
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Descriptive Phrases: Understanding

Natural Language Metadata

Aliaksandr Autayeu

Advisor:

Prof. Fausto Giunchiglia
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Abstract

Fast development of information and communication technologies made

available vast amounts of heterogeneous information. With these amounts

growing faster and faster, information integration and search technologies

are becoming a key for the success of information society. To handle such

amounts efficiently, data needs to be leveraged and analysed at deep levels.

Metadata is a traditional way of getting leverage over the data. Deeper lev-

els of analysis include language analysis, starting from purely string-based

(keyword) approaches, continuing with syntactic-based approaches and now

semantics is about to be included in the processing loop.

Metadata gives a leverage over the data. Often a natural language, being

the easiest way of expression, is used in metadata. We call such metadata

“natural language metadata”. The examples include various titles, captions

and labels, such as web directory labels, picture titles, classification labels,

business directory category names. These short pieces of text usually de-

scribe (sets of) objects. We call them “descriptive phrases”. This thesis

deals with a problem of understanding natural language metadata for its

further use in semantics aware applications.

This thesis contributes by portraying descriptive phrases, using the re-

sults of analysis of several collected and annotated datasets of natural lan-

guage metadata. It provides an architecture for the natural language meta-

data understanding, complete with the algorithms and the implementation.

This thesis contains the evaluation of the proposed architecture.
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Chapter 1

Introduction

1.1 Motivation

Information overload is what every modern information worker complains

about. The volumes of information and demands, let us put aside ex-

pectations of the information workers, grow faster than the tools evolve.

But we do not want less information, instead, we want better management

tools, which will ease or solve the problem of information overload. Yet

there is an instrument, known for thousand of years and extensively used

in libraries to get a leverage over massive amounts of books. Tradition-

ally, we did not search books themselves, we searched a library catalogue,

full of data about books. Data about data, or metadata, goes with every

significant piece of information.

Computers create increasing amounts of metadata automatically and

search well through most of it by filter search, that returns those records,

where certain field has the exact specified value, and both the field and

the value have predetermined meaning. Problems begin when we enter the

realm of natural language (NL): we carefully compose titles for our papers,

books and blog posts; many of us are encouraged to write meaningful

subject lines of emails we send; we tag photos, posts and videos in social

networks; we create folder structures in e-mail client or in personal file
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systems, carefully authoring our own small classifications, kind of mini- or

lightweight ontologies – we manually generate all kinds of Natural Language

Metadata (NLM).

Then we spend time sorting emails into those folders and wishing the

files we receive would sort themselves out in the proper places in our home

folder. We sift through a business catalogue, searching for relevant cate-

gories and having received another catalogue, wish to have it aligned auto-

matically with a freshly filtered one. Many of these tasks have been solved

and use algorithms which work on lightweight ontologies [34], such as the

“get specific” algorithm [35] for classification of documents in hierarchies

or S-Match [33] and minimal S-Match [29] for matching of ontologies. The

core of many of these algorithms uses a formal language (FL) that enables

reasoning about the data being processed. However, semantic applications

face a well-known chicken-and-egg problem [38]: for these applications to

yield meaningful results, the data they work on, should be represented in a

formal language or have semantic annotations to enable automatic reason-

ing. And there is little of both applications and data, because application

developers have no incentive to build applications which has no data to

work with and users have no incentive to annotate data unless there is a

“killer app”. We can come closer to solving the chicken-and-egg problem

by providing application developers with a solution which is easy to use in

applications. Through developers using our solution we lower the cost of

annotation for users, making it “a by-product of normal computer use”.

Expecting the users to write in formal language is unrealistic and while

the coding standard determines the semantics for automatically produced

metadata, the semantics of metadata written in natural language remains

hidden. Uncovering the semantics of natural language metadata and trans-

lating it into a formal language will enable applications which rely on se-

mantics and logical reasoning to reason about the data and thus give us the

2
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ability to leverage semantic services on our data. To do such translation

one can use modern natural language processing (NLP) tools. However,

they have evolved over the domain of newswire or similar text and the

language used in natural language metadata differs from the one used in

normal texts, such as news stories and books.

We briefly describe three applications which provide semantic services

before discussing our natural language metadata translation solution that

enables such semantic services.

Semantic Matching One can see semantic matching as an operator

that takes two tree-like structures made of labeled nodes (such as clas-

sifications or schemas) and produces links between those tree nodes that

correspond semantically to each other. Semantic matching employs two

key ideas: a) it produces links with semantic relations such as equivalence

or more general ; and b) it calculates them by analysing the meaning (con-

cepts) encoded in the labels of the input trees [33].

However, semantic matching algorithms need to create the formal rep-

resentation of the concept of each tree node label. Most often the tree node

labels are written in natural language, and, therefore, as a first step towards

reasoning and calculation of correspondences between the tree nodes, the

algorithm needs to translate natural language labels into their formal coun-

terparts, for example, in case of S-Match [33] into propositional description

logic formulas.

Semantic Classification Hierarchical classifications represent a nat-

ural way of organizing knowledge. However, keeping them up-to-date re-

quires putting new information items (for example documents) into the

proper places in the hierarchy. The “get-specific” algorithm [35] addresses

this problem. This algorithm follows a knowledge-centric approach and

first converts a natural language classification into a formal classification,

which uses a concept language to express the meaning of labels. A concept

3
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for a classified document is built from the document’s keywords translated

into concepts and joined with conjunctions. Then the algorithm reasons

over these concepts.

Here again, this semantic service requires a formal representation of the

concepts of each classification node to be effective and we thus need to

translate the natural language to such a formal representation.

Semantic Search Search is a key application for information workers.

One of the proposals to improve search is to go from a syntactic search,

which handles arbitrary sequences of characters and calculates string simi-

larity, to a semantic search, which handles concepts and calculates semantic

relatedness [28]. However, everybody writes documents and search terms

in a natural language, where concepts need to be identified first to enable

semantic search.

Once again we face the need to go from natural language to its for-

mal counterpart for the search terms and the document concepts. This is

another application which is suitable for the solution we propose.

Applications which use a formal counterpart of a natural language meta-

data, such as the ones we described, motivated our studies. These appli-

cations can benefit from an improved understanding of natural language

metadata. They often operate on atomic concepts, such as the one de-

scribed by the word “apple” and complex concepts, such as the one de-

scribed by the phrase “green apples and red oranges”. Many of them need

the same steps of processing:

• recognizing atomic concepts in language metadata by mapping natural

language tokens into entries of a controlled vocabulary,

• disambiguating the senses of the previously retrieved controlled vo-

cabulary entries and

• building complex concepts out of the atomic ones.

4
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1.2 The Problem

As outlined in the introduction:

The main problem is to provide an easy way to supply accurate

semantics to (logic-powered) applications that work with (meta)

data expressed using (a subset of) natural language.

To explain the problem better, we descend one level of details lower.

The main problem contains several sub-problems:

• Identifying, studying and describing the subset of natural language

that the target applications use;

• Keeping a balance between expressivity and computational complexity

of the language subset and the logic formalism, while choosing a subset

of the language to process and a logic formalism with its expressivity;

• Creating a language-to-logic processing architecture and algorithms,

adapting the state of the art natural language processing algorithms

as much as possible and creating new ones to substitute the unadapt-

able or missing ones, keeping in mind the cost of adaptation, lack of

linguistic resources and computational complexity of the algorithms;

• Exploiting the user availability in some scenarios without overloading

or intimidating the user with new and complex tasks;

• Evaluating the whole translation task as opposed to evaluating its

separate steps.
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1.3 Challenges and Objectives

1.3.1 Challenges

Semantically aware algorithms based on logics show promising results in

such area as semantic matching. We believe other application areas like

search and document classification can also benefit from employing seman-

tics. However, high cost of producing semantically annotated data and

the problem of precise natural language to logic translation prevents this

approach from scaling.

Many users do not annotate their data because there are few convenient

annotation tools and, more importantly, there are few tools for extracting

added value out of annotated data. Software relying on semantically rich

data does not appear because of the absence of critical mass of semantically

annotated data. This resembles a vicious circle or a chicken-and-egg prob-

lem. One of the proposed solutions is to develop tools which add semantics

to the data for free, as “a by-product of normal computer use”.

There are many discussions about bootstrapping semantically rich ap-

plications. One can broadly divide presented approaches into two high-

level groups. The first one is a more traditional, academic approach of

bootstrapping “bottom-up”. The essence of this approach is to embed se-

mantic annotations right into the data. The difficulties of this approach

are well-known. First, a critical amount of knowledge should be captured

into knowledge bases. Second, a significant number of tools, able to use

knowledge bases and create semantically annotated content should be cre-

ated. Third, these tools should reach the users and become widely used.

Usually users should learn to use new tools. Relaxing this requirement

might speed up the adoption.

The second group contains more recent approaches. They are “top-

down” approaches which rely on analysing existing information using natu-
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ral language processing technology. These approaches have their costs too:

high computational costs of natural language processing techniques and

their precision and reliability. While the precision of some steps of these

techniques is above 90%, for many this boundary remains to be crossed

and the overall performance is far from satisfactory.

Another challenge to face is connected with the use of logics at the

core of semantically rich applications. Formal logics is a well-developed

and flexible instrument which one can use to power applications involv-

ing semantics. There are mature reasoners for different logic formalisms.

However, it is almost impossible to imagine an average user typing in data

using some logic formalism.

One more challenge not to overlook is the complexity of most logic

formalisms. While being tractable on a case-by-case basis, while reasoners

are becoming more and more advanced, while they handle more and more

expressive formalisms and their robustness increases, the computational

complexity of most of these formalisms remains high and prevents their

application on a large-scale and in real-time.

Existing logical formalisms cover a wide spectrum and vary from ones

having limited expressivity to very rich languages. The computational com-

plexity correlates with the expressivity of the formalism. This introduces

a challenge of keeping a balance between expressivity and computational

complexity of the formalism.

While formal logic has many advantages over natural language, it is

artificial and just seeing logical formalisms intimidates the user. A nat-

ural language interface remains much more suitable and easier to use for

most tasks that information workers handle daily. However, using nat-

ural language interface introduces many challenges. Natural language is

often ambiguous and its processing, especially at high levels, has significant

computational costs.

7
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Using natural language to interface with a semantically enabled applica-

tion helps the users, while using logics in the core of the application is a way

to power the application with semantics. However, one needs to develop

a good natural language to logic translation to use logic in semantically

enabled applications with natural language interface.

Having semantically annotated data as a “by-product of a normal com-

puter use” remains an ideal yet to reach. On the road to this ideal, one

has to involve the user in the process of creating semantically annotated

data. A challenge here is to avoid overloading the user and finding out

those points, where the user intervention will have the most positive and

significant impact on the quality of the semantic annotations.

1.3.2 Objectives

Following our challenges, we set up several objectives.

Addressing the challenge of computational complexity of the natural

language, an objective is to choose and describe suitable subset of the

natural language. It should be a subset of the natural language and not

an artificial creation, to avoid posing the requirement of learning another

formalism. This subset should allow a natural use of language, it should

not be restrictive. The chosen subset should be expressive enough, allowing

users to write in a language they already use for similar tasks.

Addressing the challenge of computational and conceptual complexity of

various logical formalisms, an objective is to choose a minimal logical for-

malism still enabling a sufficient number of motivating applications. This

logical formalism should be simple enough to have low computational and

conceptual complexity, but sufficiently expressive to power several applica-

tions. The formalism should allow expressing most concepts and structures

in a chosen subset of the language.

Addressing the challenge of translation from natural to formal language,
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an objective is to develop a translation architecture, which motivating ap-

plications can exploit. The architecture should be flexible to allow tun-

ing for a specific application. For example, the architecture should allow

modifications of the modules or modality of the translation, such as user-

assisted, fully or semi-automatic processing.

Addressing the challenge of constant changes in the language and in the

requirements of target applications, the solution should allow modifications

on the language side, as well as on the logic side. It should be adaptable

to specific constructs of the input language and the output formalism of

the target application.

Other objectives of the thesis follow from already established ones and

are required to complete the picture. Therefore we include as an objective

to develop the algorithms and the models to solve natural language process-

ing problems specific to natural language metadata. Logical consequence

of the algorithm development is an objective to evaluate the proposed so-

lution.

1.4 Proposed Solution

Users daily create new documents, including text documents and multi-

media documents like photos, illustrations and video clips. For future

identification and reuse, users label the created artefacts using document

titles, folder and file names, tags, subject and category. These mentioned

examples of natural language labels share many features in common: they

are widely used; they are short; they have simple grammar; they describe

objects. We call these short text labels descriptive phrases. This the-

sis defines descriptive phrases, shows their properties as they are exhib-

ited by several collected and annotated datasets of metadata and provides

lightweight grammars for parsing descriptive phrases.
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Descriptive phrases can bridge the “top-down” and “bottom-up” appro-

aches and enable applications to use semantics more easily than currently

possible. Descriptive phrases can be a computationally simple and power-

ful tool for solving the problem of producing semantically annotated data.

This can improve applications like semantic matching, semantic search and

automatic document classification. This thesis shows the use of descriptive

phrases in semantic matching for translating short natural language labels

to logics.

Descriptive phrases are short noun phrases joined with conjunctions

and prepositions. However, they are more complicated in many aspects.

Usually they are ambiguous on many levels of NLP. Often they lack context

or context is indirectly expressed and loosely connected with the phrase

instance. For example, the context for an image title can be other image

titles in the same folder or on the same page, or the surrounding text. They

show different statistical features than normal text, such as news stories

and books. They contain less information than traditional full-fledged

phrases. This thesis provides an architecture and algorithms addressing

these issues.

On one side, we see descriptive phrases as a natural language tool for

describing objects. On the other side, we have a well-known logic formalism

serving the same purpose of describing objects called description logics.

The connection between descriptive phrases and description logics is very

important. These formalisms are expressive and there are different dialects

of description logics with varying degrees of computational complexity.

Moreover, the availability of mature reasoners for description logics makes

this connection even more desirable for applications. In this thesis we

select an easily tractable subset of description logics as a target language

for natural language to logics translation.

Semantically aware applications are supposed to increase the quality
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of information processing. If we look at different stages of information

processing we see that in some of them the user takes the role of consumer

and in some others the role of creator. When looking at ways to empower

the applications semantically, this dichotomy is of use.

On one hand, we have the user-consumer. In this role the user consumes

the information that exists. The task is to enrich existing information with

semantic mark-up. This mark-up, in turn, enables the applications to make

use of the semantics of the information presented in a form of a natural

language.

On the other hand, we have the user-creator. In this role the user

creates new information. Creating content is a complex task. One of

the difficulties writers have to care about is the clarity of their content.

Resolving ambiguity is not easy for humans and is a very hard task for

computers. Smart semantically aware applications will take advantage of

the user availability during the information creation. They will exploit user

availability to make the semantic mark-up more precise and less ambiguous.

The architecture we propose for the tools which need semantic anno-

tations reflects the dichotomy we described. The applications should con-

sider the case of available data without annotation and should care about

“putting the user in the loop” during creation of semantically annotated

content. Putting the user in the right place of the loop and using the right

degree of involvement is a step towards having semantically annotated data

as a “by-product of a normal computer use”.

Whether the solution is user-assisted or fully automated, one needs al-

gorithms to process the proposed subset of a language into the proposed

logical formalism. Given the specificity of the chosen subset of natural lan-

guage, the history and the state of the art in natural language processing,

for some problems we can adapt existing algorithms, while for the others

we develop new algorithms. To make our solution complete and practical,
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we propose a set of new and adapted algorithms and language models for

the respective modules of the proposed architecture to tackle the natural

language processing problems specific to natural language metadata.

To summarize, the proposed solution is the architecture with a set of

algorithms to translate descriptive phrases into propositional description

logics formulas.

1.5 Contributions of the Thesis

This PhD thesis contains the following contributions:

• Descriptive phrases and natural language metadata. The thesis por-

trays descriptive phrases and their properties, by providing an analysis

of several collected and annotated sets of natural language metadata.

• Architecture and implementation. The thesis provides a modular ar-

chitecture for understanding natural language metadata, algorithms

for each module and their implementations.

• Robust processing. The thesis shows how the proposed architecture

can be used to robustly enrich with semantics generic natural language

texts.

• User involvement. The thesis shows the steps in processing where user

involvement is the most efficient and for one of them proposes an aid,

word sense summarization algorithm, for the complex and cognitively

demanding word sense disambiguation task.

• Word Sense Summarization. The thesis proposes an algorithm to sum-

marize word senses, contained in lexical databases such as WordNet.

The thesis provides an evaluation of this algorithm.
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• Evaluation. The thesis provides an evaluation of the proposed archi-

tecture.

1.6 Derivative Works

The following publications have been derived out of the contents of this

thesis:

• Aliaksandr Autayeu, Fausto Giunchiglia, Pierre Andrews, and Qi Ju.

Lightweight parsing of natural language metadata. In Proceedings

of First Natural Language Processing for Digital Libraries Workshop,

2009.

• Aliaksandr Autayeu, Vincenzo Maltese, and Pierre Andrews. Rec-

ommendations for qualitative ontology matching evaluations. In Pro-

ceedings of Ontology Matching Workshop, 8th International Semantic

Web Conference, 2009.

• Fausto Giunchiglia, Vincenzo Maltese, and Aliaksandr Autayeu. Com-

puting minimal mappings. In Proceedings of Ontology Matching

Workshop, 8th International Semantic Web Conference, 2009

The following publications have been submitted using the contents of

this thesis:

• Aliaksandr Autayeu, Fausto Giunchiglia, and Pierre Andrews. Light-

weight Parsing of Classifications into Lightweight Ontologies. In Pro-

ceedings of European Conference on Digital Libraries, 2010

• Aliaksandr Autayeu, Fausto Giunchiglia, and Pierre Andrews. Un-

derstanding Natural Language Metadata. IEEE Internet Computing,

2010
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The implementation of the solution proposed in this thesis is being

prepared for the release under an open source license as a part of S-Match

semantic matching framework1.

1.7 Structure of the Thesis

We structure the thesis as follows. In Chapter 2 we present the state of

the art that includes the approaches to translation of natural language

into logical formalisms and controlled languages as predominant means of

bridging the gap between natural and formal languages.

Chapter 3 provides an intuitive notion of descriptive phrases, develops

it into a basic definition and presents the analysis of samples of natural

language metadata expressed in descriptive phrases, thus backing the ini-

tial intuition and developing the basic definition into a set of grammars,

describing descriptive phrases “in vivo”.

Chapter 4 presents the architecture for understanding natural language

metadata with the models and the algorithms of its modules based on the

results of the analysis presented in Chapter 3.

Chapter 5 presents the solution which aids the user in the word sense

disambiguation task and consists of the algorithms, the user interface pro-

totype and the evaluation of the presented algorithms.

Chapter 6 describes the evaluation of the proposed architecture as a

whole using two large manually annotated datasets.

Chapter 7 shows possible applications of the proposed solution and

demonstrates user-assisted and automatic processing modes of the pro-

posed solution on the example applications.

Chapter 8 concludes the thesis by summarizing the problem and the

proposed solution and outlines the future work.

1http://semanticmatching.org
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Chapter 2

State of the Art

Many algorithms are based on reasoning in a formal language. However,

users are accustomed to natural language and it is difficult for them to

use a formal one. A number of approaches have been proposed to bridge

the gap between formal and natural languages, most of them are based

on a controlled-language approaches. Controlled languages as a solution

have been developed starting both from the language side [63] and from

the logic side [7].

The existing approaches and solutions differ with respect to several pa-

rameters. These parameters include:

• the main motivating application, such as ontology authoring or ques-

tion answering;

• the supported natural language, such as English or Spanish;

• the language domain, such as general texts, medical texts, aerospace

communication messages;

• the breadth of language support, such as which natural constructions

of the language are permitted;

• the language grammar formalism used, such as context-free grammars,

transformational grammars or definite clause grammars;
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• the logic formalism used for output, such as propositional logic, de-

scription logics or first-order logic;

• the degree of lexicalization, such as whether the solution includes the

lexicon or not;

• the availability of a solution, ranging from a paper to a working im-

plementation;

Controlled languages are introduced for different purposes, such as to

ease the readability of the language, to reduce its complexity, to ease the

translation and to represent the knowledge expressed in natural language

in a machine-tractable form. In fact, questions such as “Are [the controlled

language] statements translated into a logic?” already appear explicitly in

discussions about controlled languages [78], and in case of a positive answer

the discussion then turns to questions about expressivity of the target logi-

cal formalism and its computational complexity. The controlled languages

have their niche, because despite in last decades a progress has been made

in natural language processing techniques and in controlled languages, yet

there are examples of problems expressed in natural language where the

language itself is simple, but no natural language processing system can

take such a puzzle as input, translate it into a logical formalism and solve

it automatically [64].

Controlled languages, such as Attempto [23, 21, 22], have been proposed

as a solution to a number of knowledge representation and interoperabil-

ity tasks. Attempto has been proposed as an interface between natural

language and first-order logic. Attempto has been applied as a front-end

to replace first-order logic as an input language of the model generation

method EP Tableaux [24, 25] and as a front-end for an ontology query

language PQL [9]. It has been mapped to OWL DL [43] and vice versa

[42], so far as to extending its use to the verbalization of the ontologies
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[44]. It has been applied to text mining within biomedical domain [45]

and has shows 56% accuracy in representing paragraph headings extracted

from the biomedical literature. Attempto has well-documented syntax [41]

and handles many interesting language features, such as plural ambigui-

ties [61]. The Attempto Parsing Engine implements the language using a

definite clause grammar (DCG) written in Prolog.

PENG [62] is another controlled language, defined by the authors as

“a computer-processable controlled natural language designed for writing

unambiguous and precise specifications”. It covers a strict subset of stan-

dard English and is defined by the lexicon and the controlled grammar.

Specifications written in PENG can be translated into first-order predi-

cate logic. The difficulty of writing in a controlled language is addressed

by a look-ahead editor, ECOLE [67]. PENG lacks, however, phrase level

coordination for noun phrases located in subject position. In addition to

providing a look-ahead editor, PENG Light, introduced in [65], has been

recently proposed to annotate web pages by means of a browser extension

[75]. Interestingly, in [75], authors pay particular attention to processing

unknown content words proposing a special syntax to handle their addition

to the vocabulary. PENG Light [65] also features bi-directionality between

logic and language.

CELT (Controlled English to Logic Translation) [53] is another attempt

to build a controlled language interface for ontology editing. CELT con-

verts controlled English to KIF [27] formulas using ontologies built with the

Suggested Upper Merged Ontology (SUMO) [51]. It uses WordNet [18] as

a source of base lexicon and word sense preference, Discourse Representa-

tion Theory to translate multiple sentences, and definite clause grammar to

parse individual sentences. CELT is domain-independent and is supposed

to be customized for particular domains by providing domain-specific on-

tologies and lexicons. However, ontologies themselves are normally used
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to capture domain knowledge, so in this light one might see the need of

customization of CELT by providing domain-specific ontologies as creat-

ing a vicious circle. The authors continue their work in [52] by proposing

PhraseBank – an extension to the lexicon of the language.

Lite Natural Language [7, 6] presents an attempt to bridge language and

logic by creating a controlled natural language using a Categorial Grammar

on the language side and a dialect of description logics, DL-Lite, on the for-

mal side. The authors’ approach to building the connection between logic

and language is interesting on its own, because authors progress explicitly

from the task of querying an ontology to identifying the logic formalism

sufficient to fulfill the task to identifying which subset of language to use.

The authors choose a subset of language containing those sentences, whose

meaning representation could be expressed by DL-Lite. In [6] authors com-

pare their work with other tractable subsets of English.

MetaLog [46] is an attempt to construct a Pseudo Natural Language

(PNL) interface for accessing the Semantic Web by providing the query

layer on top of RDF.

Rabbit [37, 17] is a controlled language that can be translated into OWL

DL and provides easy access to the precision of a logical formalism to do-

main experts without the need to descend into low-level language syntax.

Differently from some other controlled languages applied for similar pur-

poses, such as SOS [13], which took origin from Attempto [23], Rabbit was

developed independently and has some differences [66] with Attempto and

SOS, the most noticeable of which is meta-level approach to axiom render-

ing (versus object-level in Attempto and SOS). Another interesting point

in this approach is a methodological difference: as a starting point authors

have chosen and intensively involved domain experts in the controlled lan-

guage construction process. This is accomplished by a Protégé [2] plugin

ROO [16]. GATE [15] performs lower-level language parsing tasks to power
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Rabbit with required language processing facilities.

Sydney OWL Syntax (SOS) [13] is a controlled language establishing a

bidirectional mapping between a subset of English and OWL 1.1. Its char-

acteristics follow from several design choices made by its authors: prefer

natural language versus closeness to OWL; prefer determinism and allow

only one SOS syntax form for each OWL form; allow few explicit references

to OWL constructs; use linguistic knowledge to some extent, but do not

go as far as translating ontology as a whole at the expense of introducing

anaphora resolution; use variables, but minimise their use. As a grammar

formalism SOS uses definite clause grammar.

Controlled languages have also been proposed to bridge the gap between

formal and natural languages in [26] by means of use in annotation, namely,

the authors propose to manually annotate web pages, rightfully admitting

that their proposal introduces a chicken-and-egg problem.

These, as well as a number of other proposals based on a controlled lan-

guage approach [69, 68, 17], require users to learn the rules and the seman-

tics of a subset of English to use controlled language efficiently. Moreover,

users need to have some basic understanding of underlying logic to provide

a meaningful input. The difficulty of writing in a controlled language can

be illustrated (and tackled to some extent) by the existence of editors, such

as ECOLE [67], aiding the user in editing the controlled language.

Controlled natural languages have been proposed as an interface for

ontology authoring also in [8, 13]. The approach of [8] uses a small static

grammar, dynamically extended with the elements of the ontology being

edited or queried. Constraining the user even more, the approach of [13]

enforces a one-to-one correspondence between the controlled language and

the ontology language and the authors prefer to leave only one of alternative

language expressions for each OWL form. On the contrary, the authors in

[17], following a practical experience, tailored their controlled language to
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the specific constructs and the errors of their users.

Many controlled languages have been proposed for different purposes,

including language to logic translation. For example, author of [54] men-

tions 41 controlled language, originating from different natural languages.

However, most of them have been critiqued for the lack of documentation

and genre limitations. Few have available working and downloadable im-

plementations. Contrary to the genre limitations of the most of them, the

author critiques “the most expressive one” for its allowance of semantic

ambiguity. Author concludes the criticism with outlining the emergence of

two strategies: more formalistic, more precise languages and more expres-

sive, but less precise languages and hopes for their convergence.

For querying purposes, [74] proposes a natural language interface to the

ontologies by translating natural language into SPARQL queries against a

selected ontology. This approach is limited by the extent of the ontology

with which the user interacts.

We also note few earlier approaches of translating structured language

resources, such as thesauri, into formalisms such as RDF-S and OWL for

the needs of Semantic Web. The GenTax approach [40, 39] of automat-

ically translating hierarchical classifications into OWL ontologies is more

interesting, because contrary to the others, it does not use a controlled

language and its problem domain is similar to ours. However, by consid-

ering the domain of products and services on the examples of eCl@ss and

UNSPSC, some simplifying domain-specific assumptions are made, which

hold in this domain, but which do not hold in a general case.

The authors of [73] propose a methodology for converting thesauri to

RDF and OWL. This methodology contains 4 steps, syntactic as well as se-

mantic, and basically represents a set of guidelines covering the conversion

process. A similar approach is used by the authors in [72] to convert the-

sauri to SKOS [1]. These approaches do not consider linguistic properties
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of terms being converted, they are treated just as (atomic) terms, without

ascending to the (atomic or complex) concept level. Very early approaches

to thesauri to ontology conversion are explored in [76] and [77].

As a part of solving the question answering and explanation problem,

the authors of [49, 50] consider transformation of WordNet glosses to logic

forms, which they see as an intermediate form between the syntactic parse

and the deep semantic form. The authors take into account syntax-based

relationships such as: 1) syntactic subjects, 2) syntactic objects, 3) prepo-

sitional attachments, 4) complex nominals, and 5) adjectival and adverbial

adjunctsand ignore some linguistic phenomena such as plurals and sets,

quantifiers, and few others. The authors use the output of a syntactic

parser and the set of rules to perform the transformation. The weak point

of the approach is the amount of rules needed to cover the language. The

topic is further developed in [56] and in [57].

Differently from the mentioned above approaches, our work does not

impose the requirement of having an ontology, users are not required to

learn a syntax of a controlled language and are not restricted by it, and we

do not restrict our consideration to a specific domain. We also encourage

the cooperation between the user and the machine and try to involve the

user in solving the problem by providing a user interface prototype. We

do not consider covering a wide general subset of language, instead we

start from a specific subset of it, described by several datasets, relevant to

our task. Our approach, being modular, permits translation by adopting

a controlled-language style parsing based on a manually created grammar

(which is supplied by default), as well as the other parsing approaches,

such as based on syntactic and dependency parsers.

21



CHAPTER 2. STATE OF THE ART

22



Chapter 3

Descriptive Phrases

3.1 What are Descriptive Phrases?

We are surrounded by various physical objects and many times a day we

refer them. We use concrete and abstract references, we refer to specific

objects and sets of objects. And for at least the first reference we use a

name for an object. We say: “Please, give me a red apple”. Few objects

have their own, proper name, and mostly we refer to an object by using

its class name (noun), if necessary augmenting it with a specifier (demon-

strative pronoun): “Please, give me that red apple”. Often enough we use

more complex combinations and refer to a set or sets of objects. We ask:

“I would like some red and green apples.”

To refer to objects we describe them using a specific type of natural

language phrase: noun phrase. A basic syntax of a noun phrase can be

expressed by the following syntax shown in Figure 3.1.

NP := [DT] (JJ)* (NN)* NN(s)

Figure 3.1: Basic Noun Phrase Syntax.

In Figure 3.1 a noun phrase NP starts with an optional determiner [DT],

23



CHAPTER 3. DESCRIPTIVE PHRASES 3.1. WHAT ARE DESCRIPTIVE . . .

followed by zero or more adjectives (JJ)*, followed by zero or more nouns

(NN)* and finished by a noun, possible in plural form NN(s). This syntax

allows to create quite expressive phrases such as the example in Figure 3.2.

DT JJ NN NN

a tasty apple juice

Figure 3.2: Basic Noun Phrase Example.

Often this is not enough and we combine such phrases to describe a

desired combination of (sets of) objects. By adding a new syntax rule and

allowing combinations of phrases we are able to say much more. Figure 3.3

shows this additional rule, which allows combining phrases with conjunc-

tions (CC) or prepositions (IN). We call such phrases descriptive phrases

(DP), because they describe objects and sets of objects.

DP := DP CC DP | DP IN DP

DP := [DT] (JJ)* (NN)* NN(s)

Figure 3.3: Basic Descriptive Phrase Syntax.

Descriptive phrases allow to describe complex combinations of objects

and sets of objects, such as demonstrated by the examples in Figure 3.4.

DT NN CC DT JJ NN NN

an apple and a tasty apple juice

DT JJ NN NN CC DT NN

a tasty apple juice in the glass

Figure 3.4: Descriptive Phrase Examples.
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3.2 Why Descriptive Phrases?

In the real world we use descriptive phrases to describe (sets of) objects

and in the virtual world they come in handy when we need to define a

set of documents about these objects. For example, when we search for

“car engine” we want to get information items about car engines, such

as documents, web pages, and images. Descriptive phrases is a natural

language instrument to describe sets of (documents about) objects.

Formal instruments to represent sets of objects can be found in Descrip-

tion Logics. Description Logics (DLs) [4] are a set of logic formalisms that

can be used to structure the domain of interest with concepts and roles.

Concepts stand for sets of objects and roles stand for binary relations

between (instances of) concepts. Concepts can be atomic and complex.

Complex concepts are build out of atomic ones using constructs such as

conjunction (&) and disjunction (|). Descriptive phrases, as they are used

in natural language metadata, represent a static view of the world. They

describe only (sets of) objects and as we will see in Section 4.2.3, because

of the absence of verbs, concepts alone are sufficient and, by agreeing with

some approximations in the processing of prepositions, we can choose a

description logic formalism without roles.

Reasoning about sets of documents defined using a logic formalism is a

convenient tool for many algorithms which work with (sets of) information

items. As a logic formalism our “guinea pig” algorithms of semantic match-

ing, search and classification, introduced in Section 1.1, use propositional

Description Logics language LC , introduced in [30].

The connection between Description Logics and natural language has

been already noted (see Chapter 15 in [4]). Descriptive phrases are in-

teresting, because on one hand, we have descriptive phrases as a natural

language tool for describing sets of (documents about) objects and on the
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other hand we have propositional Description Logics language LC which,

while being propositional in nature, has set-theoretic semantics and its for-

mulas describe sets of documents. According to the set-theoretic semantics

of LC , the interpretation of a concept is the set of documents about this

concept. For example, the interpretation of a concept lexically expressed

with the word “apple” is the set of documents about apples, and not the

set of apples.

Descriptive phrases, as we will see in Section 3.3, form a small, but

expressive enough subset of language to be tractable with simple and fast

tools, such as short rule-based grammars, presented in Chapter 4. On the

other hand, Description Logics contain many tractable subsets of different

complexity and LC in particular is simple and computationally efficient

[30]. Studying descriptive phrases allows us to understand better their

semantics, to adapt modern natural language processing tools and to de-

velop a natural language metadata understanding architecture with accu-

rate translation algorithms. Thus we establish a good balance between a

tractable subset of natural language, formed by descriptive phrases, and a

tractable Description Logic language LC .

3.3 Samples and Syntax

Many types of metadata are available in the world and on the web. Some

is generated automatically, for example the information attached to photos

by cameras, and this metadata has a well defined, machine readable mean-

ing. On the contrary, some metadata contain natural language created

manually, such as article’s titles, keywords or business catalogue’s cate-

gory names. The semantics of such items is not formalized and one has to

extract it to enable automatic processing powered by reasoning over the

meaning.
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Upon a distant look, natural language metadata is represented mostly by

descriptive phrases. In Section 3.1 we gave a basic definition of a descriptive

phrase. A closer look at the samples of natural language metadata confirms

our intuition and reveals that our definition is indeed basic and to make

it useful we elaborate the definition to a set of a more detailed grammars.

Here we study the phenomena of descriptive phrases using natural language

processing tools. Natural language processing is a well-established field

and contains many developed and mature techniques. However, many

of these techniques suffer a performance degradation when applied to a

different subset of language [10]. We show that natural language metadata

deserves to be treated as a separate subset of language and that it is mostly

represented by descriptive phrases.

To study the natural language metadata, we have analysed the follow-

ing datasets: DMoz, eCl@ss, LCSH, NALT, UNSPSC, Yahoo! Directory.

These datasets belong to the natural language metadata and illustrate dif-

ferent uses of natural language metadata, for example for classification

and for indexing. They include web directory category names, business

catalogue category names, thesauri and subject headings. Table 3.1 sum-

marizes some key characteristics of these datasets, and in the following we

provide a more detailed description and analysis. The column “Dataset”

contains the dataset names which we will use to refer to them later. The

column “Labels” shows the number of natural language labels the dataset

contains. The column “Sample Size” contains the number of labels in the

manually annotated sample of the dataset. The column “Unique Labels

(%)” shows the percentage of unique labels in the dataset. The difference

between labels and unique labels is similar to the difference between tokens

and types in a corpus. Namely, a unique label might have several label in-

stances in a corpus. The column ”Levels” contains the number of levels

in the dataset, that is, how many labels there are in the path from the
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Table 3.1: Key Datasets’ Characteristics.

Dataset Labels Sample Size
Unique

Levels
Label Length, NL tokens

Labels (%) Max Avg

DMoz 494 043 27 975 25.46 12 12 1.8

eCl@ss 14 431 3 591 94.51 4 31 4.2

LCSH 335 704 44 490 100.00 21 24 4.0

NALT 43 038 13 624 100.00 13 8 1.6

UNSPSC 19 779 5 154 100.00 4 19 3.5

Yahoo 829 081 132 350 16.70 15 18 2.0

root label of the dataset to the deepest label in the dataset. The columns

“Max” and “Avg” show the maximum and average length of the dataset

label, measured in tokens, respectively. The minimum length of a dataset

label is zero.

DMoz or Open Directory Project1 is a well known web directory, collec-

tively edited and maintained by a global community of volunteer editors.

It is one of the largest web catalogues and it powers directory services for

many sites2, including popular search engines, such as Google.

eCl@ss3 is an “international standard for the classification and descrip-

tion of products and services”. One of the project’s goals is to improve the

collaboration between enterprises. It is edited by professional editors and

used to classify products and services.

LCSH4 stands for “Library of Congress Subject Headings”. It is a

thesaurus of subject headings maintained by the U.S. Library of Congress

for use in bibliographic records. LCSH is edited and used by librarians

and library users for classification of library items to enable and facilitate

uniform access and retrieval in many of the world libraries.

1http://dmoz.org
2114 sites according to DMoz
3http://www.eclass-online.com/
4http://www.loc.gov/cds/lcsh.html
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NALT5 stands for “National Agricultural Library Thesaurus”. NALT

is a hierarchical vocabulary of agricultural and biological terms used ex-

tensively to aid indexing and retrieval of information within and outside

of U.S. Department of Agriculture.

UNSPSC6 stands for “United Nations Standard Products and Services

Code”. It is a “globally used classification hierarchy for products and ser-

vices owned by the United Nations Development Programme (UNDP) and

managed by GS1 US”. Edited by professional editors and being a classi-

fication system, it enables accurate classification of products and services

for companies.

Yahoo! Directory7 is a “catalog of sites created by Yahoo! editors

who visit and evaluate websites and then organize them into subject-based

categories and subcategories”.

In our analysis we extensively use PennTreeBank part of speech (POS)

tag notation [60]. This notation defines a POS tag for each word class. The

tag summarizes the part of speech and the form of the word. The tags are

mostly two or three letter combinations, inspired by the name of the part of

speech. For example, NN stands for a singular form of a noun (NouN, such

as apple), while NNS stands for a plural form of a noun (NouN, such as

appleS). Table 3.2 explains the tags we use the most. When we speak about

POS tag pattern, we mean a sequence of POS tags, such as DT JJ NN NN,

which originates from a phrase, such as “a tasty apple juice”, as shown in

Figure 3.2. Each phrase has only one POS tag pattern corresponding to

it and each POS tag pattern has many phrases corresponding to it. This

relation between phrases and POS tag patterns turns POS tag patterns

into a powerful instrument of language analysis.

5http://agclass.nal.usda.gov/
6http://www.unspsc.org/
7http://dir.yahoo.com/
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Table 3.2: Excerpt of PennTreeBank Tag Notation.

Tag Part of Speech Examples

CC Coordinating conjunction and, or

CD Cardinal number 1, 14

DT Determiner a, the

FW Foreign word noir, persona non grata

IN Preposition or subordinating conjunction in, for

JJ Adjective red, soft

JJR Adjective, comparative better, more

JJS Adjective, superlative best, fastest

NN Noun, singular or mass apple, ox

NNS Noun, plural apples, oxen

NNP Proper noun, singular George Bush, John

NNPS Proper noun, plural Smiths

POS Possessive ending ’s, ’

PP$ Possessive pronoun theirs, ours

RB Adverb deeply, softly

VB Verb, base form be, go

VBD Verb, past tense were

VBG Verb, gerund or present participle going

VBN Verb, past participle granted

3.3.1 DMoz

...

Business

Arts and Entertainment

Agents and Agencies

Film, Video, and Television Production

...

Figure 3.5: DMoz fragment.

We show the fragment of the DMoz dataset in Figure 3.5 to exemplify

typical labels of this dataset. We have analyzed a DMoz dataset language
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patterns using the following sequence of steps:

1. Tag the dataset using OpenNLP POS tagger trained on an annotated

sample of the dataset using PennTreeBank POS tags [60] and extended

context, including the labels in the upper levels of hierarchy. This

model tags 99.67% of tokens or 96.64% of labels correctly, as per 10-

fold cross-validation procedure performed on an annotated sample.

2. Collect obtained POS tag patterns, sort them by frequency and an-

alyze them manually, thus extracting the information about the lan-

guage features used in this dataset and building the basis for both

future grammar construction and translation procedure.

3. Split the patterns into two groups. The first group contains proper

name labels in which all tokens have NNP tag or NNPS tag. The

second group contains common labels, in which the tokens have other

tags. This division was proposed first in [79] to simplify and speed

up the processing by skipping some processing steps for proper name

labels.

4. Analyze the common labels patterns to identify incorrectly tagged

proper name patterns and exclude them from further analysis as mis-

takenly classified.

5. Analyze remaining common labels pattern group.

It should be noted that while tagger precision is high, it is not 100% and

therefore, in some numbers and examples obtained with this model and

presented here there is a slight margin for error. For example, as 0.33% of

tokens might be tagged incorrectly, the shares reported in Table 3.4 might

vary slightly.
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Table 3.3: DMoz Labels Lengths Distribution. Top 5 Rows.

Token count Label count Share of labels (%)

1 251 140 50.8336

2 86 454 17.4993

3 136 425 27.6140

4 12 232 2.4759

5 3 762 0.7615

Table 3.4: DMoz Common Labels Lengths Distribution. Top 5 Rows.

Token count Label count Share of labels (%)

1 160 880 49.5968

2 49 035 15.1167

3 108 838 33.5530

4 3 821 01.1780

5 607 00.1871

Tokenization

The analyzed dataset consists of 494 043 labels, of them 125 797 (25.46%)

are unique labels. More then a half of labels consists of 1 token. Table 3.3

shows the top 5 rows of the distribution of the label lengths for the complete

dataset, while Table A.1 shows the complete version of the distribution.

In the common labels group the token count per label distribution is

slightly different and Table 3.4 displays the top 5 rows of it, while Table A.2

shows the complete version.

POS Tags

We analyzed common labels group which consists of 310 710 labels (62.89%

of all labels) or 578 311 tokens. Table 3.5 shows the top of the POS tag

distribution among common labels, while Table A.3 shows the complete

version of the distribution.
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Table 3.5: DMoz Common Labels POS Distribution. Top 5 Rows.

POS Tag Token count Share of tokens (%)

NN 298 342 51.59

NNS 132 797 22.96

CC 107 006 18.50

JJ 36 888 6.38

, 2 173 0.38

Table 3.6: Top 5 DMoz POS Tag Patterns with Examples.

Label count Share (%) Pattern Example

104 695 33.70 NN Compensation

62 625 20.16 NN CC NN Pregnancy and Birth

44 847 14.43 NNS Sidecars

21 854 7.03 NNS CC NNS Invitations and Announcements

13 047 4.20 NN NNS Restaurant Chains

POS Tag Patterns

The final result of the analysis is a set of 232 POS tag patterns, which

describes common labels used in DMOZ directory. These 232 patterns

cover 310 710 labels, or 62.89% of all labels. Table 3.6 shows top 5 of

the 20 patterns which cover almost 99% of common DMOZ labels, while

Table A.4 shows all 20 patterns.

Qualitative Analysis

We have analysed in details two groups of patterns: discarded patterns and

common patterns. The first group contains patterns which were discarded

for various reasons on different steps of analysis. Analysing patterns gives

us insight into their semantics, which in turn, allows translating them into

logics better.
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Discarded Patterns First group of patterns which was discarded consists of

patterns made from proper nouns only. They were discarded automatically

as they contain only NNP or NNPS tags and can be easily detected. We

think that because of the 96.64% precision per label (PPL) accuracy of the

tagger the mistake margin of discarding some useful common labels should

be acceptable.

The second group of discarded patterns was a group of patterns where

some of the proper noun tokens were mistakenly tagged as common nouns.

In this group we can highlight the following subgroups, with pattern and

label examples:

• NNP-patterns containing a lot of NNP tags with few common noun

(NN) tags:

NN NNP NNP, like “Beta Kappa Phi”;

• proper noun patterns mistakenly tagged as common: NN NN

NN CD, like “Combat Flight Simulator 3”;

• mixed labels in forward order, containing proper name and noun,

many of them ending with “Series”: NNP NNP NN, like “Air Warrior

Series”, “Broken Sword Series”;

• mixed labels in backwards order, containing noun and proper

name, many of them being organizations like “Church”, “Union”,

“College”, “Institute”: NN NN IN NNP, like “Art Institute of Col-

orado”, “Art Academy of Cincinnati”, “Baptist College of Florida’;

• patterns with mixed proper and common labels: NN CC NN

NN NN, like “Network and Operating System Management”, “Life or

Something Like It”;

• patterns with commas, most of them names: NNS , NNP NNP, like

“Vives, Juan Luis”, “Vries, Hugo de”;
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• patterns with other punctuation, most of them movie or game titles:

NN NNS : NNP NNP, like “Deception III – Dark Delusion”, “Circus

Maximus – Chariot Wars”, “Ice Age – The Meltdown”;

Some of these patterns tend to group almost exclusively proper names of a

specific kind, like organizations, person names, movie titles. Others contain

several kinds of proper names. Although currently simply discarded, these

patterns potentially may be used to correct the POS tagger.

The third is a broader group of patterns discarded after retagging and

analysis. It includes several interesting subgroups of patterns:

• structural patterns, or facet indicators: IN NN, like “By Topic”,

“By Movement”, “By Composer”; IN NN IN NN, like “By Source

of Exposure”, “By Country of Service”; IN NN CC NN, like “By

Province or Territory”, “By Room or Item”; IN NN NN, like “By

Metro Area”, “By Age Group”; IN NN NN CC NN, like “By Metro

Area and Region”; IN NNS, like “For Kids”, “By Kids”, “For Pro-

fessionals”; IN JJ NNS, like “By Non-Native Artists”, “For Specific

Publications”;

• patterns with TO, mostly movie titles: NN TO NN, like “Road to

Perdition”, “Heavens to Betsy”;

• “Series” patterns: NNP NN, like “Tetsuo Series”, “Supercross Series”,

“DrumMania Series”; NNP NNP NN, like “Ace Combat Series”, “Air-

borne Assault Series”

• person names and movie titles in backward order: NN , NN,

like “Troup, Bobby”, “Faculty, The”; NNS , NN, like “Parks, Tim”,

“Seahorses, The”; NN NN , NN, like “Signing Game, The”, “Wedding

Present, The”;
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• movie titles: NN DT NN, like “Cracking the Conspiracy”, “Wearing

the Claw”;

• “Based” labels: NN VBN, like “Browser Based”, “Fee Based”,

“Home Based”; NN VBN NN, like “Computer Based Training”, “Ev-

idence Based Healthcare”; NN NN VBN, like “Scheduling Program

Based”;

• organizations in backward order: NN , NN IN, like “Education,

Faculty of”, “Engineering, College of”; JJ NNS , NN IN, like “Social

Sciences, Faculty of”; NN NN , NN IN, like “Business Administration,

Faculty of”, “Hotel Administration, School of”; NNS CC NN , NN IN,

like “Arts and Science, School of”;

• personalized organization names. These labels stand somewhat

in between proper “proper names” and “common names”, because on

one hand they contain a proper name, but on the other hand they con-

tain quite a lot of interpretable meaning: NNP NNP NNP NN CC NN,

like “Korea University of Technology and Education”, “American In-

stitute of Business and Economics”; NN NN IN NN CC JJR NN, like

“Guildford College of Further and Higher Education”;

NN NN NN IN NN CC NN, like “Oak Ridge Institute for Science and

Education”;

• mistakenly tagged patterns: JJ CC JJ NNP NN, like “Radiological

and Environmental Sciences Laboratory”; NN CC JJ NNP NN, like

“Life and Environmental Sciences Division”; NN , NN , CC NNP NNS,

like “Literature, Science, and the Arts”;

• mistyped labels, like those missing comma or ungrammatical:

NNS NNS CC NN NN CC NN NNS, like “Faucets Fittings and Ac-

cessories Trim and Flush Valves”; NN NN CC NNS, like “Peace Love
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and Pitbulls”;

Some of these pattern groups encode special meaning or serve for structural

purposes. We can use these patterns to recognize special kinds of labels.

For example, structural patterns resemble facet names or facet indicators.

We encounter patterns in backward order, where the order of words is

reversed. Compare the label “Faculty of Education” in normal, forward

order with the same label in backward order: “Education, Faculty of”.

Other examples include movies names. Compare normal, forward word

order in the “The Matrix” with the backward word order in the “Matrix,

The”.

Group of patterns covering organizations in backward order might be

either included or excluded, depending on the requirements. Inclusion

would increase language coverage; exclusion would increase homogeneity

of allowed labels, that is, all labels will have more similar translation pro-

cedure.

We currently tag personalized organization names as proper nouns.

However, we might treat them as common nouns, because it is possible to

deduce most of their meaning in the same manner as with common nouns.

The best way of tagging them depends on whether we want to match later

pairs like “College of Liberal Arts” and “Texas College of Liberal Arts”.

We currently tag the word “Based” in “Based” labels as VBN (verb, past

participle), while JJ (adjective) might also be an option, if we consider se-

mantic tagging approach. PennTreeBank tagging guidelines adopted syn-

tactic approach, which we followed. They tag a word according to its

syntactic function, while we are mainly interested in semantics. Follow-

ing syntactic tagging approach makes our POS tagger more compatible

with available parsers, and simultaneously makes the translation proce-

dure, based on these grammars, a bit more complicated.
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Common Label Patterns A majority of common label patterns preserve

semantics and can be quite easily converted into logics. We would like to

make some notes about the following groups of patterns:

• Patterns with multiwords. Some labels contain multiwords, like

“Bed and Breakfast”, “Home Theatre”, which after recognition usu-

ally fall under different pattern, usually a shorter one, like NN or NNS

and therefore, it is simpler to translate labels than it seems initially.

• Potentially ambiguous patterns. They usually contain CC, are

quite long and seem to be, or actually are, ambiguous and need ad-

ditional disambiguation efforts to be correctly translated into logics.

We selected a set of 958 potentially ambiguous labels, manually dis-

ambiguated and analyzed them. The result is a set of 113 patterns

with various degree of ambiguity. We present here the patterns having

more than 1 instance label:

– Unambiguous patterns. Table 3.7 shows the top 5 of 20 pat-

terns which disambiguate always the same way, while Table A.5

shows all 20 patterns. In this table and the following tables we

use propositional description logic formulas notation to show dis-

ambiguation option. This notation includes symbol | indicating

logical disjunction (OR) and symbol & indicating logical conjunc-

tion (AND).

– Ambiguous patterns. Table 3.8 shows the top 5 of 22 pat-

terns which have 2 disambiguation options, while Table A.6 shows

all patterns. In Table 3.8, for each pattern the column “Disam-

biguations” shows possible disambiguation options, followed by

the share of each disambiguation option.

– Highly ambiguous patterns. The pattern in Table 3.9 has
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Table 3.7: Unambiguous DMoz POS Tag Patterns. Top 5 Rows.

POS Tag Pattern Label Count Share (%) Disambiguation

NNS CC NN NNS 97 10.13 NNS | (NN & NNS)

NNS CC NN NN 21 2.19 NNS | (NN & NN)

NNS CC JJ NNS 15 1.57 NNS | (JJ & NNS)

JJ CC NN NNS 6 0.63 (JJ | NN) & NNS

NNS CC JJ NN 6 0.63 NNS | (JJ & NN)

Table 3.8: Ambiguous DMoz POS Tag Patterns. Top 5 Rows.

POS Tag Pattern
Label

Share (%) Disambiguations
Share (%)

Count Share (%)

NN CC NN NN 165 17.22
NN | (NN & NN) 41.82

(NN | NN) & NN 58.18

NN CC NN NNS 139 14.51
NN | (NN & NNS) 15.11

(NN | NN) & NNS 84.89

NN NNS CC NNS 86 8.98
(NN & NNS) | NNS 13.95

NN & (NNS | NNS) 86.05

NN NN CC NN 61 6.37
NN & (NN | NN) 73.77

(NN & NN) | NN 26.23

JJ NNS CC NNS 51 5.32
JJ & (NNS | NNS) 88.24

(JJ & NNS) | NNS 11.76

Table 3.9: Highly ambiguous DMoz POS Tag Patterns.

POS Tag Pattern Label Count Share (%) Disambiguations

NN NN CC NN NNS 5 0.52 ((NN & NN) | NN) & NNS

NN & (NN | NN) & NNS

(NN & NN) | (NN & NNS)

shown to be very ambiguous and has more than 3 disambiguation

options.

• Hanging modifiers. Many labels are self-containing, however, there

are labels which semantics become clear only in context. These ones
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might require special care in the translation procedure.

– JJ is the most significant in this group, 3.15% of all common

labels.

– JJ , JJ , CC JJ. Quite frequently these modifiers repeat their

constituents as their children.

– JJ JJ

– JJ , JJ CC JJ

– NN CC JJ

– JJ , JJ , JJ

– JJ CD

• “Wildcards” or labels with complex semantics. These labels con-

tain one of the words “other”, “related”, “its” or “not” and are not

straightforwardly translatable into logics:

– Containing “other”:

∗ as a first word. Example patterns include: NN NNS, JJ

NNS, NN NN, NN NN NNS, NN NNS CC NNS with labels

such as “Other Themes”, “Other Candidates”, “Other Loca-

tions”, “Other Products”, “Other Media”, “Other Payment

Systems”, “Other Times and Places”; As follows from the sib-

ling nodes of these examples, possible logical formulas for these

labels would be XX & !(Y Y1| . . . |Y YN), where XX is the rest

of the label (“other” excluded) and Y Yi are the labels of the

sibling nodes of the original node.

∗ otherwise. It is difficult to apply a single approach to these

examples and these patterns need further investigation for

translating them into logics properly:
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· NN CC NNS “aimster.com and others”

· NN NN NN “Seeing Other People”

· NN NN NN “Examining Other Beliefs”

· NN CC NN NNS “Buddhism and Other Religions”, “Cho-

lesterol and Other Fats”

– Containing “related”. We think that to translate accurately

these patterns one needs to have a knowledge base with “related”

relation, which will allow to decode “related” concepts. More-

over, some of the example require considering parent labels in

the translation procedure to get accurate translation. Examples

include:

∗ JJ NNS “Related RFCs”, “Related Utilities”, “Related Pub-

lications”, “Related Issues”, “Related Movements”.

∗ NN CC JJ NNS “Consulting and Related Services”, “Haiku

and Related Forms”, “Food and Related Products”

∗ JJ NN CC NNS “Related Software and Services”

∗ JJ NNS CC NNS “Related Products and Services”, “Related

Musicians and Places”, “Related Firms and Organizations”

∗ NN JJ “Music Related”, “Pipeline Related”, “Heat Related”,

“Health Related”

∗ NN IN NN JJ NNS “College of Health Related Professions”

∗ NN CC NN JJ NNS “Contraception and Abortion Related

Services”

– Containing “its”:

∗ NN CC NNS NNS “Lightning and its Effects”

• Common organization names. There are labels which are organi-

zation names, however, with easily understandable semantics. Most of
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them start with “College of”, “Office of”, “School of”, “Department

of”, “Faculty of”. Some examples:

– NN IN JJ NNS “Society of Automotive Engineers”, “School of

Visual Arts”

– NN IN NNS “Faculty of Arts”, “School of Humanities”

– NN NN IN NNP “Anglican Church of Mexico”, “Anglican Mission

in America”, “Art Academy of Cincinnati”, “Baptist Union of

Australia”

Syntax

The analysis enabled us to describe the DMoz labels with the syntax pre-

sented in Figure 3.6 using Backus-Naur Form (BNF) notation. The pre-

sented BNF grammar covers 310 037 (99.81%) common labels. Rejected

patterns constitute only 0.19% of all common labels.

In terms of POS tag patterns, the presented BNF grammar covers 211

(90.95%) of 232 common label patterns. It does not accept 21 (9.05%)

patterns. Most of discarded patterns were tagged wrongly.

(1) NL_Label:= Phrase {Conn Phrase}

(2) Phrase:= Adjectives [Nouns] | Nouns

(3) Adjectives:= Adjective {Adjective}

(4) Nouns:= Noun {Noun}

(5) Conn:= ConjunctionConn | PrepositionConn

(6) Noun:= NN [POS] | NNS [POS]

(7) Adjective:= JJ | JJR

(8) ConjunctionConn:= CC | ,

(9) PrepositionConn:= IN

Figure 3.6: DMoz Labels Syntax.
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Constructing a BNF grammar for this dataset and for the following ones

allows us to generalize the translation procedure and accept more patterns

than we have seen in our analysed samples. Moreover, a comparative

analysis of grammars shows the possibility of a grammar unification, which

will allow to make the translation procedure more uniform.

Figure 3.7 shows an example parse tree for a DMoz label “Massage

Therapy and Body Work” with a respective pattern NN NN CC NN NN.

NL Label

Phrase

Nouns

Noun

NN

Work

Noun

NN

Body

Conn

ConjunctionConn

CC

and

Phrase

Nouns

Noun

NN

Therapy

Noun

NN

Massage

Figure 3.7: Sample DMoz Label Parse Tree.
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3.3.2 eCl@ss

...

Communication technology, office -

Paper, film

pad (writing, office)

note paper (other, office)

...

Figure 3.8: eCl@ss fragment.

We show the fragment of the eCl@ss dataset in Figure 3.8 to illustrate

typical labels of this dataset. To analyze the eCl@ss language patterns we

use the following sequence of steps:

1. Tokenize the dataset using OpenNLP tokenizer trained on a manually

tokenized random sample from eCl@ss (3591 labels, 24.88%). This to-

kenizer model tokenizes 92.87% (10x cross-validation) labels correctly,

which is higher than the standard OpenNLP model which correctly

tokenizes 79.42% of labels.

2. Tag the dataset using OpenNLP POS tagger trained on a manually

tagged random sample from eCl@ss (the same sample used for tok-

enization). This model achieves 97.36% PPT and 90.06% PPL (10x

CV), which is higher than the standard OpenNLP model with 66.32%

PPT and 18.96% PPL.

3. Collect, sort by frequency and analyze manually the POS tag patterns.

It should be noted that while the POS tagger precision is high enough, it is

not 100% and therefore, in the numbers presented here there is a possibility

for a small error.
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Table 3.10: eCl@ss Labels Lengths Distribution. Top 5 Rows.

Token count Label count Share of labels (%)

1 2 512 17.4529

2 3 661 25.4360

3 1 236 08.5875

4 1 260 08.7543

5 1 958 13.6038

Table 3.11: eCl@ss Labels POS Distribution. Top 5 Rows.

POS Tag Token count Share of tokens (%)

NN 31 888 56.3890

) 6 204 10.9708

( 5 906 10.4439

JJ 5 421 9.5862

, 3 324 5.8780

Tokenization

The analyzed dataset consists of 14 431 labels, of them 13 369 (92.64%) are

unique labels. The token per label distribution is quite even among the

major categories, as displayed in Table 3.10 for the top of the distribution,

while Table B.1 shows the distribution completely.

POS Tags

Table 3.11 shows the top of the POS tag distribution among labels, while

Table B.2 shows the complete version. High shares of round brackets “()”

and commas “,” indicate highly structured labels. One can notice a very

small share, almost absence of proper nouns (NNP, 0.03%). A small share

of coordinating conjunctions “CC” indicates that the labels should have a

low ambiguity.
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Table 3.12: Top 5 eCl@ss POS Tag Patterns with Examples.

Label count Share (%) Pattern Example

2 853 19.82 NN NN Methyl benzoylformate

2 457 17.07 NN Acylase

583 4.05 NN NN ( NN ) Laboratory app. (repair)

567 3.94 NN NN NN Block heat exchanger

566 3.93 JJ NN Exterior radiator

POS Tag Patterns

There are 1 496 patterns covering the complete eCl@ss dataset. The top 20

patterns in eCl@ss cover 64.70% of labels. 645 patterns have more than one

label instance. Table 3.12 shows the top 5 eCl@ss patterns with examples,

while Table B.3 shows all 20 top patterns.

Qualitative Analysis

Many labels are made of simple forward noun phrases, like “Block heat

exchanger” or “flexible equipment wire”. In rare cases the modifiers are

placed also after a noun, as well as simultaneously in front and after the

noun: “Tallowamide hydrogenated”, “Alcohol C12-13 ethoxylated”, “Slid-

ing vane rotary compressor”, “monolithic thickfilm ceramic sensor”.

Abbreviations is the most notable phenomena encountered in eCl@ss

labels. Their almost complete absence in the other analysed datasets makes

them even more notable. Abbreviations make 4.02% of all tokens (2 276

cases). In many cases it is possible to expand them by looking for the

token which starts like the abbreviation in the labels above the current

one along the path to the classification root. Such cases amount to 39.6%

of all abbreviations. While a majority of abbreviations are specific to this

dataset, one should notice that some of them, such as “w.” for “with” and

“f.” for “for” are quite generic and could be encountered in other datasets.
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Table 3.13: eCl@ss Abbreviations.

Abbreviation Expansion (? indicates guessed) Share of tokens (%)

lab. laboratory 6.46

w. ? with 3.47

f. ? for 2.64

oth. ? other 0.88

techn. ? technology, technological 0.79

Table 3.13 shows some examples of abbreviations. Expansions marked by

question mark were not found in dataset, but rather were suggested by

common sense.

While searching for expansion along the path to the root is a first option

to check, some abbreviations could be expanded by examining their siblings

or by looking at other abbreviation cases from the dataset.

Round brackets, as well as commas, are also widely used in eCl@ss labels

(65.37% of patterns), although their semantics is not very consistent. We

identify the following types of round brackets use:

• specification: “Laboratory app. (repair)”, “epoxy resin (transpar-

ent)”, “lithography (19th century)”, “Valve (pneumatic, parts)”, “re-

ducing flange (steel, alloyed)”, “Screw (with head)”;

• parts of chemical slang: “(E,E)-Potassium sorbate”, “(N,N-Diethyl-

3-aminopropyl) trimethoxysilane”, “(Methylimino)diethane-1,2-diyl-

distearate”, “(1S)-(-)-Camphanoyl chloride”, “(S)-Malic acid”. We

note that chemical slang is regular and has precise semantics which

can be parsed by a special grammar, however, exploiting this requires

recognizing that these labels are indeed chemical and differentiating

them from other labels;

• repetition of the broader topic from the above levels: “Seal, seal-
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ing material (packing material)”, “Blank (packing material)”, “Box

(packing material)”;

• specification and repetition: “Capsule (gelatine, packing mate-

rial)”, “Beaker (plastic, packing material)”, “Pipette (plastic, packing

material)”.

Often bracketed tokens repeat the label of the level above, but even in

these cases the use is not consistent, although the examples of the first of

the following two kinds prevail. Compare:

• Sub-topic (topic): “documentation (industrial compact computer)”,

“software (industrial compact computer)”;

• Topic (sub-topic): “industrial compact computer (accessories)”,

“industrial compact computer (other)”

In a majority of cases, the round brackets are to be found at the end

of the label. However, there are a few exceptions, such as: “Bottle (alu-

minum) larger than 1000 ml”, “Can (coex) up to 1000 ml”, “Cobalt (II)

carbonate”, “Diethyl (trimethylsilyl) phosphite”, “Rhenium (IV) oxide”.

There are many cases were round brackets are repeated. Among these

cases the following categories could be identified, with the first category

prevailing:

• specification: “Reducing piece (high pressure) (non-ferrous metal)”,

“T-piece (ready) (plast.)”, “Pipe (round) (non-ferrous metal)”, “Re-

ducer (other) (glass)”;

• specification and repetition: “cutting grinder (electrical) (house-

hold appliance)”.

eCl@ss POS tag patterns containing commas constitute a significant

(53.81%) portion of patterns. A majority (68.07%) of patterns with com-
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mas contains commas used between tokens within brackets. We identify

the following semantics of the pieces within brackets separated by commas:

• modifiers, specifying different kinds of topic outside brackets:

“Threaded flange (iron, steel)”, “cross union (steel, alloyed)”;

• modifier and repetition: “Box (aluminum, packing material)”,

“Carrier bag (paper, packing material)”, “Gun (steam, parts)”, “fork

arm (industrial truck, parts)”;

Commas, used to separate pieces outside of round brackets, differ in

their semantics too. We identify the following groups here, with the first

group representing most of cases:

• comma for enumeration of largely independent pieces: “Nonprint,

Multimedia”, “Sound damper, pulsation damper”, “Machine, appara-

tus”, “Training, schooling”, “Gas cleaning, dedusting plant”, “Cleans-

ing material, cleaning material”, “Spam, Canned meat”, “Fish, sea-

food, crustacean”;

• comma between modifiers of a head noun: “copying, printing line”,

“Sparkling, dessert wine”;

• comma between head noun and modifiers: “Refrigeration, equip-

ment”, “moistener, Finger Tip”, “Package insert, paper”, “Shelf dis-

play, wood”, “window opener, electric”.

Few patterns (1.93%) also use a dash or a backward slash as a syn-

tax tool, mostly to separate alternatives. However, while in some cases a

dash or a slash indicate alternative, in others they separate a modifier or

specifier. For example:

• alternative: “master clock / signal clock”, “account book / jour-

nal”, “Dewatering Machine - Expander/Expeller”, “softstarter/ AC-

49



CHAPTER 3. DESCRIPTIVE PHRASES 3.3. SAMPLES AND SYNTAX

regulator”, “tribologic dust measurement / filter monitor (PAT)”,

“controller / card (PC)”;

• modifier or specifier: “Filter - Activated Carbon”, “Heat exchang-

ers - reboiler”, “Sterilizer - Compression Still”.

Syntax

(1) Label:= Phrase {Conn (Phrase | PP$ Label)}

{ "(" [IN] Phrase {"," Phrase}")"}

(2) Phrase:= Adjectives [Nouns] | Nouns

(3) Adjectives:= Adjective {Adjective}

(4) Nouns:= Noun {Noun}

(5) Conn:= ConjunctionConn | PrepositionConn

(6) Noun:= NN [POS] | NNS [POS]

(7) Adjective:= JJ | JJR | CD

(8) ConjunctionConn:= CC | ,

(9) PrepositionConn:= IN

Figure 3.9: eCl@ss Labels Syntax.

The analysis enabled us to describe the eCl@ss labels with the syntax

presented in Figure 3.9 using BNF notation. The presented BNF grammar

covers 92.70% of labels. It covers 1 009 patterns, which constitute 67.45%

of total amount. 487 patterns (32.55%) were discarded by this grammar.

We did not extend the grammar to cover these 487 patterns because they

have very few label instances. Figure 3.10 shows an example parse tree for

the eCl@ss label “Reducer (high pressure)” with a respective pattern NN

( JJ NN ).

Analysis of the top 163 patterns (with more than 1 instance label) shows

the following rejection reasons, which fall into 3 major groups of patterns:
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NL Label

()

Phrase

Nouns

Noun

NN

pressure

Adjectives

Adjective

JJ

high

Phrase

Nouns

Noun

NN

Reducer

Figure 3.10: Sample eCl@ss Label Parse Tree.

• POS tagger error (44.17% of patterns). The tagger tagged one of

the tokens incorrectly, thus creating an erroneous and unusual pattern;

• inconsistent or complex label (7.9% of patterns). The label is

very complex and may include some erroneous syntax elements, like

misplaced comma, for example: “Stand. software, (platform-indepen-

dent)”;

• various BNF limitations (47.93% of patterns). These limitations

mostly arise due to inconsistent or too complex use of syntax or lan-

guage:

– noun used among modifiers (10.42% of patterns): “Sunflower

fatty acid methyl ester”. The noun was not recognized as a mod-

ifier;

– proper noun used as a modifier (3.06% of patterns): “Kaplan

turbine”;
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– reverse modifiers (6.7% of patterns): In these cases modifiers

are put after the noun: “Tallowamide hydrogenated”, “Coconut

oil alcohol ethoxylated”;

– expressions with gerund verbs (9.8% of patterns): In these cases

verbs are used as a part of fixed expression or as modifiers: “Pipe

(ready to be installed) (oth. mat.)”, “Polymer containing Si-Si

chains”;

– brackets in the middle of the label (3.06% of patterns); as

opposed to appended to the end of the label;

– colon or slash used to indicate alternative (3.6% of patterns).

“account book / journal”;

– prepositions with comparative adjectives used to express

complex relation (7.3% of patterns): “Acyclic monocarboxylic

acids greater than C8”, “Heterocycles (unsaturated, more than

2 N) (lab)”;
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3.3.3 LCSH

...

Adventure and adventurers

Escapes

Concentration camp escapes

Escapes, Fiction

Prisoner-of-war escapes

...

Figure 3.11: LCSH fragment.

We show the fragment of the LCSH dataset in Figure 3.11 to illustrate

typical labels of this dataset. To analyze the LCSH language patterns we

use the following sequence of steps:

1. Tokenize the dataset using the OpenNLP tokenizer, trained on a man-

ually tokenized random sample from LCSH (44 490 labels, 13.20%).

This tokenizer model tokenizes correctly 99.40% (10x cross-validation)

of labels, which is higher than the standard OpenNLP model which

correctly tokenizes correctly 96.07% of labels.

2. Tag the dataset using the OpenNLP POS tagger, trained on a man-

ually tagged random sample from LCSH (the same sample used for

tokenization). This model achieves 99.45% PPT and 92.64% PPL

(10x CV), which is higher than the standard OpenNLP model with

72.63% PPT and 27.18% PPL.

3. Collect, sort by frequency and analyze manually the POS tag patterns.

It should be noted that while the POS tagger precision is high enough, it is

not 100% and therefore, in the numbers presented here there is a possibility

for a small error.
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Table 3.14: LCSH Labels Lengths Distribution. Top 5 Rows.

Token count Label count Share of labels (%)

1 28 110 08.3727

2 67 678 20.1583

3 48 138 14.3382

4 45 279 13.4866

5 46 800 13.9396

Table 3.15: LCSH Labels POS Distribution. Top 5 Rows.

POS Tag Token count Share of tokens (%)

NNP 386 302 26.1166

NN 331 775 22.4302

, 210 808 14.2520

NNS 164 186 11.1001

JJ 129 578 8.7603

Tokenization

The analyzed dataset consists of 335 856 labels, of them 335 809 (99.98%)

are unique labels. The token per label distribution is quite even among

the major categories, as Table 3.14 shows for the top of the distribution,

while Table C.1 shows the complete version.

POS Tags

Table 3.15 shows the top of the POS tag distribution among labels, while

Table C.2 shows the complete version. High shares of commas “,” and

round brackets “()” indicate highly structural labels. One can notice al-

most equal shares of NNP and NN. These resembles the clear division

between proper and common name labels in DMoz, but here the picture is

more complicated, as labels have more complex structure.
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Table 3.16: Top 5 LCSH POS Tag Patterns with Examples.

Label count Share (%) Pattern Example

22 192 6.61 NNP NN Teach family

14 444 4.30 NNP NNP ( NNP ) Coconucos Range (Colombia)

13 474 4.01 NNP Myzocallis

11 211 3.34 JJ NN Negative staining

8 771 2.61 NN NNS Museum docents

POS Tag Patterns

There are 13 520 patterns covering the complete LCSH set. The top 20

LCSH patterns cover only 44.45% of labels (compare to the top 20 patterns

in DMoz covering almost 99% of labels). Table 3.16 shows 5 of the top 20

LCSH patterns, their coverage and examples, while Table C.3 shows all 20

top patterns.

Qualitative Analysis

One noticeable thing about LCSH patterns is that they are highly struc-

tured with commas. Commas split patterns into pieces or chunks and while

the number of patterns is significant (13 520), the examination of patterns

at the chunk level reveals that they form 44 groups. Each group consists

of patterns where each piece has the same semantics. We can use the se-

mantics of such chunks during translation. For example, to leave out of

the formula the tokens used for the disambiguation of other tokens, once

we have finished disambiguation. We identified the following chunk types:

• common noun phrase (NP): “International cooperation”;

• event name (event): “Ashanti War”;

• geographical name (geo): “Tokyo”;

• geographical name with disambiguation (geo-dis): “Tokyo (Japan)”;
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Table 3.17: 5 LCSH Chunk Types with Examples.

Chunk-Pattern POS Tag pattern Example

event,geo,time NNP NNP NNP NNP, NNP, NNP, CD Clydeside Apprentices’

Strike, Glasgow, Scotland,

1937

event,time NNP NNP, CD Turco-Montenegrin Wars,

1711-1714

event,time,geo NNP NNP, CD, NNP World War, 1939-1945,

Poland

event,time,NP NNP NNP, CD, NNS Sino-Japanese War, 1894-

1895, Causes

event,time,NP,geo NNP NNP, CD, NNS, NNP Crimean War, 1853-1856,

Campaigns, Romania

• time period (time): “1918-1945”;

• noun phrase with disambiguation (NP-dis): “Contractions (Topol-

ogy)”;

• domain (domain): “in literature”;

• personal name (name): “Constantine I”;

• “wildcard”: “Handbooks, manuals, etc.”;

• “reverse” noun phrase (RNP): “Sculpture, Gothic”.

These types combine into 44 groups of patterns. For example, pattern

NNP, NN CC NN, CD when considered at the chunk level, consists of three

chunks: NNP, NN CC NN and CD. Analysis of the labels with this pattern

type reveals that at the chunk level they form a pattern “geo, NP, time”.

Table 3.17 shows 5 chunk pattern types with POS tag pattern and heading

examples, while Table C.4 shows the complete version.

Many of the other phenomena present in LCSH, are also encountered

in the previously analyzed datasets, such as:

56



CHAPTER 3. DESCRIPTIVE PHRASES 3.3. SAMPLES AND SYNTAX

• “etc.” wildcards, that is, an expression, starting with few words

giving a general direction and ending with the keyword “etc.”, such

as

– “Cranes, derricks, etc.”,

– “Associations, institutions, etc.”,

– “Charts, diagrams, etc.”,

– and “Handbooks, manuals, etc.”.

We encounter such wildcards in different combinations with other

chunks, such as:

– combined with RNP: “Aesthetics, Religious aspects, Buddhism,

[Christianity, etc.]”;

– combined with NP: “Obstetrics, Handbooks, manuals, etc.”;

– combined with a modifier in reverse order: “Speeches, ad-

dresses, etc., Ethiopian”;

• “other” wildcards, such as illustrated by the label “Christianity

and other religions, Greek”;

• round brackets use for disambiguation, such as:

– a proper noun disambiguated with another proper noun: “White-

marsh Hall (Philadelphia, Pa.)”;

– a proper noun disambiguated with a common noun: “Maat (Egyp-

tian deity)”;

– a common noun disambiguated with another common noun “Dif-

ference (Philosophy)”;

• domain specification:
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– within a chunk: “Nude in art”, “Calvinism in literature”;

– in a separate chunk: “National characteristics, Belgian, in lit-

erature”, “Textile fabrics, Medieval, in art”;

• abbreviations: “Otway Basin (Vic. and S. Aust.)”, “Abb’s Valley

(Va. and W. Va.)”;

Syntax

(1) Heading:= ForwardPhrase {"," ForwardPhrase}

(2) ForwardPhrase:= DisPhrase {Conn } DisPhrase

(3) DisPhrase:= Phrase {"("ProperDis | NounDis")"}

(4) Phrase:=[DT] Adjectives [Nouns] | [ProperName] Nouns | Foreigns

(5) Adjectives:= Adjective {[CC] Adjective}

(6) Nouns:= Noun {Noun}

(7) Conn:= ConjunctionConn | PrepositionConn

(8) Noun:= NN [POS] | NNS [POS] | TimePeriod

(9) Adjective:= JJ | JJR

(10) ConjunctionConn:= CC

(11) PrepositionConn:= IN | TO

(12) ProperName:= NNP {NNP}

(13) NounDis:= CD | Phrase [":" Proper]

(14) ProperDis:= ProperSeq ":" Phrase | ProperSeq CC ProperSeq

(15) TimePeriod:= [TO] CD

(16) ProperSeq:= ProperName ["," ProperName]

(17) Foreigns:= FW {FW}

Figure 3.12: LCSH Labels Syntax.

The analysis enabled us to describe the LCSH labels with the syntax

presented in Figure 3.12 using BNF notation. The presented BNF grammar

covers 99.45% of headings. It covers 12 585 patterns, which constitute

92.96% of the total amount. 953 patterns (07.04%) were discarded. We
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did not extend the grammar to cover these patterns, because they have

few label instances. Figure 3.13 shows an example parse tree for the LCSH

label “Whitemarsh Hall (Philadelphia, Pa.)” with a respective pattern

NNP NNP ( NNP , NNP ).

Heading

ForwardPhrase

DisambiguatedPhrase

()

ProperDis

ProperSeq

Proper

NNP

Pa.

,Proper

NNP

Philadelphia

Phrase

Proper

NNP

Hall

NNP

Whitemarsh

Figure 3.13: Sample LCSH Label Parse Tree.

An analysis of the top 366 patterns shows the following rejection reasons,

which fall into 3 major groups of patterns:

• POS tagger error (49.59%). The tagger tagged one of the tokens

incorrectly, thus creating an erroneous and unusual pattern;

• inconsistent or complex heading (2.47%). The heading is com-

plex, includes wildcards or written in a different way than most head-

ings. For example, “English language, Study and teaching (Elemen-

tary), Spanish, [German, etc.] speakers”. This heading contains a
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disambiguation element (Elementary) and a wildcard “Spanish, [Ger-

man, etc.]”. Usually in LCSH wildcards are used at the very end of

the heading, and used for head words. This is one of two examples of

a wildcard applied to a modifier;

• BNF limitations (47.94%). These limitations mostly originate from

the inconsistent use of language, that is, some headings are written in

slightly different way than most headings. Cases are not exclusive as

sometimes several reasons apply:

– noun used among modifiers (17.81%): “Child mental health”,

“Group medical practice”. The noun was not recognized as a

modifier;

– the article (6.30%): “Language and the Internet”. Article the

was not recognized;

– disambiguation attachment (9.59%): “Moses, (Biblical lea-

der), In rabbinical literature”. The disambiguation is separated

with commas and is not attached to a token, but makes a separate

“chunk”. “Teniente (Firm) Strike, 1973”. The disambiguation is

in the middle of the proper noun tokens;

– general BNF deficiency (3.29%). Here are the cases which

already should be handled by the BNF, but due to some errors

are not handled yet: “Drina River Valley (Bosnia and Hercegovina

and Serbia)”;

– reverse “the” (3.01%): “State, The, in literature”;

– proper noun used as a modifier (2.74%): “Sharp/NNP pro-

grammable/JJ calculators/NNS”;

– hanging modifiers (2.47%): “Television for the hearing im-

paired”. “hearing impaired” is named as a “hanging” modifier,
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because there is no noun which they modify. Intended meaning

is “hearing impaired persons”;

– foreign words used as modifiers (0.55%): “Foie/FW gras/FW

industry/NN”;

– mixed order (0.55%): “Civilization, Ancient, in popular cul-

ture”. In these cases the “chunk” order is mixed, or it could be

considered as a normal reverse order, but specified with a domain

“in popular culture”, which should be handled in a special way

then;

– remaining cases are combinations of the above and occupy

each 0.27%;
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3.3.4 NALT

...

animal science

animal production

replacement rate

wool production

animal characteristics

animal age

animal performance

racing performance

...

Figure 3.14: NALT fragment.

We show the fragment of the NALT dataset in Figure 3.14 to illustrate

typical labels of this dataset. To analyze the NALT language patterns we

use the following sequence of steps:

1. Tokenize the dataset using the OpenNLP tokenizer with a standard

model. Model trained on a manually tokenized random sample from

NALT (13 624 terms out of 43 038, 31.60%). This tokenizer model

tokenizes 99.93% (10x cross-validation) of the terms correctly, which

is a bit lower than the OpenNLP standard model, which correctly

tokenizes 99.96% of labels. We suspect that the custom tokenizer

model performance is lower than the standard model performance

because the NALT dataset size is smaller than that the one used for

training the standard model and there are no enough differences in

data for the advantages of retraining to show up.

2. Tag the dataset using the OpenNLP POS tagger, trained on a man-

ually tagged random sample from NALT (the same sample used for

tokenization). This model achieves 97.31% PPT and 96.35% PPL
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Table 3.18: NALT Labels Lengths Distribution. Top 5 Rows.

Token count Label count Share of labels (%)

1 18 246 42.3951

2 20 533 47.7090

3 2 018 04.6889

4 1 776 04.1266

5 271 00.6297

(10x CV), which is higher than the OpenNLP standard model with

58.05% PPT and 40.46% PPL.

3. Collect, sort by frequency and analyze manually the POS tag patterns.

It should be noted that while POS tagger precision is high enough, it is not

100% and therefore, in the numbers presented here there is a possibility

for a small error.

Tokenization

The analyzed dataset consists of 43 038 terms, of them 43 038 (100%) are

unique labels. Many (90.10%) labels are very simple: 42.40% of them

are 1-token labels and 47.71% of them are 2-token labels. 3 and 4-token

labels occupy few percents with everything longer than 4 tokens occupying

a fraction of a percent, as shown in Table 3.18, while Table D.1 shows the

complete picture.

POS Tags

Table 3.19 shows the top of the POS tag distribution among labels, while

Table D.2 shows the complete version. A majority of labels are nouns,

proper, singular, and plural. They are rarely modified with adjectives.

Round brackets are present, but have a very small share of about 1%.
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Table 3.19: NALT Labels POS Distribution. Top 5 Rows.

POS Tag Token count Share of tokens (%)

NNP 49 181 65.5450

NN 15 470 20.6173

NNS 5 732 7.6392

JJ 3 520 4.6912

) 423 0.5637

Table 3.20: Top 5 NALT POS Tag Patterns with Examples.

Label count Share (%) Pattern Example

13 356 31.03 NNP NNP Rhode Island

12 325 28.64 NNP Diachros

3 858 8.96 NN thyroglobulin

2 651 6.16 NN NN milk allergy

2 063 4.79 NNS defoliants

Nevertheless, they are used mostly for disambiguation purposes. There

are also a few cases of comma use.

POS Tag Patterns

There are 275 patterns covering the complete set of NALT terms. One

should note that 121 of these patterns are encountered only once and many

of them are the result of a tagger error, which means that the real amount

of patterns is almost two times smaller. The top 20 NALT patterns cover

97% of terms. Table 3.20 shows top 5 NALT patterns with examples, while

Table D.3 shows the top 20.

Qualitative Analysis

The label patterns in NALT were analyzed manually and with the help of

previously developed BNF grammars of the other datasets. This allows the
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highlighting of commonalities and differences between the types of labels.

We should note that the NALT terms are close enough to the Yahoo labels

and single pieces of LCSH headings, as revealed by the grammars. There

are only 9 purely proper noun patterns. While NALT terms rarely use

proper nouns as modifiers, still there is no such clear separation between

common labels and proper labels as in DMoz case. The labels are quite

simple, as shown by the amount of patterns (275 in NALT vs 2 021 in

Yahoo vs. 975 in DMoz and vs. 13 520 in LCSH).

Proper names constitute almost 60% of terms (the 2 top patterns).

However, this figure is largely due to the taxonomic classification being a

part of NALT. These proper names (species names) are the essence of this

classification.

The NALT terms contain disambiguation tools similar to those used in

LCSH and in Yahoo. Namely, round brackets are used as disambiguation

tool. They are used to disambiguate both common and proper nouns using

as a disambiguation both proper and common nouns.

It should be noted that round brackets use in NALT is not homogeneous.

Sometimes they are used for purposes other than disambiguation. Namely,

they are used instead of a preposition or they contain a modifier inside,

like the following examples illustrate:

• instead of a preposition: “training (animals)”, “cloning (animals)”,

“male infertility (plants)”;

• disambiguation: “fruits (plant anatomy)”, “starch digestion (in vi-

vo)”, “curing (crops)”;

• modifiers: “aquariums (public)”, “ponding (natural)”;

• specification: “food packaging (tamper resistant)”, “water absorp-

tion (by products or materials)”.
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Another disambiguation tool used in NALT is the preposition “as”: “brain

as food”, “heart as food”, “shellfish as food”.

Few terms contain commas. However, there is no consistency in comma

use. Namely, natural comma use is mixed with LCSH-style comma use

(for specifying additional modifiers). Compare

• natural comma use: “leisure, recreation and tourism“, “oxide, hy-

droxide, and oxyhydroxide minerals”

• and use of commas to separate modifiers: “inhalation toxicity,

acute”, “feeding, complementary”.

The natural comma use prevails, though: 12 vs 6 label. There is also a

wildcard example. Consider these terms: “Ictalurid herpes-like viruses”,

“Cricket paralysis-like viruses”. Here “-like” expresses a wildcard.

Syntax

Yahoo (presented in Section 3.3.6) and LCSH (see Section 3.3.3) grammars

both suit NALT well. Both proposed grammars cover more than 99% of

terms. The LCSH one has a slightly larger coverage and covers 163 patterns

(vs 159 by the Yahoo one), which constitute 59.27% of the total amount.

112 patterns (40.73%) were discarded. We did not extend the grammars

to cover these patterns, because they have few label instances.

Figure 3.15 shows an example parse tree for the NALT label “valves

(equipment)” with a respective pattern NNS ( NN ) parsed using the LCSH

grammar.

All 112 rejected patterns were analyzed and the following major reasons

for rejection were identified:

• POS tagger error (80.35%). The overwhelming majority of tagger

errors were failures to recognize proper names;
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DisambiguatedPhrase
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Nouns

Noun
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equipment
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Nouns

Noun

NNS

valves

Figure 3.15: Sample NALT Label Parse Tree.

• noun used as modifier (8.03%). It seems that modifiers and head

nouns should be handled using a different approach. It is difficult to

make a decision based exclusively on POS tags;

• proper noun used as modifier (3.57%);

• unusual disambiguation (1.7%). There are two cases here, one in-

cludes double disambiguation: “malate dehydrogenase (oxaloacetate-

decarboxylating) (NADP)”; another has disambiguation immediately
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after token: “glycogen (starch) synthase”;

• wildcard. (1 case). Only one type of wildcard is present in NALT

terms. These are few terms like “Ictalurid herpes-like viruses”, “Cri-

cket paralysis-like viruses” where “-like” expresses a wildcard.
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3.3.5 UNSPSC

...

Industrial Cleaning Services

Decontamination services

Hazardous material decontamination

Radioactive decontamination services

Asbestos decontamination or removal

...

Figure 3.16: UNSPSC fragment.

We show the fragment of the UNSPSC dataset in Figure 3.16 to il-

lustrate typical labels of this dataset. To analyze the UNSPSC language

patterns we use the following sequence of steps:

1. Tokenize the dataset using the OpenNLP tokenizer with a standard

model, which gives 100% precision when tested on a manually to-

kenized random sample from the UNSPSC (5 154 labels, 26.05% of

19 779). The tokenizer model, trained on this annotated sample also

gives 100% precision in 10x cross-validation.

2. Tag the dataset using the OpenNLP POS tagger, trained on a manu-

ally tagged random sample from the UNSPSC (the same sample used

for tokenization). This model achieves 97.56% PPT and 92.32% PPL

(10x CV), which is higher than the OpenNLP standard model with

74.71% PPT and 32.89% PPL.

3. Collect, sort by frequency and analyze manually the POS tag patterns.

It should be noted that while POS tagger precision is high enough, it is not

100% and therefore, in the numbers presented here there is a possibility

for a small error.
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Table 3.21: UNSPSC Labels Lengths Distribution. Top 5 Rows.

Token count Label count Share of labels (%)

1 1 932 09.7679

2 6 328 31.9935

3 4 018 20.3145

4 3 191 16.1333

5 1 965 09.9348

Table 3.22: UNSPSC Labels POS Distribution. Top 5 Rows.

POS Tag Token count Share of tokens (%)

NN 31569 47.9772

NNS 18659 28.3571

JJ 9350 14.2097

CC 5172 7.8602

IN 655 0.9954

Tokenization

The analyzed dataset consists of 19 779 labels, of them 19 779 (100%) are

unique labels. The token per label distribution is quite even among the

major categories, as displayed in Table 3.21 for the top of the distribution,

while Table E.1 shows the complete version.

POS Tags

Table 3.22 shows the top of the POS tag distribution, while Table E.2

shows the complete version. Notice the very low share of proper nouns.

Basically, the labels are composed of the first 4 grammatical categories:

nouns (NN, NNS), adjectives (JJ) and coordinating conjunctions (CC). A

significant share of coordinating conjunctions together with high shares of

4-token (and longer) labels indicates highly ambiguous labels.

70



CHAPTER 3. DESCRIPTIVE PHRASES 3.3. SAMPLES AND SYNTAX

Table 3.23: Top 5 UNSPSC POS Tag Patterns with Examples.

Label count Share (%) Pattern Example

3 347 16.92 NN NNS Sheet lifters

1 662 8.40 NN NN NNS Slickline paraffin scrappers

1 511 7.64 NN NN Play sand

1 046 5.29 NNS Levels

1 009 5.10 JJ NNS Brominated retardants

POS Tag Patterns

There are 1 356 patterns covering the complete UNSPSC label set and 786

of them have only one label instance. The pattern distribution is quite

even, as opposed to the DMoz case. The top 20 patterns in DMoz cover

almost 99% of labels, while the top 20 UNSPSC patterns cover only 69.97%

of labels. Table 3.23 shows the top 5 UNSPSC patterns with examples,

while Table E.3 shows the complete version.

Qualitative Analysis

The UNSPSC labels do not use syntactic tools like commas or brackets

for structural purposes. Most labels are quite simple descriptive phrases.

The labels contain a significant amount of coordinating conjunctions. 950

patterns (out of 1 356) contain at least one conjunction. Consider, for

example, “Manufacturing Components and Supplies” and “Seating parts

or accessories”.

One should note the labels containing potential wildcards. Wildcards in

UNSPSC are identified by specific words, rather than by POS tag pattern

alone. Such words include:

• “accessories”,

• “supplies”,

71



CHAPTER 3. DESCRIPTIVE PHRASES 3.3. SAMPLES AND SYNTAX

• “components”,

• “subsystems”,

• “parts”,

• “the like”.

The labels containing such words need special processing during the trans-

lation procedure. Consider the following labels: “Bulletin boards or acces-

sories”, “Seating parts or accessories”, “Waste containers and accessories”.

In these cases the word “accessories” is modified by the whole preceding

chunk. In some cases wildcards are combined in one label: “Resuscitator

components or accessories”.

In general, labels containing “-like” or “the like” need a special knowl-

edge base or ontology to expand “like” correctly: “Machinery for working

wood and stone and ceramic and the like”. However, this is an outlier,

being the only example in this dataset.

There are labels containing tokens almost explicitly specifying set rela-

tions, like “other than” and “including” or “not including”. Consider the

following examples containing:

• “other than”: “Taxes other than income tax”, “Fabrics of vegetable

material other than cotton”, “Residues other than animal feed”;

• “including” or “not including”: “Point of sale materials not in-

cluding printed materials”, “Chemicals including Bio Chemicals and

Gas Materials”, “Sales marketing agencies including print”.

There are many cases where a would be adjective is missing a dash,

showing a deviation from a more common writing with dash or in a single

word: “Adjustable pre set capacitors”, “Pre ignition knock sensor”, “Pre

school educational services”. To recognize some of these cases one might

first check in the dictionary the presence of the alternative spelling.
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Many labels contain acronyms without any syntactic tool being used to

indicate them. This is contrary to the common practice of putting acronym

in round brackets. Acronyms are derived from single nouns as well as from

their plural forms. Acronyms usually follow the tokens they represent.

These cases should be recognized and handled properly. Consider the fol-

lowing examples:

• acronym follows the tokens and their initial letters: “Light emitting

diodes LEDs”, “Central processing unit CPU processors”, “Personal

computer PC application design”;

• acronym does not correspond completely to the initial letters of

the tokens: “Osmium Os”;

• acronym contains initial letters of word components: “In-

frared IR sensors”, “Polyvinyl Chloride PVC”, “Polypropylene PP”,

“Polyethersulfone PES”, “Slow continuous ultrafiltration SCUF units

or related products”;

• acronym follows later, not immediately after the abbreviated to-

kens: “Light rail vehicle transport LRV services”;

• acronym does not correspond to the letters or word components:

“Acrylonitrile butadiene NBR”, “Electrocardiography EKG units and

related products”;

• acronym precedes abbreviated tokens: “VPN virtual private net-

work managed network services”, “ATM asynchronous transfer mode

managed network services”.

Acronym introduction cases should not be mistaken with cases where the

acronym is simply used: “Programming for HTML”, “ERP or database

applications programming services”.
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(1) NL_Label:= Phrase {Conn (Phrase | PP$ Label)}

(2) Phrase:= Adjectives [Nouns] | Nouns

(3) Adjectives:= Adjective {Adjective}

(4) Nouns:= Noun {Noun}

(5) Conn:= ConjunctionConn | PrepositionConn

(6) Noun:= NN [POS] | NNS [POS] | DT RB JJ | ProperName

(7) Adjective:= JJ | JJR | CD | VBG

(8) ConjunctionConn:= CC | ,

(9) PrepositionConn:= IN

(10) ProperName:= NNP {NNP}

Figure 3.17: UNSPSC Labels Syntax.

One needs to mentions many labels, containing tokens “for the physi-

cally challenged”. The semantics of these labels could be difficult to trans-

late in propositional description logics exactly. Consider the examples:

“Gardening tools for the physically challenged”, “Independent living aids

for the physically challenged”. For example, the first label speaks about a

category of gardening tools, a specially modified ones, which is not indi-

cated in the label directly, but implied by the presence of “for the physically

challenged”.

Syntax

The analysis enabled us to describe the UNSPSC labels with the syntax

presented in Figure 3.17 using BNF notation. The presented grammar

covers 90.42% of labels. It covers 1 024 patterns, which constitute 75.52%

of total amount. 332 patterns (24.48%) were discarded. Figure 3.18 shows

an example parse tree for the UNSPSC label “Seismic magnetic systems”

with a respective pattern JJ JJ NNS.

The discarded patterns analysis shows that noun modifiers remain ma-
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NL Label

Phrase

Nouns

Noun

NN

systems

Adjectives

Adjective

JJ

magnetic

Adjective

JJ

Seismic

Figure 3.18: Sample UNSPSC Label Parse Tree.

jor rejection reason. Examples of these cases include: “Photo sensitive

transistors” with pattern “NN JJ NNS”, “Feng shui instructional materi-

als” with pattern “NN NN JJ NNS”. In these cases there is a noun used

among modifiers, which gets confused with noun as a head of the label.
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3.3.6 Yahoo! Directory

...

Government

U.S. Government

Politics

Interest Groups

Political Action Committees (PACs)

MoveOn.org

...

Figure 3.19: Yahoo! Directory fragment.

We show the fragment of the Yahoo! Directory dataset in Figure 3.19

to illustrate typical labels of this dataset. To analyze the Yahoo! Directory

language patterns we use the following sequence of steps:

1. Tokenize the dataset using the OpenNLP tokenizer, trained on a man-

ually tokenized random sample from the Yahoo (132 350 labels of

829 081, 15.9%). This tokenizer model tokenizes 99.88% (10x cross-

validation) labels correctly, which is higher than the OpenNLP stan-

dard model, which correctly tokenizes 99.77% of labels.

2. Tag the dataset using the OpenNLP POS tagger trained on a manually

tagged random sample from the Yahoo (the same sample used for

tokenization). This model achieves 98.14% PPT and 97.90% PPL

(10x CV), which is higher than the OpenNLP standard model with

61.67% PPT and 47.44% PPL.

3. Collect, sort by frequency and analyze manually the POS tag patterns.

It should be noted that while POS tagger precision is high enough, it is not

100% and therefore, in the numbers presented here there is a possibility

for a small error.
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Table 3.24: Yahoo Labels Lengths Distribution. Top 5 Rows.

Token count Label count Share of labels (%)

1 432 092 52.1170

2 141 905 17.1159

3 206 726 24.9344

4 25 050 03.0214

5 5 722 00.6902

Table 3.25: Yahoo Labels POS Distribution. Top 5 Rows.

POS Tag Token count Share of tokens (%)

NN 610235 38.5370

NNS 338313 21.3648

NNP 270046 17.0537

CC 188653 11.9136

JJ 113685 7.1793

Tokenization

The analyzed dataset consists of 829 081 labels, of them 96 626 (11.65%)

are unique labels. More than a half of labels are extremely simple 1-

token labels and majority of labels does not exceed 3 tokens, as displayed

in Table 3.24 for the top of the distribution, while Table F.1 shows the

complete version.

POS Tags

Table 3.25 shows the top of the POS tag distribution among labels, while

Table F.2 shows the complete version. Majority of labels are nouns, singu-

lar, plural and proper. They are rarely modified with adjectives. Round

brackets and commas are present, but have very small share of less that

1%. Nevertheless, they are used in some labels for structural purposes

(commas) and disambiguation (brackets).
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Table 3.26: Top 5 Yahoo POS Tag Patterns with Examples.

Label count Share (%) Pattern Example

211 753 25.54 NN Slowpitch

136 156 16.42 NNS Sidecars

84 762 10.22 NN CC NN Support and Assistance

52 316 6.31 NNP Hitwise

38 395 4.63 JJ NN High Jump

POS Tag Patterns

There are 2 021 patterns covering complete set of Yahoo labels. One should

note that 1 190 of these patterns have only one instance label and many of

them are result of a tagger error, which means that real amount of patterns

is smaller. The pattern distribution resembles that of the DMoz case, while

having a bit longer “tail” of 18%. The top 20 Yahoo patterns cover almost

94% of all labels. Table 3.26 shows top 5 Yahoo patterns with examples,

while Table F.3 shows the complete version.

Qualitative Analysis

The label patterns in the Yahoo were analyzed manually and with the help

of BNF grammars, developed for the previous datasets. This allows to

highlight commonalities and differences between the types of labels. We

should note that Yahoo labels, while being closer in structure to DMoz

labels, do not have such clear separation between proper and common

labels. There are only 27 purely proper noun patterns. Yahoo labels use

proper nouns as modifiers more frequently in comparison with DMoz. The

labels are more complex than in DMoz and less complex than in LCSH,

as shown also by the amount of patterns (2 021 in Yahoo vs. 975 in DMoz

and vs. 13 520 in LCSH). The analysis of syntax elements usage shows less

consistency in Yahoo labels, compared to both DMoz and LCSH.
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The comma use in Yahoo labels is much closer to the one in DMoz

(“natural” use of comma to separate modifiers), rather than the one in

LCSH (for structural purposes, to separate facets or pieces of a heading).

Out of the 239 analyzed cases of patterns with commas from the Yahoo

directory, only 34 preserved semantics if comma-separated parts were pro-

cessed independently. The remaining patterns contained 70 erroneously

tagged patterns and 132 patterns where basically comma separated modi-

fiers of the head noun, thus making the comma-separated parts dependent

and required processing as a single piece. Example of the independent

comma-separated parts: “Rocks, Gems, and Minerals”. The example of

the dependent comma-separated parts: “Classic, Exotic, and Sports Cars”.

The Yahoo labels contain disambiguation tools similar to those used in

LCSH. Namely, round brackets are used as disambiguation tool. However,

the round brackets are also used to indicate point in time or period of

time. This could also be seen as a disambiguation. However, this usage

is less consistent compared to LCSH, because sometimes time is indicated

in brackets (like disambiguation), while there are also cases when time is

indicated in front of the label, in the first token or at the end of the label, in

the last token. The dash is another syntactic tool used for disambiguation

in Yahoo labels. Examples:

• Period of time in brackets: “Artaud, Antonin (1896-1948)”.

• Disambiguation in brackets: “Taloyoak (Spence Bay)”.

• Time in front of a label, in the first token: “2008 U.S. Presidential

Election Issues”.

• Time at the end of a label, in the last token: “Hurricane Flossie

2007”.

• Dash as a disambiguation tool: “2002 World Masters Games –
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Melbourne”.

• Brackets and dash as a disambiguation tool: “Paul, Ron (R) –

14th District”.

Among Yahoo labels we should note the following types of labels, which

somehow stand out:

• hanging modifiers, like “Oriental and European”. Hanging modi-

fiers are adjectives, which usually modify some noun higher in the tree

structure;

• facet labels, like “By Instrument”, “By Month”, “By Genre and

Subject”, “By Province or Territory”. These usually structure labels

lying below them into facets;

• verbalized facet labels, like “Browse by Country”, “Browse By

Region”;

• proper noun labels with date disambiguation, mostly movie names,

like “Iron Man (2008)”;

• introduced abbreviations in round brackets, for example “Internet

Service Providers (ISPs)”;

• combined facets, like “2004 – Athens”. These labels combine time

and space;

• double disambiguation, like “Days of Glory (Indigenes) (2006)”;

• periods of time specified using dash, dash and spaces, open periods

of time, birth dates, imprecise periods:

– dash: “Clare of Assisi (1194-1253)”;

– dash and spaces: “Bacon, Ernst (1898 - 1990)”;
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– open periods of time: “Gell-Mann, Murray (1929- )”;

– birth dates: “Oehlen, Albert (b. 1954);

– imprecise periods: “Le Prince, Louis (1842 - 1890?)”;

– early history periods of time: “Sophocles (496-406 BCE)”;

• special, directory-specific patterns:

– “2000: Bush – Gore”. This pattern is used for all presidential

elections mentioned in the directory.

– political affiliation: “Huckabee, Mike (R)”;

– political affiliation and district: “Pelosi, Nancy (D) – 8th Dis-

trict”;

• etc-wildcards: “MUDs, MUSHes, MOOs, etc.”, “MUDs, MUSHs,

Etc.”;

• square brackets instead of round brackets for disambiguation: “Dan-

ville [Knox County]”;

• reversed titles: “Lesson Before Dying, A”, “Machinist, The”;

• disambiguation brackets:

– after token, in the middle of the phrase: “Little Blue (Fairy)

Penguins”;

– after the phrase: “XO (One Laptop Per Child Project)”, “Zoloft

(Sertraline)”;

• semicolon as disambiguation or abbreviation expansion tool: “TCAP:

The California Arts Project”;

• dash as combiner: “NATO – Russia Relations”. One should note

the spaces surrounding the dash;
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• duel names: “Lewis vs. Tyson”;

• expanded abbreviations: “POP (Post Office Protocol)”;

• paired proper names: “PowerShot S50 and S45”, “Polish, Mark

and Michael”, “Maysles, Albert and David”, “Hughes, Albert and

Allen”;

Syntax

(1) ForwardPhrase:= [VB] [IN] DisPhrase {Conn } DisPhrase

(2) DisPhrase:= Phrase ["(" ProperDis | NounDis ")"]

["(" TimePeriod ")"] [":" Phrase]

(3) Phrase:=[DT] Adjectives [Nouns] | [ProperName] Nouns

(4) Adjectives:= Adjective|CD {[CC] Adjective}

(5) Nouns:= Noun {Noun}

(6) Conn:= ConjunctionConn | PrepositionConn

(7) Noun:= NN [POS] | NNS [POS]

(8) Adjective:= JJ

(9) ConjunctionConn:= CC | ","

(10) PrepositionConn:= IN | TO

(11) ProperName:= NNP {NNP|POS}

(12) NounDis:= TimePeriod|Nouns|Adjectives [Nouns]

(13) ProperDis:= ProperSeq [CC ProperSeq]

(14) TimePeriod:= [NN] CD ["-"] [CD] [NN]

(15) ProperSeq:= ProperName ["," ProperName]

Figure 3.20: Yahoo Labels Syntax.

The analysis enabled us to describe the Yahoo labels with the syntax

presented in Figure 3.20 using BNF notation. The presented grammar

covers 99.46% of labels. It covers 1 320 patterns, which constitute 65.31%

of total amount. 701 patterns (34.69%) were discarded.
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Figure 3.21 shows an example parse tree for the Yahoo label “Artaud,

Antonin (1896-1948)” with a respective pattern NNP NNP NNP ( CD ).

ForwardPhrase

DisambiguatedPhrase

)

)

NPDis

Period

CD

1896-1948

(

(

Phrase

Proper

NNP

Antonin

NNP

,

NNP

Artaud

Figure 3.21: Sample Yahoo Label Parse Tree.

Top 213 rejected patterns (those with more than 1 instance) were ana-

lyzed and the following major reasons for rejection were identified:

• POS tagger error (70.9%). The overwhelming majority of tagger

errors were failures to recognize proper names;

• noun used as modifier (10.3%). It seems that modifiers and head

nouns should be handled on a higher level. It is difficult to make a

decision based exclusively on POS tags;

• unrecognized date (5.6%). This is a deficiency of a current BNF;

• disambiguation immediately after token (3.7%). Usually disam-

biguation follows the label, however there are also these exceptions;

• proper noun used as modifier (0.9%);
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• etc-wildcard. Only one type of wildcard is present in Yahoo labels.

These are labels like “MUDs, MUSHes, MOOs, etc.” where “etc.”

expresses a wildcard;
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Chapter 4

Metadata Processing Architecture

4.1 Overview

Natural language metadata, being a subset of natural language, is ambigu-

ous and hard to reason about (see Chapter 3. These problems of ambiguity

and complexity need to be addressed to enable metadata use in semantic

applications, such as the ones we introduced in Section 1.1 and review in

Chapter 7. One of the approaches to this problem, described in [34], is to

translate the natural language metadata into a propositional Description

Logic language LC to reason about sets of information items (for example

documents) precisely described by LC formulas.

We overview the typical processing steps that a target application needs

to perform by considering the example from [79]: “Bank and personal

details of George Bush”. We identify several key steps of the translation

process and highlight processing problems, as well as illustrate them with

additional examples in Table 4.1.

We consider atomic concepts as the basic building blocks of the LC

formulas. Any controlled vocabulary containing word senses (for example,

WordNet [18]) can provide such atomic concepts. A sense of a word usually

represents an atomic concept. However, a concept can be lexicalized as

more than one word, as often dictionaries contain multiword expressions
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Table 4.1: Input Examples.

# Label Comments

1 Packing material basic label

2 Multi-media service center “multimedia” is usually written to-

gether

3 Automation, electrical-engineering, PLT “electrical engineering” is more

common

4 Electrical Cable and Accessories label with the conjunction “and”

5 George Bush simple NE label

6 Might and Magic Games contains NE “Might and Magic”

with a common noun “games”

7 Brain and Computer Science double multiword example: the to-

ken “science” is in both “brain sci-

ence” and “computer science”

8 Accurate Accounting and Timely Data Entry unwanted multiword example: “ac-

counting entry”

9 Haiku and Related Forms wildcard example: notice “related”

10 Economics, Examinations, questions, etc. wildcard example: notice “etc.”

11 Mug’s game idiom or ambiguous proper noun:

a small company name, which sells

hand-painted mugs or a movie name

“A Mug’s Game” by David Blair

which nevertheless describe a single concept. Take for example “computer

science” and “Mount Fuji”. Atomic concepts can be roughly divided into

two large groups: common nouns and adjectives, and proper nouns, also

known as named entities (NEs).

First, we identify potential atomic concepts in the label. In our ex-

ample, the following atomic concepts can be identified in the label: n#1

(“bank”), a#2 (“personal”), n#3 (“detail”), n#4 (“George Bush”), where

the concepts are assigned unique IDs mapped to unambiguous senses in

the controlled vocabulary. Examples 2 and 3 in Table 4.1 illustrate more
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difficult atomic concept recognition cases, complicated by the tokenization

problems. Examples 5 and 6 shows complications brought by the need

to recognize named entities. Examples 7 and 8 demonstrate the obsta-

cles presented by the multiword expressions, showing the cases where they

should and should not be recognized. Examples 9 and 10 highlight a prob-

lem of wildcards or special constructions, which not only need not to be

recognized as atomic concepts, but further treated specially.

Second, we build complex concepts out of the atomic concepts and log-

ical connectives of LC . We derive logical connectives out of syntactic re-

lations between words. For example, we translate prepositions like “of”

into logical conjunction between sets (u) and coordinating conjunctions

like “and” and “or” into logical disjunctions between sets of items (t).

Examples 4, 7, 8 and 9 show the labels with such a conjunctions, while

the conjunction in the example 6 should be treated as a part of a named

entity. Examples 9 and 10 show the wildcard examples, which require spe-

cial constructions in a target language, rather than just being treated as a

complex concepts.

Finally, we build the structure of the formula taking into account how

the words are coordinated in the label. In our example, we put a conjunc-

tion between “detail” and “George Bush”. Examples 3, 4, 7 and 8 show

issues represented by more complex coordinations.

As a result we have the LC formula which represents the concept and

unambiguously describes the set of documents about this concept. In our

example, the final formula is (n#1 t a#2) u n#3 u n#4.

The translation process contains several steps, where we can make mis-

takes due to incorrect processing of natural language. For example, the

word “personal”, if recognized by the POS tagger as a noun instead of an

adjective, might be mapped to the wrong sense in the controlled vocabu-

lary. The tokens “George” and “Bush” should be recognized as a single
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concept, namely a proper noun, and pointed to the appropriate person,

disambiguating between George H. W. Bush and George W. Bush.

4.2 NLP Pipeline

We propose a pipeline architecture, each module of which addresses closely

related problems of a translation step. Figure 4.1 displays the proposed

architecture with the modules and the connections between them. Descrip-

tion of each module follows in the sections below.

4.2.1 User Input

We introduce some optional dialog boxes that allow the pipeline to be used

in two modes: fully automatic and user-assisted. The latter is introduced as

a solution to inferior performance of some difficult processing steps, such as

word sense disambiguation. It allows the user to introduce corrections into

the decisions made by the pipeline. We propose to combine error-correcting

tasks in a special Semantic Text Input Interface shown in Figure 4.2.

Thie dialogue with this interface appears in the beginning of the pipeline

to collect the user input and at the end of processing for the error correc-

tion. In the first appearance the user types in the label and launches

processing by making no input during a predefined period of time. In the

second appearance the user can correct the results before the final trans-

lation into the logical formula.

In the automatic processing mode the dialogs do not appear and a calling

program interacts with the pipeline in a traditional way, using an API. The

pipeline API allows to manipulate and correct the results of the automatic

processing. This might be needed in case the application encounters some

specific and frequently repeating patterns in the language of its domain,

which are not worth separate adaptation, but which need to be corrected
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Named Entity Recognizer

User Input

NL Label

POS Tagger

User Input

FL formula
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NO

Figure 4.1: Natural Language Metadata Processing Pipeline.
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Semantic Text Input

Label: 

Relation

Word Senses

Red apple

Red apple

Manage Senses

(a) characterized by violence or bloodshed; "writes of crimson 

(a) (especially of the face) reddened or suffused with or as if w

(a) red with or characterized by blood; "waving our red weapo

(a) of a color at the end of the color spectrum (next to orange)

Figure 4.2: Semantic Text Input Interface.

to achieve better translation results.

4.2.2 Tokenization

Problems

Tokenization is the first step in almost any language processing. Although

a relatively simple task, in our domain of natural language metadata the

standard tools encounter several difficulties and the analysis provided in

Chapter 3 helped to reveal the details. Some difficulties arise from a stan-

dard, but very frequent use of dot for abbreviations, such as described

for eCl@ss in Section 3.3.2 or a frequent use commas combined with non-

standard word order, as noted in Section 3.3.3. Other difficulties arise from

various non-standard use of such punctuation elements as commas, round
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Table 4.2: Desirable Tokenizer Output Examples.

# Label Desirable Tokenization

1 Packing material packing|material

2 Multi-media service center Multi-media|service|center

3 Automation, electrical-

engineering, PLT

Automation|,|electrical|-|engineering|,|PLT

4 Electrical Cable and Acces-

sories

Electrical|Cable|and|Accessories

5 George Bush George|Bush

6 Might and Magic Games Might|and|Magic|Games

7 Brain and Computer Science Brain|and|Computer|Science

8 Accurate Accounting and

Timely Data Entry

Accurate|Accounting|and|Timely|Data|Entry

9 Haiku and Related Forms Haiku|and|Related|Forms

10 Economics, Examinations,

questions, etc.

Economics|,|Examinations|,|questions|,|etc.|

11 Mug’s game Mug|’s|game

and square brackets, slashes, dashes, dots, ellipsis and semicolons: , () [] \
/ : . . . -. In addition, in several datasets we have noticed a non-standard

use of punctuation, such as missing conventional space after a comma.

Consider the example eCl@ss label “Hand tools (maint.,service)”. This

label uses a dot for an abbreviation and is followed immediately by a comma

with a missing conventional space afterward, all of which is within round

brackets. Such combinations are rare in normal texts and therefore the

performance of standard tools, trained on such texts, degrades. Table 4.2

shows further examples of desirable tokenizer output on our examples.

Solution and Evaluation

We performed a 10-fold cross-validation on each of our annotated datasets

with the OpenNLP “standard” model, and also tested a combined model
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trained on the merged datasets. Table 4.4 summarizes the results of the

experiments.

We report the results using precision per token (PPT) and precision per

label (PPL) measure for our datasets. Namely, we count the percentage of

correctly tokenized tokens (PPT) and the percentage of correctly tokenized

labels (PPL). In columns we report the performance of different tokenizer

models on a particular dataset. In rows we report the performance of a

model trained on a particular dataset, on the other datasets. Figures on

the diagonal and for the combined model are obtained by a 10-fold cross

validation.

The next to last row reports the performance of the OpenNLP standard

model. The last row is a combined model trained on the combination of

the datasets available. Although in many cases the performance improve-

ment is marginal, there are noticeable improvements in the cases of eCl@ss

LCSH. One can also notice that the model trained only on this particularly

difficult datasets also outperforms the standard OpenNLP model. In the

case of eCl@ss we notice lower performance than in other cases. This is

caused by the particularly unorthodox use of punctuation in combination

with a relatively small size of this dataset.

The analysis of errors made by a tokenizer unveils that the main reason

of this performance improvement is that punctuation is used in short labels

differently and more intensively than in normal text. Therefore a retrained

model grasps this difference better than the standard one.

We performed incremental training to explore the stability of the models

obtained. For clarity, we report here the first 50 000 tokens of two major

datasets in Figure 4.3, with a notice that the rest shows similar trend.

Namely, the performance tends to stabilize and reach a plateau, except

one case of eCl@ss, where the performance fluctuates around 90%. We

report the results of the incremental training for other datasets in the
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Table 4.3: Tokenizer Performance, Precision Per Token (%).

Model DMoz eCl@ss LCSH NALT UNSPSC Yahoo

DMoz 99.91 53.27 76.24 98.01 100.00 97.77

eCl@ss 99.49 91.28 97.32 99.97 99.99 99.06

LCSH 99.87 90.41 99.71 99.87 100.00 99.74

NALT 97.63 67.24 82.49 100.00 100.00 96.97

UNSPSC 94.39 43.04 36.58 97.58 100.00 92.99

Yahoo 99.81 54.59 87.91 98.32 100.00 99.87

OpenNLP 99.79 79.42 97.20 99.94 100.00 99.68

combined 99.89 91.23 99.34 100.00 100.00 99.87

Table 4.4: Tokenizer Performance, Precision Per Label (%).

Model DMoz eCl@ss LCSH NALT UNSPSC Yahoo

DMoz 99.95 55.22 78.11 98.97 100.00 98.67

eCl@ss 99.73 94.29 97.70 99.97 99.98 99.45

LCSH 99.93 87.41 99.79 99.87 100.00 99.85

NALT 98.82 69.17 85.55 100.00 100.00 98.48

UNSPSC 97.09 47.98 43.63 98.80 100.00 96.76

Yahoo 99.90 55.69 88.47 99.12 100.00 99.90

OpenNLP 99.86 79.39 95.57 99.96 100.00 99.77

combined 99.95 94.26 99.51 100.00 100.00 99.90
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Figure 4.3: Tokenizer Incremental Training for LCSH and DMoz.

Appendix G.

4.2.3 POS Tagging

Problems

Most state of the art POS tagging algorithms are based on supervised

learning approaches. To determine a part of speech of a particular word,

a tagger extracts a feature set out of it and a classifier estimates the prob-

abilities for all tags from a tag set to be the correct tag for this particular

word. Most popular features include prefixes and suffixes (morphology) of

the word and its neighbours (context).

In the domain of natural language metadata the traditional POS taggers

are challenged by a shorter context. There are fewer neighbour tokens

available, if they are available at all, as in many cases the average label

length is under 2 tokens, as we notice in Section 3.3 (see Table 3.1).

In addition, the prefixes of words from normal texts differ from the ones

generated for the words of metadata phrases, as often the capitalization

convention is different as we have observed during the analyses presented

in Section 3.3. For example, in thesauri the capitalization rule is often
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Figure 4.4: Distributions of POS Tags for Normal Text and Metadata.

mixed between higher and lower levels of terms hierarchy. Compare, for

example, the top level label “Biological Sciences” to the bottom level label

“freshwater fish” taken from the NALT dataset. On the contrary, in web

directories, the capitalization rule is stable across levels, but different from

the normal text. Consider a typical label taken from the Yahoo dataset:

“Classical Chinese Art”, where all the words are capitalized.

Moreover, the POS tag distribution for the short phrases is completely

different from the one of the normal text, as for example, verbs are almost

absent: on average, there are 3.5 verbs (VB) in a whole dataset, ranging

from 0.0001% to 0.15% of all the tokens of the dataset. Figure 4.4 shows the

distribution of POS tags in normal text and in all our metadata datasets.

Table 4.5 shows examples of desirable POS tagger output.

Solution and Evaluation

Similarly to the tokenizer, the POS tagging algorithms are mature and

state of the art algorithms have similar performance. Therefore we have

chosen the state of the art POS tagger from OpenNLP tools trained on the

combined datasets. It is based on Conditional Maximum Entropy Model

[5, 55].

We performed experiments with the standard OpenNLP models, with

a 10-fold cross-validation on each of the datasets, and tested some com-
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Table 4.5: Desirable POS Tagger Output Examples.

# Label Desirable POS Tags

1 Packing material packing/NN material/NN

2 Multi-media service center Multi-media/NN service/NN center/NN

3 Automation, electrical-engineering,

PLT

Automation/NN ,/, electrical/JJ -/: engi-

neering/NN ,/, PLT/NN

4 Electrical Cable and Accessories Electrical/JJ Cable/NN and/CC Acces-

sories/NNS

5 George Bush George/NNP Bush/NNP

6 Might and Magic Games Might/NNP and/NNP Magic/NNP

Games/NNS

7 Brain and Computer Science Brain/NN and/CC Computer/NN Sci-

ence/NN

8 Accurate Accounting and Timely

Data Entry

Accurate/JJ Accounting/NN and/CC

Timely/JJ Data/NNS Entry/NN

9 Haiku and Related Forms Haiku/NN and/CC Related/JJ Forms/NNS

10 Economics, Examinations, ques-

tions, etc.

Economics/NN ,/, Examinations/NN ,/,

questions/NN ,/, etc./FW

11 Mug’s game Mug/NNP ’s/NNP game/NNP

bined models. We report the results for the major datasets in a similar

way to Table 4.4, using a precision per token (PPT) measure in Table 4.6

and a precision per label (PPL) measure in Table 4.7. Namely, we count

the percentage of correctly tagged tokens (PPT) and correctly tagged la-

bels (PPL). The “OpenNLP” row reports the performance of OpenNLP

standard model. The “path-cv” row reports the 10-fold cross-validation

precision figures for the case where the context was extended to include

labels in the preceding levels of the classification hierarchy. The last row

is a combined model trained on the combination of all datasets available.

The “all-except” row is of particular interest, because it reports the

performance of the model trained on all available datasets, except the one

it will be tested on. For example, the model to be tested on DMoz data will
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Table 4.6: POS Tagger Performance, Precision Per Token (%).

Model DMoz eCl@ss LCSH NALT UNSPSC Yahoo

DMoz 95.15 14.30 45.28 75.46 58.57 92.00

eCl@ss 56.67 97.69 63.48 34.08 89.49 71.05

LCSH 86.39 77.81 96.89 84.24 85.35 91.17

NALT 49.15 66.15 65.23 97.27 47.88 44.04

UNSPSC 61.76 65.21 42.20 34.75 97.59 77.00

Yahoo 92.69 36.83 57.23 76.84 54.86 98.15

OpenNLP 64.48 66.28 72.76 58.12 74.94 61.67

all-except 93.74 82.98 73.30 86.72 89.38 95.45

path-cv 99.67 99.65 99.45 99.77 99.63 99.84

combined 99.32 99.93 99.74 99.76 99.82 99.70

include all datasets as training data, except DMoz itself. We can already

notice a performance improvements compared to the standard OpenNLP

model. The performance improvements are in a 15-30% range, with the

only exception being LCSH case.

We believe that the differences in the POS tag distribution between

normal text and natural language metadata is the main reason of these

improvements. Short labels mostly describe (sets of) objects and they do

it by using proper and, often modified by adjectives, common nouns, more

frequently than in normal text, where verbs constitute a larger portion of

words.

Looking at Table 4.7, we can notice that the data confirms the trend

reported by Table 4.6 with even more drastic performance improvements

ranging in all cases from 26% to almost 50%.

The “path-cv” rows show the importance of an extended context, where

we included labels from the preceding (higher) levels of the hierarchy, which

are sometimes available. Comparing the figures in bold with the figures

in the “path-cv” row, we can notice an increase in performance reaching
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Table 4.7: POS Tagger Performance, Precision Per Label (%).

Model DMoz eCl@ss LCSH NALT UNSPSC Yahoo

DMoz 93.98 14.12 27.54 75.37 49.69 91.87

eCl@ss 48.80 91.28 28.60 28.73 69.65 62.11

LCSH 81.98 48.79 91.38 81.91 68.14 88.16

NALT 46.97 23.61 28.82 96.42 13.21 34.05

UNSPSC 57.07 45.08 22.76 31.03 92.39 75.46

Yahoo 89.54 15.20 34.84 75.04 45.91 97.91

OpenNLP 49.89 19.02 27.26 40.55 33.20 47.44

all-except 91.59 58.40 53.25 84.77 76.19 94.77

path-cv 96.64 93.34 92.64 96.29 92.72 98.35

combined 99.10 99.69 99.24 99.74 99.40 99.68

4.5% (PPT) and 2.6% (PPL) with the averages of 2.5% (PPT) and 1.2%

(PPL).

We performed incremental training to explore the stability of the models

obtained. For clarity, we report here the first 50 000 tokens of two major

datasets in Figure 4.5, with a notice that the rest shows similar trend.

Namely, the performance tends to stabilize and reach a plateau. In few

cases, like DMoz, it fluctuates in the beginning before stabilizing. We

found a count of tokens needed for the model to reach a plateau to be

larger than reported in [79]. We report the results of the incremental

training for other datasets in the Appendix H.

We analyzed the errors made by the POS taggers by checking the confu-

sion matrix and some misclassified word examples. Misclassifications can

be divided into two major classes. In datasets rich in named entities, the

most frequent misclassifications are between nouns and proper nouns, such

as NN (nouns) misclassified as NNP (proper nouns) and vice versa. They

range from 46% to 55% of the errors. In other datasets the most frequent

misclassifications occur between nouns and adjectives, such as NN (nouns)
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Figure 4.5: POS Tagger Incremental Training for LCSH and DMoz.

misclassified as JJ (adjectives) and vice versa. They range from 40% to

97% of the errors. This leads us to the conclusion that named entities

need a particular attention in the form of a recognition module, which is

necessary and can improve overall processing performance.

POS tags provide some fundamental information about the language

and they are used extensively in many NLP tasks either as source informa-

tion, or as a feature. This is why we paid particular attention to the POS

tagger performance, as POS tag information shows that natural language

metadata really constitutes a separate domain of the language.

4.2.4 Named Entity Recognition

Problems

Named entities (NEs) pose several problems for the task of natural lan-

guage metadata understanding:

• we need to identify them, because they require different processing

than common nouns;

• we need to classify them, because different classes of NEs require dif-
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ferent processing;

• we need to disambiguate them.

As for tokenization and POS tagging, our analysis presented in Sec-

tion 3.3, reveals that NEs in natural language metadata behave differently

than the NEs in normal text. The first type of issue is the non-standard

joining of NEs, such as in the label “NS Wales Queensland” where there is

no separation of any kind between the two geographical NEs. The second

type of issue is that, in some datasets, the entities such as personal names

and locations are written in a backward rather than forward manner, as

in the label “van Ruisdael, Jacob”. The third type of issue is that, to

make the label shorter, NEs are sometimes joined together, as in the label

“Green, Henry and Charles”. Note that these examples are also ambiguous

to human readers.

Table 4.8 reveals differences of quantitative nature. Namely, NEs are

frequently used in some kinds of natural language metadata while not so

frequently in others. One can note that in datasets with NEs they tend to

span over a large portion of labels: 18% to 37%. In one group of datasets

(DMoz, NALT, Yahoo) a whole label is frequently, but not always, a single

named entity. Such labels constitute from 90% to 95% of all labels with

NEs. In another group dataset (LCSH), NEs are predominantly part of a

label which contains other tokens as well. In addition, in datasets where

NEs are present in sufficient quantities, they frequently, but not always,

tend to span the whole label. Also, the distribution of the entities across

levels of the hierarchy is not uniform, they tend to cluster in the middle

levels of the hierarchy and below some specific labels, such as letter bars

like “A” and facet specifiers like “By Country”.

The analysis of our extended samples of metadata, presented in Sec-

tion 3.3, allowed us to see that the assumption made in [79] about labels
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Table 4.8: Named Entities Characteristics.

Dataset
% of labels with NEs of them (%)

NEs NEs only Count LOC ORG PERS MISC

DMoz 36.29 34.80 10 244 75.82 9.21 7.34 7.63

eCl@ss 0.39 0.00 14 0.00 0.00 100.00 0.00

LCSH 37.55 0.75 24 836 79.51 12.46 2.15 5.89

NALT 1.75 1.59 242 92.15 5.37 0.41 2.07

UNSPSC 0.06 0.00 3 0.00 33.33 66.67 0.00

Yahoo 17.97 16.68 24 668 67.54 15.56 8.27 8.63

being either named entity or not, does not always hold. Even in the cases

of DMoz, NALT and Yahoo the mixed labels constitute from 4.11% to

9.62%, with an average of almost 7%, while in LCSH case mixed labels

reach 98.01%. For example, the LCSH dataset contains labels combining

geographical named entities with named events (or person names) or named

entities with disambiguation within a single label, such as illustrated by

the label “Maat (Egyptian deity)”.

Table 4.9 shows examples of desirable NE recognizer output.

Solution and Evaluation

Our solution is to adopt a Named Entity Recognizer algorithm, based

on OpenNLP NE algorithm and train it on our datasets to improve the

understanding of the NEs in the labels.

The state of the art Named Entity Recognition (NER) algorithms are

mature and attain comparable performances. We have chosen the NER

algorithm from OpenNLP and we also report the performance of the Stan-

ford NER algorithm [19].

As our annotation and classification scheme we used the CONLL shared

task [59] classes of NEs. We identify three major named entity types LO-

Cation, ORGanization, PERSon and a fourth “catch-all” type MISCella-
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Table 4.9: Desirable NE recognizer Output Examples.

# Label Desirable NER Tags

1 Packing material packing/O material/O

2 Multi-media service center Multi-media/O service/O center/O

3 Automation, electrical-engineering,

PLT

Automation/O ,/O electrical/O -/O engi-

neering/O ,/O PLT/O

4 Electrical Cable and Accessories Electrical/O Cable/O and/O Accessories/O

5 George Bush George/B-PERS Bush/I-PERS

6 Might and Magic Games Might/B-MISC and/I-MISC Magic/I-MISC

Games/O

7 Brain and Computer Science Brain/O and/O Computer/O Science/O

8 Accurate Accounting and Timely

Data Entry

Accurate/O Accounting/O and/O Timely/O

Data/O Entry/O

9 Haiku and Related Forms Haiku/O and/O Related/O Forms/O

10 Economics, Examinations, ques-

tions, etc.

Economics/O ,/O Examinations/O ,/O

questions/O ,/O etc./O

11 Mug’s game Mug/B-ORG ’s/I-ORG game/I-ORG

neous.

We performed a set of experiments, comparing the performance of the

standard model supplied with a toolkit, with a custom model, trained and

tested via 10-fold cross-validation on our annotated datasets. Table 4.10

reports the results of the experiments for the datasets containing large

quantities of NEs. The “all-except” row has the same meaning as previ-

ously. The “std” row reports the performance of the OpenNLP model,

trained with a standard feature set, without dictionaries. The standard

feature set includes the following features:

• the token itself,

• the token lowercase flag,

• the flags indicating whether a token contains only 2 or 4 digits,
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• the flags for presence of numbers, hyphens, backslashes, commas and

periods in a token,

• the token capitalization pattern.

Additionally we performed a 10-fold cross-validation with a standard

feature set of OpenNLP NER on a combination of all our datasets, reaching

an F-Measure of 64.20%.

Although the figures represent a less uniform picture than in the pre-

vious tasks, one can note that the performance of the standard models is

quite low and the custom models outperform them. For comparison, one

state of the art approach for NER on normal text attains an F-Measure

of 68.63% [14]. Only in the case of the LCSH dataset, the performance is

close to the state of the art levels for the normal text. The large differences

between the “std” and the “all-except” results for the LCSH dataset are

explained by the fact that in LCSH NEs such as PERSON and LOCA-

TION are frequently written in a backward fashion, separated by commas

as illustrated above.

We conclude that the chosen approach is promising, as even in the

absence of an important dictionary and context features we notice a per-

formance improvement. This shows that some additional exploration is

required to improve the feature set. For natural language metadata we

identify three broad groups of features, depending on the available con-

text:

• features available for a label only;

• features available for a label and the hierarchy of labels above it;

• features available when a complete dataset is available, such as tokens

and labels frequencies, as used in [79].
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Table 4.10: NE Recognizer Performance, F-Measure (%).

Model DMoz LCSH NALT Yahoo

OpenNLP 11.76 41.68 17.10 9.30

Stanford 22.37 31.15 2.26 15.96

std 32.19 60.35 0.57 34.76

all-except 41.38 3.83 32.65 33.72

combined 56.56 63.38 37.60 50.78

We intend to explore and compare these feature sets to complete the in-

vestigation.

The last experiment with a combination of datasets shows the potential

advantages of introducing the dictionary feature. Some of our datasets

share covered domains (for example, the Web in the case of DMoz and

Yahoo) and their set of named entities intersect. Thus, by combining the

datasets the algorithm is able to learn more from them.

4.2.5 Multiword Recognition

Problems

Differently from the state of the art approaches in natural language pro-

cessing, which are mostly probabilistic, translating natural language meta-

data into a formal language involves a fair amount of knowledge based

processing. One of the main reasons is that atomic concepts, which are

the basic building blocks in the target formal language, are taken from a

dictionary, controlled vocabulary, or another knowledge base. These lin-

guistic resources contain multiword expressions (multiwords), such as “a

cappella singing” and “red tape”, reflecting the fact that natural language

already has complex concepts. Recognizing multiwords allows exploiting

their precise meaning assigned by a human expert.
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We are interested in certain kinds of multiwords only, which we note

below while exploring their types:

• lexicalized phrases (“have at least partially idiosyncratic syntax or

semantics, or contain words which do not occur in isolation”):

– fixed expressions, which cannot be internally modified and should

be recognized as is (such as “ad hoc”, “absolute zero”, various

idioms);

– semi-fixed expressions:

∗ non-decomposable idioms (with regard to semantic decompos-

ability), that is multiwords whose meaning does not derive

from the meaning of the distinct words that appear in them.

This type of multiwords must be recognized. This type, how-

ever, can undergo some small degree of change like changing

the case or becoming plural (“seventh heaven”, “cloven foot”

→ “cloven feet”, “dark horse” → “the darkest horse”);

∗ compound nominals, which can be internally modified (for ex-

ample, “abstract art” → “abstract visual art”; “at first” →
“at very first”), or externally modified (“car park” → “(car

park)s”, “attorney general” → “(attorney general)s”), whose

meaning can be (roughly) approximated as a function of the

meanings of the words appearing in the multiword (“academic

requirement”, “yellow gurnard”). It may be useful NOT to

recognize multiwords of this category and consider each mul-

tiword’s word by itself as it may improve matching results with

labels which include the same multiword or expressions with

the same meaning, for example, the multiword “academic re-

quirement” can be matched with the “academic prerequisite”.

However, there is no simple way of detecting such multiwords;
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∗ proper names, which can be considered multiword, because

they often contain several tokens, but should be recognized

as a single concept. However, this category deserves and is

treated in a separate NE recognizer module;

– syntactically flexible expressions:

∗ verb-particle constructions (“write up”, “look up”). We have

little interest in verbs, because verbs are rare in our target

domain;

∗ decomposable idioms (“sweep under the rug”). Exploration of

the examples of multiwords of this kind shows that decompos-

able idioms tend to be verb-based, therefore of less interest to

us;

∗ light verbs (“make a mistake”, and not “do a mistake”). Again,

this category is verb-based and we have little interest in them;

• institutionalized phrases, such as “traffic light”. These are syntacti-

cally and semantically compositional, but occur with markedly high

frequency. These phrases are of interest to us.

In recognizing multiwords we face several problems [11], such as reduced

syntactic and semantic transparency, recognizing fixed and non-modifiable

expressions versus semi-fixed expressions, as well as other expression types

[58]. Let us list the problems that are of particular interest to us:

• differentiating idioms from the other fixed expressions types. Idioms

should be searched only literally “as is”, without any modifications.

That means there can be no other words between idiomatic words.

For instance, the idiom “nut case” should not be recognized in the

label “steel nut and aluminium case”.

• recognizing syntactically flexible multiwords, such as the ones allowing
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plural form. On one hand, in the label “brains and computer science”

we might lemmatize the tokens and use “brain|and|computer|science”

sequence of tokens to create candidate expressions, which might lead

to incorrect recognition. On the other hand, the labels such as “the

darkest horse” need lemmatization for a multiword to be recognized.

• peculiarities of tokenization. Consider three ways of writing: “trade

off” vs “trade-off” vs “tradeoff”. Often dictionaries providing multi-

words contains only certain type of writing such “multiwords”. For

example, WordNet [18] does not contain the first option, but does

contain second and third.

In the context of our task the severity of some of these problems is

somewhat alleviated by the fact that we are backed by a linguistic resource.

This splits the problems into two categories.

First, identifying the potential multiwords which are not present in the

current vocabulary. Solving this problem allows us to enrich our linguistic

knowledge by offering the user an option to check and add potential multi-

words into the controlled vocabulary if we are in the interactive processing

mode, or marking such cases for later processing in unattended processing

mode. Given the difficulty of the problem, we leave this task for future

work.

Second, recognizing existing multiwords present in the used vocabu-

lary. For this category of multiwords the recognition is feasible, although

somewhat complicated by the fact that many dictionaries do not provide

information about expression type and in particular the syntactic flexibil-

ity of the expression. Therefore we focus on solving the following common

problems associated with the multiwords present in the dictionary. These

include:

• disentangling them in case several of them are present simultaneously
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Table 4.11: Desirable MWE recognizer Output Examples.

# Label Desirable MWE Output

1 Packing material packing material

2 Multi-media service center Multi-media service center

3 Automation, electrical-engineering,

PLT

Automation, electrical-engineering, PLT

4 Electrical Cable and Accessories Electrical Cable and Accessories

5 George Bush George Bush

6 Might and Magic Games Might and Magic Games

7 Brain and Computer Science Brain Science and Computer Science

8 Accurate Accounting and Timely

Data Entry

Accurate Accounting and Timely Data Entry

9 Haiku and Related Forms Haiku and Related Forms

10 Economics, Examinations, ques-

tions, etc.

Economics, Examinations, questions, etc.

11 Mug’s game Mug ’s game

in the phrase,

• taking into account “obstacles” such as conjunctions and plurals,

• as well as taking into account multiwords spread over more than one

level of hierarchy.

For example, the phrase “a cappella and gospel singing” contains two mul-

tiwords: “a cappella singing” and “gospel singing”.

Table 4.11 shows examples of desirable multiword recognizer output.

Solution

We use simple heuristics that recognize multiwords in the phrase taking

into account several of the most common problems such as:

• non-contiguous multiword instances,
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• presence of coordinating conjunctions,

• plural form of some of multiword tokens,

• possible multiplication of tokens, because of simultaneous presence of

several multiwords in a label.

For example, we recognize both multiwords from WordNet [18] present

in the phrase “a cappella and gospel singing”. Namely, we recognize “a

cappella singing” and “gospel singing” despite the first being split by “and”

and requiring “singing” token multiplication from the second. Recognizing

these two multiwords allows exploiting their precise meaning assigned by

a human expert.

First, we analyze consecutive label tokens for the presence in the mul-

tiword list taken from WordNet, compiling a list of candidates. In our

example, we mark all tokens except “and” as potential candidates for two

multiwords. We make two lists of token indexes: {1,2,5} and {4,5}, where

each number refers to the respective token of the label, such as 1 for “a”,

2 for “cappella” and so on. When we check the token to be an expres-

sion candidate token, we test for it to be a derived form and check its

lemmatized root form, removing plural if necessary.

Second, we test for a simple case of consecutive tokens forming an ex-

pression and mark the candidates. In our example this would mark the

second candidate {4,5} “gospel singing” as a recognized expression.

Third, for non-adjacent candidates like {1,2,5} we check what separates

the tokens. We allow only “and” and “or” conjunctions to separate the

tokens of a potential candidate. Our first candidate satisfies this condition.

Fourth, we check that a candidate’s non-adjacent tokens follow a basic

noun phrase pattern of {adjectives. . . nouns}. In our example that allows

us to mark {1,2,5} “a cappella singing” as a recognized expression.
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Fifth, we check that in the case of coordinated tokens the label after

recognition preserves coordination. For example, in the case of the label

“gospels and singing” we would recognize {1,3} as a potential candidate.

However, recognizing “gospel singing” here would lead to a break of coor-

dination and to an ungrammatical label: “gospel singing and”.

Last, we conclude the recognition in the label by multiplying the to-

kens if necessary. Our example transforms into “a cappella singing and

gospel singing”, where we use underscores to show recognized multiword

expression.

In addition, we repeat these heuristics when including tokens from the

label from higher (upper) levels of the hierarchy. For example, in the case of

a hierarchy “Music/Gospels/Singing” we would check “music singing” and

“gospel singing” to be a candidate multiwords. Conversely from a single

label case, we do not change the label. We only enrich the list of senses of

the tokens of the label in question with the senses of a multiword. In this

example we would add the sense(s) of the “gospel singing” multiword to

the “signing” token.

Empirically we see that less flexible idiomatic expressions, such as “red

tape”, are rarely used in metadata, especially in the hierarchical cases.

Therefore it is often the case that the recognized multiword relates closely

to the original token (as with “gospel singing” and “singing”). Thus, such

heuristics, by meaningfully enriching the sense sets, allow the target algo-

rithms to better exploit (often scarce) background knowledge.

We evaluate this heuristic as an integral part of the translation task in

the overall evaluation.
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4.2.6 Lightweight Parsing

Problems

In some of the analysed datasets the average label length is about 2 tokens,

while in others the average label is more than 4 tokens long (see Table 3.1).

This might raise the question whether there is a need to parse such short

labels. However, we should not underestimate the nature of our domain.

Being a natural language metadata, our labels often represent a condensed

view of information. For example, a single category name represents many

instances of business services in the case of eCl@ss or of the web sites in

the cases of DMoz and Yahoo. A single mistake in the interpretation of

such information-dense label might lead to a frequent misclassification and

drastic performance degradation of the target application.

Therefore, we need to apply a parser to a label to get a more precise

view of a label structure.

The average maximum label length across our datasets is 18 tokens.

Viewed as a sentence, it is not a particularly long or complex one. This

leads us to a hypothesis, that perhaps, a full-blown parser might not be

necessary in our case and a simple rule-based approach might be sufficient.

The information gathered on the previous steps of processing needs to be

“woven” together to create, depending on the target application, complex

concepts, or a structure of a logical formula. The most important element

in this process is the semantics of label pieces and any information which

allows to derive logical connectives between the label parts, such as POS

tag patterns, the syntactic structure of the label or dependencies the label

pieces.

For example, knowing that the tokens in round brackets disambiguate

the preceding tokens – as we note in Section 3.3.3 for the LCSH dataset –

allows an application building a formula out of a label to exclude the tokens
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in round brackets from the formula and instead use the concepts they

represent for disambiguating the concept expressed by preceding tokens.

Similarly, knowing in which case a comma separates a modifier of a

preceding token as opposed to separating phrases allows the pipeline to

construct an accurate formula.

In other cases, knowing that a label being processed represents a facet

or a letter-bar, as labels such as “By Country” and “A” or “A-Z” often

do (see examples for DMoz in Section 3.3.1), allows the pipeline to make a

conclusion about this label and the labels in the hierarchy below this one

and, perhaps, treat such labels in a special way.

Let us list some of the common problems we encounter in our datasets,

that we can solve by knowing a label structure:

• coordination disambiguation. Knowing that the labels such as “Ex-

amples and Use Cases” with the pattern “NNS CC NN NNS” disam-

biguate in a certain way allows building a correct formula. Of course,

pattern-based coordination disambiguation has its limits, however, for

the domain with a simple language structure, such as ours, this might

be sufficient, especially given the amount of labels with a complex

structure.

• identifying and extracting facets. The labels like “By Country” almost

always introduce a structural pattern in the classification known as

facet. These labels have a limited amount of patterns and can be

effectively identified by a POS tag pattern.

• recognizing “hanging” modifiers in the label. Some labels are writ-

ten in a backward fashion. In such cases the modifiers follow the noun

they modify, conversely to the usual case of preceding modifiers. Com-

pare the backward-fashion label “Proverbs, Ladino” with a traditional

writing “Ladino Proverbs”. Such cases occupy a limited set of POS
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tag patterns and can be efficiently recognized.

• recognizing “hanging” modifiers in the classification structure. The

classifications we studied sometimes contain a label, usually a noun,

on a level N and its modifiers one level lower: N + 1. Consider the

following simple example classification:

– Proverbs

∗ Ladino

∗ Italian

∗ German

Although recognizing such pattern requires considering preceding pat-

terns located higher in the classification hierarchy, the patterns, trig-

gering such behaviour constitute a limited set and could be identified.

• recognizing and processing labels with complex semantics, or “wild-

cards”. Natural language has several tools for defining a set of objects

using similarity. For instance, by providing several examples and fol-

lowing with a keyword, such as “etc.”, “and others”, “and similar”. A

typical example from the LCSH dataset: “Handbooks, manuals, etc.”

• direct set manipulation. There are label instances which refine a set

objects they define by using specific structure and keywords, similarly

to the “wildcard” case. Often such refinement relies on sibling labels.

For instance, the label “Other Products” defines a set of objects by

relying on its siblings. As previously, such cases occupy a limited set

of patterns and keywords and can be recognized, although for proper

processing of such cases it might be necessary to access classification

structure and sibling labels.
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• recognizing advanced syntax tools, such as use of round brackets.

Round brackets is one of the most frequently used syntax tools for

the classifications. We identified several purposes for which round

brackets are used, such as specification, disambiguation, repetition

and preposition substitution. Some of them can be distinguished by a

POS tag pattern, and in other cases recognizing the semantics requires

accessing preceding labels. However, in all cases having a recognized

structure and elements inside and outside the brackets allows disam-

biguating among few cases and processing the label more precisely.

• recognizing domain specifications. Some labels specify the domain

of interest by using specific and recognizable patterns. Consider the

examples: “Nude in art” and “Calvinism in literature”.

Solution

We introduce a lightweight parser which makes the proposed solution more

universal through the possibility of implementing different semantic actions

and allows to use the pipeline for purposes different from a translation into

formal language. For example, the parser makes it possible to control

the input language or automatically enrich the controlled vocabulary with

unrecognized concepts, marking them for later refinement by an expert.

The results of our work with the POS tagger enabled us to perform an

accurate analysis of the natural language metadata language structure. Us-

ing the best model available for a particular dataset, we processed the full

dataset, tokenizing the labels and tagging the tokens with POS tags. For

each label we derived a POS tag pattern. For example the label “Coconu-

cos Range (Colombia)” is tokenized into a set of tokens with the following

POS tags:
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Table 4.12: Metadata Language Structure Characteristics.

Dataset POS Tag Patterns 90% Coverage

DMoz 975 9

eCl@ss 1 496 360

LCSH 13 342 1 007

NALT 275 10

UNSPSC 1 356 182

Yahoo 2 021 15

NNP NNP ( NNP )

Coconucos Range ( Colombia )

A POS tag pattern corresponding to this label is “NNP NNP (NNP)”.

We grouped the labels by their POS tag patterns and analysed the reuse

of such POS patterns.

Table 4.12 summarizes some metadata language structure characteris-

tics. One can note that the number of POS tag patterns needed to achieve

90% coverage of a dataset’s labels is often small enough for manual anal-

ysis. The number of patterns in LCSH case is almost 3 times larger than

the largest of all the other datasets. However, under a close inspection we

found out that due to a particular comma use in LCSH, a much smaller

set of patterns, similar to those of other datasets, occurs in these labels.

When the patterns from this smaller set are joined sequentially with com-

mas, they form the mentioned above larger set of patterns.

Rule-based parsers use manually created rules to encode the syntactic

structure of the language. These rules are then applied to the input text

to produce parse trees. In long texts parsing, these have been disregarded

because of two main disadvantages: they require a lot of manual work

to produce linguistic rules and they have difficulties achieving a “broad

coverage” and robustness to unseen data. To tackle these problems, state

of the art statistical parsers, such as [12], infer grammar from an annotated
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corpus of text. However, this approach requires a large annotated corpus of

text and a complicated process for tuning the model parameters. Moreover,

producing a corpus annotated with parse trees is a much more costly and

difficult operation than doing a basic annotation, such as POS tagging.

However, the analysis, presented in Section 3.3, shows that the language

used in natural language metadata (NLM) is limited to descriptive phrases,

introduced in Section 3.1. Hence, we need a limited coverage, which sim-

plifies the construction of the rules. Therefore we use a simpler approach

and manually construct a grammar for parsing. This requires having only

an accurate POS tagging and some structural information of the language,

which are provided by the analysis we presented in Section 3.3. We use

a basic descriptive phrase grammar, presented in Section 3.1, as a start-

ing point for our grammars. Analyzing the POS tag patterns we modify

this grammar to include the peculiarities of the descriptive phrases, such

as combinations of noun phrases, or the use of commas and round brack-

ets for disambiguation and specification, as illustrated by the examples in

Chapter 3.

We developed a set of lightweight grammars covering each of our data-

sets. The grammars we constructed can be divided into two categories:

“simple” ones with nine and ten rules (DMoz, eCl@ss and UNSPSC) and a

“complex” ones with fifteen and seventeen rules (Yahoo, NALT and LCSH).

Table 4.13 provides details about the grammar coverage.

One can note that in all cases we have a high coverage of the dataset

labels, more than 90% in all cases and more than 99% in four cases. While

the coverage is high, it does not reach 100%, as this is not possible with

the flexibility of natural language. This opens the following possibilities

for the pipeline to process that small percentage of labels which are not

covered by the grammar:

• in a controlled setting it might behave like a controlled language and
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Table 4.13: Metadata Language Grammar Characteristics.

Grammar Rules
Coverage (%) Parsing Mistakes (%)

Patterns Labels POS Tagger Grammar Rules

DMoz 9 90.95 99.81 85.98 11.01

eCl@ss 9 67.45 92.70 44.17 47.93

LCSH 17 92.96 99.45 49.59 47.94

NALT 15 59.27 99.05 80.35 13.30

UNSPSC 10 70.58 90.42 25.01 65.70

Yahoo 15 65.31 99.46 70.90 20.50

refuse to accept a label that does not conform to the grammar, asking

the user to edit it;

• rejected labels could be processed by a simpler heuristic, such as a

simple “bag of words” approach, put into a log file for a later editing

and conversion, or even discarded.

If we look at the pattern coverage we notice a slightly different pic-

ture. For NALT, Yahoo, eCl@ss and UNSPSC, we have only 60% to 70%

coverage of the patterns. This can be explained by Table 4.12 where, for

instance, only around 1% of the patterns already cover 90% of the labels

in NALT. This shows how a small amount of the labels uses a large vari-

ety of language construction while most of the NLM uses highly repetitive

constructs.

Our analysis shows that the main reason for the lower coverage is a

less regular use of language in these four datasets as compared to the other

two datasets. We have analysed the mistakes done by the parser and found

that they mostly fall into two major categories: POS tagger errors and lin-

guistic rules limitations, as shown in Table 4.13. This can be explained

by the rule-based nature of our parser that makes it particularly sensitive

to POS tagger errors. Other parser mistakes are due to the inconsistent
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(ungrammatical) or unusually complex labels, which could be seen as “out-

liers”. For example, the “English language, Study and teaching (Elemen-

tary), Spanish, [German, etc.] speakers” label from LCSH contains both

a disambiguation element “(Elementary)” and a “wildcard” construction

“[German, etc.]”.

Figure 4.6 shows two examples out of the grammars we produced for the

LCSH and UNSPSC datasets. We use BNF for representing the grammar

rules. The LCSH one starts with a top production rule Heading, which

encodes the fact that LCSH headings are built of chunks of noun phrases,

which we call FwdPhrase. In turn, a FwdPhrase may contain two phrases

DisPhrase with disambiguation elements as in the example above. The

disambiguation element may be a proper noun phrase (ProperDis) or a

common noun phrase (NounDis), surrounded by round brackets. NounDis

is usually a period of time or a type of object, like “Fictitious character” in

“Rumplemayer, Fenton (Fictitious character)” while ProperDis is usually

a sequence of geographical named entities, like “Philadelphia, Pa.” in

“Whitemarsh Hall (Philadelphia, Pa.)”.

The core of the grammar is the Phrase rule, corresponding to the vari-

ations of noun phrases encountered in this dataset. It follows a normal

noun phrase sequence of: a determiner followed by adjectives, then by

nouns. Alternatively, it could be a noun(s) modified by a proper noun, or

a sequence of foreign words.

A comparative analysis of the grammars of different classifications shows

that they all share the nine base rules with some minor variations. Com-

pare the rules 4-12 of LCSH with the rules 2-10 of UNSPSC in Figure 4.6.

These nine rules encode the basic noun phrase. Building on top of that,

the grammars encode the differences in syntactic rules used in different

classifications for disambiguation and structural purposes. For example,

in LCSH, a proper noun in a disambiguation element is often further dis-
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1 Heading:=FwdPhrase {"," FwdPhrase}

2 FwdPhrase:=DisPhrase

{Conn} DisPhrase

3 DisPhrase:=Phrase {"("ProperDis

| NounDis")"}

4 Phrase:=[DT] Adjs [Nouns] |

[Proper] Nouns | Foreigns

5 Adjs:=Adj {[CC] Adj}

6 Nouns:=Noun {Noun}

7 Conn:=ConjConn | PrepConn

8 Noun:=NN [POS] | NNS [POS] |

Period

9 Adj:=JJ | JJR

10 ConjConn:=CC

11 PrepConn:=IN | TO

12 Proper:=NNP {NNP}

13 NounDis:=CD | Phrase [":" Proper]

14 ProperDis:=ProperSeq ":" Phrase |

ProperSeq CC ProperSeq

15 Period:=[TO] CD

16 ProperSeq:=Proper ["," Proper]

17 Foreigns:=FW {FW}

1 Label:=Phrase {Conn (Phrase

| PP$ Label)}

2 Phrase:=Adjs [Nouns] | Nouns

3 Adjs:=Adj {Adj}

4 Nouns:=Noun {Noun}

5 Conn:=ConjConn | PrepConn

6 Noun:=NN [POS] | NNS [POS] |

DT RB JJ | Proper

7 Adj:=JJ | JJR | CD | VBG

8 ConjConn:=CC | ,

9 PrepConn:=IN | TO

10 Proper:=NNP {NNP}

Figure 4.6: LCSH (right) and UNSPSC (left) BNF production rules.

ambiguated with its type, as “Mountain” in: “Nittany Mountain (Pa. :

Mountain)”.

Although very similar to one another, there are a few obstacles that need

to be addressed before these grammars can be united into a single one. One

of the most difficult of these obstacles is the semantically different use of

round brackets: mostly, round brackets are used as a disambiguation tool,

as illustrated by the examples mentioned above; however, we also found
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some examples where round brackets are used as a specification tool, as

for instance in the label from eCl@ss: “epoxy resin (transparent)”.

Due to these different semantics, these cases will almost certainly re-

quire different processing for a target application. For example, in trans-

lating metadata for semantic matching purposes [34], we need to translate

the labels of a classification into formulas in the propositional Descrip-

tion Logic language LC . In this application, the disambiguation element

“(Pa. : Mountain)” of the label “Nittany Mountain (Pa. : Mountain)” can

be used to choose a precise concept “Nittany Mountain” and the element

itself is not included in the final formula, while in the specification case of

“epoxy resin (transparent)”, the specifier concept “transparent” should be

included in the formula in a conjunction with a concept “epoxy resin” that

is being specified.

Another obstacle is the different semantics of commas. Sometimes, a

comma is used to indicate a sequence of phrases. However, there are cases

where the comma separates a modifier in a phrase, written in a backward

manner, such as illustrated above with a label “Proverbs, Ladino”. In

long texts, these differences can be disambiguated by the context, which is

almost always missing for natural language metadata.

Despite these differences, our results show that simple and easily cus-

tomizable grammars can be used to parse accurately most of the patterns

found in the state of the art classifications, thus providing extra under-

standing of the NL without a loss in performance.

Let us illustrate the parsing process on one example of DMoz label,

earlier displayed in Figure 3.7. We have implemented our grammar using

JavaCC1 toolkit. Figure 4.7 shows the sample debug output of the JavaCC-

based parser while parsing the label “Massage Therapy and Body Work”

with the pattern “NN NN CC NN NN”. It starts with the initial rule

1https://javacc.dev.java.net/
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“NL Label” and here the semantic action code attached to this rule creates

a new disjunction element | of the future formula, which corresponds to the

“CC” in the middle of our pattern, or to the “Conn” rule in the “NL Label”

starting rule (see rule 1 and 5 in Fig.3.6). Several calls to other rules follow,

and the next action is executed in the “Nouns” rule (see rule 4 in Fig.3.6)

where the action creates the conjunction & to fill it with the concepts later

on. Then, the next rule “Noun” consumes the first token “NN” of our

pattern and adds the concept “Massage” to the conjunction. This action

does the same with the second “NN” token and the concept “Therapy”.

The process repeats similarly for the second part of the pattern. Final

formula is shown on the last line: “Massage & Therapy | Body & Work”.

4.2.7 Word Sense Disambiguation

Problems

Many of our motivating applications operate on concepts, which these ap-

plications draw from a dictionary or a controlled vocabulary. While con-

cepts are precise and unambiguous, the unit of a natural language is a

word, which is often ambiguous. As we aim to translate natural language

into formal concept language, we need to disambiguate ambiguous words

into unambiguous concepts.

Word Sense Disambiguation is a standard problem in natural language

processing. As SENSEVAL competition shows, this problem is noted for

particularly difficult to beat simple baseline approaches. For example, a

4% improvement over a baseline is considered good [48].

Speaking of our case of natural language metadata, the traditionally

difficult task of word sense disambiguation is further complicated with the

following circumstances:

• little context or no context at all. In word sense disambiguation task
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Call: NL_Label

Call: Phrase

Call: Nouns

Call: Noun

Consumed token: <"NN" at line 1 column 1>

Return: Noun

Call: Noun

Consumed token: <"NN" at line 1 column 4>

Return: Noun

Return: Nouns

Return: Phrase

Call: Conn

Call: ConjunctionConn

Consumed token: <"CC" at line 1 column 7>

Return: ConjunctionConn

Return: Conn

Call: Phrase

Call: Nouns

Call: Noun

Consumed token: <"NN" at line 1 column 10>

Return: Noun

Call: Noun

Consumed token: <"NN" at line 1 column 13>

Return: Noun

Return: Nouns

Return: Phrase

Consumed token: <<EOF> at line 1 column 14>

Return: NL_Label

create |

create &

add concept Massage

add concept Therapy

create &

add concept Body

add concept Work

Massage&Therapy|

Body&Work

Figure 4.7: Sample DMoz Label Translation.

the context is indispensable. Even humans have difficulties under-

standing the word without context. Natural language metadata in
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many cases contains no context at all (see average label length in Ta-

ble 3.1) or the amount of context available is limited to two or three

words.

• absence of common topic or theme. Traditional approaches sometimes

rely on the fact that normal text often has a stable topic or theme for

a large enough span for the algorithm to grasp it. Natural language

metadata, being a “summary” of a data, contains more topic and

theme changes. For example, almost every label in web directory is a

change of topic or the very least, its modification.

• hierarchical nature of some natural language metadata. Natural lan-

guage metadata is sometimes organized into hierarchical structures.

While this might help in some cases by allowing the algorithm de-

veloper to exploit available higher levels of hierarchy, in many cases

semantics of a relation between levels is not formally defined [30] and

changes even within a single dataset. This makes the algorithms which

try to make use of a hierarchy less reliable in some cases.

• traditional word sense disambiguation algorithms were developed with

a model of normal text in mind, which makes it difficult to apply them

to a natural language metadata, which differs from normal text both

quantitatively and qualitatively, as we have shown in Chapter 3.

Solution

We try to maximally exploit several peculiarities of natural language meta-

data while designing the word sense disambiguation algorithm:

• small size and somewhat regular structure of natural language meta-

data give a promise to favor heuristic-based approaches.
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• natural language metadata contains a lot of nouns, which makes it

promising to exploit the most popular hypernymy or “isA” relation

between nouns.

• high performance of our POS tagger models makes it promising to

rely on part of speech for disambiguation.

We take the set of heuristics first presented in [79], which reach com-

parable to the state of the art performance of 66.51% precision and adopt

them to our framework. The heuristics use WordNet [18] as a source of

senses and as a source of hypernymy relations. The heuristic contain sev-

eral steps, executed one after another while the word is still ambiguous,

that is, has more than one sense. In the following active sense means that

sense has not been discarded yet and is considered to be a possible sense

of the word.

The following steps are executed:

1. POS-based disambiguation. Determine the part of speech tag of the

word and if the word has the senses of this POS, preserve them and

discard other senses.

2. Hypernymy-hyponymy-based disambiguation of nouns in the label.

Find hypernym or hyponym relations between active noun senses of

a current word and other words in the label. If found, preserve these

senses and discard other senses.

3. Distance-limited hypernymy-hyponymy-based noun disambiguation in

the label. Find hypernym or hyponym relations between active noun

senses of a current word and other words in the label which are not

further than a threshold in the hypernym-hyponym hierarchy of senses

from WordNet. If found, preserve the senses within the shortest dis-

tance and discard other senses.
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4. Hypernymy-based disambiguation of nouns in the hierarchy. If the

hierarchy is available for this instance of natural language metadata

label, find hypernym relations between active noun senses of a current

word and the words in the preceding label. If found, preserve these

senses and discard other senses.

5. Distance-limited hypernymy-based disambiguation of nouns in the hi-

erarchy. If the hierarchy is available for this instance of natural lan-

guage metadata label, find hypernym relations between active noun

senses of a current word and other words in the label which are not

further than a threshold in the hypernym-hyponym hierarchy of senses

from WordNet. If found, preserve the senses within the shortest dis-

tance and discard other senses.

6. The most frequent sense disambiguation. Preserve the first noun sense

and discard others. If no noun sense is available, preserve first adjec-

tive sense and discard others.

The step 1 relies on the high precision of the POS tag information

provided by our models and is executed for all parts of speech. Steps 2

through 5 rely on hypernymy relation available in WordNet for nouns and

verbs and are applied to nouns. These steps might be also applied to verbs,

however, as we have shown in Section 4.2.3, verbs are extremely rare in

natural language metadata and we do not consider them. For steps 3 and 5

we use 2 as the threshold value. For steps 4 and 5 only hypernym relation is

considered, contrary to the steps 2 and 3, because traditionally hierarchies

go from less specific to more specific in labels and, consequently, in the

senses of their words. Step 6 relies on the fact that senses in WordNet

are ordered according to their frequency in the semantic concordance texts

and picking the most frequent sense empirically increases the probability

that this sense will be the actual meaning of the token.
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The experiments with concept search [28] point out that executing the

last step and leaving only one sense per word might be not the optimal

choice for some applications. Therefore, we leave the choice between a

Word Sense Disambiguation (which leaves one sense per word and executes

all steps) or a Word Sense Filtering (which might leave several senses per

word by skipping the last step) for the target application.

4.3 Robust NLP Pipeline

4.3.1 Problems

In addition to relying on natural language metadata, some of our motivat-

ing applications, such as concept search [28], work with documents which

contain normal text. However, our motivating applications are mainly in-

terested in concepts. The concepts are usually represented by noun phrases.

Therefore, it might be useful to modify proposed solution to accommodate

this additional requirement of the motivating applications.

The proposed solution was developed with the assumption of having a

short text labels as its input. In practice, however, the following issues

arise:

• rejecting the labels the pipeline is not able to parse is undesirable;

• restricting the user’s input to the labels the pipeline is able to parse

is prohibitive and leads to restricting the user’s expressivity and dis-

rupted workflow because of the need to correct the input;

• current approach of falling back to a “bag of words” parse in some

cases leads to degraded performance and leaves out pieces of text

which otherwise could be parsed with but little aid.

The first issue is solved by falling back to previously used approaches

or using “bag of words” approach. However, the second and third issues
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Figure 4.8: Sample Sentence.

require extending the input pipeline “understands” to include a richer sub-

set of language. However, we must be accurate in extending it to avoid

raising computational costs and complexity, usually involved with parsing

normal text.

Lets consider a typical example of input and concepts of interest in

this input for our motivating application. “red and green apples” is a

typical short label. The pipeline parses this label into a set of logical for-

mulas expressing complex concepts: {red&apple, green&apple}. However,

in many cases these complex concepts are a part of a sentence, such as

“The boy holds red and green apples.” This sentence contains three con-

cepts which are of interest to our motivating application: {boy, red&apple,

green&apple}. The proposed solution, being targeted for short labels,

either provides incorrect formulas for such inputs, for example, treating

“holds” as a noun, or falls back to a “bag of words”, missing correct for-

mulas (for “red and green apples” and “boy”) and introducing incorrect

ones (for “holds”).

Figure 4.8 shows the parse tree for our sample sentence. One can notice

that our concepts of interest are all inside noun phrases. Noun phrases and
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The/B-NP boy/I-NP holds/B-VP red/B-NP and/I-NP green/I-NP apples/I-NP ./O

Figure 4.9: Sample Chunker Output.

other types of phrases can be extracted by applying a chunker, a standard

NLP component, to a sentence. Also called shallow parsers, chunkers are

fairly fast and provide a shallow parse tree of a sentence. Figure 4.9 shows

a chunker output for our sample sentence using BIO-notation. Namely,

it identifies different chunks, or phrases, such as noun phrases (NP) and

verbal phrases (VP) using begin (B-), inside (I-) and outside (O) tags

combined with a chunk type.

4.3.2 Solution

We introduce an extension to the proposed solution which allows process-

ing normal text needed by some of our motivating applications. We call

this extended pipeline a “robust pipeline”. Figure 4.10 shows an updated

solution. First the input is processed by the extra modules we have added.

They include tokenizer, POS tagger and chunker for normal text (indicated

by a “generic” keyword in brackets). Then the added pipeline selector

module directs the chunk types our metadata pipeline recognizes, that is

NP chunks or noun phrases, for further processing into formulas. Other

chunk types remain unprocessed and are discarded. Their processing can

be added later if an application will expand the target language to be ex-

pressive enough to encode other chunk types, such as verbal phrases, and

provide appropriate translation algorithms.

Introduced extension allows reusing standard NLP components with the

proposed solution and fulfil the additional requirements of the motivating

application with a minimum amount of changes, while preserving the ad-

vantages of the proposed solution, such as simplicity and processing speed.
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Figure 4.10: Robust Pipeline.
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Chapter 5

Word Sense Summarization

5.1 Problem

Our motivating applications operate on concepts, because they are unam-

biguous, contrary to words of natural language. This introduces a need to

establish a correspondence between a word used with a particular meaning

in mind and a respective concept. Concepts are usually based on word

senses drawn from a dictionary or a controlled vocabulary. Each sense is

usually defined by a sentence, called a gloss, which describes the meaning

of a sense and often includes examples. Lets consider the example entry

from the Collins CoBuild dictionary with the first sense of the word “ap-

ple” shown in Figure 5.1. Among other pieces of information it contains

the word itself, the gloss and the examples. All this takes a considerable

amount of space and requires at least a moment to comprehend.

The considerable complexity of sense definitions is among the factors

which make the Word Sense Disambiguation (WSD) task one of the most

difficult tasks of Natural Language Processing. While the performance

of the algorithm addressing this problem and presented in Section 4.2.7

reaches state-of-the-art levels, this performance is not sufficiently high and

user assistance is often required to correct the errors made by the algorithm.

We have presented in Chapter 4 in Figure 4.2 the prototype of the Semantic
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apple

apples

1) N-VAR An apple is a round fruit with smooth green, yellow,

or red skin and firm white flesh.

> See also Adam’s apple, Big Apple, crab apple

I want an apple.

...2kg cooking apples.

...his ongoing search for the finest varieties of apple.

...a large garden with apple trees in it.

Figure 5.1: Sample Word Sense Definition.

Text Input Interface, a user interface which includes the section allowing

to correct the disambiguation errors. While having this user interface is

helpful, it does not diminish the following problems attributed to the task:

• an ambiguous word has at least two and often more senses, which

makes it necessary to evaluate the minimum of two possible choices;

• glosses which define the meaning of word senses contain a minimum

of a sentence, often with examples (see Figure 5.1) to illustrate the

use of the word in this particular sense. Understanding the gloss itself

takes time;

• the sense granularity problem introduces additional difficulties to the

sense choice:

– coarse-grained senses might urge a user to choose the sense which

is not precise enough, while

– fine-grained senses might leave a user with too many choices, lead-

ing to a similar loss of precision.

All these problems put the additional cognitive load on a user and take

us further away from generating semantics “for free as a by-product of a
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Table 5.1: Word Senses with Glosses and Summary Examples.

Concept Gloss Sense Summary

apple fruit with red or yellow or green skin and sweet to tart

crisp whitish flesh

fruit

apple native Eurasian tree widely cultivated in many varieties

for its firm rounded edible fruits

tree

java an island in Indonesia south of Borneo; one of the world’s

most densely populated regions

island

java a beverage consisting of an infusion of ground coffee beans;

“he ordered a cup of coffee”

beverage

normal computer use”.

5.2 Solution

We propose a novel word sense summarization algorithm with a user in-

terface prototype as a solution which helps a user tackle the difficult word

sense disambiguation task. A word sense summary is another word, a suc-

cinct representation of the meaning of the original word. Consider the

examples in Table 5.1. The column “Sense Summary” demonstrates the

examples of what a word sense summary can be: a succinct representation

of a word sense.

Word sense summary allows a user to:

• check the accuracy of the word sense disambiguation algorithm by

looking whether correct sense is chosen and to correct it if necessary

or

• estimate the need to introduce a new sense when a controlled vocab-

ulary is available and allows word sense editing.
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Semantic Text Input

Manage Senses

( ). fruit with red or yellow or green skin a

Label: Red juicy apple

Relation

Red

(chromatic)

juicy

(lush)

apple

(fruit)

Word Senses
noun  

Click to see more senses.

Figure 5.2: WSD Summary in Semantic Text Input Interface.

5.2.1 User Interface Prototype

Figure 5.2 shows a mockup interface, an improved version of the Semantic

Text Input Interface displayed in Figure 4.2. In this interface each word,

represented by a separate button in the “Relation” section, is accompanied

by a word sense summary for the active sense of this word. The summary is

shown in the brackets underneath the word. Thus, “chromatic” is the sense

summary for the active sense of the word “red”, “lush” — for “juicy” and

“fruit” — for “apple”. Adding the active sense summary allows users to

quickly evaluate the accuracy of the word sense disambiguation algorithm

and estimate the need of correcting it. It also allows to spot the exact word

which needs correcting without having to click on each word to reveal its

senses (which will appear in the “Word Senses” section of the interface) and

having to read the active sense gloss. In fact, the “Word Senses” section

is empty because the user did not click any word button.
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5.2.2 Summarization Algorithm

We use WordNet [18] as a source of word senses and we use the linguistic

information WordNet provides to generate the summaries for the senses of a

particular word. We do the summarization differently for senses of different

parts of speech, because WordNet provides different relations for every part

of speech and we want to maximally exploit the information available in

WordNet. For all parts of speech we consider all available senses of a word

and proceed with creating a summary for each of them. The summary

should be different for each sense of the word to allow distinguishing among

them. We create summaries sequentially, sense by sense, starting with the

first sense.

We use the following WordNet elements in the algorithms below when

creating the summary for a sense of a word:

• the words in the synset;

• the lemmas of the word sense;

• the words connected to the sense via different relations such as hy-

pernymy and hyponymy;

• the sense gloss, that is the explanation of the sense meaning with

examples;

We call the element “unused” if it was not used yet to create a sense

summary for some sense of the word in question.

Noun Sense Summarization

There are 15 776 (13.47% of 117 097) ambiguous nouns having 43 783 senses

in WordNet 2.1. To create WSD summary for a sense of a noun we choose

sequentially:
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• synset: the first shortest unused lemma among the available synset

words of this sense;

• hypernym: the first shortest unused lemma among the available hy-

pernym synset words of this sense;

• hyponym: the first shortest unused lemma among the available hy-

ponym synset words of this sense;

• original: if there are no hyponym synsets available, return the noun

itself (original word).

There are two reasons we rely on the length and choose the shortest among

available choices. The first is that often the shortest word is the simplest

one. The second is to save screen space. There are few cases where several

senses share the same summary (234, or 1.48% of all 15 776 ambiguous

nouns). 129 (0.82%) of them have one summary for all senses. Often

a summary is shorter than the original word, on average 2.31 characters

shorter. In 50.25% of cases (22 001 out of 43 783 senses) the summary pro-

duced is longer than the original word, on average 4.84 characters longer.

Table 5.2 shows some examples of noun summaries.

Verb Sense Summarization

There are 5 227 (45.49% of 11 488) ambiguous verbs having 18 629 senses

in WordNet 2.1. To create a summary for a sense of a verb we choose

sequentially:

• synset: the first shortest unused lemma among the available synset

words of this sense;

• hypernym: the first shortest unused lemma among the available hy-

pernym synset words of this sense;
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Table 5.2: Noun Word Sense Summary Examples.

Sense Gloss Heuristic Summary

abacus#1 a tablet placed horizontally on top of the capital

of a column as an aid in supporting the architrave

hypernyms tablet

abacus#2 a calculator that performs arithmetic functions

by manually sliding counters on rods or in grooves

hypernyms calculator

circle#1 ellipse in which the two axes are of equal length;

a plane curve generated by one point moving at

a constant distance from a fixed point; “he calcu-

lated the circumference of the circle”

hypernyms oval

circle#2 an unofficial association of people or groups; “the

smart set goes there”; “they were an angry lot”

synset set

circle#3 something approximating the shape of a circle;

“the chairs were arranged in a circle”

hypernyms form

circle#4 movement once around a course; “he drove an

extra lap just for insurance”

synset lap

• hyponym: the first shortest unused lemma among the available hy-

ponym synset words of this sense;

• original: the first word of the gloss (often well-known verb, like cause,

have, be).

There are few cases where several senses share the same summary (72,

or 1.38% of all 5 227 ambiguous verbs). 12 (0.23%) of them have one

summary for all senses. In most cases the summary is shorter, on average

1.84 characters shorter than the original word. In 35.09% of cases (6 536 out

of 18 629) the summary is a bit longer than the original word, on average

2.59 characters longer. Table 5.3 shows some examples of verb summaries.
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Table 5.3: Verb Word Sense Summary Examples.

Sense Gloss Heuristic Summary

abstain#1 refrain from voting hypernyms refrain

abstain#2 choose not to consume; “I abstain from alcohol” synset desist

accost#1 speak to someone synset address

accost#2 approach with an offer of sexual favors; “he was

solicited by a prostitute”; “The young man was

caught soliciting in the park”

synset hook

Adjective Sense Summarization

There are 5 252 (23.72% of 22 141) ambiguous adjectives having 14 413

senses in WordNet 2.1. To create a summary for a sense of an adjective we

choose sequentially:

• synset: the first shortest unused lemma among the available synset

words of this sense;

• similar: the first shortest unused lemma among the available satellite

synsets of this adjective (using similar to relation);

• pertainym: the first shortest unused lemma among the available

pertainym synsets;

• see also: the first shortest unused lemma among the available see also

synsets;

• antonym: the first shortest unused lemma among the available an-

tonym synsets;

• gloss: the first word of the gloss.

There are few cases where several senses share the same summary (19,

or 0.36% of all 5 252 ambiguous adjectives). 6 (0.11%) of them have one
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summary for all senses. In majority of cases the summary is shorter, on

average 2.05 characters shorter than the original word. In 43.88% of cases

(6 316 out of 14 413 senses) the summary is slightly longer than the original

word, on average 2.89 characters longer. Table 5.4 shows some examples

of adjective summaries.

Table 5.4: Adjective Word Sense Summary Examples.

Sense Gloss Heuristic Summary

young#1 (used of living things especially persons) in an

early period of life or development or growth;

“young people”

synset immature

young#2 (of crops) harvested at an early stage of develop-

ment; before complete maturity; “new potatoes”;

“young corn”

synset new

young#3 suggestive of youth; vigorous and fresh; “he is

young for his age”

synset youthful

young#4 being in its early stage; “a young industry”; “the

day is still young”

gloss being

young#5 not tried or tested by experience; “unseasoned ar-

tillery volunteers”; “still untested in battle”; “an

illustrator untried in mural painting”; “a young

hand at plowing”

synset unseasoned

Adverb Sense Summarization

There are 751 (16.32% of 4 601) ambiguous adverbs having 1 870 senses in

WordNet 2.1. To create a summary for a sense of an adverb we choose

sequentially:

• synset: the first shortest unused lemma among the available synset

words of this sense;

• derived: the first shortest unused lemma among the available derived

synsets of this adverb (using derived from relation);
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• antonym: the first shortest unused lemma among the available an-

tonym synsets;

• gloss: the first word of the gloss.

In 50 (6.66%) of all 751 ambiguous adverbs there are several senses of the

same adverb which share the same summary. 18 (2.4%) of them have one

summary for all senses. In most cases the summary is shorter, on average

2.56 characters shorter. In 33.74% of cases (631 out of 1 870 senses) the

summary is slightly longer than the the original word, on average 3.24

characters longer. Table 5.5 shows some examples of adverb summaries.

Table 5.5: Adverb Word Sense Summary Examples.

Sense Gloss Heuristic Summary

aboard#1 part of a group; “Bill’s been aboard for three

years now”

gloss part

aboard#2 on a ship, train, plane or other vehicle synset onboard

aboard#3 on first or second or third base; “Their second

homer with Bob Allison aboard”

synset on base

aboard#4 side by side; “anchored close aboard another

ship”

synset alongside

5.3 Sense Summarization Quality Evaluation

We conduct the evaluation of the word sense summary generation heuris-

tics by creating a series of questions, designed to shed light on the different

qualities of the generated summaries and asking these questions randomly

to different persons. We asked the members of our research group, col-

leagues and friends to volunteer for this task. Most questions were an-

swered by students. We have generated the question database and dur-

ing the question-answer sessions drew questions randomly from different
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groups of questions in the database until we have collected the minimal

required number of answers and have collected enough questions answered

by more than one user.

52 users have participated in this evaluation. The users included rep-

resentatives of both genders, various age groups (between 20 and 60) and

cultures. Most users have academic background. While most users are non-

native English speakers, they are all fluent speakers and there are native

speakers as well as bilingual persons among participants.

15 users answered more than 100 questions each and the top contributor

answered 700 questions. 25 users answered at least 40 questions each. 11

users answered less than 20 questions each. On average we collected 83

answers per user.

We have selected a subset of WordNet to generate test questions. Our

dataset contains 9 314 summaries. Before starting the evaluation we con-

ducted several tests with few users and almost all users complained about

the questions being difficult or very difficult. We found out that the major

reason of this is the limited vocabulary of our participants. This is not

a surprise, given that many participants are non-native speakers. Native

speakers did not report this problem.

To tackle the limited vocabulary issue we have exploited the frequency

of use figures from WordNet. The frequency of use is the number of oc-

currences that the particular sense has in semantic concordance texts. For

example, the word “water” (used in the sense “H2O, substance”) has 744

as its frequency of use number, while the word “hypocrisy” for both of its

senses has 1 as its frequency of use number. We have generated the sum-

maries only for the words having non-zero frequency of use. This limits the

questions to the most frequently used words and thus, potentially, better

known words, resolving the limited vocabulary problem to some extent.

One should note that the applicability of the heuristics to the parts of

141



CHAPTER 5. WORD SENSE . . . 5.3. SENSE SUMMARIZATION . . .

speech differs because of the nature of the relations available in WordNet:

• the synset heuristic applies to all parts of speech;

• the hypernym and hyponym heuristics apply to both nouns and

verbs;

• the gloss heuristic applies to verbs and adjectives because of the way

glosses are written;

• the derived applies to adverbs only;

• the similar to applies to adjectives only.

Table 5.6 and Table 5.7 provide the details of the qualitative composition

of the questions dataset.

Table 5.6: Summary Questions by Heuristic.

Heuristic Summary count Usage count average

child 1 253 21.1748

derived 125 7.9680

gloss 1 300 13.0808

parent 3 804 24.5739

similar to 756 6.5847

synset 2 076 11.2418

Table 5.7: Summary Questions by POS.

POS Summary count Usage count average

adjective 1 104 5.7101

noun 4 318 26.8256

adverb 271 16.0701

verb 3 621 11.0014

To aid users in the disambiguation task without further complicating

the task, the word sense summary should be:
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• associative: the summary should associate well with the sense it

summarizes and

• discriminative: the summary should discriminate the senses well

enough, so that the senses can not be mixed with one another.

We split the word sense summary generation algorithm evaluation into two

scenarios targeted at evaluating the two aspects above.

In the first scenario a user is presented with a question that contains a

word, its summary and its senses, expressed by their glosses. The user is

asked to select the senses corresponding to the displayed summary. The

user has an option to skip the question by clicking the “I don’t know”

button, if some words were not clear. This option eliminates the bias

introduced by the limitations of the user vocabulary.

Figure 5.3 illustrates the question for the word “apple”. Here the “ap-

ple” is the original word which need disambiguation, presented together

with all its senses in the box below. We select a sense and memorize

our selection. To a user we present all senses and the summary for the

memorized sense, as generated by the heuristic being evaluated. The word

“pome” is a summary for the memorized sense. Ideally, the summary will

help a user to identify the sense which this summary represents and a

user will select the check box close to the memorized sense. Then we can

compare the actual answer with the memorized sense.

In this scenario we identify the following answer categories:

• unknown, when the user clicked “I don’t know” button, which means

the user does not know some words present on the screen;

• none, when the user clicked “None of these” button, which means

user can not associate any sense with the summary;

• correct, when the user selected one sense and this sense is the mem-
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Senses

Among all senses of the word apple select the one(s) which mean(s) pome:

fruit with red or yellow or green skin and sweet to tart crisp whitish flesh

native Eurasian tree widely cultivated in many varieties for its firm rounded edible fruits

Next None of these I don't know

Figure 5.3: WSD Summary Evaluation Scenario 1.

orized one, which means that the summary is good, because the user

was able to associate the summary with the sense for which the sum-

mary was generated;

• semicorrect, when the user selected more than one sense, but the

memorized one is among them, which shows that the summary is

potentially good, because the user was able to associate it with the

memorized sense, and, probably because of too fine-grained senses

was not able to make a proper distinction and selected more than

one sense. The users agreement on specific questions can be used to

determine whether the senses are too fine-grained. Namely, the senses

could be considered too fine-grained if the users that answered the

same questions agreed and selected the same set of senses;

• incorrect, when the user selected 1 incorrect sense, which shows that

the summary is potentially bad, because the user was unable to asso-

ciate the summary with the sense for which it was generated;

• more than 1 selected sense, when the user selected more than 1

sense, which shows cases where the senses are too fine-grained and

create confusion for the user. These cases could further explored for

polysemy reduction purposes using users agreement, as explained in

the above point for semicorrect answers.

144



CHAPTER 5. WORD SENSE . . . 5.3. SENSE SUMMARIZATION . . .

If we talk about apple does the word fruit mean the same as produce?

Yes No I don't know

Figure 5.4: WSD Summary Evaluation Scenario 2.

In the second scenario we test the discrimination capability of the heuris-

tics. To ease the cognitive load on a user we evaluate sense pairs, instead

of presenting all senses at once. For example, we ask “If we talk about

apple, does the word fruit mean the same as produce?” and present

three answer options:

• “Yes” (incorrect), means that the user understood everything and the

discrimination is bad;

• “No” (correct), means that the user understood everything and the

discrimination is good;

• “I don’t know” (unknown), means that the user did not understand

the question or a word.

Figure 5.4 illustrates the question for the word “apple”. Here the word

“apple” is the original word which needs disambiguation. The word “fruit”

is the summary for one sense and the word “produce” is the summary for

another sense. Both summaries are generated using the same heuristic, the

one being evaluated. Ideally, the summaries generated are different enough

in their meaning, so that the user understands that they pertain to differ-

ent senses and answers “No, it does not mean the same”. We interpret that

as the heuristic in question has produced summaries of sufficient discrim-

inating power. If user answers “Yes, it does mean the same” we interpret

that as the heuristic in question has failed to produce two summaries of

sufficient discriminating power.
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Out of 427 questions answered you got 331 right!

You have contributed 8.57% of all answers we
already collected. You have made your
contribution, but you are always welcome to
contribute more.

The highest contribution is 14.04%, you just
need to answer 273 questions to beat this score.

273 questions remain to answer for a higher
place.

Please, return to this page for several days to answer your share of questions. To ease
this, you can bookmark this page by dragging it on a toolbar (or by pressing Ctrl+D) or
set it as a home page.

To make this page your home page, drag the icon to the left of the URL in your location
bar onto the "Home" icon in your toolbar. Some browsers do this differently. You can
always set your home page through the preferences of your browser.

Figure 5.5: WSD Summary User Score Screen.

We split the questions into blocks of 20 questions of both types each.

After a block of questions we showed the user a page, displayed in Fig-

ure 5.5, with absolute and relative contribution figures and performance to

create an incentive to proceed with the task.

To measure the users agreement we handed out some questions to at

least two different users. We have collected 308 at least double-rated ques-

tions for the scenario 1 (type 1 questions) and 301 at least double-rated

questions for the scenario 2 (type 2 questions).

We use the generalized case to calculate raw users agreement indices

[71]. As an item we consider an answer to a question. One question can

have more than one answer, each answer given by a different user. It

is also useful to keep in mind that type 1 questions can have multiple

independent answers and therefore are more difficult for the users to agree

upon. Table 5.8 provides the details on the overall proportion of agreement

by the type of answer across all heuristics. The agreement of zero means

the users do not agree at all and have given different answers on the same
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question. The agreement of one means the user agree completely and have

given the same answers on the same question.

Table 5.8: Users Agreement Proportion by Question and Answer Type.

Answer Type Type 1 Questions Type 2 Questions

Unknown 0.18 0.225

None 0.23 n/a

Correct 0.59 0.72

semicorrect 0.04 n/a

Incorrect 0.35 0.43

Table 5.9 shows the details of the proportion of agreement for type 1

questions by different heuristics and answer types. Table 5.10 shows the

details of the proportion of agreement for type 2 questions by different

heuristics and the answer types.

Table 5.9: Users Agreement for Type 1 Questions.

Answer Type hyponym derived gloss hypernym similar to synset

unknown 0.50 0.50 0.00 0.13 0.00 0.00

none 0.50 0.00 0.00 0.09 0.40 0.00

correct 0.37 0.00 0.53 0.62 0.61 0.66

semicorrect 0.00 0.09 0.05 0.00 0.00 0.07

incorrect 0.50 0.50 0.00 0.30 0.36 0.40

Table 5.10: Users Agreement for Type 2 Questions.

Answer Type hyponym derived gloss hypernym similar to synset

unknown 0.18 1.00 0.25 0.25 0.00 0.00

correct 0.82 0.00 0.72 0.75 0.60 0.53

incorrect 0.00 0.00 0.47 0.38 0.66 0.50

One can see that in all cases (except hyponym heuristic in type 1 ques-

tions) users agreement for correct answers is high and it is higher for correct
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Table 5.11: Noun Heuristics Comparison by Associative Power (%)

Answer Type hyponym derived gloss hypernym similar to synset

unknown 17 0 0 11 0 9

none 24 0 0 10 0 6

semicorrect 2 0 0 4 0 4

incorrect 22 0 0 14 0 17

> 1 selected sense 6 0 0 12 0 13

correct 32 0 0 53 0 56

answers than for the other answer types. That allows us to conclude that

the users agree about the quality of generated summaries, collectively se-

lecting the most associative and the most discriminating heuristic for each

part of speech and we can order the heuristics by quality based on the

users’ answers.

Given that the different heuristics apply to the different parts of speech,

it makes sense to view them by the part of speech they apply to. Here we

describe how we order heuristics by quality on the example of noun heuris-

tics. Table 5.11 gives the associative power figures for noun heuristics. In

columns we present heuristics, in rows — answer types. We keep columns

with the heuristics which do not apply to nouns (with zeros) to keep all ta-

bles uniform for the sake of easy comparison between the parts of speech.

We compare the percentages in the last row, which contains correct an-

swers, and conclude that the synset heuristic has the strongest associative

power, because it gets the largest percentage of correct answers. Therefore

we order the heuristics accordingly in the “By Associative Power” column

of Table 5.12. We follow the same approach to order the heuristics by their

discriminative power.

Appendix I provides the detailed results, organized by the part of speech

and shows the associative power and the discriminating power comparisons
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for all heuristics. Table 5.12 summarizes the results of the evaluation by

ordering the heuristics by associative power and by discriminating power.

Table 5.12: Sense Summarization Heuristics Quality.

Part of Speech
Heuristics Quality

By Associative Power By Discriminating Power

noun

synset hypernym

hypernym hyponym

hyponym synset

adjective
similar to similar to

synset synset

verb

gloss gloss

synset hyponym

hypernym hypernym

hyponym synset

adverb
synset synset

derived derived
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Chapter 6

Evaluation

We have evaluated the proposed solution for natural language metadata

understanding using a synthetic approach. We have taken the large dataset

used for evaluation of semantic matching [31], which is a technique used to

identify semantically related information by establishing a set of correspon-

dences, usually between two tree-like structures which are often denoted as

“source” and “target”. This dataset is a composition of three web direc-

tories: Google, Yahoo! and Looksmart. The “source” part of it contains

2 854 labels, while the “target” part contains 6 628 labels. We keep the

dataset in two parts: “source”, combined from Google and Looksmart di-

rectories, and “target”, coming from Yahoo! directory, because these parts

originate from different datasets, and this allows us to evaluate the per-

formance on slightly different data. While containing parts of the Yahoo!

directory and being from the same domain of natural language metadata,

this dataset does not intersect with the ones we have used in our exper-

iments discussed in Chapter 3 and for training discussed in Chapter 4.

Therefore it is appropriate to use it for evaluation purposes as it represents

unseen data.

We have manually annotated this dataset with tokens, POS tags, named

entity information, assigned correct senses from WordNet [18] and, fi-
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Table 6.1: Evaluation Results Summary

Dataset Labels Accuracy (%) Previously (%) Improvement (%)

source 2 854 83.43 67.73 +15.70

target 6 628 81.05 65.89 +15.16

nally, created correct logical formulas for every label. For example, for

the label “Acupuncture and Chinese Medicine” we have annotated tokens

(“Acupuncture”, “and”, “Chinese”, “Medicine”), POS tags (Acupunc-

ture/NN, and/CC, Chinese/JJ, Medicine/NN), named entities (Acupunc-

ture/O, and/O, Chinese/O, Medicine/O), correct senses (Acupuncture/n-

#699073, Chinese/a#3048539, Medicine/n#5964779) and have created

a formula: Acupuncture/n#699073 | Chinese/a#3048539 & Medicine/-

n#5964779. Thus we have created a golden standard, which enables us

to evaluate our solution. This dataset contains 47.86% of 1-token labels,

33.14%, 15.64% and 2.34% of 2-, 3- and 4-token labels, respectively. Longer

labels constitute the remaining 1.02%. The average label length is 1.76 to-

kens, with the longest label being 8 tokens long. The most frequent POS

tags are singular nouns (NN, 31.03%), plural nouns (NNS, 28.20%), proper

nouns (NNP, 21.17%) and adjectives (JJ, 10.08%). An important POS, the

coordinating conjunctions (CC) that can introduce ambiguity in a label,

which, in turn, might be carried into a formula, occupy a notable 6.58%.

In total, 26 parts of speech are present, and except the ones already men-

tioned, other 21 parts of speech occupy the remaining 2.91%.

Table 6.1 summarizes the evaluation results. The column “Accuracy”

contains the percentage of labels, for which the pipeline created correct

formulas while the column “Previously” contains the accuracy of a previ-

ously used solution [33]. One can see that we have obtained a substantial

improvement of approximately 15% over the previous results.

In Figure 6.1, we report the accuracy of the translation to description

152



CHAPTER 6. EVALUATION

81
.7

7

POS Accuracy (%)

T
ra

ns
la

tio
n 

A
cc

ur
ac

y 
(%

)
84

.3
9

87
.1

6

100.0089.11 95.71

No Context

With Context

Manual

Figure 6.1: Contribution of POS Accuracy to the Translation Accuracy

logic formulas, in comparison to the POS tagger performances. We report

two different POS tagging models (see Section 4.2.3) on the combined

“source+target” dataset:

• No Context that corresponds to the best combined model, and

• With Context that is the best combined model trained with a con-

text coming from the classification path of the labels.

The best combined model reached 89.11% PPL on the combined “source+-

target” dataset. It compares well with the figures in the “all-except” row

of Table 4.7 and shows that the model performs quite well on unseen data.

We also tested the combined model trained with the context, and it reached

95.71% PPL. It compares well with the figures from the “path-cv” row of

Table 4.7, also confirming that the model performs well on unseen data.

We can first observe an improvement of 6.6% in the POS tagging accu-

racy when using the context, which stresses the importance of such context.

However, this only improves the translation accuracy by 2.62%. The im-

provement in POS tagging does not translate directly into a translation
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improvement, because of the other modules of the pipeline, such as the

word sense disambiguation module, whose performance also influences the

overall translation accuracy. Indeed, if we evaluate the translation with

the manual POS tagging (Manual point in Figure 6.1), we observe that

even with a “perfect” tagging, the translation accuracy does not improve

much more. In comparison, a “perfect” tokenization (with a contextless

POS tagging), improves the translation accuracy only by 0.02%.

To evaluate the influence of the preprocessing steps of tokenization and

POS tagging of the performance of the parser, we supplied the parser with

correctly tokenized labels and it reached 81.79% precision. These 0.02%

can give an estimation of the tokenizer contribution. Then we supplied

the parser with the correct tags and it reached 87.16% precision. These

5.37% can give an estimation of the POS tagger contribution. Out of this

experiment we see that improving the POS tagger can give us a 5.35%

improvement, while the remaining 18.23% should be reached by improving

other translation pipeline modules.

An analysis of mistakes showed that 19.87% (source) and 26.01% (tar-

get) of labels contained incorrectly recognized atomic concepts. For ex-

ample, in the label “Diesel, Vin” two concepts “Diesel” and “Vin” were

recognized, instead of the correct proper name: “Vin Diesel”. As another

example consider the label “Early 20th Century”, where the “previous”

solution missed the concept “20th” because of too aggressive stopwords

heuristics, while the proposed one recognized it. Vice versa, in the label

“Review Hubs”, instead of two concepts “Review” and “Hubs”, only one

wrong concept “Review Hubs” was recognized. The cause of these mis-

takes is the POS tagger error because of the lack of context. Namely, the

frequent misclassification which occurs between proper and common nouns.

For these cases, further analysis of the erroneous formula does not make

sense, because the atomic concepts are the basic building blocks of the for-
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mula, which should be recognized properly for the formula to be correct.

For the rest, that is for the labels with correctly recognized atomic concepts,

we found out that, in 49.54% (source) and 52.28% (target) of cases, the for-

mula structure (that is, logical connectors or “bracketing”) was recognized

incorrectly. For example, in the label “Best & Worst Sites” the “&” sign is

used as a conjunction, but was not recognized and this resulted in a wrong

formula structure. The remaining half of the mistakes are word sense dis-

ambiguation mistakes of different kinds. In some cases, 40.26% (source)

and 41.11% (target), the algorithm pruned too much senses, leaving out the

correct ones. For example, in the label “Cult Movies” the disambiguation

algorithm pruned all senses of the concept “Cult” due to the POS tagger

mistake. Similarly, in the label “Marching” the algorithm pruned correct

senses due to the POS tagger mistake, which led to treating the word as a

different part of speech. In the remaining 10.20% (source) and 6.61% (tar-

get) of cases the algorithm kept some extra senses that should have been

pruned. In this category the examples with named entities, represented by

common words are noticeable. For example, in the label “Matrix Series”

the concept “Matrix” refers to the movie. The “movie” sense of the word

“matrix” is not present in the vocabulary, which, instead, contains many

other senses of the word “matrix”. It is interesting to note that the movie

itself was recognized correctly in the label “Matrix, The”, located one level

below this one, as “The Matrix”, although due to the lack of a sense in

the vocabulary, the label remained senseless. Another similar example is

provided by the label “Queen”, which refers to the famous music band.

The approach we propose here, with more accurate NLP models and

the language structure analysis, achieves an accuracy of 84.39% in the

translation task. This is a 17.95% improvement over the state of the art

translation approach from [33] that reaches a 66.44% precision.
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Chapter 7

Applications

Natural language metadata is widely used in various applications. As we

already discussed, the natural language metadata is ambiguous and our

proposed solution assists in tackling this problem. In other words, the

best place and time to get rid of the ambiguity of a piece of a natural

language metadata is when it is created and where it is created. At this

moment the user who creates it is right there and, seeing this as part of

the creation process, is more willing to cooperate in the task of creating

a proper semantic annotation, contrary to returning later to the data and

doing the annotation from scratch. This leads us to applications which

might benefit if they integrate the proposed solution on the user interface

level, and solve the problem in cooperation with the user, as the author of

[64] concludes. This allows reaching two goals:

• it will make users more aware of semantics existence, importance and

potential use and thus will create an incentive to write more accurate

and descriptive email subject lines, programming interface names, ti-

tles, keywords and other natural language metadata elements.

• it will “put the user in the loop” and will help to maximally formalize

the meaning that the user has in mind right at the moment of creation

of an item of natural language metadata.
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In Section 7.1 we provide two examples of the user-assisted scenarios of the

proposed solution.

However, there are applications where user involvement is not feasible

due to the volume of data or user unavailability. These applications can

benefit from embedding the proposed solution and using it in the auto-

matic processing mode. Therefore, in Section 7.2 we briefly illustrate the

automated processing mode scenarios of the proposed solution.

7.1 User-assisted Processing Scenarios

7.1.1 API Matching

Application program interfaces (APIs) contain function and variable names,

which are a type of metadata and are written in (a subset of) natural lan-

guage with the biggest difference from the normal one being the use of

other means of separation between words. Tasks such as API integration,

matching or achieving service interoperability [47] use semantic match-

ing techniques, as demonstrated by the Open Knowledge1 project’s use of

structure-preserving semantic matching [32]. Having precise semantics ac-

company the APIs description helps to do better matching and leads to

successful interoperability.

A major part of modern development happens in integrated develop-

ment environments (IDEs), such as Eclipse2. In such IDEs various pro-

gram elements, such as APIs are created using dedicated user interfaces.

Figure 7.1 shows the dialog for creating a Java interface. In addition, Fig-

ure 7.1 shows an insertion point for the optional semantic text enrichment

dialog (such as the one in Figure 4.2), so that a developer can specify ex-

actly the semantics of the interface being created. For modern Java-based

1http://openk.org
2http://www.eclipse.org/
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Figure 7.1: Eclipse New Java Interface Dialog.

tools there is a possibility to include semantics using the annotations mech-

anism, which is available since Java 5 release. Java compiler embeds the

annotations in .class files and there is an API to access them at runtime.

Storing semantically enriched function and variable names will improve

semantic matching at runtime.

One might argue that some developers use dialogs and others prefer to

type the code directly. For such cases, a mechanism similar to the code

completion could be used to enable semantic annotation to happen in a

text editor of the IDE.

7.1.2 Ontology Matching

Ontology matching is arguably an even more popular example and an appli-

cation for semantic matching techniques. Here we find a similar situation.

If ontology elements, such as class names, would have precise formal equiva-

159



CHAPTER 7. APPLICATIONS 7.2. AUTOMATIC PROCESSING . . .

Figure 7.2: Protégé Class Editor Dialog.

lents associated with them, then the matching of two ontologies might get

easier. Ontologies, as well as program source code, can be edited in a

simple text editor, but specialized editors remain a more popular choice.

Figure 7.2 shows a class editor dialog from a well-known ontology editor

Protégé [2]. Similar to Figure 7.1 it shows a point for the addition of

optional semantic text enrichment dialog.

It is possible to integrate the proposed solution directly into the ontology

editor and its elements editing dialogs such that those ontology elements,

which are written in natural language will have semantics generated and

associated with them through the use of the proposed solution.

7.2 Automatic Processing Scenarios

7.2.1 Semantic Matching

As introduced in Section 1.1, one can see semantic matching as an operator

that takes two tree-like structures and produces correspondences between

those tree nodes that correspond semantically to each other. Some se-
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mantic matching algorithms reason over a logic formalism to deduce the

correspondences. However, most classifications and schemas are created

using natural language. Therefore there is a need to translate all the clas-

sification labels and schema elements into a formal language.

We take the S-Match [33] as an example of semantic matching algorithm.

S-Match uses the notion of concept of a label, which specifies the set of

documents one would classify under a label it encodes, and the notion of

concept at a node, which specifies the set of documents one would classify

under a node with a certain label and located in a specific position in a

tree. S-Match splits the matching task into four steps:

1. for all labels L in the input trees, compute concepts of labels, CL.

2. for all nodes N in the input trees, compute concepts at nodes, CN .

3. for all pairs of labels in the input trees, compute relations among CL.

4. for all pairs of nodes in the input trees, compute relations among CN .

Our solution applies at the step 1, where the labels L are translated

into concepts of labels CL. Steps 1 and 2 are called offline processing,

because they could be done anytime, even in the absence of a second tree.

This particularity gives us flexibility to choose between automatic process-

ing mode and user-assisted mode. S-Match is currently implemented as

a command-line tool and therefore we have chosen automatic processing

mode. We have integrated the proposed solution into an open source se-

mantic matching framework S-Match3 and this allows all algorithms which

make part of the framework, including semantic matching [33], minimal

semantic matching [29] and structure-preserving semantic matching [32],

to use its services for the translation of natural language labels into LC for-

mulas. Specifically, we provide an implementation of the IPreprocessor4

3http://semanticmatching.org
4http://semanticmatching.org/javadocs/it/unitn/disi/smatch/preprocessors/IPreprocessor.html
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interface in the class PipelinePreprocessor. This preprocessor uses the

proposed solution to translate natural language labels into propositional

description logics formulas.

7.2.2 Semantic Search

As introduced in Section 1.1, one of the proposals to improve search is to

go from a syntactic search, which handles arbitrary sequences of charac-

ters and calculates string similarity, to a semantic search, which handles

concepts and calculates semantic relatedness. However, most search terms

and documents are in natural language.

We take C-Search [28] as an example of semantic search algorithm. The

C-Search, as well as other information retrieval systems, takes a natural

language query q (from a query set Q) and returns a set of documents d

from a document collection D. Among other elements, the C-Search model

uses term as an atomic element in document and query representations.

For C-Search, term is a complex concept expressed in a propositional de-

scription logics language. However, both search terms q and documents in

D are expressed in natural language.

Our solution applies at the translation of concepts expressed in natural

language into terms expressed as propositional description logics formulas.

For translating query terms q, we might apply a specialized version of

a proposed solution. For translating natural language inside documents

from a collection D into terms, we augmented our proposed solution and

presented the robust pipeline in Section 4.3.
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Conclusion

Logics is heavily used for knowledge representation and information man-

agement and there are many applications which can make our life easier by

managing our information and knowledge more efficiently. The problem is

that natural language, and not logics, is the primary means of expressing

our knowledge and information. We can enable a great many applica-

tions by providing easy and cheap way of extracting semantics of natural

language and representing it in logics.

We have shown several motivating applications in Chapter 1 and have

given more examples in Chapter 7. We hypothesize that these applications

mostly operate on a specific subset of natural language that we call descrip-

tive phrases and that descriptive phrases can be mapped onto a subset of

Description Logics, namely propositional Description Logics language LC .

We have studied several datasets that represent the kind of data our

motivating applications often use and presented the results in Chapter 3.

We call this kind of data a natural language metadata. We have found that

natural language metadata almost always consists of descriptive phrases.

We have found that descriptive phrases differ from the normal language as

it is used in news stories and books and have shown that natural language

metadata deserves to be recognized as a novel natural language domain.
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We have analysed how it is different from normal language and have found

out that the modern natural language processing tools such as tokenizers,

part of speech taggers and named entity recognizers need an adaptation to

work well with natural language metadata.

Based on our analysis made in Chapter 3, we have explored the key nat-

ural language processing problems which need to be addressed to process

descriptive phrases and have presented in Chapter 4 the natural language

metadata understanding architecture, complete with the models, the algo-

rithms and the implementation. The modular structure of the proposed

architecture allows easy customization for each particular need of the tar-

get application, as well as for potential changes in the input language and

the output logic formalism. We have shown that descriptive phrases can

be mapped into propositional Description Logics language LC formulas.

We have evaluated four out of six modules of the proposed architecture

in an isolation and have brought their performance to the state of the art

levels on the novel domain of natural language metadata. In Chapter 6

we have evaluated the architecture as a whole using synthetic approach on

the large manually annotated dataset widely used for semantic matching

evaluation. We have shown that the proposed solution improves state of the

art performance by a margin of 15% to 17% reaching translation accuracy

of 84.39%.

In addition we have explored where the user can make the biggest im-

provement in the translation process and we have shown the way to put the

user in the loop. In our architecture we have addressed the need to provide

processing in different modalities: fully automated and user-assisted. We

have further explored the load on the user in the word sense disambigua-

tion task as in the most important point of processing and in Chapter 5

we have shown how to ease the cognitive load on the user by providing

the word sense summary generation algorithm accompanied by the user
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interface. We have complemented the proposed architecture with a user

interface prototype, which target applications can use to exploit the ser-

vices of user-assisted language to logic translation.

We have demonstrated where and how the proposed solution can be

embedded into different applications in the fully automated and in the

user-assisted processing mode. We have integrated the proposed architec-

ture into the open source S-Match framework and prepare to release the

proposed architecture under an open source license.

Future work will follow different directions. First, we would like to ex-

plore deeper the impact of the proposed solution on the applications and

execute an application-dependent evaluations. Second, we would like to

explore a more innovative architectures, trying new decision-making pro-

cesses and evaluating non-sequential decision-making architectures while

trying to reuse existing modules, algorithms and implementations. Third,

we would like to explore the options for augmenting the context to solve

short context problem we observe in natural language metadata. We can

do this, for instance, by exploiting the available hierarchy and differently

treating the cases when the complete hierarchy is available for processing,

contrary to the current approach of treating each label in an isolation.

Fourth, we would like to integrate different proposed grammars into a uni-

fied grammar, as this would eliminate the necessity to choose which gram-

mar out of available ones better suits particular case. Fifth, we would like

to explore tighter integration between machine-learning and knowledge-

based approaches, because our target applications almost always provide

a knowledge base which contains at least concepts and often even more

lexical information.
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Table A.1: DMoz Labels Lengths Distribution.

Token count Label count Share of labels (%)

1 251 140 50.8336

2 86 454 17.4993

3 136 425 27.6140

4 12 232 2.4759

5 3 762 0.7615

6 2 641 0.5346

7 810 0.1640

8 319 0.0646

9 150 0.0304

10 62 0.0125

11 19 0.0038

12 13 0.0026

13 11 0.0022

14 1 0.0002

15 1 0.0002

16 1 0.0002

17 1 0.0002

22 1 0.0002

Table A.2: DMoz Common Labels Lengths Distribution.

Token count Label count Share of labels (%)

1 160 880 49.5968

2 49 035 15.1167

3 108 838 33.5530

4 3 821 01.1780

5 607 00.1871

6 1 080 00.3329

7 72 00.0222

8 22 00.0068

9 20 00.0062

14 1 00.0003
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Table A.3: DMoz Common Labels POS Tag Distribution.

POS Tag Token count Share of tokens (%)

NN 298 342 51.59

NNS 132 797 22.96

CC 107 006 18.50

JJ 36 888 6.38

, 2 173 0.38

IN 486 0.08

CD 361 0.06

POS 97 0.02

NNPS 76 0.01

NNP 73 0.01

JJR 9 0.00

TO 3 0.00
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Table A.4: Top 20 DMoz POS Tag Patterns with Examples.

Label count Share (%) Pattern Example

104 695 33.70 NN Compensation

62 625 20.16 NN CC NN Pregnancy and Birth

44 847 14.43 NNS Sidecars

21 854 7.03 NNS CC NNS Invitations and Announcements

13 047 4.20 NN NNS Restaurant Chains

12 281 3.95 JJ NN Global Software

9 773 3.15 JJ Veterinary

9 252 2.98 JJ NNS Used Vehicles

8 879 2.86 NN CC NNS Polytechnics and Institutes

8 686 2.80 NNS CC NN Products and Equipment

6 654 2.14 NN NN Defense Litigation

815 0.26 NN NN CC NN Vehicle Repair and Maintenance

545 0.18 NN NN NN Supply Chain Management

515 0.17 NN CC JJ NNS Forensics and Anti-Forensic Degaussers

482 0.16 JJ NN CC NNS Military Equipment and Parts

399 0.13 JJ , JJ , CC JJ Biological, Chemical, and Radiological

352 0.11 JJ NN NN Medical Call Scheduling

341 0.11 CD 2

324 0.10 NN NN NNS Volunteer Focus Groups

319 0.10 JJ JJ Classical Indian

184



APPENDIX A. DMOZ STATISTICS

Table A.5: Unambiguous DMoz POS Tag Patterns.

POS Tag Pattern Label Count Share (%) Disambiguation

NNS CC NN NNS 97 10.13 NNS | (NN & NNS)

NNS CC NN NN 21 2.19 NNS | (NN & NN)

NNS CC JJ NNS 15 1.57 NNS | (JJ & NNS)

JJ CC NN NNS 6 0.63 (JJ | NN) & NNS

NNS CC JJ NN 6 0.63 NNS | (JJ & NN)

NN NN CC JJ NN 4 0.42 (NN & NN) | (JJ & NN)

NN NNS CC NN NN 4 0.42 (NN & NNS) | (NN & NN)

JJ CC NN NN 3 0.31 (JJ | NN) & NN

NN CC NN NN NNS 3 0.31 (NN | (NN & NN)) & NNS

NN IN JJ CC JJ NN 3 0.31 NN & (JJ | JJ) & NN

NN NNS , NNS CC NNS 3 0.31 NN & (NNS | NNS | NNS)

JJ NN CC JJ NN 3 0.31 (JJ & NN) | (JJ & NN)

NNS , NNS CC NN 2 0.21 NNS | NNS | NN

NN CC NNS NNS 2 0.21 (NN | NNS) & NNS

JJ , NN CC NN NN 2 0.21 (JJ | NN | NN) & NN

NN NN NN CC NN 2 0.21 (NN & NN) & (NN | NN)

JJ NNS CC JJ NNS 2 0.21 (JJ & NNS) | (JJ & NNS)

NN CC JJ NN NNS 2 0.21 (NN | JJ) & NN & NNS

NNS CC NNS NN 2 0.21 (NNS | NNS) & NN

JJ , JJ , CC JJ NNS 2 0.21 (JJ | JJ | JJ) & NNS
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Table A.6: Some Ambiguous DMoz POS Tag Patterns.

POS Tag Pattern
Label

Share (%)
Disambiguation Share (%)

Count Disambiguation Share (%)

NN CC NN NN 165 17.22
NN | (NN & NN) 41.82

(NN | NN) & NN 58.18

NN CC NN NNS 139 14.51
NN | (NN & NNS) 15.11

(NN | NN) & NNS 84.89

NN NNS CC NNS 86 8.98
(NN & NNS) | NNS 13.95

NN & (NNS | NNS) 86.05

NN NN CC NN 61 6.37
NN & (NN | NN) 73.77

(NN & NN) | NN 26.23

JJ NNS CC NNS 51 5.32
JJ & (NNS | NNS) 88.24

(JJ & NNS) | NNS 11.76

NN CC JJ NN 29 3.03
(NN | JJ) & NN 37.93

NN | (JJ & NN) 62.07

NN CC JJ NNS 26 2.71
NN | (JJ & NNS) 38.46

(NN | JJ) & NNS 61.54

NN NN CC NNS 22 2.30
(NN & NN) | NNS 18.18

NN & (NN | NNS) 81.82

JJ NN CC NN 19 1.98
(JJ & NN) | NN 15.79

JJ & (NN | NN) 84.21

NN NNS CC NN 18 1.88
(NN & NNS) | NN 11.11

NN & (NNS | NN) 88.89

NN NN CC NN NN 16 1.67
(NN & NN) | (NN & NN) 81.25

NN & (NN | NN) & NN 18.75

JJ NNS CC NN 12 1.25
(JJ & NNS) | NN 50.00

JJ & (NNS | NN) 50.00

JJ NN CC NNS 11 1.15
(JJ & NN) | NNS 27.27

JJ & (NN | NNS) 72.73

JJ NN CC NN NN 10 1.04
(JJ & NN) | (NN & NN) 40.00

JJ & (NN | NN) & NN 60.00

NN CC NN NN NN 8 0.84
(NN | NN) & NN & NN 62.50

(NN | (NN & NN)) & NN 37.50

NN NN CC NN NNS 5 0.52
(NN & NN) | (NN NNS) 80.00

((NN & NN) | NN) & NNS 20.00
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Table B.1: eCl@ss Labels Lengths Distribution.

Token count Label count Share of labels (%)

1 2 512 17.4529

2 3 661 25.4360

3 1 236 08.5875

4 1 260 08.7543

5 1 958 13.6038

6 1 338 09.2962

7 1 035 07.1910

8 671 04.6620

9 335 02.3275

10 153 01.0630

11 89 00.6184

12 56 00.3891

13 32 00.2223

14 23 00.1598

15 5 00.0347

16 13 00.0903

17 3 00.0208

18 3 00.0208

19 3 00.0208

20 1 00.0069

21 1 00.0069

22 1 00.0069

23 3 00.0208

26 1 00.0069
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Table B.2: eCl@ss Labels POS Tag Distribution.

POS Tag Token count Share of tokens (%)

NN 31 888 56.3890

) 6 204 10.9708

( 5 906 10.4439

JJ 5 421 9.5862

, 3 324 5.8780

NNS 2 078 3.6746

IN 977 1.7277

CC 340 0.6012

CD 117 0.2069

TO 64 0.1132

: 45 0.0796

VBN 39 0.0690

JJR 29 0.0513

VB 29 0.0513

DT 22 0.0389

RB 18 0.0318

PP$ 17 0.0301

NNP 17 0.0301

VBG 9 0.0159

FW 4 0.0071

. 2 0.0035
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Table B.3: Top 20 eCl@ss POS Tag Patterns with Examples.

Label count Share (%) Pattern Example

2 853 19.82 NN NN Methyl benzoylformate

2 457 17.07 NN Acylase

583 4.05 NN NN ( NN ) Laboratory app. (repair)

567 3.94 NN NN NN Block heat exchanger

566 3.93 JJ NN Exterior radiator

361 2.51 NN ( NN ) Cooling (lab.)

228 1.58 NN NN ( JJ ) Packing plant (compl.)

210 1.46 JJ NN NN 1,8-Naphthalic acid anhydride

205 1.42 NN ( JJ ) Scraper (other)

157 1.09 NN ( NN NN ) Bag (packing material)

144 1.00 NN ( JJ NN ) Recorder (special design)

120 0.83 NN NN ( NNS ) load-break switch (parts)

119 0.83 NN NN ( NN NN ) door opener (bell system)

117 0.81 JJ NN ( NN ) capillary pipette (laboratory)

112 0.78 NN NN ( JJ NN ) power supply (decentralized system)

111 0.77 NN NN NN ( NN ) Pipeline form piece (glass)

106 0.74 NN NN ( NN , NN ) Cutting mach. (maint., serv.)

106 0.74 NN ( NN , NN ) Cap (shaking, lab)

95 0.66 NN ( NNS ) terminal (accessories)

95 0.66 NN , NN Nonprint, Multimedia
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Table C.1: LCSH Labels Lengths Distribution.

Token count Label count Share of labels (%)

1 28 110 08.3727

2 67 678 20.1583

3 48 138 14.3382

4 45 279 13.4866

5 46 800 13.9396

6 34 846 10.3791

7 26 757 07.9697

8 15 948 04.7502

9 8 495 02.5303

10 5 685 01.6933

11 3 061 00.9117

12 2 115 00.6300

13 1 297 00.3863

14 683 00.2034

15 356 00.1060

16 164 00.0488

17 95 00.0283

18 57 00.0170

19 38 00.0113

20 28 00.0083

21 29 00.0086

22 20 00.0060

23 8 00.0024

24 9 00.0027

25 2 00.0006

26 1 00.0003
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Table C.2: LCSH Labels POS Tag Distribution.

POS Tag Token count Share of tokens (%)

NNP 386 302 26.1166

NN 331 775 22.4302

, 210 808 14.2520

NNS 164 186 11.1001

JJ 129 578 8.7603

( 87 533 5.9178

) 87 525 5.9173

CC 26 089 1.7638

IN 24 557 1.6602

CD 17 314 1.1705

FW 5 051 0.3415

POS 2 485 0.1680

DT 2 059 0.1392

TO 1 832 0.1239

: 1 625 0.1099

RB 212 0.0143

JJR 171 0.0116

NNPS 42 0.0028

VBG 1 0.0001

VB 1 0.0001
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Table C.3: Top 20 LCSH POS Tag Patterns with Examples.

Label count Share (%) Pattern Example

22 192 6.61 NNP NN Teach family

14 444 4.30 NNP NNP ( NNP ) Coconucos Range

(Colombia)

13 474 4.01 NNP Myzocallis

11 211 3.34 JJ NN Negative staining

8 771 2.61 NN NNS Museum docents

8 030 2.39 NNP NNP NNP ( NNP ) White River Valley

(Wash.)

7 856 2.34 NN Amortization

7 714 2.30 NN NN Lipoprotein lipase

7 379 2.20 JJ NNS Photoelectric mea-

surements

7 291 2.17 NNP NNP Spotted cutworm

6 757 2.01 NNS Quarks

6 104 1.82 NNS , NNP Canyons, Alabama

4 437 1.32 NNS , JJ Proverbs, Ladino

3 738 1.11 NNP ( JJ NN ) Maat (Egyptian deity)

3 648 1.09 NNP NNP ( NNP , NNP ) Whitemarsh Hall

(Philadelphia, Pa.)

3 596 1.07 NN , NN Memory, Fiction

3 493 1.04 NNS , NN Electrons, Compton

3 381 1.01 NN , JJ Pottery, Akan

3 015 0.90 NNP NNP NNP ( JJ NN ) Rumplemayer, Fenton

(Fictitious character)

2 749 0.82 NN IN NN Nude in art
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Table C.4: Some LCSH Chunk Types with Examples.

Chunk-Pattern POS Tag pattern Example

event, geo, time NNP NNP NNP

NNP, NNP, NNP,

CD

Clydeside Apprentices’ Strike, Glasgow,

Scotland, 1937

event, time NNP NNP, CD Turco-Montenegrin Wars, 1711-1714

event, time, geo NNP NNP, CD,

NNP

World War, 1939-1945, Poland

event, time, NP NNP NNP, CD,

NNS

Sino-Japanese War, 1894-1895, Causes

event, time, NP,

geo

NNP NNP, CD,

NNS, NNP

Crimean War, 1853-1856, Campaigns, Ro-

mania

event, time, RNP NNP NNP, CD,

JJ NNS, JJ

Yugoslav War, 1991-1995, Personal narra-

tives, Croatian

geo NNP, NNP Mexico, Southeast

geo (geo-dis) NNP NNP

(NNP)

Coconucos Range (Colombia)

geo (geo-dis),

event, time

NNP (NNP), NN,

NN, CD

Magdeburg (Germany), History, Bombard-

ment, 1945

geo (geo-dis), NP NNP (NNP), NN Tokyo (Japan), History

geo, domain NNP, IN NN Chile, In art

geo, NP NNP, JJ NNS Paraguay, Economic conditions

geo, NP, event,

time

NNP, NN, JJ NN,

CD

France, History, Papal Interdict, 1199-1200

geo, NP, event,

time, NP

NNP, NN, NN,

CD, NNS

Hungary, History, Revolution, 1956, Sources

geo, NP, geo NNP, NNS, NNP Greece, Colonies, Asia

geo, NP, name,

time

NNP NNP, NN,

NNP NNP, CD

Great Britain, History, Henry VII, 1485-1509

geo, NP, NP NNP, JJ NN, JJ

NN

England, Intellectual life, 20th century

geo, NP, time NNP, NN CC

NN, CD

Russia, Politics and government, 1894-1917
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Table D.1: NALT Labels Lengths Distribution.

Token count Label count Share of labels (%)

1 18 246 42.3951

2 20 533 47.7090

3 2 018 04.6889

4 1 776 04.1266

5 271 00.6297

6 163 00.3787

7 20 00.0465

8 9 00.0209

9 1 00.0023

10 1 00.0023

Table D.2: NALT Labels POS Tag Distribution.

POS Tag Token count Share of tokens (%)

NNP 49 181 65.5450

NN 15 470 20.6173

NNS 5 732 7.6392

JJ 3 520 4.6912

) 423 0.5637

( 418 0.5571

CC 170 0.2266

IN 68 0.0906

, 39 0.0520

TO 5 0.0067

VB 2 0.0027

FW 2 0.0027

NNPS 1 0.0013

RB 1 0.0013

VBD 1 0.0013

JJR 1 0.0013
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Table D.3: Top 20 NALT POS Tag Patterns with Examples.

Label count Share (%) Pattern Example

13 356 31.03 NNP NNP Rhode Island

12 325 28.64 NNP Diachros

3 858 8.96 NN thyroglobulin

2 651 6.16 NN NN milk allergy

2 063 4.79 NNS defoliants

1 605 3.73 NN NNS livestock exhibitions

1 385 3.22 JJ NN antigenic variation

1 252 2.91 NNP NNP NNP NNP Potato black ringspot virus

1 230 2.86 JJ NNS inactivated vaccines

875 2.03 NNP NNP NNP Helena National Forest

236 0.55 NN NN NN quantity food preparation

210 0.49 NNP NN Gallionella group

177 0.41 JJ NN NN amnesic shellfish poisoning

164 0.38 NN NN NNS body temperature changes

157 0.36 JJ NN NNS cultural soil types

124 0.29 NNP NNP NNP NNP NNP Paramecium bursaria

Chlorella virus AL1A

118 0.27 NNP NNP NNP NNP NNP

NNP

South Georgia and South

Sandwich Islands

91 0.21 NNP ( NNP ) Tilapia (Cichlidae)

70 0.16 NN ( NN ) anemia (disease)

62 0.14 NN NNP fumonisin B2
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Table E.1: UNSPSC Labels Lengths Distribution.

Token count Label count Share of labels (%)

1 1 932 09.7679

2 6 328 31.9935

3 4 018 20.3145

4 3 191 16.1333

5 1 965 09.9348

6 1 124 05.6828

7 603 03.0487

8 306 01.5471

9 142 00.7179

10 86 00.4348

11 37 00.1871

12 22 00.1112

13 13 00.0657

14 8 00.0404

15 1 00.0051

16 2 00.0101

19 1 00.0051
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Table E.2: UNSPSC Labels POS Tag Distribution.

POS Tag Token count Share of tokens (%)

NN 31 569 47.9772

NNS 18 659 28.3571

JJ 9 350 14.2097

CC 5 172 7.8602

IN 655 0.9954

DT 116 0.1763

RB 101 0.1535

PP$ 58 0.0881

VBG 50 0.0760

NNP 23 0.0350

CD 14 0.0213

WRB 9 0.0137

TO 8 0.0122

VB 7 0.0106

JJR 4 0.0061

, 2 0.0030

PRP 2 0.0030

RP 1 0.0015
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Table E.3: Top 20 UNSPSC POS Tag Patterns with Examples.

Label count Share (%) Pattern Example

3 347 16.92 NN NNS Sheet lifters

1 662 8.40 NN NN NNS Slickline paraffin scrappers

1 511 7.64 NN NN Play sand

1 046 5.29 NNS Levels

1 009 5.10 JJ NNS Brominated retardants

931 4.71 JJ NN NNS Rotary position sensors

880 4.45 NN Gelatin

514 2.60 NN NN NN NNS Credit card service providers

465 2.35 NN NN NN Filter cartridge adapter

395 2.00 NN NNS CC NNS Manufacturing Components and

Supplies

353 1.78 JJ NN Chorionic gonadotropin

350 1.77 JJ NN NN NNS Wireless network interface cards

214 1.08 NN JJ NN NNS Zinc closed die forgings

213 1.08 NN CC NN NNS Hose or pipe clamps

210 1.06 JJ NN NN Intermodal cargo transport

168 0.85 JJ JJ NNS Seismic magnetic systems

158 0.80 NN NN NNS CC NNS Computer support parts or acces-

sories

153 0.77 NN JJ NNS Photo sensitive transistors

132 0.67 NN NN JJ NNS Feng shui instructional materials

129 0.65 JJ NNS CC NNS Dental tables or accessories
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APPENDIX F. YAHOO! DIRECTORY . . .

Table F.1: Yahoo Labels Lengths Distribution.

Token count Label count Share of labels (%)

1 432 092 52.1170

2 141 905 17.1159

3 206 726 24.9344

4 25 050 03.0214

5 5 722 00.6902

6 11 290 01.3617

7 3 405 00.4107

8 1 118 00.1348

9 743 00.0896

10 332 00.0400

11 517 00.0624

12 84 00.0101

13 45 00.0054

14 17 00.0021

15 17 00.0021

16 7 00.0008

17 6 00.0007

18 1 00.0001

19 1 00.0001

20 1 00.0001

21 1 00.0001

22 1 00.0001
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Table F.2: Yahoo Labels POS Tag Distribution.

POS Tag Token count Share of tokens (%)

NN 610 235 38.5370

NNS 338 313 21.3648

NNP 270 046 17.0537

CC 188 653 11.9136

JJ 113 685 7.1793

( 12 899 0.8146

) 12 889 0.8140

, 11 009 0.6952

CD 8 696 0.5492

TO 8 667 0.5473

IN 4 870 0.3075

POS 1 740 0.1099

: 799 0.0505

NNPS 447 0.0282

DT 228 0.0144

JJR 185 0.0117

VB 77 0.0049

FW 21 0.0013

VBG 18 0.0011

JJS 7 0.0004

PRP 6 0.0004

PP$ 5 0.0003

RB 4 0.0003

VBD 3 0.0002

RP 1 0.0001
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Table F.3: Top 20 Yahoo POS Tag Patterns with Examples.

Label count Share (%) Pattern Example

211 753 25.54 NN Slowpitch

136 156 16.42 NNS Sidecars

84 762 10.22 NN CC NN Support and Assistance

52 316 6.31 NNP Hitwise

38 395 4.63 JJ NN High Jump

33 855 4.08 NNS CC NNS Programs and Services

32 290 3.89 NN CC NNS Love and Relationships

31 004 3.74 JJ Vegetarian

29 835 3.60 NN NNS Lesson Plans

24 848 3.00 NNP NNP Rhode Island

24 208 2.92 JJ NNS Used Vehicles

23 310 2.81 NNP NNP NNP Neuwirth, Bebe

19 413 2.34 NN NN Pliocene Epoch

9 645 1.16 NNS CC NN Guides and Advice

8 459 1.02 NN TO NN Seeking to Adopt

5 252 0.63 NNP NNP NNP NNP VisiCom Laboratories, Inc.

4 365 0.53 NN CC NN NN Air and Water Craft

3 773 0.46 NNP NNP NNP ( CD ) Artaud, Antonin (1896-1948)

2 903 0.35 NN NN NNS Con-Way Transportation Ser-

vices

2 523 0.30 NNS , NNS , CC NNS Crystals, Clocks, and Oscillators
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Appendix G

Tokenizer Incremental Training

We report here the graphs of the incremental training of the OpenNLP

tokenizer on our natural language metadata datasets. We performed the

incremental training with the default settings of the tool, incrementing the

size of the dataset by a thousand tokens a time and obtaining performance

measure by applying 10-fold cross-validation procedure.

209



APPENDIX G. TOKENIZER . . .

 97

 97.5

 98

 98.5

 99

 99.5

 100

 0  5  10  15  20  25  30  35  40  45  50

P
re

ci
si

on
, %

Token count, thousands

PPT
PPL 

Figure G.1: Tokenizer Incremental Training on DMoz.

 84

 86

 88

 90

 92

 94

 0  2  4  6  8  10  12  14

P
re

ci
si

on
, %

Token count, thousands

PPT
PPL 

Figure G.2: Tokenizer Incremental Training on eCl@ss.
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Figure G.3: Tokenizer Incremental Training on LCSH.
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Figure G.4: Tokenizer Incremental Training on NALT.
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Figure G.5: Tokenizer Incremental Training on UNSPSC.
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Figure G.6: Tokenizer Incremental Training on Yahoo.
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POS Tagger Incremental Training

We report here the graphs of the incremental training of the OpenNLP

POS tagger on our natural language metadata datasets. We performed the

incremental training with the default settings of the tool, incrementing the

size of the dataset by a thousand tokens a time and obtaining performance

measure by applying 10-fold cross-validation procedure.
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Figure H.1: POS Tagger Incremental Training on DMoz.
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Figure H.2: POS Tagger Incremental Training on eCl@ss.
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Figure H.3: POS Tagger Incremental Training on LCSH.
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Figure H.4: POS Tagger Incremental Training on NALT.
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Figure H.5: POS Tagger Incremental Training on UNSPSC.
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Figure H.6: POS Tagger Incremental Training on Yahoo.

216



Appendix I

Sense Summarization Evaluation

In the tables below in columns we present heuristics, in rows we present

percent of answers falling into specific answer group. Percent is calculated

as amount of answers falling into that specific group divided by the total

amount of answers. The most important of all groups is the group of

correct answers as it determines the order of the heuristics. A column full

of zeros means the heuristic does not apply to this part of speech. We keep

such columns to make all tables uniform and ease the comparison.

I.1 Associative Power

Table I.1: Noun Heuristics by Associative Power (%)

Answer Type hyponym derived gloss hypernym similar to synset

unknown 17 0 0 11 0 9

none 24 0 0 10 0 6

semicorrect 2 0 0 4 0 4

incorrect 22 0 0 14 0 17

> 1 selected sense 6 0 0 12 0 13

correct 32 0 0 53 0 56
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Table I.2: Adjective Heuristics by Associative Power (%)

Answer Type hyponym derived gloss hypernym similar to synset

unknown 0 0 0 0 4 12

none 0 0 0 0 4 5

semicorrect 0 0 0 0 2 7

incorrect 0 0 0 0 22 19

> 1 selected sense 0 0 0 0 7 10

correct 0 0 0 0 63 55

Table I.3: Verb Heuristics by Associative Power (%)

Answer Type hyponym derived gloss hypernym similar to synset

unknown 17 0 6 12 0 7

none 21 0 8 15 0 2

semicorrect 4 0 5 5 0 10

incorrect 18 0 13 21 0 14

> 1 selected sense 10 0 10 11 0 22

correct 34 0 62 41 0 55

Table I.4: Adverb Heuristics by Associative Power (%)

Answer Type hyponym derived gloss hypernym similar to synset

unknown 0 4 0 0 0 11

none 0 7 0 0 0 3

semicorrect 0 12 0 0 0 16

incorrect 0 27 0 0 0 18

> 1 selected sense 0 20 0 0 0 21

correct 0 43 0 0 0 47
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I.2 Discriminative Power

Table I.5: Noun Heuristics by Discriminative Power (%)

Answer Type hyponym derived gloss hypernym similar to synset

incorrect 28 0 0 21 0 52

unknown 10 0 0 11 0 7

correct 62 0 0 68 0 41

Table I.6: Adjective Heuristics by Discriminative Power (%)

Answer Type hyponym derived gloss hypernym similar to synset

incorrect 0 0 0 0 57 58

unknown 0 0 0 0 4 11

correct 0 0 0 0 39 32

Table I.7: Verb Heuristics by Discriminative Power (%)

Answer Type hyponym derived gloss hypernym similar to synset

incorrect 33 0 30 34 0 49

unknown 7 0 10 8 0 8

correct 60 0 60 58 0 43

Table I.8: Adverb Heuristics by Discriminative Power (%)

Answer Type hyponym derived gloss hypernym similar to synset

incorrect 0 43 0 0 0 57

unknown 0 29 0 0 0 14

correct 0 29 0 0 0 29
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