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ABSTRACT 

Introduction 

Bacterial Outer Membrane Vesicles (OMVs) are naturally produced by all 

Gram-negative bacteria and are emerging as an attractive vaccine platform. 

The exploitation of OMVs in cancer immunotherapy was tested by decorating 

them with cancer epitopes and by following their capacity to elicit protective 

immune responses, alone or in combination, using cancer mouse models. 

Furthermore, we tested whether cancer cell-derived exosomes (TEXs) and 

OMVs can form complexes and whether such complexes, which carry TEX-

associated tumor antigens and OMV-associated immune-stimulatory 

molecules, elicit anti-tumor immune responses in vivo. 

Results 

Immunization with OMVs engineered with two B cell epitopes (EGFRvIII and 

D8-mFAT1) induced tumor growth inhibition after mouse challenge with cell 

lines expressing the corresponding epitopes. Furthermore, mice immunized 

with engineered OMVs carrying two cancer epitopes, the EGFRvIII B cell 

epitope and the M30 CD4+ T cell epitope, were completely protected from 

EGFRvIIIB16F10 cell line expressing both epitopes, indicating the importance 

of multi-antigen immunization in cancer immunotherapy. Furthermore TEXs-

OMVs immunization induced antibody responses against exosome antigens 

with a Th1-type profile. Finally, the combination of CT26-derived TEXs and 

MBP-D8-mFAT1 OMVs elicited synergistic protective activity against mouse 

challenge with CT26 cell line. 

Conclusions 

OMVs decorated with tumor antigens elicit antigen-specific, protective anti-

tumor responses in mice. The synergistic protective activity of multiple epitopes 

simultaneously administered with OMVs, either by direct OMV engineering or 

by TEX-OMV combination, demonstrates the attractiveness of the OMV 

platform in cancer immunotherapy.  
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1 INTRODUCTION 

Cancer is the second leading cause of death worldwide, accounting for 8.8 

million deaths in 2015 (World Health Organization (WHO) statistics1).  

With the continuing growth and aging of the world’s population, the global 

burden of new cancer cases is estimated to rise by about 70% over the next 

two decades1,2, with more than 50% of the people above 75 years of age 

expected to die because of cancer. The American Cancer Society (ACS) 

estimates that roughly 1.7 million new cases of cancer will be diagnosed in the 

U.S. in 2017 and more than 15 million Americans living today have a cancer 

history3. The Agency for Healthcare research and Quality (AHRQ) estimates 

that the direct medical costs (total of all health care costs) for cancer in the U.S. 

in 2014 were 87.8 billion USD: 58% of this cost for hospital outpatient or doctor 

office visits and 27% of this cost for inpatient hospital stays. The cost of cancer 

care is a topic at the center of a national discourse on fiscal responsibility and 

resource allocation. According to the Centers for Medicare and Medicaid 

Services (CMS), national health expenditures as a percentage of the U.S. 

Gross Domestic Product (GDP) totaled 5% in 1965, but are expected to total 

20% of GDP by the middle of this decade4. Although spending on cancer care 

comprises only 5% of the overall health care budget, these costs continue to 

rise at a pace more rapid than any other area of health care5. National cancer 

expenditures are projected to increase from 125 billion USD in 2010 to 173 

billion USD in 20205. Additionally, costs of oncology therapeutics and 

supportive care drugs have grown to reach 107 billion USD globally in 2015, an 

increase of 11.5% over 2014 (on a constant dollar basis) and up from 84 

billion� USD in 2010, as measured at invoice price levels. Annual global growth 

in the oncology drug market is expected to be 7.5 – 10.5% through 2020, 

reaching 150 billion USD6. 

Based on the above, on February 12th, 2016, during his speech to the Union 

States, President Barak Obama launched the so called “Moon Shot Cancer 

Program”, declaring the following: “For the loved ones we have lost, for the 

family we can still save let’s make America the Country that cures cancer once 
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and for all”. President Obama allocated 1 billion USD to the program, asked 

Vice President Joe Biden to take the lead (J. Biden lost his 46 years old son for 

brain cancer), and fixed 2025 as deadline to reach this ambitious objective. 

Rejuvenated by the “Moon Shot Program”, research on prevention, early 

diagnosis, and development of novel and efficacious cancer treatments has 

become a top priority for the U.S. health care system (as well as for the health 

care systems worldwide) and indeed a tremendous progress has been 

achieved so far. 

Trying to summarize the state of the art of the armamentarium of strategies put 

in place to fight cancer is out of the scope of this introduction. Since my 

experimental PhD program aimed at investigating the potential of therapeutic 

cancer vaccines, I will briefly focus on cancer immunotherapy, a field that has 

made a tremendous progress over the last few years and is expecting to 

revolutionize the way cancer patients can be treated. 

1.1 Cancer Immunotherapy 

For most of the twentieth century, the ability of the immune system to recognize 

and eradicate cancer was doubted by the vast majority of medical oncologists. 

Prevailing wisdom postulated that tumorigenesis and disease progression could 

not occur in the face of an immune response; thus, a diagnosis of cancer meant 

a priori that such antitumor responses had failed. Furthermore, the notion that 

immune responses may in fact prevent the occurrence of clinically manifested 

disease could not be proven unequivocally, as still remains the case today. 

However, several anecdotal case studies documented evidence of unexplained 

spontaneous tumor regressions in cancer patients, providing support for the 

idea that antitumor immune responses may play a critical role in some patients.  

The critical relationship between immune function and cancer was first 

proposed by Rudolf Virchow 150 years ago when he observed the prevalence 

of leukocytes in tumors. A few decades later, William Coley, a medical doctor 

who received his license to practice medicine in New York in 1890, made the 

observation that occasional patients with inoperable cancers had remissions of 

their tumors during life-threatening infections such as severe erysipelas 
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(Streptococcus pyogenes)7. Thus, in 1891, he intentionally infected a patient 

with a large inoperable neck tumor with S. pyogenes. After a life-threatening 

systemic infection, the patient recovered and his tumor showed marked 

regression. In 1893, Coley produced extracts of cultures of S. pyogenes and 

Bacillus prodigiosus (an endotoxin producing organism) – known as the Coley’s 

toxin. By 1914 Coley had treated over 500 patients, claiming to have induced 

over 150 remissions8. Additional evidence of connection between infections and 

tumor regressions has come from Bacillus Calmette–Guérin (BCG), a 

tuberculosis vaccine preparation consisting of attenuated Mycobacterium, with 

this treatment being used to the present day as the most effective therapy to 

prevent recurrence against superficial bladder cancer, presumably by activating 

an antitumor immune response7. 

The most convincing evidence for the existence of antitumor immunity came in 

the late 1980s from clinical trials which showed that some metastatic melanoma 

and renal cell carcinoma patients experienced dramatic tumor regressions in 

response to treatment with the cytokine interleukin (IL)-2, a potent activator of T 

cells7. Approximately 15% of patients had objective responses after IL-2 

treatment, and half of these went on to be completely cured9. These results led 

the US Food and Drug Administration (FDA) to approve IL-2 in the late 1990s 

as the first bona fide immunotherapy for the treatment of cancer patients. They 

also inspired several research studies over the past two decades to develop 

alternative immunotherapies with better safety and efficacy and to improve 

understanding of IL-2 mechanism of action9. 

Today, there remains little doubt that the immune system has the inherent 

capacity to recognize and eradicate cancer and this awareness has triggered 

an intense research activity aiming at exploiting the intrinsic capacity of our own 

immune defenses to fight cancer. Tumors arise through a combination of 

genetic and epigenetic changes that generate “foreign” antigens, the so-called 

neoantigens, which make most neoplastic cells detectable by the immune 

system10. Unfortunately, some neoplastic cells can manage to escape immune 

recognition, developing mechanisms of immune evasion, induction of tolerance, 

and systemic disruption of T cell signaling10. Moreover, immune recognition of 

malignant cells inevitably triggers a selective pressure favoring the outgrowth of 
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less immunogenic and more apoptosis-resistant clones10. Aim of 

immunotherapy is to apply ex vivo and in vivo strategies to invigorate the 

immune system and make it capable of recognizing and destroy tumors that 

otherwise have successfully escaped natural immune surveillance.  

The most promising immunotherapy strategies already approved or under 

intense clinical investigation are briefly described below. 

1.1.1 Monoclonal antibodies (mAbs) therapy 

Anti-cancer monoclonal antibodies (mAbs) are drugs designed to bind to 

specific targets on cancer cells and destroy them through four distinct 

mechanisms of action: (i) impairment of cell growth signaling, by binding soluble 

mediators and inhibiting their interaction with cognate receptors, or by working 

as agonist/antagonist of surface receptors; (ii) stimulation of antibody 

dependent cellular cytotoxicity (ADCC), mostly mediated by the recognition of 

antibody binding to tumor cells through Fc receptor engagement of Natural 

Killer (NK) cells and macrophages; (iii) activation of the complement dependent 

cytotoxicity (CDC), also mediated by antibody binding to tumor cells: (iv) 

induction of adaptive immunity against tumor-specific and tumor associated 

antigens. This mechanism is triggered by the release of cancer antigens from 

cells killed by CDC and ADCC.  

The past two decades have seen the approval of several mAbs (Table I) that 

now are part of the standard clinical practice. For instance, mAbs targeting the 

 
Table I. Taken from: Simpson, A. et al. Monoclonal antibodies for the therapy of cancer. BMC Proc.8, O6 (2014)11. 
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extracellular domain of the Epidermal Growth Factor Receptor (EGFR) are 

Cetuximab to treat colon and head and neck cancers and Panitumumab for 

colon cancer. Furthermore, Trastuzumab is an antibody targeting Human 

Epidermal Growth Factor Receptor 2 (HER2), expressed in approximately 15-

30% of breast cancers and associated with a poor prognosis12. Finally, 

Bevacizumab is a mAb directed against vascular endothelial growth factor A 

(VEGFA) and has been approved for treatment of colorectal cancer (CRC), 

glioblastoma, cervical cancer, lung cancer, renal cell cancer, breast cancer and 

ovarian cancer12. In addition to the direct, modulatory effects on signal 

transduction, ADCC mediated through engagement of NK and macrophages, 

also contributes to the activity of these antibodies. 

In addition to “naked” mAbs, antibody-drug conjugates (ADC) have also been 

developed. These antibodies have been conjugated to cell toxins using different 

conjugation chemistries. Thanks to the ability of such antibodies of being 

internalized upon binding to cancer cells, they release the toxic payload inside 

the cells thus promoting specific cell killing. In 2011 Brentuximab vedotin 

(Adcetris®), received FDA approval for the treatment of patients with Hodgkin 

lymphoma. Brentuximab vedotin is comprised of an anti-CD30 chimeric 

antibody attached to monomethyl auristatin E (MMAE) via a protease-cleavable 

dipeptide linker. This approval was based on the pivotal Phase II study of 102 

patients with an overall objective response rate (ORR) of 75% with complete 

remission (CR) in 34% of patients. The median duration of response for those 

patients in CR was 20.5 months. More recently, Brentuximab vedotin received 

additional FDA approval for patients with unfavorable-risk relapsed or primary 

refractory classic Hodgkin’s lymphoma who have undergone autologous stem-

cell transplantation. The AETHERA Phase III trial noted an impressive median 

progression-free survival (PFS) improvement of 42.9 months in the 

Brentuximab vedotin group compared with 24.1 months in the placebo treated 

group13.  

The second ADC to receive FDA approval in solid tumors is ado-Trastuzumab 

emtansine (T-DM1, KadcylaTM). T-DM1 was approved for use as a single 

agent for the treatment of patients with HER2 positive metastatic breast cancer 

(MBC) who previously received Trastuzumab and taxane, separately or in 
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combination13. The overall response rate in this patient population was 34.5%, 

with clinical benefit seen in 48.2% of patients. FDA approval for T-DM1 was 

granted after the successful 991 patient Phase III EMILIA trial in which an 

overall progression-free survival of 9.6 months with T-DM1 versus 6.4 months 

with lapatinib plus capecitabine was observed. Research into novel ADCs has 

considerable momentum, with over 100 open clinical trials (clinicaltrials.gov) 

currently exploring ADCs against novel antigen targets in cancer patients13.  

1.1.2 Immune check point inhibitors 

The use of monoclonal antibodies to inhibit the natural down-regulation of T cell 

activation is revolutionizing the current approaches to cancer therapy. Not 

surprisingly, the prestigious journal Science elected an anti- cytotoxic T-

lymphocyte–associated antigen 4 (CTLA-4) antibody as “molecular of the year” 

in 2013.  

One of the critical steps of immune response is the activation of T cells which 

recognize, through their T cell receptor (TCR), cognate antigens associated to 

the major histocompatibility complex (MHC) of antigen-presenting cells (APCs). 

If TCR-antigen-MHC recognition occurs concomitantly with the binding of CD28 

(on T cells) and B7 (on APCs), a full T cell activation occurs (Figure 1). T cell 

activation is temporally regulated to avoid that an over-activation of T cells 

could ultimately damage healthy tissues and cause autoimmunity14. The 

regulation of T cell activation is mediated by a set of regulatory molecules most 

of which up-regulated on the surface of activated T cells. For instance, CTLA-4 

receptor is expressed on activated effector T cells and regulatory T cells 

(Tregs) and it inhibits proliferation of, and IL-2 secretion by, T cells by 

competing with CD28 for B7 interaction14. Preventing CTLA-4 binding to B7 

using anti-CTLA-4 mAbs has shown to pleiotropically fire T cell activation and 

potently inhibit tumor growth and proliferation in both preclinical and clinical 

settings. These impressive pieces of data led to the FDA approval as a first line 

therapy for metastatic melanoma patients of Ipilimumab, a mAb directed 

against CTLA-415. Pooled data from clinical trials of Ipilimumab confirmed 

durable clinical responses, depicted by a plateau in the survival curve beginning 

around year 3, that lasted 10 years or more in a subset of approximately 21% of 
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patients who would otherwise be destined to death16. In 2015, Ipilimumab was 

also approved by the FDA as adjuvant therapy for locally advanced melanoma.  

The downside of the use of immune checkpoint inhibitors such as anti-CTLA-4 

mAbs is that the uncontrolled stimulation of immune responses is usually 

accompanied by significant immune-related toxicities. Although such toxicity 

can be partially controlled by using systemic steroid therapy14, the treatment 

usually has to be interrupted after a few months. Therefore, the development of 

strategies aimed at attenuating the immune toxicity of checkpoint inhibitors 

represents an area of intense research.  

 
Figure 1. Taken from: Farkona, S., Diamandis, E. P. &Blasutig, I. M. Cancer immunotherapy: the beginning of the 

end of cancer? BMC Med. 14, 73 (2016)10. T cell activation. A) Both immunological signal 1 (T cell receptor 

(TCR) recognition of antigens) and immunological signal 2 (stimulation of CD28 by B7 costimulatory 

molecules) are required for T cell activation in the lymph node. The interaction between the CTLA-4 receptor 

and B7 expressed on T cells and APCs, respectively, prevents T cells from becoming fully activated by 

blocking immunologic signal 2. B) Antibodies that block the CTLA-4 pathway (e.g. Ipilimumab) permit T cell 

activation by derepressing signaling by CD28.  

Another checkpoint receptor expressed by activated T cells is programed death 

1 (PD-1), expressed by antigen-stimulated T cells, which inhibits T cell 

proliferation, cytokine release and cytotoxicity. PD-1 fires T cell inhibition by 

binding to its cognate receptor PD-L1, which is up-regulated as a response to 

cytokine release by effector T cells on different cells, including T cells and 

tumor cells. Similarly to anti-CTLA-4 mAbs, anti-PD1 mAbs promote antitumor 

immune response. Alternatively, the inhibition of effector T cells can be 

prevented by using anti-PD-L1 antibodies that avoid PD-1/PD-L1 interaction 

(Figure 2). A large number of clinical trials have shown that antibodies blocking 

the PD-1/PD-L1 axis induce durable anti-tumor responses in many tumors14,17. 

This has led to the approval of two anti-PD1 antibodies (pembrolizumab and 

nivolumab) and one anti-PD-L1 antibody (atezolimumab) for the treatment of 



CONFIDENTIAL Introduction 

8 

advanced melanoma, non-small-cell lung cancer (NSCLC), renal cell 

carcinoma, head and neck squamous carcinoma, Hodgkin’s lymphoma, and 

bladder cancer18. 

 
Figure 2. Taken from: Farkona, S., Diamandis, E. P. &Blasutig, I. M. Cancer immunotherapy: the beginning of the 

end of cancer? BMC Med. 14, 73 (2016)10. T cell activation in the tumor milieu. A) PD1 receptor is an 

inhibitory receptor expressed by antigen- stimulated T cells. Interactions between PD1 and its ligand, PD-L1, 

expressed in many tumors activate signaling pathways that inhibit T-cell activity and thus block the antitumor 

immune response. B) Antibodies targeting PD1 or PD-L1 block the PD1 pathway and reactivate T cell activity.  

Currently there are over ten anti-PD-1 and anti-PD-L1 antibodies in various 

stages of clinical testing in many different tumor types. Interestingly, there have 

been thousands of patients receiving PD-1 blockade therapy thus far, with 

similar immune related toxicities as observed for anti-CTLA-4 but with generally 

lower frequency, possibly because the PD-1 and PD-L1 checkpoint may act 

later in the T cell response, resulting in a more restricted T cell reactivity toward 

tumor cells, with the majority of patients tolerating treatment well. Due to the 

non-overlapping mechanism of action of anti-CTLA-4 and anti-PD1 antibodies, 

clinical testing of the combination of these two classes of checkpoint inhibitors 

showed improved clinical response (up to 60%) in melanoma19. The 

combination of CTLA-4 and PD-1 and PD-L1 checkpoint blockade has been 

approved as front line therapy for advanced melanoma patients and is being 

tested in other tumor types with different dose levels and intervals of anti-CTLA-

4 to reduce toxicity14. 

The success of anti-CTLA-4 and PD-1/PD-L1 mAbs prompted the research of 

other immune checkpoint pathways as targets for new immunotherapies10. For 

instance, the T cell immunoglobulin and mucin domain containing 3 (TIM-3) and 

lymphocyte activation gene 3 (LAG-3) are being studied. TIM-3, suppresses 
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effector T cell activation and is co-expressed with PD1 on CD8 tumor infiltrating 

lymphocytes (TILs)10. LAG-3 acts by binding to MHC molecules and also 

inhibits T cell activation and proliferation20. LAG-3 is co-expressed with PD-1 on 

T cells, making it a suitable candidate for a combinatorial approach with anti-

PD-1 agents. Antibodies against TIM-3 and LAG-3 are under clinical 

investigation, showing encouraging efficacy.  

Several other targets of host immunity are currently being evaluated in the pre-

clinical and clinical settings, including inhibitory (IDO1, B7-H3, B7-H4, VISTA, 

ICOS, KIR and TIGIT) and stimulatory (OX40, 4-1BB and GITR) molecules21. 

1.1.3 Adoptive cell transfer (ACT) of T cells 

The exploitation of adoptive transfer of T cells stems from the observation that 

cancer patients do have naturally induced anti-tumor T cells. However, they are 

not effective in preventing tumor growth since their number is too limited. Since 

technologies exist to isolate and expand T cells in vitro, the rationale of T cell 

adoptive transfer is to artificially enhance the population of tumor-specific T 

cells to a level that is therapeutically efficacious. Therefore, tumor-specific 

lymphocytes are first isolated from patients’ peripheral blood, tumor-draining 

lymph nodes or tumor tissues, expanded ex vivo, and reinfused back into the 

patient22. Indeed, over the last two decades, autologous T cell therapies have 

demonstrated their potential by inducing dramatic clinical responses10. Prior to 

reinfusion, usually lympho-depletion is applied to patients and this procedure 

has resulted in durable, complete regression of melanoma23. In a pilot study at 

NCI cancer regressions by RECIST criteria (Response Evaluation Criteria in 

Solid Tumors) were seen in 21 out of 43 patients (49%), including 5 patients 

(12%) who underwent complete cancer regression24. When 200 or 1200 

centigray (cGy;1 Gy = 100 rads) total-body irradiation (TBI) was added to the 

preparative regimen in pilot trials of 25 patients each, the ORR of 52 and 72% 

were seen, including 20 and 40% complete regressions24. Twenty of the 93 

patients (22%) in these trials had complete regressions, and 19 (20%) have not 

experienced recurrences at follow-up times of 5 to 10 years and are probably 

cured. The observation that melanoma TILs can mediate durable, complete, 

and probably curative cancer regression in patients with metastatic melanoma 
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has raised considerable interest in the possible use of TILs for the treatment of 

multiple cancer types. 

Adoptive transfer of genetically modified T cells is an effective alternative to 

classical ACT. There are two main T cell engineering platforms (Figure 3): (i) 

genetic manipulation of autologous T cells with TCRα and ß chains conferring 

high specificity for selected tumor epitopes, and (ii) T cell manipulation with 

chimeric antigen receptors (CARs). CARs are fusion proteins constituted by 

three domains: (1) an extracellular binding domain having specificity for the 

target tumor cells (usually single chain monoclonal antibodies recognizing 

surface exposed cancer antigens are used), (2) a transmembrane domain, and 

(3) a cytoplasmic domain firing T cell activation upon CAR binding to target cell. 

CARs offer two important advantages over classical adoptive T cell transfer. 

First, they carry binding modules with high affinity which bypass the 

fundamental issue of central tolerance. Second, being not MHC-restricted and 

processing-independent, CAR-based approaches are insensitive to MHC down-

regulation and to altered processing escape mechanisms. The first successful 

clinical application of anti-CD19 CAR gene therapy in humans was reported in 

201024. Administration of autologous cells expressing the anti-CD19 CAR to a 

patient with refractory lymphoma resulted in cancer regression in a patient who 

remained progression-free after two cycles of treatment ongoing 4 years after 

treatment. Multiple groups have now shown the effectiveness of ACT targeting 

CD19 in patients with follicular lymphoma, large-cell lymphomas, chronic 

lymphocytic leukemia, and acute lymphocytic leukemia. These impressive 

results led to a large number of clinical trials of CAR T cells aiming at multiple 

hematological antigens, such as CD20, CD22 also frequently expressed in non-

Hodgkin lymphoma and B cell acute Lymphoblastic Leukemia (B-ALL)24.  

Refinements of this strategy exploit T cells which carry an endogenous TCR 

specific for a strong immunogen and are genetically engineered to co-express a 

chimeric antigen receptor specific for a cancer antigen25. This dual-specificity of 

T cells has shown in preclinical studies anti-tumor reactivity upon allogeneic 

immunization. Phase I clinical study has demonstrated that dual-specific 

alloreactive CARs could be applied safely to ovarian cancer patients26.  
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Figure 3. Taken from: Farkona, S., Diamandis, E. P. &Blasutig, I. M. Cancer immunotherapy: the beginning of the 

end of cancer? BMC Med. 14, 73 (2016)10. Genetic T cell engineering for the improvement and broadening 

of TIL therapy. CARs consist of an Ig variable extracellular domain fused to a TCR constant domain. The 

engineered T cells obtain the antigen- recognition properties of antibodies and thus are targeted against any 

potential cell surface target antigen. The expression of the TCR confers the engineered T cell with the antigen 

specificity of the transferred TCR. TIL therapy with TCRs is feasible for patients whose tumor harbors the 

HLA allele and expresses the target antigen recognized by the TCR. 

The biggest challenge facing the field of ACT is the identification of target tumor 

antigens that are not expressed by normal tissues, both to maximize specificity 

and efficacy and to minimize toxicity. A commonly seen toxicity in ACT therapy 

is cytokine release syndrome, which can be life-threatening and requires 

prompt management with steroids and IL-6 receptor antibody (tocilizumab)14. 

1.1.4 Adoptive transfer of Dendritic Cells (DCs) 

Dendritic cells (DCs) play a crucial role in protecting the body from foreign 

antigens and form a link between the innate and adaptive immune system. 

Upon encountering foreign antigens, DCs act as sentinels of the innate immune 

response by releasing activating cytokines. As orchestrators of the adaptive 

immune response, DCs take up, process and present antigens on their cell 

surface to T-cells and B-cells, thereby activating naïve effector and memory 

immune cells or maintaining tolerance against self-antigens27. DCs are 

described to be the most potent endogenous activators of de novo T-cell and B-

cell responses, highlighting their vaccine potential in eliciting potent anti-tumor 

immune responses27. 
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Figure 4. Taken from: Schaller, T. H. & Sampson, J. H. Advances and challenges: dendritic cell vaccination 
strategies for glioblastoma. Expert Rev. Vaccines584, 14760584.2016.1218762 (2016).27 DCs for 

immunotherapy are generated in vitro using CD14+ monocytes isolated from patient PBMCs. Monocytes are 

typically differentiated into immature DCs by incubating with GM-CSF and IL-4 for a period of 5–7 days. DCs 

are subsequently matured in a cytokine cocktail for 16–20 hours and loaded with tumor antigen. DCs can be 

loaded with various formats of tumor antigen, including peptides, tumor lysate, DNA, and RNA. Finally, the 

DCs are injected back into the patient where they travel to vaccine-draining lymph nodes to elicit a tumor-

specific immune response. Injection with adjuvants such as the tetanus toxoid can be used to increase DC 

migration to the lymph nodes and augment vaccine efficacy. 

The most common approach to generate clinical-grade DCs in vitro makes use 

of isolated CD14+ monocytes from patient peripheral blood mononuclear cells 

(PBMCs) (Figure 4). Over a period of 5–7 days, monocytes are differentiated 

into immature DCs by culturing with granulocyte macrophage colony-stimulating 

factor (GM-CSF) and interleukin (IL)-4. DCs are subsequently matured in a 

cytokine cocktail for 16–20 hours and loaded with tumor antigen. DCs can be 

loaded with various formats of tumor antigen, including peptides, tumor lysate, 

DNA, and RNA. Finally, the DCs are injected back into the patient where they 

travel to vaccine-draining lymph nodes to elicit a tumor-specific immune 

response. Injection with adjuvants such as the tetanus toxoid can be used to 

increase DC migration to the lymph nodes and augment vaccine efficacy27.  

Sipuleucel-T (Provenge) has been the first DC-based cancer vaccine approved 

in the U.S. and despite its relatively modest efficacy it is universally cited as the 

first demonstration of the potential of cancer immunotherapy in humans. The 

vaccine has been approved for castration-resistant prostate cancer patients and 
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is based on DCs partially purified from the blood of patients as described above 

and stimulated with a fusion protein consisting in prostatic acid phosphatase 

(PAP) linked to GM-CSF. Stimulated DCs are subsequently injected back into 

the patients. The vaccine has been approved on the basis of an objective 

increased median survival of 4.5 months27. 

Adoptive transfer of DCs is under intense investigation. A recent work by 

Anguille et al28 reviews a number of published clinical trials. Overall, DC 

vaccination has clear objective responses even if relatively modest and often 

not dissimilar from other therapies. For instance, 8.5% of melanoma patients 

receiving DC therapy achieved an objective response, an efficacy similar to 

dacarbazine (the standard chemotherapeutic drug for treatment of melanoma) 

or to Ipilimumab, for which 5–15% of patients have an objective response. 

Moreover, 15.6% of patients with malignant glioma, and 11.5% of patients with 

advanced renal cell carcinoma 15.6% responded to DC therapy, a frequency 

comparable to what obtained with other immunotherapies such as IL-228. 

There are number of challenges involving DC-based cancer vaccines including 

production issues necessary for uniformity in phenotype and activity (the realm 

of Good Manufacturing Practice—GMP). There are current questions as to 

what are the optimal means for generating DCs from precursors, as well as how 

to (or whether to) “mature” the cells, along with their preservation and re-growth 

after freezing. Additionally, the nature of the loaded antigenic material (source, 

format, single vs. multiple antigens, etc.) likely plays a critical role in the final 

vaccine formulation, but there is no true consensus28. As these DCs are usually 

injected back into a patient, migration of the DCs to lymph nodes is another 

area of concern.  

1.1.5 Cytokines 

Cytokines are molecular messengers made of interferons (INFs) and 

interleukins (ILs) that allow the cells of the immune system to communicate with 

each other to generate a coordinated, robust, self-limited response against a 

target antigen29. IFNα was approved for adjuvant therapy of stage III 

melanoma, Karposi sarcoma and several hematologic cancers. Previously 

mentioned IL-2 emerged to be a key cytokine in regulating T cells and NK 
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cellular survival, proliferation and differentiation and was approved by FDA for 

renal cell carcinoma in 1992 and later for stage III metastatic melanoma in 

199830.  

Nevertheless, IL-2 plays dual functions in the immune response both as a driver 

of effector lymphocyte responses, but also as a regulator or suppressor of 

effector lymphocyte responses at the same time by paradoxically also driving 

the expansion and suppressive function of CD4+ Foxp3+ Treg cells30,31. Main 

practical limits are comprehensive of serum short half-life which renders 

necessary high dose treatments resulting in toxicity: hypotension, pulmonary 

edema and heart toxicities30. IL-2 has also been shown to be applicable ex vivo 

for ACT by proliferation induction and cytolitic activity on Cytokine Induced Killer 

cells (CIK), NK as well as Lymphokine Activated Killer (LAK) and TILs cells and 

modulating T cell differentiation into Th1 or Th2 cells32. Alternative cytokines 

are IL-15 (with similar limitation in serum short half-life, augmentation of PD-1 

expression and IL-10 production by CD8+ T cells, but with lower toxicity33) and 

IL-21, a relatively safe and better tolerated therapy but with dose-limiting side 

effects, liver toxicities and grade 3 or 4 granulocytopenia in some patients 

treated with some inhibitory effects in myeloid DCs34. Clinical studies are 

needed to define the safety and efficacy of IL-15 and IL-21 therapies30. 

Additionally, the extensive pleiotropism, redundancy of cytokine signaling and 

the dual function of many cytokines in both immune activation and immune 

suppression, poses significant challenges to our ability to achieve meaningful 

anti-tumor responses without also causing treatment-limiting toxicities. This 

dilemma is also well exemplified by the low response rates to notorious 

toxicities of IL-2. Engineered version of cytokine with reduced toxicity, such as 

IL-2-like cytokines and “superkine” can be exploited to circumvent main adverse 

effects and are under preclinical developments35. Otherwise a new approach 

uses antibody-cytokine fusion proteins or “immunocytokines” which allow the 

direct delivery of cytokines to the site of disease: this would reduce systemic 

toxicity, improve half-life and enhance immunomodulatory effects. To date, 

most immune-cytokines are based on IL-2a and many are under clinical 

development35. 
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1.1.6 Cancer vaccines 

According to the cancer immunoediting hypothesis, proposed by Schreiber36, 

three main phases in recognition of cancer cells by our immune system take 

place: elimination, equilibrium, and escape. In particular, in the elimination 

phase, cells of the innate and adaptive immune response may eradicate the 

developing tumor and protect the host from tumor formation. If the elimination 

process is not successful, the tumor cells may enter the equilibrium phase and 

be immunologically shaped by immune “editors” to produce new populations of 

tumor variants. These variants may eventually evade the immune system and 

become clinically detectable in the escape phase37. 

Thus, to be effective, cancer vaccines must stimulate a robust tumor-specific 

immune response against the right targets such that the elimination phase 

prevails and cancer cells do not have the time to enter the equilibrium and 

escape phases. Whether or not cancer vaccines could ever be so effective is a 

question which has been vigorously debated over the last few decades. Indeed, 

while promising results have been reported by several groups in the preclinical 

settings, the clinical results have been so far disappointing. A cumulative 

analysis published in 2011 of several vaccine trials run from 2004 to 2009 

reports that only 3.6% of the patients have had an objective benefit from 

vaccination38. 

Similar to all vaccines, cancer vaccine formulations must include (1) specific 

antigens, (2) adjuvants and (3) an antigen/adjuvant delivery system. In the 

absence of only one of these elements, vaccines would be unable of 

counteracting the inhibitory tumor microenvironment (containing Treg cells and 

aberrantly matured myeloid cells), and the highly mutable tumor targets (driving 

antigen loss and immune evasion). 

1.1.6.1  Tumor antigens 

Non-mutated, shared self-antigens constitute the majority of currently identified 

tumor associated antigens (TAAs) and can be identified as:(a) cancer-testis 

antigens (CTAs), such as NY-ESO-1 and MAGE-1 which are expressed in 

histologically different human tumors and, among normal tissues, in 
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spermatocytes/spermatogonia of the testis and, occasionally, in placenta. CTAs 

result from the reactivation of genes which are normally silent in adult tissues 

but are transcriptionally activated in different tumor histotypes. (b) 

Differentiation antigens, expressed by both tumors and normal differentiated 

cells from which the tumors arise for example, melanoma antigen and normal 

melanocytes (Gp100, MART-1, also known as Melan-A). (c) Self-antigens 

which are normally expressed by healthy cells but overexpressed by tumors, for 

example, mucin 1 (MUC1) and recently identified protocadherin FAT112,39. The 

fact that normal cells express these antigens, even if in lower quantity, can 

trigger central and peripheral tolerance mechanisms but can also reach the 

threshold for T cell recognition, breaking the immunological tolerance and 

triggering an anticancer response37.  

Unique TAAs, on the other hand, are products of random somatic point 

mutations induced by physical or chemical carcinogens and therefore 

expressed uniquely by individual tumors and not by any normal tissue, 

representing the only true tumor-specific antigens. Such antigens characterize 

each single neoplasm and were shown to be diverse between tumors induced 

in the same animal or even in different tissue fragments from the same tumor 

nodule37. 

An important class of tumor antigens is made of tumor-specific neoantigens, 

which arise via genetic and epigenetic changes that alter amino acid coding 

sequences (non-synonymous somatic mutations). Some of these mutated 

peptides can be expressed, processed and presented on the cell surface, and 

subsequently become the targets of both CD4+ and CD8+ T cells. Because 

normal tissues do not possess these somatic mutations, neoantigen-specific T 

cells are not subject to central and peripheral tolerance, and also lack the ability 

to induce normal tissue destruction. As a result, neoantigens appear to 

represent ideal targets for T cell-based cancer immunotherapy. Importantly, 

neo-epitope-specific T cells have been found among TILs and when amplified 

ex vivo from tumor biopsies and introduced back into patients, TILs have shown 

anti-tumor activities24. Moreover, the impressive therapeutic effect of checkpoint 

inhibitor antibodies observed in a fraction of patients has been shown to 

correlate with the number of tumor-associated mutations40–42. On the basis of 
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these evidences, vaccines formulated with neo-epitopes have recently been 

devised and shown to be highly effective in preventing tumor growth in different 

preclinical and in recent clinical settings. 

1.1.6.2 Cancer cell-derived exosomes: a potential source of TAAs 

Exosomes are 30 to 100 nm diameter lipid bilayered membrane vesicles43,44 

composed of multiple proteins, DNA, mRNA, miRNA, long non-coding RNA45. 

Typically, exosomes form within cells, during endosome maturation, 

accumulating intraluminal vesicles (ILVs) by inward reverse budding of 

endosomal limiting membrane to form multi-vesicular endosomes (MVEs)46 

(Figure 5). During this process, cytosolic proteins, nucleic acids, and lipids are 

sorted into these small vesicles47. MVEs can either fuse with the lysosome and 

degrade their content, or fuse with the cellular membrane releasing formed ILVs 

as exosomes into the extracellular space46,48. Molecules inserted into the 

exosome membrane are thought to maintain the same orientation displayed in 

the whole cell (i.e., with extracellular domains exposed to the external milieu), 

thereby retaining their ability to bind cognate ligands49. Exosomes contain cell-

specific payloads of proteins, lipids, and genetic material that are transported to 

other cells, where they alter cellular function and physiology43. The 

understanding of exosome biology has increased exponentially in recent years, 

leading to the creation of online databases such as Exocarta, EVpedia and 

Vesiclepedia50–52, providing original research about exosomes with associated 

proteins, lipids and RNA from different sources44. 

Most cell types secrete exosomes, under both physiological and pathological 

conditions53, especially tumor cells54 as well as hematopoietic cells including 

reticulocytes48,55, B and T lymphocytes, mast cells, macrophages, DCs and 

platelets. Furthermore, epithelial cells, fibroblasts, astrocytes and neurons 

produce exosomes and exosomes have been  found in physiological fluids such 

as plasma/serum, urine, cerebrospinal fluid, breast milk, saliva, ascites and 

nasal secretion52,56,57. 
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Figure 5. Taken from: Raposo, G. & Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and 

friends. Journal of Cell Biology 200, 373–383 (2013).57Schematic presentation of exosome’s biogenesis 

and release by eukaryotic cells. Exosomes form within cells, by inward reverse budding of endosomal limiting 

membrane to form MVEs. MVEs that fuse with the cellular membrane release formed ILVs as exosomes into 

the extracellular space. Exosomes contain cell-specific payloads of proteins, lipids, and genetic material that 

are transported to other cells, where they alter cellular function and physiology. Microvesicles, instead bud 

directly from the plasma membrane. Red spots symbolize clathrin associated with vesicles at the plasma 

membrane (clathrin-coated vesicles [CCV]) or bilayered clathrin coats at endosomes. Membrane-associated 

and transmembrane proteins on vesicles are represented as triangles and rectangles, respectively.  

Interestingly, the release of exosomes is constitutive and particularly enriched 

in tumor microenvironment with respect to normal counterparts58,59. Indeed, 

tumor cells are avid exosome producers, and tumor-derived exosomes (TEXs) 

accumulate in cancer patient’s plasma and may have special roles in cancer 

development.  

TEXs have been reported to include many of the common exosomal proteins 

and to carry high amount of both known and unknown TAAs and neoantigens 

that, as said, are a “fingerprint” of the tumor they derive from44,60. It is generally 

accepted that multivalent vaccines based on antigen combination should be 

more effective than single subunit vaccines in the elicitation of a broad immune 

response61. These peculiarities make them good candidates for cancer vaccine 

multivalent delivery platform. 

TEXs are associated with conflicting roles of immune stimulation as well as 

suppression54. Some studies have reported that TEXs released by cancer cells 

can induce apoptosis of T cells, impair DC differentiation, inhibit NK activity, 

and propagate immunosuppressive myeloid suppressor cells and Treg54,60,62. 
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On the other hand, there is a rich number of publications and clinical studies 

clearly demonstrating that TEXs can also support immune response induction 

with important immunogenic properties. Tumor antigens, non-immunogenic 

when presented by tumor cells in a compromised suppressive tumor 

environment, induce Th, CTL and B cell responses and lead to a decrease in 

Treg, when presented by TEXs63,64. Exosomal heat shock protein (Hsp), which 

works as endogenous danger signal, promote NK activation and tumor cell lysis 

by granzyme B release65. Heat-stressed tumor cells produce exosomes that 

stimulate an effective tumor antigen specific CTL response. Increased 

immunogenicity of heat-stressed TEXs is further strengthened by data showing 

that exosomal intratumor injection efficiently attracts and activates DCs and T 

cells that inhibit tumor growth66. Exosomal release of HSP72 induced by 

radiation, increases CTL and NK activity and allows the expression of 

costimulatory molecule expression in DCs67. Furthermore, vaccination with 

staphylococcus enterotoxin A expressing TEXs significantly inhibits tumor 

growth by increasing IL-2 and IFNγ secretion, which promote Th, CTL and NK 

activation68. A recent study has shown the possibility to develop an efficient 

TEXs-adjuvant co-delivery system using genetically engineered TEXs 

containing endogenous tumor antigens and immunostimulatory CpG DNA. 

Such formulation has been reported to enhance tumor antigen presentation 

effect and to have a strong in vivo tumor inhibition skill69. Moreover, recent 

clinical trials of TEX-based cancer immunotherapy have demonstrated the 

feasibility, safety and efficacy of exosomes in a cancer vaccine formulation70. 

This study has been performed on patients with colorectal cancer stage III/IV. 

Exosomes were purified from ascites of each patient and administered together 

with GM-CSF71. Few patients did benefit from the combination and feasibility 

and safety were demonstrated70. 

Taking together all main features described above, preventive and/or 

therapeutic exploitation of TEXs appears promising, especially for the 

application as multivalent cancer vaccines72, which does not require the direct 

identification or the specific purification of particular tumor antigens. 
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1.1.6.3 Adjuvants 

Antigens alone are rarely sufficient to elicit protective immune responses. They 

need to be properly formulated with molecules, referred to as adjuvants, 

specifically selected to activate the appropriate effector mechanisms of immune 

response. To fight cancer both arms of the immune system, namely humoral 

and cell-mediated responses, play key roles. By binding to antigens exposed on 

the surface of cancer cells antibodies attack tumor cells via the four 

mechanisms described before (see section 1.1.1. Monoclonal antibodies 

(mAbs) therapy). By contrast, cancer cells presenting antigens on their surface 

in the context of MHC I and MHC II can be destroyed by effector CD8+ and 

CD4+ T cells. The identification of adjuvants that can simultaneously potentiate 

the production of protective, antigen-specific, antibody and T cell responses 

represent a field of intense investigation.  

The elucidation of the mechanisms of innate immunity and of how pathogen 

components trigger the first line of immune response and shape the effector 

mechanisms of adaptive immunity have substantially contributed to the 

discovery of new adjuvants. A few new adjuvants have already reached the 

market and an armamentarium of novel molecules have reached the clinical 

phases. Such molecules that are either components directly purified from 

pathogens or mimic structures and mechanisms of action of such components, 

are currently exploited in different formulations of cancer vaccines. A few 

examples are reported below. 

Polynosinic-polycytylic acid (PolyI:C) stabilized with polylysine and 

carboxymethyl cellulose, (Poly ICLC or Hiltonol) is an adjuvant formulation 

which acts through the interaction to TLR3 receptor and RIG-1 receptor present 

in DCs and phagocytic cells. This formulation has shown anti-tumor efficacy 

when combined with different cancer antigens in many preclinical and some 

clinical studies73,74.  

TLR4 ligands are important adjuvants that are being tested for cancer 

treatments. Specifically, TLR4 recognizes Lipopolysaccharide (LPS) from Gram 

negative bacteria and a number of molecules mimicking LPS are being 
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produced. One of these, monophosphoryl lipid A (MPL), has been approved for 

microbial vaccines and is currently being tested in many clinical trials75.  

RNA (single stranded and double stranded) is another potent stimulator of 

innate immunity. It acts by binding to TLR receptors present in the vesicular 

compartment of immune cells. Several compounds mimicking RNA interaction 

to TLR7 are under evaluation, and FDA has already approved Imiquimod, a 

small molecule TLR7 agonist which is used to treat precancerous skin lesions 

(actinic keratosis)73.  

Promising immunotherapeutic adjuvants are synthetic oligonucleotides 

containing CpG motifs (CpG ODN). They act by binding to TLR9, which like 

TLR7, is expressed in the vesicular compartment of immune cells. Many clinical 

trials have been conducted in humans using CpG ODN and good elicitation of 

Th1 response, including antibody and antigen-specific T cell production, has 

been reported73.  

As previously mentioned, Cytokines such as IFN, IL-2 and GM-CSF can also be 

exploited as cancer vaccine adjuvants. GM-CSF can promote the recruitment 

and maturation of DCs together with the activation of macrophages, 

neutrophils, and NK cells76. Many cancer vaccine trials have incorporated GM-

CSF. For instance, cancer vaccines constituted by EGFRvIII-derived peptide 

(Rindopepimut) and HER2-derived CD8+ T cell epitope peptide both have been 

formulated with GM-CSF and have reached Phase III for glioblastoma and 

HER2+ metastatic breast cancer77, respectively. 

Finally ligands of CLR (C-type receptor), RLR (retinoic acid inducible gene I – 

RIG1 – like receptors)and STING (stimulator interferon gene) are other  

potential adjuvants for cancer vaccines and their applicability has been 

analyzed in some preclinical and in very recent clinical studies73.  

1.1.6.4 Delivery systems 

The third component of a vaccine is the delivery system. Antigens and 

adjuvants have to be efficiently taken up by APCs in order to properly activate 

adaptive immunity. It is well recognized that if incorporated in sufficiently large 

particles antigens and adjuvants can be co-delivered to the same APC and can 
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be better phagocytosed. Therefore, different antigens-adjuvants delivery 

strategies are being investigated. 

Virosomes are spherical viral particles constituted by few components of viral 

capsid/envelop which, by virtue of the fact that do not contain nucleic acids, are 

incapable of replicating in the cells. Virosomes can be engineered to carry 

tumor associated/tumor specific antigens and/or adjuvants73. For instance, 

therapeutic cancer vaccine made of influenza virosomes containing Her/neu 

peptide was shown to be well tolerated and capable of inducing specific 

antibodies and cellular immune responses78.  

Liposomes are versatile, biocompatible and biodegradable synthetic 

phospholipidic vesicles. Several animal studies that use liposomes as adjuvants 

or delivery agents show superior anti-tumor efficacy over non-liposomal 

vaccines 73. Safety and long lasting CD4+ and CD8+ T cell responses were 

demonstrated in clinical trials with follicular lymphoma patients79. 

Immune stimulating complexes are open cage like particles (~40nm) composed 

of Quillaja saponins, cholesterol and phospholipid. These can directly interact 

with DCs and allow CD4+ and CD8+ T cell responses. Their safety and clinical 

benefit have been evaluated in clinical trials with NY-ESO-1+ tumor patients 80. 

Another saponin-based adjuvant is QS-21, shown to induce specific CTL and 

Th1 responses. Clinical trials for breast and prostate cancer treatments have 

shown antigen specific antibody responses and good toleration.  

Aluminium phosphate or aluminium hydroxide are between the few approved 

adjuvants for human use for a variety of vaccines, but their application in cancer 

treatments is limited due to their incapacity to induce strong Th1 and cellular 

immune response81. High IgM and IgG antibody responses correlated with 

prolonged survival, were reported in a recent clinical trial in NSCLC patient 

against tumor associated ganglioside (NeuGcGM3)73. 

Water in oil emulsions adjuvants such as Incomplete Freund’s adjuvant (IFA) –

Montanide- have been widely used in the clinics for cancer vaccines82. Different 

forms such as ISA720 and ISA51 for melanoma and NSCLC treatments have 

been correlated with prolonged survival of treated patients83,84.  
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Oil in water emulsions such as MF59 is a squalene based oil-in water emulsion 

adjuvant. Approved for use in influenza vaccine, MF59 has a limited application 

for cancer treatment. Only in combination with Cytosine guanine dinucleotide 

oligodeoxynucleotides (CpG ODNs), MF59 has been shown to obtain effective 

responses for melanoma treatment in mouse models 85. 

1.1.6.5 Bacterial Outer Membrane Vesicles: a vaccine delivery system 
with potent built-in adjuvanticity 

More than 40 years ago, researchers made the observation that Gram-negative 

bacteria secrete Outer Membrane Vesicles (OMVs)86. They are closed spheroid 

particles of a heterogeneous size of 20-300 nm in diameter generated through 

a “budding out” mechanism of the bacterial outer membrane (Figure 6). The 

majority of their components are represented by LPS, glycerophospholipids, 

outer membrane proteins (Omp) and periplasmic proteins86.��

 
Figure 6. Schematic presentation of OMV’s biogenesis. OMVs are generated through a “budding out” mechanism of 

the bacterial outer membrane. The majority of their components are represented by LPS, 

glycerophospholipids, Omp and periplasmic proteins. Proteins and lipids of the inner membrane and cytosolic 

content are excluded from OMVs. (Pp) periplasm; (OM) outer membrane; (PG) peptidoglycan; (IM) inner 

membrane (Lpp) Lipoproteins. 

As a specific secretory pathway, OMVs have a big number of functions, 

including inter and intra species cell-to-cell cross-talk, biofilm formation, genetic 

transformation, defence against host immune responses, toxin and virulence 

factor delivery to host cells. Similar to exosomes, OMVs interaction to host cells 

can occur by endocytosis from binding to host cell receptors or lipid rafts and by 
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fusion to host cell membrane, leading to the direct release of their content into 

the cytoplasm of the host cells87. 

From a biotechnological standpoint, OMVs are increasingly attracting 

researcher’s interest as an emerging unique vaccine platform and in fact anti-

Neisseria OMV-based vaccines have been developed for human use88. 

OMVs have three main features that make them particularly promising as 

vaccine platform. 

First, they carry several Microbe Associated Molecular Patterns (MAMPs), 

including LPS, lipoproteins and peptidoglycan, which play key roles in 

stimulating innate immunity and promoting adaptive immune response. OMVs 

immunization elicits potent antibody responses against the OMV-associated 

proteins. Moreover, OMVs can elicit potent Th1-skewed immune responses as 

reported in a number of recent studies89. 

Second, the OMV protein content can be altered by applying genetic and 

synthetic biology manipulation of the OMV producing bacterium. An increasing 

number of studies has reported the possibility of decorating OMVs with 

heterologous proteins both in the lumen and exposed on the vesicle surface90. 

Kesty and Kuhen91 were the firsts to show the delivery of proteins into the OMV 

compartment. Subsequently, several other authors have manipulated the OMV 

protein content by using different strategies90. In our laboratory different 

bacterial antigens were delivered to the lumen of E. coli vesicles by fusing their 

coding sequences to a leader peptide for secretion89. More recently (Fantappiè 

et al 201792), we showed the successful expression of lipoproteins from 

Neisseria meningitidis (Nm) and Aggregatibacter actinomycetemcomitans on 

the surface of E. coli-derived OMVs and the possibility of exploiting them as 

delivery vehicles of heterologous polypeptides to the OMV surface. 

Third, OMVs can be easily purified from the culture supernatant and the OMVs 

production process is scalable at industrial levels. Several mutations have been 

reported that promote the release of abundant quantities of OMVs in the culture 

supernatant and GMP production of OMVs with yields higher than 100 mg/L of 

culture has been reported93.  
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1.1.6.6 Cancer vaccines: state of the art 

Cancer vaccination comprises an array of approaches that seek to generate, 

amplify, or skew (or a combination thereof) antitumor immunity. A successful 

therapeutic cancer vaccine activates a cancer patient’s immune system, 

resulting in eradication or long-term control of disease. Such a vaccine typically 

consists of a tumor antigen in an immunogenic formulation and activates tumor 

antigen–specific helper cells and/or CTLs and B cells. B cells secrete their 

specific antibodies to cause the lysis or phagocytosis of cells that display 

antigens they recognize. CTLs use their TCR to specifically recognize small 

cell-derived peptides presented on a cell’s surface bound to MHC I class 

molecules. If the T cell is activated and its TCR binds a particular MHC/peptide 

complex, it will release cytotoxic molecules and cytokines that will kill the cell 

and stimulate activation of nearby immune cells. CD4+ Th cells can promote 

the activation of both B cells and CTLs. So, cancer vaccines cause the 

selective activation and proliferation of B and T cells that can recognize tumor 

cells, thus preparing them for their cancer-killing action. 

Generally, cancer vaccines can be employed in the form of (i) peptide antigen 

vaccines, (ii) whole-cell vaccines, which encompass autologous, allogeneic cell 

vaccines (iii) nucleic acids that encode for tumor antigens and can stimulate 

innate immunity by sensitizing TLR and intracellular sensors virus based 

strategies. 

1.1.6.6.1 Peptide based cancer vaccines 

Peptide antigen vaccines can include synthetic or purified native moieties that 

are representative of the tumor cell antigens displayed by the target tumors. 

These antigens can be used to immunize patients and have been shown to 

generate an immune response capable of destroying cells in the body that 

display these antigens. These types of cancer vaccines are dependent upon 

knowing the major tumor cell markers/antigens, their structure, and, if peptides 

are generated, the important epitope(s) required to generate a tumor-specific 

immune response. Peptide antigen vaccines can be constructed from the most 

immunogenic or cancer specific epitopes, but since peptides are not sufficiently 

antigenic, they are typically accompanied by an adjuvant. Peptides formulated 
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in adjuvants (such as Montanide) with or without cytokines, such as GM-CSF 

and INFγ, or TLR agonists, have shown clinical benefit (partial responses, 

complete responses, and durable disease stabilization) in small and large scale 

clinical trials. Another strategy that has shown significant clinical efficacy is the 

use of synthetic peptides that are long enough to include multiple MHC class I 

and II epitopes. These 23-45 amino acid long peptides, delivered 

subcutaneously (s.c.), have been shown to be especially effective, possibly 

because of a more efficient processing and presentation, which leads to 

superior T cell activation94. 

1.1.6.6.2 Whole- cell-based cancer vaccines  

The whole-cell vaccine approach encompasses the use of inactivated whole-

tumor cells and/or whole-cell lysate as the vaccine. As such, these whole-cell 

vaccines present an array of TAAs to the patient’s immune system. The 

approach of using whole-tumor cell as a vaccine eliminates the significant 

problem of having to identify the crucial antigen(s) for that cancer, most of 

which remain unknown. However, the approach of using whole-tumor cell is 

limited by the fact that antigens are diluted among a plethora of self-antigens, 

which results in poor cancer antigen uptake by APCs and inadequate antigen 

cross-presentation and T cell responses95. 

1.1.6.6.3 Nucleic acid-based cancer vaccines 

Nucleic acid-based cancer vaccines are constituted by either DNA or RNA 

sequences encoding selected tumor antigens. The vaccines are delivered 

either as “naked” molecules (DNA) or formulated in appropriate delivery 

systems and allow for a patient’s intracellular machinery to translate and 

process tumor antigens. These vaccines have the advantage of being relatively 

simple to produce and of having self-adjuvanticity properties, thanks to their 

capacity to stimulate different signaling pathways of innate immunity. In 

particular, RNA vaccines can activate the innate immune system by acting as 

TLR agonists for TLR7 and TLR8, and for this reason they are becoming a 

promising strategy for cancer vaccines95. 
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1.1.6.6.4 Virus-based cancer vaccines 

1.1.6.6.4.1Viral-based vectors 

The rationale for using viruses as immunization vehicles is based on the 

phenomenon that viral infection often results in the presentation of MHC class 

I/II restricted, virus-specific peptides on infected cells. The viral vectors with low 

disease-causing potential and low intrinsic immunogenicity are engineered to 

encode TAAs or TAAs combined with immunomodulating molecules. An 

extensively evaluated viral-based vectors in cancer vaccine trials are from the 

poxviridae family, such as vaccinia, modified vaccinia strain Ankara (MVA), and 

the avipoxviruses (fowlpox and canarypox; ALVAC)96. Poxviruses have the 

ability to accommodate large or several transgene inserts. Poxvirus replication 

and transcription are restricted to the cytoplasm, which minimizes risk to the 

host of insertional mutagenesis. It is believed that induction of a local 

inflammatory response by the host TLRs and other properties of vaccinia or 

MVA contribute to the enhanced immune response reactive with inserted TAAs 

in preclinical studies. One promising viral cancer vaccine is PROSTVAC 

developed by Bavarian Nordic. This “off-the-shelf” platform consists of a 

replication-competent vaccinia priming vector and a replication-incompetent 

fowlpox-boosting vector. Each vector contains transgenes for PSA and three 

costimulatory molecules (CD80, CD54 and CD58) that are collectively 

designated TRICOM96. In double-blinded, placebo-controlled phase II trial, 

PROSTVAC improved median overall survival relative to the control vector 

(25.1 vs. 16.6 months, P =0.006)96. Similar improvement in the median overall 

survival was also observed in a second PROSTVAC single-arm phase II study. 

The pivotal phase III trial following these encouraging data from phase II 

studies are ongoing (NCT01322490). 

1.1.6.6.4.2 Oncolytic viruses 

Oncolytic viruses are included in viral strategies as one emerging class of 

therapeutic with the potential to act in synergy with novel immunotherapies to 

improve clinical outcomes. Naturally occurring or engineered oncolytic viruses 

act to replicate specifically and kill cancer cells without harming the normal 

tissues.  
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1.1.6.6.4.2.1 Herpes simplex virus 

Herpes simplex virus type 1 (HSV-1) is an enveloped dsDNA virus with the 

ability to infect a wide variety of cell types, and to incorporate single or multiple 

transgenes. A genetically engineered oncolytic HSV-1 is T-VEC (talimogen 

elaherparepvec, IMLYGIC, formerly OncoVEXGM-CSF), encoding human GM-

CSF for direct injection into accessible melanoma lesions was approved for 

melanoma by the FDA in the U.S. in 2015 and in Europe and Australia in 2016. 

The addition of GM-CSF promotes monocyte-to-dendritic cell differentiation, 

thereby facilitating antigen presentation on the surface of dendritic cells 

following viral-induced oncolysis. The phase III trial proved that local 

intralesional injections with T-VEC in advanced malignant melanoma patients 

can not only suppress the growth of injected tumors but also act systemically 

and prolong overall survival. The trial found an ORR of 26% and a complete 

clinical response in 11% of patients with stage IIIB-IV melanoma97. Many 

clinical trials using T-VEC are currently performed worldwide by the 

pharmaceutical company in order to expand its application. 

In Japan, a phase II clinical trial of G47Δ (third-generation oncolytic HSV-1), is 

ongoing in glioblastoma patients (UMIN000015995). G47Δ was recently 

designated as a “Sakigake” “ahead of the world” breakthrough therapy drug in 

Japan. This new system by the Japanese government should provide G47Δ 

with priority reviews and a fast-track drug approval by the regulatory authorities.  

1.1.6.6.4.2.2 Oncolytic Adenovirus 

Recombinant adenovirus (Ad) is another system that can be used as carriers 

for genetic vaccination. Adenoviruses are easy to engineer and propagate to 

high yields for clinical use. They also have the advantage of transducing both 

dividing and non-dividing cells for high expression of transgenes. Indeed, 

adenoviruses are used extensively as cancer gene therapeutic agents. One 

strategy to create oncolytic adenoviruses (oAds) involves deleting the Ad E1A 

gene, which results in a virus more directed towards replication in transformed 

cells98. More recently, miRNA-controlled oAds have been developed to 

attenuate virulence in quiescent cells while still retaining their full lytic capacity 

in human-derived xenografts. Another popular strategy is to create 
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transcriptionally regulated versions of oAds harboring tissue-specific promoters 

that can drive key virus regulatory genes.  

Closed to drug approval in North America and Europe is CG0070. This is an 

Ad5 adenovirus engineered so that the human E2F-1 promoter drives the E1A 

gene, and the human GM-CSF gene is inserted. E2F-1 is regulated by the 

retinoblastoma tumor suppressor protein (Rb), which is commonly mutated in 

bladder cancer, and a loss of Rb binding results in a transcriptionally active 

E2F-1. 

1.1.6.6.4.2.3 Vaccinia virus 

Similar strategies to those discussed above have been employed with vaccinia 

virus to direct virulence towards transformed cells. For instance, JX-594 

(pexastimogene devacirepvec, Pexa-Vec) is a genetically engineered vaccinia 

virus that has a mutation in the TK gene, conferring cancer cell-selective 

replication, actually in phase III trial for advanced state hepatocellular 

carcinoma, and an insertion of the human GM-CSF gene, augmenting the 

antitumor immune response. The advantages of using vaccinia virus include 

intravenous (i.v.) stability for delivery, strong cytotoxicity and extensive safety 

experience as a live vaccine99.  

In addition, several other virus families have served as backbones for the 

development of oncolytic viruses. This list includes, but is not limited to, 

Paramyxoviruses (Newcastle Disease virus, Measles virus, Reovirus - 

Reolysin) and Rhabdoviruses (Vesicular Stomatitis virus, Maraba virus)98.  

All genetically engineered oncolytic viruses described are designed to enhance 

the induction of antitumor immunity that accompanies the oncolytic activity. For 

example, both T-VEC and G47∆ have a deletion in the a47 gene, the product of 

which inhibits the transporter associated with antigen presentation; therefore, 

cancer cells subjected to the oncolytic activities of these viruses are vulnerable 

to immune surveillance, and the processing by APCs is likely facilitated. 

Furthermore, the local intralesion injection of T-VEC has shown to act on 

remote lesions via induction of systemic antitumor immunity and prolonged 

survival. 
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Because an induction of specific antitumor immunity in the course of oncolytic 

activities is the common feature that plays an important role in presenting 

antitumor effects, a combination of oncolytic virus components with systemic 

administration of immune checkpoint inhibitor or ACT approaches are 

reasonable strategies to enhance the efficacy of oncolytic viruses. It would not 

be too early to say that oncolytic virus therapy is now established as an 

approach to treat cancer.  

1.1.6.6.5 Mutanome and personalized cancer vaccines 

Tumors contain a large number of mutations, ranging from the tens to hundreds 

of somatic nonsynonymous mutations (the mutanome), that are unique to the 

tumor relative to the normal cells. Causative “driver” mutations shared by a 

subpopulation of patients can sometimes be targeted by small molecule 

inhibitors, such as the BRAF V600E mutation100,101. However, in the vast 

majority of cancer types there are no highly penetrant mutations. Rather, 95% 

of the mutations in a patient tumor appear to be unique to that tumor102. Thus, 

mutations may make ideal therapeutic targets, provided there was, for an 

individual patient, a platform to identify the mutations in the patient’s tumor and 

an effective way to efficiently target them. 

Therapeutic cancer vaccination, in which a patient’s immune system is taught to 

target cancer cells, represents a promising therapeutic modality. Existing 

cancer vaccines, including several in clinical trials, target antigens with tumor- 

specific expression. A key challenge is immune tolerance against self-proteins. 

Tumor specific mutation antigens, in contrast, are not subject to central 

tolerance mechanisms and in fact immune responses to mutation-derived 

epitopes have been demonstrated in cancer patients. Thus, the tumor 

mutanome offers a large number of potential vaccine targets and thanks to the 

“next-generation sequencing” (NGS) technology which allows rapid and 

inexpensive identification of all immunogenic mutations, the development of 

individualized vaccines is becoming a reality. To demonstrate this, Kreiter and 

co-workers101 analyzed the mutations present in the murine B16F10 melanoma 

cell line system and designed a synthetic RNA vaccine encoding one specific 

mutation-derived CD4+ epitope. The vaccine, formulated in liposomes, was 
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used to immunize syngeneic C57bl/6 mice and the effect of immunization on 

tumor growth after challenge with B16F10 cell line was analyzed. A remarkable 

growth inhibition induced by immunization was achieved.  

These findings have generated great enthusiasm for neo-epitope vaccines. 

Massive parallel DNA/RNA sequencing combined with advanced computational 

methods enable the high-throughput identification of all prevalent 

nonsynonymous mutations in a tumor sample, and provide the basis for antigen 

discovery focusing on the identification of neoantigens in patients.  

Very recently, the first-in-human testing of such an approach has been 

conducted by Sahin and co-workers103. Non-synonymous mutations expressed 

by 13 patients with stage III and IV melanoma were identified by comparative 

exome and RNA sequencing of routine tumor biopsies and healthy blood cells. 

Ten selected mutations per patient were engineered into two synthetic RNAs, 

each encoding five linker-connected 27mer peptides with the mutation in 

position 14 (pentatope RNAs) and percutaneously injected into inguinal lymph 

nodes of each patient. All patients completed treatment with a maximum of 20 

neo-epitope vaccine doses. The patients had a recent history of recurrent 

disease and a high risk of relapse. Comparison of documented cancer 

recurrences in treated patients before and after neo-epitope vaccination 

showed a significant reduction of cumulative recurrent metastatic events (P < 

0.0001), translating into good progression-free survival.  

A second milestone paper demonstrating the efficacy of neo-epitope based 

cancer vaccine has been very recently gained by Ott and coworkers104. In a 

phase I study patients with previously untreated high-risk melanoma (stage 

IIIB/C and IVM1a/b) were vaccinated after surgical resection with synthetic 

peptides covering several neo-epitopes in the presence of Hiltonol as adjuvant. 

The authors reported that immunization induced CD4+ and CD8+ T cells 

specific for 60% and 16% of the epitopes, respectively. Furthermore, of six 

vaccinated patients, four had no recurrence at 25 months post vaccination, and 

the two of them with recurring disease were treated with Pembrolizumab 

showing then complete tumor regression. These data provide a strong rationale 
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for further development of this approach, alone and in combination with 

checkpoint blockade or other immunotherapies. 
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2 AIM OF THE PROJECT 

One of the main objectives of the Synthetic and Structural Vaccinology Unit 

(SSVU) I joined for my PhD experimental work is to test whether bacterial 

OMVs can be exploited as cancer vaccines in human patients.  

To this aim, the overall strategy of SSVU can be summarized as follows: 

1. Selection of cancer antigens expressed in murine cancer cell lines known 

to induce tumors in immunocompetent syngeneic mice. 

2. Decoration of OMVs with selected antigens using innovative molecular 

and synthetic biology strategies. 

3. Purification of antigen-carrying OMVs and analysis of their 

immunogenicity properties after administration to immunocompetent mice 

either alone or in combination. 

4. Analysis of protective activities induced by immunization with OMVs 

carrying one or more antigens in mice challenged with tumor cells.  

In the course of my experimental work I have partially contributed to 1) the 

selection of a few cancer antigens, 2) the construction of bacterial strains 

expressing the selected cancer antigens, 3) the purification of OMVs from 

engineered strains, 4) the analysis of the immune responses and protective 

activities of engineered OMVs administered to mice challenged with cancer cell 

lines. This work has so far brought to the publication of two papers (Fantappiè’ 

et al. Molecular and Cellular Proteomics, 2017; Zerbini et al. Microbiol. Cell 

Factories, 2017) and to the submission of one additional paper (Grandi et al. 

Frontiers in Oncology, 2017), of which I am one of the authors. 

Furthermore, I have dedicated a large part of my experimental activity, of which 

I have been directly responsible, to 1) the preparation of exosomes from murine 

cancer cell lines as a source of cancer antigens, 2) the analysis of 

exosome/OMV interaction, 3) the analysis of immune responses elicited by 

exosome/OMV combinations. 
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In this document, I will focus my attention to describe the data showing that 

OMVs can indeed induce protective activities when decorated with selected 

cancer antigens and that such protective activity is potentiated in the presence 

of multiple antigens. Furthermore, I will show that exosomes from CT26 cancer 

cell line induce specific immune responses when combined with OMVs and 

such responses appear to synergize with the protective activity of OMVs 

decorated with a CT26-specific cancer antigen. 
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3 RESULTS 

3.1 Antigen selection 

As pointed out in the “Aim of the Project”, in our laboratories we are addressing 

two main questions. First, we are interested to know whether OMVs decorated 

with well-known cancer-specific epitopes could induce epitope-specific immune 

responses and whether such responses could protect immunocompetent mice 

from the challenge with syngeneic cancer cell lines expressing the epitopes. 

Second, we want to investigate whether OMVs decorated with a combination of 

antigens expressed in the same cancer cell lines could result in a synergistic 

protective activity when mice are challenged with such cell lines.  

Based on the above, we are focusing our attention on two murine cancer cell 

lines, B16F10EGFRvIII and CT26, which induce the formation of large tumors 

when injected s.c. in C57/bl/6 and BALB/c mice, respectively. We are selecting 

antigens specifically expressed in these cell lines, and we are testing their 

protective activity when formulated alone or in combination. 

3.1.1 B16F10-specific cancer epitopes: EGFRvIII and M30 epitopes 

As far as the B16F10 cell line is concerned, two peptide antigens, 

LEEKKGNYVVTDH and PSKPSFQEFVDWENVSPELNSTDQPFL, were 

selected. 

LEEKKGNYVVTDH peptide (EGFRvIIIpep) belongs to EGFRvIII, a mutated 

form of the human epidermal growth factor receptor (EGFR), expressed on 

several tumors and associated to the expression of epithelial–mesenchymal 

transition (EMT) and cancer stem cell genes. EGFRvIII contains an in-frame 

deletion in the extracellular domain of EGFR, creating a novel antigenic epitope 

which is exquisitely tumor-specific105. Immunization with EGFRvIIIpep 

conjugated to Keyhole limpet hemocyanin (KLH) was shown to protect mice 

from the challenge of syngeneic cell lines stably transfected with human 

EGFRvIII. In particular, Heimberger and co-workers showed that the conjugated 

peptide formulated with GM-CSF protected C57bl/6 mice from both 

extracerebral and intracerebral challenge with B16F10 cells expressing human 
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EGFRvIII106. Based on these data the vaccine (Rindopepimut) for EGFRvIII-

positive glioblastoma patients was proposed and tested in different trials.  

As far as PSKPSFQEFVDWENVSPELNSTDQPFL peptide (B16-M30pep) is 

concerned, it was recently described by Kreiter and co-workers as a CD4+ T 

cell epitope expressed in the B16F10 cell line as a consequence of a mutation 

occurred in the kif18b gene107. Therefore, M30 is a B16F10-specific neo-

epitope not expressed in the syngeneic healthy C57bl/6 mouse tissues. 

Interestingly, the authors showed that immunization with liposome-formulated 

synthetic RNA coding for B16-M30 induced robust T cell-mediated protection in 

C57bl/6 mice when challenged with B16F10 cells107. 

3.1.2 CT26-specific cancer antigens: FAT1 and CT26-derived exosomes 

As far as CT26 cell line is concerned, the attention was focused on FAT1 and 

CT26-derived exosomes. 

3.1.2.1 FAT1 

FAT1 is a type 1 transmembrane protein carrying an extracellular region with 34 

cadherin repeats and a cytoplasmic tail108. Alteration of FAT1 expression and 

function has been associated to several human cancers. In many tumors FAT1 

acts as a tumor suppressor while in others FAT1 is up-regulated. It was recently 

reported that FAT1 is highly expressed on the surface of most early and late 

stage CRCs and in CRC liver metastases, while in healthy tissues FAT1 is 

either not expressed or its expression is confined to the cytoplasmic space. 

Moreover, a FAT1-specific monoclonal antibody (mAb198.3), which binds the 

surface of cancer cells within a 25 amino acid sequence of the cadherin domain 

8 (IQVEATDKDLGPNGHVTYSIVTDTD) (D8 epitope), inhibits the growth of 

human colon cancer cell lines in xenograft mouse models39. Since in our 

laboratories we found that the mouse homologue of FAT1 (mFAT1), which 

shares 87.3% identity to human FAT1, is also over-expressed in CT26, we 

decided to decorate OMVs with the mouse D8 epitope and test the protective 

activity of D8-mFAT1 OMVs in BALB/c mice against CT26 cell line challenge. 
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3.1.2.2 CT26 exosomes 

Cancer cells abundantly release exosomes (TEXs) and TEXs have been shown 

to carry TAAs and neoantigens specific of the tumor they derive from. As 

previously mentioned, the lists of proteins experimentally found to be 

associated to different preparations of exosomes, including exosomes from 

cancer cell lines, can be found in several databases available on line, such as 

Exocarta, EVpedia and Vesiclepedia. Therefore, exosomes represent a 

subcellular compartment enriched in tumor antigens potentially exploitable for 

multivalent vaccine development. 

In consideration of our interest to test the protective synergistic effect of multiple 

tumor antigens when combined with OMVs, we decided to analyze whether the 

immunization of BALB/c mice with the combination of D8-mFAT1 OMVs/CT26-

derived TEXs could elicit a protective immune response against CT26 

challenge superior to the one observed with D8-mFAT1 OMVs alone. The 

presence of tumor antigens in CT26-derived exosomes was not experimentally 

defined in a systematic manner. However, we analyzed whether FAT1, which, 

as said above, is overexpressed in CT26, accumulated in TEXs. Indeed, 

Western Blot (WB) analysis of CT26 total cell extract and purified CT26-derived 

TEXs clearly confirmed the presence of mFAT1 antigen in TEXs (Figure 7). On 

the basis of this evidence and assuming CT26-derived TEXs could incorporate 

other TAAs with both specific B and T cell epitopes, an important part of my 

work has been dedicated in testing the exploitation of CT26 derived TEXs as 

cancer formulation component.  

3.2 OMVs decoration with cancer epitopes 

Selected epitopes were subsequently used to decorate OMVs. To this aim, 

epitopes were fused to two different proteins that in our laboratories have been 

shown to efficiently deliver foreign polypeptides to the OMV compartments.  
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Figure 7.  Western Blot (WB) analysis of CT26 total extracts and CT26-derived TEXs. Samples corresponding to total 

cell extracts from CT26 cell line (CELL- 20 µg) and TEXs isolated from CT26 cells (TEX – 5 µg) were 

separated by SDS-PAGE. After protein transfer to nitrocellulose membrane, CELL and TEX were visualized 

using rabbit antibody against synthetic D8-mFAT1 peptide and peroxidase conjugated anti-rabbit 

immunoglobulins. 

In the first construct, the DNA sequence coding for three copies of the 

EGFRvIIIpep was ligated at the 3’ end of the gene encoding the full length Nm-

fHbp, generating the plasmid pET-Nm-fHbp-vIII. The plasmid expresses the 

chimera constituted by fHbp carrying three copies of the EGFRvIIIpep fused at 

its C-terminus.  

The second construct is represented by the DNA sequence encoding Nm-fHbp 

and carrying at its 3’ end three copies of M30 coding sequence followed by 

three copies EGFRvIIIpep (pET-Nm-fHbp-M30-vIII construct). The plasmid 

encodes a fusion protein in which fHbp is fused to three copies of M30 peptide 

followed by three copies of EGFRvIIIpep.  

The third construct was characterized by three copies of the D8-mFAT1 coding 

sequence fused to the 3’ end of MBP sequence forming the pET-MBP-D8-

mFAT1 plasmid89. The construction details of plasmid pET-Nm-fHbp-M30-vIII 

and pET-MBP-D8-mFAT1 are reported in the Materials and Methods section.  

The plasmids encoding the fusion proteins were used to transform the E. coli 

OMV-overproducing strain BL21(DE3)ΔompA and OMVs were isolated and 

purified. Purified vesicles were quality controlled by SDS-PAGE. As shown in 

Figure 8A, protein bands migrating with the expected molecular masses of the 

fusion proteins and not present in OMVs derived from BL21(DE3)ΔompA 

transformed with the “Empty” vector were clearly visible. Expression of 

EGFRvIIIpep in OMVs was confirmed by WB analysis (Figure 8B) and immune 
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Transmission Electron Microscopy (TEM). For TEM, OMVs were first incubated 

with rabbit anti-EGFRvIIIpep antibodies and subsequently with 5-nm gold-

labeled anti-rabbit secondary antibody (Figure 8 C-D). 

 
Figure 8. Expression of selected epitopes in OMVs. A) SDS-PAGE of OMVs. “Empty” OMVs, Nm-fHbpvIII OMVs, Nm-

fHbpM30vIII OMVs and MBP-D8-mFAT1 OMVs were purified from BL21(DE3)∆OmpA(pET21b+), 

BL21(DE3)∆OmpA(pET-Nm-fHbp-vIII)), BL21(DE3)∆OmpA(pET-Nm-fHbp-M30-vIII), and BL21(DE3) 

∆OmpA(pET-MBP-D8-mFAT1), respectively. OMVs (20µg each) were loaded on SDS-polyacrylamide gels for 

SDS-PAGE analysis. Fusion proteins are indicated by the dots. B) WB analysis of “Empty” OMVs and Nm-

fHbpvIII OMVs. After separation on SDS-polyacrylamide gel (1µg) proteins were transferred to nitrocellulose 

membrane and Nm-fHbpvIII was visualized using rabbit anti-EGFRvIIIpep antibodies. C-D) Immuno TEM 

analysis of Nm-fHbpvIII-OMVs purified using primary anti-EGFRvIIIpep rabbit antibodies and 5 nm gold-

labeled anti-rabbit secondary antibody.  

3.3 Immunogenicity and protective activity of EGFRvIII-OMVs 

Next, we analyzed the immunogenicity of Nm-fHbpvIII OMVs and their capacity 

to protect C57bl/6 mice from the challenge with B16F10EGFRvIII cell line. 

C57bl/6 mice (16 mice per group) were immunized with either “Empty” OMVs 

(control group) or with Nm-fHbpvIII OMVs. Vaccination was carried out by 

intraperitoneal (i.p.) injection at days 0, 14 and 28 (Figure 9A) and one week 

after the third immunization sera were collected and the induction of anti-
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EGFRvIII-antibodies was confirmed by ELISA (Figure 9B). A good fraction of 

EGFRvIII-specific antibodies belonged to the IgG2a isotype, in line with 

previous data obtained in our laboratories showing that OMVs from E. coli 

BL21(DE3)ΔompA elicit a Th1-skewed immune response89. Next, at day 35, 

mice were challenged with an s.c. injection of 0.5 x 105 B16F10EGFRvIII cells 

and tumor growth was followed both in control mice and in mice immunized with 

Nm-fHbpvIII OMVs (Figure 9C). While all but one control mice developed large 

tumors 20 days after challenge (average tumor volume = 850 mm3, with three 

mice sacrificed having developed tumors >1,500 mm3), immunization with Nm-

fHbpvIII OMVs markedly reduced tumor growth in a statistically significant 

manner. In particular, eight mice were completely protected while the remaining 

mice developed tumors with average volumes of approximately 400 mm3.  

 
Figure 9. Taken from manuscript under revision Grandi A. et al 2017. Immunogenicity and protective activity of Nm-

fHbpvIII OMVs A) Schematic representation of immunization and challenge schedule in C57bl/6 mice. Mice 

(16 per group) were immunized three times (20µg/dose) with either “Empty” OMVs or with Nm-fHbpvIII 

OMVs. After 6 days after last dose, blood samples were collected to analyze anti-EGFRvIII antibody titers. 

The day after, mice were challenged s.c. with 0.5 x 105 B16F10EGFRvIII cells. Tumor development was 

followed over a period of 30 days after challenge. B) Anti-EGFRvIII antibody titers in C57bl/6 mice immunized 

with ”Empty” OMVs and Nm-fHbpvIII OMVs. Sera from mice immunized as reported in A) were pooled and 

Total IgG, IgG1 and IgG2a were measured by ELISA, coating the plates with synthetic EGFRvIIIpep 

(0.5µg/well). C) Analysis of tumor development in C57bl/6 mice immunized with “Empty” OMVs and Nm-

fHbpvIII OMVs and challenged s.c. with 0.5 x 105 B16F10EGFRvIII cells. The figure reports the tumor size in 

each mouse as measured at day 30. The three asterisks indicate a Pval≤0.001. 
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3.4 Immunogenicity and protective activity of MBP-D8-mFAT1 OMVs 

To confirm the ability of OMVs to induce anti-tumor immune responses in 

murine models, groups of BALB/c mice were immunized i.p. three times at day 

0, 14 and 28 with 20 µg of MBP-D8-mFAT1 OMVs in Alum. After two weeks 

from the third immunization, sera were collected and pooled to analyze anti-

mFAT1 antibodies. As shown in Figure 10A, good anti-mFAT1 antibodies were 

induced and such antibodies could bind to the surface of CT26 cell line as 

judged by flow citometry analysis (Figure 10B). 

At day 35, mice were challenged with a s.c. injection of 1.5 x 105 CT26 cells 

and tumor growth was followed over a period of 30 days (Figure 10C). While all 

control mice developed large tumors 25 days after challenge, with three mice 

sacrificed having developed tumors >1,500 mm3, immunized mice with MBP-

D8-mFAT1 OMVs showed a markedly reduction with approximately 50% 

inhibition in tumor growth compared to the control group. 

 
Figure 10. Immunogenicity and protective activity of MBP-D8-mFAT1 OMVs. A) Anti-mFAT1 antibody titers in BALB/C 

mice immunized with ”Empty” OMVs and MBP-D8-mFAT1 OMVs. Sera from mice immunized were pooled 

and total IgG titers were measured by ELISA coating the plates with synthetic mFAT1 peptide (0.5µg/well). B) 

Flow citometry analysis on B16F10 and CT26 cell lines using sera collected from mice immunized with 

“Empty” OMVs and MBP-D8-mFAT1 OMVs. C) Analysis of tumor development in BALB/c mice immunized 

with “Empty” OMVs and MBP-D8-mFAT1 OMVs and challenged s.c. with 1.5 x 105 CT26 cells. The figure 

reports the tumor size in each mouse as measured at day 25 and 30 post cell challenge. The two asterisks 

indicate a Pval≤0.01. 
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3.5 Synergistic protective activity of EGFRvIIIpep and M30 

Having demonstrated that Nm-fHbpvIII OMVs induced a robust protection in 

C57bl/6 mice challenged with B16F10EGFRvIII cell line, we investigated 

whether protection could be further potentiated by using Nm-fHbpM30vIII OMVs 

expressing on their surface fHbp fused to three copies of CD4+ T cell M30 

peptide followed by three copies of EGFRvIIIpep. Therefore, we set up an 

additional immunization/challenge experiment with three groups of mice. One 

group received “Empty” OMVs, a second group received Nm-fHbpvIII OMVs 

and the third group received Nm-fHbpM30vIII OMVs. Mice received three doses 

of vaccine two weeks apart and anti-EGFRvIIIpep antibodies were measured 

one week after the third immunization.  

 
Figure 11. Taken from manuscript under revision Grandi A. et al 2017. Immunogenicity and protective activity of Nm-

fHbpvIII and Nm-fHbpM30vIII OMVs. A) C57bl/6 mice (6mice/group) were immunized three times with 

“Empty” OMVs, Nm-fHbpvIII OMVs, Nm-fHbpM30vIII OMVs (20µg/dose). Sera from immunized mice were 

pooled and Total IgG were measured by ELISA, coating the plates with synthetic EGFRvIIIpep (0.5µg/well). 

B) Analysis of tumor development in C57bl/6 mice immunized with “Empty” OMVs, Nm-fHbpvIII OMVs, Nm-

fHbpM30vIII (20µg/dose) and “Empty” OMVs (20µg/dose) + M30pep (100µg/dose) and challenged s.c. with 

0.5 x 105 B16F10EGFRvIII cells. The figure reports the tumor size in each mouse as measured at day 30 

from challenge. The two asterisks indicate a Pval≤0.01 and the three asterisks indicate a Pval≤0.001. 

As shown in Figure 11A, Nm-fHbpvIII OMVs and Nm-fHbpM30vIII OMVs 

induced similar anti-EGFRvIII antibodies. Mice were then challenged with 0.5 x 
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105 B16F10EGFRvIII cells and tumor growth was followed over a period of 30 

days. Figure 11 reports the result of this experiment. The robust protective 

activity of Nm-fHbpvIII OMVs was confirmed and protection was further 

potentiated in mice that received Nm-fHbpM30vIII OMVs. These mice were 

completely protected with no sign of tumor development at the site of injection. 

We have not tested yet the protective activity of OMVs engineered with M30 

peptide alone but we tested the effect of immunization with synthetic M30 

peptide “absorbed” to “Empty” OMVs and mice were only marginally protected 

by the vaccine (Figure 11B). Altogether these data provide a strong evidence 

that when engineered in OMVs, EGFRvIII and M30 epitopes work 

synergistically and together induce a robust immune response that results in 

complete protection against B16F10EGFRvIII cell line. 

3.6 Synergistic protective activity of mFAT1 and CT26 exosomes 

3.6.1 Purification of exosomes from cancer cell lines 

Exosomes are usually prepared from standard cell culture flasks by differential 

ultracentrifugation, obtaining approximately 50-100 μg of exosomes from 200 

ml of culture. Since this yield is not sufficient for immunization purposes, an 

important step of my experimental activity has been to identify a rapid effective 

way to get high and pure TEXs. 

To this aim the integra CELLine culture system (schematically shown in Figure 

12A from commercial protocol) was tested109.  

The CELLine bioreactor AD (for ADherent cells) is a two-compartment culture 

flask characterized by a cell compartment (15 ml maximum volume) and a 

medium compartment (1L maximum volume) separated by a 10 kDa semi-

permeable membrane. Inoculated cells can adhere to a polyethylene 

terephtalate (PET) matrix of the cell compartment and exosomes are released 

in the medium which can be collected for vesicle recovery. High quality 

exosomes were recovered from cell supernatant and the yield was shown to be 

increased by at least fivefold (Figure 12B). Vesicle quality was assessed by WB 

using mAb against CD81 tetraspanin of six separated sequential preparations 

from CELLine bioreactor (Figure 12C).  
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Figure 12. (A) Schematic representation of CELLine bioreactor. The bioreactor is separated into a medium 

compartment and a cell compartment with a 10 kDa semi-permeable membrane. Cells inoculated can 

adhere to the PET matrix of the cell compartment and exosomes are released in the medium which are 

collected for vesicle purification. (B) Table reporting the TEXs yield isolating from culture flask conditioned 

medium or CELLine bioreactor supernatant following isolation and purification protocol as reported in 

Materials and Methods section, (C) Six TEXs preparations from CELLine bioreactor analyzed by WB for 

CD81 marker identification. Samples corresponding to pellets obtained from cell culture supernatants were 

obtained by centrifugation at 10,000 x g (PreUC CL- 20µg), followed by an ultracentrifugation step (CL 

TEXs). PreUC CL and CL TEX were visualized by WB analysis using mouse anti-CD81 antibodies.  

Naturally released TEXs were therefore isolated and purified from cell culture 

supernatants of human HCT15 or mouse CT26 colorectal or mouse B16F10 

melanoma cancer cell lines. TEX quality was assessed by verifying the 

presence of known exosome markers using WB analysis and by TEM using 

negative staining and immune gold particles (Figure 13). In particular, total cell 

extracts (CELL - 20µg) and TEXs (5µg) from HCT15 cell line were loaded on 

SDS-PAGE and analyzed by WB (Figure 13A) with antibodies specific for CD81 

and for the lipid raft associated protein Flotilin-1. TEXs samples were negative 

for Calnexin, an endoplasmic reticulum marker, indicating that the exosome 

samples contained little contamination from cell debris.  
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Figure 13. TEXs quality control. (A) TEXs were isolated from HCT15 cell line and samples corresponding to total cell 

extracts from HCT15 cell line (CELL- 20µg) and TEXs isolated from HCT15 cells (TEX - 5µg) were analyzed 

by WB for CD81 and Flotilin-1 marker identification. Calnexin was used as negative control thus revealed in 

cell extracts, CELL, but not in TEX samples. B) TEM analysis of TEXs purified using negative stain (left) and 

with primary anti-CD81 mouse antibodies and 10 nm gold-labeled anti-mouse secondary antibody (right). 

3.6.2 Exosome-OMV interaction 

Next we investigated whether TEXs could spontaneously interact with OMVs 

and generate complexes which would enable the co-delivery of exosome-

associated tumor antigens and OMV-associated immunostimulatory molecules 

to APCs. Co-delivery of antigens and adjuvants to the same APCs is in fact a 

prerequisite to induce an optimal adaptive immune response. The rationale for 

testing the spontaneous interaction between the two vesicles stem from the 

notion that OMVs actively interact with eukaryotic cell membrane and there are 

reports which suggest that such interaction lead to the OMV-membrane fusion. 

If such fusion does occur, the two vesicles should theoretically be capable of 

fusing together. 

To analyze TEXs/OMVs interaction we first set-up methods to visualize them 

and discriminate them when mixed together. Two methodologies were used: 

confocal microscopy and TEM. 

For confocal microscopy, TEXs purified from the murine melanoma B16F10 cell 

line, were fluorescently labeled (green) by incubation with Exo-Glow dye (SBI, 

Mountain View, CA). Exo-Green stain is based on Carboxyfluorescein 

succinimidyl diacetate ester (CFSE) chemistry (Figure 14A), a compound which 

is membrane permeable. When CFSE enters the vesicles, it is hydrolyzed by 

endogenous esterases, removing the diacetate residues. This generates a 

fluorescent green product, which interact with NH2 groups and make TEXs 

fluorescent. When fluorescent TEXs (Exo-green TEXs) were incubated with 



CONFIDENTIAL Results 

46 

B16F10 cells, they interacted with the cell membranes and after 2 hour 

incubation at 37°C were found in the intracellular compartment (Figure 14B).  

 
Figure 14. TEXs fluorescently labeled with Exo-Green. A) Schematic presentation of Exo-green dye. Based on CFSE 

chemistry this compound is membrane permeable and once entered the vesicles, it is hydrolyzed by 

endogenous esterases which generates a fluoresce green product, that make TEXs fluoresce green (Exo-

green TEXs). B) Exo-green TEXs were incubated with B16F10 cell, and uptake was visualized by confocal 

microscopy. Nuclei were stained in blue using DAPI (4’,6-diamidino-2-phenylindole). 

In parallel, OMVs were made red fluorescent by expressing the fluorescent 

protein mCherry fused to the periplasmic MBP protein. mCherry is a monomeric 

protein with peak absorption/emission at 587 nm and 610 nm, respectively14. 

The fusion protein was expressed in E. coli BL21(DE3)ΔompA strain and OMVs 

were isolated and purified. As shown and highlighted in Figure 15A, mCherry 

efficiently compartmentalized in OMVs. 

When fluorescent OMVs (OMV-red) were incubated with B16F10 cells, they 

rapidly interacted with the cell membrane and after 2 hour incubation at 37°C a 

fraction of OMVs were found in the intracellular compartment, indicating that 

they were rapidly endocytosed (Figure 15B).  



CONFIDENTIAL Results 

47 

 
Figure 15. Expression of mCherry fluorescent protein in OMVs. A) SDS-PAGE of OMVs. OMVs were purified from 

BL21(DE3)∆OmpA(pET21b+), (“Empty” OMVs) and BL21(DE3)∆OmpA(pET-MBP-mCherry) (OMV-red) and 

loaded on SDS-polyacrylamide gel for SDS-PAGE analysis (20µg OMVs). mCherry is shown to 

compartmentalize in OMVs (lane 2). B) OMV-red were incubated with B16F10 cells and uptake was 

visualized by confocal microscopy. Nuclei were stained in blue using DAPI. 

Having set-up the methods to fluorescently label the two vesicles in a way that 

they could be discriminated, their possible interaction was followed by mixing 

them in a diluted solution. Under this condition, the visualization of sufficient co-

localization events can be attributed to relatively stable interactions between the 

two particles rather than random collisions which can take place if relatively 

concentrated solutions were used.  

As shown in Figure 16A, Exo-green TEXs and OMV-red fluorescent signals 

appeared to co-localize with relatively high frequencies, suggesting that when 

the two vesicles interact they form relatively stable complexes. 

To further confirm TEX-OMV interaction, the two fluorescence-labelled vesicles 

were first allowed to interact at 4°C for an overnight (o/n) and then incubated 2 

hours with the murine melanoma B16F10 cell line. As shown in Figure 16B, 

fluorescent signals of both vesicles could be visualized within the same cell. 

Even if this experiment does not directly demonstrate the interaction between 

TEXs and OMVs, it provides an important evidence that, regardless their 

physical status, the two vesicles can potentially be co-delivered to APCs in vivo. 
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Figure 16. TEX-OMV interaction and cell uptake. A) Exo-green TEXs and OMV-red were incubated in a 1:1 ratio at 4°C 

o/n and fluorescent signals were visualized by confocal microscopy. B) Exo-green TEXs and OMV-red were 

incubated at 4°C o/n in a 1:1 ratio and subsequently with B16F10 cells for 2 hours at 37°C. Fluorescent 

signals of the vesicles are visualized within the same cell. Nuclei were stained in blue using DAPI. 

OMVs-exosomes colocalization/interaction was also analyzed by immune 

stained TEM. For this experiment, TEXs were purified from the human 

colorectal cancer cell line HCT15 while OMVs were purified from E. coli 

BL21(DE3)ΔompA(pET-Nm-fHbp-vIII) producing vesicles decorated with 

EGFRvIIIpep epitope. After incubation with mouse anti-CD81 antibodies, TEXs 

could be visualized using anti-mouse antibodies labelled with 10 nm gold 

particles. By contrast, OMVs could be visualized by incubation with rabbit anti-

EGFRvIIIpep antibodies and subsequent incubation with anti-rabbit antibodies 

labelled with 5 nm gold particles. 
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Figure 17. Immuno TEM analysis of TEXs and OMVs interaction. A) TEXs purified from HCT15 cell line were incubated 

with primary anti-CD81 mouse antibodies and 10 nm gold-labeled anti-mouse secondary antibody B) Nm-

fHbpvIII OMVs incubated with primary anti-EGFRvIIIpep rabbit antibodies and 5 nm gold-labeled anti-rabbit 

secondary antibody. C-D) TEXs and OMVs were incubated together at 4°C o/n and interaction events were 

visualized by Immuno TEM. 

As shown in Figure 17 A and B, both TEXs and OMVs could be stained with 

their respective antibodies. When the two vesicles were mixed together (Figure 

17 C and D) several TEX-OMV interaction events could be detected. Such 

interactions did not appear to involve membrane fusions but rather physical 

contact between the two membranes. Discrimination between OMVs and TEXs 

was possible first on the basis of their respective size (OMVs showed an 

average size of 100 nm as opposed to the 50 nm average size of TEXs) and 

second on the basis of the associated gold particles. All TEXs were associated 

to 10 nm gold particles while OMVs to 5 nm gold particles.  

3.6.3 Assessment of immunogenicity and protective activity of TEXs-
OMVs complexes 

In the previous section, we have reported the experimental evidence that OMVs 

and TEXs can spontaneously interact. The interaction appears to generate 

complexes that potentially can co-deliver and can be phagocytosed by the 

same APC, a feature necessary for the elicitation of an effective immune 
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response against TEXs proteins. We therefore, analyzed whether the 

combination of MBP-D8-mFAT1 OMVs and TEXs from CT26 cell line could 

exert a possible additive or synergistic protective effect in syngeneic challenged 

mice using CT26 cell line. 

BALB/c mice were immunized four times, one week apart, with either MBP-D8-

mFAT1 OMVs in Alum or with the combination of MBP-D8-mFAT1 OMVs and 

TEXs from CT26 cells in Alum mixed in a 1:1 ratio. A week after the last 

immunization sera were collected and anti-TEXs IgG, IgG1 and IgG2a were 

measured by ELISA, coating the plates with 5 µg/ml of TEXs/well. As shown in 

Figure 18 B-D, TEXs-OMVs immunization elicited anti-TEXs antibodies and, as 

expected, the immune response was skewed toward a Th1-type of response as 

indicated by the presence of a good level of anti-TEXs IgG2a antibodies. The 

day after sera collection, mice were challenged s.c. with 1.5 x 105 CT26 cells, 

and tumor growth was followed over a period of 21 days by measuring tumor 

size with a caliper. As shown in Figure 18E, at day 21 mice treated with MBP-

D8-mFAT1 OMVs developed tumors with an average size of 500mm3, a 

number statistically different from the average tumor size of control mice 

immunized with “Empty” OMVs (Pval<0.05). Interestingly, tumor growth 

inhibition was further increased when mice were immunized with the MBP-D8-

mFAT1 OMVs-TEXs mixture (average tumor size: 380mm3; Pval<0.001). 

Although confirmation using a larger group of mice is needed, these data 

provide evidence that both D8-mFAT1 and exosome-associated cancer 

antigens contribute to inducing, in the presence of OMVs, an anti-CT26 immune 

response. 
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Figure 18. A) Schematic representation of immunization and challenge schedule in BALB/c mice. Mice were 

immunized four times with either “Empty” OMVs (20µg/dose), with MBP-D8-mFAT1 OMVs (20µg/dose) or 

with MBP-D8-mFAT1 OMVs + TEXs isolated from CT26 (CT26 TEXs) (20µg/dose, 1:1 ratio) in Alum. After 6 

days from last dose, blood samples were collected to analyze antibody titers. The day after, mice were 

challenged s.c. with 1.5 x 105CT26 cells. B-C-D) Anti-TEXs antibody titers in BALB/C mice immunized with 

“Empty” OMVs (20µg/dose), with MBP-D8-mFAT1 OMVs (20µg/dose) and with MBP-D8-mFAT1 OMVs + 

CT26 TEXs (20µg/dose, 1:1 ratio) in Alum. Sera from mice immunized as reported in A) were pooled and 

Total IgG, IgG1 and IgG2a were measured by ELISA, coating the plates with TEXs from CT26 (5µg/ml). E) 

Analysis of tumor development in BALB/C mice immunized with OMVs and challenged s.c. with 1.5 x 

105CT26 cells. The figure reports the tumor size in each mouse as measured at day 21. One asterisk 

indicates a Pval<0.05 and the three asterisks indicate a Pval<0.001. 
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4 DISCUSSION 

This PhD Thesis describes the experimental activities I have directly 

contributed to either as principal investigator or as collaborator, addressing the 

question of whether bacterial OMVs can be exploited as a platform for cancer 

immunotherapy. 

OMVs are being extensively and successfully utilized in the preclinical and 

clinical settings for prophylactic vaccination against infectious diseases. Their 

unique adjuvanticity, which directs the immune responses toward a marked Th1 

profile, and the ease with which they can be manipulated and purified have 

attracted the attention of several academic and industrial groups and bacterial 

OMV-based vaccines are already available for human use. However, 

information regarding the applicability of this platform technology in cancer 

vaccines is still limited.  

We clearly show that OMVs engineered with EGFRvIII, a tumor-specific B cell 

epitope expressed in several human tumors, induce high anti-EGFRvIII 

antibody titers with a Th1 skewed response. Furthermore, anti-EGFRvIII 

antibodies were capable of reducing the growth of EGFRvIII-positive B16F10 

cancer cells in a syngeneic immune competent mouse model. Protection levels 

appeared to be similar to those described by Heimberger and co-workers106 

using the same mouse model and a KLH-conjugated EGFRvIII peptide in the 

presence of GM-CSF. 

The ability of OMVs to induce protective antibody-mediated immune responses 

was further supported by expressing D8-mFAT1, a second tumor-associated B 

cell epitope recently discovered in our laboratories39. FAT1 is a tumor antigen 

up-regulated in most human colon cancers. A monoclonal antibody binding to a 

specific domain of FAT1 (D8) inhibits tumor growth in xenograft mouse models. 

Since we found that FAT1 mouse homolog is also over-expressed in CT26 

mouse colon cancer cell line, we decorated OMVs with the corresponding D8 

mouse epitope and we demonstrated that the engineered vesicles induced anti-

D8-mFAT1 antibodies, which protected syngeneic BALB/c mice upon tumor 

challenge using CT26 cancer cells. 
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A second important message from the work we performed is that by decorating 

OMVs with more than one antigen (two antigens in the work reported in this 

PhD Thesis) the antigens appear to work synergistically, potentiating the overall 

protective efficacy of the vaccine formulation. We combined the EGFRvIII B cell 

epitope with a tumor-specific CD4+ T cell epitope (M30) recently reported to be 

expressed in B16F10 cell line as a consequence of spontaneous mutation. 

OMVs engineered with both antigens elicited anti-EGFRvIII and anti-M30 

immune responses in immunized C57bl/6 mice and responses completely 

protected mice from the challenge with EGFRvIIIB16F10 cell line.  

This is an interesting observation in light of the fact that in glioblastoma 

patients, vaccination with EGFRvIII-conjugated peptide was shown to prolong 

overall survival but ultimately EGFRvIII-negative tumor cells escape vaccine-

induced protection. This immunoediting mechanism in part explains the failure 

of Rindopepimut (a vaccine based on EGFRvIII peptide) for glioblastoma 

treatment in a phase III trial. Our data pointing to the synergistic effect of 

EGFRvIII-OMV in combination with other cancer-specific epitopes might 

rejuvenate the interest in EGFRvIII antigen in the near future.  

Considering the ease with which OMVs can be manipulated with foreign 

antigens, these results lead to the attractive possibility of exploiting the OMV 

platform in cancer precision medicine. Expression of multiple neo-epitopes, in 

single or repeated copies, on the same or in separated OMVs are all potential 

strategies which are going to be deepened in our nearest future work. 

In light of our promising data on the beneficial effect of the multiple-antigen 

OMV decoration strategy, an important part of my activity was dedicated to 

analyse whether the combination of cancer-derived exosomes (TEXs) with 

OMVs could represent a valid strategy for cancer immunotherapy. The rationale 

of this approach stems from two experimental observations. First, cancer cells 

abundantly release TEXs and these have been shown to incorporate several 

tumor-specific and tumor-associated antigens. Therefore, exosome represent a 

natural source of tumor antigens. Second, OMVs actively interact with 

eukaryotic cell membrane and there are reports which suggest that such 

interaction lead to OMV-cell membrane fusion. If such fusion between OMV 
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membrane and cell membrane does occur, it could be possible that not only 

exosomes and OMVs can interact with each other but also the two vesicles 

could theoretically be capable of creating fusions. The existence of a physical 

interaction between exosomes and OMVs would have an important 

immunological implication since it would enable the co-delivery of exosome-

associated tumor antigens and OMV-associated immunostimulatory molecules 

to APCs. Co-delivery of antigens and adjuvants to the same APCs is a 

prerequisite to induce an optimal adaptive immune response.  

The physical association of TEXs with OMVs was analysed by confocal 

microscopy and then by TEM. Such analyses showed that when mixed together 

at least a fraction of the two vesicle populations did associate. Such association 

did not appear to lead to membrane fusion, even though a few TEM images 

seem to provide examples of “intimate” interactions (Figure 17).  

Regardless the nature of TEX-OMV interaction, the combination of the two 

vesicles appeared to elicit anti-tumor immune responses. This was 

demonstrated by combining MBP-D8-mFAT1 decorated OMVs with CT26-

derived TEXs. Immunization of BALB/c mice with MBP-D8-mFAT1 OMVs 

partially protected BALB/c mice from the challenge of CT26, a cell line that 

expresses mFAT1 on its surface. In addition, the immunization with MBP-D8-

mFAT1-OMVs + TEXs derived from CT26 further improved the anti-CT26 

protective activity. The treatment appeared to be safe in mice with no signs of 

toxicity, in line with the reported human safety data of a vaccine formulated with 

GM-CSF and TEXs isolated from ascites fluid of colorectal cancer patients70. 

Considering the relative abundancy of cancer antigens in TEXs, although 

promising these results suggest that additional work is needed to fully exploit 

the potential of exosomes in cancer immunotherapy. There are several aspects 

that require further investigation. 

First, as pointed out previously, the TEX-OMV interaction is only partial under 

the experimental conditions used. It would be interesting to see whether the 

addition of lipophilic components known to promote membrane fusion can 

increase and strengthen the vesicle association. In this respect, the 

establishment of a stable association might be crucial to prevent the physical 
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dissociation of the two vesicles at the site of injection. 

Second, the ratio used to promote TEX-OMV association might not be the 

optimal one. In these experiments only 1:1 ratio (protein content) was tested but 

other conditions might favor more proficient interactions.  

Third, the route of immunization might also have a role in the quality and 

quantity of immune response. In the recent work by Kranz and co-workers110, it 

has been demonstrated that negatively charged liposomes carrying TAA-

encoding synthetic RNAs were efficiently taken up by splenic DCs when 

administered i.v. This resulted in a potent elicitation of TAA-specific CD4+ and 

CD8+ T cells. Since OMVs are known to be negatively charged, i.v. injection 

might promote the efficient delivery of TEX-OMV complexes to the spleen. 

Finally, it is known that TEXs carry components that can potentially inhibit the 

immune response, such as the transforming growth factor-ß (TGF-ß) and 

CD47, which provides the “don’t eat me” signal111. Since the inhibitory activity of 

CD47 can be potentially blocked by anti-CD47 antibodies, it would be 

interesting to investigate further whether CT26-derived exosomes carry CD47 

and, should this be the case, whether the co-administration of anti-CD47 

antibodies can potentiate the immune responses of TEX-OMV vaccination. 

 

 



CONFIDENTIAL Materials and Methods 

56 

5 MATERIALS AND METHODS 

5.1 Chemicals, cell lines and animals 

Dulbecco's modified Eagle's medium (DMEM), Roswell Park Memorial Institute 

(RPMI) medium, sodium pyruvate (SP), MEM non- essential amino acids 

(NEAA) and Fetal Bovine Serum (FBS) were purchased from Gibco-Life 

Technologies. Penicillin/streptomycin/L-glutamine (PSG) was purchased from 

Euroclone. 

Human colorectal adenocarcinoma HCT-15 cell line, was obtained from ATCC 

(Manassas, VA, U.S.) and cultured under recommended conditions. Mouse 

melanoma B16F10 and mouse carcinoma cells derived from colon CT26 cell 

lines, were kindly given by the Department of Biomedical and Clinic Sciences of 

the University of Florence. Melanoma B16F10 cell line stably expressing 

EGFRvIII was kindly provided by Prof. J. H. Sampson from the Department of 

Neurosurgery of the Duke University Medical Center in North Carolina (U.S.). 

Stock preparations of cells were stored at -80°C and/or liquid nitrogen in 90% 

FBS and 10% dimethyl sulfoxide (DMSO). Cells were tested for mycoplasma 

before animal injection. 

C57bl/6 and BALB/c female 4 weeks old mice were purchased from Charles 

River Laboratories and kept and treated in accordance with the Italian policies 

on animal research at the Toscana Life Sciences animal facility (Siena, IT).  

5.2 Bacterial strains and culture conditions  

Plasmid assembly using the polymerase incomplete primer extension (PIPE) 

method112 was carried out in E. coli HK-100 strain. OMVs were purified from E. 

coli BL21(DE3)ΔompA strain89. E. coli were routinely grown in Luria-Bertani 

(LB) broth medium (Difco) at 37°C and when required, Ampicillin (Amp) was 

added to a final concentration of 100 µg/ml. Stock preparations of strains in LB 

and 15% glycerol were stored at -80°C. Each bacterial manipulation was 

started from an o/n culture inoculum of a frozen stock or of a single colony from 

LB plate. 
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5.3 Construction of plasmids� 

Plasmid assembly using the polymerase incomplete primer extension (PIPE) 

cloning method112 was applied for plasmid construction. 

pET21-Nm-fHbp and the pET-Nm-fHbp-vIII plasmids expressing the Nm-fHbp 

and Nm-fHbp fused to three copies of EGFRvIIIpep, respectively were 

generated as previously described from Fantappiè et al 201792. pET21-MBP 

plasmid was generated as previously described from Fantappiè et al 201489. 

pET-Nm-fHbp-M30-vIII plasmid carries the Nm-fHbp gene fused to a synthetic 

DNA fragment encoding three copies of B16-M30pep and three copies of 

EGFRvIIIpep, each copy intercalated by a Glycine-Serine spacer. pET-Nm-

fHbp-M30-vIII plasmid was generated as described in paper under revision 

Grandi A. et al 2017. 

To clone the mCherry protein as translational fusion gene to the C-terminus of 

MBP, a DNA fragment named mCherry was amplified by PCR using 

mCh3FW/mCh3Rev primers from the plasmid pcDNA3-MACA-HXB2-mCherry 

WPRE (kindly given by the laboratory group of Prof. Cereseto in the University 

of Trento). A spacer containing the Gly-Gly-Ser aminoacids was introduced 

between the MBP and the mCherry proteins in order to obtain a sufficient linker 

flexibility and reduced negative folding interference113. pET21-MBP plasmid 

was amplified using nohisflag/mCh2Rev primers (Table II) to generate a linear 

plasmid. Finally, the PCR products were mixed together and used to transform 

E. coli HK100 competent cells, thus obtaining pET-MBP-mCherry plasmid. 

To clone D8-mFAT1 peptide as translational fusion to the C-terminus of MBP a 

DNA fragment, named D8-mFAT1x3, coding for three copies of D8-mFAT1 

(IQVEATDKDLGPSGHVTYAILTDTE), was assembled via PCR annealing 

steps. Plasmid pET21-MBP has been used as template for a PCR reaction 

carried out according to the PIPE method to generate a linear plasmid, using 

primers pET21-MBPF and pET21-MBPR (Table II). 

D8-mFAT1x3 was assembled in vitro using the six synthetic oligonucleotides 

reported in Table II and subsequently amplified by PCR with primers MBPmFA-

F and MBPmFA-R. Finally, D8-mFAT1x3 fragment and linearized plasmid were 
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mixed together and transformed in E. coli HK100 competent cells, obtaining 

pET-MBP-D8-mFAT1 plasmid. 

 

Nohisflag  taacatcaccatcaccatcacgattacaaaga 
mCh3FW accaagggcggtagcatggtgagcaagggtgag 
mCh3Rev gtgatggtgatgttacttgtacagctcgtccatgc 
mCh2rev caccatgctaccgcccttggtgatacgagtctgcg 
mFa-F1 atccaagtggaggcgaccgataaagacctgggtccgtcggggcatgtg 
mFa-R1 aacctgaatttcggtgtcggtcaggatggcatacgtcacatgccccgacgg 
mFa-F2 accgaaattcaggttgaagccaccgacaaagacttaggcccgagtggtcac 
mFa-R2 ctgaatttcagtatcggtgagaatcgcgtaggtcacgtgaccactcgggcc 
mFa-F3 gatactgaaattcaggttgaagctaccgataaagatttgggcccgagtggt 
mFa-R3 ttcagtatccgtgaggatcgcataggttacatgaccactcgggcccaa 
MBPmFA-F cgcgcagactcgtatcaccaagatccaagtggaggcg 
MBPmFA-R tcgtgatggtgatggtgatgttattcagtatccgtgag  
pET21-MBPF catcaccatcaccatcacgattac 
pET21-MBPR cttggtgatacgagtctgcgcgtc 

Table II. Primer’s sequences list 

5.4 Expression of the heterologous proteins in E. coli BL21(DE3)ΔOmpA 

strain and OMVs preparation� 

Plasmids containing the genes of interest were used to transform E. coli 

BL21(DE3)ΔompA strain. Recombinant clones were grown in LB medium 

(starting OD600 = 0.05) and, when the cultures reached an OD600 value of 0.5, 

protein expression was induced by addition of 1 mM isopropyl-ß-D-

galactopyranoside (IPTG, Sigma-Aldrich). After 2 hours, cultures were 

precleared from living bacterial cells by a centrifugation step at 6,000 x g for 30 

minutes followed by a filtration through a 0.22 μm pore size filter (Millipore). 

Supernatants were then subjected to high-speed centrifugation (200,000 x g for 

2 hours) and pellets containing the OMVs were finally re-suspended in sterile 

1X PBS. OMVs amounts were estimated by measuring protein concentration 

using DC protein assay (Bio-Rad). Total bacterial lysates were prepared by 

suspending bacterial cells from a volume culture corresponding to OD600 = 1 

(centrifuged at 13,000 X g for 5 minutes) in sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (SDS-PAGE) Laemli buffer (Bio-Rad) and 

heated at 100°C for 5 minutes. Similarly, 30µg of OMVs were prepared in SDS-
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PAGE loading buffer. Each sample (10µl final volume) was separated by 4-12% 

SDS-PAGE gel (Thermo Fisher Scientific), run in MES or in MOPS buffer 

(Thermo Fisher Scientific) and stained with Coomassie Blue.� 

5.5 Exosome isolation and purification 

Cells were cultured with complete medium (DMEM or RPMI) composed by PSG 

(1X), SP and NEAA supplemented (1mM), with 10% exosome-depleted FBS 

(depleted of serum exosomes by o/n high speed centrifugation at 110,000 x g) 

in T175 flasks for 48 hours or in CELLine AD 1,000 bioreactor (INTEGRA). 

TEXs were purified from harvested cell supernatant by subsequently differential 

centrifugation steps. Centrifugations with increasing speed were performed and 

intended to pellet consecutively cells (300 x g, 10 minutes), apoptotic bodies 

(2,000 x g, 15 minutes) and shedding vesicle/microparticles/ectosomes (10,000 

x g, 30 minutes), followed by filtration through a 0.22 μm pore size filter 

(Millipore). A final high speed centrifugation step at 110,000 x g for 114 minutes 

and a washing step with sterile 1X PBS could pellet exosomes, finally 

suspended in sterile 1X PBS. TEXs amounts were estimated by measuring 

protein concentration using the DC protein assay (Bio-Rad). 

5.6 CELLine bioreactor 

The two-compartment bioreactor CELLine (INTEGRA) is composed by a 

medium compartment, which contains up to 1L medium, and a cell 

compartment containing cells in 15ml medium. These compartments are 

individually accessible, but separated by 10kDa semi-permeable cellulose 

acetate membrane.  

To start 25x106 cells were plated in 15ml growth medium at day 0. The first 

harvest was made 7 days after inoculation and submitted to purification protocol 

as described in section 5.5 Exosome isolation and purification. Cells were split 

1:10 and inoculated in the cell compartment. Subsequent harvesting and 

purification of supernatant procedures were performed every 4-7 day cycles, 

depending on the cell type used, the viability and individual growth 

characteristics. Cellular viability was routinely checked by collecting 1ml 

supernatant from cell compartment and was shown to be always higher or 



CONFIDENTIAL Materials and Methods 

60 

equal to 90%. Cellular viability was assessed using Trypan Blue Solution 0,4% 

(Thermo Fisher Scientific) in Countess™ Cell Counter (Life Technologies). 

5.7 Western blot analysis 

Purified OMVs or TEXs (1µg or 5µg protein content) were suspended in SDS-

PAGE loading buffer (Bio-Rad) and were then separated on a SDS-PAGE 4-

12% polyacrylamide gel (Thermo Fisher Scientific). Proteins separated by SDS-

PAGE were subsequently transferred onto nitrocellulose membrane by 

standard methods. The filters were blocked at room temperature (RT) for 1 hour 

by agitation in blocking solution (10% skimmed milk and 0.05% Tween 20 

dissolved in PBS (TPBS)), followed by o/n incubation at 4°C with the required 

monoclonal or polyclonal antibody (mAb or pAb). The pAbs against 

EGFRvIIIpep (Genscript) was used at 1µg/ml concentration in 1% skimmed 

milk-TPBS. mAb against CD81 tetraspanin (BD Pharmigen™) or against 

Flotilin-1 or Calnexin (BD Biosciences) were used at 2 µg/ml in 1% skimmed 

milk-TPBS. After three washing steps in TPBS, the filters were incubated in 

1:2,000 dilution of peroxidase-conjugated anti-rabbit or anti-mouse 

immunoglobulin (Dako) for 1 hour in 1% skimmed milk-TPBS, and after 3 

washing steps in TPBS, antibody binding was detected by using the 

SuperSignal West Pico chemiluminescent substrate (Pierce) at Image Quant 

LAS4,000 (GE Heathcare) instrument. 

5.8 TEXs labeling with Exo-green 

TEXs were labelled with Exo-green label (SBI- Exo-Glow) following suggested 

product’s protocol. Briefly, 10X Exo-Green dye was ten-fold diluted in 500µl 1X 

sterile PBS containing TEXs (100µg) and incubated at 37°C for 10 minutes. 

Labelling reaction was stopped adding 100µl ExoQuick –TC reagent to the 

sample, then placed in ice for 30 minutes. Samples were centrifuged for 3 

minutes at 20,000 x g. TEXs pellet was suspended in 500µl 1X sterile PBS and 

analysed by confocal microscopy. 

5.9 Confocal microscopy for TEXs-OMVs analysis 

Firstly, cells (1.5 x 105/well) were plated on microscope coverslips in 6 multi-
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wells plate and let adhere at 37°C o/n. 

Subsequently, TEXs labelled with Exo-green (Exo-green TEXs) and OMVs 

expressing mCherry fluorescent protein in their lumen (OMV-red), were 

incubated in a protein ratio 1:1, at 4°C o/n in 1ml 1X sterile PBS final volume. 

Exo-green or OMV-red were used alone as controls. After o/n incubation, 

vesicles were incubated with cells at 37°C for 2 hours and washed twice with 

1X sterile PBS. Nuclei were stained blue using DAPI (300nM). Internalisation 

and co-localization of the fluorescent signals were assessed by a laser-

scanning confocal microscope with 488nm/594nm laser lines. 

Alternatively, after o/n incubation at 4°C, interacting Exo-green and OMV-red 

were directly visualised at the laser-scanning confocal microscope with 

488nm/594nm laser lines. 

5.10 TEM immunogold 

Before immune Transmission Electron Microscopy (TEM), cross-reactivity 

between the antibodies was excluded by WB analysis (see section 5.7 Western 

blot analysis for details) and, as shown in Figure 19: “Empty” OMVs (lane 1), 

Nm-fhbpvIII OMVs (lane 2), TEXs isolated from HCT15 (lanes 3-4) were 

analyzed using rabbit anti-EGFRvIII pAb (Figure 19A) and mouse anti-CD81 

mAb (Figure 19B) revealed with peroxidase-conjugated anti-rabbit or anti-

mouse immunoglobulin.  

 
Figure 19. WB analysis for antibody cross reactivity control: “Empty” OMVs (lane 1), Nm-fhbpvIII OMVs (lane 2), TEXs 

isolated from HCT15 cell line (lanes 3-4) were analyzed using anti-EGFRvIII pAb (A) and mAb anti-CD81 (B) 

and revealed with peroxidase-conjugated anti-rabbit or anti-mouse immunoglobulin. 

Once excluded cross-reactivity between the antibodies, purified OMVs and/or 

TEXs, were visualized using TEM. Briefly, a 5 µl aliquot of purified vesicles 

preparation with a final concentration of 20 ng/µl was applied to 200-square 
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mesh nickel grids coated with a thin carbon film (Agar Scientific) and let stand 

for 3 minutes at RT. The samples were then blocked in 0.5% BSA dissolved in 

PBS for 1 hour at RT. Subsequently the samples were incubated with primary 

rabbit anti-EGFRvIII pAb (OMVs) and/or with mouse anti-CD81 mAb (TEXs) for 

1 hour at RT. Grids were washed 3 times in blocking buffer and incubated with 

5-nm gold-labeled anti-rabbit secondary antibody and/or with 10-nm gold-

labeled anti-mouse secondary antibody (BB International (Madison, WI)) for 1 

hour at RT. Immunostained vesicles were then negatively stained in 1% 

phosphotungstic acid (PTA) and visualized with a Tecnai G2 Spirit 

Transmission Electron Microscope operating at 100 kV. Images were collected 

with a CCD camera Morada 2kx4k. 

5.11 Mice immunizations and tumor challenge  

Mice immunizations were carried out at 1 or 2 weeks intervals, repeated 3 or 4 

times, by i.p. injections with different vaccine’s formulations: 1) “Empty” OMVs 

(derived from BL21(DE3)ΔompA(pET21b+) strain) 2) Nm-fHbpvIII OMVs 

(derived from BL21(DE3)ΔompA(pET-Nm-fHbp-vIII) strain) 3) Nm-fHbp-M30-

vIII OMVs (derived from BL21(DE3)ΔompA(pET-Nm-fHbp-M30-vIII) strain) 4) 

MBP-D8-mFAT1 OMVs (derived from BL21(DE3)ΔompA(pET-MBP-D8-

mFAT1) strain) 5) TEXs derived from CT26 cell lines. Each sample (20µg) was 

formulated in a final volume of 200µl of sterile 1X PBS. MBP-D8-mFAT1 OMVs 

and TEXs were formulated with Alum (Alhydrogel® Adjuvant – Aurogene). 

Tumor challenge using B16F10EGFRvIII or CT26 cell lines were performed by 

s.c. injection of 0.5 x 105 or 1.5 x 105 cells respectively. Tumor growths were 

then measured during following days using a caliper and mice were sacrificed 

once tumor volumes exceeded 1500mm3. Statistical analysis and graphs were 

processed with Prism 5.0 software (Graphpad). One asterisk: Pval≤0.05; two 

asterisks: Pval≤0.01; three asterisks: Pval≤0.001. 

5.12 ELISA titers 

ELISA was performed using Nunc Immobilizer Amino plates (Thermo Fisher 

Scientific). More specifically, coating was carried out by incubating plates o/n at 

4°C with 100 µl of synthetic EGFRvIII or D8-mFAT1 peptides (5 μg/ml), 

(Genscript). The day after, wells were washed 3 times with TPBS (0.05% 
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Tween 20 dissolved in PBS, pH 7.4), saturated with 100 μl of 1% BSA 

dissolved in PBS for 1 hour at 37°C and washed again 3 times with TPBS. Mice 

sera were threefold serially diluted in TPBS and 0,1% BSA. Serum deriving 

from mice immunized with “Empty” OMVs was used as negative control. After 3 

washes with TPBS, 100 μl of each serum dilution were dispensed in plate wells 

and incubated 2 hours at 37°C. Wells were subsequently washed 3 times with 

TPBS and incubated for 1 hour at 37°C with alkaline phosphatase-conjugated 

goat anti-mouse IgGs at a final dilution of 1:2,000. After triple TPBS wash, 100 

µl of Alkaline Phosphatase substrate (Sigma Aldrich) were added to each well 

and plates were maintained at RT in the dark for 30 minutes. Finally, 

absorbance was read at 405nm using the M2 Spectramax Reader plate 

instrument. 

Alternatively, TEXs were added to 96-well Maxisorp plates (Thermo Fisher 

Scientific) in a final concentration of 5 µg/ml in PBS and incubated at RT o/n. 

The day after, wells were washed 3 times with TPBS, saturated with 100 μl of 

1% BSA-PBS for 1 hour at 37°C and washed again 3 times with TPBS. Mice 

sera were threefold serially diluted in 0,1% BSA-TPBS. After 3 washes with 

TPBS, 100 μl of each serum dilution were dispensed in plate wells and 

incubated 2 hours at 37°C. Wells were subsequently washed 3 times with 

TPBS and incubated for 1 hour at 37°C with alkaline phosphatase-conjugated 

goat anti-mouse IgGs at a final dilution of 1:2,000. After triple TPBS wash, 100 

µl of Alkaline Phosphatase substrate (Sigma Aldrich) were added to each well 

and plates were maintained at RT in the dark for 30 minutes. Finally 

absorbance was read at 405nm using the M2 Spectramax Reader plate 

instrument. 

5.13 Flow citometry analysis 

B16F10 or CT26 (5 x 104) cells/well were pelletted in 96 U-bottom microplates 

by centrifugation at 200 x g for 5 minutes at 4°C and incubated for 1 hour at 

4°C with pooled serum of mice immunized with MBP-D8-mFAT1 OMVs or with 

“Empty” OMVs at 1:400 final dilution in PBS. Cells were then washed twice in 

PBS-5% FBS (FPBS) and incubated 100µl/well with Alexa Fluor 488 

(Invitrogen) goat anti mouse at a final dilution 1:200 in PBS for 30 minutes at 
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4°C in the dark. After 2 washing steps in FPBS, cells were resuspended in 

150µl of PBS and were analysed by a FACS-Canto-II flow cytometer (BD 

Biosciences, San Jose, CA, U.S.) and data were visualized with the FlowJo 

(Ashland, OR, U.S.) software. 
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