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ABSTRACT

Quantifying the amount of information communicated between neural population is crucial to
understand brain dynamics. To address this question, many tools for the analysis of time series of neural
activity, such as Granger causality, Transfer Entropy, Directed Information have been proposed. However,
none of these popular model-free measures can reveal what information has been exchanged. Yet,
understanding what information is exchanged is key to be able to infer, from brain recordings, the nature
and the mechanisms of brain computation. To provide the mathematical tools needed to address this issue,
we developed a new measure, exploiting benefits of novel Partial Information Decomposition framework,
that determines how much information about each specific stimulus or task feature has been transferred
between two neuronal populations. We tested this methodology on simulated neural data and showed that
it captures the specific information being transmitted very well, and it is also highly robust to several of the
confounds that have proven to be problematic for previous methods. Moreover, the measure was
significantly better in detection of the temporal evolution of the information transfer and the directionality
of it than the previous measures. We also applied the measure to an EEG dataset acquired during a face
detection task that revealed interesting patterns of interhemispheric phase-specific information transfer.
We finally analyzed high gamma activity in an MEG dataset of a visuomotor associations. Our measure
allowed for tracing of the stimulus information flow and it confirmed the notion that dorsal fronto-parietal
network is crucial for the visuomotor computations transforming visual information into motor plans.
Altogether our work suggests that our new measure has potential to uncover previously hidden specific

information transfer dynamics in neural communication.
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CHAPTER 1: INTRODUCTION

Cognitive functions arise from the dynamic coordination of neural activity, both across neurons
and populations within a local circuit and across large-scale networks (Bressler & Menon, 2010; Panzeri,
Macke, Gross, & Kayser, 2015; Varela, Lachaux, Rodriguez, & Martinerie, 2001; von der Malsburg, Phillips,
& Singer, 2010). Tracking how neural populations and brain regions interact and exchange information,
and what information they exchange, is therefore crucial for modern neuroscience. It is, in particular,
crucial for being able to infer from brain activity recordings both the nature of neural computations made

by the brain and the putative circuit mechanisms that lead to these computations.

There are many examples that serve to illustrate the importance of establishing how neural
populations communicate and what they communicate. An important example is the study of resting state
networks in humans and animals from functional magnetic resonance imaging (fMRI) recordings. These
studies (Biswal, Zerrin Yetkin, Haughton, & Hyde, 1995; Dosenbach et al., 2007; Fox & Raichle, 2007; Fox
et al,, 2005; Raichle, 2015) have revealed consistent patterns of brain co-activation when a human subject is
at rest, and this has led to important results about default modes of communications across key brain
structures and to many important and yet unresolved questions about how information flows across the
whole brain both at rest and when performing specific tasks (Buckner, Andrews-Hanna, & Schacter;
Greicius, Krasnow, Reiss, & Menon, 2003; Greicius, Supekar, Menon, & Dougherty, 2009; Liska, Galbusera,
Schwarz, & Gozzi, 2015; Lu et al., 2012). Another example includes the study of the flow of different kinds
of visual information across the ventral and cortical dorsal stream in primates and humans (Aggleton, Keen,
Warburton, & Bussey, 1997; Andermann, Kerlin, Roumis, Glickfeld, & Reid, 2011; DiCarlo, Zoccolan, &

Rust, 2012; Gallardo et al., 1979; McDaniel, Coleman, & Lindsay, 1982; Tafazoli et al., 2017). Researchers



have found that different features of visual information, such as “what” and “when” information, seem to
each travel and be processed along a separate pathway (the “when” information in the dorsal pathway, the
“what” information in the ventral pathway). Moreover, researchers have used information about the
anatomical connections, the progressive latency of visual responses across cortical areas, and the changes
in neural response tuning to objects to infer putative information processing pathways along each stream.
For example, in the ventral stream scientists have individuated a series of areas, culminating with inferior
temporal cortex in monkeys, with progressively longer response latencies to complex images (such as
objects and faces) and progressively increasing invariance of responses to transformations of these objects
(Alemi-Neissi, Rosselli, & Zoccolan, 2013; DiCarlo & Cox, 2007; Rosselli, Alemi, Ansuini, & Zoccolan, 2015;
Vinken, Vermaercke, & de Beeck, 2014; Zoccolan, Oertelt, DiCarlo, & Cox, 2009). These facts have led to
elaborate theories, partly influenced by machine learning and partly influencing new developments in
machine learning (Cadieu et al., 2007; DiCarlo et al., 2012; Hassabis, Kumaran, Summerfield, & Botvinick,
2017; Riesenhuber & Poggio, 1999; Serre, Oliva, & Poggio, 2007; Serre, Wolf, Bileschi, Riesenhuber, &
Poggio, 2007), of how information is transmitted and is transformed across ventral brain areas. However,
the exact circuit mechanisms that lead to this putative information flow across the visual system remain
largely undetermined and will need to be addressed with simultaneous recordings from neural populations
across several stations of the ventral pathway, coupled with tools that can established exactly what specific
aspects of visual information is being passed from one population to the next. Other important open
problems in neuroscience that require being able to map information flow in neural circuits include
understanding how information flows across different laminae of the cortical circuit. It has been long
known that cortical microcircuits exhibit a layer organization that is found across many areas, and it has

long been hypothesized that this organization is key to performing canonical cortical computations (Bastos



et al.,, 2012; Callaway & Marder, 2012; Douglas, Martin, & Whitteridge, 1989). However, to understand if
and how these canonical computations are performed, it is necessary to be able to identify and measure the
flow of specific information across the canonical microcircuit (Bosman et al., 2012; Klink, Dagnino, Gariel-

Mathis, & Roelfsema, 2017; Lamme & Roelfsema, 2000; Van Kerkoerle et al., 2014).

Due to the importance of understanding the flow of information across neurons and populations
of neurons, there have been many studies attempting to develop and use mathematical techniques for the
analysis of simultaneous neural recordings have been developed and used for this issue. As reviewed e.g. in
(Horwitz, 2003), the first technique that was used to study the neuronal interaction was cross correlation.
It was used both with electrophysiological recordings from multiple units (AM Aertsen, Gerstein, Habib,
& Palm, 1989; AMH] Aertsen & Preissl, 1991; Gerstein & Perkel, 1969) and with time series obtained from
EEG (Adey, Walter, & Hendrix, 1961; Barlow & Brazier, 1954; Gevins et al., 1985). Later, the Granger
Causality (Granger, 1969) was adopted to describe putative causal information transfer between time series
of brain recordings. For example, it has been used to study information flow between neural activity
captured by different EEG sensors (Brovelli et al., 2004; Kaminski, Ding, Truccolo, & Bressler, 2001), or
to study information flow between neural activity captured by recordings of fMRI activity over many brain
regions (Roebroeck, Formisano, & Goebel, 2005; Sato et al., 2006), or finally to study information flow
across laminae of the cerebral cortex (Bosman et al., 2012; Van Kerkoerle et al., 2014; Van Kerkoerle, Self,
& Roelfsema, 2017). Concurrently, approaches based on Shannon’s Information Theory (Shannon, 1948),
have been developed in the dynamical systems and time-series analysis community to measure information
flow across time series . Such measures include Directed Information (DI) (Amblard & Michel, 2011;
Massey, 1990) and a similar quantity — Transfer Entropy (Schreiber, 2000). It has also been adopted in

neuroscience, e.g. on electrophysiological signals (Pereda, Quiroga, & Bhattacharya, 2005) or the domain
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of fMRI (Lizier, Heinzle, Horstmann, Haynes, & Prokopenko, 2011). Other model-based approaches to
estimate information flow include Dynamic Causal Modelling (DCM) (Friston, Harrison, & Penny, 2003).
These methods are based on fitting a specific neural circuit model to the joint time series of neural activity
from multiple populations, and then to infer communication flow from the model parameters and the

model structure that best fit the data.

A problem with the above-mentioned methods of measuring or inferring information flow from
time series of neural activity is that these measures are good to quantify if different neural populations
exchange information and how much information they exchange. However, a major problem of these
existing methods is that they cannot quantify what information has been exchanged. In the example of the
ventral visual system detailed above, these methods would for example be able to tell if area A sends
information to area B, but they would not be able to tell whether area A is sending for example information
about the shape of the face or its color, or whether this information is sent in a transformation-invariant or

in a transformation independent way.

To address this void in the literature, which is key to make progress on understanding circuit
operations from brain recordings, in this thesis we develop a measure that quantifies explicitly how much
information area A sends to area B about specific stimulus features, such as those spelled out in the example
above. We call the measure rDFI because it builds on an idea of measure called Directed Feature
Information (DFI) (Ince et al., 2015) that was created, based on the Shannon’s Information Theory (Cover
& Thomas, 2012; Shannon, 1948), with the intent to address the same problem. However, we redefined it
as a redundancy (thus rDFI) in scope of the novel Partial Information Decomposition framework of

(Williams & Beer, 2010). rDFI exactly measures how many bits of information about a particular stimulus



feature were transferred from an area A to an area B. This thesis is organized as follows. In chapter 2 we
briefly review existing methods for the quantification of how much information has been exchanged by
neural populations from the analysis of the time series of their joint recordings. In chapter 3 we extensively
test the new methods, and compare it to existing methods. We test the methodology both with extensively
numerical simulations that express different scenarios for information transmission, and with EEG and
MEG recordings. The EEG dataset is a dataset acquired during a face detection task that revealed interesting
patterns of interhemispheric phase-specific information transfer. In the MEG dataset of visuomotor
associations we analyzed high gamma activity. Our measure allowed for tracing of the stimulus information
flow and it confirmed the notion that the dorsal fronto-parietal network is crucial for the visuomotor
computations transforming visual information into motor plans. Finally, in chapter 4 we discuss the

possible implications of this work for brain research.



CHAPTER 2: A BRIEF REVIEW OF EXISTING METHODS FOR QUANTIFYING

INFORMATION FLOW ACROSS NEURAL POPULATIONS

Here we present a succinct review of the two most widely used model-free statistical methods to

quantify effective connectivity, highlighting both their strengths and how they need to be improved.

The first, and perhaps the most used measure of putative causality from time series is Granger
causality (GC). Granger causality builds on the causality definition of (Wiener, 1956) that was
operationalized by (Granger, 1969), and has been widely adopted by the neuroscientific community
(Brovelli et al., 2004; Kaminski et al., 2001; Roebroeck et al., 2005). The most common implementation of
Granger causality is modelling the two random variables (neuronal signal) using linear autoregressive
process models and comparing the coefficients of dependence of one process on another or as shown by
(Geweke, 1984) computing the logarithm of the ratio of respective residuals of those processes. Granger
causality from time series X to time series Y , in intuitive terms, measures how much our ability to predict
the present value of time series Y is increased, with respect to what we can predict only based on the past of
Y , when we know the past of time series X . Thus, Granger causality quantifies how much the past of X
influences the present value of Y after discounting the autocorrelation of Y . Granger causality has a rather
intuitive definition, readily-available means of implementation and it is well established as an analysis
method within the community (Bressler & Seth, 2011). However, it suffers from certain limitations. Granger
causality by its definition only captures linear interactions in the data and requires relatively low levels of
noise in the data (Nalatore, Ding, & Rangarajan, 2007). Moreover, and importantly as far as this Thesis
work is concerned, GC measures putative causal interactions or information transfer from X to Y, but it

cannot tell if the transmitted information is about a certain stimulus or task related features or not. For



example, it could be that area X transmits to area Y only internal state information that has nothing to
do with the task or stimulus variables of interest. Granger causality would not be able to distinguish this
possibility from the possibility that instead X is transmitting information about a specific stimulus or task
relevant variables to Y , and it would not be able to determine which features” information is transmitted

and which is not.

Transfer Entropy (Schreiber, 2000) and Directed Information (Massey, 1990) are rigorous
implementations of the Wiener causal principle that make use Shannon’s information theory (Shannon,
1948). Assuming that there is no instantaneous transfer between the neurons and using only one value for
the past for Directed Information instead of a sum across all past values, the two measures; Transfer Entropy
and Directed Information, are equivalent (Amblard & Michel, 2011). Since these are indeed assumption of

this work, we will consider only one of these measures in the remaining text.

Focusing on Directed Information, the definition of this quantity is described next. Consider two
time series, with a common time domain, X and Y (for the purpose of this thesis they are time series of

simultaneously recorded neurophysiological signals but the definition is in principle general). Directed
Information from X to Y is then defined as the reduction of uncertainty of the present value Y, of Y,

given the knowledge of its past, by the knowledge of the past of X .

(2'1) DI (X _>Y) = H(Yt |Ypast)_ H(Yt |Ypast’ Xpast)

Where H(Y,|Y .q) quantifies the uncertainty of Y given its past defined as the Shannon’s

conditional entropy.

(22) H(Y [ X)==2_ p(x)D_ p(y|x)log,(p(y|X))

xeX yeY
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For completeness, the unconditional entropy used in the next equation is then

(2.3) H(X) == p(x)log,(p(x))

xeX

It can be shown that Directed Information can be reformulated as a mutual information between

the past of X and the present of Y conditioned on the pastof Y .
(24) DI(X > Y) = 1(Y;; X o Y past)
Where I(Y,; X past |Ypast) is the Shannon’s mutual information, which is defined as
(2.5) 1(X;Y)=H(X)-H(X]Y)
and the conditional mutual information is defined followingly:
(2.6) 1(X;Y|Z2)=H(X|Z)-H(X]Y,2Z)

This definition of Directed Information is perhaps more intuitive for understanding of Directed
Information as a measure of information transfer given that entropy can be seen as a measure of
information in a time series. Then Directed Information from X to Y is defined as the amount of
information shared between the past of X and the present of Y that is novel with respect to the past of Y
. However, neither (eq. 2.1) nor (eq. 2.4) are usually sufficient for estimating Directed Information in
practice because of the potential complexity of estimations of the probability distribution of the full past of
X and Y . Therefore, it is customary to limit the pasts to a low number of values or to choose a single value
in the past that occurred with a certain delay of d time points (Schreiber, 2000), resulting into the following
definition:

(2.7) DI(X > Y) = 1(Y; X, |Y.q).

8



Unlike Granger causality, Transfer Entropy and Directed Information have the advantage that they
rely on the full probabilities of the time series (see above equations) and thus do not make any a priori
assumption about the form of the interaction between the two time series, and therefore they are potentially
able to capture the effect of arbitrarily complicated types of coupling. However, even these information
measures have certain limitations. The limitations come with the fact that it is in practice difficult to sample
the full joint probabilities of the time series with all possible lags between them. Thus, these quantities are
usually estimated incorporating a number of parameters (like the delay in the above equations and time
lags in Granger Causality) that must be set “ad-hoc” by the data analyst and have the potential to
significantly influence the outcome of the method. Moreover, these quantities require larger amounts of
data than Granger Causality to be used and this restricts its application range, in particular when
multivariate extensions are considered (Vicente, Wibral, Lindner, & Pipa, 2011). Finally, like Granger
Causality, also Transfer Entropy and Directed Information suffer from the problem that they cannot reveal

what information is being transmitted.

In summary, even though Granger Causality, Transfer Entropy and Directed Information can
measure the amount of information transmitted from one neuronal population to another, they do not cast
any light on what do the neuronal populations communicate to each other. The closest one of the methods
to understand the content of the transmitted information, mentioned earlier, is Dynamic Causal Modelling.
For the way it fits the circuit models to the data, it can detect stimulus dependent information transfer.
However, none of its current implementations can distinguish which stimulus features were exactly
communicated. Also, it suffers from assumptions that might be hard to satisfy and therefore limit its wide

use across different scenarios.



It is quite intriguing that there was done a significant amount of work on understanding the content
and the coding of information in neuronal responses e.g. (Haxby, Connolly, & Guntupalli, 2014;
Kriegeskorte, Goebel, & Bandettini, 2006; Panzeri et al., 2015) but literature on understanding the content

of communication between neuronal populations is rather scarce.

The first preliminary proposal to address this issue was conceived by Stefano Panzeri and was
published by Ince and collaborators (Ince et al., 2015). The authors proposed a conditional measure of DI,
called Directed Feature Information (DFI), which quantifies features-specific (e.g., stimulus-type)
information transfer between neural signals (Ince et al., 2015). This measure will be defined mathematically
in the next section. However, and as we will show in detail by examples in the next chapter, the DFI suffers
from several severe conceptual problems. The first is that the DFI can be negative, therefore suggesting that
it might not capture the exact notion of information transfer since the meaning of a negative transfer is not
clear. DFI can be reformulated as an instance of a measure called Interaction Information (McGill, 1954)
or co-information (Bell, 2003), which negative values are considered to emerge from a synergy and positive
values from a redundancy being present in the system. It was shown that the standard Information Theory
cannot capture the notion of those effects of multivariate interaction between variables. It considers only
an interaction between two variables at a time and incorporates others only in conditioning that is aimed
to discount their effect on the original pair (Williams & Beer, 2010). After studying some previous concepts
trying to generalize the standard Information Theory to multivariate interactions between variables such as
Total Correlation (Watanabe, 1960) (used also under the name Multivariate Constraint (Garner, 1962),
Multiinformation (Studeny & Vejnarova, 1998) and Integration (Tononi, Sporns, & Edelman, 1994)), and
approaches based on correlations (Panzeri, Schultz, Treves, & Rolls, 1999; Pola, Thiele, Hoffmann, &

Panzeri, 2003), Williams and Beer proposed a method based on a lattice composed of non-negative partial
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information terms (Paul L Williams and Randall D Beer 2010). Their method solves the general problem
of dissecting a mutual information of a target and its set of predictors into nonnegative terms representing
unique, synergistic and redundant information separately (explained in detail later). Since it can be shown
that the information transfer can be formulated as a pure redundancy, this should allow for a precise
expression of the intended information transfer. The aim of this thesis is to develop a new measure of
information transfer that can distinguish between transferred stimuli and that is based on the novel

framework of (Williams & Beer, 2010).
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CHAPTER 3: DERIVATION OF A NEW MATHEMATICAL MEASURE OF WHAT

INFORMATION IS EXCHANGED BY POPULATIONS OF NEURONS

In this chapter, we will describe the derivation of our new measure. We consider two time series,
X and Y, representing the activity of two neuronal populations or brain regions, and a random variable
S representing the experimental (dependent or independent) variable we wish to study. The feature S
may be a stimulus type, a behavioral response or a task condition. Our goal was to develop a model-free
measure quantifying information transfer from X to Y that is about S . We reasoned that for such
transfer to occur there needs to be certain set of conditions satisfied. First, the sender of an information, X
in our case, has to contain that information at a past point in time. Second, also the receiver of the
information, Y , has to contain the information at a later point in time than the sender. Third, there needs
to be an information transfer between the sender and the receiver present at a point in time between the
presence of the information in X and its presence in Y . Finally, the information that is present in both
X and Y must be the same information and it cannot be present in Y at any time before the information

transfer, otherwise the transfer is not the origin of the information.

Here we summarize and formalize the idea. For a transfer of information about S from X to Y

the following predicates must be satisfied (Fig. 1):

1. The past of X (at time t; ) must carry information about S .
2. The present of Y (at timet, ) must carry information about S .
3. Information about S must be transferred from X toY between t, and t,

4. The past of X and the present of Y must share information about S that was not already present

in the pastof Y .
12
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Figure 1 - We reasoned that four key predicates must be satisfied in order for information transfer about a
certain stimulus S from X to Y to occur A. The mutual information between S and X or Y (blue and red line
in B) confirms satisfaction of the first two predicates; that in a past time t1 there was information about S in
X and that in the present (marked as t2) there is information about S in Y. The green line then determines
satisfaction of the third predicate by confirming an information transfer between X and Y that is aligned with
the presence of the information about S. There is no visualization of the fourth predicate because the measure

that could represent it is the subject of development in this thesis.

The first predicate is satisfied if there is an increase in the mutual information between S and the

pastof X, | (S; th) , as the mutual information guarantees presence of information that X and S share
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or in other words that X contains about S and vice versa. The second holds true if there is an increase in

I (S;Ytz) because of the same logic as in the first predicate. The third predicate is satisfied if the Directed

Information (DI), defined in (eq. 2.7), between the X and Y is non-zero. As a reminder, DI is the
information theoretic measure quantifying reduction in uncertainty about the value of Y gained from
observation of past values of X , that cannot be obtained by observing the past values of Y itself (Massey,
1990). As shown in (Amblard & Michel, 2011; Ince et al., 2015), DI is equivalent to Transfer Entropy
(Schreiber, 2000) in our conditions. The fourth predicate, however, remains challenging. Note, that a
candidate measure that satisfies the fourth predicate will most likely be indicative of the first three too. To
address the challenge of the fourth predicate, a measure called Directed Feature Information (DFI) was

introduced to quantify such information transfer:
(3.1) DFI Sxm( =DI,_,, - (DI, |S)

DFI expresses the difference between the total information transfer between X andY (DI, )
and the information transfer when the stimulus S is known (DI, _, |S ). The intuition behind the
formulation is that the first term quantifies all information that was transferred between X and Y and the
second one quantifies all information that was transferred while S is known and therefore the information
is not about S . Hence, after the subtraction, the remaining information is the transfer between X and Y
about S because all other transfer information was subtracted. In summary, DFI quantifies the amount of

new information transferred from X to Y that is related to the variations in S (Ince et al., 2015).

In fact, DFI can also be expressed as a co-information (Bell, 2003; McGill, 1954), or a redundancy

Red,, between X and Y at given time points with respect to S :

14



(32) DFI®, , =Redg (X.;Y, [Y,) = 1(S; X, [Y)+1(S;Y, [Y,) = 1(S; X,.Y, IY,)

Where t, <t, and t', <t,. Note, that past of Y can be taken from a different time point than the

past of X , and that it is a 3-variables problem with fixed S . DFI quantifies the difference between
information provided by the past of X and the present of Y when observed separately and together. Due
to synergistic effects, a phenomenon that allows for the total information provided by two variables to be
higher when observed together than when observed separately, DFI can become negative. Despite the fact
that DFI was successfully applied to detect stimulus dependent transfer (Ince et al., 2015), its property of

potentially being negative hinders its interpretation as the amount of information transfer.

For better understanding of causes and implications of what was stated directly above, consider an
information interaction of a system of two variables X and Y in the scope of the Shannon’s Information

theory (Fig. 2). The total amount of information in the system is quantified by the joint entropy H(X,Y)

(3.3) H(X,Y)=H(X|Y)+H()

Where H(X |Y) and H(X) are a conditional entropy and an entropy as defined in (eq. 2.2) and

(2.3).

15



H(X, Y)

H(X) H(Y)

Figure 2 - Information decomposition of a system of two variables

The amount of information that is contributed to the system by each variable separately is
quantified by its entropy H(X) and H(Y) respectively. Finally, the shared part of information in the

system is quantified by the mutual information of those variables 1(X;Y).

(3.4) 1(X;Y)=H(X)+H(Y)=H(X,Y)

The definition of mutual information follows the logic of summing both independent contributions
which together include the mutual information twice. Thus, by subtraction of the whole system, it is exactly

the mutual information that remains.

However, this decomposition captures only the total information in the system. In order for the
system of two variables to only quantify information about a single specific variable S, we need to replace
the entropies with mutual information with respect to S . Now, the total information about S in the system
is quantified by the mutual information 1(X,Y;S) and consistently, information contributed separately

by each variable is quantified by 1(X;S) and I(Y;S). Following the same construction as in the general
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case, the shared part of information between the variables is quantified by Redg(X;Y) (unconditional

version of (eq. 3.2))

(3.5) Redg (X;Y)=1(X;S)+1(Y;S)—-1(X,Y;S)

However, it can be shown that unlike mutual information, which is a non-negative quantity, Red

as defined here can be negative (Williams & Beer, 2010). Hence, the total amount of information in the
system about S can be larger than the sum of both individual contributions, despite the fact that the shared
part of information is included in the sum twice. Therefore, there must be an emergent information when
considering both variables together that is not present when they are considered separately. This
phenomenon is called synergy and the emergent information is called synergistic information. According
to these definitions, DFI corresponds to the difference between the redundancy (the shared part between
two variables) and the synergy between X and Y. Hence, DFI is not satisfactory measure for representation
of the fourth predicate since it clearly does not represent solely information that is shared between X and

Y.

In 2010, Williams and Beer introduced a new framework for information decomposition of mutual
information between a system of predictors and a target variable (Williams & Beer, 2010). It decomposes
the mutual information into nonnegative terms that, including other beneficial properties, differentiate
between redundant and synergistic contributions. This mathematical formalism is also known as Partial
Information Decomposition, or PID. To facilitate understanding, we first elaborate on the mutual
information between two predictors and a single target variable (more complex system follows). In our case,
all variables are represented by time series. Williams and Beer distinguished three types of contribution

(Fig. 3) to the information contained by two variables - predictors (here called A and B for distinction
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between the formalisms) with respect to the information about a third one - target (C ). If Aand B both
carry the same information about C, and therefore it suffices to know only one of them to fully determine
the mutual information between them and C, the information they both carry is called redundant (Fig.
3A). If A carries information about C that B does not, the information in A about C is called unique
(Fig. 3B) and it holds for B symmetrically. Finally, if neither of the variables provides information about
C separately, but they do provide information about C when observed together, it is called synergistic
information (Fig. 3C). An exemplar case of emergent synergistic information is when we assume that all
the variables are binary, probability of each predictor having value 0 or 1 is the same
pP(A=0)= p(A=1)=0.5, equivalently for B, and C = XOR(A, B). XOR here stands for the exclusive
OR operation. In this example, the knowledge of any of the predictors separately does not provide any
information about the target variable C as it retains equal chance of being 0 and 1. Only the knowledge of

both A and B together determines the value of C .
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Figure 3 - Visualization of all possible information interactions of two variables. The left column shows a wire
diagram that represent the scenario. The source can contribute either a letter or a digit and the number in
front of them determines with which probability it occurs. The right column determines the information
decomposition of the contribution of both sources. In agreement with (Williams & Beer, 2010) we use notation
{A} or {B} for unique information present in A and B respectively (the side fields in the decomposition
diagrams), { A}{B} for redundancy between them (the bottom field) and {AB} for their synergy (the upper
field). A represents a redundancy where both sources contribute exactly 1 bit of the same information (because

the chances for both lower and upper case letter are 0.5 and the sources are linked to each other) to C . In B
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the final outcome is composed of two letters that can both be either upper case or lower case and each source
determines case of a different letter. Therefore, each source contributes 1 bit of unique information to the
outcome. Finally, C depicts a synergistic scenario where both sources contribute 1 bit of synergistic information
because only the knowledge of both at the same time can determine the outcome of variable C . The knowledge
of any single one of them does not determine the outcome nor it changes the probability distribution of its
possible values. The figure was adapted from (Griffith & Koch, 2014).

Note that in order to compute the different contributions to a mutual information, it is enough to
be able to compute either the synergy or the redundancy because the rest can be then reconstructed from
the formalism that was known before. E.g. if we can compute the redundancy between A and B, then the
unique information contributed by a single source can be obtained by subtracting the redundancy from the
mutual  information  between  the  particular  source and the  target  variable
unique(A) = I (A;C) —redundancy(A, B) . The mutual information |(A;C) cannot contain any
synergy as the source Ais observed independently on B here. The synergy then comes trivially as it is the

only remaining part of the whole mutual information | (A, B;C) after subtraction of all the other parts.

The formalism of William and Beer builds on a measure of redundancy called 1, which is defined as:
(3.6) Iy (C:{AL A, .. AD) =D p(C) mAEnI (C=c;A)
c

Where | (C =c; A) is a quantity called specific surprise and it is defined followingly:

1 1
7) I(C=c;A) = log— '~
37) (C=cA) Zalp(a“){og @ Y p(CIa)}

Where a is one of all possible values of A. | .. quantifies redundancy in the form of information
that is common to all the sources A . To continue with the quantification of the decomposition we will

consider unique information to be a special case of redundancy (redundancy of a source with itself). This

20



will allow us to use the redundancy measure to quantify all information in the system. Indeed, it can be

shown that in this case |, is equal to a regular mutual information between the source and the target.

n

Note that |, does not quantify the unique contribution of a single part of the decomposition but all
redundant information among the sources it is given which can include other parts of the decomposition.

For example, as mentioned earlier, | . (C;{A})is equal to the mutual information between C and A

min
which, as we showed earlier as well, includes the redundant information shared by A and B . However, as
also shown above, it is possible to reconstruct the information contributed independently by all parts of the
decomposition by subtracting all the other parts that are included in them. This imposes a natural ordering
among all possible parts of the decomposition. All parts necessary for computation of an information
contribution of another part are preceding it. Following the logic of the example above, the redundancy

between A and B would precede the unique contribution of either A or B because its knowledge is

necessary in order to compute the unique contributions.

In order to distinguish between different parts of the decomposition, we will use this notation:
redundancy between sources A and B will be written as {A}{B}, unique information of a source A will
be {A} and synergy between A and B will be noted as {A, B}. We will call the set of all sources R and
the set of all parts of the decomposition based on those sources A(R). Note that since we will be only
computing | . for all elements of A(R), we only need to include such parts of the decomposition that
none is a superset of another as | i.e. redundancy of such part would be equal to the information

contained in the smaller set as adding more sources cannot increase the total redundancy. Also, to avoid

confusion, note that { A}{B}is not a superset of { A}because one denotes redundancy and the other one
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unique information and the proper notation for redundancy would be {{A}{B}}. However, this rather

cumbersome notation is not necessary.

Next, we can formally define the ordering on A(R):

38) Va,fec AR),(a = <= VBe f,7Aca,AcC B)

This ordering creates a lattice from the elements of A(R), in which a higher element provides at
least as much redundant information as any lower one and the highest element provides all information
that is in the mutual information between all sources and the target | (R;S) . For example, we show the

decomposition of the mutual information between two sources A and B and a target C mentioned
above. It only includes the terms that we already discussed: at the very bottom, it is the redundancy between

sources, above that their unique contributions and above all there is the synergy (Fig. 4).

{AB}

{A} {B}

{AHB}

Figure 4 - Partial information decomposition lattice for 2 predictors.
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In order to compute the separate contribution of a node in the lattice we need to subtract all

information that is provided by nodes below it from the value of | ;. of the particular node. This amount
of information, provided individually by a single node, is called I1; (partial information term) and it is

defined as:

(3.9) Mo (S;@) =1, (S;@) = D T (S; B)

L=a

Now, it is finally possible to quantify all the individual contributions of all parts of the

decomposition.
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Figure 5 - Partial information decomposition lattice for 3 predictors. This is the lattice showing relations
between all partial information terms (11 ) that arise from the decomposition of information interaction
between 3 variables (X, , Y, and Y, ) and a target S. The lattice is ordered based on the following: A

collection of sources A is considered to “succeed” a collection B (i.e., to be above in the lattice) if for each
source in A there exists a source in B that does not provide any additional information than the one in A.

The bottom term represents the joint redundancy between all three variables and the top their synergy.
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To define the information transfer measure, we consider the decomposition of a system with a set
of three predictors R ={ X ,Y,,, Y, } (Fig. 5) and its mutual information with the target stimulus feature S
. To satisfy the aforementioned criteria for such transfer, we remind the reader that we have to quantify the
information about S present in Yt2 that is redundant with respect to information already present in th
and unique with respect to Ytl . Consequently, the desired information is expressed by the following partial

information term:

(3.10) rDFI =TI (S;{X, HY. })

Note that it is not necessary to apply any conditioning on the past of Y  because this is implicitly
accomplished by excluding the information captured by other Il terms of the lattice that include the past
of Y. As a side note, even though the lattice approach has been generally accepted as correct, the exact

measure used to calculate the redundant information ( |_.. ) has been criticized for potentially

min
miscategorising purely unique information as synergistic and there were several attempts to improve it
(Bertschinger, Rauh, Olbrich, Jost, & Ay, 2014; Griftith & Koch, 2014; Harder, Salge, & Polani, 2013). In the
case of only two predictors, the measure of Bertschinger (Bertschinger et al., 2014) is currently preferred,
but it cannot be applied for a larger set of predictors than 2. Given that the rDFI involves three predictors

and we only use it to express redundancy, we maintain the lattice approach with the original I, of

Williams and Beer.
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CHAPTER 4: TESTING THE NEW MEASURE OF TRANSMITTED STIMULUS-

SPECIFIC INFORMATION WITH BOTH SIMULATED AND REAL DATA

In the previous chapter, we developed a new mathematical measure that is designed to be applied
to simultaneous recordings of neural activity from multiple locations and reveal of what information is
being transmitted between these neural populations. In this chapter, we test this measure extensively both
with simulated data that implement different scenarios of information transmission, and with both real
EEG and real MEG data recorded from human subjects. In what follows, we first describe the methods and

then the results of these extensive tests.

4.1 METHODS

4.1.1 Poisson Simulations

To test the reliability of our new measure, we performed numerical simulations. We analyzed
different scenarios, each representing a particular set of conditions under which stimulus-dependent
communication occurs. The structure common to all scenarios comprises a stimulus-dependent transfer of
information between two nodes, here called X for the sender of the information and Y for the receiver.
Each node carried a stimulus-dependent signal plus a noise drawn from a Poisson distribution with the
mean equal to the signal value at a given time point. The presence of a stimulus was simulated by adding a
Gaussian profile with duration Is and which amplitude was modulated by the stimulus value, to the

otherwise constant signal of X at a timet,. Communication was represented by adding the simulated
activity of X in the time interval of the added Gaussian profile to the signal of Y at t,. The difference

between t, and t, represented the communication delay. Stimulus S values, one per trial, were drawn
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from a uniform distribution and the described simulation was independently repeated for every trial. We

used 4 possible values of stimulus.
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Figure 6 - A Scheme of a simulation scenario representing the most basic transfer of information about S from

X to Y without any extra confounders. B All information quantities clearly demonstrate a significant peak,
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where the communication occurs, in their both uncorrected and bias corrected (QE) versions. It is noteworthy
however, that peaks of DFI are much smaller in comparison to its surrogates (grey area) than those of rDFIL
Moreover, DFI uncorrected values outside of the transfer are negative and there are significant dips before and

after the transfer peak that are difficult to interpret.
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Figure 7 - A Scheme of a simulation scenario representing an information transfer from X to Y that does not
convey information about S, despite the information being present in X. The simulation’s intent was to confirm
whether the measures can distinguish which information is being transferred. B First, DI, both corrected and
uncorrected, correctly confirms that there is an information transfer between X and Y. On the contrary, neither
DFI nor rDFI show a significant peak, which is in line with the design of the scenario. However, DFI, exhibits

significant negative values aligned with the transfer.

All simulations were based on one of the three underlying scenarios. The first scenario (Fig. 6A)
simulated a transfer of stimulus-dependent information from anode X toanode Y . The second scenario
(Fig. 7A) represented a situation where only stimulus independent information was transferred from X to
Y . The aim was to test whether the novel metric efficiently dissociated between the stimulus-dependent

and the stimulus-independent transfer. In order to simulate such transfer, the sender node X was split
into two sub-nodes that each had its own simulated activity. First, X * was simulated as described above
and the second one, X, had its signal equal to a baseline minus the signal of X . We set the baseline
signal of X" to such a value that the constant part of the signal, where the stimulus representing Gaussian

profile was not added, had the same value for both X and X . The activity of X~ was computed from
its signal identically as in the generic case. To simulate the transfer, activities of both sub nodes were added
together and normalized while being added to the signal of the receiver. Note that for computation of the
information quantities, the activity of X was represented by a tuple composed of both values of activity of
X" and X at a given time point. Last, the third scenario (Fig. 8A) represented a situation where only
stimulus independent information was transferred from X to Y , equally to the scenario above, with added
confounding information about a stimulus S that was drawn from the same probability distribution as S

but it was an independent draw. The goal was to test additional confounding effects due to external sources
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of information about S . In order to simulate such situation, we made an independent draw of stimulus
values S' from the same distribution as for the original ones. Based on those values we added a Gaussian
profile, with an equal length as the one described above, to the signal of Y at t, that was modulated by the

new stimulus values S '.
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Figure 8 - A Scheme of a simulation scenario representing an information transfer from X to Y that does not
convey information about S, though the information is present in X. And an extra source of information about
a different stimulus S’ drawn from the same probability distribution as S. The simulation’s intent was to
confirm whether the measures can be confounded by a stimulus with the same probability distribution as S

that isn’t the same draw as S. B In agreement with Fig. 6B, DI, both corrected and uncorrected, correctly
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confirms that there is an information transfer between X and Y. On the contrary, neither DFI nor rDFI show
a significant peak, which is also in line with the design of the scenario. However, DFI, as in Fig. 6B, exhibits

significant negative values aligned with the transfer.

We conducted three simulations based on the three scenarios, one for each, as described above.
Additionally, we also performed four more simulations to test variations of behavior of the rDFI that are
not based on the differences in connectivity of the scenarios and therefore, we based them all on the first

scenario. In these simulations, we only used 2 stimulus values.

The first of these additional simulations was designed to test whether the negative values of DFI
were due to synergistic effects. In this particular simulation, and also in the three described above, we added

an extra confounding signal to the signal of both X at t; and Y at t,. This confounding signal was

modulated by a random variable drawn from the same distribution as the stimulus, representing a transfer
about a different stimulus with similar properties. The signal was added as a Gaussian profile for the three
simulations representing different scenarios, but it was in a form of a constant function in case of the high

synergy simulation designed to determine the relation between high synergy and negative values of DFI.

Next, we designed a simulation to clarify the effects of conditioning on the past. It was created based
on the first scenario, but had varying signal peak width (80ms and 40ms) and varying distance between the
peaks (5ms and 20ms). Next simulation was constructed to test directionality sensitivity of the information
theoretical measures. It was also based on the first scenario and had signal peaks with width of 80ms and
distances between peaks 5ms, 15ms and 25ms. Last, we created a simulation to test effects of noise on the
behavior of the measures. It was also based on the first scenario and used the same signal peak widths.

However, for high noise condition, we added a sine wave, that had a period of ~200ms and a random phase

drawn from a uniform distribution [0, 272') for every trial, to signal of both X and Y . The low noise
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condition only had a constant value added to both signals, decreasing the relative difference between the

baseline and the peak.

Information quantities on simulated data

For every simulation, we computed values of DI, DFI and rDFI for each time point 1 to 100. These
information theoretic quantities require the estimate of the full joint probability distribution. To compute
it, we binned all variables for a given time point across trials into 3 bins, using a technique that attempted
to distribute equally the number of samples per bin and resulted in the closes possible binning to an equal
one. The number of bins was set to 3, as a trade-off between the size of the joint probability distribution,
needed for computation of the rDFI, and its computation cost. For the simulations demonstrating
robustness to noise, effects of conditioning and high synergy, at each time point t we took all past values
of X and Y from a time point t —d , where d stands for a delay. The delay was set to the distance between
peaks of the stimulus related activity. However, in the scenario demonstrating the effects of conditioning,
the previous is true only for the sender X as for the past of Y we computed all information measures for

d =10, 30 and 50 time points.

For the first three simulations, we computed the information quantities at each time point for a set
of delays in interval (from 1 to 45 samples) and then took the average of those values as the resulting value.
We skipped the first 20 time points as there would not have been enough of possible delays to average over
and obtain a reliable value. Therefore, these were computed for time points from 21 to 120 (mapped to 1 to

100 in all figures).

In order to correct for biases due to the limited number of samples, we used the Quadratic

Extrapolation procedure (Panzeri, Senatore, Montemurro, & Petersen, 2007). The bias grows quadratically
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as a function of the logarithmic decrease of the number of trials. Hence, we first computed the value of a
given information quantity using all, a half and a quarter of the available simulated trials, and then we fitted
a quadratic function (x axis being the logarithm of number of trials) through the obtained values. The
constant coefficient of the quadratic function was the corrected value for the information quantity. To
increase accuracy in the information theoretic measures, we computed the values for both halves and all

quarters and then averaged across them.

Statistical analysis

In order to assess the level of significance of the different information theoretic measures, we used
non-parametric permutation techniques. For every time point for which we computed the information
quantities, we established its 0.1th — 99.9th percentile interval under the null hypothesis. To obtain the
values under the null hypothesis, we randomly shuffled stimulus order across trials for the computation of
significance of DFI and rDFI and values of X for the computation of DI. In this manner, we computed
100 surrogate values based on independent shufflings. To establish the desired percentile values, we then
fitted a Gaussian distribution through the surrogates for the measures that can be both positive and negative
(DFI and all the (quadratic extrapolation) corrected version of all the measures). For the non-negative
measures (uncorrected DI and rDFI) we fitted a Gamma distribution through the surrogates. We performed
Chi-Square Goodness of Fit tests on all the fitted distributions. There were no more than 5 time points for

which the fit was rejected for any of the measures.

4.1.2 Leaky integrate and fire neuron simulations

In order to generate data qualitatively similar to physiological recordings, we decided to use a model

based on the work of Mazzoni et. al (Mazzoni, Panzeri, Logothetis, & Brunel). In their work, they presented
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a model of a cortical network composed of leaky integrate and fire neurons and they managed to obtain
behavior that strongly resembles behavior of primary visual cortex. To construct the intended scenario, we
used the model to create two separate networks that had a unidirectional connection from excitatory
neurons in one network to both (excitatory and inhibitory) populations of neurons in the other network

(Fig. 9B).
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Figure 9 - In A the figure demonstrates similar behaviour as in the basic stimulus transfer scenario, where DI
correctly identifies that there is an information transfer present. In contrast to the previous simulations, it is
present all the time as the networks are connected throughout the whole simulation. DFI creates a little peak

during the time of the stimulus transfer but except of the middle of it, it is not significant (Values with black
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dot/line over them). Finally, rDFI correctly captures the transfer and exhibits a significant peak across the
whole time of the transfer. In B we show how the model was constructed. We created two separate networks
based on the simulations described in (Mazzoni et al., 2008) and added unidirectional connections from

excitatory neurons of one to both populations of the other.

Each of the simulated networks is composed of N = 5000 neurons. 80% of the neurons are taken
to be excitatory, the remaining 20% are inhibitory (Braitenberg, 1991). The network is randomly connected:
the connection probability between any directed pair of cells is 0.2 (Holmgren, Harkany, Svennenfors, &
Zilberter, 2003; Sjostrom, Turrigiano, & Nelson, 2001). In case of an inter-network directed connection,
there is also 0.2 probability of connection between any pair composed of any cell from the receiver network
and an excitatory cell from the sender network. Both pyramidal (excitatory) neurons and interneurons
(inhibitory) are described by leaky integrate and fire (LIF) dynamics (Tuckwell, 1988). Each neuron k is

described by its membrane potential V, that evolves according to
dv,
(4.1) 7, d_tk =V, +1, —lg

where 7 is the membrane time constant (20ms for excitatory neurons, 10ms for inhibitory
neurons, (McCormick, Connors, Lighthall, & Prince, 1985), | A are the (AMPAtype) excitatory synaptic
currents received by neuron K, while I, are the (GABA-type) inhibitory currents received by neuron K .

Note that in the equation above we took the resting potential to be equal to zero. When the membrane

potential crosses the threshold V,,, (18 mV above resting potential) the neuron fires, causing the following
consequences: a) the neuron potential is reset at a value V,, (11 mV above resting potential), b) the neuron

cannot fire again for a refractory time 7,,, (2ms for excitatory neurons, 1ms for inhibitory neurons).
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Synaptic currents are the linear sum of contributions induced by single pre-synaptic spikes, which

are described by a difference of exponentials. They can be obtained using auxiliary variables X ,,, Xg, .

AMPA and GABA-type currents of neuron K are described by

|

(4.2) 7g0 = =~ + X

X5,
Tea T =—Xa T ‘]k—exc 25(1: _tk—exc - z-L)
(4.3) exc
+Ji i Z Ot =t i = TLin) T Ji e 250 e — TL)j

int ext
|

(44) 74 ot —lai +Xq

d
(4.5) 7, % =Xok T T [‘]k—inh 25(t b — TL)]
inh
where t_ ininee 1S the time of the spikes received from excitatory neurons/inhibitory

neurons/inter-network exc. neurons (if a connection from another network is present) connected to neuron

K, or from external inputs (see below). Tya (Tyg ) and 7, (7, ) are respectively the decay and rise time of
the AMPA-type (GABA-type) synaptic current. 7, =1ms and 7_;,, = 3mS are latencies of post-synaptic
currents for intra- and inter-network connections respectively. J, ../iminex 1S the efficacy of the

connections from excitatory neurons/inhibitory neurons/inter-network exc. neurons/external inputs on

the population of neurons to which Kk belongs.
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Each neuron is receiving an external excitatory synaptic input (last term in the r.h.s. of (eq. 4.3).
These synapses are activated by random Poisson spike trains, with a time varying rate which is identical for

all neurons. This rate is given by
(4.6) Vo (1) = [ Viggna (1) + n(t)l

where v . (t) represents the signal, and n(t) is the noise. [---], is a threshold-linear function,

[x], =x if x>0, [x], =0 otherwise, to avoid negative rates which could arise due to the noise term. We

use constant signal defined by
(4'7) Vsignal (t) = VO

where v, is a constant rate equal to 2 spikes/ms. The noise represented by n(t) in (eq. 4.6) is

generated according to an Ornstein-Uhlenbeck process.

The activity of each network was summarized by generation of simulated local field potential (LFP).
To capture in a simple way the fact that pyramidal cells contribute the most to LFP generation the LFPs are

modeled as the sum of the absolute values of AMPA and GABA currents (| I, | +| |5 |) on pyramidal cells

in every time point of the simulation.

To construct the intended scenario (Fig. 9B) we simulated two networks with the same set of
parameters, one receiving input from the other via the inter-network connections. The internal connections
of both networks and their external inputs were generated independently. All the parameter values were in
agreement with the original work of Mazzoni (Mazzoni et al., 2008) with addition of synaptic efficacies for

inter-network connections J, , that were equal for excitatory and inhibitory neurons and were drawn
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from a uniform distribution from the interval (0,0.18) . We ran the simulation for 3000ms, signal
recording frequency 1000Hz and the communication signal being present in the sender between 1000ms
and 2000ms time points. Due to computational feasibility, we could not run the statistical analysis,

described above, for these simulations.

4.1.3 Brain dataset 1: EEG and face detection task

Experimental conditions and behavioral tasks

We tested the novel measures on an EEG dataset publicly available and published by Rousselet et
al. in (Rousselet, Ince, van Rijsbergen, & Schyns, 2014). The data were recorded during a face detection task
where subjects were presented with an image hidden behind a bubble mask. In a half of the trials the image
was a face and the other half contained a random texture. For our purposes, we only considered correct
trials where the face was presented (approximately 1000 trials per subject) to the subject (16 subjects). The
dataset in the published form is already preprocessed and contains information about which electrode is
the left and the right occipito-temporal sensor (the one with the highest mutual information between its
signal and visibility of the contralateral eye). It only contains data from 15 subjects as one was discarded for

low quality of the recording.

Information theoretic measures

We computed the first derivatives of values of the EEG signal for both occipito-temporal sensors,
marked in the dataset, and used both absolute values and the derivatives as a joint signal to compute the
information quantities. To establish the joint probability distribution for the computation of the
information quantities, we binned both the derivatives and the absolute values into 3 equally populated bins

resulting into 9 possible values for each random variable. The visibility of an eye was considered as the
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stimulus and it was also binned into 3 bins. We computed the information quantities for all combinations
of the direction of the transfer (left to right, right to left) and the particular eye (left and right). These values

were computed for every subject and then we averaged across them.

Statistical analyses

We established significant clusters in the time versus delay data grid using a cluster-based
nonparametric statistical test introduced in (Maris & Oostenveld, 2007). First, we computed the surrogate
values of the information quantities for the whole 2D grid of time and delay as described above, performing
100 permutations. For each of those permutations, we created clusters of values higher than a threshold,
based on 8-adjacency in the 2D grid. We set the threshold to 97.5" percentile, that we obtained by ranking
all the values in the grid. Then, we computed cluster level statistic by summing all values of a given
information quantity within the cluster. Finally, we took the largest cluster-level statistic for each of the
permutations and compared them to cluster-level statistic in the non-shuffled data. We considered as
significant those clusters which cluster-level statistic was lower than the cluster-level statistic of less than 5
clusters obtained from the shuffled data. Hence, we only considered significant those that would score

higher than 95" place in a rank test.

Robustness with respect to the sample size bias

We compared values of (sample size bias) corrected and non-corrected information quantities
under two conditions, the information transfer being present in the simulation or not. To compute values
for each condition, we determined for which of the areas of the two-dimensional grid of time and delay the
transfer was and was not present. The representative value of the first condition was an average across all

values in the area with the presence of a transfer and the representative value of the second condition was
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an average across values in an identical area moved in time in such manner that it only encapsulated points
with no transfer. We computed these values for both conditions (transfer being simulated or not) in
simulations that had numbers of trials equal to <228, 279 ... 2A18> and each simulation was repeated 5

times across which we averaged all the computed values.

4.1.4 Brain dataset 2: MEG and visuomotor task

Experimental conditions, behavioral tasks and brain data acquisition

We also analyzed an MEG dataset collected while participants performed an associative visuomotor
mapping task, where the relation between a visual stimulus and a motor response is arbitrary and
deterministic (Brovelli et al., 2017; Brovelli, Chicharro, Badier, Wang, & Jirsa, 2015). The task required
participants to perform a finger movement associated to a digit number: digit “1” instructed the execution
of the thumb, “2” for the index finger, “3” for the middle finger and so on. Maximal reaction time was 1s.
After a fixed delay of 1 second following the disappearance of the digit number, an outcome image was
presented for 1s and informed the subject whether the response was correct, incorrect, or too late (if the
reaction time exceeded 1s). Incorrect and late trials were excluded from the analysis, because they were
either absent or very rare (i.e., maximum 2 late trials per session). The next trial started after a variable delay
ranging from 2 to 3s (randomly drawn from a uniform distribution) with the presentation of another visual
stimulus. Each participant performed two sessions of 60 trials each (total of 120 trials). Each session
included three digits randomly presented in blocks of three trials. The average reaction time was 0.504s +
0.004s (mean * s.e.m.).

Anatomical T1-weighted MRI images were acquired for all participants using a 3-T whole-body

imager equipped with a circular polarized head coil. Magnetoencephalographic (MEG) recordings were
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performed using a 248 magnetometers system (4D Neuroimaging magnes 3600). Visual stimuli were
projected using a video projection and motor responses were acquired using a LUMItouch® optical response
keypad with five keys. Presentation® software was used for stimulus delivery and experimental control

during MEG acquisition.

MarsAtlas

Single-subject cortical parcellation was performed using the MarsAtlas brain scheme (Auzias,
Coulon, & Brovelli, 2016). After denoising using a non-local means approach (Coupé et al., 2008), T1-
weighted MR-images were segmented using the FreeSurfer “recon-all” pipeline (http://freesurfer.net). Grey
and white matter segmentations of each hemisphere were imported into the BrainVisa software and
processed using the Morphologist pipeline procedure (http://brainvisa.info). White matter and pial surfaces
were reconstructed and triangulated, and all sulci were detected and labeled automatically (Mangin et al.,
2004; Perrot, Riviére, & Mangin, 2011). A parameterization of each hemisphere white matter mesh was

performed using the Cortical Surface toolbox (http://www.meca-brain.org/softwares/). It resulted in a 2D

orthogonal system defined on the white matter mesh, constrained by a set of primary and secondary sulci
(Auzias et al., 2013). The parcels corresponding to the subcortical structures were extracted using Freesurfer
(Fischl et al., 2002). The subcortical structures included in the brain parcellation were the caudate nucleus,
putamen, nucleus accumbens, globus pallidus, thalamus, amygdala, and hippocampus. The whole-brain

parcellation therefore comprised 96 areas (41 cortical and 7 subcortical areas per hemisphere).
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Single-trial high-gamma activity (HGA) in MarsAtlas

MEG signals were down-sampled to 1 kHz, low-pass filtered to 250 Hz and segmented into epochs
aligned on finger movement (i.e., button press). Epoch segmentation was also performed on stimulus onset
and the data from -0.5 and -0.1 s prior to stimulus presentation was taken as baseline activity for the
calculation of the single-trial high-gamma activity (HGA). Artefact rejection was performed semi-
automatically and by visual inspection. For each movement-aligned epoch and channel, the signal variance
and z-value were computed over time and taken as relevant metrics for the identification of artefact epochs.
All trials with a variance greater than 1.5%¥10-24 across channels were excluded from further search of
artefacts. Metrics such as the z-score, absolute z-score, and range between the minimum and maximum
values were also inspected to detect artefacts. Channels and trials displaying outliers were removed. Two
MEG sensors were excluded from the analysis for all subjects.

Spectral density estimation was performed using multi-taper method based on discrete prolate
spheroidal (slepian) sequences(Mitra & Pesaran, 1999; Percival & Walden, 1993). To extract high-gamma
activity from 60 to 120, MEG time series were multiplied by k orthogonal tapers (k = 8) (0.15s in duration
and 60Hz of frequency resolution, each stepped every 0.005s), centered at 90Hz and Fourier-transformed.
Complex-valued estimates of spectral measures Xgoy, 50, (t, k), including cross-spectral density matrices,
were computed at the sensor level for each trial #, time ¢ and taper k.

Source analysis requires a physical forward model or leadfield, which describes the electromagnetic
relation between sources and MEG sensors. The leadfield combines the geometrical relation of sources
(dipoles) and sensors with a model of the conductive medium (i.e., the headmodel). For each participant,
we generated a headmodel using a single-shell model constructed from the segmentation of the cortical
tissue obtained from individual MRI scans as described in section 3.2 (Nolte, 2003). Leadfields were not
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normalized. Sources were placed in the single-subject volumetric parcellation regions. For each region, we
computed the number of sources nSP as the ratio of the volume and the volume of a sphere of radius equal
to 3 mm. The k-means algorithm (Tou & Gonzalez, 1974) was then used to partition the 3D coordinates of
the voxels within a given volumetric region into nS clusters. The sources were placed at the center of each
partition for each brain region. The headmodel, source locations and the information about MEG sensor
position for both models were combined to derive single-participant leadfields. The orientation of cortical
sources was set perpendicular to the cortical surface, whereas the orientation for subcortical sources was
left unconstrained.

We used adaptive linear spatial filtering (Van Veen, Van Drongelen, Yuchtman, & Suzuki, 1997)
to estimate the power at the source level. In particular, we employed the Dynamical Imaging of Coherent
Sources (DICS) method, a beamforming algorithm for the tomographic mapping in the frequency domain
(Gross et al., 2001), which is a well suited for the study of neural oscillatory responses based on single-trial
source estimates of band-limited MEG signals (for a series of review see,(Hansen, Kringelbach, & Salmelin,
2010)). At each source location, DICS employs a spatial filter that passes activity from this location with
unit gain while maximally suppressing any other activity. The spatial filters were computed on all trials for
each time point and session, and then applied to single-trial MEG data. DICS allows the estimate of
complex-value spectral measures at the source level, X3b,,,-ce (£, k) = A(t) Xionsor (t, k), where A(t) is the
spatial filter that transforms the data from the sensor to source level and X%, 501 (t, k) is the complex-valued
estimates of spectral measures, including cross-spectral density matrices, computed at the sensor level for
each trial n, time t and taper k (for a detailed description of a similar approach see (Hipp, Engel, & Siegel,
2011)). The single-trial high-gamma power at each source location was estimated by multiplying the
complex spectral estimates with their complex conjugate, and averaged over tapers k, Pioy ce(t) =
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(X N urce (& KX rce (L, k)) i where angle brackets refer to the average across tapers and * to the complex
conjugate. Single-trial power estimates aligned on movement and stimulus onset were log-transformed to
make the data approximate Gaussian and low-pass filtered at 50Hz to reduce noise. Single-trial mean power
and standard deviation in a time window from -0.5 and -0.1 s prior to stimulus onset was computed for
each source and trial, and used to z-transform single-trial movement-locked power time courses. Similarly,
single-trial stimulus-locked power time courses were log-transformed and z-scored with respect to baseline
period, so to produce HGAs for the prestimulus period from -1.6 to -0.1 s with respect to stimulation for
subsequent functional connectivity analysis. Finally, single-trial HGA for each brain region of MarsAtlas

was computed as the mean z-transformed power values averaged across all sources within the same region.

Whole-brain information theoretic measures

We computed information theoretic measures to quantify the information transfer about
visuomotor processing between all pairs of brain regions. To estimate the join probability distribution for
computation of the information quantities at each time stamp, we concatenated the HGA contained in
windows of 20 msec (4 time instants), trials and subjects, and we binned the values into 3 equally populated
bins. We considered as the “stimulus” dimension the HGA either from the baseline or from the event-

related interval (2 bins), thus resulting into 6 possible values for each random variable.
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4.2 RESULTS

4.2.1 Simulations

Our aim was to develop a model-free measure that quantifies the information about a stimulus S
in a time series X that is later present in a time series Y and is new with respect to the information about
S already carried by the past of Y . Here, we propose a novel information theoretic measure, named rDFI
(eq. 3.10), that exploits latest advancements in the field of Information Theory, in particular the Partial
Information Decomposition framework (Williams & Beer, 2010). We first tested the reliability of the novel
measure to capture stimulus-specific information transfer in multiple settings through numerical

simulations. We compared the results from rDFI with those of DI and DFI.

We designed three scenarios exemplifying three types of information transfer between X and Y .
We ran simulations of those scenarios, where we simulated both X and Y by creating a signal with a peak
modulated by the stimulus S at t, for X and modulated by activity of X at t, for Y and using this
signal as a mean value for Poisson random process. Numbers drawn from the Poisson distribution were
then taken as the activity of X and Y . Unless stated otherwise, we call the difference between t; and t,

the delay of the past.

The first scenario modeled a feedforward transfer (Fig. 6A). As expected, both DI, DFI and rDFI
captured the transfer and showed a significant peak where the transfer was present (Fig. 6B). The second
scenario represented a transfer between nodes X and Y that did not contain information about the
stimulus S while information about S was present in X and no presence of information about S was in
Y (Fig. 7A). This scenario was design to test the ability of all the measures to distinguish the transfer

carrying or lacking information about the stimulus S . We observed that the transfer was demonstrated by
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a peak in DI while there were no significant positive values for either DFI or rDFI (Fig. 7B). We should note
that DFI yielded significant negative values (discussed later). Finally, the third scenario simulated a
connectivity layout similar to the second scenario with the addition of information about a different
stimulus S' with the same probability distribution as S to Y (Fig. 8A). This scenario was designed to
reveal whether the different measures can distinguish between stimuli with the same probability
distribution. Information transfer was shown as an increase in DI, and the lack of stimulus-specific transfer
was correctly quantified by both the DFI and rDFI (Fig. 8B). Overall, rDFI demonstrated behavior that was

always in line with the design of a scenario, even in cases where DFI resulted in significant negative values.

After testing of effects of different connectivity patterns, we measured how other changes in the
simulation setup influenced DI, DFI and rDFI. We modulated the width of the information peaks in the
signal of X , the distance between those peaks, the delay based on which the past values are determined
and added an extra noise to the signal. We performed these tests using the feedforward stimulus transfer
scenario from the previous experiment (Fig. 10A). First, we tested how well the measures detect presence

of information about S in the past of Y since that is one of the predicates that define the measure.
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Figure 10 - In order to test influence of other simulation parameters on behavior of the measures, we designed
a simulation, using the basic transfer scenario A, that tests influence of width of information peaks, their
distance and delay with which we measure the values of past of X and past of Y . The delay with we
measured the past of X was fixed to the distance between the peaks, whereas the delay with which we took
the values of the past of Y varied between 10, 30 and 50ms. In all scenarios the transfer peaks at 60ms. The
first column in B depicts wide information peaks in X and Y with very short distance between them, the
second shows same peaks but large distance between them and finally the third column shows narrow peaks
with short distance. It can be observed that DI and DFI are not changed by the delay of past, nor by the
distance between peaks but their peak width scales with the width of information peaks in X and Y . On
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contrary, rDFI is not only modulated by the size of the original peaks, but it also changed with the delay of the
past of Y . rDFI is lower in general and tends to return to 0 after the peak with decrease in the delay of past.
That is in line with the fact that with decrease in the delay we increase the amount of information shared
between the past and the present and rDFI correctly recognizes that. However, DI and DFI are not able

recognize the presence of information about S in the past of Y in this simulation.

As it can be observed in (Fig. 10B), values of DI and DFI do not change with varying delay of the
past of Y nor the distance between information peaks in the signal. They were modulated only by the size
of those peaks. Values of rDFI decrease with decreasing delay between the past and the present of Y .These
changes appeared independently on any other modulation of the activity (distance between the peaks and
their width), confirming that rDFI is able to determine whether the present information in Y was already
present at the earlier time point in Y as well. The lower the delay, the earlier values of the past of Y got
higher than values of the present of Y . In such case all the information about the stimulus was already
present in the past of Y and therefore drove the values of rDFI to 0. The effect is minimal for the delay of

50ms because the past of Y only becomes larger than its present at 65ms of the 80ms peak.

Since there was a discrepancy between rDFI and other measures in the ability of discounting
information that was already present in the receiver in the past, we also investigated the ability of the
information measures to distinguish the correct directionality of information transfer. We used the
previous scenario and measured all quantities in both directions of the transfer even though only the

transfer from X to Y was present.

Values of DI and DFI (Fig. 11) for the direction in which there was no transfer present were
increasing with decrease in the delay between the information peaks in X and Y, leading to inability to

distinguish the direction of the transfer when the delay was too low. rDFI demonstrated consistent behavior
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across all simulations, correctly capturing the transfer in the direction in which the transfer occurred and

not reaching significant values in the other.
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Figure 11 - Based on the previous discovery of DI and DFI not being able to detect presence of information

about S in the past of Y , we designed a simulation, using the basic connectivity scenario, to test how the
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measures behave when presented with peaks that appear in contradiction with causality. Therefore, we took
three values of distance between the peaks, decreasing their overlap and computed all the measures first, using
the blue line as X (blue line in inf. quant. values) and conversely, second, using the red line as X (red line
in inf. quant. values), thus creating an impossible transfer since the peak in the sender’s signal occurs only
after the peak in the signal of the receiver. The results clearly show that DI and DFI were not driven to zero if
the transfer was against causality and there was a sufficient overlap between the information peaks in time.
In comparison, rDFI was significant for the scenario with transfer being in line with causality and remained

insignificant for the other.

We tested many simulation settings that could potentially lead to confusion of the rDFI measure.
Therefore, we also tested its robustness to general noise in the time series. Again, using the basic scenario
(Fig. 10A) and adding either low or high amounts of noise, we established that rDFI is more robust to noise
than DFI and DI which can become insignificant along the entire time of the simulation with amounts of

noise with which rDFI can still recognize the information transfer.
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Figure 12 - This figure shows results of testing of robustness of the measures against noise in the signal. To test
that, we used the basic transfer scenario A and introduced an extra noise into the signal. The results clearly
show that DI and DFI are much more susceptible to noise as their values were insignificant all over the time
course in case of the high noise scenario B and creating a significant peak with much smaller width than the
transfer in case of the low noise scenario C. rDFI was able to correctly detect the transfer in both cases,

suggesting that it is more robust to noise than DI and DFI.
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During the process of deriving rDFI we also decomposed DFI in terms of the PID framework
(Williams & Beer, 2010) (Sup. Material). The decomposition showed that DFI can be seen as a sum of
redundancies minus a sum of synergies, suggesting that synergistic effects lead to negative values of the
measure. Therefore, we designed a highly synergistic scenario (Fig. 13), where the presence of synergy is
confirmed by the co-occurrence of signal similarity and correlations of opposite sign (Pola et al., 2003). In
our case, the stimulus dependent correlations had an opposite sign than the signal similarity and they were
orders of magnitude higher (in sense of absolute values) than the stimulus independent correlations that

had the same sign as the signal similarity.

55



(bits)

v

synergistic scenario

Average activity

llin

8 0.1 . . : ,
6 Activity of X] |
Activity of Y
4t E ) L i
g o005
2
0 . . . . 0 ) )
0 20 40 60 80 100 20 40 60 80 100
Time (ms) Time (ms)
DI -4 leyi

06 1 ~10 . sig-sim .

,2 o .
02 . . . . 3 ) ] ] )
20 40 60 80 100 20 40 60 80 100
Time (ms) Time (ms)
DFI lcor-ind
0 T T 0.01 T T
-0.02 0
3 3
-0.04 -0.01 |
-0.06 . L L L -0.02 . . . .
20 40 60 80 100 20 40 60 80 100
Time (ms) Time (ms)
3 <0 Ll : 0.1 . cordep ,
£ _E 0.05 [ 1
-1 1 1 1 1 0 L N " N
20 40 60 80 100 20 40 60 80 100
Time (ms) Time (ms)

Figure 13 - To confirm the hypothesis of rDFI being negative because of synergistic effects, we developed a
simulation based on the basic transfer scenario A that introduced high synergy into the system. B This fact
was confirmed by presence of the negative signal similarity and the positive stimulus dependent correlations
(Lcor-dep) (that dominate the stimulus independent correlations (Icor-ina)) as described by (Pola et al., 2003). It

can be observed that DFI values created a significant negative peak at the position of the transfer, confirming
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that DFI values unlike DI and rDFI, are decreased by presence of synergy. The top left panel shows the average
activity of both nodes X and Y . Other left panels show values of the discussed information transfer measures
and the right panel shows all the terms of the information decomposition by (Pola et al., 2003) - linear term
(Iin), signal-similarity term (Ligsim), stimulus-independent correlations term (Icorina) and stimulus dependent

correlations (Lor-ap)-

As hypothesized, DFI yielded a significant negative peak aligned with the presence of the transfer
while DI and rDFI demonstrated a positive peak at the same time. It confirms that values of DFI depend on

the ratio between redundancy and synergy in the transfer.

Previously, it was shown that information theoretical quantities are susceptible to the sampling bias
(Panzeri et al., 2007; Panzeri & Treves, 1996). Since rDFI is based on similar principles, we also tested its
behavior on all three scenarios, representing different connectivity, that were mentioned earlier, with
varying number of samples (Fig. 14). It confirmed that rDFI values grow quadratically with logarithm of
the number of samples which is in line with biases observed in (Panzeri et al., 2007) and that it can also be
corrected for by using the quadratic extrapolation procedure, introduced in (Strong, Koberle, van
Steveninck, & Bialek, 1998). Using the correction, we only need =8 times more trials than the number of
unique values of the full joint probability distribution that need to be sampled. The number of those values
is equal to the product of the numbers of possible values (numbers of bins) for stimulus, past of X , present
of Y and past of Y . For illustration, assuming we used 3 possible values (bins) for each of those quantities,
the size of the full joint probability distribution is 3* = 81. Therefore, using the Quadratic Extrapolation

method, to obtain reliable values of rDFI we would need =650 data samples.
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Figure 14 - The figure depicts results of robustness of rDFI and DFI with respect to sampling size bias, which
is a common problem for information theoretical quantities (Panzeri et al., 2007; Panzeri & Treves, 1996).

We tested the measures in all three connectivity scenarios as described above, for time points where transfer
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did (comm) and did not (no comm) occur and compared an uncorrected and corrected computation of them.
For correction, we used the Quadratic Extrapolation (QE) correction (Panzeri et al., 2007; Strong et al., 1998).
It can be observed that both rDFI and DFI behave as predicted i.e. there is a bias that grows quadratically
with the decrease in the logarithm of the number of trials. Moreover, the QE correction was able to decrease
the bias so that both DFI and rDFI are reliable with dataset of up to 8 times smaller than without the

correction.

The last simulation that we conducted was based on the leaky integrate and fire neuronal model
(Mazzoni et al., 2008) in order to generate data qualitatively similar to physiological recordings. We
simulated two networks (Fig. 9B) virtually representing the information transfer scenario (Fig. 6A). As
depicted in (Fig. 9A) DI shows a constant positive value representing transfer of information which is
reasonable because the two networks were connected throughout the whole simulation. DFI shows a peak
during the expected period of time when the stimulus signal was present in the simulation, however, it is
negative throughout the whole simulation. Finally, rDFI forms a peak also during the period where it is

expected and stays virtually zero otherwise.

4.2.2 Human Neurophysiological data

In order to confirm the behavior and show some of the benefits of the measure on real world data,
we selected two datasets to which we applied it. We chose two dataset, both recorded during a task,
composed of EEG and MEG recordings respectively. They are described in the Methods sections 4.1.3 and

4.14.

Information transfer during face detection (EEG)
Results from literature (Ince et al., 2016) have hypothesized that information about presence of an
eye in the image is crucial for correct categorization and this information is transferred from the contra-

lateral to the ipsi-lateral hemisphere with respect to the position of the eye (Fig. 15B). We tested such
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hypothesis by means of rDFI analyses on an EEG dataset collected from human participants performing a
face detection task (Rousselet et al., 2014). Subjects were asked to detect the presence of a face or a random
texture while the image was covered by a bubble mask. Using rDFI, we were able to directly confirm the
presence of the transfer and quantify it (Fig. 15A). We also confirmed, using a non-parametric statistical
test (Maris & Oostenveld, 2007) that the transfer is the only significant transfer that is present in the data
(Fig. 15D). Furthermore, we conducted comparisons between all 4 combinations of the transfer direction
and the position of an eye, ipsi to contra-lateral and vice versa and left and right eye, respectively. Based on
these tests, we confirmed that only transfers from contra-lateral to ipsy-lateral hemisphere are significant
(Fig. 15C and F). Finally, we also tried to quantify the transfer using DI and DFI but they both, unlike rDFI,

proved to be unable to capture the transfer (Fig. 15F).
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Figure 15 - The figure shows results of experiments based on the EEG dataset published by (Rousselet et al.,
2014) that covers a task where subjects have to decide whether they see a face or a random texture in an image
cover by a bubble mask. It was suggested that during the experiment, there is an information transfer about
an eye (left LE or right RE) on the picture from the contralateral hemisphere to the ipsilateral hemisphere with
respect to the eye A (Ince et al., 2016). B captures the transfer of information about left eye from the right to
the left hemisphere. The 2D map shows values for a given pair of time and delay that determines how far in

the past the past values of X and Y were taken from. Line plots above and below show mutual information
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between the given occipito-temporal sensor (either sending or receiving one) and the visibility of the left eye.
The panel clearly shows that rDFI identified a transfer at around 170ms as hypothesized by (Ince et al., 2016)
that is in line with the peaks of mutual information. D shows rDFI values on the same time line as in B
averaged across all delays for all combinations of transfer direction and eye. There is a clear difference between
the transfers from contra to ipsilateral, that form a visible peak around 170ms, whereas the opposite transfers
do not. C In order to determine significance of rDFI values, we used a nonparametric statistical test introduced
in (Maris & Oostenveld, 2007) that identifies all significant clusters of values in the 2D map. The upper plot
shows the raw values of rDFI and the bottom one only the cluster that was identified as significant. E For the
case of the left eye, right to left hemisphere transfer, we also compared the values in the cluster that captured
the transfer (comm) to a cluster of the same shape and size but positioned elsewhere on the time line with no
overlap (no comm) and surrogate values obtained by random shuffling of the stimulus values (left eye
visibility). It shows that the values in the transfer cluster are significantly higher than those obtained from
elsewhere and surrogates for both QE corrected and uncorrected rDFI. F shows comparison between the given
contra to ipsilateral transfer (L - left, R - right) and the two ipsi to contralateral transfers for DI, DFI and
rDFI and both eyes (LE and RE). It can be clearly observed that only rDFI was able to capture the transfer as

DI and DFI does not show any difference between transfer directions for either eye.

Information transfer in human visuomotor network (MEG)

In the second set of analyses, we used our novel metric to infer condition-dependent changes in
information transfer over the human visuomotor network. Previous work has shown that the medial
superior parietal cortex (SPCm) plays a key role in the visuomotor-related FC network (Brovelli et al., 2017).
Briefly, two measures of centrality, such as the eigenvector centrality and the betweeness centrality, area
flexibility, defined as the propensity of brain area to participate in multiple sub-networks, placed SPCm at
the top of the cortical hierarchy. In particular, the SPCm was found to participate both in a visuo-parietal
network early during the processing of visual information and during the planning of visuomotor
associations with the dorsolateral premotor cortex (PMdl). Granger causality analyses also revealed a

directional influence from the superior parietal lobe towards the premotor area (Brovelli et al., 2015).

We thus studied the DI, DFI and rDFI between the SPCm and the dorsolateral premotor cortex

PMdl. (Fig. 16A - left panels) shows the increase in high-gamma activity (HGA) aligned on movement
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onset. The DI and DFI showed a directional pattern that is consistent with previous results (higher
directionality from the SPCm towards the PMdI), but the degree of asymmetry was weaker than the one
observed with the rDFI. In fact, the rDFI was practically absent in the PMdI to SPCm direction and showed
a clear drop after action execution (i.e., time equal to zero), as shown in (Fig. 16A - center and right panels).
This result supports current knowledge about the dynamics of interaction between the superior parietal
lobe and the dorsolateral premotor cortex, which is expected to occur over a timescale of tens to hundreds

on milliseconds during a time interval prior to motor output.
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Figure 16 - (A) Left panel: time course of high-gamma activity (HGA) for the medial superior parietal cortex

(SPCm) and the dorsolateral premotor cortex (PMdl), in red and blue, respectively. Central and right panels:
directional influences (DI, DFI and rDFI) between the SPCm and PMdl. (B) Information flow between the
SPCm and the dorsal Inferior Parietal Cortex (IPCd) for the DI (left panel), DFI (central panel) and rDFI
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(right panel). (C) Information flow between the SPCm and the caudal medial Visual Cortex (VCcm) for the
DI (left panel), DFI (central panel) and rDFI (right panel).

Then, we analyzed the coupling between the SPCm and a companion area in the parietal lobe, the
dorsal Inferior Parietal Cortex (IPCd). This analysis was performed to test the efficiency of the rDFI in
estimating efficiently directional coupling from neural signals from nearby brain regions that may share
information and display common-driving effects. Contrary to what could be expected, rDFI displays a clear

selectivity for one of the directionality of information flow, with respect to the DI and DFI (Fig. 16B).

Lastly, we analyzed the directionality of information flow between the SPCm and the caudal medial
Visual Cortex (VCcm). The prediction was a directional information flow from the visual area to the
parietal lobe during early stages of visuomotor integration. Indeed, as shown in Fig. 16C, rDFI showed a
strong peak from the VCcm to the SPCm around 0.25s prior to button press. In addition, it is interesting to
note that a reversal of information flow (from parietal to visual area) is observed around 0.5s prior to
movement onset, thus corresponding roughly to the time interval of stimulus onset. Given the temporal
structure of the task, we suggest that this increase of rDFI reflects top-down attentional processes that may

be associated to the increased expectancy of the visual cue.

Overall, these results suggest that rDFI provides a significant measure condition-dependent
information transfer able to extract features with both a temporal and directional selectivity, key elements

for tracking cortico-cortical directional interactions.
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CHAPTER 5: DISCUSSION

A classical approach for inferring the amount of information transferred between neural signals
exploits functional connectivity measures, such as Granger causality and Transfer Entropy (Bressler & Seth,
2011; Brovelli et al., 2004; Seth, Barrett, & Barnett, 2015; Wibral, Vicente, & Lizier, 2014). However, none
of those measures carry information about the content of information. In our study, we developed a novel
measure that quantifies information transfer about a specific feature based on the Partial Information

Decomposition framework of (Williams & Beer, 2010).

The results of the simulations show that the rDFI manages to recover the underlying information
transfer successfully. The first confirmation of its performance comes from the scenario of direct
information transfer (Fig. 6) where it correctly captures the transfer and its behavior is virtually
undistinguishable from that of DFI. Though unlike DFI, rDFI values remain correct even in other two
scenarios in which DFI yielded significant negative values. These scenarios (Fig. 7 and 8) represent two
nodes that do communicate, the sender node contains information about the feature of interest but does
not communicate it. Additionally, we added an extra confounding signal (Fig. 8) providing the receiving
node with information about a feature different than the one of interest but with the same probability
distribution; however, rDFI still accurately represented that there was no transfer about the feature. Not
only was rDFI robust to connectivity of the scenario but it also proved to be reliable even in presence of
large amount of noise in the signal. In fact, even when we added so much noise into the signal that values
of both DI and DFI turned insignificant, rDFI was still able to accurately quantify the transfer (Fig. 12).
Ultimately, the desired behavior of rDFI is confirmed in the more complex simulation based on (Mazzoni

et al., 2008)’s model which generates signal qualitatively much closer to that from real-world physiological
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recording. In these simulations it was the only measure that exhibited a positive peak during the stimulus

communication period and stayed negligibly small in the rest of the simulation.

rDFI demonstrated great sensitivity to the temporal evolution of information transfer. During
simulations (Fig. 10 and 11) and the MEG experiment (Fig. 16 and 17) it exhibited asymmetrical
information peaks that are unseen in DI or DFI. Based on the simulations we discovered that the abrupt
decrease in rDFI values is linked to the delay determining from where the past values are obtained. If there
is more information about the feature in past of the receiver than in past of the sender, rDFI rapidly goes to
zero, correctly capturing the notion of the redundant information already being present in the receiver and
thus not being part of the transfer. An ultimate case of this phenomenon is when the directionality of the
transfer is assumed incorrectly, putting the information peak in the receiver earlier in time than that in the
sender (Fig. 11). Due to its ability to correctly recognize the information already being present in receiver,
rDFI remained zero in all scenarios with incorrect directionality, demonstrating very good sensitivity for it,

unlike DFI and DI which showed a peak even in case of an “impossible” transfer.

The rDFI suffers from the sample size bias in the same way as all other Information Theory
quantities and can be corrected by using Quadratic Extrapolation procedure (Panzeri et al., 2007; Strong et
al., 1998) (Fig. 14). It reduces the amount of data that is necessary for precise values of rDFI to be obtained
approximately 10 times. Therefore, we only need =8 times more data samples than the number of unique
values of the full joint probability distribution that needs to be sampled. To remind the reader the number
of those values is equal to the product of the numbers of possible values (numbers of bins) for stimulus, past
of X, present of Y and past of Y . If there are less samples in the data, the values of rDFI might be

overestimated.
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Altogether, it suggests that rDFI not only provides information about the content of a transfer but
that it can do so with either less data or data that are much noisier than those used with other transfer
measures which is very important, especially in neuroscience where obtaining more data can be very

difficult or impossible.

In order for the measure to be truly useful, solely its behavior does not suffice; there needs to be a
statistical test that can be used with the method. We demonstrated, that significance of rDFI values can be
tested by a nonparametric statistical test developed by (Maris & Oostenveld, 2007) (Fig. 15D) The test does
not impose any assumptions on the data. This is very important trait of the test due to the transfer length
and its delay are not a priori known. It can be used with two dimensions, when both time lags (in receiver

and sender) are free parameters and one dimension when the values are aggregated across one of the lags.

Our method has few limitations. Probably the most restricting for practical use of the measure is
its need of rather large dataset. The necessity comes from the need of reliable sampling of the full joint
probability distribution of all three random variables of interest (past of sender, current values of receiver
and past of receiver) and the stimulus as well. However, as demonstrated in the previous text it can be

successfully mitigated by aggregating values of those random variables in a few buckets.

Another potential limitation resides in the assumption that | _; is a correct quantification of

n
unique, redundant and synergistic information in a lattice approach. Given that our metric required three
predictors ( th , Yt2 , Ytl ), we could not use the measure proposed by (Bertschinger et al., 2014). It has been

shown (Bertschinger et al., 2014; Griffith & Koch, 2014; Harder et al., 2013) that the potential incorrectness

of | . is due to miscategorizing purely unique information as synergistic, hence over estimating synergy
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and potentially underestimating redundancy. Nevertheless, we have not observed this behavior in any of

the simulations.

An alternative measure to quantify the novel information transfer from X to Y about S was
proposed by Beer and Williams (Beer & Williams, 2015):

1 (55X, Y,) = Lia G, HX, Y, ) = L S0, HY, D)
=TT, (S: X, HY, D) + T (S:4Y, HX,, V)

(5.1)

The first I1; term is our novel metric. The second term quantifies a different type of transfer that
involves synergistic effects. It quantifies the information present in Yt2 that is redundant with information
not present in th alone, but that could be obtained synergistically combining th and Yt1 , and furthermore

is unique with respect to the information carried by Ytl alone.

Finally, it should be noted that the method is still a statistical measure (and this limitation holds for
Granger causality and Transfer entropy as well) based solely on observation of events and therefore cannot
guarantee causal relationship between two neuronal areas (neurons) (Panzeri, Harvey, Piasini, Latham, &
Fellin, 2017). Consider scenario where two neurons seem to communicate information about the stimulus
based on a statistical measure. It does not tell us whether there really was a communication, even indirectly,
between the two neurons or whether they both received the same information from a third source with a
different delay. In order to investigate such scenario and determine the precise causal relations between the
neurons, one must intervene and be able to manipulate values of one of the neurons and then observe
behavior of the rest of the system. However, the observation based methods are still very valuable and can

uncover many dynamics of information exchange in the brain.
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For what concerns the analysis of human neurophysiological data using the rDFI measure, we were
able to verify presence of an information transfer from one to one to the other hemisphere, that was
previously only hypothesized (Ince et al., 2016), about eye appearance in a picture based on an EEG data.

To our knowledge, rDFI is the only measure capable of that at the moment.

The analysis of MEG data confirmed previous work combining single-trial high-gamma activity
(HGA) from MEG recording and Granger causality analyses that showed that the performance of arbitrary
visuomotor associations is characterized by an increase in functional connectivity (FC) over the
sensorimotor and fronto-parietal network. The superior parietal area was found to play a driving role in the
network, exerting Granger causality on the dorsal premotor area. Premotor areas acted as relay from
parietal to medial prefrontal cortices, which played a receiving role in the network (Brovelli et al., 2015).
More recently, a time-resolved analysis of FC revealed the presence of three partly-overlapping cortico-
cortical and cortico-subcortical networks. First, visual and parietal regions coordinated with sensorimotor
and premotor areas. Second, the dorsal fronto-parietal circuit together with the sensorimotor and
associative fronto-striatal networks took the lead. Finally, cortico-cortical interhemispheric coordination
among bilateral sensorimotor regions coupled with the left fronto-parietal network and visual areas
(Brovelli et al, 2017). These results suggested that visuomotor mapping reflects the dynamic
reconfiguration of multiple cortico-cortical and cortico-subcortical FC networks, displaying non-
stationary, switching dynamics and areal flexibility over time scales relevant for task performance. However,
previous work did quantify neither the informational content conveyed by large-scale directional influences
nor their dynamics. To do so, we exploited our novel measure for the quantification of the directionality of
information flow in a dynamical (time-resolved) manner between a key brain region in the superior parietal

cortex.

71



As mentioned earlier, one of the key features of the rDFI is its ability to better detect the temporal
evolution of information transfer with respect to the DI and DFI. Indeed, the results from the MEG analysis
showed that the rDFI outperforms the DI and DFI in detecting the timing of information transfer between
the superior parietal region and the dorsal premotor cortex. Indeed, the increase in rDFI from the SPCm to
the PMdl (Fig. 16A, central panel) peaks approximately 0.2s before the motor response, therefore
confirming the notion that the dorsal fronto-parietal network is crucial for the visuomotor computations
transforming visual information into motor plans (Wise et al., 1996; Wise and Murray, 2000; Corbetta and
Shulman, 2002; Culham and Valyear, 2006). The DI and DFI, however, are most probably influenced by
the global increase in HGA observed around the motor response and their temporal dynamics decreases
well after the motor output (Fig. 16B and C, the left and central panel). The difference in temporal evolution

of the rDFI with respect to the DI and DFI is seen also at the large-scale level (Fig. 17).

The second main advantage of the rDFI is its ability to better detect directionality of information
transfer with respect to the DI and DFI (Fig. 11). This was evident in the MEG results (Fig. 16B). For
example, the bottom-up increase in information transfer expected to occur from the visual areas (VCcm)
to the superior parietal cortex (SPCm) was evident in the rDFI, but was weaker or lacking for the DI and
DF], respectively (Fig. 16B). These results suggest that the rDFI reduces potential bias present in the DI and
DFI due to the autocorrelation in the HGA. Whereas the DI and DFI show some bidirectional effect, it

practically disappears for the rDFI.

Taken together, the higher selectivity for temporal and directional information results in the ability
of the rDFI to discern rapid changes in directionality occurring over time, the so-called functional

connectivity dynamics. This pattern of rapid change in directionality is shown in Fig. 16C (right panel).
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Overall, the analysis of human neurophysiological data showed that the rDFI provides high
discriminability of information transfer both in time and across directions. This suggests that rDFI has

potential to uncover previously hidden dynamics in the information transfer between neuronal signals.
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