ramp hypothesis i.e. the slowdown mechanism at the beginning of the coding 
sequence. Moreover, the connection between these mRNA determinants and 
polysome features such as the number of ribosome per polysome and the ribosome 
localization along the mRNA has never been explored in detail. Analogously, even 
though deterministic models of translation have been extensively exploited for 
predicting protein production rates and protein abundances, the precise contribution 
of polysome to the final protein production has never been investigated. 

1.5.2 Stochastic models 
A stochastic model, as the name suggests, assumes that the evolution of a system 
relies on single or multiple uncertain events. This means that, simulating a 
phenomenon described as a set of events connecting different states, the choice of the 
next reaction to occur is based on a probability distribution. In many cases, the kinetics 
of the systems moving from one state to another also depends on random variables. 
Thus, the stochastic nature of this approach gives rise to a variety of paths and, even if 
a specific state of the system is known, it is impossible to forecast the following ones, 
and the final state cannot be uniquely determined. 

Basically, a stochastic model follows three main steps: i) definition of the initial state; 
ii) determination of the next reaction and the time it will take; iii) update the system 
after each reaction occurs. The second and the third steps are reiterated until the 
system reaches the chosen steady state (if any). 

Despite the increased computational complexity of stochastic models compared to the 
deterministic approaches, the former allow to know exactly which is the state of the 
system at any time point of the simulation. This means that it is possible to follow the 
evolution and the variations of all elements involved in the process. Moreover, 
parameters describing multiple aspects of the modelled system can be easily added 
and their contribution assessed on the basis of the trend of the simulations. 
 

Stochastic models of translation 
Following the same motivations having driven the development of the first 
deterministic models of translation, many stochastic models have been employed to 
forecast protein production rates starting from experimentally assessed mRNA 
levels129,181,215,216. Lots of efforts involving stochastic simulations of translation have 
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been directed to clarify the contribution of the codon usage bias in controlling 
ribosome dynamics129,215,217–220.  

Similarly to deterministic approaches, stochastic models translation usually describe 
the initiation, elongation and termination phase by simulating the binding, the 
movement and the release of ribosomes along a sequence of mRNA206,207. However, 
these models are based on the totally asymmetric simple exclusion process (TASEP)221, 
based on the Gillespie algorithm222 and canonical frequentist probabilities223. The 
TASEP model assumes that a ribosome can move forward one codon at a time in only 
one direction and only if the next triplet is not occupied by another ribosome. The 
fundamental steps of these models are the following: 

I. definition of the initial state, typically an empty filament of mRNA and 
an infinite pool of ribosomes; 

II. generation of a random value to determine the next reaction to occur 
and the time it will take. There are only three possible types of reactions 
that can take place: 

a. the binding of a new ribosome at the start codon; 
b. the movement of bound ribosomes from one triplet to the next 

one; 
c. the detachment of a ribosome from the stop codon; 

III. update the system depending on step II; 
IV. reiterate from step II. 

Despite many stochastic simulations of translation based on ribosome kinetics took 
advantage of the above-mentioned procedure215,218,224,225, more refined models have 
been developed to investigate the contribution of additional parameters such as the 
presence of mRNA 2D structures226, and ribosomes and tRNAs competition181,216,217,227 
in tuning translation.  

For example, Mao and co-workers226 investigated the effects of 2D structures of the 
transcripts on translation rates, showing a consistent slowdown of ribosomes in 
presence of mRNA secondary structures. Regarding ribosomes and aa-tRNAs 
competition, Chu and collaborators217 showed that a limited number of free ribosomes 
in cells negatively affect the global translation elongation rates more than codon usage 
bias or possible differences in aminoacyl-tRNA levels can do. In fact, they 
demonstrated that optimal codons mostly control local and mRNA-specific ribosome 
translocation rates and that aa-tRNAs competition exert only minor control of 
translation217. The minor role of aa-tRNA abundances in controlling translation was 
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confirmed by Gritsenko and co-workers181 that on the other hand hypothesized a more 
complex dynamics of translation regulation by aa-tRNA, based not only on their levels 
but also on possible aa-tRNA post transcriptional modifications. On the contrary, 
Gorgoni and collaborators224 demonstrated that the abundance of aa-tRNA in cells is 
sufficient to prompt ribosome queues along the transcript. 

Recently, the widespread diffusion of ribosome profiling assays gives rise to a 
collection of stochastic models that take advantage of RiboSeq data, which allows to 
estimate the position of ribosomes along transcripts expressed as number of reads 
obtain121,129,181,219,228. These models, by tuning their parameters to obtain the best fit 
of the experimental data, allow the estimation of translation rates: Ciandrini and 
collaborators219 inferred a set of translation initiation rates for yeast, also revealing 
that the codon usage bias alone is not sufficient to control ribosome localization along 
the transcripts; Zupanic and co-workers121 computed transcript-specific termination 
rates in mouse, suggesting that translation premature termination is due to either 
mRNA post transcriptional modifications or stretches of non-optimal codons. Other 
RiboSeq-based stochastic models led to discordant conclusions about the role of codon 
usage along in determining ribosome localization and slowdowns along the transcripts. 
For example, Raveh and collaborators220, exploiting a model simultaneously simulating 
translation of multiple mRNAs, described both global and local effects of codon usage 
bias on ribosome translocation. On the contrary, Shah and co-workers129 revealed a 
connection between high ribosome densities along the coding sequence (especially 
close to the start codon) and a rapid initiation rate, discarding the hypothesis of slow, 
non-optimal codons at the beginning of the CDS. 

All together, these studies show the great versatility of stochastic simulations of 
translation, especially using ribosome profiling data. In particular, their ability in 
dissecting translation by taking into account multiple features (ribosome and aa-tRNA 
competition, mRNA 2D structures, codon usage bias etc.) emerges. Nevertheless, many 
contradictory hypotheses about the role exerted by elements affecting translation (e.g. 
tRNA levels, optimal and non-optimal codons) have been proposed and a consensus is 
still lacking. Furthermore, the comparisons between predicted and experimental 
ribosome profiling data may lead to inaccurate results due the existence of global but 
not local similarities that are typically ignored. Tuning the parameters of the model to 
reach the best fit of RiboSeq data also presents a second shortcoming: the 
contribution of the single feature is lost in the simultaneous optimization of all feature 
values. Lastly, none of these models pays specific attention in extracting polysome 
organizational rules such as the number or position of ribosomes along transcripts and 
connections of these features with the considered elements. 
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1.5.3 Other models of translation 
Beyond the deterministic and stochastic procedures described in the previous sections, 
models based on Bayesian probability229 and other statistical approaches230,231 have 
been developed for studying translation. For example, Gilchrist and collaborators 
showed a strong connection between codon usage bias and translation elongation rate 
in yeast229, ad a significant impact of ribosome recycling and potential non sense-
errors have been assessed230. 

Furthermore, studies that mix deterministic and stochastic approaches have been 
employed for predicting protein production rates232 and demonstrate the role of 
aminoacyl-tRNAs abundance and diffusion in cells in limiting translation elongation 
rates233. Finally, recent techniques based on Boolean logic234,235 attempted to find the 
best combination of models for representing translation by exploiting the advantages 
of multiple mathematical and computational approaches. 

1.6  Translation in motor neuron diseases: 
the case of Spinal Muscular Atrophy 

Spinal Muscular Atrophy is the leading cause of infant mortality associated to genetic 
diseases236. SMA was described for the first time at the end of the 19th century237 and 
is classified as a motor neuron disease, i.e. a progressive neurological disorders 
characterized by degeneration of motor neurons, the cells that control voluntary 
muscle activity. In particular, SMA affects lower alpha motor neurons, whose axons 
arise either from the brainstem or the anterior horn of the spinal cord, directly 
innervating skeletal muscles238. Lower alpha motor neurons are responsible for the 
innervation of the extrafusal muscle fibres at the neuromuscular junction. 
Consequently, their degeneration results in hypotonia and muscle weakness239. 

SMA has an incidence of around 1 in 6000-10,000 live births and the frequency of the 
carrier is approximately of 1 in 54236. Patients are classified into five main classes on 
the basis of parameters as the age of onset, the patient phenotypes and their motor 
functions: from type 0 (affected by the most severe form236) to type IV (with milder 
symptoms, reach adulthood having all major motor functions240). Type I is the most 
common form, accounting for about 50% of the SMA cases. SMA of type I has an onset 
before 6 months of age and death occurs within two years, often determined loss of 
respiratory functions241,242. 
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SMA is caused by the loss or mutation of human Survival Motor Neuron gene (smn)243. 
In the human genome, smn is present in two different copies: Smn1 and Smn2, derived 
from an inverted duplication of Smn1240. A single nucleotide mutation differentiates 
the two copies of smn, leading to the skipping of the exon 7 during splicing, which in 
turn gives rise to a truncated protein that is rapidly degraded. A small percentage of 
smn1 is properly translated into functional SMN proteins allowing a correct 
development of the organism at the embryonic stage. 

Even though the genetic cause of SMA has been well-established, the molecular 
mechanisms that links SMN depletion to the pathogenesis of SMA is still unclear. 
Recent findings connect SMN to the translational machinery showing a mislocalization 
of its components in SMN-depleted cells244 and its association to polysomes in vivo245 
and in vitro246. Translation locally occurring in the axons has been also demonstrated247 
pointing to local protein synthesis as a fundamental process that allows highly 
specialized cells such as neurons to regulate their structure and function248. Moreover, 
SMN have been shown to be associated to SMA Type I leads to a reduction in the 
number of ribosomes in polysomes in tissues of central nervous system of a mouse 
model at early and late symptomatic stage and that this defect correlates with SMA 
disease progression249. Nevertheless, links between SMN and polysome organisation 
such as the exact ribosome localization along the mRNAs are still open to 
breakthrough discoveries. 
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2 Mathematical models of 
translation 

2.1 riboAbacus 
Translation is the most energy consuming process in cells35,36 and a primary 
mechanism for regulating protein expression in a variety of fundamental physiological 
processes37–40. Translation occurs in polysomes16–18, highly-structured complexes 
where several controls converges: recent findings reveal the existence of a wide 
collection of translational regulatory mechanisms acting in cis (mRNA sequences and 
secondary structures)57,58 and trans (ncRNA and RNA binding proteins) of mRNAs. As a 
consequence, these controls may account for the discussed widespread uncoupling 
between transcript and protein abundances in cells54,55, that can be only partially 
explained by transcription alone (around 40%)56. In fact, multiple regulatory elements 
can in some cases govern the movement, position and, as consequence, the number of 
ribosomes within polysomes61,164 and thus the whole translation process. In particular, 
the number of ribosomes bound to the transcripts coupled with mRNA levels is likely 
to affect the abundance of proteins in cells. 

Unfortunately, up to now no experimental techniques allow to calculate the number of 
ribosomes per transcript with single-transcript resolution at genome-wide level. Thus, 
the only way to clarify the contribute of the number of ribosomes per polysome in 
shaping proteomes is a dedicated mathematical model of translation that i) takes into 
consideration the mRNA levels and ii) estimates the number of ribosomes per 
polysome. 

Many deterministic models of translation have been already developed205,212,214,250–252, 
aimed at predicting protein abundances in cells and increasing the low correlation 
observed between transcriptome and proteome in cells. Nevertheless, none of them 
pay specific attention in extracting polysome organizational rules (such as number and 
position of the ribosomes) and the precise contribution of the number of ribosomes 
per transcript to the final protein production is still unexplored. Moreover, despite the 
many efforts of these modelling studies, a consensus model remains elusive, drawing 
to contradictory conclusions concerning the role of mRNA determinants. In particular, 
the contribution of the codon usage103–106 and the ramp hypothesis123 (a region at the 
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beginning of the coding sequence characterized by high ribosome density associated 
to ribosome slowdown120–122,124,125) in tuning translation is still unclear. 

Here, I propose riboAbacus, a mathematical model to predict the number of ribosomes 
per transcript exploiting for the first time imaging data of polysomes acquired by 
atomic force microscopy (AFM) and obtained by Dr. Gabriella Viero (Laboratory of 
Translational Architectomics, IBF-CNR, Trento) in collaboration with Dr. Lorenzo Lunelli 
(Bruno Kessler Foundation, Trento). In fact, recent studies showed that AFM can be of 
the greatest help for precisely and counting the number of ribosomes at the genome-
wide scale in polysomes purified from cells or tissues91,93,95. I used as input the kinetic 
constants of elongation and as mRNA determinants the gene expression level, the 
codon usage bias and the ramp. The model was trained using the experimental 
distribution of the number of ribosomes per transcript from images of polysomes of 
the human Hek-293 (GSM936076) cell line, to optimize two ramp parameters: the 
ramp length and ribosome slowdown rate. These two parameters has been set to best 
fit the experimental data. I then performed two rounds of validations using: i) the 
whole transcriptome of human MCF-7 (GSE48213) cell line and ii) the globin mRNA 
(globin transcript). In both cases I found a good fit between experimental and 
predicted data. Finally, the predicted number of ribosomes per transcript was used to 
calculate protein levels of mRNAs expressed in three datasets (the human 
medulloblastoma, primary mouse motoneurons and NIH3T3 mouse fibroblasts), 
significantly increasing the correlation between transcript and protein abundances. 
This result demonstrates the usefulness of the prediction of the number of ribosomes 
per transcript to reduce the distance between transcriptome and proteome in any 
biological sample. 

The work presented in this chapter has already been published in: “RiboAbacus: a 
model trained on polyribosome images predicts ribosome density and translational 
efficiency from mammalian transcriptomes”, Lauria et al., Nucleic acids research, 
43(22), e153 and riboAbacus is available at http://fabiolauria.github.io/RiboAbacus/. A 
copy of the paper is reported below. My contribution in the following work consisted 
in i) developing the mathematical model; ii) performing the training and the validation 
of riboAbacus including the features and the statistical analyses; iii) computing the 
translational efficiency and comparing it with proteome data; iv) writing the 
manuscript, the C script and its documentation. 
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ABSTRACT

Fluctuations in mRNA levels only partially contribute
to determine variations in mRNA availability for trans-
lation, producing the well-known poor correlation be-
tween transcriptome and proteome data. Recent ad-
vances in microscopy now enable researchers to ob-
tain high resolution images of ribosomes on tran-
scripts, providing precious snapshots of translation
in vivo. Here we propose RiboAbacus, a mathemat-
ical model that for the first time incorporates imag-
ing data in a predictive model of transcript-specific
ribosome densities and translational efficiencies. Ri-
boAbacus uses a mechanistic model of ribosome
dynamics, enabling the quantification of the rela-
tive importance of different features (such as codon
usage and the 5′ ramp effect) in determining the
accuracy of predictions. The model has been op-
timized in the human Hek-293 cell line to fit thou-
sands of images of human polysomes obtained by
atomic force microscopy, from which we could get
a reference distribution of the number of ribosomes
per mRNA with unmatched resolution. After valida-
tion, we applied RiboAbacus to three case studies of
known transcriptome-proteome datasets for estimat-
ing the translational efficiencies, resulting in an in-
creased correlation with corresponding proteomes.
RiboAbacus is an intuitive tool that allows an im-

mediate estimation of crucial translation properties
for entire transcriptomes, based on easily obtainable
transcript expression levels.

INTRODUCTION

Translation, the synthesis of proteins by ribosomes using
an mRNA template, is a fundamental process in biology.
It relies upon complex interactions between molecular ac-
tors that modulate this process at a number of translation
check-points: initiation (1–3), elongation (4–6), termina-
tion and ribosome recycling (7,8). Moreover, mRNA de-
terminants such as codon usage bias (9), GC content (10),
5′ mRNA structures (11,12), cis regulatory elements (13),
protein–protein interaction (14,15), ribosome pausing (16–
18), alternative termination (19) and drop off (20,21) influ-
ence translational efficiencies or translation rates in vivo. In
cells, several ribosomes translate the same mRNA forming
the so-called polyribosome or polysome (22–24). At steady
state, the total number of ribosomes per transcript are the
result of an equilibrium among initiation, elongation and
termination events. The precise contribution of the num-
ber of ribosomes per transcript to the final protein produc-
tion remains elusive and unexplored because of the chal-
lenge posed by obtaining experimental genome-wide distri-
butions of ribosome number per transcript.

Translation has been the subject of intense modelling
efforts in the last five decades, using various mathemati-
cal and computational approaches (18,25–32). These mod-
els aimed at predicting protein production rates and un-
derstanding the role of mRNA features or contributions
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of translation stages. Several models purely deal with bio-
physical theoretical descriptions of ribosome fluxes along
mRNAs (29,31,33), while recent experimental methods to
study translation using ribosome footprinting (17,34) or
polysome profiling (32) motivated new mathematical mod-
elling approaches based on genome-wide maps of ribo-
some occupancy and/or ribosome density along transcripts
(18,31,35). Despite the many insights afforded by these
modelling studies, a consensus model remains elusive, as
different modelling approaches/assumptions often lead to
contradictory conclusions concerning the role of mRNA
determinants (in particular the contribution of codon us-
age), the interplay between initiation and elongation, trans-
lational rates and efficiencies. Employing ribosome profil-
ing data to develop mathematical models is undoubtedly
promising, but several problems have been encountered.
For example, biases determined by alignment of ambiguous
RNA reads to mRNA isoforms, artefacts caused by miss-
ing normalization (36), fragment bias that depends on the
length of the sequenced fragments (37–39) can introduce er-
rors that may affect the robustness of translation efficiencies
(TEs) calculated using these data. Ribosome profiling has
been extensively used for obtaining estimates of ribosome
occupancy per transcript. These estimates are essential for
parameterizing mechanistic models of translation, however
their reliability is questionable, as they are computed by col-
lapsing ribosome positional information from thousands
of copies of the very same transcript. Another technique
for obtaining ribosome occupancy, ribosome density and
the number of ribosomes per transcript could be the em-
ployment of polysomal profiling followed by microarray or
RNA-seq (40–43). Unfortunately, this approach provides
an indirect estimation of the number of ribosomes per tran-
script. A more precise way for obtaining this information
is the employment of imaging techniques, followed by ri-
bosome counting (44). In principle this approach allows to
determine the exact number of ribosomes with a single tran-
script resolution, if a polysome can be univocally identified.

Recently, much effort has been directed at elucidating by
imaging the three-dimensional (3D) structure of polysomes
in bacteria (45) and eukaryotes using Cryo-ET and atomic
force microscopy (AFM) (44,46–48). The emerging model
describes polysomes as groups of tightly interacting ri-
bosomes. In addition, independent groups of ribosomes,
or ribo-cliques, spaced by naked mRNA can be observed
along the same transcript, as demonstrated by AFM (44).
Despite the unique advantages of Cryo-ET for obtaining
high-resolution information about ribosome–ribosome in-
teractions (48), it cannot be employed to identify coding
mRNA filaments uncovered by ribosomes, precluding the
possibility to precisely count the number of ribosomes per
transcript. Therefore, AFM is of major help for precisely
and univocally counting the number of ribosomes in thou-
sands of transcripts purified from cells or tissues.

Ribosome profiling studies introduced the concept of ‘5′
ramp’, identified as a region of about 50 codons (34). This
region immediately follows the start codon, where ribo-
somes display on average an increased density, probably
moving with a reduced elongation speed (36) with respect
to the remaining coding sequence (CDS). Although defini-
tive molecular evidences and mechanistic explanation are

still missing, a body of clues indicates the existence of the
ramp effect (49), that has been identified in bacteria (35,50),
yeast (18,34,35) and mammals (31,36,51,52). While existing
mathematical models of translation have often included a
heuristical ramp effect, to our knowledge the ramp param-
eters have never been systematically explored or optimized.

Here, for the first time, we exploit the rich data pro-
vided by AFM images to calibrate a mechanistic model of
translation. We develop RiboAbacus, a new mathematical
model of translation calibrated using thousands of single-
polysome AFM images. The output of RiboAbacus is the
prediction of transcript-specific ribosome numbers and ri-
bosome occupancy from transcriptome data. The model
takes into account the main steps of the elongation phase
to predict in a transcript specific fashion the number of ri-
bosomes per transcript and derive the corresponding trans-
lational efficiency (TE). The proposed method has also been
compared with polysome profiling in yeast, showing an in-
creased resolution in determining the number of ribosomes
per transcript, and a general agreement for single transcript
predictions. We took advantage of the experimental distri-
bution of the number of ribosome per transcript in one
human cell line (HeK-293) to tune RiboAbacus parame-
ters (ramp length and slowdown) during the training of
the model. A second genome-wide dataset (human MCF-7)
and one enriched in a single transcript (rabbit globin from
in vitro translation system) were used for validation. Finally,
the predicted number of ribosomes per transcript was em-
ployed to calculate the TE of mRNAs expressed in three
additional biological systems: the human medulloblastoma
cell line DAOY (53), primary mouse motoneurons from
stem cells (54) and NIH3T3 mouse fibroblasts (55), sig-
nificantly increasing the experimental correlation between
transcript and protein abundances. This application illus-
trates the effectiveness of model-based predictions in esti-
mating proteome abundances from transcriptome data. In
synthesis, RiboAbacus is an intuitive tool that allows an al-
most immediate estimation of crucial translation properties
for entire transcriptomes, based on easily obtainable tran-
script expression levels.

MATERIALS AND METHODS

Chemicals

All solution used for polysome purifications has been pre-
pared in RNase-free water containing 100 �g/ml cyclohex-
imide in order to prevent ribosome subunit disassembly. All
reagents, unless otherwise cited, were of molecular biologi-
cal grade and purchased from Sigma.

Cell culture and human polysomal purification

The baker’s yeast Saccharomyces cerevisiae wild-type strain
BY4741 (MATa, his3D1, leu2D0, met15D0, ura3D0) was
obtained from the EUROSCARF repository (EUROpean
Saccharomyces Cerevisiae ARchive for Functional analy-
sis, Institute for Molecular Biosciences, Johann Wolfgang
Goethe-University Frankfurt, Germany, www.euroscarf.
de). A single yeast colony was grown overnight to station-
ary phase in 5 ml of YPDA growth medium (1% Yeast Ex-
tract, 2% Peptone, 2% Dextrose and 200 mg/l Adenine) at
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30◦C. The day after the culture was diluted 1/10 in 20 ml
of fresh YPDA and allowed to reach the mid-log growth
phase. Translation was blocked by adding 0.01 mg/ml cy-
cloheximide. Yeast cells were then collected by centrifuga-
tion and lysed with little modifications to Arava’s proto-
col (40). Briefly, yeast cells were transferred to 2 ml round
bottom tubes with 1 ml of freshly prepared lysis buffer (20
mM Tris–HCl, pH 8.0, 140 mM KCl, 1.5 mM MgCl2, 0.5
mM dithiothreitol (DTT), 0.01 mg/ml of cycloheximide,
1% Sodium DeoxyCholate, 1% Triton X-100, 20U RNAse
inhibitor) and washed twice. Cells were then lysed using 0.7
ml of lysis buffer with 0.6 vol of pre-chilled acid-washed
glass beads (0.45–0.55 mm, Sigma-Aldrich). Complete ly-
sis was performed through six cycles of vortexing (30 s) fol-
lowed by incubation in ice (1 min). Lysates were harvested
by collecting supernatants from two subsequent rounds of
cold centrifugation with increasing speed (2600 and 7200 g,
respectively). Lysates were then diluted to 0.8 ml with ly-
sis buffer and stored at −80◦C. Polysomes were purified as
described below for human cellular lysates.

Hek-293 and MCF-7 cells were seeded at a density
of 2.5 × 104 cells/cm2 and maintained for 3 days in
growth medium (Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal bovine serum (FBS), 2 mM glu-
tamine, 100 units/ml penicillin and 100 mg/ml strepto-
mycin at 37◦C, 5% CO2). At 80% confluence, cells were
incubated for 3 min with cycloheximide (100 �g/ml) at
37◦C to interfere with the translocation step during protein
synthesis, blocking translational elongation and trapping
ribosomes on the mRNA. Cells were washed with phos-
phate buffered saline (PBS + cycloheximide 100 �g/ml) and
scraped directly on the plate with 300 �l lysis buffer (10 mM
NaCl, 10 mM MgCl2, 10 mM Tris–HCl, pH 7.5, 1% Triton
X-100, 1% sodium deoxycholate, 0.2 U/�l RNase inhibitor
(Fermentas), cycloheximide 10 �g/ml and 1 mM DTT). Af-
ter a nuclei and cellular debris removal by centrifugation (5
min at 12 000 g at 4◦C), the supernatant was directly trans-
ferred onto a 15–50% linear sucrose gradient containing 30
mM Tris–HCl, pH 7.5, 100 mM NaCl, 10 mM MgCl2 and
centrifuged in a Sorvall ultracentrifuge on a swinging rotor
for 100 min at 180 000 g at 4◦C. The fractions correspond-
ing to the 80S peak and to the polysomes were collected
monitoring the absorbance at 254 nm. Each fraction was
aliquoted, flash frozen in liquid N2 and stored at −80◦C be-
fore AFM imaging.

Preparation of polysomes from rabbit reticulocytes (RRL)

Briefly, 1 ml of untreated rabbit reticulocytes (RRL) pre-
pared according to Jackson and Hunt (56) was comple-
mented with 20 �M hemin (Fluka), 50 �g/ml creatine phos-
phokinase, 10 mg/ml creatine phosphate (Fluka), 50 �g/ml
of bovine liver tRNAs and 5 mM of D-glucose. Endoge-
nous RNAs were translated in 80 �l reactions containing
40 �l of the complemented, untreated RRL in the presence
of 75 mM KCl, 0.5 mM MgCl2, amino acids (20 �M each),
5 mM DTT and 0.1 U/�l RiboLock RNase (Fermentas)
for 10 min at 30◦C. Reactions were stopped by cooling the
tube on ice for 1 min and adding 320 �l of ice-cold, low salt
buffer (15 mM NaCl, 1 mM MgCl2, 10 mM Tris pH 7.4, 1

mM DTT, 0.12 mg/ml cycloheximide). Polysome purifica-
tion following the above-mentioned protocol.

qPCR from RRL polysomal fractions

Nine fractions were collected monitoring the absorbance
at 254 nm. From 0.5 ml of each fraction, total RNA was
isolated after proteinase K treatment, phenol–chloroform
extraction and isopropanol precipitation and resuspended
in 20 �l of RNase free water. For each fraction, 4 �l
of total RNA was reverse-transcribed using the iScripTM

cDNA Synthesis Kit (Biorad) in a final volume of 20
�l. One microlitre of cDNA and 400 nM of each primer
were used in combination with the KAPA SYBR Green
kit (KAPA Biosystems) in a final volume of 10 �l. Forty
amplification cycles (95◦C for 15 s, 55◦C for 20 s, 72◦C
for 25 s) were run in a CFX-96 C1000 thermal cycler
(Biorad) using primers specific to rabbit beta-globin (for-
ward: 5′-TTTGCTAAGCTGAGTGAACTGC; reverse: 5′-
CCAGCCACCACCTTCTGATA), rabbit 15-lipoxigenase
(forward: 5′-TTCTGTCCCCCTGACGATCT; reverse: 5′-
GATCTCTCGGCACCAGCTCT) and rabbit 18S rRNA
(forward: 5′-ACGGCCGGTACAGTGAAACT; reverse:
5′-GACCGGGTTGGTTTTGATCTG). qPCR amplifica-
tion efficiency was calculated for each gene using a relative
standard curve derived from a cDNA of total RNA isolated
from RRL. The Ct values were determined by the CFX
Manager 2.1 (Biorad) applying multi-variable, non-linear
regression model to individual well fluorescence traces. The
amount of each target gene was quantified relative to the
fraction n◦ 14 and normalized to the level 18S gene, accord-
ing to Pfaffl equation (57). qPCR reactions were carried out
in triplicates.

Atomic force microscopy imaging

For AFM imaging a 20 �l of Hek-293 or RRL polysomal
fraction were adsorbed for 3 min on freshly cleaved mica
pretreated with Ni2 + for 3 min. The samples were then cov-
ered with 100 mM Hepes, pH 7.4, 10 mM NaCl, 10 mM
MgCl2, 100 �g/ml cycloheximide and 3% (w/v) sucrose. Af-
ter 1 h of incubation at 4◦C, the sample was extensively and
gently washed with DEPC-water containing 100 �g/ml cy-
cloheximide and dried at 20◦C for at least 1 h.

Imaging was performed using a Cypher AFM (Asylum
Research, Santa Barbara, CA, USA) in AC mode, us-
ing Asylum routines for the IGOR software environment
(WaveMetrics, Portland, OR, USA). Scans have been ac-
quired using OMCL-AC240TS tips (Olympus) with nom-
inal spring constant of 2 N/m. The scanning parameters
were as follows: typical driving frequency 70 kHz in air,
scanning rate 1-2 Hz. AFM images were levelled line by
line and rendered using the Gwyddion (gwyddion.net) soft-
ware package. Images were analysed in ImageJ (58) to count
ribosomes in polysomes, manually picking the ribosomal
particles and assigning them to their respective polysomes
using a custom ImageJ macro. Thousand polysomes were
analysed (� objects = 3300 for yeast; � objects = 2251 for
Hek-293; � objects = 696 for MCF-7, � objects = 901 for
polysomes from RRL) picking more than 20 000 ribosomes.

 by guest on A
ugust 4, 2015

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


4 Nucleic Acids Research, 2015

Model

In order to provide the modelling of translation, the elonga-
tion phase was divided in nine different steps, each of them
linked to a flux (measured in ribosomes/sec) representing
the transition of ribosomes from one stage to the next, sim-
ilarly to what was done in (29).

The model assigns to each codon of an mRNA nine ordi-
nary differential equations describing the rate of change in
the number of ribosomes at position n (referred to the po-
sition of the P site of ribosomes), Sn, at the different stages
(Equations (1)-(11)) ; note that all the equations are tran-
script specific). We then set all fluxes equal to 0 to compute
the steady-state values of the variables, which is obtained by
solving the resulting algebraic system. This procedure, with
the addition of a set of initial conditions i.e. of the hypoth-
esis that at time 0 there are no ribosomes along the tran-
script, allows to compute the steady-state number of ribo-
somes bound to an mRNA in this condition. See also ‘Re-
sults’ section for the assumptions of the model and Supple-
mentary File 1 for further information on fluxes, notations
and all parameters involved in the model.

d S(2)
n

dt
= VI + V(−2)

n − V(2)
n n = 1 (1)

d S(2)
n

dt
= V(1)

n−1 + V(−2)
n − V(2)

n ∀ n = 2...N − 1 (2)

d S(3)
n

dt
= V(2)

n + V(−3)
n − V(−2)

n − V(3)
n ∀ n = 1...N − 1 (3)

d S(4)
n

dt
= V(3)

n − V(−3)
n − V(4)

n ∀ n = 1...N − 1 (4)

d S(5)
n

dt
= V(4)

n − V(5)
n ∀ n = 1...N − 1 (5)

d S(6)
n

dt
= V(5)

n − V(6)
n ∀ n = 1...N − 1 (6)

d S(7)
n

dt
= V(6)

n − V(7)
n ∀ n = 1...N − 1 (7)

d S(8)
n

dt
= V(7)

n + V(−8)
n − V(8)

n ∀ n = 1...N − 1 (8)

d S(9)
n

dt
= V(8)

n − V(−8)
n − V(9)

n ∀ n = 1...N − 1 (9)

d S(1)
n+1

dt
= V(9)

n − V(1)
n ∀ n = 1...N − 2 (10)

d ST

dt
= V(9)

n − VT n = N − 1 (11)

To be able to solve the system described above, two other
equations are necessary: (i) the formula representing the

number of codons at position n for transcript r that are not
covered by the tail of the preceding ribosomes (Cn, r)

Cn,r :=

⎧⎪⎨
⎪⎩

Mr −
9∑

σ=1

S(σ )
n+4 n ∈ [1, N − 5]

Mr n ∈ [N − 4, N − 1)]

(12)

where Mr is the total number of transcript of species r, and
(ii) the probability for a ribosome at position n to move to
the next codon (Un)

Un :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cn+6 −
n+L∑

j=n+1

9∑
σ=1

S(σ )
j

Mr −
n+L∑

j=n+1

9∑
σ=1

S(σ )
j

n ∈ [1, N − (L + 1)]

1 n ∈ [N − L, N − 1)]

(13)

Equation (12) arises from the assumptions made on the ri-
bosome footprint (see ‘Results’ section and Figure 2A) and
the position of the ribosome site with respect to the cov-
ered portion of mRNA. Indeed, to obtain the number of
free codons at position n, we have to subtract to the max-
imum amount of codons in that position of the transcript
(coincident with the total number of transcripts of species r
i.e. Mr) the number of codons occupied by the tail of a ribo-
some at position n + 4. Since ribosomes leave mRNAs when
they reach position N, the number of codons not covered by
any ribosome tail is equal to Mr for the last 4 codons. As in-
troduced before, Equation (13) is related to the probability
of ribosomes at position n to move forward (Un): since Ri-
boAbacus considers Mr copies of the mRNA species r, the
number of ribosomes bound at a specific codon (Sn) ranges
from 0 (if all mRNA copies have that position empty) to Mr
(if all mRNA copies have that position occupied by ribo-
somes). (Sn) changes codon to codon and the probability to
move forward (Un) depends on the number of free codons
close to the tail of ribosomes. In this way the presence of
ribosomes along the transcript influences the translocation
probability of ribosomes positioned on upstream codons.
Basically, (13) coincides with the probability of having a free
codon at position n + 5 for only the transcripts not present-
ing ribosomes between the triplets n + 1 and n + 9, avoiding
in this way overestimations of Un. Note that even if Equa-
tion (12) is needed exclusively to compute VI (translation
initiation) and calculate the probability Un, both the equa-
tions are crucial to allow the maintenance of correct dis-
tances between the head of each ribosome and the tail of
the next one. More precisely, they are necessary to properly
compute the only flux related to ribosomes translocation,
i.e. V(9)

n , whereas all the other steps of the process are not
affected by them.

Being a probability, Un has to satisfy the following con-
dition:

0 ≤ Un ≤ 1 ∀ n = 1...N − 1 (14)

To avoid any physical overlap between two consecutive ribo-
somes, the total number of ribosomes bound to transcripts
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r has to satisfy the following condition:

0 ≤
9∑

σ=2

S(σ )
1 +

N−1∑
n=2

9∑
σ=1

Sn
(σ ) ≤ Mr · N

L
(15)

Solving directly such a complex system is potentially
problematic due to the heavy computational load. This can
be alleviated by observing that the equations for the last
codon are considerably simpler, since V(8)

n and V(9)
n are re-

lated to the presence of ribosomes on subsequent codons
and hence are trivially zero for the final codon. This allows
to devise an efficient backward solution, by fixing a range
of values for the exit flux and then computing for each of
them the number of ribosomes bound to the mRNA. At
this point, we choose the maximum exit flux such that con-
ditions (14)-(15) are both satisfied.

Since the precise nature of the ramp is still controversial
(see Figure 2C) , we model the ramp effect by enforcing a
lower speed of ribosomes along the first n codons of the
transcripts, where n represents the ramp length. Thus, for
this portion of the mRNA, we simply multiply the fluxes
V(1)

n ...V(9)
n by a constant (ranging from 0 to 1) correspond-

ing to the ribosome slow down rate we want to test and then
we proceed as described before.

Assignment of images to transcripts and calculation of trans-
lation efficiency

The output provided by RiboAbacus contains three val-
ues for each transcript: (i) the number of ribosomes per
transcript, (ii) ribosome occupancy and (iii) TE. The
transcriptome-wide distribution of the number of ribo-
somes per transcript was compared with the experimental
distribution obtained from AFM images, both for the train-
ing and the validation of the model. As the identity of the
individual transcripts imaged by AFM is not known, we
couldn’t connect directly specific mRNAs to AFM images.
We reasonably assumed AFM images to be representative
of the distributions of polysomes and transcripts in cells,
meaning that the probability of finding the polysome of a
certain transcript in an AFM image is proportional to its
abundance, easily measurable by experimental approaches.
For this reason, in the distributions of the number of ri-
bosomes per transcript obtained with RiboAbacus, we in-
cluded transcriptome-wide measurements of mRNA lev-
els, given by FPKM (fragments per kilobases per million
mapped reads) measurements retrieved from RNA-seq ex-
periments available in literature. RNA-seq provides an em-
pirical distribution of abundance of individual transcripts
in a population of cells; the predicted distribution of ribo-
some counts per transcript was obtained by weighing the
predicted number of ribosome on a specific transcript (ob-
tained from RiboAbacus) by its relative frequency (mea-
sured by RNA-seq). This marginal distribution can then
be directly compared with the distribution of number of ri-
bosomes per transcript measured by AFM. The distance
between the experimental and the predicted distribution
was calculated constructing two vectors containing at the
n-position the experimental and the predicted number of
transcripts with exactly n ribosomes attached to them re-
spectively, exploiting then the Euclidean metric to obtain

the distance of interest. More precisely, we used the follow-
ing formula:

√√√√ 50∑
i=0

(xi − yi )
2 (16)

where xi and yi represent the frequency of mRNAs associ-
ated with the number of ribosomes per transcript i respec-
tively for the experimental and the predicted distribution.
This distance ranges from 0 (if the two distributions are
identical) and 1.

In our study the ribosome occupancy for transript r (ROr)
represents the percentage of nucleotides covered by ribo-
somes for each mRNA and is computed multiplying the pre-
dicted number of ribosomes per transcript for the ribosome
footprint (L) and normalizing the result for the length of
the transcript (N):

ROr = #ribosomes · L
N

(17)

Translation efficiency (TEr) is obtained by multiplying the
ribosome occupancy by the transcript expression levels
(Mr):

TEr = ROr · Mr (18)

In the paragraph ‘RiboAbacus improves predictions of pro-
teome data from transcriptome’ the predicted protein abun-
dances were then obtained fitting the length versus ribo-
some occupancy plot with a negative exponential and us-
ing that curve to compute a set of length-specific correction
factors, as suggested in (34). We finally used these values in
the TE formula obtaining a corrected translation efficiency
(cTE).

Statistical analysis

Cross-validation was performed by splitting the Hek-293
transcriptome dataset in two halves. The first was used as
training set to optimize the two ramp parameters, the sec-
ond was used as test set to evaluate the fit of the model.
The procedure was repeated 100 times. In parallel, we also
approached cross-validation by splitting in two halves the
experimental AFM data and we calculated the distance be-
tween the two splitted experimental distributions. Also this
procedure was repeated 100 times.

To compare the experimental and predicted distribu-
tions of the number of ribosomes per transcript, two an-
alytical approaches are used: the first measures the Eu-
clidian distance between the discrete distributions (see the
previous subsection), while the second is based on the
Kullback-Leibler divergence. In this latter case, using the
chi-square minimization method, we first fitted the two dis-
tributions with the number of Gaussian curves correspond-
ing to the best fit (usually two or three). Then we computed
the Kullback-Leibler divergence between the related curves
from experimental and predicted data. After weighting the
divergence value to the area under the Gaussian curves that
fit the predicted distribution, we finally summed the ob-
tained values.

The Wilcoxon–Mann–Whitney test was used to compare
similarity distributions in the paragraph ‘Feature analysis’.
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Figure 1. Distribution of the number of ribosomes per transcript by atomic
force microscopy (AFM). (A) Representative absorbance profile for su-
crose gradient sedimentation of yeast. (B) Example of AFM image of yeast
polysomes after absorption on mica (left panel) and example of ribosome
detection and counting (right panel, red circles). (C and D) Comparison
between the distribution of the number of ribosomes per transcript in yeast
obtained using AFM (C) and obtained by Arava and collaborators ((40),
D). The number of polysomes considered for counting the number of ri-
bosomes per transcript by AFM is 3300, obtained from 40 independent
images.

Williams’s test was used to analyse differences between
two Pearson coefficients in paragraph ‘RiboAbacus im-
proves predictions of proteome data from transcriptome’.
The test determines if two dependent correlations are signif-
icantly different (59). Williams’s test only requires the sam-
ple size value and the two correlation values to be com-
pared, and it is the optimal choice for our purposes since
it properly works with dependent correlations (60).

RESULTS

Obtaining the distribution of ribosomes per transcripts by
atomic force microscopy and comparison with polysome pro-
filing

AFM has been proven to be a powerful approach for study-
ing polysomes and obtaining a great amount of data and in-
formation concerning the overall organization of polysomes
and the distribution of the number of ribosomes per tran-
script from thousands of native human polysomes (44).
With respect to other methods (40), this technique allows
to count the number of ribosomes per transcript at single

ribosome resolution and to obtain genome-wide distribu-
tions.

To demonstrate the advantages of AFM method, we
compared our approach with polysomal profiling coupled
to microarray (40) in yeast. Yeast polysomes were iso-
lated from cellular lysates by sucrose gradient sedimenta-
tion (Figure 1A). Then, polysomes were imaged by AFM
(Figure 1B, left panel) and the number of ribosomes per
polysome (i.e. per transcript) was obtained (Figure 1B, right
panel). The transcriptome-wide distribution of the num-
ber of ribosomes per transcript was determined and shown
in Figure 1C. For the analysis, we took into considera-
tion polysomes with high and medium molecular weights
that reflect the steady state distribution of ribosomes per
transcript for mRNAs with different lengths (40). Given
the fact that it is impossible to obtain pure all-steady state
polysomes from a cell lysate, we cannot exclude that in
the polysome fraction corresponding to medium molecular
weight polysomes, some growing polysomes with long tran-
scripts could be possibly present. Next, we employed the
dataset of the number of ribosomes per transcript from (40)
and compared this distribution (Figure 1D) with ours (Fig-
ure 1C). It is clear that AFM provides a much higher reso-
lution of the distribution of ribosomes per transcript. This
is to be expected, as AFM enables a direct measurement at
single ribosome resolution of the number of ribosomes per
transcript. On the other hand, polysome profiling returns
this number indirectly employing the absorbance profiles of
a sucrose-gradient separation, followed by logarithmic ex-
trapolation of the number of ribosomes in each fraction,
microarray analysis (40) or hybridization/blotting (61) and
bootstrapping methods for assigning the number or ribo-
somes to specific transcripts. Transcripts have to be grouped
according to the sucrose fraction that corresponds to a fixed
number of ribosomes per transcript. This approach leads to
the low resolution of the distribution shown in Figure 1D
that would be unsatisfactory as training dataset for Ri-
boAbacus. To date no methods exist to assign with single-
ribosome resolution the number of ribosomes per transcript
in a genome-wide manner. Thus AFM and polysome profil-
ing appear as complementary techniques because AFM has
the advantage of ribosome-resolution and polysome pro-
filing of assigning a specific number of ribosome per tran-
script. For the purpose of modelling the AFM distribution
is the most apt technique, because it is reasonable to as-
sume that a big sample size of single-polysomes AFM im-
ages is representative of polysomes and transcripts in cells.
This means that the probability of finding the polysome of
a certain transcript in an AFM image is proportional to the
abundance of its mRNA, i.e its transcript expression level.
For this reason, RiboAbacus takes into account the level of
the transcript, as measured by RNA-seq.

Assumptions and model development

Before developing the model, we made some preliminary as-
sumptions. RiboAbacus aims at estimating ribosomal den-
sities for an entire transcriptome, without need to know the
exact position of ribosomes along the mRNA, an informa-
tion that could be provided by stochastic (32,62) or proba-
bilistic (27) models. Although some authors considered in
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Figure 2. Model description and assumptions. (A) Schematic representation of a ribosome and the portion of the transcript covered. The length of the
ribosome footprint is 10 codons. (B) Scheme of the elongation phase, illustrating the chemical reactions considered by the model. Reversible and irreversible
reactions during the elongation phase are a simplified version of (64,65) in accordance to (29,66). The kinetic constants for such reactions are taken from
(67–70). (C) Schematic representation of the ramp hypotheses: (a) elongation speed is reduced while ribosomes are located on the ramp; (b) the ramp region
displays a higher density of ribosomes with respect to the average observed along the remaining transcript; (c) the slowdown effect of the ribosomes along
the ramp region could be the consequence of mRNA complex secondary structures; or (d) the presence of RNA binding proteins bound to the region.

their models the availability of ribosomes or their concen-
trations in the cytoplasm (30,32), our approach does not
need to evaluate ribosome competition effects because each
transcript is analysed independently. Moreover, we can con-
sider the number of free ribosomes as not limiting. This
latter assumption is reasonable given the conditions used
for obtaining the training dataset (see next section). In fact
under our experimental condition, the number of free ri-
bosomes was calculated to be 2.5·105 ribosomes/cell. This
value is similar to what observed in rapidly growing cells of
S. cerevisiae (63) as a not limiting condition.

Moreover, we considered a ribosome coverage of 10
codons (34) (Figure 2A). The choice of this parameter is
of utmost importance to avoid collisions between neigh-
bouring ribosomes. To allow the maintenance of correct dis-
tances between the head of each ribosome and the tail of the
next one, we calculated the probability of any ribosome to
move forward and to start a new cycle of translation (i.e the
probability for the first 6 codons of the transcript to be un-
covered). To do so we defined the codons occupied by E, P
and A sites. From now on we will refer to the position of a
ribosome as the position of its P site: for example, if a ri-
bosome is at codon position n, this means that its E, P and
A sites cover the n − 1th, nth and n + 1th codons, respec-
tively (Figure 2A). The 3 codons upstream the A site and
the 4 codons downstream the E site are therefore also cov-
ered by the same ribosome given the ribosome coverage of

30 nt. The ribosome coverage length and the position of the
ribosome centered in n position (as in Figure 2A) allow to
precisely define the overall occupancy of the ribosome and
the probability of a ribosome to bind the transcript, start a
new cycle of translation and move forward.

The core of the model is based on the elongation phase of
translation that was divided into nine steps (Figure 2B) and
modelled as nine ordinary differential equations, similarly
to what was done in (29). Since the release of the tRNA
from the E site is the first reaction that takes place once
the ribosome has reached this site and is positioned on a
new codon, we considered this reaction as the first step of
the elongation phase for each triplet (Figure 2B). In fact,
when a ribosome translocates from the codon at position n
to the position n + 1 it becomes ready to accept a new tRNA
but its E site is still occupied by the old tRNA. Therefore
the tRNA release is the very first reaction related to the n
+ 1th codon. The nine steps of the elongation phase can
be described as follows: (i) tRNA release from the E site;
(ii) binding of the tRNA along with the elongation factor
eEF1A and the GTP (the so-called ternary complex) at the
A site in a codon-independent process; (iii) binding of the
ternary complex at the A site (codon-dependent process);
(iv) GTP hydrolysis; (v) eEF1A·GDP position change; (vi)
eEF1A·GDP release; (vii) accommodation of the tRNA in
the A site and transpeptidation; (viii) eEF2·GTP binding;
(ix) ribosome translocation. With respect to the others, ri-
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bosomes placed at start and stop codons present some dif-
ferences, leading to slightly different formulations of the
equations for these positions (see ‘Materials and Methods’
section for further details). Ribosomes starting a new cy-
cle of translation do not translocate from previous codons
rather entering a new cycle from the tail of the transcript.
Ribosomes that reach the end of the transcript and leave
the last codon, release the completed polypeptide chain and
temporarily detach from the transcript. Since these ribo-
somes do not translocate to next triplets, this step can be
considered the last one of the process and the flux of ribo-
somes that leave the stop codon was used as starting point
to infer the total number of ribosomes per transcript.

As general input parameters, we considered the organ-
ism specific codon usage bias values (downloaded from
http://www.kazusa.or.jp/codon) and the kinetic constants
of translation elongation (Supplementary File 1). As tran-
script specific input we used the following information: (i)
the transcript sequence (from ENSEMBL 73) and (ii) the
transcript expression level (from RNA-Seq data).

As mentioned in the ‘Introduction’ section, indepen-
dently of the possible mechanisms giving rise to the ramp
(Figure 2C), RiboAbacus includes the ramp effect with
two tunable parameters: the ramp length and the ribosome
slowdown rate. These parameters were optimized to mini-
mize the distance between the distribution of ribosomes per
transcript predicted by the model and the distribution ex-
perimentally obtained by AFM (see the following section).

See the ‘Use of RiboAbacus’ section for more details on
how to use the software.

Training the model with Hek-293 transcriptome

Given the assumptions of the previous section, we opti-
mized the unknown parameters linked to the ramp (length
and slowdown rate), using the experimental distribution
of the number of ribosomes per transcript obtained from
AFM images of polysomes purified from human Hek-293
cells (Figure 3A and B). The experimental distribution of
Hek-293 polysomes was hypothesized to be the sum of nor-
mal distributions that we fitted with Gaussian curves (Fig-
ure 3C). We obtained as best fit of the experimental dataset
three curves with values 5.0 ± 1.3, 9.0 ± 2.4 and 15.0 ± 5.7
ribosomes per transcript (R2 = 0.997). This experimental
distribution was taken as reference for training RiboAba-
cus.

To predict the distribution of ribosomes per transcript of
the Hek-293 transcriptome, we used as input the expres-
sion levels of Hek-293 mRNAs determined by RNA-seq
(GSM936076) and the corresponding transcript sequences.
The transcriptome of Hek-293 consists of 14230 transcripts,
whose distribution of the CDS lengths is shown in Figure
3D. To optimize the ramp parameters, we adopted a grid
approach and selected 91 different combinations of the two
parameters. We run the model for each combination, ob-
tained the corresponding distribution of the number of ri-
bosomes per transcript and compared it with the experi-
mental one. Two examples of these comparisons are dis-
played in Figure 4A, without ramp (left panel) and with
slowdown rate 60% and ramp length of 40 codons (right
panel). The distance between experimental and predicted

Figure 3. Training dataset: experimental determination of the number of
ribosomes per transcript in Hek-293. (A) Example of polysomal profile of
Hek-293 lysates. (B) Example of AFM image of Hek-293 polysomes after
absorption on mica (left panel) and example of ribosome counting (right
panel). (C) Distribution of the number of ribosomes per transcript for Hek-
293 transcriptome, as determined from experimental AFM data. The dis-
tribution was fitted with three Gaussian curves, with means plotted in the
inset (R2 = 0.997). The total number of polysomes considered is 2446, ob-
tained from 20 independent images. (D) Nucleotide length distribution of
transcript coding sequences (CDSs) in Hek-293, based on expressed tran-
scripts (GEO ID: GSM936076).

distributions was estimated as described in ‘Materials and
Methods’ section. The procedure was repeated 100 times
with 50–50 cross-validation (see ‘Materials and Methods’
section and Supplementary Figure S1).

The matrix of average distance values resulting from the
combinations of the ramp parameters is displayed in Fig-
ure 4B. It is worth noting that without considering the ramp
hypothesis in the model (i.e the ramp and the length pa-
rameters are equal to 0), the distance value (0.196) between
the predicted and experimental distributions is high (Fig-
ure 4A, left panel). Similarly, the model with a slowdown
rate of 90% displayed the maximum distance values within
the matrix with the worst match with ramp length set at
20 codons (distance value 0.334). On the contrary, lower
distance values were observed with slowdown rate ranging
between 60 and 80% and ramp length between 20 and 80
codons. The best approximation within experimental data
(distance = 0.056) was obtained in the case of ramp length
equal to 50 codons and slowdown rate of 70% (Figure 4C
and D; see also Supplementary File 2 for the complete Ri-
boAbacus results). After fitting this distribution with three
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0 10 20
0 0.196

10 0.197 0.195 0.192 0.184 0.171 0.147 0.104 0.105 0.258
20 0.195 0.190 0.185 0.169 0.143 0.111 0.084 0.131 0.334
30 0.193 0.189 0.178 0.157 0.135 0.098 0.081 0.123 0.316
40 0.193 0.188 0.173 0.157 0.131 0.100 0.057 0.099 0.286
50 0.192 0.187 0.174 0.154 0.131 0.098 0.056 0.083 0.256
60 0.192 0.188 0.177 0.160 0.135 0.103 0.063 0.061 0.222
70 0.193 0.187 0.178 0.162 0.143 0.116 0.080 0.067 0.198
80 0.193 0.187 0.180 0.171 0.155 0.134 0.105 0.092 0.182
90 0.194 0.189 0.182 0.173 0.164 0.146 0.132 0.117 0.193

100 0.194 0.191 0.184 0.178 0.171 0.161 0.150 0.150 0.214
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Figure 4. Optimization of model parameters in Hek-293. (A) Comparison
between the experimental distribution (black line) and the predicted dis-
tribution (grey bars) of the number of ribosomes per transcript, setting
the ramp length parameter to 0 (left panel) and to 40 codons with 60%
slowdown rate (right panel). (B) Heatmap showing the average distance
(100 cross validations) between the experimental and the predicted distri-
bution of the number of ribosomes per transcript, varying the ramp length
parameter (from 0 to 100 codons) and the ribosome slowdown rate pa-
rameter (from 0 to 90%). Higher distances are highlighted in red gradient,
smaller distances in blue gradient. The minimum distance value is obtained
with ramp length of 50 codons and ribosome slowdown rate of 70%. (C)
Pie charts showing the results of 100 ramp parameters optimizations per-
formed with 50–50 cross validations on the Hek-293 transcriptome. (D)
Predicted distribution of the number of ribosomes per transcript, deter-
mined by RiboAbacus with optimized ramp parameters (ramp length 50
codons and ribosome slowdown 70%) fitted with three Gaussian curves.
The inset shows the comparison with the experimental distribution (black
line). (E) Bar plot showing the estimated means of the three Gaussian
curves that fit the distribution of the number of ribosomes per transcript,
according to experimental data (light grey), predictions from RiboAbacus
with ramp length equal to 0 (black), predictions from RiboAbacus with
optimized ramp parameters (dark grey).

Gaussian curves similarly to what performed for the experi-
mental data, the predictions nicely matched the experimen-
tal values. Computing the distance between the mean of the
predicted and experimental Gaussian curves, we obtained
differences <1 ribosome per transcript (Figure 4E). On the
contrary, comparing the experimental means with those de-
rived from the model with ramp length equal to 0 (black
bars in Figure 4E), the differences between the predicted
and experimental curves are 3 ribosomes per transcript for
the first peak and up to 8-16 ribosomes per transcript for
the other two. Interestingly, the absence of the ramp clearly
overestimates the number of ribosomes per transcript as dis-
played in Figure 4E and Supplementary Figure S2. More-
over, the model without the ramp predicts a high cover-
age (∼70%) for both the short and long transcripts, in dis-
agreement with what was observed in yeast in (40), whereas
adding the ramp to RiboAbacus the relationship between
these two parameters follows an exponential decay trend
(Supplementary Figure S3A). It is worth noting that the
optimized ramp length value closely matches what exper-
imentally observed by ribosome profiling data (34). Given
the results of the training, the two ramp parameters were
set to 70% (ramp slowdown) and 50 codons (ramp length)
in the following validations.

Feature analysis

To understand the contribution of each transcript feature
to RiboAbacus predictions, we started running the model
with CDS length as the only feature. Then we progressively
added the following features, one at a time: expression level,
codon usage bias and optimized ramp parameters. At each
step we computed the distance between the resulting pre-
dicted distribution of the number of ribosomes per tran-
script and the experimental distribution. We defined the dis-
tribution similarity as 1-distance. In this way the similarity
value is 1 if the distributions are identical and close to 0 if
huge differences are present. The results of the analysis re-
peated 100 times with 50–50 cross-validation are displayed
in Figure 5, showing a significant improvement in the fit of
the model upon addition of each new feature. The inclusion
of mRNAs abundances and the codon usage bias leads to an
average increment of the similarity of 0.03 and 0.04, respec-
tively. Interestingly, the ramp effect increases the similarity
of 0.15, up to 0.95. It is noteworthy that only the combina-
tion of all features can properly predict the number of ribo-
somes. In fact, the removal of one feature leads to lower sim-
ilarity values (see Supplementary Figure S4). Overall, these
results pinpoint the importance of modelling a slowdown
mechanisms, such as the ramp and/or initiation rates, and
suggest that codon usage bias is not a major determinant of
the number of ribosomes per transcript observed in human
polysomes, as suggested in (51,52).

Model validation with MCF-7 transcriptome

To validate RiboAbacus, we employed the experimental dis-
tribution of the number of ribosomes per transcript ob-
tained from the breast cancer carcinoma cell line MCF-7.
The experimental distribution was determined from AFM
images by counting the number of ribosomes per polysome
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Figure 5. Contribution of transcript features to RiboAbacus predictions.
Boxplot showing the similarities (calculated as 1-distance) between the
predicted distribution of the number of ribosomes per transcript and the
experimental distribution, progressively adding transcript features to the
model (F0: CDS length, F1: mRNA level, F2: codon usage bias, F3: op-
timized ramp parameters). Similarities were calculated in 100 rounds of
cross-validation. Statistical significances from Wilcoxon–Mann–Whitney
test are shown: (***P-value < 0.001).

after sucrose gradient sedimentation of cell lysates (Fig-
ure 6A) in the same way used for Hek-293.

We then run RiboAbacus, using the ramp param-
eters previously optimized in Hek-293 and the abun-
dances of MCF-7 transcripts obtained from RNA-seq data
(GSE48213, 29 087 transcripts) and the corresponding tran-
script sequences (Ensembl 73). Similarly to what observed
during the training, the predicted distribution of the num-
ber of ribosomes per transcript without ramp (grey bars
in Figure 6B) poorly matches the experimental distribution
(black line Figure 6B). In this case, the distance between the
two distributions is 0.234 (Supplementary Figure S5). The
introduction of the optimized ramp parameters (length 50
codons and slowdown rate 70%, Figure 6C and Supplemen-
tary File 2) leads to a clear improvement of the prediction
and a consequent decrease of the distance value to 0.099.

In the case of MCF-7, the experimental distribution was
best fitted with two Gaussian curves (Figure 6A), with
means of 6.5 ± 2.3 and 12.4 ± 3.9 ribosomes per transcript
(R2 = 0.996). Comparing these values with the means of the
two Gaussian curves obtained with the optimized parame-
ters, we found a good agreement (Figure 6D). In fact, fitting
the data obtained without the ramp, we observed a differ-
ence between the experimental and the predicted mean of
∼3 ribosomes per transcript for the first curve and 8 for the
second. Similarly to what observed in Hek-293, the mean
values of the optimized model better approximate the ex-
perimental means, with differences of around 1 ribosome

per transcript. Noteworthy, the optimal ramp slowdown re-
gion is cell line independent and characterized by a length
between 30 and 70 codons, with a slowdown rate ranging
from 60 to 90% (see Figure 4B and Supplementary Figure
S5). Overall, these results confirm the ability of the model
to consistently estimate the number of ribosomes per tran-
script.

Model validation in the rabbit reticulocyte system

The use of AFM allowed us to precisely describe the com-
position, in term of ribosomes per transcript, of thousands
of polysomes, i.e. to precisely count with single transcript
resolution how many ribosomes are engaged in translation
for transcripts expressed in cells. Even though this predic-
tion originates from the most extensive census of ribosome
numbers available in literature, AFM cannot recognize the
identity of the corresponding transcripts when using a cell
lysate. This means that we cannot associate to one specific
transcript a specific number of ribosomes using a cell lysate,
nor measure the abundance of each transcript in the images.
To overcome this problem, we took advantage of the well-
known in vitro translation system based on RRL lysates. In
this system, unless treated with micrococcal nucleases, two
proteins are preferentially produced: globin and lipoxyge-
nase. Indeed, globin represents the great majority of syn-
thesized proteins (71). In addition, given the difference be-
tween the length of the two transcripts, it is possible to iso-
late sucrose fractions that are highly enriched of polysomes
formed by the globin transcript. We therefore used this sys-
tem as additional validation model to count the number
of ribosomes per transcript in a population composed of a
known transcript. This model has the advantage of offering
a single transcript validation of RiboAbacus predictions.

We purified rabbit reticulocyte polysomes by sucrose gra-
dient fractionation (Figure 7A) and purified RNA along
the gradient to identify by qPCR the sucrose fraction en-
riched in globin polysomes (Figure 7B). The polysome frac-
tion with the peak of globin mRNA (arrow in Figure 7A
and B) was analysed by AFM imaging (Figure 7C) to deter-
mine the experimental distribution of the number of ribo-
somes per transcript (Figure 7D). The experimental mean
number of ribosomes per transcript (4.7 ± 0.89) was com-
pared to the number predicted by RiboAbacus in absence or
presence of the ramp parameters optimized in Hek-293. Ri-
boAbacus predicted 9 ribosomes per globin transcript with-
out the ramp assumption, and 4 ribosomes per transcript
with the optimized ramp parameters (Figure 7D), a number
very close to the mean of the experimental distribution. This
transcript-specific validation further demonstrates that Ri-
boAbacus is a powerful model for accurately predicting the
number of ribosomes per transcript.

RiboAbacus improves predictions of proteome data from tran-
scriptome data

The great advantages of modelling translation are mainly
the possibility to (i) predict protein levels starting from tran-
script abundances and (ii) obtain information about how
mRNA determinants or other parameters can contribute in
defining protein production. The quantification of protein
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Figure 6. Validation of RiboAbacus in MCF-7. (A) Distribution of the number of ribosomes per transcript for MCF-7 transcriptome, as determined from
experimental AFM data. The distribution was best fitted with two Gaussian curves (R2 = 0.996). (B) Comparison between the experimental distribution
(black line) and RiboAbacus predicted distribution (grey bars) of the number of ribosomes per transcript, setting the ramp length parameter to 0. (C)
Distribution of the number of ribosomes per transcript predicted by RiboAbacus with the previously optimized ramp parameters (length 50 codons and
slowdown rate 70%) best fitted with two Gaussian curves. The inset shows the comparison with the experimental distribution (black line). (D) Bar plot
showing the estimated means of the two Gaussian curves that fit the distribution of the number of ribosomes per transcript, according to experimental
data (light grey), predictions from RiboAbacus with ramp length equal to 0 (black), predictions from RiboAbacus with optimized ramp parameters (dark
grey).

levels is sometimes challenging for lowly expressed proteins,
difficult samples such as tissues, biopsies, single cells and
subcellular compartments such as axons. The experimental
detection of transcript levels is far more easy and cost effec-
tive, but it has been shown that mRNAs levels poorly cor-
relate with protein levels in several organisms (53,72). We
wondered whether this discrepancy between transcriptome
and proteome could be reduced by using the number of ri-
bosomes per transcript predicted by RiboAbacus (Supple-
mentary File 2).

To prove this, we selected three studies where protein
and transcript abundances have been experimentally deter-
mined (53–55) and we checked whether RiboAbacus predic-
tions were able to increase the correlation between experi-
mental transcriptomes and proteomes. For each dataset we
computed the predicted number of ribosomes per mRNA
and obtained the corresponding ribosome occupancy val-
ues using the ramp parameters optimized in Hek-293 (Sup-
plementary File 2). Plotting the ribosome occupancy as
a function of the corresponding mRNAs length, we ob-
served that the relationship between these two parameters
follows an exponential decay trend (see Supplementary Fig-
ure S3A). This means that the shorter the transcript, the
higher the ribosome occupancy, supporting previous obser-

vations (34,40). To calculate the TE we introduced a cor-
rection parameter that takes into account this effect, as pre-
viously suggested in (34). In this way we obtained a cTE.
For each dataset we then computed the correlation between
the predicted cTEs and the experimental protein levels. To
measure whether RiboAbacus significantly improved the
correlation between transcriptomes and proteomes, we per-
formed the Williams’s tests (Table 1). In parallel this com-
parison was repeated running RiboAbacus without ramp
parameters, to understand the role of slowdown effects also
in this context.

The first transcriptome/proteome dataset used was ob-
tained from human medulloblastoma cell line DAOY (53).
In this case, the experimentally measured protein quantities
better correlate with the predicted cTE (R = 0.531) than
with transcript levels (R = 0.425). The increase of the corre-
lation is statistically significant (P-value 3.5·10−3), suggest-
ing that RiboAbacus better approximates protein produc-
tion (Figure 8A and B). Moreover, the correlation calcu-
lated without the ramp hypothesis (R = 0.468, P-value =
0.25) is not significantly higher than the experimental cor-
relation, confirming the important role of slowdown mech-
anisms in correctly modelling the process of protein produc-
tion (Figure 8C). Similarly, we applied RiboAbacus to pri-
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Figure 7. Validation of the model with the globin transcript in rabbit reticulocytes (RRL). (A) Representative absorbance profile for sucrose gradient sedi-
mentation of rabbit reticulocyte lysates after incubation at 37◦C for 10 min. (B) PCR quantification of globin and lipoxygenase (LOX) transcripts along the
sucrose gradient fractions. The fraction with the highest abundance of the globin transcript is marked with a black arrow. This fraction was chosen for AFM
imaging. (C) Example of AFM image of RRL polysomes after absorption on mica. (D) Comparison between the experimentally determined distribution
of the number of ribosomes per transcript (� counted objects = 901; mean � ribosomes/transcript 4.7 ± 0.8, in agreement with what observed in (22)), the
number predicted with ramp length equal to 0 (� ribosomes/transcript = 9, dotted line) and with the optimized ramp parameters (� ribosomes/transcript
= 4, dashed line).

Table 1. List of transcriptome/proteome and cTE/proteome correlations with and without the ramp hypothesis for three different transcriptome/proteome
datasets

Cell line Number of Transcriptome/ cTE (ramp)/ Correlation cTE (no ramp)/ Correlation
transcripts proteome proteome increase proteome increase

correlation correlation P-value (ramp) correlation P-value (no ramp)

DAOY 904 0.425 0.531 3.50·10−3 0.468 0.254
Motoneuron 5600 0.473 0.532 2.92·10−5 0.480 0.631
NIH3T3 5830 0.615 0.655 2.95·10−4 0.655 6.04·10−4

The number of transcripts involved and the P-values from Williams’s tests are also reported for each analysis.

mary mouse motoneurons (54). Again, RiboAbacus signifi-
cantly increased the correlation between transcript and pro-
tein levels using the optimized ramp parameters (R = 0.532
versus R = 0.473, P-value = 2.92·10−5), but not without
the ramp hypothesis (R = 0.480, P-value = 0.63). Finally,
we run RiboAbacus on a third transcriptome-proteome
dataset from NIH3T3 mouse fibroblasts (55). Using this
dataset the increase in correlation with optimized ramp pa-
rameters is smaller than in previous cases, (R = 0.615 versus
R = 0.655, P-value = 2.95·10−4). In contrast to previous ex-
amples, the increase in correlation was significant also with-
out the ramp hypothesis (R = 0.653, P-value = 6.01·10−4).

This slight increase could be due to the higher initial cor-
relation between the experimental transcriptome and pro-
teome.

Use of RiboAbacus

RiboAbacus is coded in C and available in GitHub at
http://fabiolauria.github.io/RiboAbacus/. Two input files
are needed: a list of transcript CDSs with related expression
levels and a list of organism-specific codon usage bias val-
ues. The transcript file must contain for each transcript two
lines: the first reporting the expression level, along with gen-
eral information about the transcripts (gene ID, transcript
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Figure 8. Improved correlation between transcript and protein abun-
dances using translation efficiencies (TEs) calculated by RiboAbacus. (A)
Scatterplot of experimental transcript abundances versus protein abun-
dances (53). (B) Scatterplot of cTEs calculated by RiboAbacus with the
optimized ramp parameters versus protein abundances. (C) Scatterplot of
cTEs calculated by RiboAbacus with ramp equal to 0 versus protein abun-
dances.

ID, protein ID and protein level) and the second report-
ing the CDS. The codon usage file must contain the list of
codons and the corresponding codon usage bias values, ar-
ranged in two columns. We provide three options for Homo

sapiens (default), Mus musculus and S. cerevisiae. Note that
the set of kinetic constants is fixed (see Supplementary File
1). RiboAbacus outputs two files: the first contains for each
transcript the number of ribosomes, the ribosome occu-
pancy and the TE; the second file contains the frequencies
of the number of ribosomes per transcript, that can be used
to build the transcriptome-wide distribution. For further in-
formation please refer to the Readme file in GitHub.

A run of RiboAbacus on an entire transcriptome takes
less than a minute on a standard personal computer.

DISCUSSION

We developed RiboAbacus, a model trained on experimen-
tal imaging-derived data, able to quickly and accurately pre-
dict the steady state number of ribosomes per transcript in
entire transcriptomes.

The number of ribosomes bound to a mRNA directly
contributes to the final amount of the corresponding pro-
tein in cells, since ribosomes are the molecular machines
responsible for protein synthesis. Therefore, understanding
the contribution of the number of ribosomes bound to a
transcript is of major importance for unravelling the impact
of translational controls and possibly using transcriptome
data to predict TEs. Nevertheless, measuring numbers of
ribosomes bound to transcripts is challenging, leading re-
searchers to neglect this important parameter in the devel-
opment of mathematical models of translation.

The distributions of the number of ribosomes per tran-
script obtained from AFM images, that underpins Ri-
boAbacus predictions, have been compared with polysome
profiling in yeast, using the well known dataset from (40).
We were able to show that AFM enables to reach an un-
paralleled resolution in determining the number of ribo-
somes per transcript. On the other hand, high-throughput
approaches based on hybridization or sequencing allow the
identification of transcripts, that is not possible in AFM.
Nevertheless, a general agreement for single transcript pre-
dictions between arrays and RiboAbacus has been shown
(Supplementary Figure S6).

RiboAbacus takes as input a list of transcripts whose se-
quence and expression levels are known, and the organism
codon usage bias and the translational kinetic constants.
As experimental reference for tuning the model output, we
took advantage of experimental data obtained from AFM
images of purified polysomes that uniquely allows the pre-
cise count of ribosomes per transcript. Without additional
parameters, RiboAbacus predictions overestimate the num-
ber of ribosomes per transcript (Figure 4A, left panel). Such
overestimation has already been observed in other models,
indicating that codon usage alone is not sufficient to ac-
count for ribosome dynamics (29,32).

We thus took into consideration the existence of 5′
slowdown mechanisms that may give rise to the so-called
ramp described in yeast by ribosome protecting assays (34).
The possible biological reasons for the existence of the
ramp are still under debate and the conclusions discordant
(18,31,34,36,49–52). A hypothesis is that regions rich of rare
codons could affect the waiting time for the correct tRNA
binding to ribosomes (51,52). In addition, the presence of
RNA structures, produced by intramolecular base pairing,
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could also induce a slowdown movement of mRNA heli-
cases (35) and a consequent stalling of ribosomes. Most
probably, these two features contribute simultaneously to
final ramp effects (31,50). Regardless of the specific mecha-
nism involved, we decided to model the ramp effect by intro-
ducing in RiboAbacus two ramp parameters: ramp length
and ramp slowdown rate. We optimized these parameters
in Hek-293, computing the best fit with the experimental
data. Interestingly, the optimal value of the ramp length (50
codons; Figure 3B) is in agreement with data available in lit-
erature (34,35,51,52). Importantly, our results highlight that
codon usage bias plays a minor role than the ramp hypoth-
esis in the accuracy of prediction (Figure 5). Therefore, our
predictions indicate that the ramp, or any slowdown events
taking place at the beginning of the CDS, plays an impor-
tant role in determining the overall number of ribosomes
per transcript.

Another confirmation of the importance of slowdown
mechanisms can be observed inspecting the ribosome oc-
cupancy or coverage (i.e the percentage of nucleotides cov-
ered by ribosomes). Using the optimized ramp parameters
we could observe that the ribosome occupancy per mRNA
was inversely proportional to the length of the CDS, simi-
larly to what was experimentally observed in other studies
(34,40). It is then possible that additional translation mech-
anisms, such as different initiation rates or ribosomes drop
off (20,21), can play a role to avoid the loading of high num-
ber of ribosomes on long transcripts keeping the mRNA
coverage at a low level. Indeed, we found that ribosome oc-
cupancy is almost constant for transcripts longer than 2000
nt even if the total number of ribosomes per mRNA in-
creases with their length.

Using RiboAbacus, we tried to understand the contribu-
tion that the number of predicted ribosomes per transcript
may give to explain the total protein level in cells. In fact,
mRNA abundances, measured by microarray or by next-
generation sequencing (NGS) techniques, are widely used as
proxies for protein measurements, but a general poor corre-
lation between the experimental measures of mRNA and
protein levels has been reported in many works in mam-
malian cells. For example, (53) showed that the mRNA
abundance in cells may account for approximately one-third
of the downstream protein production yield (R2 =0.29).
Computational approaches have been attempted in order
to identify and select mRNA features that could bridge the
gap between transcriptome and proteome measurements
by employing multivariate linear regression models. In S.
cerevisiae, a set of transcript-specific features (including
codon usage, transcript length, ribosome density, evolution-
ary conservation) was selected to maximally increase the
prediction of protein levels from mRNA levels (from 0.69 to
0.76 in (73), from 0.76 to 0.86 in (74)). In mammalian sys-
tems, Vogel and co-workers (53) identified 25 mRNA fea-
tures that increased the coefficient of determination from
0.29 to 0.67 on a subset of 512 transcripts. Thus, we asked
what could be the overall contribution of the number of ri-
bosomes uploaded on transcripts in determining the pro-
teome. RiboAbacus is able to estimate the cTE for each
transcript given its abundance. We found that the number
of ribosomes per transcript significantly increased the ex-
perimental correlation in three different datasets: from 0.42

to 0.53 in human medulloblastoma cell line DAOY, from
0.47 to 0.53 in mouse motor neurons and from 0.61 to 0.66
in mouse fibroblasts NIH3T3. Interestingly, without the in-
troduction of the ramp parameters, the increase in correla-
tion is considerably lower and, with the exception of the last
dataset, not significant. This result is an additional clue that
the slowdown of ribosomes at the 5′ of the CDS should play
a pivotal role in regulating the final protein abundance. Ac-
cording to the improved correlation provided by RiboAba-
cus, up to 10% of protein levels can be explained by the num-
ber of ribosomes per transcript.

While the improvement in explanatory power afforded
by RiboAbacus is both sizeable and statistically significant,
there remains a considerable amount of proteomic vari-
ability unaccounted for, pointing to the need of additional
translational regulation mechanisms. Future work is needed
to better understand how additional translational controls
could be included in mathematical models to improve the
correlation between transcript and protein levels.

RiboAbacus stands as a simple and immediate approach
that may be useful to deal with problems that we have with
other methods for studying translation. In fact it can pre-
dict numbers of bound ribosomes and transcript-specific
translation properties solely from global gene expression.
As such, RiboAbacus can be applied to any gene-expression
dataset, requiring much fewer experimental resources than
polysome profiling methods and representing a quick com-
plementary method to more expensive and demanding ex-
perimental techniques to study translational control of gene
expression. It can also be used to predict protein levels and
translational properties in systems (e.g. biopsies, single cells,
subcellular compartment etc.) where a proteomic quantifi-
cation is still challenging.
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Figure S1: Left: boxplot of ∆ differences between a) the distance between the experimental distributions
of the number of ribosomes per transcript and the distribution predicted by RiboAbacus with
training set, b) the distance between the experimental distributions of the number of ribosomes
per transcript and the distribution predicted by RiboAbacus with validation set (100 rounds
of 50-50 cross-validation on transcripts, Hek-293 dataset). Right: distances between the
distributions of the number of ribosomes per transcript when splitting experimental AFM
data (100 rounds of 50-50 cross-validation on AFM data, Hek-293 dataset). Wilcoxon-Mann-
Whitney p-value < 0.001.
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10 1.039 0.937 1.113 1.081 0.961 1.172 0.554 0.058 1.632

20 1.057 1.031 1.078 0.889 0.812 0.358 0.069 0.626 2.361

30 1.033 1.043 0.976 1.682 0.678 0.327 0.061 0.561 2.479

40 1.078 1.035 1.222 0.969 0.937 0.495 0.062 0.932 2.519

50 1.056 1.018 1.240 1.705 0.978 0.535 0.080 0.230 1.148

60 1.048 1.494 1.130 1.160 0.578 0.396 0.156 0.254 0.994

70 1.005 1.488 0.820 0.677 1.057 0.727 0.288 0.285 0.547

80 0.996 1.567 1.497 1.884 1.366 0.827 0.448 0.344 0.921

90 0.980 1.435 1.471 1.896 1.333 0.939 0.686 0.326 0.416

100 1.057 1.439 1.487 1.862 1.277 0.935 0.533 0.472 0.683
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Figure S2: Model performance in Hek-293 at varying ramp parameters. (A) 3D scatterplots
showing the means (z-axes) respectively of the three Gaussian curves fitting the ribosome per
transcript distributions obtained with different combinations of ramp length and ribosome
slowdown rate. (B) Heatmap showing the weighted sum of the Kullback-Leibler divergences
computed between the Gaussian curves that fit experimental and predicted data at varying
ramp parameters.
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A

B

C
length3(ramp) 0 50 70 0 50 70 0 50 70 50 70 50 70

ribosome3occupancy 0,22 0,48 0,64 0,08 0,03 0,02 0,03 0,00 0,00 0,02 0,01 0,05 0,02

translation3efficiency 0,03 0,05 0,05 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

number3of3ribosomes 0,98 0,92 0,92 0,02 0,02 0,01 0,02 0,02 0,02 0,02 0,02 0,00 0,00

length3(transcript) G3GC3(transcript) CAI3(transcript) G3GC3(ramp) CAI3(ramp)

Figure S3: Correlation between transcript features and RiboAbacus predictions for Hek-293
transcriptome. (A) Scatterplots of transcript length versus ribosome occupancy. Example
for model without ramp hypothesis (left panel), ramp length 50 codons and slowdown rate
70% (middle panel) and ramp length 70 codons and slowdown rate 70% (right panel) are
shown. Each dot represents an mRNA. (B) Scatterplots of three transcript features (tran-
script GC content, Codon Adaptation Index (CAI) of the whole coding sequence and CAI
of the ramp region) versus ribosome occupancy. Examples are shown for ramp length 50
codons and slowdown rate 70%. (C) Correlations between transcript features (coding se-
quence length, coding sequence and ramp GC content, coding sequence and ramp CAI) and
RiboAbacus predictions (ribosome occupancy, translation efficiency and number of ribosomes
per transcript).
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Figure S4: Contribution of transcript features to RiboAbacus predictions. Boxplot showing the
similarities (calculated as 1-distance) between the experimental distribution of the number of
ribosomes per transcript and RiboAbacus predicted distributions, based on different combi-
nations of features (F0: CDS length, F1: mRNA level, F2: codon usage bias, F3: optimized
ramp parameters). Similarities were calculated in 100 rounds of cross-validation. Statistical
significances from Wilcoxon-Mann-Whitney test are shown: (*** , p-value < 0.001).
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Figure S5: Heatmap showing, for the MCF-7 dataset, the average distance (100 cross validations) between
the experimental and the predicted distribution of the number of ribosomes per transcript,
varying the ramp length parameter (from 0 to 100 codons) and the ribosome slowdown rate
parameter (from 0 to 90%). Higher distances are highlighted in red gradient, smaller distances
in blue gradient. The minimum distance value is obtained with ramp length of 50 codons and
ribosome slowdown rate of 70%.
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Figure S6: Single transcript comparison between the estimation of the number of ribosomes per tran-
script in yeast provided with polysome profiling followed by microarray (Arava et al. 2003,
reference 40 in the main text) and the estimation provided by RiboAbacus trained on the
AFM distribution shown in Figure 1C. Transcripts associated with steady-state polysomes
have been classified in 5 populations, according to the discrete (fraction by fraction) estima-
tion of the number of ribosomes per transcript provided by Arava. For each population, the
distribution of the number of ribosomes per transcript provided by RiboAbacus is drawn as
a box-whisker plot. Asterisks mark the correspondence between measures on the x and the y
axes.
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2.2 riboSim  
Polysomes are characterised by the number of ribosomes per transcript and their 
localization along the mRNA. In the previous chapter I showed that riboAbacus 
provides a good estimation of protein abundances starting from mRNA levels by 
accurately forecasting the number of ribosomes bound to the mRNAs. Because of the 
deterministic nature of the model, no information about their localization along the 
transcript can be obtained. An important information about the biology of polysomes 
is the fact that ribosomes can accumulate along transcripts due to ribosome 
slowdown82,253 and stalling97,254, two scenarios possibly connected to many pathologies 
such as neurodegenerative diseases47,255, diabetes and multi-systemic failure256. To 
extract ribosome positional information for investigating translation at single 
nucleotide resolution and genome-wide scale, ribosome profiling (RiboSeq)123,150 has 
been recently developed. One of the outcomes of RiboSeq is the so-called ribosome 
occupancy profile, i.e. a transcript-specific curve where the height of the signal is 
proportional to the probability to find a ribosome within a specific mRNA position 
along the sequence. Thus, ribosome occupancy profiles display regions of the 
transcript where ribosomes slowdown and ribosome stalling is more likely occurring. 
Nevertheless, the contribution translation acting in cis (mRNA sequences and 
secondary structures)57,58 and trans (ncRNA and RNA binding proteins) in determining 
ribosome pausing cannot be easily established. 

The last years have witnessed the development of many stochastic models of 
translation aimed at predicting transcript- and codon-specific initiation, elongation and 
termination rates and consequently protein abundances121,181,215,217,218,224,228,232,257 . 
Many of them are based on the fitting of ribosome profiling data (i.e. the number of 
mapped fragments per transcripts and ribosome occupancy profiles)121,181,219,228. At 
present, none of them pay specific attention in investigating ribosome localization and 
at least two shortcomings can be identified in these approaches. In fact, the 
comparisons between predicted and RiboSeq ribosome occupancy profiles i) are 
usually based on the ribosome coverage along the whole transcript, not taking into 
account the many local fluctuations of the ribosome occupancy profiles and ii) are 
aimed at simultaneously tuning the parameters of the model to reach the best fit of 
the experimental data. The first issue may lead to inaccurate results due the existence 
of global similarities not always representative of the local ones, while the second 
makes it difficult to understand the precise role of the individual determinants, whose 
individual contribution to the final simulation cannot be distinguished. 
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To address these shortcomings I developed RiboSim, a stochastic model of translation 
that simulates the binding, the movement and the release of ribosomes from 
transcripts. Different determinants (i.e. CDS length, codon usage bias and ramp) are 
progressively step by step to evaluate their contribution. This progressive approach 
allows to individually investigate each feature and to assess its contribution in 
forecasting ribosome localization. At each step, a codon-by-codon comparison 
between predicted and experimental ribosome occupancy profiles enables to monitor 
the effect of the inclusion of every new feature to the model, so that the higher the 
increase of the profile similarities the higher the benefit of including the determinant 
in the model. 

From the biological point of view, determinants inducing an increase in the correlation 
between predicted and experimental profiles can be labelled as mayor players in 
controlling ribosome movement localization along the transcripts and, more in general 
in tuning translation. 

2.2.1 Materials and methods 
Assumptions 
Due to the high complexity of translation initiation19,20 and the lack of conclusive 
experimental measurement of its kinetics constants, riboSim represents the entire 
initiation step by simulating the binding of a new ribosome at the start codon. As 
discussed below, for the same reason the initiation probability is set as the average of 
the codon usage values of the whole coding sequence. 

In order to have a comprehensive description of polysome organization as ribosome 
positions and ribosome number per transcripts, I evaluated in parallel the positional 
information provided by riboSim with the number of ribosomes predicted by 
riboAbacus. Hence, I made the following assumptions to make the two models as 
coherent as possible.  

 First, given the facts that riboSim analyses each transcript independently and 
that in cells free ribosomes are highly abundant258,259, I assumed that 
competition of ribosome for translation is not a limiting step for the simulation.  

 Second, I assumed that a ribosome reaching the end of the coding sequence 
dissociates and then starts a new cycle of translation. Hence, the probability of 
translation termination was always set equal to the initiation one (when 
different from zero). Note that the deterministic nature of riboAbacus 
automatically led to this assumption when the system reached the steady 
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state, while for the stochastic simulation with riboSim, this assumption must be 
explicitly included.  

 Third, the number of codons covered by one ribosome (ribosome footprint) is 
set to 10 codons138, 4 triplets at the left of the P-site and 5 triplets at its right 
respectively (Figure 2.1A). As for riboAbacus, this parameter is required for 
maintaining the minimum distance between the P-sites of consecutive 
ribosomes (Figure 2.1B) and for the choice of the correct initiation and 
elongation probabilities in the case of stalled ribosomes along the CDS. 
Ribosome footprint is also required for generating the predicted ribosome 
density profiles, as explained below. 

 Finally, at each step of the progressive approach features already investigated 
in riboAbacus are included step by step, i.e. the CDS length, the codon usage 
bias and the ramp hypothesis. 

 

Figure 2.1. Ribosome footprint. (A) Schematic representation of a ribosome and the covered 
portion of the transcript. The length of the ribosome footprint is 10 codons. (B) Schematic 
representation of adjacent ribosomes: the distance between their P-site is defined by the 
chosen ribosome footprint. 

Note that, differently from riboAbacus, riboSim does not take into account the mRNA 
level as a feature for improving the goodness of the predicted ribosome occupancy 
profiles. Indeed, the sequencing of ribosome protected fragments allows to determine, 
by sequence alignment, the identity of the transcript generating the read. Is then 
possible to compare each predicted profile directly to the corresponding experimental 
one and the abundance of single transcripts doesn’t provide any additional 
information and in no way it influences the resulting correlations. 
 

 



 

Model 
To provide a stochastic simulation of translation, 
simple exclusion process (TASEP)
reproduces the elongation phase of the process, simulating 
at the start codon, their movement along the coding sequence and the dissociation of 
the two subunits when the stop codon is reached. The TASEP algorithm ensures that 
ribosomes can move only in one direction (from the 5’ to the 3’ 
only if the triplet downstream the 
one (Figure 2.2).  

Figure 2.2. Scheme of riboSim.
from codon i to the next one with 
movement of each ribosome is prevented by the presence of
following codons. Translation termination occurs with rate 

For each transcript the simulation is divided in the following steps:
1. definition of the initial condition of the system: an empty mRNA;
2. generation of a random value to determine the next reaction to occur among

following: 
I. the binding of a new ribosome at the start codon;

II. the movement of 
one; 

III. the detachment of a ribosome from the stop codon.
Note that the probability of the first reaction is 
ribosome whose footprint is covering the start codon, thus preventing new 
ribosomes from starting translation. Similarly, ribosomes along the coding 
sequence cannot move forward if
the footprint of a ribosome.

3. update of the system i.e. update the number and/or the position of the 
ribosomes along the mRNA;

4. back to step 2 until the steady state of the system is reached;
 
 

64 

c simulation of translation, I employed the totally asymmetric 
simple exclusion process (TASEP)221, based on the Gillespie algorithm
reproduces the elongation phase of the process, simulating the binding of ribosomes 

the start codon, their movement along the coding sequence and the dissociation of 
the two subunits when the stop codon is reached. The TASEP algorithm ensures that 
ribosomes can move only in one direction (from the 5’ to the 3’ end of the CDS) and 
only if the triplet downstream the 3’ head of each ribosome is not occupied by another 

Scheme of riboSim. Ribosomes start a new cycle of translation with rate p
to the next one with elongation probability pi. This probability is

ribosome is prevented by the presence of stalled ribosomes on the 
Translation termination occurs with rate pT. 

For each transcript the simulation is divided in the following steps: 
definition of the initial condition of the system: an empty mRNA; 
generation of a random value to determine the next reaction to occur among

the binding of a new ribosome at the start codon; 
the movement of already bound ribosomes from one codon

the detachment of a ribosome from the stop codon. 
Note that the probability of the first reaction is zero if there is 
ribosome whose footprint is covering the start codon, thus preventing new 
ribosomes from starting translation. Similarly, ribosomes along the coding 
sequence cannot move forward if codons that follows are already occupied by 

bosome. 
update of the system i.e. update the number and/or the position of the 
ribosomes along the mRNA; 
back to step 2 until the steady state of the system is reached; 
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the Gillespie algorithm222. riboSim 
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the two subunits when the stop codon is reached. The TASEP algorithm ensures that 
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Steady states and ribosome occupancy profiles
The Gillespie algorithm is typically ap
number of molecules linked by sets of either reversible or irreversible reactions
and allows to easily under
reached. In fact, when the abundance of a chosen molecule either exceed or fall below 
a threshold or the probability 
reasonably assumed that the 

 

Figure 2.3. Simplified scheme simulated ribosome movements.
riboSim, the number of ribosomes bound to a tran
distribution along the mRNA changes at each time point of the simulation. (B) Trivial example 
of occupancy profile collecting the 5 snapsho

riboSim, in line with others TASEP models of translation
number of molecules sinc
ribosomes. Moreover, the whole system keeps changing at each step and a true 
equilibrium does not exist: a new cycle of the algorithm is always associated to a 
reaction involving one ribosome. 
ribosomes per transcript reaches a plateau with potential variations of ±1 ribosome 
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Steady states and ribosome occupancy profiles 
The Gillespie algorithm is typically applied to the study of systems composed by a finite 
number of molecules linked by sets of either reversible or irreversible reactions

to easily understand when the steady state of the system (if any) is 
reached. In fact, when the abundance of a chosen molecule either exceed or fall below 
a threshold or the probability for some reactions to occur decreases to 

that the simulation can be terminated. 

Simplified scheme simulated ribosome movements. (A) After T iteration of 
riboSim, the number of ribosomes bound to a transcript is almost constant even if their 

stribution along the mRNA changes at each time point of the simulation. (B) Trivial example 
of occupancy profile collecting the 5 snapshots in (A). 

riboSim, in line with others TASEP models of translation doesn’t deal with a 
since it considers a single mRNA and an unlimited pool of 
the whole system keeps changing at each step and a true 

equilibrium does not exist: a new cycle of the algorithm is always associated to a 
reaction involving one ribosome. After a certain number of iterations, th

reaches a plateau with potential variations of ±1 ribosome 

plied to the study of systems composed by a finite 
number of molecules linked by sets of either reversible or irreversible reactions260,261, 

stand when the steady state of the system (if any) is 
reached. In fact, when the abundance of a chosen molecule either exceed or fall below 

some reactions to occur decreases to zero, it can be 
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upon binding or release reactions. Thus, I defined as the steady state of the system the 
moment corresponding to a stable number of total ribosomes bound to the mRNA.  

Given an experimental transcriptome, I computed the number of iterations of the 
algorithm (T) required to reach the steady state for the longest transcript of 
transcriptome under study. Then I applied the simulation to the whole set of mRNAs T 
times, to ensure the arrangement of ribosomes along all the transcripts and the 
definition of a steady state. At this point, for each mRNA I run the algorithm for 
additional T cycles collecting at each step a snapshot of the simulation to obtain, by 
merging all the snapshots, the ribosome occupancy profile associated to the transcript, 
as shown in Figure 2.3.  
 

Occupancy profiles comparison 
The performance of riboSim predictions can be tested by comparing the simulated 
occupancy profiles with the experimental ones obtained by ribosome profiling (Figure 
2.4). The comparison between the predicted and the experimental occupancy profile 
associated to the same transcript is performed codon by codon. After computing the 
ribosome coverage of each codon (i.e. the number of footprint per codon), a Pearson 
correlation of the codon coverage in the two profiles can be calculated for every 
mRNA. 

 

Figure 2.4. Ribosome occupancy profiles. Example of predicted (upper panel) and 
experimental (lower panel) ribosome occupancy profile of yeast APM4 transcript. 
Experimental data from Nedialkova and Leidel262. 
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The resulting distribution of the correlation values for the whole transcriptome 
explains how the predicted profiles are consistent with the experimental data and the 
greater the mean value, the higher the ability of riboSim to predict ribosome 
localization. Finally, the one- sided Wilcoxon–Mann–Whitney test is used to compare 
the correlation distributions generated after the addition of a new feature (CDS length, 
codon usage bias and ramp). I also built a baseline correlation distribution by 
comparing randomly generated profiles with the experimental ones. 
 

Use of riboSim 
riboSim requires two input files: a list of transcript with their coding sequence and a 
list of organism-specific codon usage bias values (downloaded from 
http://www.kazusa.or.jp/codon/ for my simulations). The transcript file must contain 
for each transcript two lines: the first reporting general information about the 
transcripts such as gene ID and transcript ID and the second reporting the nucleotide 
sequences. The codon usage file must contain the list of codons and the corresponding 
codon usage bias values, arranged in two columns. An additional file is required for 
introducing the slowdown of the ribosomes on specific regions of the CDS. Each line 
must contain the transcript ID, the start and the stop of the CDS region of interest and 
the ribosome slowdown rate chosen by the user.  

The outputs of riboSim are a BED file containing the data for building the predicted 
occupancy profiles (i.e. the predicted number of footprint per codon) and a file 
reporting the transcript ID, the CDS length, the number of ribosomes bound to the 
transcript at the end of the simulation and the associated mRNA coverage. For the 
comparison with ribosome profiling data, a BED file of the transcriptome (CDS) 
alignment is needed. riboSim is coded in C. 

2.2.2 Results 
Datasets 
I run riboSim on the transcriptome of three different organisms: Saccharomyces 
cerevisiae, Mus musculus and Homo sapiens. I chose these organisms to study 
ribosome localization along mRNAs in three evolutionarily distant species and to verify 
if each step of the progressive approach (i.e. the addition of CDS length, codon usage 
bias and ramp) to the model can differently affect the results, depending on the 
complexity of the organism under consideration. For yeast, the experimental ribosome 
profiling data (RiboSeq) were obtained from Nedialkova and Leidel262, for mouse I used 
RiboSeq data from whole mouse brains obtained in the Laboratory of Translational 
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Architectomics (IBF-CNR, Trento)1, for human the experimental data coming from Hek-
293 cells were published by Gao and collaborators263. The number of transcripts with 
sufficient coverage used in the following analyses for yeast, mouse and human are 
4887, 4403 and 14423, respectively. 
 

Basic model: CDS length 
The basic version of riboSim performs the simulation assigning the same probability p 
to each feasible reaction (initiation, elongation and termination). As already explained, 
the probability p becomes zero for unfeasible reactions, for example during the 
elongation stage of ribosomes when the first codon downstream its head is already 
occupied by the footprint of another ribosome. In this basic case, the only feature that 
differentiates mRNAs is the length of their coding sequence.  

Running this basic model on the whole transcriptomes, I obtained three sets of 
transcript-specific profiles representing mRNAs ribosome occupancies in the three 
organisms. As discussed in the Method section, the predicted profiles are comparable 
with the experimental ones produced by RiboSeq (Figure 2.5A) by computing a 
Pearson correlation between them, with codon resolution. I compared the resulting 
correlation distribution with a random distribution specifically built to be employed as 
a lower baseline (Figure 2.5B). To understand if the choice of the random values 
employed in the basic model affects the predicted profiles, for each organism I also 
compared the results of two simulations with different seeds (i.e. the value used to 
initialize the random number generator). I will refer to the resulting correlation 
distribution as upper baseline that should be interpreted as follows: the greater the 
mean value, the lower the impact of the choice of random values on the simulation. 
For the basic model the upper baseline is almost centred at 1 for the three organisms 
(Figure 2.5B, dark gray boxes), implying that the chosen random values have basically 
no impact in the outcome of the predicted profiles. 

The comparison between experimental and predicted profiles show low correlations 
and almost all three simulations are identical to the lower baseline, meaning that 
riboSim with no feature except for the CDS length does not provide good forecasting of 
ribosome occupancy profiles, i.e. of ribosome localization. This result reinforces the 
findings of riboAbacus about the inadequacy of the mRNA length to account for 
ribosome dynamics and number of ribosomes per transcript. 
 

                                                           
1 Please refer to the Appendix at the end of the elaborate for the experimental protocol of ribosome 
profiling, the pre-processing of the data and the alignment steps. 
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Figure 2.5. Performance of basic riboSim. (A) Example of experimental ribosome occupancy 
profile (blue line) and predicted profile from the basic model (gray line), associated to 
YOR299W. The correlation between the profiles is also reported. (B) Distributions of 
correlation values comparing experimental and predicted ribosome occupancy profiles for 
yeast, mouse brain and human Hek-293 using the corresponding transcriptomes. Predicted 
profiles were generated using riboSim (in grey) using as transcript-specific feature only the CDS 
length. Lower baseline correlation distributions were generated comparing experimental 
profiles with randomly generated profiles (in white). Upper baseline correlation distributions 
were generated comparing two sets of predicted profiles produced by the basic model with 
different seeds (in black). 

Codon usage bias model 
Given the above-mentioned results, I included in the model a second feature, the 
codon usage bias. To do this, I modified the probabilities associated to the movement 
of ribosomes along each transcript. In particular, I substituted the values that 
determine the choice of the ribosome to move forward changing the probability to 
move such that it would have been proportional to the codon usage bias (CU) values of 
the codon where the ribosome is located. Thus, the elongation probability pi for codon 
i for a CDS of length N is defined as follows: 
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𝑝௜ = ൜
0

𝐶𝑈௜

    
 𝑖𝑓 𝑟𝑖𝑏𝑜𝑠𝑜𝑚𝑒𝑠 𝑎𝑟𝑒 𝑐𝑜𝑙𝑙𝑖𝑑𝑖𝑛𝑔 

𝑖𝑓 1 ≤ 𝑖 < 𝑁
 

 
Basically, this formula ensures that the ribosomes positioned on non-optimal codons, 
compare to those on optimal codons113 would spend more time before moving 
forward, to those. The probability associated to the binding of new ribosomes pI 
(probability of initiation) and to their detachment from the stop codon pT (probability 
of initiation) were set to the average codon usage value of the transcript. In fact, 
conclusive experimental measurement of initiation and termination rates is lacking. 
This choice of the initiation and the termination probability assure the removal of 
potential biases during the simulation caused by either excessively high or low 
initiation and termination probabilities with respect to the elongations ones129. For a 
CDS of length N I set: 

𝑝ூ = 𝑝் =  
∑ 𝐶𝑈௜௜ఢ஼௢ௗ

𝑁 − 1
 

 
where Cod is the set of all the codons of the CDS but the last one. 

I applied this variant of riboSim to yeast, mouse and human transcriptomes as in the 
previous case, and parsed the correlation between the predicted and the experimental 
profiles (Figure 2.6). In parallel I computed a new set of upper baselines, confirming 
the low impact of the choice of random values on predicted profiles (Figure 2.6B). The 
result shows a clear and significant increase of the correlation distribution toward 
positive values in yeast (Figure 2.6B dark gray box), a slighter positive shift in mouse 
and no shift at all in human, where the correlation distribution is still centred around 0. 
These findings suggest that for a simple organism such as yeast the codon usage bias 
alone seems to be sufficient for good predictions of ribosome localization along the 
mRNAs, while more complex organisms likely require additional features. 

It has to be noted that the codon usage bias values employed in the simulations are 
based on the frequency of the triples along the mRNA, which are proportional to the 
abundance of the corresponding tRNA in the cell109–112. Nevertheless, an empirical 
codon usage can be computed starting from the experimental ribosome occupancy 
profiles. This experimental codon usage may take into account possible additional 
control of translation and were used as a possible better proxy for the usage of codons 
in translation. In fact, I can reasonably assume that the intensity of the signal on a 
specific codon is inversely proportional to the speed of ribosomes on the triplet. From 
this assumption, I computed the empirical codon usage from ribosome profiling in 
yeast, run riboSim in the same organism, employing this time the new codon usage 
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values, and repeated the comparisons with the experimental profiles. Since the 
resulting correlation distribution showed no significant shift towards higher correlation 
values with respect to the previous simulation (data not shown), I abandoned this line 
of investigation and proceeded with the progressive approach, including in the model 
also the ramp hypothesis. 

 

Figure 2.6. Contribution of the codon usage bias in prediction performance. (A) Example of 
experimental ribosome occupancy profile (blue line) and predicted profile from the codon 
usage bias model (gray line), associated to YOR299W. The correlation between the profiles is 
also reported. (B) Distributions of correlation values comparing experimental and predicted 
ribosome occupancy profiles for yeast, mouse brain and human Hek-293 using the 
corresponding transcriptomes. The predicted profiles were generated using riboSim integrated 
with the codon usage bias (dark grey). Statistical significance values from the Wilcoxon-Mann-
Whitney test are shown (*** p-value < 0.001). Lower baseline correlation distributions were 
generated comparing experimental profiles with randomly generated profiles (in white). Upper 
baseline correlation distributions were generated comparing two sets of predicted profiles 
produced by the codon usage bias model with different seeds (in black). 
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Ramp hypothesis model 
Results obtained with riboAbacus pointed to the ramp hypothesis as a major 
determinant for a correct estimation of the number of ribosomes per transcript, but 
this conclusion doesn’t give any hint about the contribution of this feature in 
forecasting ribosome localization. For this reason, the third feature added to riboSim 
was the ramp, i.e. a slowdown of ribosomes at the beginning of the coding 
sequence120–125. The ramp hypothesis in riboSim was included by adding the two 
parameters that characterise the ramp: its length and the slow down rate of the 
ribosomes. Thus for ribosomes moving on the first L codons of the CDS, I introduced a 
correction factor that takes into account a slowdown rate SD. In this way I obtained a 
new set of elongation probabilities for the ith codon: 

𝑝௜ = ൜
𝐶𝑈௜ ∙ (1 − 𝑆𝐷)

𝐶𝑈௜

    
 𝑖𝑓 1 ≤ 𝑖 ≤ 𝐿 
𝑖𝑓 𝐿 < 𝑖 < 𝑁

 

 
where N is the length of the CDS and L is the length of the ramp region. Initiation and 
termination probabilities were calculated as in the previous model. 
I decided to run riboSim employing the parameters for the ramp optimized during the 
training step of RiboAbacus (50 codons of ramp length and 70% of ribosome 
slowdown). Importantly, this values is very close to that observed 
experimentally82,115,138. I then computed the new correlations between predicted and 
experimental ribosome occupancy profiles (Figure 2.7A), comparing the resulting 
distributions with the data generated without the ramp hypothesis (Figure 2.7B). I also 
produced new upper baselines based on this variant of riboSim, always obtaining high 
correlations. 

Similarly to what observed with the previous version of the model, the correlation 
distribution associated to yeast shows also in this case a clear increase in correlation in 
yeast, with even more positive values (Figure 2.7B, darker gray bar) than those 
observed for the codon usage model. The improvement produced by the ramp in yeast 
was found also in mouse, even if the correlation is lower than in yeast. Importantly, 
these improvements are completely absent in human. Unexpectedly, in human the 
trend of the correlation goes in the opposite directions with respect to the simpler 
species, moving toward negative values. 
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Figure 2.7. Contribution of the ramp hypothesis in prediction performance. (A) Example of 
experimental ribosome occupancy profile (blue line) and predicted profile from the ramp 
hypothesis model (gray line), associated to YOR299W. The correlation between the profiles is 
also reported. (B) Distributions of correlation values comparing experimental and predicted 
ribosome occupancy profiles for yeast, mouse brain and human Hek-293 using the 
corresponding transcriptomes. The predicted profiles were generated using riboSim integrated 
with the codon usage bias and the ramp hypothesis. The statistical significance values from the 
Wilcoxon-Mann-Whitney test are shown (*** p-value < 0.001). Lower baseline correlation 
distributions were generated comparing experimental profiles with randomly generated 
profiles (in white). Upper baseline correlation distributions were generated comparing two 
sets of predicted profiles produced by the ramp hypothesis model with different seeds (in 
black). 

2.2.3 Conclusions 
Summarising, the discussed findings point out the benefit of a stochastic approach in 
obtaining good forecasts of ribosome positions along mRNAs in yeast. Firstly, I showed 
that CDS length alone is not sufficient for predicting ribosome localization in any of the 
three species under consideration. Secondly, I demonstrated that only in yeast the 
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codon usage bias alone is a major determinant for increasing the correlation between 
predicted and experimental profiles with respect to the baseline. This similarity is 
further improved adding the ramp hypothesis. Thirdly, I proved that in biological 
systems with higher complexity, the performance of riboSim in predicting ribosome 
localization is low and that in this case neither the codon usage bias nor the ramp 
contribute positively to the prediction of ribosome position. In fact, in mouse, only the 
combination of codon usage bias and the ramp positively affect the predicted 
ribosome occupancy profiles, while in human neither the codon usage nor the ramp 
leads to positive correlations. An insightful conclusion can be drawn: additional 
features, more refined modelling, complex and less known mechanisms of translation 
control, seem to be necessary to potentially increase prediction performances in 
human. Notably, the results of riboSim are not in agreement with the findings of 
RiboAbacus, where the ramp hypothesis provided good predictions of the number of 
ribosomes per transcript in human.  
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3 Development of tools for 
analysing ribosome profiling data 

3.1 riboWaltz 
Ribosome profiling (RiboSeq) is an experimental technique designed to investigate 
translation at single nucleotide resolution and genome-wide scale123,150. Following the 
rapid diffusion of ribosome profiling assays, many computational tools and pipelines 
dedicated to the analysis of RiboSeq data have been developed in the last 
years140,141,163,172,173,175,178,179,264. Typically, these tools are aimed at performing 
differential expression analysis163,172,173, identifying new open reading 
frames175,178,179,264 and, in very few cases, extracting positional information describing 
fluxes of ribosomes along the RNA140,141. 

The extraction of positional information relies on the ability to determine the exact 
localization of the P-site within ribosome protected fragments (reads), i.e. the site 
holding the t-RNA which is linked to the growing polypeptide chain during translation. 
The P-site offset is of crucial importance for a wide range of RiboSeq downstream 
analyses such as verifying the trinucleotide periodicity of ribosome along the coding 
sequence123,180 and identifying new open reading frames165–167.  

Here, I describe the development of riboWaltz, an R package aimed at computing the 
P-site-offset for all reads from single or multiple samples taking advantage of a two-
step algorithm. riboWaltz computes the P-site offset after stratifying the reads in bins 
according to their length. It showed higher accuracy and specificity in ribosome 
localization than other existing tools based on a similar approach. riboWaltz provides 
the user with a variety of graphical representations, laying the foundations for further 
accurate RiboSeq analyses and better interpretation of positional information. 

The paper “riboWaltz: optimization of ribosome P-site positioning in ribosome profiling 
data” reported below is a revised version of the manuscript previously uploaded to 
BioRxiv and it is going to be submitted to a convenient journal. My contribution in this 
paper consisted in all refinements of the computational procedures for the 
identification of the P-site and in the development of the whole R package, from the 
scripts of the functions to their documentation. riboWaltz is available at 
https://github.com/LabTranslationalArchitectomics/riboWaltz. 
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ABSTRACT  

Ribosome profiling is a powerful technique used to study translation at the genome-wide 

level, generating unique information concerning ribosome positions along RNAs. Optimal 

localization of ribosomes requires the proper identification of the ribosome P-site in each 

ribosome protected fragment, a crucial step to determine trinucleotide periodicity of 

translating ribosomes, and draw correct conclusions concerning where ribosomes are 

located. To determine the P-site within ribosome footprints at nucleotide resolution, the 

precise estimation of its offset with respect to the protected fragment is necessary. Here we 

present riboWaltz, an R package for calculation of optimal P-site offsets, diagnostic analysis 

and visual inspection of ribosome profiling data. Compared to existing tools, riboWaltz shows 

improved accuracies for P-site estimation and neat ribosome positioning in multiple case 

studies. riboWaltz was implemented in R and is available as an R package at 

https://github.com/LabTranslationalArchitectomics/RiboWaltz.  
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Introduction  

Ribosome profiling (RiboSeq) is an experimental technique used to investigate translation at 

single nucleotide resolution and genome-wide scale (Ingolia et al., 2009; Ingolia et al., 2012), 

through the identification of short RNA fragments protected by ribosomes from nuclease 

digestion (Steitz et al., 1969; Wolin et al., 1988). The last few years have witnessed a rapid 

adoption of this technique and a consequent explosion in the volume of RiboSeq data 

(Michel and Baranov 2013; Brar and Weissman, 2015). In parallel, a number of dedicated 

computational algorithms were developed for extracting transcript-level information, including 

novel translation initiation sites, coding regions and differentially translated genes (Xiao et 

al., 2016; Zhong et al., 2017), as well as positional information describing fluxes of 

ribosomes along the RNA at sub-codon resolution (Martens et al., 2015, Legendre et al., 

2016) and conformational changes in ribosomes during the elongation step of translation 

(Lareau et al., 2014). 

Much of this information relies on the ability to determine, within ribosome protected 

fragments (reads), the exact localization of the P-site, i.e. the site holding the t-RNA, which is 

linked to the growing polypeptide chain during translation. This position can be specified by 

the distance of the P-site from both 5’ and 3’ ends of the reads, the so-called P-site Offset, 

PO (Figure 1A). Accurate determination of the PO is a crucial step to verify the trinucleotide 

periodicity of ribosomes along coding regions (Ingolia et al., 2009, Guo et al., 2010), derive 

reliable translation initiation and elongation rates (Gritsenko et al., 2015; Michel et al., 2014), 

accurately estimate codon usage bias and translation pauses (Pop et al., 2014, Weinberg et 

al., 2016), and reveal novel translated regions in known protein coding transcripts or 

ncRNAs (Hsu et al., 2016; Kochetov et al., 2016; Raj et al., 2016). 

Typically the PO is defined as a constant number of nucleotides from either the 3' or 5' end 

of ribosome protected fragments, independently from their length (Figure 1A) (Gao et al., 

2015). This approach may lead to an inaccurate detection of the P-site’s position owing to 

potential offset variations associated with the length of the reads. This problem is frequently 

resolved by selecting subsets of reads with defined length (Bazzini et al., 2014; Han et al., 

2014). As such, this procedure removes from the analysis reads that are potentially derived 

from fragments associated to alternative conformations of the ribosome (Chen et al., 2012; 

Budkevich et al., 2014) and characterized by shorter or longer lengths (Lareau et al., 2014). 

Recently, computational tools have been developed to assist with RiboSeq analysis and P-

site localization, for example Plastid (Dunn and Weissman, 2016) and RiboProfiling (Popa et 

al., 2016). Both tools compute the PO after stratifying the reads in bins, according to their 

length. However, each bin is treated independently, possibly leading to excessive variability 

of the offsets across bins.  



 
 

Here, we describe the development of riboWaltz, an R package aimed at computing the PO 

for all reads from single or multiple RiboSeq samples. Taking advantage of a two-step 

algorithm where offset information is passed through populations of reads with different 

length in order to maximize offset coherence, riboWaltz computes with extraordinary 

precision the PO, showing higher accuracy and specificity of P-site positions than the other 

methods. riboWaltz provides the user with a variety of graphical representations, laying the 

foundations for further accurate RiboSeq analyses and better interpretation of positional 

information. 

 

Design and Implementation  

Input acquisition and processing 

riboWaltz requires two mandatory input data: 1) alignment files, in BAM format, ideally from 

transcriptome alignment of RiboSeq reads; 2) transcript annotation files, in GTF/GFF3 

format. Alternatively, annotation can be provided as a tab separated text file containing 

minimal transcript annotation: the length of the transcripts and of their annotated coding 

sequences and UTRs (Figure 1B). Optionally, a third file containing transcript sequence 

information in FASTA format can be provided as input to perform P-site specific codon 

sequence analysis (Figure 1B). 

riboWaltz acquires BAM files and converts them into BED files utilizing the bamtobed 

function of the BEDTools suite (Quinlan and Hall, 2010).  

 

Identification of the P-site position 

The identification of the P-site, defined by the position of its first nucleotide within the reads, 

is based on reads aligning across annotated translation initiation sites (TIS or start codon), 

and in particular on the distance between their extremities and the start codon itself, as 

proposed by Ingolia et al., 2009. 

riboWaltz specifically infers the PO for each sample in two-steps. At first, riboWaltz groups 

by length (L) the reads mapping on TIS. To avoid biases in PO calculation, reads whose 

extremities are too close to the start codon, identified by a parameter called “flanking length” 

(FL), are discarded from further analysis. Then, for each length group, riboWaltz generates 

the occupancy profiles of read extremities, i.e. the number of 5’ and 3’ read ends in the 

region around the start codon (Figure 1C).  For each length group, we defined temporary 5’ 

and 3’ POs  (tPO) as the distance between the first nucleotide of the TIS and the nucleotide 

corresponding to the global maximum found in the profiles of the 5’ and the 3’ end at the left 

and at the right of the start codon, respectively (Figure 1C). Therefore, considering the 



 
 

occupancy profiles as a function f of the nucleotide position x with respect to the TIS, the 

temporary 5’ and 3’ PO for reads of length (L) are such that: 

 

                
              

     

              
                 

     

 

The two sets of length-specific temporary POs are defined as: 

 

                 
            

   

                
            

   

 

where      and      are respectively the minimum and the maximum length of the reads. 

At the end of this first step, the temporary POs are applied to all the reads (R), obtaining two 

sets of read-specific tPOs: 

 

                
          

   

                
          

   

 

where N is the number of reads. 

Despite good estimation of P-site positions, artifacts may arise from either the small number 

of reads with a specific length or the presence of noise in the signal, potentially producing 

inaccurate results. In other words, the offset estimated independently from the global 

maximum of each read length is not necessarily the best choice. This approach can produce 

high variability in PO values of reads differing for only one nucleotide in length (See 

Supplementary Tables 1-7)  To minimize this problem, riboWaltz performs a second step 

for correcting the temporary POs.  

The most frequent PO (called optimal PO, oPO) and the associated extremity (optimal 

extremity) are chosen as reference points to adjust the other values. The optimal PO is 

selected between the two modes of read specific tPO sets (              and 

           ) )  as the one with the highest frequency. 

 

       
                                                                     

                                                                    
  

 

where the notation |  | indicates the cardinality of a set.  

Note that this step also selects the optimal extremity to calculate the corrected PO. The 

correction step is read-length-specific and works as follows: if the offset associated to a 

length bin is equal to the optimal PO no changes are made. Otherwise, i) the local maxima 

of the occupancy profiles are extracted; ii) the distances between the first nucleotide of the 



 
 

TIS and each local maxima is computed; iii) the new PO is defined as the distance in point ii) 

that is closest to the optimal PO. Summarizing, given the set of local maxima positions 

(LMP) of the occupancy profile for the optimal extremity, the corrected PO for reads of length 

L (    ) is such that 

 

             
     

        

 

Finally, the corrected POs are applied to all the reads. 

 

Output 

riboWaltz returns three data structures that can be used in multiple downstream analysis 

workflows (Figure 1B). The first is a list of sample-specific data frames containing for each 

read i) the position of the P-site (identified by the first nucleotide of the codon) with respect to 

the beginning of the transcript; ii) the distance between the P-site and both the start and the 

stop codon of the coding sequence; iii) the region of the transcript (5' UTR, CDS, 3' UTR) 

where the P-site is located iv) optionally, if a sequence file is provided as input, the 

sequence of the triplet covered by the P-site. The second data structure is a data frame 

reporting the percentage of reads aligning across the start codon (if any) and on the whole 

transcriptome, stratified by sample and read length. Moreover, this file includes the P-site 

offsets before and after the optimization (tPO and cPO values). The third data structure is a 

data frame containing, for each transcript, the number of ribosome protected fragments with 

in-frame P-site mapping on the CDS. This data frame can be used to estimate transcript-

specific translation levels and perform differential analysis comparing multiple conditions. 

riboWaltz also provides several graphical outputs using the popular “ggplot2” package. 

riboWalts plots are described in more detail in the Results section. Any graphical output is 

returned as a list containing an object of class “ggplot”, further customizable by the user, and 

a data frame containing the source data for the plot. 

 

Results  

riboWaltz overview 

In order to show riboWaltz functionalities, we analyzed authors’ data obtained from mouse 

brain samples (GSE102318, see Supplementary Methods). 

riboWaltz integrates several graphical functions that provide multiple types of output results. 

First, the distribution of the length of the reads (Figure 2A): this is a useful preliminary 

inspection tool to understand the contribution of each length to the final P-site determination, 

and possibly decide to remove certain lengths from further analyses. Second, the 

percentage of P-sites located in the 5’ UTR, CDS and 3’ UTR regions of mRNAs compared 



 
 

with a uniform distribution weighted on region lengths, simulating random P-site positioning 

along mRNAs (Figure 2B). This analysis is a good way to verify the expected enrichment of 

ribosome signal in the CDS. Third, to understand if, and to which extent, P-site determination 

results in codon periodicity in the CDS, riboWaltz produces a plot with the percentage of P-

sites matching one of the three possible translation reading frames for 5’ UTR, CDS and 3’ 

UTR, stratifying reads by length (Figure 2C). Fourth, the meta-gene read density heatmap, 

based on the position of read extremities and stratifying reads by length (Figure 2D). This 

plot provides an overview of the occupancy profiles used for P-site determination and allows 

to check by visual inspection if PO values are reasonable and possibly proceed with manual 

modification. Fifth, to understand which codons, if any, present higher or lower density of 

ribosome protected fragments, riboWaltz provide the user with the analysis of the empirical 

codon usage, i.e. the frequency of in-frame P-sites along the coding sequence associated to 

each codon, normalized for codon frequency in sequences (Figure 2E). Indeed, the 

comparison of these values in different biological conditions can be of great help to unravel 

possible defects in aa-tRNAs use or ribosome elongation at specific codons. Finally, single 

transcripts profiles and meta-gene profiles based on P-site position can be generated 

(Figure 3B, top row) with multiple options: i) combining multiple replicates applying 

convenient scale factors provided by the user, ii) considering each replicate separately, or iii) 

selecting a subsets of reads with defined length. 

 

Comparison with other tools 

We tested riboWaltz on multiple ribosome profiling datasets in different model organisms: 

yeast (S. cerevisiae, Beaupere et al, 2017; Lareau et al., 2014), mouse (authors’ data 

GSE102318; Shi et al. 2017) and human samples (MCF-7, authors’ unpublished data; Hek-

293, Gao et al., 2015) and compared our results to those obtained using RiboProfiling 

(v1.2.2, Popa et al., 2016) and Plastid (v0.4.5, Dunn and Weissman, 2016) (Table 1 and 

Supplementary Tables 1-6). Comparisons for single datasets are displayed in Figure 3 and 

in Supplementary Figures 1-6. A summary of overall performances for all the datasets we 

tested is provided in Figure 4.  

The first performance measure we considered is the percentage of P-sites with correct frame 

within the CDS region. For RiboWaltz and RiboProfiling, this measure was comparable in 

almost all datasets, while Plastid showed lower performances (Figure 3A, Supplementary 

Figure 1-6A and Figure 4A). 

Remarkably, meta-profiles produced by riboWaltz displayed a neat periodicity uniquely in the 

CDS (Figure 3B and Supplementary Figure 1-6B), with almost no signal along UTRs, 

neither in the proximity of the start nor of the stop codon. By contrast, both Plastid and 



 
 

RiboProfiling generated a shift of the start of the periodic region toward the 5’ UTR (Figure 

3B and Supplementary Figure 1-6B), suggesting a possible mislocalization of ribosomes 

before the start and stop codons, an issue that has the potential to generate inaccurate 

biological conclusions. In order to quantify this effect, we determined a “TIS accuracy score”, 

comparing the amount of periodic signal before and after the translation initiation site. In the 

ideal scenario this score is 1, meaning that all the periodicity is restricted in the CDS region. 

Lower scores are associated with a progressive increase of periodicity in the 5’UTR, 

indicative of ribosome mislocalization. riboWaltz shows higher TIS accuracy scores with 

respect to both RiboProfiling and Plastid (Figure 4B). 

Correct localization of ribosomes is crucial for all downstream positional analyses. Empirical 

codon usage determination is a popular analysis for ribosome profiling data, equally 

important for the biological interpretation of results and for building reliable mathematical 

models of translation. We compared codon usage values based on riboWaltz, RiboProfiling 

and Plastid (Figure 3C and Supplementary Figures 1-6C). Correlation values ranged from 

0.118 to 0.999, emphasizing that an optional strategy for P-site positioning has a huge 

impact on downstream analyses.  

 

Availability and future directions  

riboWaltz identifies with high precision the position of ribosome P-sites from ribosome 

profiling data. By improving on other currently-available approaches, riboWaltz can assist 

with the detailed interrogation of RiboSeq data at single nucleotide resolution, providing 

precise information that may lay the groundwork for further positional analyses and new 

biological discoveries. 

riboWaltz is written in the R programming language, and can run on Linux, Macs, or 

Windows PCs. riboWaltz requires several R modules (like GenomicFeatures for handling the 

GTF/GFF3 files, Biostrings for dealing with FASTA objects and ggplot2 for data 

visualization), and these dependencies must also be installed. Installation instructions are 

provided in the manual. 

riboWaltz is an Open-Source software package that can be extended in future releases to 

include other analysis methods as they are developed. Source code for riboWaltz is 

available is distributed under the MIT license, and available at the following GitHub 

repository: https://github.com/LabTranslationalArchitectomics/riboWaltz. The package 

includes the R implementation of riboWaltz, data used in this article, and extensive 

documentation. 
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Figure 1. (A) Schematic representation of the P-site offset. Two offsets can be defined, one 

for each extremity of the read. (B) Flowchart representing the basic steps of riboWaltz,   its 

inputs requirements and outputs. (C) An example of ribosome occupancy profile obtained 

from the alignment of the 5’ and the 3’ end of reads around the start codon (reads length, 28 

nucleotides) is superimposed to the schematic representation of a transcript, a ribosome 

positioned on the TIS and a set of reads used for generating the profiles.  



 
 

 

 

Figure 2. (A) Distribution of the read lengths. (B) Left, percentage of P-sites in the 5’ UTR, 

CDS and 3’ UTR of mRNAs from ribosome profiling data. Right, percentage of region 

lengths in mRNAs sequences. (C) Percentage of P-sites in the three frames along the 5’ 

UTR, CDS and 3’ UTR, stratified for read length. (D) Example of meta-gene heatmap 

reporting the signal associated to the 5’ end (upper panel) and 3’ end (lower panel) of the 

reads aligning around the start and the stop codon for different read lengths. (E) Codon 

usage analysis based on in-frame P-sites. Codon usage index is calculated as the frequency 

of in-frame P-sites along the coding sequence associated to each codon, normalized for 

codon frequency in sequences. Aminoacids corresponding to each codon are displayed 

above each bar. All panels were obtained from ribosome profiling of whole mouse brain. 

  



 
 

 

Figure 3. (A) Percentage of P-sites in the three frames along the 5’ UTR, CDS and 3’ UTR 

from ribosome profiling performed in mouse brain and (B) meta-profiles showing the 

periodicity of ribosomes along transcripts at genome-wide scale, based on P-site 

identification by riboWaltz, RiboProfiling and Plastid. The shaded areas to the left of the start 

codon highlight the shift of the periodicity toward the 5’ UTR that is absent in the case of 

data analysed using riboWaltz. (C) Comparison between the codon usage index based on 

in-frame P-sites from riboWaltz and RiboProfiling  (left panel) and between the codon usage 

index based on in-frame P-sites from riboWaltz and Plastid (right panel). 



 
 

 

Figure 4. (A) Comparison of the percentage of P-sites in frame 0 along the coding sequence 

and (B) comparison of the average TIS accuracy score based on P-sites identification by 

riboWaltz, RiboProfiling and Plastid. Both panels display the results obtained from 7 datasets 

(2 yeast, 3 mouse and 2 human), each dataset represented by a dot. Statistical significances 

from Wilcoxon–Mann–Whitney test are shown:(* P-value < 0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

read 

length 

riboWaltz RiboProfiling Plastid 
from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 19 2 16 2 16 13 5 

20 4 15 4 15 13 6 

21 4 16 4 16 13 7 

22 5 16 5 16 13 8 

23 6 16 6 16 13 9 

24 7 16 7 16 13 10 

25 8 16 1 25 13 11 

26 10 15 10 15 13 12 

27 10 16 10 16 13 13 

28 11 16 1 28 5 22 

29 12 16 12 16 13 15 

30 12 17 10 19 35 6 

31 13 17 20 50 13 17 

32 15 16 15 16 13 18 

33 16 16 17 15 13 19 

34 17 16 17 16 13 20 

35 18 16 18 16 13 21 

36 16 19 19 16 13 22 

37 20 16 22 58 13 23 

38 21 16 15 22 13 24 

 

Table 1: Comparison of the P-site offsets identified for each read length by riboWaltz, 

RiboProfiling and Plastid in mouse (GSE102318). The PO computed from both read 

extremities are reported. 
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Supplementary Figure 1. (A) Percentage of P-sites in the three frames along the 5’ UTR, 

CDS and 3’ UTR from ribosome profiling in Hek-293 (Gao et al., 2015) and (B) meta-profiles 

showing the periodicity of ribosomes along transcripts at genome-wide scale, based on P-

site identification by riboWaltz, RiboProfiling and Plastid. The shaded areas to the left of the 

start codon highlight the shift of the periodicity toward the 5’ UTR. (C) Comparison between 

the codon usage index based on in-frame P-sites from riboWaltz and RiboProfiling  (left 

panel) and between the codon usage index based on in-frame P-sites from riboWaltz and 

Plastid (right panel). 



 
 

 
Supplementary Figure 2. (A) Percentage of P-sites in the three frames along the 5’ UTR, 

CDS and 3’ UTR from ribosome profiling in MCF-7 (unpublished data) and (B) meta-profiles 

showing the periodicity of ribosomes along transcripts at genome-wide scale, based on P-

site identification by riboWaltz, RiboProfiling and Plastid. The shaded areas to the left of the 

start codon highlight the shift of the periodicity toward the 5’ UTR. (C) Comparison between 

the codon usage index based on in-frame P-sites from riboWaltz and RiboProfiling  (left 

panel) and between the codon usage index based on in-frame P-sites from riboWaltz and 

Plastid (right panel). 



 
 

 

Supplementary Figure 3. (A) Percentage of P-sites in the three frames along the 5’ UTR, 

CDS and 3’ UTR from ribosome profiling in mouse after pull-down of RPL10 (Shi et al. 2017) 

and (B) meta-profiles showing the periodicity of ribosomes along transcripts at genome-wide 

scale, based on P-site identification by riboWaltz, RiboProfiling and Plastid. The shaded 

areas to the left of the start codon highlight the shift of the periodicity toward the 5’ UTR. (C) 

Comparison between the codon usage index based on in-frame P-sites from riboWaltz and 

RiboProfiling  (left panel) and between the codon usage index based on in-frame P-sites 

from riboWaltz and Plastid (right panel).  



 
 

 

Supplementary Figure 4. (A) Percentage of P-sites in the three frames along the 5’ UTR, 

CDS and 3’ UTR from ribosome profiling in mouse after pull-down of RPL22 (Shi et al. 2017) 

and (B) meta-profiles showing the periodicity of ribosomes along transcripts at genome-wide 

scale, based on P-site identification by riboWaltz, RiboProfiling and Plastid. The shaded 

areas to the left of the start codon highlight the shift of the periodicity toward the 5’ UTR. (C) 

Comparison between the codon usage index based on in-frame P-sites from riboWaltz and 

RiboProfiling  (left panel) and between the codon usage index based on in-frame P-sites 

from riboWaltz and Plastid (right panel). 



 
 

 

Supplementary Figure 5. (A) Percentage of P-sites in the three frames along the 5’ UTR, 

CDS and 3’ UTR from ribosome profiling in yeast (Beaupere et al., 2017) and (B) meta-

profiles showing the periodicity of ribosomes along transcripts at genome-wide scale, based 

on P-site identification by riboWaltz, RiboProfiling and Plastid. The shaded areas to the left 

of the start codon highlight the shift of the periodicity toward the 5’ UTR. (C) Comparison 

between the codon usage index based on in-frame P-sites from riboWaltz and RiboProfiling  

(left panel) and between the codon usage index based on in-frame P-sites from riboWaltz 

and Plastid (right panel). 



 
 

 

Supplementary Figure 6. (A) Percentage of P-sites in the three frames along the 5’ UTR, 

CDS and 3’ UTR from ribosome profiling in yeast (Lareau et al., 2014) and (B) meta-profiles 

showing the periodicity of ribosomes along transcripts at genome-wide scale, based on P-

site identification by riboWaltz, RiboProfiling and Plastid. The shaded areas to the left of the 

start codon highlight the shift of the periodicity toward the 5’ UTR. (C) Comparison between 

the codon usage index based on in-frame P-sites from riboWaltz and RiboProfiling  (left 

panel) and between the codon usage index based on in-frame P-sites from riboWaltz and 

Plastid (right panel).  



 
 

read 

length 

riboWaltz RiboProfiling Plastid 
from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 25 12 12 0 24 3 21 

26 12 13 12 13 12 13 

27 12 14 12 14 12 14 

28 12 15 3 24 6 21 

29 12 16 12 16 6 22 

30 12 17 12 17 12 17 

31 13 17 9 21 9 21 

32 13 18 10 21 7 24 

33 12 20 12 20 50 18 

34 15 18 17 16 13 20 

 

Supplementary Table 1: Comparison of the P-site offsets identified for each read length by 

riboWaltz, RiboProfiling and Plastid in human (Hek-293, Gao et al., 2015). The PO 

computed from both read extremities are reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

read 

length 

riboWaltz RiboProfiling Plastid 
from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 20 11 8 -1 20 13 6 

21 11 9 3 17 13 7 

22 11 10 4 17 13 8 

23 11 11 23 -1 13 9 

24 11 12 6 17 13 10 

25 11 13 25 -1 13 11 

26 11 14 9 16 13 12 

27 11 15 9 17 13 13 

28 11 16 -13 40 13 14 

29 11 17 11 17 13 15 

30 11 18 11 18 13 16 

31 12 18 12 18 13 17 

32 12 19 12 19 13 18 

33 12 20 -10 42 13 19 

34 11 22 17 16 13 20 

35 10 24 4 30 13 21 

36 12 23 12 23 13 22 

37 10 26 35 1 13 23 

38 12 25 -7 44 13 24 

39 10 28 20 18 13 25 

41 23 17 -14 54 13 27 

42 17 24 37 4 13 28 

43 11 31 0 42 13 29 

45 14 30 48 -4 13 31 

 

Supplementary Table 2: Comparison of the P-site offsets identified for each read length by 

riboWaltz, RiboProfiling and Plastid in human (MCF-7, unpublished data). The PO computed 

from both read extremities are reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

read 

length 

riboWaltz RiboProfiling Plastid 
from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 19 10 8 -1 19 13 5 

20 11 8 -1 20 13 6 

21 11 9 -1 21 13 7 

22 10 11 -1 22 13 8 

23 11 11 -1 23 13 9 

24 11 12 -1 24 13 10 

25 10 14 -1 25 13 11 

26 11 14 -1 26 13 12 

27 11 15 -1 27 13 13 

28 10 17 -1 28 13 14 

29 11 17 -1 29 13 15 

30 11 18 -1 30 13 16 

31 10 20 -1 31 13 17 

32 11 20 -1 32 13 18 

33 12 20 -1 33 13 19 

34 10 23 -1 34 13 20 

35 11 23 -1 35 13 21 

36 12 23 -1 36 13 22 

37 11 25 -1 37 13 23 

38 11 26 -1 38 13 24 

39 10 28 -1 39 13 25 

40 11 28 -1 40 13 26 

41 13 27 -1 41 13 27 

42 11 30 -1 42 13 28 

43 14 28 -1 43 13 29 

44 11 32 -1 44 13 30 

45 12 32 -1 45 13 31 

46 13 32 -1 46 13 32 

47 11 35 -1 47 13 33 

48 11 36 -1 48 13 34 

49 12 36 -1 49 13 35 

50 12 37 -1 50 13 36 

 

Supplementary Table 3: Comparison of the P-site offsets identified for each read length by 

riboWaltz, RiboProfiling and Plastid in mouse (after pull-down of RLP10, Shi et al. 2017). 

The PO computed from both read extremities are reported. 

 

 

 

 

 



 
 

read 

length 

riboWaltz RiboProfiling Plastid 
from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 19 12 6 -1 19 13 5 

20 11 8 -1 20 13 6 

21 12 8 -1 21 13 7 

22 11 10 -1 22 13 8 

23 10 12 -1 23 13 9 

24 9 14 -1 24 13 10 

25 10 14 -1 25 13 11 

26 10 15 -1 26 13 12 

27 11 15 -1 27 13 13 

28 10 17 -1 28 13 14 

29 11 17 -1 29 13 15 

30 11 18 -1 30 13 16 

31 10 20 -1 31 13 17 

32 11 20 -1 32 13 18 

33 12 20 -1 33 13 19 

34 10 23 -1 34 13 20 

35 10 24 -1 35 13 21 

36 10 25 -1 36 13 22 

37 10 26 -1 37 13 23 

38 10 27 -1 38 13 24 

39 11 27 -1 39 13 25 

40 10 29 -1 40 13 26 

41 11 29 -1 41 13 27 

42 11 30 -1 42 13 28 

43 7 35 -1 43 13 29 

44 10 33 -1 44 13 30 

45 16 28 -1 45 13 31 

46 11 34 -1 46 13 32 

47 11 35 -1 47 13 33 

48 11 36 -1 48 13 34 

49 11 37 -1 49 13 35 

50 11 38 -1 50 13 36 

 

Supplementary Table 4: Comparison of the P-site offsets identified for each read length by 

riboWaltz, RiboProfiling and Plastid in mouse (after pull-down of RLP22, Shi et al. 2017). 

The PO computed from both read extremities are reported. 

 

 

 

 

 



 
 

read 

length 

riboWaltz RiboProfiling Plastid 
from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 20 11 8 -23 42 13 6 

21 8 12 -10 30 13 7 

22 11 10 19 2 13 8 

23 7 15 -29 51 13 9 

24 8 15 -10 33 13 10 

25 9 15 18 6 13 11 

26 10 15 -17 42 13 12 

27 11 15 2 24 38 -12 

28 12 15 3 24 9 18 

29 13 15 13 15 10 18 

30 13 16 -8 37 24 5 

31 15 15 -22 52 13 17 

32 16 15 -27 58 13 18 

33 14 18 11 21 13 19 

34 18 15 -19 52 13 20 

35 16 18 -47 81 13 21 

37 12 24 -34 70 13 23 

38 20 17 -24 61 13 24 

40 22 17 20 19 13 26 

41 15 25 27 13 13 27 

42 23 18 -1 42 13 28 

43 23 19 -31 73 13 29 

44 21 22 6 37 13 30 

46 30 15 -15 60 13 32 

 

Supplementary Table 5: Comparison of the P-site offsets identified for each read length by 

riboWaltz, RiboProfiling and Plastid in yeast (Beaupere et al., 2017). The PO computed from 

both read extremities are reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

read 

length 

riboWaltz RiboProfiling Plastid 
from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 

from 5’ 

end 

from 3’ 

end 21 12 8 12 8 12 8 

22 13 8 50 71 13 8 

23 13 9 2 20 13 9 

24 13 10 22 45 13 10 

25 13 11 9 15 13 11 

26 12 13 44 69 13 12 

27 13 13 10 36 13 13 

28 12 15 12 15 12 15 

29 13 15 13 15 12 16 

30 12 17 12 17 12 17 

31 13 17 13 17 13 17 

32 14 17 14 17 13 18 

33 14 18 43 75 13 19 

34 15 18 3 36 13 20 

35 10 24 5 39 13 21 

36 13 22 11 24 13 22 

37 15 21 12 48 13 23 

38 14 23 23 60 13 24 

39 22 16 12 26 13 25 

40 7 32 7 32 13 26 

 

Supplementary Table 6: Comparison of the P-site offsets identified for each read length by 

riboWaltz, RiboProfiling and Plastid in yeast (Lareau et al., 2014). The PO computed from 

both read extremities are reported. 

  



 
 

Supplementary methods 

 

RiboSeq data processing 

Raw reads were processed by removing 5’ adapters, discarding reads shorter than 20 

nucleotides and trimming the first nucleotide (using Trimmomatic v0.36). Reads mapping on 

rRNAs and tRNAs (downloaded from the SILVA rRNA and the Genomic tRNA databases 

respectively) were removed. The remaining reads were aligned to the organism 

transcriptome with Bowtie2 (v2.2.6) employing the default settings. All reads aligning to the 

very same region were collapsed to avoid potential PCR duplicates, and only strand-specific 

reads were kept.  
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3.2 riboScan 
As mentioned in the introduction to riboWaltz, the development of many pipelines 
dealing with ribosome profiling (RiboSeq) data, typically aimed at extracting typically 
translation efficiencies from entire transcripts performing differential expression 
analysis163,172,173, identifying new open reading frames175,178,179,264 and more rarely for 
obtaining positional information describing fluxes of ribosomes along the RNA140,141. 
Nevertheless, some aspects such as statistical procedures for the extraction of 
meaningful positional information still need to be computationally addressed. 

It’s known that high signal from reads obtained from ribosome protected fragments 
can be related to ribosome slowdown82,253 and ribosome stalling97,254, two scenarios 
connected to many pathologies such as neurodegenerative diseases47,255, diabetes and 
multi-systemic failure256. This highlights the importance in identifying mRNA regions 
showing significant signal enrichments (a problem more generally known as peak 
calling) along ribosome occupancy profiles to achieve a better understanding of 
translation regulation through the characterization of polysome organization. This 
issue has not yet been exhaustively examined. In fact, peak calling has been initially 
employed for the analysis of other positional data, such as ChIP-Seq data, then further 
extended to the analysis of RNA-RNA Binding Protein (RBP) interaction by CLIP-Seq and 
related approaches265–268. Typically, interaction profiles between RNA and RBPs are 
characterised by well distinct signal peaks surrounded by regions with no signal. These 
regions specifically identify the neat biding sites of RBPs. This type of clearness is not 
present in ribosome profiles, which are characterized by a noisy and continuous signal 
with fluctuations along the CDSs of translated transcripts. The average signal along the 
mRNA in ribosome profiling depends on the translation levels of the transcript, and 
can span many orders of magnitude. This difference with CLIP-seq data represents a 
challenge in the direct application of existing peak-calling algorithms to RiboSeq data. 
The only attempt of extracting positional information by individuating enriched regions 
along ribosome occupancy profiles has been proposed last year by Diament and 
Tuller196, and is based on transcript-specific standardization of the data. Despite the 
advantages of this approach, an accurate procedure for defining statistically significant 
ribosome peak has not been discussed. Thus, after extensive revision of available 
protocols, I decided to develop a dedicated approach, riboScan.  

The flowchart of riboScan is shown in Figure 3.1 and a detailed description of whole 
procedure is reported in the following sections. After the acquisition of the input files a 
step of filtering and normalization of the data is performed. Then, a table reporting the 
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coverage of every codon of the transcriptome is generated and the transcripts are 
grouped (stratified) depending on their expression level. Two distributions based on 
the codon coverage are fitted, a pair of codon-specific p-values is computed and then 
blended in a single p-value by the Fisher’s combined probability test. Statistically 
significant enriched regions are identified and eventually aggregated.  

 

Figure 3.1. riboScan. Flowchart representing the basic steps of riboScan, its inputs 
requirements and outputs. The steps of the pipeline are represented by gray rectangles. The 
red parallelograms specify the mandatory (continuous perimeter) and optional (dotted 
perimeter) input files while the yellow parallelograms indicate the output of the pipeline 
employed as input data in the subsequent step. Finally, the blue parallelograms indicate some 
analyses based on the identification of enriched regions along the mRNA. 

riboScan has been developed and tested on Poly-RiboSeq data from healthy mouse 
brains produced in my Lab (Laboratory of Translational Architectomics, IBF-CNR, 
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Trento). For details about the Poly-RiboSeq protocol, the pre-processing of the data 
and the alignment steps, please refer to the Appendix at the end of the elaborate. 

3.2.1 Materials and methods 
Filtering and normalization 
Ribosome profiling data were processed by applying three steps of filtering and 
normalization. Firstly, only the protein coding transcripts with coding sequence length 
divisible by 3 and both 3’ and 5’ UTRs longer than 3 nucleotides were kept for further 
analyses. These restrictions guarantee the analysis of ribosome protected fragments 
from mRNAs with CDS that can be divided into codons and annotated UTRs. Secondly, 
the trimmed mean of M-values normalization method (TMM) was applied to remove 
possible size or compositional difference between libraries coming from multiple 
conditions and replicates. Thirdly, transcript-specific FPKMs (fragments per kilobase 
per million fragments mapped) were computed. All mRNAs with average FPKM values 
under the 80th percentile were discarded. Finally, a similar filtering approach, based 
on CPM values (counts of fragments per million fragments mapped), was applied and 
only mRNAs with a CPM (count per million) mean above the 80th percentile were kept. 
This last step ensures to work with transcripts with a number of mapped reads 
(transcript coverage) sufficient for further analysis. 
 

Triplet coverage 
A table containing the coverage of every codon (codon coverage) of the transcriptome 
was generated. The sequence of every transcript was divided in triplets starting from 
the annotated Translation Initiation Site (TIS) proceeding towards the UTRs 
extremities, and eventually discarding the exceeding 1 or 2 nucleotides at the 
extremities of the transcript. Codon-specific coverage was determined using the full 
coverage of ribosome protected fragments. Acting, de facto, as a smoothing factor, 
this choice enables an improved detection of peaks. 
 

Hot-spots detection 
To get positional information about regions with accumulation of ribosomes, that we 
called “hot-spots”, I developed a dedicated pipeline. 

Firstly, transcripts were stratified in 20 bins based on their mean FPKM (fragments per 
kilobase per million fragments mapped) values. This step was necessary to avoid 
potential biases due to large differences in the mean transcript coverage. Secondly, I 
used in parallel two different strata-specific methods aimed at assigning coverage p-
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values to each triplet, where the null hypothesis states in both cases that there is no 
accumulation of reads on the triplet. Their outputs are finally combined using the 
Fisher's method. This double-check procedure may identify consistent and robust 
ribosome profiling peaks. 

The first method takes the cue from a CLIP- and RIP-Seq peak-caller algorithm named 
Piranha266. This approach relies on dividing the transcripts in consecutive regions of a 
specified length and on fitting the distribution of the number of reads per region by a 
negative binomial probability density function (Figure 3.2A). This distribution, 
previously shown to be the best choice for fitting CLIP data266 and widely used in all 
NGS data analyses, was employed to compute the first set of codon-specific p-values. 
Note that transcripts with a small number of mapped reads are penalised by this 
procedure, since the coverage of all their codons is generally low and, as a 
consequence, the associated p-value is not significant.  

 
Figure 3.2. Examples of riboScan fitting procedures and outcome. (A) Empirical distribution of 
the number of reads per triplet (determined for transcripts in the 10th expression bin). The red 
curve represents the negative binomial fit of the empirical distribution. (B) Empirical 
distribution of z-scores per triplet (determined for transcripts in the 10th expression bin. The 
red curve represents the gamma fit. (C) Example of single-transcript RiboSeq density profile. 
The dark areas highlight the hot-spots detected by riboScan. All the plots in this panel were 
generated using ribosome profiling data performed on healthy mouse brains. 
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The second method relies on calculating the z-scores of the number of reads per triplet 
obtained after a transcript-specific standardization of the data, similarly to what was 
proposed by Diament and Tuller196. Differently from the previous method, this 
procedure does not penalize low coverage transcripts, minimizing the negative effects 
of divergent mRNA coverages within the bins. The z-score distribution was initially 
fitted to a lognormal or a gamma density function, that are continuous and 
asymmetric distributions suitable for the approximation of these experimental data. I 
then tested the goodness of the fits by the Akaike269 and Bayesian270 information 
criteria. The gamma distribution was selected as the best fitting curve (Figure 3.2B) 
and the second set of codon-specific p-values was computed accordingly. 

Finally, the two sets of p-values calculated for each triplet were combined applying the 
Fisher's combined probability test271. All triplets with at least 5 reads (minimum 
coverage threshold) were associated to a Fisher's p-value. When this value was lower 
than 0.05 were the triplets were tagged as statistically significant enriched regions and 
named “hot-spots” henceforward. 

In Figure 3.2C, a typical example of RiboSeq profile for a transcript (light gray) with the 
detected hot-spots (dark gray) is shown. 
 

Definition of peaks 
Typically, many adjacent hot-spots can be identified to concentrate in specific larger 
region of the transcript. Therefore, I decided to consider an additional characteristic 
that aggregate close hot-spots present in a region, and named it “peak”. In other 
words, a peak identifies a region of 1 or more hot-spots significantly enriched in 
ribosome coverage (Figure 3.3).  

Therefore, a peak consists of either a single hot-spot or many hot-spots closer than a 
threshold L, implying that the minimum distance between two peaks is exactly L 
codons. This definition allows to detect ribosome enriched regions of different sizes, 
that may be associated to either single or multiple ribosomes stuck along the 
transcripts. If not otherwise specified, I used a threshold value of 5 codons, i.e. 
approximately half a ribosome footprint. 
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Figure 3.3. Aggregation of hot-spots in peaks. Example of ribosome occupancy profile 
containing 7 hot-spots (dark gray vertical bars) corresponding to 2 peaks (light gray areas). The 
dimension of a hot-spot is always of 1 codon, the width of a peak varies depending on the 
number of hot-spots it includes and on the spacing between them. 

3.2.2 Conclusions 
In conclusion, here I propose for the first time a pipeline dedicated to the extraction of 
meaningful positional information from ribosome profiling data at codon resolution. 
riboScan, based on the detection of statistically significant enriched regions within 
ribosome occupancy profiles, assist the identification of ribosome accumulations along 
the mRNAs. Consequently, riboScan may lay the groundwork for a better 
understanding of polysome organizational rules governing the number and the 
localization of ribosomes as well as their aggregation in clusters along the transcripts. 

In the present work I apply riboScan to ribosome profiling data from healthy and Spinal 
Muscular Atrophy–affected mouse brains, revealing possible drop-off and 
mislocalization of ribosomes in the diseased samples. See Chapter 4.2 for more details. 
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4 Biological case study 
Having developed tools dedicated to ribosome profiling analyses, I applied both 
riboWaltz and riboScan to investigate translation in different datasets obtained in the 
Laboratory of Translational Architectomics (IBF-CNR, Trento) and aimed at 
investigating possible translational defects in a motor neuron disease, Spinal Muscular 
Atrophy. 

Spinal muscular atrophy (SMA) is a progressive neurological disorder characterized by 
degeneration of lower motor neurons238, caused by genetic alterations of the Survival 
of Motor Neuron (Smn) gene that induce the production of low levels of SMN 
protein243. Even though the genetic cause of SMN is well-established, the molecular 
mechanisms that link SMN depletion to the pathogenesis of SMA are yet unclear. 
Recent findings demonstrated a strict relationship between SMN and the translational 
machinery245,246,272 leading to pathological dysregulation of protein synthesis273. In the 
Laboratory of Translational Architectomics (IBF-CNR, Trento) it has been recently 
showed that low levels of SMN are connected to a reduction in the number of 
ribosomes in polysomes in tissues of the central nervous system in a mouse model of 
SMA at early and late symptomatic stages, a defect in translation that correlates with 
SMA disease progression249. Nevertheless, a clear mechanism connecting SMN and 
translation has not yet been obtained. Moreover, preliminary observation from my Lab 
showed that in brain and spinal cord from healthy mice SMN binds the 40S subunit and 
ribosomes through RNA-independent interactions. This finding reinforced the 
hypothesis that SMN protein could play a major role in regulation of translation and 
that its loss, in SMA conditions, might directly impact translation.  

To investigate possible mislocalization of ribosomes caused by reduced level of SMN, I 
first applied riboWaltz and riboScan to compare Poly-RiboSeq and Active-RiboSeq data 
(Chapter 4.2) from brains of early-symptomatic SMA-affected mice and control 
littermates. Then, I took advantage of RiboSeq data obtained from SMN-specialized 
ribosomes in control mouse brains (Chapter 4.3 and 4.4) to identify mRNAs 
preferentially controlled by ribosomes associated to SMN protein and unravelling their 
positions along the transcripts. 
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4.1 Ribosome profiling datasets 
To this aim, I took advantage of three ribosome profiling protocols: Poly-RiboSeq, 
Active-RiboSeq and SMN-specific RiboSeq (Figure 4.1 and section 1.4.2 for more 
details).  

 

Figure 4.1. Differences in ribosome profiling assays used in this thesis. Diagram of the 
experimental protocols for Ribo-Seq (top left); Poly-RiboSeq (top right): pre-purification of 
polysomes removes any possible contamination associated to monosomes; Active-RiboSeq 
(bottom left): the RiboLaceTM technology exclusively captures actively translating ribosomes, 
getting rid of non-translating ribosomes associated to polysomes; SMN-specific RiboSeq 
(bottom right): only fragments of transcripts protected by SMN-associated ribosomes are 
captured. After the extraction of ribosome protected fragments of mRNAs, library preparation 
and deep sequencing are performed.  
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With respect to the RiboSeq assay proposed by Ingolia and co-workers138, Poly-
RiboSeq removes any possible contamination associated to putative non-translating 
monosomes by applying the nuclease digestion step after pre-purification of 
polysomes (see Appendix for further details). Active-RiboSeq is a newly developed 
technique that uses a technology called RiboLaceTM. RiboLaceTM has been developed 
by IMMAGNA Biotechnology (http://www.immaginabiotech.com/products/ribo-lace-
technology/) and allows to obtain ribosome protected fragments only from actively 
translating ribosomes. Finally, SMN-specific RiboSeq captures ribosome protected 
fragments isolated from SMN-associated ribosomes, after sub-fractionation of 
ribosomes followed by immunoprecipitation (IP) of SMN. 

Poly-RiboSeq and Active-RiboSeq were performed in brains from early-symptomatic 
and littermate control mice in biological duplicate (Figure 4.2). The mouse model of 
SMA was the Tawanese model274 and were collected at post-natal day 5 (P5) in the 
Laboratory of Prof. Thomas Gillingwater, Univeristy of Edinburgh. Poly-RiboSeq data 
were produced in my Lab (Laboratory of Translational Architectomics, IBF-CNR, Trento) 
by Dr. Paola Bernabò. Active-RiboSeq data were obtained in collaboration with 
IMMAGINA BioTechnology (http://www.immaginabiotech.com/). 

SMN-specific RiboSeq data were produced in the Laboratory of Translational 
Architectomics (IBF-CNR, Trento) using control P5 brains and run in biological triplicate 
(Figure 4.2). As control for aspecific binding, immunoprecipitation using IgG was 
performed in parallel.  

 

Figure 4.2. Ribosome profiling datasets. Three ribosome profiling protocols were used: Poly-
RiboSeq, Active-RiboSeq and SMN-specific RiboSeq. All experiments were performed in 
biological duplicate or triplicate for a total of 11 datasets. 
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Deep sequencing of polysomal RNAs (PolSeq) in the two conditions was also 
performed, in parallel. 

Please refer to the Appendix at the end of the elaborate for the additional details 
about Poly-RiboSeq and SMN-specific RiboSeq, pre-processing and alignment steps for 
all the ribosome profiling data. A table displaying the number of reads left after each 
step of the alignment is also reported (Table A1). The Active-RiboSeq protocol is 
reported by Clamer et al.162. 

4.2 Ribosome profiling of early-
symptomatic SMA mouse brains 

In this section I analyse Poly-RiboSeq and Active-RiboSeq performed in mouse from 
early symptomatic and control brains. First, I verify the ability of Active-RiboSeq in 
capturing ribosome protected fragments, looking for potential differences with respect 
to Poly-RiboSeq (section 4.2.1). Secondly, I investigate a decrease in mapping reads 
along the coding sequence with respect to the first 5 codons of the CDS emerging for 
Active-RiboSeq in the SMA condition. Thirdly, I explore the causes of quantitative 
differences between control and SMA-affected mouse brains in the amount and 
position of read enriched regions detectable along the 3' UTR. 

4.2.1 Ribosome profiling of actively translating 
ribosomes 

To verify the ability of Active-RiboSeq in capturing ribosome protected fragments and, 
more in general, to evaluate the quality of the four ribosome profiling datasets, I 
followed a four-step approach. For the two techniques (Poly-RiboSeq and Active-
RiboSeq) and the two conditions (control and SMA) I i) assessed the reproducibility of 
the biological replicas; ii) generated the distribution of the length of the reads; iii) 
computed the percentage of P-sites falling in the three regions of the transcripts (5’ 
UTR, CDS, and 3’ UTR); iv) verified the trinucleotide periodicity along the coding 
sequence. 

I assessed the reproducibility of the biological replicas by correlating the number of 
mapped reads per transcript between the replicas for each condition and each RiboSeq 
technique (Figure 4.3). The significance of the resulting correlations was measured 
with correlation tests, always obtaining statistically significant p-values (*** p < 0.001). 
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Figure 4.3. Reproducibility of RiboSeq in biological replicas. Scatterplots of the number of 
reads per transcript between the two replicas of Poly-RiboSeq and Active-RiboSeq for both the 
control and the SMA sample. The correlation coefficients and the statistical significances are 
shown (*** p-value < 0.001). 

After the removal of the read duplicates and the acquisition of the alignment files I 
generated the distribution of the read length, temporarily combining the two replicas 
of each technique and condition (Figure 4.4). I observed a slight increase in the 
frequency of shorter reads (smaller than 25 nucleotides) in Active-RiboSeq, possibly 
due to alternative ribosome conformations275,276. However, the most abundant 
populations always correspond to reads of 28 and 29 nucleotides, consistent with 
canonical eukaryotic ribosome footprints97,151. 
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Figure 4.4. Length of ribosome protected fragments. Distribution of the length of the reads for 
Poly-RiboSeq and Active-RiboSeq in control SMA-affected mice. Poly-RiboSeq control: 
7,100,000 reads; Poly-RiboSeq SMA: 8,400,000 reads; Active-RiboSeq control:  900,000 
reads; Active-RiboSeq SMA:  200,000 reads. 

In order to identify a subset of reliable and adequately covered transcripts, before 
proceeding with further analysis I performed the normalization and filtering steps 
provided by RiboScan. Poly-RiboSeq and Active-RiboSeq data were processed 
separately, due to the different protocols used for capturing mRNA ribosome 
protected fragments. A common set of 4324 mRNAs from both the techniques was 
identified and used for all subsequent analyses.  

Next, I run riboWaltz on all samples to obtain further evidence about the ability of the 
RiboLaceTM technology to extract actively translating ribosomes, based on their P-site 
localization. The identification of the P-site position within the reads was performed 
using riboWaltz with the automatic detection of the optimal extremity and P-site 
offsets (see Identification of the P-site position paragraph, method section of Chapter 
3.1). For each sample the optimal extremity was identified as the 3’ end and the 
optimal offset was set to 16 nucleotides.  

Ribosome profiling data should highlight the CDS region of transcripts as the region 
with the higher percentage of reads. To see if this is the case in my data, I computed 
the percentage of P-sites falling in the three regions of the transcripts (5’ UTR, CDS, 
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and 3’ UTR) for both the RiboSeq techniques. These results were compared to the 
expected distribution of randomly mapped reads (based on the cumulative nucleotide 
size of 5’UTR, CDS and 3’UTR, respectively) and to the distribution obtained from deep 
sequencing of polysomal RNA (PolSeq), whose signal should also reflect the random 
fragmentation of RNA and the corresponding mapped reads along transcript regions 
(Figure 4.5). In the last case the position of the read was set to its central nucleotide, 
since no P-site can be identified from PolSeq. As expected, the results in the case of 
PolSeq assay are similar to the random distribution, while an enrichment in the coding 
sequence can be observed for both Poly-RiboSeq and Active-RiboSeq.  

 

Figure 4.5. Enrichment along the coding sequence of RiboSeq reads. The bar plots displays the 
percentages of reads aligning on three mRNA regions (5’ UTR, coding sequence and 3’ UTR) for 
PolSeq and RiboSeq assays. The last bar represents the percentage of region length. 

Then, I verified the presence of the trinucleotide periodicity of the ribosome footprints 
along the coding sequences. To do that, I first looked at the percentage of P-sites 
corresponding to the three reading frames for 5’ UTR, CDS and 3’ UTR, stratifying the 
reads by length (Figure 4.6). I observed an enrichment of P-sites in the first frame 
along the coding sequence but not along the UTRs, proving that both Poly-RiboSeq 
(Figure 4.6A) and Active-RiboSeq (Figure 4.6B) reads are in the correct frame, in 
agreement with ribosome protected fragments from coding mRNAs. I also showed the 
absence of strong differences in the trinucleotide periodicity in all types of ribosome 
profiling. 
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Figure 4.6. Percentage of P-sites in frame. Heatmap of the percentage of P-sites according to 
the three reading frames for 5’ UTR, CDS and 3’ UTR of mRNAs, stratifying the reads by length 
for (A) Poly-RiboSeq and (B) Active-RiboSeq. 

To provide a visual representation of the trinucleotide periodicity along the coding 
sequence and look for potential differences in global profiles from control and SMA 
affected mice, I produced P-site-based meta-profiles (Figure 4.7). I overlay for each 
ribosome profiling dataset the profiles associated to the two conditions. To compare 
the meta-profiles, I displayed the density of the signal around the translation initiation 
and translation termination sites, so that the area under each meta-profile (composed 
by the portion around the start codon and the portion around the stop codon) is equal 
to 1. Both Poly-RiboSeq and Active-RiboSeq meta-profiles show a clear periodicity 
along the CDS and a lower, almost uniform signal along the UTRs, confirming the 
previous observations. 
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Figure 4.7. Trinucleotide periodicity along the CDS. Overlay meta-profiles based on the P-site 
position of the reads along transcripts for control and SMA samples from Poly-RiboSeq and 
Active-RiboSeq assays. 

Concerning the results of Active Ribo-seq, the results obtained so far strongly support 
the ability of Active-RiboSeq technique and RIboLaceTM to purify bona fide mRNA 
fragments protected by ribosomes. In fact, the distribution of the reads length (Figure 
4.4), the accumulation of reads mapping on the coding sequence (Figure 4.5) and the 
presence of clear trinucleotide periodicity in the correct frame along the coding 
sequence but not on the UTRs (Figure 4.6 and Figure 4.7) stand in close agreement 
with the results obtained for Poly-RiboSeq, a well-established RiboSeq protocol. These 
data, supported by other validation (not shown) from the Laboratory of Translational 
Architectomics (IBF-CNR, Trento) and Immagina BioTechnology prove that RiboLaceTM 
technology can capture active ribosomes and that it can be used to localised 
translating ribosomes. 

4.2.2 Ribosome drop-off in SMA  
Comparing Active-RiboSeq and Poly-RiboSeq meta-profiles (Figure 4.7) it’s possible to 
observe that the signal of peaks at the beginning of the coding sequence is higher in 
Active-RiboSeq profiles than in Poly-RiboSeq ones. Starting from this observation, I 
further investigated the involvement of SMN in the alterations of ribosome localization 
along the transcripts of diseased mice, providing evidences of ribosome drop-off 
caused by the loss of SMN. 
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Han and collaborators277 deeply examined an analogous accumulation of reads on the 
5th codon emerged in RiboSeq data of Hek-293. The authors attributed the post-
initiation ribosome stalling, already observed in other studies263,278,279, to the geometry 
of the peptide exit tunnel of the ribosome, suggesting the existence of a functional 
pause of the translation machinery for productive protein synthesis. Therefore, an 
accumulation of ribosomes at the 5th codon is a good indication of active translation.  

Han and collaborators also excluded a connection between the accumulation of 
ribosomes at the 5th codon and the nucleotide composition of the mRNAs277. To 
corroborate this result, I performed a sequence enrichment analysis around the 5th 
codon for the Active-RiboSeq assay in control and SMA samples, separately. For both 
conditions I used as foreground the transcripts showing a signal on the 5th codon and 
as background the 4324 mRNAs, taking into consideration sequences ranging from 3 to 
10 nucleotides. From this analysis no enriched sequence emerged, confirming that the 
nucleotide composition of the mRNAs do not account for accumulation of ribosomes 
at the 5th codon. a good indication of active translation. 

 

Figure 4.8. P-site signal close to the start codon. Violin plots showing the distribution of the 
ratios between the average number of P-sites on the coding sequence and the average 
number of P-sites on the first 5 codons for Poly-RiboSeq and Active-RiboSeq. The box plots 
associated to the distributions are also reported, along with the statistical significances from 
the Wilcoxon-Mann-Whitney test (*** p-value < 0.001). 

To further investigate the presence of a ribosome accumulation at the beginning of the 
coding sequence and reveal potential differences between the conditions, I took the 
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cue from the analysis workflow proposed in Han and collaborators277 and split each 
transcript in two regions. The first region includes the nucleotides from 0 to 14 
(corresponding to the first 5 codons of the transcript) and the second nucleotides from 
15 to the end of the coding sequence. Then, I calculated the ratio between the average 
number of P-site falling in the second region and the average number of P-sites on the 
first one (Figure 4.8). 

The results show a general and statistically significant decrease in the ratios calculated 
for Active-RiboSeq with respect to Poly-RiboSeq in both conditions. This result can be 
possibly explained by the detection of RNA protected fragment from of non-actively 
translating ribosomes that can be purified using with the standard RiboSeq procedures 
but not by RiboLaceTM. Interestingly, Active-RiboSeq shows a significant difference in 
ratio distributions in SMA and control, suggesting an accumulation of ribosomes 
around the start codon or, alternatively, a lower amount of ribosomes along the 
coding sequence, consistent with higher drop-off rates in SMA samples. Interestingly, 
the latter hypothesis suggests a down-regulation of protein production in SMA mice, in 
agreement with what found in literature249,273. 

 

Figure 4.9. Peaks analysis. Violin plots showing (A) the distribution of the number of peaks per 
coding sequence and (B) the distribution of the distance between consecutive peaks along the 
coding sequence for Poly-RiboSeq and Active-RiboSeq. The box plots associated to the 
distributions are also reported, along with the statistical significances from the Wilcoxon-
Mann-Whitney test (*** p-value < 0.001). 

To better investigate whether the observed decrease of the number of ribosomes 
along the mRNAs in SMA is connected to the involvement of SMN in translation, I 
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exploited riboScan. I looked for transcript-specific and statistically significant enriched 
regions (hot-spots and peaks) along the sequences and for potential differences in 
both their position between control and SMA-affected mice. I analysed Poly-RiboSeq 
and Active-RiboSeq data in parallel, possibly highlighting a characteristic behaviour of 
active ribosomes. After the detection of hot-spots and their aggregation into peaks, I 
computed the number of peaks per CDS and the distance between each pair of 
consecutives peaks detected on the CDS (Figure 4.9). 

The results showed a statistically significant decrease in the number of peaks and an 
increased distance in the diseased mice with respect to the control in Active-RiboSeq. 
These findings suggest a lower number of actively translated ribosomes along the 
coding sequence and longer portions of naked mRNA. As in the previous analysis, Poly 
RiboSeq did not show any change between SMA and control samples. Overall, these 
results are in agreement with ribosome drop-off that might cause a reduction of 
actively translating ribosomes and, consequently, an increment in the spacing between 
consecutive ribosomes that can be capture better with RiboLaceTM than with 
conventional ribosome profiling. 

4.2.3 Mislocalization of ribosomes along the 3 
UTR in SMA? 

To obtain additional insights into the possibility that SMN loss could be responsible for 
translational defects in SMA-affected mice, I examined more in details the outcomes of 
riboScan. In particular, I looked for significant enriched regions along the transcripts by 
computing the number of hot-spots separately for the three transcript regions (5’ UTR, 
CDS and 3’ UTR), as shown in Figure 4.10A. 

Along the 5’ UTR and the CDS a difference in the total number of hot-spots in Poly-
RiboSeq and is 9-10 times higher than for Active-RiboSeq. This strong difference can be 
imputed to the lower amount of mapped reads for Active-RiboSeq with respect to 
Poly-RiboSeq or to the presence of a high number of not-translating ribosomes in this 
sample. In other words, this result is compatible with few ribosomes being under 
active translation in brain. Figure 4.10A also shows a similar number of detected hot-
spots between control and SMA samples for both Poly-RiboSeq and Active-RiboSeq in 
the 5’ UTR and the CDS but not in the 3’ UTR. Interestingly, in this last region the 
diseased samples have twice as many hot-spots as the healthy ones (Figure 4.10B).  

To unravel potential differences in the number of hot-spot aggregates along the 
transcripts, I combined hot-spots into single peaks. I confirmed a large disparity in the 
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defined two overlapping peaks as two regions that share at least one nucleotide, 
independently from their lengths. The percentage of common and uniquely identified 
peaks in the three transcript regions (5’ UTR, CDS and 3’ UTR) is shown in Figure 4.11. 
The results show that peaks uniquely detected along the 5’ UTR and CDS in the SMA 
and control sample are relatively less abundant that the common ones for Poly-
RiboSeq than for Active-RiboSeq. However, small differences in the number of specific 
peaks can be observed between the two conditions, while on the 3’ UTR the peaks 
uniquely detected in the SMA samples are almost six times the number of control 
specific peaks. This observation suggests the possibility of ribosome readthrough of 
the stop codon89,280 or the presence of sliding ribosomes along the 3’ UTR still 
associated to the tRNAs due to defects in the termination phase of translation, at least 
for a limited set of transcripts. 

 

Figure 4.11. Analysis of significant ribosome peaks. Percentage of peaks in common between 
control and early symptomatic samples (Common); uniquely detected in the control (Control 
only) or in the early symptomatic sample (SMA only). The total number of peaks is reported at 
the top of the bars. 

Another possible explanation for the observed signal along the 3’ UTR is that these 
reads are the product of RNA regions protected by RNA binding proteins. To exclude 
the presence of protected fragments associated to RNA binding protein along the 3’ 
UTR and captured by the RiboSeq assays, I explored if the median length of the reads 
along the 3’UTR might be consistent with RBP protected fragments. RBP-RNA 
interactions take place through protein domains covering a maximum of 4-8 
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nucleotides281. Hence, RBP protected fragments are usually shorter than ribosome 
protected fragments unless they form complexes.  

I investigated the length of the reads contributing to the SMA specific peaks for the 
two techniques. I compared the read length distribution between the whole SMA 
sample and the subset of reads specifically associated to the uniquely detected SMA 
peaks, performing the Wilcoxon-Mann-Whitney test for assessing the statistical 
significance. Figure 4.12 shows a decrease of the distribution toward shorter reads for 
Poly-RiboSeq, while for Active-RiboSeq no significant differences arise. The median 
length of reads in 3’ UTR peaks is of 26 nucleotides, consistent with the length of 
ribosome protected fragments. Therefore, it is quite unlikely that this signal might be 
produced by protected fragments associated to RNA binding protein along the 3’ UTR 
and captured by the RiboSeq assays. 

 

Figure 4.12. Read length associated to SMA specific peaks. Distribution of the length of the 
reads for the whole SMA dataset and for the reads that contribute to the enriched regions 
detected along the 3’ UTRs (SMA peaks 3’ UTR) for Poly-RiboSeq and Active-RiboSeq. The 
statistical significances from the Wilcoxon-Mann-Whitney test is shown (*** p-value < 0.001). 

To further investigate the hypothesis of ribosome readthrough in the diseased 
samples, I performed two analyses associated to the SMA specific peaks for Poly-
RiboSeq and Active-RiboSeq, separately. Since ribosome readthrough events are 
known to be promoted by specific sequences close to the stop codon in 
mammals26,282–284, I investigated the presence of possible enrichment among all the 
sequences comprised between the last 6 nucleotides of the CDS and the first 4 of the 
3’ UTRs. I used as foreground the transcripts associated to the SMA specific peaks and 
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strong connections between significant enriched regions along the 3’ UTR and the 
development of the nervous system in early symptomatic mice. 

4.3 Ribosome profiling of SMN-specialized 
ribosomes reveals a role for SMN in 
translation of the first codons 

Recent studies suggest unexpected connections between the structural constituents of 
the translation machinery and translational controls of gene expression through the 
emerging hypothesis of the so-called specialized ribosomes68,69 The term “specialized” 
refers to their unique composition in ribosomal proteins or to the definite activity 
carried out in cells69, and that point to ribosome itself as a largely unexplored and 
direct player in the control of translation in both physiological and pathological 
conditions. 
These findings and the fact that in the Laboratory of Translational Architectomics (IBF-
CNR, Trento) preliminary data showed that SMN protein is a direct interactor of the 
ribosome, prompt further studies aimed at the investigation of SMN-specialized 
ribosomes (i.e. ribosomes that are bound by SMN), their role in tuning translation and 
their association to SMA, as discussed in this section. 
To this aim, in the Laboratory of Translational Architectomics (IBF-CNR, Trento), a 
SMN-specialized ribosome profiling from healthy P5 brain was developed using a 
dedicated immunoprecitation protocol (see Appendix). In parallel a control sample 
from immunoprecipitation of IgG for assessing the aspecific binding of ribosomes to 
the beads was used. The ribosome protected fragments from this sub-population of 
ribosomes was isolated and sequenced as detailed in Appendix. I started the analysis 
by identifying transcripts enriched in fragments protected by SMN-associated 
ribosomes with respect to the control IgG (see Appendix for details on the enrichment 
analysis). After the enrichment, 1095 transcripts, corresponding to 901 genes, were 
identified applying a double threshold on fold enrichment (>2) and statistical 
significance (<0.05). Annotation enrichment analysis with Gene Ontology terms, KEGG 
and REACTOME pathways was performed on these genes (1095 transcripts), revealing 
their association with neuro-related, RNA binding-and rRNA-related terms (Figure 
4.14). This selected pool of mRNAs was used for the following analyses of the SMN 
RiboSeq data. 
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Figure 4.14. Annotation enrichment analysis on transcripts associated with SMN interacting 
ribosomes. Results of Gene Ontology, KEGG and REACTOME pathway enrichment analysis on 
the genes associated with SMN interacting ribosomes. 901 genes were used in the 
analysis. The number of genes associated to the corresponding term is displayed on 
the right of the bars. The terms are divided according to the three main categories of 
the Gene Ontology: biological process (GO_BP), cellular component (GO_CC) and 
molecular function (GO_MF). 

Then, I generated the distribution of the read length aligning on the mRNA enriched in 
SMN-specialised ribosomes (Figure 4.15A). The most abundant populations always 
correspond to reads of 32 nucleotides, consistent with the canonical eukaryotic 
ribosome footprints97,151. Nevertheless, a second population of reads is visible, peaking 
at 26 nucleotides. Interestingly, this bimodal distribution of the read length has been 
already observed in other ribosomal profiling data and attributed to alternative 
conformations of the ribosome275,276 that characterize different stages of ribosome 
translocation during protein synthesis23. This intriguing result suggests the hypothesis 
that SMN-specialized ribosomes may be intimately associated to the mechanism of 
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translation, possibly stabilizing some specific intermediates of the ribosome during 
translation elongation.  

To get further information on this, I investigated the accumulations of SMN-specialized 
ribosomes on the coding sequence and the presence of the trinucleotide periodicity 
along the CDS (expected for ribosomes protected fragments). I run riboWaltz on the 
three SMN replicas for the identification of the P-site position within the reads, using 
automatic detection of the optimal extremity (see Identification of the P-site position 
paragraph, method section of Chapter 3.1). The first step of RiboWaltz identified as 
optimal extremity for each sample the 5’ end, indicating as optimal offset a stretch of 
12 nucleotides. I computed the percentage of P-site falling in the three regions of the 
transcripts (5’ UTR, CDS, and 3’ UTR) for the RiboSeq SMN (Figure 4.15B). These results 
were compared to Poly-RiboSeq, Active-RiboSeq, used as control for the distribution in 
more classical ribosome profiling experiments, and PolSeq of healthy mouse brains. 
Figure 4.15B clearly shows that most of the SMN-specific reads map on the coding 
sequence, similarly to the other RiboSeq protocols and differently from PolSeq, where 
the signal is uniformly distributed on the full transcript. This finding suggests that SMN 
do immunoprecipitates ribosomes that are along the coding sequence, as expected for 
a ribosome profiling experiment. 

Then, I explored the presence of the trinucleotide periodicity in SMN-specialized 
ribosomes along the coding sequences by generating the meta-profile based on the P-
site of the SMN-specialized RiboSeq reads (Figure 4.15C) and by computing the 
percentage of P-sites according to the three reading frames for 5’ UTR, CDS and 3’ 
UTR, stratifying the reads by length (Figure 4.15D). Curiously P-site periodicity was 
weak for SMN-specialized ribosomes in the CDS, not much higher than what I can 
observe in the UTR regions. Moreover, P-sites showed two sharp peaks at the 
beginning of the coding sequence (Figure 4.15C), suggesting that SMN is mainly bound 
to ribosomes located on the AUG and around the 5th codon. As previously discussed, 
an analogous read accumulation have been observed in several studies263,278,279 and 
extensively investigated by Han and collaborators277. Prompted by this observation, I 
computed the ratio between the average number of P-site falling in the first 5th codons 
and the average number of P-sites on the rest of the coding sequences (Figure 4.15E), 
observing a strong accumulation of reads at the beginning of the CDSs with respect to 
the remaining region of the sequences. 
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Figure 4.15. Analysis of SMN-enriched transcripts. (A) Distribution of the length of the reads 
for Poly-RiboSeq and Active-RiboSeq in SMA affected and control mice. The distribution was 
fitted with two Gaussian curves, represented as dashed lines. (B) Enrichment along the coding 
sequence of SMN RiboSeq reads. The bar plots displays the percentages of reads aligning on 
three mRNA regions (5’ UTR, coding sequence and 3’ UTR) for RiboSeq assays following SMN 
IP, Poly- and Active-RiboSeq of healthy mouse brains and PolSeq as control. (C) Meta-profiles 
based on the P-sites position of the reads along the transcripts for the SMN RiboSeq assays. (D) 
Heatmap of the percentage of P-sites according to the three reading frames for 5’ UTR, CDS 
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and 3’ UTR of mRNAs, stratifying the reads by length for SMN RiboSeq. (E) Violin plot showing 
the distributions of the ratios between the average number of P-sites on the first 5 codons and 
the average number of P-sites on the remaining coding sequence for SMN RiboSeq, Poly- and 
Active-RiboSeq of healthy mouse brains. The box plots associated to the distribution are also 
reported. The statistical significances from the Wilcoxon-Mann-Whitney test is shown (* p-
value < 0.05, *** p-value < 0.001). 

To understand how the two populations of reads observed in Figure 4.15A specifically 
contribute to the accumulation of reads at the beginning of the coding sequence, I 
generated the meta-profiles employing long (32-35 nts) and short (23-26 nts) reads 
(Figure 4.16). 

 

Figure 4.16. Analysis of long and short reads. (A) Meta profile generated by long reads (32-35 
nucleotides). The blue shadow highlight the highest peak of the profile, on the start codon. (B) 
Meta profile generated by short reads (23-26 nucleotides). The green shadow highlight the 
highest peak of the profile, around the 5th codon. (C). Schematic representation of a ribosome 
in the correct frame on the start codon (left panel) and of a ribosome in a P/A hybrid state 
around the 5th codon (right panel). 
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Strikingly, long reads give rise to a neat in-frame peak on the start codon and the 
second codon, but no accumulation of reads on downstream triplets emerges to be in-
frame (Figure 4.16A). On the contrary, short reads contribute to a neat increase of the 
signal around the 5th codon and not on the translation initiation site (Figure 4.16B). 
Moreover, a -1 frameshift displayed by the highest peaks of the metaprofile points to a 
peculiar conformation of the ribosomes translocating from one codon to the next one, 
e.g. an A/P hybrid state caused by the proximity of the tRNA in the A- and P-site of the 
ribosomes23,285 (Figure 4.16C). 

All together, these findings are strongly suggesting the massive presence of SMN-
specialized ribosomes at the beginning of the coding sequence. A possible explanation 
is a role of SMN in controlling the translation initiation phase: binding the ribosomal 
small subunit (results from the Laboratory of Translational Architectomics, IBF-CNR, 
Trento. Data not shown) SMN may act directly on the movement of the ribosomes on 
the first 5 codons of the coding sequence (Figure 4.17). Moreover, these findings 
coupled with the previous observations of significant ribosome enrichments along the 
3’ UTR SMA indicates a translational regulatory role of SMN at both the initiation and 
termination level, pointing to SMN as a potential determinant in ribosome 
recycling12,24,25,27,286 in physiological conditions. 

 

Figure 4.17. Role of SMN in translation initiation. Schematic representation of a possible role 
of SMN (in red) as regulator of translation initiation. After the formation of the 80S on the start 
codon, SMN controls the translation of the first 5 codons, as well as ribosome conformational 
changes in favour of a P/A hybrid state around the 5th codon, inducing a temporary ribosome 
stalling and possibly stabilizing the ribosomes before proceeding with the elongation phase. 
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4.4 Loss of SMN-specialized ribosomes 
impacts on active translation in SMA 

To integrate the results obtained with ribosome profiling of SMN-specialized 
ribosomes with translation variations occurring in SMA, I combined SMN-RiboSeq data 
with Poly-RiboSeq and Active-RiboSeq on healthy and SMA-affected mouse brains. I 
first generated the meta-profiles of the transcripts enriched in SMN-specialized 
ribosomes employing Poly-RiboSeq and Active-RiboSeq data of both conditions (Figure 
4.18).  

 

Figure 4.18. Meta-profiles of mRNA enriched in SMN-specialized ribosomes. Overlay meta-
profiles around the start codon based on the P-site position of the reads along transcripts for 
control and SMA samples from Poly-RiboSeq and Active-RiboSeq assays, considering only the 
mRNAs enriched in SMN-specialized ribosomes. 

Interestingly, in Poly-RiboSeq the profiles for the population of transcripts associated 
to SMN-specific ribosomes do completely overlap in control and SMA samples. 
Astonishingly, in Active-RiboSeq, where active ribosome protected fragments are 
considered, a large difference between the control and SMA metaprofile is clearly 
visible. In particular, the absence in the diseased sample of signal on the third codon of 
the coding sequence popped out, as well as the loss of a neat periodicity on 
downstream triplets. These findings point to a peculiar behaviour of actively 
translating ribosomes at the beginning of the coding sequence caused by loss of SMN 
(Figure 4.19). This conclusion also support the previous results concerning a possible 
role of SMN in regulating translation initiation and, consequently, ribosome drop-off 
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that might lead to the observed decrease in ribosome number in the axon of late 
symptomatic mice we recently observed249. 

 

Figure 4.19. Consequences of loss of SMN in translation initiation. Schematic representation 
of translation initiation in absence of SMN. After the formation of the 80S on the start codon, 
the loss of SMN may induce ribosomes sliding on the first 5 codons and cause ribosomes drop-
off after conformational changes at the 5th codon. 

Then, to further investigate possible connections between actively translating 
ribosomes and SMN-specializes ribosomes, I compared SMN-RiboSeq data with Poly-
RiboSeq and Active-RiboSeq on healthy and SMA-affected mouse brains. I first 
identified the lists of mRNAs up- and down-regulated in the diseased samples with 
respect to the control for both techniques. For convenience, I will refer to the 
considered pools of mRNAs as follows: SMN_enr (genes enriched in SMN-RiboSeq), 
pSMA_down (genes down-regulated in SMA from Poly-RiboSeq), pSMA_up (genes up-
regulated in SMA from Poly-RiboSeq), aSMA_up (genes up-regulated in SMA from 
Active-RiboSeq) and pSMA_down (genes down-regulated in SMA from Active-
RiboSeq). Intersection analysis of these lists is provided in (Figure 4.20A). Albeit most 
of the genes are exclusively present in one of the sets, some remarkable overlaps 
could be identified. In particular, the largest intersection includes genes shared by 
SMN_enr and aSMA_down lists. This means that the down-regulation of these genes in 
the early symptomatic SMA-affected mice, identified using Active-RiboSeq, may be 
caused by the absence of SMN that, in healthy conditions, is strongly associated with 
ribosomes translating them. Finally, I performed a term enrichment analyses (see 
Appendix) of the 5 groups against the EnrichR gene set libraries287, focusing on the sets 
related to motor neuron diseases (Figure 4.20B).  



 

Figure 4.20. Comparison between SMN RiboSeq and Poly and Active
control and diseased mouse brains.
considered sets: pSMA_down, pSMA_up, SMN_
left horizontal bars report the dimension of the 
the combination matrix encoding the relationships between sets,
intersections: each column correspo
of the sets listed on the left. The vertical bars reported the size of the 
(B) Results of the term enrichment analysis performed on the 5 groups and related to motor 
neuron diseased. The number in each box represent the number of gene associated to the 
terms listed on the left. The term of the last row comes from the OMIM database and the list 
of the 11 gene is reported in Tabl
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between SMN RiboSeq and Poly and Active-RiboSeq performed on 
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Table 4.1. 
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(B) Results of the term enrichment analysis performed on the 5 groups and related to motor 

diseased. The number in each box represent the number of gene associated to the 
terms listed on the left. The term of the last row comes from the OMIM database and the list 
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Strikingly, most of these sets were significantly enriched in the list of genes associated 
with in SMN-interacting ribosomes and down-regulated in the SMA sample from 
Active-RiboSeq, confirming a strong relationship between SMN and selective 
translation of a specific pool of transcript, which is disrupted in SMA disease. 
Remarkably, I could observe an enrichment for genes associated with Spinal Muscular 
Atrophy from the Online Mendelian Inheritance in Man database (OMIM) These 11 
genes are listed in Table 4.1. Interestingly, this list includes Smn1, the gene encoding 
for SMN, confirming a potential autoregulation of this gene that was also suggested by 
Workman and collaborators288.  

Gene name Description 
ARHGEF4 Rho guanine nucleotide exchange factor 4 

CCND1 cyclin D1 
CREB1 cAMP responsive element binding protein 1 
CRHR1 corticotropin releasing hormone receptor 1 
GNAI2 G protein subunit alpha i2 
NCOR2 nuclear receptor corepressor 2 
PRKACA protein kinase cAMP-activated catalytic subunit alpha 

RELA RELA proto-oncogene, NF-kB subunit 
SMN1 survival of motor neuron 1, telomeric 
STAT3 signal transducer and activator of transcription 3 
VAPB VAMP associated protein B and C 

 

Table 4.1. Genes associated with Spinal Muscular Atrophy from the Online Mendelian 
Inheritance in Man database (OMIM) enriched in SMN-specialized ribosomes. 

4.5 Conclusions 
Summarising, I pointed out the significant contribution of dedicated computational 
pipelines for the high-resolution analysis of ribosome profiling data, based on the 
extraction of positional information such as the identification of ribosome P-site within 
the reads and the detection of ribosome peaks along the transcripts. Firstly, I 
demonstrated the ability of Active-RiboSeq in capturing ribosome protected 
fragments, highlighting some emerging differences with respect to Poly-RiboSeq. 
Secondly, I observed a relative accumulation of mapping reads associated to actively 
translated ribosomes drop-off along the coding sequence in the SMA condition. 
Thirdly, I showed quantitative differences in the amount and in the position of 
ribosome peaks detected along the 3' UTR between control and SMA-affected mouse 
brains, confirmed by both Poly- and Active-RiboSeq, demonstrating a strong 
connection between transcripts harbouring these peaks and neuro-related functions. 
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Fourthly, investigating SMN RiboSeq data I identified a specific pool of mRNAs 
associated with SMN interacting ribosomes. This pool is enriched in neuro-related 
functions, RNA-related terms and genes responsible for the onset of SMA disease 
according to OMIM. I revealed a significant accumulation of long reads on the start 
codon and of out-of-frame short reads on the 5th codon of the CDS, pointing to 
conformational changes of ribosomes at the beginning of the coding sequence and 
suggesting a potential role of SMN in binding ribosomes in either translation initiation 
or the early phase of translation elongation. Finally, I demonstrated a remarkable 
relationship between SMN and actively translating ribosomes resulting in alterations of 
the meta-profile of transcripts enriched in SMN-specialised ribosomes in SMA sample 
from Active-RiboSeq. In addition, I showed a strong connection between genes 
associated with in SMN-interacting ribosomes and down-regulated in the SMA-
affected mouse brains from Active-RiboSeq. 

Overall, these findings show that the initiation, elongation and probably termination 
phase are altered in the diseased samples, suggesting a critical role of SMN in 
regulating polysome activity at multiple levels. Further experimental investigation may 
be driven by this conclusion, eventually resolving the clear mechanism connecting 
SMN and translation, and the dysregulation of this interaction in SMA.
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5 Discussion 
Translation is a fundamental biological process occurring in cells, carried out on mRNA 
molecules that can be bound by many ribosomes at a time (polyribosomes) 16–18. It is 
obviously the primary determinant in regulating protein expression in a wide range of 
physiological processes37–40, including several neurological disorders47–52 and 
tumours41–46. Recent findings demonstrated the existence of a wide collection of cis- 
(nucleotide composition of the mRNAs and their secondary structures)57,58 and trans- 
(ncRNAs and RNA binding proteins)59,60,62 factors, acting as translational regulatory 
mechanisms, which regulate the movement and position of ribosomes along the 
transcripts. Nevertheless, despite recent advances in dissecting the mechanism of 
translation123, a complete characterization of polysome organization (for example the 
number and position of ribosomes along the transcript) and the functional controls 
directed in shaping cellular phenotypes is still lacking. For these reasons, I propose 
RiboWaves, an integrated bioinformatics suite that mixes experimental data (e.g. 
Atomic Force Microscopy images, Next-Generation Sequencing data) and 
computational assays (deterministic and stochastic modeling, pipelines for high-
throughput data analysis) for a comprehensive understanding of translation regulation 
and polysome organizational rules governing the number of ribosome per polysome 
and ribosome localization along the mRNAs. 

Mathematical model of translations 

The first contribution of my work consisted in the development of a deterministic and 
a stochastic modeling module, riboAbacus and riboSim, to forecasts the number and 
the position of ribosome within polysomes, respectively. 

The number of ribosomes per transcript, together with ribosome localization along the 
mRNA, is a fundamental aspect of a polysome at the steady state. I demonstrated that 
assessing the number of ribosomes within polysomes can clarify the impact of some 
regulatory elements in controlling translation. Nevertheless, at present the challenge 
in experimentally measuring the precise number of ribosome per transcript hindered 
the use of this parameter for translational studies as well as in mathematical and 
computational models. To overcome this problem, I took advantage of the number of 
ribosomes per transcript calculated from polysome images acquired by Atomic Force 
Microscopy95. In principle, polysome profiling followed by microarray137 and more 
recent high-throughput techniques such as ribosome profiling123 might be employed to 
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experimentally deduce the projected number of ribosome per transcript. However, 
comparing the distribution of the number of ribosomes per transcript obtained by 
AFM in yeast with the data provided by Arava and collaborators137 produced by 
polysome profiling and microarray analyses, revealed the higher accuracy of AFM 
images in computing the number of ribosome per polysome. On the other hand, 
ribosome profiling, based on deep sequencing of ribosome protected mRNA 
fragments123,150, has been extensively used to measure ribosome density along mRNAs, 
typically starting from the total amount of reads mapping on the transcripts169. Yet, 
ribosome density is not the precise calculation of the number of ribosomes per 
transcript. In fact, RiboSeq data are projection of reads from thousands of single mRNA 
molecules in a transcriptome and are typically very noisy Therefore, a definitive 
approach for precisely localising single ribosomes along mRNA is missing and the 
calculation of the number of ribosome per polysome starting from RiboSeq data is still 
an open challenge full of pitfalls. Nevertheless, ribosome occupancy profiles provides 
meaningful positional information, often employed for obtaining precise information 
about translation at single nucleotide resolution141,142. 

Thus, I took advantage of AFM images of polysome and RiboSeq data as experimental 
benchmark for riboAbacus and riboSim, respectively. To have a comprehensive view of 
polysome organization, the number of ribosomes per transcript predicted by 
riboAbacus and the positional information supplied by riboSim were analysed in 
parallel. riboAbacus and riboSim were run using a progressive approach: starting from 
the simplest model I introduced at each step a new feature, i.e. the codon usage bias 
and the ramp. 

The first significant finding emerged after the introduction in both models the codon 
usage bias79,80,114,118,125,127,289. rA_Figure 4A (left panel)2 shows that in human 
riboAbacus significantly increases the similarity between experimental and predicted 
profiles but still overestimates the number of ribosomes per transcript. This 
observation is supported by riboSim that in two mammals (mouse and human) does 
not display any improvement in the prediction of ribosome localization along mRNAs 
(Figure 2.6B), indicating that the codon usage bias alone is not sufficient to account for 
ribosome dynamics for high eukaryotes. In fact, the simulation performed in yeast by 
riboSim showed a significant increase of the correlation distribution towards positive 
values, indicating that the codon usage bias alone is able to enhance ribosome 

                                                           
2 “rA_” stands for riboAbacus. If the figure number is preceded by this suffix, please refers to corresponding panel in 
“RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from 
mammalian transcriptomes” by Lauria et al., reported in section 2.1. 
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positional predictions in simple organism, partially confirming its connection with 
ribosome translocation253,290, pauses97,98 and drop-offs99,100. 

I then introduced in both models an additional level of complexity provided by the 5' 
ramp i.e. a region at the beginning of the coding sequence showing high ribosome 
density and reduced elongation speed with respect to the remaining coding 
sequence81,82,121,253. Its length ranges from 5 to 50 nucleotides82,127. Several biological 
explanations have been proposed for the existence of the ramp, such as local codon 
usage bias113,122,127, mRNAs secondary and tertiary structures116,127, rapid initiation 
rates129 and the concurrence of many of these causes81,115,128. Gerashchenko and 
Gladyshev recently proposed that the ramp may be an artefact caused by the use of 
cycloheximide during the preparation of the samples291, although it has been shown 
that an increased density ribosomes at the beginning of the coding sequence can be 
equally observed in datasets produced without cycloheximide treatment170,292. Even 
though the precise nature of the ramp is still a matter of debate, I modelled the ramp 
effect by introducing two parameters that characterise this phenomenon: ramp length 
and ribosome slowdown rate. I optimised both parameters in human Hek-293 
translatome, obtaining the best fit with experimental data setting 50 codons of ramp 
length and 70% of ribosome slowdown rate (rA_Figure 3B). The ramp length is in 
agreement with data available in literature82,115,128,138 and exceeds the portion of 
mRNA that, according to recent literature, may be affected by cycloheximide-related 
biases: 8 codons293. My results also provide for the first time an estimation of the 
ribosome slowdown rate. 

In addition, the cross-validation used for optimising the parameters and the two 
validations performed in MCF-7 and rabbit reticulocytes (rA_Figure 4, 5 and 6) 
highlights the importance of the ramp in determining the number of ribosomes per 
transcript in human. riboSim simulations after the introduction of the optimised ramp 
parameters proved that in complex biological systems its performance in predicting 
ribosome localization are not improved by a slowdown mechanism (Figure 2.7B). This 
result does not match with the findings of riboAbacus about the fundamental role of 
the ramp in providing improved predictions of the number of ribosomes per transcript 
in both mouse and human. Nevertheless, the inclusion of ramp parameters produces a 
significant improvement in riboSim predictions in yeast. A possible explanation of this 
difference between the two models in mammals could be that, while the overall 
number of ribosomes per transcript can be adequately estimated by few parameters, a 
larger set of features, still to be discovered, is required to properly model ribosome 
localization along mRNAs in more complex biological systems than yeast. In fact, my 
results clearly point to additional translational regulatory elements acting in higher 
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eukaryotes, suggesting different and more sophisticated strategies of translation 
regulation depending on the complexity of the species. This hypothesis is supported by 
the work by Harrison and collaborators294, which showed a widespread lack of “RNA 
interference” (namely RNA-driven controls of cellular processes) in Saccharomyces 
cerevisiae. 

As a consequence, stochastic simulation of translation may require to model the 
presence of other cis and trans factors acting as translational regulators. For example, 
mRNA secondary structures34, RBP37 and ncRNAs binding ribosomes62 may have a 
crucial role in tuning ribosome movements and define their precise localization along 
the mRNAs. 

Following the promising results obtained with riboAbacus, I tried to elucidate potential 
connections between the number of ribosomes per transcript and the total protein 
level in cells3. In previous years a general poor correlation between experimental 
measures of transcriptome (mRNA levels) and proteome (protein abundance) has been 
reported in several works in mammalian cells54,56. I showed that taking into account 
the number of ribosomes per transcript, as RiboAbacus does, significantly increased 
the experimental correlation between transcriptome and proteome in 3 different 
datasets, especially when the ramp effect is included in the model. These findings 
demonstrate that up to 10% of protein levels can be explained by the number of 
ribosomes per transcript and support the crucial role of the slowdown mechanism at 
the beginning of the coding sequence in regulating translation and the final protein 
abundance.  

In summary, I showed that the number of ribosomes per transcript and their 
localization are strongly-related elements that characterise polysomes. These 
parameters should be investigated in parallel for a comprehensive description of the 
translational machinery. The good level of predictions of the number of ribosomes per 
transcript already achieved by riboAbacus, coupled with the introduction in riboSim of 
local slowdowns, which represent an additional feature, makes the combination of the 
two models an optimal tool for the analysis of translation. 

Undoubtedly, the features and organisms examined in this work represent only a 
starting point for a deeper and comprehensive understanding of translational 
regulatory mechanisms acting both in cis and in trans. Thus, features such as mRNA 
                                                           
3 For a more dilated discussion about the use of riboAbacus in predicting protein abundance please refer to 
"RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from 
mammalian transcriptomes" by Lauria et al., reported in section 2.1. 
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secondary structures RBP interactions and should be investigated in a broader range of 
species. I will integrate riboAbacus and riboSim adding the two abovementioned 
features taking advantage of SHAPE and CLIP data for mRNA secondary structures and 
RNA binding protein, respectively. Then, to unearth potential differences in ribosome 
number and localisation throughout evolution, I will estimate the amount and the 
position of ribosomes along mRNAs for an extended collection of organisms. Finally, I 
will compare the outcomes of the models to experimental data from different 
conditions (e.g. physiological, pathological or stress conditions) to find a direct 
connection between the considered features and possible alterations in ribosome 
arrangement within polysomes.  

From a computational point of view, to provide extended simulations of translation 
and lighten the current assumptions, riboAbacus and riboSim can be improved 
including the initiation phase (e.g. taking into account the scanning of the 5’ UTR by 
the ribosomal small subunit 40S and the termination steps). Finally, I will integrate 
riboAbacus and riboSim to combine the advantages of the two models e.g. the speed 
of the deterministic approach and the possibility to easily incorporate multiple 
features of the stochastic one. 

Concluding, my results pinpoint the importance of a double approach based on 
deterministic and stochastic models for better understanding the role of translational 
regulatory elements in tuning polysome organization throughout evolution. 

Analysis of ribosome profiling data, and application to unravel at single 
nucleotide resolution the mechanism leading to translational defects in 
spinal muscular atrophy  
I previously discussed the widespread diffusion of RiboSeq for the study of translation 
with unprecedented resolution123,150 and for the extraction of detailed information 
about position and fluxes of ribosomes along the mRNAs140–142at transcript-level 
126,163,166. Much of this information relies on the ability to determine the exact 
localization of the P-site within ribosome protected fragments (reads). The P-site offset 
is of crucial importance for a wide range of RiboSeq analyses such as verifying the 
trinucleotide periodicity of the ribosome along the coding sequence123,180, derive 
accurately estimations of codon usage bias and translation pauses170,184 and reveal 
novel translated regions in known protein coding transcripts or ncRNAs165–167. Despite 
the many efforts aimed at dealing with ribosome profiling data, some aspects such as 
statistical procedures for the extraction of meaningful positional information still need 
to be computationally addressed. In particular, significant read accumulations along 
the mRNAs may be related to ribosome slowdown82,253 and ribosome stalling97,254, two 
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scenarios connected to many pathologies such as neurodegenerative diseases47,255, 
diabetes and multi-systemic failure256. 

Recently, many biases introduced by the alignment and the preprocessing of ribosome 
profiling fragments have been discussed190,191. For example, ambiguous reads mapping 
to mRNA isoforms, missing normalizations and alignment of selected subsets of 
reads193–195 may lead to very noisy and misleading occupancy profiles, making it 
difficult to identify regions truly associated to ribosome pauses and slowdowns. Albeit 
a few procedures were proposed to improve data analysis61,170,196, a conclusive 
approach for the extraction of meaningful biological information is still missing. 

Overall, these considerations prompt the development of riboWaltz and riboScan, two 
computational tools for accurate analyses of ribosome profiling data. More in detail, 
riboWaltz is an R package aimed at identifying the optimal P-site position within the 
reads, while riboScan is a pipeline dedicated to the extraction of those regions of the 
mRNAs with a statistically significant enrichment of ribosome protected fragments 
(namely ribosome hot-spots). In this section I will discuss the results obtained applying 
the two pipelines in a case study, which is ribosome profiling assays performed on 
healthy and SMA-affected mouse brains as well as SMN-specialized ribosomes.  

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by genetic 
alterations of the Survival of Motor Neuron gene (Smn) that induce the production of 
low level of SMN protein243. Recent findings demonstrated the relationship between 
SMN and the translational machinery272 and its association to polysomes in vivo245 and 
in vitro246. Moreover, the Laboratory of Translational Architectomics (IBF-CNR, Trento) 
has demonstrated that SMN is tightly associated to ribosomes, highlighting a still 
unknown role of this protein in the cytoplasm and translation. Nevertheless, a clear 
mechanism connecting SMN and translation has not yet been established.  

To identify possible mislocalization of ribosomes enrichments along transcripts in 
early-symptomatic SMA brains, I took advantage of two ribosome profiling techniques, 
one collecting ribosome footprints from ribosomes obtained from polysomal fractions 
(Poly-RiboSeq)159, the other selecting actively translating ribosomes in polysomal 
fractions (Active-RiboSeq) by using a new technology called RiboLaceTM, developed by 
IMMAGINA Biotechnology. First of all I applied riboWaltz to all the datasets to assess 
that both Poly-RiboSeq and Active-RiboSeq in the two conditions are capturing 
ribosome protected fragments on the coding sequence. For the first time, the ability of 
Active-RiboSeq in extracting bona-fide ribosome protected fragments was 
demonstrated by verifying the enrichment of ribosome P-sites along the CDS with 
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respect to UTRs (Figure 4.5), and the presence of a clear trinucleotide periodicity123,263 
confined in the CDS of transcripts (Figure 4.6). The meta-profiles in Figure 4.7 revealed 
an increased signal on the 5th codon, especially in the Active-RiboSeq samples. A signal 
enrichment in the same position have been already observed in several papers263,278,279 
and accurately investigated by Han and collaborators277, that attributed the early 
ribosome pause to the geometry of their exit tunnel for productive translation. 
Interestingly, they claim that a pause in this position is necessary to reduce the risk of 
further ribosome drop-off, resulting in incomplete translation events. In light of this 
hypothesis, the presence of a peak on the 5th codon can be considered a positive 
indicator of successful translation. 

I also explored the potential connection between this result and the nucleotide 
composition of mRNAs performing a sequence enrichment analysis around the 5th 
codon for the Active-RiboSeq assay. In accordance to the results obtained by Han and 
collaborators277, no statistically significant enriched sequence emerged, leading to the 
conclusion that the nucleotide composition of the mRNAs do not account for a 
slowdown of the ribosomes at the beginning of the coding sequence in early 
symptomatic mice. This result suggest that other mechanisms or molecules might be 
responsible for this highly specific pause. 

Following the approaches used by Han and collaborators277 for the computational 
analysis of this phenomena, I computed the ratio between the signal on the first 5 
codons and the remaining part of the coding sequence for all the selected transcript. 
Figure 4.8 shows a significant increment of the ratio distribution in Active-RiboSeq with 
respect to Poly-RiboSeq for both the conditions and, interestingly, an increase in the 
SMA sample with respect to the control only for actively translating ribosomes. The 
difference between the two techniques may be associated to the presence of non-
translating stalled ribosomes97,254,295 along the CDS, that are particularly found in 
neuronal tissues, that are captured by Poly-RiboSeq protocols but not by the 
RiboLaceTM technology. The increased ratio of active ribosomes detected in the SMA 
sample may also be attributes to lower signal on the CDS caused by ribosome drop-off, 
an event that has been widely investigated from both experimental99,100,296 and 
computational point of views86,87,230,297. Another explanation may be the absence of 
local but functional ribosome slowdowns induces by SMN, similarly to what have been 
observed for FMRP in the context of the Fragile X Syndrome47. 

To better investigate whether a potential mislocalization of ribosomes along the 
mRNAs at this stage of the disease is connected to the loss of the physiological role 
exerted by SMN in translation I employed riboScan. I detected statistically significant 



148 
 

enriched regions in ribosomes (both hot-spots and peaks) and searched for any 
difference between control and SMA affected mice. 

Interestingly, the analysis of the peaks detected along the coding sequence for Active-
RiboSeq (Figure 4.9) support the hypothesis of ribosome drop-off caused by loss of 
SMN. In fact, I demonstrated the presence of a reduced number of peaks and an 
increase in the distance between consecutive peaks in the SMA sample, in agreement 
with ribosome drop-off during the elongation phase. 

In addition, I revealed strong connections between significant enriched regions along 
the 3’ UTR and the development of the nervous system in early symptomatic mice 
(Figure 4.10 and Figure 4.11). In absence of further experimental validation, this result 
should be taken with caution, yet it leads to some very interesting causative 
hypothesis: readthrough of the stop codon89,280, non-translating ribosomes sliding on 
the 3’ UTR and even the presence of reads associated to clusters of RNA binding 
proteins. The first two hypotheses may lead to the production of non-functional 
proteins89 and short peptide produced by post-termination ribosomes298 after 
translation reinitiation in the 3′ UTR299,300, respectively. Both possibilities point to the 
observed ribosome enrichment along the 3’ UTR as a crucial determinant in the 
development of SMA, potentially related to defects in the termination phase of 
translation. To test this hypothesis in the Laboratory of Translational Architectomics 
(IBF-CNR, Trento) experimental validations using cell lines depleted by SMN301 and 
stop codon readthrough assays302 have been planned. 

Even though the unexpected increase in 3’UTR signal in SMA has no clear explanation, 
I performed an enrichment analysis with Gene Ontology terms, KEGG and REACTOME 
pathways on the subpopulation of genes presenting enriched regions on 3’ UTR of the 
SMA sample (Figure 4.13). Strikingly, the results show a sizeable set of biological terms 
associated to neuro-development, cell signalling, dendrite and axon guidance 
mechanisms. Remarkably, many terms supports previous observations of SMN-related 
defects in the transport of mRNA and RBPs303–305, components of the translational 
machinery244 and β-actin mRNA in the growth cone of SMA-affected motor neurons306.  

An emerging hypothesis connecting the observed ribosome enrichments along the 3’ 
UTR and ribosome drop-off in SMA-affected mice is the lack of SMN-driven controls of 
translation. Lower level of SMN may induce a dysregulation of both translation 
elongation, termination and possibly ribosome recycling, in line with recent studies 
suggesting the existence of specialized ribosomes68,69 that can be post-translationally 
modified57. 
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To deeper examine the role of SMN in translation in healthy mouse brains, I analysed 
data obtained by SMN-specific RiboSeq performed after sub-fractionation of 
ribosomes followed by immunoprecipitation of SMN-specialized ribosomes. A pool of 
mRNAs enriched in SMN-specialized ribosomes with respect to IgG-aspecifically 
associated transcripts was identified and its connection with neuro-related processes 
demonstrated (Figure 4.14). For mRNAs enriched in SMN-specialized ribosomes, I 
showed the presence of two distinct populations of reads (Figure 4.15A): long (32-35 
nucleotides) and short (23-26 nucleotides), that has been already associated to two 
different ribosome conformations23,171,285 characterizing different stages of translation. 
Moreover, an accumulation of mapping reads along the coding sequence emerges 
(Figure 4.15B) although it is not associated to a trinucleotide periodicity (Figure 4.15C 
and D). This observation, coupled with the high ratio between the P-sites on the first 5 
codons and the P-site on remaining part of the coding sequence (median >5) displayed 
in Figure 4.15E, points to a major role of SMN in modulating polysomes activity at the 
very beginning of the translation of a transcript by directly controlling ribosomes at the 
translation initiation phase and during the elongation stage of the very first codons. 

Further confirmations of this hypothesis arise from the analysis of the two populations 
of reads (long and short) associated to SMN-specialized ribosomes (Figure 4.16A and 
B). By a meta-gene analysis, I demonstrated that the longer reads mainly align on the 
translation start site, while the shorter reads show accumulation around the 5th codon 
of the coding sequence with a -1 frameshift. The different but exact localization of long 
and short reads clearly points to multiple conformations of SMN-interacting ribosomes 
along the CDS. In particular, the -1 frameshift associated to short reads around the 5th 
codon suggests a rotated state of ribosomes due to the proximity of the tRNAs 
accommodated in the A and P-site (Figure 4.16C), as already discussed by Matsuo and 
colleagues23 and Sulima and collaborators285. From these results, an hypothesis of the 
mechanistic role of SMN in controlling translation initiation has been outlined (see 
Figure 4.17): SMN controls the translation of the first 5 codons and the stabilization of 
the ribosome conformation in a P/A hybrid state on the 5th codon, inducing a 
temporary ribosome stalling before proceeding with the productive elongation of the 
rest of the transcript. This hypothesis is also supported by the meta-gene analysis of 
the transcripts enriched in SMN-specialised ribosomes (Figure 4.18). In fact, meta-
profiles of Active-RiboSeq data show a lack of reads on the 3rd codon of the coding 
sequence in absence of SMN with respect to the control, and the loss of the 
trinucleotide periodicity on the CDS. These findings confirm an altered dynamics of 
actively translating ribosomes at the beginning of the coding sequence caused by SMA 
i.e. when SMN expression is lost (Figure 4.19). 
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Remarkably, the possible contribution of SMN in regulating translation initiation 
coupled with the presence of significant enriched regions on the 3’ UTR also point to 
an explored role of SMN as a major determinant in ribosome recycling12,24,25,27,286 in 
physiological conditions.  

Finally, by intersecting the SMN-specific ribosome profiling data with Poly-RiboSeq and 
Active-RiboSeq on healthy and SMA-affected mouse brains, an intriguing link between 
SMN enriched genes and down-regulated genes in Active-RiboSeq SMA data emerged 
(Figure 4.20A). The results of term enrichment analyses showed that, focusing on 
motor neuron diseases-related terms (Figure 4.20B), most of them are connected to 
genes enriched in SMN and down-regulated in the SMA sample in Active-RiboSeq but 
not in Poly-RiboSeq. This confirms a strong relationship between the expression of 
SMN and positive translation of a specific pool of transcript, which is disrupted in SMA 
disease possibly due to SMN loss. Remarkably, the SMN enriched genes are also 
associated to term specifically related to the spinal muscular atrophy from the OMIM 
database. This set includes smn1 (see Table 4.1), i.e. the gene that encodes for SMN, 
indicating a possible auto-regulatory feedback control of SMN expression, already 
discussed by Workman and collaborators288. 

In summary, the present study shows how the most classical computational assays for 
quantitative examination of ribosome profiling data (e.g. enrichment analysis) can be 
optimally integrated with original and dedicated pipelines focused on the positional 
aspect of the analyses. Applying this tools to the investigation of RiboSeq assays 
performed on healthy and SMA-affected mouse at the early-symptomatic stage of the 
disease, I discovered a possible mechanism of action of SMN that is in nice accordance 
with previous observation about possible SMN-related dysregulations of local protein 
synthesis in neurons307–309. Indeed, lack of controls at very first initial phases of 
translation may be also the cause of the hypothesised ribosome drop-off and stop 
codon readthrough observed in SMA-affected mouse brains, reinforcing the evidences 
indicating SMN as a possible regulator of ribosome and polysomes activity. 

Despite the many hints provided by riboWaltz and riboScan to understand 
translational defects in SMA, the biological factors explaining the abovementioned 
ribosome stalling, slowdowns and readthrough can be identified only through 
additional investigations. To this aim, I would like to further examine the observed 
accumulation of SMN-specialised ribosome around the 5th codon of the coding 
sequence: I will look for recurring motifs in the nucleotide sequences immediately 
downstream the 5th codon of the CDS associated to mRNA secondary structures that 
may induce ribosome slowdown. 
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Additional sequence enrichment analyses are also required to explore the hypothesis 
of SMN-related defects in the transport of mRNAs. I will look for binding motifs within 
the 3’ UTR of the transcripts enriched in SMN-specialised ribosomes known to be 
associated to RBPs involved in axonal mRNA transport. 

A critical point of this work consists in the hot-spots and peaks detected along the 3' 
UTR that must be further investigate to either confirm or disprove the presence of 
ribosomes downstream the coding sequence. For this reason, I will look for the 
trinucleotide periodicity on the 3' UTR employing only the reads contributing to the 
SMA specific peaks detected in this region. This can be approached by computing the 
percentage of P-sites corresponding to the three reading frames, generating the meta-
profile of the transcripts showing at least one peak on the 3' UTR uniquely detected in 
the SMA sample. Moreover, to investigate the role of the 3’ UTR in the development of 
SMA and possible defects in the termination phase of translation experimental 
validations using cell lines depleted by SMN and stop codon readthrough assays have 
been planned in my Lab. 

Finally, to enhance the previous analyses and detail possible mechanisms of the 
disease I will progressively reduce the quantity of examined data. First, I will identify 
specific subsets of transcripts, e.g. showing significant differences in the number or 
localization of reads, hot-spots and peaks along the mRNAs in SMA-affected mice with 
respect to the healthy ones. Second, I will further narrow the investigation by single-
transcript analyses. 

Concluding, although experimental validations of the obtained results are required, the 
present work provides a new integrated scenario for better understanding translation 
and a first step for paving the way for understanding fine alteration of translation in 
diseases. 
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Appendix 
Poly-RiboSeq and SMN-specific RiboSeq 
Cytoplasmic lysates were prepared pulverizing frozen mouse brains in a pestle and 
mortar cooled by liquid nitrogen and dissolving the powder in lysis buffer (10 mM 
NaCl, 10 mM MgCl2, 10 mM Tris-HCl pH 7.5, 1% Triton-X100, 1% NaDeoxycholate, 0.6 
U/µL RNase inhibitor, 1 mM dithiothreitol, 200 µg/ml cycloheximide, 0.005 U/ µL 
DNAse I). Lysates were clarified by two following centrifugations.  

For Poly-RiboSeq the brain lysates were then loaded in a 15-50% linear sucrose 
gradient and polysomes separated by ultracentrifugation. Polysomal fractions were 
pooled and digested with Rnase I for 2h at 4°C. Ribosome Protected Fragments (RPFs) 
were extracted with acid-phenol:chloroform:isoamylalcohol and isopropanol 
precipitation.  

For SMN-specific RiboSeq the concentration of NaCl of the brain lysates were 
increased to 150 mM and the lysates were digested with RNAse I for 45 min at RT by 
gentle agitation. The digested lysates were then centrifuged for 67 min at 100000 rpm 
at 4°C in an ultracentrifuge. The pellets were resuspended in resuspension buffer (150 
mM NaCl, 10 mM MgCl2, 10 mM Tris-HCl pH 7.5, 1% Triton-X100, 1% NaDeoxycholate, 
0.6 U/µL RNase inhibitor, 1 mM dithiothreitol, 200 µg/ml cycloheximide, 0.005 U/ µL 
DNAse I) and incubated with 2 micrograms of SMN antibody (BD Bioscience, cod. 
610646) for 1.40h at 4°C on rotating wheel. Protein G Dynabeads (ThermoFisher 
Scientific) were then added and the solutions incubated for 1h at 4°C on a rotating 
wheel. The beads were then wash twice on magnet to remove unbound 
proteins/ribosomes and the SMN-specific RPFs were extracted by Trizol.  

The extracted RPFs (both from Poly-RiboSeq and SMN-specific RiboSeq) were size 
selected (25-35 nt) by UREA Page, treated to remove 3’ phosphate, ligated to the 3’ 
adaptor and purified again by UREA page. Ligated RPFs were retrotranscribed and the 
cDNA circularized. Libraries were finally amplified by PCR using Illumina PCR Primer 
Index. Libraries were sequenced on an Illumina HiSeq2500. 
 

Ribosome profiling analysis 
Ribosome profiling samples from healthy and SMA-affected mouse brains were 
sequenced with the Illumina HiSeq 2000 platform. Raw reads were processed by 
removing 5’ adapters CTGTAGGCACCATCAAT, discarding reads shorter than 20 
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nucleotides and trimming the first nucleotide (using Trimmomatic v0.36). The reads 
mapping on the collection of mouse rRNAs and tRNAs (downloaded from the SILVA 
rRNA and the Genomic tRNA databases respectively) were removed. The remaining 
reads were aligned to the mouse transcriptome using the Gencode M6 transcript 
annotation, based on ENSEMBL version 81 and on GRCm38 genome reference. All 
reads aligning to the very same region were collapsed to avoid potential PCR 
duplicates, and only strand-specific reads were kept. All the alignments were 
performed with Bowtie2 (v2.2.6) employing the default settings. 
 

Differential translation and annotation enrichment analyses 
The analysis of differential expression between healthy and diseased mice and 
techniques (Poly- and Active-RiboSeq) were performed by differential expression tests 
provided by the EdgeR package310. Annotation enrichment analyses were performed 
using the clusterProfiler311 package and the EnrichR tool312. Table A1 displays the 
number of reads left after each step of the alignment. 

 
Conditon 

 
Technique 

 
Replica 

Number of reads (x106) 
Initial 

amount 
Clipping / 
trimming 

rRNA 
align. 

tRNA 
align. 

mRNA 
align. 

Healthy 

Poly 
RiboSeq 

1 58.23 56.30 5.55 5.53 2.63 

2 125.94 113.64 14.07 14.03 10.62 

Actve 
RiboSeq 

1 47.96 32.91 5.24 4.66 2.09 

2 83.88 75.94 29.27 5.32 0.86 

SMN 
specific 
RiboSeq 

1 49.29 40.65 7.41 7.29 2.57 

2 33.47 29.77 4.01 3.96 1.26 

3 85.41 60.50 15.49 15.15 6.63 

SMA 
early 

symptomatic 

Poly 
RiboSeq 

1 80.65 77.64 7.76  7.73 5.30 

2 111.92 105.72 11.09 11.06 7.82 

Actve 
RiboSeq 

1 87.59 69.87 28.72 5.45 0.37 

2 90.19 75.51 33.81 5.95 0.38 
 

Table A1. Number of reads from RiboSeq assays at each step of the alignment process. 
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