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Abstract

Collective quantum phenomena are fascinating, as they repeatedly challenge our comprehen-
sion of nature and its underlying mechanisms. The quali�cation �quantum� can be attributed
to a generic many-body system whenever the interference e�ects related to the underlying
wave nature of its elementary constituents can not be neglected anymore, and a naive classi-
cal description in terms of interacting billiard balls fails to catch its most essential features.

This interference phenomenon called �quantum degeneracy� which occurs at weak tem-
peratures, leads to spectacular collective behaviours such as the celebrated Bose-Einstein
Condensation (BEC) phase transition, where a macroscopic fraction of a bosonic system
of particles collapses below a critical temperature Tc on a single-particle state. Quantum
coherence, when combined with inter-particle interactions, gives rise to highly non-classical
frictionless hydrodynamic behaviours such as super�uidity (SF) and superconductivity (SC).

Even more exotic quantum phases emerge in presence of important interactions as mat-
ter reaches a �strongly correlated regime� dominated by quantum �uctuations, where each
particle is able to a�ect signi�cantly the surrounding �uid: characteristic examples are the
so-called Mott-Insulator (MI) quantum phase where particles are localized on a lattice due
to a strong interaction-induced blockade, along with the Tonks-Girardeau (TG) gas where
impenetrable bosons in one-dimension acquire e�ective fermionic statistics up to a unitary
transformation, and the Fractional Quantum Hall (FQH) e�ect which occurs in presence of
a gauge �eld, and features a special type of elementary excitation possessing a fractional
charge and obeying to fractional statistics called `anyon'.

These quantum many-body e�ects were explored in a �rst place in systems well isolated
from the external environment such as ultra-cold atomic gases or electrons in solid-state
systems, within a physical context well described by �equilibrium statistical mechanics�.
Yet, over the last two decades a broad community has started investigating the possibility
of stabilizing interacting quantum phases in novel nonlinear quantum optics architectures,
where interacting photons have replaced their atomic and electronic counterpart. Thanks to
their high level of controllability and �exibility, and the possibility of reaching the quantum
degeneracy regime at exceptionally high temperatures, these platforms appear as extremely
promising candidates for the �quantum simulation� of the most exotic many-body quantum
problems: while the precursors experiments in semiconductor exciton-polariton already al-
low to reach the Bose-Einstein Condensation and super�uid regimes, novel platforms such as
superconducting circuits, coupled cavity arrays or photons coupled to Rydberg EIT (Elec-
tromagnetically induced Transparency) atoms have entered the so-called `photon blockade'
where photons behave as impenetrable particles, and open a encouraging pathway toward
the future generation of strongly correlated phases with light.

A speci�city of quantum optics devices is their intrinsic �non-equilibrium� nature: the
interplay between the practically unavoidable radiative and non-radiative losses and the
external drive needed to replenish the photon gas leads the many-body system toward a
steady-state presenting important non-thermal features. One one hand, an overwhelmingly
large quantity of novel quantum phenomena is expected in the non-equilibrium framework,
as breaking the thermal equilibrium condition releases severe constraints on the state of a
quantum system and on the nature of its surrounding environment. On the other hand, we
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Abstract

do not bene�t yet of an understanding of non-equilibrium statistical mechanics comparable
with its well-established equilibrium counterpart, which relies on strong historical founda-
tions. Understanding how to tame (and possibly exploit) non-equilibrium e�ects in order to
stabilize interesting quantum phases in a controlled manner often reveals a hard challenge.

In that prospect, an important conceptual issue in the non-equilibrium physics of strongly
interacting photons regards the possibility of stabilizing �incompressible quantum phases�
such as the Mott-Insulator or Fractional Quantum Hall states, and more generally to stabilize
the ground-state of a given particle-number conserving Hamiltonian, in a physical context
where dissipative losses can not be neglected. While being able to quantum simulate those
emblematic strongly correlated quantum phases in this novel experimental context would
strongly bene�t to the quantum optics community, gaining such a kind of �exibility would
also contribute to �ll an important bridge between the equilibrium and the non-equilibrium
statistical physics of open quantum systems, allowing to access in a controlled manner a
whole new phenomenology at the interface between the two theories.

In this thesis I address those questions, which I reformulate in the following manner:

• What are the conditions for the emergence of analogue equilibrium properties in open
quantum systems in contact with a non-thermal environment ?

• In particular, is it possible to stabilize strongly correlated quantum phases with a
perfectly de�ned particle number in driven-dissipative photonic platforms, in spite of
environment-induced losses and heating e�ects ?

The structure of the thesis is the following.

Chapter 1. We give an overview of the physics of many-body photonic systems. As a
�rst step we address the weakly interacting regime in the physical context of exciton-
polaritons: after describing the microscopic aspects of typical experiments, we move to
the discussion of non-equilibrium Bose-Einstein Condensation and the various mech-
anisms related to the emergence of thermal signatures at steady-state. The second
part of this Chapter is dedicated to strongly interacting �uids. After drawing a quick
overview of several experimental platforms presenting a good potential for the study
of such physics in a near future, we discuss the relative performance of several schemes
proposed in order to replenish the photonic population

Chapter 2. We investigate the potential of a non-Markovian pump scheme with a narrow
bandpass (Lorentzian shaped) emission spectrum for the generation of strongly cor-
related states of light in a Bose-Hubbard lattice. Our proposal can be implemented
by mean of embedded inverted two-level emitters with a strong incoherent pumping
toward the excited state. Our study con�rms in a single cavity the possibility of sta-
bilizing photonic Fock states in a single con�guration, and strongly localized n = 1
Mott-Insulator states in a lattice with n = 1 density. We show that a relatively
moderate hopping is responsible for a depletion of the Mott-state, which then moves
toward a delocalized state reminiscent of the super�uid regime. Finally, we proceed to
a mean-�eld analysis of the phase diagram, and unveil a Mott-to-Super�uid transition
characterized by a spontaneous breaking of the U(1) symmetry and incommensurate
density.

The results of this Chapter are based on the following publications:

1. J. Lebreuilly, M. Wouters and I. Carusotto, �Towards strongly correlated photons
in arrays of dissipative nonlinear cavities under a frequency-dependent incoherent
pumping�, C. R. Phys., 17 (8), 836, 2016.

2. A. Biella, F. Storme, J. Lebreuilly, D. Rossini, R. Fazio, I. Carusotto and C.
Ciuti, �Phase diagram of incoherently driven strongly correlated photonic lattice�,
Phys. Rev. A, 96, 023839, 2017.

Chapter 3. In view of improving the performance of the scheme introduced in last chapter,
and reproducing in particular the equilibrium zero temperature phenomenology in
driven-dissipative photonic lattices, we develop a fully novel scheme based on the use
of non-Markovian reservoirs with tailored broadband spectra which allows to mimick
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the e�ect of tunable chemical potential. Our proposal can be implemented by mean
of a small number of emitters and absorbers and is accessible to current technologies.

We �rst analyse the case of a frequency-dependent emission with a square spectrum
and con�rm the possibility of stabilizing Mott insulator states with arbitrary integer
density. Unlike the previous proposal the Mott state is robust against both losses and
tunneling. A sharp transition toward a delocalized super�uid-like state can be induced
by strong values of the tunneling or a change in the e�ective chemical potential. While
an overall good agreement is found with the T = 0 predictions, our analysis highlights
small deviations from the equilibrium case in some parts of the parameters space, which
are characterized by a non-vanishing entropy and the kinetic generation of doublon
excitations. We �nally consider an improved scheme involving additional frequency-
dependent losses, and show in that case that the Hamiltonian ground-state is fully
recovered for any choice of parameters. Our proposal, whose functionality relies on
generic energy relaxation mechanisms and is not restricted to the Bose-Hubbard model,
appears as a promising quantum simulator of zero temperature physics in photonic
devices.

The results of this Chapter are based on the following publication:

1. J. Lebreuilly, A. Biella, F. Storme, D. Rossini, R. Fazio, C. Ciuti and I. Caru-
sotto, �Stabilizing strongly correlated photon �uids with non-Markovian reser-
voirs�, Phys. Rev. A 96 , 033828 (2017).

Chapter 4. We adopt a broader perspective, and analyse the conditions for the emergence
of analogous thermal properties in driven-dissipative quantum systems. We show that
the impact of an equilibrated environment can be mimicked by several non-Markovian
and non-equilibrated reservoirs. Chapter 2 already features a preliminary result in
that direction, showing that in presence of a broad reservoir spectral density a given
quantum system will evolve toward a Gibbs ensemble with an arti�cial chemical po-
tential and temperature. In this chapter we develop a broader analysis focusing as
a counterpart part on the exactly solvable model of a weakly interacting Bose Gas
in the BEC regime. Our formalism based on a quantum Langevin model, allows in
particular to access both static and dynamical properties: remarkably, we demonstrate
not only the presence of an equilibrium static signature, but also the validity of the
�uctuation-dissipation theorem. While our results apply only for low-energy excita-
tions for an arbitrary choice of reservoir spectral densities, we predict that a �ne tuned
choices of reservoirs mimicking the so-called Kennard Stepanov condition will lead to
a full apparent equilibration. Such e�ect that we call �pseudo-thermalization� implies
that under very speci�c conditions, an open quantum system can present all the prop-
erties of an equilibrated one in spite of the presence of an highly non equilibrated
environment. The results of this Chapter are based on the following paper:

1. J. Lebreuilly, A. Chiocchetta and I. Carusotto, �Pseudo-thermalization in driven-
dissipative non-Markovian open quantum systems�, arXiv:1710.09602 (submitted
for publication).
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Chapter 1

Non-equilibrium many-body quantum

physics with light

Since the discovery of superconductivity in a pure metal by Kamerlingh Onnes in 1911,
quantum �uids have been the object of a constantly renewed interest and investigated in a
very wide variety of physical contexts. Although historically, most of the research activity
was concentrated on physical systems made of material particles ranging from ultra-cold
atoms [151], electrons [189], helium [150], quark-gluon plasmas [164] and neutrons [160] in
neutron stars, a growing attention has been devoted within the last decades to the possibility
of stabilizing quantum phases with light [76, 84, 29]. Yet, at the early stages of these
theoretical/experimental developments the possibility was still missing that photons could
present strong enough inter-particle interactions so to observe interesting quantum collective
phenomena: quantum electrodynamics (QED) theory indeed was predicting in the vacuum
the existence of a photon-photon scattering cross section related to the creation of virtual
hole-positron pairs (Delbrück scattering [23]), but the resulting physical e�ect was so weak
that it could not have led to any signi�cant phenomenology in standard optics and microwave
platforms.

One important breakthrough in that direction was to make light propagate in novel non-
linear optical materials possessing an important χ(3) susceptibility [19], where photon-photon
interactions can be mediated (quasi-)resonantly by matter degrees of freedom (the most
simplest case being hole-electron pairs in a semiconductor) rather than virtual high-energy
excitations. A powerful strategy to engineer strong enough photon-photon interaction has
been to reach the so-called `strong coupling' regime between light and the matter degrees of
freedom. In this con�guration, the dynamics coherently mixes photonic and matter degrees
of freedom, leading to the emergence of a dressed quasi-particle named `polariton' [83].
This allowed for the development of a wide range of experimental platforms suited for the
investigation of many-body quantum e�ects in a photonic context, ranging from exciton-
polaritons [29], cavity electrodynamics platforms [76], superconducting quantum circuits
[84], photons interacting with Rydberg atoms [147]. Thanks to these advancements, many
celebrated many-body quantum phenomena such as Bose-Einstein Condensation [99] and
super�uidity [3] have been reproduced in the regime of weak interactions. The opposite
photon blockade regime [86] in which photons start behaving as impenetrable particles,
has been reached in a single cavity con�guration in many optical platforms [13, 116, 55,
157, 147, 91], opening a possible pathway toward the stabilization in lattices of strongly
correlated photonic phases, such as the Tonks-Girardeau gas [67], Mott Insulators [59] or
FQH states [117]. The fundamental di�erence distinguishing many-body optical systems
with respect to the case of material particles such as electronic/atomic gases is the intrinsic
non-equilibrium nature of the underlying dynamics: photons typically have a �nite lifetime,
and thus a pumping scheme has to be implemented in the apparatus in order to obtain a
stable quantum �uid. As a result, the photonic open quantum system generally reaches
a non-thermal steady-state, whose properties depend in a strongly non-universal manner

1



Chapter 1. Non-equilibrium many-body quantum physics with light

on the way it interacts with its surrounding environment. While this important aspect
does not represent a fundamental obstacle for the stabilization of non-equilibrium BECs, as
spontaneous symmetry breaking (SSB) phenomena are not directly related to the particle
number conservation, the situation is much less clear regarding the possibility of generating
incompressible quantum phases with a �uctuationless density.

This Chapter reviews some of the various experimental platforms and major progresses in
the �eld of photonic many-body physics, with a particular stress on the environment-induced
features of a non-equilibrium type.

In Sec. 1, we focus on the weakly interacting regime of a quantum �uid of photons:
after a brief review of the physics of quantum well exciton-polaritons in semiconductors,
we move to the discussion of non-equilibrium Bose-Einstein Condensation of light: we �rst
introduce a simpli�ed model for the dynamics of a dissipative condensate under the form of
a driven-dissipative Gross-Pitaevskii (GP) equation. Secondly, we describe the underlying
mechanisms for Bose-Einstein Condensation in exciton-polariton experiments, highlighting
the role played by the temperature of the apparatus and the detuning between excitons
and photons in determining whether steady-state properties will present thermal or non-
equilibrium features. In Sec. 2, we move to the strongly interacting regime, and describe
the current experimental and theoretical state-of-the-art. After a brief review of several ex-
perimental platforms such as Superconducting circuits and Coupled cavity arrays allowing
to explore the regime of strong correlations, and a description of the single-site Jaynes-
Cummings (JC) model, we discuss the extended lattice con�guration where the interesting
many-body physics is expected to occur: we �rst study the isolated case, showing that these
platforms allow to engineer emblematic Hamiltonians of the physics of strong correlation
such as the Bose-Hubbard model. Secondly, we discuss the more realistic non-equilibrium
con�guration where Hamiltonian e�ects are associated to losses and pumping: after review-
ing the phenomenology associated to the commonly used coherent drive scheme, which has
attracted until now most of the research activity, we explain why it is not suited for the sta-
bilization of strongly correlated states such as the Mott-Insulator and FQH states. Finally,
we present the more recent promising proposals based on incoherent non-Markovian pump
schemes or the engineering of an arti�cial chemical potential for light, in view of stabilizing
incompressible quantum phases.

1.1 Exciton-polaritons and non-equilibrium Bose-Einstein

condensation of light

1.1.1 Exciton-Polaritons

1.1.1.1 Quantum well excitons and photons

A quantum well (QW) [47] consists in a thin layer of a semiconductor of some chemical
composition with an high χ(3) susceptibility (such as GaAs or CdTe), sandwiched between
two external semiconductor layers of a di�erent composition (e.g., GaAlAs or CdMgTe). If
the bottom (as well as the top) of the conduction (resp. valence) band of the intermediate
layer is located at a lower (resp. higher) energy than the bottom (resp. the top) of the
the conduction (resp. valence) bands of the external layer, then this con�guration acts
as an external potential limiting the motion of hole and electron excitations to the quasi
two-dimensional region de�ned by the QW layer. This spatial con�nement has for major
consequence to enhance the e�ect of Coulombian interactions, enabling for the formation of
an exciton-hole bound state called `exciton'.

QW excitons are neutral bosonic excitations with a mass mX of same order of magnitude
as the electronic mass. They can interact by mean of short range interactions related to
the Coulomb interaction between their underlying charged constituents, which can be well
represented by a contact potential of signi�cative strength gX. In typical experimental setups
[99, 7] (see Fig. 1.1, panel a)), the con�nement of the surrounding quantum electromagnetic
�eld by mean of distributed Bragg re�ector (DBR) mirrors allows for the reversible coherent
conversion of an exciton into a optical photon. In addition, due to con�nement the photon
acquires a modi�ed dispersion law along the two remaining QW dimensions characterized
by an e�ective �nite mass mph (typically 4-5 orders of magnitude smaller than the excitonic
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1.1 Exciton-polaritons and non-equilibrium Bose-Einstein condensation of light

Figure 1.1: Panel a): semiconductor microcavity made of a quantum well and two DBR
mirrors: light is injected inside the device by an external drive, and the con�ned cavity mode
can interact with quantum-well excitons by mean of Rabi oscillation processes. Panel b): one
can see the two polariton dispersion laws (measured by angle-resolved spectroscopy) arising
from the coupling between the photonic and excitonic branches, for a positive detuning
δ = ωph − ωX. The in-plane momentum k is proportional to the output angle θ of the
emitted photon. At high momenta, the lower (resp. upper) polariton branch is almost
purely excitonic (resp. photonic) due to the strong detuning between the photon and exciton
branches. At lower momenta, the two branches strongly mix the excitonic and photonic
degrees of freedom. This panel features also a typical incoherent pumping scheme for exciton-
polaritons: the drive generates high energy hole-electron pairs which relax into bounded
excitons in the lower polariton branch. Scattering between excitons and acoustic phonons
progressively allows the generated exciton reservoir to partially relax toward the bottom of
the lower polariton branch. Figure adapted from [99].

one). A toy model Hamiltonian H = H0 + Hint implementing all these features can be
written (in units of ~ = 1) under the form [29]

H0 =
∑
k

{[
ωX(k)a†X(k)aX(k) + ωph(k)a†ph(k)aph(k)

]
+ ΩR

[
a†X(k)aph(k) + hc

]}
,

Hint =
gX

S

∑
k,k′,q

a†X(k+ q)a†X(k′ − q)aX(k′)aX(k) (1.1)

where S is the QW surface, aX(k) and a†X(k) (resp. aph(k) and a†ph(k) ) are the annihilation
and creation operators of a single exciton (resp. photon) of momentum k, and ωX(k) =

ωX + k2

2mX
and ωph(k) = ωph + k2

2mph
are the corresponding excitonic and photonic kinetic

energies. Due to con�nement the two components of k are contained within the QW 2D
plane. Finally, one has to add the dissipation loss term under the form of a superoperator
acting on the density matrix for the photonic and excitonic degrees of freedom:

Ll(ρ) =
Γl

2

∑
k

[
2aph(k)ρaph(k)† − aph(k)†aph(k)ρ− ρaph(k)†aph(k)

]
(1.2)

The density matrix dynamics obey then the master equation

dρ

dt
= −i [ρ,H] + Ll(ρ) + pump term (1.3)

where the pump term has not been speci�ed here since it depends on the pump scheme
implemented in the experiment.

This simpli�ed model could be subject to further re�nements, as it neglects in particular
the excitonic losses (usually much slower than the radiative losse [153]), as well as the
excitonic fermionic composite nature (which the system does not feel at weak densities) and
spin degrees of freedom [41, 161], it already encapsulates most essential features for the
understanding of the phenomenology in typical experiments. More details on these topics
can be found in [47, 29]
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Chapter 1. Non-equilibrium many-body quantum physics with light

1.1.1.2 Exciton-polaritons in the strong coupling regime

In its more formal form, the strong light-matter coupling regime is de�ned as ΩR ≥ Γl:
the coupling term dominates losses, and light and matter degrees or freedom are free to
perform Rabi oscillations before undergoing decoherence e�ects. In this regime one needs
to re-express the Hamiltonian H0 in its diagonal form in order to correctly interpret the
dynamics

H0 =
∑
k

[
ωLP(k)a†LP(k)aLP(k) + ωUP(k)a†UP(k)aUP(k)

]
. (1.4)

Strong coupling leads to the emergences of two independent quasi-particles mixing photonic
and excitonic degrees of freedom called upper and lower polaritons of respective dispersion

laws ω(UP/LP)(k) =
ωX(k)+ωph(k)

2 ±
√

Ω2
R + [ωX(k)− ωph(k)]2 (shown in Fig. 1.1, panel b)),

splitted by a minimal energy 2ΩR.
Of course loss processes happen in the photonic basis and are not diagonal in the new

polaritonic one. However, by de�nition of the strong coupling, they are not fast enough
to couple the two-polaritonic branches which are well separated in energy. Eliminating the
coupling to fastly rotating terms in Eq.(1.2), the polaritonic Lindblad loss term can thus be
expressed as

L(P )
l (ρ) =

Γl

2

∑
k

{
|uLP(k)|2

[
2aLP(k)ρaLP(k)† − aLP(k)†aLP(k)ρ− ρaLP(k)†aLP(k)

]
+|uUP(k)|2

[
2aUP(k)ρaUP(k)† − aUP(k)†aUP(k)ρ− ρaUP(k)†aUP(k)

]}
(1.5)

where |u(UP/LP)(k)|2 is the momentum-dependent photonic fraction of the upper/lower po-
lariton.

Regarding the interaction term such projective operation is less legitimate
If the interaction strength is weak enough in such a way that gXn(UP/LP) � ΩR, where

n(UP/LP) is the upper/lower polaritonic density, a similar argument applies for the Hamil-
tonian contribution Hint with the following subtlety: while the weak interaction condi-
tion only precludes non-resonant collisions, still some resonant branch conversion processes
(LP+LP→LP+UP) might be energetically allowed by the dynamics. However, the photonic
density of state (DOS) is extremely small with respect to the excitonic one (by a factor
∼ 10−5), and thus scattering processes (LP+LP→LP+UP) between excitons (belonging to
the lower polaritonic branch) leading to the formation of upper polaritons have been pre-
dicted [186] and veri�ed experimentally [45] to be extremely rare with respect to collisions
(LP+LP→LP+LP) : since most experiments [99] are con�gured for the initial generation of
a reservoir of excitons, one can safely project the interaction term on the lower polaritonic
branch. By restricting ouserlves for the sake of simplicity to a low-momentum description
one obtains for the inter-polariton interactions:

H
(LP)
int =

gX|v0
LP|2

S

∑
k,k′,q

a†LP(k+ q)a†LP(k′ − q)aLP(k′)aLP(k), (1.6)

where |vLP(k)|2 = 1 − |uLP(k)|2 is the excitonic fraction of the lower polariton, and v0
LP =

vLP(k = 0).
In addition to this reduced representation of a quantum �uid composed of a single type of

interacting particles, subject to dissipative loss processes and re�lled by an external pump
(not included yet at this point), the e�ect of longitudinal optical phonons and acoustic
phonons might be included in the formalism as they respectively play an important role in
the pumping of new excitons and the thermalization of the excitonic cloud. Their impact
will be partially discussed in 1.1.2.2. The interested reader can see [46] for more details on
this topics.

1.1.2 Non-equilibrium dynamics and thermalization kinetics of exciton-

polaritons BECs

There is a well-known connection between Bose-Einstein Condensation, where a macroscopic
fraction of a quantum �uid collapses on a single quantum state, and the phenomenon of lasing
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1.1 Exciton-polaritons and non-equilibrium Bose-Einstein condensation of light

where a dynamical instability leads an optical device to break its U(1) symmetry [170]. While
a mono-mode optical cavity could be seen as a zero-dimensional object and thus does not
really fall into our representation of the thermodynamic limit, the interpretation of lasing
in terms of a Bose-Einstein Condensation second order phase transition becomes the most
clearest in spatially extended con�gurations such as vertical surface cavity emitting lasers
(VCSEL) [85], where the spontaneous symmetry breaking (SSB) is characterized by the
emergence of long range order and temporal coherence:

lim
|t−t′|,|r−r′|→∞

[
g(1)(r− r′, t− t′) ≡

〈
ψ̂†(r, t)ψ̂(r′, t′)

〉]
6= 0 (1.7)

In spite of the close resemblance between the two phenomena, the theory of equilibrium
Bose-Einstein Condensation and lasing usually do not fully overlap: unlike atomic gases,
a photonic system typically reaches at long times a steady-state presenting non-thermal
thermal signatures, as it is determined by the interplay between Hamiltonian dynamics
and dissipative e�ects such as losses, pump and dephasing. While photon-photon interac-
tions are rather negligible in VCSEL devices which in consequence operate in a strongly
non-equilibrium regime, this is a priori less clear for exciton-polariton experiments where
frequent interparticle collisions might allow the system to thermalize in spite of the e�ect
of its environment. The lattice temperature Tlat of the external apparatus is also an im-
portant parameter: on one hand, the presence of a �nite Tlat should favour equilibration by
kinetically activating energy exchange processes with the thermalized phononic environment
and increasing the collision rates between polaritons and excitons. On the other hand the
time scales related as loss processes are rather independent from thermal e�ects, and thus
non-equilibrium are expected to be dominant at lower Tlat.

1.1.2.1 Non-equilibrium dynamics of a driven-dissipative Bose-Einstein Con-
densate

Although the model restricted to a single polariton branch introduced in Sec. 1.1.1 provides
a re�ned quantum description of the dynamics of a driven-dissipative interacting �uid, it
is in most cases impossible to treat exactly by mean of modern theoretical and numerical
tools. A standard approach providing an accessible framework while keeping simultaneously
many important features of non-equilibrium BEC of interacting photons consists in a mean-
�eld description, which takes the form of a driven-dissipative Gross-Pitaevskii [29] for the
photonic/polaritonic �eld ψ(r, t):

i∂tψ(r, t) =

[
ω0 −

∇2
r

2m
+ g|ψ(r, t)|2

]
ψ(r, t) + i

[
Fpump [ψ]− Γ̃l

2

]
. (1.8)

Basing ourselves on the polaritonic model of Sec. 1.1.1, the bare frequency ω0 and the e�ec-

tive mass m can be extracted from the LP dispersion law ωLP(k) '
k→0

ω0 + k2

2m , g = |vLP(k =

0)|2gX is the e�ective strength of polaritons contact interaction, and Γ̃l = |uLP(k = 0)|2Γl

is the lower-polariton loss rate. The pump contribution in Eq. (1.8) highly depends on the
speci�c experimental scheme used to inject new polaritons within the system. A frequently
used model for the description of the condensate dynamics, which was introduced in [208]
and inspired from the semi-classical theory of lasing [94], consists in adding a �incoherent
pumping term� combined to a saturation e�ect to the driven-dissipative GP Eq. (1.8)

F (incoh)
pump [ψ] =

Γpump/2

1 +Rsat|ψ(r, t)|2
ψ(r, t) : (1.9)

polaritons are injected by an incoherent reservoir of excitons, which is himself re�lled in
time by mean of an external source. Eq. (1.8) then results from the adiabatic elimination
of those additional degrees of freedom. At low polaritonic density |ψ(r, t)|2, the polariton
pump rate is given by Γpump. At higher |ψ(r, t)|2, stimulated emission is reinforced by the
presence of already existing polaritons and the reservoir is not re�lled fast enough by the
external drive so to maintain its pump e�ciency: this leads to a saturation e�ect taking
the form of a nonlinear contribution in Eq. (1.9). This pump scheme is called incoherent
in the sense that it does not explicitely break the U(1) gauge symmetry. In addition, it is
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Chapter 1. Non-equilibrium many-body quantum physics with light

completely Markovian, in the sense that the photon emission does not depend on frequency.
A non-Markovian quantum extension of Eq. (1.8) will be the subject of Chapter 4.

The driven-dissipative GP equation corresponds to the rough classical approximation of
a photonic quantum �uid, whose dynamics is reduced to the one of a pure Bose-Einstein
Condensate. Such a simpli�ed level of description is expected to be valid in a regime in
which the condensate depletion is rather negligible: this implies in particular a low-enough
temperature, which is characterized by the absence of noise in Eq. (1.8), and weak enough
inter-particle interactions, in such a way that quantum �uctuations can be treated pertur-
batively. Approaches beyond mean-�eld such as the truncated-Wigner representation [63]
for the quantum �eld or the quantum Boltzmann equation [178], which are designed for
the investigation of small quantum corrections and noise activated depletion of the con-
densate, allow in particular for the description of the normal phase or the region close the
lasing/condensation threshold. Methods based on a truncated hierarchy of equations for the
correlators [31] allow for the investigation of higher order quantum deviations, such as the
non-Gaussian corrections related to the non-equilibrium counterpart of the atomic Beliaev
decay and Landau scattering [156].

Under the assumption of an homogeneous pump Eq. (1.8) presents a uniform steady-state

ψ = ψBECe
ikBEC·re−iωBECt, (1.10)

where nBEC = |ψBEC|2 is the condensate density and is reached when pump perfectly com-
pensates with losses, and the condensate frequency ωBEC is blue-shifted with respect to the
bare frequency ω0 due to repulsive interactions:{

Γ̃l =
Γpump

1+RsatnBEC

ωBEC = ω0 + gnBEC.
(1.11)

Paradoxically, Eq. (1.8) predicts that Bose-Einstein Condensation is equally likely to oc-
cur at any momentum kBEC, which somehow contrasts with our intuition providing from
thermodynamic in the equilibrium case [151], but also with observations in non-equilibrium
BEC experiments [99], since also there the system is tempted to minimize its energy due to
relaxation e�ects related to phonon emission. A simple extension of Eq. (1.8) implement-
ing the e�ect of a non-trivial frequency dependence of the pump was introduced in [209],
and con�rmed that condensation in the zero-momentum mode kBEC = 0 indeed led to the
highest dynamical stability.

One of the biggest successes of the driven-dissipative GP introduced in [208] (along with
[209]) has been to predict the photoluminiscence spectrum

ωΓ
BOG(k) = −iΓ

2
±

√
k2

2m

(
k2

2m
+ 2gnBEC

)
− (Γ/2)2 (1.12)

of the elementary excitations on top of the condensate (show in Fig. 1.2). Hints toward
an experimental con�rmation can be found in [196]. The non-standard spectral pro�le
(1.12), which can be obtained from Eq. (1.8) by mean of Bogoliubov linearization procedure,
possesses signi�cantly di�erent features with respect to the isolated case of equilibrium BECs
[151] in cold atomic gases

ωiso
BOG(k) = lim

Γ→0
ωΓ

BOG(k) = ±

√
k2

2m

(
k2

2m
+ 2gnBEC

)
. (1.13)

The non-trivial parameter Γ ≡ ΓpumpRsatnBEC

(1+RsatnBEC)2 arises from a subtle interplay between dissipa-

tion and the pump saturation. At high momenta k � k0, the real part Re[ω
Γ
BOG(k)] of the

excitation spectrum converges toward the prediction for the isolated case.
The most spectacular change in behaviour occurs below a critical momentum k0 verifying

ωiso
BOG(k0) = Γ/2, where the excitation spectrum becomes purely imaginary (Re[ωΓ

BOG(k)] =
0) and the corresponding imaginary parts split. The �rst mode is a massive one (ωΓ

BOG(k) →
k→0

Γ) and is related to amplitude �uctuations: this mode characterizes the time scale needed
for relaxation of intensity �uctuations in analogy with a laser [131], and does not have any
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1.1 Exciton-polaritons and non-equilibrium Bose-Einstein condensation of light

Figure 1.2: Excitation spectrum of an incoherently pumped driven-dissipative Bose-Einstein
Condensate. The branches labelled (+/-) represent the BEC modes, and the branches
labelled (R) correspond to additional relaxation modes of the reservoir degrees of freedom.
Adpated from [208].

equivalent in the equilibrium isolated case for which density is �xed. The second mode
is a Goldstone soft mode tending to zero at low momenta (in analogy with the phononic
excitations in isolated BECs [151]), and is related to the underlying U(1) symmetry of our
model: as a global change in phase can not lead to any relaxation, likewise long range phase
modulation take a very long time to damp. The Goldstone mode can also be related in
quantum optics to the phase relaxation dynamics in a single-mode laser induced by the
zero-point quantum �uctuations, and the corresponding damping time τcoh is determined
by the so-called Schawlow-Townes [167] linewidth (above the lasing threshold, τcoh is usually
much longer than the decay related to intensity �uctuations): while in a monomode laser
τcoh is typically �nite, here long time phase coherence is made possible by the extended
spatial geometry and one has τcoh →∞.

In addition to the exotic structure for excitation spectrum of Eq. (1.12), many other
e�ects contrasting with the equilibrium case of isolated quantum gases have been predicted
to derive from the model (1.8), such as the possibility for a moving impurity to feel a
non-zero drag force at arbitrary speed even in the super�uid regime [209, 3], which is very
counter-intuitive in the usual equilibrium representation of super�uidity based on Landau
criterion [151]. Other studies [176, 177, 2, 199, 80] applied renormalization group (RG)
methods to the study of a stochastic version of Eq. (1.8) including additional (experimen-
tally unavoidable) classical noise, and the long range phase dynamics was connected the
Kardar-Parisi-Zhang (KPZ) equation [71] (which was historically employed to describe the
non-equilibrium classical dynamics of growing surfaces): in three dimension d = 3, the crit-
ical dynamics were shown to be altered with respect to the equilibrium case and a novel
critical exponent accounting for these features was introduced in [176], although the under-
lying driven-dissipative nature of the dynamics appears not to lead to major changes in the
long range properties of the condensed and normal phase at a static level. However, the
most striking behaviour occurs in d = 1 [80] and d = 2 [2], where the KPZ equation is pre-
dict to build strong correlations, and even nearly vanishing deviations from equilibrium are
ampli�ed at long distances. When in d = 2 the KPZ description is completed by the inclu-
sion of (unavoidable) topological defects, the physics is modi�ed in an even more dramatic
manner [199]: the Berezinsky-Kosterlitz-Thouless (BKT) transition [130] was then shown
to be severely compromised by a long-range phenomenon of vortex unbinding occurring at
an even smaller length scale with respect to the KPZ deviations.

While, the simpli�ed GP description introduced here allows to catch important properties
of a driven-dissipative Bose-Einstein Condensate, and would represent quite accurately the
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Chapter 1. Non-equilibrium many-body quantum physics with light

dynamics of simple microscopic models [35, 88], in exciton-polariton experiments it should be
completed by a re�ned description of the polaritonic environment: indeed the complex non-
Markovian nature of the polaritonic pump, related to the frequency-dependent scattering
processes by excitons and thermal phonons, is known to play a major role regarding the
possibility of formation of a polariton BEC and the emergence of a thermal signature [185,
100]. Kinetic methods based on semi-classical Boltzmann equations have been developed
in order to describe the environment-induced transfer of exciton and polariton populations
[186, 129, 153], although they somehow lose information on the wave e�ects related to the
underlying quantum nature of the problem, and fail in particular to describe the emergent
Bogoliubov spectrum in the condensed regime. More advanced quantum kinetic methods
[79, 78] mixing the advantages of both approaches have been developed recently in order to
account for both quantum e�ects and exchange processes with the reservoir. This rather
novel approach, which obviously leads to more complexity, has been used up to now to
re-derive known results (such as the classical driven-dissipative GP equation) and has not
brought yet new contributions, although it could prove helpful in the future. In Chapter. 4 we
will present a simpler non-Markovian quantum Langevin formalism, similar to the one used
in [35], which encapsulate both the e�ect of noise and quantum dynamics. Our approach,
which is developed in the Bogoliubov regime and thus strongly relies on the hypothesis of
a rather weak depletion of the non-equilibrium BEC, allows to compute the resulting non-
equilibrium Bogoliubov spectrum while keeping information on the environment/interaction-
induced quantum and classical �uctuations.

1.1.2.2 Exciton-polariton BEC experiments: thermal versus non-equilibrium
signatures

Thanks to their extremely low mass (109 times smaller than atomic ones) and their resulting
very weak density of states, photons and polaritons in con�ned geometries are able to enter
the quantum degeneracy regime at uniquely high temperatures, ranging from cryogenic
temperatures with an apparatus cooled at a few Kelvin in the precursors works [99, 9, 7], until
the more recent observations of room temperature Bose-Einstein Condensation in exciton-
polaritons [101, 152] in di�erent kind of materials and purely photonic experiments [108, 109].
The criterion determining whether a de�ned material allows to maintain the strong light-
matter coupling at high temperature is related to the excitonic binding energy EX : while
QWs based on organic materials, polymers and some semiconductors such as GaN have
been shown to present very high EX allowing for the presence of strongly bounded excitons
resisting to an high level of thermal �uctuations, in semiconductors like GaAs or CdTe
presenting a weaker EX , excitons get quickly converted into free hole electron pairs at
temperatures of the order of 50K.

The �rst BEC experiments [6, 66, 172] with exciton-polaritons were based on a `coherent
drive' scheme and were not suited for the study of spontaneous symmetry breaking (SSB) and
the observation of a true phase transition toward a Bose-Condensed state: light was injected
within the apparatus by mean of an external laser drive with a perfectly de�ned phase and
frequency at the bottom of the lower polariton branch, inducing automatically the presence
of a k = 0 condensate. The �rst observation of SSB was reported in [181, 11] in the di�erent
`optical parametric oscillator' (OPO) scheme: in this con�guration photons are coherently
injected close to the in�exion point of the lower polariton branch and resonant scattering
processes lead to the formation of a k = 0 signal and an additional idler signal at higher
momentum [165, 39, 133, 166]. Above a certain threshold for pump intensity stimulated
scattering ultimately leads to a dynamical instability where the k = 0 and idler signals enter
a coherent state with a randomly chosen relative phase. The wave superposition between the
various momenta leads to the presence of moving fringes in the parametric instability regime
[28]. OPO schemes can also lead to more complex non-linear hydrodynamic behaviours such
as vortex-anti vortex pairs or more complex density patterns [18, 204].

Due to the direct resonant injection of polaritons inside the lower polaritonic branch, the
OPO experiments usually present strong non-equilibrium signatures. Here we will set the
focus on the next generation of experiments [99, 9, 7] based on a gauge invariant incoherent
pump scheme analogous to the one presented in Eq. (1.9), which usually present a closer
connection with equilibrium physics. The �rst BEC observation in this con�guration was
reported in [99]: as shown in Fig. 1.1 (panel b)), in the scheme used in [99], which has
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1.1 Exciton-polaritons and non-equilibrium Bose-Einstein condensation of light

Figure 1.3: Polariton occupancy in function of the energy for various pump intensities P
measured at �xed detuning δ and lattice temperature Tlat = 5K: at low pump intensities,
one can see that the distribution is not thermal, while at pump intensities above the pump
threshold Pth the distribution �ts well with a Bose-Einstein distribution at temperature
Teff = 19K. Figure adapted from [99].

been then reproduced in many other experiments, an external drive is responsible for the
generation of high energy electron-hole excitations which fastly relax into excitons by mean
of the emission of longitudinal optical (LO) phonons. Interactions between excitons and low-
energy acoustical phonons are responsible for the thermalization of the excitonic reservoir
(namely the high momentum part of the lower polariton branch which is mostly excitonic)
and for populating the bottom of the LP branch close to k = 0 (which contains an higher
photonic fraction, and thus is subject to faster losses) where the condensate will be formed.

At weak pump intensities, due to their fast decay, polaritons in the bottom of the branch
are almost not populated. Above a certain pump intensity, polaritons start to accumulate
around the k = 0 momentum mode and the level of quantum degeneracy increases, leading
to stimulated scattering. Ultimately above a pump threshold Pth (typically one order of
magnitude smaller than the threshold for conventional photonic lasing, as the lasing/BEC
instability in those these experiments does not rely on an inversion of population, due to a
similar mechanism to [134]), a sharpening in the emission spectrum linewidth and in the mo-
mentum distribution are observed and the emergence of long-range correlations is con�rmed
by an interferometry procedure, indicating the formation of a Bose-Einstein Condensate,
i.e., the onset of polaritonic lasing. Of course, due to the underlying bi-dimensional nature
of the quantum �uid a true long-range order is never observed [137], but quasi-long range
decaying behaviours of correlations such as algebraic order were not observable in the �rst
experiments due to the �nite size of the polaritonic cloud.

In Kasprzak work [99] and other low-T experiments [9, 7], equilibrium signatures were
observed in the condensed phase, where the polariton occupancy takes the form of a Bose-
Einstein distribution at a temperature Teff di�ering from the lattice apparatus tempera-
ture Tlat (see Fig. 1.3). At lower pump intensities, the reduced scattering rate induced by
the weak polaritonic/excitonic density has been shown to lead to poor thermalization and
non-equilibrium signatures. Our goal will not be to provide a complete discussion of the
microscopic origins of thermalization in exciton-polariton BEC experiments with incoherent
pump schemes, as this question is still matter to an active debate in the community: indeed,
although most early theoretical studies and experimental interpretation only involved the
scattering by acoustic phonons and excitons in order to describe the equilibration dynamics,
subsequent experimental evidence was found in [132] that the scattering processes assisted
by LO phonons of excitons into the lower polariton branch might be a dominant relaxation
channel. Due to the lack of theoretical material on this topic and for simplicity purposes
we will not involve LO phonons in our description (although we will analyse in Sec. 4.4.1.3
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Chapter 1. Non-equilibrium many-body quantum physics with light

Figure 1.4: Characterization of the e�ciency of equilibration in exciton-polariton BEC
experiments. Panel a): phase diagram of incoherently pumped exciton-polaritons in function
of the temperature Tlat, the detuning δ and the pump intensity P . The authors chose
to call metastable a state which can not be described at all by a thermal state. Panel
b): discrepancy Teff−Tlat

Tlat
between the e�ectively measured polaritonic temperature and the

lattice temperature, at a �xed positive detuning δ = +0.26ΩR. For this positive detuning,
the polariton distribution presents a thermal signature at any Tlat. Adapted from [100].

what could be the impact of a LO phonon-assisted polariton relaxation model, and show
how this might lead to the emergence of arti�cial thermal properties). Instead we will try
to build a synthesis of the �rst generation of theoretical studies and experimental observa-
tions. We will base our discussion especially on a work [100] by Kasprzak. et al., which
investigated experimentally the e�ciency of thermalization and its dependence on Tlat and
on the detuning δ = ωph − ωX between the uncoupled photonic and excitonic branches. For
more developments the interested reader might look at [46, 29].

The phase diagram of incoherently pumped exciton-polaritons is shown in Fig. 1.4 (panel
a)) in function of δ, Tlat and the pump intensity P . The authors chose to call `metastable'
a phase which does not present any thermal signature. First, for positive δ and low tem-
peratures (Tlat = 5 − 30K), the photonic fraction is relatively weak and loss processes are
expected thus to occur on a rather long time scale, comparable with the scattering processes
of excitons by acoustic phonons (occurring on a time scale ' 1ns) which, along with exciton
(X-X→ X-LP) scattering processes [153], play a part in the emergence of a BEC. While
below the BEC/lasing pump threshold the equilibration kinetics is not yet fast enough in
this range of temperatures to allow for thermalization of the polaritonic cloud, at the on-
set of lasing stimulated scattering induced by quantum degeneracy allows to complete the
equilibration process and a Bose distribution is generally observed within the BEC phase,
as shown in the panel. However, the e�ective temperature Teff is generally found to be
higher than Tlat (Fig. 1.4, panel b)), possibly due to several heating e�ects on the excitonic
reservoir such as excitonic injection processes (h− e− → X−LO phonon) by the incoherent
pump [153].

Secondly, for negative δ and the same temperature range, the photonic fraction becomes
signi�cant and losses in the bottom of LP branch increase dramatically (at a time scale of
the order of 1 ps). A `relaxation bottleneck' has been highlighted in early theoretical and
experimental works [185, 184] in the momentum region where the photonic fraction starts
to increase: for δ < 0 scattering processes by acoustic phonons are far too weak to populate
the k ' 0 region and generate a BEC. Instead direct scattering processes (X-X→ X-LP)
by the excitonic reservoir have been shown in [186, 153] to occur on a shorter time scale at
high enough excitonic density, fast enough to populate signi�cantly the polaritonic branch
and trigger the BEC transition. The system however does not present anymore a thermal
signature (even in the BEC regime) for these temperatures due to the strong non-equilibrium
kinetic e�ects induced by losses.

Finally, at higher temperatures (Tlat = 30− 300K) the previously mentioned relaxation
bottleneck is suppressed: the thermal occupation of the phononic reservoir has for e�ect to
stimulate the scattering processes of lower exciton-polaritons by acoustic phonons, which can
then relax toward the bottom of the branch by dissipating energy into the lattice without
requiring (X-X→ X-LP) collisions. In this regime, thermalization is thought to be almost
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1.2 Strongly correlated photons in cavity arrays

completely assisted by acoustic phonons for any choice of detuning, and the measured tem-
perature coincides then with the lattice one (Teff ' Tlat), since the fast energy exchange
processes between the excitonic and the phononic reservoirsz completely wash out heating
e�ects induced by the pump.

In addition to exciton-polaritons, room-temperature BEC was observed also in purely
photonic platforms [108] in absence of inter-particle interactions: there the associated mecha-
nism for relaxation and the onset of coherence was related to energy exchange with a thermal
bath of dye molecules. The emergence of a thermal signature was observed in [109] and the
kinetic dynamics of equilibration was characterized in [169]. The theoretical analysis was
provided in [107, 105, 106] and highlighted also in these experiments the role played by the
external temperature. More recently, the formation of a true bi-dimensional photonic BEC
in an harmonic trap was reported in [44] and the excellent agreement with thermodynamic
predictions was con�rmed.

1.1.3 Concluding remarks and motivations

We have reviewed the physics of the non-equilibrium Bose-Einstein Condensation of exciton-
polaritons. After a brief reminder of the microscopic physics of exciton-polaritons, we have
introduced the driven-dissipative Gross-Pitaevskii equation which allows to describe the
photoluminescence spectrum of the elementary excitations of an incoherently pumped BEC.
The last part of this section was dedicated to the kinetic mechanisms involved in the emer-
gence of a BEC and thermal signatures in experiments involving an incoherent pumping. In
particular, the role of exciton-exciton scattering and acoustical phonons in the emergence
of thermal signatures has been described. Some controversial studies suggesting that lon-
gitudinal optical phonons might actually play a dominant part in some con�gurations were
mentioned.

Apart from a few studies [209, 162, 25], the impact of non-Markovianity [21], which arises
when a quantum system is coupled to a complex environment presenting some memory ef-
fects, has been the object of little direct attention in the exciton-polaritons community up
to now. While non-Markovian e�ects are somehow implicitly included in most theoretical
descriptions of the semi-classical kinetics of exciton-polariton condensation under the form
of frequency-dependent transfer rates [153, 129] and thus strongly contribute to the emer-
gence of thermal signatures steady-state, a full quantum description of an out-of-equilibrium
non-Markovian BEC still remains to provide. This would be necessary inorder to correctly
describe the non-equilibrium Bogoliubov spectrum, as dissipation and the frequency selec-
tivity of polariton emission or loss processes could a�ect the low-energy relaxation dynamics
of the BEC elementary excitations. In addition, the spectral broadening induced by dis-
sipation, and its interplay with non-Markovian e�ects, might not allow to compute the
exact correlation functions in the steady-state directly by mean of a (too) simple classical
rate approach, which thus excludes the possibility of accessing the energy or momentum
distribution.

In Chap. 4 we present our �rst contribution to these research lines by developing a a
simpli�ed but already fully quantum and non-Markovian model for a weakly interacting
BEC. The formalism, based on a rather transparent quantum Langevin equation, allows
simultaneously in the Bogoliubov regime to address dynamical e�ects such as the relaxation
modes of the condensate, and to access information on quantum and classical �uctuations
induced by interactions and the external noise. In particular, following a preliminary result
in Sec. 2.4, we unveil an alternative mechanism leading to the apparent emergence of an
equilibrium signature in an open quantum system in contact with several non-Markovian
non-equilibrated reservoirs.

1.2 Strongly correlated photons in cavity arrays

This section draws an overview of the physics of strongly interacting photons. One of the
long-standing goals in that research area is the stabilization of strongly correlated phases
such as the Mott Insulator of Fractional Quantum Hall states, which have been only observed
by now in an equilibrium context and never in driven-dissipative photonic platforms. We
will brie�y describe some of the various platforms and explain how they allow to engineer
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Chapter 1. Non-equilibrium many-body quantum physics with light

photonic Hamiltonians suited for the investigation of strong correlations. We will then move
to the dissipative case where a drive of some kind has to be included in order to re�ll the
many-body state: after reviewing the widely studied coherent drive scheme and explaining
why it does not allow to stabilize incompressible quantum phases, we will present the most
recent theoretical proposals in that direction.

1.2.1 Photon Blockade

An essential step toward the stabilization of strongly correlated photonic �uids consists
in reaching the so-called �photon-blockade�, where photons start behaving as impenetrable
particles. More speci�cally, a single-mode photonic device, such as an optical cavity or
microwave resonator, is said to be in the blockade regime whenever the optical nonlinearity
U/~ = ω2,1 − ω1,0 (ωN,N−1 being the transition frequency between the N − 1 and N -
photon Fock states) is much larger than the total dissipative linewidth Γdiss (which sums all
dissipative contributions, like losses, dephasing, pump etc.): the transition frequencies ω1,0

and ω2,1 for the injection of a �rst photon and a second one are shifted with respect to each
other and well separated spectrally. In this regime a coherent laser �eld tuned on ω1,0 will
be able to inject a single photon, but the entrance of a second one will be strongly inhibited
since the corresponding process is non-resonant with the drive frequency.

The photon blockade, whose concept was �rst introduced in [86], was reached in many
experimental contexts ranging from optical cavity QED [13], quantum dots [55, 157], mi-
crowave superconducting circuits [116], propagating photon beams coupled to a gas of Ry-
dberg EIT atoms [155, 147]. Here we brie�y describe the cavity QED and circuit QED
platforms and then move to the discussion of the Jaynes Cummings model, which is the
most simple theoretical model allowing to describe the emergence of photon blockade from
the light-matter interaction. More extended discussion of cavity/circuit QED experimental
platforms can be found in [127, 158, 75, 48, 40, 68]. The quantum simulation of many-
body physics with strongly interacting photons in of circuit QED and cavity QED lattices
is reviewed in [77, 192, 84, 144]

1.2.1.1 Cavity and circuit QED

Cavity QED studies the strong coupling dynamics between matter and light degrees of
freedom in con�ned geometries. The fundamental contributions of Haroche and Wineland
[75] allowed to gain unprecedented control on the quantum coherence properties of very
small systems composed of a few atoms and photons.

In the �rst generation of experiments, photons are con�ned in a cavity consisting in a
set of superconducting mirrors with very low transparency and absorption rate, and atoms
are responsible for the nonlinear properties of the quantum optics device. While in exciton-
polariton experiments the strategy for boosting photon-photon interactions was based on
developing semiconducting materials with high χ(3) optical nonlinearities (see Sec. 1.1), in
cavity QED experiments these platforms also bene�t of another essential contribution related
to a much higher mirror con�nement: in contrast with the vacuum con�guration, each single
photon can repeatedly interact with the embedded atoms due to its numerous roundtrips
within the resonator, and the corresponding cross-section σ = Fσ0 is strongly enhanced with
respect to its vacuum counterpart σ0 [54]. Indeed, the cavity �nesse F , which measures the
quality of the optical device, and quanti�es how many times light can bounce against the
cavity mirrors before being absorbed or lost by transparency, can typically reach extremely
high values [104] (∼ 107 with respect to 102 − 104 in exciton-polariton experiments).

Over the last two decades, circuit QED platforms [68] (i.e., superconducting circuits)
have emerged as an integrated analogue of Cavity QED. The basic elements of a circuit
QED experiment are a transmission line resonator and a qubit (replacing respectively the
photonic cavity and the atom) made of a superconducting material, and can be coupled to
each other/driven by an external voltage source by mean of capacitive couplings [14]. The
transmission line resonator is an e�ective LC quantum circuit, i.e., an harmonic oscillator
hosting quantized electromagnetic excitations (microwave photons). While many architec-
tures can be chosen to represent a qubit (i.e. an arti�cial atom) [40], the Cooper Pair Box
(CPB) is probably one of the most representative examples: made of two-superconducting
islands weakly coupled by tunnel e�ect, the CPB forms a Josephson junction which can be
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1.2 Strongly correlated photons in cavity arrays

described by two conjugate quantum variables, namely the charge imbalance ∆Q̂ and the
order parameter dephasing ∆φ̂ between the two electronic reservoirs. Due to the 2π peri-
odicity in the dephasing potential U(φ) between the islands, this circuit element possesses
strong nonlinear properties, and under suited conditions it can be well approximated by a
two-level system linearly coupled to the resonator photonic mode.

Progressive improvements in the state-of-the art in both cavity and circuit QED allowed
to limit decoherence e�ects and reach a level of isolation e�ects su�cient to perform quantum
information tasks [127, 48], while maintaining simultaneously the ability to manipulate the
quantum state of the system and extract information from it. Recently, the possibility of
coupling several cavity QED and circuit QED elementary blocks into lattices has opened the
possibility of investigating the quantum many-body physics of strong correlations [76, 84].

1.2.1.2 Jaynes-Cummings model

Cavity QED and Circuit QED architectures can be well described by the Jaynes-Cummings
model [68], which encapsulates the most essential features of those complex setups into the
form of a reduced quantum optics system, made of a single photonic mode interacting with
a two-level (arti�cial-)atom:

HJC = ω0a
†a+ ωqσ

+σ− + g(σ+a+ σ−a†). (1.14)

Here, ω0 (resp. ωq) is the frequency of the uncoupled photonic mode (resp. atomic transition
frequency), and g is the strength of the light-matter coupling. This Hamiltonian is exactly
solvable as it conserves the total excitation number N = a†a + σ+σ− 1 . Similarly to the
case of semiconductor exciton-polaritons, once diagonalized the Hamiltonian, the photonic
and atomic degrees of freedom are mixed into two polaritonic branches

|N,+〉 = cos(θN ) |N − 1, e〉+ sin(θN ) |N, g〉
|N,−〉 = −sin(θN ) |N − 1, e〉+ cos(θN ) |N, g〉 (1.15)

EN,± = Nω0 +
∆

2
± 1

2

√
4g2N + ∆2

where ∆ = ωat − ω0 and tan(2θN ) = 2g
√
N/∆. N represents the number of excitations in

the system, and the notation |N, g〉 (resp. |N − 1, e〉) refers to the state containing N (resp.
N − 1) photons where the two-level system is in the fundamental (resp. excited) state.

While the zero-detuning case ∆ = 0 is of high interest, as this choice of detuning is
expected to provide the biggest optical nonlinearities, it is also more complex as it maximally
mixes the photonic and atomic degrees of freedom. We will instead focus on the simpler
con�guration of a strong detuning, which will present more important analogies with the
equilibrium framework in which the Mott Insulator physics was historically studied [59]. In
the regime ∆� g, the branch structure becomes:

|N,+〉 ' |N − 1, e〉
|N,−〉 ' |N, g〉 (1.16)

EN,± ' Nω0 +
∆

2
±
(

∆

2
+
g2

∆
N − g4N2

4∆3

)
In this simple con�guration, matter and photonic degrees of freedom nearly do not mixed

and are well separated in energy. In particular the photonic branch |N, g〉 leads to the single
site e�ective photonic Bose-Hubbard Hamiltonian

He�
ph = ω̃0a

†a+
U

2
a†a†aa, (1.17)

where the cavity frequency ω̃0 = ω0+ g2

∆ has been shifted by the presence of the atom, and the

higher order term in the expansion gives rises to a positive Kerr nonlinearity U ' g4

2∆3 which
represents e�ective photon-photon repulsive interactions. The photon blockade condition

translates then into g4

2∆3 � Γdiss.

1this would not be the case in the ultra strong coupling regime [37, 38], where counter-rotating term need
to be included and virtual photons can be created starting from a con�guration where the EM �eld is in
vacuum and the atom in the fundamental state
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Figure 1.5: T = 0 equilibrium phase diagram of the Bose-Hubbard model. Left panel:
Mean-Field phase diagram computed analytically in [59]. z = 2d is the number of nearest
neighbours of each lattice site, and d is the spatial dimension. Right panel: phase diagram
for the 1D con�guration computed exactly in [52] by mean of density matrix renormalization
group (DMRG) simulations. Here t = J is the tunneling constant. Right panel adpated
from [52]

1.2.2 Isolated case: Mott-to-Super�uid transition

The Jaynes-Cummings single site physics described below serves as a building block for the
investigation of the dynamic of strongly correlated photons [77, 84]: by setting ourselves
in the previously described strong detuning regime ∆ � g and coupling several of those
units into a lattice structure, one is able to engineer a many-body photonic system whose
Hamiltonian dynamics overlaps with the Bose-Hubbard (BH) model on a lattice

HBH
ph =

∑
i

[
−µa†iai +

U

2
a†ia
†
iaiai

]
− J

∑
〈i,j〉

[
a†iaj + hc

]
. (1.18)

In optical cavities, the tunneling term takes place because of a �nite overlap between the
neighbouring cavity modes. In circuit-QED, it can be implemented by capacitively coupling
adjacent transmission lines [84, 60]. In the latter platform, more complex terms such as a
coupling to the nearest neighbour or long-range hopping [14] can be implemented. While
the next subsection will focus on the non-equilibrium e�ects induced by dissipation, here we
brie�y review the well-known physics of the equilibrium BH model: we assume an isolated
lattice in such a way that all the dynamics is provided by the Hamiltonian contribution
given in Eq. (1.18).

The zero temperature phase diagram of such a model (shown in Fig. 1.5 in di�erent
geometries, and whose derivation in the mean-�eld regime can be found in App. A) has been
studied in [59] and predicts the existence of two quantum phases separated by a quantum
phase transition: the �rst one, called the Mott-Insulator, is incompressible, and the second
is of a super�uid nature. The phase boundary is organizedas a series of `lobes' whose internal
parts contain the insulating regions, and the external part the super�uid one. Underlying
the quantum phase transition is a commensurability e�ect between the lattice site and the
particle number, associated to the e�ect of strong interactions: in the Mott phase, which
presents an integer density n = 1/2/3...., the strong interaction blockade prevents particles
to delocalize and is thus an obstacle to the generation of a long-range (or quasi long-range)
order. The transition toward the super�uid phase can be driven either by adding extra-
particles/holes leading to an incommensurate density, which is essentially induced by a
change in the chemical potential µ, or by increasing the ability of particles to delocalize
in spite of the blockade interaction U , which is done by increasing the tunneling constant
J . These two types of quantum phase transitions belong to di�erent universality classes
[59, 51]: the one driven by a commensurability e�ect occurs at a generic point of the lobe
(except the tip), while the other one driven by the quantum competition between tunneling
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1.2 Strongly correlated photons in cavity arrays

and interaction occurs precisely at the tip of the lobe.
While the phase diagram shown in Fig. 1.5 (left panel) results from a mean-�eld (MF)

approach (which corresponds to the limit z →∞ where z is the number of nearest neighbors),
the MI-SF transition has been predicted to be maintained for any spatial dimensions d:
while in d = 2, 3 [27, 26] the super�uid region is accompagned by the emergence of a Bose-
Einstein Condensate and is characterized by the presence of long-range order φ = 〈ai〉, in
d = 1 [114, 52] only algebraic order subsists and the T = 0 phase transition is connected
to the BKT (Berezinsky-Kosterlitz-Thouless) physics of a two-dimensional Bose system at
�nite temperature [111]. In the latter case, the shape of the phase boundary is signi�cantly
altered with respect to MF predictions, as shown in the right panel of Fig. 1.5.

Historically, the concept of Mott-Insulator was �rst introduced in a fermionic context
by Neville Francis Mott in [138] who explained why, due to the blockade e�ect related
to electronic interactions, certain materials predicted to be metallic by the band theory
could not actually conduct electricity. The bosonic counterpart of the MI was successfully
observed much more recently in ultra-cold atomic gases trapped in optical lattices in several
geometries [70, 179, 182], and its transition toward the super�uid phase was characterized
at the single atomic level in [8]. In the non-equilibrium photonic context it still represents a
hot challenge: as we will see in the next subsection, the presence of dissipative losses highly
complexi�es the simple equilibrium description introduced here.

One �nally mentions that the physics of the Mott-to-super�uid transition is not re-
stricted to the Bose-Hubbard model: the multi-site extension of the Jaynes-Cummings
model, namely the Jaynes-Cummings Hubbard (JCH) model, has been predicted to feature
a very similar phase diagram [69, 4] also in the polaritonic con�guration of zero detun-
ing ∆ = 0, where atomic and photonic degrees of freedom are strongly coupled. Another
variation consists in coupling the photonic modes of the various sites to anharmonic oscil-
lators instead of two-level systems. This con�guration, which naturally arises in lattices of
semiconducting micropillars when strongly coupling a single cavity mode to an excitonic ex-
citation [1], can also be realized in circuit-QED platforms by using qubits con�gured in the
transmon regime [68]. Although the BH and the JCH model have been found to belong the
same universality classes [110, 82], they generally do not overlap as the JCH model rather
maps onto a two-species BH model. A comparative study [72] pointed out observables al-
lowing to distinguish the two models, and identi�ed the regime of parameters where they
do instead overlap.

1.2.3 Driven-dissipative case

We now move to the more realistic driven-dissipative framework, where loss processes and the
drive responsible for the injection of new photons inside the setup are not neglected anymore.
Due to decoherence e�ects induced by the environment, the dynamics of the density matrix
ρ is not Hamiltonian and can be described instead, e.g, by a quantum master/Red�eld
equation

∂tρ = −i [Hph, ρ] + Ll

[
ρ
]

+ Lpump[ρ], (1.19)

where a Lindblad contribution

Ll

[
ρ
]

=
Γl

2

∑
i

[
2aiρa

†
i − a

†
iaiρ− ρa

†
iai

]
(1.20)

allows to implement the e�ect of losses. The term Lpump[ρ] is left unspeci�ed as we will
study the e�ect of several class of pump schemes.

We will focus �rst on the simplest scheme consisting in a coherent drive. As we will see
this scheme is not suited for the purpose of stabilizing incompressible quantum phases and
thus we will move to more recent promising proposals involving non-Markovian engineered
reservoirs, such as frequency-dependent pump schemes or the proposal of engineering arti-
�cial chemical potential by mean of a modulated coupling to a thermal environment. Even
though such strategy has emerged only very recently in the context of the many-body physics
with light, the potential quantum reservoir engineering, which consists in building a speci�c
architecture designed to simulate the e�ect of some desired dissipative (Markovian or non-
Markovian) quantum Liouvillian superoperator, has already been explored in many physical
situations: at the level of a few particles, it can be useful in order to protect from decoherence
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Chapter 1. Non-equilibrium many-body quantum physics with light

e�ects a superposition between two quantum states at a few particle level [140, 96], or to
generate stable entanglement [200, 203]. In cold atoms, its use has been suggested in order
to explore novel out-of-equilibrium competing e�ects between dissipative and hamiltonian
dynamics [50].

1.2.3.1 Coherent pump

We �rst brie�y review the case of a coherent pump which has been most widely addressed in
the litterature [30, 192, 193, 115, 125]. In this case Lpump(t)[ρ] = −i [Hcoh(t), ρ] represents
a time-dependent additional Hamiltonian contribution

Hcoh(t) = F
∑
i

[
eiωLtai + e−iωLta†i

]
, (1.21)

which can be obtained physically by directly driving the system with a coherent/classical
signal (e.g., a monochromatic laser �eld in the optical con�guration [29, 76], or a capacitively
coupled external voltage source in the circuit-QED platform [14, 60]).

Coherent pump schemes have proven particularly suited for the the spectroscopy of
photonic many-body transitions [30, 194]: if EN is the energy of a given N-photon eigenstate
of Hph, by changing the frequency ωL the pump is able to address an N-photon resonance
starting from vacuum whenever the condition

EN = NωL (1.22)

is satis�ed. In [30] this method was put forward as a criterion to probe the fermionization of
strongly interacting photons in the Tonks-Girardeau regime [67] in �nite size lattices, since
in the fermionic regime the resonances should be shifted in a very characteristic and easily
identi�able manner with respect to the case of non-interacting bosons, due to the di�erent
momenta quantization rules [122].

However, one can understand intuitively that such a scheme is not suited to guide a
strongly interacting many-body system close to an incompressible quantum phase with a
perfectly de�ned photon number such as a Mott-Insulator state, due to the symmetry be-
tween the single-photon emission/injection events caused by the coherent pump Eq. (1.21):
as an example, in the limit of impenetrable bosons where the nonlinearity U is very large
compared to other energy scales (Γl, F ) involved in the problem, the steady-state population
will be at most 1/2 (in analogy with a coherently driven two-level atom) for large enough
driving strength F � Γl and in particular will not reach any non-zero integer value, in
stark contrast with our expectation n = 1 in the equilibrium case. Correspondingly, due
to a Rabi oscillation e�ect the density will maintain important �uctuations and the steady-
state will present a large number of excitations, precluding the possibility to observe any
low-temperature e�ects.

Actually, the driven-dissipative Bose-Hubbard model with a coherent pump has been
widely studied in the literature within the last years [115, 125], and it has been shown
that it leads to a rich non-equilibrium phenomenology signi�cantly di�ering from the one
of the equilibrium Bose-Hubbard model [59, 179, 15]: in particular, it involves an hysteretic
�rst order phase transition of gas/liquid type between two coherent phases characterized
respectively by a low and high density (but not integer nor �uctuationless), with a bistable
region separating the two phases. Optical bistability, which is a well-known e�ect of classical
nonlinear optics [19, 146] and is already well understood for weakly interacting photonic
systems such as exciton-polaritons [6, 172, 66], has been recently observed for the �rst time in
a Circuit-QED experiment presenting relatively strong photon blockade [60]. Finally a recent
theoretical study [62] has drawn a strong connection between this photonic non-equilibrium
model, and the equilibrium physics of spins under a magnetic �eld (the low-density and
high-density phases corresponding to di�erent e�ective magnetization states).

1.2.3.2 Incoherent non-Markovian pumping

The restrictive possibilities for the investigation of strongly correlated photonic states in
coherently driven cavity arrays has led a part of the community to search for alternative
strategies during the years of my PhD. Among the various proposals, non-Markovian (i.e.
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frequency-dependent) incoherent pump schemes have been put forward as promising candi-
dates for the quantum simulation of incompressible quantum phases.

In the context of the many-body physics of strongly interacting photons, the �rst pro-
posal [97] regarded the possibility of stabilizing Fractional Quantum Hall states of light in
presence of an arti�cial gauge �eld. This work predicted a surprising performance where
the occupancy of the degenerate ground-state (a lattice analogue to the Laughlin state)
could reach values over 95%. While the calculations in [97] were done in special photonic
lattices [98] engineered in such a way to present �at bands in analogy with the �at Landau
levels in the continuum version, a very recent proposal [195] has extended these ideas to
the continuum case, with a potential applicability in novel platforms [168]. Our initial work
[119], which was in preparation at the moment of the publication of [97] and applied for the
�rst time such kind of scheme to the Bose-Hubbard model, demonstrated the possibility of
stabilizing a very localized n = 1 photonic Mott-Insulator state. It was afterwards followed
by many other studies [126, 12], and the initial scheme was further re�ned in [118] in order
to stabilize Mott Insulators robust against tunneling with arbitrary densities. This section is
dedicated to the review of the works [97, 195] regarding the FQH physics (the description of
all the proposals [119, 126, 12, 118] applied to the BH model will be the subject of Chapter
2 and Chapter 3).

Under suitable conditions of weak dissipation, the non-Markovian dynamics of an open
quantum system can described at the lowest order in the coupling with the environment by
a time-local quantum master equation of the form Eq. (1.19). As we will discuss in Chapter
2, in this regime the term of Eq. (1.19)) responsible for the frequency-dependent pump can
be expressed as a superoperator in the non-standard Lindblad form

Lpump[ρ] =
Γ0
em

2

∑
i

[
ã†iρai + a†iρãi − aiã

†
iρ− ρãia

†
i

]
. (1.23)

where ã†i (resp. ãi = [ã†i ]
†) is a modi�ed creation (resp. annighilation) operator implement-

ing the presence of a frequency-dependent emission spectrum Sem(ω), (see Secs. 2.2.2,2.2.3
for more details on the derivation and the mathematical expressions involved in Eq. (1.23)).

This scheme di�ers in many important manners with respect to the case of a coherently
driven array: �rst, it is gauge invariant and does not break explicitly the U(1) symmetry,
secondly it is completely irreversible in the sense that the incoherent pumping term Eq. (1.23)
only allows for the injection of new photons inside the system and precludes re-absorption.
In order to obtain this irreversibility, two main strategies were put forward: the �rst one
[97] involves a shadow lattice parametrically coupled to the main lattice; the second one
[88, 119, 126, 195], maybe more intuitive, relies on embedded inverted two-level emitters
(atoms or qubits). In the latter case the non-Markovianity of photonic emission arises from
the interplay between bounded distribution of transition frequencies of the emitters and the
spectral broadening induced by an irreversible pumping of the emitters in their excited state.
While in the optical regime the inversion of population can be obtained in analogy with a
laser by mean of an hidden third atomic level [170], a strategy was proposed in circuit-QED
[126] relying on the coupling of the emitter (a transmon qubit) to a very lossy resonator
tuned on the transition from the �rst to the second qubit excited stated.

The interplay between the frequency-dependent photonic pumping Eq. 1.23 and Marko-
vian losses allows to transfer probability between various many-body eigenstates of the
engineered Hamiltonian Hph with the following rates

Tf→f ′ = Sem(ωf ′,f )
∑
i

| 〈f | ai |f ′〉 |2, (1.24)

Tf ′→f = Γl

∑
i

| 〈f | ai |f ′〉 |2. (1.25)

Here ωf ′,f = ωf ′ − ωf is the energy jump between two eigenstates |f〉 and|f ′〉 of Hph with
respectively N and N+1 particles (describing, e.g., a BH or a JCH model, or a more complex
one featuring a gauge �eld for the investigation of FQH e�ects). In stark contrast with the
previously described coherent pump scheme, the spectrum Sem(ω) does not appear in Tf ′→f
(which corresponds to a process reducing the total particle number) due to the irreversibility
of the photonic pumping: this provides the ability to fully control the relative strength of
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Chapter 1. Non-equilibrium many-body quantum physics with light

Figure 1.6: Generic energy level diagram of bosons in the lowest Landau level interacting
by mean of a contact potential. The system allows for gapless addition of particles N ≤ N∗.
In absence of edges, hole excitations are completely degenerate. States with N > N∗ and
excited states belonging to an higher band are separated by a gap ∆. Adapted from [97].

the transition rates in function of the energy jumps, and makes incoherent non-Markovian
schemes particularly suited candidates to guide the photonic density matrix toward speci�c
eigenstates such as the Hamiltonian ground-state.

Except from [118], all the proposals [97, 119, 126, 12, 195] considered a �narrow bandpass
emission spectrum� of a Lorentzian type

SLorentzian
em (ω) = Γ0

em

(Γp/2)2

(ω − ωat)2 + (Γp/2)2
. (1.26)

While this choice of spectrum revealed functional for the stabilization of Fractional Quantum
Hall states in the continuum and well-chosen lattices, we will see in Chapter. 2 that its
e�ciency is restricted to very speci�c many-body systems presenting in particular a �at
band structure. In [118], we investigated the potential of more complex tailored spectra for
the stabilization of generic quantum phases at zero temperature: this will be the subject of
Chapter 3.

We now brie�y explain why in [97, 195], an important �delity with the Hamiltonian
ground-state can be obtained with this choice of pump spectrum: while [195] directly con-
siders the continuum con�guration, in [97] the special choice of lattice structure [98] leads
to the presence of analogous �at Landau levels and allows to reproduce the Fractional Hall
physics [59] at �ling ν = 1/k (k being some arbitrary integer): for any particle number N ,
all states belonging to the lowest energy submanifold coincide with the lowest Landau level
(LLL), and the gapped ground-state with N = N∗ photons corresponds to the Laughlin
state (see Fig. 1.6). In addition, due to the absence of edges and of a con�ning potential
(the lattice is assumed to possess periodic boundary conditions), hole excitations (made of
1/ν quasi-holes) corresponding to states with N < N∗ are massively isoenergetic: they do
not have any dispersion nor interact. Finally, states belonging to the higher energy bands,
as well as states with N > N∗, are energetically separated by a gap ∆ of the order of the
minimum between the on-site interaction strength U and the cyclotron energy ~ωB : in the
limit U � ~ωB , they are quasi-particle excitations where several photons overlap spatially,
and for ~ωB � U they correspond to states where at least one photon belongs to the �rst
excited Landau level.

Regarding the pump parameters, on one hand the ratio Γ0
em/Γl has to be set much higher

than unity so that resonant transitions are dominated by pump processes. On the other
hand the linewidth Γp of the frequency-dependent photonic emission spectrum has to be
chosen small enough with respect to the many-body gap ∆ in such a way that non-resonant
transitions will be on contrary dominated by losses:

Γ0
em

Γl

(Γp/2)2

∆2 + (Γp/2)2
� 1. (1.27)

Thus, by tuning the Lorentzian emission spectrum on the transition energy required to
remove an hole excitation, the pump allows for a very e�cient re�lling toward the Laughlin
state, and does not populated states with N > N∗ photons as the many-body gap ∆
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1.2 Strongly correlated photons in cavity arrays

shifts the transition. Still, one could possibly imagine to populate a state above the gap
with N < N∗ photons during a loss process2 in that case the Lorentzian pump would
not be able to bring back the system toward the ground-state as it would involve at least
one non-resonant transition. Luckily for this speci�c system, a very weak matrix element
〈f | ai |f ′〉 ' 0 strongly suppresses the transition toward those states during a loss event
(it vanishes exactly in the continuum limit for local interactions). As a consequence, the
Laughlin state is very well self-stabilized by the dynamics.

While [97] assumed periodic boundary conditions which are more convenient mathe-
matically but might not be realistic in most experimental platforms, the recent work [195]
highlighted the role played by the presence of the con�ning potential Vext(r), which leads
to the presence of edges and has for e�ect to lift the degeneracy between the various hole
excitations. For a realistic choice of Vext(r), this complexi�es the re�lling process, as some
excitations (especially those close to the edge) might fall out of the emission bandwidth of
the Lorentzian spectrum SLorentzian

em (ω) and undergo less e�cient re�lling. Deep in the bulk
however, these e�ects are less important and the system properties should map on the T = 0
predictions provided by the Laughlin wavefunction.

1.2.3.3 Arti�cial chemical potential for light

In parallel to strategies based on incoherent non-Markovian pumping schemes, an orthogonal
although very generic approach was proposed in [74] in order to cool down a photonic
dissipative system toward an equilibrium-like low-T steady-state with an engineered and
controllable chemical potential.

The concept of a non-zero chemical potential µ for photons is highly non-trivial since
photons are not conserved particles: a photonic system (with time-dependent density ma-
trix ρ(t)) and a thermal bath (with Hamiltonian HB and initial thermal density matrix
ρB = 1

ZB
e−βHB ) of absorbing/emitting degrees of freedom (e.g., atoms, qubits or transmis-

sion lines) are generally coupled to each other by mean of a time-independent Hamiltonian
contribution of the form

HI = ΩI
∑
j

(aj + a†j)Bj , (1.28)

where aj is an annihilation photonic operator in a mode labelled by the index j, and Bj is
some bath operator. For a weak enough coupling ΩI , the reservoir dynamics can be traced
out and the photonic density matrix is then expected to reach a Gibbs ensemble with zero
chemical potential

ρ∞ph = lim
t→+∞

ρph(t) = e−βHph (1.29)

(whereHph is the photonic Hamiltonian), and the photonic statistics follows thus the �Planck
law� for the black-body radiation.

The conceptual novelty of [74] is to implement a time-dependent coupling with the reser-
voir

HI(t) = 2ΩIcos(µt)
∑
j

(aj + a†j)Bj , (1.30)

(in units of ~ = 1) which the authors propose to engineer in a circuit-QED setup by mean
of a Josephson junctions Wheatstone bridge modulated by a time-dependent magnetic �ux.
The bath is made of transmission lines containing a large number of internal modes so to
reproduce a complex thermal environment with a continuum of frequencies.

In the rotating frame provided by the unitary transformation U(t) = e−iµtN (where
N is the total photon number operator), the new photonic Hamiltonian can be written as
Hph − µN and the bath Hamiltonian is left unchanged. Under the assumption that the
modulation frequency µ is much higher than the frequency scales of the reservoir modes,
one can perform the rotating-wave approximation (RWA) and the coupling term takes then
the time-independent form of Eq. (1.28):

U†(t)HI(t)U(t) = ΩI
∑
j

(aj + a†j + e−i2µtaj + e2iµta†j)Bj

' ΩI
∑
j

(aj + a†j)Bj . (1.31)

2Since loss processes are Markovian and can thus either cool or heat the system with equal e�ciency
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Chapter 1. Non-equilibrium many-body quantum physics with light

If there is no external source of losses, this dynamics then leads the photonic statistics toward
a Gibbs ensemble with a-non-trivial chemical potential

ρ∞ph = e−β(Hph−µN). (1.32)

In the more realistic case where external sources of losses are included, one has that the
transition rates take the form

Tf→f ′ = S↑(ωf ′,f )
∑
i

| 〈f | ai |f ′〉 |2, (1.33)

Tf ′→f = [S↓(ωf ′,f ) + Γl]
∑
i

| 〈f | ai |f ′〉 |2, (1.34)

where |f〉 and|f ′〉 are two-photonic eigenstates of Hph separated by the transition en-
ergy ωf ′,f with respectively N − 1 and N photons, S↑(ω) and S↓(ω) are respectively the
frequency-dependent rates for photonic injection and absorption processes by the paramet-
rically coupled reservoir, and Γl is the photonic loss rate (approximated by a Markovian
contribution). The parametric equilibrium condition for the external reservoir translates
into S↑(ω) = e−β(ω−µ)S↓(ω).

In the general case this model is not expected to lead to thermal statistics as the detailed
balance relation Tf→f ′/Tf ′→f = e−β(ωf′f−µ) is not veri�ed. However one sees that if the
external losses are kinetically dominated by absorption processes in such a way that S↓(ω)�
Γl, then this model can be be very well approximated by an equilibrium one, and has then
that the steady-state density matrix ρ∞Σ ' e−β(HΣ−µN) is thermal-like again.

This scheme appears thus to be well suited for the stabilization of nearly equilibrium
quantum phases in driven-dissipative photonic platforms. The feasibility of its experimental
implementation is still an open question due to the relative complexity of the environment
and the parametric coupling scheme.

1.2.4 Concluding remarks and motivations

We have introduced several promising platforms for the investigation of strong correla-
tions in photonic experiments, and shown how it is theoretically possible to reproduce in
engineered architectures the dynamics of important many-body models such as the Bose-
Hubbard model, which have been largely studied in isolated systems but are still mostly
unexplored in open quantum systems. In view of stabilizing incompressible quantum phases
with light such as MI of FQH states, we have described the main proposals for the re�lling
of the photonic population: while the simple coherent drive schemes appears not suited for
this task, more recent methods based on non-Markovian engineered reservoirs appear to be
the most promising.

Quantum reservoir engineering techniques can be found in many physical contexts rang-
ing from trapped ions [154], single-resonator con�gurations in cavity QED [140] and circuit
QED [96], linear optics [123], cold atoms [50], Rydberg gases [203], opto-mechanical systems
[200]. However, the study of its potential for the stabilization of strongly interacting photon
�uids is a very recent topic which has emerged during my PhD. The frequency dependence
induced by non-Markovianity appears in particular as a precious tools, as it allows to en-
hance selectively some dissipative transitions between many-body eigenstates, and might
allow to access low temperature physics in this new physical context.

The method developed in [74] by Hafezi et al. (which we presented in Sec. 1.2.3.3) in order
to simulate a chemical potential for light appears to be well suited for that purpose. However,
due to the necessity of building a complex ensemble of long transmission lines maintained
at a well-de�ned temperature and of engineering a modulated coupling to the many-body
system, the realizability of such proposal might be unrealistic with current technologies. In
this Thesis we investigate the simpler direction of engineering frequency-dependent pumping
and/or losses by mean of smaller non-Markovian reservoirs (as was shown in Sec. 1.2.3.2),
which can be implemented by mean of a reduced number of additional degrees of freedoms.
This is the object of Chapters 2 and 3.
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1.3 Conclusions and perspectives

We have reviewed the non-equilibrium physics of photon quantum �uids. The �rst part of our
discussion regarded the weakly interacting regime and focused on experiments in exciton-
polaritons. After brie�y reviewing the driven-dissipative dynamics of a non-equilibrium
exciton-polariton BEC, we moved to the discussion of the kinetics for the emergence of
long range order and (in some cases) thermal signatures. The second part was dedicated
to the strong blockade regime: After explaining how interesting many-body Hamiltonian
can be engineered in those structures, we discussed the more realistic many-body problem
involving also dissipative e�ects: the promises of non-Markovian reservoir engineering in
view of stabilizing strongly correlated photon �uids were highlighted.

Although this concept has not been widely addressed (or sometimes in an hidden manner)
in the framework of many-body physics with light, it appears that �non-Markovianity� (i.e.,
the non-trivial spectral properties of the external environement) play a key role in most of
the phenomenology we have described in this introductory Chapter. Non-Markovian e�ects
are indeed known to be strongly involved in the equilibration kinetics of open quantum
systems [169, 124, 210]: in particular, the Kennard-Stepanov relation Sem(ω)/Sl(ω) = e−βω

[102, 180], which provides a necessary relation between the emission and absorption spectrum
for the equilibration of a photonic device, automatically implies the existence of frequency-
dependent dissipative processes.

Memory e�ects associated to non-Markovianity have been explored in many other phys-
ical contexts: from a quantum information perspective, a quantitative measure of the de-
gree of non-Markovianity and connections with the back �ow of information were drawn in
[20, 207]. Such back �ow was shown to hinder the ability (called Quantum Darwinism) of a
quantum system to redundantly imprint information on its state in the external environment
[211, 65]. Non-Markovian e�ects have also been put forward in quantum technologies as a
tool for optimal control operations [139] and quantum error corrections [96], and appear to
play a key role in the protection of entanglement in quantum biochemical processes [188].

The next Chapters of this thesis are adapted from my research work during this PhD.
In particular, in Chapters 2 and 3 we will explore more thoroughly the potential of non-
Markovian schemes for the stabilization of incompressible quantum phases and the quantum
simulation of zero temperature equilibrium physics with light. Chapter 4 will be dedicated
to the analysis of the emergence of analogous thermal properties in generic non-Markovian
driven-dissipative quantum systems.
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Chapter 2

Strongly interacting photons under a

frequency-dependent incoherent pump

with a narrow bandpass spectrum

2.1 Introduction

Until now, most theoretical studies aiming at the investigation of strong correlations in
driven-dissipative photonic lattices focused on schemes based on the use of a coherent drive
to re�ll the photonic population [30, 192, 193, 115, 125]. This approach might appear as
the simplest one from both experimental and conceptual points of view, as it only requires
shining a resonant classical signal on a photonic architecture (e.g., light coming from a laser
in cavity QED architectures, or an electric voltage capacitively coupled to a superconducting
circuit), and proved useful in order to probe spectroscopically the many-body transitions
of strongly interacting Hamiltonians [30]. However, as explain Sec. 1.2.3.1, this method is
unlikely to be suited for the stabilization of incompressible quantum phase such as Fractional
Quantum Hall [193, 194] and Mott-Insulator states with a perfectly de�ned energy and
photon number.

In this chapter we follow a di�erent direction, and focus on the possibility of implement-
ing a novel non-Markovian (i.e., frequency-dependent) incoherent pump scheme in order to
tackle the open problem of the stabilization a Mott Insulator photonic state in a dissipative
Bose-Hubbard photonic model. Frequency-dependent incoherent pumping schemes, how-
ever relatively absent from the literature until recently in the physical context of strongly
interacting photons in driven-dissipative resonator arrays, have been put forward over the
last few years as novel candidates for the quantum simulation of new many-body physics
with light. As discussed in last chapter in Sec. 1.2.3.2, one of the most striking potential
applications of this approach the possibility of stabilizing Fractional Quantum Hall states in
photonic architectures [97, 195]. While next chapter will focus on more complex frequency
dependencies involving tailored reservoirs, here we investigate the simplest case of a �narrow
bandpass' ' emission spectrum of a Lorentzian shape:

SLorentzian
em (ω) = Γ0

em

(Γp/2)2

(ω − ωat)2 + (Γp/2)2
, (2.1)

Our initial proposal [119] represents the �rst attempt of applying such kind of scheme to
the Bose-Hubbard model, and demonstrated the possibility of stabilizing a pure photonic
Mott-Insulator state (in a regime of weak inter-cavity hopping), which is another corner-
stone of the low-temperature physics of strongly correlated quantum systems. Following the
same philosophy, a more recent proposal [126] based on a slightly di�erent implementation
(although providing similar non-Markovian photonic dynamics), reached comparable con-
clusions. Our most recent manuscript [12] characterized the Mean-Field phase diagram of
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such a model and unveiled a phase transition driven by a commensurability e�ect, from a
photonic Mott state toward a coherent super�uid-like state of light.

This chapter is organized as follow: we introduce in Sec. 2.2 a quantum optics scheme
in an array of driven-dissipative nonlinear resonators with embedded incoherently pumped
two-level emitters. Projective methods are used to eliminate the emitter dynamics and write
a generalized master equation for the photonic degrees of freedom only, where the frequency-
dependence of gain introduces non-Markovian features. As a �rst step, in Sec. 2.3, we look
at the various steady-state features in a single cavity con�guration: for weak nonlinearities,
this pumping scheme provides exotic optical bistability e�ects, not induced by the presence
of a coherent incident pump, but rather by the frequency dependence of the non-Markovian
gain medium. In the blockade regime, this scheme allows for the selective generation of Fock
states with a well-de�ned photon number, which is an essential step toward the stabilization
of strongly correlated many-body phases with photons. We then move to the investigation
of the phenomenology in the many-cavity con�guration: in Sec. 2.4 we analyse some general
properties and show that the steady-state presents thermal properties when the emission
spectrum is broad with respect to Hamiltonian frequency-scales. In Sec. 2.5 we brie�y discuss
an exotic mechanism leading to the emergence of coherence in presence of �nite interactions.
In Sec. 2.6 we analyse the steady-state properties in the strong blockade regime: �rst, we
con�rm the existence of a Mott phase for weak inter-cavity hopping. We show however
that this state is not fully robust, as for a hopping constant exceeding the spectral emission
linewidth, the commensurability condition on density is not sustainable anymore and holes
are generated with the system, and analyse the one-body correlations close to the Mott
regime. Finally, in Sec. 2.7, we investigate the Gutzwiller Mean-Field phase diagram of
such a system. and unveil a Mott-to-Super�uid phase transition triggered by the same
proliferation of hole excitations involved in the depletion of the MI state. We �nd that,
at a critical value of the inter-cavity photon hopping, the system undergoes a second-order
nonequilibrium phase phase transition (of a Mott-to-Super�uid type) associated with the
spontaneous breaking of the U(1) symmetry. Unlike the equilibrium case, the transition
is always driven by commensurability e�ects for this model, and not by the competition
between photon hopping and optical nonlinearity. The corresponding phase boundary is
characterized numerically, and also accessed also analytically in the speci�c case of the
Hard-Core regime.

All the results of this Chapter come from Refs. [119, 12]. Results from the beginning of
this Chapter until Sec. 2.5 are adapted from the work [119], of which the author of this Ph.
D thesis is the �rst and main author. Results from Sec. 2.6.1 until the end of this Chapter
are adapted from the collaborative work [12] of which Alberto Biella is the �rst author. All
simulations of [12] were performed by Alberto Biella and Florent Storme, while the author
of this PhD thesis provided part of the analytical contributions and physical predictions.

2.2 The physical system and the e�ective photonic non-

Markovian description

2.2.1 The model

We consider a driven-dissipative Bose-Hubbard model for photons in an array of M coupled
nonlinear resonators/cavities of natural frequency ωcav. The experimental platform can be
a superconducting circuit or a cavity QED one. In units such that ~ = 1, the Hamiltonian
for the isolated system dynamics has the usual form [84, 29, 76, 144]:

Hph =

M∑
i=1

[
ωcava

†
iai +

U

2
a†ia
†
iaiai

]
−
∑
〈i,j〉

[
Ja†iaj + hc

]
. (2.2)

The resonators are coupled via tunneling processes with amplitude J , and we do not specify
at this stage the spatial dimensionality nor the periodicity of this arrangement. Each cavity
is assumed to contain a Kerr nonlinear medium, which induces e�ective repulsive interactions
between photons in the same cavity with an interaction constant U proportional to the Kerr
nonlinearity χ(3). Dissipative phenomena due the �nite transparency of the mirrors and
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absorption by the cavity material are responsible for a �nite lifetime of photons, which
naturally decay at a rate Γl.

The key novelty of this model with respect to earlier work consists in the di�erent mecha-
nism that is proposed to compensate for losses and replenish the photon population. Instead
of a coherent pumping or a very broad-band amplifying laser medium, we consider a con-

�guration where a set of Nat two-level emitters with a bare transition frequency ω
(n)
at is

present in each cavity. Each emitter, which can be an atom or a qubit depending on the
chosen experimental platform, is coupled to the resonator with a Rabi frequency ΩR and
is assumed to be strongly incoherently pumped toward its excited state at a rate Γp: as
we already anticipate, due to the interplay between the emitter pumping and the Rabi cou-
pling to the cavity mode, each emitter provides an incoherent frequency-dependent photonic

emission centered at the transition frequency ω
(n)
at . The irreversible optical pumping in the

excited state can be obtained, by analogy with laser physics, by using a third energy level
of the emitter (not mentioned in this simpli�ed description) with fast decay toward the �rst
excited state. Our choice of two di�erent physical mechanisms for nonlinearity and pumping
(for example, two di�erent types of two-level systems) allows us to to tune independently
photonic interactions and emission.

The free evolution of the emitters and their coupling to the cavities are described by the
following Hamiltonian terms,

Hat =

M∑
i=1

Nat∑
n=1

ω
(n)
at σ

+(n)
i σ

−(n)
i (2.3)

HI = ΩR

M∑
i=1

Nat∑
n=1

[
a†iσ
−(n)
i + aiσ

+(n)
i )

]
: (2.4)

the emitter transition frequency ω
(n)
at is assumed to be in the vicinity (but not necessarily

resonant) with the cavity mode and the emitter-cavity coupling is assumed to be weak

enough ΩR � ω
(n)
at , ωcav to be far from the ultra-strong coupling regime [37, 38] and from

phase transition of a superradiant type [201, 143, 10, 149].
As usual, the dissipative dynamics under the e�ect of the pumping and decay processes

can be described in terms of a master equation for the density matrix ρtot of the whole
emitter-cavity system,

∂tρtot =
1

i
[Hph +Hat +HI , ρtot] + L(ρtot), (2.5)

where the di�erent dissipative processes are summarized in the Lindblad super-operator
L = Ll + Lp + Lγ , with

Ll(ρtot) =
Γl

2

M∑
i=1

[
2aiρtota

†
i − a

†
iaiρtot − ρtota

†
iai

]
(2.6)

Lp(ρtot) =
Γp

2

M∑
i=1

Nat∑
l=1

[
2σ

+(l)
i ρtotσ

−(l)
i − σ−(l)

i σ
+(l)
i ρtot − ρtotσ

−(l)
i σ

+(l)
i

]
, (2.7)

Lγ(ρtot) =
γ

2

M∑
i=1

Nat∑
l=1

[
2σ
−(l)
i ρtotσ

+(l)
i − σ+(l)

i σ
−(l)
i ρtot − ρtotσ

+(l)
i σ

−(l)
i

]
, (2.8)

describing respectively the photon losses the emitter pumping and some possible spontaneous

decay of the emitters. The σ
±(n)
i operators are the usual raising and lowering operators for

the two-level n-th emitter in the i-th cavity.
In this Chapter, we will consider the simplest con�guration in which all emitters have the

same transition frequency ω
(n)
at = ωat, which as we will see, will lead to a narrow bandpass

emission spectrum of Lorentzian shape (A di�erent arrangement of the emitters frequencies
leading to a more elaborated tailored emission spectrum will be the subject of next Chapter.).
While theoretically, in this simple con�guration a single atom per cavity (Nat = 1) should
be enough to generate the frequency-dependent photonic emission, experimentally several
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emitters might be needed in order to reach the desired photonic ampli�cation. We introduce
the detuning δ = ωcav−ωat of the bare cavity frequency with respect to the emitter transition
frequency.

In the following, we shall concentrate on a regime in which the pumping of the emitters
is much faster than any other sources of dissipations (emitter spontaneous decay, photonic
injection and loss processes). First, this assumption implies that γ � Γp and thus the
relaxation of emitters in their ground-state is a negligible process. In [119] thus, we fully
neglected the term Lγ , while our most recent work [12] included it for the sake of complete-
ness of the physical description, and checked it did not bring any relevant contributions (the
various simulations within this chapter involving this term will mention it). Secondly, we
have thus that Γl � Γp, implying that photonic losses do not have the time to occur over
the re-pumping time scale 1/Γp. While this will allow some mathematical simpli�cations,
we will of course not neglect the e�ect of photonic losses which have a dramatic impact on
the long time dynamics and are an essential feature of our physical description.

Most importantly, we assume to be in a weak emitter-cavity coupling regime
√
NatΩR �

Γp, where the emitters are immediately repumped to their excited state after having injected
a photon into the cavity: in this regime, an emitter having decayed to the ground state does
not have the time to reabsorb any photon before being repumped to its excited state. In
this regime, complex cavity-QED e�ects such as Rabi oscillations do not take place and
the photon emission takes place in an e�ectively irreversible way. Under this constraint, we
will be allowed to eliminate the two-level emitters dynamics from the problem and write an
e�ective photonic master equation [21, 63] involving only the cavity degrees of freedom. We
note that the condition ΩR � Γp assumed in presence of a single atom is not su�cient, as
the Rabi coupling ΩR is expected to be enhanced by a superradiant collective behavior [49]
of the emitter reservoir which behaves then as a single macroscopic harmonic oscillator (for
Nat � 1) with e�ective Rabi coupling

√
NatΩR

1.

2.2.2 Projective methods for the derivation non-Markovian master

equations

Here we provide a brief review of the projective methods developed in [142, 213] used for
the derivation of non-local Master equations which includes the e�ect of non-Markovian pro-
cesses. More complex methods involving convolutionless non-Markovian master equations
can be found in [174, 173] (as we will be focusing in our work on a weak coupling regime
the two approaches will be equivalent). Our discussion is based on the textbook [21].

2.2.2.1 General Formalism

We consider a quantum system M which undergoes dissipative processes. As it is not
isolated, its state can not be described by a wave function but by a density matrix ρtot

evolving according to the master equation:

∂tρtot = L(ρtot(t)), (2.9)

where L is some linear �super-operator� acting on the space of density matrices. Given an
arbitrary initial density matrix ρtot(t0), the density matrix ρtot at generic time t is equal to
ρtot(t) = eL(t−t0)ρtot(t0).

Now we are only interested in some partial information of the density matrix, which can
represent some physical subsystem. This can be described by a projection operation on the
density matrix Pρtot. We call Q = 1−P the complementary projector. In order to describe
the dynamics of Pρtot, we decompose the Lindblad operator L in two parts L0 and δL such
that:  L = L0 + δL

PL0Q = QL0P = 0
P δLP = 0.

(2.10)

1In the con�guration where atoms are detuned with respect to each other (see for example next Chapter)
this severe constraint might be relaxed, as atoms with very di�erent frequencies are not able to couple
collectively to the cavity. The condition

√
NatΩR � Γp will be replaced then by the weaker assumption

that the e�ective photon emission rate Sem(ω) (introduced in next section) will have to be much smaller
than the pumping rate at any frequency: Γ0

em � Γp where Γ0
em = MaxωSem(ω).
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2.2 The physical system and the e�ective photonic non-Markovian description

Such a decomposition is always possible. In our case, L0 will contain in particular all pho-
tonic Hamiltonian contributions, and δL will contain in particular all contributions related
to the atom-photon Rabi coupling ΩR.

Then we de�ne a generalised interaction picture for the density matrix and for generic
superoperators A with respect to the evolution described by the free L0 and the initial time
t0: {

ρ̂tot(t) = e−L0(t−t0)ρtot(t)

Â(t) = e−L0(t−t0)AeL0(t−t0).
(2.11)

As discussed in [21], we can get an exact closed master equation for the projected density
matrix in the interaction picture

∂tP ρ̂tot(t) =

∫ t

t0

dt′Σ(t, t′)P ρ̂tot(t
′), (2.12)

which translates to

∂tPρtot(t) = L0(ρtot(t)) +

∫ t

t0

dt′Σ̃(t− t′)Pρtot(t
′) (2.13)

in the Schrodinger picture. In the interaction picture, the self energy operator Σ is de�ned
as:

Σ(t, t′) =

∞∑
n=2

∫ t

t′

∫ t1

t′
..

∫ tn−1

t′
dt1..dtn (2.14)

PδL̂(t)QδL̂(t1)QδL̂(t2)...QδL̂(tn)QδL̂(t′)P

and results from the coherent sum over the processes leaving from P, remaining in Q and
then coming back �nally to P. In the Schrodinger representation, we have:

Σ̃(t− t′) = eL0(t−t0)Σ(t, t′)e−L0(t′−t0) = Σ(0, t′ − t)eL0(t−t′). (2.15)

We call τc = 1/∆ω the characteristic decay time/inverse linewidth for the self energy
Σ̃(t− t′), which corresponds in general to the correlation time of the bath, and we estimate
the rate of the dissipative processes induced by the perturbation δL and acting on the
projected density matrix Pρ as Γ ∼

∫∞
0
dτΣ(0,−τ). In our proposal one has τc = 1/Γp

and Γ = Γ0
em, where Γ0

em is the maximum photonic emission rate (it will be deduced a
posteriori by derivation of the photonic projected master equation). We put ourselves in
the weak coupling regime in which the evolution of the projected density matrix in the
interaction picture is almost constant over that time τc, i.e., Γ� ∆ω (this will the case for
us as we assumed ΩR � Γp). Furthemore, if t − t0 � τc then the integral in Eq. (2.12)
can be extended from −∞ to t. From this equation and from (2.15), by going back in the
Schrodinger picture we get an equation of evolution for the density matrix which is local in
time:

∂tPρtot(t) =

[
L0 +

∫ ∞
0

dτΣ(0,−τ)

]
Pρtot(t) = Le�Pρtot(t), (2.16)

with

Le� = L0 +

∫ ∞
0

dτΣ(0,−τ). (2.17)

It is worth stressing that while the bath is Markovian with respect to the dissipative processes
induced by the perturbation

∫∞
0
dτΣ(0,−τ), no Markovian approximation has been made

with respect to the dynamics due to L0, which can still be fast. For the speci�c system under
consideration in this work, this means that the emission rate Γ0

em will have to be slow with
respect to the gain bandwidth set by the atomic pumping rate Γp

2. However no restriction
is to be imposed on the parameters U , J and ωcav − ωat of the Hamiltonian, which can be
arbitrarily large. This means that the physics can be strongly non-Markovian with respect
to the Hamiltonian photonic dynamics.

2We will also have Γl � Γp but for the physical reason that Γl should be comparable or small with
respect to Γ0

em in order to obtain a non-negligible photonic population
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2.2.2.2 Application to the photonic driven-dissipative array

With the notation of our proposal of implementation, the systemM will correspond to the
whole {photons+emitters} system. We choose the projector in the form

Pρtot =
∣∣∣{e(n)

i }
〉〈
{e(n)
i }

∣∣∣⊗ Trat(ρtot), (2.18)

where we performed a partial trace over the embedded atoms in all cavities, and then made
the tensor product of the density matrix and the atomic density matrix with all atoms in
the excited state. We chose this particular projector because in the weak photon-emitter
coupling regime, we expect the emitters to be repumped almost immediately after having
emitted a photon in the resonator array, and thus to be most of the time in the excited state.
Moreover this projection operation gives us direct access to the exact photonic density matrix
Trat(ρtot), and thus we do not lose any information on photonic statistics.

With the notation of the previous section we have:

L(ρtot) = −i [Hph +Hat +HI, ρtot] + Ldiss(ρtot), (2.19)

with

Ldiss = Lp + Ll, (2.20)

where the emitter spontaneous decay contribution has been neglected as explained in Sec. 2.2.1.
We decompose L in two contributions. The �rst one is

L0(ρtot) = −i [Hph +Hat, ρtot] + Ll(ρtot)−A(ρtot) + PAQ(ρtot) (2.21)

where

A(ρtot) =
Γp

2

L∑
i=1

Nat∑
n=1

[
σ
−(n)
i σ

+(n)
i ρtot + ρtotσ

−(n)
i σ

+(n)
i

]
. (2.22)

The last term in the expression of Eq. (2.21) comes from the fact that the pumping term A
in L0 does not verify the condition (2.10): as a result, we have to remove the part un�xed
by projector and put it in the other operator :

δL(ρtot) = −i [HI, ρtot] +
Γp

2

L∑
i=1

Nat∑
n=1

2σ
+(n)
i ρtotσ

−(n)
i − PAQ(ρtot). (2.23)

These two operators then satisfy to the conditions (2.10), and we can apply the projection
method to get the evolution of Pρ(t), that is of Trat(ρ)(t). More precisely, we compute the
�rst non-vanishing contribution to the self energy integral

∫∞
0
dτΣ(0,−τ) in powers of the

weak parameters
√
NatΩR/Γp and Γl/Γp, and derive thus the expression for the e�ective

dissipator (2.17). All details of the derivation can be found in App. B.

2.2.3 A non-Markovian e�ective photonic master equation

Under the constraints
√
NatΩR,Γl � Γp, the projective methods sketched in the previous

section allow to trace out the atomic degrees of freedom and to derive the following photonic
master equation:

∂tρ = −i [Hph, ρ(t)] + Ll + Lem, (2.24)

with

Ll =
Γl

2

M∑
i=1

[
2aiρa

†
i − a

†
iaiρ− ρa

†
iai

]
, (2.25)

Lem =
Γ0

em

2

M∑
i=1

[
ã†iρai + a†iρãi − aiã

†
iρ− ρãia

†
i

]
. (2.26)

describing photonic losses and emission processes, respectively. While the loss term has a
standard Lindblad form at rate Γl, the emission term keeps some memory of the emitters
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2.2 The physical system and the e�ective photonic non-Markovian description

dynamics as it involves modi�ed lowering and raising operators

ãi =
Γp

2

∫ ∞
0

dτ e(−iωat−Γp/2)τai(−τ), (2.27)

ã†i = [ãi]
†

(2.28)

which contain the photonic hamiltonian dynamics during the emitter re-pumping

ai(τ) = eiHphτ ai e
−iHphτ : (2.29)

indeed, in the limit we are considering in which photonic losses are slow with respect to the
pumping rate of the emitters, those dissipative process can be neglected over the integration
time ∝ 1/Γp.

The Fourier-like integral in Eqs. (2.27),(2.28) is responsible for the frequency selectivity
of the emission, as the emission rate will be maximum when the free evolution of ai(τ)
occurs at a frequency close to the emitters one ωat. A deeper physical insight on those
modi�ed jump operators can be obtained by looking at their matrix elements in the basis
of eigenstates of the photonic hamiltonian: we consider two eigenstates |f〉 (resp. |f ′〉) with
N (resp. N + 1) photons and energy ωf (resp. ωf ′). After elementary manipulations,
we see that the emission amplitude follows a Lorentzian law as a function of the detuning
between the frequency di�erence of the two photonic states ωf ′f = ωf ′−ωf and the emitters
transition frequency ωat,

〈f | ãi |f ′〉 =
Γp/2

−i(ωf ′f − ωat) + Γp/2
〈f | ai |f ′〉 , (2.30)

〈f ′| ãi† |f〉 =
Γp/2

+i(ωf ′f − ωat) + Γp/2
〈f ′| a†i |f〉 .. (2.31)

Upon insertion of Eq. (2.30) into the master equation (2.24), one can associate the real part
of Eq. (2.30) to an e�ective emission rate

Sem(ωf ′f ) = Γ0
em

(Γp/2)2

(ωf ′f − ωat)2 + (Γp/2)2
, (2.32)

with a Lorentzian frequency dependence, while the imaginary part can be related to a
frequency shift of the photonic states under the e�ect of the population-inverted emitters.
This interpretation becomes the clearest in the secular approximation, as in this regime the
Master Eq. (2.24) can be rewritten in the equivalent form containing a Lindblad contribution
with the frequency-dependent emission rate given by Eq. (2.32), as well as an additional an
Hamiltonian correction encapsulating the e�ect of the imaginary part of Eq. (2.30) (see
App. C for the explicit form of the Master equation and the corresponding derivation).

The width of the Lorentzian is set by the pumping rate Γp, that is by the autocorrelation
time τp = 1/Γp of the emitter seen as a frequency-dependent emission bath. The peak
emission rate exactly on resonance is equal to

Γ0
em = NatΓ

at
em =

4NatΩ
2
R

Γp
. (2.33)

While being in the regime Γp �
√
NatΩR is a posteriori equivalent to the assumption that

the photonic emission rate is much slower than the emitters repumping rate (Γ0
em � Γp), no

constraint need being imposed on the parameters J , U and δ = ωcav − ωat of the photonic
Hamiltonian, which can be arbitrarily large: this will allow for important non-Markovian
e�ects. Whereas an extension of our study to the Γl & Γp regime would only introduce
technical complications, entering the Γ0

em & Γp regime is expected to dramatically modify
the physics, as emitters could exchange photons with the cavity at such a fast rate that they
do not have time to be repumped to the excited state in between two emission events. As
a result, reabsorption processes and Rabi oscillations would be then possible, and nonlinear
saturation e�ects related to the anharmonic nature of the two-level systems would become
relevant. Entering this regime would considerably complicate the theoretical description and
is beyond the scope of this work.
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2.3 Single cavity physics

In this section we focus on the single cavity physics of the non-Markovian theory de-
rived in Sec. 2.2.3. After showing explicitely the analytical solution for the steady-state
of Eq. (2.24) in this particular con�guration, we investigate the steady-state properties for
di�erent strengths of photon-photon interactions. The main result of this section is given
in Sec. 2.3.3, where we demonstrate the possibility of stabilizing photonic Fock states in the
strong blockade regime.

2.3.1 Single cavity solution

A special attention will be paid to the steady-state ρ∞ of the e�ective photonic non-
Markovian master equation (2.24):

0 = −i [Hph, ρ∞] + Ll (ρ∞) + Lem (ρ∞) . (2.34)

In our speci�c case of a single cavity, the photonic states are labelled by the photon number
N and have an energy

ωN = Nωcav +
1

2
N(N − 1)U. (2.35)

Correspondingly, the N → N + 1 transition has a frequency

ωN+1,N = ωcav +NU, (2.36)

and the corresponding photon emission rate is

Sem(ωN+1,N ) = Γ0
em

(Γp/2)2

(ωN+1,N − ωat)2 + (Γp/2)2
. (2.37)

As no coherence can exist between states with di�erent photon number N , the station-
ary density matrix is diagonal in the Fock basis, ρ∞ = δN,N ′πN with the populations πN
satisfying

(N + 1)ΓlπN+1 − (N + 1)Sem(ωN+1,N )πN +NSem(ωN,N−1)πN−1 −NΓlπN = 0, (2.38)

where the two last terms of course vanish for N = 0. As only states with neighboring N are
connected by the emission/loss processes, detailed balance is automatically enforced in the
stationary state, which imposes the simple condition on the populations,

(N + 1)ΓlπN+1 − (N + 1)Sem(ωN+1,N )πN = 0 (2.39)

which is straightforwardly solved in terms of a product,

πN = π0

N−1∏
M=0

Sem(ωM+1,M )

Γl
=

(
Γ0

em

Γl

)N N−1∏
M=0

(Γp/2)2

(ωM+1,M − ωat)2 + (Γp/2)2
π0. (2.40)

2.3.2 A non-Markovian induced optical bistability

We now investigate the weakly interacting regime in a single cavity con�guration (namely
U � Γp).

First, for a vanishing nonlinearity U = 0, all transition frequencies ωN+1,N are equal to
the bare cavity frequency ω0 and the populations of the di�erent N states have a constant
ratio

πN+1

πN
=

Γ0
em

Γl

(Γp/2)2

δ2 + (Γp/2)2
, (2.41)

where we remind that δ = ωcav − ωat. For weak pumping and/or large detuning, one has

Γ0
em

(Γp/2)2

δ2 + (Γp/2)2
< Γl, (2.42)
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Figure 2.1: (a) Emission vs. loss rate as a function of the detuning from the emitters
frequency ωat: the three curves are for peak emission Γ0

em larger (red dash-dotted), equal
(black dashed), smaller (green solid) than the loss rate Γl. (b-d) Populations πN of the
N -photon state as a function of N in the three cases ω2 ≤ ωcav (b), ω1 ≤ ωcav ≤ ω2 (c),
ωcav ≤ ω1 (d). In the three panels, the open dots are the numerical results of the photon-
emitter theory, while the solid line is the prediction of the analytical purely photonic theory;
the dashed curves show the ratio Sem(ωN+1,N )/Γl as a function of N . Parameters: δ/U = 4
(b), −2 (c), −6 (d). In all panels, 2U/Γp = 0.2, 2Γl/Γp = 0.0006, 2ΩR/Γp = 0.02.

so the density matrix for the cavity shows a monotonically decreasing thermal occupation
law. For strong pumping and close to resonance, one can achieve the regime where the
emission overcompensates losses and the cavity mode starts being strongly populated:

Γ0
em

(Γp/2)2

δ2 + (Γp/2)2
> Γl. (2.43)

The transition between the two regimes is the usual laser threshold, but our mathematical
description Eq. (2.24) does not include the standard gain saturation mechanism that usually
serves to stabilize laser oscillation above threhsold [63, 170]: the population would in fact
show a clearly unphysical monotonic growth for increasing N , as no mechanism limiting the
e�ciency of emission has been included. Physically, those saturations terms would provide
from a limited e�ciency of the atomic optical repumping scheme: for an high enough photon
number, stimulated emission leads to a non-vanishing occupancy of the atomic ground-
state which should reduce the photon emission rate as well as induce the presence of a
re-absorption term in the purely photonic master equation (2.24). Mathematically, these
corrections would correspond to higher order contributions in

√
NatΩat/Γp (not included

here) in the series expansion of the self energy (2.14) involved in the derivation of Eq. (2.24).
As we will see now, the presence of a �nite interaction U and its interplay with the frequency-
dependent emission will provide an alternative saturation mechanism which will regularize
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Figure 2.2: Purely photonic simulation of the two-time coherence function g(2)(τ) in the
weakly nonlinear regime. Parameters U/Γp = 0.1, Γl/Γp = 0.03, Γ0

em/Γp = 0.04, δ = −6U
as in Fig.2.1(d).

the steady-state above threshold.

Indeed, for U > 0 the e�ective transition frequency depends on the number of photons,

ωN+1,N = ωcav +NU ≥ ωcav, (2.44)

so the gain condition

Γ0
em

Γl

(Γp/2)2

(ωN+1,N − ωat)2 + (Γp/2)2
≥ 1 (2.45)

can be satis�ed in a �nite range of photon numbers only, as it is illustrated in Fig. 2.1 a).
As a consequence, the presence of an increasing number of photons in the cavity is able to
progressively blue shift the transition frequencies which ultimately fall out of the amplifying
frequency domain (de�ned as Sem(ω) � Γl) above a critical photon number N∗, and even
a weak nonlinearity U is able to stabilize the system for any value of Γ0

em (in spite of the
absence of any gain saturation mechanism).

For Γ0
em < Γl, losses always dominate. For Γ0

em > Γl, the ampli�cation condition is
instead satis�ed in a range of frequencies [ω1, ω2] around ωat. Under the weak nonlinearity
condition U � Γp, the [ω1, ω2] range typically contains a large number of transition fre-
quencies ωN+1,N at di�erent N . Three di�erent regimes can then be identi�ed depending
on the position of the cavity frequency ωcav with respect to the [ω1, ω2] range.

(i) If ω2 ≤ ωcav, then the gain condition is never veri�ed, and the population πN shown
in Fig.2.1(b) is a monotonically decreasing function of N : in this regime, the state of the
cavity �eld is very similar to a thermal state, as it usually happens in a laser below threshold.
(ii) If ω1 ≤ ωcav ≤ ω2, the population πN shown in Fig.2.1(c) is an increasing function for
small N , shows a single maximum for N ' N̄ = (ω2 − ωcav)/U , and �nally monotonically
decreases for N > N̄ .

The phenomenology is the richest in the regime (iii) where ωcav ≤ ω1. In this case, for
small N the population πN decreases from its initial value π0 until the nonlinearly shifted
frequency enters in the gain interval for N ' N̄ ′ = (ω1−ωcav)/U . After this point πN starts
increasing again until it reaches a local maximum at N ' N̄ = (ω2 − ωcav)/U . Finally, for
even larger N it begins to monotonically decrease. An example of this behaviour is shown
in Fig.2.1(d).

The existence of two well separate local maxima at N = 0 and N ' N̄ in the photon
number distribution πN suggests that the incoherently driven nonlinear resonator exhibits
a sort of bistable behaviour: when it is prepared at one maximum of the photon number
distribution πN , the system is trapped in a metastable state localized in a neighborhood of
this maximum for a macroscopically long time. Switching from one metastable state to the
other results is only possible as a result of a large �uctuation, so it has a very low probability,
typically exponentially small in the photon number di�erence between the two metastable
states.
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This bistable behavior is clearly visible in the temporal dependence of the delayed two-
photon correlation function

g(2)(τ) =
〈a†(t) a†(t+ τ) a(t+ τ) a(t)〉ss
〈a†(t) a(t)〉ss〈a†(t+ τ) a(t+ τ)〉ss

: (2.46)

that is plotted in Fig. 2.2: at short times, the value of g(2) is determined by a weighted
average of the contribution of the two maxima according to the stationary πN . After a
quick transient of order 1/Γ(em/l), which corresponds to a fast local equilibration of the

probability distribution around each of its maxima, the g(2) correlation function slowly
decays to its asymptotic value 1 on a much longer time-scale mainly set by the exponentially
long switching time from one maximum to the other

It is worth emphasizing that the present mechanism for optical bistability bears impor-
tant di�erences from the dispersive or absorptive optical bistability phenomena discussed in
textbooks [19, 146], i.e., in the case we presented in Sec. 1.2.3.1 of strongly interacting pho-
tons with a coherent drive [115, 125]: on one hand there is some analogy to dispersive optical
bistability in the sense that the intensity-dependence of the refractive index is responsible
for a frequency shift of the cavity resonance; on the other hand the frequency-selection is
not provided by the resonance condition with a monochromatic coherent incident �eld, but
rather by the competition between frequency-dependent incoherent emission and Markovian
losses.

2.3.3 Photonic Fock states, premises of an incompressible quantum

�uid of light

We now focus on the photon blockade regime U � Γp, for which the nonlinearity is so large
that a change of photon number by a single unity has a sizable e�ect on the emission rate
Sem(ωN+1,N ).

The ensuing physics is most clear in the regime when the maximum emission rate is
large but only a single transition �ts within the emission lineshape: these assumptions are
equivalent to imposing that

Γ0
em

Γl
� 1 and

Γ0
em

Γl

Γ2
p

U2
� 1 (2.47)

with the further condition that the emission is resonant with the N0 → N0 + 1 transition,

ωat = ωcav +N0U. (2.48)

As a result, only this last transition is dominated by emission, while all others are dominated
by losses.

In the strong blockade regime, the bimodal stationary distribution πN of Fig. 2.1 d)
becomes therefore sharply peaked at two speci�c values, N = 0 and at N = N0. Examples
of this physics are illustrated in Fig. 2.3: the two peaks are always clearly visible, but
depending on the parameters their relative height can be tuned to di�erent values almost
at will. It is however important to note that having a sizeable stationary population in the
N = N0 peak requires quite extreme values of the parameters as population would naturally
tend to accumulate at N = 0 and this di�culty turns out to be exponentially harder for
larger N0.

The physics underlying this behaviour can be easily explained in terms of the asymmetry
in the switching mechanisms leading from N = 0 to N = N0 and viceversa. The former
process requires in fact a sequence of several unlikely emission events from N = 0 to N =
N0− 1 as emission is favoured only in the last step. On the other hand, decay from N = N0

occurs as a consequence a single unlikely loss event from N = N0 − 1 to N = N0 − 2: as
soon as the system is at N = N0 − 2, it will quickly decay to N = 0.

The rate Γacc of such an accident can be estimated as follows: the probability that the
system in N = N0−1 decays to N = N0−2 is a factor (N0 − 1)Γl/(N0Γ0

em) smaller than the
one of being repumped to N = N0. As the rate at which the system decays from N = N0

to N0 − 1 is approximately equal to N0Γl, one �nally obtains

Γacc = N0Γl
(N0 − 1)Γl

N0Γ0
em

� N0Γl. (2.49)
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Figure 2.3: Selective generation of a N0 = 2 photon (upper panel) and N0 = 3 photon (lower
panel) Fock state: Population πN as a function of N for di�erent pumping parameters.
The points are the result of a purely photonic simulation, the lines are a guide to the
eye. Left panel parameters: for all curves δ = −U , 2ΩR/Γp = 0.01, and then for each
particular curve 2Γl/Γp = 2 10−5 (blue solid line), 2 10−6 (green, dashed line), 2 10−7 (red,
dash-dotted line), 2 10−8 (magenta, dotted line). 2U/Γp = 103/2 (blue solid line), 102

(green, dashed line), 105/2 (red, dash-dotted line), 103 (magenta, dotted line). Right panel
parameters: for all curves δ = −U , 2ΩR/Γp = 0.01, and then 2Γl/Γp = 5 10−8 (blue solid
line), 5 10−9 (green, dashed line), 5 10−10 (red, dash-dotted line), 5 10−11 (magenta, dotted
line). 2U/Γp = 2 105/2 (blue solid line), 2 103 (green, dashed line), 2 107/2 (red, dash-dotted
line), 2 104 (magenta, dotted line). The goal of these choices of parameters was to control
the steady-state ratios P (N+1)/P (N) = 10−2 and P (N)/P (0) = 0.1, 1, 10, 100 (blue, green,
red, magenta).

This longer time scale τacc = Γ−1
acc is clearly visible in the long tail of the time-dependent

g(2)(t) that is plotted in the left panel of Fig. 2.4. The quick feature at very short times
corresponds to the emission rate Γ0

em.
From a slightly di�erent perspective, we can take advantage of the slow rate of accidents

Γacc to selectively prepare a metastable state with N = N0 photons even in parameter
regimes where the N = 0 state would be statistically favoured at steady-state. Though the
state will eventually decay to N = 0, the lifetime of the metastable N = N0 state can be
long enough to be useful for interesting experiments: The idea to prepare the state with N0

photons is to inject a larger number N > N0 of photons into the cavity: the system will
quickly decay to the N = N0 state where the system remains trapped with a lifetime Γ−1

acc.
The e�ciency of this idea is illustrated in the right panel of Fig.2.4 where we plot the time

evolution of the most relevant populations πN . The initially created state with N = Nin
photons quickly decays, so that population accumulates into N = N0 on a time-scale of
the order of Γl; the eventual decay of the population towards N = 0 will then occur on a
much longer time set by Γacc. It is worth noting that this strategy does not require that the
initial preparation be number-selective: it will work equally well if a wide distribution of Nin
are generated at the beginning, provided a sizable part of the distribution lies at N > N0.
Furthermore, this idea removes the need for extreme parameters such as the ones used in
Fig.2.3 to obtain a balance between π(N) and π(0): as a result, the di�culty of creating a
(metastable) state of N0 photons is roughly independent of N0.

Following on an alternative approach, the characteristic time scale τacc could be fur-
ther enhanced by adding a second type of emitters whose transition frequency is tuned to
quickly and selectively emit photons on the N − 2 → N − 1 transition. In this way, the

accident rate can be e�ciently reduced to Γ
(2)
acc ' Γl

(
Γl/Γ

0
em

)2 � Γacc. By repeating the
mechanism on k transitions, one can suppress the accident rate in a geometrical way to

Γ
(k)
acc ' Γl

(
Γl/Γ

0
em

)k � Γacc. Finally, the Fock state with N0 photons can be fully stabilized
to an in�nite lifetime and no problem of metastability if N0 di�erent emitter species are
included so to cover all transitions from N = 0 to N = N0. This idea is explored in the next
Chapter where we analysed, among other features, the single-cavity steady-state in presence
of a tailored square-shaped emission spectrum allowing to cover all photonic transitions and
fully stabilize arbitrary Fock states with an high e�ciency.
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Figure 2.4: Left panel: Purely photonic simulation of the two-time coherence function
g(2)(τ) for a strongly nonlinear regime in a (metastable) N0 = 2 photon selection regime.
The inset shows a magni�ed view of the short time region. Parameters: 2U/Γp = 100,
2Γl/Γp = 2 10−3, 2Γ0

em/Γp = 0.2, δ = −U ; in the language of Fig.2.3, the present parameters
would correspond to a regime where the N = 0, 2 states are almost equally occupied. Right
panel: Preparation of the metastable state at N0 = 2 starting from a N = 4 π(4) (red
dot-dashed) π(2) (green dashed) π(0) (blue solid). Same parameters as in Fig.2.3.

These results show the potential of this novel photon number selection scheme to obtain
light pulses with novel nonclassical properties: for instance, upon a sudden switch-o� of
the cavity mirrors, one would obtain a wavepacket containing an exact number of photons
sharing the same wavefunction. With respect to the many other con�gurations discussed in
the recent literature to produce N -photon Fock states and photon bundles [128, 163, 145],
our proposal has the advantage of giving a deterministic preparation of a N -photon Fock
state in the cavity, which can then be manipulated to extract light pulses with the desired
quantum properties.

2.4 A preliminary result on pseudo-thermalization

After having discussed a number of interesting features that occur in the simplest case
of a single-cavity, we are now in a position to start attacking the far richer many-cavity
case. Before moving to the discussion of the Mott Insulator physics (which will be the
subject of Sec. 2.6), we discuss some general properties of the steady-state not relying par-
ticularly on the speci�c choice of a Hamiltonian Hph. In particular we unveil an exotic
�pseudo-thermalization� e�ect occuring in the weakly non-Markovian regime where Hamil-
tonian energy scales are relatively small with respect to the linewidth Γp of the emission
spectrum.

2.4.1 Markovian regime: in�nite temperature state

We begin by considering the Markovian limit of the theory, which is recovered for Γp =∞,
i.e. for a frequency-independent gain. In this case, the emission term of the master equation
for photons Eq. (2.26) reduces to the usual Lindblad form

Lem =
Γ0

em

2

L∑
i=1

[
2a†iρai − aia

†
iρ− ρaia

†
i

]
. (2.50)

For a single cavity, the stationary state is immediately obtained as

πN =
1

1− Γ0
em

Γl

(
Γ0

em

Γl

)N
: (2.51)

a necessary condition for stability for this system is of course that Γ0
em < Γl. For Γ0

em > Γl

ampli�cation would in fact exceed losses and the system display a laser instability: while a
correct description of gain saturation is beyond the purely photonic theory, the full atom-
cavity theory would recover for this model the standard laser operation [63, 21].
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For larger arrays of L sites, a straightforward calculation shows that in the Markovian
limit the stationary matrix keeps a structureless form,

ρ∞ =
1

Z

(
Γ0

em

Γl

)N̂
, (2.52)

where N̂ =
∑
i a
†
iai is the total photon number operator, and

Z =
1(∑

N

(
Γ0

em

Γl

)N)L . (2.53)

The validity of this result can be veri�ed straightforwardly: on one hand, ρ∞ can be ex-
preessed as a series expansion in powers of N̂ and thus trivially commutes with the par-

ticle number preserving Hamiltonian Hph. On the other hand, ρ∞ = 1
Z

∏
i

(
Γ0

em

Γl

)a†iai
can

be written as a product of the local solutions of the single site driven-dissipative prob-
lem, and thus also cancels the full dissipator: [Lem + Ll] (ρ∞) = 0: one has thus that
−i [Hph, ρ∞] + [Lem + Ll] (ρ∞) = 0.

This exact analytical result shows that independently of the number of cavities and the
details of the Hamiltonian, in the Markovian limit the density matrix in the stationary state
corresponds to an e�ective Grand-Canonical ensemble at in�nite temperature βeff = 0 with
a fugacity z = eβeffµ = Γ0

em/Γl determined by the pumping and loss conditions only: the
steady-state does not display much interesting physics as it is Hamiltonian independent,
and all states |f〉 of a given N-photon sub-manifold are equally populated. In the particular
case of the Bose-Hubbard model, the steady state does not depend neither on the tunneling
amplitude J nor on the photon-photon interaction constant U .

2.4.2 E�ective Grand-Canonical distribution in a weakly non-Markovian

regime

The situation changes as soon as some non-Markovianity is included in the model. In this
section we start from the weakly non-Markovian case where all relevant transitions adding
one photon have a narrow distribution around the bare cavity frequency, |ωf ′f −ωcav| � Γp

(i.e., U, J � Γp in the speci�c case of the BH model), and show that in this regime the
steady-state presents arti�cial thermal properties.

2.4.2.1 Secular regime

We start by assuming a secular limit where photonic dissipative processes are very slow
with respect to Hamiltonian dynamics (i.e., U, J � Γ0

em, Γl in the speci�c case of the BH
model), so that the non-diagonal terms of the density matrix in the photonic hamiltonian
eigenbasis oscillate at a fast rate and are thus e�ectively decoupled from the (slowly varying)
populations. In this limit, we can safely assume that all coherences vanish and we can restrict
our attention to the populations. This somehow critical approximation will be justi�ed a
posteriori in the next subsection, where we treat perturbatively the coupling of populations
to coherences and show both analytically and numerically that in the weakly markovian
regime, their contribution is of higher order in the 'non-markovianity' parameter 1/Γp and
therefore can be safely neglected.

Under these assumptions, the transfer rate on the |f ′〉 → |f〉 transition where one photon
is lost from N + 1 to N has a frequency-independent form

Tf ′→f = Γl |〈f | ai |f ′〉|
2
, (2.54)

while the reverse emission process depends on the detunings ∆f ′f = ωf ′f − ωcav and δ =
ωcav − ωat as

Tf→f ′ = Γ0
em

∣∣∣〈f ′| a†i |f〉∣∣∣2 (Γp/2)2

(∆f ′f + ωcav − ωat)2 + (Γp/2)2

' Γ̃0
em

∣∣∣〈f |′ a†i |f〉∣∣∣2 [1− βeff∆f ′f +O (∆f ′f )
2
]
, (2.55)
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with

Γ̃0
em =

(Γp/2)
2

(ωcav − ωat)2 + (Γp/2)
2 Γ0

em, (2.56)

βeff =
2(ωcav − ωat)

(ωcav − ωat)2 + (Γp/2)
2 . (2.57)

In this expression, the weakly non-Markovian regime is characterized by having |βeff∆f ′f | �
1: in this case, the square bracket in Eq. (2.55) can be replaced with no loss of accuracy by
an exponential function of ∆f ′f

1− βeff∆f ′f ' e−βeff∆f′f , (2.58)

which immediately leads to a Grand-Canonical form of the stationary density matrix

ρ∞ =
1

Ξ
eβeffN̂µe−βeffH : (2.59)

indeed, in the secular approximation the quantum dynamics is well described by a diagonal
classical stochastic process representing the probability transfer between the various eigen-
states of Hph, and the probability distribution provided by Eq. (2.59) veri�es the detailed
balance condition

Tf ′→fπf ′ − Tf→f ′πf =
∣∣〈f ′| a† |f〉∣∣2

Γl
1

Ξ

(
Γ̃0

em

Γl
eβeffωcav

)N+1

e−βeffωf′ +

− Γ̃0
em e−βeff(ωf′f−ωcav) 1

Ξ

(
Γ̃0

em

Γl
eβeffωcav

)N
e−βeffωf

 = 0. (2.60)

Here the e�ective chemical potential

µ =
1

βeff
log

(
Γ̃0

em

Γl

)
+ ωcav (2.61)

and an e�ective temperature Trmeff = 1/βeff (in units of kB = 1) are arti�cial parameters
depending on the spectral properties of the various reservoirs. Most remarkably, even if
each transition involves a small deviation ∆f ′,f � Teff from the bare cavity frequency
ωcav, the cumulative e�ect of many such deviations can have important consequences for
large photon numbers, so to make the stationary distribution strongly non-trivial (leading
in particular, to dynamical stability above the lasing threshold: the emergence of Bose-
Einstein Condensation in this context is the subject of Chap. 4). Remarkably, both positive
and negative temperature con�gurations can be obtained from Eq. (2.57) just by tuning the
peak emission frequency ωat either below or above the bare cavity frequency ωcav.

However it is crucial to keep in mind that this thermal-like distribution does not arises
from any true thermalization process, but is a consequence of the speci�c form chosen for the
pumping and dissipation: a subtle interplay between the frequency dependence of losses and
emission processes allows to mimic the e�ect of a single thermalized bath in a local spectral
region around ωcav. This novel e�ect, that we choose to call �pseudo-thermalization�, implies
that under very speci�c conditions, a quantum system in contact with an highly non-thermal
environment can present all the properties of a thermalized system, at least at a static level.
In order to complete this statement, one should also check the validity of the Fluctuation
Dissipation theorem (FDT) [113] which allow to assess the level of thermalization also at
a dynamical level (We will explore at length these aspects in Chapter. 4). A numerical
test of pseudo-thermalization for a two-resonator system with a strong pumping Γp � U, J
and a large enough photon number so to induce appreciable nonlinear e�ects is shown
in Fig. 2.5. The results of this comparison are displayed in the left and central panels:
excellent agreement between an exact resolution of the photonic master equation and the
grand canonical ensemble ansatz is found in both the average photon number and the �rst-
order coherence. At higher U ' Γp predictible deviations from the thermal predictions
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Figure 2.5: Left and center panels: average number of photons n1 = 〈a†1a1〉 (left) and

spatial coherence g
(1)
1,2 = 〈a†1a2〉/〈a†1a1〉 (center) in a two cavity system with small U/Γp

and J/Γp as a function of the non linearity U at �xed Γp. In red dots, exact resolution of
the photonic master equation, and in black solid line the grand canonical ensemble ansatz.
Parameters : 2J/Γp = 0.02, 2Γl/Γp = 0.002, 2Γ0

em/Γp = 0.0014, 2δ/Γp = 0.6. Right panel:
purely photonic simulation of the relative quantum coherence between two arbitrarily chosen
two-photon eigenstates ρij/

√
ρiiρjj as a function of 1/Γp (the result does not depend on

the speci�c eigenstates considered). As expected, this coherence vanishes in 1/Γ2
pump in the

Markovian limit 1/Γp → 0. The value above 1 for large 1/Γp signals breakdown of positivity
of the density matrix as we move out of the validity regime of the purely photonic master
equation. Parameters: J/Γl = 1, Γ0

em/Γl = 0.5, δ = −Γl, U/Γl = 2.

are found as we fall out of the weakly non-Markovian approximation. In particular, the

deviations at increasing U/Γp become more quickly visible in the �rst order coherence g
(1)
1,2

since, in contrast with 〈n1〉, the non-vanishing value g
(1)
1,2 ' 0.036 ∝ J/Γp obtained at U = 0

already stems from the thermal signature arising from non-Markovian e�ects (at T = ∞,

i.e., in the Markovian case, one would have g
(1)
1,2 = 0).

The presence of a thermal signature strongly relies on the assumption that the Hamil-
tonian frequency scales (U, J for the BH model) are weak with respect to the gain medium
emission linewidth Γp. This implies automatically that the resulting e�ective temperature
Teff is also large with respect to the U and J , and that pseudo-thermalization is valid
only in the semi-classical regime, at least for our speci�c choice of a Lorentzian frequency-
dependence emission spectrum. In a further study by [171] (which recovered independently
our initial result), the author proposed to extend the detailed balance relation to a broader
frequency range by engineering more complex reservoirs of emitters: theoretically, this im-
provement would allow in particular to lift the constraint of an hot temperature and access
thus the quantum regime. However, while [171] was focusing on engineering rather hot ar-
ti�cial temperatures in view of accelerating the kinetics of quantum annealing operations
in quantum circuits, a direct experimental application of this method to the stabilization
of equilibrium-like strongly correlated quantum phases appears less realistic: indeed in the
proposal of [171] reproducing the e�ect of a low temperature Teff � U, J would necessarily
involve an extremely large number of emitters and would be technologically challenging.
An alternative approach allowing to reproduce the e�ect of a zero temperature involving
relatively simple reservoirs will be the subject of next Chapter.

2.4.2.2 Beyond the secular approximation

In the weakly non-Markovian regime, the validity of the e�ective Grand-Canonical descrip-
tion can be extended outside the secular approximation according to the following arguments.
As a �rst step, we decompose the master equation as

dρ

dt
= [M0 + δM]ρ, (2.62)
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where the super-operatorsM and δM act on the density matrix ρ as

M0[ρ] = −i [H, ρ]+
Γl

2

k∑
i=1

[
2aiρa

†
i − a

†
iaiρ− ρa

†
iai

]
+

Γ̃0
em

2

k∑
i=1

[
â†iρai + a†iρâi − aiâ

†
iρ− ρâia

†
i

]
,

(2.63)
and

δM[ρ] =
Γ̃0

em

2

k∑
i=1

[
δa†iρai + a†iρδai − aiδa

†
iρ− ρδaia

†
i

]
, (2.64)

ã†i =
Γ̃0

em

Γ0
em

(
â†i + δa†i

)
. (2.65)

Here,

〈f ′| â†i |f〉 =

(
e−βeff∆f′f − iωcav − ωat

Γp

)
〈f ′| a†i |f〉 (2.66)

contains the real part of the Fourier transform of the memory kernel of Eq. (2.31) up to �rst
order in ∆f ′,f ,

〈f ′| δa†i |f〉 =
Γp→∞

〈f ′| a†i |f〉

(
−i∆f ′f

Γp
+O

(
∆f ′,f

Γp

)2
)
. (2.67)

contains the �rst order correction related to the imaginary part as well as all the remaining
higher order contributions we did not include in Eq. (2.66). We can straightforwardly show
by an exact calculation (not relying on the secular approximation), that the grand canonical
distribution is a steady state of this modi�edM0 operator,

M0(e−βeff (Hph−N̂)) = 0. (2.68)

As the correction term δM vanishes in the Markovian limit proportionally to 1/Γp, we can
calculate the lowest order correction to the steady state induced by the perturbation δM,

which implies computing δM(e−βeff (Hph−N̂)): we easily show that the �rst order corrections
in Eq. (2.67) are purely imaginary so that populations are perturbed only to second order
in ∆f ′f/Γp ∼ βeff∆f ′f . In our Markovian limit, these corrections then vanish even if we
perform simultaneously the Markovian and thermodynamic limit. Secondly, coherences
(which are exactly zero in the Markovian case, see Sec. 2.4.1) should be then proportional
to ∆f ′f/Γp. However, we have shown in App. D by computing the o�-diagonal elements

of δM(e−βeff (Hph−N̂)) that the linear contribution to coherences ∝ ∆f′f
Γp

exactly vanishes

when we sum over all sites of the system. We conclude thus that in the weakly non-
Markovian limit, coherences between eigenstates of the hamiltonian are quadratic in ∆f ′f/Γp

and therefore remain very small even out of the secular approximation .
As a further veri�cation of this analytical argument, in the right panel of Fig. 2.5 we

have shown the Γp dependence of the coherence between an arbitrary pair of two-photon
states as well as the error in the population of an arbitrary eigenstate, between the true
steady state and the grand canonical distribution. As expected on analytical grounds, both
these quantities scale indeed as Γ−2

p .
From these arguments, we conclude that the breakdown of the secular approximation

which occurs in the thermodynamic limit where the spectrum become continuous should not
a�ect the pseudo-thermalization of the steady state in the weakly non-Markovian regime of
large Γp. Even if the steady-state is not modi�ed, we however expect that the relatively
strong dissipation will signi�cantly a�ect the the system dynamics. A complete study of the
physics of pseudo-thermalization (where we verify in particular the validity of the �uctuation-
dissipation theorem also at a dynamical level) is the subject of Chapter 4.

2.5 An unexpected interaction-driven mechanism for quan-

tum coherence

We discuss brie�y in this section an exotic non-equilibrium e�ect occurring for zero detuning
ωcav = ωat [red dashed lines in Fig. 2.6(a-c)]. In panel (c) we see that the non-negligible
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value of 2J/Γp is responsible for a signi�cant spatial coherence between the two sites, which

attains a maximum value g
(1)
12 ≈ 0.26 for an interaction strength 2U/Γp ' 0.16 of the same

order of magnitude as the tunnel coupling 2J/Γp = 0.2. The quite unexpected appearance
of this coherence in aM = 2 cavity con�guration can be understood as follows: on one hand,
in the absence of tunneling J = 0, all the dynamics is local and we do not expect any spatial
coherence. On the other hand, in the absence of interparticle interactions (U = 0) and for
zero detuning ωcav = ωat, photonic symmetric and antisymmetric states are equally close
to the pump resonance (albeit with opposite detuning) so they should be equally populated
and one do not expect any coherence also in that case.

The origin of this mechanisms comes from the fact that, in presence of both tunnel-
ing and small interactions (i.e. for J, U 6= 0 and U � J), the energy of all eigenstates
(symmetric/anti-symmetric states with various photon numbers) is perturbatively shifted
in the upward direction by (small) interactions U . As a result, symmetric states, which
are below the emitter transition frequency ωat, get closer to resonance and become more
populated than the anti-symmetric ones, which get farther to the resonance and are thus
depleted (respectively, for an attractive interaction U < 0 one would expect to populate
more the anti-symmetric state and favour sign alternation of the wave function between
neighbouring sites). Moreover, no coherence is expected also in blockade regime U � J,Γp:
since photons almost do not overlap spatially, the energy shift induced by interaction tran-
sition frequencies becomes very weak, and thus symmetric and antisymmetric states are no
longer discriminated. As a consequence, one expects that a maximum of the coherence is
obtained when interactions and tunneling are of the same magnitude, U ≈ J : this result is
clearly visible in panel Fig. 2.6(c).

This exotic e�ect is re�ected in the steady-state occupancy of the di�erent eigenstates
shown in Fig. 2.6(d) for the maximum coherence point, where one can see that those which
possess an overall positive coherence and weaker kinetic energy are the most populated
ones. Even though the nonlinearity is only active for states with at least two photons, it is
interesting to note that also in the single-photon manifold the antisymmetric state is less
populated than the symmetric one. This population unbalance is inherited from the one in
the above-lying N > 1 states, as the decay preferentially occurs into the symmetric state.

This e�ect of interaction-induced coherence does not have a clear equivalent in equilib-
rium physics for which states with low-energy states are always favoured with respect to
excited ones. Understanding its implication in an in�nite lattice, regarding in particular the
underlying mechanism for non-equilibrium condensation at zero detuning has been post-
poned to a future study, as we decided during my thesis to focus on the many-body physics
in the strong blockade regime

2.6 Non-equilibrium physics in the blockade regime U �
Γp

Extending the photon-number selectivity idea to the many-cavity case, we now look for
many-body states that resemble a Mott insulator [76, 59] in the strongly nonlinear regime
U � Γp. As in the single cavity case (see Sec. 2.3.3), the strong pumping Γ0

em � Γl would
favour a large occupations of sites, but is counteracted by the e�ect of the nonlinearity
U � Γp and the choice of detuning δ = 0 which set an upper bound to the occupation:
the pump process which consists in adding a second photon on top of an already existing is
strongly suppressed.

2.6.0.1 Mott states in the weak tunneling regime J � Γp

In the zero-tunneling J = 0 case, we fully recover the single cavity physics and our scheme
predictably leads to the formation of a perfect Mott state with one photon per site. As
discussed in Sec. 2.3.3, a similar stabilization procedure for larger integer densities n ≥ 2
could be made possible by adding several emitters species on resonance with the di�erent
photonic transitions below n in order to avoid metastability issues of the Mott state. An
improved version of the scheme presented in Sec. 2.2 allowing for the stabilization of Mott
states with arbitrary n will be introduced in the next Chapter.
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Figure 2.6: Purely photonic simulations of steady-state observables as a function of 2U/Γp

in a two-cavity system: (a) average number of photons n1 = 〈a†1a1〉, (b) one-site two-body

correlation function g
(2)
1,1 = 〈a†1a

†
1a1a1〉 = 〈n1(n1 − 1)〉, (c) inter-site one-body correlation

function g
(1)
1,2 = 〈a†1a2〉/〈a†1a1〉. Parameters: 2J/Γp = 0.2, 2Γl/Γp = 0.002, 2Γ0

em/Γp = 0.06,

ωat = ωcav (solid black line). Red dashed line, same simulation with a weaker 2Γ0
em/Γp =

0.00144. Panel (d), from left to right : state occupancy, energy and two site spatial coherence
of the di�erent eigenstates of the hamiltonian, at the maximum coherence point 2U/Γp =
0.16 of the red dashed line.

We now move to the more complex case of a weak but non-vanishing tunneling constant
J � Γp � U . Since J ≪ U , photons are still unable to overcome photon blockade
by tunneling and quantum processes involving particle exchange are largely suppressed.
In particular, the eigenstate of the photonic Hamiltonian Hph corresponding to the Mott
Insulator (with N = M photons) is completely localized: photons are almost perfectly
pinned on a single site. Another consequence of having a weak tunneling is that all transitions
frequencies ωcav − εk (with −2J < εk < 2J) from hole excited states with momentum
k toward a completely saturated Mott-state have almost resonant values with the pump
frequency ωat = ωcav and fall within the emission frequency range (since J � Γp). As a
consequence, if one loses a photon starting from a completely �lled Mott state with exactly
one photon per site, the strong pump (Γ0

em � Γl) will inject immediately a new photon and
remove the corresponding hole excitation. In conclusion, one expects that in this regime the
steady-state will still be a perfect Mott-state with a well-de�ned n = 1 number of photons
per cavity.

This intuition is con�rmed in Fig. 2.6(a-c) (black lines) where we can see clear signatures
of the desired Mott state with one particle per site: for an high emission rate Γ0

em and a
strong nonlinearity U/Γp � 1, the steady-state average number of photons [panel a)] and
the probability of double occupancy [panel (b)] respectively tends to 1 and 0. Finally the
one-body coherence between two neighbouring sites also tends to 0 [panel c)], con�rming
the photonic localization e�ect. Based on this preliminary analysis, we can already make
some claims on the structure of the non-equilibrium phase diagram of our model. As for
J = 0 one can e�ciently create a Fock state in each cavity, we expect that for small J the
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system will remain in a sort of Mott state.
Finally, one would like to comment that, while simulations of Fig. 2.6 were done at

the early beginnings of this Ph.D project for a very small system consisting in M = 2
coupled cavities, all the steady-state features described in this section were recovered in
more extended lattices (see, e.g., Fig. 2.7) by using improved numerical methods.

2.6.1 Tunneling-induced depletion of the Mott state

In this subsection we investigate the e�ect of higher values of the tunneling constant (J ≥
Γp), with a particular focus regarding the stability of the Mott-Insulating state. Numerical
results and physical discussions are based on the collaborative work[12] for which the author
of this Ph. D thesis provided contributions regarding physical predictions in the various
regimes of parameters. Numerical simulations were performed by Alberto Biella and Florent
Storme, and are based on the study of the master equation Eq. (2.5) of Sec. 2.2.1 associated to
the full emitter+photon description. This model, although corresponding to a signi�cantly
bigger Hilbert space than the purely photonic one, is of a full Markovian type: this allowed
to exploit powerful numerical methods such as corner-space renormalization [58] and matrix
product operators techniques (MPO) [198, 214] in order to access the steady-state properties
in larger 1D chains with open boundary conditions.

As we have seen in Sec. 2.6.0.1, for strong emission rate (Γ0
em � Γl), strong interaction-

induced particle number selectivity (U � Γp) and weak tunneling (J � Γp), one can
stabilize localized Mott-like states in a many cavity con�guration: for a weak photonic single-
particle bandwidth ∼ J compared to the emission linewidth Γp, hole excitations generated
by photonic loss processes fall in resonance with the emitters and are immediately re�lled
by the pump, which brings back the many-body state toward the Mott state. Moreover,
in this con�guration, since tunneling is extremely weak with respect to the interaction
(J � ΓP � U), it does not allow to overcome the photon blockade potential barrier, and
the particles are per�ectly pinned on each site, i.e., fully localized.

However, the situation is expected to become more complex when J becomes of the order
of Γp: in this regime, some hole excitation states start to be necessarly o�-resonant with
respect to the pump emission range. In consequence the pump does not inject photons at
all energies and thus is not able to sustain a commensurate lattice �lling: one expect the
steady-state to possess a density n weaker than unity, and thus to be characterized by the
presence of holes excitations.

This feature is con�rmed by Fig. 2.7 (upper panels) where we show (for a 1D chain and

various system sizesM) the average photon density n =
〈
a†iai

〉
(left panel) and its variance

∆n2 =
∑
i ∆n2

i /M (right panel) as a function of the hopping J : while a Mott-state with
�uctuationless density n = 1 appears to be stable for J � Γp, for higher tunneling values
n starts to decrease and �uctuations in the density become important. Ultimately, for very
strong hopping (J � Γp) the density goes progressively to 0 since only a few momentum
states are in resonance with the pump. In addition to destabilizing the Mott state in the
J � Γp regime, �uctuations in the density as well as in the momentum of the generated
hole excitations are responsible for a non-vanishing entropy S = −〈ln(ρ)〉 > 0, which is
the signature of a statistical mixture. This is in stark contrast with the localized region
(J � Γp), in which the photon-emitter density-matrix appears to be a pure quantum state:
ρi,∞ ' |1 ↑〉 〈1 ↑|.

The underlying mechanism of this instability of the Mott state can be well captured
(even quantitatively) at an Hard-Core bosons level of description (namely, photons can be
considered as fully impenetrable particles), since it occurs in a regime of parameters in which
J ' Γp � U is still negligible with respect to U (this is precisely the case in Fig. 2.7, where
U/J = +∞). This con�rms our intuition according to which this change of behaviour is
not physically related to some e�ect of competition between tunneling and interaction, but
rather by an interplay between the tunneling and the frequency-dependence of the pump.

The main remaining question regards the nature of the quantum phases in both param-
eter regimes (J � Γp) and (J ≥ Γp). Since the excess holes in the depleted n < 1 region do
not su�er from the photon blockade and can delocalize via tunneling, one expects that they
might allow to establish long range order (resp. quasi long range order depending on the
spatial dimension), triggering thus a phase transition toward a coherent Bose-Condensed
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Figure 2.7: Top panels: the average photon density n in the steady-state (left panel) and its
variance ∆n2 (right panel) as a function of zJ/Γp (z = 2 is the number of nearest neighbors).
Bottom panels: steady-state value of the pseudo-compressibility κ = ∆n2/n (left panel) and
of the entropy (right panel) as a function ofJ/Γp in the hard-core limit (U/J = +∞). The
simulations were performed for periodic 1D chains for di�erent system sizes M , as indicated
in the legend. The solid horizontal lines are the single-cavity values (J = 0) of the quantity
under consideration. Steady-state properties obtained by Florent Storme using corner-space
renormalization methods [58]. The dashed vertical lines denote the critical hopping rates
predicted by the Gutzwiller mean-�eld theory. The parameters are set as ωat = ωcav − zJ ,
Γl/Γp = γ/Γp = 10−3, ΩR/Γp = 10−1.

state (resp. super�uid-like state). This speci�cally non-equilibrium phase transition from a
Mott state to a super�uid phase was observed numerically and characterized at a Mean-Field
level by Alberto Biella, and is the object of the Sec. 2.7.

Analysing this mechanism in the Bose-Hubbard case allows to understand why such a
feature did not appear to be an hindrance for the stabilization of photonic Fractional Hall
states with a similar frequency-dependent pump scheme [97, 195]. The FQH was indeed
predicted in both proposals to be stable even for relevant values of the hopping term thanks
to the presence of �at photonic bands. Indeed, the proposal of [97] involved a more complex
lattice structure (originally introduced in [98]) speci�cally conceived in order to mimic the
continuum physics of the FQH e�ect [59, 195], and featuring in particular �at photonic
bands analogous to Landau levels even in presence of non-vanishing interactions.

2.6.2 Spatial correlations close to the Mott phase

Here we provide some preliminary results on the one-body correlations in a regime of rel-
atively weak tunneling (J small with respect to Γp but non-negligible). The analytical
calculation is based on somehow heuristic arguments as it involves an ansatz for the pho-
tonic density matrix in the hard-core limit in a 1D chain, and can not be taken as a de�nitive
derivation of the steady-state properties. However we found, by comparing our predictions
to our numerical results, that this ansatz allowed to capture important phenomenological
features regarding the (small) deviations from the Mott state, such as the scaling of the
coherence length λ in the ratio J/Γp (for a �nite J , λ is expected to be non-zero due to the
generation of a small number of hole excitations). For this reason I decided to include this
discussion in my thesis.
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2.6.2.1 Ansatz for the steady-state density matrix

In analogy with the equilibrium physics of hard-core bosons in one dimension [67, 122],
we suppose that the steady-state is fermionized, i.e., that the photonic density matrix is
diagonal in the fermionic momentum basis, up to a unitary Jordan-Wigner transformation
U which antisymmetrizes the bosonic density matrix:

ρF = UρBU−1, ρF = ⊗k ρF
k . (2.69)

The bosonic and fermionic annihilation operators are related through the unitary relation

aF
j = eiπ(

∑
l<j n̂l)UaB

j U
−1, (2.70)

where the value of the local particle number operator n̂l = n̂
B/F
l is left unchanged by the

unitary transformation. In the simple case of free bosons, no ansatz would be required as the
momentum distribution of the steady-state of Eq. 2.24 can be exactly calculated analytically:

nB,0k =
1

Γl

Sem(ωcav+εk) − 1

=
1

Γl

Γ0
em

[(
δ̃ + 2εk/Γp

)2

+ 1

]
− 1

, (2.71)

where δ̃ = 2(ωcav − ωat)/Γp and εk = −2Jcos(k). Thus, in the Hard-Core regime,one would
be tempted to choose the following ansatz for the Fermionic non-equilibrium distribution:

nF
k =

1
Γl

Sem(ωcav+εk) + 1

=
1

Γl

Γ0
em

[(
δ̃ + 2εk/Γp

)2

+ 1

]
+ 1

. (2.72)

The idea of this ansatz comes from the analogy with the equilibrium Bose-Einstein and
Fermi distributions nB,eqk = 1

eβ(ωcav+εk−µ)−1
, nF,eqk = 1

eβ(ωcav+εk−µ)+1
and their relation to

the validity of the detailed balance relation Seq
em(ωcav + εk)/Seq

l (ωcav + εk) = eβ(ωcav+εk−µ)

(or Kennard-Stepanov [102, 180] relation) between the photonic emission and loss spectra
whenever the external environment is thermal. The analytical function

g(z) =
1

Γl

Γ0
em

[(
δ̃ + z

)2

+ 1

]
+ 1

(2.73)

of the complex variable z possesses two conjugated poles z0 and z∗0 , where z0 = −δ̃ +

i
√

1 +
Γ0

em

Γl
. We �nd that g(z) can be thus decomposed as a sum of two singular components

and then easily expanded in power series:

g(z) =
Γ0

em

Γl(z∗0 − z0)

[
1

z0 − z
− 1

z∗0 − z

]
=

Γ0
em

Im(z0)Γl

1

R

∞∑
n=0

sin[(n+ 1)k0]

(
−z
R

)n
, (2.74)

with k0 = −π2 + Arctan

 δ̃√
1+

Γ0
em
Γl

 and R =
√
δ̃2 + 1 +

Γ0
em

Γl
. One obtains thus for the

momentum distribution

nF
k = n0

∞∑
n=0

sin[k0(n+ 1)]

sin[k0]

[
4J/Γp

R

]n
cos(k)n, (2.75)
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where

n0 =
Γ0

em

Im(z0)Γl

sin[k0]

R
=

1
Γl

Γ0
em

(ωcav−ωat)2+(Γp/2)2

(Γp/2)2 + 1
(2.76)

is the photonic density at steady-state for J = 0. This expression for n0 obtained from the
ansatz is also analytically exact as one can verify it by studying the exactly solvable J = 0
case.

2.6.2.2 Fermionic one-body spatial autocorrelation

From the fermionic momentum distribution Eq. (2.72), it is possible to the compute by
Fourier transform the fermionic one-body autocorrelation in spatial coordinates :〈

aF†
i+ra

F
i

〉
=

∫ π

−π

dk

2π
e−ikrnF

k . (2.77)

Using the series expansion Eq. (2.75) in power of the kinetic energy, one has that
〈
aF†
i+ra

F
i

〉
can be rewritten as〈

aF†
i+ra

F
i

〉
= n0

∑
n≥r

sin[k0(n+ 1)]

sin(k0)

[
2J/Γp

R

]n ∫ π

−π

dk

2π
e−ikr cos(k)n︸ ︷︷ ︸

=
(
eik+e−ik

2

)n
, (2.78)

where the the contributions r < n are not present in the sum, as the integral in the right side

is non-zero only for n ≥ r. Since we are focusing on the weak tunneling regime
2J/Γp

R � 1 ,
we keep only the lowest power of J in the serie expansion, which corresponds to n = j:〈

aF†
i+ra

F
i

〉
' n0

sin[k0(r + 1)]

sin(k0)

[
2J/Γp

R

]r ∫ π

−π

dk

2π
e−ikr

(
eik + e−ik

)r
︸ ︷︷ ︸

=1

= n0
sin[k0(r + 1)]

sin(k0)
e−r/λF , (2.79)

The fermionic autocorrelation thus spatially decays exponentially with a correlation length
λF which is given by

1/λF = ln

Γp

√
1 + δ̃2 +

Γ0
em

Γl

2J

 , (2.80)

and scales as 1/ln
(

Γp
J

)
for vanishing J .

2.6.2.3 Photonic one-body spatial autocorrelation

The true photonic correlations are related to the fermionic correlations in the following way:〈
a†i+rai

〉
=
〈
aF†
i+re

iπ
∑
i<l<i+r n

F
l aF

i

〉
, (2.81)

where nF
l = aF†

l a
F
l is the fermionic number operator on the site l. Since the fermionic

steady-state is gaussian, the Wick theorem [56] could be applied to calculate this function.
However in the generic case this would involve a very complex series expansion. For a very
weak J the situation is much simpler, since the fermionic distribution is nearly momentum
independent and the particles are almost localized with the corresponding spatial density〈
nF
l

〉
= n0. To compute this complex correlation function, one can keep only the lowest

order contribution in J/Γp in the series expansion related to the application of the Wick
theorem, leading to the expression:〈

a†i+rai

〉
='

〈
aF†
i+ra

F
i

〉 ∏
i<l<i+r

〈
eiπn̂l

〉
. (2.82)
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The local expectation value veri�es
〈
eiπn̂l

〉
= πnl=0 − πnl=1 ' 1 − 2n0: it is is positive

for hole-dominated statistics (n0 < 1/2), i.e., for Sem(ωcav) < Γl, and negative for particle-
dominated statistics (n0 > 1/2), i.e., for Sem(ωcav) > Γl. We note that the factor

〈
eiπn̂l

〉
is

not involved in the calculation of
〈
a†i+rai

〉
for r = 0, 1.

We deduce thus the �nal expression for the photonic one-body spatial correlation for weak

tunneling: expectedly for r = 0, one has that
〈
a†iai

〉
= n0 is the photonic density calculated

at zero-tunneling, while for r ≥ 1 it still presents an exponential decaying behaviour:〈
a†i+rai

〉
r≥1

=

{
2n0J/Γp

R
sin[k0(r+1)]

sin(k0) e−(r−1)/λB , for n0 < 1/2
2n0J/Γp

R
sin[(k0+π)(r+1)]

sin(k0) e−(r−1)/λB , for n0 > 1/2
(2.83)

For a positive (resp. negative) detuning δ, the nearest neighbor correlation
〈
a†i+1ai

〉
is

positive (resp. negative) independently of the density n0, and is followed by a strong decay

of
〈
a†i+rai

〉
in modulus at higher distances r > 1: this indicates that a positive (resp.

negative) detuning privileges momentum states close to k = 0 (resp. k = π), in agreement

with our basic intuition. However the behaviour of the sign of
〈
a†i+rai

〉
is less trivial when

r > 2 and appears to be depending on whether n0 < 1/2 or n0 > 1/2.
The inverse correlation length is given by

1/λ = ln

Γp

√
1 + δ̃2 +

Γ0
em

Γl

2 |1− 2n0| J

 : (2.84)

λ maintains the same scaling in J/Γp as the fermionic correlation length λF and is slightly
shorter, due to a scrambling induced by sign changes when crossing intermediary particles.
The exponential decay of correlations and the logarithmic scaling in J/Γp of the inverse
correlation length λ−1 are con�rmed by the MPO simulations for �nite 1D chains shown in
Fig. 2.8.

The behaviour
〈
a†i+rai

〉
∝ (J/Γp)r is in agreement with the idea that the steady-state

can be accessed perturbatively starting from a localized Mott state for a weak ratio J/Γp,
as delocalizing a photon over r sites requires a process of order-r. The fact that λ → 0 for
very high Γ0

em/Γl is also conform to our intuition, as a strong emission rate would be able
to pump new photons at all momenta and thus saturate the Mott state, even in the regime
in which the kinetic energy ∝ J is large enough to shift the transition away from the core
∝ Γp of the Lorentzian emission spectrum.

While these observations encourage us to think that the fermionization hypothesis is
not meaningless and does provide some insight on the steady-state properties, we recognize
that our results in this direction are still speculative. Understanding under which conditions
hard-core bosons can behave as free fermions also in an open quantum system with particle
losses and pumping is a complex question which will be addressed in a future study.

2.7 Gutzwiller Mean-Field phase diagram

In this section, we investigate the mean-�eld phase diagram of the full Markovian model
of Sec. 2.2.1 containing all emitters and photonic degrees of freedom. The MF phase dia-
gram should also coincide with the one of the e�ective photonic non-Markovian description
presented in Sec. 2.2.3 (although we do not have access to direct tools allowing to address
the non-Markovian problem). All physical discussions and numerical results of this section
provide from our most recent work [12]. Numerical simulations were performed by Alberto
Biella, and are based on a Gutzwiller Mean-Field (MF) description (which represents for-
mally the limit z → ∞ of an in�nite number of nearest neighbours) of the full Markovian
emitter+photon dynamics given by Eq. (2.5) of Sec. 2.2.1 .

2.7.1 Method

One starts by assuming a factorized and translational-invariant ansatz for the time-dependent
density matrix ρMF (t) =

⊗
i ρi(t), where ρi = ρj ∀ i, j. This approximation is justi�ed
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Figure 2.8: Left panel: Spatial decay of the correlation function c(i, i + r) =
〈
a†i+rai

〉
(as

de�ned in Eq. 2.83) at steady-state in function of the distance r for M = 20 sites computed
by mean of the MPO algorithm, for several value of the tunneling J and zero detuning
ωat = ωcav.. Correlators have been chosen in a symmetric way with respect to the center
of the chain. zJ/Γp = 0.002, 0.01, 0.02, 0.1, 0.2 (red, violet, green, orange and blue line
respectively). The other parameters are set as in Fig. 2.7. Right panel: The correlation
length λ obtained �tting c(i, i+ r) with an exponentially decaying function. The red line is
the scaling predicted by Eq. (2.84).

physically by the fact that for a large number of nearest neighbors, the physics becomes
essentially the one of a single site coupled dynamically to a mascroscopic external classical
�eld (the condensate), and additional non-local quantum correlations between two-speci�c
neighboring sites are negligible. By inserting this ansatz in the master equation Eq. (2.5),
and by keeping only most relevant terms in 1/z (more details on this procedure can be
found, e.g., in Ref. [191]), we get an e�ective master equation

∂tρi =
1

i
[HMF (t), ρi] + L(ρi), (2.85)

where L = L(i)
l +L(i)

p +L(i)
γ is the sum of all local dissipative processes on the i-th site (pho-

tonic losses, two-level emitters pumping and spontaneous decay). The Mean-Field Hamilto-

nian HMF(t) = H
(i)
loc +Htun(t) is the sum of

Hloc = ωcava
†
iai + ωcavσ

+σ− + ΩR

(
a†σ−i + aiσ

+
i

)
(2.86)

which contains all local contributions of the total photon-emitter Hamiltonian (we assumed
here the presence of Nat = 1 two-level emitter per site) of Sec. 2.2.1 on the i-th site, and

Htun(t) = −zJ 〈ai〉 (t)a†i + hc (2.87)

is the time-dependent Mean-Field contribution which has to be computed self-consistently
according to 〈ai〉 (t) = Tr [ρi(t)ai]. The steady-state of Eq. (2.85) was reached dynamically
by mean of a fourth-order Runge-Kutta integration method. The fact that this theory
completely decouples the various sites i associated to the translational invariance allow us
to use the simpli�ed notations ai → a, σ−i → σ−.

This approach has been used extensively in order to determine the phase diagram of a
wide range of driven-dissipative quantum systems [192, 191, 93, 16, 125]. It is exact in the
limit of an in�nite number of nearest neighbours (i.e., for long range hopping, or an in�nite
number of spatial dimensions), while for a more realistic con�guration it has to be taken as
a qualitative description encapsulating some features of the phase transition.

Renormalization group methods [206, 89, 187] allow to provide more insight on the condi-
tions of validity of the Mean-Field description: above some upper-critical spatial dimension
d+ (which depends on the symmetries of the problem) MF theories provide exact predictions
regarding the critical exponents, which describe the long range and low-frequency behaviour
of the system close to a second order phase transition point. On the opposite below d+, MF
descriptions become inaccurate as it is necessary to include higher order couplings terms
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Figure 2.9: The order parameter | 〈a〉 | (left panel), the number of photons n, its variance
∆n and the compressibility K (right panel) of the steady-state of Eq. cite as a function of
zJ/Γp in the hard-core limit (U/J = +∞). Here Γl/Γp = γ/Γp = 10−3, ΩR/Γp = 10−1 and
ωat = ωcav. The dashed vertical line signals the predicted critical value of J (see App. B).

going beyond a simple Gaussian �eld theory. Ultimately, under a lower-critical dimension
d−, no spontaneous symmetry breaking phenomenon is expected to occur [136] and phase
transitions are usually replaced by smooth crossovers. An important exception to this state-
ment is the 2D Bose Gas where the Bose-Einstein Condensation is replaced by a super�uid
BKT transition[111] related to the unbinding of topological defects with opposite charges.

These considerations, although historically pretty clear for equilibrium systems, need for
our purpose to be reframed in the context of non-equilibrium physics. One points out that
being at thermal equilibrium can be understood as a special symmetry inside the Keldysh
action [187, 95] of an underlying �eld theory [5, 175]. Thus, being out-of-equilibrium consists
in breaking this symmetry, which can give rise to new universality classes di�ering from
equilibrium ones both at a dynamical [176] and static level [2]. Remarkably, it has been
predicted that arbitrary small deviations from equilibrium should have a dramatic impact on
the structure of spatial and temporal correlations in lower dimensional systems [2, 199, 80].
For our model, providing information on the impact of non-equilibrium processes on long
range correlations and critical properties would require to simulate numerically quantum
problems over very large space scales, and goes beyond our MF level of description which
should be thus understood as a description of the phenomenology at intermediary distances.

2.7.2 A Mott-to-Super�uid non-equilibrium phase transition

In this subsection, we describe the properties of the various phases of the model of Sec. 2.2.1
within our MF framework. As we have seen in Sec. 2.6.1, the Mott-like states obtained
for strong emission rate (Γ0

em � Γl), strong interaction (U � Γp) and weak tunneling
(zJ � Γp) become unstable when one increases the tunneling constant as soon as one
reaches the regime zJ ≥ Γp: o�-resonant hole excitations start to proliferate within the
steady-state and bene�t from a strong mobility as they do no su�er from the e�ect of
photon blockade. If those excitations are generated with enough energy selectivity, one
expects that they could trigger a phase transition toward an ordered phase (of a Super�uid-
like or Bose-Condensed type depending on the number of spatial dimensions). This intuition
is con�rmed at Mean-Field level by Fig. 2.9, where we show the value of the mean-�eld order
parameter 〈a〉 (t), the photon density n, its �uctuations ∆n and the pseudo-compressibility
compressibility κ = ∆n2/n 3 in the steady-state in the hard-core limit (U/J = +∞). We
observe a clear second-order phase transition at a critical hopping zJHCc /Γp ' 3.3 breaking
the U(1) symmetry. The properties of the various phases can be summarized as follows.

For J < JHCc , the mean-�eld order parameter 〈a〉 (t) takes a vanishing value at steady-
state, so the system is in a normal phase. Moreover, the steady-state single-site density

3It is equal to the static compressibility in the equilibrium case (where according to the FDT theo-
rem, density response to a change of chemical potential is related to density �uctuations) and under the
requirement of vanishing non-local correlations, so deep inside the Mott phase (zJ � Γp).
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Figure 2.10: Contour plot of the steady-state Wigner distribution W (α) in the Mott-like
(left panel) and coherent phase (right panel). Each contour denotes a variation of 0.05 of
the value of W (α). The black dashed contour encircles the region with W (α) < 0. The
parameters are set as in Fig. 2.9.

matrix ρi,∞ can very well represented by

ρi,∞ ' |1 ↑〉 〈1 ↑| , (2.88)

and is characterized by an almost unity density n ' 1 and very weak density variations (' 3%
probability of not being in the Fock state |1〉): the steady-state is in a Mott-Like phase. The
non-vanishing value for �uctuations is related to the �nite choice of parameters of Fig. 2.9
(chosing too extreme parameters would have induced a very large time scale separation, and
rendered unfeasible the time-dependent numerical simulation): while a �nite ratio Γ0

em/Γl is
responsible for weak (but non-zero) probability leakage out of the desired steady-state, for
Γ0

em/Γl →∞ one would stabilize a perfect n = 1 Mott-state.
For J > JHCc , the system enters a coherent phase, where the steady-state maintains an

oscillatory behaviour in the non-vanishing order parameter

〈a〉 (t) = | 〈a〉 |e−iωLt, (2.89)

were ωL is a lasing frequency spontaneously chosen by the system. Although those simu-
lations where done in the Hard-Core limit (U = +∞), the Mott-phase instability appears
to occur at a �nite critical hopping Jc and is always accompanied by a decrease of den-
sity n, which indicates that hole excitations are responsible for the super�uid-like nature of
the steady-state. Similarly to what was observed for �nite size simulations in Fig. 2.7, the
spontaneously broken phase is also characterized by the emergence of non-vanishing particle
number �uctuations ∆n and pseudo-compressibility κ (we also observed a non-zero entropy
S in that phase).

The remaining time-dependence in the coherent phase related to the spontaneous break-
ing of the gauge symmetry is a simple e�ect also present in equilibrium Bose-Einstein Con-
densates (where 〈a〉 (t) = | 〈a〉 |e−iµt), which does not present any particular surprise. How-
ever highly non-trivial persistent oscillatory behaviours of local measurable observables (the
absolute phase can not be measured) can be observed in other non-equilibrium con�gu-
rations: while a no-go theorem precluding the observation of a �time crystal� [205] spon-
taneously breaking the time translational symmetry in isolated equilibrated systems has
been formulated in [202], its realizability has been predicted in periodically driven isolated
systems [53, 103] and observed very recently in [36, 212]. In driven-dissipative systems this
phenomena is well-know under the name of �limit-cycle phase�: highly non-trivial oscillatory
behaviours without any equilibrium counterpart have been predicted theoretically in open
systems such as the self-induced modulation of density patterns in circuit-QED devices [87]
and Rydberg atoms [121], the Bose-condensed fraction and light �eld in hybrid atom-optics
quantum systems [148], as well as the magnetization [32] in spin systems,

It is possible to gain more information on the statistics of both Mott and coherent phases
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Figure 2.11: Mean-�eld steady-state phase diagram in the {U/Γp, zJ/Γp} plane. The white
area corresponds to the region of the parameters for which | 〈a〉 | = 0 while in the dotted
region the U(1) symmetry is spontaneously broken and the steady-state exhibits limit-cycle
(| 〈a〉 | > 0). Here Here Γl/Γp = γ/Γp = 10−2, ΩR/Γp = 10−1 and ωat = ωcav. The dashed
vertical line denotes critical hopping rate predicted by the Gutzwiller stability analysis for
Hard-Core bosons zJHCc /Γp = 1.51.

by looking at the Wigner quasi-probability distribution [75]

W (α) =
2

π
Tr
[
ρi∞D(α)eia

†aD†(α)
]

(2.90)

where D(α) = eαa−α
∗a† is the deplacement operator and the prefactor comes from the

normalization condition
∫
C
d2αW (α) = 1. Since the two quadratures of the quantum �eld

X = 1√
2
(a+ a†) and P = 1√

2

(a−a†)
i do not commute, they can not be measured altogether

and thus W can not be understood as a probability distribution in the classical phase
space {X,P} (W can even be negative in some regions for very quantum states). However,
for strongly occupied semiclassical states where quantum �uctuations are less relevant, W
ultimately has the meaning of a probability distribution.

As we can see in Fig. 2.10 , the Wigner distribution is perfectly phase invariant deep
in the Mott phase. The steady-state is almost a one-photon Fock state: this strong non-
classicality appears under the form of a large domain around α = 0 where W takes negative
values. Above the critical coupling (J > JHCc ) the steady-state has a broken symmetry
and so has the Wigner distribution. Note that the asymmetric part of the Wigner function
rather possesses positive values, re�ecting the fact that the Bose-Einstein Condensate on
top of the Mott state is a large populated coherent state of quasi-classical nature (this is
especially true for the Mean-Field theory/for long range hopping).

2.7.3 Phase diagram

Here we discuss the properties of the phase boundary associated to the phase transition
introduced in Sec. 2.7.2. As a �rst step we study the position of of the phase boundary
in function of the interaction parameter U (shown in Fig. 2.11). The transition occurs
at any numerically accessible values of the interaction parameters U . On one hand, the
critical hopping Jc remains �nite even in the Hard-Core regime and thus does not scale
proportionally with U , highlighting the non-equilibrium nature of the phase transition, which
does not rely in a fondamental manner on the interplay between interaction and tunneling,
but is rather related to the generation of hole excitations at non-resonant energies with
the pump (a more advanced driven-dissipative non-Markovian scheme allowing to recover
all equilibrium features is the subject of the next Chapter). On the other hand at rather
weak U ' Γp the transition threshold Jc appears to be lowered. We believe that this is
related to two di�erent physical mechanisms: �rst, the lowered value Jc is related to the
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2.7 Gutzwiller Mean-Field phase diagram

loss of commensurability, as for U ' Γp the emission of a second photon on top of an
already existing one is not inhibited anymore by the blockade e�ect. Secondly for a �nite
U/J , the competition between delocalization and photon blockade might also start playing
a non-negligible role and contribute to trigger the transition.

Fig. 2.11 shows the phase diagram only for values of the Kerr nonlinearity above U/Γp =
5: for very weak interactions, the number of photons per site is very high above the lasing
threshold (Γ0

em/Γl > 1) and so is the required dimension of the corresponding Hilbert space
H, making the numerical simulation unworkable. While providing a full quantum descrip-
tion in this range of parameters at a numerical level is beyond the scope of our work, the
weakly nonlinear regime can however can be understood at a mean-�eld level: for vanishing
interactions, the dynamical instability occurs precisely at the lasing threshold Γ0

em/Γl = 1.
For an high enough spatial dimension d, any arbitrary weak hopping constant J is enough
thus to favour a single momentum mode (the most ampli�ed one) which will be macroscop-
ically occupied and lead to the formation of a Bose-Einstein Condensate. One expects thus
the critical hopping Jc to go to 0 in the weakly interacting regime U/Γp → 0. In Chapter 4,
we will proceed to a complete theoretical study of the non-Markovian model introduced in
this chapter focusing on the case of a weakly interacting BEC, which we will treat analyti-
cally by mean of an alternative approach based on a quantum Langevin formalism. At lower
dimensions d the physics is expected to be sensitively di�erent: in d = 2 the BEC transition
should be replaced at intermediary spatial scales by BKT-like phase transition [111]. At
very long spatial scales however, non-equilibrium e�ects highlighted in [2, 199] will probably
play an important role and the transition is likely to be replaced by a very sharp crossover.
This will be also the case in d = 1, where a Luttinger liquid-like phenomenology [64] and
the formation of quasi-condensate [137] with a very large (but still �nite) coherence length
are expected. The study of low dimension physics in the regime of weak interactions will be
the subject of a future work.

We now move to the discussion of the Hard-Core regime which allows to capture fon-
damental aspects of the phase transition: since super�uidity is essentially carried by holes
in the strongly interacting regime U/Γp, the presence of a �nite contact interaction U can
be seen somehow as a perturbation complexifying the physical discussion. For U = +∞,
the model given by Eq. (2.85) is considerably simpli�ed as it corresponds to the driven-
dissipative theory of two coherently coupled spins one-half

HMF(t) = ωcavΣ+Σ− + ωcavσ
+σ− + ΩR (Σxσx + Σyσy)− zJ

2
(Σx 〈Σx〉+ Σy 〈Σy〉) (2.91)

where Σz is the photonic spin operator (at most one photon on each site is authorized),
and σz is the emitter spin operator. It becomes then possible to compute analytically the
shape of the Gutzwiller Mean-Field phase boundary, according to the following procedure
[32, 191]: since the emitter+photon model of Sec. 2.2 is purely Markovian, it is possible
to derive directly equations of motions for all time-dependent correlators starting from the
Mean-Field master equation Eq. (2.85):

d 〈θ〉 (t)
dt

= i 〈[HMF(t), θ]〉 (t) +
〈
L̄(θ)

〉
(t), (2.92)

where θ is a generic operator, L̄ = ΓlD̄(a, θ) + ΓpD̄(σ+, θ) + γD̄(σ−, θ) and

D̄(O, θ) =
1

2

[
2O†θO −O†Oθ − θO†O

]
(2.93)

is a modi�ed dissipator acting on the operator θ instead of the density matrix, where left
and right operators have been inverted. Since we are considering spins one-half, an in�nite
hierarchy of coupled equations is avoided: indeed, higher order correlations (e.g. 〈σxσy〉 or
〈σxσyΣx〉) can always be re-expressed as a sum of average values involving at maximum one
spin operator of a single specie (e.g., 〈σz〉) or two spin operators of di�erent species (e.g.,
〈σzΣx〉 ), and one only needs to compute a �nite number of these average values (there
are 15 di�erent correlators in total in our case). This leads to the following �nite set of
equations (where we have shown only the equations of motions for the photonic spin degrees
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Figure 2.12: Results of the Gutzwiller mean-�eld stability analysis in the hard-core regime
(U/J = +∞). The yellow area denotes the region where | 〈a〉 | = 0 is stable, while the light
blue area is the region where the solution | 〈a〉 | = 0 is unstable and the symmetry is broken.
When not varying them, we �xed the parameters as Γl/Γp = γ/Γp = 10−3, ΩR/Γp = 10−1

and ωat = ωcav. The solid lines [panels a)-c)] are the predictions for the critical hopping rate
given by Eq. which well approximates the phase boundary in the Γ0

em/Γl → ∞ limit (see
Eq. ). The dashed horizontal lines [panels b)-c)] denotes the lasing threshold at Γ0

em/Γl = 1.

of freedom):

d 〈Σx〉 (t)
dt

=
ωcav

2
〈Σy〉 (t)− ΩR 〈σyΣz〉 (t) + zJ 〈Σy〉 (t) 〈Σz〉 (t)− Γl

2
〈Σx〉 (t)

d 〈Σy〉 (t)
dt

= −ωcav

2
〈Σx〉 (t) + ΩR 〈σxΣz〉 (t)− zJ 〈Σx〉 (t) 〈Σz〉 (t)− Γl

2
〈Σy〉 (t)

d 〈Σz〉 (t)
dt

= ΩR [〈σyΣx〉 (t)− 〈σxΣy〉 (t)]− Γl 〈Σx〉 (t)

... (2.94)

For J = 0, the set of equations (2.94) is completely linear and can be analytically in-
verted. This leads to a unique steady-state solution which always veri�es 〈Σx〉∞ = 〈Σy〉∞ =
〈σx〉∞ = 〈σy〉∞ = 0 due to the U(1) symmetry. For a �nite J , the J = 0 non-condensed
solution is still valid, since the nonlinear perturbations ∝ J

〈
Σx/y/z

〉
vanish in the set of

equations 2.94 in absence of SSB. In order to analyze its dynamical stability, one linearizes
the system of coupled equations around the J = 0 solution, and computes the eigenvalues of
the resulting Jacobian Matrix. If the real part of one of its eigenvalues becomes positive for
certain values of the parameters (J, δ,Ω,Γl...) then the single-cavity �xed point is dynami-
cally unstable: this de�nes the stability domain of the Mott-like phase. Outside the Mott
region, Eqs. (2.94) presents a continuous set of limit-cycle solutions (with oscillatory phases)
due to the broken symmetry. No analytical solution can be found there, as the system of
equations (2.94) is intrinsically nonlinear in the super�uid region.

The stability domain obtained analytically from this approach is given in Fig. 2.12. Its
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shape can be understood quite well according to the following physical argument: in order
to be in a coherent hole-super�uid phase, the conduction band needs to be large enough in
such a way that some o�-resonant hole excitations are generated (with a certain selectivity
in momentum and frequency), leading thus to the inequality

Γ0
em

(Γp/2)2

(EJ + ωcav − ωat)2 + (Γp/2)2
≤ Γl, (2.95)

where EJ either equals −zJHCc or +zJHCc (depending on the positive or negative choice
for the detuning). At the same time, under the lasing threshold we do not expect that
a dynamical instability leading to the emergence macroscopic coherence can occur, so the
dynamical ampli�cation condition

Γ0
em ≥ Γl (2.96)

needs to be veri�ed.
These two conditions can be re-expressed in function of the microscopic photon-emitter

parameters of Sec. 2.2.1 as Γ0
em =

4Ω2
at

Γp
. In the zero detuning case (ωat = ωcav), for example,

one �nds that the super�uid domain can be estimated according to the two inequalities:

zJHCc ≥
√

Γp

Γl
ΩR, (2.97)

ΩR ≥
√

ΓlΓp

2
. (2.98)

The tunneling selectivity condition Eq. (2.97) is shown in solid line in Fig. 2.12 (panels a)-c)),
while the lasing condition Eq. (2.98) is shown in dashed line(panels b),c)). The very good
qualitative agreement between this estimate (providing even exact orders of magnitude)
and the true analytical solutions (obtained by the full calculation of the stability domain
according to the procedure described below) make us feel con�dent about the robustness
of our interpretation of the physical mechanisms underlying the transition. As could be
expected, the exact phase boundary kind of interpolates the two conditions Eq. (2.97) and
Eq. (2.98).

2.8 Conclusions

We have introduced a novel quantum optics scheme in an array of driven-dissipative non-
linear resonators with embedded incoherently pumped two-level emitters, and by mean of
projective methods, we could eliminate the emitter dynamics and wrote an e�ective pho-
tonic master equation where the non-Markovian properties of emission are highlighted. In
this chapter, the focus was set on the many-body phenomenology arising from the simple
con�guration for which the resulting emission spectrum is of a narrow bandpass type and
more precisely of Lorentzian shape, which is obtained in the case where all emitters possess
the same frequency. Simulations for the �rst part of this chapter were done using the pro-
jected non-Markovian photonic master equation, and simulations in the second part were
based on the full {photons+emitters} microscopic model.

As a �rst step we focused on the steady-state properties of this model in a single cavity
con�guration, and showed that this scheme leads to exotic bistability e�ects, but more
importantly allows for the stabilization of photonic Fock state in a strongly repulsive regime,
which is a key step toward the stabilization of strongly correlated quantum phases in photonic
platforms. Then, by investigating the many cavity con�guration, we con�rmed the existence
of a Mott phase for weak tunneling, and unveiled an instability mechanism occurring when
the hopping constant becomes comparable to the emission linewidth leading to a depletion
of the Mott states and increased �uctuations. The scaling of the correlation length in the
region presenting deviations from the Mott state has been predicted by mean of a fermionized
ansatz for the steady-state, and found to �t with the numerical predictions.

The last part of our study was related to the phase diagram of this model within a
Gutzwiller Mean-Field framework. We showed that while the Mott-phase was stable at weak
tunneling, the depletion mechanism mentioned earlier was accompanied by a phase transition
led by commensurability e�ects toward a coherent phase reminiscent of the Super�uid or
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Bose-condensed phase of the equilibrium model. This result is signi�cant as the MI-SF
transition had never been predicted quantum optics in any previous study including the
e�ect of dissipation. The stability domain of the two phases was computed numerically
and also accessed analytically in the speci�c case of the Hard-core regime, and its shape
could be reproduced qualitatively by mean of a simple ansatz encapsulating the mechanisms
underlying the instability.

The two works [119, 12] highlighted the promises of implementing non-Markovian reser-
voirs in optical devices in view of stabilizing strongly correlated photonic phases. Still, the
speci�c non-equilibrium features obtained in the case of a narrow bandpass emission spec-
trum could be seen as a remaining hindrance toward the quantum simulation of equilibrium
physics. A more advanced non-Markovian scheme involving reservoirs with tailored spectra,
allowing for the stabilization of robust Mott states with arbitrary integer density, and more
generally for the quantum simulation of the ground-state of many-body Hamiltonians in
driven-dissipative photonic lattices is the subject of next Chapter.
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Chapter 3

Stabilizing strongly correlated photon

�uids with tailored non-Markovian

reservoirs

3.1 Introduction

In this chapter, we present our results regarding the possibility of stabilizing incompressible
quantum states with light such as the celebrated Mott-Insulator phase, and more gener-
ally of quantum simulating zero-temperature equilibrium physics, by mean of a novel non-
Markovian pump scheme. With respect to the previous chapter our scheme is based on the
use of more complex tailored reservoirs for pumping and losses, leading to broad bandpass
dissipative spectra.

In last Chapter, we have introduced a photonic model in a driven-dissipative array of
nonlinear resonators featuring a frequency-dependent incoherent pump in order to stabilize
interesting incompressible photonic phases. Our scheme is based on the insertion of two-
level emitters with an inversion of population enforced by the presence of an incoherent drive
[119, 12]. The narrow bandpass frequency spectra (typically Lorentzian ones)

SLorentzian
em (ω) = Γ0

em

(Γp/2)2

(ω − ωat)2 + (Γp/2)2
(3.1)

we have considered as a �rst step the con�guration where all emitters transition frequencies
take the identical value ωat. As was discussed in the introductory Chapter 1 (Sec. 1.2.3.2)
such scheme appears well suited to observe Fractional Quantum Hall e�ects [97] under the
requirement of �at photonic bands [98]. Its potential for quantum error correction operations
was also highlighted in [96]. In Chapter 2 we validated the possibility of stabilizing strongly
localized n = 1 Mott insulator states. However as was discussed, the use of a narrow
bandpass spectrum does not appear suitable to explore the physics of competing e�ects
between interactions and tunneling in the dissipative photonic Bose-Hubbard model, as we
have shown that its e�ciency is restricted to the regime for which the photonic hopping is
extremely weak compared to the interaction (J � Γp � U). Namely, it was demonstrated
that even relatively weak values of the hopping amplitude (J ∼ Γp) result in a proliferation of
holes inside the Mott state, which then undergoes a transition toward a coherent super�uid-
like phase with incommensurate density n < 1. A slightly di�erent scheme based on a
two-photon coherent drive combined with frequency-dependent losses was recently proposed
in [22] and featured somehow comparable results.

The origin of these di�culties for this class of models comes from the fact that the overall
shape of a Lorentzian function has only a single tunable parameter, namely its linewidth
Γp, which simultaneously determines the widths of its core and its tails, i.e., the frequency
domains where it takes respectively strong and weak values. For example, such a spectral
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shape does not allow to select a broad band of energies while excluding undesired transitions
above a certain energy cuto�, which is the role of the interplay between a chemical potential
and temperature in equilibrium physics, and might be of critical importance for our purpose.

In order to reproduce the equilibrium phenomenology of the Mott-Insulator-to-super�uid
phase transition in the novel physical context of driven-dissipative photonic systems, it is
thus essential to develop new pumping schemes that allow to re�ll holes across a wide
bandwidth, while maintaining simultaneously a strong selectivity above some characteristic
frequency. An interesting �rst step in this direction was discussed in Sec. 1.2.3.3 where a
relatively complex protocol was proposed to implement the idea of an engineered chemical
potential for light in a circuit-QED platform. For suitably chosen equilibration rates with
the engineered reservoir, photons may e�ectively thermalize to a statistical distribution with
the desired thermodynamic parameters. Due to the necessity of building a complex ther-
mal environment with a controlled parametric coupling to the desired many-body system,
implementing such a proposal could potentially reveal a hard challenge.

In this Chapter we follow a di�erent and potentially much simpler path of proposing
the use of non-Markovian incoherent baths with tailored emission and loss spectra, to cool
strongly correlated photonic systems toward ground-state-like steady states with a tunable
e�ective chemical potential, on a longer run, observe interesting phase transitions. In analogy
with Chapter 2, a non-Markovian incoherent pump with a "square-shaped" tailored emission
spectrum

Stailored
em (ω) ∝

∫ ω+

ω−

dω′
Γp/2

(ω − ω′)2 + (Γp/2)2
(3.2)

could be engineered in a simple yet realistic manner by using population-inverted two-level
emitters with a broad distribution of transition frequencies, homogeneous over the interval
[ω−, ω+]. A similar scheme with a wide frequency distribution of absorbers and/or additional
lossy cavities could be used to implement tailored frequency-dependent losses. As we will
see, several experimental strategies allow to reproduce the e�ect of such reservoirs while
reducing the number of required emitters and absorbers to a few units, making this scheme
readily implementable with state-of-the art quantum technologies.

The structure of the Chapter is the following. In Sec.3.2, we introduce a �rst physical
model based on the implementation of a non-Markovian pump scheme with tailored emis-
sion spectrum. In Sec.3.3, we discuss the equilibrium-like properties of the non-equilibrium
steady-state for this model, and brie�y review the single cavity physics demonstrating that
this scheme allows for the stabilization of arbitrary photonic Fock states. Then in Sec. 3.4,
by applying our scheme to the paradigmatic case of the one-dimensional (1D) BH model, we
numerically show how a square-like emission spectrum allows to stabilize Mott-Insulator-like
states with an arbitrary integer and �uctuationless photon density which are robust against
tunneling and losses. For higher tunneling amplitudes or a change in the e�ective chem-
ical potential (the two cases leading respectively to integer and non-integer values for the
photonic density), our �nite-size system exhibits a crossover towards a coherent state remi-
niscent of the Mott insulator-to-super�uid transition of equilibrium systems. In addition to
the overall agreement with the equilibrium physics, in Sec. 3.5 we unveil and characterize
novel non-equilibrium processes leading to entropy generation and deviations from a zero
temperature state in some speci�c regions of the parameters space. In order to overcome
this entropic transition and be able to perform a full quantum simulation of the whole phase
diagram of the Bose-Hubbard model, in Sec. 3.6 we extend the initial model by adding
frequency-dependent losses. We anticipate and con�rm numerically that in this way the
steady-state fully overlaps with the Hamiltonian ground-state for all choices of parameters.
In Sec. 3.7, we discuss a possible experimental implementation of both models: after a brief
reminder of the microscopic model introduced in the last Chapter in the case of a Lorentzian
emission spectrum, we draw several simpli�cation strategies in view of a future realization
of tailored non-Markovian reservoirs.

All the results of this Chapter are based on the publication [118], of which the author of
this thesis is the �rst and main author.
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Figure 3.1: Panel a): Plot of the �square-shaped� emission spectrum sem(ω) de�ned in
(3.11) for various values of ∆em. Panel b): Average photon number nph as a function of
µ = ω+ − ωcav (i.e. varying ωcav) for a single site system with various values of ∆em.
Parameters of panel b): Γ0

em/U = 3.10−4, Γl/U = 10−5, ω−/U = −40.

3.2 The model

In this Chapter, we consider a driven-dissipative Bose-Hubbard model for strongly interact-
ing photons in an array of L coupled nonlinear cavities (~ = 1):

Hph =

L∑
i=1

[
ωcava

†
iai +

U

2
a†ia
†
iaiai

]
−
∑
〈i,j〉

Ja†iaj , (3.3)

where ai (a
†
i ) are bosonic annihilation (creation) operators for photons in the i-th cavity.

As usual, J is the tunneling amplitude between neighboring cavities and U is the on-site
interacting energy.

We will focus on the weakly-dissipative regime, in which photonic losses and emission
processes (of respective rates ∼ Γl and ∼ Γ0

em) are slow with respect to the bath memory
time scales. In contrast with the previous Chapter, here we provide directly the photonic
Red�eld master equation [21, 63] for the density matrix ρ providing non-Markovian dynamic

∂tρ(t) = −i [Hph, ρ(t)] + Ll

[
ρ(t)

]
+ Lem

[
ρ(t)

]
, (3.4)

while in Sec. 3.7 we will discuss several possibilities for experimental implementation. While
losses are assumed to be Markovian and therefore modeled by a usual Lindblad term

Ll[ρ] =
Γl

2

L∑
i=1

D[ai; ρ] (3.5)

with D[O; ρ] = 2OρO†−O†Oρ−ρO†O, the key ingredient of this model is to use a frequency-
dependent incoherent pump, so that the emission term

Lem

[
ρ
]

=
Γ0

em

2

L∑
i=1

[
ã†iρai + a†iρãi − aiã

†
iρ− ρãia

†
i

]
(3.6)

does not have a standard Lindblad form and involves modi�ed lowering (ãi) and raising

(ã†i ≡ [ãi]
†) operators:

Γ0
em

2
ãi =

∫ ∞
0

dτ Γem(τ)ai(−τ). (3.7)

Here, the kernel

Γem(τ) = θ(τ)

∫
dω

2π
Sem(ω)e−iωτ (3.8)

takes into account the reservoir emission spectrum Sem(ω), while the ai(t) operators are
de�ned in the interaction picture with respect to the photonic Hamiltonian,
ai(τ) = eiHphτ ai e

−iHphτ . Thus, considering two eigenstates |f〉 (resp. |f ′〉) of the photonic
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Hamiltonian with N (resp. N + 1) photons and energy ωf (resp. ωf ′), the matrix element
of the modi�ed jump operators equals

〈f | ãi |f ′〉 =
2

Γ0
em

Γem(ωf ′f ) 〈f | ai |f ′〉 , (3.9)

with ωf ′f = ωf ′ − ωf and

Γem(ω) =
1

2
Sem(ω)− iδl(ω) (3.10)

is the Fourier transform of the memory kernel Γem(τ). While the magnitude of the Lamb-
shift δl(ω) stemming from the imaginary part of Γem(ω) is typically small as compared to
the emission linewidth ∝ ∆em and Hamiltonian parameters U, J and thus does not bring
important physical e�ects, the real part Sem(ω)/2 is physically essential as it provides the
frequency-dependent emission rate (this can be seen most clearly in App. C where we derive
a Lindblad reformulation of Eq. 3.4 in the secular approximation). Further extension of the
model including additional non-Markovian losses will be discussed in Sec. 3.6 .

As was discussed in the introduction and in the previous Chapter, the physics and the
phase diagram of this driven-dissipative model critically depend on the speci�c choice of
the emission spectrum. In contrast with our previous works [119, 12] in which the emission
spectrum was Lorentzian, we will focus here on the study of a �square-shaped� spectrum
Sem(ω) = sem(ω)Γ0

em, where

sem(ω) = N
∫ ω+

ω−

dω′
∆em/2

(ω − ω′)2 + (∆em/2)2
(3.11)

is shown in Fig.3.1 a) and the normalization constant N is set such that sem

(
ω++ω−

2

)
= 1.

From the �gure, one sees that Sem(ω) maintains an almost constant value Γ0
em all over a

frequency domain [ω−, ω+], and decays smoothly with a power law outside this interval over
a frequency scale ∆em.

While Sec. 3.7 will be devoted to the discussion of several strategies for experimental
implementation, basing ourselves on the microscopic model of Sec. 2.2 of last Chapter one
can already see that this kind of emission spectrum could be obtained by coupling the
various lattice sites to two-level emitters with an incoherent pumping in the excited state
at a rate Γp = ∆em, and whose transition frequencies are uniformly distributed over the
interval [ω−, ω+] (the Lorentzian spectrum would be then recovered when ω− = ω+). As we
will see in Sec. 3.7.2.2, the number of emitters required to reproduce this distribution can
be reduced to a few units.

The main advantage of this scheme with respect to the case of a narrow bandpass emis-
sion spectrum of last Chapter, is that it allows to select a particular band of energies [ω−, ω+]
(in order to engineer low-T like steady-state, it will be a lower band of energy) while ex-
cluding transitions falling out this particular interval (in our case we will be interested in
excluding high energy transitions): this will allow the Mott state to develop robustness
against tunneling since, in contrast with the case of the Lorentzian spectrum, photons with
a broad range of kinetic energies (∼ J) can now be injected without emitting undesired
excitations above the many-body band gap (∼ U). For our purpose, the upper cuto� ω+

will be the key ingredient to stabilize the desired steady-states: in Sec.3.3, we will show that
the detuning ω+ − ωcav plays the role of a chemical potential for photons. On the other
hand, the lower cuto� will be set to a far red-detuned frequency, in such a way to cover all
required transitions below the upper cuto� ω+. Typically, a value of ω+ − ω− of the order
of a few times U (which sets the characteristic transition energy between several photonic
bands) is enough.

As we will see, in order to be able to target certain many-body transitions (and avoid in
particular to pump new photons above the energy band gap), frequency-dependent emission
processes will need to verify the selectivity condition ∆em � U . Finally, the weak dissipation
condition that we assumed at the beginning of this section translates into Γl, Γ0

em � ∆em.
Understanding whether this latter inequality is required on physical grounds, or is only a
mathematical artefact required for the validity of Red�eld equation Eq. (3.4) which could
be lifted experimentally, is a complex question that we will address in a future study.
Nonetheless, we can conclude that the validity of our approach strongly relies on a net

58



3.3 Steady-state equilibrium-like properties

Figure 3.2: Steady-state properties for a limit choice of parameters. Panels a),c),e) [resp.
panels b),d),f)] Average steady-state photon number per site nph (resp. condensed fraction
xBEC), for L = 2, 5, 7 respectively. Panel g) [resp. panel h)]: Average nph (resp. xBEC) in a
T = 0 equilibrium system, for L = 7. Panel i) [resp. panel j)]: steady-state particle number
relative �uctuations ∆n [resp. entropy S = −〈ln(ρ∞)〉], for L = 7. In panel g) and j) dash
dotted black lines indicate the MPS T = 0 prediction for the �rst Mott lobes. Parameters
used in all panels (except g,h): Γl/Γ

0
em = 10−3, U/∆em = 106, Γ0

em/∆em = 10−2, ω+ = 0,
ω−/∆em = −4 × 107. Cuto� in particle number per site Nmax = 6 [Panels a),b)] and
Nmax = 3 [panels c)-j)]

time-scale separation between photonic loss/emission processes (and their associated lamb-
shifts) and Hamiltonian ones. The various required inequalities can summarized as following:
Γl, Γ0

em � ∆em � U ≤ (ω+ − ω−) (we will see that they can be veri�ed by state-of-the-art
parameters in superconducting circuits [159]).

3.3 Steady-state equilibrium-like properties

In this section we predict some general properties of the steady-state ρ∞ of the Master
Eq. (3.4) and draw a connection between ρ∞ and the T = 0 equilibrium prediction for the
Hamiltonian Hph.

As a �rst step, it is essential to gain more insight on the e�ect of dissipation in our model.
One of the main consequences of being in the weakly dissipative regime Γl, Γ0

em ≪ U, J
(J is also much larger than Γl, Γ0

em if we set a reasonable coupling strength between the
various lattice resonators) is that emission and loss processes are not strong enough to
build coherent superpositions between pure quantum states with di�erent energies: during
time evolution (and thus also at steady-state) the density matrix remains almost diagonal
in the eigenbasis of Hph (this was always perfectly con�rmed by our simulations when we
compared the results obtained by mean of the secular approximation to the exact numerical
predictions). One could possibly argue that Hph might present some degeneracies: however
most of those are accidental, and the corresponding states are usually very dissimilar and are
not coupled by mean of elementary processes such as particle losses or injections processes 1.
The remaining degeneracies are connected to the underlying symmetries of the many-body
problem: in our case the re�ection symmetry plays an important role, as it implies that
states with opposite total momenta (e.g., two counter-propagating hole excitations) possess
equal energies. However, due to the translational invariance of the problem, starting from
homogeneous initial conditions the density matrix must maintain this invariance and thus
can not present o�-diagonal elements between those states during its further evolution.

With that picture in mind, the evolution of Master. Eq. (3.4) can be understood physi-
cally as a near classical/'diagonal' stochastic problem: the main e�ect of dissipative processes
is to transfer probability between various eigenstates of Hph. The corresponding transfer
e�ciency is provided by the Fermi Golden rule: given two eigenstates |f〉 (resp. |f ′〉) of
the photonic Hamiltonian with N (resp. N + 1) photons and energy ωf (resp. ωf ′), the
transition rates Tf→f ′ and Tf ′→f between those two states are two completely independent

1This might be not true in the thermodynamic limit for the Goldstone mode, but our �nite-size simulation
could not address this issue

59



Chapter 3. Stabilizing strongly correlated photon �uids with tailored
non-Markovian reservoirs

quantities with di�erent frequency dependencies

Tf→f ′ = Sem(ωf ′,f )
∑
i

| 〈f | ai |f ′〉 |2, (3.12)

Tf ′→f = Γl

∑
i

| 〈f | ai |f ′〉 |2. (3.13)

This ability to control the relative strength of the transition rates in the function of the
energy jumps will allow us to guide the photonic density matrix toward particular eigenstates
of the Hamiltonian.

Our intuition is already con�rmed in a single cavity geometry, as the scheme introduced
in this work readily allows to stabilize pure Fock states with arbitrary photon number:
indeed, in Fig. 3.1 b) we observe a plateau structure with successive jumps between integer
values of the steady-state photon number 2, with a smooth (resp. sharp and discontinuous)
transition for ∆em/U & 1 (resp. ∆em/U � 1) between the various steps. The physical
quantity ω+ − ωcav manifestly plays a similar role as the chemical potential in equilibrium
physics [59] but with a mechanism di�ering from the scheme presented in Sec. 1.2.3.3.

Pushing the analogy with equilibrium forward, we �nd that the speci�c shape of the
pump spectrum [Fig. 3.1 a)] allows to drive large many-cavity systems toward a steady state
closely related to a T = 0 state (and thus to overcome the fragility against tunneling pointed
out in [119] for Lorentzian pumps). To see this, let us set a strong emission at resonance
Γ0

em � Γl, while maintaining a sharp cut-o� at the edges of the spectrum ∆em � U , in such
a way to strongly favor (resp. block) f → f ′ transitions between states (with N and N + 1
photons) verifying ωf ′f ≤ ω+ (resp. ωf ′f ≥ ω+). Under those constraints, the transition
rates follow the condition

Tf→f ′
Tf ′→f

' Γ0
em

Γl
θ(ω+ − ωf ′f )

{
≫ 1 if ωf ′f < ω+

≪ 1 if ωf ′f > ω+
,

that closely resembles a T = 0 detailed-balance relation

Tf ′→f
Tf→f ′

∣∣∣∣
eq

= eβ(ω+−ωf′f ) (3.14)

with β → +∞. One may thus expect the many-body steady-state to be very close to the
ground state |GS〉 of the rotating frame e�ective Hamiltonian

Heff = Hph − ω+N (3.15)

=

L∑
i=1

[
−µa†iai +

U

2
a†ia
†
iaiai

]
−
∑
〈i,j〉

Ja†iaj ,

i.e., a T = 0 state with chemical potential µ = ω+ − ωcav. De�ning ω̃f ′f = ωf ′,f − ω+ as
the transition energy between the two eigenstates de�ned previously, calculated this time by

mean of Heff , one has that
Tf→f′
Tf′→f

' Γ0
em

Γl
θ(−ω̃f ′f ): emission processes are strongly enhanced

(resp. suppressed) for photonic transitions reducing (resp. increasing) the energy of the new
e�ective Hamiltonian Heff , and thus indeed tend to guide probability toward its ground-
state.

In the next sections, we will show that this agreement with equilibrium physics is gen-
erally robust for most choices of system parameters, but subtle signatures of the deviations
from the detailed balance condition (3.14) can appear in some speci�c regions. These new
non-equilibrium features will be discussed at length in Sec. 3.5. A way to suppress them by
adding extra frequency-dependent losses is then introduced and characterized in Sec. 3.6 in
view of quantum simulation applications.

3.4 Numerical results for �nite periodic chains

As the sophisticated numerical techniques used in [92, 12] are not straightforwardly applica-
ble to non-Markovian problems, we had to base our study on a direct numerical calculation

2We checked that particle number �uctuations were strongly suppressed.

60



3.4 Numerical results for �nite periodic chains

of the steady-state density matrix ρ∞ ≡ ρ(t → +∞) by looking for a zero of the Red�eld
super-operator on the right-hand side of Eq. (3.4) for mesoscopic one-dimensional chains.
While a complete study of larger systems in possibly higher dimensionality is postponed to
future work addressing e.g. the critical properties of possible phase transitions, our approach
turned out to be su�cient to anticipate and understand the behaviour of experimentally rel-
evant systems.

For system sizes going up to L = 5 sites, a complete numerical calculation was possible.
Above 5 sites, we had to perform the secular approximation and discard fast oscillating terms
in the master equation: for very weak dissipation and in absence of relevant degeneracies
of the photonic Hamiltonian, the diagonal terms of the density matrix in the Hamiltonian
eigenbasis are in fact not coupled to o�-diagonal terms, and the latter can be neglected
when computing the steady state. As this approximation is generally accurate for weak
dissipation but may be problematic in the presence of degeneracies, we have numerically
checked on chains of L = 3, 4, 5 sites that it indeed gives indistinguishable results from the
exact solution for small systems sizes.

In order to facilitate the reader, we start our discussion in Sec. 3.4.1 from a limit case
of parameters for which the physics is most transparent [Fig. 3.2]. As a second step, in
Sec. 3.4.2 we will then assess the robustness and actual observability of our predictions by
considering parameters inspired to state-of-the-art experimental devices [Fig. 3.3].

3.4.1 Idealized parameters

In order to present the physics in a cleanest way, we �rst discuss the occurrence of the
insulator-like state and its transition towards a super�uid-like state for an idealized set of
parameters where the loss rate Γl is extremely small as compared to the interaction energy
U . This allows to keep all other parameters well spaced in magnitude and largely satisfy the
inequalities. Calculations showing the robustness of our conclusions for realistic parameters
of state-of-the-art circuit-QED devices are presented in the next subsection.

The steady-state photon density nph = 〈N〉/L and the Bose-condensed fraction xBEC =
〈nk=0〉/〈N〉 (where 〈O〉 ≡ Tr(Oρ∞)) are given in Fig. 3.2 [panels a)-f)] for several system
sizes L, and are compared to the T = 0 equilibrium predictions for L = 7 sites [panels
g), h)]. Even though one does not expect a true Bose-Einstein Condensation/Bose-Enstein
Condensate (BEC) for an in�nite 1D chain [136], still xBEC provides physical insight on the
long-range coherence properties of our �nite-size system.

Apart from the presence of small corrections that will be discussed below, the qualitative
agreement between the observables calculated for the driven-dissipative steady state and
the T = 0 prediction of the equilibrium BH model is very good: �rst, we observe for
increasing µ a series of insulating-like regions with successive integer values of the density
nph and a small xBEC. Within these regions, the photonic density does not depend on
the Hamiltonian parameters ωcav and J , and �uctuations in the total photon number are
suppressed to ∆n ≡

√
〈N2〉 − 〈N〉2/〈N〉 ' 10−2 [Fig. 3.2 i)]: this is a sort of non-equilibrium

form of incompressibility.

These insulating regions closely follow the shape of the phase boundary [panel g)] pre-
dicted for a T = 0 equilibrium 1D system (the so-called Mott lobes [59, 114]), that we
obtained by means of matrix-product-states (MPS) simulations with L = 200 sites (see
[114] for details on the approach): the agreement for the �rst lobe is excellent, while the
deviations for the second lobe are due to a numerical cuto� in the maximum particle number
per site Nmax = 3 used in the steady-state calculation.

Secondly, the insulating regions are separated by coherent regions with non-integer den-
sity, reminiscent of the equilibrium super�uid phase where excess particles/holes do not
su�er from the photon blockade and can delocalize via tunneling: the condensed fraction is
important and eventually reaches the maximal value xBEC = 1 at high J , indicating a full
coherence over the �nite system.

3.4.2 Realistic parameters

While Fig.3.2 focused on a limit case of parameters in order to validate the theoretical
viability of our approach, Fig. 3.3 con�rms the actual feasibility of our proposal and the
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Figure 3.3: Steady-state properties for L = 3, for state-of-the-art parameters in circuit
QED. Panel a): average photon number per site nph. Panel b): condensed fraction xBEC.
Panel c): relative �uctuations of the total particle number ∆n. Parameters inspired from
circuit-QED systems [126, 159]: U = 200×2πMHz, ∆em = 0.5×2πMHz, Γ0

em = 30×2πkHz,
Γl = 1× 2πkHz. In order to be able to correctly see the higher lobes, we had to increase the
maximum allowed number of particles per site to Nmax = 4, and correspondingly to reduce
the system size to L = 3.

overall robustness of our predictions for state-of-the-art parameters in circuit-QED sys-
tems [126, 159].

The main consequence of the �nite ratios ∆em/U and Γ0
em/Γl is in fact a weak but

appreciable value of particle number �uctuations, and could be seen as the non-equilibrium
counterpart of the e�ect of a �nite temperature Teff . For a low-T equilibrium state with
{J/U = 0, µ/U = 1/2} (which is the point of the �rst lobe with highest energy gap and thus
predictably at low temperature the one with the weakest �uctuations) and restricting the
partition function Zth ' 1+eβµ+eβ(2µ−U) to the most relevant Fock states N = 0, 1, 2, one
�nds that the particle number �uctuations can be connected to the temperature through
the following relation

kT =
U

2

1

ln
(

2
∆n2

) . (3.16)

A rough estimate for a sort of e�ective temperature for our non-equilibrium system can then
be extracted by inserting in this formula the value ∆n ∼ 0.13 found in Fig. 3.3 c). This
gives a quite low value Teff ' 0.1U . The steady-state e�ective temperature should be even
lower away from {J/U = 0, µ/U = 1/2} for the speci�c parameters choice of Fig. 3.3 c),
since the resulting �uctuations are rather independent from tunneling and only change by a
factor ∼ 1.5 across the transition line (in contrast to the equilibrium case where �uctuations
dramatically increase when the many-body gap closes). Still, based on the low value of
Teff , one can thus expect that it will be possible to catch the e�ect of quantum �uctuations
(or crossover) for current state-of-the-art parameters, at least on some intermediate length
scale. We stress that this e�ective temperature presented here represents a mere attempt
of assessing the amount of �uctuations at steady-state, and should not be confused with
the one deriving from the pseudo-thermalization e�ect discussed in Sec. 2.4 and Chap. 4
(although there might be some connections between the two quantities).

3.4.3 Finite-size e�ects

Even though there is a quite good overall agreement of the non-equilibrium calculations to
the well-known physics of the equilibrium system in the thermodynamic limit [59, 114], a
careful observer can still notice in Fig. 3.2 some signi�cant discrepancies, in particular with
the T = 0 prediction for the phase boundary [dash dotted line in Fig. 3.2 g)]. As a �rst
step, it is therefore important to �rst assess which features are likely to be �nite-size e�ects
and which ones might instead signal some new physics.

The most prominent such features are that in Fig. 3.2 [b), d), f)] the insulating regions
do not close completely to form lobes but rather end with a stripe, xBEC is not exactly zero
even at very weak J , and all observables present a smooth crossover for increasing tunneling
instead of a sharp transition at the tip of the lobe (which is not present here). Comparing
these panels, one notices that both the width of the stripes and the condensed fraction inside
the insulating region decreases as 1/L for increasing system sizes (actually for J = 0 one
has precisely xBEC = 1/L). The fact that a similar behaviour is found in the �nite size
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Figure 3.4: Steady-state statistical properties for L = 5 at �xed µ = 0.55U . Panel a):
�delity F between the steady state and the Hamiltonian ground state (blue solid line),
occupancy π0 of the most populated state |ψ〉+ (purple crosses), overlap |〈ψ+|GS〉|2 between
the ground state and the most populated state (red dot line), entropy S (green dash line).
Panel b): number �uctuations ∆n (green solid line) and condensed fraction (blue circles),
compared to the T = 0 equilibrium value (orange dash-dot line). Same parameters as in
Fig. 3.2. In order to be able to perform exact diagonalization of the Liouvillian and avoid
using the secular approximation, we had to choose a smaller system size L = 5 as compared
to Fig. 3.4.

equilibrium plot of Fig. 3.2 g) is therefore a strong indication of the �nite-size origin of this
e�ect: the scaling for the width of the stripes is related to the fact that for a �nite-size
system a given eigenstate can remain the ground-state for a �nite range of parameters, even
if this one would belong to the continuum in the thermodynamic limit. One can notice
actually between the two lobes the presence of L − 1 other stripes (with precisely rational
density values n = N/L in the T = 0 case), consistently with the fact that one needs to add
L bosons on top of a n = 1 Mott Insulator in order to move to n = 2. The 1/L value for the
Bose-Condensed fraction deep in the Mott lobe is a direct consequence of the fact that the
MI is fully localized for J = 0, and thus has a uniform momentum distribution (n(k) = n/L
for any momentum k).

If one could take the in�nite system size limit, a tempting conjecture would be that all
these discrepancies should in fact disappear, recovering clean Mott lobes surrounded by a
super�uid (and possibly also Bose-condensed depending on the dimensionality) phase. How-
ever, as we are going to discuss in the next Section, a more careful analysis allows to unveil
another kind of deviations, which signals a much richer non-equilibrium phenomenology.

3.5 Non-equilibrium features

The most remarkable such feature is highlighted in the plots of the particle number �uctua-
tions and of the entropy shown in Fig. 3.2(i,j): While in most parts of the insulating region
the steady state presents an almost vanishing entropy S = −〈ln(ρ∞)〉 [Fig. 3.2 j)] and can
thus be well approximated by a pure quantum state (as for a T = 0 equilibrium state), this
is not the case in some regimes of parameters in the vicinity of the transition line where
the entropy S acquires a signi�cant positive value slightly before the jump in the particle
number and in the condensate fraction at the equilibrium super�uid transition.

The present section is dedicated to the characterization of this novel entropic transi-
tion and to the description of the non-equilibrium mechanisms underlying it. Since this
phenomenon could be seen as an hindrance in the prospect of quantum simulating the
ground-state of the Bose-Hubbard Hamiltonian, in Sec. 3.6 we will put forward a further
extension of the optical scheme that is able to remove this deviation from equilibrium.

To quantitatively characterize these non-equilibrium features, we looked at the �delity
F = 〈GS| ρ∞ |GS〉 between the steady state ρ∞ and the Hamiltonian ground state |GS〉 and
at the steady-state occupancy π0 of the most populated state |ψ+〉 3.

3To avoid possible artifacts such as the preferential choice of the steady-state eigenbasis, all these physical
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Figure 3.5: Left panel: Occupancy π0 of the most populated quantum state at steady
state for a 5 sites system. Central (resp. right) panel: spectrum of He� at the values
J/U = 0.1 and µ/U = 0.38 (resp. µ/U = 0.55) indicated by the point [α] (resp. [β]) in the
left panel. Parameters used: Γl/Γem = 10−3, U/∆em = 106, Γ0

em/∆em = 10−2 , ω+ = 0,
ω−/∆em = −4 .107.

As one can see in Fig. 3.4a), the transition takes the form of a discontinuous jump in
entropy from a 99% pure quantum state toward a statistical mixture above some critical
Jc, located within an insulating region at a small but �nite distance from the equilibrium
transition line [Fig. 3.2 j)]. Note that this jump is present even for �nite sizes L, and just gets
smoother for the state-of-the-art parameters of Fig. 3.3. In the pure region F = π0 ' 0.993
are close to unity, indicating that ρ∞ can be well approximated by the pure state |GS〉 〈GS|
(not the case in the entropic region). In both regions, |〈ψ+|GS〉|2 = 1 (within machine
precision), F and π0 take identical values, so the most populated state |ψ+〉 is precisely
equal to the Hamiltonian ground state at any value of J (at least for the precise value of
µ in Fig. 3.4 a)). Looking at the observable xBEC [Fig. 3.4 b)], the pure (resp. entropic)
region is characterized by negligible (resp. small) deviations from equilibrium, and very
weak �uctuations ∆n ' 0.016 (resp. non-zero ∆n ' 0.13).

This e�ect can be understood as a consequence of the departure of the pump and loss
rates from a true detailed balance relation: the emission spectrum is in fact not exponential
in the frequency but rather decays with a power law above ω+ and most importantly sat-
urates at the value Γ0

em below ω+. A physical interpretation of the underlying microscopic
mechanism is illustrated in Fig. 3.5 and Fig. 3.6. In the left panel of Fig. 3.5, we plot the
occupancy π0 of the most populated quantum state of the density matrix at steady state.
In the central and right panels, we show the spectrum of the underlying Hamiltonian eval-
uated at two points [α] and [β] separated by a small variation of µ for which the entropy is
respectively zero and non-zero.

From the previous discussion, one expects that the steady state occupation be concen-
trated in the ground state |GS〉 = |A〉 of He�, i.e., a (weakly delocalized) Mott state with
1 photon per site. However looking at the spectrum of many-body quantum states for the
choice of parameters indicated as [β] (right panel of Fig. 3.5), we note that, starting from
|A〉 which contains Ntot = 5 photons in total, the system can lose one photon and arrive in
a state |B〉 with Ntot− 1 photons containing one hole excitation. Then, the pump re-injects
a new photon and brings the system into a doublon-hole excited quantum state |C〉 6= |A〉
with Ntot photons such that EC < EB . Since the spectrum has a square shape, the pump
can bring the system toward both the ground state |A〉 and |C〉 with comparable e�cien-
cies ∝ Γ0

em. There is one last doublon excited state |D〉 with Ntot + 1 photons and energy
ED such that ED < EC so the excited Ntot photon state |C〉 is unstable and gets quickly
pumped toward |D〉 where it gets trapped for a while as no state with higher photon number
and lower energy exists, until one photon gets slowly lost and the system goes back to the
ground state |A〉.

This mechanism explains why we observe, in the steady state, a signi�cantly non-zero
entropy as well as a photonic density slightly bigger than in the ground state. Of course, if
the emission rate were exponentially dependent in the energy jump and the detailed balance
condition was veri�ed, the re-pumping process toward |C〉 would not be relevant since its
e�ciency will be dynamically overwhelmed by the process bringing the system back toward

quantities were computed for L = 5 by exact steady-state calculation without using the secular approxima-
tion.
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Figure 3.6: Sketch of the non-equilibrium scenario in the thermodynamic limit: above a
critical hopping Jc, the hole and doublon-hole energy bands start overlapping and are thus
coupled by emission process (which are only enhanced for transition diminuishing the total
energy computed with Heff). This allows for a probability leakage toward doublon states
after a photon loss event. Turning back toward the ground-start requires an additional slow
photon loss event.

the ground state |A〉. As a result, no signi�cant trapping of population into excited states
would occur.

In contrast, for the choice of parameters indicated as [α] and illustrated in the central
panel of Fig. 3.5, the ground state |A〉 is well isolated dynamically, as the only energetically
authorized transition after creating a single hole excitation is to go back into the Mott
ground state of Ntot photons. Of course there exist states with Ntot−1 photons in an higher
energy band which would allow the kind of processes described earlier. However those states
correspond to highly excited states (e.g., an hole combined with a doublon-hole) and have
a much smaller overlap ∝ J/U with the state ai |A〉 in which we removed one photon to the
ground state. The e�ective rate of this process is thus of the order of (J/U)2Γl ∼ Γl/100
and induces a negligible leak out of |A〉. As a consequence the steady state is almost pure,
and corresponds very well to the Mott-like ground state. The sharpness of the transition
between the two regimes at the α, β points is set by the edge linewidth of the order of
∆em = Γp � U .

Even though our interpretation of the e�ect is related to the level crossing between
discrete hole and doublon-hole excited states of a �nite system, we expect that a similar
e�ect will occur in the thermodynamic limit (as illustrated in Fig. 3.6) when the continuous
energy bands of the hole excitations and doublon-hole excitations start to overlap above
some tunneling J = Jc. Such an overlap can of course not happen when J is relatively
small with respect to U since, for the �rst lobe for example, the hole band is separated from
the ground-state by an energy Ehole ' µ ≤ U while the doublon-hole one is separated by
Eholedoublon ' U . As a consequence, a critical value Jc exist for this non-equilibrium channel
to open up. Below this value, the Mott phase is expected to remain robust even in the
thermodynamic limit. Whether this unexpected feature will a�ect the phase diagram in a
dramatic manner (e.g., by destabilizing ordered phases [2] and/or giving rise to novel exotic
ones [93, 87, 92]) is a complex question that goes beyond the scope of this work and will be
addressed in forthcoming works.

3.6 An improved scheme for a full quantum simulation

of the ground-state

In this section we introduce a further extension of the non-Markovian model of Sec. 3.2 with
the speci�c purpose of countering the e�ect of the non-equilibrium processes presented in
Sec. 3.5, which induce a probability leakage out of the ground-state. This improved scheme
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Figure 3.7: Steady-state properties using frequency-dependent losses with a square-spectrum
in addition to frequency-dependent emission. Simulations were done for a L = 7 sites
periodic chain. Panel a) (resp. panel c): Average steady-state photon number per site
nph (resp. condensed fraction xBEC). Panel b): steady-state entropy. Panel d): 1 − F ,
where F = 〈GS| ρ∞ |GS〉 is the �delity of the steady-state density matrix ρ∞ with the
ground-state |GS〉 of the Hamiltonian Heff , i.e, a T = 0 state of chemical potential µ. Same
parameters as in Fig. 3.2 except for the additional frequency-dependent losses: Γ0

L = Γ0
em,

ωL − ωcav = ω+ − ω− and ∆L = ∆em.

is based on the introduction of extra frequency-dependent losses in addition to the natural
Markovian ones.

3.6.1 The model

We consider the following dynamics for the photonic density matrix

∂tρ(t) = −i [Hph, ρ(t)] + Ll

[
ρ(t)

]
+ Lem

[
ρ(t)

]
+ L(add)

L

[
ρ(t)

]
, (3.17)

where the Hamiltonian and dissipative contributions Hph, Ll

[
ρ(t)

]
and Lem

[
ρ(t)

]
are left

unchanged with respect to Sec. 3.2.
Similarly to emission, the additional frequency-dependent loss term

L(add)
L

[
ρ(t)

]
=

Γ0
L

2

L∑
i=1

[
āiρa

†
i + aiρā

†
i − a

†
i āiρ− ρā

†
iai

]
. (3.18)

involves modi�ed lowering (āi) and raising (ā†i ≡ [āi]
†)

operators
Γ0

L

2
āi =

∫ ∞
0

dτ ΓL(τ)ai(−τ), (3.19)

where

ΓL(τ) = θ(τ)

∫
dω

2π
SL(ω)e−iωτ . (3.20)

SL = sL(ω)Γ0
L is the frequency-dependent loss rate, which we also choose to be of a square

shape as the emission term of Sec. 3.2, by setting

sL(ω) = N ′
∫ ωL

ω+

dω′
∆L/2

(ω − ω′)2 + (∆L/2)2
(3.21)

where the normalization constant N ′ is set such that sL

(
ω++ωL

2

)
= 1. Note the di�erent

choice for the loss frequency domain [ω+, ωL] (instead of [ω−, ω+] for emission).
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As will be discussed in Sec. 3.7, frequency-dependent losses with the desired spectral
pro�le could be obtained by coupling our system to absorbers with transition frequencies
uniformly distributed over [ω+, ωL] and a strong dissipative decay Γ↓ = ∆L toward the
ground-state.

We will choose strongly enhanced frequency-dependent losses with respect to the Marko-
vian ones: Γ0

L � Γl. Similarly to the emission spectrum, the upper cuto� ωL is not the most
important feature and will be set to a very far blue-detuned frequency: ωL−ωcav � U, J ≥ 0.
Likewise, we will have ∆L � U, ωL − ω+. All these conditions can be naturally satis�ed,
e.g., by mimicking the choice of parameters for emission: Γ0

L = Γ0
em, ωL − ω+ = ω+ − ω−

and ∆L = ∆em.

3.6.2 Steady-state properties

In analogy to the frequency-dependent emission, the main e�ect of the frequency-dependent
losses is to strongly enhance transitions removing a photon with a frequency above ω+.
As a result, both non-Markovian emission and loss processes strongly accelerate transitions
between many-body eigenstates which reduce the total energy computed using the e�ective
Hamiltonian of Eq. (3.15). Thus, the only quantum state for which both emission and losses
are strongly suppressed (i.e., for which only natural Markovian losses are present) is the
ground-state |GS〉 of Heff (with Ntot photons), since it does not have states with Ntot − 1
and Ntot + 1 photons with lower energy.

As a consequence, the ground-state |GS〉 has a long life time ∼ 1/Γl � 1/Γ0
(em/L), while

all remaining eigenstates have a short life-time ∼ 1/Γ0
(em/L). This important property was

not ensured by the original scheme introduced in Sec. 3.2, for which some lowest-excited
states with Ntot + 1 photons (e.g. the |D〉 state of Fig. 3.5 ) were long lived and could only
relax with a slow rate ∼ Γl � Γ0

em towards |GS〉. This is the main reason for which this
scheme shows a signi�cant entropy in some regions of the parameter space. The new scheme
including frequency-depedent losses solves this issue and is expected to be well suited to
e�ciently stabilize the ground state independently of the system parameters.

This statement based on simple physical arguments is con�rmed in Fig. 3.7 where we
see that the steady-state average values of nph and xBEC [panels a) and c)] are completely
undistinguishable from the T = 0 predictions of Fig. 3.2 [panels g) and h)]. We checked that
this was also the case for higher order correlations. Even more remarkably, the steady-state
ρ∞ has a very low entropy [panel b)], and its �delity F with the ground-state is very close
to unity [panel d)] for any choice of parameters µ and J , indicating thus that we are indeed
stabilizing a pure quantum state coinciding with the ground-state: ρ∞ = |GS〉 〈GS|.

In contrast with the original scheme, there appears to be no real physical limitations to
how close the steady-state can be to the ground-state |GS〉. We have in fact veri�ed that
the very small non-vanishing values for entropy (between 0.05 and 0.12) and deviations of
the �delity F from unity (between 0.002 and 0.012) were a mere consequence of the �nite
choice of the dissipative parameters, and could be further reduced by orders of magnitude
by improving the frequency selectivity ∆(em/L)/U of emission and losses and the ratios
Γ(em/L)/Γl.

The fact that this improved scheme succeeds to stabilize the ground-state of the Bose-
Hubbard model everywhere in the {µ/U, J/U} parameter space independently of the details
of the underlying many-body physics (which is signi�cantly di�erent in the J � U or J � U
cases) is a strong indication of its robustness and �exibility. We are therefore con�dent that
this scheme can be e�ciently applied to the quantum simulation of the zero temperature
physics of a wide range of Hamiltonians.

3.7 Experimental proposal

3.7.1 Ideal con�guration

Following our proposal of the last Chapter, a natural approach to engineer the non-Markovian
pump introduced in Eq. (3.6) would be to insert a large number Nat � 1 of two-level emit-
ters into each cavity, whose evolution and coupling to the cavity �eld are described by
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Hamiltonian terms of the form

Hat =

L∑
i=1

Nat∑
n=1

ω
(n)
at σ

+(n)
i σ

−(n)
i (3.22)

HI = ΩR

L∑
i=1

Nat∑
n=1

(a†iσ
−(n)
i + h.c.). (3.23)

Accordingly, each emitter is incoherently pumped in the excited state at a rate Γp, which is
modelled by the Lindblad term

Lp,at[ρtot] =
Γp

2

L∑
i=1

Nat∑
n=1

D[σ
+(n)
i ; ρtot], (3.24)

so that the total (cavity+emitters) density matrix ρtot obeys the master equation:

∂tρtot(t) = −i [Hph +Hat +HI , ρtot(t)] (3.25)

+Ll

[
ρtot(t)

]
+ Lp,at

[
ρtot(t)

]
.

For su�ciently strong pump rate Γp, the pump induces an almost perfect inversion of pop-
ulation in the emitters. As a result, these undergo irreversible cycles in which they are
immediately re-pumped after emitting a photon in the cavity and reabsorption processes
are suppressed. Such a pumping can be implemented for instance by coherently driving
the emitter into a third level, from which it quickly decays towards the excited state of the
active transition as often done in practical laser devices and discussed in [126].

In contrast with the proposal of last Chapter, where the choice of a unique emitter
frequency leaded to a Lorentzian-shape pro�le for emission

SLorentzian
em (ω) = NatΓ

(at)
em

(Γp/2)2

(ω − ωat)2 + (Γp/2)2

(
Γ(at)

em =
4Ω2

R

Γp

)
, (3.26)

the transition frequencies ω
(n)
at of the di�erent emitters are assumed now to be uniformly

distributed over the interval [ω−, ω+] in order to engineer a broadband tailored emission
spectrum: the summation over the contribution of all emitters across their uniform frequency
distribution [ω−, ω+] yields the desired square-shaped spectrum

Stailored
em (ω) = NatΓ

(at)
em

1

ω+ − ω−

∫ ω+

ω−

dω′
(Γp/2)2

(ω − ω′)2 + (Γp/2)2
. (3.27)

of Eq. (3.11) and Fig. 3.1 a), with an edge width equal to ∆em = Γp. For Γp = ∆em �
ω+ − ω−, we obtain for the maximum emission rate Γ0

em = 2πNatΩ
2
R/(ω+ − ω−).

Technically speaking, under the constraints
√
NatΩR,Γl � Γp, we can use the projective

methods [21] presented in Sec. 2.2.2 to trace out the emitter degrees of freedom (see Sec. B
for the details of the derivation) and write a closed master equation for the photonic density
matrix in the form of Eq. (3.4) with Sem(ω) given by Eq. (3.11).

The frequency-dependent loss term introduced in Sec. 3.6 can be implemented in a anal-
ogous manner: instead of using inverted emitters with a strong pumping toward the excited
state, a possibility would be to couple our system to absorbers (or photonic resonators) with
transition frequencies uniformly distributed over [ω+, ωL], and a very strong dissipative de-
cay Γ↓ = ∆L toward the ground-state (resp. vacuum state).

3.7.2 Possible simpli�cation strategies

At a �rst glance, the physical implementation of the scheme may appear as a quite challeng-
ing task, as it involves coupling a large number of di�erent emitters to each resonator. In
the following part of this section, we are going to explain how this scheme may be simpli�ed
and made accessible to state-of-the-art technology.
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Figure 3.8: Steady-state properties using only one or two emitting sites in di�erent geome-
tries. Panel a) (resp. c)) show the steady-state average density nph, and panel b) (resp.
d)) the entropy for a L = 4 sites system with periodic boundary conditions with emitters
localized on the �rst two sites (resp. an open chain with emitters only on �rst site). Same
parameters as in Fig. 3.2 except for the stronger emission rate to compensate the reduced
number of emitting sites: Γ0

em/∆em = L
2 × 10−2 in panels a), b) (resp. L × 10−2 in panels

c),d)). A smaller lattice of L = 4 sites had to be used because of the broken translational
invariance.

3.7.2.1 Pumping a few sites only

As a �rst idea, following a suggestion of [126], we argue that a pumping mechanism restricted
to one or two sites only is su�cient to stabilize the same steady-state that one would obtain
if emitters were present on all sites.

Indeed, when a photon is lost starting from a state |f〉, a sort of �hole� is created in
a local region of the �uid. Due to tunneling, this hole can travel along the chain at a
signi�cant group velocity that typically scales as vg ∼ J � Γl, Γ0

em and is thus able to
expand over a large number of sites before undergoing decoherence or additional dissipative
e�ects. Because of this delocalisation e�ect, a large number of sites (not only the one where
the initial loss process took place) feel the presence of the hole and are able to replenish the
original many-body state |f〉 by injecting a new photon.

As pointed out in [126], in case of large lattices, hole excitations (in particular low-
momentum ones with slow group velocities) might not have the time to travel and reach the
emitting site before su�ering from additional dissipative processes. In this case, it is enough
to introduce many regularly spaced emitting sites in the bulk of the chain. Of course, the
single-site emission rate has to be correspondingly increased in order to compensate the
reduced number of emitters and maintain the same total emission power. Finally, attention
must be paid so to avoid the emitter being located at the node of the wave function of some
hole states, which would block the re-emission of a new photon. Indeed, due to re�ection
symmetry, generated hole wave packets possess a symmetric momentum distribution and
therefore must be seen as a superposition of cosine-like standing waves.

We conclude that for a periodic chain where the location of those nodes is not �xed due to
the absence of edges, embedding emitters in two neighboring sites is enough to have all hole
states quickly replenished, as con�rmed in Fig. 3.8 [panels a),b)] which features steady-state
properties which are undistinguishable from those of Fig. 3.2 obtained by pumping all sites.
For the most relevant experimental con�guration of open boundary conditions, this issue of
nodes in the wave-function can be avoided in a simple manner by setting the emitting site
at one of the chain extremities, where the nodes can not be located [Fig. 3.8 c),d)] (for open
boundaries, a single particle/hole wave function presents nodes at the extremities only in a
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Figure 3.9: Temporal pro�le of the time-dependent emitter transition frequency required
to mimic the square-shaped emission spectrum

continuum con�guration, not for a lattice).

3.7.2.2 Temporally-modulated emitter frequency

Along di�erent lines, a dramatic reduction of the number of required emitters can be obtained
by making a single emitter to mimic the e�ect of a square spectrum. In the original proposal
presented in Sec. 3.7.1, each single emitter provides a Lorentzian contribution (Eq. (3.26)) to
the emission spectrum and the square spectrum of Eq. (3.11) is recovered upon integration
over a uniform distributed of emitter frequencies within the interval [ω−, ω+].

The goal of this subsection is to show how a wide distribution of emitters can be imitated
by temporally modulating the transition frequency of a single emitter. In order to get a
uniform distribution, one needs a constant modulation speed vω = |dωat

dt | (leading to the
time-dependent pro�le of Fig. 3.9). Under suitable conditions described below, the resulting
time-averaged emission spectrum then has the desired shape

S(av)
em (ω) =

Γat
em

T

∫ t+T

t

dt
(Γp/2)2

(ω − ωat(t))2 + (Γp/2)2
(3.28)

=
Γat

em

ω+ − ω−

∫ ω+

ω−

dω̃
(Γp/2)2

(ω − ω̃)2 + (Γp/2)2
,

where T = (ω+−ω−)
vω

is the frequency modulation half-period. A similar idea was experimen-
tally implemented in [81] to obtain a square spectrum �eld by modulating a classical source
in time. This technique allowed to spectrally probe the di�erent photonic levels of a single
mode cavity coupled to a far-o�-resonance emitter, and thus to demonstrate a dispersive
blockade e�ect.

Such a simpli�cation strategy, which drastically reduces the number of emitters required
in order to reproduce a square emission spectrum, would apply also for the implementation
of the frequency-dependent losses, as one could couple the system to a single absorber (resp.
resonator) whose transition frequency is temporally modulated over the interval [ω+, ωL].

General considerations: While a full numerical study is postponed to a future work, one
can already see on physical grounds that in order to avoid spurious e�ects, several conditions
must be met. First, vω should be fast enough for photons not to be lost within a modulation
half-period T , which imposes that 1

T = vω
ω+−ω− � Γl. If this condition is not satis�ed,

the scheme fails to stabilize a quasi time-independent steady-state and the system keeps
performing wide oscillations.

As a second requirement, vω should be slow enough that well-de�ned edges are main-
tained at the extremes of the spectrum and uncontrolled heating e�ects are avoided. Pro-
vided vω � Γ2

p, the resulting frequency-dependent emission is expected to converge toward
the exact square spectrum of Fig. 3.1 a) with edges possessing a width ∆em = Γp. Other-
wise, one expects that 1/

√
vω becomes then the dominant limiting time scale in the memory

kernel of Eq. (3.8) and the e�ective edge linewidth increases as ∆eff
em ∝

√
vω. This ad-

ditional broadening can be tolerated as long as one remains in the frequency-selectivity
regime ∆eff

em � U .
These two constraints can be simultaneously satis�ed for weak enough losses. As we have

seen in Sec. 3.2, ω+−ω− should be at least equal to a few times the interaction strength U ,
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Figure 3.10: Time evolution of a single cavity con�guration using a single temporally
modulated emitter to mimic the e�ect of a square emission spectrum. Di�erent panels from
left to right refer to increasing values of the modulation speed vω =

∣∣dωat
dt

∣∣. The blue (resp.
red) lines correspond to a single photon (resp. two photon) Fock state stabilization. Upper
panels: average photon number 〈N〉 (t). Lower panels: relative �uctuations of the total

particle number ∆n(t) =

√
〈N2〉 (t)− 〈N〉2 (t)/ 〈N〉 (t). The photon-emitter Rabi coupling

ΩR was chosen for each modulation speed in such a way to set the stationary value of the
photon number close the desired occupation number: 〈N〉 (t) 't→∞ 1 (resp. 2). Parameters
inspired from state-of-the-art in circuit-QED systems [126, 159]: U = 200 × 2πMHz, Γp =
0.5 × 2πMHz, Γl = 1 × 2πkHz. For the blue (resp. red) lines µ = ω+ − ωcav = U/2 (resp.
3U/2), and ω+ − ω− = 0.6U (resp. 1.6U). Choice for the modulation speed, from left to
right: vω = 7.5×(2πMHz)2, 15×(2πMHz)2, 30×(2πMHz)2, 50×(2πMHz)2. Corrispondingly
for the blue lines, from left to right ΩR = 0.83×2πHz, 0.9×2πHz, 0.97×2πHz, 1.07×2πHz
(resp. for the red lines ΩR = 1× 2πHz, 1.07× 2πHz, 1.15× 2πHz, 1.24× 2πHz).

and Γp = ∆em is a tunable parameter which will have to verify ∆em/U � 1: one concludes
that a very small Γl/U ≪ 1 allows to simultaneously satisfy both conditions. For realistic
parameters a compromise between the two opposite constraints must be found. In that
prospect, a good strategy may be to use several emitters spanning di�erent sub-intervals
of the spectral range [ω−, ω+]: in this way, the modulation speed |dωat

dt | required to cover
the whole interval [ω−, ω+] within the �nite photon lifetime 1/Γl would in fact be reduced,
which would help ful�lling the two constraints.
Numerical checks: Some �rst numerical results validating this conclusion as well as our
intuition on how to optimize the performance of this scheme are presented in Fig. 3.10 for
a very simpli�ed single-cavity model, where we investigate the possibility of stabilizing a
single-photon (resp. two-photon) Fock state by setting µ = U/2 (resp. µ = 3U/2) in the
middle of the �rst (resp.second) Mott lobe, and we compared the resulting performance
between several modulation speeds vω =

∣∣dωat
dt

∣∣.
As was predicted, for low modulation speeds (panels a)-d)), losses occuring within the

modulation half-period T = (ω+ − ω−)/vω of the modulated emitter can not be neglected,
and thus the density maintains measurable oscillatory behaviour, a true steady-state is not
fully reached and �uctuations are substantial. For an optimal modulation speed (panels
e),f)), using state-of-the art parameters of circuit QED, we obtained a minimized value for
the particle number relative �uctuations ∆n ' 0.17 (resp. 0.12) for the �rst (resp.second)

Fock state, leading to a probability π '
〈
N2
〉
− 〈N〉2 of only 3% (resp. 5%) of not being

in the desired Fock state, and an e�ective temperature Teff ' 0.12 × U (resp. 0.14 × U):
this is a very good level of performance, comparable to the results of Sec. 3.4.2 obtained
by direct steady-state calculation of the master equation Eq. (3.4) using similar parameters
(we had obtained π = 1.7% and Teff ' 0.10 × U for the �rst lobe in the limit J = 0 of
a single cavity). At higher modulation speeds (panels g),h)), as discussed previously, the
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modulation-induced broadening is responsible for an increase of �uctuations as it leads to
heating e�ects and undesired transitions toward Fock states with higher photon number.

As we can see, temporal variations of the density are slightly more important if we want
to stabilize a Fock state with an higher photon number, since the emitter needs to travel
over a broader range of frequencies, in order to protect all transitions from the vacuum until
the desired occupation number, and thus losses are more important over the modulation
time interval T = (ω+−ω−)/vω. As was explained earlier, this issue can be readily �xed by
using several emitters spanning di�erent frequency regions.

3.8 Conclusions and perspectives

In this Chapter, in order to tackle some inherent di�culties related to the use of the non-
Markovian pump scheme with a narrow bandpass emission spectra, we have introduce a
fully novel scheme based on more complex tailored reservoirs in order to stabilize strongly
correlated photonic states. By focusing on the Bose-Hubbard model, our study con�rmed
the possibility of cooling down the many-body state toward a Mott-Insulator incompressible
state with a perfectly de�ned (and arbitrary) integer density, robust against dissipative
losses. Strikingly, the resulting state survives to the presence of an important hopping,
which was not the case with a narrow bandpass spectrum. In a completely identical way
to the equilibrium con�guration, the Insulating state can be reshaped into a super�uid like
state, characterized by strong non-local e�ects, either by changing the chemical potential or
increasing the tunneling.

Depending on the speci�c values of the system and pumping parameters, the system
behaviour can either closely resemble its equilibrium counterpart or show an unexpected
transition to a non-equilibrium state characterized by a signi�cant entropy. We related this
deviation from equilibrium to the kinetic generation of doublon excitations, occurring when
some speci�c high energy band start presenting some overlap. A strategy to circumvent this
feature by adding frequency-dependent losses was proposed. Our numerical study con�rmed
for this new scheme the possibility for any choice of parameters of fully stabilizing the
Hamiltonian ground-state, which has a much longer lifetime than all excited states.

In addition to observing the super�uid-insulator transition in a �uid of strongly interact-
ing photons, our work demonstrates the possibility of quantum simulating zero-temperature
equilibrium physics on a photonic platform. In addition, our scheme which can be im-
plemented by mean of a relatively small of additional components with respect to current
experiments, is readily accessible to the state-of-the-art technologies.

Future work will explore the possibility of exploiting the very non-equilibrium features
to generate exotic many-body states and novel non-equilibrium phase transitions (It would
be interesting to gain some insight on the nature of the novel entropic transition in the
thermodynamic limit, which occurs in absence of frequency-dependent losses), as well as
investigate the potential of our schemes to quantum simulate a wider range of many-body
problems. Another research direction will be the development of novel analytical tools
allowing to compute at a mean-�eld level the static and dynamical properties of strongly
interacting driven-dissipative systems in presence of a non-Markovian environment, in order
to address directly the systems properties in the thermodynamic limit.
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Chapter 4

Pseudo-Thermalization e�ects in

non-Markovian open quantum systems

4.1 Introduction

The dynamics of open quantum systems is often characterized by the presence of a complex
external environment often modelled as a series of reservoirs [57, 24], which can implement a
wide range of e�ects such as single particle/many-body losses, pump, dephasing [29, 76], or
more exotic dissipative processes [50]. Our understanding of the conditions allowing for the
emergence of analogous equilibrium properties in this physical context is still limited. Over
the last decade, these problematics have become particularly relevant at an experimental
level also in the quantum regime, as pioneering works in photonic devices have opened a
whole new panel of research on the dynamics of non-equilibrium quantum �uids. Signatures
of Bose-Einstein distributions, such as the presence of power-law infrared divergencies simi-
lar to the Rayleigh-Jeans distribution (nk ∝

k→0

1
k2 ), and/or high-energy exponential tails of a

Boltzmann type (nk ∝
k→∞

e−βEk), have been observed in several experiments involving pho-

ton and exciton-polariton non-equilibrium �uids [99, 9, 108, 101, 152, 169] and predicted by
various models [153, 105, 34, 35]. If in the high-temperature regime [108, 101, 152, 169], the
appearance of thermal correlations might be seen as something rather predictible since en-
ergy exchange with the thermal environment is occurring much faster than particle losses, in
other classes of low-temperature exciton-polaritons [99, 9] and VCSEL [7] experiments, where
non-equilibrium e�ects are expected to be kinetically dominant, the underlying mechanisms
leading to emergence of an e�ective temperature di�ering from the one of the apparatus are
less clear and subject to controversy.

From a theoretical point of view, phenomenological work has been done to quantify the
distance from equilibrium for photonic systems [105, 106] and connections have been drawn
between equilibrium and symmetries of the Keldysh action [5, 175]. Studies based renor-
malization group methods for non-equilibrium �eld theories have addressed the long-range
and low-energy properties of quantum �uids [176, 177]. In particular, the important role
played the spatial dimensionality in determining whether a driven-dissipative quantum sys-
tem presents asymptotic pseudo-thermalization properties or not [2, 199, 80] was highlighted.
More recently, the necessity of characterizing the dynamical properties was also pointed out
in [33], which showed that a driven-dissipative quantum system could present at steady static
equilibrium-like static correlations without verifying the Fluctuation-Dissipation Theorem
(FDT) at a dynamical level.

In this Chapter, we want to push this last statement one step further: we argue that,
under very speci�c conditions, an open quantum system can present all the attributes of an
equilibrated system both at a static and a dynamic level (verifying in particular the FDT
theorem), even though its environment is highly non-thermal: in a previous work [119] (see
Sec. 2.4 of a previous chapter), we unveiled a novel `pseudo-thermalization e�ect' under
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the form of a preliminary result, where the impact of a single thermal bath is mimicked
by coupling the system to several non-thermal and non-Markovian baths and the system
apparently thermalizes: since the detailed balance relation [17, 190] is veri�ed, the system
is not able to perceive that the reservoirs are not equilibrated and ends up in a steady-
state overlapping with a thermal state, with both temperature and chemical potential being
arti�cial physical quantities depending on the various baths spectral properties. Following
that work, the preliminary concept was deepened by [171], who suggested to engineer more
complex reservoirs so to reproduce this e�ect over broader energy scales, and then obtain
arti�cial and controllable temperatures in view of optimizing the performance of quantum
annealers. Some hints suggest that the apparent emergence of thermal static properties in
low-T exciton-polariton experiments [99, 9] might be related to pseudo-thermalization in
some experimental con�gurations.

In both works [119, 171], the formalism was based on a quantum master equation formal-
ism, which allowed to access static properties of the steady-state but not the dynamical ones
such as multiple time correlators, and in particular did not allow to verify the validity of
the Fluctuation Dissipation Theorem (FDT) [113]. Moreover, as all predictions were based
on very general theoretical arguments, a full validation on a speci�c model still remains to
provide. In this Chapter, we give a proof of pseudo-thermalization for the speci�c model
of a weakly interacting BEC coupled to several non-Markovian reservoirs. We demonstrate
in particular the validity of the FDT theorem. While this model was already introduced in
Chapter 2 and Chapter 3 and formulated in terms of a quantum master equation, here we
develop an alternative analytical approach based on a quantum non-Markovian Langevin
formalism which keeps tracks of the bath dynamics and is physically very transparent, and
allows in particular to access both static and dynamical properties of the steady state.

This Chapter is organized as follows: in Sec. 4.2 we introduce the general Langevin
model and use Bogoliubov theory to linearize this theory around a mean-�eld solution, from
which we demonstrate numerically the dynamical stability. We also derive an low-energy
e�ective description, allowing to provide exact analytical expressions for the low-momentum
Bogoliubov spectrum. In Sec. 4.3, we show that, for baths with arbitrary spectral shape,
this model presents low-energy pseudo-thermalization both at a static and dynamical level:
we demonstrate that not only static correlations overlap with their thermal counterpart at
low energies, but that the FDT is also veri�ed in that same frequency range. Moreover,
if the non-thermal baths are suitably chosen so that the kinetics of the system veri�es the
Kennard-Stepanov (KS) relation (i.e. the detailed balance relation) at all energies, then the
system undergoes arti�cal thermalization at all energies. In Sec. 4.4 we provide a derivation
of the quantum Langevin model basing ourselves on the quantum optics model introduced in
a previous Chapter in Sec. 2.2.1. We also explain how the Kennard-Stepanov relation could
be engineered with this model, and how it might be naturally reproduced in exciton-polariton
low-T experiments. In Sec.4.5 we give hint about how to break pseudo-thermalization and
drive the system out-of-equilibrium by adding saturation and/or non-trivial momentum
dependence to emission.

All the results of this Chapter are based on the preprint [120] (submitted for pubication),
of which the author of this thesis is the �rst and main author.

4.2 Non-Markovian quantum-Langevin equation

In this section we present a reformulation based on a quantum Langevin formalism of the
non-Markovian model for an driven-dissipative interacting Bose Gas which we already ad-
dressed in Chapters 2 and 3. Focusing on the weakly interacting case, in the BEC regime
we study the mean-�eld solution of this model and use the Bogoliubov theory to study the
dynamics of �uctuations. After demonstrating numerically the dynamical stability for a
speci�c choice of the pump and loss spectra, we develop a low-energy e�ective theory so to
access analytically the low-momentum collective modes of the condensate.

4.2.1 Model for a driven condensate

Let us consider a bosonic gas in d spatial dimensions, described by the annihilation and
creation �elds ψ̂(r) and ψ̂†(r). The evolution in time of these operators is described by the
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non-Markovian quantum-Langevin equation

∂ψ̂

∂t
(r, t) = −i

[
ω0 −

∇2

2m
+ gψ̂†(r, t)ψ̂(r, t)

]
ψ̂(r, t) +

∫
t′

Γ(t′)ψ̂(r, t− t′) + ξ̂(r, t), (4.1)

where
∫ ′
t
≡
∫ +∞
−∞ dt′, while ω0 is the bare cavity frequency, m is the bosonic mass, g > 0 is

the strength of the repulsive contact interaction, Γ is a memory kernel and ξ̂(r, t) a zero-
mean Gaussian quantum noise operator. Equation (4.1) resembles the Heisenberg equation

for the motion of the operator ψ̂ for an isolated interacting Bose gas. However, the dynamics
described by Eq. (4.1) does not conserve energy and number of particles. Namely, the terms

Γ(t′) and ξ̂(t) model the e�ect of frequency-dependent particle injection and losses dissipative
processes. With respect to the previous Chapters, in addition to the non-Markovian emission
Sem(ω) our analysis will include the possibility of a non-trivial frequency dependence also
the loss spectrum Sl(ω).

With the Langevin formalism, the correlations of the noise operators ψ̂(r, t), ψ̂†(r, t) can
thus be written as

〈ξ̂(t)ξ̂†(t′)〉 =

∫
ω

Sl(ω) e−iω(t−t′) (4.2a)

〈ξ̂†(t)ξ̂(t′)〉 =

∫
ω

Sem(ω) eiω(t−t′), (4.2b)

with
∫
ω
≡
∫ +∞
−∞ dω/(2π), where the loss/pump power spectra Sl,p(ω) ≥ 0 are functions of

ω. Likewise, Γ is expressed as

Γ(t) = θ(t)

∫
ω

[Sem(ω)− Sl(ω)] e−iωt. (4.3)

The Heaviside function θ(t) in Eq. (4.3) is needed in order to ensure causality: as a result,
its presence implies the Kramers-Kronig relations between the real and imaginary parts of
the Fourier transform Γ(ω) =

∫
t
eiωtΓ(t), which can thus be written as

Re [Γ(ω)] =
1

2
[Sem(ω)− Sl(ω)] , (4.4a)

Im [Γ(ω)] = PV

∫
ω′

Sem(ω′)− Sl(ω
′)

ω − ω′
. (4.4b)

The power spectra Sem(ω) and Sl(ω) are assumed to be smooth functions of the fre-
quency ω. In the following, we will restrict to the case in which there exists a range
of frequencies ω1 < ω < ω2 such that Sem(ω) > Sl(ω) (�amplifying� region), and that
Sem(ω) < Sl(ω) outside this interval (�lossy� region). Accordingly, losses are perfectly bal-
anced by pumping at the boundary of this interval, i.e., Sem(ω1,2) = Sl(ω1,2). We also
de�ne ∆diss = min(FHWM(Sl),FHWM(Sem)) as the minimum of the full width at half
maximum of the power spectra Sl(ω) and Sem(ω). It represents a characteristic frequency
scale over which these power spectra change value and quanti�es the non-Markovianity of
the dynamics. We stress that the loss and emission power spectra Sl(ω) and Sem(ω) arise
from the contact of the system with separate reservoirs, i.e., an absorbers/loss medium and
an emitters/gain medium: as a consequence, Sl(ω) and Sem(ω) are assumed to be perfectly
independent and completely tunable physical quantities. A microscopic derivation of the
Quantum Langevin Equation (4.1) starting from the quantum optics model of Chapter 2
involving a photonic lattice and two-level emitters is presented in Sec. 4.4.

Finally we introduce the following quantity

βe� ≡
1

Te�
≡ S′l(ω2)− S′em(ω2)

Sem(ω2)
=

d

dω
log

[
Sl(ω)

Sem(ω)

]∣∣∣∣
ω=ω2

. (4.5)

As we will see in Sec. 4.3, this model presents pseudo-thermalization properties at low
energies for generic power spectra, and Te� will play the role of an e�ective temperature.
Te� also scales like the linewidth of the power spectra ∆diss and quanti�es non-Markovianity,
but unlike ∆diss it is more sensitive to the local properties around ω2. In the Markovian
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limit, we have that Te�,∆diss → ∞. On the contrary, for very steep power spectra (very
coherent pump and/or loss processes), the dynamics is highly non-Markovian and we have
that Te�,∆diss → 0.

In analogy with what was already discussed in Sec. 2.4 in a previous chapter, here the
physical origins of the pseudo-thermalization can be understood intuitively at a qualitative
level: at ω2 losses and pump exactly compensate (Sem(ω2) = Sl(ω2)), so this frequency
will play for this model the role of the condensate frequency (while ω1 will be unstable),
and frequencies close to this value will correspond to low-energy excitations on top of the
condensate. However, close to ω2 , the pump and loss power spectra verify the following
condition (see Eq. (4.5)):

Sem(ω2 + ω)

Sl(ω2 + ω)
'
ω→0

(1− βe�ω +O(ω/∆diss)
2) ∼ e−βe�ω, (4.6)

so the Kennard-Stepanov relation [102, 180] (which is a special form of equilibrium/detailed
balance condition for the absorption and emission spectra in quantum optical systems) is
asymptotically veri�ed at low frequencies. Thus, as we will demonstrate in Sec. 4.3, steady-
state low-energy properties are expected to be thermal.

Moreover, if we choose the emission and absorption spectra to verify exactly the Kennard-
Stepanov relation

Sem(ω2 + ω)

Sl(ω2 + ω)
= e−βe�ω, (4.7)

then the system should thermalize at all energies. Note that this can be obtained without the
various baths being at thermal equilibrium, as we can tune independently the emission and
loss power spectra S(l/em) by changing the emitters and absorbers frequency distributions.
In Sec. 4.4.1.2 we discuss how the the Kennard-Stepanov might be reproduced naturally in
exciton-polariton low-T experiments by the loss power spectrum (related to mirror trans-
parency) and the emission spectrum (related to the excitonic reservoir), in some experimetnal
con�gurations where the scattering processes by longitudinal optical phonons are dominant..

All the results presented in the next sections regarding low-energy properties are general
in the sense that they do not depend on the precise shape of the power spectra. Nonetheless,
in order to substantiate the discussion, we performed numerical simulations for a speci�c
choice of S(l/em)(ω). For all the graphical representations we will thus consider the case of
Markovian losses and a Lorentzian-shaped pump (see Fig. 4.1)

Sgraphl (ω) ≡ Γl, (4.8a)

Sgraphem (ω) ≡ Γem
(∆diss/2)2

(ω − ωem)2 + (∆diss/2)2
. (4.8b)

where the use of the notation ∆diss is consistent with the previous de�nition. We also de�ne
the detuning δ ≡ ω0 − ωem between the photonic and the pump frequency. Accordingly, we
need to have Γl < Γem in order to obtain an ampli�ed range of frequencies and generate a

condensate, and ω1,2 are the two solutions of (∆diss/2)2

(ω−ωem)2+(∆diss/2)2 = Γl

Γem
.

This choice of loss and emission power spectrum is naturally reproduced by our quan-
tum optics proposal Sec. 4.4.1.1. Since it does not verify completely the Kennard-Stepanov
relation, we do not expect it will lead to complete thermalization; however, it is well suited
to investigate the e�ect of low-T pseudo-thermalization.

4.2.2 Non-interacting case

In this section we consider the case of a non-interacting Bose gas, i.e, we set the interaction
strength g to 0. In this case, the Langevin equation Eq. (4.1) is linear and it can be solved
exactly, for a given choice of Γ(ω). If a stationary state exists independent on the initial
conditions (see discussion further below), one may evaluate the corresponding solution by
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Figure 4.1: Power spectra for Markovian losses and Lorentzian shape pump

introducing the Fourier transforms

ψ̂k(ω) =

∫
r,t

ψ̂(r, t)ei(k·r−ωt), (4.9a)

ψ̂†k(ω) =

∫
r,t

ψ̂†(r, t)e−i(k·r−ωt)
[
ψ̂k(ω)

]†
, (4.9b)

ξ̂k(ω) =

∫
r,t

ξ̂(r, t)ei(k·r−ωt), (4.9c)

ξ̂†k(ω) =

∫
r,t

ξ̃†(r, t)e−i(k·r−ωt) =
[
ξ̂k(ω)

]†
, (4.9d)

and by replacing them into Eq. (4.1): one thus �nds that the value of ψ̂k(ω) is given by

ψ̂k(ω) =
iξ̂k(ω)

ω − ω0 − εk − iΓ(ω)
, (4.10)

with εk = k2/2m. Note that, as a consequence of the absence of the non-linearity, all

the modes k are decoupled. When ψ̂k(ω) is transformed back in real time, it results in a
linear combination of several modes ωk,n, corresponding to the poles of the denominator in
Eq. (4.10) (assuming no branch-cuts), weighted with di�erent amplitudes. For each value
of k, several solutions ωk,n (labelled by the index n) may exist: this give rise to a branched
spectrum of eigenfrequencies. The number of these branches depends on the peculiar choice
of Γ(ω): these additional dispersions are related to the degrees of freedom which were traced

out from the dynamical description of the bosonic �elds ψ̂ and are accounted for by Γ(ω).
The imaginary part Im[ωk,n] corresponds to the inverse lifetime of the given mode: in

order to have a dynamically stable mode, the condition Im[ωk,n] < 0 must be satis�ed;
this also implies that a dynamically stable stationary solution independent of the initial
state exists, as any information on the initial state will vanish exponentially fast in time.
On the contrary, if Im[ωk,n] ≥ 0 for some values of k and n, the corresponding mode grows
inde�nitely in time, or it remains constant: in both cases, one cannot neglect the information
about the initial state, thus invalidating the assumption that a stationary value independent
on the initial state exist. For Im[ωk,n] > 0, the �eld ψ̂ diverges exponentially in time, and
thus the solution is physically meaningless: nonetheless, this feature may signal a dynamical
instability of the non-interacting approximation of Eq. (4.1), and, as a result, the inclusion
of non-linearity may be crucial.

For the speci�c choice of the power spectra, discussed in the previous Section, which
admits an amplifying region [ω1, ω2], one expects some eigenmodes to present dynamical
instabilities. Qualitatively, if ω0 +εk falls into the amplifying region (which is not necessarily
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[ω1, ω2], due to the presence of the imaginary part Im[Γ(ω)] which induces a Lamb shift of the
bare frequency), a dynamical instability is expected: while in a standard laser the instability
would be controlled and ultimately stopped due to the presence of a saturated gain medium
[170, 131], here those nonlinear terms where not included in our Langevin description. As
was already discussed in a previous chapter in Sec. 2.3.2, we will recover below that the
inclusion of a non-vanishing interaction strength g 6= 0 provides a non-standard saturation
mechanism which prevents the unconstrained growth of dynamically unstable modes.

4.2.3 Interacting case: mean-�eld solution

We consider now the interacting solution of Eq. (4.1) for the interacting case g 6= 0. As a
�rst level of approximation, we consider the classical limit of Eq. (4.1), which, in absence of a
reservoir, corresponds to the well-known Gross-Pitaevskii description of a condensate [151].

This can be accomplished by replacing the quantum �eld ψ̂ with a classical complex �eld ψ
and by neglecting the quantum noise ξ̂. The classical �eld ψ can be thus interpreted as the
wave function of a condensate.

The validity of this approximation relies on the fact that the non-condensed fraction
is assumed to be very small: this would have to be checked a posteriori by studying the
e�ect of the �uctuations on the stability of the condensate solution (see Sec. 4.2.4). While
in lower dimensions, �uctuations are expected to be dominant and thus preclude any such
description1, we expect that for high enough spatial dimension d condensation is possible
[176, 177]. Thus, a weak interaction coupling g (inducing a weak quantum depletion), and
a certain selectivity in frequency of the dissipation (limiting the generation of excitations
of high energy) should be suitable conditions for the emergence of coherence in the system.
The classical �eld ψ(r, t) thus obeys the following equation:

∂ψ(r, t)

∂t
= −i

[
ω0 −

∇2

2m
+ g|ψ(r, t)|2

]
ψ(r, t) +

∫
τ

Γ(τ)ψ(r, t− τ), (4.11)

which has the form of a driven-dissipative Gross-Pitaevskii equation with a memory kernel.
We focus on spatially homogeneous solutions of the form

ψ(t) = ψ0 e
−iωBECt, (4.12)

which describe a condensate with in�nite lifetime, frequency ωBEC and density n0 = |ψ0|2.
The non-condensed case ψ0 = 0 is always a solution of Eq. (4.11), whose stability may

be studied by linearizing Eq. (4.11) around it: this yields the linear equation studied in
Sec. 4.2.2. As a result, the non-condensed solution is stable when the spectrum of the
excitations lies outside the amplifying region, i.e., ω0 + εk ≥ ω2. We will now show that
non-trivial, condensed (ψ0 6= 0) solutions exist when the bare frequency lies below the upper-
boundary of the amplifying region, i.e., ω0 ≤ ω2. In this case, the interaction generates a
blue-shift ∼ gn0 of the bosonic bare frequency ω0, thus providing a natural saturation
mechanism as the condensate frequency is spontaneously set at one of the boundaries of the
amplifying region. In fact, by inserting Eq. (4.12) into Eq. (4.11), one �nds

ωBEC = ω0 + g|ψ0|2 + iΓ(ωBEC) (4.13)

from which, by taking the real and the imaginary part and by using Eq. (4.4), one �nds the
two following equations for ωBEC and |ψ0|2:

Sem(ωBEC) = Sl(ωBEC) (4.14a)

ωBEC = ω0 + µ+ δL(ωBEC), (4.14b)

where
µ ≡ g|ψ0|2 (4.15)

is the mean-�eld self-interaction energy and

δL(ω) = PV

∫
ω′

1

ω − ω′
[Sl(ω

′)− Sem(ω′)] (4.16)

1Naively, one could possibly think about an alternative quasi-condensate description involving the phase
and density degrees of freedom [137]. However in that situation the corresponding KPZ equation describing
the non-equilibrium phase dynamics has been predicted to lead to strong long range �uctuations [2, 199]
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corresponds to a Lamb shift of the condensate frequency due to the contact with the bath.
From Eq. (4.14a), we deduce that the only solutions for the condensate frequency are:
ωBEC = ω1,2. However, the solution ω1 will be unstable, since the low energy excitations of
the condensate will fall in the ampli�ed region [ω1, ω2] and undergo dynamical instability,
thus we will not take into account this solution and consider in all the next sections the case
ωBEC = ω2.

We �nally remark that, unlike usual VCSEL [85] where stability is induced by a sat-
uration e�ect of the pump (photonic emitters are 'two-level like' nonlinear systems which
need some time to be repumped in the excited state), here stability is expected to be a
consequence of the interplay between the frequency dependence of pumping and the pro-
gressive blue-shift g|ψ0|2 induced by interactions during the condensate growth, this until
the condensate frequency reaches ωBEC where pump and losses perfectly compensate.

4.2.4 Interacting case: Bogoliubov analysis of �uctuations

In order to study the stability of the condensate and to characterize the properties of its
excitations, we express the bosonic �eld as

ψ̂(r, t) =
[
ψ0 + Λ̂(r, t)

]
e−iωBECt, (4.17)

where Λ̂(r, t) is an operator describing the �uctuations above the condensate. Inserting
this decomposition and the mean-�eld solution obtained from Eq. (4.14) into Eq. (4.1), and
retaining terms up to the �rst order in the �elds Λ̂(r), Λ̂†(r), one obtains

∂Λ̂(r, t)

∂t
= −i

[
Λ̂(r, t), Hbog(t)

]
+

∫
τ

Γ̃(τ)Λ̂(r, t− τ) + ξ̃(r, t) (4.18)

where

Hbog =

∫
ddr

{
Λ̂†(r)

−∇2

2m
Λ̂(r) +

µ

2

[
2Λ̂†(r)Λ̂(r) + Λ̂(r)Λ̂(r) + Λ̂†(r)Λ̂†(r)

]}
(4.19)

is the Bogoliubov Hamiltonian, Γ̃ is de�ned as

Γ̃(t) = eiωBECtΓ(t)− δ(t)Γ(ωBEC), (4.20)

and ξ̃(r, t) = eiωBECtξ(r, t). After calculation of the commutator, the equation Eq. (4.18)
can be rewritten as

∂Λ̂(r, t)

∂t
= −i

{
−∇2

2m
Λ̂(r, t) + µ

[
Λ̂(r, t) + Λ̂†(r, t)

]}
+

∫
τ

Γ̃(τ)Λ̂(r, t− τ) + ξ̃(r, t). (4.21)

The linear system 4.21 can be regarded as the driven-dissipative non-markovian counterpart
of the Bogoliubov-de Gennes equations. Similarly to the equilibrium case, the �eld Λ̂(r, t)
and its hermitian conjugate Λ̂†(r, t) are coupled by the interaction energy µ: this coupling is
mediated by processes in which non-condensed particles are scattered into the condensate,
and vice-versa. It is convenient to rewrite Eq. (4.18) in momentum and frequency space:
in order to do this, we de�ne the Fourier transform of the �elds and noise operators as in
Eq. (4.9). The correlations of the quantum noise operators in the momentum and frequency
space are given by:

〈ξ̃k(ω)ξ̃†k′(ω
′)〉 = δk−k′ δω−ω′Sl(ωBEC + ω), (4.22a)

〈ξ̃†k(ω)ξ̂k′(ω
′)〉 = δk−k′ δω−ω′Sem(ωBEC + ω). (4.22b)

with δk ≡ (2π)
d
δ(d)(k), δω ≡ 2πδ(ω). After taking the Fourier transform of Eq. (4.18), we

obtain the following set of coupled equations :

ω

(
Λ̂k(ω)

Λ̂†−k(−ω)

)
= Lk(ω)

(
Λ̂k(ω)

Λ̂†−k(−ω)

)
+ i

(
ξ̃k(ω)

ξ̃†−k(−ω)

)
, (4.23)
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where the matrix Lk(ω) is given by

Lk(ω) =

(
εk + µ+ iΓ̃(ω) µ

−µ −εk − µ+ iΓ̃∗(−ω)

)
, (4.24)

where Γ̃(ω) is the Fourier transform of Γ̃(t) de�ned in Eq. (4.20), and it reads:

Γ̃(ω) = Γ(ω + ωBEC)− Γ(ωBEC), (4.25)

and we used the notation Γ̃∗(ω) ≡
[
Γ̃(ω)

]∗
. The complex function Γ̃(ω) represents the fre-

quency dependent decay rate (real part) and lamb shift (imaginary part) of the �uctuations.

Γ̃(ω) vanishes for ω → 0, consistently with the fact that the condensate has an in�nite
lifetime (see Eq. (4.13)).

For later convenience, we de�ne the correlation matrix Ck(ω)

δk−k′ δω−ω′ Ck(ω) =

(
〈Λ̂k(ω)Λ̂†k′(ω

′
)〉 〈Λ̂k(ω)Λ̂−k′(−ω′)〉

〈Λ̂†−k(−ω)Λ̂†k′(ω
′
)〉 〈Λ̂†−k(−ω)Λ̂−k′(−ω

′
)〉

)
, (4.26)

which can be calculated by inverting Eq. (4.23), multiplying the solution by its hermitian
conjugate and averaging over the noise correlation using Eq. (4.22) (see App. E for the
details of the calculations).

4.2.5 Dynamical stability of excitations

In order to study the dynamical stability of the mean-�eld solution, it is necessary to check
that the elementary excitations do not grow exponentially and have a �nite lifetime. To this
end, we derive from Eq. (4.23) the excitations spectrum by calculating frequencies ωik (with
i some integer number used to label the excitation) which cancel out the determinant of the
matrix ω−Lk(ω) with Lk(ω) de�ned in Eq. (4.24). This leads us to the following condition
on the frequency: [

ω − εk − µ− iΓ̃(ω)
] [
ω + εk + µ− iΓ̃∗(−ω)

]
+ µ2 = 0. (4.27)

Solutions with negative imaginary parts correspond to decaying excitations, while in presence
of any instability, some solutions present a positive imaginary part. Since we are considering
generic non-Markovian systems, Γ̃(ω) can be any function verifying the Kramers-Kronig
relations reported in Eq. (4.4), thus in general Eq. (4.27) may have a large number of
solutions, and it may be not possible to solve it analytically.

In the case of Markovian losses and a Lorentzian spectrum Eq. (4.8), Eq. (4.27) becomes
an algebraic equation which admits four di�erent solutions, thus giving rise to four di�erent
branches by varying the momentum k which we computed numerically. In Fig. 4.2, these
solutions are plotted successively for increased values of Γ(l/em), going at �xed ratio Γl/Γem =
0.3 from a weakly-dissipative regime (upper panels) in which the spectral power Γ(l/em) are
weak with respect to the linewidth ∆diss, to a strong-dissipative regime (lower panels) in
which they become comparable or higher. All other parameters (interaction g, mass m,
detuning δ, linewidth ∆diss) are left unchanged.

As a �rst observation, all imaginary parts of the frequencies are negative, so there is no
instability (we checked this for other choice of parameters). Secondly, in the weak dissipa-
tive regime (panels a) and f)) the mode structure is typical of photonic driven-dissipative
condensates [183, 208, 35, 29] and presents a sharp transition from purely damped modes to
propagating ones. Also we observe two other branches of imaginary part ∆diss and real parts
±(ωBEC − ωem): these additional frequencies account for the oscillation of bath degrees of
freedom, which are hidden in the non-Markovianity of the Langevin equation and are nearly
una�ected by the system dynamics due to the weak coupling (In a photonic language for the
Lorentzian emission spectrum, the reservoir degrees of freedom responsible for the emission
may be seen as two-level emitters of transition frequency ωem). However, for stronger dissi-
pation (other panels), the system and reservoir degrees of freedom are coupled and can not
be treated separately, which can be seen in a clearest way by a deformation of the various
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Figure 4.2: Excitation spectrum of the condensate in the case a Lorentzian emission spec-
trum (which can represent the emission by a two level atom), and Markovian losses (model
de�ned in Sec.4.2.1). Left (resp. right) panel: real (resp. imaginary) part of the frequency in
units of ∆diss in function of the momentum k in units of kcross de�ned as |zR|Ekcross = zIµ
(momentum at which the branching e�ect occurs). In blue crosses we plot exact numer-
ical solutions of the full non-Markovian theory (Eq. 4.23)), and in red full lines the solu-
tions given by the corresponding Markovian e�ective theory at low energies (Eq. (4.31)).
From up to down panels, we investigate the transition between weak-dissipation to strong-
dissipation. Parameters: for all panels, m = 1, δ/∆diss = 0, Γl/Γem = 0.3. From up to
down, Γ0

em/∆diss = 0.1, 0.55, 0.6, 0.65, 1.
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branches near the crossing point. Remarkably, a sharp transition from weak to strong cou-
pling occurs between the panels c),h) and the panels d),i), inducing a change in excitation
spectrum structure, as one moves from a situation of branch crossing to an avoided cross-
ing: in this regime, the collective modes associated with the excitation spectrum couples
the bosonic and the bath degrees of freedom, giving birth to a mixed quasi-excitation. In a
photonic language, this suggests that some elementary excitations are of polaritonic nature.

4.2.6 E�ective low-frequency Markovian dynamics

An e�ective time-local equation describing the dynamics for frequencies small enough with
respect to ∆diss: indeed, for ω � ∆diss, the function Γ̃(ω) de�ned in Eq. (4.23) can be

linearized and approximated as Γ̃(ω) ≈ ωΓ̃′(0) = ωΓ′(ω BEC ). As a result, the low-frequency
limit of the Langevin equation Eq. (4.23) becomes:

ωΛ̂k(ω) = z
{
εkΛ̂k(ω) + µ

[
Λ̂k(ω) + Λ̂†−k(−ω)

]
+ iξk(ω)

}
, (4.28)

with the coe�cient z de�ned as

z = lim
ω→0

[
ω

ω − iΓ̃(ω)

]
= [1− iΓ′(ω BEC )]

−1
, (4.29)

and the new noise operators ξk(ω) and ξ
†
k(ω) are characterized by the correlations

〈ξk(ω)ξ
†
k′(ω

′)〉 = δk−k′ δω−ω′Sl(ωBEC), (4.30a)

〈ξ†k(ω)ξk′(ω
′)〉 = δk−k′ δω−ω′Sem(ωBEC). (4.30b)

Notice that the noise operators ξk(ω) and ξ
†
k(ω) correspond to an e�ective classical noise,

since their correlations do not depend on the order of the operators, as a consequence of
Eq. (4.14a).
With respect, to a purely hamiltonian dynamics, all couplings in the commutator have been
multiplied by the complex number z. The eigenmodes of Eq. (4.28) are given by

ω±k = −izI (εk + µ)±
√
z2
RE

2
k − z2

Iµ
2, (4.31)

where z = zR − izI , zR and zI are both real numbers, and Ek =
√
εk(εk + 2µ) is the

equilibrium Bogoliubov energy for the Hamiltonian Eq. (4.19). We can already verify the
dynamical instability of the mean-�eld solution for the choice of BEC frequency ωBEC = ω1,
as this leads to a negative zI (due to a change of sign in the derivative of the real part of
Γ(ω) involved in Eq. (4.29)) and thus to a positive imaginary part in the low-momentum
excitation spectrum in Eq. (4.31). This justi�es de�nitively the choice ωBEC = ω2 (whose
dynamical stability was already checked in 4.2.5).

The frequencies ω±k , shown in Fig. 4.2 in red solid lines, closely resemble the spectrum of a
polaritonic driven-dissipative condensate [183, 208, 35, 29], already described in Sec. 1.1.2.1:
they are are imaginary for small momenta, which signals the purely di�usive nature of low-
energy excitations, while they acquire a �nite real part at higher momenta. In particular,
for k → 0 the branch ω+

k vanishes and therefore it can be identi�ed with the (di�usive)
Goldstone mode associated with the spontaneous breaking of the U(1) symmetry. As was
already discussed in the previous subsection, higher powers of ω present in Eq. (4.23) related
to the non-Markovianity can generate additional modes not predicted by the e�ective low-
energy theory Eq. (4.28), which can be observed in Fig. 4.2.

The validity of Eq. (4.28) for the study the long-range physics has to be checked a
posteriori, by requiring the absolute value |ω±k | to be small with respect to ∆diss for small
k, so that it can be computed by mean of the low-energy e�ective theory Eq. (4.28). On
the one hand, this condition is naturally satis�ed for the Goldstone branch ω+

k for low
enough momenta. On the other hand, the gapped branch ω−k veri�es |ω−k=0| = 2zIµ, and
therefore the gapped mode is correctly described by the Markovian low-frequency theory only
if 2zIµ� ∆diss. According to Eq. (4.29), z scales as Sl(ωBEC)/∆diss, so the gapped mode is
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correctly described by the Markovian low-frequency theory only if Sl(ωBEC)µ� ∆2
diss: this

is the case for very small power spectra (weak dissipation) or very small interaction energy
µ. The validity of this analysis is illustrated in Fig.4.2 where we can see that, within the
range of applicability of our theory described below, the theoretical prediction Eq. (4.31) for
the Goldstone mode and the gapped mode always �ts with the exact numerical predictions.

4.3 Pseudo-thermalization

In this section we give evidence for low-energy pseudo-thermalization for generic power spec-
tra, both at static and dynamical level, by showing that the low-energy static correlations
map on equilibrium ones, and demonstrating the validity of the FDT in the the low frequency
regime. We also compute exactly the static correlations at all energies in the weakly dissipa-
tive regime. Finally, in the speci�c choice of reservoirs where the Kennard-Stepanov relation
is exactly veri�ed, we demonstrate the validity of FDT at all frequencies, and show that the
steady-state in the weakly dissipative regime the steady-state is in a Gibbs ensemble.

4.3.1 Static correlations

A system presenting low-energy e�ective thermal properties should have steady state static
properties similar to an equilibrium one, and look like a Gibbs ensemble at low-energies. In
Sec.4.3.1.1, we give the low-energy expression for static correlations, both in the weak and
strong dissipative regimes, while in Sec. 4.3.1.2 we give an exact analytical expression at all
energies, only valid in the weak-dissipative regime .

4.3.1.1 Low energies

In this section we focus on the low energy regime Ek � ∆diss. By using the expression
derivated in Sec. E.1 for the frequency-correlation matrix Ck(ω) de�ned in Eq. (4.26) and by
restricting ourselves to the low-frequency regime using the procedure described in Sec. 4.2.6,
we compute by Fourier transform the steady state values of the momentum distribution
nk = 〈Λ̂†kΛ̂k〉 and the anomaleous average Ak = 〈Λ̂kΛ̂−k〉, at leading order for low energies
(see App. E for the details of the calculation):

nk ' Te� (εk + µ)

(Ek)
2 , (4.32)

Ak ' − Te� µ
(Ek)

2 , (4.33)

where we remind that Te� is de�ned in Eq. (4.5). These static correlations have to be
compared to those obtained by doing a Bogoliubov calculation for a Bose gas at thermal
equilibrium of temperature Te� and chemical potential µ = g|ψ0|2:

nthk =
1

eβe�Ek − 1
(|uk|2 + |vk|2) + |vk|2 (4.34)

'
(βe�Ek)→0

Te� (εk + µ)

(Ek)
2 ,

Ath
k = 2

(
1

eβe�Ek − 1
+

1

2

)
ukv

∗
k, (4.35)

'
(βe�Ek)→0

− Te� µ
(Ek)

2 ,

where uk and vk relate (in the case of an isolated Bose Gas at equilibrium) the annihilation

operator Λ̂k to the phonon annihilation (resp. creation) operator b̂k (resp. b̂†k) through the
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Figure 4.3: Static properties of the condensate at steady state in the weak dissipative regime
(i.e.,with the power spectra much smaller than ∆diss) in the case of Lorentzian emission
spectrum and Markovian losses (model de�ned in Sec.4.2.1). The left (resp. right) panels
correspond to a detuning between the cavity and the atoms chosen to induce a weak (resp.
strong) chemical potential µ with respect to the e�ective temperature Te�. Upper panels:

static correlations nk = 〈Λ†kΛk〉 in function of the momentum k in units of kth de�ned by
E(kth) = Te�, and in inset, their logarithm in function of the square momentum k2 in units
of k2

th. In green squares we plot the steady state properties given by numerical calculations
of the linearized Langevin equation (Eq. (4.23)) in the weak dissipative regime, in red lines
with circles the results given by the Grand-Canonical ensemble (Eq. (4.34)), and in solid
blue lines the analytical results given by the Fermi Golden's rule (Eq. (4.39)). Lower panels:
the absolute error nk − nthk in green squares lines (resp. nFermik − nthk in solid blue lines)
between the numerical solution of the Langevin equation (resp. the analytical solution given
by the Fermi's golden rule) and the thermal case, in function of the momentum k in units of
kth. Parameters: for all panels, m = 1, Γl/Γ

0
em = 0.3, Γem/∆diss = 10−2. Deduced quantity

Te�/∆diss = 0.55. For the left (resp. right) panels: δ/∆diss = 0.72 (resp. −10). Deduced
quantity µ/∆diss = 4.6× 10−2 (resp. 10.8× 100).
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Bogoliubov transformation:

Λ̂k = ukb̂k + v∗kb̂
†
k, (4.36)

uk =
1

2

[√
εk
Ek

+

√
Ek

εk

]
, (4.37)

vk =
1

2

[√
εk
Ek
−
√
Ek

εk

]
. (4.38)

By comparing Eqs (4.32),(4.33) and Eqs. (4.34),(4.35), we note that the low-energy limit
βe�Ek → 0 of the driven-dissipative quantum Langevin model accurately presents thermal-
like infrared behaviour (the so-called Rayleygh-Jeans distribution). Higher energies corre-
lations are not expected although to be thermal, and due to the algebraic behaviour of the
Lorentzian emission spectrum we do not expect in particular to see any exponential tails.

This analytical arguments can be veri�ed in Fig.4.3 (resp. Fig. 4.4), where we plot the
static correlations obtained by numerical resolution of the linearized Langevin equation for a
Markovian loss spectrum and Lorentzian pump spectrum (Eq. (4.8)), in the weak-dissipative
regime (resp. strong-dissipative regime), i.e, for Γ0

em, Γl � ∆diss (resp. Γ0
em, Γl of the order

of ∆diss), and compare those correlations to thermal ones. We plotted the static correlations
for two detunings δ of the bare frequency ω0 with respect to the pump resonance ωem, in-
ducing di�erent e�ective chemical potentials µ, which is a decreasing function of δ. Indeed,
looking at Eq. (4.14b) and neglecting as a �rst step the Lamb shift, we see that increasing the
frequency of the pump ωem de�ned in Eq. (4.8), i.e., diminuishing the detuning δ = ω0−ωem,
has for e�ect to increase ωBEC, and thus to increase also the chemical potential µ. The case
of a chemical potential weak (resp. strong) with respect to the e�ective temperature Te� is
plotted in the left (resp. right) panels. The upper panels correspond to the static correla-
tions (with in insets their logarithm to check for any high-energy exponential tails), while in
the lower panels we plot the absolute error nk − nthk between the solutions of the Langevin
equations with respect to thermal predictions.
Expectedly, static correlations given by the numerical simulation of the Langevin equation
(green squares) coincide with the equilibrium results (red circles and solid lines) at energies
lower than the temperature (since Teff scales as the spectra linewidth ∆diss and is of the
same order of magnitude), both in the weak and strong dissipative regimes. In particular,
they diverge as 1/k2 at low momenta, and looking at the absolute errors we note the that
the corresponding corrections to thermal equilibrium remain �nite at low energies and thus
surprisingly do not present any subsingular divergencies ∝ 1/k, so e�ective thermal equilib-
rium seems also to be true also at the next leading order at a static level for this particular
system.
However, as we expected, the pseudo-thermalization does not extend for a generic choice of
power spectra at higher energy scales (see the logarithmic plot) as the Kennard-Stepanov
relation is not valid in this energy range: in particular, while one can see in the Grand
Canonical distribution the presence of exponential tails of a Boltzmann type in the panel
a) of Fig.4.3 (approximately for momenta verifying k/k2

th ≤ 20, the kink at k/k2
th = 20 and

the slower decay for higher momenta being related to the dominant vacuum �uctuations),
such behaviour is not present in the driven-dissipative steady-state which rather features
algebraic decay. This features is speci�cally related to the Lorentzian shape for the emission
spectrum Eq. (4.8) chosen for numerical simulations. In the case of a big chemical poten-
tial µ > Te� (see Fig.4.3 [panel c)]), the thermal distribution does not present exponential
tails neither because the vacuum �uctuations which decay algebraically are dominant with
respect to thermal �uctuation in the energy range Ek ≥ Teff .

4.3.1.2 Static correlations at all energies in the weakly dissipative regime

When the dissipation strength S(l/em)(ω) is much weaker than the linewidth of the power
spectra ∆diss, it is possible to compute exactly the static correlations at all momenta (see
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Figure 4.4: Static properties of the condensate at steady state in the strong dissipative
regime (i.e. with the power spectra of the order of ∆diss) in the case of Lorentzian emission
spectrum and Markovian losses (model de�ned in Sec.4.2.1). The left (resp. right) panels
correspond to a detuning between the cavity and the atoms chosen to induce a weak (resp.
strong) chemical potential µ with respect to the e�ective temperature Te�. Upper panels:

static correlations nk = 〈Λ†kΛk〉 in function of the momentum k in units of kth de�ned by
E(kth) = Te�, and in inset, their logarithm in function of the square momentum k2 in units
of k2

th. In green squares we plot the steady state properties given by numerical calculations
of the linearized Langevin equation (Eq. (4.23)) in the strong dissipative regime, in red lines
with circles the results given by the Grand-Canonical ensemble (Eq. (4.34)), and in solid
blue lines the analytical results given by the Fermi Golden's rule (Eq. (4.39)). Lower panels:
the absolute error nk − nthk in green squares lines (resp. nFermik − nthk in solid blue lines)
between the numerical solution of the Langevin equation (resp. the analytical solution given
by the Fermi's golden rule) and the thermal case, in function of the momentum k in units
of kth. Parameters: for all panels, m = 1, Γl/Γem = 0.3, Γ0

em/∆diss = 1. Deduced quantity
Te�/∆diss = 0.55. For the left (resp. right) panels: δ/∆diss = 0.92 (resp. −10). Deduced
quantity µ/∆diss = 7.3× 10−2 (resp. 11.0× 100).
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below for a sketch of the derivation below):

nFk =
1

K(Ek)− 1
(|uk|2 + |vk|2) + |vk|2, (4.39)

AF
k =

(
1

K(Ek)− 1
+

1

2

)
ukv

∗
k. (4.40)

Comparing these expressions to Eqs. (4.34),(4.35), we see that the vacuum properties are
left unchanged with respect to equilibrium statistics, while the Boltzmann factor eβEk of
the Bose Einstein phononic distribution in the Grand canonical ensemble has been replaced
by the non-equilibrium factor:

K(Ek) =
Sl(ωBEC + Ek)|uk|2 + Sem(ωBEC − Ek)|vk|2

Sem(ωBEC + Ek)|uk|2 + Sl(ωBEC − Ek)|vk|2
, (4.41)

giving thus rise to the modi�ed Bose Einstein phonon distribution 1
K(Ek)−1 . The factor

K(Ek) can be interpreted as the ratio between the annihilation and creation rates (both
induced by pumping and losses dissipative processes) of a single phononic excitation at
the Bogoliubov energy Ek, and is calculated using the secular approximation (valid in the
weakly dissipative regime). The phonon distribution and average occupation number are a
consequence of detailed balance between states with Nk and Nk−1 phonons of momentum k.
We note that if the pumping and loss rates verify the Kennard-Stepanov condition Eq. (4.7),
one recovers the equilibrium Boltzmann factorK(Ek) = eβEk : as expected the system is fully
thermal at all energies, and its density matrix at steady-state is a Grand-Canonical ensemble.
In the general case by using Eq. (4.5) we note that K(Ek) ∼

Ek→0
1− βe�Ek ∼ e−βe�Ek : this

provides us another con�rmation that low-energy static properties should be thermal.
Static correlations of Eqs. (4.39),(4.40) computed under the secular approximation are

shown in solid blue lines in the upper panels of Fig. 4.3 (resp. Fig. 4.4) and compared with
the numerical results Langevin equation in the weak (resp. strong) dissipative regime. In
the lower panels we plot the absolute error nSeculark − nthk between the solution given by
the secular approximation and the thermal distribution. We note absolutely no di�erence
between the exact numerical solution and nSeculark . Expectedly, in the strong-dissipative
regime they coincide only at low momenta (Ek � Te�) (up to a �nite error, which is small
with respect to the divergency in 1/k2), and do not provide exact results at higher momenta.

We now justify the expression Eqs. (4.39),(4.40) for the static correlations in the weak
dissipative regime Sem,Sl � ∆diss by applying the secular approximation: we consider
dissipation as a "classical" stochastic process inducing transitions in the system S between
the hamiltonian eigenstates populations, i.e., the diagonal coe�cients of the bosonic density
matrix ρS = TrB(ρ) (which corresponds to the partial trace of the full density matrix
ρ over the various baths) in the eigenbasis of the Bogoliubov hamiltonian Hbog (de�ned in
Eq. (4.19)). These eigenstates are de�ned in the equilibrium phononic basis: ⊗k |Nk〉, where
k is the momentum and Nk is the occupation number of the phonon of momentum k. The
phonon annihilation and creation operators b̂k and b̂†k are related to the particle annihilation

and creation operators Λ̂k and Λ̂†k by the Bogoliubov transformation Eq. (4.36).
Phonon annihilation rate: Let us calculate as a �rst step the phononic annihilation rate.
Starting from a state with Nk phonons of momentum k and Bogoliubov energy energy Ek,
one can remove one phonon through two processes:

• First, one can remove a phonon by losing a particle of momentum k. The total energy
removed to the system is ωBEC + Ek. This leads to the partial rate:

T (l)(Nk → Nk − 1) = Sl(ωBEC + Ek)
∣∣∣〈Nk − 1| Λ̂k |Nk〉

∣∣∣2
= Sl(ωBEC + Ek)Nk|uk|2. (4.42)

Starting from a wave-function calculation, this expression could have been alternatively
recovered by mean of the Fermi's Golden rule [73].

• However, due to the presence of counter-rotating terms in the Bogoliubov theory, it is
also possible to remove a phonon by pumping a particle of momentum −k. The total
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energy added to the system in that case is ωBEC − Ek, i.e, the mean-�eld energy of
a single photon, minus the energy of the phonon excitation. Thus the corresponding
rate is:

T (p)(Nk → Nk − 1) = Sem(ωBEC − Ek)
∣∣∣〈Nk − 1| Λ̂†k |Nk〉

∣∣∣2
= Sem(ωBEC − Ek)Nk|vk|2. (4.43)

The total phonon loss rate is thus:

T (tot)(Nk → Nk − 1) = Sl(ωBEC + Ek)Nk|uk|2 + Sem(ωBEC − Ek)Nk|vk|2. (4.44)

Phonon creation rate: One can calculate similarly the phonon total creation rate. Starting
from a state with Nk − 1 phonons of momentum k and Bogoliubov energy energy Ek, one
can add one phonon by pumping a new particle (the total energy added to the system is thus
ωBEC +Ek) or by losing a particle (the total energy lost is ωBEC −Ek). After a calculation
very similar to the previous paragraph, one obtains the following expression:

T (tot)(Nk − 1→ Nk) = Sem(ωBEC + Ek)Nk|uk|2 + Sl(ωBEC − Ek)Nk|vk|2. (4.45)

Phonon probability distribution: The ratio between the phonon annihilation and creation
rates is given by

K(Ek) =
T (tot)(Nk → Nk − 1)

T (tot)(Nk − 1→ Nk)
(4.46)

=
Sl(ωBEC + Ek)|uk|2 + Sem(ωBEC − Ek)|vk|2

Sem(ωBEC + Ek)|uk|2 + Sl(ωBEC − Ek)|vk|2
.

Because dissipation processes can remove or add only one phonon of momentum k at a
time and do not a�ect simultaneously the other momenta, one deduces that at steady state,
the probabilities π(..., Nk − 1, ...) and π(..., Nk, ...) of having Nk − 1 and Nk phonons of
momentum k (leaving the occupation numbers other momenta k

′
unchanged) verify the

following detailed balance relation :

π(Nk − 1) = K(Ek)π(Nk). (4.47)

One deduces that the probability distribution is

π(Nk) =
1

1−K(Ek)−1
K(Ek)−n, (4.48)

and that the average phonon occupation number is

n
(phonon)
k =

1

K(Ek)− 1
. (4.49)

Doing a Bogoliubov transformation Eq. (4.36), one obtains the momentum static distribution
and anomaleous averages Eqs. (4.39),(4.40).

More on the validity of the secular approximation: As we already saw, in Fig. 4.3 we
notice absolutely no di�erence between the numerical results of the Langevin equation in the
weak dissipative regime and the solution given by the secular approximation, which appears
to be valid at all momenta. This makes us con�dent that the prediction Eqs. (4.39),(4.40)
should be robust and work for a wide range of pump and loss power spectra. Still, it would
be interesting to establish a full justi�cation of the validity of this approach based on more
theoretical grounds: As a �rst step, we note that for high energy modes (Ek � Sl/em)
we are in the natural range of validity the secular approximation, and dissipation has the
e�ect of a classical process coupling only diagonal coe�cients of the density matrix, so
our approach should be valid. However, the potential problem arise for very low energy

modes (Ek
∼� Sl/p) in the thermodynamic limit, where dissipation is theoretically fast

enough to induce coherences between the eigenstates and does not couple anymore only
populations. While we had already formulated in a previous chapter (Sec. 2.4.2.2) a proof
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Figure 4.5: Test of the FDT/KMS relations for various sets of parameters. Upper (resp.
lower) panels: plot of the frequency dependent e�ective temperature β1,e�(k, ω) (resp.
β1,e�(k, ω)) de�ned in Eq. (4.5) for a Lorentzian pump and Markovian losses (which is
the model of Chap. 2), in function of the frequency ω − ωBEC in units of ∆diss, and for
various momenta k. Panels a),b) (resp. c),d)) use the same parameters as in the panels
a),b) (resp. c),d)) of Fig. 4.3. For each panel, the various curves corresponds to increasing
momenta chosen in such a way that the corresponding Bogoliubov spectrum spans all energy
below and above the resulting e�ective temperature Teff = 0.54∆diss: k/kth = 0.18 for the
green solid line, k/kth = 3.65, for the orange dashed line, k/kth = 9.1 for the red dotted
line, k/kth = 54.7 for the blue dash-dotted line

that the secular approximation is accurate in some conditions, our initial derivation implicitly
assumed that the dissipative coupling between the various hamiltonian eigenstates remained
�nite at any momenta and did not take into account infra-red divergent behaviours induced
by the presence of the widely populated phononic branch and strong vacuum �uctuations
(∝ |uk|2).

Here, apart from the excellent numerical agreement observed in Fig. 4.3, we do not have
yet any direct argument justifying that the secular approximation could be directly applied
in that energy range to compute the steady-state properties. Still, we point out that we have
already computed exactly the asymptotic behaviour of static correlations Eqs. (4.32),(4.33))

in Sec. 4.3.1.1 in the regime Ek � ∆diss, and thus also for Ek
∼� Sl/p (since Sl/p �

∆diss): we have shown that their dominant singular contribution ∝ 1/k2 coincides with the
thermal prediction Eqs. (4.34),(4.35) and thus also with the prediction Eqs. (4.39),(4.40)
provided by the secular approximation. This does not explain unfortunately why the secular
approximation led exact results at all momenta (as can be seen in Fig. 4.3), and in particular
why sub-singular corrections ∝ 1/k (nor o�set corrections ∝ 1) are not present. A full
theoretical proof will be the subject of a future work.

4.3.2 E�ective temperature from FDT

A remarkable consequence of equilibrium which involves dynamical quantities is the so-
called �uctuation-dissipation theorem [113], which provides a relationship between the linear
response of a system to an external perturbation and the correlation of thermal �uctuations.

Let us de�ne the symmetrized correlation (C) and response (R) functions for two arbi-
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trary operators Â and B̂ as

iC(t− t′) = 〈{Â(t), B̂(t′)}〉, (4.50a)

iR(t− t′) = θ(t− t′)〈[Â(t), B̂(t′)]〉, (4.50b)

where the time dependence of Â(t) and B̂(t) is determined in the Heisenberg picture, while
the average 〈. . . 〉 is taken over an equilibrium state at temperature T . As a consequence of
equilibrium, C and R depend only on the time di�erence t− t′ and therefore we can de�ne
their Fourier transforms C(ω)/R(ω) =

∫
t
eiωtC(t)/R(t). The explicit form of the FDT then

reads:
C(ω) = 2 coth (βω/2) Im[R(ω)], (4.51)

with β = T−1. An alternative, fully equivalent formulation of the FDT is the so-called
Kubo-Martin-Schwinger (KMS) [112, 135] condition:

SAB(−ω) = e−βωSBA(ω), (4.52)

where SAB(t) = 〈Â(t)B̂〉 and SBA(t) = 〈B̂(t)Â〉.
The FDT and KMS condition have often been used as a tool to probe the actual ther-

malization in classical and quantum systems, and to characterize the eventual departure
from equilibrium [42, 61, 33]. In particular, from Eqs. (4.51) and (4.52) one can de�ne an
e�ective frequency-dependent temperature TA,B,e�(ω) such that FDT or KMS condition are
satis�ed: if the system is really at equilibrium, then TA,B,e�(ω) has a constant value T which
corresponds to the thermodynamic temperature. On the other hand, if the system is out of
equilibrium it will generically develop a non-trivial dependence on A, B and ω.

In the following, we discuss the e�ective temperatures obtained from the linearized equa-
tion Eq. (4.18): in this respect, we will consider the following ratios:

〈Λ̂k(ω)Λ̂†k〉
〈Λ̂†k(ω)Λ̂k〉

=
Sl(ωBEC + ω) + Sem(ωBEC − ω)Ak(ω)

Sem(ωBEC + ω) + Sl(ωBEC − ω)Ak(ω)
, (4.53)

〈Λ̂k(ω)Λ̂−k〉
〈Λ̂k(−ω)Λ̂−k〉

=
Sl(ωBEC + ω) + Sem(ωBEC − ω)Bk(ω)

Sem(ωBEC + ω) + Sl(ωBEC − ω)Bk(ω)
, (4.54)

where the functions Ak(ω) and Bk(ω) are explicitly reported in App. E.1. At thermal
equilibrium, the value of the ratios (4.53) and (4.54) is �xed by Eq. (4.52) while, in the
present case, they have a nontrivial dependence on ω and k, since the system is out of
equilibrium.

We then de�ne the e�ective (inverse) temperatures

β1,e�(k, ω) =
d

dω
log

[
〈Λ̂k(ω)Λ̂†k〉
〈Λ̂†k(ω)Λ̂k〉

]
, (4.55)

β2,e�(k, ω) =
d

dω
log

[
〈Λ̂k(ω)Λ̂−k〉
〈Λ̂k(−ω)Λ̂−k〉

]
, (4.56)

which are generic functions of k and ω which can be evaluated by using Eqs. (4.53) and (4.54).
However, inserting the functional forms Eqs. (4.53), (4.54) into Eqs. (4.55), (4.56) we see
that for ω → 0, both β1,e�(k, ω) and β2,e�(k, ω) tend toward the same k-independent value
βe� de�ned in Eq. (4.5), indicating that the KMS condition and the FDT are asymptotically
veri�ed at low frequencies.

Remarkably, if the system satis�es the Kennard-Stepanov relation

Sem(ωBEC + ω) = Sl(ωBEC + ω)e−βω, (4.57)

then β1,e�(k, ω) = β2,e�(k, ω) = β for every value of ω and k, i.e., the system is at full
thermal equilibrium, even if the environment is highly non-thermal (see Sec. 4.4.1.2 for a
physical made of non-thermal reservoirs verifying arti�cially the KS relation).

In Fig. 4.5, we plot the e�ective temperature β1,e�(k, ω) (resp. β2,e�(k, ω)) in the left
panel (resp. right panel) in function ω in units of ∆diss, for various momenta k. We
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notice �rst that in the region ω � ∆diss, these e�ective temperatures converge to the
same value βe� con�rming thus the low-frequency validity of FDT, and that the system
is e�ectively thermalized in that frequency range. Away from that region they have a
non trivial, frequency-momentum dependent behaviour, so the system is globally not at
equilibrium.

Strikingly, it appears that FDT is completely veri�ed below a certain energy cuto�
∆therm (for these precise simulations ∆therm ' 0.05 × ∆diss ' 0.1 × Teff): for frequencies
close enough to the condensate frequency |ω−ωBEC| ≤ ∆therm , we observe that excitations
at any momenta feature frequency-dependent e�ective temperatures β1/2(ω) presenting less
than 5% deviation from the limit value βeff (this error can be arbitrarily reduced by getting
closer to ωBEC). In particular, the green solid line in Fig. 4.5 b) shows the worst case
scenario, which occurs to β2(ω) in the limit k → 0 (we have checked for any momenta
that the singularities2 of β2(ω) can not get any closer to ωBEC). As a consequence, all
the low-energy elementary excitations of the condensate, whose counterpart in the isolated
equilibrium case possesses a Bogoliubov energy Ek ≤ ∆therm will have their resonance
located in the thermalized frequency window [ωBEC−∆therm, ωBEC +∆therm] and will verify
FDT at a very good level of approximation.

4.4 Derivation of the Langevin equation from a quantum

optics microscopic model

In this section, we proceed to the derivation of the Langevin equation (4.1) in an array spatial
geometry, starting from the microscopic quantum optics model introduced in Chapter 2 in
Sec. 2.2.1 (up to some minors changes in notation). The physics we are considering does
not depend much on whether space is considered as being discrete or a continuum.

Before moving to the derivation we remind the model in question: we consider a photonic
driven-dissipative Bose-Hubbard lattice made of L nonlinear cavities coupled by tunneling.
Each cavity possesses a natural frequency ω0 and is assumed to contain a χ(3) Kerr nonlinear
medium, which induces e�ective repulsive interactions between photons lying in the same
cavity. Dissipative phenomena due �nite mirror transparency and absorption by the cavity
material are responsible for (possibly non-Markovian) loss processes. We assume that a
number Nat of two-level atoms are embedded in each cavity in order to inject new photons

to compensate losses, and that the atomic transition ω
(n)
at frequencies possess some frequency

distribution D(ω). Each atom is strongly pumped at a rate Γp (its spontaneously decay is
neglected), and is coupled to the cavity with a Rabi frequency ΩR, which is assumed to

be weak enough (ΩR � ω
(n)
at , ω0) to be far from the ultra-strong coupling regime. The

dissipative dynamics under the e�ect of the pumping and decay processes can be described
in terms of the coupling of the photon-atom system to various reservoirs responsible for
photonic losses and atomic pumping.

The system dynamics can be described as the hamiltonian of the photonic/atomic system
plus an environment :

H = Hph +Hat +Hbath +HI (4.58)

The Hamiltonian for the isolated photonic system has the usual Bose-Hubbard form :

Hph =

L∑
i=1

[
ω0a

†
iai +

U

2
a†ia
†
iaiai

]
−
∑
〈i,j〉

[
~Ja†iaj + hc

]
: (4.59)

We assumed that the Kerr nonlinearity of thr cavity medium induces an on-site interaction
term U . The free evolution of the atoms is described by the following Hamiltonian

Hat =

L∑
i=1

Nat∑
n=1

ω
(n)
at σ

(n)+
i σ

(n)−
i . (4.60)

2Those are not actual singularities for a �nite dissipation, while the resonance gets sharper and sharper
in the weak dissipation limit
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The baths, modelled as a reservoir of harmonic oscillators, are represented by the following
Hamiltonian:

Hbath =

L∑
i=1

∑
m

[
ωmb

(m)†
i b

(m)
i −

Nat∑
n=1

ω̃mc
(n,m)†
i c

(n,m)
i

]
. (4.61)

The indices i, n, m account respectively for the cavity modes, the atoms, and the bath
excitations. The full interaction hamiltonian, between photons, atoms and bath excitations
is given by :

HI = ΩR

∑
i,n

[
a†iσ
−(n)
i + hc

]
+
∑
i,m

gm

[
a†i b

(m)
i + hc

]
+
∑
i,n,m

g̃m

[
σ

+(n)
i c

†(n,m)
i + hc

]
. (4.62)

Unlike Chapter 2 and Chapter 3, the baths b
(m)
i and c

(n,m)
i accounting respectively for

photonic losses and atomic pumping have been explicitly included in the microscopical de-
scription. We note that each atom is coupled to a di�erent pumping bath, i.e, a di�erent set
of harmonic oscillators. This is due to the fact that atoms being spatially separated enough,
are pumped incoherently with respect to each other. We assume both baths to be in the
vacuum state at initial time〈

b
(m)†
i b

(m)
i

〉
(0) =

〈
c
(n,m)†
i c

(n,m)
i

〉
(0) = 0, (4.63)

and to have a broad spectral function∑
m

|gm|2e−iωmτ =

∫
ω

Sl(ω)e−iωτ (4.64)∑
m

|g̃m|2e−iω̃mτ = Γpδ(τ), (4.65)

where Sl(ω) is the loss power spectra of a single cavity, and the atomic pumping processes
are described as Markovian.

Remarkably, unlike the photonic �eld a
(m)
i which is coupled to the bath by mean of a

creation operator b
(m)†
i , the atomic raising operator σ

+(n)
i is coupled in an anti-rotating

way to a creation operator c
†(n,m)
i : since both bath are in the vacuum state, this means

that b
(m)
i can only induce photon losses, meaning the bath c

(n,m)
i can only induce atomic

excitation (this process is compatible with energy conservation as the harmonic oscillator

c
(n,m)
i possesses a negative frequency ω̃m). While such a reservoir might look a bit arti�cial
at �rst glance, physically such an irreversible atomic pumping in the excited state can
be obtained by mean of a third atomic level, not included in this level of description for
simplicity purpose.

We make the further assumption that the e�ective atomic pumping rate Γp is big enough
with respect to the Rabi Coupling ΩR, in such a way that during dynamics atoms spend most
of their time in the excited state and very little in the ground-state (To do so and maintain at
the same time the photonic total emission rate �xed at the desired intensity, one can embed
a large enough number of atoms within the whole system, while diminishing correspondingly
their individual Rabi coupling ΩR to the cavity mode). In consequence, a single atom will
have a very weak probability to be in the ground-state, the e�ect of atomic saturation of the
pump will be very reduced and atoms will behave as linear degrees of freedom. We can thus
replace the spin matrix of each atomic two-level system by an `inverse' harmonic oscillator
whose vacuum state (resp. �rst occupied state) corresponds to the atomic excited state

(resp. ground-state) : a
(n)
at,i ≡ σ

(n)+
i . States of the harmonic oscillator with more than one

excitation will be so rarely occupied that they will not contribute to the photonic dynamics.
We obtain thus the modi�ed atomic and interaction Hamiltonians :

Hat =

Ncav∑
i=1

Nat∑
k=1

(−ω(n)
at )a

(n),†
at,i a

(n)
at,i + E0 (4.66)

where E0 is a constant, and

HI = ΩR

∑
i,n

[
a†ia

(n),†
at,i + hc

]
+
∑
i,m

gm

[
aib

(m)†
i + hc

]
+
∑
i,n,m

g̃m

[
c
(n,m)†
i a

(n)
at,i + hc

]
(4.67)
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In our description the harmonic oscillator a
(n)
at,i and the excitations bath c

(m)
i both have a

negative energy (respectively −ω(n)
at and −ω̃m). After linearization of the atomic dynamics

it is possible to derive an exact non-Markovian Langevin equation for the photonic quantum
�eld, by reexpressing the Hamiltonian dynamics into the form of Heisenberg equations of
motion for the various operators :

∂tai(t) = −i [ai(t), Hph(t)]− i
∑
m

g∗mb̂
(m)
i (t)− iΩR

∑
k

a
(n)†
at,i (t) (4.68)

∂ta
(n)†
at,i (t) = −iωata

(n)†
at,i (t) + i

∑
m

c
(n,m)†
i (t) + iΩRai(t) (4.69)

∂tb
(m)
i (t) = −iωmb(m)

i (t)− igmai(t) (4.70)

∂tc
(n,m)†
i (t) = −iω̃mc(m)†

i (t)− ig̃ma(n)†
at,i (t) (4.71)

Injecting the integrated equation (4.71) for the bath oscillators into the equation (4.69)
for the atomic degrees of freedom, we obtain a Markovian quantum langevin equation for
the atomic �eld coupled to the photonic �eld :

∂ta
(n)†
at,i (t) =

(
−iω(n)

at −
Γp

2

)
a

(n)†
at,i (t) + iΩRai(t) + ξ̂

(n)
at,i(t) (4.72)

with a Markovian quantum noise contribution related to atomic pumping :〈
ξ̂

(n)
at,i(t+ τ)ξ̂

(n′)†
at,i (t)

〉
= δi,jδn,n′Γpδ(τ),

〈
ξ̂

(n)†
at,i (t+ τ)ξ̂

(n′)
at,i (t)

〉
= 0. (4.73)

Then, integrating Eqs. (4.72),(4.70) and injecting them in Eq. (4.68) we get for the photonic
dynamics :

∂tai(t) = −i [ai(t), Hph(t)]−
∫
t′

Γl(t
′)ai(t−t′)+ξ̂l,i(t)+

∫ t

0

ds

(∑
n

Ω2
Re

(−iω(n)
at −

Γp
2 )(t−s)ai(s)

)

− iΩRe
(−iω̃m−

Γp
2 )t
∑
n

a
(n),†
at,i (0)− iΩR

∫ t

0

ds
∑
n

e(−iω(n)
at −

Γp
2 )(t−s)ξ̂

(n)
at,i(s), (4.74)

where the expressions for the loss memory kernel and noise autocorrelations are described
below.

4.4.1 Langevin equation: general form

At long time with respect to 1/Γp, the time-dependent contribution ∝ e(−iω̃m−
Γp
2 )t in

Eq. (4.74) (which represents a memory of the initial conditions) vanishes, and we can also
replace the boundaries in the various integrals by 0 and +∞. We obtain then the �nal form
for the photonic non-Markovian Langevin equation of Eq. (4.1)

∂tâi(t) = −i [âi(t), Hph(t)] +

∫ ∞
−∞

dτ [Γem(τ)− Γl(τ)]âi(t− τ) + ξ̂em,i(t) + ξ̂l,i(t) (4.75)

where ξ̂em,i(t) = −iΩR

∫ t
−∞ ds

∑
n e

(−iω(n)
at −

Γp
2 )(t−s)ξ̂

(n)
at,i(s). The non-zero contributions for

the two-points quantum noise autocorrelations can be summarized into :〈
ξ̂l,i(t+ τ)ξ̂†l,j(t)

〉
= δi,j

∫
ω
Sl(ω)e−iωτ〈

ξ̂†em,i(t+ τ)ξ̂em,j(t)
〉

= δi,j
∫
ω
Sem(ω)e+iωτ

(4.76)

where Γl(τ) = θ(τ)
∫
ω
Sl(ω)e−iωτ and Γem(τ) = θ(τ)

∫
ω
Sem(ω)e−iωτ . While the loss power

spectrum Sl(ω) is provided in Eq. (4.64), the emission power spectrum has the expression

Sem(ω) = Γat
em

∫
dω′D(ω′)

(Γp/2)2

(ω − ω′)2 + (Γp/2)2
, (4.77)

with Γat
em =

4Ω2
R

∆diss
: as in Chapter 2 and Chapter 3, each atom is responsible a Lorentzian

contribution to emission, the continuous sum of the various contributions then provides the
full spectrum Sem(ω).
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4.4.1.1 First example: Markovian losses and Lorentzian emission spectrum

As a �rst example, we set ourselves in the con�guration in which losses are Markovian
processes, i.e., Sem(ω) = Γl, and all atomic transitions are equal to ωem, in such a way that
D(ω) = Natδ(ω − ωem). In that case we obtain for the emission spectrum the Lorenzian
form:

Sem(ω) = NatΓ
at
em

(∆diss/2)2

(ω − ωem)2 + (∆diss/2)2
, (4.78)

where we have set the value Γp = ∆diss for the atomic pumping rate. This con�guration
leads to the speci�c model Eq. (4.8) introduced in Sec. 4.2, that we have chosen in order to
perform numerical simulations along this Chapter.

4.4.1.2 Second example: arti�cial Kennard-Stepanov relation

Another option would be to engineer non-trivial distributions D(ω) (which we could imagine
to do in a �ctious way by tuning all atoms to di�erent frequencies, or by using several atomic
species) of the atomic transition frequencies in such a way to simulate a Kennard-Stepanov
relation. More speci�cally, we choose losses to be also Markovian Sl(ω) = Γl, and the
particular form for the distribution of atomic transition frequencies:

D(ω) = D0e
βe�ω. (4.79)

In that case the emission power spectrum becomes

Sem(ω) = D0Γat
em

∫
dω′eβe�ω

′ (Γp/2)2

(ω − ω′)2 + (Γp/2)2
. (4.80)

In the limit of a very weak pumping rate Γp � Te� = 1/βe�, we recover the exponential-
shaped emission spectrum:

Sem(ω) = Γeme
βe�ω, (4.81)

where Γem = π
2D0∆dissΓ

at
em. The Kennard-Stepanov relation Eq. (4.7) is thus reproduced

arti�cially even though the photonic environment is highly out-of-equilibrium. Of course a
realistic realization of such emission spectrum would need to set an upper and lower cut-
o� to the emission frequency range to avoid any exponential divergencies. These cuto�s
can be chosen to be very far away from the energy range where the interesting photonic
many-body physics occurs. Theoretically, this emission spectrum (initially proposed in
[171]) can be reproduced for an arbitrary low temperature: if necessary one can lower
simultaneously the pumping rate Γp = ∆diss and ΩR, while increasing the number of atoms in
order to stay within the previously described conditions of validity of the quantum Langevin
equation (4.75). Concretely, for very low Teff the engineering procedure might be become
more complex as it requires an high number of emitters with a �ne control on transition
frequencies.

4.4.1.3 Pseudo-thermalization in exciton-polaritons low-T experiments

The arti�cial Kennard-Stepanov con�guration mentioned in Sec. 4.4.1.2 might also be nat-
urally reproduced in low-T exciton-polaritons experiments [99, 9]: while most theoretical
works in the early literature [153, 129] have stressed on the impact of exciton-exciton scat-
tering processes in the relaxation of polaritons into the bottleneck region of lower branch,
more recent experimental observations [132] highlighted the important role played high en-
ergy longitudinal optical phonons. It appears that in some regimes those processes even
constitute the dominant relaxation channel for polaritons.

Since the excitons (located in an higher energy with respect to the bottom of the polari-
tonic band) usually undergo fast collisions/energy exchanges processes and also possess a
much longer lifetime than polaritons, the exciton reservoir is rather well thermalized (while
polaritons might not thermalize) and can thus be described by a classical Boltzmann distri-
bution nX(εk) ∝ e−βεk (excitons being very massive particles, their degree of degeneracy is
usually very weak in those experiments).

One hand, since the LO phonons dispersion law is typically very �at and strongly lo-
cated around the frequency ωLO (in stark contrast with acoustic phonons who present a
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light-cone), the LO phonon-assisted scattering processes excitons→polaritons maintain the
full information on the excitonic energy distribution and `copy and paste' it into the polari-
ton injection rate (up to an energy shift ~ωLO): in the hypothesis that LO phonon-assisted
scattering processes are dominant, the polaritonic frequency-dependent injection rate should
thus present an exponential frequency dependence (Sem(ω) ∝ e−βeffω) at very a good degree
of approximation. On the other hand, in that same picture, polariton→exciton recombina-
tion processes are strongly inhibited as they would involve the absorption of a phonon from
the LO phononic reservoir, which can be approximated as being close to the vacuum state
(LO phonons possessing a signi�cantly higher energy (' 5meV ) than the typical temper-
atures (' 0.5meV ) in exciton-polaritons): as a consequence, polaritonic losses are by far
dominated by mirror transparency e�ects, which are usually well represented by Markovian
processes (Sl(ω) = Γl + Sabs(ω) ' Γl). One concludes that the Kennard-Stepanov rela-
tion Sem(ω)/Sl(ω) ∝ e−βeffω might be arti�cially veri�ed in that context, and polaritons be
subject to pseudo-thermalization.

The measurement of thermal signatures in those experiments has to thus be interpreted
carefully. In that prospect, it might be interesting to verify that polaritons are indeed
equilibrated with excitons (i.e., their environment) in order to provide conclusions regarding
a true thermalization or a pseudo-thermalization: one way to proceed would be to check the
validity of the FDT associated to a pair of operators Â(t) and B̂(t) (with the notations of
Sec. 4.3.2) associated respectively to polariton and exciton degrees of freedoms, by measuring
the corresponding frequency-dependent e�ective temperature.

4.5 How to break pseudo-thermalization

Expectedly, the low-energy pseudo-thermalization e�ect described in Sec. 4.3 is not a fully
general properties of driven-dissipative quantum systems, since a wide class of models can
not been cast into the form of the quantum Langevin Eq. (4.1) which only implements non-
Markovian e�ects. In this section, we discuss a simple extension of Eq. (4.1) which allows
to break the emergent equilibrium presented in Sec. 4.3. More speci�cally, we introduce a
generalized Bogoliubov-de Gennes model at low energies and low momenta, with a complex
kinetic energy and a complex chemical potential:

− iωΛ̂k(ω) = −i
[
zεkΛ̂k(ω) + z̃µ

(
Λ̂k(ω) + Λ̂†−k(−ω)

)]
+ ξ̂neq,k(ω). (4.82)

The noise auto correlation is

〈ξ̂neq,k(ω)ξ̂†neq,k′(ω
′)〉 = 〈ξ̂†neq,k(ω)ξ̂neq,k(ω′)〉 (4.83)

= δk−k′ δω−ω′Sl(ωBEC),

and complex couplings are written in phase-modulus representation as z = ρe−iθ, z̃ =

ρ̃e−iθ̃. This model is very similar to the low-energy model Eq. (4.28) derived in a previous
section, except that the kinetic energy εk and the chemical potential µ have respectively
been multiplied by two di�erent complex numbers z and z̃ (while they were multiplied by
the same complex in the low-energy theory Eq. (4.28). In Sec. 4.5.1 and Sec. 4.5.2 we
will show that in case of alignement in the complex plane of these couplings (i.e., θ = θ̃),
we obtain an e�ective equilibrium theory, while in the case of a misalignement, the steady
state presents non-equilibrium features. Finally in Sec. 4.5.3, we will describe many ways to
implement those modi�ed complex couplings.

4.5.1 Static correlations

Analysing Eqs. (4.82),(4.83) we obtain the following expression for momentum distribution

nneqk = 〈Λ̂†kΛ̂k〉 and the anomaleous average Aneqk = 〈Λ̂kΛ̂−k〉 (the derivation is very similar
to the one made in App. E):

n
neq
k =

|zεk + z̃µ|2Sl(ωBEC)/2(
ρsin(θ)εk + ρ̃sin(θ̃)µ

)
ρεk

(
ρεk + 2cos(θ − θ̃)ρ̃µ

) , (4.84)

Aneqk =
−(z∗εk + z̃∗µ)z̃µSl(ωBEC)/2(

ρsin(θ)εk + ρ̃sin(θ̃)µ
)
ρεk

(
ρεk + 2cos(θ − θ̃)ρ̃µ

) . (4.85)
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In the general case, it is not possible to further simplify those expression, and the steady
state properties di�ers from the equilibrium statistics. However, considering the particular
case in which the complex couplings z and z̃ are aligned in the complex plane, i.e., θ = θ̃,
one obtains

nalignedk =
T̃e�(ρεk + ρ̃µ)

ρεk(ρεk + 2ρ̃µ)
, (4.86)

Aalignedk =
−T̃e�ρ̃µ

ρεk(ρεk + 2ρ̃µ)
, (4.87)

which compared to Eqs. (4.34), (4.35), corresponds to a low-energy e�ective equilibrium

statistics with T̃e� = Sl(ωBEC)
2sin(θ) and renormalized couplings εk → ρεk, µ → ρ̃µ. This is not

surprising since in that case, the generalized Bogoliubov-de Gennes model given by Eq. (4.82)
coincides with the low frequency limit Eq. (4.28) of the non-Markovian Langevin equation
studied in this paper. We conclude that the alignement con�guration of the couplings z and
z̃ of Eq. (4.28) corresponds to an e�ective equilibrium situation, while the general case of
non-alignement drives the system out-of-equilibrium, as thoroughly discussed in [176, 177, 2].

Although Eqs. (4.84), (4.85) present deviations from the Rayleigh-Jeans thermal laws

nk =
Ek→0

Teff (εk+µ)
E2
k

, for a generic choice misalignement of z and z̃ the low-momentum corre-

lations still present a 1
k2 equilibrium-like divergence (and we do not expect any particular

loss of coherence by driving the system out-of-equilibrium, at least in three dimensions),
apart for one speci�c pathological con�guration: if we put ourselves in the speci�c con�gu-
ration in which we set the phase θ to 0 and the phase θ̃ to π/2, which can be obtained by
using Markovian baths, cancelling the photon-photon interactions and adding saturation to
the pump (see Sec. 4.5.3.2), we indeed obtain a very di�erent behaviour

npathologicalk =
Sl(ωBEC)(ε2k + (ρ̃µ)2)

2ρ̃µε2k
, (4.88)

Apathologicalk =
iSl(ωBEC)(εk + iρ̃µ)ρ̃µ

2ρ̃µε2k
. (4.89)

We see that the momentum distribution changes behaviour at long range : n(k) ' 1
k4 ,

such a features has been already recovered in [35]. Due to these increased low-momenta
�uctuations, we might be tempted to conclude that in three dimensions, a non-equilibrium
free Bose gas in presence of a pump and saturation, i.e., a 3D VCSEL [85] can not Bose-
condense (while the equilibrium free Bose gas is known to condense). However, in this case
the Bogoliubov approach is ill-de�ned and can not be applied in a straightforward manner.
Instead, studying the long range properties of this system requires applying the RG theory
to this non-equilibrium system keeping all non-linearities (and thus the ones providing from
saturation): our understanding is that during the RG �ow [176, 177], a small photon-photon
interaction should be generated and the true correlations should be thus in n(k) ' 1

k2 , saving
thus the convergence. Such e�ect was veri�ed numerically in [90] by simulating the KPZ
equation (however in that case the simulations were done in a 1D con�guration).

4.5.2 Momentum-dependent e�ective temperatures from FDT

It is also interesting to check whether a misalignement of the couplings a�ects the validity of
the FDT. To do so, we will use an exact model providing a quantum Langevin equation valid
at all frequencies which leads at low-frequencies and low-momenta to the e�ective description
Eq. (4.82) with non-aligned couplings z and z̃: this model is de�ned in the next section in
Eqs (4.90), (4.93), and we computed the corresponding e�ective temperatures β1,e�(k, ω)
and β2,e�(k, ω) by mean of the de�nitions Eqs (4.55). In Fig. 4.6, we show β1,e�(k, ω) (resp.
β2,e�(k, ω)) in the left panel (resp. right panel) in function ω in units of ∆diss for various
momenta k: we notice that in the region ω � ∆diss, these e�ective temperatures do not take
anymore identical values, so the low-frequency temperatures are momentum dependent. We
conclude that pseudo-thermalization is broken not only at a static level (in the sense that it
does not respect perfectly the Rayleigh-Jeans law obtained for a weakly interacting isolated
Bose gas) in case of misalignement, but also at a dynamical level, as the FDT is not veri�ed
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Figure 4.6: Test of the FDT/KMS relation in the presence of dispersion of the emitters.
Panel a) (resp. b)): frequency-dependent e�ective temperature β1,e�(k, ω) (resp. β2,e�(k, ω))
de�ned in Eq. (4.5) for a Lorentzian pump, massive emitters and Markovian losses (model
de�ned in Sec.4.5.3.1), in function of the frequency ω − ωBEC in units of ∆diss, and for
various momenta k. Parameters: m = 1, Mat = 3, Γl/Γ

0
em = 0.3, Γem/∆diss = 0.01,

δ/∆diss = −2. For each panel, the various curves corresponds to increasing momenta k
(chosen in such a way that the corresponding Bogoliubov spectrum spans all energy above

and below the resulting e�ective temperature T disp
eff ≡ 1/βdisp

eff = 0.54∆diss): k/kth = 0.18 for
the green solid line, k/kth = 3.65, for the orange dashed line, k/kth = 9.1 for the red dotted
line, k/kth = 54.7 for the blue dash-dotted line: k/kth = 3 × 10−2 for the green solid line,
k/kth = 1.83, for the orange dashed line, k/kth = 2.43 for the red dotted line, k/kth = 3.66

for the blue dash-dotted line. Here kth is also de�ned by E(kth) = T disp
eff

at low-frequencies. We remark that at low momenta, the zero-frequency e�ective inverse
temperatures progressively converge toward the value βe� predicted in Secs. 4.3.1.1, 4.3.2.

4.5.3 Examples of modi�ed quantum optics models driving the sys-

tem out-of-equilibrium

In this section, we discuss various physical ways to obtain the modi�ed Bogogliubov-de
Gennes system Eq. (4.82) with misalignement of the complex couplings, by mean of simple
modi�cations with respect to the quantum optics model introduced in Sec. 4.4.

4.5.3.1 Emitters with dispersion

The �rst model we introduce is very similar to the one presented in Sec. 4.2, except that we
add a momentum-dependence to the pump: in the photonic case presented in Sec. 4.4, this
can be obtained taking into account the dispersion relation for the emitters which can be
two-level massive atoms, and the recoil energy during emission of a photon. We obtain the
following Langevin equation:

∂

∂t
ψ̂k(t) = −i

[
ψ̂k(t), Hph(t)

]
+

∫ ∞
−∞

dτ [Γem,k(τ)− Γl(τ)]ψ̂k(t− τ) + ξ̂disp,k(t), (4.90)
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with the non-Markovian momentum-dependent dissipative kernel for pumping

Γem,k(τ) = Θ(τ)

∫
ω

Sem,k(ω)e−iωτ , (4.91)

and noise correlations in momentum-frequency space

〈ξ̂disp,k(ω)ξ̂†disp,k′(ω
′)〉 = δk−k′ δω−ω′Sl(ωBEC + ω), (4.92a)

〈ξ̂†disp,k(ω)ξ̂disp,k′(ω
′)〉 = δk−k′ δω−ω′Sem,k(ωBEC + ω). (4.92b)

The pump power spectrum depends now not only on the frequency but also on the mo-
mentum. To test the FDT, we use the full non-Markovian theory Eq. (4.90), and apply
the Bogoliubov procedure to calculate analytically the correlation functions. We choose the
speci�c form for the momentum-frequency dependent pump power spectrum:

Sem,k(ω) = Γem
(∆diss/2)2

(ω + εemk − ωem)2 + (∆diss/2)2
. (4.93)

This model takes into account the transition frequency of the emitters, shifted by the recoil

energy εemk = k2

2Mem
of the emitters. If the mass Mem of the emitter is small enough, this

e�ect can be physically relevant at high momenta.
From Eq. (eq:dispersion-quantum-langevin-momentum), applying a Bogoliubov proce-

dure similarly to Sec. 4.2.4, we can derive a low-energy and low-momentum e�ective theory,
as we did in Sec.4.2.6:

− iωΛ̂k(ω) = −i
[
zdispεkΛ̂k(ω) + z̃dispµ

(
Λ̂k(ω) + Λ̂†−k(−ω)

)]
+ ξ̄disp,k(ω). (4.94)

The noise correlations are

〈ξ̄disp,k(ω)ξ̄†disp,k′(ω
′)〉 = δk−k′ δω−ω′Sl(ωBEC), (4.95a)

〈ξ̄†disp,k(ω)ξ̄disp,k′(ω
′)〉 = δk−k′ δω−ω′Sem,0(ωBEC), (4.95b)

where Sem,0(ωBEC) = Sl(ωBEC) and the complex couplings are

zdisp = (1 + δ̃ − iΓ̃)(1 + 2im∂2
k Γem |k=0,ω=ωBEC︸ ︷︷ ︸

<0

), (4.96)

z̃disp = (1 + δ̃ − iΓ̃). (4.97)

We obtain some e�ective complex kinetic energy and chemical potential for the photonic
dynamic. However, due to the dispersion of the emitters, an additional multiplicative contri-
bution has been added to the complex kinetic energy inducing thus a misalignement between
zdisp and z̃disp. In order to test the validity of the �uctuation dissipation theorem we de�ne

βdise� ≡= d
dω log

[
Sl(ω)
Sem,k(ω)

]∣∣∣∣
ω=ωBEC,k=0

.

4.5.3.2 Saturation of the pump/two-body losses

In the second model, we propose to add saturation of the pump or two-body losses. Basing
ourselves, on the photonic case presented in Sec. 4.4, some saturation provides from the fact
that the emitters are two-level atoms and thus are not perfectly linear systems. In this case,
at a qualitative level the Langevin equation for the quantum �uctuations becomes at low
frequency:

− iωΛ̂k(ω) = −i
[
zsatεkΛ̂k(ω) + z̃satµ

(
Λ̂k(ω) + Λ̂†−k(−ω)

)]
+ ξ̄sat,k(ω). (4.98)

The noise correlations are

〈ξ̄sat,k(ω)ξ̄†sat,k′(ω
′)〉 = δk−k′ δω−ω′Sl(ωBEC), (4.99a)

〈ξ̄†sat,k(ω)ξ̄sat,k′(ω
′)〉 = δk−k′ δω−ω′Sl(ωBEC), (4.99b)
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and the complex couplings are

zsat = (1 + δ̃ − iΓ̃), (4.100)

z̃sat = (1 + δ̃ − iΓ̃)(1− iγsat). (4.101)

γsat is a dimensionless coupling quantifying the saturation e�ect, i.e, an increase of the dis-
sipation strength with the density Λ̂†kΛ̂k, which linearized gives in the Bogoliubov approach

a complex contribution proportional to Λ̂k + Λ̂†−k. Here again, because of saturation which
multiplies the chemical potential by some complex, we also observe a misalignement between
zsat and z̃sat. We comment also that in presence of saturation, the noise should present non
trivial non-linear autocorrelations depending on the quantum �eld Λ̂k, but for the sake of
simplicity we assumed it to be Gaussian as a �rst level of approximation.

4.6 Conclusion and perspectives

We have explored the e�ect of pseudo-thermalization, which occurs when the impact of an
equilibrated environment is mimicked by several non-thermal and non-Markovian reservoirs,
in the speci�c case of a driven dissipative weakly interacting Bose-Einstein Condensate. Our
approach based on a quantum Langevin formalism allowed us to access both static and dy-
namical properties of the steady-state, and to check for the �rst time the validity of the
Fluctuation Dissipation Theorem in the context of pseudo-thermalization. The relevance of
this work for low-temperature exciton-polariton experiments has been highlighted. An alter-
native possible way of engineer such model in a quantum optics context has been presented,
along with a derivation of the Quantum Langevin equation starting from this microscopic
model.

We have studied mainly two cases: �rst, for arbitrary choices of reservoirs, the Kennard-
Stepanov relation is veri�ed locally around the lasing frequency but is not veri�ed globally.
We have shown in that case that static correlations present a low-energy thermal signature,
and demonstrated the validity of the FDT at low-frequencies. Secondly, in the speci�c
case where the Kennard-Stepanov relation is fully mimicked by the environment, we have
demonstrated the validity of the FDT at all frequencies, and shown in the speci�c regime of
weak dissipation that the steady-state is in a Gibbs ensemble. In the latter case, the steady
state properties are completely undistinguishable from an equilibrium one both at the static
and dynamic level. Finally, several approaches allowing to modify the initial model in such a
way to break this pseudo-thermalization e�ect have been discussed, with a particular stress
on the role played by the dispersion and the saturation of the emitters.

This work strongly contradicts the well-established belief according to which only open
quantum systems in contact with an equilibrated environment can be fully thermalized
at all length scales. While this pseudo-thermalization is expected to be very robust and
universal in the case where the Kennard-Stepanov relation is fully veri�ed, it is unclear
whether low-energy pseudo-thermalization should apply to any physical system, in the case
of arbitrary reservoirs where Kennard-Stepanov is only valid locally: future studies will be
dedicated in particular to the interplay between pseudo-thermalization and the departure
of the Bogoliubov regime, when photon-photon interactions and important noise strongly
deplete the condensate, and will assess in a more quantitative way the role played by pseudo-
thermalization in exciton-polariton experiments.
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Chapter 5

Conclusions and perspectives

A current hot challenge in photonic experiments regards the possibility of stabilizing incom-
pressible quantum phases such as the Mott-Insulator or Fractional Quantum Hall states,
which have been observed by now only in isolated systems. From a broader point of view,
understanding the emergence of analogous equilibrium properties in driven-dissipative quan-
tum systems often reveals a complex question. Not only overcoming those obstacles would
allow to provide some benchmark and give thus an higher level of credibility to quantum
optics platforms by putting them forward as possible candidates for quantum simulation
tasks, being able to control the degree of non-equilibriumness of an arbitrary open quantum
system in a tunable manner could also be the starting point for the exploration of a large
panel of new many-body quantum phenomena lying at the frontier between equilibrium and
non-equilibrium statistical mechanics. In this Thesis we have addressed some of those open
problematics. In particular, our research work provides a direct route toward the generation
of strongly correlated many-body phases with light, and might have a signi�cant impact on
the development of future experiments.

Recent technological advances in novel photonic platforms strongly indicate the possibil-
ity of quantum simulating the dynamics of cornerstone models of many-body physics, and
hold the promises of observing strongly correlated quantum phases with light. Still, under-
standing how to circumvent the e�ect of losses and other unavoidable dissipative processes
so to stabilize a quantum system close to the many-body ground-state of some engineered
Hamiltonian still remains in general an unsolved issue, and is currently the object of a im-
portant research activity. While former work in the literature focused on the possibility of
implementing a simple coherent drive scheme in order to re�ll the photonic population, it
appeared a posteriori that such approach is badly suited for the study of zero temperature
physics as it leads to important heating e�ects and density �uctuations. In Chapter 2 we
put forward an alternative method based on the use of an incoherent non-Markovian pump
which, in stark contrast with coherent drive schemes, allows for the irreversible (and fre-
quency selective) injection of new photons inside the system. The material presented here
was adapted from our initial work which, shortly after a �rst proposal by other authors re-
garding the generation of photonic Fractional Quantum Hall �uids, investigated for the �rst
time the potential of such scheme for the quantum simulation of the Mott Insulator physics
with light. Both studies focused on the most genuine case of a frequency-dependent emis-
sion with a narrow bandpass spectrum, which is obtained when all emitters possess identical
transition frequencies. Strikingly, our study con�rmed the possibility of stabilizing photonic
Fock states in the single cavity con�guration, and photonic Mott Insulating states in the
lattice con�guration under the hypothesis of a weak hopping amplitude, but revealed that
the e�ciency of this scheme does not extend to the regime in which the photonic bandwidth
(induced by the tunneling part of the Hamiltonian) becomes of the order of the emission
linewidth: indeed, in this strong hopping regime, a signi�cant depletion of the Mott state
associated to the generation of hole excitations was predicted and connected to the presence
of a broad continuum of single particle/hole states. The corresponding Mean-Field phase
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diagram was then the object of a second study, which highlighted a phase transition from
a photonic Mott Insulator toward a Super�uid state, triggered by the non-equilibrium pro-
cesses related to hole excitation generation that we have mentioned above. This result is of
a special interest, as a MI-SF phase transition had never been predicted in the past in any
realistic study implementing the e�ect of photonic losses.

Nevertheless, by elaborating a synthesis of these various studies, we concluded that
the full functionality of the �rst scheme based on a narrow bandbass emission spectrum is
somehow model dependent, in the sense that it strongly relies on the existence of �at photonic
bands. In particular, the ability of stabilizing the many-body ground-state in some class of
topologically protected systems appears to be somehow accidentally related to the existence
of iso-energetic Landau levels/quasi-hole excitations, as well as vanishing matrix elements
toward higher energy states away from the Laughlin sub-manifold. As a counterpart, in the
Bose-Hubbard model the observation of competiting quantum e�ects between localization
and delocalization is compromised with such scheme, since its e�ciency does not extend
to the regime where the hopping is comparable to the interaction strength. In view of
broader applications, this restrictive functionality led to us to conceive a more advanced
and fully novel model based on tailored non-Markovian reservoirs with broad bandpass
spectra (Chapter 3), designed in such a way to mimick the e�ect of a tunable arti�cial
chemical potential combined with a zero temperature. As a �rst step, a non-Markovian
model featuring a square-shaped spectrum was developed, and the possibility of reproducing
the zero temperature equilibrium phenomenology of the Bose-Hubbard model in a wide range
of parameters was predicted. In particular, our numerical study con�rmed the existence of
Mott regions with arbitrary integer densities featuring strong robustness against tunneling
and losses processes. The system can then undergo a transition toward a super�uid-like
state either by changing the arti�cial chemical potential or increasing the tunneling. Still,
our analysis pointed out exotic behaviours leading to the generation of a weak but non-
vanishing entropy in some regions of the phase diagram, and those deviations from the
equilibrium physics were related to the existence of non-equilibrium channels allowing for
the dynamical creation of doublon excitations. The implementation of additional frequency-
dependent losses was �nally considered in order to circumvent this e�ect, and it was then
showed that the ground-state was successfully recovered for any choice of parameters. This
last scheme, which should be accessible with current technology, is to our knowledge the
simplest existing experimental proposal of a reliable and �exible quantum simulator of zero
temperature physics in strongly correlated photonic platforms. Since it is only based on
generic relaxation mechanisms in the energy landscape, we believe in the universality of
our proposal, in the sense that we do not expect neither its e�ciency to be limited to the
Bose-Hubbard model nor that restrictive constraints on the nature of the aimed many-body
system need being imposed.

In addition to the possibility of reproducing zero temperature analogous physics by mean
of a speci�c choice of a tailored environment, we came across an even stranger result in our
�rst work, namely that a quantum system in contact with several non-Markovian and non-
equilibrated reservoirs can present a steady-state mapping onto a Gibbs ensemble, with both
chemical potential and �nite temperature being arti�cial parameters depending on the reser-
voir spectral properties. While long-range asymptotic thermal properties had already been
predicted to emerge in high enough dimensions by various studies which applied renormal-
ization group methods to non-equilibrium many-body systems, here the observed e�ective
equilibrium stems from the fact that the driven-dissipative dynamics fully mimicks the im-
pact of a single thermal bath, and thus seems to rely on a di�erent physical mechanism.
By focusing in a second study on an analytically solvable model we showed (Chapter 4)
that this e�ect, that we called 'pseudo-thermalization', extends at a dynamical level as it
is characterized by the validity of the Fluctuation-Dissipation Theorem. One hand, for an
arbitrary choice of reservoir spectral dependence, this mechanism appears to be somehow
restricted either to near-Markovian baths and high temperatures; in presence of more im-
portant non-Markovian e�ects we have extended this result to the low-energy properties of
a restricted class of systems presenting quadratic hamiltonians (such as interacting photons
in the Bogoliubov regime). On the other hand, for a �ne tuned model where the loss and
emission power spectra exactly verify the Kennard-Stepanov relation, pseudo-thermalization
then extends to arbitrary energy scales and many-body quantum systems. The latter result
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conveys an important conceptual message: a quantum system can present fully thermal
properties (both a the static and dynamical level) in some con�gurations where its environ-
ment is not thermal at all (remarkably, the amplifying medium we considered in our work
even possesses a negative temperature, as it can only release energy inside the system).
In particular, this challenges our understanding of emergent thermal signatures in driven
dissipative platforms: before concluding to the presence of a true equilibrium, one should
always check the thermal character of correlators between operators involving not only the
degrees of freedom of the system of interest, but also the several reservoirs (this should be
done both at a static level and by testing the FDT). This might be particularly critical in
exciton-polariton experiments, where the structure of the external environment is complex
and the microscopical origin of Bose-Einstein distributions observed in some experimental
situations is still subject to active debate.

There are many remaining problematics related to this relatively new research direction
involving the engineering of non-Markovian reservoirs in the physical context of photonic
many-body physics. First, while the scheme we have developed in this work indeed succeeds
to stabilize the Hamiltonian ground-state and in particular Mott Insulator states at a static
level, the choice of `square-shaped' emission and loss spectra globally does not verify the
Kennard-Stepanov relation. Thus, while up to relatively long time scales the dynamics is
expected to be the one of a closed system due to the relatively weak dissipative strength,
some very low-frequency deviations from the isolated case might arise as a consequence of
losses and pump, and a�ect in particular the Goldstone mode structure as well as critical
properties close to a possible transition point. This leaves some mystery regarding the nature
of this exotic strongly interacting open quantum system, which appears to behave as an
equilibrium one at a static level but as a non-equilibrium one at a dynamical level. Secondly,
our work highlighted an additional surprising e�ect characterized by a sharp departure
from equilibrium and a sudden generation of steady-state entropy in one of the developed
schemes. While many arguments support the idea that this feature should survive in the
thermodynamic limit, the critical properties of the corresponding transition and the impact
on the many-body phase properties are unknown and can not be access directly from our
numerical simulations involving �nite systems.

Hence, it would be of high interest to develop general tools allowing to tackle the dynam-
ics of strongly interacting non-Markovian open quantum systems. From a broader perspec-
tive, the existence of a well-established theoretical framework would be a valuable asset in
order to move to the study of di�erent physical systems (such as strongly correlated super-
solids, Fractional Quantum Hall states of light or the lower dimensional Tonks Girdardeau
gas) and to assist the development of a novel generation of many-body experiments with
light. From the analytical point of view, a critical step toward a mean-�eld calculation
of the phase diagram of a strongly interacting quantum system in presence of frequency-
dependent dissipation regards the ability of computing multiple-time correlators: indeed,
it is a well-known fact that the regression theorem, which allows to access arbitrary Green
functions by mean of the Lindblad formalism for Markovian dynamics, does not extend
to non-Markovian dynamics. Alternatively, instead of quantum master equation one could
imagine to rely on the Keldysh formalism in order to treat dissipation. However such ap-
proach has proven to best suited for systems presenting rather weak deviations from the
non-interacting regime, and its extension to the strong blockade does not appear to be
straightforward. Numerically, the study of non-Markovian quantum dynamics also su�ers
from a lack of well-established methods. Due to the inherent di�culty of providing sys-
tematic analytical predictions, generalizing techniques based on matrix product operators,
cluster mean-�eld analysis, or corner-space renormalization to this new physical context
might be an essential step toward the study of thermodynamic limit properties.
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Appendix A

Phase diagram of the Bose-Hubbard

model in the Mean-�eld regime

In this Appendix, we present a derivation of the Phase diagram of the Bose-Hubbard in
the Mean-�eld regime, shown in Fig. A.1 and discussed in Sec. 1.2.2. Our discussion, based
on the lecture notes [51], will present the initial derivation done in [59] and further devel-
oped in [197, 141]. An alternatively decoupling approach leading to identical predictions
was discussed in [197]: it is the numerical approach we used in Sec. 2.7 where we study
the Gutzwiller mean-�eld phase diagram of the driven-dissipative photon lattices. At equi-
librium, the partition function can be rewritten in terms of a functional integral (i.e., a
many-body quantum path integral)

Z ≡ Tr
[
e−βeffH

BH
]

=

∫
D[ψ∗, ψ]e−S

BH[ψ∗,ψ], (A.1)

where

HBH =
∑
i

[
−µa†iai +

U

2
a†ia
†
iaiai

]
−
∑
i,j

Ji,j

[
a†iaj + hc

]
(A.2)

is the Bose-Hubbard Hamiltonian, and

SBH[ψ∗, ψ] =
∑
i

∫ β

0

dτψ∗i ∂τψi +HBH[ψ∗, ψ] (A.3)

is the associated action. Here Ji,j = [Ĵ ]i,j is the hopping amplitude between the two

sites i and j, and Ĵ is the hopping matrix. For the sake of simplicity we focus here
on the one-dimensional BH model, as this demonstration will provide identical results in
higher dimensions1, only at the cost of a more complex system of notations. The action
SBH[ψ∗, ψ] = SBH

loc [ψ∗, ψ]−
∑
i,j Ji,j [ψ∗i ψj + c.c.] can be decomposed in a local part

SBH
loc [ψ∗, ψ] =

∫ β

0

dτ

[∑
i

ψ∗i ∂τ − µψi +
U

2
ψ∗ψ∗ψψ

]
, (A.4)

and a non-local part containing the hopping term. An Hubbard Stratonovich transformation
allows to "decouple" the inter-site hopping term in the functional integral of Eq. (A.1)

Z =

∫
D[ψ∗, ψ, φ, φ]e−S̃

BH[ψ∗,ψ,φ,φ], (A.5)

where the new action

S̃BH[ψ∗, ψ, φ, φ] = SBH
loc [ψ∗, ψ] +

∫ β

0

dτ

∑
i,j

J−1
i,j [φ∗iφj + c.c.] +

∑
i

[φ∗iψi + c.c.]

 (A.6)

1We stress that we expect the MF theory to be accurate only in high dimensions, not in 1D
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Appendix A. Phase diagram of the Bose-Hubbard model in the Mean-�eld
regime
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Figure A.1: Mean-Field phase diagram of the Bose-Hubbard model, in function of the
parameters zJ/U and µ/U where z is the lattice number of nearest neighbors (z = 2 in 1D).

is local in the physical �eld ψ, but as a cost features an auxiliary coupled �eld φ with a non-

local action. Here J−1
i,j =

[
Ĵ−1

]
i,j

is the matrix element of the inverse hopping matrix. Due,

to the linear relation between the two-�elds, a non-vanishing average 〈φ〉 of the auxiliary
�eld φ accounts for the presence of a non-vanishing super�uid order parameter 〈ψ〉.

Finally, the original �eld ψ can be integrated in the partition function, which can be
expressed by mean of a functional integral featuring only the auxiliary �eld:

Z = Zloc

∫
D[φ, φ]e−

∫ β
0
dτ
∑
i,j J

−1
i,j [φ∗i φj+c.c.]

〈
e
∫ β
0
dτ
∑
i[φ
∗
iψi+c.c.]

〉
loc

(A.7)

= Zloc

∫
D[φ, φ]e−Seff [φ

∗,φ], (A.8)

where 〈A[ψ]〉loc ≡ Zloc

∫
D[ψ∗ψ]A[ψ]e−Sloc[ψ∗,ψ] is the average value computed using the

local part of the action, and

Seff =

∫ β

0

dτ
∑
i,j

J−1
i,j [φ∗iφj + c.c.]− ln

[〈
e
∫ β
0
dτ
∑
i[φ
∗
iψi+c.c.]

〉
loc

]
. (A.9)

Until now, no approximation has been performed, as the functional integral representation
of the partition function has just been reexpressed in function of the auxiliary �eld instead
of the physical �eld. The Mean-Field approximation consists in considering that the order
parameter ∝ φ has weak �uctuations: for long range hopping, this can be understood by
the fact that the strongly localized gas directly couples to the fully non-local Bose-Einstein
Condensate, and no intermediary scales are involved. We can thus perform a saddle point
approximation in the complex expectation value of Eq. (A.7) around the value 〈φ〉. In the
Mott-Phase, 〈φ〉 = 0 and we keep only the Gaussian contributions in the functional integral
representation of φ. This leads to the e�ective quadratic action

Seff =

∫ β

0

dτ
∑
i,j

J−1
i,j [φ∗iφj + c.c.] +

∫ β

0

dτ

∫ β

0

dτ ′
∑
r

φ∗i (τ)Gloc(τ − τ ′)φj(τ ′), (A.10)

where

Gloc(τ − τ ′) = −〈ψ∗r (τ)ψ(τ ′)〉loc (A.11)

is the local Green function computed in absence of hopping term, and whose Fourier trans-
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form is

Gloc(iω) =

∫
dωeiωτGloc(τ − τ ′) (A.12)

= − Nloc + 1

iω −NlocU + µ
+

Nloc

iω + (Nloc − 1)U − µ
. (A.13)

Here, Nloc (de�ned by the inequalities (Nloc − 1)U ≤ µ ≤ NlocU) is the integer number
particles per site present in the localized Mott phase in absence of hopping at T = 0 and
chemical potential µ. We deduce thus the propagator for the auxiliary �eld in the frequency-
momentum representation

Gaux(k, iω) = −〈ψ∗(k, ω)ψ(k, ω)〉 =
1

ε−1
k −Gloc(iω)

, (A.14)

where εk = −
∑
j e
−ikjJ0,j is the kinetic energy of a particle of momentum k in the Bose-

Hubbard model (εk = −2Jcos(k) for nearest neighbor hopping). The instability of the Mott
phase is characterised by the presence of zero energy and zero momentum pole in Gaux(k, iω):
this leads to the following equation for the phase boundary

ε−1
k=0 −Gloc(0) = 0. (A.15)

Eq. (A.15) presents two distinct solutions

µ± = U(Nloc −
1

2
) +

εk=0

2
±

√
ε2k=0 − 4εk=0U

(
Nloc +

1

2

)
+ U2 (A.16)

forming altogether the Nloc-th Mott lobe of the Mean-Field phase diagram, which is shown
in Fig. A.1. The tip of the Mott lobe is the point where the two-solution merge and is de�ned

by
√
ε2k=0 − 4εk=0U

(
Nloc + 1

2

)
+ U2 = 0. For nearest neighbor hopping εk=0 = −2J and

the tip of the lobe is located at:
Jc
U = Nloc + 1

2 −
√
N2

loc +Nloc '
Nloc→∞

1
8Nloc

µc
U = U(Nloc − 1

2 )− Jc
(A.17)
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Appendix B

Derivation of the purely photonic master

equation via projective methods

In this Appendix, we give more details on the derivation of the non-Markovian photonic
master equation (2.24) involved in Chapters 2 and 3. Starting from the full emitter-cavity
master equation (2.5), we show how for a su�ciently small coupling ΩR the emitter degrees
of freedom can be eliminated. The frequency-dependence of the photonic emission is then
accounted for as a modi�ed Lindblad term (2.26). Our treatment is based on the discussion
in the textbook [21]. We �rst remind from section 2.2.2 the choice for the projectors

Pρ =
∣∣∣e(1)

1 e
(1)
2 e

(1)
3 ...

〉〈
e

(1)
1 e

(1)
2 e

(1)
3 ...

∣∣∣⊗ Trat(ρ), (B.1)

Q = 1− P (B.2)

involved in the application of the projective methods: the projection operation consists
in performing a partial trace over the emitters, and then make the tensor product of the
density matrix and the emitters density matrix with all emitters in the excited state. The
full superoperator determining the {photons+emitters} dynamics

L(ρ) = −i [Hph +Hat +HI, ρ] + Lp + Ll, (B.3)

was decomposed as L = L0 + δL:

L0(ρ) = −i [Hph +Hat, ρ] + Ll(ρ)−A(ρ) + PAQ(ρ) (B.4)

δL(ρtot) = −i [HI, ρtot] +
Γp

2

L∑
i=1

Nat∑
n=1

2σ
+(n)
i ρtotσ

−(n)
i − PAQ(ρtot), (B.5)

where

A(ρ) =
Γp

2

L∑
i=1

Nat∑
n=1

[
σ
−(n)
i σ

+(n)
i ρ+ ρσ

−(n)
i σ

+(n)
i

]
. (B.6)

L0 and δL were chosen in order to verify the following projection conditions{
PL0Q = QL0P = 0
P δLP = 0.

(B.7)

As we are interested in the regime in which Γp �
√
NatΩR, Γl, we will compute the self

energy at the lowest non zero order of these two latter parameters. Since Γl quanti�es the
photonic loss rate, we will approximate the photonic dynamics as being a Hamiltonian one
during the time while the emitter is reinjected in the excited state, ie during the characteristic
time 1/Γp of the integration kernel of Eq. (2.13). To this order of precision, the calculation
for one cavity containing a single emittor is straightforwardly generalizable to L cavities
each containing Nat emitters, thus we will restrict for simplicity to the case L = Nat = 1.
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Appendix B. Derivation of the purely photonic master equation via projective
methods

B.1 Self energy calculation

We are going to calculate the self energy to the lowest order in ΩR. We have

δL = Lp − i(H+ +H−)L + i(H+ +H−)R − PAQ, (B.8)

with  Lp(ρ) = Γpσ
+ρσ−

H+ = ΩRσ
+a

H− = ΩRσ
−a†

(B.9)

By (H±)L/R we intend the superoperator multiplying a matrix ρ by the matrix H± on its

left/right. First we have LpP = PAQP = H+
L P = H−RP = 0, so starting from a projected

state Pρ, we have to start with H−L or H+
R . In fact to the lowest order in ΩR the non zero

contributions to the self energy are :

A = −PH+
L H

−
L (t′ − t)P

B = −PH−RH
+
R (t′ − t)P

C = PH+
RH

−
L (t′ − t)P

D = PH−L H
+
R (t′ − t)P

E =
∫ t
t′
dt̃PLp(t)QH+

R (t̃− t)H−L (t′ − t)P
F =

∫ t
t′
dt̃PLp(t)QH+

L (t̃− t)H−R (t′ − t)P
G = −

∫ t
t′
dt̃PAQH+

R (t̃− t)H−L (t′ − t)P
H = −

∫ t
t′
dt̃PAQH−L (t̃− t)H+

R (t′ − t)P,

(B.10)

with

Σ(0, t′ − t) = A+B + C +D + E + F +G+H. (B.11)

We then calculate the di�erent processes, applied on some projected matrix Pρ:

A(Pρ) = −Ω2
Re

(iωat−Γp/2)(t−t′)aa†(t′ − t)Pρ
B(Pρ) = −Ω2

Re
−(iωat+Γp/2)(t−t′)Pρa(t′ − t)a†

C(Pρ) = Ω2
Re

(iωat−Γp/2)(t−t′)a†(t′ − t)Pρa
D(Pρ) = Ω2

Re
(−iωat+Γp/2)(t−t′)a†Pρa(t′ − t)

E(Pρ) = ΓpΩ2
R

∫ t

t′

dt̃ e(−iωat−Γp/2)(t−t̃)

e(iωat−Γp/2)(t−t′)a†(t′ − t)Pρa(t̃− t)

F (Pρ) = ΓpΩ2
R

∫ t

t′

dt̃ e(iωat−Γp/2)(t−t̃)

e(−iωat−Γp/2)(t−t′)a†(t̃− t)Pρa(t′ − t)

G(Pρ) = −ΓpΩ2
R

∫ t

t′

dt̃ e(−iωat−Γp/2)(t−t̃)

e(iωat−Γp/2)(t−t′)a†(t′ − t)Pρa(t̃− t) = −E(Pρ)

H(Pρ) = −ΓpΩ2
R

∫ t

t′

dt̃ e(iωat−Γp/2)(t−t̃)

e(−iωat−Γp/2)(t−t′)a†(t̃− t)Pρa(t′ − t) = −F (Pρ)

(B.12)

where by a(t′−t) we intend the evolution of the photonic annihlation operator in the photonic
hamiltonian interaction picture (we remind that we neglected photonic losses during the
integration time). We see that the last four contribution cancel each other, and that only
the �rst four contributions remain.
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B.2 Master equation

B.2 Master equation

Using the expression for the self-energy Σ(t) derived in the last section, as well as general
results on the master equation obtained by projective methods in Sec. 2.2.2, we then obtain
the (temporally non-local) master equation :

∂tPρ = −i [Hph,Pρ] + LΓ(Pρ) (B.13)

+Ω2
R

∫ ∞
0

dτ e(iωat−Γp/2)τa†
(
eL0(τ)Pρ(t− τ)

)
a(−τ)

+Ω2
R

∫ ∞
0

dτ e−(iωat+Γp/2)τa†(−τ)
(
eL0(τ)Pρ(t− τ)

)
a

−Ω2
R

∫ ∞
0

dτ e(iωat−Γp/2)τaa†(−τ)
(
eL0(τ)Pρ(t− τ)

)
−Ω2

R

∫ ∞
0

dτ e−(iωat+Γp/2)τ
(
eL0(τ)Pρ(t− τ)

)
a(−τ)a†.

At lowest order in ΩR, we can assume the interaction picture density matrix in the convo-
lution product to be constant, ρ̂(t − τ) ' ρ̂(t), i.e. eL0τρ(t − τ) ' ρ(t). Making the trace
over the bath we get :

∂tρ = −i [Hph, ρ] + LΓ(ρ) (B.14)

+Ω2
R

∫ ∞
0

dτ e(iωat−Γp/2)τa†(−τ)ρ(t)a

+Ω2
R

∫ ∞
0

dτ e−(iωat+Γp/2)τa†ρ(t)a(−τ)

−Ω2
R

∫ ∞
0

dτ e(iωat−Γp/2)τaa†(−τ)ρ(t)

−Ω2
R

∫ ∞
0

dτ e−(iωat+Γp/2)τρ(t)a(−τ)a†,

then we can perform completely the integral and we get our �nal form for the non Markovian
master equation, which is local in time :

∂tρ = −i [Hph, ρ] +
Γl

2

[
2aρa† − a†aρ− ρa†a

]
+

2Ω2
R

Γp

[
ã†ρa+ a†ρã− aã†ρ− ρãa†

]
, (B.15)

with {
ã =

Γp

2

∫∞
0
dτ e(−iωat−Γp/2)τa(−τ),

ã† =
Γp

2

∫∞
0
dτ e(iωat−Γp/2)τa†(−τ) = [ã]

†
,

(B.16)

where a(−τ) means the photonic annihilation operator in the photonic hamiltonian interac-
tion picture. If |f〉 and |f〉′ are two eigenstates of the photonic hamiltonian with a photon
number di�erence of one, we see that the matrix elements of the modi�ed annihilation and
creation operators ã and ã† involved in the emission process are :{

〈f | ã† |f ′〉 =
Γp/2

−i(ωat−ωff′ )+Γp/2
〈f | a† |f ′〉

〈f ′| ã |f〉 =
Γp/2

i(ωat−ωff′ )+Γp/2
〈f ′| a |f〉 .

(B.17)

The non-Markovianity comes from the energy-dependence of the prefactors in Eq. (B.17).

B.3 Many-cavity and many emitters

For several cavities and Nat emitters per cavity, whose distribution of transition frequencies
is D(ω) (D(ω) = Natδ(ω−ωat) if all transition frequencies are equal, and instead is a smooth
function if Nat is very large and the frequencies form a continuous spectrum), the reasoning
is exactly the same: each emitter brings its own small contribution to the total frequency-
dependent emission, and by making the sum of all of these terms we get the multicavity
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Appendix B. Derivation of the purely photonic master equation via projective
methods

master equation

∂tρ = −i [Hph, ρ(t)] + Ll(ρ(t)) +
Γ0

em

2

L∑
i=1

[
ã†iρai + a†iρãi − aiã

†
iρ− ρãia

†
i

]
,

where
Γ0

em

2
ãi =

∫ ∞
0

dτ Γem(τ)ai(−τ), ã†i = [ãi]
†

(B.18)

is the modi�ed annihilation operator,

Γem(τ) = Γat
emθ(τ)

∫
dω̃D(ω̃)e−(iω̃+Γp/2)τ = θ(τ)

∫
dω

2π
Sem(ω)e−iωτ (B.19)

is the photonic emission kernel, ai(−τ) = e−iHphτaie
iHphτ is the annihilation operator in

the photonic Hamiltonian picture and

Sem(ω) = Γat
em

∫
dω̃D(ω̃)

(Γp/2)2

(ω − ω̃)2 + (Γp/2)2
(B.20)

is the photonic frequency-dependent emission spectrum. Here Γ0
em = Max [Sem(ω)] is the

maximum reachable emission rate, and Γat
em =

4Ω2
R

Γp
is the maximum emission rate of a single

atom, obtained at resonance. Sem(ω) is the convolution product of a Lorentzian which
represents the Lorentzian broadening of each emitter due to the pumping, and the spectral
distribution D(ω) of the emitter bare frequencies in absence of pumping. Thus, considering
two eigenstates |f〉 (resp. |f ′〉) of the photonic Hamiltonian with N (resp. N + 1) photons
and energy di�erence ωf ′f = ωf ′ − ωf , the matrix element of the modi�ed jump operators
equals

〈f | ãi |f ′〉 =
2

Γ0
em

Γem(ωf ′f ) 〈f | ai |f ′〉 : (B.21)

the frequency-dependent emission strongly depends on the many-body photonic dynamics.
Here

Γem(ω) =
1

2
Sem(ω)− iδl(ω) (B.22)

is the Fourier transform of the memory kernel Γem(τ). While the magnitude of the Lamb-
shift δl(ω) stemming from the imaginary part of Γem(ω) is typically small as compared to
relevant Hamiltonian scales and thus does not bring important physical e�ects, the real part
Sem(ω)/2 is physically essential as it provides the frequency-dependent emission rate and
while be responsible for transfering in a frequency selective manner the populations between
the various eigenstates of Hph. This intuitive representation is highlighted in a very clear
way in the App. C, where the photonic master is reformulated in a Lindblad equivalent
form in the speci�c regime of weak dissipation allowing for the application of the secular
approximation.

In the case of Chapter. 2, D(ω) = Natδ(ω−ωat) since all transition frequencies are equal
and we get for the modi�ed jump operators:{

ãi =
Γp

2

∫∞
0
dτ e(−iωat−Γp/2)τai(−τ),

ã†i =
Γp

2

∫∞
0
dτ e(iωat−Γp/2)τa†i (−τ)

(B.23)

Here again, if |f〉 and |f〉′ are two eigenstates of the photonic hamiltonian with a photon
number di�erence of one, and energy di�erence ωf ′f , we have that the matrix element{

〈f | ã† |f ′〉 =
Γp/2

−i(ωat−ωff′ )+Γp/2
〈f | a† |f ′〉

〈f ′| ã |f〉 =
Γp/2

i(ωat−ωff′ )+Γp/2
〈f ′| a |f〉 .

(B.24)

In the case of Chapter 3, the emitters frequencies are uniformly distributed over an
interval [ω−, ω+] and the distribution is square-shaped (Dsquare(ω) = Nat

ω+−ω− θ(ω−ω−)θ(ω+−
ω)), so we obtain the form for the emission power spectrum:

Ssquareem (ω) = Γat
em

Nat

ω+ − ω−

∫ ω+

ω−

dω̃
(∆em/2)2

(ω − ω̃)2 + (∆em/2)2
, (B.25)
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B.3 Many-cavity and many emitters

with ∆em = Γp. The maximum power spectrum obtained at the middle between the two
cuto�s is then

Γ0
em = Ssquareem

(
ω+ + ω−

2

)
=

2πNatΩ
2
R

ω+ − ω−
for ∆em � ω+ − ω− (B.26)
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Appendix C

Reformulation of the photonic master

equation in Lindblad form in the secular

approximation

In this Appendix, we demonstrate that in the case where the photonic many-body system
system has a discrete spectrum (this is true for any system of �nite size), it is possible in the
so-called secular approximation to write an alternative master implementing non-Markovian
e�ects with a more standard Lindblad form, compatible with Monte Carlo wave-function
simulations [43] and giving equivalent driven-dissipative dynamics to the photonic master
equation introduced in Chapter. 2 in Chap. 3.

This can be explained by the following argument: in a weak dissipation limit (Γ0
em, Γl

very small with respect to the gaps in the spectrum) terms of the density matrix ρf,f̃ , ρf ′,f̃ ′
which would be rotating at di�erent frequencies ωf,f̃ , ωf ′,f̃ ′ if the system were isolated, are

not coupled to each other by dissipation since the coupling Γ0
em, Γl is negligible with respect

to their frequency di�erence ∆ω = ωf ′,f̃ ′−ωf,f̃ = ωf ′,f−ωf̃ ′,f̃ . Considering this, all relevant
dissipative transitions verify then ∆ω = 0.

C.1 Lindblad form

Restricting the previous master equation given by Eqs. 2.24,2.26 and 2.31 to these transi-
tions, it is possible to rewrite the dynamics in the following way:

∂tρ = −i [Hph +Hlamb, ρ(t)] + Ll(ρ) + L̄em(ρ), (C.1)

where

L̄em(ρ) =
Γem

2

k∑
i=1

[
2ā†iρāi − āiā

†
iρ− ρāiā

†
i

]
, (C.2)

is a modi�ed emission superoperator in the Lindblad form, which unline it s counterpart in
the �rst form for the photonic master equation Eq. 2.24 involves modi�ed jump operators

〈f ′| ā†i |f〉 =

√
Sem(ωf ′f )

Γ0
em

〈f ′| a†i |f〉 , (C.3)

in a symmetrized manner. The imaginary part of Γem(ω) has led to the presence of a
Lamb-shift under the form of an Hamiltonian correction

〈f ′|Hlamb |f〉 =
1

2

∑
i

∑
f ′′

〈f ′| ai |f ′′〉 [δl(ωf ′′,f ) + δl(ωf ′′,f ′)] 〈f ′′| a†i |f〉 , (C.4)

where we remind the notation δl(ω) = −Im[Γem(ω)].
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Appendix C. Reformulation of the photonic master equation in Lindblad form
in the secular approximation

Note that the jump operators ā†i have the same form as the ones considered in [97] and
have for e�ect to modify the transition rate. While the two master equations Eqs. 2.24, C.1
are slightly di�erent, under the considered approximation they are expected to provide
equivalent dynamics. The latter form has the advantage of being of Lindblad form, and
thus is directly compatible with Monte Carlo wave-functions simulations [43] and might be
useful in the future from a numerical point of view (we did not exploit numerically this form
in my Ph. D.).

C.2 Derivation

We now move to the derivation of the Lindblad form Eq. C.1. To do this, we calculate
the matrix elements Lem, f ′,f̃ ′,f,f̃ of the emission superoperator coupling the term of the

density matrix in the eigenstate basis 〈f | ρ ˜|f〉 to 〈f ′| ρ ˜|f ′〉, under the assumption ∆ω =
ωf ′,f̃ ′ −ωf,f̃ = 0. We �rst compute the contributions associated to the original terms of the

ã†iρai + a†iρãi featuring both left and right matrix products:

Γ0
em

2
〈f ′| ã†i |f〉 〈f | ρ ˜|f〉 ˜〈f |ai ˜|f ′〉+ 〈f ′| a†i |f〉 〈f | ρ ˜|f〉 ˜〈f |ãi ˜|f ′〉 =

〈f ′| a†i |f〉 〈f | ρ ˜|f〉 ˜〈f |ai ˜|f ′〉
(

Γ∗em(ωf ′f ) + Γem(ωf̃ ′f̃ )
)
. (C.5)

Considering that under the approximation ∆ω ' 0, we have that Γem(ωf ′f ) ' Γem(ωf̃ ′f̃ ),
we obtain thus the following contribution:

Γ0
em

2
〈f ′| ã†i |f〉 〈f | ρ ˜|f〉 ˜〈f |ai ˜|f ′〉+ 〈f ′| a†i |f〉 〈f | ρ ˜|f〉 ˜〈f |ãi ˜|f ′〉

' 2 〈f ′| a†i |f〉
√
Sem(ωf ′f )

2
〈f | ρ ˜|f〉

√
Sem(ωf̃ ′f̃ )

2
˜〈f |ai ˜|f ′〉

= Γ0
em 〈f ′| ā

†
i |f〉 〈f | ρ ˜|f〉 ˜〈f |āi ˜|f ′〉, (C.6)

with āi de�ned in Eq.C.3. We see that the "imaginary" contribution cancels out, and that
the "real" contribution has been divided in two multiplicative contributions on the left and
the right of the density matrix. We then move to the computation of the terms stemming
from the non-Hermitian Hamiltonian-like contributions aiã

†
iρ+ ρãia

†
i . Let us calculate the

left product:

Γ0
em

2
〈f ′| ai |f ′′〉 〈f ′′| ã†i |f〉 〈f | ρ ˜|f〉 = 〈f ′| ai |f ′′〉Γ∗em(ωf ′′f ) 〈f ′′| a†i |f〉 〈f | ρ ˜|f〉 (C.7)

= 〈f ′| ai |f ′′〉
[
Sem(ωf ′′f )

2
+ iδl(ωf ′′f )

]
〈f ′′| a†i |f〉 〈f | ρ ˜|f〉.

Considering that under the approximation ωf ′,f ' 0, we have that ωf ′′,f = ωf ′′,f ′ , and so:

Sem(ωf ′′f ) =
√
Sem(ωf ′′f )Sem(ωf ′′f ′) (C.8)

δl(ωf ′′f ) =
δl(ωf ′′f ) + δl(ωf ′′f ′)

2
(C.9)

As a consequence:

Γ0
em

2
〈f ′| ai |f ′′〉 〈f ′′| ã†i |f〉 〈f | ρ ˜|f〉 ' −i 〈f ′| ai |f ′′〉

(
δl(ωf ′′f ) + δl(ωf ′′f ′)

2

)
〈f ′′| a†i |f〉 〈f | ρ ˜|f〉

+
Γ0

em

2
〈f ′| āi |f ′′〉 〈f ′′| ā†i |f〉 〈f | ρ ˜|f〉. (C.10)

Similarly, we get for the right product:

Γ0
em

2
〈f | ρ ˜|f〉 ˜〈f |ai ˜|f ′′〉 ˜〈f ′′|ã†i ˜|f ′〉 ' +i 〈f | ρ ˜|f〉 ˜〈f |ai ˜|f ′′〉

(
δl(ωf̃ ′′f̃ ) + δl(ωf̃ ′′f̃ ′)

2

)
˜〈f ′′|a†i ˜|f〉

+
Γ0

em

2
〈f ′| āi |f ′′〉 〈f ′′| ā†i |f〉 〈f | ρ ˜|f〉. (C.11)

The sum of all contributions gives the form Eq. (C.1)

116



Appendix D

Perturbative corrections to the

coherences in the weakly non Markovian

regime

In this Appendix we show that the lowest-order correction to the coherences between eigen-
states (null in the Grand Canonical ensemble of Sec.2.4.2) are quadratic in the inverse pump-
ing rate Γ−1

p and not linear as a naive pertubative expansion would suggest. To this purpose,
we calculate the �rst order contributions to the coherences of the operator δM [de�ned in

Eqs. (2.64) and (2.67)] applied to the grand canonic density matrix ρeq
∞ = 1

Ξe
−βeff (Hph−µN̂)

and show them to be vanishing at lowest order in 1
Γp
. Considering the fact that ρeq

∞ is

diagonal in the photonic eigenbasis, we �rst reduce the following contributions of δM∑
i

〈f | δa†iρ
eq
∞ai |f ′〉 =

∑
i,f̃ ,f̃ ′

〈f | δa†i ˜|f〉 ˜〈f |ρeq
∞

˜|f ′〉 ˜〈f ′|ai |f ′〉 (D.1)

=
∑
i,f̃

〈f | δa†i ˜|f〉 ˜〈f |ρeq
∞

˜|f〉 ˜〈f |ai |f ′〉 ,

∑
i

〈f | a†iρ
eq
∞δai |f ′〉 =

∑
i,f̃ ,f̃ ′

〈f | a†i ˜|f〉 ˜〈f |ρ∞ ˜|f ′〉 ˜〈f ′|δai |f ′〉 (D.2)

=
∑
i,f̃

〈f | a†i ˜|f〉 ˜〈f |ρ∞ ˜|f〉 ˜〈f |δai |f ′〉 ,

where everything has been expressed in the photonic Hamiltonian eigenbasis. Then we know

that 〈f | δa†i ˜|f〉 = − i(ωff̃−ωat)

Γp
〈f | a†i ˜|f〉+O

(
1

Γp

)2

. Let us choose a reference eigenstate |f0〉

of Hph with the same photon number as ˜|f〉: we have that ˜〈f |ρeq
∞

˜|f〉 = 〈f0| ρeq
∞ |f0〉+O(Γ−1

p ).
All these additional corrections O(Γ−1

p ) give second order contributions and we do not keep
them in Eqs. (D.1),(D.2). Thus to the lowest order∑

i

〈f | δa†iρ
eq
∞ai + a†iρ

eq
∞δai |f ′〉 = 〈f0| ρeq

∞ |f0〉
∑
i,f̃

−i(ωff̃ − ωf ′f̃ )

Γp
〈f | a†i ˜|f〉 ˜〈f |ai |f ′〉

= 〈f0| ρeq
∞ |f0〉

−iωff ′
Γp

∑
i,f̃

〈f | a†i ˜|f〉 ˜〈f |ai |f ′〉

= 〈f0| ρeq
∞ |f0〉

−iωff ′
Γp

〈f |
∑
i

a†iai |f
′〉

= 0, (D.3)

since the total photon number operator N̂ =
∑
i a
†
iai is diagonal in any sub-manifold with

a �xed total particle number, and since ωff ′ = 0 for |f〉 = |f ′〉. A similar reasoning allows
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Markovian regime

to show that ∑
i

〈f | aiδa†iρ
eq
∞ + ρeq

∞δaia
†
i |f
′〉 = 0. (D.4)

Thus, the superoperator δM does not perturbate the steady-state ρeq
∞ ofM0 to the lowest

order in the weakly non-Markovian regime J, U � Γp, which completes our proof.
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Appendix E

Quantum correlations of a

driven-dissipative non-Markovian

Bose-Einstein Condensation

In this Appendix we compute in the Bogoliubov regime the expressions the normal and
anomalous quantum correlations describing the steady-state properties of the non-Markovian
quantum Langevin of Chapter 4. After computing the correlations in frequency representa-
tion and some useful quantities related to the test of the validity of the FDT theorem, we
then move to the computation of static correlations.

E.1 Quantum correlations in frequency and FDT

We �rst compute the correlation matrix in momentum frequency space Ck(ω) de�ned in
Eq. (4.26). Inverting the langevin equation in frequency space Eq.(4.23), we get :(

Λ̂k(ω)

Λ̂†−k(−ω)

)
=

i

ω − Lk(ω)

(
ξ̃k(ω)

−ξ̃†−k(−ω)

)
(E.1)

After calculation this gives us :(
Λ̂k(ω)

Λ̂†−k(−ω)

)
=

i[
ω −

(
εk + µ+ iΓ̃(ω)

)]
×
[
ω + εk + µ− iΓ̃∗(−ω)

]
+ µ2 (

ω + εk + µ− iΓ̃∗(−ω)
)
ξ̃k(ω)− µξ̃†−k(−ω)

−µξ̃k(ω) +
(
−ω + εk + µ+ iΓ̃(ω)

)
ξ̃†−k(−ω)

 , (E.2)

and taking the hermitian conjugate:(
Λ̂†k(ω)

Λ̂−k(−ω)

)
=

−i[
ω −

(
εk + µ− iΓ̃∗(ω)

)]
×
[
ω + εk + µ+ iΓ̃(−ω)

]
+ µ2 (

ω + εk + µ+ iΓ̃(−ω)
)
ξ̃†k(ω)− µξ̃−k(−ω)

−µξ̃†k(ω) +
(
−ω + εk + µ− iΓ̃∗(ω)

)
ξ̃−k(−ω)

 . (E.3)

We get after tracing over the various baths the expression for the correlation matrix:

Ck(ω) =
1

Nk(ω)N−k(−ω)

(
M

(11)
k (ω) M

(12)
k (ω)

M
(21)
k (ω) M

(22)
k (ω)

)
︸ ︷︷ ︸

≡M(ω)

, (E.4)
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where

Nk(ω) =
[
ω −

(
εk + µ+ iΓ̃(ω)

)]
×
[
ω + εk + µ− iΓ̃∗(−ω)

]
+ µ2 (E.5a)

M
(11)
k (ω) = Sl(ωBEC + ω)

∣∣∣ω + εk + µ+ iΓ̃(−ω)
∣∣∣2 + Sem(ωBEC − ω)µ2, (E.5b)

M
(21)
k (ω) = −Sl(ωBEC + ω)×

[
ω + εk + µ+ iΓ̃(−ω)

]
µ

+Sem(ωBEC − ω)
[
ω −

(
εk + µ+ iΓ̃(ω)

)]
µ, (E.5c)

M
(12)
k (ω) = −Sl(ωBEC + ω)×

[
ω + εk + µ− iΓ̃∗(−ω)

]
µ

+Sem(ωBEC − ω)
[
ω −

(
εk + µ− iΓ̃∗(ω)

)]
µ, (E.5d)

M
(22)
k (ω) = Sl(ωBEC + ω)µ2 + Sem(ωBEC − ω)

∣∣∣ω − (εk + µ+ iΓ̃(ω)
)∣∣∣2 . (E.5e)

To test the FDT it is also useful to calculate the ratios
〈Λ̂k(ω)Λ̂†k〉
〈Λ̂†k(ω)Λ̂k〉

and 〈Λ̂k(ω)Λ̂−k〉
〈Λ̂k(−ω)Λ̂−k〉

. We

obtain the following expressions:

〈Λ̂k(ω)Λ̂†k〉
〈Λ̂†k(ω)Λ̂k〉

=
Sl(ωBEC + ω) + Sem(ωBEC − ω)Ak(ω)

Sem(ωBEC + ω) + Sl(ωBEC − ω)Ak(ω)
, (E.6)

〈Λ̂k(ω)Λ̂−k〉
〈Λ̂k(−ω)Λ̂−k〉

=
Sl(ωBEC + ω) + Sem(ωBEC − ω)Bk(ω)

Sem(ωBEC + ω) + Sl(ωBEC − ω)Bk(ω)
, (E.7)

with

Ak(ω) =
µ2∣∣∣ω + εk + µ+ iΓ̃(−ω)

∣∣∣2 , (E.8)

Bk(ω) =
−ω + εk + µ− iΓ̃∗(ω)

ω + εk + µ− iΓ̃∗(−ω)
. (E.9)

E.2 Static correlations at low energy

We calculate here the static correlations at steady state in the low-energy regime Ek �
∆diss. In this regime, using the de�nition Eq. (4.29) as well as the fact that Sl(ωBEC) =
Sem(ωBEC), we can approximate the expression Eq. (E.4) of the correlation matrix calculated
in the previous section as:

Nk(ω) ' =
1

|z|2
{

[ω − z (εk + µ)] [ω + z∗ (εk + µ)] + |z|2µ2
}

(E.10a)

=
1

|z|2
(ω − ω+

k )(ω − ω−k ), (E.10b)

M
(11)
k (ω) ' Sl(ωBEC)

|z|2
[
|ω + z (εk + µ)|2 + |z|2µ2

]
, (E.10c)

M
(21)
k (ω) ' −2Sl(ωBEC)(εk + µ)µ, (E.10d)

M
(12)
k (ω) ' −2Sl(ωBEC)(εk + µ)µ, (E.10e)

M
(22)
k (ω) ' Sl(ωBEC)

|z|2
[
|ω − z (εk + µ)|2 + |z|2µ2

]
, (E.10f)

where ω±k are the complex low energy mode frequencies of the condensate given by Eq. (4.31).
From these expressions, we can calculate the dynamic structure factor Sk(t), which is de�ned
as

Sk(t) =

(
〈Λ̂k(t)Λ̂†k(0)〉 〈Λ̂k(t)Λ̂−k(0)〉
〈Λ̂†−k(t)Λ̂†k(0)〉 〈Λ̂†−k(t)Λ̂−k(0)〉

)
, (E.11)

120



E.2 Static correlations at low energy

and is related to the correlation matrix Ck(ω) as
∫
t
Sk(t)e−iωt = Ck(ω). Using a pole

integration in the complex plane we obtain

Sk(t) =
−i|z|2

2(ω+
k − ω

−
k )(ω+

k + ω−k )

[
M(ω+

k )e−iω
+
k t

2ω+
k

−
M(ω−k )e−iω

−
k t

ω−k

]
, (E.12)

where M(ω) has been de�ned in Eq. (E.4). Setting t = 0 we �nd the static correlation
matrix :

Sk(0) =
−i|z|2

2(ω+
k − ω

−
k )(ω+

k + ω−k )

[
M(ω+

k )

2ω+
k

−
M(ω−k )

ω−k

]
. (E.13)

It seems a pretty complicated expression, but injecting the expressions given by Eqs. (E.10)
as well as the explicit expressions for the condensate frequencies Eq. (4.31), we �nd:

Sk(0) =
Sl(ωBEC)|z|2

2zIE2
k

(
εk + µ −µ
−µ εk + µ

)
. (E.14)

From Eqs. (4.29), (4.5), we have that zI
|z|2 = Im

(
z−1
)

= − dRe(Γ̃(ω))
dω

∣∣∣
ω=0

= βeffSl(ωBEC)
2 , from

which we deduce the �nal expression:

Sk(0) =
Te�
E2
k

(
εk + µ −µ
−µ εk + µ

)
. (E.15)
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