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Summary

Autonomous driving is an important research field and presents several
problems with different nature and complexity. The goal of this work is de-
scribing such problems and the concerning solutions adopted while developing
an experimental vehicle designed to autonomously perform some manoeuvres
and/or to be remotely driven: the vehicle RUMBy.

The problem has been faced from its beginning, i.e. from the hardware and
software design: the requisites the system should satisfy are discussed, such
as the vehicle and the sensors chosen, and the adopted hardware and software
architectures are then described. Some mathematical models representing
the vehicle dynamics are also presented, that have been employed in several
applications, from the dynamic behaviour simulation up to the control system
synthesis. Each model besides presents characteristic parameters that should
be evaluated: therefore the problem of identification is discussed in detail,
accompanied by the results obtained during an experimental activity carried
out in collaboration with a Japanese research institute. Also the vehicle state
estimation constitutes a key point in autonomous driving field: about this, the
experimental results yielded by an estimation algorithm, based on a Kalman
filter, are presented and discussed. Finally, the yaw rate control problem
is examined, which is fundamental for both the motion stabilization (during
remote driving) and for the following of yaw rate reference profiles (while
performing autonomous manoeuvres). Two control architectures, based on
a disturbance observer, have been developed and compared in a simulation
campaign, that has been carried out by means of a static simulator which
reproduces the driving of RUMBy in a virtual environment.

This work aims then at marking a milestone within a work in progress, as
well as at representing a potential guideline for researchers that would coping
with projects concerning autonomous driving.

i



Sommario

La guida autonoma costituisce un importante campo di ricerca e presenta
numerose problematiche, di differente natura e complessità. L’obiettivo di
questo lavoro è descrivere tali problematiche, e le relative soluzioni adottate
durante lo sviluppo di un veicolo sperimentale progettato per svolgere autono-
mamente delle manovre e/o essere guidato in remoto: il veicolo RUMBy.

Il problema è stato affrontato dall’inizio, cioè dalla progettazione hard-
ware e software del veicolo: sono discussi i requisiti che il sistema doveva
soddisfare, il veicolo e i sensori scelti e sono quindi descritte le architetture
hardware e software progettate. Sono inoltre presentati alcuni modelli matem-
atici rappresentativi della dinamica del veicolo, che hanno trovato impiego in
varie applicazioni, dalla simulazione della dinamica del veicolo alla sintesi del
controllo. Ogni modello è tuttavia caratterizzato da parametri di cui è indi-
spensabile conoscere il valore: il problema dell’identificazione è quindi discusso
in dettaglio, accompagnato dai risultati di un’attività sperimentale svolta in
collaborazione con un istituto di ricerca giapponese. Anche la stima dello stato
del veicolo costituisce un punto chiave nella guida autonoma: a tal propos-
ito sono riportati i risultati sperimentali ottenuti mediante un algoritmo di
stima basato su un filtro di Kalman. Infine è affrontato il problema del con-
trollo della velocità di imbardata, fondamentale sia per la stabilizzazione del
moto (durante la guida in remoto) che per l’inseguimento di profili di velocità
di imbardata di riferimento (nell’esecuzione di manovre autonome). Due ar-
chitetture di controllo, basate su un osservatore del disturbo, sono state pro-
gettate e confrontate durante una campagna di simulazione, svolta mediante
un simulatore statico che riproduce la guida di RUMBy in ambiente virtuale.

Questa tesi ambisce quindi a costituire una pietra miliare all’interno di un
lavoro tuttora in corso, nonchè a rappresentare una possibile linea guida per
quanti volessero affrontare un progetto inerente la guida autonoma.
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Chapter 1

Introduction

1.1 Background and Motivation

Autonomous driving is a very active research field, both in universities and
laboratories, and also competitions have been performed: the most famous
one is the DARPA (Defense Advanced Research Projects Agency) Challenge,
launched by the US Department of Defense in 2003 to spur innovation in un-
manned ground vehicle navigation (Thrun et al., 2006). Autonomous vehicles
find employment in situations that are dangerous and hazardous to humans, as
in toxic environments, in mining industry and in military operations (Schmidt
and Freyberg , 1996, Roberts et al., 2002). Recently, intelligent service robots
are becoming popular to assist people in daily tasks (e.g. hospital services,
museums, shops, etc.), and the cost decline of computers and electronic sys-
tems is allowing the commercialization on large scale of autonomous vehicles
in agriculture and other industries. Moreover vehicle automation concerns the
development of driving assistance systems oriented at increasing the driving
safety supporting the driver in critical situations; examples about that kind
of employment are the Adaptive Cruise Control (ACC) (Bengtsson , 2001),
the Frontal Collision Warning (FCW) (Vahidi and Eskandarian , 2003), the
Intelligent Speed Adaptation (ISA) systems (Carsten and Tate , 2005) and,
recently, the SASPENCE (SAfe SPEed and safe distaNCE) system (Saroldi ,
2008).

The Mechatronics Research Group of the University of Trento has been
involved in autonomous driving projects for a decade. In particular, the path
planning algorithm present in the SASPENCE system exploits the Optimal
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2 Introduction

Manoeuvre Method (OMM1) developed in Trento (Bertolazzi et al., 2005,
Bertolazzi et al., 2006, Bertolazzi et al., 2007). The experience gained on
the field has highlighted a gap in previous autonomous/assisted driving stud-
ies. In DARPA’s full-autonomous systems, large-sized vehicles are used, with
expensive sensors and hardware (investments on the order of M$) and with-
out any kind of human interaction. Moreover remote-control driving is only
in supervision-mode, i.e. giving some finite state macro-instructions to the
robot. On the contrary, European research projects (like SASPENCE and
others) have human-in-the-loop architectures, but they cover just an informa-
tive role and do not execute autonomous manoeuvres. The cited researches
have radical approaches to the vehicle-human interaction, and suggested an
innovative method. The basic idea is to exploit the possible “optimal ma-
noeuvres” and the commands applied by the driver in order to interpret his
intention/purpose. Once such an intention is known, the system can act in
two ways:

• leave the driving task to the driver,

• semi- or full-autonomously execute the optimal manoeuvre, if the driver
intention is held as dangerous.

The first version of such a kind of system could be for instance an intelligent
stability program, that estimates the forward road geometry, plans an optimal
manoeuvre that maximises a safety criteria and exploits such a manoeuvre to
apply a correction to the driver’s actions.

These researches on autonomous driving have consequently disclosed the
need of an experimental platform for the verification of the proposed algo-
rithms. The Reduced-size UnManned Buggy (RUMBy) Project has then been
started in 2006, aiming at produce an experimental platform that allows to
check the efficiency of path planning algorithms, sensor fusion systems and
control strategies. In other words, the goal of the RUMBy project was the
creation of an experimental vehicle able to autonomously perform some spe-
cific manoeuvres. Moreover, in parallel to the RUMBy Project, the need
of an intensive multibody analysis of the vehicle has shown itself. Both for
the construction of a vehicle static simulator and for the synthesis of control
algorithms, vehicle mathematical models are necessary. At the same time,

1The OMM is based on Optimal Control theory, and can be used to real-time compute
the reference manoeuvre of a vehicle based on its state and the information about the
surrounding scenario.



1.2 Structure of the work 3

multibody representations can be used for path planning and for the study of
state estimation algorithms.

The present document collects and discusses the main analysis and results
achieved about the above cited topics. In particular, the present work focuses
on vehicle modelling, parameter/system identification, state estimation and
control algorithm development carried out in range of the RUMBy Project.
Part of the work has been done at Fujimoto’s Laboratory2 of the Yokohama
National University Japan, since there was available a research vehicle (named
“FPEV2-Kanon”) equipped with what is necessary for identification and con-
trol validation. Experiences done on the full-scale vehicle can be transferred
to RUMBy, therefore links with the Japanese experimental activity are also
presented.

1.2 Structure of the work

The design, from the beginning, of an autonomous experimental vehicle un-
doubtedly constitutes a very challenging activity. Many problems of different
nature have to be faced, from the choice of the hardware up to the test of the
control strategies. Generally speaking, an autonomous vehicle is composed by
five main systems (see Fig. 1.1):

1. the vehicle itself, which should be large enough in order to carry the
needed equipment and that must provide a by-wire interface to all the
driving subsystems (steering, throttle, brakes);

2. the sensors, which have to provide a description of the vehicle state and
of the environment as complete as possible;

3. the algorithms for data fusion and state estimation, that have to observe
the vehicle state (e.g. position, velocity, etc.) at any step time;

4. the algorithms for manoeuvre planning and vehicle control, that have
respectively to compute and follow the reference profile of a certain set
of variables;

5. the algorithms for scenario reconstruction (road limits, still and dynamic
obstacle recognition, etc.) and navigation (that has to decide the best
route to be done).

2http://www.dnj.ynu.ac.jp/hflab/hfl e.html
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VEHICLE SENSORS

SENSOR 
FUSION

MANOEUVRE 
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- NAVIGATION

Figure 1.1: Layout of an autonomous vehicle. The five main subsystems constituting an
autonomous vehicle are highlighted: four of these subsystems are present on the RUMBy
platform, since scenario reconstruction only deals with long-range navigation and has no
effect on short-range manoeuvre planning.

As one can expect, the above cited subsystems can be combined in different
architectures, even depending on the desired level of automation. Excellent
examples of full-automation-oriented architectures can be found in the vehi-
cles that participated to the DARPA Challenge (Thrun et al., 2006, Behringer
et al., 2004, Touchton et al., 2006). Even if such vehicles differ on several de-
tails, mainly concerning the adopted algorithms, they have a point in common:
the whole set of subsystems are combined in a single structure - the vehicle is
equipped with a large number of sensors and with computing platforms that
carry out the tasks of subsystems 3, 4 and 5. By means of a literature review,
other example of this kind of architectures can be found (Albus , 2002), even
for aquatic (Kim and Yuh , 2004) or flying vehicles (Frazzoli et al., 2000).
Moreover, partial-automation-oriented systems exist, that combine just some
of the subsystems of Fig. 1.1. The same driving assistance systems, cited in
the previous section, are evident examples of this kind of architecture. Some
of them, like the Frontal Collision Warning (Vahidi and Eskandarian , 2003,
Svenson et al., 2005), combine together sensors and data fusion algorithm -
more or less integrated in the vehicle- to transmit additional information to
the driver. Other systems, like the Intelligent Speed Adaptation (Carsten and
Tate , 2005) or the well-known Electronic Stability Program (Liebermann ,
2004), even incorporate simple control algorithm to aid the driver in critical
conditions.



1.2 Structure of the work 5

With the sole exception of the last subsystem, which only deals with long-
range navigation and which has no effect on short-range manoeuvre planning,
all the subsystems 1-4 are present on the RUMBy platform and have been
developed following a modularity approach.

More specifically, it can be said that subsystems 1 and 2 constitute the
hardware part of the vehicle. Designing the architecture of this kind of systems
constitutes itself a remarkably complex task: it is necessary to define project
requirements, to choose the on-board sensors, to define hardware and software
interfaces, to devise the software framework and so on. This phase of RUMBy
Project has required strong efforts and has witnessed several reviews: while
the project gone on, different problems have been met that have forced the
definition of new hardware and software requirements and new designs. The
resulting RUMBy Project architecture is discussed in Chapter 2. Moreover,
since some of the proposed studies are referred to the Japanese activity, a
brief description of the vehicle Kanon is given in § 2.2.

Subsystems 3 and 4 constitute instead the software part of the project,
and require additional comments. Either for the state estimation and the
out-and-out control of the vehicle, it becomes necessary to produce mathe-
matical models that describe the system evolution and this justifies the struc-
ture of the work. Chapter 3 describes indeed the main mathematical models
describing the vehicle dynamics and its mechanical subsystems. Nevertheless,
in order that a model efficiently represents a system, it is necessary to mea-
sure or estimate the parameters that characterize the system (e.g. inertial
and geometrical parameters, friction coefficients, etc.). The set of activities
oriented at measuring/estimating such parameters is termed “identification”,
and constitutes the topic of Chapter 4. Once efficient mathematical models
are at disposal, they can be exploited for the creation of state estimation and
control algorithms. Both these topics constitute extremely active and wide
research fields and have required a long and intensive analysis. In detail,
Chapter 5 describes the state estimation architecture developed for RUMBy:
it will be shown that a modularity approach has been chosen even for this
system, with notable advantages both in terms of efficiency and flexibility.
Finally, the last subsystem -control algorithms- is discussed in Chapter 6. The
vastness of this topic is immediately evident from literature review: various
approaches and architectures can be adopted, depending also on the variable
to control. More specifically, two approaches for the yaw rate control are dis-
cussed in Chapter 6, comprising a comparison activity carried out by means
of a purpose-made static driving simulator and oriented at evaluate the effect
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of controllers on disturbance rejection and vehicle manoeuvrability.



Chapter 2

Experimental Vehicles and

Instrumentation

The first two systems composing an autonomous vehicle are the vehicle it-
self and the sensors. Since the present work is mainly based on the RUMBy
project, the chosen vehicle and instrumentation are described, focusing on the
requisites that were used for their selection. Moreover the software architec-
ture is presented, because it is an integral part of the autonomous vehicle.
Anyway, a second vehicle belonging to an external institute has been used for
some of the activities discussed in Chapter 4. Even if its design is not part
of the present work, a brief description of its main characteristics is given at
the end of the chapter to ease the explanation of the identification activity.

As explained in the introducing chapter, a project concerning autonomous
driving involves a large number of complex activities. The most complex one
is probably the outline of the structure of the system, comprising the selection
of the hardware (i.e. the vehicle, the sensor, the instrumentation, etc.) and
the development of the software. The availability of a well-designed system
makes all the other activities easier.

Since the present work is mainly based on the RUMBy project, this chapter
is focused on the description of the adopted vehicle and instrumentation. At
the beginning of the project a strong effort has been made to define a set
of requisites that the vehicle and the instrumentation should satisfy. The
following pages give then an accurate explanation of the whole set of activities
dealing with the definition of the project requirements and the choice of the
RUMBy hardware. Moreover the RUMBy’s software architecture is presented

7



8 Experimental Vehicles and Instrumentation

and discussed, since it represents a fundamental part of the system. A set
of requirements has been defined also for the software, thus a section of the
present chapter is dedicated to explain the chosen solution.

Anyway RUMBy is not the only vehicle involved in the research described
in this work. Some of the activities discussed in Chapter 4 have been indeed
conduced with a second vehicle: the “FPEV2-Kanon”. The Mechatronics
Research Group has started a collaboration with the Fujimoto’s Laboratory of
the Yokohama National University (Japan), that disposes of an electric vehicle
named “FPEV2-Kanon”. In range of such a collaboration, an identification
and validation work of a model of Kanon has brought to very interesting
results, presented in § 4.1.2 and 4.2. Obviously the design of Kanon is not
part of the present work, and its architecture can not be explained as well
as the RUMBy’s one. Nevertheless a brief description of the vehicle and its
instrumentation is given in the last section of this chapter.

2.1 RUMBy

In the last years the Mechatronics Research Group has been involved in sev-
eral projects concerning autonomous and assisted driving (Bertolazzi et al.,
2008b). In particular, a strong effort has been made to develop the Optimal
Manoeuvre Method (Bertolazzi et al., 2005, Bertolazzi et al., 2006), which
uses the Optimal Control theory to compute the reference manoeuvre a vehi-
cle should follow to achieve a certain purpose (e.g. minimum time, maximum
safety, etc.). The experience gained in the automotive field has highlighted
a gap in previous researches on autonomous driving, concerning the concept
of “collaboration” between vehicle and driver. It has been indeed seen that
an interesting investigation field could focus on intelligent driving assistance
systems, based on the interpretation of the driver’s intention. Such a study
has brought to the need of an experimental platform that allowed for test such
a king of algorithms. For these reasons a project has been started in 2006 to
develop a Reduced-size UnManned BuggY (RUMBy), which is a platform to
test the proposed decision and autonomous driving algorithms. The project
has been presented for the first time in (Bertolazzi et al., 2008a): this section
collects the main results about the whole system architecture (hardware and
software).



2.1 RUMBy 9

2.1.1 Hardware: Vehicle and Instrumentation

The hardware part of an autonomous vehicle consists of the vehicle itself and
of the instrumentation. About the RUMBy project, the vehicle has been
selected on the basis of the following main requisites:

1. Dynamics: vehicle dynamics should be similar to real car dynamics.

2. Representativeness: attention is paid to on-cars system specifications
(use of CAN interfaces).

3. Safety: it should be possible to test emergency conditions such as ob-
stacle avoidance or critical scenarios at a low risk level for people and
instrumentation.

4. Flexibility: the system should be cheap, rapid prototyping oriented,
and with less constraints w.r.t. real cars.

5. Scalability: it should be easy to investigate co-operative and platoon-
ing technologies, coupling the vehicle with other platforms.

6. Lightness: compact and low power consumption systems are preferred.

Consequently, a radio-controlled (R/C), 1:6 scale model of H2 Hummer has
been chosen as experimental platform (see Fig. 2.1). The chosen solution
conforms with all the requirements, especially with requirements 1, 4, 5 and
6.

The vehicle is 680 mm long and 510 mm wide and is equipped with a
26 cm3 two-strokes engine and 4 disk brakes. The power train is connected
to the engine through a centrifugal clutch. The vehicle model has been cus-
tomized with stiffer shock absorbers and with an aluminium frame, in order
to mount on the necessary on-board instrumentation. Anyway, due to the
limited load capacity of the vehicle, only the sensing and the sensor fusion in-
strumentation have been installed on-board. The heavy and energy-consuming
computer needed for the control and actuation, and for the high level automa-
tion (system manager and path planning), is instead remotely connected to
the vehicle via radio communication channels. This solution also makes it
possible to test remote control strategies as explained in the introduction.

The sensing instrumentation has been designed with the target of provid-
ing an on-board sensor fusion procedure with the measurement required to
reconstruct the whole vehicle state, namely: position, velocity and accelera-
tion vectors, angular positions and velocities, and angular velocity of wheels.
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Figure 2.1: The experimental platform RUMBy. The project requirements forced the
choice of a radio-controlled, 1:6 scale model of H2 Hummer, equipped with a 26 cm3 two-
strokes engine, centrifugal clutch and 4 disk brakes. The vehicle has been customized with
an aluminium frame, in order to mount on the sensors, the PC104 embedded computer and
the wireless router.

The sensor fusion system runs on an on-board PC1041 embedded computer
and collects measurement data from the following devices:

1. a differential Global Positioning System (GPS) receiver running at 20-
100 Hz (Racelogic VBox III), connected via CAN to PC104;

2. an Attitude and Heading Reference System (AHRS) providing 3 ac-
celerometers, 3 gyroscopes and 3 magnetometers (MicroStrain 3DM-
GX1), connected via serial port to PC104;

3. two rear-wheel speed sensors (odometers) based on Hall-effect sensors,
custom designed and manufactured, connected via serial port to PC104.

Both the raw measurements and the fused data that describe the vehicle
state are sent to the manager computer via a custom UDP protocol by means

1PC104 is an embedded computer standard controlled by the PC/104 Consortium, which
defines both a form factor and computer bus (http://www.pc104.org/).



2.1 RUMBy 11

of a Linksys 802.11n wireless router (effective line-of-sight range exceeding 150
m). Regarding the actuation part, the throttle and steering servomotors can
be driven manually (by means of a standard R/C joystick) or can be switched
in closed loop control (for autonomous drive). Moreover, also intermediate
solution are possible such as “intelligently” correct the operator commands
with additional optimal feedback or feedforward signals. An Arduino2 pro-
grammable microcontroller, that is in serial communication with the PC104,
takes care of the mode switching, which can be toggled either by pushing a
button on R/C joystick or by way of the on-board PC104. In case of au-
tonomous drive mode, the steering and throttle commands are routed by the
manager computer through the PC104 and through the microcontroller to the
servomotors.

With the adopted architecture the PC104 has a direct access -through
the microcontroller- to the servos. This allows the investigation of on-board
control techniques and emergency-management manoeuvres. Moreover, an
immediate mode-switching function can be easily implemented, which could be
helpful in testing driver assistance algorithms and makes the solution suitable
for testing advanced configurations. The resulting architecture is schematised
in Fig. 2.2, which shows the on-board sensing devices on the top and the base
station (path-planning dedicated PC and R/C joystick) on the bottom.

2.1.2 Software Architecture

As for the choice of the hardware, also the software architecture should satisfy
some requisites, that are:

1. Safety: emergency manoeuvre must always be available.

2. Modularity: functions available as black boxes with flexible interfaces.

3. Concurrency: re-configurability and parallelization.

4. Neutrality: interoperability of different softwares, programming lan-
guages and pre-existing packages.

Dealing with autonomous vehicles means continuously prevent and avoid
potential crashes, and this is the reason why safety is the first and most impor-
tant requirement. The other main requisites -which are almost self explaining-

2Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use
hardware and software (http://www.arduino.cc/).
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Figure 2.2: System Architecture. Because of the limited load capacity, the heavy and
energy-consuming computer for the path planning (manager) is remotely connected via
radio-communication channels. The architecture is thus split in two main parts: on-board
instrumentation and base-station.

are of additional relevance if one considers that the software should be easily
extendable, especially during the development phase.

As a consequence of the requirement 2, the software has been designed
on a multi-process architecture as shown in Fig. 2.3. The main process -
Manager Unit- is a multi-threaded process that receives commands by a
custom graphical user interface (GUI). It holds the manoeuvre planner and
the interface with vehicle systems, which, in turn, is made of the driver for the
vehicle on-board inertial navigation system (labelled “Telemetry”), the con-
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Figure 2.3: Software and hardware architecture with switchable connection between sim-
ulator and real vehicle. Dashed lines represent an alternative connection.

trol system (labelled “Controls”), and the commands communication system
(labelled “Communication”).

The Communication and the Telemetry objects are abstraction layers that
provide a neutral, high level access to the vehicle commands and to the ve-
hicle state, respectively. The Planner object is a wrapper for libraries that
implement manoeuvre planning, control strategies and so on.

In order to comply with the requirements 2 and 3, the Manager Unit has
been implemented as a finite state machine. The state machine runs a main
loop with a constant time step. Within this main loop, the state machine can
change state either by receiving a command from the GUI or as a consequence
of a change in vehicle state variables (e.g. trespassing a threshold).

For example, at the beginning the system is in the “idle state” (all com-
mands in neutral state, telemetry enabled). When the GUI sends the com-
mand to switch in “accelerate state”, the vehicle accelerates at full throttle
until it reaches a threshold speed (e.g. 1 m/s), then the controller sponta-
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neously switches to the “planning state” performing the requested manoeu-
vre. In planning state, the main loop follows the strategy depicted in Fig. 2.4.
It is worth noting that the main loop requests the Planner to interpolate at
the present time the latest available planned trajectory. If the error position
between planned and actual position exceeds a threshold value, then the plan-
ner is requested to compute a new optimal trajectory, which will be used as
reference as soon as it will be available. Finally when the distance to the
target position is less than the braking distance at the current speed the
state machine switches to the “halt state”, which disables the planning and
performs a full stop of the vehicle.

Update state 
machine

Read vehicle 
state

Error 
threshold

Compute a new 
plan

Read planned 
state

Act on controls

PC104

Interpolate 
splines

Planned 
state 
vars

Slow

UI commands

fast

Figure 2.4: Manager Unit main loop flow chart. Once the Manager Unit has assumed a
certain state, the actual and desired vehicle states are compared: if the difference is small the
system acts to follow the planned state, otherwise a new path is planned and interpolated
with the previous one.

It is worth noting that, until the software is correctly tested and calibrated,
a direct interface with the vehicle involves some risks. For example, an un-
caught software bug or a sudden connection failure could cause the vehicle
to become unresponsive and therefore dangerous while travelling at high
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velocity. Consequently, in order to comply with the safety requisite, the Sim-
ulator Unit is introduced, which is a UDP server that listen for throttle and
steering commands, updates the state of the vehicle mathematical model it
implements, and gives back to the Manager Unit the updated state of the sim-
ulated vehicle. Note that the vehicle model implemented within the Simulator
Unit is based on the same reference vehicle models described in Chapter 3.
Finally, the Simulator Unit can eventually pass the vehicle state information
to a remote Monitor Unit that shows the vehicle state as a 3-D car in a
virtual environment created with the Simulink Virtual Reality toolbox.

Fig. 2.3 makes evident the system modularity (requirement 2). The Man-
ager Unit, in fact, can indifferently drive the real vehicle or the simulated one,
and the choice simply requires a switch of IP addresses. Moreover, as already
pointed out in Fig. 2.2, the Manager Unit can be alternatively configured in
order to calculate control commands and directly act on the vehicle servos (the
loop routed through the R/C joystick), or to send references to the on-board
PC104, which directly acts on servos (dashed route in Fig. 2.2).

2.2 Kanon

The activities described in this work mainly concern the vehicle RUMBy. Any-
way, a second vehicle has been object of some studies: the Future Personal
Electric Vehicle “FPEV2-Kanon” shown in Fig. 2.5. Kanon is an experimen-
tal electric vehicle, constructed in the Fujimoto’s Laboratory of the Depart-
ment of Electrical and Computer Engineering, Yokohama National University
- Japan. In range of a collaboration activity between the Mechatronics Re-
search Group of the University of Trento and the Fujimoto’s Laboratory, some
research projects are active at the present time. In particular, an identifica-
tion activity carried out on such a vehicle represents the topic of a recent
publication (Zendri et al., 2010). A multibody model of the vehicle has been
identified and validated, and such an activity represents also the topic of two
sections of the present work (see. § 4.1.2 and 4.2).

Kanon is a single-seater and 4-wheel-steering electric vehicle, fitted with
double wishbone suspension struts both at front and rear axles. The vehicle is
equipped with outer rotor type in-wheel motors installed in the rear wheels as
driving power (maximum torque is ±340Nm per wheel). The steering wheel
mechanism adopts Steer-by-Wire and active front and rear steering system,
using two 250W DC motors. A Li-ion battery able to charge in a short time
is used for the energy storage.
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Figure 2.5: Experimental Vehicle “FPEV2-Kanon”. The vehicle is property of the Fuji-
moto’s Laboratory of the Yokohama National University - Dept. of Electrical and Computer
Engineering.

As well as RUMBy, Kanon is fitted with sensing instrumentation providing
the measurement required to re-construct the vehicle state. Sensors installed
on-board to measure main kinematic variables are:

• two accelerometers (fixed with the sprung mass), for the measurement
of longitudinal and lateral accelerations;

• two gyros (fixed with the sprung mass), for the measurements of roll
and yaw rates;

• two encoders, measuring the rear wheels spin rates;

• the optical sensor DATRON CORREVIT S-400, that measures the lon-
gitudinal and lateral velocities and the sideslip angle located in front of
the vehicle.

Moreover, a dSpace AUTOBOX-DS11033 running at 500 Hz is used to log
all available sensor signals and to execute real time vehicle control algorithms.
Thanks to the large number of available inputs and to the powerful control
platform, Kanon represents an extremely useful tool for the development and
investigation of vehicle control strategies.

3dSpace is an hardware-software platform for development and implementation of control
strategies (http://www.dspaceinc.com)



Chapter 3

Vehicle Modelling

A mathematical model of the studied dynamic system represents a powerful
tool for several activities, like system behaviour prediction, state estimation
and control design. The vehicle is a complex system, with a large number of
degrees of freedom and subject to several phenomena and inputs, and the mod-
elling of its dynamics is a challenging activity. Moreover it could be interesting
to separately study some of its numerous subsystems, like tyres, suspensions
and so on. The present chapter gives a panorama of the most important math-
ematical models, from the tyre-ground interaction through the whole vehicle
dynamics up to its mechanical subsystem.

Both for the state estimation of a dynamic system and for the synthesis
and verification of control algorithms, representative mathematical models
are necessary. It is indeed mandatory to derive the equations that allow
representing and/or predicting the system behaviour.

From a multibody point of view 5 main bodies constitute the vehicle:
the sprung mass (passenger compartment, engine and the whole portion of
vehicle supported by the suspensions) and the 4 unsprung masses (everyone
comprising tyre, wheel, brake and a part of the suspension). Therefore a
common vehicle is characterised by 16 Degrees of Freedom (DOF):

• 3 DOF for the sprung mass positions (X, Y , Z),

• 3 DOF for the sprung mass attitude (roll, pitch, yaw - φ, θ, ψ),

• 4 DOF representing the struts deflections (lrf , llf , lrr, llr),

17
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• 4 DOF for the wheels spinning velocities (ωrf , ωlf , ωrr, ωlr),

• 2 DOF for the front wheels orientations due to the steering system (δrf ,
δlf - usually considered as a single input to the system).

Figure 3.1: Vehicle’s Degrees of Freedom. Ordinary vehicles present 16 Degrees of Free-
dom, that are reduced to 14 because the steering angles are considered as inputs.

Obviously different DOF have different influence on the whole system be-
haviour and larger is the number of surveyed aspects better the representation
is, to the detriment of the understanding simplicity. It is thus allowed, under
certain assumptions, to apply simplifications during a specific modelling activ-
ity in order to find the best compromise between the mathematical complexity
and the representation fidelity.

Moreover it could be advantageous to isolate some subsystems (e.g. tyres,
suspensions, steering chain, clutch, etc.) and study them separately, in order
to consider their contributions on the whole system evolution as black boxes.

The present chapter describes all the most important mathematical models
representing the vehicle and its subsystems. It is worth noting that the models
should respect the requisites of being real-time integrable, both for simulation
and for the development of identification, state estimation and control algo-
rithms. In particular, § 3.1 accurately describes the tyre-ground interaction,
from the definition of the tyre slips up to some force models: tyres play the
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important role of transmission of the forces between the road and the vehi-
cle, representing thus the most important vehicle subsystem. In § 3.2 three
main models describing the whole vehicle are instead discussed. Because of its
complexity, the vehicle dynamics can be naturally represented in several ways,
depending on the assumed simplification and the contemplated variables and
phenomena: three main models, differing on complexity and application, are
presented and discussed. Closing, § 3.3 discusses the models created for the
analysis of three vehicle subsystems: the suspensions, the steering chain and
the power train. In fact these systems can be studied separately, in order to
consider their contribution on the whole vehicle dynamics as black boxes.

3.1 Tyre Models

Tyre characteristics are of crucial importance for the dynamic behaviour of the
road vehicle: they play the important role of transmission of the forces between
the ground and the vehicle itself. The mathematical description of the tyre-
ground interaction (in terms of forces) is rather complex and involves many
variables: normal load acting at the tyre-ground contact patch, longitudinal
and lateral tyre slips, wheel spin about the vertical axis and camber.

The tyre-ground interaction represents a very active research field, with a
huge amount of publication. A very accurate description of the problem has
been treated in (Pacejka , 2005), in which the author makes a deep analysis
of the whole set of included phenomena and of their possible mathematical
representations. Based on such a work, several models for the description
of the tyres behaviour of both the vehicles RUMBy and Kanon have been
developed.

As introduced, every variable has a specific effect on the phenomenon.
Consequently some simplifications have been assumed, in order to clarify the
problem and make the models suitable for practical uses. First of all, the
effect of the wheel spin about the vertical axis and of the camber have been
neglected. The contribution of the spin about the vertical axis is relatively
small. The effect of camber has a sine-like dependance on the angle (Abe,
2009), hence it can be neglected for small cambers: this choice makes the
identification of other tyre parameters much easier, with a reduced loss of
generality since camber effect could be introduced later. Moreover, the de-
pendance of the forces from the normal load is considered linear. Therefore,
calling Fx,y the generic force model and N the normal load, it is allowed to



20 Vehicle Modelling

study the normalized forces:

F 0
x,y =

Fx,y
N

(3.1)

Since the remaining variables affecting the tyre-ground interaction are the
slips, attention has been paid to their mathematical representation. The next
section gives an accurate description of the models used to represent the slips,
focusing on both the steady-state and the dynamic condition. Furthermore
three models used to represent the forces are described in § 3.1.2, with em-
phasis on their advantages/limitations and on their suitability for practical
use.

3.1.1 Slip Modelling

As explained, most important variables for the formulation of the contact
forces are the slips. It has been experimentally demonstrated (Pacejka , 1958,
Pacejka and Radt , 1963, Zegelaar , 1998) that the forces between tyre and
ground are generated mainly in presence of slip. The following sections will
give a panorama about the mathematical formulation for the definition of
the slips, including some mathematical skills introduced to avoid numerical
singularities.

Steady-State Slips

For the definition of the relations between the tyre slips and the tyre-ground
forces, it is necessary to define two indexes that quantify the longitudinal and
lateral slips. For the longitudinal case, the best choice concerns the definition
of an index that a) considers the differences between the tyre longitudinal
and angular velocities, b) is independent on the tyre absolute velocity and c)
models the case of driving/braking full slip as a limit behaviour.

At braking or driving the slip point (denoted as S in Fig. 3.2) moves with
a longitudinal speed vsx which differs from zero. Thus obviously it can be
written that:

vsx = u− ωR (3.2)

where ω is the wheel angular velocity and R is the rolling radius. The longi-
tudinal slip κ, also known as slip ratio, may be tentatively defined as the ratio
of the longitudinal slip velocity −vsx of the point S and the forward speed of
the wheel centre u:

κ = −vsx
u

(3.3)
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Figure 3.2: Velocities components of tyre-ground contact point. vS is the contact point
absolute speed, which can be divided in two components, while ω is the wheel spin velocity.
The comparison of these velocity components allow the definition of the slips.

or with (3.2):

κ =
ωR− u

u
(3.4)

In this way a normalized index is defined in the range [-1,1], where the bound-
ary limits represent the full slip conditions. Nevertheless such a definition
presents two limitations:

• it is valid just for the braking manoeuvre (ωR > u) - Supposing, for
instance, the driving case in which ωR = 2u, the slip ratio becomes

κ =
2u− u
u

= 1

but such a value of κ should be obtained just in the case that u = 0 and
ωR 6= 0 (completely slipping tyre).

• it is not valid for the inversion of the motion (u < ωR < 0) - Supposing
the braking case during a straight backward manoeuvre in which ωR =
−1 and u = −2, the force and thus the slip should be positive, but (3.4)
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gives:

κ =
−1− (−2)
−2

= −0.5

In order to solve the presented singularities, the chosen formulation of the
longitudinal slip ratio becomes

κ =
ωR− u

max(|u|, |ωR|) (3.5)

that models both the driving and braking manoeuvres, in both forward and
backward directions.

The definition of an index of the lateral slip has to a) take into account
the lateral velocities of the contact point and b) model the case of pure lateral
motion as a limit behaviour. The lateral slip is defined as the ratio of the
lateral velocity vsy of the contact point and longitudinal running speed. In
terms of the sideslip angle λ it becomes:

tan(λ) =
vsy
u

(3.6)

In this way the index respects both the requirements, considering the lateral
velocity of the contact point and assuming the limit values [-π/2,π/2] in case
of pure lateral slip (vsy 6= 0 and u = 0).

As for the longitudinal slip, this formulation presents a limitation in the
case of the inversion of the motion (u < 0). In such a case the slip angle
assumes absolute values larger than π/2, that are not allowed for definition.
The problem can be easily solved as for the previous case using the absolute
value of the longitudinal speed, and the sideslip angle becomes:

tan(λ) =
vsy
|u| (3.7)

Steady-State Slip Combination

The definitions given above regard the case of a pure lateral or longitudinal
motion, but they cannot be used for the combination of the phenomena. If
one separately treats the motions, the adherence region (i.e the area in which
the tyre-ground force must fall) becomes rectangular, which is in contrast
with the well known adherence ellipse or Kamm’s circle concept (Kiencke and
Nielsen , 2000). (Pacejka , 2005) discusses some modelling approaches to take
into account this phenomenon: for the present work the problem has been
solved by means of the so-called “slips combination”.
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In order to describe the deflection of the tyre in the adherence region, the
theoretical slip quantities σx, σy are introduced, that can be computed as:

σx = − κ

1 + κ
(3.8)

σy = −tan(λ)
1 + κ

(3.9)

and the absolute magnitude of the deflection becomes the following:

σeq =
√
σ2
x + σ2

y (3.10)

It is worth noting that the theoretical slips σx and σy are subject to the same
singularities due to the motion inversion that are present in the pure slips κ
and λ. The problem can be solved again by exploiting the absolute value and
the corrected formulations for the theoretical slips become the following:

σx = − κ

1 + |κ| (3.11)

σy = − tan(λ)
1 + |κ| (3.12)

With these quantities, the introduction of the adherence ellipse concept is
quite intuitive. It has been shown that, under the described assumptions, the
normalized forces are functions of the slips as:

F 0
x = F 0

x (κ) (3.13)
F 0
y = F 0

y (λ) (3.14)

and that this formulation brings to have a rectangular adherence region. The
slips combination presents instead the following formulation, which respects
the Kamm’s circle concept:

F 0
x =

σx
σeq

F 0
x (σeq) , F 0

y =
σy
σeq

F 0
y (σeq) (3.15)

In other words, the forces are computed applying the force models to the
deflection magnitude σeq, and then normalizing the values. This formulation
introduces an interaction between lateral and longitudinal motions, respecting
the slip definitions and constraining the forces to fall into the adherence ellipse.
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First Order Lag Model

The models treated in the previous sections describe the slip phenomenon in
steady-state condition, but the tyre is a mechanical system and a mathemat-
ical representation of its dynamics is then necessary. In (Pacejka , 2005) the
author presents an empirical description of the tyre behaviour (i.e. the “brush
model”) and of its dynamic response. It is shown that the transfer functions
between the slips and the forces obtained with that model are quite complex
(with a second order denominator and a delay), but that a good matching can
be achieved using an approximate model.

Precisely, it is demonstrated that the slips approach the steady-state val-
ues as first order systems, with a characteristic period that depends on the
longitudinal contact speed. The differential equations that govern the tran-
sient slip response of the contact patch and, through that the longitudinal
force responses, become for the approximate system:

lx
dκ

dt
+ u κ =

ωR− u
u

(3.16)

ly
dλ

dt
+ u λ = arctan

(vsy
u

)
(3.17)

where lx and ly are respectively the lateral and longitudinal relaxation lengths,
that quantify the portion of the tyre subjected to deflection because of the
slips.

As one can see, this representation is subjected to the same singulari-
ties described for the steady-state slips. The solution to this problem is the
same introduced before, and the formulation of the slips dynamics becomes
as follows:

lx
dκ

dt
+ max(|u|, |ωR|)κ− (ωR− u) = 0 (3.18)

ly
dλ

dt
+ max(|u|, |ωR|)

[
λ− arctan

(vsy
u

)]
= 0 (3.19)

Low velocity condition

The previous model is straightforward and is often used in transient or low
frequency vehicle motion simulation applications. Starting from zero speed
or stopping to standstill is possible. However at u equal or close to zero
(u < Vlow) the equations (3.18),(3.19) act as integrators of the slip speed
components vsx,y, which may give rise to possibly very large deflections.
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Therefore at zero forward speed a virtually undamped vibration is ex-
pected to occur. To artificially introduce some damping at very low speed,
which with the actual tyre is established through material damping, one
might employ the following expression for the transient slip κ′ as suggested
by (Besselink , 2000):

κ′ = κ− kV,lowvsx (3.20)

The gradual reduction to zero at u = Vlow is realised by using the formula:

kV,low = 1
2kV,low0

{
1 + cos(π |u|Vlow

)
}

if |u| ≤ Vlow
kV,low = 0 if |u| > Vlow

(3.21)

With such a formulation, the undamped vibration is avoided, maintaining
the continuity of the slip definition at low or zero speed condition. kV,low0

and the threshold Vlow depend both on the tyre carcass and the vehicle dy-
namics, and they should be experimentally identified. Nevertheless precau-
tionary values that can be assumed for a large set of vehicles and tyres are
kV,low0 = 50 s/m and Vlow = 1 m/s.
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Figure 3.3: Profile of the transitory function kV,low for Vlow = 1 m/s and kV,low0 = 50
s/m. The function allows to introduce a virtual damping at low velocities, adding a small
virtual slip when u < Vlow.

3.1.2 Force Models

As described at the beginning of this section, the tyre-ground interaction
mainly depends on the slips. Several mathematical representation of the re-
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lation between the slips and the forces can be found in literature: the next
sections describe three models studied fot the present research.

First of all, the well known “Magic Formula” introduced by Pacejka is
discussed. The main advantages of such a model are that it matches very well
with the experimental data and maintains some peculiar behaviours of the
system. Therefore it is not a mere data approximation. Nonetheless its con-
struction requires a huge set of experimental data and parameters depending
on the tyre and the soil and that are difficult to be identified. For this reason
two other models are presented, that are characterized by a smaller set of
parameters and, thus, directly suitable for the description of the tyre forces.

The Magic Formula

A widely used semi-empirical tyre model to calculate steady-state tyre force
characteristics for use in vehicle dynamics studies is based on the so-called
“Magic Formula”. The development of the model was started in the mid-
eighties (Bakker et al., 1987) and has been modified and improved up to the
final version proposed in (Pacejka , 1996).

The general form of the formula that holds for given values of vertical load
reads:

y = D sin{C arctan [Bx− E(Bx− arctan(Bx))]} (3.22)

with
Y (X) = y(x) + SV (3.23)

x = X + SH (3.24)

where
Y : output variable Fx, Fy or possibly Mz

X: input variable tan(λ) or κ
and
B: stiffness factor
C: shape factor
D: peak value
E: curvature factor
SH : horizontal shift
SV : vertical shift

The “Magic Formula” y(x) typically produces a curve that passes through
the origin x = y = 0, reaches a maximum and subsequently tends to a hor-
izontal asymptote. For given values of the coefficients B, C, D and E the
curve shows an anti-symmetric shape with respect to the origin. To allow the
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Figure 3.4: Curve produced by the Magic Formula: the meaning of curve parameters have
been indicated. The Magic Formula accurately represents the force profile, including all the
non-linear effects. Nevertheless it presents a large set of parameters and factors hard to
identify.

curve to have an offset with respect to the origin, two shifts SH and SV have
been introduced.

The formula is capable of producing characteristics that closely match
measured curves for the side force Fy and for the fore and aft force Fx as
functions of their respective slip quantities.

Fig. 3.4 illustrates the meaning of some of the factors by means of a typical
side force characteristic. Obviously, coefficient D represents the peak value
(with respect to the central x-axis and for C ≥ 1) and the product BCD
corresponds to the slope at the origin (x = y = 0). The shape factor C
controls the limits of the range of the sine function appearing in (3.22) and
thereby determines the shape of the resulting curve. The factor B is left to
determine the slope at the origin and is called the stiffness factor. The factor
E is introduced to control the curvature at the peak and at the same time the
horizontal position of the peak.

As shown, the “Magic Formula” presents a large set of parameters that
makes its employment difficult for practical uses. Therefore the models de-
scribed below have been preferred for the simulations.
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The Linear Model

This representation comes from the linearization of the “Magic Formula” for
small slips. It can be shown that the product BCD corresponds to the slope
at the origin (x = y = 0). This product is called driving stiffness kκ, for
the longitudinal force, and cornering stiffness kλ for the side force. Hence,
applying these definitions to the linearization of (3.22), the forces models
become:

F 0
x = −kκκ (3.25)
F 0
y = −kλλ (3.26)

Obviously, the application of such a representation is limited to small slip
values, since it does not represent the saturation that characterizes the forces
in high-slip condition.

The Dugoff Model

In order to fill the gaps of the previous models, the non-linear model proposed
in (Dugoff et al., 1970) has been used for several simulations, since it describes
the main tyre behaviour characteristics (i.e. linearity for small slip values,
saturation for high slip values and longitudinal and lateral force combined
behaviour) with a limited number of parameters. The main advantage of this
model is its suitability for on-line identification process, by means of Recursive
Least Square methods as in (Hsu and Gerdes , 2006), even if the tyre force
description for high slip condition is not very accurate, as shown in Fig. 3.5.
Let’s notice that the model is extremely useful for real-time identification and
control design activities, while for control algorithms validation it should be
replaced with a more representative one (e.g. the “Magic Formula”). In fact it
neglects the adherence decrease after saturation, and the different behaviour
in lateral and longitudinal high slip conditions is not contemplated.

The essence of the model is given by the following equation:

F 0
x,y = −kααf(γ) (3.27)

where

f(γ) =
{

(2− γ)γ if γ < 1
1 if γ ≥ 1

(3.28)

γ =
µ

2kα|α|
(3.29)
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Figure 3.5: Comparison between Dugoff model and typical tyre force profile (obtained
with the Pacejka’s “Magic Formula”). In spite of its reduced number of parameters, the
Dugoff model represents the force saturation. Nevertheless its monotonic profile neglects
the typical slope change in high-slip condition.

α represents the generic slip (i.e. κ for the longitudinal case, tan(λ) for the
lateral one) and kα the generic stiffness (i.e. kκ for the longitudinal case, kλ
for the lateral one).

3.2 Vehicle Dynamics

A mathematical model can be considered as an abstraction of the reality or,
in other words, of the investigated phenomenon. In the vehicle case a dynamic
model is represented by a set of Differential Algebraic Equations (DAE), where
the differential subset describes the equations of motions and the algebraic one
describes the kinematic constraints. The model has to be obviously represen-
tative, i.e. it has to capture the salient aspects that characterise the studied
phenomenon. Larger the number of considered aspects better the represen-
tation is, to the detriment of the understanding simplicity. For these reasons
a relevant part of the modelling activity has been focused on the study of
multibody models representing the vehicle dynamics. Multibody models have
been studied for both the analysis of specific motions (e.g. roll motion, pitch
motion, etc.) and for the representation of the whole vehicle dynamics.

Despite the fact that the study of subsets of motions gives very useful
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results, the most interesting observations can be done representing the whole
vehicle. Such models can differ for the considered phenomena, and for the
number of bodies, Degrees of Freedom and inputs taken into account: it is
then obvious that a large set of models could be defined. The next sections
discuss three main models, each one oriented to perform a specific task.

• The single-track or “bicycle” model, presenting 5 Degrees of Freedom - It
gives a good description of the vehicle longitudinal dynamics. Moreover,
thanks to its simplified formulation, it can be linearized and used to
design control strategies (as discussed in Chapter 6).

• The 8 Degrees of Freedom Model - It represents also the sprung mass
roll dynamics, and accurately describes both the longitudinal and lateral
dynamics, comprising the load transfers and the rollover. Such a model
is the main subject of the off-line identification activity carried out for
Kanon and discussed in § 4.1.2.

• The 14 Degrees of Freedom Model - This model presents all the vehicle
DOFs and accurately describes much of the vehicle behaviour. Because
of its complexity, it is used just in simulation activity, and in particular
to represent the vehicle dynamics in the static simulator used to test the
control strategies discussed in Chapter 6.

3.2.1 5 DOF: Bicycle Model

The simplest model used is the well known single track or “bicycle” model,
which is used to synthesize the yaw moment control algorithms. Fig. 3.6 in-
dicates the main state variables. The vehicle model is controlled by means
of three inputs: the steering angle δ (measured on the road plane) and the
driving/braking torques Tr and Tf at rear and front axle respectively. Trac-
tion torque is only acting on the rear axle and the global braking torque is
distributed between front and rear axle. The wheel dynamics is included as
average behaviour of each vehicle axle therefore the lateral load transfer is
neglected.
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Figure 3.6: Main states and variables of the 5DOF model. In spite of the large set
of introduced simplifications, the model gives a good description of the vehicle dynamics,
especially in longitudinal direction. Moreover it can be easily linearized and used for control
strategies design, as discussed in Chapter 6.

The equations of motion expressed in time domain are as follows:

M

(
du

dt
− ψdotv

)
= Sr + Sf − Faero (3.30)

M

(
dv

dt
+ ψdotu

)
= Fr + Ff (3.31)

IZ
dψdot
dt

= Ff lf − Frlr (3.32)

IWr
dωr
dt

= Tr − FxrR (3.33)

IWf
dωf
dt

= Tf − FxfR (3.34)

where the front axle tyre forces are projected in vehicle coordinate frame by
means of the rotation through the steering angle:

Sr = Fxr , Sf = Fxf cos(δ) + Fyf sin(δ) (3.35)
Fr = Fyr , Ff = −Fxf sin(δ) + Fyf cos(δ) (3.36)
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Faero is instead the longitudinal effect of the drag force, due to air resis-
tance, which can be modelled as:

Faero = kDu
2 (3.37)

where kD is the vehicle drag coefficient.
The longitudinal load transfer is included with the following algebraic

equations that respectively define the rear and front axle vertical loads:

Nr =
Mglf
L

+
hDkDu

2 + hCoM (Sr + Sf )
L

(3.38)

Nf =
Mglr
L
− hDkDu

2 + hCoM (Sr + Sf )
L

(3.39)

where hCoM is the distance between the ground and the vehicle Centre of
Mass (CoM), and hD is the distance between the CoM and the drag force
point of application.

In order to implement the control strategies it is necessary to estimate the
longitudinal forces therefore the wheel dynamics (as average behaviour for
rear and front axles) is considered. Consequently, the longitudinal and lateral
pure slips of wheels on the front and rear axles, respectively, can be written
as follows:

κr =
ωrR− u

max(|u|, |ωrR|)
(3.40)

κf =
ωfR− (u cos(δ)− (v + ψdotlf ) sin(δ))

max(|u cos(δ)− (v + ψdotlf ) sin(δ)|, |ωfR|)
(3.41)

λr = − arctan
(
v − ψdotlr

u

)
(3.42)

λf = δ − arctan
(
v + ψdotlf

u

)
(3.43)

3.2.2 8 DOF Model Assuming Sprung Mass Roll Dynamics

The second model includes the non-linear sprung mass roll dynamics. It is
assumed that the sprung mass rotates about the roll axis, which is kept fixed
at a distance h0 from the ground during the whole vehicle motion. Such
an assumption is based on the hypothesis of perfectly flat road, i.e. when
the sprung mass bounce dynamics can be neglected. Three main coordinate
frames have been defined for this model:
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Figure 3.7: Main states and variables of the 8DOF model including the sprung mass roll
dynamics. The roll motion is considered as a rigid rotation about the rolling axis, kept fixed
at a distance h0 from the ground. The distance hCoM of the total CoM from the ground
depends instead on the roll angle φ.

• the inertial frame XY Z,

• the body fixed coordinate frame (xyz) attached at the sprung mass CoM
and aligned in principal directions (coordinate frame 1),

• coordinate frame 2, placed on the ground at the x-y positions of the
CoM and aligned with the vehicle.

Fig. 3.7 shows the CoM positions for the unsprung mass GU , for the sprung
mass GS , and the positions of the total CoM GV . The equation of motions
for the state variables u, v, ψdot, φdot, ωij are the following:

M

(
du

dt
− ψdotv

)
+ 2Mshrc cos(φ)ψdotφdot

+Mshrc sin(φ)
dψdot
dt

+ 2(murlr −muf lf )ψ2
dot =

∑
Fxij + Faero(3.44)
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M

(
dv

dt
+ ψdotu

)
−Mshrc cos(φ)

dφdot
dt

+Mshrc sin(φ)
(
ψ2
dot + φ2

dot

)
+2(murlr −muf lf )

dψdot
dt

=
∑

Fyij (3.45)[
mur

(
2l2r +

t2r
2

)
+muf

(
2l2f +

t2f
2

)]
dψdot
dt

+
[
Iz cos(φ)2 + (Iy +Msh

2
rc) sin(φ)2

] dψdot
dt

+(2muf lf − 2murlr)
(
dv

dt
+ ψdotu

)
+Mshrc sin(φ)

(
du

dt
− ψdotv

)
+2(Iy − Iz +Msh

2
rc) sin(φ) cos(φ)ψdotφdot

−Msghrc =
∑

Fijbij (3.46)

(Ix +Msh
2
rc)
dφdot
dt

−Mshrc cos(φ)
(
dv

dt
+ ψdotu

)
+(Iz − Iy −Mshrc

2) sin(φ) cos(φ)ψ2
dot = Ts −Msg sin(φ)(3.47)

IWij
dωij
dt

= Tij − SijR (3.48)

where Ts = −(Kφf + Kφr)φ − (Bφf + Bφr)φdot accounts for the equivalent
elastic-damping torque of the suspensions and the subscript ‘ij’ denotes left
front (lf), right front (rf), left rear (lr) and right rear (rr). bij represents
instead the distance between the CoM and the ij-th tyre ground force.

As an example, the slips of tyre-ground contact point for the front-right
wheel are as follows:

κrf =
Rωrf − (ugrf cos (δ) + vgrf sin (δ))

max(|ugrf cos (δ) + vgrf sin (δ)|, |Rωrf |)
(3.49)

λrf = arctan
(
vgrf
ugrf

)
− δ (3.50)
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where the velocities ugrf and vgrf can be expressed as

ugrf = u+
tf
2
ψdot (3.51)

vgrf = v + lfψdot (3.52)

The model includes both lateral and longitudinal load transfers which is
mainly due to three phenomena. The longitudinal accelerations produce a
load transfer between front and rear axles, while the lateral accelerations are
responsible for lateral load transfer between left and right wheels. The roll
dynamics -third phenomenon- contributes to both longitudinal and lateral
load transfers. Based on the above assumption the vertical load acting at
each tyre can be written as follows:

Nrf =
Msglr

2L
+
Msghrc sin(φ)

2tf
−∆Nφ

lr
2L
− ∆Nx

2L
+

∆Ny

2tf
(3.53)

Nlf =
Msglr

2L
− Msghrc sin(φ)

2tf
−∆Nφ

lr
2L
− ∆Nx

2L
− ∆Ny

2tf
(3.54)

Nrr =
Msglf

2L
+
Msghrc sin(φ)

2tr
−∆Nφ

lf
2L

+
∆Nx

2L
+

∆Ny

2tr
(3.55)

Nlr =
Msglf

2L
− Msghrc sin(φ)

2tr
−∆Nφ

lf
2L

+
∆Nx

2L
− ∆Ny

2tr
(3.56)

In the previous equations, the term ∆Nφ represents the load variation due to
roll accelerations, which is defined as:

∆Nφ = Mshrc

(
cos(φ)φ2

dot + sin(φ)
dφdot
dt

)
(3.57)
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The longitudinal and lateral load transfers can be written as:

∆Nx = MhCoM

(
du

dt
− ψdotv

)
+Msh0hrc

(
1
2

sin(φ)
dψdot
dt

+ cos(φ)ψdotφdot

)
+ cos(φ)

(
Iy +Msh

2
rc − Iz

)(1
2

sin(φ)
dψdot
dt

+ cos(φ)ψdotφdot

)
+(Ix + Iz − Iy)

ψdotφdot
2

+(murlr −muf lf )r0ψ
2
dot −

hDkDu
2

2
(3.58)

∆Ny = MhCoM

(
dv

dt
+ ψdotu

)
−(Ix +Msh

2
rc +Msh0hrc cos(φ))

dφdot
dt

+(murlr −muf lf )r0
dψdot
dt

+(Iy − Iz +Msh
2
rc) sin(φ) cos(φ)ψ2

dot

+Msh0hrc sinφ(ψ2
dot + φ2

dot) (3.59)

3.2.3 14DOF Model Assuming Sprung Mass and Unsprung
Masses Dynamics

The most complex model, based on the one proposed by (Shim and Ghike ,
2007), is the two axle, 14DOF model shown in Fig. 3.8. This schematic in-
cludes 6DOF at the vehicle CoM and 2DOF at each of the four wheels, namely,
suspension deflection and wheel spin. Three main coordinate frames have been
defined as for the 8DOF model. The sprung mass is a rigid body where u,
v, and w respectively indicate its forward, lateral, and vertical velocities. To
complete the degrees of freedom of the chassis the following roll angular ve-
locity, ωx, pitch angular velocity, ωy, and yaw angular velocity, ωz are defined.
The attitude and position of body w.r.t. the inertial frame (XY Z) can be
determined through successive coordinate transformations about the Cardan
angles (i.e. the roll angle φ, the pitch angle θ, and the yaw angle ψ) as
shown in Fig. 3.8. The coordinate frame 2 is obtained by rotating the inertial
coordinate frame through the yaw angle ψ.

Fig. 3.9 shows the force and velocity components in the right front wheel.
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Figure 3.8: Schematic of 14DOF full vehicle model with one-dimensional suspension and
coordinate frames. The model includes the whole set of Degrees of Freedom characteristic
of normal vehicles, comprising the tyres and struts deflections. Two main coordinate frames
have been defined for the whole vehicle, while a specific frame has been defined for each
sprung mass system.

The velocities usrf , vsrf , and wsrf are the velocities of the right front strut
mounting point in the longitudinal, lateral, and vertical directions, respec-
tively, in the coordinate frame 1. These velocities can be obtained by trans-
forming the CoM velocities as:

usrf
vsrf
wsrf

 =

 0 0 tf
2

0 0 lf
− tf

2 −lf 0


ωx
ωy
ωz

+


u
v
w

 . (3.60)

The velocities uurf , vurf , and wurf represent the velocities of the unsprung
mass mu in the body-fixed coordinate frame 1, and ugrf , vgrf , and wgrf are
the lateral, longitudinal, and vertical velocities at the tyre-ground contact
patch in coordinate frame 2. The forces Fxsrf , Fysrf , and Fzsrf are the forces
transmitted to the sprung mass along the longitudinal, lateral, and vertical
directions, respectively, of coordinate frame 1. The forces Fxgsrf , Fygsrf , and
Fzgsrf are the forces acting at the tyre-ground contact patch in the same
frame. These forces can be written in terms of the tyre forces Fxgrf , Fygrf ,
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Figure 3.9: Description of forces and velocities at the right front wheel. The forces and
velocities at front (steered) wheels can be projected on unsprung mass coordinate frame
through the steering angles. The forces and velocities of each unsprung mass can instead be
projected on the vehicle frame through the Cardan angles.

and Fzgrf by projecting its components along coordinate frame 2 as:
Fxgsrf
Fygsrf
Fzgsrf

 =

 1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)


Fxgrf
Fygrf
Fzgrf

 .

(3.61)
The forces Fxgrf and Fygrf are obtained by resolving the longitudinal

(Fxtrf ) and cornering (Fytrf ) forces at the tyre-ground contact patch as:

Fxgrf = Fxtrf cos(δ)− Fytrf sin(δ) (3.62)

Fygrf = Fytrf cos(δ) + Fxtrf sin(δ) (3.63)

where δ is the steering angle measured on the road plane.
The pure slips necessary to model the forces are computed as follows:

κrf =
rrfωrf − (ugrf cos (δ) + vgrf sin (δ))

max(|ugrf cos (δ) + vgrf sin (δ)|, |rrfωrf |)
(3.64)

λrf = arctan
(
vgrf
ugrf

)
− δ (3.65)
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where rrf is the instantaneous tyre radius.
The longitudinal and lateral velocities at the tyre contact patch, ugrf and

vgrf , can be determined as:

ugrf = cos (θ)(uurf − ωyrrf )
+ sin (θ) [cos (φ)(wurf − ṙrf ) + sin (φ)(ωxrrf + vurf )] (3.66)

vgrf = cos (φ)(vurf + ωxrrf )− sin (φ)(wurf − ṙrf ) (3.67)

Nevertheless with this formulation the ODE becomes very complicated,
then the tyre deformation rate ṙrf is neglected obtaining a good simplification
to the detriment of a minimal approximation.

The longitudinal (uurf ) and lateral (vurf ) velocities of the unsprung mass
in the body-fixed coordinate frame used in the earlier equations are simply
written as:

uurf = usrf − lsrfωy (3.68)
vurf = vsrf + lsrfωx (3.69)

where lsrf is the instantaneous length of the strut as indicated in Fig. 3.9. The
unsprung mass vertical velocity wurf represents the DOF corresponding to the
suspension deflection, then the instantaneous suspension spring deflection xsrf
is given as

ẋsrf = −wsrf + wurf (3.70)

The instantaneous tyre deflection xtrf is instead given as

ẋtrf = wgrf − wuirf
= wgrf − (wurf cos (φ) + vurf sin (φ)) cos (θ)− uurf sin (θ) (3.71)

where wuirf is the vertical velocity of the wheel centre in the inertial coordinate
frame. For the simulations in this paper, it is assumed that the vertical
velocity wgrf at the tyre-ground contact patch is zero (smooth road). It
should be noted that even though the tyre is assumed to remain at a fixed
angle with the strut, the vertical stiffness of the tyre, ktf , is always considered
to be normal to the ground, between the ground and the wheel centre. The
instantaneous tyre radius is then determined as

rrf =
R− xtrf

cos (θ) cos (φ)
(3.72)



40 Vehicle Modelling

The instantaneous length of the strut lsrf used in (3.68)-(3.69) is given as

lsrf = lsif − (xsrf − xsif ) (3.73)

where lsif is the initial length of strut and xsif is the initial suspension spring
deflection. The initial length of the strut lsif is taken such that

lsif = h− (r0 − xtif ) (3.74)

where xtif is the initial tyre compression and h is the distance of the vehicle
CoM from the ground with extended suspensions and undeformed tyres.

The initial spring compression xsif and the initial tyre compression xtif
are determined from the static conditions as

xsif =
mglr
2Lksf

(3.75)

xtif =
mglr
2Lktf

+
mufg

ktf
(3.76)

Supposing a linear spring tyre model, the vertical force Fzgrf , acting at
tyre-ground contact point, can be written w.r.t. the frame 2 as

Fzgrf = Fztrf = ktfxtrf (3.77)

where ktf is the tyre vertical stiffness.
The forces Fxsrf and Fysrf transmitted to the sprung mass along the u-

and v-axes of the body-fixed coordinate frame are obtained after subtracting
the components of the unsprung mass weight and inertia forces from the cor-
responding forces Fxgsrf and Fygsrf acting at the tyre-ground contact patch
as

Fxsrf = Fxgsrf +mu(g sin (θ)− u̇urf + ωzvurf − ωywurf ) (3.78)
Fysrf = Fygsrf −mu(g sin (φ) cos (θ) + v̇urf − ωxwurf + ωzuurf )(3.79)

The vertical force Fsrf transmitted to the sprung mass through the strut is
given as

Fzsrf = ksrfxsrf + bsrf ẋsrf (3.80)

Fig. 3.10 shows the forces and velocities in the roll plane of, for example, the
front suspension. Generally, the roll centre height is defined with reference
to the ground. However, for this model the front and rear roll centres are
assumed to be fixed at distances hrcf and hrcr, respectively, below the sprung
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Figure 3.10: Forces and velocities in the front suspension roll plane. The roll centre
is considered to be the point of application of the forces. The inclusion of a roll centre
moderately reduces the total roll moment transmitted to the sprung mass through the
suspensions, but strongly simplifies the system of equations.

mass CoM along the negative w-axis of the coordinate frame 1. Moreover,
the roll centre is simply considered to be a point of application of the forces
transmitted to the sprung mass through the suspension links and not as a
kinematic constraint.

In Fig. 3.10, Fzslf and Fzsrf are the forces transmitted to the sprung mass
through the struts. Fyslf and Fysrf represent the lateral forces transmitted
to the sprung mass through the suspension links. The roll moment Mxrf

transmitted to the sprung mass by the right front corner suspension is given
as

Mxrf = Fysrfhrcf (3.81)

The difference between the roll moments in the absence of the roll centre and
when the roll centre is considered acts directly on the unsprung mass and is
responsible for the link load transfer forces (jacking forces), Fdzlf and Fdzrf .
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These forces can be estimated as

Fzdrf = −Fzdlf
=

Fygsrfrrf + Fysrf lsrf + Fygslfrlf + Fyslf lslf
tf

−(Fysrf + Fyslf )hrcf
tf

(3.82)

As example, the moments Myrf and Mzrf transmitted to the sprung mass at
the right front wheel by the suspension along the ωy and ωz directions can be
given as:

Myrf = −Fxgsrf (lsrf + rrf )
−mulsrf (−g sin (θ) + u̇urf − ωzvurf + ωywurf )

= −Fxgsrfrrf − Fxsrf lsrf (3.83)
Mzrf = 0 (3.84)

The equations of motion for the 6DOF of the sprung mass model can now
be derived from the direct application of Newton-Euler method as follows:

Ms(u̇+ ωyw − ωzv) =
∑

(Fxij) +Msg sin (θ) (3.85)

Ms(v̇ + ωzu− ωxw) =
∑

(Fyij)−Msg sin (φ) cos (θ) (3.86)

Ms(ẇ + ωxv − ωyu) =
∑

(Fzsij + Fzdij)−Msg cos (φ) cos (θ) (3.87)

Ixω̇x + (Iy − Iz)ωyωz =
∑

(Mxij) +
(Fzslf − Fzsrf )tf

2

+
(Fzslr − Fzsrr)tr

2
(3.88)

Iyω̇y + (Iz − Ix)ωzωx =
∑

(Myij) + (Fzsrr + Fzslr)lr
−(Fzsrf + Fzslf )lf (3.89)

Izω̇z + (Ix − Iy)ωxωy =
∑

(Mzij) + (Fylf + Fyrf )lf

−(Fylr + Fyrr)lr +
(Fxrf − Fxlf )tf

2

+
(Fxrr − Fxlr)tr

2
(3.90)

The equation of motion relative to wuij , representing the degree of freedom
due to suspension deflection, can be expressed by applying Newton’s law for



3.3 Vehicle Subsystems 43

the vertical motion of the sprung mass as:

mu
dwurf
dt

= cos (φ)(cos (θ)(Fzgrf −mug) + sin (θ)Fxgrf )− sin (φ)Fygrf

−Fzdrf − Fzsrf −mu(ωxvurf − ωyuurf ) (3.91)

Finally, the equation of motion for the degree of freedom relative to the wheel
spinning rate can be expressed by applying the Euler’s law as follows:

Iwω̇ij = Tij − Fxtijrij (3.92)

In all equations of motion, the subscript ij denotes left front (lf), right front
(rf), left rear (lr), and right rear (rr).

The Cardan angles θ, ψ, φ needed in the afore mentioned equations are
obtained by performing the integration of the following equations:

θ̇ = ωy cos (φ)− ωz sin (φ) (3.93)

ψ̇ =
ωy sin (φ) + ωz cos (φ)

cos (θ)
(3.94)

φ̇ = ωx + tan (θ)(ωy sin (φ) + ωz cos (φ)) (3.95)

3.3 Vehicle Subsystems

As already introduced, it could be advantageous to study separately some
vehicle subsystems, in order to treat their effects on the whole vehicle dynamics
as black boxes. In the present research activity three main subsystems of
RUMBy (suspensions, steering chain and power train) and one of the vehicle
Kanon (suspensions) have been studied. The reason of such a difference is
due to the fact that, for the vehicle Kanon, no data where available about the
steering chain and to the fact that it is equipped with in-wheel electric motors
previously identified.

3.3.1 Suspensions

The suspensions play the important role of transmitting the forces from the
tyres to the sprung mass. Their geometry and the characteristics of the struts
have thus a strong effect on the vehicle manoeuvrability, specially concerning
the lateral dynamics.

Both RUMBy and Kanon are equipped with double-wishbone suspension,
and the first stage in their representation regarded the kinematics analysis.
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Figure 3.11: Geometrical evaluation of the RC on a double wishbone suspension. The
analysis allows to estimate the positions of the rolling centre as a function of the suspensions
configuration. Nevertheless the RC motions are very small, thus the goal of the analysis is
normally to determine its average position, kept fixed w.r.t to the vehicle sprung mass.

Such an activity consists in the identification of the relations between the
chosen DOF (e.g. the shock-absorber extension) and some variables as the tyre
configuration (positions and orientations) or the rolling centre (RC) positions.
For instance, Fig. 3.11 represents schematically the geometrical analysis done
for the RC position evaluation (Dixon , 1996).

After the kinematic analysis, the struts effect on the sprung mass has to
be studied. Another difference is there between the activities carried out for
RUMBy and Kanon. While for RUMBy the struts has been taken down and
identified separately, such an operation was not allowed for Kanon and the
struts effect has been identified by means of their effect on the vehicle lateral
dynamics: such an activity is described in detail in Chapter 4.

3.3.2 Steering Chain

The most important input of the vehicle system is doubtless the wheels steer-
ing angle. The lateral dynamics is predominated by the forces acting at the
tyre-ground contact point, which are mainly due to the presence of a certain
steering angle. Anyway in RUMBy the input signal controls the rotation of a
servo-system, linked to the wheel rotation by means of a complex kinematic
chain that comprises also the suspensions. For the control of the vehicle is
therefore necessary to study such a kinematic chain, in order to know the
relation between the control signal and the wheels orientation, depending on
the suspensions configuration.
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Figure 3.12: CAD (left) and schematic (right) representation of the RUMBy steering
chain. The servo-motor rotates the central triangle of an angle S and the rotation is then
transmitted to the wheels by means of the lateral arms: the final rotation δ of the wheel
clearly depends on both the steering command S and the suspension configuration q.
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Figure 3.13: Characteristic curve “Steer angle VS Steer command and Strut extension”.
A trigonometric relation defines the profile: these non linear effects must be considered in
case that large steering angles are required, for instance, during autonomous or assisted
drive.

A mathematical model of the whole steering chain has been developed
for the vehicle RUMBy, from the servo-system rotation up to the ground
projection of the wheel steering angle. In Fig. 3.13 the trend of such an angle
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depending on the strut extension and servomotor rotation is represented.
Such an analysis has highlighted two main characteristics of the RUMBy

steering chain:

• a non-negligible effect of the suspension configuration, that represents a
non-linear effect on the actual steering angle;

• a relevant asymmetry of the wheel rotation, i.e. with a certain input
signal the right and left wheels rotate of different angles.

The present analysis allows to precisely know the effect of the steering
control on the wheels rotations and thus on the vehicle dynamics, and the
yielded non-linear relation must be taken into account in steering control
strategies.

3.3.3 Power Train

Another important variable in control strategy synthesis is the driving torque,
in terms of the force necessary to achieve a desired acceleration. While for
Kanon the torque generated by the in-wheel motors is easily measurable from
the electric motor current, in RUMBy such a torque is generated by a 2-stroke

100%

75%

50%

25%

Figure 3.14: Profile of the traction torque at rear wheels as a function of forward speed and
throttle percentage. Once the velocity is known, the maximum torque available is known:
it is thus enough to act on the throttle percentage to control the actual driving torque.
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engine (thus depending on the engine rpm) and transmitted to the wheels
through a centrifugal clutch and a train of gear wheels (power train). It is
therefore necessary a model which represents the whole power train behaviour,
in order to know the available torque at every operating rate.

RUMBy is equipped with:

• a 2-stroke 26 cc engine, with known characteristics (no load max speed,
idling speed, max power and max power speed, max torque and max
torque speed);

• a centrifugal clutch with known geometry;

• a set of gear wheels with known geometry.

Using these information and a set of empirical formulation available in litera-
ture, a model of the whole power train has been written. From such a model
some points “Torque VS speed” have been obtained as shown in Fig. 3.14:
the continuous line represents the maximum traction torque available at ev-
ery velocity. Similar curves can be identified for throttle in the range of [0%
- 100%]: such a curve is necessary for the development of control strategies
since throttle is the primary input for longitudinal dynamics.

3.4 Models comparison

In order to further clarify the differences between the models above described
a simulation campaign has been done. Both the tyre representations and the
multibody model influence the vehicle response to a certain set of inputs: the
target of this section is to evidence the way the models affect such a response.
In particular, in § 3.4.1 the effect of tyre models are compared and discussed,
while § 3.4.2 aims at clarifying the differences between the multibody models
concerning longitudinal and lateral dynamic responses.

3.4.1 Tyre models comparison

The effects of tyre models has been compared by means of a simulated straight-
forward manoeuvre. The RUMBy vehicle dynamics is described by the 5DOF
multibody model, the steering angle is fixed at zero during the whole manoeu-
vre and the driving torque acting at the rear wheels has the ramp-like profile
shown in Fig. 3.15. Such a torque profile is not really feasible on RUMBy
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Figure 3.15: Tyre models comparison - Driving torque. A ramp-like profile has been
chosen for the driving torque: even if it is not feasible, it allows to excite the whole slip ratio
range and evidence the differences between the models.
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Figure 3.16: Tyre models comparison - Model longitudinal velocity. The models generate
similar responses for small torques (and slips), while the differences are evident when the
torque increases because of the force applicable by each model.

(a maximum total torque of 180 Nm is achieved!), but it has been chosen in
simulation campaign in order to explore the whole range of longitudinal slips.

Fig. 3.16 shows the longitudinal velocities recorded during the tests with
the three different tyre models: linear, Dugoff and Pacejka (Magic Formula).
A different behaviour is evident from such a graph: the models present similar
profiles in the first seconds (until about 2 seconds), while clear differences
occur when the torque increases. The reason of such a mismatch is quite
simple: while the driving torque is small the slips are small too and thus
the tyre models have similar (linear) profiles. When the torque (and the slips)
increases the linear model generates an increasing force (see Fig. 3.17) and the
velocity grows as well, while Dugoff and Pacejka models reach the saturation.
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Figure 3.17: Tyre models comparison - “Normalized driving force VS Slip ratio”. The
slips and the forces generated by the linear (left), Dugoff and Pacejka models (right) have
been recorded in order to evidence the different profiles.

As a consequence, the force generated by the linear representation is much
larger than the one obtained with the other two models and this justifies the
large dissimilarity between its velocity profile and the others.

Moreover, the difference between Dugoff and Pacejka is also evident. It
has been explained in § 3.1.2 that Dugoff allows for the description of the
force saturation, but also that it has a monotonic profile that is different from
the Pacejka’s one (see Fig. 3.17). Consequently, the forces generated by the
models in presence of large slip ratios are different, and this generates the
mismatch between the longitudinal velocity profiles.

3.4.2 Multibody models comparison

To evidence the differences between the multibody models is a bit more diffi-
cult than the previous case, since the number of aspects to consider is larger.
Because of this, the problem has been solved by making three different tests:
the first aims at studying the longitudinal dynamics, the second analyses the
lateral dynamics characteristics and the third combines the effect of the pre-
vious two. It is worth noting that all the three models are coupled with the
non-linear Dugoff tyre model, in order to evidence the dynamics effects.
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Multibody models comparison: longitudinal dynamics

In order to compare the models responses in longitudinal direction, a straight-
forward acceleration manoeuvre has been applied, with a step-like driving
torque of amplitude 16 Nm (about the maximum torque given by RUMBy)
applied after 1 second.

Even if a small mismatch can be seen between the velocity profiles of
Fig. 3.18, the differences between the models are evident by observing the
accelerations of Fig. 3.19. As one can expect, the 5DOF and the 8DOF models
have identical behaviours along x-axis, which is instead different from the one
of the 14DOF model.
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Figure 3.18: Longitudinal dynamics comparison - Velocities. The 5DOF and 8DOF
present identical velocity profiles, that lightly differ from the 14DOF’s one. The mismatch
is more evident by analysing the acceleration profiles.
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Figure 3.19: Longitudinal dynamics comparison - Accelerations. The 5DOF and 8DOF
present identical acceleration profiles, that differ from the 14DOF.
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Figure 3.20: Longitudinal dynamics comparison - Load transfers. The CoM positions are
still in 5DOF and 8DOF models, while change during the motion in 14DOF model because
of pitch motion and tyres deflection: this introduces an additional load transfer that affect
the whole longitudinal dynamics.

This distinction can be explained as follows. The 14DOF model presents
also pitching motion and tyres vertical deflection, that change the Centre of
Mass position when longitudinal acceleration occurs: consequently, the CoM
motion introduces an additional load transfer -from the front to the rear axles-
that is not present in the other two models. Fig. 3.20 shows the load transfers
along x-axis computed for the three models. Because of the previous cited
reasons, the 14DOF model presents a larger load transfer w.r.t. the one of
the 5DOF and 8DOF models, allowing the transmission to the road of larger
forces that justifies the differences in acceleration and velocity profiles.

Multibody models comparison: lateral dynamics

In order to compare the models lateral responses a step-like steering angle
with amplitude 0.05 rads is applied after 1 seconds, while the longitudinal
velocity is maintained constant at 5 m/s during the whole manoeuvre.

Fig. 3.21 shows the trajectories covered by the Centres of Mass of the three
multibody models: a large mismatch is evident between the 5DOF and the
other two models, which anyway present differing behaviours. The charac-
teristic behaviour of the bicycle model is due to the fact that the tyres are
collapsed in the vehicle middle line: firstly, it does not present lateral load
transfers and, moreover, some components of velocity of the contact points
are neglected, remarkably affecting the slips.

The small differences between the trajectories of the 8DOF and the 14DOF
models are due to the 14DOF pitch motion and tyre deflection. Because of
these motions, the CoM position change w.r.t. the chassis and this explains



52 Vehicle Modelling

Trajectory

X [m]

Y
[m

]

5DOF
8DOF
14DOF

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

Figure 3.21: Lateral dynamics comparison - Trajectories. The bicycle model does not
present lateral load transfer and has different slips, therefore its CoM assumes a trajectory
completely different w.r.t. the other two models.
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Figure 3.22: Lateral dynamics comparison - Yaw rates. The differing behaviours of 8DOF
and 14DOF models are due the pitch motion of the latter model (bottom plot), that affects
the yaw rate, the lateral load transfers and, consequently, the trajectory.

the mismatch in the trajectories. This statement is further demonstrated
by Fig. 3.22, that shows the yaw rate profiles (top) and the 14DOF pitch
angle (bottom). By focusing on the 14DOF model, it is evident that the
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oscillations in the yaw rate coincide with those of the pitch angle (when the
turn manoeuvre starts), causing the differences between the trajectories.

Multibody models comparison: combined dynamics

The differences between the models are even more evident if both longitudinal
and lateral dynamics are excited. This goal is achieved by applying step-like
profiles to both steering angle (amplitude 0.1 rads) and torque (amplitude 16
Nm), starting after 1 second.

Fig. 3.23 shows the trajectories covered by the Centres of Mass of the
three models: as expected, the combined effect of longitudinal and lateral
dynamics contributes to have three different paths. This is evident also by
observing the yaw rate profiles of Fig. 3.24: the introduction of roll and pitch
motions affect the lateral dynamics, decreasing the yaw rate that the model
can assume. Also the velocity profiles of Fig. 3.25 present a combination
of the previously discussed effects: the 14DOF is subject to an additional
longitudinal load transfer (due to pitch motion) that increases the efficiency of
the tyre-ground longitudinal forces transmission, explaining then the different
slope of its velocity profile.
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Figure 3.23: Combined dynamics comparison - Trajectories.
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Figure 3.24: Combined dynamics comparison - Yaw rates.
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Figure 3.25: Combined dynamics comparison - Longitudinal velocities.



Chapter 4

Identification and Validation

Several models representing the vehicle and its subsystems have been presented
in Chapter 3. A model becomes useful just if it is well identified, i.e. if the
values of the parameters appearing in the model are known with a sufficient
precision. Two methods can be used to know the parameters values: measure-
ment and estimation. In § 4.1 both the approaches are presented and discussed,
with examples about RUMBy and Kanon. Moreover, once a model has been
identified, it must be validated, in order to verify if it accurately represents
the actual system. § 4.2 presents a couple of approaches for the validation,
in both time and frequency domains, of a model representing the Kanon roll
motion.

The models described in Chapter 3 are very powerful tools for the inves-
tigation of a system. A mathematical representation of the system allows the
estimation of its variables, the prediction of its behaviour or the synthesis
of specific control strategies. Nevertheless, in order to have a mathematical
model that correctly represents a dynamic system, it is necessary to know
the values of the parameters appearing in the model itself. In mechanical sys-
tems, like vehicles, there are inertial and geometric variables, elastic constants,
friction coefficients and so on.

The word “identification” collects all those activities oriented at the eval-
uation of such parameters. Two ways are available for the identification of a
system: the direct measurement and the estimation. Several system pa-
rameters can commonly be measured in laboratory by means of purpose-made
test benches (e.g. geometric parameters, mass, inertia, suspension data, etc.),

55
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but some parameters cannot be directly measured (e.g. the tyres data): in
such a case it is necessary to estimate them. The estimation activity consists
in the computation -using recursive methods if the identification has to be
done in real-time- of the parameters values that give the best match between
the behaviours of the system and of a simplified mathematical model. In-
deed the behaviour of the system is usually defined based on a subset of its
state variables. Both the approaches have been studied, and some examples
are discussed in § 4.1. In particular, four test-benches for the measurement
of RUMBy’s parameters are presented in § 4.1.1, while § 4.1.2 discusses a
parameter estimation campaign done for Kanon.

Once the model is available and its parameters have been identified, it
must be verified with information from the real system: this process is known
as “validation”. The necessary information can consist of a-priori knowledge
of the system, measured data and experience of the user with the model
(Ljung , 1999). In general terms, a model can be considered validated when
it satisfies the requirements for which it was developed. The most common
method of validation consists of the comparison of the model and system
responses, subject to the same measured inputs, and the responses can be
compared with different methods (qualitative or quantitative) and criteria
(time and frequency domains). The validation campaign of a roll dynamics
model representing the Kanon dynamics is discussed in § 4.2, carried out in
both time and frequency domains.

4.1 Parameters Identification

The models described in Chapter 3 are so-called “parametric models”, that
give the relationship between the physical data of the system and its param-
eters. In order to achieve a good matching between the actual system and its
model, the value of the parameters must be derived. The word “identifica-
tion” collects all those activities aiming at the evaluation of such parameters,
and can be achieved in two ways:

• Measurement - Several system static parameters can be measured in
laboratory, by means of purpose-made test benches (e.g. geometric pa-
rameters, mass, inertia, suspension data, etc.).

• Estimation - Some parameters however cannot be directly measured,
and their derivation is carried out using measured inputs and outputs
signals together with suitable parameters estimation methods.
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Both the approaches have been applied to identify the parameters of the
vehicles RUMBy and Kanon. In particular, four test benches have been de-
signed and built for the vehicle RUMBy, in order to respectively measure:

1. the mass and the Centre of Mass positions;

2. the principal moments of inertia w.r.t. a body fixed frame;

3. the suspensions stiffness and damping coefficient;

4. the relation between the steering signal and the front wheel steering
angle.

An accurate description of each test bench is given in § 4.1.1, focusing on the
working principles and the adopted instrumentation.

For vehicle Kanon the main parameters (mass, inertia, etc.) were instead
known a-priori, while no information were available about some data as rolling
resistance, tyres parameters and roll dynamics. Since the construction of
custom test benches was not possible, a large set of standard manoeuvres
oriented to the estimation of the vehicle parameters have been executed and
processed. This work constitutes the main topic of a recent publication (Zendri
et al., 2010) and is discussed in detail in § 4.1.2.

4.1.1 Parameters Measurement

In the last years the development of test benches for the measurement of vehi-
cles characteristic parameters has been the subject of several studies. Strong
efforts have been made, for instance, to produce facilities that allow the mea-
surement of the moment of inertia tensor (Heydinger et al., 1995, Doniselli
et al., 2003) or the tyre-ground interaction (Schmeitz et al., 2005, Potts ,
2007). This approach often presents a challenge due to the need of handle an
object (the vehicle) weighting even some tones. Fortunately the reduced size
of RUMBy has facilitated the design and set up of the following test benches.

Centre of Mass positions

During the vehicle modelling, very important parameters are the mass and
Centre of Mass positions. The reason of such significance is easily recognizable:
the equations of motions mostly depend on those parameters and is then
fundamental to know their values. Therefore the test bench represented in
Fig. 4.1 has been designed for their measurement.
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Figure 4.1: Bench for the measurement of the CoM positions. The hubs are linked to 4
load cells by means of spherical joints: measuring the weight acting at each cell, the total
mass and the position of the CoM can be derived.
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Figure 4.2: Schematics of the CoM positions. The positions of the sprung mass CoM are
computed w.r.t. a chassis-fixed frame of reference: the computation of the whole vehicle
Centre of Mass becomes consequently immediate.
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By means of four load cells the weight Fij acting on each wheel hub is
measured. The sum of the measured loads gives the vehicle total mass

mg = Frf + Flf + Frr + Flr (4.1)

while the load distribution depends on the CoM positions, which can be easily
derived. In particular, by measuring the loads with the vehicle in horizontal
configuration it is possible to compute the CoM positions lCoM and tCoM in
the plane (Fig. 4.2). By forward tilting the vehicle of an angle α a longitudinal
load transfer occurs depending on the CoM height hCoM , which can be then
computed by (4.4).

lCoM =
(Frf + Flf )L

mg
(4.2)

tCoM =
tf (Flf − Frf ) + tr (Flr − Frr)

2mg
(4.3)

hCoM =
(
L (Flf + Frf )

mg
− lCoM

)
1

tanα
(4.4)

Moments of inertia

Another set of relevant parameters is constituted by the moments of inertia.
In the Mechatronics laboratory, the three-wire torsion pendulum represented
in Fig. 4.3 has been built, for the evaluation of the RUMBy moments of
inertia. The working concept of the test bench is very simple: by perturbing
the pendulum around the vertical axis, a harmonic oscillation is introduced,
with natural frequency that depends on the moment of inertia w.r.t. that
axis. For the vehicle RUMBy, a mechanical support has been designed in
order to simplify the vehicle positioning, so that to study the inertia w.r.t.
each desired axis. The oscillation frequency has been instead measured using
a wireless accelerometer installed on the vehicle.

In order to derive the equation that links the oscillation frequency to the
moment of inertia, the Lagrange approach can used. The following hypothesis
are assumed:

• symmetry of the system about the vertical axis;

• infinite stiffness and equal length for each wire;

• Centre of Mass of the system coinciding with the spin axis.
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WIRELESS
ACCELEROMETER

Figure 4.3: The 3-wires torsion pendulum. The frequency of oscillation around the vertical
axis depends on the moment of inertia w.r.t. the same axis. By opportunely placing the
vehicle on the pendulum and measuring the oscillation frequency, the moment of inertia
tensor can be derived.

By referring to the schematics of Fig. 4.4, it can be written that the plate
height h depends on its rotation as follows

h = L (1− cos θ) (4.5)

that, by assuming the small oscillation hypothesis, can be linearized as

h = L
θ2

2
(4.6)

From Fig. 4.4 it is evident that the rotation can be formulated as

ϕ r = L θ (4.7)

which can be substituted in (4.6) to obtain the following formulation for the
vertical motion:

h =
r2

2L
ϕ2 (4.8)

Consequently it is possible to compute the potential energy due to the height

U = mg
r2

2L
ϕ2 (4.9)

and the kinetic energy due to the rotation

T =
1
2
Iϕ̇2 (4.10)
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Figure 4.4: Schematics of the 3-wires torsion pendulum. The derivation of the equation
is based on the linearization of the equation of motion, computed by means of the Lagrange
method.

It is then possible to compute the Lagrangian polynomial and derive it, in
order to obtain the system equation of motion

Iϕ̈ =
mgr2

L
ϕ (4.11)

It is evident that (4.11) coincides with the equation of a harmonic oscillator
with the following natural frequency

ωn =

√
mgr2

I L
(4.12)

which can be inverted in order to compute the moment of inertia once the
oscillation frequency is measured. It is worth noting that some of the hypoth-
esis above described can be relaxed, and in particular the one concerning the
system CoM position. It has to be said that a position outside the spin axis
introduces additional vibration modes. Nevertheless the small oscillation as-
sumption allows to neglect such undesired motions, and the moment of inertia
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can be computed as follows:

I =
mg
(
r2 − d2

)
Lω2

n

(4.13)

where d is the distance between the spin axis and the system Centre of Mass.

Suspension parameters

RUMBy is equipped with four independent suspensions, each one with two
oil shock-absorbers. Obviously the characteristics of those suspensions are
very influent on the sprung mass motion, specially in models that include roll
motion. Therefore a custom test bench has been designed for the evaluation
of the suspensions parameters (Fig. 4.5). An aluminium frame constitutes the
system, on which are fixed the electric motor that moves the crank gear (for
the suspension solicitation) and the instruments for the measurement of the
load Fs (a load cell) and of the displacement x (a laser triangulation system).

With such a system several kinds of tests can be done in order to identify
the suspension parameters, even depending on the model adopted for their
representation. By assuming a spring-damper linear model like the following

Fs = Kx+ Cẋ (4.14)

ELECTRIC 
MOTOR

LOAD CELL

LASER
TRIANGULATION

SYSTEM

POWER
UNIT

PARALLEL
CRANK

Figure 4.5: Bench for the suspensions parameters identification. The motor (actuator)
moves the parallel crank, which forces the deflection of the suspension. Measuring the
suspension resistance (with the load cell) and deflection (with the laser triangulation system)
at different excitation frequencies, the suspension stiffness and damping coefficient can be
estimated.
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two tests are particularly interesting: static analysis and frequency sweep. The
first one consists in applying quasi-static displacements, in order to evaluate
the stiffness of the spring, and the hysteresis due to the damper. The sec-
ond test aims instead at imposing a sinusoidal displacement, with a linearly
increasing frequency, in order to cover the interesting range of frequencies
(about 0-10 Hz) the suspension works on. This tests allows to determine the
damping coefficient and the mismatch between the actual and the modelled
(linear) behaviour of the suspension.

Steering system

As explained in § 3.3.2, the RUMBy steering servomotor is linked to the wheels
by means of a complex kinematic chain that comprises also the suspensions,
thus an accurate study of the system is necessary. Consequently, the test
bench shown in Fig. 4.6 has been designed, which allows to evaluate the rela-
tion between the servo-control signal and the projection on the ground of the
steering angle, depending on the suspensions configuration.

Figure 4.6: Bench for the identification of the steering chain. The projection on the ground
of the steering angle is measured with a potentiometer for different suspension configurations,
in order to experimentally verify the kinematic model described in § 3.3.2.
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Figure 4.7: Steering angle error. Difference between the theoretical steering angle, com-
puted with the model of § 3.3.2, and the experimental values measured with the purpose-
made test bench.

In such a system, the tyre leans against a rotating surface and the sus-
pension can be fixed in a chosen configuration: in this way it is possible to
apply a rotation to the servomotor and measure the rotation of the support-
ing surface (by means of a potentiometer), which coincides with the steering
angle. The bench allowed to verify the efficiency of the model discussed in
§ 3.3.2, and a consistent mismatch has been identified: Fig. 4.7 shows the
steering angle error, i.e. the difference between the measured angles and the
values computed with the model. It has been seen that the differences are due
to the tyre deflection, which was neglected in the mathematical model and
affects the projection of the angle on the ground: such a difference constitutes
then a relevant phenomena, which has been taken in to account in successive
modelling activities.

4.1.2 Parameters Estimation

In case that a certain parameter (or set of parameters) can not be measured
directly by means of a purpose-made test bench its value has to be estimated.
The idea of such an approach is very simple: applying a certain set of known
inputs to the actual vehicle (acceleration, deceleration, steering) the kinematic
variables obtained in the manoeuvre are measured. Applying the same set of
inputs to a simplified mathematical model, it is possible to simulate the same
kinematic variables and, finally, use an optimisation method for the estimation
of the model parameters that give the best match between real and simulated
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variables.
Vehicle parameters identification is a very active research field, with several

contributions proposed by both companies and research institutes, especially
for what concerns the tyre-ground interaction. Both batch (i.e. off-line)
and recursive (i.e. on-line) methods can be adopted. For example, recursive
methods are used in (Russo et al., 2000) in form of an Extended Kalman
Filter, or in (Wang et al., 2004) as a switching Recursive Least-Square (RLS)
algorithm for tyre-ground friction estimation. In (Wesemeier and Isermann ,
2008), the identification of the bicycle model is carried out with RLS; in (Arkan
et al., 2008), the same problem is tackled by using batch methods based on
prediction-error minimisation (PEM).

In this section, an identification activity carried out for the vehicle Kanon
is discussed: the work aims at estimating the parameters of a representative
8DOF model like the one described in § 3.2.2. As explained, some vehicle
parameters were known a-priori, thus the identification activity discusses the
estimation of:

1. the tyre rolling resistance;

2. the tyre driving stiffness;

3. the tyre cornering stiffness;

4. the parameters appearing in the roll dynamics equation (inertia and
equivalent stiffness and damping).

Even if the work concerns an off-line estimation, a recursive method has been
adopted for the identification of driving and cornering stiffness’. Such param-
eters can change while driving, and their values could be of interest for the
synthesis of anti-skid controls. The estimate of each of these parameters is
discussed in the following sections, with emphasis on the adopted equations
and the achieved results.

Experimental Setup

As already introduced, the parameters estimation activity discussed in this
section is referred to the experimental vehicle Kanon, that has been described
in § 2.2. Nonetheless, it is worth remind some crucial aspects of the experi-
mental setup.
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Figure 4.8: Sensors position on Kanon. The sensors on the vehicle measure some kinematic
variables. The signals from the optical sensors are projected in the vehicle CoM in order to
maintain the consistency with the signals from accelerometers and gyros.

First of all, the vehicle is equipped with some sensors as shown in Fig. 4.8,
that measure kinematic variables. About such measures, some assumptions
have been done, that are:

• accelerometers for the measurement of longitudinal and lateral acceler-
ations (ax, ay) are fixed to the sprung mass and their positions coincide
with the vehicle Centre of Mass;

• gyros that measure yaw rate (ψdot) and roll rate (φdot) are fixed to the
sprung mass and their positions coincide with the vehicle CoM;

• DATRON optical sensor is fixed on the front of the vehicle and measures
longitudinal and lateral velocities (u, v) and sideslip angle (λ), that are
however projected in the vehicle CoM in order to maintain consistency
with the other signals.

Moreover, also the input signals (torques and steering angle) are measured.
The importance of this aspect will be clear in the next sections, since the
identification activity of some parameters needs the knowledge of the input
values.

Finally, the identification of some parameters requires the execution of
manoeuvres with constant inputs or states (e.g. longitudinal velocity) in order
to simplify the motion and, consequently, the adopted equations. For this
reason, the dSpace controller installed on Kanon becomes particularly useful,
since it allows to apply controlled inputs (either feedforward or feedback).
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Rolling Resistance

During steady acceleration manoeuvres with known constant input torque, a
difference between the acceleration expected from the equation of longitudinal
dynamics and the real one generally occurs: such a behaviour is due to friction
terms such as rolling resistance, drag force and other dissipative phenomena.

Applying a total driving torque Ttot to the wheels, the expected longitu-
dinal acceleration a∗x of the vehicle should be:

a∗x =
∑
Fx
M

=
Ttot
rM

(4.15)

where r is the tyre radius (supposed constant) and M is the vehicle total
mass. However, the above does not consider the rolling resistance and drag
force which largely affects the longitudinal acceleration as shown in Fig. 4.9.

To correctly identify these dissipative phenomena, the wheel dynamic
equation (3.48) can be solved for longitudinal forces F , which are then substi-
tuted in longitudinal dynamics equation (3.44), simplified for straight motion.
Therefore, the resistant torque Troll can be evaluated as

Troll =
1
4

(Ttot −Maxr − 4Iwω̇) (4.16)

where Iw is the generic wheel inertia.
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Figure 4.9: Expected and measured acceleration. Dissipative phenomena (e.g. drag force
and tyre rolling resistance) are responsible of the mismatch between the expected and the
actual behaviour.
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Figure 4.10: Resistant Torque vs Wheel velocity. In spite of the dispersion (due to
measures noise) at high velocity, the quadratic dependance of the resistant torque from the
velocity can be seen.
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Figure 4.11: Measured and estimated acceleration after identification. After the identifi-
cation of the parameters T0 and kr, the estimated acceleration matches very well with the
measured one.

In Fig. 4.10 the estimated resistant torque versus the wheel spinning ratio
is shown. It is evident that such a dependance can be written as a quadratic
function of wheel spin

Troll = T0 + krω
2, (4.17)

By applying a least square fitting method to the previous equation for a set
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of straight line constant torque manoeuvres the parameters T0 and kr can be
estimated. For the adopted data set, the estimated values are T0 = 12Nm and
kr = 0.05Nmsec2

rad2 . Fig. 4.11 shows the good match of the estimated acceleration
with identified parameters.

Driving Stiffness

It has been shown in Chapter 3 that for small slips the longitudinal force at
the tyre ground contact point is linearly dependent on vertical load and slip:

Fx = kκNκ (4.18)

where kκ is the driving stiffness, N is the normal load acting at the tyre-ground
contact point and κ is the longitudinal slip ratio.

Introducing (4.18) into (4.16) and neglecting the wheel inertia, the vehicle
longitudinal dynamics becomes:

Max +
4Troll
r

= kκNrκr (4.19)

Applying the RLS method to (4.19) the driving stiffness can be estimated.
The results for a steady acceleration is shown in the top plot of Fig. 4.12: the
estimated value is kκ = 9.1.

Cornering Stiffness

The cornering stiffness greatly affects the vehicle lateral response and it can
be identified for a steady state cornering manoeuvre (at constant speed V ),
provided that the tyre lateral engagement is low (small side slip angles). The
linearized lateral dynamics of a single track model is:

MV

(
dλ

dt
+ ψdot

)
= 2Fy,f + 2Fy,r (4.20)

where λ is the sideslip angle referred to the vehicle CoM. Substituting the
linear force model (3.26), the equation becomes:

u

(
dλ

dt
+ ψdot

)
= κλ2g

[
−δ + arctan

(
v + ψdotlf

u

)]
+κλ2g arctan

(
v − ψdotlr

u

)
(4.21)
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Figure 4.12: Driving (top) and cornering (bottom) stiffness’ identified by RLS. A recursive
approach has been preferred since the stiffness’ depend on the soil properties, that could
change during a manoeuvre. Nevertheless no variations are recognizable for the chosen
dataset, and a good estimation is achieved in few iterations.

The RLS procedure can be applied to estimate the cornering stiffness kλ,
once the derivatives of the sideslip angles in (4.21) are numerically approx-
imated. The RLS result is shown in the bottom plot of Fig. 4.12 and the
estimated value for the cornering stiffness is kλ = 12 rad−1.

Roll Dynamics

The identification of the roll dynamics is based on a linear model of the roll
motion obtained by rewriting (3.47) as follows:

Ixφ̈+ Cφφ̇+Kφφ = Mhrcay,meas (4.22)

with
Cφ = βf t

2
f + βrt

2
r , Kφ = κf t

2
f + κrt

2
r (4.23)

to represent the equivalent stiffness and damping coefficient, and where

ay,meas = −hrcφ̈+ ay cosφ+ g sinφ+ hrc sinφ cosφψ2
dot (4.24)
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corresponds to the lateral acceleration measured by the onboard accelerome-
ters. Note that (4.22) has been derived from (3.47) neglecting the additional
forcing torque −Iz sinφ cosφψ2

dot: the simplification is correct for small roll
angles.

The unknown coefficients Ix, Cφ and Kφ in (4.22) are estimated with the
simplified refined instrumental-variable method for continuous-time systems
(Garnier and Liuping , 2008) applied to the experimental measurements of
an automatic steer-sweep manoeuvre: a brief description of the procedure is
discussed in Appendix C. The measured lateral acceleration ay,meas is adopted
as input and the roll rate φdot as output variable. The identified parameters
are: Ix = 95 kg m2, Cφ = 1580 N m s/rad and Kφ = 28600 N m/rad. Fig. 4.13
shows the comparison between the measured and the simulated roll rate, with
the data set adopted for the identification: a good matching is achieved, with
a Root Mean Squared Error (RMSE) of about 0.02 rad/sec.
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Figure 4.13: Roll rate comparison (top) and error (bottom). In spite of the introduced
simplifications, the model matches the measured profile very well, with a RMSE of about
0.02rad/sec.
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4.2 Validation

Once the parameters have been identified the model must be validated, e.g. it
has to be verified with information from the actual system. Several methods
are available for system validation (Ljung , 1999), concerning both time and
frequency responses.

Likewise the estimate activity discussed in § 4.1.2, the validation presented
in this section is referred to the work done for (Zendri et al., 2010). Two val-
idation methods have been adopted: a qualitative method based on visual
comparison of the model and experimental responses (in both time and fre-
quency domains), and a quantitative method based on the statistical analysis
of the model residuals (in frequency domain). The validation procedures have
been applied on a different dataset from the one used for the model identifica-
tion (cross-validation), thus overcoming the possible chance of “over-fitting”
the measurements with an over-parameterized model.

4.2.1 Time Response Analysis

According to the dynamic variables to be validated, suitable driving manoeu-
vres have to be defined so that the variables are sufficiently excited (Kiencke
and Nielsen , 2000). The measured variables are then compared with the
corresponding outputs from the model, in order to determine if the model is
sufficiently accurate for the purpose it has been developed for. For the valida-
tion discussed in this section, a lane-change manoeuvre has been used: such
a manoeuvre excites all the interesting dynamics, allowing the comparison of
both longitudinal and lateral dynamics variables.

Longitudinal acceleration and velocity profiles are reported in Fig. 4.14. A
good matching can be observed especially for the acceleration trends except
when braking occurs for (at about 13 seconds) since it was not simulated (dis-
sipative braking is not included in the model). The remaining small mismatch
is due to pitch dynamics, which was not modelled but affects the measured
longitudinal acceleration by partially introducing the gravitational accelera-
tion component.

Lateral dynamics (yaw rate and roll rate) is instead considered in Fig. 4.15.
In general, the model responses are in good agreement with the measured
ones (especially yaw rate plot on the top). The experimental roll rate shows
a marked fluctuation, which is due to the road unevenness, not present in the
simulation. In fact the road test ground was a quasi-flat off road ground with
sandy and stony surface.
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Figure 4.14: Time response comparison: longitudinal acceleration (top) and velocity (bot-
tom). The model represents very well the vehicle longitudinal dynamics, except when brak-
ing occurs (about 13sec) since it is not simulated.
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Figure 4.15: Time response comparison: yaw rate (top) and roll rate (bottom). Lateral
dynamics is very well captured by the model, even if a mismatch due to neglected road
unevenness can be seen in the roll rate profile.

4.2.2 Frequency Response Analysis

As for the time response analysis, the manoeuvres suitable for the frequency
response analysis have to excite all the interesting variables. However, in this
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Figure 4.16: Roll dynamics frequency response. The system ETFE and the model transfer
function are compared: the comparison is inconsistent over ≈ 20 Hz (highlighted spot), that
is the upper frequency limit of the sweep-steer signal.

case the inputs applied to the system must also cover an enough wide range of
frequencies. This section describes the validation in frequency domain of the
vehicle roll dynamics, applied to the data measured during an automatic steer-
sweep manoeuvre. Obviously, the validation procedures have been applied on
a different dataset from the one used for the model identification.

As explained at the beginning of this section, two approaches have been
used for the frequency response analysis: qualitative and quantitative method.
The qualitative validation in frequency domain can be achieved by a visual
comparison of the system and model frequency responses. Fig. 4.16 shows
the frequency response of the roll dynamics (with input ay,meas and output
φdot). The system response has been obtained by standard spectral analysis
(Ljung , 1999), computing the Empirical Transfer Function Estimate (ETFE)
of the measured data1. The model response profile has been instead drawn
by directly using the identified model (4.22). Fig. 4.16 shows that the best
matching is achieved in the very low frequency range, i.e. where the vehicle
dynamics is most strongly excited. The high acquisition frequency (500 Hz)

1The ETFE is the ratio of the Fourier transforms of the output and input signals of a sys-
tem. Since the measures are subject to a certain observation noise, the “true” input/output
Fourier coefficient are not accessible and, then, only the “empirical” transfer function can
be computed.
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Figure 4.17: Residual analysis for the identified roll dynamics model - auto-correlation
(top) and cross-correlation (bottom). The cross-correlation lies within the confidence in-
terval, hence the model completely captures the system dynamics. On the contrary, the
auto-correlation test is not passed, evidencing that the equivalent output disturbance in not
accounted for in the model.

allows to draw the frequency response up to 250 Hz. Nevertheless the up-
per frequency limit of the sweep-steer signal is ≈ 20 Hz, then the frequency
responses comparison is consistent up to such frequency.

As quantitative validation method, the residual analysis has been used
(Ljung , 1999) - some details about residual analysis are discussed in Ap-
pendix D. Residuals ε(t) are differences between the predicted output from
the model ŷ(t) and the measured output y(t) from the validation data set. In
general, it is reasonable to assume that a model has been consistently esti-
mated from measured data if it passes two tests:

1. Independence test - Demonstrates if the model is capable of reproducing
the whole portion of the output y(t) affected by the input u(t) or, in
other terms, if the residual error ε(t) is uncorrelated with u(t).

2. Whiteness test - Shows if the model provides a correct prediction of the
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equivalent disturbance affecting the output measurements, hence the
residual error should be a white noise.

In residual analysis, the uncorrelation of ε with u and the whiteness of
ε are checked by means of statistical hypothesis testings. When applied to
the identified roll dynamics model, residual analysis yields the results shown
in Fig. 4.17. Since the estimated cross-correlation function lies within the
confidence interval, the independence test is passed, implying that the roll
dynamics from ay,meas to φ has been completely captured by the model. On
the contrary, the estimated auto-correlation function shows that the whiteness
test is not passed: this result is not surprising, since the equivalent output
disturbance is not accounted for in the proposed model.



Chapter 5

State Estimation

Control of a dynamic system requires reliable estimates of system state, in
order to compute the best set of inputs that gives the desired response. Un-
fortunately, the complete state is not always measurable/observable. State
estimation is based on the measurable quantities on-board acquired and deter-
mines the underlying behaviour of the system at any point in time. In this
chapter the solutions adopted for the estimation of the RUMBy’s state are
discussed, from the measures analysis up to the sensor fusion.

From a mathematical point of view, a continuous dynamic system con-
stitutes a mathematical model of a physical system, that interacts with the
surrounding environment by means of two vectors of time-depending variables:

• the input variables, representing the external actions acting on the sys-
tem, and

• the output variables, that describe the interesting behaviour of the sys-
tem.

In other words, the system can be represented as shown in Fig. 5.1 and a cause-
effect relation is there between the variables: the outputs evolution describes
the system response to the applied set of inputs.

Nevertheless in the most cases this is not true, and the knowledge of the
inputs at a certain time is not sufficient to know the outputs values at the same
time. In these cases, a third vector of variables, termed state variables, is thus
necessary in order to describe the internal system condition. The concept of
state of a dynamic system refers to a minimum set of variables, known as state

77
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System
Inputs vector Outputs vector

Figure 5.1: Schematics of a cause-effect system. The simplest way to represent a dynamical
system is a cause-effect structure: no information are available about the internal situation
of the system and it is treated as a black box.

variables, that fully describe the internal condition or status of the system at
a given instant of time (Thaler and Brown , 1960).

Defining respectively u, x and y the vectors of inputs, states and outputs,
and with f(·) and g(·) two vectorial functions, a continuous dynamic system
is constituted by the equations:

ẋ(t) = f(x(t),u(t), t) (5.1)
y(t) = g(x(t),u(t), t) (5.2)

The input-output link is thus divided in two parts, and described by two
vectorial equations:

• a differential equation, termed state equation, that represents the rela-
tion between the inputs and the system internal condition;

• an algebraic equation, termed output transformation, that allows to de-
termine the system output at a certain time based on the system input
and internal condition.

Equations (5.1))-(5.2) constitute the so-called state-space representation of
the system, which can be thus schematized as shown in Fig. 5.2.

The state-space representation given by (5.1)-(5.2) is the most generic
one, valuable for any kind of continuous-time system. For the purpose of this
work, it is advantageous to introduce a particular kind of dynamic systems:
the linear discrete time-variant system.

xk = Akxk−1 +Bkuk +wk (5.3)
yk = Hkxk + vk (5.4)

This formulation becomes particularly useful since it allows to describe lin-
earized discretized systems, for which the state estimation algorithm has been
designed.



79

ẋ(t) = f(t,x(t),u(t)) y(t) = g(t,x(t),u(t))
u(t) y(t)

Figure 5.2: Schematics of a dynamic system in the state-space form. When the knowledge
of the inputs at a certain time is not sufficient to know the outputs values at the same time,
the system must be represented in the state-space form. The states represent the internal
condition of the system, and the relation between inputs and output is divided in two parts:
the state equation and the output transformation.

From an engineering point of view, knowledge about the system state could
be interesting for at least two reasons:

• if it is necessary to know the state of a system in order to design a
state-feedback controller (e.g. an electrical engineer needs to know the
winding currents of a motor in order to control its position), and

• if it is necessary to know the states of a system because those states are
interesting in their own right (e.g. an aerospace engineer might want to
know the position of a satellite in order to more intelligently schedule
future satellite works).

In order to know the state of a system it is convenient to equip the system
with sensors that measure as many variables as possible. Unfortunately, the
state of a system is not always measurable/observable: in such a case it be-
comes necessary to estimate it. State estimation aims at inferring the value of
an interesting quantity from indirect, inaccurate and uncertain observations.
State estimation theory was initially developed in the 1950s, and since then
there have been a huge number of applications. Many state estimators can
be found in literature, but the most known is undoubtedly the Kalman Filter
(Kalman , 1960). The Kalman Filter is an efficient recursive procedure useful
to combine noisy signals in order to estimate the behaviour of a system with
uncertain dynamics. It is used in a wide range of engineering applications,
from radar to computer vision, and is an important topic in control theory
and control systems engineering.

This chapter describes the state estimation strategy created for the vehi-
cle RUMBy. As explained in Chapter 2, the vehicle is equipped with several
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sensors, of different nature, that measure kinematic variables. Anyone of the
on-board sensors is nevertheless characterized by a set of problems, errors and
operating limits: because of these constraints a particular strategy has been
devised, that couples the Kalman Filter with another operation - the measures
Preprocessing. In the following sections, the system architecture and its parts
are described, focusing on the assumptions made and the equations formu-
lated. The last section gives instead an example of vehicle state estimation,
discussing the quality of the achieved experimental results.

5.1 System Architecture

RUMBy is fitted with some on-board sensors for the measurement of kine-
matic variables. Anyone of the vehicle sensors is subjected to a certain set
of errors, depending on the nature of the sensor itself. Therefore, it becomes
mandatory to develop strategies oriented to estimate the vehicle state based
on the collected sensor signals.

Many strategies and approaches have been studied to estimate the state of
the vehicle RUMBy, in terms of positions, attitude and velocities. The most
interesting results have been achieved with the architecture shown in Fig. 5.3,
which combines together the effects of Measures Preprocessing and Extended
Kalman Filter.

PREPROCESSING
EXTENDED 

KALMAN 
FILTER

yk

dk

uk

xk

wkqk vk

zk
zk−1

tk

Figure 5.3: State estimation architecture. The state estimation is constituted by two
main operations: the preprocessing and the Filter. The preprocessing aims at elaborating
the measures in order to detect signal errors and improve the measures quality. The filter
does instead the sensor fusion, necessary to estimate the state of the system.
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As shown in Fig. 5.3, the architecture is split in two blocks, and the vectors
represent respectively:
dk : raw data coming from sensors
zk : preprocessed data
tk : current time
qk : reliability vector (standard deviations)
uk : filter inputs
yk : measures used by the filter
wk : process noise vector (standard deviations)
vk : measures noise vector (standard deviations)
xk : estimated states.

The system receives the raw data from the sensors and executes a first
operation - Preprocessing - oriented to a re-computation of the measures
and the evaluation of the measures reliability indexes. The reliability indexes
are defined in terms of standard deviations, and constitute a vector collecting
information about the quality of each measure. Once computed, these vector
are divided in sub-vectors representing the Kalman Filter inputs, which
fuses the data in order to estimate the interesting vehicle states.

A feedback architecture has been chosen for the Preprocessing for two
reasons: a) the algorithm has to compare the data at a certain time-step with
those of the previous time-step and b) some variables have to be numerically
differentiated. The main advantage of this architecture is its flexibility: once
the Preprocessing is designed, it can be coupled with different versions of the
state estimator, depending on the set of measures and states of interest. The
following sections discuss in detail the blocks of Preprocessing and Filtering.

5.2 Data Preprocessing

As introduced, the Preprocessing collects a set of operations oriented to:

1. the computation of the measures in terms of more significant variables;

2. the correction (if possible) of the errors affecting the measures;

3. the assignment of a reliability index, in terms of standard deviation, to
each signal.

The goals of these operations may not not be so clear if described in this way,
therefore let’s discuss them in detail.



82 State Estimation

5.2.1 Measures re-computation

The first set of activities aims at re-computing the raw data in terms of more
significant and understandable variables. The best example about this ac-
tivity concerns the vehicle positions acquired from the GPS unit. The GPS
VBOX measures geodetic latitude, longitude and altitude w.r.t. the WGS84
datum, a particular Conventional Terrain System that approximates the Earth
as a rotational ellipsoid. Obviously, the raw information in terms of latitude-
longitude-altitude are unusable. Therefore the Preprocessing re-computes the
GPS information, in order to transform the measures in the trajectory com-
puted w.r.t. a local frame of reference with the following characteristics:

• origin in the first acquired point:

• X-axis pointing to North;

• Z-axis pointing upward;

• Y -axis pointing consequently to West.

An example of this re-computation is shown in Fig. 5.4, referred to a repet-
itive manoeuvre along a triangular-like track. It is easy to see that latitude-
longitude data are not immediately representative of vehicle position in space,
while xyz trajectory is more understandable from a physical point of view and
it is directly usable in digital maps.
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Figure 5.4: Example of measures re-computation - Acquisition referred to a repetitive
manoeuvre along a triangular-like track. The latitude-longitude raw data (left) are hard to
be interpreted, while the re-computed trajectory w.r.t. a local frame of reference (right) is
immediately understandable.



5.2 Data Preprocessing 83

Another example of measures re-computation concerns the data coming
from the odometers, shown in Fig. 5.5. It has been explained that the on-
board odometers are constituted by two gear wheels with 75 teeth, coupled
with Hall effect sensors. The sensors send their signals to a counter board,
which counts the number n of signal fronts any time it is queried. Obviously,
since the counter board is queried with a fixed time-step, these signals are
proportional to the wheels angular velocities. Naming ∆t the counter board
interrogation sample time, the equation for the computation of the angular
velocities in [rad/s] becomes the following:

ωi = ni

(
2π
150

)(
1

∆t

)
(5.5)

where the subscript ‘i’ denotes the left or right wheel. For practical rea-
sons, another computation is applied to these angular velocities, in order to
evaluate their average value (common-mode value) and their half-difference
(differential-mode value)

ωCM =
ωr + ωl

2
, ωDM =

ωr − ωl
2

(5.6)

These new values are proportional, respectively, to the longitudinal velocity
and the yaw rate, unless the slips, and thus more useful during the state
estimation. Fig. 5.5 gives an example of this kind of re-computation.
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Figure 5.5: Example of measures re-computation - Acquisition referred to a repetitive ma-
noeuvre along a triangular-like track. The odometers raw data (left) can be just qualitatively
interpreted, while the re-computed angular velocities (right) are immediately understand-
able.
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5.2.2 Errors correction

The purpose of this operation is to detect and (if possible) correct the errors
that affect the measures and are due to the nature of the sensor. An example
of errors correction is shown in Fig. 5.6. The figures refer to the yaw angle
from the magnetometer and the heading angle from the GPS, acquired during
a clockwise circular manoeuvre.

The first evident error concerns the sign of the measures. Since the vehi-
cle moves in clockwise direction and the Z-axis points upward, the yaw and
heading angles should decrease. Nevertheless, the heading angle (from GPS)
increases: this phenomenon is due to an error in the VBOX firmware, that
can be easily corrected by changing the sign of such a measure.

The second error is due to the periodic nature of the angular measures,
that are defined w.r.t. the North and, respectively, in the range [0, 2π] for
the GPS and [−π, π] for the magnetometers. Hence, when the vehicle crosses
the North direction, jumps of amplitude 2π occur in both the angle measures.
From a dynamic point of view, such jumps represent a singularity and have
to be eliminated: this operation, termed “angles unwrap”, represents an error
correction and gives the results shown in Fig. 5.6(right).
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Figure 5.6: Example of measures re-computation - Acquisition referred to a repetitive
manoeuvre along a triangular-like track. The raw yaw angles from magnetometers and GPS
(left) present opposite profiles and jumps that have to be corrected (right) in order to make
the measures mutually consistent and w.r.t. the vehicle dynamics.

5.2.3 Reliability index

Unfortunately only few errors affecting the measures can be directly corrected.
In order to reduce their effect on the data fusion, the Preprocessing computes
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Figure 5.7: Example of uncorrectable error - Acquisition referred to a stand-still condition.
During the whole acquisition the vehicle stood still and just 4 satellites were available: due
to this reduced number, the data coming from the GPS measured a motion of about 9
meters.

the so-called “reliability vector”. In case of optimal acquisition, the “reliability
indexes” - i.e. the components of the reliability vector - are the standard devi-
ations of the signals (identified in a previous sensor analysis campaign), while
different values are them assigned at the verification of particular conditions.

The clearest example of this operation concerns the GPS system data.
The quality of the data coming from such a system strictly depends on the
number of available satellites (sats). An example of such a dependance can
be seen in Fig. 5.7.

The GPS gives information if at least 4 satellites are available, and more
satellites are visible and better the measures are. The GPS VBOX gives the
number of visible satellites, thus an exponential weighting function has been
designed for the standard deviations, that a) assigns a large standard deviation
if sats < 4 and b) quickly decreases at the sats increasing. Its formulation is

wSATS = 1 + 1000e4− sats
0.5 ; (5.7)

and its profile is shown in Fig. 5.8. This approach allows to take in to account
the effect of satellite constellation on the quality of the Global Positioning
System measures.
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Figure 5.8: Satellites weighting function. The quality of the measures provided by the
GPS strictly depends on the satellite constellation. Therefore a weighting function has been
designed in order to consider such a dependance.
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Figure 5.9: Effect of the velocity on the heading measure quality. Since the heading
measure (top) is based on the Doppler effect, its quality depends on the vehicle velocity
(bottom).

Another example of uncorrectable measure is about the heading angle,
measured by the GPS unit. The measure of such an angle is in fact based on
the Doppler effect, and is unreliable if the vehicle stands still even in presence
of numerous visible satellies. Moreover the angle can not be corrected using
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the last reliable value, since the error occurs also if the vehicle moves very slow
(absolute velocity ≤ 1 m/s). The effect of velocity on the heading measure
quality is shown in Fig. 5.9: the heading profile (top) presents a lot of jumps
when the vehicle moves slow velocity (bottom). Anyway this condition of
motion can be easily recognized combining the measures of velocity (from
the GPS) and those of the odometers. In case that the velocity was V ≤ 1
m/s and the odometers stood still, the value 2π is assigned to the standard
deviation of the heading angle, labelling the measure as unreliable.

As will be shown in § 5.4, the assignment of the standard deviation is very
efficient, since it allows to play with the weights given to the measures by the
Kalman Filter, reducing the errors during the state estimation.

5.3 The Extended Kalman Filter

In Fig. 5.3 it is shown that the Extended Kalman Filter1 has been chosen as
state estimator. The information used by the filter for the state estimation
are the measures yk obtained by the sensors and the inputs uk applied to the
system. Moreover the knowledge of the uncertainty on these data allows an
evaluation of the estimation accuracy.

The filter working principle is then quite simple: solving a statistical op-
timization problem, the filter combines the data coming from noisy sensors
with those of a system’s mathematical model, in order to estimate the set of
states that gives the best matching between these information.

The Kalman filter is a recursive estimator, i.e. only the estimated state
from the previous time-step and the current measurement are needed to com-
pute the estimate for the current state. The state of the filter is represented
by two variables:

• xk, the a-posteriori state estimate at time k, given observations up to
and including at time k;

• Pk, the a-posteriori error covariance matrix.

The Filter is divided in two distinct phases: Prediction and Correction.
The prediction phase uses the state estimate from the previous time-step to

1Two main kinds of Kalman Filter can be found in literature: the Simple (SKF) and
Extended Kalman Filter (EKF). The difference between the two configuration is very simple:
the first one is applied to linear models, and the latter to non-linear models. Therefore the
equations that govern the algorithms are identical, with the only difference that a model
linearization is computed for the EKF.
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Figure 5.10: Kalman Filter architecture. Based on the system inputs, the filter predicts
the system states. Such a prediction is then corrected by means of the measures, in order
to estimate the internal state of the system.

produce an estimate of the state at the current time-step, based on a state-
space representation of the system. This predicted state estimate is also known
as the a-priori state estimate because, in spite of the fact that it is an estimate
of the state at the current time-step, it does not include measures from the
current time-step. In the correction phase, the a-priori prediction is combined
with current measures to refine the state estimate. This improved estimate
is called the a-posteriori state estimate. Understanding the meaning of this
description is probably easier by analysing the procedure equations step-by-
step.

Prediction: a-priori state estimate
Based on the system state-space model, the state at the time-step k can be
predicted from the state estimate at the previous time-step and the system
inputs. To do this estimate, one could feel prompt to use an equation like (5.3),
nevertheless this is not necessary. For instance, considering a backward Euler
discretization, the a-priori estimate could be achieved using the non-linear
system model as follows:

x̂k = xk−1 + f (xk−1,uk−1) dt (5.8)

where dt is the time-step. Let’s notice that the state estimate has to be
assigned at the initial time-step (k = 1): this operation is termed “Kalman
Filter Tuning”.
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Prediction: a-priori covariance matrix estimate

P̂k = AkPk−1A
T
k +Q (5.9)

This operation estimates the estimation accuracy, based on the previous esti-
mate of the covariance and on the state transition matrix. Q is the covariance
matrix of the state noise vector

Q = E(wwT )

As for the previous case, the covariance estimate has to be assigned at the
initial time-step (k = 1), and this operation is part of the “Kalman Filter
Tuning” too.

Correction: Optimal Kalman Gain

Kk = P̂kH
T
k

(
HkP̂kH

T
k

)
(5.10)

The Kalman Gain is the matrix that assigns the weights to the estimates and
the measures, and its formulation comes from the solution of an optimiza-
tion problem (a minimum mean-square error estimator). The matrix R is
computed as

R = E(vvT )

and represents the covariance matrix of the measures vector.
Correction: a-posteriori state estimate update

xk = x̂k +Kk (xk −Hkx̂k) (5.11)

This step concerns the estimate update, i.e. the comparison of the state
estimate and the observation information. The meaning of this equation is
simple: by means of the Kalman gain, it evaluates how good the estimate xk
is w.r.t. the observation information yk. It is important to notice that, as for
the a-priori state estimate, even in this case the update could be computed
by means of the measures non-linear equations:

xk = x̂k +Kk (xk − g (x̂k)) (5.12)

Correction: a-posteriori covariance matrix estimate update

Pk = (I −KkHk) P̂k (5.13)

As done for the state, even the covariance matrix must be updated: Pk plays
the fundamental role of estimate accuracy index. By observing its evolution is
in fact possible to recognize if the problem is converging to the best estimate
(or not, e.g. in presence of strong unmodeled phenomena) and which states
are better estimated.
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5.4 Example of state estimation

As described before, once the measures have been preprocessed the out-and-
out state estimation can be performed. For the described case, an Extended
Kalman Filter has been used, but different algorithms could be adopted.
Moreover, once a strategy has been chosen, different version and approaches
could be used, depending on the interesting states (e.g. for a certain control
strategy) and the considered measures/observation (e.g. for the availability of
a reduced set of sensors). In this section a representative version of Extended
Kalman Filter is described: the system mathematical representation and the
considered measures are explained, focusing on the simplifications assumed
for the design of the algorithm.

The presented version of the filter aims at estimating some vehicle kine-
matic variables: the vehicle dynamics (forces, moments, etc.) is not consid-
ered, while just the relations between some kinematic variables are treated.
For the formulation of the vehicle model some simplifications have been as-
sumed:

• The vehicle is considered as a solid body moving on a flat road (vertical
motion is neglected).

• The body-fixed frame has its origin in the middle of the rear axle, with
x-axis pointing forward, y-axis pointing to the vehicle left-side and, con-
sequently, the z-axis pointing upward.

• The AHRS and GPS units are considered coinciding and linked to the
same frame of reference, which is oriented as the vehicle-fixed frame and
translated of a distance lSEN along the x-axis.

• All the sensors are in known positions w.r.t. the vehicle-fixed frame of
reference.

A schematic representation of the vehicle and the main dimensions and
variables is shown in Fig. 5.11. The available observations of the system are
the following:

• from the GPS unit:

– the X and Y positions w.r.t. a local frame of reference

– the heading angle ψGPS
– the module of the velocity V
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• from the AHRS unit:

– the yaw angle ψMAG from the magnetometer

– the yaw rate Ω

– the longitudinal and lateral accelerations AX and AY

• from the odometers:

– the common-mode angular velocity ωCM of the wheels

The measures vector is constituted by the positions, the heading and yaw
angles, the absolute velocity and the wheels angular velocity:

yT = [X,Y, ψGPS , ψMAG, V, ωCM ] (5.14)

The components of the inputs vector are instead the accelerations and the
yaw rate:

uT = [AX , AY ,Ω] (5.15)

X0

Y0

North

u

v

V

x

y

AX

AY

ψ

ψGPS

λ

SENSORS

Figure 5.11: Main states and variables of the model. The vehicle is modelled as a rigid
body moving on a flat road and the relations between different kinematic variables constitute
the models of the system and of the measures.
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Finally, the states vector is constituted by the vehicle positions, the yaw angle
and the velocity components w.r.t. the vehicle-fixed frame:

xT = [x, y, ψ, u, v] (5.16)

With these choices, it is possible to write the system in a non-linear state-
space form, where the ODE system that describes its evolution is:

dx

dt
= u cos(ψ)− v sin(ψ) + ΩlSEN sin(ψ) (5.17)

dy

dt
= u sin(ψ) + v cos(ψ)− ΩlSEN cos(ψ) (5.18)

dψ

dt
= Ω (5.19)

du

dt
= AX + Ωv (5.20)

dv

dt
= AY − Ωu (5.21)

The relations between the measures and the states are instead the following:

X = x+ lSEN cos(ψ) (5.22)
Y = y + lSEN sin(ψ) (5.23)

ψGPS = ψ + arctan
(v
u

)
(5.24)

ψMAG = ψ (5.25)

V =
√
u2 + v2 (5.26)

ωCM =
u

R
(5.27)

where R is the tyre radius. Obviously, each of the shown variables is affected
by noise and other errors: this is the reason for which the noise vectors, in
terms of the standard deviations computed by the Preprocessing algorithm,
represent inputs to the filter.

The equations (5.17)-(5.27) give a non-linear continuos representation of
the system, while a linear discrete representation is requested by the filter
2. By applying a linearization of the system w.r.t. the previous time-step is
equivalent to computing a backward Euler discretization. The matrices of the

2At least concerning the evaluation of the state transition and the state-measures matri-
ces.
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equivalent linearized discrete system are the following:

A = I +


0 0 −uS(ψ)− vC(ψ) + ΩlSENC(ψ) C(ψ) −S(ψ)
0 0 uC(ψ)− vS(ψ) + ΩlSENS(ψ) S(ψ) C(ψ)
0 0 0 0 0
0 0 0 0 Ω
0 0 0 Ω 0

 (5.28)

H =



1 0 −S(ψ)lSEN 0 0
0 1 C(ψ)lSEN 0 0
0 0 1 − v

u2+v2
u

u2+v2

0 0 1 0 0
0 0 0 u√

u2+v2
v√

u2+v2

0 0 0 1
R 0


(5.29)

where I is the identity matrix and the operators S(·) and C(·) represent,
respectively, the sine and cosine functions.

Fig. 5.12 shows the estimated trajectory during a triangular-like manoeu-
vre covered on the balcony of the Engineering Faculty building in Mesiano -
Trento. The understanding of the trajectory estimate quality is rather com-
plex, since a comparison with the actual positions should be carried out and
high-quality satellite images of the test track are not available. Nevertheless
from the figure it is possible to appreciate the trajectory shape, which coin-
cides with that of the track. Moreover the repetition of the path is captured
with precision: the drift effects due to the numerical integration is avoided,
mainly thanks to a good satellite constellation.

Interesting results are achieved also for the yaw angle: Fig. 5.13 compares
the raw measures from magnetometer (yaw angle) and GPS (heading angle)
with the estimated yaw angle during a sine-like manoeuvre 3. A first obser-
vation can be done about the improving effect of the Preprocessing on the
state estimation. During the first 5 seconds the vehicle stood still, and the
heading measure is then unreliable: the assignment - by the Preprocessing -
of a large standard deviation to such a measure induces the Filter to trust
in magnetometer signal, yielding a good estimation even in this condition.
After that interval, the vehicle moves on a sine-like track, and both the raw
measures become reliable. Nonetheless a difference can be recognized between

3The observations about this and the next estimates refer to this sine-like manoeuvre,
since the variables are better excited than not during the triangular-like manoeuvre, allowing
more interesting discussions.
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Figure 5.12: Estimated trajectory covered on Mesiano balcony. A triangular-like trajec-
tory has been covered on the balcony of the Engineering Faculty in Mesiano - Trento. The
satellite comparison shows the right shape of the trajectory, even if a better comparison can
be achieved just on longer paths.

the estimate and the raw measures, and in particular the heading measure:
this difference is not an error, since it constitutes the sideslip angle, which
varies during the whole manoeuvre and can be thus estimated as shown in
Fig. 5.14. In the end, the vehicle is turned in opposite direction and stopped,
and the Preprocessing again forces the Filter to trust in magnetometer signal,
neglecting the heading information.

Fig. 5.15 show instead the velocities profile. In particular, Fig. 5.15(a)
demonstrates that a good estimate of the velocity components can be ob-
tained, even if no direct measures of the lateral one are available: this result
is of particular interest for two reasons. First of all, a good estimate of the
longitudinal component of velocity is fundamental for the yaw rate control
strategies discussed in Chapter 6. Secondly, a good estimate of the velocity
components allows the derivation of additional information about important
variables like the vehicle sideslip angle and the tyres slip ratios. Moreover
both the figures show a good estimation when the vehicle stood still: this
behaviour is achieved again thanks to the definition of the reliability indexes
during the measures preprocessing. Stand-still condition is recognized thanks
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Figure 5.13: Comparison of measured and filtered yaw angle. The picture shows the effect
of both the Preprocessing and the Filter. In the first interval the vehicle stands still and the
heading measure is unreliable, but its estimation is anyway good thanks to the preprocessing.
The sine-like shape of the central interval highlights instead a small difference between the
estimated yaw and the measured heading, representing the sideslip angle.
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Figure 5.14: Detail of estimated sideslip angle. The picture shows the sideslip angle
computed as the difference between the raw heading angle and the estimated yaw angle,
during the sine-like manoeuvre: with the proposed architecture, also this variable (that is
not a state) can be derived with a good reliability.

to both the measures from GPS and odometers, and thus a large standard
deviation is assigned to the GPS raw velocity: the filter is then forced to trust
in odometers signals (that say the wheels and the vehicle stand still). At the
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Figure 5.15: Estimated longitudinal and lateral velocities (left) and Comparison of mea-
sured and filtered absolute velocity (right). The filtered velocity is smoother than the
measured one, and the noise present in stand-still condition is correctly cancelled. Moreover
the filter allows the estimation of the components separately.

time the vehicle starts to move, both the measures are instead “considered”
and fused together.

Even if the whole set of estimated states have been shown and discussed,
attention must be paid to another important variable: the yaw rate. The con-
trol strategies discussed in Chapter 6 aim at controlling the vehicle yaw rate,
and a good estimate of such a variable becomes then mandatory. Fig. 5.16
shows the comparison between the raw measure, provided by the AHRS, and
the profile obtained by numerically differentiating the estimated yaw angle of
Fig. 5.13. In spite of the fact that the estimated values come from a numerical
differentiation, they present a profile smoother than the measured one. As will
be shown in Chapter 6 this smoothness represents a particularly important
result, because of the fact that a further differentiation of the yaw rate will
be required by the control strategies.
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Figure 5.16: Comparison of measured and estimated yaw rate. By differentiating the
estimated yaw angle, a smooth estimation of the yaw rate is obtained. Such a variable is of
particular interest for the control strategies discussed in Chapter 6
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Chapter 6

Yaw Rate Control

In the automotive control field strong efforts have been done mainly to design
driving assistance systems that aid the driver to stabilize the vehicle lateral
and yaw dynamics. Two main ways are available to control the vehicle yaw
dynamics, that differ on the control inputs: steering angle or left/right differ-
ential wheel torque. A comparison of these two approaches is discussed in this
chapter. In particular two yaw rate control strategies, differing on the control
input, are here presented and compared by means of a simulation campaign.

The last decades have seen strong efforts on the development of safety
systems oriented to aid the driver in critical driving condition. The most
famous safety system is undoubtedly the Antilock Braking System, commer-
cialized by Bosch since 1978, which prevents the wheels from locking up while
braking. Other examples of safety systems are available on vehicles, like the
Bosch Electronic Stability Program (ESP) that exploits the ABS to introduce
a differential braking and stabilizes the yaw dynamics, or, recently, the Volvo
City Safety, that autonomously brakes in presence of obstacles.

Moreover, Advanced Driving Assistance Systems (ADAS) are strongly
studied in the last years. While driving, the pilot indeed carries out two main
operations: path following and disturbance rejection. The goal of ADAS is to
leave to the driver the only path following task, by rejecting disturbances and
by aiding him/her to take future decisions (by means of warning messages) or
by taking such decisions when it is too late to warn (e.g. active braking). In
order to do that the ADAS have obviously to estimate the surrounding sce-
nario, by means of different sensors and information, like video cameras, radar

99
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and laser systems, digital maps and so on. For instance, Adaptive Cruise Con-
trol (ACC) and Frontal Collision Warning (FCW) systems are well known in
the literature and are mature technologies already on the market (Bengtsson ,
2001, Vahidi and Eskandarian , 2003). ACC and FCW systems autonomously
adapt vehicle speed and distance from foregoing vehicles, reducing the collision
risk.

Nevertheless the main driving disturbances affect the yaw dynamics, and
this chapter treats precisely this problem. In this case a wider definition of dis-
turbance is required, since it is intended as the difference between the desired
and the actual behaviour, collecting both the unforeseen phenomena (e.g. loss
of adherence, side-wind effects, and so on) and the undesired behaviours (i.e.
vehicle under- or over-steering). Therefore, a yaw dynamics control strategy
must relieve the driver of the operation of following a yaw-rate profile, living
him more “intelligent” tasks. This statement involves an interesting consid-
eration. In fact, by following longitudinal velocity and yaw rate profiles also
the vehicle trajectory can be controlled. Consequently, in the perspective of
decoupling longitudinal and lateral dynamics, the yaw rate control strategies
discussed in this chapter might join already existing velocity control systems,
in a trajectory following architecture.

Based on the control input, two main kind of control strategies can be
recognized: those acting on the steering angle and those based on the applica-
tion of a left/right differential wheel torque. The approaches are discussed in
general terms in § 6.1, with a comparison of the advantages/disadvantages of
each one. § 6.2 presents instead two specific controllers, charaterized by the
same architecture (based on a disturbance observer) but acting on different
control inputs. Finally, the results of a simulation campaign carried out to
compare the effects of the control strategies is presented in § 6.3.

6.1 Available approaches for the control of the yaw
dynamics

The yaw dynamics can be controlled by acting on the steering angle or by
applying different torques at the right and left wheels. Hence, four main kind
of yaw dynamics control systems can be discerned:

• Differential Braking: systems that utilize the ABS1 to apply different

1ABS - Antilock Braking System, a safety system that prevents the wheels from locking
up and guarantees the vehicle handling while braking.
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braking torques at the right and left wheels.

• Active Front Steering: systems that use Steer-by-Wire architectures
in order to modify the steering angle commanded by the pilot, adding a
suitable correction.

• Active Torque Distribution: technologies that exploit electronic dif-
ferential gears on 4WD vehicles in order to independently control the
driving torque acting on each wheel, contemporarily stabilizing both the
yaw dynamics and the driving/braking traction.

• Active Rear Steering: for vehicles equipped with Steer-by-Wire tech-
nologies for both the front and rear wheels, the system works in the same
way as the Active Front Steering.

In the last years the problem of vehicle dynamics control has been strongly
analysed by the automotive companies, that have also commercialized some
systems like BMW DSC3 and Mercedes ESP (1995), Cadillac Stabilitrak Sys-
tem (1996) and Chevrolet C5 Corvette Active Handling System (1997). Many
names have been used by companies to identify their own yaw dynamics
control systems: Vehicle Stability Assist (VSA), Vehicle Dynamics Control
(VDC), Vehicle Stability Control (VSC), Electronic Stability Program (ESP),
Electronic Stability Control (ESC), Direct Yaw Control (DYC) and so on.

The differential braking systems are undoubtedly the most studied and
commercialized, also because they can be easily installed on ABS-equipped
vehicles: it is sufficient to add a gyroscope and a microcontroller that com-
pensates undesired yaw dynamics by opportunely distributing -through the
ABS- the braking torque on the four wheels. The last decade has witnessed a
strong improvement of Steer-by-Wire and active torque distribution systems,
mainly thanks to the availability of new on-board technologies. For instance,
Audi proposed an ADAS that combines the effects of a steer-by-wire technol-
ogy with those of an active distribution torque: in case of manoeuvres close
to handling limits, the system brings the vehicle close to the adherence peak
(Schwarz et al., 2008) avoiding potentially hazardous situations. Some active
rear steering are also available. For instance, BMW proposed an active four-
wheel-steering system that strongly improves the vehicle manoeuvrability, and
allows the development of innovative driver assistance systems (Schuster et al.,
2008).

The effectiveness of the above mentioned active systems can be evaluated
on the base of different criteria, like comfort, manoeuvrability, safety, etc.
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Figure 6.1: Portfolio of active systems and their effectiveness in the regions of normal
driving and at the friction limit. The effectiveness of the individual stand-alone systems can
be extended significantly by networking with other active systems or environment sensor
systems.

An interesting analysis about this topic is presented in (Raste et al., 2008).
The authors discuss the benefits of a range of active safety systems, analysing
their effectiveness in stand-alone and networking configurations (Fig. 6.1).
In fact, in the last years there has been the tendency to combine different
systems together. In particular, two main approaches to the problem can be
distinguished:

• different assistance systems are designed separately, and a supervision
unit manages the activation of each one of them;

• the systems are designed and work together in a unique architecture.

From the actuation point of view, the yaw dynamics can be thus controlled
acting on two inputs: the steering angle and the torque (for instance, the
braking torque) acting at each wheel. Even so, the efficiency of braking and
steering is not equal (Ackermann et al., 1999). In order to demonstrate this,
three simplifying assumptions are made:

• The total force Fmax transmittable by the tyres does not depend on the
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direction in which the force acts - Kamm’s circle (Kiencke and Nielsen ,
2000).

• The Centre of Mass is assumed to be midway between the front and rear
axles of the vehicle.

• The wheelbase L is twice the track-width t.

Fig. 6.2 compares the yaw torques due to front wheel braking and front
wheel steering. In case of differential braking the maximum available yaw
moment is Mbrake = Fmaxt/2, while from front wheel steering it is Msteer =
2Fmaxt. In other words, steering requires only one fourth of the front wheel
tyre force, compared to asymmetric braking of the front wheels, to generate
the same yaw moment.

A further advantage of active steering is that it allows for a compensa-
tion of torques caused by asymmetric braking. An extreme µ-split braking
situation (µ = 0 under the right tyres) is shown in Fig. 6.3. The com-
bination of braking and steering allows for a balance of the yaw moments
Mbrake−Msteer = 1.6Fmaxt/2− 0.8Fmaxt = 0 and there still remains 1.6Fmax
for deceleration. An ABS (left hand side of the figure) would produce a de-
celeration force 2Fmax and therefore a disturbance moment Mbrake = Fmaxt.

Even if the major effectiveness of the active steering has been demon-
strated, both the architectures have a beneficial effect on the vehicle manoeu-
vrability, and this is the main topic discussed in next sections.

Fmax

CoM

Fmax

CoM

Fmax

t

L = 2t

Figure 6.2: Yaw moments from front wheel braking (left) and front wheel steering (right).
Steering requires only one fourth of the front wheel tyre force, w.r.t. asymmetric braking,
to generate the same yaw moment.
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Fmax Fmax 0.6Fmax

0.8Fmax

Msteer

Mbrake

Low friction strip (µ = 0)

Figure 6.3: For extreme µ-split braking the balance of moments yields zero brake force
F = 0 for braking only (left) and F = 1.6Fmax brake force for combined braking and steering
(right).

6.2 Yaw rate control strategies based on Distur-
bance Observer

As explained, two different yaw rate control strategies are presented and com-
pared in this chapter. The common denominators of these yaw rate control
strategies are a) the control architecture and b) the model used for their de-
sign. In spite of the fact that the strategies act on different vehicle inputs,
both are based on a disturbance observer architecture, that is thought for
estimating and compensating all the unmodeled -and undesired- phenomena
acting on the yaw dynamics. The disturbance observer is additionally coupled
with a feedback architecture, in order to force the system (i.e. the vehicle) to
the nominal behaviour. Concerning the model adopted for the control syn-
thesis, a linearized version of the bicycle model described in § 3.2.1 has been
used.

In the following two sections these common denominators are discussed,
focusing on the assumed simplification and their effects. After that the control
strategies are discussed, with emphasis on the architecture and the system
plant used for their synthesis.

6.2.1 Introduction to the Disturbance Observer

The Disturbance Observer (commonly denoted DOB) is a particular archi-
tecture that allows, under certain hypothesis, the estimation of additional
disturbances acting on a system. In Fig. 6.4 a schematic representation of the
observer is shown.
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Figure 6.4: Generic architecture of the disturbance observer. Under the hypothesis that
the sensor transfer function G2 can be inverted, the additional disturbance d acting between
the system and the sensor can be estimated.

It is supposed that the system transfer function G(s) is a factorization of
two terms:

G(s) = G1(s)G2(s) (6.1)

such that the disturbance can be represented as an additional contribution
acting between G1(s) and G2(s). It is assumed besides that G2(s), commonly
describing the sensor measuring the output, is an invertible transfer function.

Using the same symbols adopted in Fig. 6.4, the system output y can be
computed as:

y = G2b

= G2(a− d) (6.2)

Is then possible to demonstrate that the disturbance estimate d̄ is:

d̄ = a− b
= a−G−1

2 y

= a−G−1
2 G2(a− d)

= a− a+ d

= d (6.3)

The described architecture concerns the most generic representation of the
DOB. Nevertheless, the one adopted in this chapter is based on a couple of
assumptions. First of all, the sensor is supposed to be ideal (G2(s) = 1).
Moreover, once the additional disturbance is estimated, an architecture for its
compensation is introduced.
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Figure 6.5: Disturbance observer with compensation. If the nominal plant G1 is invertible,
the architecture allows the estimate of ueq. This term is the equivalent input responsible of
the additional disturbance d, which can be thus compensated.

In other words, the desired response of the system G1(s) to a generic input
u0 is:

y = G1u0 (6.4)

Supposing that the system transfer function G1 is invertible, the compensation
can be achieved with the architecture shown in Fig. 6.5. The term ueq can be
interpreted as the equivalent input that would be responsible of the additional
disturbance d, and its formulation is the following:

ueq = u−G−1
1 y

= u−G−1
1 G1u−G−1

1 d

= −G−1
1 d (6.5)

Thus, by substituting the (6.5) in the formulation of the system response, it
is immediate demonstrated that the desired behaviour (6.4) is achieved.

y = G1u+ d

= G1 (u0 + ueq) + d

= G1u0 +G1

(
−G−1

1 d
)

+ d

= G1u0 (6.6)

6.2.2 Vehicle Model

The purpose of Model-Based Design is to formulate a mathematical model of
the control plant, that allows the synthesis of a control system. The model
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obviously gives a reduced description of the actual system, since it has to
trade off the representativeness for the simplicity.

Both the control architectures described in this chapter are based on a very
simple vehicle model: a linearization of the bicycle model shown in Fig. 6.6.
The characteristics and the equations of motion of the model are the same
described in § 3.2.1, with the sole exception of the yaw moment input Nz due
to a differential driving/braking torque: the possibility to apply a yaw moment
is necessary to compare the control strategies. To avoid an over-complication
of the model, the yaw moment Nz is considered as an external action. From
an applicative point of view, the yaw moment can be obtained based on the
following equations:

Nz =
t

2
(FXr − FXl) (6.7)

F ∗ac = FXr + FXl (6.8)

where t is the trackwidth. By simultaneously solving (6.7) and (6.8), the force
command signals FXl and FXr on, respectively, left and right wheels can be
determined from the desired yaw moment Nz and acceleration command F ∗ac.
Thus, the torque to be applied by the in-wheel motors can be determined as:

T ∗r = RFXr , Tl = RF ∗Xl (6.9)

Since no anti-skid systems are introduced, the wheels dynamics is ne-
glected. Additionally, vehicle speed V is considered constant2 and the yaw
rate is considered to be linearly dependant on the control inputs via proper
transfer functions. Finally, it is assumed that the rejection of unmodeled phe-
nomena, e.g. disturbances or undefined dynamics, is guaranteed by control
robustness.

Under the described assumptions, the vehicle maintains just two Degrees
Of Freedom - the yaw rate ψdot and the sideslip angle λ - and the linear
equations of motion are the following:

MV

(
dλ

dt
+ ψdot

)
= FY f + FY r + FY d (6.10)

I
dψdot
dt

= Nz −Nt +Nd (6.11)

2The control system is designed for a generic constant velocity V : the extension to a wide
range of vehicle velocities is achieved employing look-up tables of the control parameters,
where this is necessary.
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Figure 6.6: The bicycle model. The model presents an additional control input: the yaw
moment Nz. This allows the direct yaw moment control, and can be achieved opportunely
distributing the torque between the left and right in-wheel motors.

where M is the vehicle total mass, I is the vehicle yaw inertia and Nt is the
yaw moment generated by tyres lateral forces. FY d and Nd are the disturbance
lateral force and the disturbance yaw-moment, respectively, which are caused
by side wind and other unmodeled phenomena.

As described on the right of (6.11), yaw-moment generated by tyres is
defined as Nt := FY f lf −FY rlr. lf and lr are the distances between the centre
of mass and the wheels, and FY f and FY r are the lateral forces of the front
and rear wheels. Under linear hypothesis the forces may also be written as
follows:

FY f = Cf

(
δ − λ− lf

V

)
(6.12)

FY r = Cr

(
−λ+

lr
V

)
(6.13)

where Cf and Cr are the cornering stiffnesses at front and rear axis, respec-
tively, and δ is the steering angle. Let’s notice that the cornering stiffness’
of (6.12)-(6.13) comprise even the normal loads acting at the tyre-ground
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contact point. In order to maintain the model simplicity, load transfers are
neglected, and the normal loads assume the following formulations:

FZf =
Mglr
L

(6.14)

FZr =
Mglf
L

(6.15)

It is worth noting that the model fulfils the purpose it has been designed
for, i.e. a linear dependence can be written between the yaw rate ψdot and
both the yaw control inputs Nz and δ.

6.2.3 Direct Yaw-moment Control

In this section, a robust Direct Yaw-moment Control (DYC) is discussed.
The system aims at controlling the vehicle yaw rate acting on the differential
braking/driving, and is based on the dynamics equations described by (6.10)-
(6.11). From such equations it is easy to note that the actual speed vector
(i.e. lateral and forward velocities) is needed to measure λ and V , but its
evaluation is particularly hard. Moreover, measurement and estimation of
cornering forces are difficult because they are non-linear variables. Thus, it is
assumed that the effect of these variables is an additional disturbance moment
about the vertical axis. In (Sakai et al., 1999, Fujimoto et al., 2004) novel
direct yaw-moment control was proposed, based on a disturbance observer
that compensates these immeasurable terms as the lumped disturbance Ntd =
−Nt +Nd.

This specific disturbance observer is called Yaw-Moment Observer (YMO),
and its architecture is shown in Fig. 6.7. By using the moment Nz as the
control input and the yaw rate ψdot as the measured signal, the YMO can
compensate the lumped disturbance and nominalize the system as:

ψdot(s) =
1
Is
Nz(s) (6.16)

As described in § 6.2.1, the architecture allows the estimate and compen-
sation of additional disturbances linearly acting on the system. Nevertheless,
the vehicle plant of Fig. 6.7 gives just a simplified representation of the com-
plex non-linear system “vehicle”, affected by both linear and non-linear dis-
turbances. For this reason, the full architecture of the DYC is the one shown
in Fig. 6.8. The vehicle plant is substituted by a non-linear complex vehicle
model - or the actual vehicle in experimental phase - and presents two inputs:
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Figure 6.7: Block diagram of the Yaw-Moment Observer with disturbance compensation.
Given a desired yaw rate ψ∗

dot, the yaw moment input Nin can be evaluated from the
nominal plant. All the additional disturbances can be estimated and compensated thanks
to the feedback structure of the system.
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Figure 6.8: Block diagram of the Direct Yaw-moment Control. the internal loop, compris-
ing the DOB, allows the compensation of the additional yaw-moment disturbances. Anyway
an outer feedback loop is added to compensate the non-linear disturbances and nominalize
the system.

the steering angle, from the driver, and the yaw-moment, from the control.
Moreover, an outer yaw rate feedback loop is added, for the non-linear distur-
bance compensation. As said, a steering angle δ is introduced by the driver:
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from such an input, the desired yaw-rate profile is computed as

ψ∗dot =
kf

τfs+ 1
δ (6.17)

where τf and kf are vehicle characteristic parameters, that can be experimen-
tally evaluated or derived from the mathematical representation of the yaw
rate dynamics of a neutral vehicle3. Given the desired yaw rate, the control
input Nin can be computed inverting the nominal plant (6.16). Additionally,
the desired yaw rate is compared to the measured one, in order to evaluate
the error for the controller C(s) and compute the controller yaw moment Nc.
The yaw moment Nz is therefore the sum of three contribution: the nominal
moment Nin, the controller moment Nc and the estimated lumped distur-
bance N̄td. Supposing a proportional controller (C(s) = K), the yaw moment
becomes:

Nz = Nin +Nc + N̄td

= Iψ∗dots+K (ψ∗dot − ψdot) + (Nz − Iψdots) (6.18)

which yields ψdot = ψ∗dot, i.e. the desired behaviour.
Concluding, two considerations of practical nature have to be done. First

of all, the presence of a Low Passing Filter (LPF) after the disturbance es-
timation is necessary to eliminate spikes due to the derivation of the mea-
sured noisy signal ψdot. Moreover, the controller C(s) is designed using the
Ackermann’s pole-placement method (Ackermann , 1980). The Ackermann’s
algorithm allows to evaluate the gain of a closed-loop proportional controller,
given the open-loop system dynamics equation and the desired position of the
closed-loop pole.

6.2.4 Active Front Steering

The second control strategy discussed is the Active Front Steering (AFS)
control. This architecture aims at stabilizing the vehicle yaw dynamics and
assisting the user during the remote control operations, and has been studied
explicitly for the vehicle RUMBy. The AFS control is the only way possible to
implement a yaw rate control in the adopted vehicle, since independent wheel
braking/driving is not available.

3Vehicles can be classified, based on their yaw dynamics, in under-steering, neutral and
over-steering: the best response is the neutral one, thus the goal of yaw rate control is forcing
the vehicle to have such a behaviour.
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Figure 6.9: Block diagram of the Yaw-Moment Observer with disturbance compensation.
Given a desired yaw rate ψ∗

dot, the steering input δin can be evaluated from the nominal
plant. All the additional disturbances can be estimated and compensated thanks to the
feedback structure of the system.

For the same reasons described in the previous section, this control strategy
is even based on the Yaw-Moment Observer, and the vehicle model adopted as
nominal plant for the control synthesis is the linear 5DOF described in § 6.2.2.
The main difference w.r.t. the previous case is that the direct yaw control by
means of differential braking/driving is not allowed (Nz = 0). Therefore,
neglecting the yaw moment Nz, and substituting the linearized forces (6.12)-
(6.13), the yaw dynamics (6.11) becomes:

I
dψdot
dt

= Cf

(
δ − λ− lf

V

)
lf − Cr

(
−λ+

lr
V

)
lr +Nd (6.19)

As described in § 6.2.1, the disturbance observer (and the compensation)
works well on additional disturbances, thus (6.19) can be written as

Iψdots = Cf lfδ +N ′d (6.20)

where N ′d collects the disturbance Nd and all the terms that do not directly
depend on the input δ. (6.20) can be thus written in terms of the yaw rate as:

ψdot =
Cf lf
Is

δ + ψdot,d (6.21)

where the first term represents the nominal plant and ψdot,d is the equivalent
yaw rate due to disturbance. With the same approach adopted in the previous
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Figure 6.10: Block diagram of the Active Front Steering control. By means of the driver
input signal δM , the reference yaw rate is computed. This value is then followed thanks to
the disturbance compensation and the outer feedback loop, that respectively compensate
the additional and non-linear disturbances.

case, the Yaw-Moment Observer has the architecture shown in Fig. 6.9. Such
architecture allows estimating the equivalent steering angle δ̄d responsible of
the disturbance on the yaw-rate, that can be then compensated.

Again, as discussed in the previous section, the disturbance rejection has
to be coupled with an outer feedback loop in order to compensate the non-
linear disturbances. The full architecture of the AFS control becomes then the
one represented in Fig. 6.10. The system effectiveness can be mathematically
demonstrated again computing the system input:

δ = δ∗ + C (ψ∗dot − ψdot) + δd (6.22)

=
Is

Cf lf
ψ∗dot + C (ψ∗dot − ψdot) +

[
δ − Is

Cf lf
ψdot

]
that again yields ψdot = ψ∗dot.

As for the DYC, the low-passing filter is necessary to eliminate spikes in
δ̄d due to differentiation and the controller C(s) is designed by pole-placement
with the Ackermann’s method.

6.3 Strategies Comparison

As explained in the introduction of the chapter, a simulation campaign has
been carried out in order to compare the yaw rate control strategies. Differen-
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tial braking/driving is not possible with the vehicle RUMBy, and experimental
tests of the Direct Yaw Control were therefore unfeasible. § 6.3.1 describes
then the vehicle simulator developed for this purpose, while § 6.3.2 shows and
discusses the results obtained comparing the control strategies during simple
manoeuvres.

6.3.1 Virtual Environment Simulator

The comparison of the control strategies has been carried out by means of a
static simulator, in a virtual environment like the one shown in Fig. 6.11. The
system has been developed in the Mechatronics Laboratory, with the purpose
of testing path planning algorithms and control strategies generated for the
vehicle RUMBy.

In particular, the vehicle dynamics is modelled with the 14 Degrees of Free-
dom representation discussed in § 3.2.3. Moreover, the first order lag model
of § 3.1.1 is adopted to describe the slips dynamics, while the tyre-ground
interaction is represented by means of the non-linear Dugoff model explained
in § 3.1.2. The mathematical model is written in C language in a Matlab
Simulink S-function, that allows the development of purpose-made Simulink
blocks for real-time simulations. The virtual environment has been created in
VRML language, by means of the Matlab Virtual Reality Toolbox. Such a
package allows the creation of a 3-D representation of virtual environments,
running in real-time. In particular, the virtual driving point of view simulates

Figure 6.11: Example of the virtual environment created in VRML language by means of
the Matlab Virtual Reality Toolbox.
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Figure 6.12: Loop of the simulation. The driver physically turns the steering wheel and
pushes the pedals. These signals are transmitted to Simulink and translated in terms of
steering angle and wheel torques. These represent the inputs to the S-function, which inte-
grates the dynamics equation and computes the vehicle states. The vehicle states are then
read by the Virtual Reality toolbox, which updates the virtual environment and transmits
the visual signal to the driver.

the images that would come from an on-board camera, installed on the frontal
part of RUMBy. Finally, a Force-feedback Racelogic platform -steering wheel
and driving/braking pedals- has been used for the driving interface. The plat-
form signals are transmitted to Simulink by a proSense block, that allows the
real-time reading of the commands. The driving simulation runs then the loop
of Fig. 6.12, at a frequency of 1 kHz.

It is important to notice that the driving on a static simulator is a com-
pletely different experience w.r.t. the actual one. The accelerations percepti-
ble while driving a real car represent useful feedback information to the driver
to understand vehicle behaviour and actual state: the static simulator does
not yet give such sensations, making the driving particularly difficult. More-
over, because of the chosen point of view, the velocity perception is strongly
reduced. While driving a real vehicle, the velocity is mainly perceived thanks
to the peripheral vision: the chosen forward point of view strongly reduces
the visual field, specially on the lateral boundaries. These effects make the
simulator driving a very complex activity, hence attention will be paid to the
effects of the controllers on easing the driving experience.
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6.3.2 Simulation Results

This section discusses the effect of Direct Yaw Control and the Active Front
Steering control on the vehicle dynamics, and in particular on disturbance
rejection and on making the driving easier. In the previous section it has
been explained that the driving of the vehicle with the simulator is particularly
difficult, because of the bad longitudinal velocity perception and the absence of
accelerations. A long simulation campaign, with several drivers and different
tracks, has demonstrated that both the control strategies make the driving
much easier in many conditions, and specially in curve entrance. In order to
make the comparison more comprehensible, disturbance rejection and driving
ease are discussed separately by analysing two simplified manoeuvres.

Before discussing the results of the comparison, a couple of comments are
necessary. In case that the vehicle moves at the velocity V along a curve of
radius R, its theoretical yaw rate is

ψdot,th =
V

R
(6.23)

Once the velocity V and the curvature R are known, (6.23) allows to directly
compute the theoretical yaw rate profile of a curve/manoeuvre.

It is worth noting that, while driving, the theoretical yaw rate cannot be
taken as reference for the controller, since it neglects the slips. Nevertheless

i.c.r.  

L

δ

δ

R =
L

tan δ
≈ L

δ

ψdot =
V

R
≈ V

L
δ

V

Figure 6.13: Kinematic linearized bicycle. The kinematic representation of the bicycle
model allows the immediate evaluation of the reference yaw rate, based on the vehicle velocity
and the steering angle applied by the driver.
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the linearized kinematic bicycle model of Fig. 6.13 allows to compute the
reference yaw rate from the driver steering angle. Given a certain steering
angle δ, the curve radius can be geometrically evaluated from the figure as

R =
L

tan δ
≈ L

δ
(6.24)

where L is the vehicle wheelbase. Therefore, by substituting the (6.24) in (6.23),
the yaw rate value for steady state condition can be computed at any instant
from the steering angle, that constitutes the reference for the control strate-
gies:

ψ∗dot =
V

L
δ (6.25)

Moreover, it is evident that by inverting (6.24) it is possible to compute
the theoretical steering angle necessary to cover a curve of radius R with a
vehicle of length L. This consideration results particularly useful to analyse
the effect of control strategies on driving ease, that will be discussed in § 6.3.2.

Control strategies comparison: disturbance rejection

In order to make the disturbance rejection evaluation more comprehensible,
a simplified manoeuvre has been tested along the circuit schematically shown
in Fig. 6.14. The manoeuvre consists of a single clockwise lap along the oval
track at the constant velocity of V = 5 m/s, and the driver should maintain
the vehicle in the middle of the lane (the dashed line of Fig. 6.14). At the half

T1

T2

T3

T4

START

50 m

R17.5 m

Disturbance affected
section

Figure 6.14: Test track. The driver has to maintain the vehicle on the middle of the lane
(dashed line) at a constant velocity of V = 5 m/s. At the half of the first curve an external
yaw-moment of amplitude Nd = 10 N m is added as disturbance, that is then taken off at
the half of the second curve.
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of the first curve, after about 15 seconds, an external step-like yaw-moment
of amplitude Nd = 10 N m is added as a disturbance. The driver has then
to drive in presence of such a disturbance as far as the middle of the second
curve, after about 35 seconds, when the disturbance is taken off.

In the present case the velocity V is constant and the test track can be
divided in 4 segments (the straights T1 and T3 and the curves T2 and T4) of
constant radius (R =∞ for T1-T3 and R = 17.5 m in segments T2-T4). This
means that the theoretical yaw rate of the test track should have a square-wave
profile, with amplitude ψdot,th = 5/17.5 = 0.286 rad/s.

Figures 6.15-6.16-6.17 show the comparison between the theoretical yaw
rate, computed with the (6.23), and the recorded yaw rate, respectively with-
out control, with the DYC and the AFS control. In spite of the fact that ψdot,th
is not the controllers’ reference but just a comparison value, the efficiency of
both DYC and AFS is absolutely evident. The yaw rate recorded for test
without active control systems shows a continuous correction by the driver
to keep the vehicle on the track and the disturbance effect (both when added
and removed) is highlighted by yaw rate jumps (after about 15 and 35 seconds
respectively). In presence of the controllers, the manoeuvres present instead
smoother yaw rates, with profiles that are very similar to the theoretical one.
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Figure 6.15: Comparison of theoretical and measured yaw rate profiles without control -
The interval subject to the disturbance is highlighted.
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Figure 6.16: Comparison of theoretical and measured yaw rate profiles with the Direct
Yaw Control - The interval subject to the disturbance is highlighted.
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Figure 6.17: Comparison of theoretical and measured yaw rate profiles with the Active
Front Steering control - The interval subject to the disturbance is highlighted.

A quantitative evaluation of the controllers efficiency can be instead done
by observing Figures 6.18-6.19-6.20. The graphs show

• the comparison between the reference yaw rate, computed with (6.25)
and the measured one (top plot),

• the yaw rate error (centre plot),

• and the driver steering angle (bottom plot)
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obtained, respectively, without the control, with Direct Yaw Control and with
the Active Front Steering control.
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Figure 6.18: Yaw rate profiles (top), yaw rate error (centre) and driver steering angle
(bottom) without control - The interval subject to the disturbance is highlighted.
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Figure 6.19: Yaw rate profiles (top), yaw rate error (centre) and driver steering angle
(bottom) with the Direct Yaw Control - The interval subject to the disturbance is highlighted.
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Figure 6.20: Yaw rate profiles (top), yaw rate error (centre) and driver steering angle
(bottom) with the Active Front Steering control - The interval subject to the disturbance is
highlighted.

The first observation is about the profiles obtained while driving without
controllers (Fig. 6.18). Since the disturbance introduces an undesired yaw
rate, the driver is forced to counter steering, as shown in bottom plot, in or-
der to maintain the desired attitude. Nevertheless the reference value of the
yaw rate is computed from the steering angle, and this introduces the error
evident in the central part of the manoeuvre (centre plot). This problem is
instead efficiently compensated by both the controllers, as shown in Fig. 6.19
and Fig. 6.20. The good matching between the reference and measured yaw
rate profiles is clear, with very small errors. Moreover the yaw rate profiles
(top plots) assume shapes absolutely similar to those of the respective steer-
ing angle (bottom plots). This means that the yaw rate assumes the nominal
behaviour described by (6.25), i.e. the yaw rate equals the driver steering
angle times the constant scaling factor V/L.
Another interesting comment can be done by observing the steering angle
profiles when the disturbance is taken off (after about 35 seconds): a strong
counter-steering can be seen when driving without control, that is not present
when the controllers are active. Such a phenomenon is due to the fact that, in
absence of the controllers, the driver experiences a strong increase of the yaw
rate at the instant the disturbance is removed, feeling the need of counter-
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steering in order to follow the reference path. Nevertheless tests carried out
with several drivers has demonstrated that the driver reaction is almost always
too strong, involving then a sequence of corrections that yields a discontin-
uous yaw rate profile. This particular effect is instead absent in presence of
either the DYC or the AFS control, thanks to the fact that the disturbance
compensation is not perceived by the driver. In general terms, it can then be
said that the control strategies give comparable results in terms of yaw rate:
both the architectures force the system to the nominal behaviour, compensat-
ing the undesired disturbances and making the driving easier (less correction
necessary by the driver).

In Fig. 6.21 the trajectories recorded during the tests are compared: the
external thin lines represent the track boundaries. Even if a too internal
trajectory is maintained in the first curve in all the cases, the advantages
introduced by the control strategies are evident. Either with the DYC or the
AFS control, the trajectories do not show all the correction that are present
instead when the controllers are off. This effect is particularly evident in the
second curve, when the disturbance is removed and, in absence of assistance,
the driver counter-steers for the reasons above discussed. In general terms it
can be then said that the architectures give comparable advantages in terms
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Figure 6.21: Trajectories comparison - The interval subject to the disturbance is high-
lighted.
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Figure 6.22: Sideslip angle profiles - The interval subject to the disturbance is highlighted.
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Figure 6.23: Corrections profiles - DYC yaw moment Nz (top) and AFS steering angle δ
(bottom) - The interval subject to the disturbance is highlighted.

of trajectory.
Fig. 6.22 compares instead the vehicle sideslip angles during the tests. It

is evident that the Direct Yaw Control presents the best behaviour in terms of
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this variable, and the result is not surprising. Thanks to the direct application
of a yaw moment, the DYC forces the vehicle to maintain the right attitude
during the whole motion. In the two other cases, the disturbance compensa-
tion (by the driver or the controller) is instead achieved by (counter-)steering,
affecting then the vehicle orientation: such a misalignment involves thus the
presence of a sideslip angle when the disturbance is active.

Finally, Fig. 6.23 shows the corrections applied by the controllers. More
precisely, the top plot represents the yaw-moment correction Nz introduced
by the Direct Yaw Control, while the bottom one shows the steering angle
δ applied by the Active Front Steering: the difference between the strategies
is particularly evident from such a graph. Because of the fact that the DYC
directly acts on the yaw dynamics by means of the yaw-moment Nz, the com-
pensation of non-linearity is nearly imperceptible and the correction profile
appears like that of the disturbance. This is not true for the AFS: by acting
on the steering angle, the controller is forced to compensate even the large
non-linearities, that are proper of the vehicle dynamics and comparable in
magnitude to the introduced linear disturbance.

Control strategies comparison: driving ease

In order to evaluate the effect of controllers on driving ease, another simplified
manoeuvre is defined, on the track shown in Fig. 6.24. The curve is covered at
a constant velocity V = 10 m/s and the driver should maintain the vehicle in
the middle of the lane. Nevertheless, in this case no disturbances are added,
in order to focus the analysis on driving ease.

T1

T2

T3

START

50 m

R17.5 m

Figure 6.24: Test track for the analysis of the effect of controllers on driving ease. The
curve is covered at a constant velocity V = 10 m/s and no external disturbances are added,
in order to focus the analysis on the effect of controllers on driving ease.
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Figure 6.25: Driving ease - Typical trajectories.

Fig. 6.25 shows the typical trajectory profiles recorded during the test,
respectively, without control, with DYC and AFS. The effect of active systems
is not particularly evident from such variables, even if small corrections can
be seen during curve exit when the controllers are taken off.

More interesting comments can instead be done by observing Figures 6.26-
6.27-6.28, that show the typical driver steering angle profiles, compared to
the theoretical one computed by inverting (6.24). Such plots clearly show
the beneficial effect of either DYC or AFS strategies, since the number and
the amplitude of the driver’s correction on the steering angle are strongly
decreased when the controllers are active.

A long simulation campaign has also allowed a quantitative evaluation of
the effect of the controllers on the driving ease. In particular, the drivers’s
corrections have been evaluated as the absolute value of the difference between
the actual and the theoretical steering angle:

εδ = |δ − δth| (6.26)

Tab. 6.1 collects the average values µ and the standard deviations σ of such
corrections recorded during the tests: the beneficial effect of the controller
is evident. In particular, the introduction of either the DYC or the AFS
controllers yields a reduction of about the 53 % of the average values of the
corrections, meaning that the driver’s task of path following is extremely fa-
cilitated. A reduction is evident also on the corrections’ standard deviations,
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Figure 6.26: Driving ease - Typical steering angle profile without control.

even if smaller w.r.t. the averages’ one: such a stochastic variable depends, in
fact, mainly on the driver ability, that is not improved by the the controllers.

µ∆δ [deg] σ∆δ [deg]
WOC 0.21 0.36
DYC 0.10 0.32
AFS 0.10 0.28

Table 6.1: Average values and standard deviation of the correction applied by the driver.

Resuming, the simulation campaign has highlighted the beneficial effects
of both the control strategies on disturbance rejection and driving ease. The
Direct Yaw Control presents better effects on some other variable (e.g. the
sideslip angle), which are yet in contrast with the advantages of the Active
Front Steering discussed in § 6.1. Moreover both the strategies make the
remote drive easier, strongly reducing the need of corrections from the driver.
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Figure 6.27: Driving ease - Typical steering angle profile with the Direct Yaw Control.
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Figure 6.28: Driving ease - Typical steering angle profile with the Active Front Steering
control.
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Chapter 7

Conclusions

7.1 Summary Conclusion

The researches carried on in the last years by the members of the Mecha-
tronics Research Group on autonomous driving have disclosed the need of
an experimental platform to test path planning, state estimation and con-
trol algorithms. For this reason in 2006 the Reduced-size UnManned Buggy
(RUMBy) Project is started, aiming at develop such a kind of test platform.
The primary objective of this thesis has been then coping with the problems
proper to the design of an experimental vehicle able to perform autonomous
manoeuvres and/or to be remotely driven.

The work started from the definition of the system requirements, both in
terms of hardware and software architectures. Because of economical con-
straints and hardware requirements, in regard of the vehicle the choice has
fallen on a radio-controlled, 1:6 scale model (about 680 mm long and 510
mm wide) equipped with a 26 cm3 two-strokes engine. Moreover, due to the
limited load capacity of the vehicle, only the sensing and the sensor fusion
instrumentation have been on-board installed, while the heavy and energy-
consuming computer needed for the control and actuation is instead remotely
connected to the vehicle via radio communication channels. These choices
constitutes a key point of the research for several reasons. Firstly this repre-
sents a novelty element, since all the autonomous driving projects present in
literature employ common vehicles (cars and even trucks) and middle/large
investments. Moreover, the vehicle reduced-size has forced the use of com-
pact and low power consumption systems, that could be directly installed
on actual cars (at least regarding the sensing part). At the same time, the
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software framework design has constituted a challenging activity, since radio-
communication is involved and because modularity and safety requirements
were enforced. These constraints have compelled to the drawing of a purpose-
made radio-communication loop (comprising the vehicle radio-controls and a
UDP protocol for the transmission of the sensor signals), and to the choice of
a Manager Unit state-machine architecture.

Some models describing the behaviour of the vehicle and of its subsys-
tems are proposed. Mathematical representations are powerful tools for both
behaviour prediction, state estimation and control synthesis. Attention has
been paid to the modelling of tyres, that constitute crucial elements of cars,
and to different multibody descriptions of the vehicle itself, focusing on the ef-
fect of introducing simplifications. Furthermore, whereas mathematical mod-
els always contain system characteristic parameters, the problems of system
identification and model validation are discussed. Identification aims at eval-
uating the parameters of a system, while validation centres on the evaluation
of models representativeness. Two ways are available for parameters identifi-
cation -measurement and estimation- that have been analysed and discussed
in detail, presenting some experimental results. Validation has been instead
carried on with a novel approach: despite the common method in mechanical
systems validation dealt only with time domain, both time and frequency do-
main responses have been verified, with qualitative and quantitative methods.

Additionally, the efficiency of the state estimation architecture generated
for RUMBy is discussed. Control of a dynamic system requires reliable knowl-
edge of the system state, which besides is not always measurable/observable.
Consequently the state must be estimated from the measurable quantities on-
board acquired. A modular architecture has been proposed, coupling prepro-
cessing and sensor fusion algorithms: preprocessing aims at making measures
suitable for sensor fusion, that yields the out-and-out state estimation. The
modularity shown strong advantages thanks to its flexibility: different state
estimator can be combined with the same preprocessing algorithm, depending
on adopted measures and interesting states.

Finally, the problem of the yaw rate control has been addressed. Two con-
trol strategies are proposed: the Direct Yaw-moment Control (DYC) and the
Active Front Steering (AFS) control. Both the strategies present a disturbance
observer architecture and their design is based on the same linearized model,
but differ on the control input: the DYC generates the corrective yaw-moment
by means of a differential torque (generation of different torques at right and
left wheels), while the AFS acts on the steering angle. Because of the fact that
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independent wheel braking/driving is not available on RUMBy, the strategies
have been compared by means of a simulation campaign. A static simula-
tor is proposed, that allows for reproduce the driving of RUMBy in a virtual
environment. The comparison has highlighted advantages and disadvantages
of each control architecture: both the strategies have anyway demonstrated
beneficial effects in driver assistance, improving vehicle manoeuvrability and
making the driving safer and easier.

7.2 Further Work

As it often happens in research, the results presented in this thesis can only
mark a milestone within a work in progress. In spite of the efforts done to
thoroughly treat each problem, some details have been of course neglected
or studied not in details. Moreover the same nature of the work, i.e. the
development of a test platform, opens the doors to a wide range of analyses and
experimental activities. Consequently it is difficult to identify which aspects
could mainly give rise to future works.

In regard of the vehicle itself, hardware and software reviews are not to be
excluded. For instance, the continuous availability of new electronic devices
could suggest to re-designing the whole system architecture or part of it.
Furthermore it could become interesting to measure further vehicle states and
variables (e.g. engine revs per minute or struts extension), disclosing thus
the need of equipping the vehicle with additional sensors and re-designing
hardware and software interfaces.

At the present time, the modelling activity does not highlight particular
needs of extension. Substantial room for improvement are instead evident
for vehicle identification and validation. The same activities presented about
identification and validation of Kanon roll motion could be either applied to
RUMBy or extended to the whole vehicle dynamics and to its subsystems. By
studying the time and frequency responses of a larger set of degrees of freedom,
more efficient identifications can be achieved, yielding models more and more
representative. In addition, since some vehicle parameters change during a
manoeuvre, the on-line identification by means of recursive algorithms could
represent an interesting investigation field.

Also the state estimation presents large improvement margins. In the
present work a version of the Extended Kalman Filter (EKF) has been dis-
cussed for the state estimation. Nevertheless, the large set of on-board sensors
makes that the measures can be combined in different manners so that to cre-
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ate various sensor fusion algorithm version. It could be besides interesting to
apply state estimation algorithms different from the EKF, like fuzzy logics,
neural networks or other observers.

Finally, the dynamics control is doubtless the widest subject of further
works, properly due to the reasons that have brought to start the project.
In the present work just a couple of yaw rate control architectures based on
disturbance observer have been proposed. The proposed controls are building
blocks for autonomous manoeuvre execution and/or remote driving assistance.
Consequently, further steps in control topic could be the development of lon-
gitudinal dynamics control strategies, the test of longitudinal and lateral dy-
namics controller performances in reference manoeuvre tracking (e.g. in terms
of longitudinal velocity and yaw rate) and the test of overall performances of
a system that on-line re-plans the reference manoeuvre (e.g. the Optimal
Manoeuvre Method), which is tracked by the above “low level” controllers.
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List of Symbols

δ : steering angle

θ : pitch angle

κ : longitudinal slip ratio

λ : sideslip angle

φ : roll angle

ψ : yaw angle

ω : wheel spinning velocity

σi : theoretical slip in i-th direction

σeq : theoretical slip magnitude

kκ : driving stiffness

kλ : cornering stiffness

lij : ij-th strut extension

li : tyre relaxation length in i-th direction

F 0
ij : generic force model

Fx : longitudinal forces acting at tyre-ground contact point in steered frame

Fy : lateral forces acting at tyre-ground contact point in steered frame

S : longitudinal forces acting at tyre-ground contact point in yawed frame
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F : lateral forces acting at tyre-ground contact point in yawed frame

Faero : drag force

N : normal loads acting at tyre-ground contact point

T : driving/braking torques acting at the wheels

M : vehicle total mass

Ms : sprung mass

mu : generic unsprung mass

Ii : moment of inertia in i-th direction

IWi : i-th wheel moment of inertia about spin axis

lr,f : x-distance between the CoM and rear/front wheel

L : vehicle wheelbase

tr,f : rear/front trackwidth

R : nominal tyre radius

hrc : distance between the vehicle CoM and rolling centre along z-axis

hD : z-distance between the CoM and the drag force point of application

kD : vehicle drag coefficient

u : longitudinal velocity

v : lateral velocity

vS : contact point absolute velocity

w : vertical velocity

X : CoM x-position w.r.t. an inertial frame

Y : CoM y-position w.r.t. an inertial frame

Z : CoM z-position w.r.t. an inertial frame



Appendix B

Parameter Estimation by means of

Recursive Least Squares

In order to adapt the vehicle model to the current conditions and, should the
occasion arise, to design adaptive controllers, changing parameters must be
identified online. Whilst with non-recursive methods the estimated parameter
is only available at the end of the measurement time, with dynamic param-
eters it is the changing parameter values after each sampling instant which
are of interest. In order to prevent the saving of all past measurement val-
ues, and thus save computation time, the recursive method is used for online
identification.

For the recursive least squares (RLS) the following equations apply:

P (k) =
[
ΨT (k) ·Ψ(k)

]−1
(B.1)

ζ(k) = P (k + 1) ·Ψ(k + 1)

=
P (k) ·Ψ(k + 1)

ΨT (k + 1)P (k) ·Ψ(k + 1) + 1
(B.2)

Θ̂(k + 1) = Θ̂(k) + ζ(k) ·
[
y(k + 1)−ΨT (k + 1) · Θ̂(k)

]
(B.3)

P (k + 1) = P (k)− ζ(k) ·ΨT (k + 1) · P (k) (B.4)

The basic equation of RLS estimator represent a versatile tool for online
parameter identification. Further related RLS-estimators can be developed
from these equation, such as RLS with weighted memory, generalized RLS,
extended RLS etc.

Via the introduction of a forgetting factor λ, which increases the elements
in the covariance matrix P (k) for each iteration and thus weights the new
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data higher than the older data, one is able to slowly forget past values. This
overcomes the consistency property of least squares estimator for time variant
parameters. λ should not be chosen too small, or the influence of disturbances
may not be satisfactorily removed. Good results have been obtained with
values of 0.95 < λ < 0.995. Because a large part of the identification with RLS
method is carried out with exponentially decaying memory, the corresponding
equations are given.

ζ(k) =
P (k) ·Ψ(k + 1)

ΨT (k + 1)P (k) ·Ψ(k + 1) + λ
(B.5)

Θ̂(k + 1) = Θ̂(k) + ζ(k) ·
[
y(k + 1)−ΨT (k + 1) · Θ̂(k)

]
(B.6)

P (k + 1) =
[
I − ζ(k) ·ΨT (k + 1)

]
· P (k)

1
λ

(B.7)



Appendix C

Simplified refined instrumental-variable

method for continuous-time systems

identification

Consider a lumped-parameter, linear, time-invariant (LTI) continuous-time
model with a single input and a single output (SISO), whose input-output
dynamics is represented by the following transfer function:

G(s) =
Y (s)
U(s)

=
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

ansn + an−1sn−1 + · · ·+ a1s+ a0

Denote respectively with B(s,θ) and A(s,θ) the numerator and denominator
of G(s), both depending on the vector θ of the unknown model coefficients;
by assuming (without loss of generality) that G(s) is normalized so that its
denominator has a unitary constant term, i.e. a0 = 1, the vector of unknown
coefficients is θ = [an, . . . , a1, bm, . . . , b0]T .

Suppose that the input and output variables u(t) and y(t) are measured
at the discrete times tk, k = 1, . . . , tN , and denote with u(tk) and y(tk)
their sampled measurements: then, the continuous-time system identification
problem consists of finding an estimate θ̂ of the actual value of θ by using the
input-output data record ZN := {u(tk), y(tk)}k=1,...,N . The estimate θ̂ can be
determined by minimizing, in a least-square sense, the output error (modeling
error) ε(t) := y(t) − x(t), namely the mismatch between the response x(t)
predicted by the model and the measured response y(t). In order to recast
the minimization problem as an ordinary (i.e. linear) least-square problem,
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the following set of state-variable filters (SVFs) is introduced:

Fi(s,θ) :=
si

A(s,θ)
, i = 0, . . . , n (C.1)

Taking the Laplace transform of the output error yields:

ε(s) = Y (s)− B(s,θ)
A(s,θ)

U(s)

By using the definitions of the SVFs, the Laplace transform ε(s) can be rewrit-
ten as follows:

ε(s) = A(s,θ)F0(s,θ)Y (s)−B(s,θ)F0(s,θ)U(s) (C.2)

=
n∑
i=0

ai s
iF0(s,θ)Y (s)−

m∑
i=0

bi s
iF0(s,θ)U(s) (C.3)

=
n∑
i=0

ai Fi(s,θ)Y (s)−
m∑
i=0

bi Fi(s,θ)U(s) (C.4)

=
n∑
i=0

ai Yi,f (s)−
m∑
i=0

bi Ui,f (s) (C.5)

where Yi,f (s) := Fi(s,θ)Y (s) and Ui,f (s) := Fi(s,θ)U(s) are the filtered ver-
sions of the input and output variables. Back in time-domain, the output
error becomes:

ε(t) =
n∑
i=0

ai yi,f (t)−
m∑
i=0

bi ui,f (s) = y0,f (t)−ϕTf (t)θ (C.6)

where ϕf (t) = [−yn,f (t), . . . , −y1,f (t), um,f (t), . . . , u0,f (t)]T .
The least-square (LS) estimate θ̂LS of θ is determined by minimizing the

sum of the squares of the residuals ε(tk), k = 1, · · · , N , i.e.:

θ̂LS := argmin
θ

N∑
k=1

ε2(tk) = argmin
θ

N∑
k=1

[
y0,f (tk)−ϕTf (tk)θ

]2
(C.7)

or, in compact form:

θ̂LS := argmin
θ

‖Γ−Φθ‖2 = (Γ−Φθ)T (Γ−Φθ) (C.8)
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with:

Γ := [y0,f (t1), . . . , y0,f (tN )]T (C.9)

Φ := [ϕf (t1), . . . , ϕf (tN )]T (C.10)

This is a standard linear least-square problem, whose solution can be com-
puted analytically as follows:

θ̂LS =
(
ΦTΦ

)−1
ΦTΓ (C.11)

Although a solution to the estimation problem is apparently provided,
there are two issues with the procedure described above that undermine the
attainment of a consistent estimate. Firstly, the definition of the SVFs given
in (C.1) depends on A(s,θ), which is not known a priori; secondly, the LS
estimate is asymptotically biased whenever the measurement noise is not white
?. In order to overcome these two issues, an iterative procedure based on the
instrumental variable (IV) method is introduced. Its structure consists of the
following steps:

1. (Initialization) Choose an initial estimate A0(s) of the denominator
A(s,θ), which is required to form a first set of SVFs. The typical choice
is:

A0(s) = (s+ λ)n (C.12)

where λ > 0 is a constant larger than the system bandwidth.

2. (LS step) Define the filters Fi(s), i = 0, . . . , n as specified in (C.1), by
using the initial estimate A0(s) defined in previous step; use them to
construct the matrices Γ and Φ, and get the LS estimate:

θ̂LS =
(
ΦTΦ

)−1
ΦTΓ (C.13)

Set θ̂1 = θ̂LS and k = 1.

3. (IV step) Increase k by 1; then, construct the following vector of regres-
sors (called instruments):

ψf (t) = [−ŷn,f (t), . . . , −ŷ1,f (t), um,f (t), . . . , u0,f (t)]T (C.14)
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where the regressors ŷl,f (t), l = 1, . . . , n are obtained by filtering, using
the filters Fl(s, θ̂k−1), the output ŷ(t) of the noise-free model:

Ŷ (s) =
B(s, θ̂k−1)

A(s, θ̂k−1)
U(s) (C.15)

The new vector of regressors can be used to compute a consistent esti-
mate of θ, called instrumental-variable (IV) estimate:

θ̂IV =
(
ΨTΦ

)−1
ΨTΓ (C.16)

where:
Ψ := [ψf (t1), . . . , ψf (tN )]T (C.17)

Set θ̂k = θ̂IV ; repeat the IV-step until the iteration converges (typically,
until the improvements in the loss function (C.7) become negligible).
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Auto-correlation and Cross-correlation

A quantitative method for the validation of a model consists of the residual
analysis. Residuals ε(t) are differences between the predicted output from the
model ŷ(t) and the measured output y(t) from the validation data set. In
particular, two tests have to be done on the residuals: “independence test”
and “whiteness test”. The independence test demonstrates if the residual er-
ror ε(t) is uncorrelated with u(t) (i.e. if the model is capable of reproducing
the whole portion of the output y(t) affected by the input u(t)) and is carried
out by computing the cross-correlation between ε(t) and u(t). The whiteness
test shows instead if the model provides a correct prediction of the equiva-
lent disturbance affecting the output measurements, hence the residual error
should be a white noise: this is verified by studying the auto-correlation of
the residual ε(t).

Generally speaking, the correlation ρX,Y can be thought as a normalized
measure of covariance, and constitutes a dimensionless index of the similarity
between two random variables X and Y :

ρX,Y =
cov(X,Y )
σXσY

=
E[(X − µX)(Y − µY )]

σXσY
(D.1)

where µ indicates the average value of a variable and σ is its standard devi-
ation, “E” is the expected value operator and “cov” means covariance. Note
that this expression is not well-defined for all processes, because the variance
may be zero (for a constant process) or infinite. If the function is well-defined,
its value must lie in the range [-1, 1], with 1 indicating perfect correlation and
-1 indicating perfect anti-correlation.

Going back to the residual analysis, the independence test consists then
of compute the cross-correlation between the residuals ε(k) and the input
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u(k) measured at the generic sample time k. Therefore (D.1) becomes the
following:

ρε,u =
E[(εk − µε)(uk − µu)]

σεσu
(D.2)

and indicates, at any time, if the model captures the whole dynamics of the
system. On the contrary, the whiteness test is done by computing the residuals
auto-correlation. Auto-correlation describes the correlation between values
of the same variable (in this case, the residual ε) at different instants, as a
function of the two times. Let t1 and t2 be two generic points in time, the
auto-correlation of the residuals between any these times is

ρε(t1, t2) =
E[(εt1 − µt1)(εt1 − µt1)]

σt1σt2
(D.3)

This test allows then to determine if the model correctly predicts the distur-
bance affecting the outputs.
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